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Zusammenfassung

Mittels Methoden der homologischen Algebra konstruieren wir einen expliziten
Kristallisomorphism zwischen zwei Realisierungen der kristallinen Basen des nega-
tiven Teiles der Quantengruppe beziehungsweise der irreduziblen Höchstgewichts-
darstellungen von (fast allen) einfach verbundenen Lie Algebren. Die erste Real-
isierung, die wir betrachten, ist eine geometrische Konstruktion von Kashiwara
und Saito mittels irreduzibler Komponenten bestimmter Köchervarietäten. Die
zweite ist eine Realisierung mittels Isomorphieklassen von Köcherdarstellungen,
entwickelt von Reineke unter Benutzung von Ringels Hall-Algebren-Ansatz. Den
Zusammenhang der beiden Konstruktionen zeigen wir durch die Untersuchung
hinreichend generischer Darstellungen der präprojektiven Algebra. Mit Hilfe der
Beschreibung der kristallinen Basen durch semistandard Young Tableaux zeigen
wir weiterhin, dass für Lie Algebren von Typ A der Kristallisomorphismus mit
rein kombinatorischen Mitteln beschrieben werden kann.

Abstract

Using methods of homological algebra, we obtain an explicit crystal isomorphism
between two realizations of crystal bases of the lower part of the quantized en-
veloping algebra and the irreducible highest weight representations of (almost all)
simply-laced Lie algebras, respectively. The first realization we consider is a geo-
metric construction in terms of irreducible components of certain quiver varieties
established by Kashiwara and Saito. The second is a realization in terms of iso-
morphism classes of quiver representations obtained by Reineke using Ringel’s
Hall algebra approach to quantum groups. We connect the two constructions by
studying certain sufficiently generic representations of the preprojective algebra.
We further show that, in the type A situation, the crystal isomorphism can be
described on the combinatorial level via semistandard Young tableaux.
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1 INTRODUCTION
BACKGROUND AND MAIN RESULTS

The study of configurations of linear maps between vector spaces leads natu-
rally to the notion and study of representations of a quiver. A quiver is a finite
directed graph and a representation of a quiver is given by assigning a finite di-
mensional vector space to each vertex of the graph and a linear map to each
arrow.

In 1972, Gabriel classified all quivers of finite representation type (i.e. with
finitely many isomorphism classes of indecomposable representations). He shows
that the representation type of a quiver is already determined by its underlying
undirected graph, called underlying diagram. In particular, a quiver Q is of finite
representation type if and only if its underlying diagram is a simply-laced Dynkin
diagram (i.e. of type An, Dn, E6, E7 or E8). Furthermore, for Dynkin quivers there
is a bijection between the isomorphism classes of indecomposable representations
and the set of negative roots of the Lie algebra associated to the underlying Dynkin
diagram.

Subsequently, the connection between representation theory of quivers and Lie
algebras of simply-laced type has evolved into a rich area of research, culminating
in the following result by Ringel ([21]). He shows that there is a Q(v)-algebra
isomorphism ([21]) between the (twisted, generic) Hall algebra H (Q), which is
an associative algebra having as an underlying vector space a basis consisting
of all isomorphism classes of representations of Q, and the quantized universal
enveloping algebra Uv(n−) of the negative part n− of the semisimple Lie algebra
g associated to the Dynkin diagram of Q.

In [15], Lusztig geometrizes Ringel’s arguments by studying the variety of
modules over the preprojective algebra of a Dynkin quiver corresponding to g.
He translates the multiplication of the Hall algebra into the language of perverse
sheaves by which he obtains a unique basis B (known as the canonical basis) of
Uv(n

−) with particularly favorable properties. For instance the product of two ele-
ments of B is a linear combination of basis elements with coefficients in Z≥0[v, v−1].
Furthermore, B has the following remarkable property. Let V (λ) be a finite di-
mensional irreducible Uv(g)-representation of highest weight λ and

π : Uv(n
−)� V (λ)

a Uv(n−)-module homomorphism sending 1 ∈ Uv(n−) to a highest weight vector
vλ ∈ V (λ). Lusztig shows that B(λ) = {π(b) | b ∈ B and π(b) 6= 0} forms a basis
of V (λ), known as the canonical basis of V (λ).

Independently, Kashiwara ([8]) constructed a basis of Uv(n−) and V (λ), resp.,
at the v = ∞ level by purely combinatorial means. He shows that this basis can
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be lifted to a global basis of Uv(n−) for a generic parameter v which coincide with
the canonical basis (see [5]).

The crystal basis is the main subject of study of this thesis. Such a basis gives
rise to a colored directed graph, called the crystal graph. The vertex set of this
graph consists of the elements of the crystal basis while the arrows reflect the
actions of the Kashiwara operators. These are modifications of the Chevalley gen-
erators, mapping a basis element of the crystal basis to another basis element or
zero. The crystal graph may be seen as a combinatorial skeleton of the represen-
tation V (λ) or of Uv(n−), respectively. For instance, the crystal graph of V (λ) can
be identified with a full subgraph of the crystal graph of Uv(n−) which reflects
the projection π : Uv(n

−) � V (λ) on the combinatorial level. The crystal graph
of V (λ) gives further rise to a combinatorial way to obtain the character of the
representation V (λ). Moreover, crystal graphs behave very nicely with respect to
taking tensor products and are thus very helpful for the determination of tensor
product multiplicities.

Several realizations of crystal graphs have been introduced, most of them
purely combinatorial (see e.g. [10] for a survey). In this thesis we focus on a
geometric construction which is shown to yield the crystal basis of Uv(n−) (de-
noted by B(∞)) in [12]. The vertices of the crystal graph are here given by the
irreducible components of Lusztig’s quiver varieties. This geometric realization
is of particular interest because of its connection to the canonical basis which is
constructed via perverse sheaves on very closely related varieties.

The main motivation of this thesis is to interpret the geometric construction of
crystal graphs in a homological way in order to make it more accessible. In the ge-
ometric realization, the Kashiwara operators are given by bijections of irreducible
components induced by certain geometric correspondences and it is, in general,
hard to determine the images of an irreducible component under these bijections.
The main result of this thesis is the construction of a crystal isomorphism be-
tween the geometric realization of crystal graphs and a realization introduced by
Reineke in 1997 ([19]). In Reineke’s construction, the vertices of the crystal graph
of Uv(n−) are given by the isomorphism classes of representations of the Dynkin
quiver associated to g while the Kashiwara operators are obtained using the Hall
algebra approach to quantum groups. The isomorphism between Reineke’s and
the geometric realization yields a homological description of the Kashiwara op-
erators in the geometric setup in all simply-laced types except E8. By this, we
obtain an algorithm to determine the component f̃iX, where X is an irreducible
component of Lusztig’s quiver variety.

Using ad-hoc methods, Savage ([25]) shows for g = sln+1, that the irreducible
components of Lusztig’s quiver variety can be enumerated by certain combinato-
rial data which is in bijection to the Young tableaux appearing in the realization
of the crystal graph of Uv(n−). This yields a combinatorial description of the ac-
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tions of the Kashiwara operators on irreducible components of Lusztig’s quiver
varieties in type A. We explain how our description of the Kashiwara operators re-
covers his construction in this special case and are thus able to give a homological
interpretation of his approach.

Moreover, for the non-exceptional simply-laced types, we consider the crystal
graph of the finite dimensional irreducible g-module V (λ) of highest weight λ
which we denote by B(λ). We translate the embedding of this graph as a full
subgraph of the crystal graph of Uv(n−) from the geometric construction into the
homological setting. We thereby get an explicit homological description of the
irreducible components of Lusztig’s quiver varieties which are contained in that
subgraph.

We further explain how the set of components in B(λ) can be identified with
the irreducible components of varieties attached to quivers introduced by Naka-
jima. Using Borel-Moore homology on certain quiver varieties, Nakajima construct
in [18] (a modified version of) the whole universal enveloping algebra U(g) such
that the irreducible finite-dimensional g-modules are realized as the top Borel-
Moore homology of Lagrangian subvarieties which we call Nakajima’s quiver va-
rieties. Using similar arguments as in [12], Saito shows in [23] that the irreducible
components of Nakajima’s quiver varieties give rise to the crystal graph B(λ).
This realization of the crystal graph is of particular interest since the vertices
correspond to a set of naturally defined basis elements of the representation we
consider. Using the identification of the vertices of the full subgraph of B(∞)
with the irreducible components of Nakajima’s quiver varieties, we give a crite-
rion to determine whether the images of the Kashiwara operators on an irreducible
component of Lusztig’s quiver varieties are contained in the full subgraph B(λ).
Therefore we also get a homological description of the images of the Kashiwara
operators on the irreducible components of Nakajima’s quiver varieties.

In type A, we further recover the realization of B(λ) in terms of semi-standard
Young tableaux of shape λ introduced in [11]. Fix a dominant weight λ =

∑n
i=1wiωi

where ωi is the i-th fundamental weight of sln+1. As a byproduct, we show that the
set of semi-standard Young tableaux of shape λ with entries in {1, 2, . . . , n + 1}
can be identified with functions

γ : {(k, l) ∈ Z2 | 1 ≤ k ≤ l ≤ n} → Z≥0

fulfilling the inequalities
n∑
k=1

γ(i, k)−
n∑

k=i+1

γ(i+ 1, k) ≤ wi ∀i ∈ I.

This yields an alternative combinatorial description of the crystal graph of B(λ)
for g = sln+1(C).
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STRUCTURE AND CONTENT OF THIS THESIS

Let us now summarize the content of this thesis. In Section 2.1 we review the
theory of g-crystals. We recall the notions of crystal lattices, crystal bases and
Kashiwara’s description of the crystals B(λ) associated to the irreducible finite
dimensional g-module of highest weight λ. In particular, we have:

B(λ) = {f̃i1 f̃i2 · · · f̃ikvλ | ij ∈ I ∀j}\{0},

where f̃i are the Kashiwara operators for i ∈ I and vλ is a highest weight vector
of V (λ). There is an arrow b1 → b2 of color i in the crystal graph of B(λ) if and
only if f̃ib1 = b2. Note that B(λ) has a unique source, the element vλ.

We further recapitulate the notion of the infinite crystal B(∞) which is as-
sociated to Uv(n−). On the crystal level, the realization of V (λ) as a quotient of
Uv(n

−) is translated into the following fact: We can realize B(λ) as a full subgraph
of B(∞) which contains the unique source of B(∞). The combinatorics behind
this are given in terms of certain functions ε∗i on B(∞), namely for λ =

∑n
i=1wiωi

(where ωi are the fundamental weights of g), we have

B(λ) = {b ∈ B(∞) | ε∗i b ≤ wi ∀i ∈ I}.

In Section 2.2, we recall the notion of the Auslander-Reiten quiver of a Dynkin
quiver Q which has as vertices the isomorphism classes of indecomposable repre-
sentations of Q (or equivalently modules over the path algebra kQ for k the base
field) while the arrows are given by irreducible morphisms between those. This
quiver provides the combinatorial framework for the homological description of
the crystal structure on (irreducible components of) quiver varieties. We thus re-
view a combinatorial construction of the Auslander-Reiten quiver as well as some
basic facts about its structure and representations of quivers in general that we
need later on. In Section 2.3, we shortly recall the definition of the Hall algebra.

Section 3 deals with the description of the crystal B(∞) which is the main
part of this thesis. In Subsection 3.1, Reineke’s construction of B(∞) as the set of
isomorphism classes of representations of Q is introduced. We denote this crystal
structure by BH (∞). An element b ∈ BH (∞) is given by an isomorphism class
[M ]. Reineke shows that if there is an exact sequence of Q-representations

0→M → X → S(i)→ 0,

such that [X] satisfies certain properties, we have f̃i[M ] = [X]. He further proves
that for any Q-representation M there exists a representation X satisfying these
properties by classifying the middle terms of short exact sequences of kQ-modules
ending in S(i). He thereby obtains an algorithm for the computation of the actions
of the Kasiwara operators in terms of the given combinatorial data (µB(M))B,
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where B varies over all indecomposable Q-representations. Here µB(M) denotes
the multiplicity of the indecomposable direct summands B of M .

We recall the geometric construction of B(∞) as irreducible components of
Lusztig’s quivers varieties (denoted by Bg(∞)) in Section 3.2. Points in those va-
rieties correspond naturally to representations of the preprojective algebra Π(Q),
which is a finite dimensional algebra associated to Q.

The Kashiwara operators can be described in the following way. Let x ∈ X be
a generic point of an irreducible component X and letM(x) be the corresponding
Π(Q)-module. The component f̃iX is given as the closure of all points y that
(regarded as Π(Q)-modules) appear as the middle term of exact sequences

0→M(x)→M(y)→ S(i)→ 0,

where S(i) is the simple representation of Π(Q) corresponding to the vertex i.
In Section 3.3, we give a crystal isomorphism between BH (Q) and Bg(∞).

We first describe how to translate the vertices. For this, a result by Lusztig is
used, giving a one-to-one correspondence between the irreducible components of
quiver varieties and isomorphism classes of representations of Q (see Proposition
3.30). We then work in a homological algebra setting using Ringel’s description
of Π(Q)-modules as pairs (M,φ) for φ ∈ HomkQ(τ−1M,M), where τ−1 is the
inverse Auslander-Reiten translation of Q (see Section 2.2 for a definition). Let
M ∈ CQ − mod and X[M ] be the irreducible component corresponding to the
isomorphism class ofM . We prove that the function εi on X[M ] (which counts how
many consecutive times we applied f̃i to get to the desired vertex in the crystal
graph) in the geometric setting only depends on the data (µB(M))B. We further
show that there is a dense subset ofX[M ] which is mapped to the componentXf̃i[M ]

by f̃i. This is proved by constructing a certain class of points of an irreducible
component which are sufficiently generic but can be handled combinatorially.

In Section 3.4 we focus on quivers of type A. We recover a result of Savage
(see [25]) showing that there is a natural translation in our setting to the crystal
structure of B(∞) given by semistandard Young tableaux. This is done by linking
the multiplicities of direct summands of M ∈ CQ − mod to the entries in the
tableaux.

Section 4 deals with the crystal B(λ) and the embedding

ρ : B(λ) ↪→ B(∞).

First, we recall Reineke’s description of the functions ε∗i on the combinatorial data
(µB(M))B of an isomorphism class of kQ-modules in Section 4.1. We explain in
Section 4.2 how ρ is described as an embedding of irreducible components of quiver
varieties. Here, the crystal graph of B(λ) has as vertex set the irreducible com-
ponents in Bg(∞) containing an open dense subset fulfilling a stability condition.
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The functions ε∗i provide a condition to check whether an irreducible component
of Bg(∞) is already in B(λ).

By dualizing the arguments of Section 3.3, we show in Section 4.3 that for an
irreducible component X[M ], the functions ε∗i only depend on the data (µB(M))B.
We thus get a homological description of the irreducible components in B(λ) seen
as a subgraph of Bg(∞).

In Section 4.4, we examine the connection between the functions ε∗i on
ρ(B(λ)) ⊂ Bg(∞) and the functions ϕi which counts how many consecutive times
we can apply f̃i to an irreducible component X[M ] without mapping it to zero.
This allows us to decide whether the irreducible component f̃iX[M ] still fulfills
the stability condition. We thus obtain a self-contained description of B(λ) (not
only as a subgraph of B(∞)) such that the crystal operators on B(λ) are given
in explicit combinatorial terms using the data (µB(M))B.

Finally, Section 4.5 is again devoted to the type A situation. We show that
ρ(B(λ)) naturally corresponds to the crystal structure on semistandard Young
tableaux of shape λ with entries in {1, 2, . . . , n+ 1}.

2 PRELIMINARIES

2.1 CRYSTAL BASES

Throughout this thesis, g is a finite dimensional simple Lie algebra over the field
of complex numbers C of simply laced type An, Dn, E6 or E7.

Let us start by recalling the notion of crystal bases briefly. Unless otherwise
stated, details, proofs and precise statements can be found in [9] and [6].

A good approach to study finite dimensional g-modules is to find a well-
behaved bases of these. A favorable property of such a bases would be to be
preserved by the Chevalley generators of g. Unfortunately, for g 6= sl2 very few
g-modules posses such a basis. This problem can be partially solved for finite
dimensional highest weight representations of the quantum group Uv(g) (in the
v →∞ limit by considering a slight renormalization of the Chevalley generators).
Passing to the quantum group is possible since every finite dimension irreducible
highest weight representation of U(g) can be lifted in an easily controlled way
to an irreducible highest weight Uv(g)-representation such that the weight space
multiplicities are preserved (see [6, Theorem 3.4.6]).

We begin by fixing some notation. Let v be an indeterminate and let A′ = Q(v)
be the rational function field in v and A = Z[v, v−1] be its subring of Laurent
polynomials with integer coefficients. Let (ai,j)1≤i,j≤n be the symmetric Cartan
matrix of g and let further Q be the free Z-module with basis {α1, α2, . . . , αn}
which we call the root lattice. We define a form on Q via (αi, αj) = ai,j. Then
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(−,−) extends to an inner product on QR := Q ⊗Z R, the Cartan form. We
fix a root system R of g as R = {α ∈ Q | (α, α) = 2}. Then the set of simple
roots is precisely {α1, α2, . . . , αn} while the set of positive roots is given by
R+ = {α ∈ R | α ∈ Z≥0α1 + Z≥0α2 + . . . + Z≥0αn} and the set of negative
roots is given by −R+. Let now Q∗R be the dual vector space of QR. We choose
a basis {h1, h2, . . . , hn} of Q∗R such that 〈hi, αj〉 = ai,j where 〈−,−〉 is the dual
pairing. Finally, the set of fundamental weights {ω1, ω2, . . . , ωn} is the dual
basis to {h1, h2, . . . , hn}. The Z-lattice generated by the fundamental weights in
Q is called theweight lattice P and the dominant weights P+ are the elements
λ ∈ P such that 〈hi, λ〉 ∈ Z≥0 for each i ∈ I.

Let us now recall the definition of the quantum group Uv(g) which is closely
related to a deformation of the universal enveloping algebra U(g) as a Hopf alge-
bra. Indeed we have a notion of classic limit v → 1 which tends to U(g) (see [6,
Theorem 3.4.9] for a precise statement).

For N,M ∈ Z≥0 we introduce the following abbreviations

[N ] = vN−v−N

v−v−1 , [N ]! =
N∏
k=1

vk − v−k

v − v−1
∈ A,

[
M+N
N

]
= [M+N ]!

[M ]![N ]!
∈ A.

Then the quantum group (or quantized enveloping algebra) Uv(g) is
defined as the A′-algebra generated by the elements Ei, Fi Ki and K−1

i for for
i ∈ I = {1, 2, . . . , n} subject to the following relations

(i) KiK
−1
i = 1; K−1

i Ki = 1
and KiKj = KjKi;

(ii) KiEjK
−1
i = vai,jEj and KiFjK

−1
i = v−ai,jFj;

(iii) EiFj − FjEi = δi,j
Ki−K−1

i

v−v−1 ;

(iv) EiEj = EjEi if ai,j = 0,
E2
iEj − (v + v−1)EiEjEi + EjE

2
i = 0 if ai,j = −1.

(v) FiFj = FjFi if ai,j = 0,
F 2
i Fj − (v + v−1)FiFjFi + FjF

2
i = 0 if ai,j = −1.

