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Zusammenfassung

Zelluläre Gewebe repräsentieren einen interessanten Materialtyp: aktive Materie. Der
Grundbaustein eines jeden Gewebes, Zellen, teilen sich und sterben, konsumieren und
dissipieren Energie und üben Kräfte auf ihre Umgebung aus. Damit stellen sie ein Nicht-
gleichgewichtssystem dar. Wachsende Gewebe sind Bestandteil vieler biologischer Prozesse.
Das Verständnis der grundlegenden Phänomene wachsender Gewebe ist somit nicht nur
von einem physikalischen Standpunkt aus interessant.

In dieser Dissertation beschäftigen wir uns mit der Mechanik wachsender Gewebe im
Kontext der Theorie des homeostatischen Drucks. Der homeostatische Druck ist definiert
als der Druck, der auf ein Gewebe, das in einer biochemisch konstanten Umgebung
wächst, ausgeübt werden muss, um ein Gleichgewicht zwischen Zellteilungen und Zelltod
zu erhalten. Experimentelle Beobachtungen zeigen jedoch, dass Gewebewachstum von
Oberflächeneffekten dominiert ist. Eine erhöhte Zellteilungsrate an der Oberfläche kann
dabei einen im Mittel absterbenden Kern ausgleichen. Somit ist der homeostatische Druck
als Größe stets weit entfernt von Oberflächen zu verstehen. Wir studieren Wachstum
mit einem negativen homeostatischen Druck. Das heißt ohne Oberflächeneffekte ist eine
mechanische Spannung notwendig, um einen stabilen stationären Zustand zu gewährleisten.
Wir verwenden eine mesoskopische, teilchenbasierte Simulationstechnik, in der Zellen durch
zwei Punktteilchen dargestellt werden. Diese wechselwirken wie weiche klebrige Kugeln.
Eine abstoßende Kraft zwischen den beiden Teilchen einer Zelle modelliert das Wachstum.
Beim Überschreiten eines kritischen Abstandes werden zwei neue Teilchen eingefügt. Der
aktive Teil wird von dissipative particle dynamics ähnlichen Wechselwirkungen und einer
konstanten Zelltodrate komplettiert.
Mit diesem Ansatz untersuchen wir die Abhängigkeit des homeostatischen Drucks von

verschiedenen Modellparametern. Des Weiteren messen wir die Wachstumsraten im Inneren
von Gewebespheroiden unter mechanischem Stress und vergleichen die Ergebnisse mit in
vitro Experimenten von Gewebespheroiden unter Druck. Eine Anpassung der Simulationen
an die experimentellen Daten resultiert in einer Abschätzung für den homeostatischen
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Druck dieser Zelllinie von −1 bis −2 kPa. Des Weiteren zeigen wir einen neuen Gewe-
bezustand: Membranen unter Spannung. Gewebe mit einem negativen homeostatischen
Druck bilden dabei eine dünne Schicht, die unter einer charakteristischen Spannung steht.
Diese Spannung wird durch Zellteilungen an der Oberfläche und Zelltod im Inneren
aufrechterhalten.
Ferner studieren wir die Grenzflächendynamik von zwei konkurrierenden Geweben mit

einem unterschiedlichen homeostatischen Druck. Diese Differenz verursacht im Kontext
der Theorie des homeostatischen Drucks die Übernahme des Gewebes mit dem höheren
homeostatischen Druck. Ausgehend von einem theoretischen Standpunkt lösen wir die
Dynamik des eindimensionalen Problems für den Spezialfall von verschwindender Diffusion.
Diese Lösung beschreibt eine sich mit konstanter Geschwindigkeit bewegende Grenzfläche.
Wir verwenden das gleiche Simulationsmodel wie zuvor, um die Grenzflächendynamik
in zwei Dimensionen zu studieren und mit der analytischen Lösung zu vergleichen. Die
Abhängigkeit der Grenzflächengeschwindigkeit von der Differenz der homeostatischen
Drücke der beiden Gewebe, sowie die erhaltenen Vorhersagen für das Stressprofil stimmen
sehr gut mit den Simulationen überein. Des Weiteren untersuchen wir das Skalenverhalten
der Grenzflächenbreite w, welche zu Beginn durch w ∼ tβ beschrieben werden kann und
für späte Zeiten t abhängig von der Systembreite L saturiert wsat ∼ Lα. Wir erhalten
einen Wachstumsexponenten β ≈ 0.4 und einen Rauigkeitsexponenten α ≈ 0.25. Während
der Wachstumsexponent ungefähr in die Kardar–Parisi–Zhang Universalitätsklasse passt,
ist der gemessene Rauigkeitsexponent deutlich kleiner.

Abschließend beschäftigen wir uns mit der Ausrichtung der Teilungsachsen in expandie-
renden einlagigen Zellschichten. Wir erweitern dazu die Simulationen um einen bereits
etablierten Motilitätsmechanismus und vergleichen die Ergebnisse mit experimentellen Da-
ten von Madin-Darby canine kidney Zellschichten, die in schmale Mikrokanäle eindringen.
Die Analyse der experimentellen Daten ergibt eine starke Korrelation zwischen Divisions-
achse und Flussrichtung. Die stärkste Korrelation weist die Divisionsachse jedoch mit der
Hauptachse des Verformungsgeschwindigkeitstensors auf, welche mit der Hauptrichtung des
lokalen Stresses zusammenhängt. Dies unterstützt die These, dass Zelldivisionen nicht von
der lokalen Geschwindigkeit, sondern vom lokalen Stress ausgerichtet werden. Abgesehen
von Effekten in der Nähe von Grenzflächen und einem unerwarteten Fluss von Zellen
senkrecht zur Hauptmigrationsrichtung reproduzieren die Simulationen die beobachteten
Größen erstaunlich gut.



Abstract

Tissues represent an interesting type of matter: active matter. The basic elements of tissues,
the cells, divide or die, consume energy on the scale of their constituents, exert forces onto
their surrounding and dissipate energy, which results in non-equilibrium systems. Tissue
growth is involved in many biological processes and understanding its generic phenomena
is, thus, not only important from a physical point of view.
In this thesis, we are interested in the mechanics of tissue growth in the context of the

homeostatic pressure theory. The homeostatic pressure is defined as the pressure that has
to be exerted onto a tissue, growing in a biochemically constant environment, in order to
balance cell division and cell death. However, experimental observations show that tissue
growth is dominated by surface effects in the sense that high division rates at the surface
can compensate for an on average dying core. Thus, the homeostatic pressure is better
defined as a bulk property. We study the growth with a negative homeostatic pressure,
which means that without the surface growth effect such a tissue has to be kept under
tension to ensure a stable steady state. A mesoscale simulation technique is used, where
individual cells are represented by two point particles, interacting like soft sticky spheres.
Growth is modeled by a force that repels the particles of one cell until new particles are
introduced, when the cell reaches a certain size. Additionally, dissipative particle dynamics
like interactions and a constant rate of cell death concludes the active part.

This approach is used to explore the dependence of the homeostatic pressure on different
model parameters. Additionally, we measure the bulk growth rates of tissue spheroids under
different mechanical stresses and compare our results to the data of in vitro experiments
of tissue spheroids under pressure. We fit the simulations to this experimental data and
extract a homeostatic pressure of the order of −1 to −2 kPa. Furthermore, we find a new
tissue state: a tensile membrane. In this state, the tissue forms a relatively thin sheet,
where a characteristic tension develops for tissues with a negative homeostatic pressure. It
is sustained by growth at the surface and death in the bulk.

In addition, we study the interface dynamics of two competing tissues with a homeostatic
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pressure difference. In the theory of homeostatic pressure, this difference leads to a take-
over of the tissue with the higher homeostatic pressure. Starting from a theoretical point
of view, we solve the dynamics for the one dimensional problem without diffusion and find
the interface to propagate at a constant velocity. We use the same simulation technique as
above to study the interface dynamics in two dimensions and compare our results to the
analytical solution. The dependence of the interface velocity on the homeostatic pressure
difference between the tissues as well as the predicted stress profiles match well with
the simulations. Furthermore, we analyze the scaling behavior of the interface width w,
which develops initially as a power law w ∼ tβ and saturates depending on the system
size L for later times wsat ∼ Lα. We find a growth exponent β ≈ 0.4 and a roughness
exponent α ≈ 0.25. While the growth exponent roughly fits into the Kardar–Parisi–Zhang
universality class, the measured roughness exponent is substantially smaller.

At last, we study divisional alignment in expanding monolayered cell sheets. We extend
the simulations with a previously established motility mechanism and compare the results
to the experimental data of Madin-Darby canine kidney cell sheets that invade narrow
microchannels. In the experiments, we find a strong correlation between the division
orientation and the emergent flow. However, cell division correlates best with the main
axis of the strain rate tensor, which is related to the main axis of the stress tensor. This
supports the notion that divisions are aligned by the local stress as opposed to the local
velocity. Apart from boundary phenomena and a surprising flow of cells perpendicular to
the main migration direction, the simulations are able to reproduce the experimentally
observed quantities very well.
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1 Introduction and state of the art

1.1 From condensed matter physics to tissue growth

The study of matter in general and material properties in particular is as old as mankind
itself. With the advent of modern science great progress has been made. Nowadays,
many macroscopic material properties can be understood and explained on an atomistic
level. This is the field of condensed matter. In many cases the interactions holding the
microscopic constituents together are very strong as, for example, in crystals. Other
materials, however, exhibit weaker or soft interactions, i.e. on the order of the thermal
energy. In this soft matter fluctuations and entropy play an important role. From gels
in food like yogurt, gelatin or pudding to complex liquids like milk or blood, soft matter
systems are ubiquitous to daily life. Classical subfields of soft matter include membranes,
polymer solutions, colloidal solutions, foams, gels, granular materials and liquid crystals.

Cellular tissues are also characterized as soft materials. Contrary to ordinary materials,
however, tissues constantly consume energy on the scale of their constituents. Cells die,
divide, migrate and contract, thus, converting chemical fuels to stresses and material
growth. They are, hence, considered a part of active matter. However, tissues are not just
active in the sense of creating stresses internally but they are also self generating. Divisions
constantly produce new material that, in turn, can replicate again, while cell death in this
sense destroys material. It is this peculiarity of self generation and destruction that renders
the physics of tissues so interesting from a material science point of view. Furthermore,
understanding the physics of tissues and their properties is important for many biological
processes like morphogenesis (the development of the shape of an organism), wound-healing
or diseases.

1



2 1 Introduction and state of the art

a) b)

Figure 1.1: Tumors and metastatic spreading. a) “How cancer spreads” by Jane
Hurd (Illustrator) [Public domain], via Wikimedia Commons [Hurd, 2015]. Primary tumor
invades blood vessel and releases single malignant cells into the blood stream. These can
penetrate into the healthy tissue and give rise to a second tumor at another site. b) “Cross
section of a human liver, taken at autopsy examination, showing multiple large pale tumor
deposits. The tumor is an adenocarcinoma derived from a primary lesion in the body of the
pancreas.” By Haymanj [Public domain], via Wikimedia Commons [Haymanj, 2015].

1.2 Cancer

One of the most devastating diseases haunting modern civilization is known as cancer.
With an estimated 14.1 million new cases and 8.2 million deaths in the year 2012 alone
[IAR, 2014] it is found among the top ten causes of death worldwide. The predictions
even suggest an increase in new cancer cases to 23.6 million people in the year 2030 [Bray
et al., 2012]. Thus, a deeper knowledge and understanding of the development of cancer
would greatly benefits all of mankind.

Since the beginning of cancer research, a vast amount of different causes have been
discovered. Ranging from virus infections [Rous, 1910, 1911, Shope, 1933], over environ-
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mental or physical influences [Findlay, 1928, Muller, 1928] to chemicals [Kennaway &
Hieger, 1930, Yamagiwa & Ichikawa, 1918], all of these causes result in an aberrant cell
behavior that disrupts the carefully orchestrated interplay of a multicellular organism. For
such an organism it is vitally important to regulate the growth and death of its cells. Many
different mechanisms are known that initiate or inhibit cell division or trigger apoptosis
(programmed cell death). Cancer cells, however, lack the ability to properly respond to
such signals and instead proliferate uncontrollably [Preston-Martin et al., 1990]. Thus,
even a single mutated cell can give rise to a macroscopic tumor that, due to its increasing
volume, pushes aside the healthy tissue around its position. A single tumor, though, is
rarely deadly. Most of the cancer related deaths are caused by organ failure due to the
metastatic spreading of the primary tumor [Weinberg, 2007]. This process occurs when
the tumor is able to penetrate into the blood vessels of the host body. Single cells can
detach, travel to distant locations, and form new tumors called metastases (see figure 1.1).
Therefore, it seems obvious that a deeper understanding of tissue growth in general and
the competition between different tissues in particular is of interest for cancer research.

1.3 Mechanics in tissue growth

From a physics point of view, a tumor has to deform its surrounding in order to grow. Such
a deformation, in turn, results in a force exerted back onto the growing tumor. Thus, the
question arise whether mechanical stresses, or mechanics in general, affect tissue growth.
Already in 1981, it was suggested that mechanical stresses could regulate and guide

tissue growth [Ingber et al., 1981], inspired by an analysis of rat liver carcinomas (a type
of cancer). A correlation was found between the attachment of those cells to a basal
membrane and their organization, thus, linking a mechanical stimulus (the attachment to
the basal membrane) to the tissue organization.
Since then, a lot of different examples have been found, where mechanics directly

influence tissue growth. For example, a direct correlation has been discovered between
stress and proliferation patterns [Nelson et al., 2005]. Using microfabrication techniques,
small structures were created on which cell sheets were grown. Depending on the stress
patterns created by the cells, different proliferation patterns emerged, where cell division
is enhanced in regions of high tension. Furthermore, it has been shown that a variation
in the cell-cell adhesion leads to a change in stress gradient, which in turn modifies the
cell proliferation rate. Such a mechanical feedback could be used to stabilize and regulate
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Figure 1.2: Dorsal closure in Drosophila. Illustration of the four stages of dorsal
closure in Drosophila larvae. Pictures represent electron micrographs, while a lateral view
icon resides at the top right of each picture. Note the contraction of the amnioserosa that is
the central part in the electron micrographs. Taken from [Jacinto et al., 2002].

tissue growth. For example, during the development of Drosophila wing discs uniform
growth is observed despite the present gradients in growth factors and the stochastic
nature of cell divisions [Milán et al., 1996]. According to Shraiman [2005], this could be
explained as follows. Consider a small patch of tissue, where one cell is growing slower
than the rest. Since the surrounding is expanding, tension is built up, which enhances cell
growth locally. If, on the other hand, a cell is growing faster than its surrounding, the
compressional stress reduces cell growth, thus, stabilizing a uniform growth rate.
A direct impact of mechanical stresses on the morphogenesis (that is the development

of the shape of an organism) was observed, for example, during the dorsal closure of
Drosophila larvae [Kiehart et al., 2000]. Dorsal closure refers to a step in the larvae
development, where an eye-shaped gap in the epithelium (that is a protective layer of
cells differentiating inside from outside) on the back side of the fruit fly embryo is sealed
(see figure 1.2). The cells inside the gap, called amnioserosa, constrict apically (i.e. at the
top), which generates a force, driving the epithelial sheets together until the gap is closed.
Apical constriction has been shown to drive other morphogenetic processes as well, like
gastrulation, a fundamental step in embryo development, or the formation of the neural
tube, a precursor to the central nervous system [Sawyer et al., 2010].
Another example of how mechanics can be involved in tissue growth is the villification
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of the gut. Its surface consists of many small finger-like protrusions, called villi. Although
the reason for their existence is not finally ascertained, one intuitive explanation would
be the maximization of absorptive area. The formation of these villi (villification) can be
understood mechanically [Hannezo et al., 2011, Shyer et al., 2013]. If a cell sheet is attached
to an elastic substrate and starts to grow, the resulting compressive stresses trigger a
buckling instability that leads to a structure formation similar to the aforementioned villi.
In all the above examples the mechanics were dominated by the forces due to tissue

growth. However, other forces can contribute as well, for example motility forces. Many
cells either have the ability to perform directed motions or can transform into a different
type to gain this ability. One such transformation is called epithelial-mesenchymal
transition (EMT). Epithelial cells constitute one of the four basic animal tissue types and
line the cavities and surfaces of many structures in the body. During the EMT, they lower
their cell-cell adhesion and loose their polarity due to the loss of contact to the basal
membrane. Polarity, in this context, refers to the basal-apical orientation, where the cell
differs in structure and composition at the basal membrane as compared to the opposite
(apical) position. After the EMT, they become mesenchymal-like cells with migratory and
invasive properties. This transition was observed in many developmental processes but
also in wound-healing [Kalluri & Weinberg, 2009] and in tumor progression [Thiery, 2002].
Since most cells, especially epithelia, retain a constant mechanical contact to their

neighbors through junctions (see e.g. [Alberts, 2008]), they do not move independently of
each other. Instead, complex collective phenomena are observed in migrating cell sheets.
For example, large scale, swirl-like flow patterns were found at low densities and a large
reduction in motility with increasing cell density, resembling a glass-like arrest [Angelini
et al., 2010, 2011]. Furthermore, finger-like protrusions were discovered in migrating cell
sheets, stemming from border instabilities of initially flat interfaces [Poujade et al., 2007].
In order to better understand the processes involved in migration, several experimental
techniques have been proposed to measure the spatio-temporal evolution of traction forces.
For example, fluorescent particles were embedded in a polyacrylamide gel [Dembo & Wang,
1999]. Another method utilized micropillar arrays made of polydimethylsiloxane (PDMS)
[du Roure et al., 2005]. Both methods derive the forces from the displacement of the
underlying substrate. However, the first explicit map of the physical forces during migration
was measured by Trepat et al. [2009]. They found expanding cell sheets to be under a
global state of tension with increasing modulus in the bulk. Such a state cannot arise
from directed cell motion only at the border, contrary to wide belief [Gov, 2007, Poujade
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et al., 2007, Vaughan & Trinkaus, 1966]. Instead, all cells have to pull on average towards
the boundary, even several hundred cell diameters away from it. It is highly unlikely that
chemical signals sent by the cells at the border diffuse fast enough to the inner cells, to
cause such large scale correlations. Thus, a simple flocking-type mechanism was suggested
[Basan et al., 2013] that offers an explanation for the experimentally observed long range
alignment of motility forces. In the proposed mechanism cells tend to align their motility
forces with the direction of their velocity. It was able to reproduce the global state of
tension, the swirl-like flow patterns, the large reduction in motility with increasing cell
density and the finger-like protrusions due to border instabilities.

1.4 Continuum mechanics of tissues

Now, the question arises how tissue development can be described from a physical point
of view. As already mentioned at the beginning, tissues represent a type of matter that
is different from classical solids or liquids: they are active. Classical laws for continuum
mechanics like elasticity [Landau & Lifshitz, 1986] or hydrodynamics [Landau & Lifshitz,
1987] can be extended to account for the active processes. One way to introduce growth
into continuum mechanics is the addition of a source term to the continuity equation

∂tρ+∇ · (ρv) = kρ. (1.1)

Here, v is the velocity profile, ρ the cell density, and k = kd − ka the effective growth rate
i.e. the difference in division rate kd and apoptosis rate ka.

Such an approach has been successful to model the growth of tissue spheroids [Byrne &
Chaplain, 1995]. Concentration fields of nutrients and growth inhibitors were added, which
coupled the growth rate in equation (1.1) to the local concentrations of these quantities.
By applying this approach to the growth of tumors, it has been shown how stable solutions
corresponding to a non-zero tumor size depend on the nutrient consumption and growth
inhibitor concentration.

