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A b s t r a c t  
 

 

Circadian rhythms are endogenous oscillators of about 24 hours that keep track of time on a 

daily and seasonal basis. Several endogenous rhythms exist in cells, but if they are to serve a time-

keeping function they should satisfy certain criteria. First, they should be able to entrain to the 

rhythmic environment through zeitgebers (German for time givers), such as the daily changes in 

light and temperature. Second, true biological clocks resist environmental perturbation and maintain 

a period within the circadian range at different physiological ambient temperatures, a property 

known as temperature compensation. Peculiarly, the pace of the clock is compensated against 

changes in ambient temperature, but temperature pulses entrain the clock. 

Temperature compensation has long puzzled scientists as biochemical reactions that build the 

clock are assumed to be temperature dependent. This problem has been addressed by several 

theories. According to one of these, temperature compensation would be the result of antagonistic 

processes. Alternatively it has been presented as an integral property of the clock and its 

components. According to a theory that combines both approaches, temperature compensation 

would be an integrated property from metabolic and/or transcriptional/translational networks that 

would together make the central oscillator. If this is correct, then it is expected that metabolic 

perturbation would alter the circadian period of rhythmic gene expression. To test this I applied 

chemicals that perturb metabolism (through the antioxidant system of the cell, photosynthesis, 

respiration and sulfur metabolism) and then monitored changes in rhythmic gene expression. One 

caveat to this is that oscillators (and networks) compensate. For this, not surprisingly, various 

authors have reported testing thousands of chemicals in order to find rare ones that are active in 

circadian assays. Despite this, I found that sucrose and photosynthesis-related chemicals affected the 

pace of nuclear oscillations in my assays. Moreover, these responses were altered in known 

circadian mutants, indicating that primary metabolism interacts with the components of the 

transcriptional/translational oscillator of Arabidopsis. In addition to these, I searched for metabolic-

circadian interactions by testing several metabolism-related mutants in circadian assays and found 

that HSP90 has a temperature compensation long-period phenotype. Together these findings indicate 

that metabolism is part of the mechanism that buffers circadian period length against environmental 

perturbation. 

Primary metabolism has been implicated in the generation of daily rhythms in every model 

organism used in the research field of chronobiology. Here it is shown that all the genetic 

components represented in an early model of the transcriptional/translational oscillator of 

Arabidopsis (CCA1, LHY, TOC1 and GI) as well as the main red-light circadian photoreceptor 

PHYB are required components for sucrose entry to clock action. In more detail, the loss-of-function 
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phyB-9 mutant showed a circadian phenotype, surprisingly, under blue light when sucrose was not 

exogenously applied. Sucrose advanced the circadian phase of photosynthetic gene expression, and 

the cca1-11 mutant was resistant in this respect. In contrast, the lhy-21 mutant was temporally 

oversensitive. The effect of sucrose on rhythmic gene expression was gene specific, as the promoter 

of GI responded to sucrose with period shortening. In contrast to previous reports, I found that the 

phenotypic response of the gi-11 mutant to sucrose was light dependent. Most importantly, under 

blue light the cca1-11;lhy-21 mutant exhibited robust oscillations so long as sucrose was not 

supplemented. In addition to these, the toc1-21 mutant did not exhibit its characteristic short-period 

phenotype under red light when placed on growth medium that lacked sucrose. These findings and 

others presented in this work show that nuclear and cytosolic oscillations are coupled to each other 

in a manner predicted by the zeitnehmer model previously proposed for Neurospora. In support of 

this notion, the status of exogenous sucrose during entrainment to light/dark cycles was 

"remembered" during free run, in the form of sucrose-dependent transients. From this I propose that 

endogenous sucrose functions as a zeitgeber to entrain the clock, which in turn is in agreement to the 

role of photosynthesis as a zeitnehmer. 

Redox perturbation can alter clock function. The antioxidant vitamin C and oxidant paraquat 

altered the circadian period in a light-quality dependent manner. In addition, rifampicin lengthened 

circadian period and salicylic acid increased oscillatory robustness and shortened circadian period. 

This later effect of salicylic acid was inhibited by sucrose and was also clock gated, and only took 

place during the first half of the subjective day in experiments that involved non-parametric 

entrainment to hormone- and light-pulses. Period lengthening or shortening by these chemicals was 

correlated to their proposed impact on photosynthetic electron-transport activity. Based on my data 

and on published circadian effects of other factors that alter the redox state of plastoquinone, I 

propose that photosynthetic electron transport and the redox state of plastoquinone are involved in 

light input to the transcriptional oscillator. This could explain the circadian rule of Aschoff 

according to which circadian period is a function of light intensity. Moreover, coupling between 

chloroplast-related and nuclear oscillations, as observed in my chemical and genetic assays, 

produces "traits" predicted by the zeitnehmer model. Vitamin C, salicylic acid, sucrose and 

chloroplastic electron transport chains are proposed here to form multiple zeitnehmer loops that 

entrain and together strengthen input signals to render nuclear oscillations more robust. 

Of the "non-circadian" mutants I tested, hsp90.2-3, known to be altered for reactive-oxygen-

species metabolism and related defense responses, had a temperature compensation long-period 

phenotype. The preliminary results I report here are suggestive that circadian defects in hsp90.2-3 

are affiliated to metabolism. Last, I discuss the possibility that stress cues, biotic and abiotic, might 

function as zeitgebers. Together metabolism and the clock appear as tightly integrated processes. 
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Z u s a m m e n f a s s u n g  

 

 

Zirkadiane Rhythmen sind endogene Oszillatoren mit einer Periode von etwa 24 Stunden, die 

sowohl tageweise als auch jahreszeitlich die Zeit messen. Zellen besitzen zwar eine Vielzahl 

endogener Rhythmen; wenn diese jedoch einer Zeiterfassung dienen sollen, müssen bestimmte 

Kriterien erfüllt sein. Erstens sollten sie fähig sein, mittels Zeitgebern an den Ablauf der Umgebung 

wie tägliche Veränderungen von Licht und Temperatur anzukoppeln. Zweitens widersetzen sich 

echte biologische Uhren umfeldbedingten Störeinflüssen und erhalten auch bei unterschiedlicher 

physiologischer Außentemperatur die Periode innerhalb des zirkadianen Intervalls. Diese 

Eigenschaft wird Temperaturkompensation genannt. Auffällig ist hierbei, dass die Geschwindigkeit 

der inneren Uhr gegen Veränderungen der Außentemperatur ausgeglichen wird, die Uhr jedoch 

durch Temperaturimpulse gekoppelt wird.  

Die Temperaturkompensation hat Wissenschaftler lange Zeit verblüfft, da angenommen wird, 

dass jene biochemischen Reaktionen, die die Uhr bilden, temperaturabhängig sind. Diesem Problem 

haben sich mehrere Theorien gewidmet. Gemäß einer dieser Theorien sei die 

Temperaturkompensation das Ergebnis antagonistischer Prozesse. Alternativ wurde diese als 

integrale Eigenschaft der Uhr und ihrer Komponenten dargestellt. Einer Theorie folgend, die beide 

Ansätze miteinander vereint, wäre die Temperaturkompensation eine eingebundene Eigenschaft aus 

molekularen Stoffwechselnetzwerken und/oder von transkriptionellen bzw. Translationsnetzwerken, 

die zusammen den zentralen Oszillator bilden würden. Falls dies zutrifft, geht man davon aus, dass 

Stoffwechselstörungen die zirkadiane Periode der rhythmischen Genexpression verändern würden. 

Um dies zu überprüfen, habe ich chemische Stoffe eingesetzt, die den Stoffwechsel beeinträchtigen 

(z. B. mittels antioxidativen Systems der Zelle, mittels Photosynthese, sowie der Atmung und des 

Schwefelstoffwechsels), um dadurch Veränderungen in der rhythmischen Genexpression zu 

beobachten. Ein Vorbehalt bei diesem Vorhaben ist, dass Oszillatoren (und Netzwerke) ausgleichend 

sind. Aus diesem Grund haben verschiedene Autoren – keinesfalls überraschend – berichtet, dass sie 

Tausende von Chemikalien getestet haben, um die seltenen zu finden, die in zirkadianen Proben 

aktiv sind. Ungeachtet dessen habe ich entdeckt, dass Saccharose und photosyntheserelevanten 

Chemikalien den Takt der Zellkernoszillationen in meinen Proben beeinträchtigten. Überdies 

wurden diese Reaktionen bei bekannten zirkadianen Mutanten verändert, wodurch sie zeigten, dass 

der primäre Stoffwechsel mit den Komponenten des Transkriptions-/Translationsoszillators der 

Arabidopsis interagiert. Zusätzlich habe ich nach Wechselbeziehungen zwischen dem Stoffwechsel 

und dem zirkadianen Rhythmus geforscht, indem ich mehrere stoffwechselbedingte Mutanten in 

zirkadiane Proben getestet habe. Dabei fand ich, dass HSP90 eine Temperaturkompensations- und 
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Langzeitphänotyp hat. Zusammengenommen zeigen diese Ergebnisse auf, dass der Stoffwechsel ein 

Teil jenes Mechanismus darstellt, der die zirkadiane Periodenlänge gegen Umfeldeinflüssen puffert.  

Der Primärstoffwechsel war an der Erzeugung von Tagesrhythmen eines jeden 

Organismusmusters beteiligt, das in der Chronobiologieforschung benutzt wird. Hier wird gezeigt, 

dass all jene genetischen Komponenten, die in einem der ersten Modelle des Transkriptions-

/Translationsoszillators der Arabidopsis dargestellt wurden (CCA1, LHY, TOC1 und GI), als auch 

der zirkadiane Hauptrotlichtphotorezeptor PHYB, notwendige Komponenten sind, damit die 

Saccharoseeingabe die Uhr aktiviert. Im Einzelnen gesagt, zeigte der Funktionsverlust-phyB-9-

Mutant überraschenderweise einen zirkadianen Phänotyp unter blauem Licht, wenn Saccharose nicht 

exogen zugeführt wurde. Saccharose erzielte eine zirkadiane Phasenverschiebung der 

photosynthetischen Genexpression und der cca1-11-Mutant zeigte sich in dieser Hinsicht resistent. 