We further have a quantized notion of the upper (and analog of the lower)
part of the enveloping algebra of g. Let therefore U ′v(n+) (resp. Uv(n−)) be
the A′-algebra with generators Ei : i ∈ I (resp. Fi : i ∈ I and relation (iv) (resp.
(v)) above.
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We have a triangular decomposition (as vector spaces) similar to that of U(g):

Uv(g) ∼= U ′v(n
+)⊗ A′[K±1

i | i ∈ I]⊗ U ′v(n−).

To be able to introduce a well-behaved A-subalgebra, we consider a larger set
of generators. For this, we define for N ∈ Z≥0

E
(N)
i :=

1

[N ]!
EN
i .

F
(N)
i :=

1

[N ]!
FN
i .

and let Uv(n+) (resp. U ′v(n−)) be the A-subalgebra of U ′v(n+) generated by the
elements E(M)

i (resp. F (M)
i ) with 1 ≤ i ≤ n and M ≥ 0.

Let us now turn our attention to representations of Uv(g). Let M be a finite
dimensional Uv(g)-module. Then M decomposes by analogy with U(g)-modules
as follows

M =
⊕
µ∈P

Mµ, where

Mµ = {m ∈M | K±1
i m = v〈hi,µ〉m ∀i ∈ I}.

We callMµ the µ-weight space ofM . If we further assume thatM is irreducible,
we have a unique highest weight λ ∈ P+ such that Mλ 6= 0 and a unique (up to
scalar multiple) highest weight vector vλ ∈ Mλ. Hence, as in the classical case,
the irreducible finite dimension Uv(g)-modules are parametrized by their highest
weights λ ∈ P+. We denote the irreducible module with highest weight λ by V (λ).

Note that, for each i ∈ I the elements K±1
i , Ei, Fi generate a subalgebra Ui

of Uv(g) isomorphic to Uv(sl2). Let M be a irreducible finite dimensional Uv(g)-
module, then (by the representation theory of Uv(sl2)) for each m ∈ M we can
find an N ∈ Z≥0 unique elements m0,m1, . . . ,mN of M which lie in KerEi such
that

m = m0 + F
(1)
i m1 + . . .+ F

(N)
i mN .

We define theKashiwara operators (or crystal operators) ẽi and f̃i in EndQ(v)(M)

ẽim :=
N∑
k=1

F
(k−1)
i mk f̃im :=

N∑
k=0

F
(k+1)
i mk.

We should now give a more precise statement of the existence of the basis
of M which is preserved by the Kashiwara operators. In order to do that let
A0 = Q[v−1]0 ⊂ Q(v) be the localization at 0 of Q[v−1]. A free A0-submodule L
of M such that L ⊗A0 Q(v) = M , L = ⊕µ∈PLµ where Lµ = L ∩Mµ and such
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that L is preserved under the Kashiwara-operators for all i ∈ I is called a crystal
lattice of M . A pair (L, B) with L being a crystal lattice is called a crystal
basis if additionally

(i) B is a Q-basis of L/v−1L ∼= L ⊗A0 Q,
(ii) B =

⊔
µ∈P Bµ where Bµ = B ∩ (Lµ/v−1Lµ),

(iii) ẽiB ⊂ B ∪ {0}, f̃iB ⊂ B ∪ {0} for all i ∈ I and
(iv) for any b1, b2 ∈ B and for all i ∈ I, we have

ẽib1 = b2 ⇐⇒ f̃ib2 = b1.

Thus, heuristically, if (L, B) is a crystal bases of M , one can think of B as a
basis of M in the limit v →∞.

Let (L, B), (L′, B′) be two crystal bases of an Uv(g)-module M , then we say
that an A0-linear isomorphism φ : L → L is an isomorphism of crystal bases
if φ commutes with the Kashiwara operators and maps B to B′.

Kashiwara proved the well-known statement that each finite dimensional irre-
ducible highest weight Uv(g)-module V (λ) possesses a unique (up to isomorphism)
crystal basis. Moreover, let vλ be a highest weight vector of V (λ), then a crystal
basis (L(λ), B(λ)) of V (λ) is given as follows

L(λ) =
∑

i1,i2,...∈I

A0f̃i1 f̃i2 · · · f̃ilvλ

B(λ) = {f̃i1 f̃i2 · · · f̃ilvλ | i1, i2, . . . , il ∈ I}\{0}
Associated to a crystal basis, we can draw the crystal graph which picturizes

the action of the Kashiwara operators on that basis. This is the colored directed
graph with vertex set B and, for each two elements b1, b2 of B such that f̃ib1 = b2

for an i ∈ I, we draw an arrow colored with i:

b1
i−→ b2.

Note that (because of the uniqueness of crystal bases) each two crystal graphs
of an irreducible finite dimensional highest weight Uv(g) module are isomorphic as
colored directed graphs, i.e. the two graphs are equal up to a relabeling of vertices.

Since the Kashiwara operators act locally nilpotent on B(λ), we can introduce
two functions for i ∈ I and b ∈ B(λ):

εi(b) = max
k
{ẽki b 6= 0},

ϕi(b) = max
k
{f̃ki b 6= 0}.

Additionally, we have a map wt : B(λ) → P which is given on an element
b = f̃i1 f̃i2 · · · f̃ilvλ as

wt(b) = λ− αi1 − αi2 − . . .− αil .
We further have an abstract notion of crystals which is often helpful in proofs.
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Definition 2.1 A g-crystal is a set B endowed with the following maps for all
i ∈ I:

wt : B → P εi : B → Z t {−∞} ϕi : B → Z t {−∞}
ẽi : B → B t {0} f̃i : B → B t {0},

such that the following axioms are satisfied

• ϕi(b) = εi(b) + 〈hi,wt(b)〉 for all i ∈ I,

• if ẽib 6= 0, then εi(ẽib) = εi(b)−1, ϕi(ẽib) = ϕi(b)+1 and wt(ẽib) = wt(b)+αi,

• if f̃ib 6= 0, then εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b) − 1 and wt(f̃ib) =
wt(b)− αi,

• for b1, b2 ∈ B, we have: f̃ib1 = b2 if and only if ẽib2 = b1

• if ϕi(b) = −∞, then ẽib = f̃ib = 0.

In the Definition above, −∞ is the smallest number of Z t {−∞} and zero is
a "ghost element" not included in B (see [9, Section 7.2]).

An isomorphism of two g-crystals B1 and B2 is a bijection between B1 and
B2 commuting with the actions of the Kashiwara operators ẽi, f̃i and the maps
wt, ϕi and εi for all i ∈ I.

Note that the crystal graph of a crystal basis gives rise to a crystal but not
every abstract crystal corresponds to a crystal basis.

In this thesis we are mainly interested in a particular crystal graph, namely
the one associated to the lower (resp. upper) half Uv(n−) (resp. Uv(n+)) of the
universal enveloping algebra itself which we denote by B(∞) (resp. B(−∞)).
Though this is not an integrable Uv(g)-module, we also have the notion of a crystal
basis here. This crystal is of particular importance since the crystal graph of any
irreducible finite dimensional highest weight representation B(λ) can be realized
as a full subgraph of B(∞) in a concrete fashion using an involution on B(∞) (the
Kashiwara-involution). This comes from the fact that we have, as in the classical
case, an analogues Verma-module construction for highest weight Uv(g)-modules,
i.e. for each λ ∈ P+ there is a surjective Uv(n−)-linear homomorphism

πλ : Uv(n
−)→ V (λ)

defined by πλ(u) = uvλ for u ∈ Uv(n
−) and vλ a highest weight vector of V (λ)

(see also Section 8 of [9]).
To define a crystal basis for Uv(n−), we first have to slightly modify the op-

erators Ei. We deduce from the triangular decomposition of Uv(g) that for any
u ∈ U ′v(n−) there exist unique elements R, S ∈ U ′v(n−) such that

[Ei, u] =
KiS −K−1

i R

v − v−1
.
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For each i ∈ I, let e′i be the linear endomorphism of U ′v(n−) defined by e′iu = R.
It is a straightforward calculation to show that for u ∈ Uv(n

−), we have that
R ∈ Uv(n−). Hence e′i is a linear endomorphism of Uv(n−). For any u ∈ Uv(n−),
we can then find N ∈ Z≥0 and unique elements u0, u1, . . . , uN which lie in Ker e′i
such that

u = u0 + F
(1)
i u1 + . . .+ F

(N)
i uN .

Thus we can define the Kashiwara operators ẽi, f̃i ∈ End(Uv(n
−)) in a similar

fashion as before:

ẽi(u) :=
∑N

k=1 F
(k−1)
i uk, f̃i(u) :=

∑N
k=0 F

(k+1)
i uk.

Then we find that Uv(n−) posses a unique crystal basis (up to isomorphism).
It is given by the pair (L(∞), B(∞)), where

L(∞) =
∑
i1,i2,...

A0f̃i1 f̃i2 · · · f̃il1

B(∞) = {f̃i1 f̃i2 · · · f̃il1}\{0}

for ik ∈ I for all k.
In order to obtain a crystal structure onB(∞) we further set for b ∈ B(∞), b =

f̃i1 f̃i2 · · · f̃il1 and i ∈ I

wt(b) = −αi1 − αi2 − . . .− αil ;
εi(b) = max{k ≥ 0 | ẽki b 6= 0};
ϕi(b) = εi(b) + 〈hi,wt(b)〉 .

We continue with giving a precise description of the embedding of B(λ) in
B(∞) for λ ∈ P ∗. Therefore we introduce the aforementioned involution on B(∞).

First let us define a Q(v)-linear algebra antiautomorhism ∗ of Uv(g) given by

E∗i = Ei;

F ∗i = Fi;

K∗i = K−1
i .

Then Uv(n−) is clearly invariant under ∗. We further have

L(∞)∗ = L(∞); B(∞)∗ = B(∞).

We call ∗ the Kashiwara involution. By setting

ẽ∗i (b) = (ẽi(b
∗))∗; f̃ ∗i (b) = (f̃i(b

∗))∗;
ε∗i (b) = εi(b

∗); ϕ∗i (b) = ϕi(b
∗)

we obtain a new crystal structure on B(∞) which we denote by B(∞)∗. Note that
wt∗(b) = wt(b).
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Theorem 2.2 ([9, Proposition 8.2]) Let λ =
∑

i∈I wiωi ∈ P+, where ω1, ω2, . . . , ωn
are the fundamental weights of g. Then the crystal graph B(λ) of the irreducible
highest weight module V (λ) can be realized as the full subgraph of B(∞), consisting
of all vertices b ∈ B(∞) such that ε∗i (b) ≤ wi for all i ∈ I.

In other words: Denote by Bλ the set of all vertices lying in this subgraph. For
b ∈ B(λ), set

f̃λi (b) = f̃i(b),

ẽλi (b) = 0 for b /∈ Bλ and
ẽλi (b) = ẽi(b) for b ∈ Bλ,

wtλ(b) = λ− wt(b),

ελi (b) = εi(b) and
ϕλ(b) = ϕ(b) + wi.

Then (Bλ, f̃λi , ẽ
λ
i ,wtλ, ελi , ϕ

λ
i ) is isomorphic to B(λ) as abstract crystals.

We end this section by noting that we have an analogues notion of crystal
basis for the upper half of the quantum group Uv(n

+) and finite dimensional
irreducible lowest weight modules V (−λ) for λ ∈ P+. For a g-crystal B, let
therefore B∨ = {b∨ | b ∈ B} be the crystal obtained by

wt(b∨) = −wt(b); εi(b
∨) = ϕi(b); ϕi(b

∨) = εi(b);

ẽib
∨ = (f̃ib)

∨; f̃ib
∨ = (ẽib)

∨.

We set B(λ)∨ = B(−λ) (resp. B(∞)∨ = B(−∞)). This crystal can then be
regarded as the crystal graph associated to the finite dimensional irreducible lowest
weight modules V (−λ) (resp. to the upper half of the quantum group Uv(n+)).

2.2 REPRESENTATION THEORY OF QUIVERS

In Section 3, we deal with a realization of the crystal graph B(∞) via the Hall
algebra approach given in [19]. An indispensable tool here is the Auslander–Reiten
quiver, we therefore recall some basic facts about representations of quivers. De-
tails and proofs can be found in [1] and [4].

A quiver Q is a finite directed graph and therefore given by a pair (Q0,Q1)
with Q0 the set of vertices and Q1 the set of arrows. For an arrow a ∈ Q1 we denote
by out(a) its starting vertex and by in(a) its ending vertex. By fixing a labeling
of the vertices we will constantly identify Q0 with I = {1, 2, . . . , n = |Q0|}.

For an arbitrary field k let kQ be the path algebra of Q. A basis of the
underlying k-vector space of kQ is given by the set of all paths of the quiver
along its arrows, including a trivial path of length 0 for each vertex, starting and
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ending at this vertex. The multiplication is given by concatenation of paths. If the
starting vertex of the first path is not equal to the ending vertex of the second,
their product is defined to be zero.

We define kQ−mod to be the category of all finite–dimensional kQ–
modules, which is equivalent to the category of finite–dimensional representa-
tions of the quiver Q. A representation of Q is a collection V = ((Vi)i∈Q0 , (xa)a∈Q1),
consisting of a vector space Vi for each vertex i ∈ Q0 and a linear map xa :
Vout(a) → Vin(a) for all arrows a : out(a)→ in(a) in Q1.

We call M ∈ kQ − mod indecomposable if it is not isomorphic to the di-
rect sum of two other non-trivial representations. Every M ∈ kQ − mod can be
uniquely decomposed (up to isomorphism) into a direct sum of indecomposable di-
rect summands. For an indecomposable representation N ∈ kQ−mod, we denote
by µN(M) the multiplicity of N as a direct summand of M .

To each representationM = (V, x) of Q, we can assign the dimension vector
dimV ∈ ZI≥0 of M via dimV = (dimVi)i∈I .

A kQ-moduleM = (V, x) is simple if it has no non-trivial subrepresentations.
That is a kQ-module N = (V ′, x′) such that Ni is a vector subspace of Mi for all
i ∈ Q0 and for all a ∈ Q1 the restriction of xa : Vout(a) → Vin(a) to V ′out(a) equals
x′a : V ′out(a) → V ′in(a).

A morphism between two representations M = (V, x) and M ′ = (V ′, x′) of
Q is a tuple φ = (φi)i∈Q0 where φi : Vi → V ′i is a homomorphism of vector spaces
such that for all a ∈ Q1 the following diagram commutes:

(1) Vout(a)
xa //

φout(a)
��

Vin(a)

φin(a)
��

V ′out(a)

x′a // V ′in(a)

A morphism φ between two representations of Q is called an isomorphism if
φi is an isomorphism for all i ∈ Q0.

For i ∈ Q0, let ei ∈ ZI≥0 be such that eij = δij and let S(i) be the kQ-module
with dimension vector ei. Then S(i) is simple and, if we assume Q to by acyclic,
every simple representation of Q is isomorphic to such an S(i).

For M ∈ kQ−mod we denote by [M ] the isomorphism class of M and recall
Gabriel’s Theorem which was the first milestone in establishing the connection
between representation theory of quivers and Lie algebras.

Theorem 2.3 ([1, Theorem 5.10]) Let Q be a Dynkin quiver (i.e. of type ADE)
and let αi, i ∈ I, be the set of simple roots of the Lie algebra g associated to the
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underlying Dynkin diagram. Then the assignment

[V ]→
∑
i∈I

(dimVi)αi

is a one-to-one correspondence between the isomorphism classes of indecomposable
representations of Q and the negative roots of g. Furthermore these are the only
quivers with finitely many isomorphism classes of indecomposable representations.

Remark 2.4 For a Dynkin quiver Q, a positive root α and a field k, let us
denote by M(α, k) a representative of the isomorphism class of indecomposable
kQ-modules associated to this root via Theorem 2.3. Then we get a one-to-one
correspondence between isomorphism classes of kQ-representations and functions
R− → Z≥0 by mapping [M ] (M ∈ kQ − mod) to the function γM : α 7→
µM(α,k)(M). Conversely, for a function γ : R− → Z≥0, we get a representative
M of an isomorphism class of kQ-modules via M = ⊕α∈R−M(α, k)γ(α) which we
denote by M(γ, k).

Remark 2.5 For Q an arbitrary acyclic quiver, we have the standard duality
functor D : kQ−mod→ (kQ)op−mod between the category of kQ-modules and
the category of (kQ)op-modules where (kQ)op is the opposite algebra of kQ. For
M ∈ kQ − mod it is given by DM = Homk(M,k) and for M,N ∈ kQ − mod,
f ∈ HomkQ(M,N) it is given by D f = Homk(f, k) : DN → DM, φ 7→ φ ◦ f
(compare with [1, Section 2.9, page 12]).

On kQ−mod we have a non-degenerate bilinear form called the Euler form
(also called Ringel form) given by:

〈M,N〉R := dim HomkQ(M,N)− dim Ext1(M,N)

which is known to depend only on the dimension vectors dimM and dimN and
to be equal to ∑

j∈Q0

dimMj dimNj −
∑
a∈Q1

dimMout(a) dimNin(a).

For Q a Dynkin quiver, the symmetrization of the Euler form

(M,N)R := 〈M,N〉R + 〈N,M〉R = dim HomkQ(M,N) + dim HomkQ(N,M)

− dim Ext1(M,N)− dim Ext1(N,M)

coincides with the Cartan form on the Z≥0 span of the positive roots of g
identifying them with kQ-representations via Remark 2.4.
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Recall that a primitive idempotent of kQ is an element e ∈ kQ, such that
the equality e2 = e holds and e cannot be written as a sum of two other non-zero
elements e1, e2 ∈ kQ with e2

j = ej for j ∈ {1, 2}.
Two idempotents e1, e2 are called orthogonal if e1e2 = e2e1 = 0 holds in kQ. A

decomposition kQ = e1kQ⊕e2kQ⊕. . .⊕enkQ such that e1, e2, . . . , en are primitive
pairwise orthogonal idempotents with

∑n
j=1 ej = 1 is called an indecomposable

decomposition of kQ and such a set {e1, e2, . . . , en} is then called a complete
set of primitive orthogonal idempotents of kQ. Recall that a kQ-module is
called projective if it is isomorphic to a direct summand of a free kQ-module.
Dually a kQ-module is called injective if it is isomorphic to a direct summand
of a free kQop-module.

Note that the set of trivial paths {ej}i∈Q0 is a complete set of primitive orthog-
onal idempotents of kQ. The indecomposable projective (resp. injective) modules
of kQ are isomorphic to kQej (resp. ejkQ) for j ∈ Q0. Note that as a vector space,
the projective module kQej has as a basis all paths starting at j. We therefore set
P (i) := kQei (resp. I(i) = eikQ).

Example 1: Let Q be the following quiver:

1← 2← 3.

We have a unique indecomposable projective (resp. injective) kQ-module up to
isomorphism for each i ∈ Q0 = {1, 2, 3}. We use here the simplified notation of
quiver representations instead of kQ-modules:

P (1) = k
0←− 0

0←− 0; P (2) = k
1←− k

0←− 0; P (3) = k
1←− k

1←− k

I(1) = k
1←− k

1←− k; I(2) = 0
0←− k

1←− k; I(3) = 0
0←− 0

0←− k.