1.4.1 Tissue growth, homeostatic pressure and competition

Rather recently, Basan et al. [2009] proposed a new idea of tissue competition driven by
homeostatic pressure. The concept is best described by the following simple gedankenex-
periment. Consider a tissue inside a box as depicted in figure 1.3. The walls are permeable



1.4 Continuum mechanics of tissues 7

a) b)

Figure 1.3: Sketch of tissue growth in a confined volume. a) Tissue on the left
is confined by the movable piston that is connected to a spring and thus exerts a defined
pressure onto the system. b) Same as in a) but instead of a spring a second tissue is put
into the right chamber, which is then competing against the tissue on the left for volume.
Taken from [Basan et al., 2009].

to nutrients, growth factors, and everything else a tissue needs to proliferate to ensure
a constant biochemical state. Instead of an incompressible box, one wall is replaced by
a movable piston connected to a spring. The cells are dividing with a rate kd and dying
with a rate ka < kd, thus, filling the compartment. Once the box is filled by the tissue,
it starts to press against the piston, which then exerts a certain pressure back onto the
tissue. With increasing pressure, the death (or apoptosis) rate goes up, while the division
rate goes down until a steady state with kd = ka is reached. This steady state is stable
since any perturbation drives the system back to its steady or homeostatic state. The
pressure and density in this state are constant (although different) for each tissue and,
thus, called homeostatic pressure PH and homeostatic density ρH . They are fundamental
material properties of tissues. Around the homeostatic state, the growth rate k can be
expanded in terms of the pressure difference PH − P between an external pressure P and
the homeostatic pressure PH of the tissue

k = κ(PH − P ) +O
[
(PH − P )2

]
. (1.2)

or in terms of the difference between the homeostatic density ρH and the actual density ρ

k = χ(ρH − ρ) +O
[
(ρH − ρ)2

]
. (1.3)

For small differences PH−P (or ρH−ρ), the higher order terms can be neglected, resulting
in a linear approximation. This linear approximation has been successfully used to couple
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growth rates to the mechanics in the analytical description of tissue competition.
Consider now the same gedankenexperiment with a second tissue instead of a spring

(see figure 1.3). Both tissues grow until they have filled their half of the box. Let us
assume that tissue A has a homeostatic pressure PAH and B a higher homeostatic pressure
PBH > PAH . Since the wall separating the tissues is movable, the different pressures inside
the box are equalized. This, on the other hand, means that a pressure is exerted onto
tissue A that is higher than its homeostatic pressure. In the context of the homeostatic
pressure theory, the growth rate of tissue A is shifted to an on average apoptotic rate,
thus, leading to the recession of A, while B takes over the compartment. Interestingly, the
winner of such a competition is determined solely by their homeostatic pressures and is
independent of the actual division rates. In the extreme case of the competition between
a fast and a slow growing tissue, the slow growing tissue would still win as long as it has
the higher homeostatic pressure.
Recently, a continuum description of tissue competition that accounts for cell flow

fields and stress distributions on large scales has been developed [Ranft et al., 2014].
Assuming incompressible tissues, the cell fraction ϕ of A-type cells follows a generalized
Fisher-Kolmogorov equation

∂tϕ+ v · ∇ϕ = D∇2ϕ+ ϕ(1− ϕ)(kA − kB), (1.4)

where v is the velocity field, D is the diffusion coefficient and kA/B are the stress dependent
growth rates of the two tissues. Again, the coupling of the stress to the growth rates
was achieved through the linear expansion around the homeostatic state. This yields
traveling wave solutions similar to those of the original Fisher-Kolmogorov equation. In
the later case, however, traveling waves can only propagate with a diffusion constant
D > 0. Therefore, one could expect that neglecting diffusion (D = 0) does not result in a
moving interface.
Another interesting aspect of tissue competition concerns the form and development

of the interface between the two tissues. It can be considered as a growing surface and,
thus, the standard methods of surface growth physics can be applied (see e.g. [Barabási &
Stanley, 1995]). One of its major tools is the classification of the scaling behavior. Let us
consider a growing surface of width w(L, t) that is a function of the system size L and the
time t. Its typical time evolution separates into two regions: an initial power law increase
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with time

w(L, t) ∼ tβ (1.5)

and a saturation regime with a width wsat(L) that depends on L

wsat(L) ∼ Lα. (1.6)

The exponent β is called growth exponent, while α is called roughness exponent. These
two exponents are commonly used to classify the growth process. An experimental
study of in vitro and in vivo cell line and tumor growth [Brú et al., 2003] showed
scaling exponents consistent with the molecular beam epitaxy (MBE) universality class
(α2d

MBE = 3/2, β2d
MBE = 3/8). However, a numerical study [Block et al., 2007] of the

mechanism that was proposed to cause the MBE-like scaling resulted in exponents that
describe a Kardar–Parisi–Zhang (KPZ)-like scaling (α2d

KPZ = 1/2, β2d
KPZ = 1/3). For

growing bacterial colonies another roughness exponent was suggested of α = 0.78 [Vicsek
et al., 1990] that falls into neither of the two above classes.

1.4.2 Non-uniform growth

The homeostatic pressure gedankenexperiment assumed a spatial and temporal uniform
growth rate k, which would result in exponential growth for unconfined tissues. However,
experiments of tissue spheroids grown at constant biochemical conditions [Montel et al.,
2011] have revealed a differing, non-exponential behavior (see figure 1.4a). A closer analysis
showed that cell divisions do not occur uniformly over the spheroid but are favored near
the surface (see figure 1.4b). This surface growth effect is even enhanced if a pressure
is applied, hinting for a mechanical explanation as opposed to other causes, like limited
nutrient availability. An intuitive, purely mechanistic explanation could be as follows. In
order for a cell to grow, it has to enlarge its volume, thus, creating a strain dipole. The
energy required to insert such a strain dipole in the bulk of the material should be higher
than near the surface, where part of the necessary strain field is cut away.
To describe the experimental findings, a simple two rate growth model was proposed
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Figure 1.4: Growth of tissue spheroids under pressure. a) Experimental data of
the normalized volume V of a tissue spheroid over time t for different external pressures.
Dashed lines represent fits of equation (1.10). Note that the initial exponential growth is
succeeded by a linear regime. Redrawn from [Montel et al., 2011]. b) Cryosections of tissue
spheroids with and without external pressure. “Cryosections and immunofluorescence of the
spheroids are used to label the cell divisions [antibody against Ki-67 in cyan] and apoptosis
[antibody against cleaved Caspase-3 in red]. (Left) Half section of a spheroid grown in a
normal medium for 4 d. (Right) Half section of a spheroid grown with a stress of 1 kPa for
4 d.” Taken from [Montel et al., 2011].
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Figure 1.5: Sketch of the two rate growth model. a) Sketch of a tissue spheroid of
size R. The red region shows the apoptotic core, while the proliferating rim is colored in
cyan. Black arrows denote the radial flow of cells from the surface to the core. b) Growth
rate k as a function of radial distance r for the two rate growth model.
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(see figure 1.5)

k(r) =




kb for r ≤ R− λ
kb + δks for r > R− λ

(1.7)

with a bulk growth rate kb and a surface growth increment δks in a small region of thickness
λ for a tissue spheroid of size R [Montel et al., 2011]. The change in volume ∂tV (t) for
such a system with a constant density ρ reads

∂tV (t) =
∫

V

k(r) dr (1.8)

and results in

∂tV (t) = kbV + (36π)1/3V 2/3. (1.9)

This differential equation is solved for V ≥ 0 by

V (t) =
[(

1 + (36π)1/3δksλ

kb

)
exp

(
kb
3 t
)
− (36π)1/3δksλ

kb

]3

(1.10)

with V (0) = 1. A fit of this equation to experimental data revealed a good agreement as
shown in [Montel et al., 2011] and figure 1.4b and allows the extraction of kb and δks.
A stable steady state solution of equation (1.9) requires kb < 0 and kb + δks > 0,

referring to surface growth and bulk death. This has been observed experimentally in
several different cell lines [Delarue et al., 2013, 2014]. In order to maintain its integrity, the
apoptotic core in such a spheroid has to be balanced by a flux of cells from the proliferating
surface. This flux has recently been measured in experiments of growing tissue spheroids
[Delarue et al., 2013]. Fluorecently labeled core-shell nanoparticles were incorporated into
the outermost layer of cells of growing tissue spheroids and their distribution over time
was followed. The measured flows were consistent with the analytical calculations for the
two-rate growth model.
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i = 0 i = 10 i = 50 i = 100

Figure 1.6: Conway’s game of life. Evolution of a simple initial configuration. The
number of iterations i is written below each snapshot. Note the complex patterns emerging
after several iterations.

1.5 Discrete tissue models

A large amount of discrete, cell-based models have been proposed. In general, they can be
divided into two main categories, lattice and off-lattice models. Lattice-based models are,
for example, those of cellular automata. A cellular automaton consists of a regular grid of
cells that can be in a number of different states. A set of rules govern the interactions
between neighboring cells and thus determine the dynamics. Probably the most famous
example of a cellular automaton is Conway’s Game of Life [Gardner, 1970]. Each grid point
therein can either contain a living cell or be empty and only three simple rules governing
death, birth and survival of each cell. A cell is born, when an empty field has exactly
three neighbors. A living cell dies of over- or underpopulation when it has more than three
or less than two neighbors and survives if it has exactly two or three neighbors. These
simple rules already gives rise to complex dynamic patterns (see figure 1.6). Although this
model was not intend to study tissue growth, a similar approach has been successfully
used to study blood vessel networks [Peirce et al., 2004]. Starting with an initial in vivo
blood vessel network, their cellular automaton was able to predict the emergent patterning
responses to external stimuli that is mechanical stress and the delivery of growth factors.
Cellular automata have also been used in hybrid approaches, for example to model

early tumor growth and invasion [Patel et al., 2001]. In this model, each automaton
element corresponds to a volume element of the size of one cell and is occupied by either
a normal cell, a tumor cell, a micro-vessel or empty. Two important components are
added, nutrients (glucose) and hydrogen ions. The later is observed to be produced by
tumor cells, which alters the microenvironment and is harmful to the healthy tissue. The
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production, however, can be compensated by a vascular network (small blood vessels)
that transports the ions away. Modeling the concentration fields of glucose and hydrogen
ions by diffusion-reaction partial differential equations, thus, combining the discrete and
continuum approaches, they were able to show that already small excess hydrogen ion
production of tumor cells lead to a sufficient alteration of the microenvironment to promote
tumor invasion. Furthermore, an optimal vascular density was found for each hydrogen
ion production excess that significantly reduces tumor growth.
Apart from studying such detailed biological processes, cellular automata have also

been utilized to understand basic phenomena in tissue growth. Starting from an irregular
lattice, each grid point can contain at most one cell. Each cell is able to migrate and
divide. Division can, however, only occur if a free lattice site is available within a certain
radius. Then, all cells along the line that connects the mother cell with the nearest free
grid point are shifted so that the two daughter cells reside next to each other [Block et al.,
2007, Radszuweit et al., 2009]. This model was used to determine the universality class of
growing colonies.

Originating from the field of computational fluid dynamics, Lattice-Boltzmann methods
have also been adopted to study tissues. In contrast to the cellular automata described
above, this method considers the advection of density distributions on a lattice. Its
dynamics are described by a streaming step, where the distributions move according to
a discrete velocity, and a collision step, where the interactions are governed. In a way
this can be considered as particles moving through time and space and is, thus, different
from the examples above. This method has been used to study the time evolution of
multicellular systems [Artur et al., 2011] and it has been able to successfully reproduce
the fusion process of tissue spheroids.
Abandoning the discretization of space and velocity leads to off-lattice models, where

cells are represented by a set of point particles. The simplest case of one point particle
per cell was, for example, used by Drasdo et al. [1995]. Defining a radius that changes
over time as cell size and introducing new particles to model proliferation, the dynamics
were simulated by Monte-Carlo steps. In each step, a cell can randomly perform one of
several possible actions, such as migration, growth, rotation, and deformation. Defining
∆E as the change in energy due to the chosen action, the standard Metropolis algorithm
always accepts this change for ∆E < 0 and only with a probability exp(−∆E) otherwise.
This approach was applicable to model parts of the wound healing process of skin cuts
and the growth of sarcoma (a type of tumor deriving from the connective tissue).
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Instead of a Monte Carlo-type simulation, it is also possible to integrate Newton’s
equations of motion to determine the cell movement by defining appropriate interaction
potentials. This approach was used to model multicellular tumor spheroids [Schaller &
Meyer-Hermann, 2005]. Each cell is represented by a point particle with a set of parameters
that include cell position, radius, different states according to the cell cycle, and cell-type
specific coupling constants for the elastic and adhesive interactions. The unperturbed cell
shape is assumed to be a sphere that deforms due to the interactions with the neighboring
cells. The nearest neighbors are determined by a Delaunay triangulation and due to its
connection to the Voronoi diagram, the contact area between neighbors can easily be
calculated as well. With this model, the nutrient uptake of glucose and oxygen and its
connection to necrosis was analyzed. Necrosis refers to the death of a cell due to cell injury,
which is nearly always detrimental and has to be differentiated from the programmed cell
death called apoptosis. The utilized Delaunay triangulation that determines the nearest
neighbors is, however, computationally rather expensive. Defining instead short ranged
forces and considering only cell-cell interactions within a certain radius of a cell can be
much faster. On the other hand, the forces and their range has to be chosen carefully
as next-nearest neighbor interactions can cause problems (see e.g. [Pathmanathan et al.,
2009]). Furthermore, the random cell motions have to be included in this approach as
compared to Monte Carlo simulations, where they are included by design. This can be
achieved by assuming the over-damped limit and solving the Langevin equation [Dallon &
Othmer, 2004, Galle et al., 2005].

In order to incorporate a more detailed picture of individual cells, a subcellular element
model was proposed [Sandersius & Newman, 2008], where each cell is divided into a number
of elastically coupled volume elements. The interactions are governed by a potential with
short range repulsion and long range adhesion (with respect to the interaction range),
which leads in connection with the assumption of the over-damped limit to a viscoelastic
behavior. This model was able to capture the intermediate-frequency rheology of living
cells in a semi-quantitative manner.
All these models, however, need the definition of coarse grained interaction potentials.

The construction of such potentials, divide into two major approaches. First, one starts
with a set of measurable cell characteristics, like cell stiffness, growth rate, Young modulus,
Poisson ratio, etc., and model the physical interactions with force fields that take these
parameters as input [Hoehme & Drasdo, 2010]. In order to incorporate proliferation, cells
double their volume by stochastic increments and subsequently deform into dumbbells until
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Figure 1.7: Simulation snapshot of a growing tissue spheroid. A quarter section is
cut out of the spheroid simulated with the model of Basan et al. [2011]. The cells are color
coded according to their age. Red corresponds to cells that have recently divided, while
blue cells have not divided for a long time. Note the high cell division rate near the surface.

they split into two daughter cells. An extended version of this model led to the discovery
of an integral mechanism to the regeneration process of the liver, the hepatocyte-sinosoid
alignment (HSA) [Hoehme et al., 2010]. The liver is a highly structured organ, which does
not function properly without its microstructures. It consists mainly of hepatocytes, a
special type of cell, which are responsible for protein synthesis, storage, transformation
of carbohydrates and detoxification, the main functions of the liver. These cells are
connected to small blood vessels, called sinosoids. If a small volume of hepatocytes die
due to necrosis, the adjacent healthy hepatocytes start to proliferate and migrate towards
the necrotic zone. The aforementioned simulations were used to model this process and
the results were compared to the experimental data of a regenerating mouse liver. A
thorough analysis revealed that only the inclusion of the alignment of daughter hepatocytes
in the direction of the nearest sinosoid into the simulation model could account for all
experimental observations. However, the rather large set of parameters in such a model
can make it difficult to study generic phenomena.
The other, more minimalistic approach incorporates only a few basic and well known

cell-cell interactions. Basan et al. [2011], for example, have modeled cells by simple soft
sticky spheres. In order to include proliferation, cells were represented by two point
particles that repel each other with a growth force that depends on the particle-particle
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distance. Compared to other models, this approach has the advantage that an inherent
feedback of stress onto growth is included due to the finite growth force. The emergence of
interesting phenomena can, in such a model, be traced back to the initial few assumptions
on cell behavior. Even more, switching off specific cell-cell interactions might lead to a
deeper understanding of the studied phenomenon. It has been shown with this model that
tissues behave like viscoelastic fluids due to cell turnover. Disabling cell death leads to
a rheological behavior of a plastic material with a finite yield stress [Ranft et al., 2010].
Furthermore, the feedback of the stress onto growth leads to a surface growth effect similar
to the one observed in the experiments mentioned in section 1.4.2 (see figure 1.7).
To summarize, there is not one ultimate cell/tissue model but rather, depending on

the phenomena of interest, a different approach might be suited best. In this thesis, we
followed the approach of Basan et al. [2011].



2 Theory and methods

2.1 Simulations

2.1.1 Model

The main interest of this work lies in the study of generic aspects of tissue growth on the
scale of tissues. As outlined above, there exist a lot of different discrete models. We chose
to utilize the same approach as in [Basan et al., 2011, Montel et al., 2011, 2012] since it
has already been proven to model tissue growth in the context of the homeostatic pressure
theory very well. Furthermore, its minimalistic approach is best suited for the study of
generic phenomena, which we are interested in. In this model, each cell is represented by
two point particles. It is, however, important to note that a simulation cell is a highly
simplified representation of a real cell. Thus, identifying one simulation cell with a real cell
is overinterpreting the model. It is, in principle, possible to get a more detailed picture at
the cellular level by using more than two particles to represent one cell. This, on the other
hand, would require additional constraints, connecting all the particles that build one cell.
Furthermore, one could also interpret the two particles in the current model as a small
patch of tissue with a preferred growth direction, thus, representing a local average over
several real cells.

In this model, the particles of a cell interact via short ranged potentials with each other
and other particles within range Rpp. The resulting force on particle i

F i = F g
ik + F d

ik + F r
ik︸ ︷︷ ︸

intracellular forces

+
∑

j 6={i,k}

(
F v
ij + F a

ij + F d
ij + F r

ij

)

︸ ︷︷ ︸
intercellular forces

+F b
i (2.1)

splits up into an intra- and an intercellular part and the background friction F b
i . In this

context, i and k form a cell, while the sum over j refers to interactions between particles

17
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t = 0 t = 4 t = 16 t = 48

Figure 2.1: Simulation snapshots of a growing spheroid. Note that at t = 0 the
two shown particles form one cell. Upon division two new particles are introduced so that
at t = 4 there are two cells. Redrawn from [Ranft et al., 2010].

of different cells. Growth is modeled by the force

F g
ik = B

(rik + r0)2 r̂ik, (2.2)

with the distance between the two particles i and j of one cell rij = |rj − ri|, the cellular
expansion pressure constant r0, the growth coefficient B and the unit vector r̂ij = rij/rij .
The volume exclusion force

F v
ij = f0

(
R5
pp

r5
ij

− 1
)
r̂ij (2.3)

ensures impenetrability of the cells, where f0 is the repulsive cell-cell potential coefficient
and Rpp the range of pair potentials. The later defines the cut-off for all pair interactions.
As cells like to stick to each other, adhesion is represented by a simple constant force

F a
ij = −f1r̂ij (2.4)

acting along the connection of i and j with the adhesion strength f1.

Cell division and apoptosis

Cell death is implemented as a constant rate ka at which cells disappear. In order for a
cell to divide, it has to reach a certain critical size rct (i.e. |ri − rj | ≥ rct) upon which two
new particles are placed near the existing ones. These four particles then constitute the



2.1 Simulations 19

two new cells (see figure 2.1).

Energy dissipation and noise

Living cells are subjected to a lot of different fluctuations and are able to dissipate energy.
To account for these effects we use a dissipative particle dynamics (DPD) type thermostat,
which was originally introduced to simulate microscopic hydrodynamic phenomena [Hooger-
brugge & Koelman, 1992]. It consists of two parts, a random force

F r
ij = σωR(rij)ξij r̂ij (2.5)

and a dissipative force

F d
ij = −γωD(rij)(vij · r̂ij)r̂ij , (2.6)

where σ is the strength of the random force, γ is the strength of the dissipative force,
ξij = ξji is a symmetric Gaussian random variable with zero mean and unit variance,
vij = vj−vi is the relative velocity, and ωR/D(rij) are weight functions. The parameters of
both forces are not independent but, instead, are coupled through a fluctuation-dissipation
relation [Español & Warren, 1995]. This coupling leads to

ωD(rij) =
[
ωR(rij)

]2
(2.7)

and

σ2 = 2γkBT. (2.8)

Here, T has to be understood as an effective temperature, characterizing the magnitude of
fluctuations and not as an ambient temperature. It represents the random noise due to
the stochastic nature of many related biological processes. For example, the cytoskeleton
that determines cell shape is a dynamic structure, which exhibits a constant turnover of
material (parts of it are constantly created or removed). Another example would be the
variation of adhesion molecules at the surface of cells, which is also random in nature. The
parameters for intra- and intercellular dissipation and random fluctuations can be chosen
independently. In principle, this noise is active and, thus, does not necessarily satisfy the
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a) b)

Figure 2.2: Sketch of low and high cell density in a cell sheet. a) Low cell den-
sity, where cells are flat and spread over a large area. b) High cell density, where cells
become columnar and, thus, reduce their basal area, while retaining their volume.

fluctuation-dissipation relation. As a minimal model, however, we consider an effective
temperature as the simplest form of noise.
We define a standard parameter set as in [Montel et al., 2011, 2012]. All quantities

denoted with a ∗ are in terms of this standard parameter set (for example the growth force
strength B∗ = B/Bstd). See table A.1 for a comprehensive list of all parameters.