Dagegen war der lhy-21-Mutant zeitweise übersensitiv. Die Wirkung der Saccharose auf die 

rhythmische Genexpression war genspezifisch, da der Promotor der GI auf Saccharose mit 

Periodenverkürzung reagierte. Gegenüber früheren Berichten, habe ich herausgefunden, dass die 

phänotypische Reaktion des gi-11-Mutanten auf Saccharose lichtabhängig war. Wesentlich 

wichtiger scheint jedoch, dass der cca1-11;lhy-21-Mutant unter blauem Licht robuste Schwingungen 

aufwies, sofern Saccharose nicht aufgestockt wurde. Zusätzlich zu diesen Ergebnissen wies der toc1-

21-Mutant unter rotem Licht nicht etwa seinen charakteristischen Kurzzeit-Phänotyp auf, als er auf 

einem Wachstumsmedium, dem es an Saccharose mangelte, gesetzt wurde. Diese und andere in 

dieser Arbeit vorgestellten Ergebnisse zeigen, dass Zellkern- und zytosolische Schwingungen 

solcherart miteinander verbunden sind, wie dies bereits das für Neurospora vorgeschlagene 

Zeitnehmer-Model prognostiziert hatte. Um diesen Gedanken zu unterstützen, wurde der Status der 

exogenen Saccharose während der Ankopplung an Licht-Dunkelheit-Zyklen im Freilauf „erinnert“, 

und zwar in der Form von saccharoseabhängigen transient-Zyklen. Daher schlage ich vor, dass 

endogene Saccharose als ein Zeitgeber für die Uhrkopplung fungiert, die wiederum mit der Rolle der 

Photosynthese als ein Zeitnehmer übereinstimmt. 

Störeinflüsse auf den Redox-Zustand können die Uhrfunktion verändern. Das antioxidative 

Vitamin C und das oxidative Paraquat veränderten die zirkadiane Periode in Abhängigkeit von der 

Lichtqualität. Zusätzlich verlängerte Rifampicin die zirkadiane Periode und Salizylsäure führte zu 

einer Zunahme der oszillatorischen Robustheit sowie einer Verkürzung der zirkadianen Periode. 

Letztere Wirkung der Salizylsäure wurde durch Saccharose gehemmt und sogar uhraktiviert und trat 

nur während der ersten Hälfte des subjektiven Tages auf in Experimenten, die nichtparametrische 

Ankopplung an Hormon- und Lichtimpulsen beinhalteten. Periodenverlängerung oder –verkürzung 

durch diese Chemikalien stand in einer Wechselbeziehung zu ihrer erwarteten Auswirkung auf die 

photosynthetische Elektronentransportaktivität. Auf der Grundlage meines Datenmaterials und 

bereits aus Publikationen bekannten zirkadianen Wirkung anderer Faktoren, die den Redox-Zustand 
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von Plastochinonen verändern, schlage ich vor, dass der photosynthetische Elektronentransport und 

der Redox-Zustand von Plastochinonen an der Lichtrezeption auf den Transkriptionsoszillator 

beteiligt sind. Dies könnte die zirkadiane Regel von Aschoff erklären, gemäß derer die zirkadiane 

Periode eine Funktion der Lichtintensität ist. Zudem erzeugt die Kopplung zwischen 

chloroplastbedingten und Zellkernoszillationen, wie in meinen chemischen und genetischen Proben 

beobachtet, „Eigenschaften“, die im Zeitnehmer-Modell vorausgesagt wurden. Vitamin C, 

Salizylsäure, Saccharose und photosynthetische Elektronentransportketten sollen hier vielfältige 

Zeitnehmerschleifen bilden, die ankoppeln und zusammen die Inputsignale verstärken, um 

Zellkernoszillationen robuster zu machen. 

Von den von mir getesteten „nicht-zirkadianen“ Mutanten zeigte hsp90.2-3 – bekannt für 

Veränderungen des Stoffwechsels von reaktiven Sauerstoffspezies, die Abwehrreaktionen 

hervorrufen – einen Temperaturkompensations- und Langzeitphänotyp. Die vorausgehenden 

Ergebnisse, die ich hier vorstelle, deuten an, dass zirkadiane Defekte in hsp90.2-3 in Bezug zum 

Stoffwechsel stehen. Schließlich erörtere ich die Möglichkeit, dass biotische und abiotische 

Stressauslöser als Zeitgeber fungieren könnten. Zusammen scheinen Stoffwechsel und Uhr als eng 

ineinander integrierte Prozesse. 
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1.1. Circadian rhythms 

 

Most living organisms found near the terrestrial surface resonate their activities with the 

periodic environment as it is determined by the earth’s rotation around its axis
1
 (Dunlap, 1999). 

Biological periodicities were first
2
 noticed in the movement of leaves of the tamarind tree and 

described as long ago as the fourth century BC by Androsthenis. Their endogenous origin was 

demonstrated two millennia later by de-Mairan who observed them in mimosa plants kept in the 

dark (de Mairan, 1729). The free running period
3
 of leaf movement was not calculated until another 

hundred years had passed (de Candolle, 1832), and because its duration was of about 24 hours, these 

endogenous rhythms were subsequently named circadian
4
 (from latin circa and dian; "about one 

day"). During the last century, several endogenous rhythms in diverse organisms were discovered by 

researchers. In plants, processes that follow a circadian pattern include growth, photosynthesis, gas 

exchange, stomatal movement, enzyme activities, and fragrance emission (Cumming and Wagner, 

1968). In humans, examples include sleeping habits, body temperature, food intake, and electrolyte 

excretion
5
 (Aschoff and Wever, 1962; Siffre, 1963; Mills, 1963). Other examples are daily activity 

of rats (Richter, 1922), pupal enclosion and loco-motor activity in flies, asexual reproduction 

(conidiation) of Neurospora (reviewed in Dunlap, 1999), and rhythmic bioluminescence of 

Gonyaulax
6
 (reviewed in Hastings, 2007). These are only a few examples of endogenous rhythms 

extensively studied. Today rhythmicity is tracked to the level of molecules and can be genetically 

and biochemically manipulated. In all of the above cases, true circadian rhythms, whether perceived 

by the naked eye or through sophisticated techniques, are not imposed by environmental 

fluctuations, thus they are endogenous. 

                                                 
1. The most renowned consequence of this in humans is jet-lag. 

2. This holds "at least in the western canon" (McClung, 2006). 

3. Circadian period is the time interval between consecutive cycles under constant conditions. 

4. Lunar rhythms repeat every month, while ultradian rhythms are substantially faster than 24 hours and 

measured in minutes or hours. The term circadian was coined by the chronobiologist Franz Halberg in the 

1950s. It is attributed to the scholar Henry Nash Smith (Halberg et al., 2003). 

5. Mills (1963) studied Mr. Workman who decided to spend 100 days underground in solitude, from 16
th
 of 

June to 29
th
 September 1963, in Stump Cross Cavern, near Pateley Bridge, UK. Endogenous rhythms of about 

24 hours in electrolyte secretion and sleep habits were reported. In his work Mills also cites and comments on 

Siffre (1963), who performed a similar attempt and on Aschoff and Weffer (1962) who confined a number of 

subjects in a deep bunker. 

6. It is now known as Lingulodinium polyedrum. The circadian community still uses the old nomenclature. 
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As anyone who has experienced jet-lag can confirm, its unpleasant symptoms last only briefly. 

This is due to clock resynchronization, usually referred to as entrainment, between the endogenous 

oscillations and the rhythmic environment. Entrainment is mediated by perception of changes in 

light and temperature (termed zeitgebers from German for time givers), such as those naturally 

observed (reviewed in Devlin, 2002 and Dunlap, 2008). Botanists were once more the first to show 

this with leaf movement
7
, in experiments where the light/dark (LD) cycle was inverted (Hill, 1757). 

An obvious consequence of entrainment is proper phasing of rhythmic behavior e.g. preparing for 

photosynthesis in the day and the increased respiration at night, which is universally observed in 

plants. Another well-described consequence of entrainment to light is day-length measurement 

during photoperiodic responses. The relationship between photoperiodism and the circadian clock 

was first noted by Buenning (1936) and was later developed into the external coincidence model 

(Pittendrigh and Minis, 1964), according to which an internal oscillation that controls the 

photoperiodic response coincides with light during photo-inducible times of the day. Entrainable 

oscillations and their proper phasing are thus established as integral elements of photoperiodism. It 

should be mentioned that zeitgebers can influence rhythmic traits directly, photosynthesis being the 

most characteristic example of multiple control from light, temperature, and the clock. 

In 1931 Buenning noticed that the free running period of leaf movement was virtually 

independent of mean ambient temperature (Buenning, 1931). This property termed temperature 

compensation
8
 was later additionally confirmed for the clocks of animals and unicellular organisms 

(Sweeney and Hastings, 1960; Buenning, 1973
9
). Given that circadian rhythms stem from 

biochemical oscillations, temperature compensation has been a puzzling feature in the circadian 

field, as most reactions are temperature dependent. Clearly, temperature compensation ensures that 

circadian oscillations are nearly equally fast under both cool and warm days, and any periodicity that 

is not buffered against temperature is not to be considered circadian (Buenning, 1973
10

). 

Circadian rhythms are universal, endogenous, and temperature compensated timekeeping 

mechanisms that are entrained to the rhythmic environment by zeitgebers. Circadian systems have 

been, somehow arbitrarily, assigned with constitutive parts responsible for their attributed properties. 

                                                 
7. Entrainment to temperature cycles was shown later for many organisms (Buenning, 1973; pages 79 and 

92). 

8. Accordingly, the terms chemical and nutrient compensation are used to describe buffering against 

chemicals and nutrients respectively, as most will not alter circadian period. 