AUSLANDER-REITEN QUIVERS OF DYNKIN QUIVERS

For the rest of this section let Q be a Dynkin quiver. A lot of the structure of
kQ−mod is contained in the Auslander–Reiten quiver ΓQ. The vertices of this
quiver are given by the isomorphism classes [V ] of indecomposable representations
of Q while there is an arrow [V ] → [W ] if and only if there is an irreducible
morphisms V → W in kQ −mod. Recall that those are the non-isomorphisms
in kQ−mod that cannot be written as a composition of two non-isomorphisms.

We turn our attention to a combinatorial construction of ΓQ (see [4, Section 6.5]
for details). For a Dynkin quiver Q, let Q∗ = (Q0, Q

∗
1) be the quiver with the same

set of vertices and reversed arrows by setting in(a) = out(a∗) and out(a) = in(a∗)
for each a ∈ Q1. To construct ΓQ, we introduce the infinite quiver ZQ∗ which has

15



Z × Q0 as set of vertices and Z × {Q1 ∪ Q∗1} as set of arrows where for r ∈ Z,
a ∈ Q1

out(r, a) = (r, out(a)); out(r, a∗) = (r, in(a))

in(r, a) = (r + 1, in(a)); in(r, a∗) = (r, out(a)).

Example 2: Let Q again be the quiver:

1← 2← 3.

Then ZQ∗ is given as follows:
(−1, 3)

##

(0, 3)

##

(1, 3) · · ·

(−1, 2)

::

$$

(0, 2)

##

;;

(1, 2)

::

· · · (−1, 1)

99

(0, 1)

;;

(1, 1)

;;

A slice of ZQ∗ is a connected full subquiver which contains for each i ∈ Q0 a
unique vertex of the form (r, i), r ∈ Z. The isomorphism classes of indecomposable
projectives of kQ are in bijection to the vertices of a slice of ZQ∗ starting at (0, 1)
via P (i) 7→ (0, i). The image of this slice under the Nakayama permutation
ν is again a slice whose vertices are in bijection with the isomorphism classes
of indecomposable injectives of kQ. Recall that ν in the various types does not
depend on the orientation and is for i ∈ Q0, r ∈ Z given by:

Type An: ν(r, i) = (r + i− 1, n+ 1− i).

Type Dn: n even: ν(r, i) = (r + n− 2, i);

n odd: ν(r, i) = (r + n− 2, i) for i ≤ n− 2 and

ν(r, n− 1) = (r + n− 2, n);

ν(r, n) = (r + n− 2, n− 1).

Type E6: ν(r, i) = r + 5, 6− i) for i ≤ 5 and

ν(r, 6) = (r + 5, 6).

Type E7: ν(r, i) = (r + 8, i).

Type E8: ν(r, i) = (r + 14, i).
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It is well-known that the Auslander-Reiten quiver of kQ can be identified with
the full subquiver of ZQ∗ formed by the vertices lying between the slice starting
at (0, 1) and the image of this slice under ν.

Furthermore ZQ∗ has a translation structure given by theAuslander–Reiten
translation τ which is given by translation to the left, i.e. τ(p, q) = (p − 1, q).
This function gives rise to a bijection between the isomorphism classes of inde-
composable non–projectives and the isomorphism classes of indecomposable non–
injectives when restricted to ΓQ. We can describe τ as a function on the dimension
vectors if we fix a labeling of Q0 which is adapted to Q. That is i > j if there is
a path from i to j in Q1.

For i ∈ Q0 first define a function ri : ZQ0

≥0 → ZQ0

≥0 via

ri(v) = v − 2(v, αi)

(αi, αi)
αi,

for v ∈ ZQ0

≥0. Here we denote the dimension vector of the simple kQ-module S(i)

by αi. For a sequence i1, i2, . . . , in adapted to Q, we define a map c : ZQ0

≥0 → ZQ0

≥0

on x ∈ ZQ0

≥0:
c(x) = rinrin−1 · · · ri1(x).

The map c is called a coxeter element of Q. The relation to τ is as follows:
for an indecomposable non-projective kQ-moduleM with dimension vector v, the
indecomposable kQ-module X = τM has dimension vector v′ with

v′ = c(v).

Example 3: We give an example of the Auslander–Reiten quiver of the following
quiver (type A3)

Q = 1← 2← 3.

Note that by Gabriel’s theorem the indecomposable kQ−models are determined by
their dimension vectors. Therefore we denote a vertex of ΓQ by the dimension
vector of its isomorphism class.

111

""

110

<<

""

011

""

τ
oo

100

<<

010

<<

τ
oo 001τ

oo

Note that the three indecomposable projective modules of kQ lie in the leftmost
slice, while the three indecomposable injective modules of kQ lie in the rightmost
ray of ΓQ.
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We further have a functorial description of τ as an equivalence between all
non–injective kQ−modules and all non–projective kQ−modules. For this, let kQ−
modP (resp. kQ − modI) be the full subcategory of kQ − mod consisting of the
modules with no non-trivial projective (resp. injective) summands. Then τ can be
extended to the functor

τ : kQ−modP → kQ−modI

τM = D Ext1
kQ(M,kQ)

with inverse
τ−1 : kQ−modI → kQ−modP

τ−1M = Ext1
kQ(DM,kQ).

ForX, Y ∈ Q−mod, the Auslander-Reiten translation τ gives rise to functorial
isomorphism:

D HomkQ(X, τY ) ∼= Ext1
kQ(X, Y ) ∼= D HomkQ(τ−1X, Y ).

This isomorphism is known as theAuslander-Reiten formula (or Auslander-
Reiten duality).

We conclude this section with an important remark that is used extensively in
the homological description of B(λ).

Remark 2.6 From the definitions it is straightforward to see that D τM =
τ−1 DM . Here τ−1 denotes the inverse Auslander-Reiten translation in (kQ)op −
mod. We can further identify representations of (kQ)op−mod with representations
of kQ∗ − mod. Thus the Auslander-Reiten quiver of kQ∗ can be obtained by
reversing each arrow in the Auslander-Reiten quiver of kQ and interchanging the
roles of τ and τ−1.

2.3 RINGEL HALL ALGEBRAS AND THE CANONICAL
BASIS

We review the notion and some facts about Hall algebras which we use in Section
3.1.

Let Q be a Dynkin quiver of type A,D,E and g the associated finite dimen-
sional simple Lie algebra with Cartan decomposition g = n+ ⊕ h⊕ n−.

Let q be a prime power, M , N , X be kQ–modules and Fq be the finite field
with q elements. Following Remark 2.4, we can associate toM , N and X functions
γM , γN and γX from the negative root lattice to Z≥0. We define FX

M,N(q) as the
number of submodules U of M(γX ,Fq) over Fq such that U ∼= M(γN ,Fq) and
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M(γX ,Fq)/U ∼= M(γM ,Fq) over Fq. Recall that we denote by M(γ, k) the kQ-
module associated to the function γ.

One can show that FX
M,N(q) is a polynomial in q called the Hall polynomial.

Setting q = v2, we therefore obtain:

FX
M,N(v2) ∈ Z[v, v−1] ⊂ Q(v).

Definition 2.7 We define the (twisted, generic) Hall algebra H (Q) of a quiver
Q to be the Z[v, v−1]-vector space with basis elements u[M ] indexed by the iso-
morphism classes [M ] of kQ–modules and multiplication defined by

u[M ] · u[N ] := v〈M,N〉R
∑
[X]

FX
M,N(v2)u[X].

We recall the relation of Hall algebras to quantum groups and crystal basis.
Therefore, we adopt the notation of Section 2.1.

We have the following fundamental theorem by Ringel (see e.g. [21]):
Theorem 2.8 The map ηQ : Uv(n

−) → H (Q) defined by ηQ(Fi) = (u[S(i)])
induces an isomorphism of Z[v, v−1]-algebras.

By setting fQ
[M ] = vdim End(M)−dimMu[M ], we clearly get a basis of H (Q). Via

η−1
Q , this basis is sent to a PBW-basis BQ of Uv(n−) corresponding to a reduced
expression of the longest Weyl group element w0 of g adapted to Q ([15, 4.12]).
We denote those basis elements by FQ

[M ] := η−1
Q (fQ

[M ])

It was shown by Lusztig that the Z[v−1]-lattice L spanned by BQ is inde-
pendent of the reduced decomposition of w0 and thus of the orientation of Q.
Furthermore the image of BQ under the projection π : L → L /v−1L is a Z-
basis B of L /v−1L which is again independent of the orientation of Q.

Let us denote by ?! : Uv(n
−) → Uv(n

−) the canonical Q-algebra involution of
Uv(n

−) sending Fi to Fi and v to v−1. Then there is a unique ?!-invariant basis B
of L whose image under π is B.

This basis is called the canonical basis. The elements of B can hence be
parametrized by the isomorphism classes of kQ-modules, defining F Q

[M ] ∈ B by

π(F Q
[M ]) = π(FQ

[M ])

and setting
B = {F Q

[M ] |M ∈ kQ−mod}.
The following result is a slight reformulation of the work of Grojnowski-Lusztig.

Theorem 2.9 ([5]) Let B be the canonical basis. Set

L′ =
⊕
b∈B

A0b, B′ = {bmod v−1L′; b ∈ B}.

Then (L′, B′) is a crystal basis of Uv(n−) and hence isomorphic to (L(∞),B(∞)).
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3 CRYSTAL GRAPHS OF ENVELOPING AL-
GEBRAS

3.1 THE HOMOLOGICAL CONSTRUCTION

Let Q be a Dynkin quiver associated to g and k an arbitrary field. In [19], the
crystal graph of U(n−) is realized as the set of isomorphism classes of kQ-modules.
To state the main result of [19], we need the following definitions. We adopt the
notations of Section 2.3.

Definition 3.1 • The degree of a non–zero Laurent polynomial c ∈ Z[v, v−1]
is the smallest d such that v−dc ∈ Z[v−1].

• For a kQ-module M and i ∈ I we define

aQ
i (M) := max

[Y ]
deg cQ

i (M,Y ),

where u[S(i)] · fQ
[M ] =

∑
[Y ]

cQ
i (M,Y )fQ

[Y ].

• For u ∈ Uv(n−), let ρ(u) be the largest integer r such that u ∈ F r
i Uv(n

−).

Theorem 3.2 ([19, Proposition 3.2]) Let M be a kQ–module and i ∈ I. If X is
a kQ–module such that

deg cQ
i (M,X) = aQ

i (M) ≥ aQ
i (X)− 1,

then aQ
i (M) = aQ

i (X)− 1, ρ(F Q
[M ]) = aQ

i (M) and F Q
[X] = f̃iF

Q
[M ] mod v−1L .

Thus the Kashiwara operator f̃i (i ∈ I) maps the isomorphism class [M ] to the
isomorphism class [X] if the criterion on the degree of the polynomial cQ

i (M,X)
is fulfilled.

In [19] it is proved that, for certain choice of orientations for Q, we can find for
anyM ∈ kQ−mod and any i ∈ I such a kQ-moduleX fulfilling the criterion. This
is done by classifying all middle terms of short exact sequences of kQ-modules of
the form

0→M → X → S(i)→ 0,

which allows one to express the function aQ
i in terms of multiplicities of certain

indecomposable direct summands ofM . Let us recall these results in more details.

Definition 3.3 A quiver Q is called special if dim HomkQ(X,S(i)) ≤ 1 for all
i ∈ I and all indecomposable kQ–modules X.
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For the rest of this section we make the following assumption:

Q is a fixed special Dynkin quiver.

At the end of this section, we examine this condition further and state all possible
orientations which yield a special Dynkin quiver. In particular, this shows that we
can find at least one orientation which is special for any simply-laced type Dynkin
quiver except E8.

Fix i ∈ I, we introduce two sets of kQ–modules which play an important role
in the classification of short exact sequences ending in S(i).

First we define

Pi(Q) := {X ∈ kQ−mod | X is indecomposable and dim HomkQ(X,S(i)) 6= 0}.

On Pi(Q) we have a relation � given by

(2) X � Y ⇐⇒ HomkQ(X, Y ) 6= 0.

It is shown in [19] that this is a partial order on Pi(Q):

Proposition 3.4 ([19, Proposition 4.3.]) Let X, Y be in Pi(Q). If there is a path
from [X] to [Y ] in the Auslander-Reiten quiver ΓQ of Q, then there exists a map
f ∈ HomkQ(X, Y ) inducing an isomorphism HomkQ(Y, S(i))

∼−→ HomkQ(X,S(i)).
In particular, Pi(Q) is a poset.

Definition 3.5 An antichain is a subset of a poset such that no two (distinct)
elements are comparable.

We define

Si(Q) := {V =
k⊕
j=1

Xj | {X1, X2, . . . , Xk} is an antichain in Pi(Q)}.

On Si(Q) we have a partial order � given by:
V � V ′ if and only if dim HomkQ(B, V ′) 6= 0 for each indecomposable direct

summand B of V .
Note that we always have Pi(Q) ⊂ Si(Q) as the set of trivial antichains.

Example 4: We give examples of the sets Pi(Q) and Si(Q). Following Proposition
3.4, the set Pi(Q) can be interpreted as a full subgraph of the Auslander-Reiten
quiver.
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1. For Q = 1← 2← 3, the poset P3(Q) is the union of all framed modules:

111

##

011

==

!!

110

##

τ
oo

001

>>

010

<<

τ
oo 100τ

oo

Here S3(Q) = P3(Q), i.e. P3(Q) is a chain. The elements can be ordered
as follows:

111 � 110 � 100.

2. Take Q = 1← 2→ 3. We find that P2(Q) has the following shape:

100

!!

011

##

τ
oo

111

<<

##

010τ
oo

001

==

110

<<

τ
oo

Here again we put a frame around every element of P2(Q).
This time P2(Q) ( S2(Q). We have a non–trivial antichain given by V =
011⊕ 110. So we have two maximal chains in S2(Q) :

111 � 011 � 011⊕ 110 � 010

111 � 110 � 011⊕ 110 � 010

We are now able to state the classification of middle terms of extension by
S(i). For that let l(V ) be the set of all B ∈ Pi(Q) which are minimal with the
property that B 5 V minimally.

Theorem 3.6 ([19, Corallary 4.4, Proposition 4.5]) Given a kQ-module M and
i ∈ I, the possible middle terms of exact sequences

0→M → X → S(i)→ 0

are in 1 : 1-correspondence with the elements V ∈ Si(Q) such that τB is a direct
summand of M for each B ∈ l(V ). The bijection is given via the map

V 7→ X = N ⊕ V,

where M = N ⊕
⊕

B∈l(V ) τB.
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Recall that for kQ-modules M and B, where B is indecomposable, we denote
by µB(M) the multiplicity of B as a direct summand of M .

Definition 3.7 Fix i ∈ I. For a kQ–moduleM and an element V ∈ Si(Q) define

Fi(M,V ) :=
∑

B∈Pi(Q); B�V

µB(M)− µτB(M).

Proposition 3.8 ([19, Proposition 5.2]) Let 0 → M → X → S(i) → 0 be an
exact sequence and V ∈ Si(Q) obtained via the bijection of Theorem 3.6. Then
deg ci

Q(M,X) = Fi(M,V ).

In this language one verifies that the criterion given in Theorem 3.2 is always
fulfilled:

Proposition 3.9 ([19, Proposition 6.1]) Fix i ∈ I. Let M be a kQ–module,
V0 ∈ Si(Q) such that Fi(M,V0) = aQ

i (M) and V0 is �–maximal with this property.
Then U0 := ⊕B∈l(V0)τB is a direct summand of M . Set X = M ′ ⊕ V0 where
M = M ′ ⊕ U0. Then

aQ
i (X) = aQ

i (M) + 1.

Remark 3.10 Note that this implies that an antichain V0 ∈ Si(Q) as in Propo-
sition 3.9 is uniquely determined.

The rest of this section is devoted to the description of the realization of the
crystal basis B(∞) as the set isomorphism classes of kQ-module. We denote the
vertices of this crystal graph by BH (∞) = {b[M ] |M ∈ kQ−mod}.

Corollary 3.11 Let M be a kQ-module , then

εi(b[M ]) = Fi(M,V0) and

ϕi(b[M ]) = aQ
i − (S(i),M)R .

Proof. The first equation follows directly from Proposition 3.9 and the second
equation from the property of crystals and the fact that the Cartan form and the
symmetrized Euler form coincide on the negative root lattice.

We recall the recipe for the computation of the action of f̃i on BH (∞) which
is given in [19, Chapter 7].

Definition 3.12 Let M be a kQ–module.

• For all V ∈ Si(Q) compute the value

Fi(M,V ) =
∑
B�V

µB(M)− µτB(M).
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• Let V0 be the �–maximal antichain where the maximal value of Fi(M,V )
is reached.

• Let U0 be the sum of all τB such that B ∈Pi(Q) and B 5 V0 minimally.

• Set X = M ′ ⊕ V0 where M = M ′ ⊕ U0.

We define pliM := X.

Remark 3.13 Note that U0 must be a direct summand ofM by Proposition 3.9.

Theorem 3.14 ([19, Theorem 7.1]) Let b[M ] ∈ BH (∞). Then f̃ib[M ] = b[pliM ].

Using the description of f̃i, we can determine the action of ẽi on BH (∞).

Lemma 3.15 Let M be a kQ-module with the property that there exists an an-
tichain V ∈ Si(Q) such that Fi(M,V ) > 0. Let V ′0 be the �–minimal antichain
with the property that Fi(M,V ′0) = aQ

i (M). Then V ′0 is a direct summand of M .

Proof. Assume that there exists an indecomposable direct summand B of V ′0 , such
that µB(M) = 0. Let V ′0 = B ⊕ V ′′0 , we define Ṽ0 as Ṽ0 := V ′′0 if V ′′0 6= 0 holds.
Otherwise, we define Ṽ0 to be any element of Pi(Q) such that Ṽ0 / V

′
0 minimally.

Then, we clearly have Ṽ0 ∈ Si(Q) with Ṽ0 � V ′0 and Fi(M, Ṽ0) ≥ Fi(M,V ′0).
This is a contradiction to the defining properties of V ′0 . Thus V ′0 must be a direct
summand of M .

Hence the following is well-defined.

Definition 3.16 Let M be a kQ-module with the property that there exists an
antichain V ∈ Si(Q) such that Fi(M,V ) > 0.

• For all V ∈ Si(Q) compute the value

Fi(M,V ) =
∑
B�V

µB(M)− µτB(M).

• Let V ′0 be the �–minimal antichain where the maximal value of Fi(M,V ) is
reached.

• Let U ′0 be the sum of all τB such that B ∈Pi(Q) and B 5 V ′0 minimally.

• Set X = M ′′ ⊕ U ′0 where M = M ′ ⊕ V ′0 .

We define miM := X ′.
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Proposition 3.17 Let M ∈ kQ − mod have the property that there exists an
antichain V ∈ Si(Q) such that Fi(M,V ) > 0. Then

ẽib[M ] = b[miM ].

Proof. First we show that, since we know how the Kashiwara operator f̃i acts on
BH (∞), the action of ẽi on BH (∞) is already determined by the equality

(3) ẽif̃ib[M ] = b[M ]

for all M ∈ kQ−mod. For this, assume that Equation (3) holds and let N be a
kQ-module such that there exists a V ∈ Si(Q) with Fi(N, V ) > 0, i.e. εi(b[N ]) > 0
and ẽib[N ] ∈ BH (∞). Let N ′ be a kQ-module such that

f̃iẽib[N ] = b[N ′].