2.1.2 Modelling monolayered tissues

In order to adapt the above introduced simulation model to describe monolayered tissues
(e.g. epithelia) some considerations have to be made. More important than in 3d, one has
to differentiate between cell compressibility and cell deformability in 2d. While a high
compressibility mostly implies a high deformability, the reverse is not true. For example,
during the apical constriction of epithelial cells (i.e. a constriction at the top), their volume
was measured to be conserved by basal lengthening [Gelbart et al., 2012]. That means,
cells are highly deformable while not being compressible. In consequence, the cells in
monolayered sheets are able to stretch into the third dimension, when compressed (see
figure 2.2). To account for this effect, the volume exclusion force F v

ij is altered

F v
ij = f0

(
1
|rij |

− 1
)
r̂ij , (2.9)

thus, increasing the compressibility. It is, however, noteworthy that the depicted high
density regime can have other biological consequences, which we do not consider in the
model. For example, the larger contact area between the cells in a high density regime can
lead to the cessation of proliferation due to contact inhibition (see e.g. [Alberts, 2008]).
Another important difference between 3d cell aggregates and 2d cell sheets lies in the
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typical environment of cells. The natural environment of a cell in 3d is another cell and,
thus, background friction should not dominate the dynamics. Furthermore, the forces have
to be balanced within the tissue. In contrast, cell sheets have to adhere to a substrate
with which they heavily interact, leading to a considerable background friction. Therefore,
the background friction coefficient is increased to γbg = 10.

To achieve a greater diversity in cell sizes, cell division does not occur instantly as soon
as the threshold distance rct is reached. Instead, a rate kdiv is defined at which cells of a
size exceeding rct divide. Furthermore, the distance threshold is reduced to rct = 0.4. See
table A.2 for a comprehensive list of all model parameters and their standard values.
So far, the outlined model does only incorporate passive cell motion, caused by the

interaction between different cells. However, many cell types possess machineries for
directed motion. Even more, an aggregation of such motile cells demonstrates interesting
collective behavior, which can only arise due to some kind of cell-velocity coupling. One
such coupling is called the Vicsek model [Vicsek et al., 1995]. Therein, cells align their
motility direction with the local average velocity of their neighbors. While this does make
sense for higher organisms like birds, we are not aware of any known mechanism that would
enable cells to measure and average over the velocities of its neighbors. A biologically
more plausible coupling mechanism was proposed, where cells tend to align their motility
direction with their own velocity and, thus, depends on the local mechanical interactions
[Basan et al., 2013]. It was able to reproduce the experimentally observed phenomena
mentioned in the introduction.
The model defines three distinct cell states. Starting from a non-motile (i.e. passive)

state, cells turn motile with a rate kmot, upon which a random motility direction emi is
chosen. If this direction is aligned with the local velocity vi of the cell, it changes back
into a non-motile state by a rate k+. However, if emi is not aligned with vi, it turns
non-motile with a higher rate k− > k+ (see figure 2.3). An aligned state is defined through
the following relation

emi · vi ≥ 0. (2.10)

Motile cells are propelled with a constant force Fm
i = memi that is added in the cell force

calculation until they revert back to a non-motile state. Since the used dissipative particle
dynamics-like thermostat introduces high fluctuations in the instantaneous cell velocity vi,
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Figure 2.3: Sketch of the motility model. Cells are either non-motile, motile and
aligned or motile and not aligned and change their state with the rates kmot, k+ and k−.
The differentiation between aligned and unaligned motile cells is characterized by the rela-
tion between the motility force Fm and the local cell velocity v. Taken from [Basan et al.,
2013].

v refers to an averaged, effective cell velocity vm that is calculated as follows:

vm(t) =
t∫

0

vi(t′)− vm(t′)
τrel

dt′. (2.11)

Thus, the effective velocity relaxes exponentially back to the instantaneous velocity with a
relaxation time constant τrel.

2.1.3 Solving the equations of motion

Having defined all particle interactions, we can now calculate the forces in a system of
N particles for any given configuration {(r1,v1), (r2,v2), . . . , (rN ,vN )}, where ri and vi
refer to the position and velocity of particle i. The movement of each particle is governed
by Newtons second law of motion

F = ma = mr̈. (2.12)
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Thus, we have to solve N coupled differential equations. Since already the three-body
problem has no closed analytical solution, we have to revert to a numerical approach. This
is done extensively, for example, in molecular dynamics (MD) simulations, where molecular
systems are described on an atomistic scale. Each atom is represented by a point particle
that interacts with certain predefined potentials and its movement is governed by the
numerical integration of Newton’s equation of motion. A commonly used algorithm for
this kind of numerical integration is called velocity verlet. Its advantage over simpler
methods like, for example, the Euler method is its higher accuracy in the velocity without
additional computational effort and a better stability. The velocity verlet algorithm works
as follows. To calculate the positions ri and velocities vi at the next time step t+ ∆t, one
first computes the half step velocity at t+ 1/2∆t

vi(t+ 1/2∆t) = vi(t) + 1
2mF i(t)∆t. (2.13)

Then, the positions ri at t+ ∆t are updated

ri(t+ ∆t) = ri(t) + vi(t+ 1/2∆t)∆t. (2.14)

Afterwards, the new forces F i(t+ ∆t) are derived from the new positions ri(t+ ∆t). To
conclude one integration step, the velocity for the full time step is now calculated

vi(t+ ∆t) = vi(t+ 1/2∆t) + 1
2mF i(t+ ∆t)∆t. (2.15)

However, in dissipative particle dynamics (DPD) simulations, the dissipative forces
depend on the velocity and, thus, after an integration step, the velocities vi(t+ ∆t) are not
consistent with the forces F i(t+ ∆t). To correct for this inconsistency, a self-consistent
version of the velocity verlet algorithm has been developed (see e.g. [Nikunen et al., 2003,
Pagonabarraga et al., 1998]). This self-consistent version starts similarly to the original
velocity-verlet by the determination of a half step velocity

vi(t+ 1/2∆t) = vi(t) + 1
2m(F c

i∆t+ F d
i∆t+ F r

i

√
∆t). (2.16)

Here, F c
i is the sum of all forces on particle i, except the dissipative force F d

i and the
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random force F r
i . Next, the positions at t+ ∆t are updated as before

ri(t+ ∆t) = ri(t) + vi(t+ 1/2∆t)∆t. (2.17)

Now, the new forces F c
i , F d

i and F r
i at t+ ∆t are determined by the positions ri(t+ ∆t)

and the velocities vi(t+ 1/2∆t). Afterwards, the full step velocities are calculated as before

vi(t+ ∆t) = vi(t+ 1/2∆t)

+ 1
2m(F c

i (t+ ∆t)∆t+ F d
i (t+ ∆t)∆t+ F r

i (t+ ∆t)
√

∆t). (2.18)

To obtain consistency, the dissipative forces F d
i are reevaluated with the full step velocities

and the velocities change to

vi(t+ ∆t) = vi(t+ ∆t) + 1
2mF

d
i∆t. (2.19)

The last two steps of recalculation of the dissipative forces and correcting the velocities
can be repeated several times until the desired accuracy of consistency is achieved. We use
this self-consistent version of the velocity verlet algorithm with no additional refinement
steps.

2.1.4 Performance

The above algorithm spends most of the time in the force calculations since for a N
particle system N2 interactions have to be evaluated. However, all the involved forces
have a rather short range, which makes most of the calculations superfluous. This problem
is circumvented by the implementation of an efficient neighbor list through a boxing
method [Allen, 1987] and a verlet list [Verlet, 1967].

Boxing algorithm

The boxing algorithm works as follows. First, the simulation box is divided into smaller
boxes of size Rpp, the particle-particle interaction range. Then, all particles are sorted into
these boxes. Due to the choice of their size, we now know that particles in one box can
only interact with those in directly adjacent boxes, which drastically reduces the number
of distance calculations between particles that do not interact. The sorting of particles
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Figure 2.4: Parallelization scalability. a) The relative execution time T (n)/T (1) of a
model system running for a fixed number of integration steps as a function of the number
of processors n. Dashed lines correspond to a fit of Amdahl’s law. b) Same as in a) but as
a function of the inverse number of processors 1/n. Dashed lines correspond to same fits as
in a) .

into the small boxes is an operation that is linear in the number of particles N , thus,
leading to an overall performance gain.

Verlet list

Another approach to efficient particle interaction calculations uses a book-keeping method.
Every n integration steps, the distance between all particles is calculated. All particle
indices that are within a certain distance Rv of a particle are saved as its neighbors in
a list. This list is then used to calculate the particle interactions. Choosing a distance
Rv = Rpp + δ that is larger than the interaction range Rpp, the neighbor or verlet list
(named after Loupe Verlet) has to be updated only every n integration steps, where n > 1
has to be suitably chosen. It is also possible to keep track of all particle displacements since
the last verlet list calculation and only update the list, when the two largest displacements
exceed δ. To maximize performance, we used the boxing algorithm in the creation of the
verlet list, thus, combining the advantages of both methods. Furthermore, we keep track
of all particle displacements and only reevaluate the verlet list, when the above mentioned
criterion is met.
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20, 000 cells 40, 000 cells 100, 000 cells
B 0.09± 0.01 0.07± 0.01 0.13± 0.02
S 11.1± 1.2 14.3± 2.1 7.7± 1.2

Table 2.1: Fitting results of Amdahl’s law. The serial fraction coefficient B describes
the fraction of the simulation code that cannot run in parallel, while S refers to the accord-
ing maximum speedup. Extracted from a fit of equation (2.20) as seen in figure 2.4.

Parallelization

To further speed up the computation times and to make it feasible to simulate systems
of the order of 100, 000 particles, we made use of the broad availability of multi-core
computing machines. The simulation code was parallelized, facilitating the well known
OpenMP application programming interface that supports multi-platform shared memory
multiprocessing programming. To verify the scalability of the simulation code, we measured
the execution time of a tissue spheroid in steady state for a fixed set of integration steps
with 20, 000, 40, 000, and 100, 000 cells (i.e. twice as many particles), depending on the
number of processors used. According to Amdahl’s law, the execution time T (n) as a
function of the number of parallel processes n follows

T (n) = T (1)
[
B + 1

n
(1−B)

]
, (2.20)

where B refers to the serial fraction of the code. As seen in figure 2.4, this fits quite well
the simulation code timing and yields a theoretical speedup S = 1/B of roughly 10 (see
table 2.1).

2.1.5 Boundary conditions

We implemented several different boundary conditions to study a broad range of phenomena.
The most basic and well defined ones are the bounce-back boundary condition (BBC), the
reflective boundary condition (RBC), and the periodic boundary condition (PBC). The
later simply maps the coordinates of all particles back into the so called unit cell (see
figure 2.5a), which is useful to study bulk phenomena. BBCs and RBCs, on the other
hand, describe hard walls with no slip and infinite slip, respectively. In this context, no
slip (BBC) refers to zero velocity at the wall, which is ensured by changing the velocity
according to v′ = −v (see figure 2.5b). For the infinite slip (RBC), the component of the



2.1 Simulations 27

a) PBC b) BBC

v

v′

c) RBC

v

v′

n

d) Fixed cells

Figure 2.5: Sketch of different boundary conditions used in the simulations. a)
Periodic boundaries. Solid lines and closed circles represent the unit cell. Dashed lines
and open circles represent the periodic images of the unit cell. b) Bounce-back boundaries
reflect particles back on its incidental trajectory. c) Reflective boundaries change only
the velocity component perpendicular to the wall. d) Simulation snapshot of fixed cells
boundaries. Red particles are fixed with a harmonic potential and not allowed to divide nor
die. Normal cells are shown in cyan and the simulation box in blue.

velocity parallel to the normal of the wall n is changed according to v′ = v−2(n ·v)n (see
figure 2.5c). Instead of the aforementioned types, it is also possible to use open boundaries,
which puts no spatial constraints on the particle movement. We can independently choose
a boundary condition for each spatial dimension.
Apart from the aforementioned, we implemented another type of boundaries, which

we call fixed cells. Instead of hard walls, we put a layer of cells at each end of a box in
one direction (see figure 2.5d) and employ periodic boundaries in the other two spatial
directions. The particles of the two layers are each subjected to a strong harmonic potential,
effectively freezing them at their current position. Furthermore, these cells are neither
allowed to divide nor die but otherwise interact in the same way as normal cells. A tissue
seeded at the bottom of such a set-up, adheres to the layer of fixed cells, and starts to
grow until it completely fills the compartment. The fixed cells create boundaries that
resemble the bulk of a tissue very similar to the periodic boundaries. However, in contrast
to PBCs, one can sum over the forces acting on the fixed cells and therefrom determine
the stress state in the bulk.

2.1.6 Reduced units

In physics in general, problems can often be simplified and parameterized by dedimen-
sionalization. This is especially useful in computer simulations because the results of such
dimensionless simulation runs can be scaled to a whole class of systems described by the
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a) b)

Figure 2.6: Simulation snapshots of different methods to impose stress. a)
Snapshot of a tissue in a box with full periodic boundaries. The box size is dynamically
rescaled to ensure a constant pressure. b) Snapshot of a cut through a tissue spheroid
(cyan) embedded in a gas of smaller particles (red) that only interact via volume exclusion.
The simulation box consists of hard walls in all directions.

same model. Furthermore, the simulations then calculate numerical values on the order of
unity, which is always desirable due to the finite accuracy of computers.
However, there is another problem involved. The feasibility of computer simulations

often depend on the contraction of time and length scales [Padding & Louis, 2006]. The
time scale of diffusion of a colloid in water, to use the example of Padding & Louis, is
several orders of magnitude larger than the typical time of the movement of individual
water molecules. Considering all involved processes span up to 15 orders of magnitude.
Thus, a coarse-graining or compaction of time (and length) is necessary. This, on the
other hand, means that not all involved quantities can be compared simultaneously with
a physical system of interest. However, carefully choosing characteristic scales to relate
simulations to experiments still leads to a meaningful comparison. Unless explicit units
are given, the simulation results presented in this thesis are in terms of simulation units.

2.1.7 Constant pressure ensemble

In order to study the bulk behavior of tissue growth under constant pressure, we imple-
mented a method we call constant pressure ensemble as outlined in [Allen, 1987]. This
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method imposes a defined pressure P i on a system with full periodic boundaries by
rescaling the volume of the simulation box by a factor

χ = 1− βT
∆t
tP

(P i − P ), (2.21)

where βT is the isothermal compressibility, tP is the relaxation time the system needs
to adapt to the imposed pressure P i, ∆t is the simulation time step and P is the
current pressure inside the simulation box. In this context, we define this pressure as
P = −1/3 Trσαβ. Furthermore, the center of mass positions of all cells are rescaled by
3
√
χ. As there is in principal no constraint on P i, it is possible to simulate systems under

tension (P i < 0) as well as compression. A snapshot of such a simulation is shown in
figure 2.6a.

2.1.8 Gas particle method

Another possibility of exerting pressure on growing tissues in our simulation closely
resembles an established experimental method [Montel et al., 2011]. This method utilizes
the fact that a big polymer (in their case Dextran) is not able to penetrate either the cells
itself nor a growing tissue spheroid as a whole. Therefore, the Dextran creates a density
gradient, which results in an osmotic pressure exerted onto the first few cell layers of the
tissue spheroid. This method can be mimicked in our simulations. Simple particles assume
the role of Dextran that only interact through a volume exclusion force. This force is
similar to the above defined, only differing in the choice of the prefactor f0. We chose
fgas0 = 0.1. The actual simulations consists of a large simulation box with hard walls,
into which we put a tissue spheroid surrounded by gas particles. The pressure exerted
by these particles onto the spheroid is determined by their number, their size and the
accessible volume. Since the gas particles are reflected by the hard walls upon encounter,
the momentum transfer ∑i ∆pi during a small time interval ∆t can be measured and
therefrom the exerted pressure P = ∑

i ∆pi/∆t is calculated. A simulation snapshot of a
tissue spheroid with gas particles is shown in figure 2.6b.

2.1.9 Stress measurements

Stress measurement in MD is a topic of controversial debate. There are several proposed
methods, which make different assumptions. At this point, we refer the interested reader
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to [Admal & Tadmor, 2010] for a comprehensive review and rigorous derivation of stress
measurements in MD simulations.
An acknowledged way of obtaining the pressure uses the momentum transfer on hard

walls, which is only applicable in systems with either BBCs or RBCs and requires a constant
interaction of the simulated particles with the walls. Thus, only extensional systems
produce a measurable quantity. To circumvent this shortcoming, we implemented the
aforementioned fixed cells boundaries, which can also measure tensional stresses. The net
force acting on the fixed cells must be compensated by their harmonic potentials, keeping
them in place. The sum over all the forces of the harmonic potentials then equal the
overall principal tension or compression exerted by the tissue.
However, all these methods only measure at the boundary. In order to get a detailed

description of the full stress tensor in the bulk, we implemented a method very similar to
the one proposed by Tsai [1979]. The stress σPαβ at any point P in our simulation box is
calculated by measuring the forces and the momentum transfer during a short time ∆t
through three perpendicular but otherwise arbitrary planes that intersect in P :

σPαβ = − 1
A


∑

i

miv
i
β

∆t +
∑

i,j

F ijβ


 , (2.22)

where ∑i sums over all particles i that pass through the plane with area A, ∑i,j sums
over all pair interactions that act through A, mi is the mass of particle i, viβ is the βth
component of the velocity of particle i and F ijβ is the βth component of the force acting
on i due to j through A with the convention that F is negative for attractive forces and
positive for repulsive forces. Now consider a small volume δV = δl3. The average σδVαβ over
all planes x-y, x-z and y-z with area δA = δl2 that lie within δV then reads

σδVαβ = − 1
δV


∑

i

miv
i
β∆riα
∆t +

∑

i,j

rijα F
ij
β


 , (2.23)

with rijα = rjα − riα the αth component of the distance between i and j that lies within the
volume δV , ∆riα the αth component of the part of the distance i moved during ∆t that
lies within δV .

In the case of homogeneous bulk simulations with full periodic boundaries, equation (2.23)
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simplifies to the Virial stress

σαβ = − 1
V


∑

i

miv
i
βv

i
α +

∑

i,j

rijα F
ij
β


 , (2.24)

by setting δV = V , where V = LxLyLz is the simulation box volume.

Stress measurements in motility simulations

In principle, the local stress in simulations of monolayered motile tissues can be measured
with the method outlined above. However, force balance requires

∇ · (σ · eα) + fextα = 0, (2.25)

where σ is the full stress tensor and fextα is the force density in α direction per unit
volume and mass acting on the system (the substrate/motility force). In the case of two
dimensions, integration over x and averaging over y yields

x∫

x0

∂x′σxx(x′) dx′ +
x∫

x0

∂yσyx(x′) dx′ +
x∫

x0

fextx (x′) dx′ = 0 (2.26)

σxx(x)− σxx(x0) +
x∫

x0

∂yσyx(x′) dx′ +
x∫

x0

fextx (x′) dx′ = 0 (2.27)

〈σxx(x)〉y = −
x∫

x0

〈fextx (x′)〉y dx′ + 〈σxx(x0)〉y. (2.28)

We assumed that 〈∫ xx0
∂yσyx(x′) dx′〉y = 0 since all the motility related simulations presented

in this thesis are symmetric along y. Thus, the stress in x direction can be easily determined
by the integration of the motility and background forces.