9. See pages 71 to 73. 

10. See pages 13 and 14. 



 4 

These are cell-autonomous oscillators (or central oscillators) that generate rhythmicity in cells, the 

input pathways that deliver information from zeitgebers to the oscillator for entrainment and the 

output pathways (otherwise "hands of the clock") that mediate rhythmicity to processes of adaptive 

significance (Hastings et al., 2008; Harmer, 2009). 

Common circadian parameters are period, phase, and amplitude (T, Φ and A respectively in 

fig. 1.1). For practical reasons phase is usually defined as the time point that coincides with the 

maxima (or minima) of the oscillating procedure relative to a dawn set-point, and is thus the 

acrophase. It should be clarified that there are two measures for phase and time. Time is measured as 

the number of cycles (angular time) or in reference to the last entrainment event (zeitgeber) that 

initiated free running conditions (measured usually in hours or days); the former is termed 

"Circadian Time" (CT) and the later "Zeitgeber Time" (ZT). Period is the time interval between two 

consecutive points of the same phase and amplitude is the difference between the minima and 

maxima of the oscillation divided by two (fig. 1.1). 

Rhythmicity (fig. 1.2) represents a fourth circadian parameter
11

 that shows the degree to which 

an oscillating population is described by sinusoidal curves (e.g. Doyle et al., 2002). Using the 

appropriate software, an experimental curve produced by a rhythmic individual is fitted to a 

theoretical sin curve via fast fourier transform (FFT) analysis; the degree to which the experimental 

and its corresponding theoretical curve are fitted to each other is represented by an error value, 

relative amplitude error (RAE) (fig. 1.2 A, B and C). The later is then taken in consideration in the 

calculation of the free running period of a given population (normalized Period; noPer). 

Consequently the mean free-running period of the population is defined largely by those individuals 

with lower error values. A population is said to oscillate robustly when its constitutive oscillations 

produce low RAE values and are in phase with each other. To estimate synchrony in many 

occasions, I used standard deviation (SD) of noPer (SD-noPer), instead of SD of phase, because SD-

noPer incorporates RAE values. Thereafter I defined accuracy as an indirect measure of synchrony 

inversely correlated to SD-noPer (fig. 1.2). Phase, amplitude, and robustness can be measured under 

free-running conditions under continuous light (LL), in continuous darkness (DD), or under diurnal 

conditions of LD cycles and/or thermo-cycles; the free running period can only be defined under LL 

and in DD. 

                                                 
11. See text below, fig.1.2 and chapter "Materials and methods" for robustness being a function of two 

distinct parameters, rhythmicity and accuracy. 
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Figure 1.1: Circadian parameters 

Circadian parameters are period (T), phase (Φ) and Amplitude (A). An oscillating organism or 

population is entrained to 12h light/12h dark (12hL/12hD) periods and/or similarly to warm/cold thermo-

cycles, and then released into free running conditions of constant ambient temperature and light. Under free 

running conditions endogenous oscillations persist. White and black bars represent objective day and 

objective night respectively. Dashed and grey bars represent subjective day and subjective night respectively, 

under free running conditions. 

 

 

 

 

 

 

 

 

 

The introduction of the luciferase system in the circadian field has been a turning point that 

allowed chronobiologists to perform large-scale screens that eventually led to the isolation of clock-

genes. That was initially performed in cyanobacteria (Kondo et al., 1993) and then in plants (Millar 

et al., 1995a). For this purpose, clock-controlled promoters were inserted upstream of a modified 

luciferase gene and transgenic organisms harboring these constructs were imaged in a large scale 

with automated systems. Previously, calculation of period, amplitude, and phase was in most cases a 

laborious act, performed with leaf movement or biochemical assays that demanded several hours of 

continuous work. One previous exception was experimental work with Neurospora that exhibits 

rhythmic conidiation in race tubes, in which case rhythmicity is revealed in the form of spore bands. 

Together, an ability to find mutations that alter rhythm generation of phase, period, amplitude, and 

capacity for over rhythmicity was thus generated. 

 

 

Figure 1.2: Principles of Fast Fourier Transform analysis 

Fast Fourier Transform (FFT) analysis quantifies circadian parameters of rhythmic individuals (B, C) or 

rhythmic populations (E, G). (A), (B), (C): RAE-values describe the degree to which experimental 

(continuous lines) and theoretical (FFT output; dashed lines) curves are fitted to each other; individuals with 

RAE-values approaching 1 (square) are less rhythmic than those with RAE-values approaching 0 (filled 

circle). (D), (E), (F), (G): The population described by figures F and G oscillates more robustly than the 
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population in D and E, because in the former SD-noPer (an indirect measure of synchrony) and the mean-

RAE values are lower relative to the later. Note that through RAE-normalization the period of a population 

becomes a function of rhythmicity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Features of entrainment 

 

Living organisms experiencing free run can entrain to pulses of zeitgebers. This kind of 

entrainment is referred to as non-parametric entrainment, as opposed to parametric entrainment to 

LD cycles. Depending on the time that they are applied, pulses can be inactive or induce phase-

advances or phase-delays, indicating that different phases of core-oscillations may react 

antagonistically. This differential sensitivity to parametric entrainment (referred to also as gating) is 
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usually shown with phase-response curves (PRCs, fig. 1.3). PRCs obtained with temperature pulses 

are often similar to those observed with light pulses (e.g. Buenning, 1973
12

; Covington et al., 2001). 

In 1960 Aschoff described a rule (which he named circadian rule; today it is known as the rule 

of Aschoff) according to which, in a given organism, free-running period changes linearly with the 

logarithm of light intensity. The length of the free running period decreases with increasing light 

intensity for organisms active in the light (including green plants) and the reverse relationship is 

often observed with nocturnal animals; the rule is illustrated with fluence-response curves (FRCs; 

fig. 1.4) (Buenning, 1973
13

). In plants, for example, free running oscillations are faster under 

continuous white light (WLc) than in DD, and presumably, this may result from the additive 

antagonistic effect that light has on the clock at different circadian times, as described in PRCs. 

Evidence in support of this additive-antagonistic relationship has been provided in Phaseolous, 

where the free running period of leaf movement is lengthened and shortened by continuous red 

(RLc) and far-red (FRLc) light respectively; this is likely because red light (RL) pulses produce 

PRCs with dominating phase delays whereas far-red light (FRL) pulses yield PRCs with dominating 

phase advances. It should be clarified that the effect of light on circadian period is relatively small 

when compared to the strong phase shifts caused by light pulses during non-parametric entrainment 

(indicated by the aforementioned relationship of light intensity and period being logarithmic). This 

paradox is somehow lessened again by assuming that at different circadian times continuous light 

would induce advances or delays that would minimize each other’s effect. 

FRCs and PRCs have been used in physiological and genetic studies (see chapter 1.6.3, fig. 1.3 

and fig. 1.4), which aimed to describe light input and its components. Ultimately in eukaryotes, light 

input is thought to be mediated by photoreceptors and downstream input pathways that exert their 

control on the levels or activities of core-clock elements (Wagner et al., 1975; Dunlap, 1999; Devlin, 

2002). It should be clarified that light input and light entrainment are not identical entities. 

Entrainment is achieved with parametric and non-parametric treatments and results in 

synchronization and phase shifts (PRCs), whereas light input is often measured as changes in 

amplitude and period. The discrepancy between these two entities
14

 was illustrated by entrainment to 

light in Arabidopsis. In this case, light entrainment can take place in mutants that lack the 

photoreceptors that mediate light input to the clock (Yanovsky et al., 2000; Strasser et al., 2010). 

                                                 
12. See chapters 5 and 6. 

13. See page 90. 

14. See chapter 1.6.2 for more on this issue (Covington et al., 2001; Kim et al., 2003). 
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Phase shifts induced by zeitgebers are settled in magnitude only after a few cycles have passed. 

Only then is the period of oscillations relatively stable. This transitory state, first described by 

Pittendrigh and Bruce in 1959 (Buenning, 1973
15

), is said to be caused by transients
16

 that describe a 

state that deviates from the steady state of adapted oscillations. In this work I provide evidence that 

in Arabidopsis entrainment is linked to metabolism, based on the induction of transients by 

parametric entrainment and their modification by nutrients. 

 

 

Figure 1.3: Phase Response Curves 

Phase Response Curves (PRCs) describe differential sensitivity (gating) to non-parametric entrainment. 

Light pulses applied during subjective day in DD, when light is expected, do not cause substantial phase 

shifts. Phase advances (A) or delays (B) are observed when light pulses are applied near subjective dawn or 

dusk respectively (shown with arrows). Figure C illustrates the PRC of Arabidopsis in response to RL or BL 

pulses (adapted from Covington et al., 2001). Similar PRCs are produced by temperature pulses in several 

unrelated species (Buenning, 1973). White and gray bars represent subjective day and night respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
15. See chapter 5. 

16. Transients are the reason why the first peak in expression of light-induced genes should be excluded when 

period is estimated. This peak integrates direct and indirect (via the oscillator) responses to zeitgebers and 

does not represent the properties or the speed of "adapted" (settled) oscillations. It is worth mentioning that 

transients were disregarded when temperature compensation was first examined in Drosophila, leading to 

false negative results regarding the universality of temperature compensation (Buenning, 1973, page 71). 
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Figure 1.4: Fluence Response Curves 

(A) Fluence-Response-Curves (FRCs) of diurnal (continuous line) and nocturnal (dashed line) animals 

(adapted after Buenning, 1973, p. 90). (B) FRCs introduced genetics to light input studies in Arabidopsis (see 

chapter 1.6.3 for a detailed analysis); the FRC of the wild-type (continuous line) and a of a given mutant 

(dashed line) are differentiated as shown, consequently the mutation is involved in light input to the clock in a 

light-fluence-dependent manner. 

 

 

 

 

 

 

 

 

 

1.3. Models for the time-generating mechanism 

 

The mechanism responsible for generating rhythmicity has been a subject of controversy. As 

early as 1960
17

, two trends could be distinguished. The major difference between them was in the 

assumed mechanism that would generate central autonomous oscillations, with some directed 

towards the nucleus and others to the cytoplasm and membranes (Zivkovic, 2011). Both approaches 

though were in agreement in that central oscillations would result from feedback inhibition
18

, 

whether this would be based on gene expression (Dunlap, 1999) or on membrane properties and ion 

fluxes (Njus et al., 1974; Adamich et al., 1976
19

) or on enzymatic activities and metabolism 

(chapters 1.4, 1.5, 1.6.5 and additions 1 to 4). 