Applying ẽi yields
ẽib[N ] = ẽib[N ′].

Hence [N ] = [N ′].
Let M ∈ kQ−mod and let f̃ib[M ] = b[X]. Then [X] = [pliM ], i.e. X = M ′⊕V0

where M = M ′ ⊕ U0 and U0, V0 as in Definition 3.12.
First we note that

Fi(X, V0) = Fi(M,V0) + Fi(V0, V0)− Fi(U0, V0).

It follows from the proof of [19, Lemma 6.3] and the considerations in [19, p. 717]
(since the graph Ω defined therein has no vertices in this case) that Fi(V0, V0) −
Fi(U0, V0) = 1, which yields

Fi(X, V0) = Fi(M,V0) + 1 = aQi (M) + 1.

Lemma 3.9 then yields that the maximal value of Fi(X, V ) is reached at V0. It
remains to show, that V0 is �-minimal with this property.

Let V ∈ Si(Q) with V � V0, then:

Fi(X, V0) = Fi(M,V0) + 1 ≥ Fi(M,V ) + 1

= Fi(X, V )− Fi(V0, V ) + Fi(U0, V )

≥ Fi(X, V )− 1,

where the first inequality comes from the fact that the maximal value of Fi(M,V )
is reached at V0 and the second inequality follows again from [19, Lemma 6.3] and
the considerations in [19, p. 717].
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We can thus summarize

Theorem 3.18 For M = (V, x) a kQ-module, let b[M ] ∈ BH (∞) be the element
corresponding to the isomorphism class of M . Then the following assignments
define a crystal structure on BH (∞):

εi(b[M ]) = aQi (M),

wt(b[M ]) = −
∑
i∈I

dimViαi,

ϕi(b[M ]) = εi(b[M ])− (S(i),M)R ,

f̃i(b[M ]) = b[pliM ],

ẽi(b[M ]) =

{
0, if aQi (M) = 0

b[miM ], if aQi (M) > 0.

Moreover, this is isomorphic to B(∞) as abstract crystals.

Example 5: Let Q be the following quiver:

Q = 1← 2→ 3.

Recall that S2(Q) = {111, 011, 110, 011 ⊕ 110, 010} from Example 4.2. Consider
the following kQ-module

M = 111.

We determine the value of F2(M,V ) for all V ∈ S2(Q).

F2(M, 111) = 1; F2(M, 011) = 1; F2(M, 011⊕ 110) = 1; F2(M, 010) = 0,

i.e. the �-maximal element of S2(Q) where the maximal value of F2(M,V ) is
reached is V0 = 011⊕ 110. Hence

ε2(b[M ]) = F2(M,V0) = 1

and

f̃2b[M ] = b[011⊕110].

Furthermore

ϕ2(b[M ]) = ε2(b[M ])− (M,S2)R = 1− dim HomkQ(M,S2)− dim HomkQ(S2,M)+

dim Ext1
kQ(M,S2) + dim Ext1

kQ(S2,M) = 1− 1− 0 + 0 + 1 = 1.

The �-minimal element of S2(Q) where the maximal value of F2(M,V ) is
reached is V ′0 = 111, i.e.

ẽ2b[M ] = b[100⊕001].
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SPECIAL QUIVERS

We examine the property special of a Dynkin quiver Q more closely. In [20,
page 14], a combinatorial description of special quivers is given. For that, let Q
be a quiver. A vertex i ∈ I is called thick if there exists an indecomposable
kQ-representation M = (V, x) such that dimVi ≥ 2.

Proposition 3.19 ([20, Proposition 2.8]) Let Q be a quiver. Then Q is special
if and only if no thick vertex is a source of Q.

Definition 3.20 Let g be a Lie algebra of simply-laced type and i ∈ I. A
fundamental weight ωi of g is call minuscule if

−〈α, ωi〉 ≤ 1

for all negative roots α ∈ R−.

We get from Proposition 3.19

Corollary 3.21 Let Q be a Dynkin quiver and g the Lie algebra associated to
the Dynkin diagram of Q. Then Q is special if and only if for each vertex i ∈ I
that is a source of Q the fundamental weight ωi is minuscule.

Proof. Note that if the vertex i is a source of Q, we have for α a negative root ωi
a fundamental weight of g

−〈α, ωi〉 = dim HomkQ(M(α, k), S(i)).

Thus no thick vertex is a source of Q if and only if letting i run over all sources,
we have −〈α, ωi〉 ≤ 1 for all α ∈ R−.

Thus there is no special quiver of type E8. To get a special quiver Q of one of the
other simply-laced types , we are only allowed to choose vertices as sources which
are framed in the following diagrams (following the classification of minuscule
weights given in [2, Chapter VIII, Proposition 7]):

(4) An : ◦ ◦ ◦ · · · ◦

◦

Dn : ◦ ◦ ◦ · · · ◦

◦

27



◦

E6 ◦ ◦ ◦ ◦ ◦

◦

E7 ◦ ◦ ◦ ◦ ◦ ◦

3.2 THE GEOMETRIC CONSTRUCTION

In this section we review the realization of the crystal graph B(∞) via Lusztig’s
quiver varieties. Here the vertices of the crystal graph correspond to irreducible
components of a variety associated to a Dynkin quiver Q of the same type as
g, while the Kashiwara operators correspond to certain geometric operators con-
structed via maps with sufficiently nice fibers. This approach makes use of the
fact that the elements of a basis of the weight space of Uv(n−) corresponding to
the weight

∑
i∈I −wiαi are parametrized by the isomorphism classes of represen-

tations of Q of a given dimension vector w. On the other hand, these isomorphism
classes coincide with the Gw-orbits of the variety Repw(Q) of representations of
Q of dimension v. In this variety though, a Gw-orbit might lie in the closure of
another Gw-orbit. Passing to the cotangent bundle T ∗Repw(Q), we get again a
(now symplectic) Gw-action with an associated moment map µ. The preimage
of 0 under µ is then a variety (Lusztig’s quiver variety) which has the property
that the irreducible components of µ−1(0) are parametrized by the Gw-orbits in
Repw(Q) (see Proposition 3.30).

LUSZTIG’S QUIVER VARIETY

The points of Lusztig’s quiver varieties can be identified with certain rep-
resentations of the double quiver Q = (I,H) associated to a Dynkin quiver
Q = (Q0,Q1) which has the same set of vertices as Q and for each arrow of
the Q, H contains two arrows with the same endpoints, one in each direction.

For an arrow h ∈ H, we denote by h the arrow with out(h) = in(h) and
in(h) = out(h). Therefore, for a Dynkin quiver Q = (Q0,Q1), the associated
double quiver Q = (I,H) has as set of arrows H = Q1 tQ1.

Example 6: We give an example of the double quiver of Dynkin type A3:

Q = 1
h1 // 2
h1
oo

h2 // 3
h2
oo

28



An orientation is a choice of a subset Ω ⊂ H such that Ω ∪ Ω = H and
Ω∩Ω = ∅. From now on we fix such an orientation and let Q be the Dynkin diagram
equipped with orientation Ω. Let V be the category of finite–dimensional I–
graded vector spaces V =

⊕
i∈I Vi over C. Fix V ∈ V (i.e. fix the vector space

in a quiver representation) and let

EV =
⊕
h∈H

Hom(Vout(h), Vin(h)),

EV,Ω =
⊕
h∈Ω

Hom(Vout(h), Vin(h)).

Note that an element of EV (resp. EV,Ω) together with the fixed vector space
V is a representation of Q (resp. Q).

We have an action of the group Gv =
∏

iGL(Vi) on EV and EV,Ω by conjuga-
tion:

g.x = (gi).(xh) := gin(h)xhg
−1
out(h).

The orbits of this action on EV (resp. EV,Ω) are exactly the isomorphism classes
of representations of the quiver Q (resp. Q) with a fixed dimension vector v.

We define a symplectic form ω on EV by

(5) ω(x, x′) :=
∑
h∈H

ε(h) trace(xhx
′
h̄)

for x, x′ ∈ EV , where

ε(h) =

{
1, if h ∈ Ω
−1, if h /∈ Ω.

Note that EV,Ω̄ is naturally isomorphic to the dual space of EV,Ω via ω. Thus,
we can identify EV with the cotangent bundle of EV,Ω. Let µ : EV → glv =
⊕i∈I End(Vi) be the moment map associated to the Gv–action on EV where we
identify glv with its dual via the trace form. The i–th component of µ is for x ∈ EV
given by

µi(x) =
∑

h∈H,in(h)=i

ε(h)xhxh̄ ∈ End(Vi).

Definition 3.22 We define Lusztig’s quiver variety as the set of linear maps

ΛV := {x ∈ EV | µi(x) = 0 for all i ∈ I}.
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This is indeed a variety:

Proposition 3.23 ([17, Theorem 12.3 a)]) ΛV is a closed subvariety of EV of
pure dimension 1

2
dimEV .

Definition 3.24 The preprojective algebra Π(Q) of a Dynkin quiver Q is the
quotient of the path algebra of the double quiver Q by the ideal generated by∑

h∈H

ε(h)hh̄.

Hence points of ΛV can be identified with representations of the preprojective
algebra with fixed vector space V .

Remark 3.25 The definition of Lusztig’s quiver variety given in [12] imposes
an additional nilpotency condition on the elements of ΛV . But since we restrict
ourselves to the Dynkin type this condition is automatically satisfied, so we omit
it (see [17, Proposition 14.2(a)]).

Up to isomorphism, ΛV depends only on the graded dimension v = (dimVi)i∈I
of V : Let W ∈ V be another vector space with graded dimension v, then the
vector space isomorphism V

∼−→ W is unique up to right multiplication by an
element of Gv which induces an isomorphism of varieties ΛV

∼−→ ΛW . This further
yields a canonical bijection between the irreducible component of ΛV and the
irreducible components of ΛW . Hence we also denote ΛV by Λ(v), regarding the
graded dimension of the vector spaces attached to the vertices of the double quiver.

KASHIWARA OPERATORS

Following [12], we recall the crystal structure on the set of irreducible compo-
nents of Λ(v), which we denote by Irr Λ(v).

Definition 3.26 For i ∈ I define εi : Λ(v)→ Z≥0 by

(6) εi(x) := dim Coker

 ⊕
h:in(h)=i

Vout(h)
xh−→ Vi


For c ∈ Z≥0, we further introduce the subsets

Λ(v)i,c := {x ∈ Λ(v) | εi(x) = c}.

30



These sets form a partition of Λ(v) into locally closed subsets. Note that the
function εi is upper semicontinuous, thus for each X ∈ Irr Λ(v) there is an open
dense subset of X such that εi is constant (namely the value of εi of this subset
is the minimal value of εi on X).

To describe the actions of the Kashiwara operators, let ei ∈ ZI≥0 be such that
eij = δij and fix c ∈ Z≥0. We denote by Λ̃(v, c, i) the set of triples (x, x′, φ) such
that x ∈ Λ(v)i,0, x

′ ∈ Λ(v − cei)i,c and φ : (V (v − cei), x′) ↪→ (V (v), x) is an
injective morphism of Π(Q)-modules.

Consider the diagram

Λ(v − cei)i,0
p1←− Λ̃(v, c, i)

p2−→ Λ(v)i,c,

where p1(x, x′,Φ) = x′ and p2(x, x′,Φ) = x.
It is shown in [12, Lemma 5.2.3] that the map p2 is a principal Gv-bundle

and the map p1 is smooth with a connected variety as fiber. Standard algebraic
geometry arguments then yield the following Proposition.

Proposition 3.27 ([12, Proposition 5.2.4]) Suppose Λ(v)i,c 6= ∅. Then there is
a one–to–one correspondence between the set of irreducible components of Λ(v −
cei)i,0 and the set of irreducible components of Λ(v)i,c.

Definition 3.28 For X ∈ Irr Λ(v), we define

εi(X) := min
x∈X

εi(x).

We also define for c ∈ Z≥0

Irr Λ(v)i,c := {X ∈ Irr Λ(v) | εi(X) = c}.

We get the following bijection directly from Proposition 3.27 and [17, Theorem
12.3 b] which states that Λ(v)i,c has pure dimension 1

2
dimEv:

Irr Λ(v − cei)i,0 ∼= Irr Λ(v)i,c.

Suppose that X̄ ∈ Irr Λ(v − cei)i,0 corresponds to X ∈ Irr Λ(v)i,c by this
bijection. We define maps

f̃ ci : Irr Λ(v − cei)i,0 → Irr Λ(v)i,c,

ẽmax
i : Irr Λ(v)i,c → Irr Λ(v)i,0

by

f̃ ci (X̄) := X and ẽmax
i (X) := X̄.

31



We further introduce the following notation

Bg(∞) :=
⊔
v

Irr Λ(v)

and define maps

ẽi, f̃i : Bg(∞)→ Bg(∞) t {0}.

as follows. For c 6= 0, ẽi is the following composition of maps

(7) ẽi : Irr Λ(v)i,c
ẽmax
i−−→ Irr Λ(v − cei)i,0

f̃c−1
i−−→ Irr Λ(v − ei)i,c−1.

Moreover, we set ẽi(X) = 0 for X ∈ Irr Λ(v)i,0. We define

f̃i : Irr Λ(v)i,c
ẽmax
i−−→ Irr Λ(v − cei)i,0

f̃c+1
i−−→ Irr Λ(v + ei)i,c+1.

We further remark that Irr Λ(v)i,c 6= ∅ implies Irr Λ(v− ei)i,c+1 6= ∅. Hence for
X ∈ Irr Λ(v)i,c, f̃i(X) is not zero. Note also that the maps f̃ ci resp. ẽmax

i may be
considered as the c–th power of f̃i resp. the maximal power of ẽi.

We also define for X ∈ Bg(∞)

wt(X) := −
∑
i∈I

viαi for X ∈ Irr Λ(v),

ϕi(X) := εi(X) + 〈hi,wt(X)〉 .

Proposition 3.29 ([12, Theorem 5.3.2]) Bg(∞) is a crystal isomorphic to the
crystal B(∞) of Uv(n−).

3.3 COMPARISON

In this section we give an explicit crystal isomorphism between the two crys-
tal structures BH (∞) and Bg(∞). While the construction of BH (∞) works for
isomorphism classes of kQ-modules over an arbitrary field k, we fix k = C in
this section to relate it to the quiver representations appearing in the geometric
construction.

We proceed in three steps.
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STEP ONE: TRANSLATING THE VERTICES

We start by recalling Lusztig’s description of the irreducible components of
ΛV , i.e. the vertices of Bg(∞).

Proposition 3.30 ([17, Proposition 14.2.(b)]) For g of type ADE, the irreducible
components of ΛV are the closures of the conormal bundles of the Gv-orbits in
EV,Ω.

For M = (V, x) ∈ CQ, we denote conormal bundle of the orbit Gv · x by C[M ].
Hence an irreducible component of ΛV is given by the closure C[M ] of C[M ].

Since the Gv-orbits in EV,Ω coincide with the isomorphism classes of represen-
tations of the path algebra CQ, we have a one-to-one correspondence between the
vertices of Bg(∞) and the isomorphism classes of CQ-modules. Hence the map

BH (∞)→ Bg(∞)(8)

b[M ] 7→ C[M ]

is well-defined and bijective. In this section we prove that the map (8) is an
isomorphism of crystals. We recall some results by Lusztig and Ringel by which
we can describe the fibers of C[M ] as certain Hom-spaces of CQ-modules, which is
a crucial fact to draw a connection between the two crystal structures.

We use the following description of the conormal bundle C[M ].

Proposition 3.31 ([16, Lemma 9.3]) Let x ∈ EV,Ω and x̄ ∈ EV,Ω. Then µi(x +
x̄) = 0 for all i ∈ I if and only if x̄ is orthogonal to the tangent space to the
Gv-orbit through x, regarded as a vector subspace of EV,Ω. Orthogonal here means
with respect to the symplectic form ω given in (5).

Hence for M = (V, x) ∈ CQ − mod, a point (x, x̄) with x̄ ∈ EV,Ω lies in the
fiber C[M ]x

if and only if µi(x+ x̄) = 0 for all i ∈ I.
In the following, we regard EV,Ω as a subset of ΛV by identifying it with the

set of all elements (xh) = x ∈ ΛV such that xh = 0 whenever h 6∈ Ω. We consider
the following projection

pr : ΛV → EV,Ω,(9)
y = (yh)h∈H 7→ x = (yh)h∈Ω.

Fix M = (V, x) ∈ kQ. By Proposition 3.31, we have that

C[M ] = pr−1(Gv · x).

Recall that the points of ΛV can be identified with representations of the pre-
projective algebra. As a key ingredient we use the following result by Ringel which
allows us to describe the fiber C[M ]x

(= pr−1(x)) in terms of CQ-representations.
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Let F ,G : CQ − mod → CQ − mod be two functors and denote by CQ −
mod(F ,G) the following category: its objects are pairs (M,φ), where M ∈ CQ−
mod and φ ∈ Hom(F(M),G(M)). Given two objects (M,φ), (M ′, φ′), a morphism
(M,φ)→ (M ′, φ′) is a morphism f : M →M ′ in CQ−mod such that φ′ ◦F(f) =
G(f) ◦ φ.

Theorem 3.32 ([22, Theorem B., Theorem C., Proposition 3.]) Let Q be a
quiver of type A,D or E with orientation Ω. The categories Π(Q) − mod,CQ −
mod(τ−1, id) and CQ−mod(id, τ) are isomorphic.

Let furthermore V ∈ V and x ∈ EV,Ω. Then pr−1(x) and Hom(τ−1M,M) are
isomorphic as vector spaces whereM = (V, x) ∈ CQ−mod and pr is the projection
given in (9).

Remark 3.33 Via the Auslander-Reiten duality we furthermore have an isomor-
phism π−1(x) ∼= D Ext1(M,M) for M = (V, x) ∈ CQ−mod.

STEP TWO: COMBINATORIAL COMPARISON

From now on we assume that Q is a special Dynkin quiver. Recall that aQ
i (M) =

maxV ∈Si(Q) Fi(M,V ). The main task of this step is the proof of the following
proposition:

Proposition 3.34 Let M = (V, x) ∈ CQ−mod, then aQ
i (M) = εi(C[M ]).

Firstly, we write εi(C[M ]) as the dimension of certain Hom-spaces of Π(Q)-
modules.

Lemma 3.35 Let M = (V, x) ∈ CQ−mod and y ∈ C[M ]. Then, for M̃ = (V, y) ∈
Π(Q)−mod, we have

εi(y) = dim HomΠ(Q)(M̃, S(i)).

Proof. Let v1, v2, . . . , vm be a basis of Coker
(⊕

h∈H;in(h)=i Vout(h)
yh−→ Vi

)
. For each

basis vector vj we can find a linear map 0 6= fvj : Vi → C (sending vj to 1) such
that fvj ◦ yh = 0 for all h ∈ H with in(h) = i. The maps fv1 , fv2 , . . . , fvm can be
identified with a basis of HomΠ(Q)(M̃, S(i)) which yields the claim.