2.1.10 Density

In the following, we define the density ρ as the number density, calculated from the cell
positions xi. Hence, for any arbitrary volume V , the density reads

ρ =
∫
V δ(x− xi) dx∫

V dx . (2.29)
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In the simulations, the cell position refers to the center of mass of the particles constituting
a cell.

2.1.11 Cell division

We define the division axis d of a proliferating cell via the positions of its two daughters
x1 and x2 through

d = x1 − x2
|x1 − x2|

. (2.30)

and the position xd as

xd = x1 + x2
2 . (2.31)

The division rate kd, thus, becomes the number of divisions nd occurring during the time
∆t over the total number of cells N :

kd = nd
N∆t . (2.32)

Considering the number of cells N instead of the density ρ, the continuity equation then
reads

∂tN +∇ · (Nv) = (kd − ka)N (2.33)

⇒∂tN

N
= kd − ka −

∇ · (Nv)
N

. (2.34)

2.1.12 Tissue competition set-up

Fixed boundaries

In order to study the interface dynamics of competing tissues, we utilize the same simulation
method introduced in section 2.1.1 with a slightly different parameter set. Two tissues
are placed in a rectangular box with BBCs in x and PBCs in y direction (see figure 2.7).
Furthermore, we confine the cell movement to two dimensions. Both tissues share basically
the same parameter set, defined in table A.1, with a few alterations. The adhesion force
is reduced to f1 = 5, while the background friction is increased to γbg = 10. To get
different bulk homeostatic pressures, the growth force strength B is varied. We define the
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Figure 2.7: Fixed boundaries tissue competition simulation set-up. Three Snap-
shots at different time ti of a simulation with Ly = 20 and Lx = 160. At x = 0 and x = Lx
BBCs are used, while at y = 0 and y = Ly PBCs are used.

standard values for the tissues A and B as BA = 50 and BB = 60. Since the division rate
increases with higher B, the intracell friction coefficient was also changed to γc = 2B so
that different growth forces still result in roughly the same division rate for unconstrained
growth.

Treadmilling

We mentioned in the introduction that we want to study, among other things, the scaling
behavior of the interface of competing tissues. This requires long simulation runs, to
ensure that the saturated interface width regime has been reached. However, since one
tissue is constantly pushing the other aside, the finite size of the simulation box also
implies a maximum simulation time length. Especially for larger system sizes, the fixed
boundaries approach is simply not feasible.
To evade this problem, we designed a set-up with a comoving simulation box, we call

treadmilling. In such a set-up, the tissues close to the interface have to feel essentially as
in bulk and reasonably far away from the interface, they have to reach their homeostatic
pressure. Again, two tissues with different homeostatic pressure are put into the same
simulation box as before. All cells, entering a small region near both hard walls, are taken
out of the simulation (see figure 2.8). While the tissue with the higher PH continuously
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Figure 2.8: Treadmilling simulation set-up. Snapshot of a simulation with Ly = 100
and Lx = 140. The background friction γbg is varied according to the x position as shown
in the upper plot. All cells that move into the zones colored lightly red are taken out of the
simulation.

pushes the other aside, the interface is kept at Lx/2 by displacing all cells every 1000
integration steps by ∆x = Lx/2 − xint with the interface position xint as defined in
section 3.2.2. Thus, cells of tissue B are constantly removed at x = 0 and the additional
free space at x = Lx is quickly filled by tissue A. In order to decrease flux contributions,
we increase the background friction near both death zones continuously from γbg = 10 to
γbg = 100, depending on the x position:

γbg(x) = A

1 + exp
(
x−x0
ζ

) +B. (2.35)

The coefficients A and B are determined by the requirement that γbg(x� x0) = 10 and
γbg(x � x0) = 100 for x0 = 5 and vice versa for x0 = Lx − 5. We chose ζ = 2 (see
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figure 2.8).
Thus, for all Ly a steady state is reached eventually since this simulation set-up can run

indefinitely. Furthermore, a fixed and rather small box size Lx can be chosen that covers
a large range of different Ly. The equivalence of the treadmilling and the fixed boundaries
set-up is demonstrated in section 3.2.3.

2.2 Theory

2.2.1 Tissue growth of spheroids

It was already mentioned in the introduction that the growth rate k of in vitro experiments
of growing tissue spheroids was found to obey a simple two rate model

k(r) =




kb for r ≤ R− λ
kb + δks for r > R− λ

(2.36)

with a bulk growth rate kb and a surface growth increment δks in a small region of thickness
λ for a tissue spheroid of size R. For a constant density ρ, the change in spheroid volume
∂tV (t) reads

∂tV (t) =
∫

V

k(r) dr. (2.37)

Steady state size in 1d

Restricting equation (2.37) to one dimension yields

∂tV (t) =
∫

S

k(z) dz (2.38)

=
R−λ∫

0

kb dz +
R∫

R−λ

(kb + δks) dz (2.39)

= Rkb + δksλ. (2.40)
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A stable steady state (∂tV = 0) with a size

R1d
ss = −λδks

kb
. (2.41)

only arise for kb < 0 and kb + δks > 0.

Steady state size in 3d

For a radially symmetric spheroid in three dimensions the change in volume is described
by

∂tV = 4π
R−λ∫

0

kbr
2 dr + 4π

R∫

R−λ

(kb + δks)r2 dr (2.42)

= 4πkb
R∫

0

r2 dr + 4πδks
R∫

R−λ

r2 dr (2.43)

= 4
3πR

3kb + 4
3πδks(3R

2λ− 3Rλ2 + λ3). (2.44)

For a small surface growth region thickness λ� R, this simplifies to

∂tV = 4
3πR

3kb + 4πR2λδks. (2.45)

Again, a stable steady state (∂tV = 0) can only arise if kb < 0 and kb + δks > 0. The
associated steady state size Rss is given by

Rss = −3λδks
kb

. (2.46)

An unstable steady state exists for kb > 0 and kb + δks < 0 but any perturbation would
either result in infinite growth or complete death.

Without an external pressure, equation (1.2), the expansion of the growth rate in terms
of the pressure difference up to linear order, and equation (2.46) relate the steady state
size Rss to the homeostatic pressure PH via

Rss = −3λδks
κPH

, (2.47)
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which shows a directly inverse dependence of the steady state radius on the homeostatic
pressure.

2.2.2 Characterizing flow in tissue spheroids

In the context of the two rate model, stable steady state solutions require a negative bulk
growth rate (kb < 0) and a positive surface growth rate (kb+ δks > 0). Thus, a flux of cells
has to balance the surface excess and the apoptotic core to maintain a stable spheroid.
The velocity field v resulting from the anisotropic net growth rate has to obey

∇ · v = k (2.48)

and follows from equation (1.1) under the assumption of a constant cell density ρ. It can
be understood as a generalized incompressibility condition.

Velocity profile in 1d

Using the same definition of k as before, equation (2.48) yields in one dimension

v(z) =




kbz for z ≤ R− λ
(kb + δks)z − δks(R− λ) for z > R− λ.

(2.49)

The integration constants were determined by the boundary condition v(z = 0) = 0 and
the constraint of continuity of v at z = R − λ. The velocity v(z = R) describes the
expansion velocity.

Velocity profile in 3d

Due to spherical symmetry in the case of three dimensions, equation (2.48) simplifies to

∂r(r2v(r)) = r2k(r). (2.50)

Integrating over r results in

v(r) = 1
r2

r∫

0

r′2k(r′) dr′ + A

r2 . (2.51)
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The boundary condition v(0) = 0 requires A = 0. Using again the same two rate growth
model then yields

v(r) =




r−2 ∫ r

0 r
′2kb dr′ for r ≤ R− λ

r−2
(∫ R−λ

0 r′2kb dr′ +
∫ r
R−λ r

′2(kb + δks)
)

for R− λ < r ≤ R
(2.52)

=





1
3kbr for r ≤ R− λ
1
3(kb + δks)r − 1

3δks
(R−λ)3

r2 for R− λ < r ≤ R.
(2.53)

Thus, a similar linear regime is seen in the bulk for 3d compared to 1d but with a different
slope. Near the surface, however, the 3d velocity profile has an additional term that scales
with 1/r2. Measuring this velocity profile allows for an independent estimate of kb and
δks.

2.2.3 Simple tissue competition

In the case of two incompressible tissues A and B in a finite sized compartment with
the same homeostatic density ρH and negligible elastic and viscous forces, the resulting
dynamics can be expressed by simple number balance. Due to the finite size and incom-
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Figure 2.9: Tissue competition. Simulation results of two competing tissues in a box
using the simulation method introduced in section 2.1.1. Here, the background friction
is set to zero. a) Time evolution of the cell fractions ϕA/B and a fit of equation (2.60).
Note that although viscous forces are not negligible in the used simulations, the behavior is
still captured very well. b) Time evolution of the pressure P (t) inside the box and a fit of
equation (2.61). Note again the good agreement.
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pressibility, the maximum number of cells Ntot is fixed over time and, thus, the growth
rates kA/B of the tissues A and B are coupled through

∂tNtot = 0 = kANA + kBNB, (2.54)

where NA is the number of cells of type A (and NB of type B). Considering only small
differences PA/BH − P in equation (1.2), the pressure dependent growth rates are described
by

kA/B = κA/B(PA/BH − P ). (2.55)

Thus, equation (2.54) can be solved for the pressure P :

P = κAPAHNA + κBPBHNB

κANA + κBNB
. (2.56)

Assuming equal growth rate coefficients κA = κB = κ, the change in number of tissue A
yields

kANA = NAκ

(
PAH −

PAHNA + PBHNB

NA +NB

)
(2.57)

= κ
NANB

NA +NB
∆PH , (2.58)

which only depends on the homeostatic pressure difference ∆PH = PAH − PBH . Defining
ϕA = NA/(NA +NB) as the fraction of cells of type A, this results in a logistic growth

∂tϕA = ϕAk
A = κ∆PϕA(1− ϕA). (2.59)

The time evolution of the cell fraction is, thus, described by

ϕA(t) = 1
1 + exp [κ∆P (t− t0)] (2.60)

and the time evolution of the pressure by

P (t) = PAHϕA(t) + PBH (1− ϕ(t)). (2.61)
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However, these results assume a homogeneous stress distribution and negligible background
friction, which is unrealistic for real tissues.

2.2.4 Quantifying order

Throughout this thesis but especially in section 3.3 we want to quantify the alignment
of different axes, for example the cell division axis and the x axis. In the field of liquid
crystals, the order tensor

Qαβ = 1
N

N∑

i=1

(3
2u

i
αu

i
β −

1
2δαβ

)
(2.62)

is commonly used to characterize the order of N unit vectors u. This symmetric 3x3
matrix is then diagonalized and the eigenvector n to its greatest eigenvalue S is called
principal director, while the order parameter

S = nᵀQn (2.63)

characterizes the order along this axis. In general, the order along any arbitrary unit axis
a = (ax, ay, az) (|a| = 1) is defined as

Sua = aᵀQa. (2.64)
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Figure 2.10: Visualization of the order parameter in 2d. Visualization of the order
parameter Sdx in 2d. Each box contains 30 rods that result in the order parameter written
below. Redrawn from [Marel et al., 2014].

Using the definition of Q, this simplifies to

Sua = (ax, ay, az)




Qxx Qxy Qxz

Qyx Qyy Qyz

Qzx Qzy Qzz







ax

ay

az


 (2.65)

= a2
xQxx + axayQxy + axazQxz + ayaxQyx + a2

yQyy + ayazQyz+

azaxQzx + azayQzy + a2
zQzz (2.66)

= 3
2N

N∑

i=1

(
a2
xu

i
x

2 + a2
yu

i
y

2 + a2
zu
i
z

2 + 2axayuixuiy + 2axazuixuiz + 2ayazuiyuiz
)

− 1
2
(
a2
x + a2

y + a2
z

)
(2.67)

= 3
2〈(axu

i
x + ayu

i
y + azu

i
z)2〉 − 1

2 (2.68)

= 3
2〈(a · u

i)2〉 − 1
2 = 3

2〈cos2 θi〉 − 1
2 , (2.69)

where θi denotes the angle between a and ui and the sum 1/N∑
i was substituted by 〈〉.

Thus, Sua = 1 refers to a state of perfect alignment, while for Sua = −1/2 all ui lie in the
plane with the normal a. Sua = 0 corresponds to perfect isotropy.
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In two dimensions, however, the definition of Q is slightly different

Qαβ = 1
N

N∑

i=1

(
2uiαuiβ − δαβ

)
. (2.70)

Thus in a 2d system, the order parameter varies between 1 (perfect alignment) and
−1 (perfectly perpendicular alignment), while 0 still corresponds to an isotropic state
(see figure 2.10).

2.2.5 Interfacial tension

A surface or interface tension γs is defined mechanically through a force acting along
an interface. Defining P⊥ as the pressure perpendicular to this interface and P‖ as the
pressure parallel to this interface, γs is determined by (see e.g. [Navascues, 1979])

γs =
∞∫

−∞
(P⊥(x)− P‖(x)) dx, (2.71)

where x refers to the coordinate perpendicular to the interface.

2.2.6 Velocity gradient, strain rate and stress tensor

The velocity gradient tensor L is defined for a velocity field v as

Lαβ = ∂αvβ (2.72)

and, thus, the velocity gradient ∂ava along any arbitrary axis a reads

∂ava = aᵀLa. (2.73)

It can be decomposed into a symmetric part E and an antisymmetric part W

L = 1
2 (L + Lᵀ)
︸ ︷︷ ︸

E

+ 1
2 (L− Lᵀ)
︸ ︷︷ ︸

W

. (2.74)
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The symmetric part

Eαβ = 1
2

(
∂vα
∂β

+ ∂vβ
∂α

)
(2.75)

is called strain rate tensor and describes the rate of change of the deformation of a material.
The antisymmetric part W is called spin tensor as it is directly connected to the rotation
of the velocity field.
In fluids (and most often in complex fluids as well), the stress tensor is directly pro-

portional to the strain rate tensor (see e.g. [Landau & Lifshitz, 1987]). Considering only
two dimensions, its diagonalization yields two eigenvalues λ1 and λ2, where λ1 ≥ λ2

by convention. We call the eigenvector corresponding to the largest eigenvalue λ. By
definition of Eαβ, the sum of both eigenvalues equals the divergence of v. We define the
difference p = λ1 − λ2 as the dipole strength, due to the similarity of a growing cell to
a force dipole. It quantifies the asymmetry of flow gradients and gives an idea of the
asymmetry of stress.

Similarly to the definition of p, one can also evaluate the difference in velocity gradients
along any two perpendicular but otherwise arbitrary axes a‖ and a⊥ using equation (2.73):

∂‖v‖ − ∂⊥v⊥ = aᵀ‖La‖ − a
ᵀ
⊥La⊥ = aᵀ‖Ea‖ − a

ᵀ
⊥Ea⊥. (2.76)

To illustrate its meaning, let us consider a shear-free incompressible Newtonian fluid in 2d.
Its steady state velocity field under a constant stretch rate ε̇ > 0 can be written as

v(x, y) =
(
−ε̇x
ε̇y

)
(2.77)

and is depicted in figure 2.11. Choosing a‖ = ex and a⊥ = ey, it follows that

∂‖v‖ − ∂⊥v⊥ = ∂xvx − ∂yvy = −2ε̇. (2.78)

The later shows a connection between the stretch rate and the difference in derivatives.
Naively speaking, it quantifies the asymmetry in the stretch rates along x and along y.
The velocity gradient reflects the change in velocity with space. It is defined as

a continuum quantity through the partial derivatives of a velocity field v. Since the
simulations yield only a finite set of points {xi} with velocities {vi}, the velocity gradient
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y
x

Figure 2.11: Velocity field of steady state planar elongational flow. The velocity
field of a steady state planar elongational flow. Modulus of the velocity is color coded (high
velocity shown in blue, low velocity in red). Streamlines are displayed in green.

has to be discretized. In order to incorporate as much information into the velocity gradient
calculation as possible in simulations as well as in the comparison with experiments, an
unconventional way of gradient determination was devised. Being restricted to two
dimensions, the individual components of the velocity vector

v(x, y) =
(
vx(x, y)
vy(x, y)

)
(2.79)

can be seen as surfaces in R3. In analogy to fitting a tangent to a function in 2d to
determine the local gradient, a plane is fitted to vx and vy, respectively, from which the
gradient ∂αvβ can be extracted.
For a given set of points {xi, yi, zi}Ni=1, A, B and C are determined so that the plane

z = Ax+By + C (2.80)

minimizes

E(A,B,C) =
N∑

i=1
[(Axi +Byi + C)− zi]2 . (2.81)
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Being a nonnegative, hyperparaboloid function, its minimum satisfies



0
0
0


 = ∇E(A,B,C) = 2

N∑

i=1
[(Axi +Byi + C)− zi]




xi

yi

1


 . (2.82)

Note that the gradient is taken with respect to (A,B,C) and not (x, y, z). The resulting
system of three linear equations in A, B and C becomes




∑N
i=1 x

2
i

∑N
i=1 xiyi

∑N
i=1 xi∑N

i=1 xiyi
∑N
i=1 y

2
i

∑N
i=1 yi∑N

i=1 xi
∑N
i=1 yi N


+




A

B

C


 =




∑N
i=1 xizi∑N
i=1 yizi∑N
i=1 zi


 . (2.83)

To solve this system, a LU decomposition approach was chosen that is already implemented
in the GNU Scientific Library [Galassi, 2009]. However, there is a large number of
algorithms readily available in the standard literature for linear algebra that could be used
instead.

Identifying z with vx, the resulting A then corresponds to ∂xvx, while B corresponds to
∂yvx. Repeating the same method for vy yields all partial derivatives and, therefore, the
full velocity gradient tensor. The primary advantage of this approach lies in the freedom
of choice of the set of points. For example, one can define a ring with the inner radius r1

of the order of one cell size and the outer radius r2 of the order of three cell sizes. Thus,
the velocity gradient of the nearest neighbors can be calculated without considering the
movement of the cell itself.





3 Results

3.1 Negative homeostatic pressure

In the original framework of homeostatic pressure theory as outlined in section 1.4.1,
a uniform growth rate was assumed. However, experiments have shown that growth
of tissues are highly dominated by surface effects (see section 1.4.2), which means the
homeostatic pressure of a tissue in bulk differs considerably from the one measured with
a finite surface to volume ratio. We will, thus, refer to this homeostatic pressure in the
bulk simply as the homeostatic pressure in the remainder of this thesis. It has not been
measured experimentally yet but the first attempts of extrapolation suggested that it
might actually be negative [Montel et al., 2012].
In this section, we explore the possibility and the consequences of tissue growth with

a negative homeostatic pressure. Starting from a theoretical point of view, we use our
simulation model to directly evaluate the homeostatic pressure. Its dependence on different
model parameters and its connection to the steady state size is elucidated. Subsequently,
we analyze the growth behavior of tissues under mechanical stress and compare our results
to the experimental data of several different cell lines. Finally, we estimate the homeostatic
pressure of these cell lines by a linear extrapolation and a direct fit to the simulation
data. Furthermore, we compare the results of 3d and quasi 1d systems and identify an
interesting new state: tensile membranes. Most of the results presented here have already
been published in [Podewitz et al., 2015].