Since the early nineties, and the emergence of new molecular and genetic techniques, research 

in the circadian field has focused on transcriptional oscillations (Dunlap, 2008; Hastings et al., 2008; 

                                                 
17. That is when the first chronobiological conference was held in Cold Spring Harbor. 

18. According to the "limit cycle" model, oscillations result from the feedback mechanism created between a 

limited number of components; consequently the period is more or less fixed. Alternative theories that have 

gained ground during the recent years suggest that circadian systems would stem from controlled chaotic 

attractors and/or biochemical networks (see below). 

19. Membranes received attention in this aspect in more recent publications as well; see Nitabach et al., 

(2005). 
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MacKay et al., 2011
20

). Circadian mutants were isolated from cyanobacteria, fungi, insects, 

mammals, and plants. Soon after, clock genes from the fly were cloned and then from Neurospora 

(reviewed in Dunlap, 2008). Of these genes, several were subsequently found to encode transcription 

factors. The first transcriptional translational feedback loop (TTFL) was presented for the clock of 

Drosophila (Hardin et al., 1990) and shortly after, for the clock of Neurospora (Aronson et al., 

1994a). According to TTFL models, oscillations are produced by clock genes whose protein 

products feedback to regulate their own expression. In this perspective TTFLs are comprised of 

negative elements that inhibit the expression of positive elements that induce the former. Therefore 

by definition clock elements regulate each other reciprocally and also feedback on their own 

expression. From this simple concept, TTFL models have evolved to multiple interlinked 

transcriptional/translational feedback loops. 

Before the emergence of TTFLs, Pavlidis and Kauzman (1969) had proposed a different model 

according to which circadian rhythms are the result of the coupling of ultradian oscillations. 

Evidence that these fast oscillations are metabolic was first provided in plants (Wagner et al., 1975; 

Wagner, 1976; Wagner et al., 2000)
21

 and later in animal cells (Morré et al., 2002). Lloyd and 

Murray, who performed extensive work with ultradian oscillations of Saccharomyces cerevisiae, 

have expanded this idea of oscillating networks with chaotic dynamics
22

. They suggested that a 

controlled chaotic attractor provides a single multi-oscillator capable of tunable outputs of variable 

frequencies (e.g. ultradian or circadian; see appendix 4), as oppose to the more or less fixed period 

values predicted by limited-cycle-models where feedback mechanisms are formed between a limited 

number of positive and negative components (reviewed in Lloyd and Murray, 2007 and Lloyd, 

2008). It should be mentioned that compensation against environmental perturbation (e.g. nutrient 

and temperature compensation) in the network-models is, per se, a property of the networks. 

Although TTFLs account for a great deal of the accumulated knowledge on circadian rhythms, 

there have been several inconsistencies suggesting that the model is incomplete. Such an 

                                                 
20. See also Zivkovic (2011) for historical presentation on this subject and the tendency of social structures to 

reflect on scientific trends. 

21. In theory coupled fast oscillations that produce circadian rhythms could also be transcriptional (Paetkau et 

al., 2006). Fast ultradian oscillations in transcription though are only known in yeast (Tu and McKnight 2006, 

Lloyd and Murray 2007) that lacks sustained circadian rhythms (Merrow and Raven, 2010) and in protists 

(Edwards and Lloyd 1980; Marques et al., 1987). Ultradian rhythms and the theoretical provisions and 

experimental data that link them to circadian rhythms are reviewed in chapter 1.5 and in appendix 4. 

22. Despite efforts over the last years sustained circadian rhythms have not been detected in this organism 

(Merrow and Raven, 2010). 
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inconsistency is found even before the first TTFL model was presented in experiments with the giant 

cells of the green alga Acetabularia. This organism exhibits oscillations of about one day in 

photosynthetic capacity and chloroplast shape that persist for several days even when the nucleus is 

removed. Thus transcription is not required for rhythmicity. However the nucleus determines the 

phase of the oscillation indicating that a complete circadian system in this organism is not 

independent of gene expression (reviewed in Buenning, 1973
23

). In cyanobacteria (Synechococcus 

elongatus) temperature compensated oscillations of about 24 h take place in the dark that eliminates 

transcription and translation as well as in the presence of transcriptional and translational inhibitors 

(Tomita et al., 2005). Moreover these oscillations are reconstructed in vitro by the sole presence of 

the KAI proteins (see appendix 2) and ATP, thus in the absence of DNA, transcription and 

translation (Nakajima et al., 2005). 

Recently it was shown that circadian (endogenous, temperature compensated and entrainable) 

oscillations in the immuno-detected conformational state of peroxiredoxins are present in cultured 

red blood cells, thus in the absence of nuclei (O'Neill and Reddy, 2011). These same observations 

were repeated with the obligatory phototrophic green alga Ostreococcus tauri in the dark 

(continuous darkness, like in the case of S. elongatus, eliminates gene expression) and in the 

presence of inhibitors of transcription and translation (O'Neill et al., 2011). Finally it was shown that 

the peroxiredoxin rhythms are universal and traced also in cyanobacteria, nematodes, flies, and in 

higher plants (Arabidopsis) (Edgar et al., 2012). In all of these organisms, the rhythm in the 

peroxiredoxin conformational state has not appeard to require TTFLs, as the former persists when 

the later are blunted by mutation; in this case residual oscillations exhibit altered phase thus 

metabolic and nuclear oscillations should be coupled to each other (Edgar et al., 2012). These 

findings are strongly supportive of a circadian system being formed in the coupling of nuclear and 

cytoplasmic networks. 

 

 

 

1.4. Transcriptional and metabolic circadian models – paradigms 

 

In chapter 1.4.1, I review studies that questioned that TTFLs alone would be adequate in 

describing the circadian system in animal models (in Drosophila and in mice). In appendix 2, I 

provide a brief review on how the TTFL model in the simplest photosynthetic organisms, 

                                                 
23. See page 145. Rhythms in enucleated cells were first discovered by Sweeney and Haxo (1961). 
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cyanobacteria, has given place to a metabolic model for the circadian oscillator. Chapter 1.4.2 and 

appendix 1 are extended reviews of the circadian system of Neurospora, a model organism that is 

well described in respect to its metabolic and transcriptional oscillations. Moreover, in the Results 

and Discussion chapters of this work, I accent that the predictions of the Neurospora circadian 

model proposed by Roenneberg and Merrow (1999), are supported in plants by my numerous clock-

metabolic interstection fndings. This is all presented in a historical perspective. 

 

 

1.4.1. Transcriptional/translational feedback loops in animal cells 

 

a. Drosophila 

In Drosophila, the positive oscillator elements CLOCK (CLK) and CYCLE (CYC) form a 

heterodimer that binds the E-box cis-elements of PERIOD (PER) and TIMELESS (TIM); 

consequently the later are expressed. Later PER and TIM form heterodimers that feedback to inhibit 

their own transcription by direct binding to CLK-CYK. Additional feedback loops are formed 

between CLK and transcription factors PAR DOMAIN PROTEIN1 (PDP1) and VRILLE (VRI). 

CLK-CYK induces the expression of PDP1 and VRI that bind the same site on the CLK promoter 

competitively, to activate and repress its activity, respectively. Light input is delivered by the 

cryptochrome (cry) photoreceptor that associates with and targets TIM for degradation via a 

proteasome pathway that entails the E3 ubiquitine ligase JETLAG (JET); consequently the negative 

arm of the loop is abrogated for the purpose of entrainment (fig. 1.5; reviewed in Gallego and 

Virshup, 2007 and in Zheng and Sehgal, 2008). 

Transcriptional oscillations alone cannot fully explain the mechanism that produces circadian 

rhythmicity in flies. First, it was shown that constitutive expression of PER or TIM mRNAs (in the 

single per and tim arrhythmic null mutants, respectively) does not abrogate cycling of PER and TIM 

proteins and allows behavioral rhythms in locomotor activity. Consequently the transcriptional 

feedback at the promoters of these genes is dispensable for rhythmicity. Constitutive expression of 

both of these genes in the double per;tim mutant produced similar results (Yang and Sehgal, 2001). 

Furthermore when the expression of CLK was misaligned and over-induced (due to an additional 

copy of the gene under the control of the PER promoter), locomotor activity in the dark was not 

significantly affected
24

 (Kim et al., 2002). These observations in Drosophila and others in 

                                                 
24. Under LD cycles though, the acute response of mobility to light at dawn was prolonged (Kim et al., 

2002). This means that nuclear oscillations are important for proper entrainment of locomotor activity. 
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cyanobacteria (appendix 2), Neurospora, (chapter 1.4.2.b and appendix 1), and mammals (chapter 

1.4.1.b and appendix 3) are well in agreement with the emerging trend that a complete circadian 

system is likely to be formed by coupled oscillating networks from distinct cellular compartments. 

Nuclear and cytosolic oscillations are thought to be coupled through post-translational 

regulation of clock proteins (Haydon et al., 2010; Sanchez and Davis, 2011; Hastings et al., 2008; 

Froy, 2011). Stability and nuclear translocation of circadian proteins in Drosophila are subjected to 

post-translational regulation by at least three serine/threonine kinases as well as by phosphatases 

(fig. 1.5) that are also found in the clock-models of plants, mammals and fungi. Protein stability and 

nuclear translocation of circadian proteins in turn define circadian period. The balanced 

phosphorylation-dephosphorylation by DOUBLE-TIME (DBT), a member of the CASEIN 

KINASE1 (CK1
25

) family, and PROTEIN PHOPHATASE 2A (PP2A
26

) regulates stability of both 

PER and CLK, with the phosphorylated forms of the target-proteins being less stable. PER protein is 

also a substrate for CK2
27

, whereas TIM is phosphorylated by SHAGGY (SGG
28

) (reviewed in 

Gallego and Virshup, 2007). 