As a consequence of Theorem 3.32, we have:

Corollary 3.36 We have the equality

εi(C[M ]) = min
φ∈HomCQ(τ−1M,M)

dim{f ∈ HomCQ(M,S(i)) | f ◦ φ = 0}.
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For M ∈ CQ−mod and φ ∈ HomCQ(τ−1M,M), we define

`i(M) := dim HomCQ(M,S(i)) =
∑

B∈Pi(Q)

µB(M).

(10) εi,φ := dim{f ∈ HomCQ(M,S(i)) | f ◦ φ = 0} = `i(Cokerφ).

Clearly, for any φ ∈ HomCQ(τ−1M,M), we have

εi(C[M ]) ≤ εi,φ.

Remark 3.37 For φ ∈ HomCQ(τ−1M,M) the short exact sequence

0→ Imφ→M → Cokerφ→ 0

induces the exact sequence

0→ HomCQ(Cokerφ, S(i))→ HomCQ(M,S(i))→ HomCQ(Imφ, S(i)).

We thus obtain the inequality:

`i(Cokerφ) ≥ `i(M)− `i(Imφ).

Let V ∈ Si(Q). We write

M = M�V ⊕M5V and τ−1M = (τ−1M)�V ⊕ (τ−1M)5V ,

where

(11) MEV =
⊕

B∈Pi(Q);B�V

BµB(M),

(12) (τ−1M)EV =
⊕

B∈Pi(Q);B�V

BµB(τ−1M).

Lemma 3.38 For any V ∈ Si(Q) and φ ∈ HomCQ(τ−1M,M) we have

Fi(M,V ) ≤ εi,φ.

Proof. Setting
φ�V := πM� ◦ φ,

35



where πM� : M �M� denotes the canonical projection, we clearly have

εi,φ ≥ dim{f ∈ HomCQ(M,S(i)) | f ◦ φ = 0, f |
M5V = 0}

= dim{f | f ◦ φ�V = 0, f |
M5V = 0} = `i

(
MEV / Imφ�V

)
.

Since
`i(M

EV ) =
∑

B∈Pi(Q), B�V

µB(M) and

`i(Imφ�V ) ≤ `i
(
(τ−1M)EV

)
=

∑
B∈Pi(Q); B�V

µB(τ−1(M))

we obtain by Remark 3.37:

`i
(
MEV / Imφ�V

)
≥ `i(M

EV )− `i(Imφ�V ) ≥ Fi(M,V )

To prove Proposition 3.34, we construct a specific φ0 ∈ HomCQ(τ−1M,M) and
a V0 ∈ Si(Q) such that Fi(M,V0) = εi,φ0 . We first prove a technical lemma which
shows that, for a special class of morphism in HomCQ(τ−1M,M), we have the
equality

`i(Cokerφ) = `i(M)− `i(Imφ).

For this we write

M = M�S(i) ⊕M5S(i) and τ−1M = (τ−1M)�S(i) ⊕ (τ−1M)5S(i).

LetM�S(i) = ⊕mj=1Bj and (τ−1M)�S(i) = ⊕m′k=1Ck with Bj and Ck indecomposable.

Lemma 3.39 Assume that φ : τ−1M → M is such that φ|
(τ−1M)5S(i) = 0 and

φ|Ck
is either zero or Im(φ|Ck

) ⊂ Bj(k) for a j(k) ∈ {1, 2, . . . ,m} such that φ|Ck

is inducing an isomorphism HomCQ(Bj(k), S(i)) ∼= HomCQ(Ck, S(i)). Assume fur-
thermore that j(k1) 6= j(k2) for k1 6= k2. Then

(13) `i(Cokerφ) = `i(M)− `i(Imφ)

and
`i(Imφ) = #{k ∈ {1, 2, . . . ,m′} | φ(Ck) 6= 0}.

Proof. Since by assumption for any k the map

HomCQ(Bj(k), S(i))→ HomCQ(φ (Ck) , S(i))

is surjective, we obtain that the map ψ in the exact sequence

0→ HomCQ(Cokerφ, S(i))→ HomCQ(M,S(i))
ψ−→ HomCQ(Imφ, S(i))
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is surjective. This implies (13). Furthermore we have

`i(Imφ) =
∑

k:φ(Ck) 6=0

`i(Ck) = #{k ∈ {1, 2, . . . ,m′} | φ(Ck) 6= 0}.

Fix i ∈ I and let P be the Hasse diagram corresponding to the poset Pi(Q),
i.e. there is a vertex vB in P corresponding to each B ∈ Pi(Q) and an arrow
vB1 → vB2 in P if and only if B1 C B2 minimally. For a CQ-module M , we
construct the following oriented graph P∞

M : we replace each vertex vB by a chain
vB(1) → vB(2) → . . .→ vB(lB) for lB := max(1, µB(M), µB(τ−1M)). For each arrow
vB1 → vB2 in P, we add an arrow v

B1
(lB1

) → vB2
(1) in P∞

M . We further add a
vertex w∞ and for each vertex B of P which corresponds to a �-maximal element
of Pi(Q), we add an arrow vB(lB) → w∞ in P∞

M .

Example 7: Let Q = 1 ← 2 → 3 and i = 2 (compare with part 2 of Example 4).
Let M = 1112 ⊕ 100⊕ 011⊕ 010, then P∞

M looks as follows.

v011(1)

%%
v111(1)

// v111(2)

99

%%

v010(1)
// v010(2)

// w∞

v110(1)

99

Let (P∞
M )0 be the set of vertices of P∞

M . We extend the ordering on P to an
ordering on (P∞

M )0 by setting v1 � v2 if and only if there is a path from v1 to v2

in P∞
M . We define A = AP∞M

to be the category in which the objects are subsets
of (P∞

M )0 . For W1,W2 ∈ A , we define a morphism φ : W1 → W2 to be a map of
sets φ : W1 ∪ w∞ → W2 ∪ w∞, satisfying the following properties:

• for all w ∈ W1 ∪ w∞, we have w ≤ φ(w),

• φ|W1\φ−1(w∞) is injective.

Let R be the subset of (P∞
M )0 corresponding to the direct summands of τ−1M

and W be the subset of (P∞
M )0 corresponding to the direct summands of M . For

any φA ∈ HomA (R,W ), we define

εi(φA ) := #W\φA (R).

Any φ ∈ HomCQ(τ−1M,M) fulfilling the properties of Proposition 3.39 induces
a morphism φA : R → W in the category A , using the convention that a vertex

37



vB of P∞
M corresponding to a direct summand of τ−1M which is mapped to zero

under φ, is mapped to the vertex w∞ under φA . Note that, by Proposition 3.39,
we have εi(φA ) = εi,φ.

For a subset A = {P1, P2, · · · , Pk} of (P∞
M )0, we define

A↓ := {P ∈ (P∞
M )0 | P � Pj for some 1 ≤ j ≤ k}.

To V ∈ Si(Q), we associate the following subset of (P∞
M )0

VA := {vB(lB) | B ∈Pi(Q), µB(V ) 6= 0}.

We define for V ⊂ (P∞
M )0

Fi(V ) := #W ∩ V −#R ∩ V.

Note that, for V ∈ Si(Q), Fi(V ↓A ) = Fi(M,V ) by definition.
We define the following preorder on HomA (R,W ): φ � ψ if and only if there

exists a ρ ∈ HomA (W,W ) such that we have an equality of sets

ψ(R) = ρ ◦ φ(R).

Loosely speaking, φ � ψ says that we can move the vertices of φ(R) to the vertices
of ψ(R) along paths in P∞

M . Note that this ordering is not anti-symmetric.

Example 8: We continue with Example 7. HereW = {v111(1) , v111(2) , v110(1) , v011(1) , v101(1)}
and R = {v010(1) , v010(2)}. Let φ1, φ2 ∈ HomA (R,W ) be given by

φ1(v010(1)) = v010(1) , φ1(v010(2)) = w∞,

φ2(v010(1)) = w∞, φ2(v010(2)) = w∞.

For ρ ∈ HomA (W,W ) given by ρ(v010(1)) = w∞ and ρ|W\{v
010(1)

} = idW\{v
010(1)

}

We define φ ∈ HomA (R,W ) to be �-minimal if for each ψ ∈ HomA (R,W )
such that ψ � φ, we also have φ � ψ.

Proposition 3.40 Let φ ∈ HomA (R,W ) be �-minimal such that εi(φ) > 0.
Then there exists V φ ∈ Si(Q) satisfying

Fi((V
φ)↓) = εi(φ).

Furthermore, we have W\(V φ)↓ ⊂ Imφ .
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Proof. Let φ ∈ HomA (R,W ) and V ∈ Si(Q). Clearly, we have

(14) Fi
(
V ↓
)

= #W ∩ V ↓ −#R ∩ V ↓ ≤ #(W ∩ V ↓)\φ(R ∩ V ↓).

By the injectivity of φ|R\φ−1(w∞) we obtain that equality holds in (14) if and only
if

(15) φ(R ∩ V ↓) ⊂ V ↓.

Note that
(W ∩ V ↓)\φ(R ∩ V ↓) = (W\φ(R)) ∩ V ↓.

Thus Fi(V ↓) = εi(φ) holds if and only if V ↓ satisfies Property (15) andW\φ(R) ⊂
V ↓.

By assumption, we have W\φ(R) 6= ∅. We extend (W\φ(R))↓ to a subset
of (P∞

M )0 satisfying Property (15). For that, let P((P∞
M )0) be the power set of

(P∞
M )0. We define the operator

Φ : P((P∞
M )0)→ P((P∞

M )0)

Φ(A) =
(
φ
(
R ∩ A↓

)
∪ A

)↓
.

Note that, for V1, V2 ⊆ (P∞
M )0 with V1 ⊂ V2, we have

V1 ⊂ Φ(V1) ⊂ Φ(V2).

We therefore obtain the closure operator

H = Hφ : P((P∞
M )0)→ P((P∞

M )0)

H(A) =Φν(A),

where ν ∈ Z≥0 is such that Φν−1(A) 6= Φν(A) = Φν+1(A). We define V φ ⊂ (P∞
M )0

by

(16) V φ := Hφ(W\φ(R)).

Clearly (V φ)↓ = V φ. Note that V φ satisfies by construction W\φ(R) ⊆ V φ as well
as property (15). To obtain Fi(V φ) = ε(φ) it therefore suffices to show w∞ /∈ V φ.
Let us now assume that φ is �-minimal. If w∞ /∈ V φ then the �-maximal elements
of V φ are of the form vB(lB) and can thus be identified with an element of Si(Q).

If w∞ ∈ V φ then, by the definition of the operator H, there exists r1, r2, . . . , rj ∈
R and a�-maximal element w ofW\φ(R) such that φ(r1) = w∞ and rk−2�φ(rk−1)
for 3 ≤ k ≤ j + 1 and rj � w.
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We define φ′ ∈ HomA (R,W ) by

φ′|R\{r1,r2,...rj} = φ|R\{r1,r2,...rj},
φ′(rk) = φ(rk+1) for 1 ≤ k ≤ j − 1

φ′(vj) = w.

Then ρ ◦ φ′(R) = φ(R) for ρ ∈ HomA (W,W ) given by ρ(w) = w∞ and ρW\{w} =
idW\{w}. By �-minimality of φ, there exists ρ′ ∈ HomA (W,W ) with Im ρ′ ◦ φ =
Imφ′, yielding

Imφ′ = Im ρ′ ◦ ρ︸ ︷︷ ︸
=:ρ̃

◦φ′.

Since # Imφ′ <∞ this implies that ρ̃ and hence ρ|Imφ′ is injective in contradiction
to ρ(w) = ρ(w∞) with w′ 6= w∞ = ρ′(∞) ∈ Im ρ′ ◦ φ = Imφ′.

Example 9: We give an example for the construction of V φ for a minimal φ ∈
HomA (R,W ). Assume that P∞

M is given as follows:

vB3
(1)

// vB3
(2)

��

vB1
(1)

::

$$
vB4

(1)
// vB4

(2)
// w∞

vB2
(1)

::

$$
vB5

(1)

==

Further assume that R and W are given as follows:

R = {vB1
(1) , vB2

(1)} and
W = {vB3

(1) , vB3
(2) , vB4

(1) , vB4
(2) , vB5

(1)}.

We define φ ∈ HomA (R,W ) by

φ(vB1
(1)) = vB4

(1) ,

φ(vB2
(1)) = vB4

(2)

and note that φ is �-minimal. We have

W\φ(R) = {vB3
(1) , vB3

(2) , vB5
(1)}.
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Thus

Φ(W\φ(R)) =
(
φ((W\φ(R))↓ ∩R) ∪ (W\φ(R))

)↓
= {vB1

(1) , vB2
(1) , vB3

(1) , vB3
(2) , vB4

(1) , vB4
(2) , vB5

(1)},
Φ2(W\φ(R)) = Φ(W\φ(R)).

We conclude
V φ = {vB5

(1) , vB4
(2) , vB3

(2)}↓.

We are now able to prove Proposition 3.34:

Proof of Proposition 3.34. Let φ be any �-minimal element in HomA (R,W ). We
choose a corresponding element in HomCQ(τ−1M,M), which we also denote by
φ by abuse of notation, the following way: for any B,B′ ∈ Pi(Q) such that
vB ∈ R, vB′ ∈ W and φ(vB) = vB′ , we let φ|B : τ−1M → M be a composition of
irreducible morphisms B → B′ that induces an isomorphism HomCQ(B′, S(i))→
HomCQ(B, S(i)). Such a homomorphism exists by Proposition 3.4.

First assume εi,φ = 0. Let B ∈ Pi(Q) be a �-minimal element. Then B is
projective by the definition of the order �, i.e. there cannot be a direct summand
C of τ−1M such that C �B. Note further that B cannot be a direct summand of
M : Otherwise (W\(φ(R))) 6= ∅. We set V φ = B and note that

Fi(M,V φ) = 0 = εi,φ,

which proves the claim in this special case.
Assume now that εi,φ > 0. By proposition 3.40 V φ = H(W\(φ(R))) satisfies

the equality
εi,φ = Fi(M,V φ).

Since Lemma 3.38 yields Fi(M,V ) ≤ εi,ψ for any V ∈ Si(Q) and any ψ ∈
HomCQ(τ−1M,M), we get

aQ
i (M) = max

V ∈Si(Q)
Fi(M,V ) = Fi(M,V φ) = εi,φ

= min
ψ∈HomCQ(τ−1M,M)

εi,ψ = εi(C[M ]).

We say that φ ∈ HomCQ(τ−1M,M) is �-minimal if φ satisfies the assumptions
of Lemma 3.39 and induces a �-minimal φ ∈ HomA (R,W ).

Lemma 3.41 Fix M ∈ CQ − mod such that aQ
i (M) > 0. For any �-minimal

φ ∈ HomCQ(τ−1M,M), V φ is a �-minimal element of Si(Q) such that Fi(M,V )
is maximal.
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Proof. Let V be any element in Si(Q) such that Fi(M,V ) is maximal. Then
Fi(M,V ) = Fi(M,V φ) = εi(φ). Note that for any V ∈ Si(Q), we have

Fi(V
↓) = #W ∩ V ↓ −#R ∩ V ↓

≤ #W\(φ(R) ∩ V ↓)
≤ #W\φ(R)

= εi(φ)

where the first inequality is an equality if and only if φ(R∩V ↓) ⊂ (W∩V ↓) and the
second inequality is an equality if and only if (W\φ(R)) ⊂ V ↓. By construction
of the closure operator H, for any V ∈ Si(Q) satisfying those properties, we have

(V φ)↓ ⊂ H(V ↓) = V ↓.

Thus V φ � V .

Consequently, the element V φ ∈ Si(Q), defined in (16), does not depend on
the choice of a �-minimal φ ∈ HomA (R,W ). We are thus able to define for any
�-minimal φ ∈ HomA (R,W )

V M = Hφ(W\φ(R)).

We further remark that this is an alternative way to prove that there is a
unique V ∈ Si(Q) which is �-minimal such that Fi(M,V ) = aQ

i (M).
We conclude this step with a Lemma that is needed in step three.

Lemma 3.42 For each indecomposable direct summand B of V M there exists
φ ∈ HomA (R,W ) with εi(φ) = aQ

i (M) and vB ∈ W\φ(R).

Proof. Let B be a direct summand of V M and φ ∈ HomA (R,W ) be any �-
minimal morphism. We have that vB is a �-maximal element of H(W\φ(R)).
If vB ∈ W\φ(R) we are done. Otherwise, by the definition of the operator H
there exists r1, r2, . . . , rj ∈ R and a �-maximal element w of H(W\φ(R)) such
that φ(r1) = vB, rk−2 � φ(rk−1) for all 3 ≤ k ≤ j and rj � w. We define φ1 ∈
HomA (R,W ) by

φ1|R\{r1,r2,...rj} = φ|R\{r1,r2,...rj},
φ1(rk) = φ(rk+1) for all 1 ≤ k ≤ j − 1

φ1(vj) = w.

Thus vB ∈ W\φ1(R) and

εi(φ1) = εi(φ) = aQ
i (M).
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STEP THREE: GEOMETRICAL COMPARISON

Let M ∈ CQ−mod with aQ
i (M) > 0. Recall that

mi M = N ⊕
⊕

B∈l(V0)

τB,

where M = N ⊕ V0 with V0 the �-minimal element of Si(Q) such that Fi(M,V )
is maximal and l(V0) = {B ∈ Pi(Q) | B 5 V0 minimally}. By Lemma 3.41, we
have V0

∼= V M . We further write, as before,

U0 :=
⊕

B∈l(V0)

τB.

For a direct summand A of M , we denote by πA : M � A the canonical
projection. We introduce the following notion.

Definition 3.43 A homomorphism φ ∈ HomCQ(τ−1M,M) descends via V M if
and only if there exists a short exact sequence

0→ mi M
ι−→M

f−→ S(i)→ 0

such f ◦ φ = 0 and πN ◦ ι|N = idN .

We decompose N = N+ ⊕ N−, where N− is the direct sum of all direct
summands B of N for which we have B ∈Pi(Q) and B � V M . Let

V M =
⊕
k∈V

Vk

be a decomposition of V M into indecomposable direct summands. For j ∈ V , we
write V M = V ⊥j ⊕ Vj. We abbreviate (see (11), (12))

M� := M�VM

,

M5 := M5VM

,

(τ−1M)� := (τ−1M)�V
M

,

(τ−1M)5 := (τ−1M)5V
M

.

Note that M� = N− ⊕ V M . Further, we abbreviate

hS(i)(−) := HomCQ(−, S(i)).
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Lemma 3.44 Let φ ∈ HomCQ(τ−1M,M). Assume that there exists 0 6= f ∈
HomCQ(M,S(i)) such that

f ◦ φ = 0,

f |N+ = 0 and
f |Vk 6= 0 for all k ∈ V .

Then φ descends via V M .

Proof. By Theorem 3.6, we have a short exact sequence

0 // U0
ι0 // V M

f |
V M

// S(i) // 0

Let N− =
⊕

k∈N Bk be a decomposition into indecomposable direct sum-
mands. For each k ∈ N there exists a j ∈ V such that Bk � Vj. Thus, by
Proposition 3.4, there exists ψkj ∈ HomCQ(Bk, Vj) and λ ∈ C such that

f |Bk
= λf |Vjψkj

Let ι : mi M →M be the following homomorphism:

ι|U0 = ι0,

ι|N+ = idN+ ,

ι|Bk
= idBk

−λψkj
for each k ∈ N .