3.1.1 Homeostatic pressure dependence on model parameters

The concept of a negative homeostatic pressure is best understood by a simple gedanken-
experiment, similar to the one given in the introduction. Consider the growth of a tissue
inside a box with sticky walls and a movable (and sticky) piston, connected to a spring
(see figure 3.1). Cells are seeded at the bottom and start to grow until the compartment

47
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Figure 3.1: Visualization of a negative homeostatic pressure. Snapshots of cell
growth in a box with a sticky surface at the bottom and with (left) and without (right)
sticky piston at the top. Both layers (purple) consist of cells fixed by a strong harmonic
potential. These cells cannot divide nor die but otherwise behave like normal cells. The
piston is movable and only fixed by a weak harmonic potential depicted by the spring. Cells
are color coded according to their age (red corresponds to recently divided cells, while
blue cells did not divide for a certain amount of time). The force exerted by the spring is
sketched below. Note that initially both set-ups show cell divisions to take place mostly
near the free surface. This free surface is lost in the left set-up, when the tissue attaches to
the sticky piston. Redrawn from [Podewitz et al., 2015].

is filled. Upon reaching the piston, however, the free surface is lost due to the adhesion
between the cells and the piston, leaving only the on average apoptotic bulk. The overall
number of cells decrease and due to the adhesion, the piston is pulled down, stretching
the spring. The resulting tension increases the division rate in the bulk until a new stable
steady state under tension is reached. Without the piston, another steady state emerges,
where the apoptotic core is balanced by a continuous influx of cells from the proliferating
surface.
Intuitively, one could think that this steady state under tension is unstable as a cut

would release the tension. However, performing a virtual laser cut in the same system as
above shows another behavior. The cut leads to a certain recoil but also creates a new free
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Figure 3.2: Virtual 3d laser cut experiment. Snapshots of cell growth in a box with
a sticky surface at the bottom and a sticky piston at the top. Both layers (purple) consist
of cells fixed by a strong harmonic potential. These cells cannot divide nor die but other-
wise behave like normal cells. The piston is movable and only fixed by a weak harmonic
potential depicted by the spring. Cells are color coded according to their age (red corre-
sponds to recently divided cells, while blue cells did not divide for a certain amount of
time). The tissue grows, fills the compartment and pulls down the piston, until a steady
state under tension is reached. Upon laser exposure (visualized by the red box), cells are
taken out of the simulation and the piston relaxes back to its equilibrium position. The
free surface increases the growth rate of the tissue until the wound is closed and the same
steady state under tension emerges again. Redrawn from [Podewitz et al., 2015].

surface. At this surface, the division rate increases and the tissue starts to grow until the
wound is closed. Eventually the same steady state under tension is established as before
(see figure 3.2).

To study the dependence of the homeostatic pressure on different model parameters, we
used PBCs and measured the stress directly via the virial (see section 2.1.9). We varied
the growth force strength B∗, the adhesion strength f∗1 , the compressibility K∗ and the
apoptosis rate k∗a, around their standard parameter values. We chose these quantities
since they have straight forward analoga in real tissues and can, in principle, be measured
experimentally [Gavrieli, 1992, Gonzalez-Rodriguez et al., 2013, Lekka et al., 1999, Minc
et al., 2009].
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Figure 3.3: Homeostatic pressure dependence on growth force and adhesion
strength. a) Homeostatic pressure P bH as a function of adhesion strength f∗

1 for different
growth forces B∗. Solid lines represent linear fits and dashed lines correspond to critical
adhesion strength f∗

c , where P bH changes sign. Redrawn from [Podewitz et al., 2015]. b)
Homeostatic pressure P bH as a function of growth force B∗ for different adhesion strengths
f∗

1 . Solid lines represent linear fits and dashed lines correspond to critical growth force B∗
c ,

where P bH changes sign. c) 3d plot of the data of a) and b) . All points (red circles) are
color coded inside according to their P bH . The plane is a fit of P bH(f∗

1 , B
∗) = a0 +a1B

∗ +a2f
∗
1

and also color coded in the same way. All eror bars are SD.
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Adhesion and Growth force

We observe that the homeostatic pressure is linear in the adhesion strength as well as the
growth force strength (see figure 3.3a,b). Expanding P bH in B∗ and f∗1 around 1 up to
terms of linear order yields

P bH(B∗, f∗1 ) = a0 + a1(B∗ − 1) + a2(f∗1 − 1). (3.1)

A fit of this function to the simulation data shows a good agreement (see figure 3.3c) and
results in the coefficients a0 = −5.89, a1 = 60.65 and a2 = −132.74 with a reduced sum of
squared residuals χ2

red = 1.8 (for details on the plane fitting procedure see section 2.2.6).

Apoptosis rate

Surprisingly, the homeostatic pressure is mostly independent of the apoptosis rate over
a wide range as shown in figure 3.4a. The only significant changes in P bH occur for very
high apoptosis rates and only for those growth forces with a mostly positive P bH . While
we would expect an overall decrease in the homeostatic pressure with increasing k∗a, all
curves seem to share a plateau or local minimum that roughly resides between 0.1 and 1.
This indicates the more complex dependence of the homeostatic pressure on the apoptosis
rate.

Compressibility

In the simulations, compressibility is equivalent to 1/f∗0 , the inverse volume exclusion
prefactor, if the ratio f∗1 /f∗0 with the adhesion strength f∗1 is kept constant. Thus, the
equilibrium length stays the same, while the potential shape changes. The tissue gets less
compressible for a steeper potential and more compressible for a more shallow potential.
Hence, defining K∗ = 1/f∗0 gives a measure for the compressibility. Note, however, that
K∗ is not the real compressibility of our tissue. We observe that the homeostatic pressure
increases with the compressibility (see figure 3.4b), meaning a softer tissue has a higher
bulk homoestatic pressure. As a consequence, in the competition of two tissues that are
identical except for their compressibility, the softer one would win against the more rigid
one.
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Figure 3.4: Homeostatic pressure dependence on different model parameters.
a) Homeostatic pressure P bH as a function of apoptosis rate ka for different growth forces
B∗. b) Homeostatic pressure P bH as a function of compressibility K∗ for different growth
forces B∗. Solid lines represent fits of P bH(K∗) = a0(K∗ −K∗

0 )2 + a1. All error bars are SD.
Redrawn from [Podewitz et al., 2015].

3.1.2 Spheroids

Figure 3.3 shows that for every given B∗ there exists a critical value f∗c (and B∗c for any
given f∗1 ), which marks the transition between P bH > 0 and P bH < 0. Recalling the growth
rate dependence kb on the pressure P

kb(P ) = κ(P bH − P ), (3.2)

at P = 0, a negative homeostatic pressure requires a negative bulk growth rate, which, in
turn, is necessary for a stable steady state, according to

∂tV = 4
3πR

3kb + 4πR2λδks. (3.3)

On the other hand, a positive homeostatic pressure requires a positive bulk growth rate
(at P = 0) and, therefore, f∗c and B∗c characterize the transition between steady state and
infinite growth.
In the following, we want to check the dependence of the steady state size on the

homeostatic pressure P bH and the adhesion strength f∗1 . Plugging equation (3.1), the linear
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Figure 3.5: Steady state radius as a function of adhesion strength and inverse
homeostatic pressue. a) Steady state radius Rss as a function of the negative inverse
homeostatic pressure −1/P bH for different growth forces B∗. Solid lines represent linear fits.
b) Steady state radius Rss as a function of the adhesion strength f∗

1 for different growth
force strengths B∗. The solid lines represent fits of Rss = α/(f∗

1 − f∗
c ), while the dashed lines

correspond to the different critical adhesion strengths f∗
c , where Rss diverges. All error bars

represent the interface width ζ. Redrawn from [Podewitz et al., 2015].

expansion of P bH in B∗ and f∗1 , into equation (2.47) (the steady state size Rss), we get

Rss = 1
a0 + a1(B∗ − 1) + a2(f∗1 − 1) = a

f∗1 − f∗c
. (3.4)

Thus, the steady state size should be inversely proportional to the adhesion strength for a
given B∗. Indeed, the measurement of the steady state sizes Rss for the same parameter
range used above shows the expected (P bH)−1 and (f∗1 − f∗c )−1 behavior (see figure 3.5a,b).

To measure the steady state size, we performed simulations of growing tissue spheroids
with open boundaries (see figure 3.6a). The shown simulation snapshot also indicates the
strong surface fluctuations, which makes the precise definition of a radius complicated.
Averaging the density over time scales longer than these fluctuation times, however, results
in a reproducible profile as shown in figure 3.6b. We observe a constant density in the
bulk and a continuous drop at the front. We define the steady state radius Rss as the
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Figure 3.6: Snapshot of tissue spheroid in steady state and its radial density
profile. a) Simulation snapshot of a tissue spheroid in steady state. Note that the actual
shape deviates from a perfect spheroid. b) The averaged density profile ρ as a function of
the radial distance to the center of mass r of a tissue spheroid in steady state. The solid
red line represents a fit of an error function (see main text for details). The resulting pa-
rameters ρb, Rss and ζ are shown. All eror bars are SD.

inflection point of the density profile

ρ(r) = ρb
2

[
1 + erf

(
Rss − r√

2ζ

)]
, (3.5)

where ρb is the bulk density and ζ is the interface width. Here, density has to be understood
as an effective density, where the low values near the surface represent irregularities in
the spheroid shape rather than an actual low local cell density. Using the above method
results in a reproducible steady state radius Rss.

3.1.3 Bulk growth rate dependence on pressure

As a next step, we want to study the bulk growth rate dependence kb on imposed or
externally applied mechanical stresses. For this purpose, we can either simulate tissues in
a constant pressure ensemble (see section 2.1.7) or apply an external pressure through
the addition of gas particles (see section 2.1.8). Both methods have their advantages
and disadvantages. While the later is clearly much closer to actual experiments, it is
computationally very expensive due to big system sizes and the additional gas particles
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Figure 3.7: Comparison of constant pressure ensemble and gas particle method.
a) Simulation snapshots of constant pressure ensemble (constP) and gas particle method
(gas). A more thorough description and larger version can be found in figure 2.6. b) Bulk
growth rate kb as a function of applied/imposed pressure P i. Solid lines and closed symbols
show constant pressure ensemble results, while dashed lines and open symbols result from
gas particle method. Dotted gray line corresponds to the fixed apoptosis rate ka. Redrawn
from [Podewitz et al., 2015].

and can only exert compressional stresses onto the system. The former is obviously an
artificial system but it has the merit of being computationally highly efficient, being
applicable to virtually any system size, and most importantly, being able to simulate tissue
behavior under tension, which, to our knowledge, no one has looked at experimentally so
far. Although the constant pressure ensemble is our method of choice, we first want to
verify that it gives consistent results, identical to the gas particle method. We picked two
parameter sets to study with both techniques and compared the bulk growth rate kb as a
function of the imposed pressure P i. Both methods give qualitatively and quantitatively
the same growth rate dependence as shown in figure 3.7. Having demonstrated the
equivalency, we will now focus on the constant pressure ensemble, due to its advantages
mentioned above.

Starting from the standard parameter set, we measured the bulk growth rate dependence
on pressure for varying growth and adhesion forces since these parameters systematically
change the homeostatic pressure of the according tissue. All simulated parameter sets
result in the same general behavior. Four exemplary data sets are shown in figure 3.8a.
The observed similarity suggests that a proper rescaling should collapse all curves onto
one. Indeed, considering the pressure difference between imposed P i and homeostatic
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Figure 3.8: Bulk growth rate dependence on pressure for different growth
forces and adhesion strengths. a) Bulk growth rate kb as a function of the imposed
pressure P i for different growth force strengths B∗ and adhesion strengths f∗

1 . Only 4 ex-
emplary data sets are shown since all sets display the same behavior. b) Same as in a) but
as a function of the pressure difference between imposed and homeostatic pressure P i − P bH .
Redrawn from [Podewitz et al., 2015].

pressure P bH of the particular parameter set, reveals a general three regime picture (see
figure 3.8b). In fact, a linear region with slope κ is observed that tends to bias towards
effective compression as suggested by equation (1.2). Another linear regime with a different
slope κt is seen in the domain of effective tension. For imposed pressures much larger than
the homeostatic pressure, the bulk growth rate asymptotically approaches the constant
apoptosis rate. The slopes κ are very similar, κ = (−0.60± 0.07) · 10−3, while κt seems to
change, κt = (−8.0± 1.9) · 10−3, however, not statistically significant.

3.1.4 Negative homeostatic pressure in real tissues

So far, we have looked at the possibility of a negative homeostatic pressure and its
dependence on different parameters only from a simulation point of view. To elucidate
the question, whether a negative homeostatic pressure does exist in nature, we will now
look at the published data [Delarue et al., 2014, Montel et al., 2011] of several different
cell lines. One example experimental data set of the cell line CT26 is shown in figure 3.9
together with the simulation data of the standard parameter set. Note the roughly similar
shapes.
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Figure 3.9: Bulk growth rate in experiments and simulations. a) Experimental
data of the bulk growth rate kb as a function of the applied pressure P for the CT26 cell
line. Solid lines represent linear fits of all data (green) and in the interval [0, 2] (blue). Er-
ror bars obtained from jackknife estimation. Data taken from [Montel et al., 2011]. b)
Simulation data of the bulk growth rate kb in simulations as a function of the imposed
pressure P i for the standard parameter set. Solid lines represent linear fits in the intervals
[0, 30] (green) and [0, 8] (blue). The former estimation results in a homeostatic pressure of
−60± 10, while later results in −6.4± 0.3. Error bars represent SD.

P bH from linear extrapolation

As a first test, we use equation (1.2), the linear expansion of the growth rate kb around
the homeostatic state, to estimate the homeostatic pressure for all five cell lines. Four
out of five cell lines result in roughly the same order of magnitude of P bH ∼ −5 kPa (see
table 3.1). Figure 3.9, however, clearly shows that the dependence is not linear (either in

kb(0 kPa) [d−1] kb(5/10 kPa) [d−1] P bH [kPa]
AB6 −0.02± 0.01 −0.04± 0.02 −5
BC52 −0.07± 0.01 −0.15± 0.01 −4.4
FHI −0.59± 0.05 −1.08± 0.37 −6
CT26 −0.002± 0.0001 −0.13± 0.12 −7.1± 2.1
HT29 −0.24± 0.01 −0.42± 0.03 −0.16

Table 3.1: Experimental data of bulk growth rates under pressure and the
linear extrapolated homeostatic pressure. Bulk growth rates kb with and without
externally applied pressure for five different cell lines. The kb under pressure refers to
P = 10 kPa in the case of HT29 and to P = 5 kPa for all others. Data taken from [De-
larue et al., 2014, Montel et al., 2011].
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texpCT26 [d] tsim t̂ [d] P̂ [kPa]
4.17 172.4 0.024 0.13

Table 3.2: Time and pressure scales for simulation data rescaling. The time
scales are defined through the inverse bulk growth rate at zero pressure (texpCT26 =
1/kCT26

b (0) and tsim = 1/ksimb (0)) and t̂ · tsim = texpCT26.

the experiments nor in the simulations) and, furthermore, the outcome of the linear fits
highly depend on the chosen interval, which can be seen in figure 3.9. We thus take the
linear extrapolation as a lower boundary for the homeostatic pressure.

Rescaling units

In order to make a more quantitative comparison between simulations and experiments
and to get a better estimation of the homeostatic pressure in the experiments, we first
have to rescale the simulation data since their results are inherently without units (see
section 2.1.6). An obvious choice for the time scale comes from the bulk growth rate at
zero external pressure, which we know for experiments and simulations. To rescale the
pressure, we would expect the homeostatic pressure to be a good choice but since it is
unknown for the experimental data, we have to use another approach. Both, simulations
and experiments seem to have a bulk growth rate dependence on pressure similar in shape
(see figure 3.9). Therefore, we decided to fit our simulation data to the data of the CT26
cell line in order to get the best rescaling pressure P̂ . For each parameter set, we minimized
the sum of squared residuals

χ2 =
∑

i

[
kCT26
b (Pi)− ksimb (P̂ · Pi)

]2
. (3.6)

We then varied the growth force strength B∗ and the adhesion strength f∗1 . The resulting
homeostatic pressures as a function of χ2 are shown in figure 3.10a,b together with three
exemplary fits of simulation data to CT26. A clear minimum can be seen that resides
around a P bH of −1 to −2 kPa. However, we did not find one local minimum in the (B∗, f∗1 )
parameter space but rather a valley of optimal combinations. That means for every given
B∗, we can find a f∗1 with a low χ2 and vice versa. Still, each of these optimal parameter
sets result in roughly the same homeostatic pressure of −1 to −2 kPa (see figure 3.10c for
a comprehensive comparison of χ2 and P bH for different B∗ and f∗1 ). Picking the parameter
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Figure 3.10: Results of simulation data fit to the data of CT26. a) The sum of
squared residuals χ2 as a function of the homeostatic pressure P bH . Note the logarithmic
scale. b) Experimental data of CT26 with three simulation data sets rescaled according to
their optimal P̂ . c) The sum of squared residuals χ2 as a function of growth force B∗ and
adhesion strength f∗

1 (heat map directly below black crosses with scale on the right) and
the homeostatic pressure P bH as a function of the same parameters (heat map above black
crosses with scale above plot). The black crosses mark the exact values for B∗ and f∗

1 used
in the according simulations. Note that the low χ2 (blue) always coincide with a P bH of −1
to −2 kPa (red/orange). Redrawn from [Podewitz et al., 2015].
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Figure 3.11: Bulk growth rate as a function of pressure for experiments and
simulations. a) Bulk growth rate kb for all five cell lines as a function of the applied
pressure P (closed symbols). The simulation data of the best fit parameter set (open sym-
bols and solid lines) is rescaled according to the bulk growth rate at zero pressure for each
cell line. Dashed lines represent linear fits of the experimental data. b) Same as in a) but
the bulk growth rate is rescaled by the modulus of the zero pressure bulk growth rate |k0

b |.
Solid line and open symbols correspond to best fit simulation data. Dashed line represents
linear fit of CT26. Note, that the data point for HT29 under pressure is off scale (−65). Er-
ror bars obtained from jackknife estimation. Data taken from [Delarue et al., 2014, Montel
et al., 2011]. Redrawn from [Podewitz et al., 2015].

set with the overall lowest sum of squared residuals χ2 = 1.5 (B∗ = 1.1 and f∗1 = 1.08)
yields a pressure rescaling factor P̂ = 0.13 kPa (see table 3.2).

Comparison of experimental data to best fit simulations

Using the rescaling units, derived in the section above, we now compare the experimental
data of all five cell lines to the results of the best fit parameter set. Therefore, we change
the time scale of the simulation data so that the bulk growth rates at zero pressure match.
Interestingly, the rescaling of this one simulation parameter set leads to a good prediction
of the bulk growth rates under pressure for three of the remaining four cell lines with
HT29 being the sole exception (see figure 3.11a). This suggests that the experimental
data follows some general behavior. Indeed, we observe a nice collapse of four out of five
cell lines if we rescale the bulk growth rate kb with the zero pressure bulk growth rate k0

b

as shown in figure 3.11b. Again, HT29 is the only exception. We could theorize that the
shape of kb(P ) is determined by the homeostatic pressure, emphasizing its fundamental
importance. This is supported by the results of the linear extrapolation of P bH , which
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was roughly the same for all cell lines, except HT29. Later supposedly has a much larger
homeostatic pressure, close to zero. However, the fit of the simulation data to CT26
suggests that this cell lines homeostatic pressure and, therefore, also the one of all other
cell lines except HT29 is roughly −1 to −2 kPa.

3.1.5 Tensile membranes

So far, we have only studied real 3d systems of growing tissues. Since these spheroids can
have very large steady state sizes, we want to investigate the possibility of using a quasi
1d representation as approximation. Such a quasi 1d set-up has periodic boundaries in
x and y direction and open boundaries in z direction (see figure 3.12a), where a system
size Lx = Ly � Lz is chosen. Assuming that the growth rates kb and δks are the same,
independent of the dimensions, equation (2.41) and equation (2.46) relate both steady
state sizes by

Rss = 3R1d
ss . (3.7)
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Figure 3.12: Steady state radius as a function of adhesion strength in 1d. a)
Simulation snapshot of the quasi 1d set-up. b) Steady state radius Rss as a function of the
adhesion strength f∗

1 for different growth force strengths B∗ in 1d and 3d. The solid and
dashed lines are simple guides for the eye, where solid lines and closed symbols correspond
to 3d and open symbols with dashed lines correspond to 1d. Note the growing discrepancy
for decreasing f∗

1 . All error bars represent the interface width ζ.
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Figure 3.13: Residual bulk order. a) The order parameter of the cell division axis
in 3d Sdr and 1d Sdz as a function of the distance to the surface s for f∗

1 = 1.07. b) The
residual bulk order S̄b as a function of the adhesion strength f∗

1 . All error bars correspond
to SD.