 

 

Figure 1.5: 

Transcriptional/translational feedback 

loops of Drosophila 

A TTFL is formed between the positive 

elements CYC/CLK and the negative 

elements PER/TIM. An additional feedback 

loop is formed between CYC/CLK and VRI 

and PDP1 that compete for the same 

binding site on the CLK promoter to repress 

and activate its expression respectively. Post-translational modifications via phosphorylation (black circles) 

affect circadian period via controlling nuclear translocation and stability of the clock proteins. Dotted arrows 

show transcription and translation. Figure adapted after Gallego and Virshup (2007). 

                                                 
25. Also found in the Neurospora (Baker et al., 2012) and mammalian (see appendix 3) circadian models. 

26. Also found in the Neurospora circadian model (Baker et al., 2012). 

27. CK2 affects temperature compensation in Neurospora (Mehra et al., 2009) and in plants (Portolés and 

Mas, 2010). 

28. SGG is the the orthologue of the mammalian GLYCOGEN SYNTHASE KINASE-3 (GSK3) that affects 

nucleoplasmic partitioning and stability of mammalian clock-specific proteins (see appendix 3). 
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b. The mammalian clock 

Following the discovery of the mouse CLOCK gene (Vitaterna et al., 1994), the TTFL model 

for the cellular circadian clock was extended to mammals. Most studies presented below were 

conducted with mice, unless otherwise mentioned. The mammalian intracellular clockwork involves 

multiple transcriptional-translational feedback loops. CLOCK, a protein with histone 

acetyltransferase activity (HAT), and its heteromerization partner BMAL1 that enhances HAT 

activity of CLOCK (Doi et al., 2006), are two basic helix-loop-helix (bHLH) transcription factors 

that function as the positive arm of the loop. Together they bind E-box enhancers (Gekakis et al., 

1998) and act on gene expression by facilitating chromatin remodeling. At the beginning of the 

circadian day, CLOCK-BMAL1 heterodimers activate rhythmic transcription of the negative 

elements of the loop comprised by the three PERIOD genes (PER1, PER2 and PER3) and the two 

cry genes (cry1 and cry2). Later in the day, resulting PER and cry proteins form complexes that 

translocate to the nucleus where they provide a negative feedback by interaction with CLOCK 

and/or BMAL1 to suppress transcriptional activation at E-boxes (Griffin et al., 1999; Kume et al., 

1999). Reactivation of gene expression by CLOCK-BMAL1 is restored several hours later, once 

PER and CRY have been phosphorylated and targeted for ubiquitinylation and proteasomal 

degradation (reviewed in: Reppert and Weaver, 2002; Hastings et al., 2008; Froy, 2011). Acetylaiton 

of BMAL1 (Hirayama et al., 2007) and of HISTONE 3 (H3) (Doi et al., 2006) by the CLOCK 

protein, results in transcriptional repression (through recruitment of cry1 to the CLOCK-BMAL1 

complex) and transcriptional activation, respectively. 

This mammalian TTFL is accompanied by accessory loops, the best characterized being the 

one mediated by orphan nuclear receptors RETINOID ACID RECEPTOR RELATED ORPHAN 

RECEPTOR α (RORα) and REVERSE ERYTHROBLASTOSIS VIRUS α (REV-ERBα). The 

expression of RORα and REV-ERBα, whose promoters contain E-boxes, is activated by CLOCK-

BMAL1; RORα then provides a positive and REV-ERBα a negative transcriptional feedback by 

competing for binding on REV-ERBα/RORα response elements (RORE) of the BMAL11 promoter 

during the night phase, thus closing the accessory loop (Ueda et al., 2002; Preitner et al., 2002; Sato 

et al., 2004; Ueda et al., 2005). REV-ERBα negatively regulates the BMAL1 promoter by recruiting 

the well described HISTONE DEACETYLASE COMPLEX 3 (HDAC3), resulting in deacetylation 

and repression of basal transctiption (Yin and Lazar, 2005). This transcriptional circuit produces 

opposite rhythmic patterns between night expression of BMAL1 and its E-box-target-genes PER, cry, 

RORa and REV-ERBα that peak during the day (Preitner et al., 2002; Sato et al., 2004). All the genes 

discussed here, with the exception of CLOCK, are expressed rhythmically (fig. 1.6). Of note, in the 
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mammalian forebrain, the positive arm of the clock is formed between BMAL1 and NEURONAL 

PAS DOMAIN PROTEIN 2 (NPAS2) (Reick et al., 2001). 

Despite extensive work performed on mammalian TTFLs, several pieces of evidence have 

emerged indicating that transcription alone is not adequate for the full description of the mammalian 

circadian clock. This was originally implied by the observation that rhythmic transcription of PER2 

RNA is not required for rhythmicity in PER2 protein accumulation (Yamamoto et al., 2005), 

suggesting post-transcriptional regulation. Firm evidence against a purely transcriptional oscillator in 

mammals was provided later by two independent publications. In the first one, rodent cell lines 

exposed to extracellular cry proteins engineered to be membrane-permeable where used to show that 

cry1, cry2, and BMAL1 protein-oscillations were dispensable for proper clock function (measured in 

the rhythmic activity of the PER2 promoter). The authors concluded that cry proteins are not 

necessary for rhythmicity and that scientific research should be focused on the PER proteins instead 

(Fan et al., 2007). In the second publication, it was found that chemical pretreatment of mouse 

fibroblasts with α-amanitin and actinomycin-D transcriptional inhibitors, reduced overall and clock-

specific RNA synthesis (including that of PER1 and PER2), but did not result in arrhythmia or 

period lengthening, as would be predicted by the TTFL-model. In contrast, inhibition of transcription 

caused significant period shortening of rhythmic clock-gene expression (of BMAL1 and PER2 

promoter activities; Dibner et al., 2009). As the data against a purely transcriptional/translational 

oscillator accumulated the importance of previously recognized cytosolic oscillations and post-

translational modifications in circadian pace-making increased (Gallego and Virshup, 2007; 

Hastings et al., 2008; O’Neil, 2009). 

On several occasions it was shown that cytosolic/metabolic oscillations and TTFLs 

reciprocally regulate each other. For example, (1) O’Neil et al., (2008) showed that cytosolic cAMP 

oscillations are not simply driven by nuclear ones, rather the former feedback to define amplitude, 

phase and circadian period of the later (measured with PER gene expression) in the SCN. (2) 

Similarly, the redox state of the cell affects the positive arm of the mammalian TTFL through 

induction and suppression of the DNA-binding activities of CLOCK-BMAL1 and NPAS2-BMAL1 

heterodimers by NAD(P)H and NAD(P), respectively (Rutter et al., 2001). (3) Recently it was 

shown that the redox state of the cell is rhythmic and moreover that it regulates CLOCK through the 

metabolic sensor SIRTUIN 1 (SIRT1), an NAD+ dependent deacetylase that binds CLOCK in a 

circadian manner and counteracts CLOCK HAT activity. Subsequently, through acetylation and 

deacetylation, the expression of clock-controlled genes (DBP
29

 and PER2) and PER2
30

 protein 

                                                 
29. DBP: D-site of albumin promoter binding protein. 
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stability are rendered sensitive to the redox state of the cell. SIRT1 and CLOCK bind E-boxes to 

facilitate chromatin remodeling; this has been observed at the PER2 promoter and, notably, at the 

promoter of NICOTINAMIDE PHOSPHORIBOSYL TRANSPHERASE (NAMPT), the rate limiting 

enzyme in the synthesis of the SIRT1 cofactor NAD+. Based on these findings it was proposed that 

SIRT1 is as an enzymatic rheostat of CLOCK function, whereby oscillations in the redox state of the 

cell are coupled to TTFLs (Asher et al., 2008; Nakahata et al., 2008; Nakahata et al., 2009; Ramsey 

et al., 2009). (4) In addition to these, rhythmic heme biosynthesis and nuclear oscillations are 

coupled to each other through feedback regulation (Kaasik and Lee, 2004); the coupling mechanism 

entails negative regulation of the DNA binding activity of NPAS2-BMAL1 by carbon monoxide in a 

manner that requires heme binding by the two PAS domains of NPAS2 (Dioum et al., 2002). 

 

 

Figure 1.6: The mammalian transcriptional/translational feedback loops. 

 

Positive elements 

encoded by CLOCK (C) and 

BMAL1 (B) induce expression 

of negative elements PER (P) 

and cry (Cr) that feedback to 

inhibit the former. An 

additional feedback loop is 

formed by REV-ERBα (Re) and 

RORα (Ro) that compete for the 

same elements of the BMAL1 

promoter. 

 

 

 

 

Known post-translational modifications (PTMs) of circadian relevance in mammals are now 

viewed as steps whereby nuclear oscillations can be coupled to metabolic ones. They include 

phosphorylation, de-phosphorylation, ubiquitination, sumolation, and acetylation. PTMs regulate 

                                                                                                                                                    
30. Deacetylation of PER2 by SIRT1 results in proteosomal degradation of the former. The enzymes 

responsible for PER2 acetylation are not known, but CLOCK is an attractive candidate (Asher et al., 2009). 
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several properties of clock-proteins including stability, intracellular localization and activity 

(Gallego and Virshup, 2007; Hastings et al., 2008). A number of enzymes are involved in the 

crosstalk between metabolism and mammalian TTFLs through PTMs. Current knowledge on this 

issue concentrates around three proteins, the metabolic sensor AMPK
31

, the NAD+ dependent 

deacetylase SIRT1 (mentioned earlier) and the GLYCOGEN SYNTHASE KINASE-3β (GSK-3β
32

). 

Mammalian PTMs are reviewed more extensively in appendix 3. 

A relationship between metabolism and entrainment in mammals has been known since 1922 

when Richter reported that restricted feeding (RF)
33

 could entrain locomotor activity in rats 

(reviewed in Stokkan et al., 2001). Feeding also entrains gene expression in peripheral tissues 

(Schibler et al., 2003) as well as in certain brain areas (Wakamatsu et al., 2002; Rutter et al., 2001). 