This yields the exact sequence

0 // mi M
ι //M

f
// S(i) // 0

with πN ◦ ι|N = idN . Furthermore, by assumption we have f ◦ φ = 0.

We obtain the following as a reformulation of Lemma 3.44

Corollary 3.45 Let φ ∈ HomCQ(τ−1M,M) and assume that

Ker
(
hS(i)(φ)

)
∩ hS(i)(M

�)\
⋃
j∈V

(
Ker

(
hS(i)(φ)

)
∩ hS(i)(V

⊥
j ⊕N−)

)
6= ∅.

Then φ descends via V M .

Remark 3.46 Note that a �-minimal φ ∈ HomCQ(τ−1M,M) does not neces-
sarily descend via V M : If V M 6= W\(φ(R) ∩W )↓, there exists a direct summand
B of V M and a direct summand C of τ−1M such that Imφ|C ⊂ B and φ|C in-
duces an isomorphism HomCQ(B, S(i)) ∼= HomCQ(C, S(i)). Thus we cannot find
any f ∈ HomCQ(M,S(i)) such that f ◦ φ = 0 and f |B 6= 0.
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For M1,M2 ∈ CQ−mod, the functor hS(i)(−) yields the linear map

hS(i) : HomCQ(M1,M2)→ Hom
(
hS(i)(M2), hS(i)(M1)

)
φ 7→ hS(i)(φ).

For k ∈ V and φ ∈ HomCQ(τ−1M,M), we denote by

πk : M � V ⊥k ⊕N−

the canonical projection and let

θk := max
φ

rankhS(i)(πk ◦ φ).

We define the following subset of HomCQ(τ−1M,M):

O := {φ ∈ HomCQ(τ−1M,M) | rankhS(i)(πk ◦ φ) = θk ∀k ∈ V }.

Note that HomCQ(τ−1M,M) is a finite dimensional C-vector space and there-
fore carries the structure of an irreducible affine variety.

Lemma 3.47 The set O is a dense open subset of HomCQ(τ−1M,M).

Proof. We have
O =

⋂
k∈V

{φ | rankhS(i)(πk ◦ φ) ≥ θk}.

Since the set
Ok := {φ | rank

(
hS(i)(πk ◦ φ)

)
≥ θk}

is non-empty for each k ∈ VM , it suffices to show that Ok ⊂ HomCQ(τ−1M,M) is
open. We denote by p the linear map

p : Hom(hS(i)(M), hS(i)(τ
−1M))→ Hom

(
hS(i)

(
V ⊥j ⊕N−

)
, hS(i)(τ

−1M)
)

g 7→ g|hS(i)(V
⊥
j ⊕N−).

Thus, defining
Uk := {γ ∈ Im codomainP | rank γ ≥ θk},

we obtain Ok =
(
p ◦ hS(i)

)−1
(Uk) as the preimage of an open set under a contin-

uous map.

Recall that for B ∈ CQ − mod, we have `i(A) = dim HomCQ(B, S(i)). We
define for k ∈ V

νk := min
φ
`i(Coker (πk ◦ φ)).

Note that we have the equality
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O = {φ ∈ HomCQ(τ−1M,M) | `i(Coker (πk ◦ φ)) = νk}.

We further define

ν− := min
φ
`i(Coker (πM� ◦ φ)) .

Lemma 3.48 For k ∈ VM we have

ν− = aQ
i (M), and

νk ≤ aQ
i (M)− 1.

Proof. Let φ0 ∈ HomCQ(τ−1M,M) be �-minimal. By Proposition 3.40 we have
`i(CokerπM� ◦ φ0) = aQ

i (M) implying ν− ≤ aQ
i (M). Let φ ∈ HomCQ(τ−1M,M�)

be arbitrary. Setting φ̃ := φ + φ0|(τ−1M)5
we obtain the following commutative

diagram with exact columns and rows:

0

��

0

��

0

��

(τ−1M)5
π
M5◦φ0

//

��

M5 //

��

Cokerπ
M5 ◦ φ0

��

// 0

τ−1M

��

φ̃
//M //

��

Coker φ̃

��

// 0

(τ−1M)�

��

φ
//M�

��

// Cokerφ

��

// 0

0 0 0

By Proposition 3.40 `i(Cokerπ
M5 ◦ φ0) = 0 which implies that the map

hS(i)(Cokerφ)→ hS(i)

(
Coker φ̃

)
is an isomorphism. Hence `i(Cokerφ) ≥ aQ

i (M).
By Lemma 3.42 there exists ψ0 ∈ HomCQ(τ−1M,M) with

`i(Cokerπk ◦ ψ0) = aQ
i (M)− 1.

We thus obtain νk ≤ aQ
i (M)− 1.
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Corollary 3.49 For each φ ∈ O, we have

Ker
(
hS(i)(φ)

)
∩ hS(i)(M

�)\
⋃
j∈V

(
Ker

(
hS(i)(φ)

)
∩ hS(i)(V

⊥
j ⊕N−

)
6= ∅.

In particular, φ descends via V M .

Proof. The claim follows from Lemma 3.48, noting that

Ker
(
hS(i)(φ)

)
∩ hS(i)

(
M�

) ∼= hS(i)(CokerπM� ◦ φ)

is an affine variety of dimension aQ
i (M) and

Ker
(
hS(i)(φ)

)
∩ hS(i)

(
V ⊥j ⊕N−

) ∼= hS(i)(Cokerπk ◦ φ)

is an affine variety of dimension at most aQ
i (M)− 1 for all k ∈ V .

By Corollary 3.45, we conclude that φ descends via V M .

Let εi(C[M ]) = c > 0. We say that φ ∈ HomCQ(τ−1M,M) is compatible with
mi

cM if there exists a short exact sequence

0→ mi
cM

ι−→M
f−→ S(i)c → 0

and ψ ∈ HomCQ(τ−1 mi
cM,mi

cM) such that the following diagram commutes

0 // mi
cM

ι //M
f
// S(i)c // 0

τ−1 mi
cM

ψ

OO

τ−1ι // τ−1M

φ

OO

// 0.

OO

Proposition 3.50 There exists a dense subset Dc of HomCQ(τ−1M,M) such that
each φ ∈ Dc is compatible with mi

cM .

Proof. Let

prM : HomCQ(τ−1M,M)� HomCQ((τ−1M)�V
M

,M�VM

)

be the canonical projection.
We prove the following statement by induction on εi(C[M ]) = c:
There exists a dense subset Dc of HomCQ(τ−1M,M) which is compatible with

mi M such that pr−1
M (prM(Dc)) = Dc.

If εi(C[M ]) = 1, the set O ⊂ HomCQ(τ−1M,M) has the claimed property.
Assume that εi(C[M ]) = c+1 and letX := mi M . By induction hypothesis there

exists a dense subset Dc ⊂ HomCQ(τ−1X,X) which is compatible with mi
cX and

satisfies the equation pr−1
X (prX(Dc)) = Dc.
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We deduce from Theorem 3.2 that Fi(X, V M) = aQ
i (X) and thus, since V X is

the �-minimal element of Si(Q) with that property,

(17) V X � V M .

Hence

τ−1U0 =

 ⊕
B∈l(VM )

B

 5 V X

and
τ−1V M 5 V X .

We infer that HomCQ((τ−1X)�, X�) is a direct summand of HomCQ(τ−1M,X)
and denote by prM,X : HomCQ(τ−1M,X)� HomCQ((τ−1X)�, X�) the canonical
projection.

Let I be the set of all injective morphisms ι : X ↪→M such that πN◦ι|N = idN
and let Λ(M,X) = HomCQ(τ−1M,X) × I be the variety of pairs (ξ, ι) where
ξ ∈ HomCQ(τ−1M,X) and ι ∈ I . We define

p1 : Λ(M,X)→ HomCQ(τ−1M,X)

(ξ, ι) 7→ ξ

and

p2 : Λ(M,X)→ HomCQ(τ−1M,M)

(ξ, ι) 7→ ι ◦ ξ.

This yields the following diagram

Λ(M,X)
p1

tt

p2

**

HomCQ(τ−1X,X)
prX

++

HomCQ(τ−1M,X)
prM,X

ss

HomCQ(τ−1M,M).

HomCQ((τ−1X)�, X�)

We define
Dc+1 := p2(p−1

1 (pr−1
M,X(prX(Dc)))).

Note that prX , prM,X and p1 are projections and therefore continuous and open.
Further O ⊂ Im p2 by Corollary 3.49, thus p2 and prX are continuous with dense
image. Hence Dc+1 is a dense subset of HomCQ(τ−1X,X).

We show that π−1
M πM(Dc+1) = Dc+1. Let φ̃ ∈ π−1

M πM(Dc+1). By construction,
there exists φ ∈ Dc+1 and λ ∈ Ker πM such that φ̃ = φ + λ. Since by (17)
p1(p−1

2 (KerπM)) ⊆ Ker πM,X , it follows that φ̃ ∈ Dc+1.
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It remains to show that any φ ∈ Dc+1 is compatible with mi
c+1. Let therefore

φ̄ ∈ pr−1
M,X prX(Dc) and ι ∈ I such that

φ = ι ◦ φ̄.

We show that φ̄ ◦ τ−1ι ∈ Dc which is equivalent to

(18) prX(φ̄ ◦ τ−1ι) = prM,X(φ̄)

by induction hypothesis. Equation (18) holds since by (17)

HomCQ(τ−1V X , N�V X

) = 0 = HomCQ(τ−1V M , N�V X

)

and πτ−1N ◦ τ−1ι|τ−1N = idτ−1N .

Proposition 3.51 For M ∈ CQ−mod, with εi(C[M ]) = c > 0, we have

ẽciC[M ] = C[mi
cM ].

Proof. We have shown in Proposition 3.50 that there exists a dense subset Dc ⊂
HomCQ(τ−1M,M) such that for every φ ∈ D , the (up to isomorphism) unique
Π(Q)-submodule of (M,φ) with quotient isomorphic to S(i)c is of the form
(mi

cM,ψ) for a ψ ∈ HomCQ(τ−1 mi
cM,mi

cM). Recall from Theorem 3.32 that
HomCQ(τ−1M,M) can be identified with the fiber of x (for M = (V, x)) of the
conormal bundle C[M ]. Thus Dc can be identified with a dense subset of that
fiber. The set GvDc is therefore a dense subset of C[M ] and hence of C[M ]. On the
other hand, g ∈ Gv maps (M,φ) to an isomorphic Π(Q)-module. We conclude
ẽmax
i (Gv ·Dc) ⊂ C[mi

cM ].

Proposition 3.52 Let Q be a special Dynkin quiver. Take (V, x) = M ∈ CQ −
mod and let C[M ] ∈ Bg(∞) be the element of the crystal corresponding to the
closure of the Gv–orbit through M . Then

εi(C[M ]) = aQ
i (M),(19)

wt(C[M ]) = −
∑
i∈I

dim(Vi)αi,(20)

ϕi(C[M ]) = aQ
i (M) +

〈
hi,wt(C[M ])

〉
,(21)

ẽi(C[M ]) =

{
C[miM ] if aQ

i (M) > 0,

0 if aQ
i (M) = 0,

(22)

f̃i(C[M ]) = C[pliM ],(23)

with pliM as in Definition 3.12 and mi M as in Definition 3.16.
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Proof. We have already shown Equality (19) in Proposition 3.34. Furthermore
(20) follows from the construction and we get (21) from the properties of crystals.

Let aQ
i (M) = c > 0. We have shown in Proposition 3.51 that ẽciC[M ] = C[mi

cM ].
Note from the construction that C[pliM ] is never zero. For C[M ] with εi(C[M ]) = 0,

we have
C[mi

c plci M ] = C[M ].

Which yields
f̃ ci C[M ] = C[plci M ].

This proves Equations (22) and (23).

We have thus proved:

Theorem 3.53 For M ∈ kQ−mod the map BH (∞)→ Bg(∞) given by b[M ] 7→
C[M ] is an isomorphism of crystals.

3.4 TYPE A

For this section, we fix the following quiver

Q = 1← 2← · · · ← n.

In [24], Savage gives for g = sln+1 a crystal isomorphism between Bg(∞) and the
combinatorial realization of B(∞) via semistandard Young Tableaux introduced
in [14]. In this section, we recover this result in the homological setup. Let therefore
V (k, l) (1 ≤ k ≤ l ≤ n) be the indecomposable CQ-module corresponding to the
negative root −αk,l = −αk − αk+1 − . . .− αl. Let M(γ(T ),C) be the CQ-module
obtained via the rule

µV (k,l)(M) = #{(l + 1)-entries in the k- row of T}.

We show in Theorem 3.65 that map sending a (large, see Definition 3.60) semis-
tandard Young tableau Y to the element b[M(γ(T ),C)] is an isomorphism of sln+1-
crystals.

HOMOLOGICAL CONSTRUCTION

Since the Auslander-Reiten quiver has a particularly symmetric shape in this
special case, we note that Pi(Q) is a chain, i.e. Pi(Q) = Si(Q), for 1 ≤ i ≤ n,
and the elements of Pi(Q) are of the following form:

Pi(Q) = {V (k, i) | 1 ≤ k ≤ i}.
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Furthermore, we have for 2 ≤ k ≤ l ≤ n the following description of the Auslander-
Reiten translation on an indecomposable CQ-module:

τV (k, l) = V (k − 1, l − 1).

Recall from Remark 2.4 that we have a one-to-one correspondence between the
isomorphism classes of kQ-modules and function γ : R− → Z≥0. For g = sln+1, the
negative roots R− are of the form −αk,l for 1 ≤ k ≤ l ≤ n, we can thus identify
R− with the set of pairs {(k, l) ∈ Z2

≥0 | 1 ≤ k ≤ l ≤ n}. We write γ(k, l)(M) (or
short γ(k, l) if M is fixed) for the multiplicity of V (k, l) as a direct summand of
M .

Definition 3.54 Let M be a kQ-module, M ∼=
⊕

1≤k≤l≤n V (k, l)γ(k,l). For j ≤ i,
we define sums

Fj,i(M) :=

j∑
k=1

γ(k, i)−
j−1∑
k=1

γ(k, i− 1).

Note that for k ≤ k′, we have V (k, i)�V (k′, i). Thus Fk,i(M) = Fi(M,V (k, i))
with Fi(M,V (k, i)) given in Definition 3.7. For 1 ≤ j ≤ i ≤ n, we also write Fj,i
for short if the module M ∈ kQ−mod is fixed.

Theorem 3.18 simplifies in the following way.

Corollary 3.55 Let M ∈ kQ−mod, M ∼=
⊕

1≤k≤l≤n V (k, l)γ(k,l). Fix 1 ≤ i ≤ n
and let j0 ≤ i be maximal such that Fj,i(M) is maximal and let j′0 ≤ i be minimal
such that Fj,i(M) is maximal. Then

εi(b[M ]) = Fj0,i(M);

wt(b[M ]) = −
∑

1≤k≤i≤l≤n

γ(k, l)αi;

ϕi(b[M ]) = εi(b[M ])− (M,S(i))R ;

f̃ib[M ] = b[M ′];

ẽib[M ] =

{
0 if εi(b[M ]) = 0

b[M ′′] else

with M ′ =
⊕

1≤k≤l≤n V (k, l)γ
′(k,l), where

γ′(k, l) =


γ(k, l) + 1, if k = j0, l = i

γ(k, l)− 1, if k = j0, l = i− 1

γ(k, l) else;
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and M ′′ =
⊕

1≤k≤l≤n V (k, l)γ
′′(k,l), where

γ′′(k, l) =


γ(k, l)− 1, if k = j′0, l = i

γ(k, l) + 1, if k = j′0, l = i− 1

γ(k, l) else.

Example 10: We give an example of type A3. As before

Q = 1← 2← 3.

We recall the Auslander-Reiten quiver:

111

""

110

<<

""

011

""

τ
oo

100

<<

010

<<

τ
oo 001τ

oo

For i ∈ {1, 2, 3} and M ∼=
⊕

1≤k≤l≤3 V (k, l)γ(k,l) ∈ CQ−mod, the value of Fk,i is
determined as follows:

F1,1 = γ(1, 1); F1,2 = γ(1, 2); F2,2 = F1,2 + γ(2, 2)− γ(1, 1);

F1,3 = γ(1, 3); F2,3 = F1,3 + γ(2, 3)− γ(1, 2); F3,3 = F2,3 + γ(3, 3)− γ(2, 2).

Let M = V (2, 2)⊕ V (2, 3). We have, for k = i = 3:

F1,3(M) = 0; F2,3(M) = 1; F3,3(M) = −1.

Thus ε3(b[M ]) = 1, f̃3b[M ] = b[V (2,3)⊕V (2,3)] and ẽ3b[M ] = b[V (2,2)⊕V (2,2)].

COMBINATORICS FOR QUIVER VARIETIES

Following [24] we define an ordering on pairs (k, l), 1 ≤ k ≤ l ≤ n given by:

(k, l) < (k′, l′) if k < k′ or if k = k′ and l > l′.

For i ∈ I, Savage uses this order to define the i-signature by which he can
determine the value of εi and the actions of the crystal operators in a combinatorial
way.

Definition 3.56 Let M be a CQ-module, M ∼=
⊕

1≤k≤l≤n V (k, l)γ(k,l) and i ∈ I.
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1. Write all pairs of the form (k, i) or (k, i− 1) ordered from left to right with
respect to <.

2. Under pairs of the form (k, i) write γ(k, i) "-"’s and under pairs of the form
(k, i− 1) write γ(k, i− 1) "+"’s. This is called the (+,-)-sequence of M .

3. Cancel all (+,−) pairs.

The remaining (possibly empty) sequence of "-" followed be the remaining (pos-
sibly empty) sequence of "+" is then called the i-signature.

Example 11: Fix n = 2, we have three possible pairs (k, l) with 1 ≤ k ≤ l ≤ n.
They are ordered as follows:

(1, 2) < (1, 1) < (2, 2).

Take M = V (1, 1) ⊕ V (2, 2) ⊕ V (2, 2). There is one (+,−)-cancellation in the
formation of the 2-signature of M :

(1, 2) (1, 1) (2, 2)
(+ −)−

Thus the 2-signature of M just consists of one "-" corresponding to a direct sum-
mand of M isomorphic to V (2, 2).

Let γ : {(k, l) ∈ Z≥0 | 1 ≤ k ≤ l ≤ n} → Z≥0. Following Remark 2.4, we
denote by M(γ,C) the following CQ-module:

M(γ,C) =
⊕

1≤k≤l≤n

V (k, l)γ(k,l).

Proposition 3.57 ([24, Theorem 4.1, Lemma 4.2]) Let Xγ be the element of
Bg(∞) corresponding to the irreducible component CM(γ,C) of Bg(∞). If there is a
"+" (resp. "-") in the i-signature of M(γ,C), let (k0, i−1) be the pair correspond-
ing to the leftmost "+" (resp. let (k′0, i) be the pair corresponding to the rightmost
"-").Then

εi(Xγ) = #{"-" in the i-signature of M(γ,C)};

wt(Xγ) =
∑

1≤k≤i≤l≤n

−γ(k, l)αi;

ϕi(Xγ) = εi(Xγ) + 〈hi,wt(Xγ)〉 ;
f̃iXγ = Xγ′ ;

ẽiXγ =

{
0 if εi(Xγ) = 0

Xγ′′ else;
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with

γ′(k, l) =


γ(k, l) + 1, if k = k0, l = i

γ(k, l)− 1, if k = k0, l = i− 1 (∗)
γ(k, l) else

If there is no "+" in the i-signature, we ignore equation (∗) and set k0 = i.
Further

γ′′(k, l) =


γ(k, l)− 1, if k = k′0, l = i

γ(k, l) + 1, if k = k′0, l = i− 1 (∗∗)
γ(k, l) else

If there is no "-" in the i-signature, we ignore equation (∗∗) and set k′0 = i.