The results of such simulations, rescaled in the above manner, are shown in figure 3.12
and reveal a surprising discrepancy between 1d and 3d that increases with decreasing
adhesion strength. In order to shed some light on the observed behavior, we looked at
the cell division orientation in 1 and 3 dimensions as a function of the distance to the
surface s. We calculated the order between the cell division axis d and the radial unit
vector er for 3d and the order between d and ez for 1d. The resulting order parameters
(introduced in section 2.2.4) are called Sdr and Sdz for 3 and 1 dimensions, respectively. Both
cases display the same behavior near the surface (see figure 3.13a), namely a transition
between parallel and perpendicularly aligned divisions. However, the quasi 1d set-up
shows divisions to be slightly aligned in the bulk, while the expected perfect anisotropy is
observed in 3d. Having found an important difference between 1d and 3d simulations, we
further investigated this residual bulk order S̄b as a function of varying adhesion strengths.
We found the bulk order to rise with the adhesion as well as the growth force strength (see
figure 3.13b). Considering our earlier results, a connection of this unexpected phenomenon
to the homeostatic pressure suggests itself.

We now take a closer look at the periodic boundaries in the 1d set-up and how they might
affect tissue growth. The method outlined in section 2.1.9, enables us to measure the full
stress tensor as a function of space and time. We only consider systems in steady state and
always silently apply adequate time averages to reduce the inherently strong fluctuations
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Figure 3.14: Stress and residual bulk order in the quasi 1d set-up. a) The stress
σαα as a function of position z. Both, σxx and σyy result in the same constant tension
along z. Note the small non-zero contribution of σzz. b) The residual bulk order S̄b as
a function of the average stress in x and y direction (σ̄xx + σ̄yy)/2. In order to simulate
different stresses at the boundaries, f∗

1 is varied. All error bars correspond to SD.

of the stress tensor. While these strong fluctuations result in a SD much larger than the
mean, long observation times yield a standard error of mean (SEM) that is practically zero.
Therefore, no error bars are given whenever we consider the spatial distribution of stress.
Still, the mean is reproducible and independent of the initial conditions for adequate time
averages and, thus, clearly statistically significant.

Having measured the spatially resolved full stress tensor, we observe a constant tension
σxx and σyy along z that drops to zero at the free surfaces (see figure 3.14a). This marks
a fundamental difference of a real 1d system in comparison to the quasi 1d set-up. The
negative homeostatic pressure of the used parameter sets create a constant tension across
the periodic boundaries, thus, enhancing cell division in the according x-y plane. Residual
bulk order should, therefore, grow with increasing stress. Indeed, we find a clear correlation
between S̄b and (σ̄xx + σ̄yy)/2 as seen in figure 3.14b, where σ̄xx and σ̄yy denote spatial
averages over the bulk of the tissue. A better way to think of the quasi 1d simulation
set-up is as a tensile membrane.
This tension leads to an increase in bulk division rate, which explains the discrepancy

of the steady state radius between 3d and 1d as a higher bulk division rate results in a
larger steady state radius. Remember that Rss ∝ −1/kb and kb is negative.

So far, we have ignored the shape of σzz in figure 3.15a, which we now want to address.
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Figure 3.15: Stress and stress gradients in quasi 1d. a) The stress σzz as a func-
tion of position z shifted so that the minimum is at z = 0. Solid lines represent fits of
σzz(z) = a0z

2 + a1. b) The stress gradient ∂zσzz as a function of position z for the same
parameters as in a) . Solid lines represent linear fits. c) The velocity profile vz as a func-
tion of position z shifted by the same value as in a) and b) . Solid lines represent linear
fits. d) Gradient of the velocity profile ∂zvz as a function of the bulk growth rate kb. The
solid green line denotes the identity ∂zσzz = kb.

The observed profile is very smooth and resembles the form of a parabola. A direct fit of

σzz(z) = a0(z − z0)2 + a1 (3.8)

reveals a perfect agreement as shown in figure 3.15a. To understand this behavior, we
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have to consider momentum balance, which requires

∇ · σ + f ext = v [∂tρ+∇ · (ρv)] + ρ [∂tv + (v · ∇)v] (3.9)

∂zσzz + fextz = 4ρbkbvz (3.10)

with the stress σzz acting along z and the external force density fextz . The only external force
contribution in this kind of simulations comes from the background friction F b = −γbgv
with γbg = 0.1. It follows that

∂zσzz = 2ρbγbgvz(z) + 4ρbkbvz(z) = 2ρbvz(z) (γbg + 2kb)︸ ︷︷ ︸
=γeff

bg

, (3.11)

where we substituted

fextz =
∑
i F

b
i

V
= 2V ρbF b

V
(3.12)

= −2ρbγbgvz(z). (3.13)

The factor of 2 is necessary because the background friction acts on each particle and
there are 2 particles per cell. For a simple two rate growth model, the velocity profile is
linear as shown in equation (2.49). Then, it follows that

∂zσzz = −2ρbγeffbg kbz (3.14)

σzz = 2ρbγeffbg kb

∫
z dz (3.15)

σzz = ρbγ
eff
bg kbz

2 +A (3.16)

and we can directly see, where the parabolic dependence of σzz on z comes from. To
verify the validity of applying the two rate growth model, we measured the flow in our
simulations and indeed observe a perfectly linear profile in the bulk (see figure 3.15c).
Furthermore, the velocity gradient ∂zvz matches the independently measured bulk growth
rate kb very well (see figure 3.15d). The background friction can then be estimated by
a linear fit of ∂zσzz via equation (3.11), which results in γ̄bg = (95.3± 0.7) · 10−3. This
matches not exactly the input value of 0.1 but is reasonably close enough to paint a
consistent picture.
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While in 3d, the on average apoptotic core is balanced by a radial inflow of cells, this
flow is different in 1d. There, cells flow only along one fixed axis, the z axis. Therefore,
along x and y no cell flow balances cell death but instead the periodic boundaries create a
constant pressure along x and y. For a negative P bH , this pressure is actually tensional
and, thus, increases the division rate.
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3.2 Interface dynamics of competing tissues

The outcome of a growth competition between two tissues in a finite compartment is
determined by their homeostatic pressure as shown in section 1.4.1. The tissue with the
higher homeostatic pressure always takes over the whole compartment. Recently, Ranft
et al. [2014] have analyzed the population dynamics for the case of two incompressible
tissues A and B by solving a generalized Fisher-Kolmogorov equation. They found traveling
wave solutions, similar to those of the Fisher-Kolmogorov equation. In the later case,
however, traveling waves can only emerge with non zero diffusion. Since we normally see
little diffusion in our simulations, we want to explore in this section the possibility of
tissue competition without diffusion (D = 0). Starting from a theoretical point of view,
we first solve the dynamics for the one dimensional problem. Using the simulation set-ups
outlined in section 2.1.12, we then study the interface dynamics in 2d and compare the
results to the analytical solution in 1d. Furthermore, we analyze the scaling behavior of
the emerging interface between the two competing tissues and determine their scaling
exponents within our simulations.

3.2.1 Tissue competition without diffusion in 1d

To describe the competition between two tissues A and B, we define the cell number
fraction

ϕA(x, t) = nA(x, t)
nA(x, t) + nB(x, t) , (3.17)

where nA(x, t) refers to the number of A-type cells that occupy a small volume δV around
x at time t. The same quantities defined for tissue B result in

ϕB(x, t) = nB(x, t)
nA(x, t) + nB(x, t) = 1− ϕA(x, t). (3.18)

Assuming that the cells are incompressible and the cell densities are constant ρA + ρB = ρ,
the cell number balance requires

∂tϕA/B +∇ · JA/B = kA/BϕA/B, (3.19)
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where kA/B refer to the according growth rates of tissue A and B. The flow JA/B =
JDA/B + JadA/B consists, in principle, of a diffusive part

JDA/B = −D∇ϕA/B (3.20)

with the diffusion coefficient D and a convective part

JadA/B = vA/BϕA/B (3.21)

with the velocity fields vA/B. Contrary to Ranft et al. [2014], we focus here on interface
propagation without diffusion (D = 0) and, thus, we get

∂tϕA/B + ϕA/B∇ · vA/B + vA/B · ∇ϕA/B = kA/BϕA/B. (3.22)

The sum of both equations yields for ϕB = 1− ϕA

∂tϕA + ∂t(1− ϕA) + ϕA∇ · vA + (1− ϕA)∇ · vB (3.23)

+vA · ∇ϕA + vB · ∇(1− ϕA) = kAϕA + kB(1− ϕA),

which simplifies to

∇ · [ϕA(vA − vB)] +∇ · vB = kAϕA + kB(1− ϕA), (3.24)

Assuming no relative flow between the tissues A and B (vA = vB = v), this results in a
generalized incompressibility condition

∇ · v = kAϕA + kB(1− ϕA). (3.25)

Combining equation (3.22) and equation (3.25), we can write the time evolution of the
cell number fraction of A-type cells as

∂tϕA + v · ∇ϕA = (kA − kB)ϕA(1− ϕA), (3.26)
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which is an advection-reaction type of equation and similar to a generalized version of the
Fisher-Kolmogorov equation with zero diffusion. In 1d, it simplifies to

∂tϕA + v∂xϕA = (kA − kB)ϕA(1− ϕA). (3.27)

The transformation into a comoving reference frame by substituting s = x− v0t results in

−v0
dϕA
ds + v

dϕA
ds = (kA − kB)ϕA(1− ϕA) (3.28)

⇒ (v − v0)dϕA
ds = (kA − kB)ϕA(1− ϕA). (3.29)

This ordinary differential equation is solved by the following ansatz

ϕA(s) = Θ(s) (3.30)

if we assume

v(s = 0) = v0. (3.31)

Θ(s) refers to the Heaviside step function.

Stress profile

We already mentioned in the introduction that the division rates kA/B depend on the
stress σ. Using the same linear expansion around the homeostatic state as before, the
growth rates can be written as

kA/B = −κA/B(σA/BH − σ), (3.32)

where κA/B refer to the growth rate coefficients and σA/BH to the homeostatic stresses of
the tissues A and B. We now want to solve for the stress profile σ(s) using the results
from above.
Due to the requirement of force balance, it follows that

dσ
ds = ξv(s). (3.33)
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ξ refers to the background friction and is connected to γbg via

ξ = 2ργbg. (3.34)

The factor of two is introduced here because ρ denotes the cell density but the background
friction force is applied to all particles of a cell that is two. The velocity v(s) is determined
by the generalized incompressibility condition (equation (3.25)), which can be written in
1d for the comoving coordinate s

dv
ds = ϕAk

A + (1− ϕA)kB. (3.35)

Combining equation (3.33) and equation (3.35), the stress profile can be written as

d2σ

ds2 = ξkAϕA + ξkB(1− ϕA). (3.36)

With the above solution for ϕ(s) and the linear expansion of the growth rates around the
homeostatic stresses, we get

d2σ

ds2 = −λ−2
A Θ(s)(σAH − σ)− λ−2

B (1−Θ(s))(σBH − σ), (3.37)

where

λ2
A/B = 1

κA/Bξ
. (3.38)

For s < 0 it follows that

d2σ

ds2 = −λ−2
B (σBH − σ) (3.39)

⇒ σ(s) = σBH +�����
Ae−s/λB +Bes/λB . (3.40)

Far away from the interface, the stress has to relax back to the homeostatic stresses of the
tissues A and B. Thus, lims→−∞ σ(s) = σBH and A is zero. Similarly for s > 0 it follows



3.2 Interface dynamics of competing tissues 71

that

d2σ

ds2 = −λ−2
A (σAH − σ) (3.41)

⇒ σ(s) = σAH +A′e−s/λA +����
B′es/λA . (3.42)

As mentioned above, lims→∞ σ(s) = σAH and, thus, B′ is zero. The continuity of σ and
dσ/ds at s = 0 requires

σBH +B = σAH +A′ (3.43)

and

B

λA
= − A

′

λB
(3.44)

so that

B = σAH − σBH
1 + λA

λB

(3.45)

A′ = −σ
A
H − σBH
1 + λB

λA

. (3.46)

Thus, the stress profile across the interface is described by

σ(s) =





σBH + σAH−σBH
1+ λA

λB

exp
(
s
λB

)
for s ≤ 0

σAH + σBH−σAH
1+λB

λA

exp
(
− s
λA

)
for s > 0.

(3.47)

The stress across the interface varies exponentially from one homeostatic stress to the
other although the interface itself is infinitesimally thin.
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Interface velocity

Recalling equation (3.33), we can now calculate the interface velocity v(0) = v0 with the
analytical expression for the stress profile

v0 = 1
ξ

dσ
ds

∣∣∣∣
s=0

= σAH − σBH
ξ(λA + λB) . (3.48)

For κA = κB = κ, this simplifies to

v0 =
√
κ

2
√
ξ

(σAH − σBH). (3.49)

The solution of the rather simple case of tissue competition in 1d without diffusion
yields some interesting results. The volume fraction of each tissue can be described by
a Heaviside step function in a comoving coordinate system. Contrary to a naive guess,
we do get a moving interface with a velocity v0 that grows linearly with the difference
between the homeostatic stresses of the two competing tissues but only with

√
κ, the

growth coefficient, and 1/
√
ξ, the background friction.

In contrast to the example in section 1.4.1, here, the tissue with the higher homeostatic
pressure does not impose its homeostatic pressure onto the whole system, which would
lead to an exponential take-over. Instead, the background friction defines a characteristic
length scale (λA/B) that results in a finite interface width between the two tissues, where
the stress varies exponentially from one homeostatic stress to the other. Because of its
finite width, the replacement of the “weaker” tissue takes place at a constant rate and,
thus, leads to a constant interface velocity v0.

3.2.2 Interface position and width

We now want to define the position and the width of the interface between competing
tissues in 2d simulations. Using the same naming convention as above, the cell number
fraction ϕA/B is described by

ϕA/B =
nA/B

nA + nB
=
nA/B
N

. (3.50)

Here, nA/B refers to the number of cells of type A/B in a small strip of size L∆x with
N = nA + nB being the total number of cells (see figure 3.16). Assuming an overall
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Figure 3.16: Sketch of the number fraction function ϕ. Small dots represent indi-
vidual cells, where red correspond to tissue B and blue to tissue A.
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Figure 3.17: Sketch of the interface between two competing tissues A and B. a)
The interface h(y) between both tissues is depicted as a dashed black curve. For any given
x, the occupation function ϕ is calculated from the line segments lA/B of a line that lie only
in A or B. b) The according interface position xint and interface width w are shown.

constant cell density ρ, the equation above can be written as

ϕA = nAρ
−1

Nρ−1 = lA∆x
L∆x = lA

L
(3.51)

with the channel width L in y direction. Considering now a cut along y for a given x, lA
then represents the length of the line that is occupied by A (see figure 3.17). Defining the
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interface curve between A and B as h(y), we can substitute lA in equation (3.51) and get

ϕA(x) = 1
Lx

Lx∫

0

Θ[h(y)− x] dx (3.52)

∂xϕA = 1
Lx

Lx∫

0

∂xΘ[h(y)− x] dx (3.53)

−∂xϕA = 1
Lx

Lx∫

0

δ[h(y)− x] dx (3.54)

= p[h(y) = x] (3.55)

with the probability density function p[h(y) = x] for the interface height h(y). The
interface position, thus, reads

xint = 〈x〉 =
Lx∫

0

xp(x) dx (3.56)

=
Lx∫

0

(−∂xϕA) dx (3.57)

= [−ϕAx]Lx0 −
Lx∫

0

(−ϕA) dx (3.58)

=
Lx∫

0

ϕA dx, (3.59)
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where we used the fact that ϕA(Lx) = 0. The second moment becomes

〈x2〉 =
Lx∫

0

x2(−∂xϕA) dx (3.60)

= −
[
ϕAx

2
]Lx

0
+

Lx∫

0

2xϕA dx (3.61)

= 2
Lx∫

0

xϕA dx (3.62)

and we define the interface width w as

w =
√
〈x2〉 − 〈x〉2 =

√√√√√√2
Lx∫

0

xϕA dx−


Lx∫

0

ϕA dx




2

. (3.63)

3.2.3 Interface properties in theory and simulations

Treadmilling set-up

We implemented a set-up called treadmilling that uses a comoving simulation box to
efficiently simulate tissue competitions. However, before we can use this method, we have
to verify that it gives consistent results. Therefore, we compared this simulation technique
to the fixed boundaries approach (see section 2.1.12 for detailed descriptions).

Both methods lead within less than 5% to the same size independent interface velocity
v0 (see figure 3.18a). The stress σxx across the interface averaged over N ≥ 8 realizations
does not show any systematic deviation between both methods (see figure 3.18b). For the
remainder of this section, we only utilize the treadmilling set-up.

Tissue characterization

As before, we define standard parameter sets for the tissues A and B with the values
presented in table A.1. The only differences are a lower cell adhesion of f1 = 5, a higher
background friction of γbg = 10 and for tissue B only, a higher growth force BB = 60 and
intracell friction γBc = 120. In order to compare the simulation results with the analytical
solution derived above, we first have to characterize the two involved tissues in terms of
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Figure 3.18: Comparison of treadmilling and fixed boundaries set-up. a) The
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Figure 3.19: Tissue characterization. a) Overall cell density ρ as a function of posi-
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that the difference in densities amounts to less than 3%. b) Bulk growth rate kb as a func-
tion of the imposed stress σi. Solid lines represent linear fits around kb = 0.
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κA [10−3] κB [10−3] σAH fit σBH fit σAH constP σBH constP
1.19± 0.07 0.96± 0.05 −30.1± 0.2 −38.8± 0.2 −30.4± 1.6 −39.2± 2.0

Table 3.3: Measured tissue properties. Growth rate coefficients κA/B and homeo-
static stresses σA/BH from linear fit of data (fit) and directly measured σA/BH (constP). The
fit errors were determined by gnuplot. They represent a measure of the deviations from the
linear fit and have to be taken with care. The errors of constP correspond to SD.

density ρ, growth force coefficients κA/B, and homeostatic stresses σA/BH .
One of the main assumptions in the above derivation was a constant density of both

tissues. In the simulations, we can easily measure the cell density as a function of position
s (see figure 3.19a). Although a small variation can be seen, the difference amounts to less
than 3%, which validates the assumption of equal densities.
We used the same methods as in section 3.1 to measure the homeostatic stress σA/BH

and the bulk growth rate kb as a function of the imposed stress σi. The growth rate
coefficients κA/B were extracted from a linear fit of kB(σ) around the homeostatic stress
(see figure 3.19b). The homeostatic stresses derived from the linear extrapolation are
consistent with the ones measured directly (see table 3.3). We observe that tissue B has a
smaller growth rate coefficient κ. To explain this behavior, we have to recapitulate how
we achieve the change in bulk homeostatic stress. In this case, we varied the growth force
strength B∗ and intracell friction γc, which leads to a smaller bulk homeostatic stress but
also changes κ. It can be intuitively understood as a higher growth force makes the bulk
growth rate less dependent on an external stress, thus, resulting in the smaller κ.
Using equation (3.34), ξ can be calculated from the background friction γbg and the

average cell density ρ̄. With γbg = 10 and ρ̄ = 1.72, ξ = 2ρ̄γbg = 34.42. The factor 2 has
to be added because the background friction acts on each particle and ρ̄ represents the cell
density. Thus, all free parameters of the analytical solution in 1d have been determined.

Interface velocity

We observe that the interface velocity v0 scales linearly with the stress difference ∆σ =
σAH − σBH for ∆σ < 30 (see figure 3.20). Using equation (3.48) and the parameters
determined above, we can estimate the slope of v0(∆σ) = α∆σ to be αest = 2.8 · 10−3. A
direct fit for ∆σ < 30 reveals a reasonably good agreement with αfit = 3.1 ·10−3. However,
larger differences in the homeostatic stresses display clear deviations from the linear trend,
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Figure 3.20: Interface velocity as a function of stress difference. a) The interface
velocity v0 as a function of the homeostatic stress difference ∆σ = σAH − σBH for a system size
of L = 10. The solid line is a guide for the eye. b) Same as in a) but for a smaller range of
∆σ. Dashed line represents a linear fit.

which reflects the nonlinearity in k(σ).