Interestingly, peripheral tissues from intact animals prefer to entrain to RF over entrainment to LD 

cycles, shown by the fact that daytime RF of nocturnal lab rodents inverts the phase of circadian 

gene expression under diurnal conditions; by contrast the SCN
34

 is entrained by light but not by RF 

(Damiola et al., 2000; Stokkan et al., 2001). 

                                                 
31. AMP ACTIVATED PROTEIN KINASE (AMPK) is a metabolic sensor of the energy state of the cell 

(AMP/ATP ratio) that acts in peripheral tissues and in the central nervous system where it potentiates food 

intake (Minokoshi et al., 2004; Kahn et al., 2005). The circadian role of AMPK seems to be exerted at 

multiple levels (see appendix 3). 

32. GLYCOGEN SYNTHASE KINASE-3β (GSK-3β) regulates primary metabolism (reviewed in (Doble and 

Woodgett, 2003), stability and nucleoplasmic partitioning of CRY2 and PER2 (Harada et al., 2005; Iitaka et 

al., 2005), connects the known TTFLs to lithium signaling (Yin et al., 2006) and has been proposed to 

function during metabolic entrainment of peripheral organs to nutrients (Gallego and Virshup, 2007 and 

Hastings et al., 2008) and likely also to insulin (Doble and Woodgett, 2003). 

33. At free will (ab libitum) mice, being nocturnal organisms, consume most their food during the night. 

34. Early models considered that the SCN is the master oscillator, because at the time the only known 

example of persistent oscillations (more than 30 days in isolation) was in single cultured neurons from the 

SCN. In the absence of this brain structure (in cultured cells or in SCN-lesioned mice) rhythmic behavior and 

gene expression, whether in the periphery or other brain areas, was not sustained for long (Sakamoto et al., 

1998; Yamazaki et al., 2000; Akhtar et al., 2002; Reppert and Weaver, 2002). This model was characterized 

hierarchical because the SCN would deliver rhythmicity to the periphery that could not otherwise sustain 

oscillations. Eventually persistent oscillations in peripheral tissues were discovered in cultured cells when 

endogenous promoters were used to monitor gene expression (Yoo et al., 2004). For this reason, the SCN is 

now viewed as a "master synchronizer" that is entrained to light via a pathway from the retina and sets the 

time in light-insensitive peripheral organs. Related studies are presented in appendix 3. 
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1.4.2. Neurospora – a clock with an ongoing dispute 

 

a. The FREQUENCY oscillator 

Following the cloning of the gene FREQUENCY (FRQ) (McClung et al., 1989) transcriptional 

feedback loops of the fungal clock were identified and gradually expanded with new components 

(fig. 1.7). The key players of the Neurospora TTFL are, in addition to FRQ, proteins WHITE 

COLLAR 1 and 2 (WC-1 and WC-2) (Aronson et al., 1994a; Crosthwaite et al., 1997) and FRQ-

interacting RNA HELICASE (FRH) (Cheng et al., 2005). The blue-light (BL) photoreceptor WC-1 

and its interaction partner WC-2 form a heterodimeric complex via their PAS domains (Linden and 

Macino, 1997; Ballario et al., 1998; Cheng et al., 2002) named the WHITE COLLAR COMPLEX 

(WCC) that activates transcription of FRQ as part of the minimal oscillator that runs in the dark 

(Crosthwaite et al., 1997; Froehlich et al., 2002; He et al., 2002). FRQ protein in turn negatively 

regulates its own expression (Aronson et al., 1994a) by inhibiting binding of WCC on the FRQ 

promoter. The ability of WCC to bind the FRQ promoter depends on the phosphorylation state of the 

protein complex, with the hypo-phosphorylated form being active and vice-versa; FRQ promotes 

phosphorylation and inactivation of WCC (Schafmeier et al., 2005) by facilitating interaction of the 

later with Casein Kinase 1 (He et al., 2006; Baker et al., 2009) thus closing the loop. 

Dephosphorylation and activation of WCC depend on PROTEIN PHOSPHATASE 2A (PP2A) 

(Schafmeier et al., 2005). The negative arm of the clock
35

 entails FRH that interacts with FRQ to 

                                                 
35. After FRQ is translated it forms homo-dimmers that attract FRH in a stable complex. This complex 

interacts with the WCC and serves as a platform to introduce regulatory kinases and especially CK1 that 

stably associates with the complex; CK2 and other kinases are transiently associated. Both WCC, as earlier 

mentioned, and FRQ are substrates for these regulatory kinases. According to current trends, extensive 

phosphorylation of FRQ at multiple sites reflects circadian time and perhaps concomitant sequential 

conformations of the protein form a time dependent platform that facilitates interactions between clock 

components. For this it is suspected that phosphorylation of FRQ may occur in spatial and temporal clusters 

that would form charged areas, an idea that would also explain why many individual phosphorylation events 

seem to lack unique roles. In general, though not always, mutations that prevent phosphorylation tend to 

increase stability of FRQ and result in period lengthening. Accordingly, progressive phosphorylation switches 

FRQ from being predominantly nuclear where it represses WCC, to being cytoplasmic and susceptive to 

ubiquitination and proteasome mediated degradation (reviewed in Baker et al., 2012). Noteworthy early in 

subjective night FRQ functions as a positive regulator of WCC in the cytoplasm; FRQ at this time is 

stabilized by phopshorylation. Later as subjective dawn approaches additional phosphorylation events 
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form the FRQ-FRH Complex (FCC) that stabilizes FRQ (Cheng et al., 2005). This oscillator termed 

FRQ/WCC or FWO was described primarily in the dark, but it also mediates light input and it is 

required for compensation against temperature and nutrients (reviewed in Morgan et al., 2001, in Liu 

and Bell-Pedersen, 2006 and in Baker et al., 2012). 

Light perception and temporal organization of gene expression are linked together via the 

WCC. Sequence analysis of the WC-1 protein revealed that one of its three PAS domains belongs to 

a specialized class known as a light – oxygen - voltage (LOV) domain (He et al., 2002) that is 

associated with sensing of respective environmental cues (recent review in Belozerskaya et al., 

2012). WC-1 binds flavin-adenine dinucleotide (FAD) via the PAS/LOV domain to become 

photoactive, a property required for binding of WCC to the Light Responsive Elements (LREs) of 

the FRQ promoter in response to BL
36

 (He et al., 2002; Froehlich et al., 2002). Rapid transcriptional 

activation of FRQ in response to BL then resets the clock in a manner that phase resetting and FRQ 

RNA induction are correlated (Crosthwaite et al., 1995). Notably, the WC-1 PAS/LOV domain is 

required for light-entrainment and other light responses, but it is dispensable for oscillations in the 

dark and entrainment to temperature (He et al., 2002). 

VIVID (VVD) is a PAS/LOV BL photoreceptor that binds FAD or flavin mononucleotide 

(FMN) (Schwerdtfeger and Linden, 2003; Cheng et al., 2003). It is required for photoadaption and 

proper circadian timekeeping in the light. Photoadaption refers to the process by which a light-

response is gradually returned to the pre-induction state, such as the light transcriptional induction of 

several genes including, amongst others, FRQ, WC-1 and genes of the carotenoid biosynthetic 

pathway. Loss-of-function mutations in VVD result in prolongation of the inductive effect of light on 

these genes resulting in a characteristic orange color (Heintzen et al., 2001; Shrode et al., 2001; 

Schwerdtfeger and Linden, 2003). It has been proposed that this impairment to dissipate light-

induced gene expression is the cause of the observed vvd clock-phenotypes, such as the exaggerated 

phase-resetting by non-parametric entrainment and the altered PRCs relative to wild-type. 

Interestingly, the gate during which the vvd mutant is responsive to light is broadened to the extend 

that it includes the entire subjective day, therefore VVD is required for restriction of light 

responsiveness in general, both temporal and photoadaptive (Heintzen et al., 2001; Elvin et al., 

2005; Schneider et al., 2009). In agreement with the role of VVD in gating responses, VVD 

expression is clock regulated and induced by light in a gated manner (Heintzen et al., 2001). VVD is 

                                                                                                                                                    
destabilize FRQ allowing thereby de-repression of WCC and transcriptional activation of FRQ (fig. 1.7; see 

also Gallego and Virshup, 2007 and Baker et al., 2009). 

36. All described light responses in Neurospora are triggered by BL (Lakin Thomas et al., 1990). 
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not expressed in dark grown mycelia (Schwerdtfeger and Linden, 2003), whereas in DD it is 

detected for no more than one cycle (Heintzen et al., 2001; Elvin et al., 2005). These findings and 

the fact that vvd mutations have little if any effect on the conidiation rhythm in DD (Heintzen et al., 

2001; Shrode et al., 2001) are in agreement with the assigned role of VVD in light perception and 

circadian gating. 

Expression of VVD in the light requires WC-1 and WC-2 (Schwerdtfeger and Linden, 2003). 

Subsequently VVD represses homodimerization and thus transcriptional activity of WCC (Hunt et 

al., 2010), through competitive interactions between the LOV domains of VVD and WC-1 (Malzahn 

et al., 2010). These findings are suggestive that VVD forms a feedback loop that, in the presence of 

light, acts in proximity with the minimal oscillator to regulate gating and photoadaption (reviewed in 

Baker et al., 2012). In addition to these roles, VVD also regulates parametric entrainment of the 

conidiation rhythm that, in the wild-type, resets preferably at dusk rather than at dawn. VVD is 

responsible for this pattern of entrainment by preventing resetting at dawn and then by enhancing 

FRQ mRNA turnover at dusk (Elvin et al., 2005). Consequently, VVD is a negative regulator of 

WCC that is involved in several major light/circadian responses of Neurospora. 

The identification of PAS/LOV domains that bind redox-sensing molecules in VVD 

(Schwerdtfeger and Linden, 2003; Cheng et al., 2003) and in WC-1 (He et al., 2002; Froehlich et al., 

2002) is implicit that the reciprocal regulation between these circadian players is susceptive to 

metabolic regulation (Schwerdtfeger and Linden, 2003; Hunt et al., 2010; Malzahn et al., 2010). 