COMPARISON

Let us compare the both constructions. We prove the following theorem.

Theorem 3.58 Let M be a kQ-module. Then the map

ϑ : b[M ] 7→ XγM

is an isomorphism of sln+1-crystals.

Fix M ∈ CQ−mod, M ∼=
⊕

1≤k≤l≤n V (k, l)γ(k,l) and fix 1 ≤ i ≤ n. Before we
are able to prove Theorem 3.58, we prove the following lemma.

Lemma 3.59 Let j0 be maximal such that Fj,i is maximal. Then the value of
Fj0,i is equal to the number of "-" in the i-signature of M . If there is at least one
"-" in the i-signature of M then V (j0, i) corresponds to the rightmost "-" in the
i-signature of M . Otherwise, j0 = 1.

Proof. In the case that there is no "-" in the (+,−)-sequence of M , there is no
indecomposable direct summand of M isomorphic to a V (k, i) for k ≤ i. Thus
Fi(M,V ) ≤ 0 for each V ∈ Pi(Q). Since F1,i = 0, the statement follows for this
case.

Assume for the rest of the proof that there is at least one "-" in the (+,−)-
sequence of M . Each "-" appearing in the (+,−)-sequence of M belongs to a
direct summand of M of the form V (k, i) for some k ≤ i and each "+" appearing
belongs to a summand of the form V (k, i − 1) for some k ≤ i − 1. We thus have∑i−1

k=1 γ(k, i− 1) many "+" and
∑i

k=1 γ(k, i) many "-" in the (+,−)-sequence of
M .
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Let V (j′0, i) be the direct summand of M that belongs to the rightmost "-"
i-signature of M . If there is no "-" in the i-signature of M , set j′0 = 1. Consider
the following sum:

(24) F =

j′0∑
k=1

1 + 1 + . . .+ 1︸ ︷︷ ︸
γ(k,i)

−

j′0−1∑
k=1

1 + 1 + . . .+ 1︸ ︷︷ ︸
γ(k,i−1)

 ,

Note that a cancellation of a summand on the left hand side with a summand
on the right hand side belongs to a (+,−)-cancellation in the formation of the
i−signature. Furthermore, we have the equality F=Fj′0,i. and the value of F is the
number of "-" appearing in the i−signature.

It remains to show that j′0 = j0. In the case j′0 = 1, we clearly have

Fj,i ≤ 0 for all j and Fj′0,i = 0.

The claim follows for this case.
Assume that there is at least one "-" in the i-signature of M . The fact that

V (j′0, i) belongs to the rightmost "-" of the i-signature of M implies for all j ≥ j′0

Fi,j − Fi,j′0, ≤ 0,

Assume that there is a j′ ≤ j′0, such that Fi,j0 ≤ Fi,j′ . This implies

V (j′, i) � V (j′0, i)

and

Fi,j′0 − Fi,j′ =

j′0∑
k=j′

1 + 1 + . . .+ 1︸ ︷︷ ︸
mk,i

−

j′0−1∑
k=j′

1 + 1 + . . .+ 1︸ ︷︷ ︸
mk,i−1

 ≤ 0.

Thus the rightmost "-" appearing in the i-signature must belong to a direct sum-
mand of M isomorphic to a V (l, i) with l ≤ j′. This contradicts the assumption
that the rightmost "-" belongs to V (j′0, i).

We conclude that j′0 is maximal such that Fi,j is maximal.

We now prove Theorem 3.58.

Proof. Clearly wt(ϑ(b[M ]) = wt(b[M ]). The fact that εi(ϑ(b[M ])) = εi(b[M ]) is shown
in Lemma 3.59 and the equalities f̃iϑ(b[M ]) = ϑ(f̃ib[M ]), ẽiϑ(b[M ]) = ϑ(ẽib[M ]) and
ϕi(ϑ(b[M ])) = ϕi(b[M ]) are straightforward using the constructions.
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RELATION TO YOUNG TABLEAUX

In [24] Savage uses the combinatorial description of the crystal structure on
the quiver varieties recalled in Section 3.4 to prove an isomorphism to the Young
Tableaux model of B(∞) for type An given in [7] and [14]. Let us recall this
realization briefly.

Definition 3.60 A semistandard Young Tableau is a filling of a Young
diagram such that the entries are weakly increasing from left to right along each
row and strictly increasing down columns. Such a tableau is called large if it
consists of n rows, and for 1 ≤ i ≤ n, the number of i-entries in the i-th row is
strictly greater than the number of all boxes in the i+ 1-th row.

Let T1 and T2 be two large tableaux with n non-empty rows. Then they are
called related if for the i-th row of T1 and T2, the numbers of entries j > i are
equal for all 1 ≤ i ≤ n. We write T1 ∼ T2 for two related tableaux and note that
this is an equivalence relation. We denote the set of equivalence classes of large
tableaux by T (∞).

The actions of the Kashiwara operators on such a tableau are defined as follows.
First read of the entries in far eastern reading, i.e. read each column from top to
bottom starting from the rightmost column, continuing to the left. Then write it
in the tensor product form.

Example 12:

T =

1 1 1 1 2

2 2 3

3

= 2 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 3

Then the action of the Kashiwara operators can be determined via the i-
signature.

Definition 3.61 Let T̄ ∈ T (∞) be an equivalence class of large tableaux and let
T be a representative of T̄ .

1. Under each tensor component with entry i of T write a "+" and under each
tensor component with entry i+ 1 of T write a "-".

2. Cancel all (+,−)-pairs until a (possibly empty) sequence of "-"’s followed
by a (possibly empty) sequence of "+"’s is left over, called the i-signature.

3. To apply f̃i to the whole product, apply it to the leftmost "+" in the i-
signature (i.e. change the i-entry belonging to this "+" to an i + 1-entry).
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Let T ′ be the tableau obtained through this procedure. If T ′ is already large,
define f̃iT := T̄ ′. If T ′ is not large then we define f̃iT to be the class of
large tableau such that a representative is obtained by inserting one column
consisting of i rows to the left of the box of T which f̃i acted upon. The
added column should have a k-box at the k-th row for 1 ≤ k ≤ i.

4. Similarly, to apply ẽi, apply it to the rightmost "-" in the i-signature. Let
T ′′ be the tableau obtained through this procedure and define ẽiT := T ′′.If
there is no remaining "-", then ẽi acts by 0.

Remark 3.62 The condition large ensures, there is always a remaining "+" in
the i-signature, i.e. the action f̃i given in Definition 3.61 is well-defined (see [14,
Lemma 3.2]).

Example 13: We determine the action of f̃2 on the tableau T defined in Example
12. The 2-signature of T only consists of one "+" belonging to the 2-entry circled
below:

T =

1 1 1 1 2

2 2© 3

3

Then the tableau T ′ of Definition 3.61 step 3 reads

T ′ =

1 1 1 1 2

2 3 3

3

This tableau is not large. We thus have to add a column consisting of 2 rows as
described in Definition 3.61. We get as a representative of f̃2T

1 1 1 1 1 2

2 2 3 3

3

Theorem 3.63 ([14, Theorem 3.4, Theorem 4.3]) A crystal structure on T (∞) is
defined with the Kashiwara-operators given in Definition 3.61, and, for T ∈ T (∞),
let the representatives of T have bij-many j’s (i < j ≤ n) in the i-th row. Then

wt(T ) =
n∑
j=1

(
n+1∑
k=j+1

b1
k +

n+1∑
k=j+1

b2
k + . . .+

n+1∑
k=j+1

bnk

)
αj;

εi(T ) = #{”− ”’s in the i-signature of T};
ϕi(T ) = εi(T ) +

〈
hi,wt(T )

〉
.
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Moreover, this is isomorphic to the crystal B(∞).

Thus there must exist an isomorphism between the geometric realizationBg(∞)
and the combinatorial realization T (∞) of B(∞). With the notation introduced in
section 3.4 Savage describes the isomorphism explicitly in the following theorem.

Theorem 3.64 ([24, Theorem 5.1]) For T ∈ T (∞), let γ(T ) be a function from
the set of pairs {(k, l) | 1 ≤ k ≤ l ≤ n} to Z≥0 such that γ(T )(k, l) is equal to the
number of (l+ 1)-entries in the k−th row of T , for 1 ≤ k ≤ l ≤ n. Then the map
T (∞)→ Bg(∞), given by T 7→ Xγ(T ) is a crystal isomorphism.

As a direct consequence of Theorem 3.58, we get

Theorem 3.65 The map T (∞) → BH (∞) given by T 7→ b[M(γ(T ),C)] for T ∈
T (∞) and M(γ(T ),C) is a crystal isomorphism.

Example 14: The tableau T defined in Example 12 corresponds to b[M ] for M ∼=
V (1, 1) ⊕ V (2, 2). Then f̃2b[M ] = b[M ′], where M ′ ∼= V (1, 1) ⊕ V (2, 2) ⊕ V (2, 2)
corresponding to the class of large tableau with a representative given by

1 1 1 1 1 2

2 2 3 3

3

.

This is exactly the element f̃2T of T (∞).

4 CRYSTAL GRAPHS OF REPRESENTATIONS
Let V (λ) be the irreducible finite dimensional Uv(g)-module of highest weight λ
and B(λ) its crystal graph. In this section, we focus on the realization of B(λ) as
a full subgraph of B(∞).

4.1 BH (λ) in BH (∞)

To describe the embedding of the crystal graph B(λ) of the irreducible g-module
of highest weight λ ∈ P+ into B(∞), Reineke uses Theorem 2.2. We first describe
the Kashiwara-involution in the Hall algebra setting. Let ∗ be the Q(v)-linear
antiautomorphism of Uv(n−) fixing the generator Fi. Then using the isomorphism
ν : Uv(n

−)→H (Q) which is sending the generator Fi to the generator u[S(i)] for
i ∈ I, ∗ reads as follows

∗ : H (Q) → H (Q)op

u[S(i)] 7→ u[S(i)].
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Since H (Q)op ∼= H (Q∗), we have the following description of the Kashiwara
involution ∗ on BH (∞)

∗ : BH (∞) → BH (∞)

b[M ] 7→ bM(γDM ,k),

where DM ∈ (kQ)op −mod is obtained via the standard duality described in
Remark 2.5.

To describe the function ε∗i in the language of quiver representations, we thus
have to dualize the notions of Section 3.1. This yields an additional condition on
the orientation Ω of the quiver Q.

Definition 4.1 A quiver Q is called cospecial if dim HomkQ(S(i), X) ≤ 1 for
all i ∈ I and all indecomposable kQ-modules X.

For the rest of this section we make the following assumption:

Q is a fixed special and cospecial Dynkin quiver.

Note that a quiver Q is cospecial if and only if Q∗ is special. For the non-
exceptional types we can thus find such an orientation (see (4)).

We dualize the notion of the posets Pi(Q) and Si(Q):

Definition 4.2 We define the poset

P∨
i (Q) := {X ∈ CQ−mod | X is indecomposable and dim HomkQ(S(i), X) 6= 0}

together with the relation � given in (2),i.e.

X � Y ⇐⇒ HomkQ(X, Y ) 6= 0.

Furthermore we define the poset

S ∨
i (Q) := {V =

k⊕
j=1

Xj | the set of elements Xj form an antichain inP∨
i (Q)}

together with the relation �∨ given by

V �∨ V ′ ⇐⇒ dim HomkQ(V,B) 6= 0

for each indecomposable direct summand B of V ′.
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Example 15: 1. For Q = 1 ← 2 ← 3, the poset P∨
3 (Q) is the union of all

framed modules:

111

!!

011

<<

##

110

  

τ
oo

001

<<

010

==

τ
oo 100τ

oo

We have that S ∨
3 (Q) = P∨

3 (Q). The elements can be ordered as follows:

001 �∨ 011 �∨ 111.

2. Let Q be the following quiver

2

1 3oo

OO

4.oo

The poset P∨
1 (Q) is again the union of all framed modules:

0
1 0 0

��

1
0 1 0

��

τ
oo

0
1 1 1

��

τ
oo

1
0 0 0

!!

0
1 1 0

!!

τ
oo

1
0 1 1

  

τ
oo

1
1 1 0

��

==

FF

1
1 2 1

��

==

FF

τ
oo

0
0 1 1

��

τ
oo

1
1 1 1

CC

0
0 1 0

CC

τ
oo

0
0 0 1τ

oo
τ

oo
τ

oo
τ

oo

We have

S ∨
1 (Q) =

{
0

1 0 0,
1

1 1 0,
1

1 1 1,
0

1 1 0,
1

1 1 1,
0

1 1 0
⊕ 1

1 1 1,
1

1 2 1,
0

1 1 1

}
.

We have two chains of maximal length in S ∨
i (Q):
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0
1 1 1

�∨
1

1 2 1
�∨

0
1 1 0

⊕ 1
1 1 1

�∨
0

1 1 0
�∨

1
1 1 0,

�∨
0

1 0 0

and

0
1 1 1

�∨
1

1 2 1
�∨

0
1 1 0

⊕ 1
1 1 1

�∨
1

1 1 1
�∨

1
1 1 0

�∨
0

1 0 0

We furthermore have a dual version of the sum Fi(M,V ) given in Definition
3.7:

Definition 4.3 Fix i ∈ I. For a kQ–module M and an element V ∈ S ∨
i (Q)

define

(25) F ∨i (M,V ) :=
∑

B∈P∨i (Q); V�∨B

µB(M)− µτ−1B(M).

Then the embedding of the crystal graph of BH (λ) into the crystal graph of
BH (∞) can be described as:

Theorem 4.4 ([19, Proposition 7.4]) For λ ∈ P+, λ =
∑

i∈I λiωi, the crystal
graph of BH (λ) is the full subgraph of BH (∞) with vertices given as

BH (λ) = {b[M ] | F ∨i (M,V ) ≤ λi for all i ∈ I and for all V ∈ S ∨
i (Q)}.

Example 16: Consider once more the following quiver

Q = 1← 2.

Recall the Auslander-Reiten quiver of Q:

11

!!

10

==

01τ
oo

Fix λ = 2ω1 ∈ P+. The vertices of the crystal graph of BH (λ) are given by the
isomorphism classes of kQ-modules M such that

M ∼= V (1, 1)γ(1,1) ⊕ V (1, 2)γ(1,2) ⊕ V (2, 2)γ(2,2)

with
F ∨2 (M, 01) = γ(2, 2) ≤ 0;

F ∨1 (M, 11) = γ(1, 2) ≤ 2;

F ∨1 (M, 10) = γ(1, 2) + γ(1, 1)− γ(2, 2) ≤ 2.
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Thus the crystal graph of BH (λ) is the following full subgraph of BH (∞):

b[0]
1 // b[10]

1 //

2

��

b[10⊕10]

2

��

b[11]
1 // b[11⊕10]

2

��

b[11⊕11]

4.2 Bg(λ) in Bg(∞)

NAKAJIMA’S QUIVER VARIETY

In [23], Saito gives a realization of the crystal B(λ) via Nakajima’s quiver
varieties. In this section we recall the definition of those spaces.

To define his quiver variety Nakajima considers a framing the double quiver
Q by adding an extra vertex i′ and an extra arrow ti : i→ i′ for all i ∈ I.

Example 17: We give an example of the extended double quiver for the Dynkin
graph of type A3:

1
h1 //

t1
��

2
h1
oo

t2
��

h2 // 3
h2
oo

t3
��

1′ 2′ 3′

For v, λ ∈ ZI≥0, we choose I-graded vector spaces V andW of graded dimension
v, λ, respectively and define

Λ ≡ Λ(v, λ) := ΛV ×
⊕
i∈I

Hom(Vi,Wi).

Then the action of the group Gv =
∏

i∈I GL(Vi) can be extended on Λ via

g(x, t) := (gi)i∈I((xh)h∈H , (ti)i∈I) = ((gin(h)xhg
−1
out(h))h∈H , (tig

−1
i )i∈I)

fo g ∈ Gv and x ∈ Λ.
To state the definition of Nakajima’s quiver variety we have to restrict Λ to

the subset of stable points Λst defined as

Λst := {(x, t) ∈ Λ |
⋂

out(h)=i

(kerxh ∩ ker ti) = 0}.
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Remark 4.5 This Definition is equivalent to the one given in [18] stating that
there is no non-trivial x-stable subspace of V contained in the kernel of t, see [3,
Lemma 3.4].

The subset Λst is open in Λ and we clearly have an action of the group Gv on
Λst. We further have the following.
Lemma 4.6 ([18, Lemma 3.1]) The action of Gv on Λst is free and Λst is a
non-singular subvariety of Λ.

Using [13], Nakajima shows in [18, Section 3.ii] that this is a stability condi-
tion in the sense of Mumford. We define Nakajima’s quiver variety to be the
geometric quotient of Λst by Gv:

L ≡ L(v, λ) := Λ(λ,w)st
/
Gv

.

THE SUBGRAPH

For brevity, we denote by IrrL the set of irreducible components of L and
by Irr Λ the set of irreducible components of Λ. Lemma 4.6 then yields the
following identification:

IrrL(v, λ) ∼= {Y ∈ Irr Λ(v, λ) | Y ∩ Λ(v, λ)st 6= ∅}.
We define

Y[M ] :=

((
C[M ] ×

⊕
i∈I

Hom(Vi,Wi)

)
∩ Λ(v, λ)st

)/
Gv

and note that

(26) IrrL(v, λ) = {Y[M ] |M ∈ CQ−mod and Y[M ] 6= ∅}.
We conclude that the irreducible components of L(v, λ) are in one-to-one cor-

respondence to the irreducible components of Λ(v, λ) that contain a stable point.
In [23] Saito describes a crystal structure on IrrL using similar arguments as

in [12]. The key point for our approach is the following lemma:
Lemma 4.7 ([23, Lemma 4.6.2, Lemma 4.6.3]) There exists an injective map
i : IrrL(v, λ) → B(v,∞) which commutes with the crystal operators. For M ∈
CQ−mod a representative of [M ] and Y[M ] 6= ∅ it is given by i(Y[M ]) = C[M ].

Hence we have the following result.
Corollary 4.8 The crystal graph of Bg(λ) is the full subgraph of Bg(∞) with
vertices the irreducible components

{C[M ] ∈ Bg(∞) | Y[M ] 6= ∅}.
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4.3 COMPARISON

To describe the connection of the two constructions, we first need a better de-
scription of the irreducible components of Λ(v, λ), that contain stable points.

Lemma 4.9 The irreducible components of Λ(v, λ) that contain a stable point
are precisely those components that contain a point (x, s) ∈ ΛV ×

⊕
i∈I

Hom(Vi,Wi)

such that dim(
⋂

out(h)=i

kerxh) ≤ wi.