Stress across interface

As a next step, we look at the stress across the interface and compare it to the 1d
analytical solution. Consistently, the stress profiles σxx(s) show a smooth transition
from one bulk homeostatic stress to the other for different homeostatic stress differences
∆σ (see figure 3.21a). The anisotropy that is the stress difference of the stress parallel
σyy and perpendicular σxx to the interface amplifies with increasing stress gradient (see
figure 3.21b).
Using the measured tissue parameters, we can also compare the analytical solution of

the stress profile in 1d to the actually measured stresses in the simulations. We observe
a very good agreement between both profiles (see figure 3.22a). We can also verify the
estimation of ξ by comparing σxx(s) to the integrated velocity profile σAH + ξ

∫
v(x) dx.

Again, both curves coincide very well (see figure 3.22b).

3.2.4 Interface tension

As already noted in figure 3.21b, the stress is not isotropic across the interface. This
leads to a surface or interface tension as defined in equation (2.71) (see section 2.2.5).
No systematic dependence on the system size L is found for L ≥ 10 (see figure 3.23a).
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Figure 3.23: Interfacial tension. a) Interfacial tension γs as a function of the system
size L for a homeostatic stress difference ∆σ = 9. Closed red dots represent individual
simulation results, while the green triangles denote mean plus minus SD of one system
size. b) Interfacial tension γs as a function of the homeostatic stress difference ∆σ for two
system sizes.

However, the interface tension increases significantly with a growing homeostatic stress
difference ∆σ (see figure 3.23b).

3.2.5 Scaling behavior

Defining the interface width w according to equation (3.63), we can follow its evolution over
time (see figure 3.24a). The initial interface width development w(t) is well reproduced by
a power law of the form

w(t) = Atβ (3.64)

(see figure 3.24b). We determined the growth exponents β for three different homeostatic
stress differences ∆σ (see table 3.4). It seems to grow with increasing ∆σ, however, this
has to be taken with care. We varied the system size between L = 6 and L = 400 in the
case of ∆σ = 9, thus, covering nearly three orders of magnitude and between L = 10 and
L = 100 in the case of ∆σ = 4 and ∆σ = 18. No systematic variation of β with L is found
(see figure 3.24b). However, finite size effects for L < 10 lead to a systematic deviation.
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different homeostatic stress differences ∆σ as a function of the system size L. Solid lines
represent linear fits of double logarithmic data. Error bars correspond to SEM.
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∆σ growth exponent β roughness exponent α
5 0.36± 0.04 0.24± 0.01
10 0.40± 0.03 0.27± 0.03
20 0.45± 0.02 0.25± 0.01

Table 3.4: Results of the scaling analysis. Results of the fits of the early interface
width development w(t) = Atβ and the saturation width as a function of the system size
wsat(L) = BLα. Coefficients and errors determined by according gnuplot fits.

We also analyzed the scaling behavior of the saturation width wsat by fitting

wsat(L) = BLα (3.65)

to our data. No systematic variation of the roughness exponent α with the homeostatic
stress difference ∆σ could be determined (see figure 3.24d and table 3.4). We found
an average roughness exponent of ᾱ ≈ 0.25 ± 0.01. However, it has to be noted that
the crossover time between power law growth and saturation regime increases with the
homeostatic stress differences ∆σ and decreasing system size. Thus, for large systems and
small ∆σ, the measured saturation width may have much larger errors than estimated
from the SEM.
As mentioned in the introduction, the two exponents α and β are commonly used to

classify the interface growth process into different so called universality classes. One well
known example is the Kardar–Parisi–Zhang (KPZ) universality class, which yields a growth
exponent of β2d

KPZ = 1/3 and a roughness exponent of α2d
KPZ = 1/2. It has been suggested

that growing tissues fall into this class [Block et al., 2007]. While the growth exponent
measured in our simulations roughly fits, the roughness exponent is much smaller in the
simulations. More closely related to tissue growth, Vicsek et al. [1990] have measured the
roughness exponent of initially flat interfaces of growing bacterial colonies. However, they
found an even larger exponent of α ≈ 0.78. Thus, it has yet to be decided which general
microscopic processes dominate the dynamics of competing tissues.
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3.3 Division axes alignment in motile tissues

In this section, we want to study how cell division is influenced by directed cell movement
in migrating cell sheets. We compare the results of our simulations, extended by the
motility mechanism introduced in section 2.1.2, to experiments of Madin-Darby canine
kidney (MDCK) cell sheets that invade narrow micro-channels. We greatly acknowledge Prof.
Dr. Joachim Oskar Rädler, Dr. Anna-Kristina Marel and Matthias Zorn for conducting
the experiments and providing us with the data. Most of the results presented here have
already been published in [Marel et al., 2014].

3.3.1 Experimental and simulation Set-ups

Experiments

The experimental proceedings are described in full detail in [Marel et al., 2014, 2013]. In
short, microstructures were created with the cell-repellent polymer poly(ethylene glycol)-
dimethacrylate (PEG-DMA) from a negative replica polydimethylsiloxane (PDMS) mold
that was put onto standard cell culture dishes (see figure 3.25). Cells were then seeded

a) b)

c) d)

PDMS Mold

PEG-DMA confluent MDCK layer

Figure 3.25: Sketch of the experimental procedure. a) Initially, PEG-DMA struc-
tures are covered with PDMS mold. b) Cells are seeded around the structure and grown to
confluency. c) PDMS mold is peeled off and d) the cells start to invade the narrow channels.
Redrawn from [Marel et al., 2014].
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around the structures and grown until confluency. The removal of the PDMS stamp opened
up the microstructures, in this case long narrow channels, and the cells started to invade
the open space. During the course of an experiment, cell migration was tracked with
time-lapse microscopy (brightfield and fluorescence, see figure 3.26a) at a framerate of
0.1min−1. Doubly transfected MDCK cells with a fluorescently labeled cell nucleus were
used. Cell division events were determined visually from the fluorescent images and both
daughter cells were marked, thus defining the position and the axis of each division. The
fluorescent images were also used to determine the position of all cells in every frame. In
order to differentiate effects stemming from the confinement as opposed to effects caused
by global flow, experiments were conducted with resting cell sheets. In those experiments,
cells were uniformly seeded over the whole microstructure after the removal of the PDMS

stamp (see figure 3.28a). The velocity fields for both set-ups (invading and resting cell
sheets) were determined by particle image velocimetry (PIV).

Simulations

In order to keep the invading cell sheet simulations as close as possible to the actual
experiments, we implemented a complex chamber geometry that is depicted in figure 3.26b.
It consists of a reservoir chamber at the bottom, which is connected to a narrow channel.
The PEG-DMA channel structures are modeled with RBCs. Cells are seeded randomly over
the reservoir with a constant density of ρ = 2 · 10−3µm−2.
In the case of resting cell sheets, we used a simple rectangular box (again with RBCs),

which was seeded randomly with the same constant cell density as before (see figure 3.28a).

3.3.2 Rescaling simulations

Simulation results are inherently without units (see section 2.1.6). In order to compare the
simulations to experimental data, we have to define a length l̂ and a time scale t̂, which
convert simulation lengths/times (lsim/tsim) to experimental lengths/times (lexp/texp) via

lexp = l̂lsim (3.66)

texp = t̂tsim (3.67)

We decided to use the invasion speed vf and the cell density ρb in the bulk of invading cell
sheets. Being independent of the used channel width Ly in the experiments as well as the
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Figure 3.26: Set-up of experiments and simulations for invading cell sheets.
Set-up of a) experiments and b) simulations for invading cell sheets. The PEG-DMA confine-
ment is modeled in the simulations by hard walls with RBCs. Redrawn from [Marel et al.,
2014].

ρexp [10−3µm−2] ρsim vexpf [µmh−1] vsimf l̂ [µm] t̂ [h]

1.4 2.8 24 0.066 44.72 0.12

Table 3.5: Results of length and time scale comparison. Length and time scale
used to relate the simulation data to experimental data.

simulations (see figure 3.27a), the invasion speed or front velocity determines the ratio

l̂

t̂
=
vexpf

vsimf
. (3.68)

Defining the bulk in the experiments at around 400 µm behind the front, we matched this
density to the simulations to get the rescaling length

l̂ =
√
ρsimb
ρexpb

(3.69)

See figure 3.27 and table 3.5 for the extracted length and time scale.



86 3 Results

12

18

24

30

0 100 200 300 400 500Fr
on

t
ve

lo
ci

ty
v f

(L
y
)

[µ
m

h−
1 ]

Channel width Ly [µm]

exp
sim

0

1

2

3

4

0 100 200 300 400 500

D
en

sit
y
ρ
(s

)
[1

0−
3

µm
−

2 ]

Front distance s [µm]

exp
sim

a) b)

Figure 3.27: Front velocity and density profile in experiments and simulations.
a) Front velocity vf as a function of channel width Ly. b) Density ρ as a function of the
distance to the front s. Error bars represent SEM. Taken from [Marel et al., 2014].

3.3.3 Resting cell sheets

In order to differentiate effects stemming from the boundaries, we first analyzed the
experimental and simulation data of resting cell sheets.

Divisional order

The experiments of resting cell sheets show no preferred direction of the division axes
roughly two to three cell diameters away from the wall (see figure 3.28b). However, the
order parameter increases significantly towards the channel wall, showing nearly perfect
alignment directly at the wall. This increase is best understood by entropical reasons.
The site of a cell division is calculated as the midpoint of the connection between the two
daughter cells. In the following, we will refer to this length of the connecting vector as the
cell size l. A division that takes place at a distance δy < l/2 has only a certain range of
orientations available because the daughter cells cannot penetrate the wall (see figure 3.28c).
Using elementary geometry, the available minimal division angle θmin between the wall
and the division axis can be expressed as a function of δy and l:

θmin(δy, l) = arcsin
(2(δy − y0)

l

)
. (3.70)
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Figure 3.28: The order of cell division axes in resting cell sheets. a) Snapshots
of resting cell sheets at early and late times in experiments (left) and simulations (right).
Cells were initially seeded uniformly with a density of 2.6 · 10−3µm−2 at t = 0min and reach
a density of 4.4 · 10−3µm−2 at t = 1000min in both cases. The channel width is 300 µm in
case of the experiments and 270 µm in case of the simulations. b) Order parameter Sdx as a
function of the distance from the wall. Inset shows simulation data directly at the wall with
a finer binning. c) Three cell division axes with length l at the same distance δy from the
wall but with different angles θ. Redrawn from [Marel et al., 2014].

We introduced an offset y0, which accounts for the minimal distance between the center of
the cell nucleus of a daughter cell and the actual wall. The order parameter at a distance
δy can then be calculated as follows

Sdx(δy) = 2〈cos2 θ〉 − 1 (3.71)

= 2
π/2∫

0

p(θ) cos2 θ dθ − 1 (3.72)

= θmin
π

+ θmin
π

cos θmin +
(

1− 2θmin
π

)
cos2 θmin (3.73)

Starting from a uniform division angle distribution p(θ) = 2/π, we assume that all cell
divisions with θ > θmin for a given δy are rotated to θmin, which results in the following
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Figure 3.29: The wall-induced order of cell division axes and the daughter-
daughter distance in resting cell sheets. a) Order parameter Sdx as a function of
the distance to the wall in a small interval of roughly 1 cell length. Solid line represents fit
of equation (3.73). Error bars correspond to SEM. b) Distribution of daugther-daughter
distances l for all divisions (red) and those closer than 20 µm to the wall (green). Both
distributions peak around l̄ ≈ 17 µm (dashed line).

distribution:

p(θ) =





2
π for 0 ≤ θ < θmin

1− 2
π for θ = θmin

0 else
(3.74)

A fit of equation (3.73) to the experimental data (see figure 3.29a) yields a good agreement
with y0 = (3.1± 0.9) µm and l = (24± 3) µm. The daughter-daughter distance distribution
(see figure 3.29b) peaks around l̄ ≈ 17 µm, which coincides well with the former fit as
l − 2y0 = 24 µm− 2 · 3 µm = 18 µm ≈ l̄.

Using equation (3.73), one can also calculate the average order 〈Sdx〉 as a function of the
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channel width Ly

〈Sdx〉(Ly) = 1
Ly

Ly∫

0

Sdx(y) dy (3.75)

= 2
Ly

l/2+y0∫

0

Sdx(y) dy (3.76)

= const
Ly

. (3.77)

Although the constant prefactor varies a lot between different experiments, the average
for channels of the same size shows the expected 1/Ly behavior in accordance with the
previous considerations (see figure 3.30). It is important to note that the above derivation
is only valid for Ly ≥ l + 2y0, which is not true for the channel size of 50 µm. Otherwise,
the data seems to agree nicely with the expected behavior, i.e. Ly〈Sdx〉 is roughly constant
for all channels Ly > 50 µm.
This wall induced order, however, is not seen to such extent in the simulations. While

directly at the wall the divisions are highly aligned (see figure 3.28 inset), a layer of
perpendicular cell divisions right next to it is observed. We suspect that this is an artifact
caused by the highly simplified representation of cells as two point particles. In the bulk,
however, cell divisions are roughly isotropic on average in accordance with the experimental
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Figure 3.31: Number of divisions and division rate as a function of wall dis-
tance. a) Number of divisions nd normalized by the constant number of divisions in bulk
nbd as a function of the distance to the wall y. Experimental data is scaled according to the
left axis, while simulation data is scaled according to the right axis. Note the difference in
scales of at least a factor of 5. b) Division and growth rate k as a function of the distance
to the wall y. See text for the explanation of the different curves. Error bars represent SEM.

results.

Cell division rate

More interestingly, the experimental data as well as the simulation data shows a significant
increase in the number of divisions nd near the wall (see figure 3.31a). In the experiments,
the number increases by roughly a factor of 1.5, while the simulations demonstrate at least
a tenfold increase. Looking instead at the division rate kd = nd/N , defined as the number
of divisions nd over the number of cells N , the experimental data still shows a peak at
the wall (see figure 3.31b, red curve). In the absence of net flow, the division rate should
equal the growth rate k, which we define as k = ∂tN/N the change in the number of cells
∂tN over the total number of cells N (figure 3.31b, green curve). Although displaying
roughly the same constant behavior in the bulk, there is a strong deviation directly at
the wall, where the change in cell number cannot stem from the number of divisions only.
Considering the full continuity equation for this system (equation (2.34)), the difference
in k and kd should be compensated by the divergence of the flow. Indeed, if we subtract
∇ · (Nv)/N from kd, the resulting profile does agree better with k.
The simulations show a similar increase in division rate towards the wall. However,
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Figure 3.32: Flow and density profile as a function of wall distance at different
times. a) Average velocity vy perpendicular to the channel wall as a function of the wall
distance y at different times t. b) Average density ρ as a function of the wall distance y at
different times t.

no significant flow contribution can be observed as in the experiments. Although not
necessarily true for the experiments, in the simulations, we can conclude that from a
mechanics point of view division near the wall or, more general, near non sticky interfaces
is favored (see section 1.4.2).

Flow profiles

As already mentioned, we discovered a non negligible flow of cells in the experiments. The
averaged velocity profiles at different times t clearly show a consistently negative velocity,
pointing towards the wall as depicted in figure 3.32a. Even more, we see a gradient in
vy, further enhancing this effect. Over time, the velocity profile as well as the gradient
diminishes.

Our simulation model as it is can not reproduce the observed flow and velocity profiles
but instead shows a slight gradient driving cells from the wall to the middle of the channel
(see figure 3.32a).

Cell density

To follow up on the possibility of a density gradient causing the net flow of cells towards
the walls, we looked at the averaged density profiles at different times t (see figure 3.32b).
The experiments clearly display a density gradient. However, it would drive a flow of
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cells from the walls towards the middle and not vice versa. The density towards the
walls grows roughly by a factor of 1.5. In contrast to the velocity profile, the peak does
not vanish for later times. Thus, some mechanism has to be at work that leads to an
active migration of cells towards the walls. One possible explanation of this phenomenon
could be that cells in the vicinity of a border receive signals from the cells directly at the
border and align their motility direction accordingly. There is also another purely physical
mechanism at work here that could contribute to the observed behavior. It has been shown
recently that simple self-propelled spheres accumulate near walls due to the competition
between propulsion and rotational diffusion [Elgeti & Gompper, 2013]. Although, in the
experimental system the role of crowding is not clear, the effect is general to all systems
with self-propelled particles.

The density profile in the simulations looks roughly flat. Near the walls, however, a
layering effect is observed that indicates, where the model could need extension.

3.3.4 Invading cell sheets

Now that we characterized how the boundaries affect cell division orientation, we want to
study invading cell sheets.

Divisional order

We calculated the orientation of cell divisions from the experimental data and analyzed its
correlation with the direction of migration, the x-axis. The experiments show a roughly
constant order of 0.3 in the bulk that drops to −0.3 towards the front (see figure 3.33a).
Interestingly, there seems to be an overall perpendicular alignment of divisions directly at
the front, which could stem from a surface tension. If we discard the division events near
the wall in our simulations, we can reproduce most of the observed profile. Directly at the
front, though, we see no preferred alignment perpendicular to the migration direction.
We also looked at the alignment of the eigenvector λ of the greatest eigenvalue λ1 of

the velocity gradient tensor Eαβ with the migration direction at the sites of division and
as an overall average (see figure 3.33b). Experiments and simulations both display no
preferred direction of λ in the bulk but differ directly at the front. Note, however, that
the first point of the experimental data has to be taken with care as the PIV analysis is
less accurate near boundaries.
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Figure 3.33: The order of the division axis and the order of the main axis of
the velocity gradient tensor in invading cell sheets. a) Orientation of division axis
with respect to the x-axis Sdx as a function of the front distance s. “sim, no walls” displays
the order in the simulations if particles closer than 42 µm to the walls are excluded from
the evaluation. b) Orientation of the eigenvector λ of the greatest eigenvalue of the veloc-
ity gradient tensor Sλx with respect to the x axis as a function of the front distance s at
division sites and as an average over all positions. Taken from [Marel et al., 2014].

Cell division rate

Similar to the case of the resting cell sheets, an increase in divisions can be seen at the front
of invading cell sheets (see figure 3.34). Although not very pronounced, the experimental
data shows a distinct peak in division rate directly at the front, while being roughly
constant in the bulk. The simulations display a similar effect but much stronger.

Flow profiles

The experimental flow profiles in x and y direction as a function of the front distance s
agree well with the simulations (see figure 3.35b). Both show a maximum velocity vx at
the front and a decrease towards the bulk due to growth. In the simulations, however, the
velocity vx drops much slower. Note that PIV is less accurate near interfaces, which could
account for the velocity maximum being not exactly at the leading edge.

During migration, a velocity profile across the channel vx(y) emerges in the experiments
that is neither parabolic, nor a simple plug flow (see figure 3.35c). Instead, it is roughly
constant beyond 40 µm from the channel wall and drops to approximately 1/3 of its bulk
value directly at the channel wall. Note the overall decrease in velocity as the distance to
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Figure 3.34: Division rate as a function of the distance to the front. a) Snap-
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t. Channels are 300 µm wide in both cases. b) Division rate kd as a function of the distance
to the front s.

the front increases, in full agreement with the aforementioned vx(s) profile. The simulations
show a perfect plug flow as would be expected from the employed RBCs. Introducing
another model parameter into the simulations, namely the slip length, we are able to
reproduce the experimentally observed velocity profile. However, this does not change any
other result qualitatively, which is why we decided to keep the RBCs for simplicity. Here,
the overall velocity also decreases with the distance to the front.
In the experiments, we observe a flow gradient in y direction that reduces with the

distance to the front s and drives a flow of cells from the center towards the channel walls
(see figure 3.35d). This counterintuitive behavior is similar to the case of resting cell sheets.
Contrary, the simulations show a flow gradient in opposite direction, driving a flow of cells
from the walls towards the center of the channel. Similar to the experiments, this gradient
also diminishes with the distance to the front.

Cell density

The density ρ in experiments as well as simulations display a monotonical increase with
the distance to the front s. This increase is largest near the leading edge (see figure 3.36a).
Again, looking at the experimental density profile in y direction for different s (see
figure 3.36b), reveals the same density gradient already observed in the resting cell sheets.
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Figure 3.35: Velocity profiles perpendicular and parallel to the main migration
direction. a) Sketch of the velocity profiles at different distances to the front for an
invading cell sheet. b) Velocity vx/y as a function of front distance s. c) Velocity vx in
x direction as a function of wall distance y for different distances s to the leading edge.
d) Same as in c) but velocity component in y direction vy. All error bars represent SEM.
Taken from [Marel et al., 2014].