This opinion is further supported by genetic and biochemical approaches. Here it is noted that the 

circadian phenotypes of vvd null mutations are dependent not only on the ambient light intensity, but 

also on available carbon sources and on temperature (Schneider et al., 2009)
37

. In addition to this, it 

was recently shown that light input to the FWO employs ROS signaling likely through the regulation 

of the DNA binding activity of WCC (Belden et al., 2007; Yoshida et al., 2011; see chapter 1.4.2.b 

and appendix 1 for more details). Consequently the protein products encoded by these genes are 

related to both the circadian oscillator and metabolism. Together these findings imply that light input 

to FWO is metabolic.  

                                                 
37. When grown on maltose a vvd null strain, unlike vvd+, exhibits oscillations in conidiation that range from 

ultradian to "about one day"; the later are though not circadian as they are not temperature compensated. 

Noteworthy the period of these oscillations depends on the combined effect of light intensity and temperature, 

the effect of temperature being stronger with increasing light intensity. This is no surprise given the fact that 

the phenotypes of vvd are generally light-dependent (Schneider et al., 2009). 
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Figure 1.7: The transcriptional/translational feedback loops of Neurospora 

FRQ is the negative element of the TTFL. It promotes phosphorylation (filled circles) of the WCC 

complex that functions as the positive arm of the loop by promoting expression of FRQ. Progressive 

phosphorylation of FRQ regulates its nuclear localization and stability. (A) Near subjective dawn FRQ 

degradation via the proteasome pathway is stimulated by hyper-phosphorylation, resulting in de-repression of 

WCC and transcription of FRQ. (B) Later FRQ inhibits WCC transcriptional activity. (C) FRQ can also 

function as a positive regulator of WCC by promoting its cytoplasmic accumulation. FRQ degradation is 

stated with the faded gray symbols (adapted after Gallego and Virshup, 2007). 
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b. The zeitnehmer model – metabolic oscillations 

The FRC/WCC oscillator cannot explain all findings accumulated regarding the Neurospora 

clock. Most importantly, the FRC/WCC model cannot explain the residual oscillations observed in 

frq, wc-1, and wc-2 null mutants. Based on these oscillations, termed "frequenceless" (FLOs; 

oscillations in the absence of a complete and functional FRQ/WCC oscillator), Merow et al. (1999) 

proposed that metabolism is central for circadian timekeeping in Neurospora. Experiments against a 

purely transcriptional/translational oscillator are reviewed in appendix 1, including current 

knowledge on the residual FLOs and the sensitivity of the circadian system to metabolic perturbation 

by chemicals, nutrients and mutation. In brief, the repetitiveness and amount of accumulated data on 

the FLOs (Dragovic et al., 2002; Granshaw et al., 2003; Correa et al., 2003; Cristensen et al., 2004; 

de Paula et al., 2006; Lombardi et al., 2007; Yoshida et al., 2008; Brody et al., 2010; Yoshida et al., 

2011) show that transcription and translation alone are not adequate in describing the central 

oscillator of Neurospora; moreover the nature of the FLOs in the above studies, whether they are 

ROS-related or glucose-dependent or involved in primary metabolism, is indicative that they are 

driven by metabolism. 

Lipids had received great attention and were involved quite early in research around metabolic 

oscillations. The cel (Brody and Martins, 1979; Mattern and Brody, 1979; Mattern et al., 1982) 

mutant that is compromised in synthesis of saturated fatty acids due to a deficiency in fatty acid 

synthetase activity and the chol-1 mutant (Lakin-Thomas, 1996; Lakin-Thomas, 1998; Lakin-

Thomas and Brody, 2000) that is defective in the synthesis of the phospholipid phosphatidylcholine, 

both exhibit long-period phenotypes and loss of temperature compensation below 22˚C on minimal 

growth medium (in the absence of palmitic acid and choline respectively). Moreover these mutations 

alleviate from the arrhythmia imposed by frq and wc loss-of-function mutations, as long as growth 

conditions are again minimal. Recovered oscillations in frq chol-1 and frq cel are though incomplete, 

as they are "blind" (unresponsive to light) and compromised for the temperature compensation 

response (see references above and Lakin-Thomas and Brody, 2000). 

In the wild-type, oscillations were found to be resilient to changes in ambient temperature and 

growth medium composition. By contrast, the cel and chol-1 mutants exhibited both temperature and 

nutrient compensation phenotypes (period is sensitive to fatty-acid levels), indicating that 

temperature compensation is affiliated to metabolism (see also Roenneberg and Merrow, 1999 and 

the review of Morgan et al., 2001). It is noteworthy, that exposure to certain fatty acids lengthened 

circadian period of cel and that this effect was reversed by metabolic perturbation that targets 

mitochondria, including mitochondrial mutations, respiration-inhibitor antimycin and non-

fermentable carbon sources. These findings suggest that part of the oscillator is located in the 
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mitochondria and that lipid metabolism or even membrane composition in Neurospora are involved 

in circadian timekeeping (Lakin-Thomas et al., 1990 and Brody, 1992). Mutants that affect amino-

acid synthesis also caused circadian phenotypes (Lakin Thomas et al., 1990). Of these the cys-9 

mutant exhibits both temperature- and nutrient-compensation phenotypes in a manner that suggested 

that the circadian defect is not the result of auxotrophy. This is because other cystein auxotrophs do 

not exhibit circadian phenotypes (Onai and Nakashima, 1997). Given the fact that cys-9 encodes for 

the NADPH-dependent thioredoxine reductase (NTR) of Neurospora, it is possible that the redox 

state of the cell to which NTR is sensitive (Gelhaye et al., 2005) is of circadian relevance in 

Neurospora. 

Recently it was shown that in Neurospora ROS levels are under the control of both the clock 

and light. The TTFL regulates ROS oscillations through ROS-generating NADPH Oxidases (NOX) 

and ROS-destroying catalases. Most importantly, this control was shown to be reciprocal (Yoshida 

et al., 2011). Interestingly, ROS mimic the effect of light on the absorption spectrum of WC-1 and 

on the ability of WCC to bind DNA in vitro. For this light input to the clock may employ ROS 

signaling (Belden et al., 2007; Yoshida et al., 2011). The same is perhaps true for entrainment, 

because the superoxide dismutase 1 (sod-1) strain is hypersensitive to light entrainment relative to 

the wild-type (Yoshida et al., 2008). 

Conclusively the experiments described here showed that metabolism is a driving force of 

circadian rhythmicity. In particular energy metabolism in mitochondria and/or its byproducts (e.g. 

ROS) and/or the molecules that sum metabolic pathways of energy transduction (redox molecules), 

the metabolic map as it is defined by various states of lipid metabolism and/or lipid signaling or even 

membrane composition in mitochondria (on the basis of Mitchell’s chemiosmotic theory of electron 

transduction; Mitchel, 1957), are somehow important for proper timekeeping in Neurospora. 

Roenneberg and Merrow proposed a model for the clock of Neurospora comprised of two 

interacting oscillators, based on residual and incomplete recovered oscillations of frq and wc mutants 

(fig.1.8). These are the FRQ/WCC oscillator and metabolic oscillations (FLOs). According to this 

model the FRQ/WCC oscillator is required for compensation against both temperature fluctuations 

and metabolic variation, but it is not central in the sense that it is does not generate rhythmicity, 

rather it is part of a rhythmic light input pathway towards a central, temperature-entrainable, 

metabolic oscillator. In this model the TTFL is given zeitnehmer properties (German for "time 

taker"), meaning that the role of the transcriptional loop is not to "generate time" but to entrain and 

provide sustainability by receiving zeitgeber signals (light entrainment). According to the zeitnehmer 

model, isolated metabolic oscillations are temperature dependent and thus cannot ascribe for 

temperature compensation. As transcription is also temperature dependent, temperature 



 24 

compensation should result from the interaction/coupling between the two temperature dependent 

oscillators. The model predicts that single mutations should exhibit both temperature- and nutrient-

compensation phenotypes (e.g. the cel and chol-1 mutants, see references above; vvd null strain, 

Schneider et al., 2009), because these responses would share a common mechanism
38

 (Roenneberg 

and Merrow, 1998; Roenneberg and Merrow, 1999; Merrow et al., 1999). Iwasaki and Dunlap 

(2000) proposed a similar model that however does not assign peripheral roles to either of the two 

interacting oscillators. In support of these models it was recently demonstrated that a strain lucking 

all functional FRQ, WC-1, WC-2 and VVD genes is still entrained to temperature cycles (Hunt et al., 

2012). Moreover, based on the epistatic relationships between period 2 (prd-2), prd-3 and prd-6
39

 

with frq alleles, it was suggested that interactions between the two oscillators would be mediated by 

these genes to generate temperature compensated circadian rhythms (Morgan et al., 2001). 

 

 

 

Figure 1.8: The zeitnehmer model in Neurospora 

The models of Merrow et al. (1999) and Iwasaki and Dunlap (2000) for the oscillator of Neurospora 

consist of interacting metabolic and nuclear oscillations. Both research groups assign temperature entrainment 

to the metabolic FLOs and light entrainment to the FRQ/WCC oscillator. Merrow et al. (1999), unlike 

Iwasaki and Dunlap (2000), do not assign central properties to the FRQ/WCC oscillator. 

 

 

 

 

 

 

 

                                                 
38. In this work I show that Arabidopsis mutants with temperature compensation phenotypes (Gould et al., 

2006) are also defective in their nutrient compensation response. Based on this finding and others presented in 

the Results and Discussion chapters, I will claim that the zeitnehmer model developed in Neurospora applies 

in Arabidopsis as well. 