Proof. Considering (x, t) ∈ Λst, the condition
⋂

out(h)=i (kerxh ∩ ker ti) = 0 forces
the existence of an isomorphism

⋂
out(h)=i kerxh ∼= Ṽ for a vector subspace Ṽ of

V/ ker ti. But V/ ker ti ∼= Im ti and dim Im ti ≤ dimWi.

Definition 4.10 We define

ε∗i (x) := dim(
⋂

out(h)=i

kerxh)

and for X ∈ Irr ΛV , we define

ε∗i (X) := min
x∈X

ε∗i (x).

In [12, Section 5.3], Kashiwara and Saito translate the standard duality de-
scribed in Remark 2.5 to their setting. By choosing an isomorphism between Vi
and it’s dual for every i ∈ I, they obtain an involution

∗ : Bg(v;∞)→ Bg(v;∞),

via (
C[M ]

)∗
= {xt | x ∈ C[M ]}

where xt is the transpose of the linear map x.
Note that since ΛV is Gv-invariant, this does not depend on the choice of vector

space isomorphism.
Let us describe the image of ∗more precisely. Consider the following projection

(compare with (9)):

p̃r : ΛV → EV,Ω̄,
(xh)h∈H 7→ (xh)h∈Ω̄.

Let y be in EV,Ω̄. Then clearly p̃r−1(Gvy) is an irreducible component of ΛV

as the closure of a conormal bundle of a Gv-orbit in EV,Ω. Fix M = (V, x) ∈
CQ−mod, then
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(C[M ])
∗ = p̃r−1(GLvxt).

We get immediately:

(27) ε∗i (C[M ]) = εi((C[M ])
∗).

Remark 4.11 Recall from Remark 2.6 that the representations of (CQ)op can
be identified with the representations of CQ∗. We may choose Ω̄ as a orientation
of the Dynkin diagram. Denote the resulting quiver variety by Λ∗V . It is clearly
isomorphic to ΛV and the irreducible component C[M?] of ΛV is mapped to the
irreducible component C[DM ] of Λ∗V under this isomorphism. Further

εi((C[M ])
∗) = εi(C[DM ]).

Example 18: We consider an example of type A2. Recall the corresponding double
quiver:

1
h1 // 2
h1
oo

Let Ω consist of the arrow h1, then Ω consists of the arrow h1. Fix V = C ⊕ C.
Then ΛV has two irreducible components, namely

ΛV = (C× {0}) ∪ ({0} × C).

We have two isomorphism classes of representations of the quiver

Q = 1← 2

with dimension vector (1, 1), the isomorphism class of

M1 = C 1←− C

and the isomorphism class of

M2 = C 0←− C.

Hence C[M1] = {C\{0}, 0} and C[M2] = {0,C}. To determine the image under ∗ of
these irreducible components, consider the quiver Q∗:

Q∗ = 1→ 2.

We have the identification
DM1 = C 1−→ C,
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DM2 = C 0−→ C.

Further
(C[M1])

∗ = {(C, 0)}∗ = {(0,C)}

and
(C[M2])

∗ = {(0,C)}∗ = {(C, 0)}.

Hence we have the following identification of irreducible components.

Corollary 4.12

IrrL(v, λ) = {Y[M ] |M ∈ CQ−mod and εi(C[DM ]) ≤ λi ∀i ∈ I}.

Moreover, Kashiwara and Saito show that ∗ : Bg(∞)→ Bg(∞) is precisely the
Kashiwara involution on Bg(∞) (see [12, Proposition 3.2.3, Proposition 5.3.1]).
The remainder of this section makes the connection between Reneike’s description
of ε∗i and the description of this function in the geometric setting precise.

Lemma 4.13 The elements of S ∨
i (Q) can be identified with the elements of

Si(Q
∗) via the standard duality D. Moreover, for V and V ′ in S ∨

i (Q), we have

V � V ′ if and only if DV �∨ DV ′.

Proof. This is a straightforward consequence of Remark 2.6.

We thus have:

Corollary 4.14 Let M be a kQ-module, DM ∈ (kQ)op −mod the dual module
of M obtained through the standard duality functor D and V ∈ Si(Q), then

Fi(DM,DV ) = F ∨i (M,V ).

Lemma 4.15 Let V0 be an antichain in Si(Q)∨ such that the maximal value of
F ∨i (M,V ) is reached at V0. Then

ε∗i (C[M ]) = F ∨i (M,V0).

Proof. Since we have ε∗i (C[M ]) = εi(C[DM ]) = maxDV ∈Si(Q∗) Fi(DM,DV ), the
claim follows from Corollary 4.14.

We have thus proved:

Theorem 4.16 Let λ =
∑n

i=1 λiωi be in P+. Then the crystal graph of Bg(λ) is
isomorphic to the full subgraph of Bg(∞) with vertices the irreducible components

{C[M ] | F ∨i (M,V ) ≤ λi for all i ∈ I and for all V ∈ Si(Q)∨}.
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4.4 NON-EMBEDDED STRUCTURE

In this section we give a self-contained description of B(λ). For this we prove the
following theorem:

Theorem 4.17 For λ =
∑n

i=1wiωi in P+, the crystal Bg(λ) is isomorphic to
the following crystal structure on IrrL(v, w)t{0} as abstract crystals. For Y[M ] ∈
IrrL(v, w), we have:

wt(Y[M ]) = λ+ wt(C[M ])

εi(Y[M ]) = εi(C[M ])

ϕi(Y[M ]) = εi(Y[M ]) +
〈
hi,wt(Y[M ])

〉
f̃iY[M ] =


((
f̃iC[M ] ×

⊕
i∈I Hom(Vi,Wi)

)
∩ Λ(v, w)st

)/
Gv

if ϕi(Y[M ]) > 0

0 else

ẽiY[M ] =


((
ẽiC[M ] ×

⊕
i∈I Hom(Vi,Wi)

)
∩ Λ(v, w)st

) /
Gv

if εi(Y[M ]) > 0

0 else

Before we are able to prove Theorem 4.17, we need some preparatory work to
show that the crystal operators are well-defined. In order to do that, we have to
describe the precise relationship between the two function ε∗i and ϕi on Irr Λ(v).

Lemma 4.18 Let M be in CQ−mod. Then we have for all j 6= i

ε∗i (f̃jC[M ]) = ε∗i (C[M ]).

Proof. Let x be a generic point of C[M ] ∈ Irr Λ(v) and let y be a generic point
of f̃jC[M ] ∈ Irr Λ(v + ei). Then those points correspond to Π(Q)-representations
M̃ = (V, x) and Ñ = (W,x) for some vector spaces V and W of graded dimension
v and v + ei. We further have an injective morphism of Π(Q)-modules:

M̃ ↪→ Ñ .

Thus
dim

⋂
h:out(h)=i

kerxh = dim
⋂

h:out(h)=i

ker yh.
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Lemma 4.19

ε∗i (f̃iC[M ]) =


ε∗i (C[M ]) + 1 if f̃iC[M ] = C[M⊕S(i)] and

max
V ∈S ∨i

F ∨i (M,V ) = F ∨i (M,S(i))

ε∗i (C[M ]) else.

Proof. Let B be an indecomposable CQ-module in Pi(Q)∩P∨
i (Q). Then we have

the following homomorphisms:

B � S(i) ↪→ B.

Thus Pi(Q) ∩P∨
i (Q) = {S(i)}. We have two cases.

1. Assume that f̃iC[M ] = C[M⊕S(i)].

Hence

F ∨i (M,V ) = F ∨i (M ⊕ S(i), V ) for all V ∈ Si(Q)\{S(i)}

and
F ∨i (M,S(i)) = F ∨i (M ⊕ S(i), S(i)) + 1.

We conclude for this case

ε∗i (f̃iC[M ]) =

ε
∗
i (C[M ]) + 1 if max

V ∈S ∨i

F ∨i (M,V ) = F ∨i (M,S(i))

ε∗i (C[M ]) else.

2. Consider f̃iC[M ] = C[N ] with N � M ⊕ S(i). Then N ∼= M ′ ⊕ V0 where
M = M ′ ⊕ U0 with U0 and V0 as in Definition 3.12. Since there is no inde-
composable direct summand of V0 in P∨

i (Q), we have

ε∗i (f̃iC[M ]) ≤ ε∗i (C[M ]).

Assume that there is an indecomposable direct summand C of U0 in P∨
i (Q).

Then, from the definition, there is a B ∈Pi(Q), such that C = τB and we
have homomorphisms

B � S(i) ↪→ C = τB.

Hence HomCQ(B, τB) 6= 0. A contradiction.

An analog argument shows that there cannot be be an indecomposable direct
summand B of V0 such that τ−1B ∈P∨

i (Q).

This yields
ε∗i (f̃iC[M ]) = ε∗i (C[M ])

for this case which proves the statement.

68



Proposition 4.20 For λ =
∑n

i=1wiωi, let C[M ] be an element of B(λ). Then

ε∗i (f̃iC[M ]) > wi if and only if ϕi(C[M ]) = 0.

Proof. Assume that
ε∗i (f̃iC[M ]) > wi.

Regarding Lemma 4.19, we have

ε∗i (C[M ]) = wi

and
εi(C[M ]) = Fi(M,S(i)).

Recall that the symmetrized Euler form coincides with the Cartan form on the
negative root lattice of g. Hence we have

ϕi(C[M ]) = εi(C[M ]) +
〈
hi,wt(C[M ])

〉
= Fi(M,S(i)) + wi −

(
dim HomCQ(M,S(i))− dim HomCQ(τ−1M,S(i))

)
− (dim HomCQ(S(i),M)− dim HomCQ(S(i), τM))

= Fi(M,S(i)) + wi − Fi(M,S(i))− F ∨i (M,S(i))

= 0.

Conversely, assume that
ϕi(C[M ]) = 0,

i.e.

0 = εi(C[M ]) +
〈
hi,wt(C[M ])

〉
= εi(C[M ]) + wi − Fi(M,S(i))− F ∨i (M,S(i)).

Thus
εi(C[M ]) = Fi(M,S(i))

and
wi = F ∨i (M,S(i)) = ε∗i (C[M ]).

Using Lemma 4.19, we get
ε∗i (f̃iC[M ]) > wi.
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Proof of Theorem 4.17. Recall from Lemma 4.7 that the map

i : IrrL(v, w)→ Irr Λ(v)

given by
i(Y[M ]) = C[M ]

commutes with the crystal operators.
We further get from Lemma 4.18 and Proposition 4.20 that f̃i is well-defined

on IrrL(v, w) for all i ∈ I.
Now the claim follows from Theorem 2.2.

4.5 TYPE A

In this section we give again an explicit description of B(λ) for g = sln+1. We
furthermore give a crystal isomorphism to the combinatorial realization via Young
Tableaux. In the sequel let us fix once more the following quiver of type An:

Q = 1← 2← · · · ← n

Note that Q is special and cospecial. Although our approach is slightly dif-
ferent, this section is again inspired by a result of Savage. In [24] he gives an
isomorphism between the Young Tableaux realization of B(λ) and the geometric
realization via Nakajima’s quiver varieties for type A.

HOMOLOGICAL CONSTRUCTION

Recall that for our given quiver, we have S ∨
i (Q) = P∨

i (Q). Recall further that
for 1 ≤ k ≤ l ≤ n, V (k, l) is an indecomposable representation corresponding to
the negative root −αk,l = −αk − αk+1 − . . .− αl. For 1 ≤ i ≤ n, we can describe
the poset P∨

i (Q) explicitly

P∨
i (Q) = {V (i, k) | i ≤ k ≤ n}.

The ordering � on P∨
i (Q) reads

V (i, k) �∨ V (i, k′) ⇐⇒ k ≤ k′.

For M ∈ CQ − mod let γ(k, l) again denote the multiplicity of V (k, l) as a
direct summand of M . Definition 4.3 simplifies for V = V (i, k) ∈ P∨

i (Q) in the
following way:

F ∨i (M,V ) =
n∑
k=i

γ(i, k)−
n∑

k=i+1

γ(i+ 1, k).
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Corollary 4.21 Let λ = w1ω1 + w2ω2 + . . . + wnωn ∈ P+, then BH (λ) is
the full subgraph of BH (∞) consisting of all elements b[M ] for M ∈ C − mod,
M ∼= ⊕1≤k≤l≤nV (k, l)γ(k,l) such that

n∑
k=i

γ(i, k)−
n∑

k=i+1

γ(i+ 1, k) ≤ wi for all 1 ≤ i ≤ n.

Example 19: Let Q be the linear oriented quiver of type A2.

1← 2.

Let furthermore λ = ω1 + ω2. The crystal graph of BH (λ) is the full subgraph of
BH (∞) consisting of all elements b[M ] such that M ∼= ⊕1≤k≤l≤nV (k, l)γ(k,l) and

γ(2, 2) ≤ 1; γ(1, 2) ≤ 1 γ(1, 2) + γ(1, 1)− γ(2, 2) ≤ 1.

We thus have the following crystal graph:

b[0]

1

tt

2

**

b[V (1,1)]

2

��

b[V (2,2)]

1

��

b[V (1,2)]

2

��

b[V (1,1)⊕V (2,2)]

1

��

b[V (1,1)⊕V (1,1)⊕V (2,2)]

2

**

b[V (1,2)⊕V (2,2)]

1
tt

b[V (1,1)⊕V (1,2)⊕V (2,2)]

YOUNG TABLEAUX

Fix λ = w1ω1 + w2ω2 + . . . wnωn ∈ P+. A semistandard Young Tableau is
of shape λ if its i−th row consists of wi + wi+1 + . . . + wn boxes. Denote by
SSY T (λ, n + 1) the set of all semistandard Young Tableaux of shape λ
where each box is filled with a number in {1, 2, . . . , n+ 1}.

We define the i−signature of a semistandard Young Tableau T of shape λ
analog to Definition 3.61.

Definition 4.22 1. For all i ∈ I, we define operators

f̃i : SSY T (λ, n+ 1) −→ SSY T (λ, n+ 1) t {0}
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via

f̃i(T ) =

{
0, if there is no "+" in the i− signature of T
T ′, else,

where T ′ is obtained by changing the i−entry belonging to the rightmost
"+" in the i−signature of T to an i+ 1−entry.

2. We furthermore define operators for all i ∈ I

ẽi : SSY T (λ, n+ 1) −→ SSY T (λ, n+ 1) t {0}

via

ẽi(T ) =

{
0, if there is no "-" in the i− signature of T
T ′, else,

where T ′ is obtained by changing the i+ 1−entry belonging to the leftmost
"-" in the i−signature of T to an i−entry.

Recall that the Cartan subalgebra h of sln+1 is the space of traceless diagonal
matrices in Mn+1,n+1(C) and εi ∈ h∗ is the functional sending a diagonal matrix
in h to its i-th diagonal entry.

Theorem 4.23 ([11, Theorem 3.4.2]) For λ ∈ P+ a crystal structure is defined
on SSY T (λ, n+ 1) with Kashiwara operators given in Definition 4.22, and

wt(T ) =
n+1∑
i=1

#{entries equal to i in T}εi,

εi(T ) = #{"-" in the i− signature of T},
ϕi(T ) = εi(T )− 〈hi,wt(T )〉 .

Moreover, this crystal structure is isomorphic to B(λ).

The remainder of this section is devoted to describing the relationship between
Corollary 4.21 and Theorem 4.23. Let Z be the set of all pairs (k, l) such that
1 ≤ k ≤ l ≤ n and let Z be the set of all functions γ : Z → N, s.t.

∑n
k=i γ(i, k)−∑n

k=i+1 γ(i+ 1, k) ≤ wi for all 1 ≤ i ≤ n.

Theorem 4.24 The set of all semistandard Young tableaux of shape λ and entries
in {1, 2, . . . , n+ 1} is indexed by the set of functions γ ∈ Z .

Proof. We define the map

Ψ : SSY (λ, n+ 1) → Z
T 7→ γT
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where γT (k, l) = #{entries equal to l + 1 in row k of T}.
Note that wi = #{boxes in row i} −#{boxes in row i + 1}. We get from the

semistandardness condition for i ≤ k′ ≤ n
#{entries ≥ k′ in row i in T} − wi ≤ #{entries ≥ k′ + 1 in row i+ 1 in T}.
Thus

n∑
k=k′

γT (i, k)−
n∑

k=k′+1

γT (i, k) ≤ wi ∀i ≤ k′ ≤ n.

Hence the Im Ψ ⊂ Z .
Conversely, define the map

Ψ′ : Z → SSY (λ, n+ 1)
γ 7→ Tγ.

Where the ith row of the tableau Tγ consists of wi + wi+1 + . . . + wn boxes
which we fill from right to left with γ(i, n) many n+ 1−entries, γ(i, n− 1) many
n-entries, . . . , γ(i, i) many i+ 1−entries. Since γ ∈ Z , we have:

n∑
k=i

γ(i, k) ≤ wi + wi+1 . . .+ wn.

We fill out the empty wi + wi+1 . . . + wn −
∑n

k=i γ(i, k) boxes on the right of
the i−th row with i−entries. Then Tγ is of shape λ and the entries are weakly
increasing in the rows from left to right. Further, the entries are strictly increasing
in the columns from top to bottom, since

n∑
k=k′

γT (i, k)−
∑

k=k′+1

γT (i, k) ≤ wi ∀i ≤ k′ ≤ n.

We get that Ψ′ is well-defined and clearly the inverse map of Ψ which yields
the claim.

Theorem 4.25 The map Ψ is an isomorphism of crystals.

Proof. Let T ∈ SSY T (λ, n+ 1). First we show that Φ commutes with the Kashi-
wara operators. Assume that there is at least one "+" in the i−signature of T
(resp. at least one "-" in the i−signature of T ), then it is already shown in 3.58,
that Ψ(f̃i(T )) = f̃i(Ψ(T )) (resp. Ψ(ẽi(T )) = ẽi(Ψ(T ))). If there is no "+" in the
i−signature of T (resp. no "-" in the i−signature of T ), then we get from the
definition that f̃iΨ(T ) = 0 = Ψ(f̃iT ).

Let T ′ ∈ SSY T (λ, n + 1) be the tableau corresponding to the highest weight
vector, i.e. the tableau with all entries in row k being equal to k. Then T ′ is
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mapped by Ψ to the function γ′ ∈ Z belonging to the highest weight vector, i.e.
γ′(k, l) = 0 for all 1 ≤ k ≤ l ≤ n. The equations

1. wt(Ψ(T )) = wt(T ),

2. εi(Ψ(T )) = εi(T ),

3. ϕi(Ψ(T )) = ϕi(T )

follow from the properties of crystals, since f̃i(Ψ(T )) = Ψ(f̃i(T )).

Example 20: We continue with Example 19, i.e. λ = ω1 + ω2 and

Q = 1← 2.

Following Theorem 4.24, we have the following correspondence of elements of
BH (λ) and tableaux in SSY (λ, 3):

b[0] 7→
1 1

2
b[V (1,1)] 7→

1 2

2
b[V (2,2)] 7→

1 1

3

b[V (1,2)] 7→
1 3

2
b[V (1,1)⊕V (2,2)] 7→

1 2

3
b[V (1,1)⊕V (1,1)⊕V (2,2)] 7→

2 2

3

b[V (1,2)⊕V (2,2)] 7→
1 3

3
b[V (1,1)⊕V (1,2)⊕V (2,2)] 7→

2 3

3
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