The accumulation of cells near the wall grows with the distance to the leading edge. This
phenomenon is not reproduced by the simulations as already mentioned earlier.

3.3.5 Cell division orientation dependence on local properties

So far, we only considered the order of the cell division axis d with respect to global
properties, like the main migration direction x or the distance to the front s. There is,
however, no known mechanism that would enable cells to sense these global properties.
Therefore, we want to explore the correlations of d with local properties.
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Figure 3.36: Density profiles perpendicular and parallel to the main migration
direction. a) Density ρ as a function of the front distance s. b) Density ρ as a function
of the wall distance y for different distances s to the leading edge. All error bars represent
SEM. Taken from [Marel et al., 2014].

Dependence on velocity gradient

Expanding cell sheets of motile cells are known to be under tension [Serra-Picamal et al.,
2012, Tambe et al., 2011, Trepat et al., 2009]. Hence, the question arises, whether this
local tension directs cell division. Since we do not have access to the mechanical stresses
in the experiments, we cannot directly address this question. However, we already noted
in section 2.2.6 how the velocity field relates to the stress in Newtonian fluids and in most
complex fluids as well. Thus, we calculated the strain rate tensor Eαβ from the velocity
fields. Its diagonalization yields the two eigenvalues λ1/2, where λ1 ≥ λ2 by convention,
and the eigenvector λ corresponding to the larger eigenvalue λ1 and λ̄ corresponding to
the smaller eigenvalue λ2. We assume λ to be also the main axis of stress. Furthermore,
we calculated the dipole strength p = λ1 − λ2 of the flow field. A value close to zero
is indicative of an isotropic stress state, where the stress along both axes are equal in
strength, while p > 0 resembles the situation of a force dipole.

The order parameter Sdλ between the division axis d and the main axis of the diagonalized
strain rate tensor λ increases linearly with the dipole strength p for migrating as well
as resting cell sheets in the experiments (shown in figure 3.37a). Although both display
considerable order for large p of 0.5 and 0.3, respectively, the slope is smaller in the case
of the confluently plated cells.
The simulations show an even higher order of up to 0.8 for invading as well as resting



3.3 Division axes alignment in motile tissues 97

0

0.5

1

0 0.2 0.4 0.6 0.8

O
rd

er
pa

ra
m

et
er
S
d λ
(p

)

Dipole strength p = λ1 − λ2

exp, flow
exp, conf

0

0.5

1

0 0.2 0.4 0.6 0.8

O
rd

er
pa

ra
m

et
er
S
d λ
(p

)

Dipole strength p = λ1 − λ2

sim, flow
sim, conf

a) b)

v
λ

d

θ

Figure 3.37: Dependence of the division orientation on the dipole strength. a)
Order parameter Sdλ of the division axis d and the main axis λ of the strain rate tensor
as a function of the dipole strength p for invading (flow) and resting (conf) cell sheets in
experiments. Small values characterize isotropic stress along both main axes, while large p
correspond to an asymmetric stress state. b) Same as in a) for the simulations. The inset
shows a sketch of the division axis d and the main axis of the strain rate tensor λ for the
drawn velocity field v. All error bars represent SEM. Taken from [Marel et al., 2014].

cell sheets (see figure 3.37b). Thus, the slope is much steeper and the initial linear regime
quickly saturates for larger p. Since our simulations use a mechanistic model, cells will on
average always expand in the direction of least resistance, which means in the direction of
the least compression or highest tension.
The unisotropic cell growth along a specific axis d creates an elongational flow field.

This flow field is characterized by the difference in velocity gradients parallel (∂‖v‖) and
perpendicular (∂⊥v⊥) to the division axis d. On average, we find < ∂‖v‖ − ∂⊥v⊥ >=
(0.15± 0.03) h−1 for the invading cell sheets and < ∂‖v‖ − ∂⊥v⊥ >= (0.07± 0.02) h−1 for
the confluently plated cells in the experiments (errors are SEM). The simulation results
match even quantitatively. Invasion shows < ∂‖v‖−∂⊥v⊥ >= (0.17± 0.05) h−1 and resting
cell sheets have < ∂‖v‖ − ∂⊥v⊥ >= (0.07± 0.02)h−1.

Dependence on local velocity

Due to the friction with the underlying substrate, Galilean invariance is broken. This can,
in principle, lead to an alignment of the cells by the local velocity. However, while the
division axis alignment Sdx increases with the distance to the front (see figure 3.33a), the
velocity decreases (see figure 3.35b), contradicting the assumption that velocity instead of
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Figure 3.38: The time evolution of the divergence of the velocity field at divi-
sion sites. t = 0 corresponds to the first frame, where both daughter cells were observed.

velocity gradients guide cell division. Indeed, the overall average order between the local
velocity v and the division axis d (0.17 ± 0.02 for the flow experiments and 0.1 ± 0.02
for the confluent experiments) is much smaller than the average order between λ and d
(0.28± 0.02 and 0.15± 0.01, respectively). However, fluctuations are high with standard
deviations of typically 0.7.

Divergence of velocity field

The growth of the cells should be reflected in the overall divergence of the velocity field.
However, looking at the time evolution of the divergence at division sites shows a negative
divergence before and a positive divergence after the cell division (see figure 3.38). It is
consistent with cells rounding up shortly before division and successively respreading into
the tissue [Lundgren & Roos, 1976, Porter et al., 1973, Sanger, 1980]. This, on the other
hand, indicates that the measured flow fields at division sites are strongly influenced by
the cell round-up process.

3.3.6 Stress measurements in simulations

Although not experimentally available, we are able to determine the stress in our simulations.
Surprisingly, the tissue in the simulations are not under tension in the current set-up as
we expected but under pressure (see figure 3.39a). Note that we used the same parameter
set that leads to a global state of tension for simulations of unconfined tissues.
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Figure 3.39: Stress as a function of the distance to the front and front velocity
as a function of motility force in advancing cell sheets. a) Stress σxx as a function
of front distance s. Note that the stress is in simulation units. As per definition, negative
values correspond to pressure and positive to tension. b) Front velocity vf as a function of
the motility force strength m∗ = |Fm∗|, normalized by the front velocity at m∗ = 0 (i.e. a
tissue that expands exclusively due to cell division). All error bars represent SEM.

3.3.7 Parameter variation

In order to remedy the observed discrepancies between simulations and experiments we
varied the adhesion strength f∗1 , the growth force B∗, the volume exclusion prefactor
f∗0 , and the intra- and intercell friction coefficients γc/t. While a tensional state can be
established in our set-up by a slight increase in adhesion strength f∗1 (see figure 3.39a), the
increased adhesion leads to a partial collapse of the tissue (similar to what is mentioned in
[Pathmanathan et al., 2009]), where cell-cell interactions are extended to include next-
nearest neighbors. This results in a strong suppression of proliferation in the bulk of the
tissue, making the analysis of cell division orientation difficult. One could argue that
migration in our simulations with the standard parameters in the used set-up is caused
exclusively by the pressure build-up due to growth instead of a collective motility alignment
phenomenon. Nevertheless, the front velocity vf significantly increases with the motility
force strength m∗ (for the standard parameters by a factor of 4) as shown in figure 3.39b.
This emphasizes the importance of the motility in the simulations of expanding tissues.

As for the discrepancies at the boundaries, a thorough parameter search inside the model,
varying f∗1 , f∗0 , B∗, γc, and γt has been conducted. However, we did not find a parameter
set that captures all the missing aspects. Furthermore, the results remained qualitatively
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the same, which is why we compared the experiments to the already established parameter
set, defined in [Basan et al., 2013].



4 Conclusions

4.1 Negative homeostatic pressure

We have used 3d simulations to study tissue growth with and without external mechanical
stresses. In particular, we were interested in growth with a negative homeostatic pressure
and its dependence on different model parameters such as the growth force strength,
adhesion strength, apoptosis rate and compressibility. We have shown that growth with a
negative homeostatic pressure is self-sustaining. It leads to a steady state under tension,
where the on average apoptotic core is balanced by a constant influx of cells from the
proliferating surface. We used the experimental data of several different cell lines to show
that their homeostatic pressure is likely to be negative. A simple linear extrapolation
of the bulk growth rate to zero led to an estimated homeostatic pressure of the order of
minus a few kilo pascal. This, however, has to be taken with care as the experimental
data of the cell line CT26 clearly deviates from a linear behavior.

We measured the bulk growth rates for many different imposed stresses (compressional
as well as tensional) in our simulations and discovered a general three-regime picture by
looking at the bulk growth rate as a function of the difference between the imposed and the
homeostatic pressure. Around the homeostatic pressure, a linear region is found that, in
principle, validates the linear expansion. However, this domain does not necessarily extend
into the compressional regime for negative homeostatic pressures. For high compression
the bulk growth rate asymptotically approaches the stress independent apoptosis rate,
while for high tension another linear regime is seen with a different slope than before.
We then fitted the simulation data to the data of CT26 by varying the growth force B∗

and adhesion strength f∗1 . This resulted in a valley of optimal combinations of B∗ and
f∗1 , which, however, all led to roughly the same homeostatic pressure of −1 to −2 kPa.
Even more, the chosen optimal set of parameters was able to predict the bulk growth
rates at elevated pressure of three of the remaining four cell lines by simply rescaling the
simulations according to the bulk growth rate at zero pressure. Thus, the rescaling of the

101
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experimental data with the bulk growth rate at zero pressure led to a collapse of four out
of five curves, suggesting a certain universality.

Furthermore, we measured in the simulations the dependence of the homeostatic pressure
on the growth force, adhesion strength, apoptosis rate and compressibility. We found that
the homeostatic pressure grows with increasing growth forces, increasing compressibility
and decreasing adhesion strength. It is well known that as cancer evolves, the expression
of the cell-cell adhesion protein E-cadherin is lowered in the tumor cells [Weinberg, 2007].
We have shown that a reduction in adhesion leads to a higher homeostatic pressure, which
would be favorable for the progression of a tumor. In addition, the observed increase
in homeostatic pressure for higher compressibilities may explain, why many cancer cells
across very different origins have been found to be softer (in suspension) [Cross et al., 2007,
Fritsch et al., 2010, Guck et al., 2005, Jonas et al., 2011, Lekka et al., 1999, Remmerbach
et al., 2009, Runge et al., 2014]. We noticed only a surprisingly small change of around 20%
of the homeostatic pressure for apoptosis rates spanning nearly two orders of magnitude.

Furthermore, the negative homeostatic pressure offers a novel and simple explanation of
how tensile homeostasis is maintained. It has been shown that many epithelia are under
tension in vivo [Butcher et al., 2009, Heisenberg & Bellaïche, 2013, Martin & Goldstein,
2014, Trepat et al., 2009, Wozniak & Chen, 2009]. After inflicting a model wound by
laser ablation, these tissues display recoil velocities, clearly proving the state of tension.
Intuitively one could think a tensile homeostasis is unstable. A simple cut relaxes stress,
which elevates the pressure and, thus, apoptosis is favored. However, this results in a free
surface at which cell division is increased, stabilizing the tensile state. In the simulations,
we performed a virtual laser cut in 3d and the aforementioned behavior is observed. It is
important to note that the increased cell division at the free surface created by the laser
cut is an automatic result of the simulations and has not been incorporated into the model
explicitly.
Still, the question remains to what could be the evolutionary advantage of a tensile

homeostatic state. The balance of surface growth and bulk death naturally leads to a
finite size. This mechanism could, thus, be used for size control. Furthermore, from a
mechanics point of view, a tensile tissue connected to a stiff skeleton seems more capable
of sustaining its shape and integrity under constantly changing external forces.

In addition, we compared the steady state radii of full tissue spheroids with the results
of a quasi 1d set-up. The quasi 1d set-up approximates a full tissue spheroid by simulating
only a small cuboidal box with high aspect ratio, where we have open boundaries along
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the long axis (z) and periodic boundaries in x and y direction. A more detailed analysis
revealed a tension build-up due to the periodic boundaries, which leads to increased,
partially aligned cell divisions in the x-y-plane. Thus, we observed a consistently larger
steady state size in the quasi 1d set-up as compared to the equivalent 3d spheroid. The
stress at the boundaries is related to the homeostatic pressure, which means it is tensile
for a negative homeostatic pressure. Therefore, such systems do not resemble the 1d
representation of a tissue spheroid but instead describe a new state: tensile membranes.
In this state, the tissue forms a relatively thin sheet that is maintained by the in-plane
tension due to the homeostatic pressure acting across the periodic boundaries. Note,
however, that tensile membranes are only possible for a negative homeostatic pressure.

It will be interesting to see, whether our extrapolation of the homeostatic pressures for
the analyzed cell lines can be confirmed by direct experimental measurements and whether
our predictions for the bulk growth rate behavior for tissues under tension are correct.
Thus far, the simulation model has proven to reproduce the available experimental data in
the context of the homeostatic pressure theory very well. It is, therefore, conceivable that
it can be used to test new ideas for experiments in this context and analyze their results.
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4.2 Interface dynamics of competing tissues

We investigated the interface dynamics of two competing tissues with different homeostatic
pressures. In the context of the homeostatic pressure theory, this difference leads to a
take-over of the tissue with the higher homeostatic pressure. First of all, we showed by
analytical calculations that the dynamics in one dimension yield an interface, propagating
at a constant velocity. This interface velocity depends linearly on the difference in the
homeostatic pressures of the tissues.
We used the same simulation model as before confined to two dimensions and with

a slightly different parameter set. In order to efficiently study tissue competitions, we
proposed a new set-up called treadmilling by introducing a comoving simulation box and
compared it to conventional simulations. We measured the interface position, width and
stress profiles for different homeostatic stress differences, which matched perfectly the
1d analytical prediction. Also the constant front velocity was well reproduced in the
simulations.
We observed that the stress is not isotropic across the interface, meaning the stress

parallel does not match the stress perpendicular to the interface. This yields a surface
tension per its definition. We found the surface tension to grow for increasing homeostatic
stress differences.

Finally, we characterized the scaling behavior of the interface width w =
√
〈h2〉 − 〈h〉2,

where h describes the interface. For early times t, we identified a power law growth w ∼ tβ ,
which saturates with a system size L dependent width wsat ∼ Lα. We found a growth
exponent β ≈ 0.4 and a roughness exponent α ≈ 0.25. It was suggested by experiments
that the scaling exponents of growing tissues should fall into the MBE universality class
[Brú et al., 2003]. However, numerical studies could not reproduce this behavior and
instead suggested the KPZ universality class. While our measured growth exponent roughly
fits KPZ and MBE (β2d

KPZ = 1/3, β2d
MBE = 3/8), our roughness exponent is significantly

smaller (α2d
KPZ = 1/2, α2d

MBE = 3/2). Experiments of growing bacterial colonies Vicsek
et al. [1990] measured even another roughness exponent of α ≈ 0.78.
The question remains to what universality class the tissue competition belongs and

what microscopic phenomena dominate its dynamics. It will be interesting to see whether
the scaling exponents vary systematically with the homeostatic pressure difference. In a
next step, the simulations could also be used to study the interface dynamics in three
dimensions. This would be more closely related to actual tumor growth.
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4.3 Division axes alignment in motile tissues

The emerging flow in collectively migrating cell sheets affects the orientation of the
cell division axis. In the experiments, expanding MDCK cell sheets were confined in
microstructured PEG-DMA channels and cell divisions, density and front position were
tracked. The flow field was determined by PIV analysis. We correlated flow fields,
divisional orientation and cell density to extract quantitative features of tissue migration
and compared the experimental findings to those of simulations.

We observed a constant invasion speed of the cell sheets in experiments and simulations
as well as a remarkable similarity in the density profile as a function of the distance to the
leading edge with a roughly constant density in the bulk that drops towards the leading
edge. Thus, those quantities were chosen to relate simulations and experiments. We found
a strong alignment of the orientation of the cell division axis with the direction of the
observed flow.

In order to differentiate phenomena caused by the cell flow from boundary effects of the
channel walls, we analyzed resting cell sheets within the same PEG-DMA microchannels.
Except for a small layer of roughly one to two cell diameters near the wall, division was
measured to be isotropic, supporting our suggestion that the emergent flow in migrating
monolayers was the main influence on the direction of cell division.
The experiments of resting cell sheets revealed another interesting and unexpected

behavior. We observed an active flow of cells toward the walls, which creates and sustains
a density gradient with higher densities near the wall. Over time, this flow diminishes
but the density gradient remains intact. The same behavior could be verified in the
experiments of invading cell sheets. However, it remains to be seen whether this is a
generic feature, which is found in other tissues or experiments as well.

Analyzing local quantities showed that the orientation of the cell division axis correlates
best with local flow gradients, as opposed to the channel axis or velocity direction. In fact,
we found the average order between the division axis and the main axis of the strain rate
tensor to be twice as large as the average order between the division axis and the local
velocity direction. This is consistent with stresses orienting cell division, and the stress
being proportional to the flow gradient. However, we also evaluated the velocity gradient
shortly before and after cell divisions and the observed behavior shows signs of the well
known round-up and respread process of dividing cells. A more rigorous analysis is needed,
where individual cells are traced over time until division, to identify the dominant process.
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We extended the simulations with a previously published motility algorithm and com-
pared them to the experimental results. A striking set of features are captured well. In
particular, they displayed a similar decrease in cell density towards the leading edge,
comparable emergent flow profiles, a weak correlation of the main axis of the strain rate
tensor with the x-axis as well as a strong correlation with the division axis and strong
correlations between the main axis of the strain rate tensor and the division axis. However,
comparing quantities near boundaries (channel walls or the leading edge of the invasion
front) revealed strong deviations and indicate points, where the model needs to be extended.
Especially the flow towards the walls and the emerging density gradient perpendicular to
the channel could not be captured in the simulations. While the flow may be incorporated
by some extension to the motility algorithm, we are convinced that the problems at the
boundaries can only be solved by a more realistic representation of a cell to better account
for its inner structure. However, it is noteworthy that the used model was not intended to
study this kind of experiments. Thus, it is surprising how well the bulk phenomena are
reproduced.
The orientation of cell division axes in flow fields could be of significant relevance for

growing tissues in wound healing and development. It seems natural that an expanding
tissue will orient individual cell divisions in the direction of expansion in order to reduce
the principal stress. It remains to be seen if in-vivo experiments show similar oriented cell
divisions in cellular flows.
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Appendix

Standard parameter set in 3d simulations

Time step ∆t 10−3

Pair interaction range Rpp 1
Cellular expansion pressure constant r0 1
Range of dissipative forces rt 1
Distance threshold for cell division rct 0.8
Growth force strength B 50
Mass m 1
Intracell friction coeficient γc 100
Intercell friction coefficient γt 50
Background friction γbg 0.1
Apoptosis rate ka 10−2

Noise intensity kBT 0.1
Repulsive cell-cell potential coefficient f0 2.39566
Attractive cell-cell potential coefficient f1 7.5
Gas particle repulsive cell-cell potential coefficient fgas0 0.1
Verlet list cut-off radius Rv 1.3
Isothermal compressibility βT 1
Relaxation time constant tP 1

Table A.1: Standard parameter set for 3d simulations.
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Standard parameter set in motility simulations

Time step ∆t 10−3

Pair interaction range Rpp 1
Cellular expansion pressure constant r0 1
Range of dissipative forces rt 1
Distance threshold for cell division rct 0.4
Growth force strength B 5
Mass m 1
Intracell friction coeficient γc 50
Intercell friction coefficient γt 50
Background friction γbg 10
Apoptosis rate ka 0
Noise intensity kBT 75 · 10−6

Repulsive cell-cell potential coefficient f0 2.4
Attractive cell-cell potential coefficient f1 1.0
Verlet list cut-off radius Rv 1.3
Rate at which cells turn motile kmot 0.4
Rate at which aligned cells turn non-motile k+ 0.1
Rate at which unaligned cells turn non-motile k− 1.0
Motility force strength m 1.2
Imposed division rate kdiv 0.1
Velocity relaxation time τrel 0.5/kdiv

Table A.2: Standard parameter set for motility simulations.
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