39. These are not alleles; they are distinct genetic loci. They are unrelated to the PERIOD genes of animals. 
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1.5. Ultradian oscillations in circadian systems 

 

An alternative hypothesis on the mechanism of the circadian rhythm, one that can be 

experimentally connected to membranes and the redox state of plant and animal cells, was proposed 

by Pavlidis and Kauzmann (1969). They suggested that coupling of ultradian oscillations could 

generate circadian rhythms. Evidence in favor of this in plants was provided in Chenobodium 

rubrum as it exhibits circadian oscillations in adenine and pyridine nucleotide ratios (energy charge 

and redox state, respectively) and ultradian oscillations in the levels of the respective nucleotides. 

High frequency oscillations of 12 to 15 hours in metabolic reactions (observed for steps of 

glycolysis, of tricarboxylic-acid cycle and of the oxidative pentose-phosphate cycle) are, according 

to the model, not simply separated in distinct compartments, but also coupled as nucleotide ratios. A 

feedback mechanism is formed because rhythmic enzymatic activities responsible for oscillations of 

the energy charge and of the redox state of the cell are under the control of these ratios. According to 

this theory, temperature compensation would be a property of metabolic networks that couple the 

ultradian and temperature-dependent metabolic pathways in the form of circadian ratios of 

nucleotides; in this membranes would be central for timekeeping (reviewed in Wagner et al., 1975; 

Wagner, 1976 and Wagner et al., 2000) on the basis of Mitchell’s chemiosmotic theory of electron 

transduction (Mitchel, 1957). 

Recent studies dealing with ultradian oscillations and their connection to circadian rhythms and 

metabolism are presented in appendix 4. Of these it is worth mentioning the link between ultradian 

and circadian oscillations as it is revealed by certain plasma membrane oxidoreductases (PMORs), 

designated EKTO-NOX. When COS cells are transformed with cDNAs encoding different forms of 

ECTO-NOX proteins that vary in their ultradian enzymatic periodicities (in NADPH oxidation), then 

the circadian period of a metabolic biomarker (activity of glyceraldehyde-3-phosphate 

dehydrogenase) is equal to the ultradian period multiplied by 60 (i.e. genetically determined 

ultradian periodicities of 22, 24, 36 or 42 minutes in NADPH oxidation result in circadian 

periodicities of 22, 24, 36 and 40 to 42 hours respectively in glyceraldehyde-3-phosphate 

dehydrogenase activity; Morré et al., 2002). This is perhaps the most striking example whereby 

ultradian and circadian periodicities are linked to each other. Concepts in favor of such a relationship 

are reviewed by Lloyd and Murray (2007). 



 26 

1.6. Circadian models in Arabidopsis 

 

 

1.6.1. Genetic studies on rhythmic gene-expression in photosynthetic organisms 

 

Early efforts to track transcriptional-translational oscillations in photosynthetic organisms 

proved rather laborious, but not fruitless. Research with the dinoflagellate Gonyaulax revealed that 

the clock controls most of its activities, including transcriptional (Brigitte et al., 1983) and 

translational processes (reviewed in Hastings, 2007). Translational control was originally implied by 

the observation that the levels of LUCIFERASE-BINDING PROTEIN (LBP; required for the 

bioluminescence reaction) oscillate, when LBP transcript levels are constant (Hastings, 2007). 

Translational control was then shown by Mittag et al. (1994) who isolated a clock controlled 

translational regulator (CCTR) from crude extracts of Gonyaulax that specifically binds to UG 

repeats at the 3’UTR of the LBP mRNA in a circadian manner. Later the 3’UTR of the Gonyaulax 

LBP was used to identify potential clock regulators in the green alga Chlamydomonas (Iliev et al., 

2006). However, these marine microorganisms are not easily cultivated, at least not to the point that 

they can be genetically manipulated. High-throughput genetic screens for clock mutants were 

rendered possible for the first time with the cyanobacterium Synechococcus elongatus after a 

bacterial luciferase gene was introduced downstream of the rhythmic promoter of the psbAI gene, 

that encodes a photosystem II protein (Kondo et al., 1993). Arrhythmic strains and period mutants 

were isolated with this approach and that provided an input to establish a molecular genetic and 

biochemical basis for circadian rhythms in a photoautotroph (Kondo et al., 1994). 

A series of publications on pea (Kloppstech, 1985), wheat (Nagy et al., 1988), bean 

(Tavladoraki et al., 1989), spinach (Oelmüller et al., 1995) and Arabidopsis (Millar and Kay, 1991) 

established that light-harvesting chlorophyll a/b binding proteins (LHCB, also called CAB) are 

expressed rhythmically. Of these only Arabidopsis was suitable for large-scale forward-genetic 

screens (Somerville and Koornneef, 2002), but still this was rendered possible only after Millar et al. 

(1992) introduced the firefly luciferase system into the circadian field. They showed that when the 

promoter of the CAB2 (LHCB1*1) gene is used to drive luminescence from individual transgenic 

seedlings, luminescence is rhythmic and can be detected with a camera, allowing period of 

transcriptional rates to be estimated in a large scale. This system was later used to identify the first 

circadian mutant in plants, the timing of cab expression1 (toc1) mutant (Millar et al., 1995a) and also 

to characterize circadian phytochrome-dependent photo-transduction pathways (Millar et al., 1995b). 
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1.6.2. Transcriptional/translational oscillations in Arabidopsis – early to late models 

 

In the model organism A. thaliana, a network of genetically interacting transcription factors 

and proteins of unknown function form multiple TTFLs that effect overall plant circadian responses. 

A TTFL was initially identified between the TOC1 protein [Strayer et al., 2000; also known as 

PSEUDO RESPONSE REGULATOR1 (PRR1)] and two closely related MYB transcription factors, 

CIRCADIAN CLOCK ASSOCIATED (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) 

(Schaffer et al., 1998; Wang and Tobin, 1998). These transcription factors regulate each other 

reciprocally; CCA1 and LHY bind the evening element (EE) of the promoter of TOC1 to repress its 

expression, whereas according to early genetic evidence TOC1 was at first considered to be a 

positive regulator of CCA1 and LHY expression as part of the positive arm of the loop. These 

observations led to the proposal that the central oscillator in Arabidopsis is a TTFL formed between 

CCA1, LHY and TOC1 (fig. 1.9; Alabadí et al., 2001). 

A role of TOC1 in transcriptional regulation has been suspected since the cloning of the gene, 

because the encoded protein is localized in the nucleus and shares motifs with known transcription 

factors, such as the CCT domain [found in CONSTANS (CO), CO-like and TOC1 proteins] (Strayer 

et al., 2000). The role of TOC1 in transcriptional regulation is also supported by independent studies 

through immuno-precipitation techniques, whereby TOC1 was traced on the promoters of CCA1 

(Pruneda-Paz et al., 2009) and of GENOMES UNCOUPLED5 (GUN5, an ABA receptor; Legnaioli 

et al., 2009). Loss-of-function mutations (Alabadí et al., 2001) and over-expression of TOC1 

(Makino et al., 2002), both result in lower levels of CCA1 and LHY transcripts relative to wild-type, 

indicating that TOC1 is not only a potential activator of these genes, but a repressor as well. It is 

now known that its activation role is indirect and that repression of CCA1 and LHY by TOC1 is 

direct (Gendron et al., 2012). It is worth mentioning that a lot of efforts
40

 were put in elucidating the 

exact mechanism by which TOC1 regulates CCA1 and LHY expression, because the early TTFL 

models depended on this mechanism. Direct DNA-binding of TOC1 was eventually confirmed; 

                                                 
40. Pruneda-Paz et al. (2009) showed that TOC1 associates with the CCA1 promoter in vivo, but in that work 

in vitro assays did not confirm binding; it was thus assumed that TOC1, then not known to have a DNA 

binding ability, is recruited to CCA1 via a yet unknown factor. A candidate was CCA1 HIKING 

EXPEDITION (CHE) (Pruneda-Paz et al., 2009), but CHE and TOC1 regulate CCA1 expression 

antagonisticly (Imaizumi, 2010). Gendron et al. (2012) resolved this by showing direct binding of the TOC1-

CCT domain to the CCA1 and LHY promoters. TOC1 thus represses CCA1 and LHY directly (Gendron et al., 

2012); of note, repression was attributed to the pseudo-receiver (PR) domain of TOC1 (Gendron et al., 2012). 
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notably, TOC1 and CO proteins bind the same TGTG motif through their CCT domains (Gendron et 

al., 2012). 

Several findings are in favor that TOC1 and LHY/CCA1 form a TTFL: (1) as expected of 

TTFL clock-components, their expression is rhythmic and out of phase by approximately half a day; 

transcripts levels of LHY and CCA1 peak at dawn (Wang and Tobin, 1998; Green and Tobin, 1999; 

Green et al., 2002; Mizoguchi et al., 2002; Kim et al., 2003), while CCA1 and LHY accumulate 

soon after and are not detected later in the day (Wang and Tobin, 1998; Kim et al., 2003); 

conversely TOC1 RNA levels peak at dusk (Strayer et al., 2000) and the protein later in the night 

(Más et al., 2003b). (2) Clock components, in addition to their reciprocal control, feedback to 

regulate their own expression. This was first shown for CCA1 and LHY as their ectopic over-

expression led to downregulation (and/or loss of rhythmicity) of the endogenous CCA1 and LHY 

genes respectively (Wang and Tobin, 1998; Shaffer et al., 1998; Kim et al., 2003). Feedback 

regulation of TOC1 on its own expression was illustrated, when the free running period of TOC1 

RNA accumulation was found to be shortened by the toc1-1 point mutation (Strayer et al., 2000). (3) 

The idea of a TTFL between CCA1, LHY and TOC1 is further supported by the fact that they are 

localized in the nucleus (Wang et al., 1997; Strayer et al., 2000; Carré and Kim, 2002). 

 

 

Figure 1.9: The single transcriptional/translational feedback loop model in Arabidopsis 

The single-loop model is comprised of the CCA1/LHY transcription factors and TOC1 that regulate 

each other reciprocally forming a TTFL that produces a circadian period. The positive elements CCA1/LHY 

have a dual role, also mediating expression of output. Dotted and continuous arrows show evening- and day- 

phased events respectively. Red arrows show transcription and blue translation. Green lines show 

transcriptional regulation and yellow shapes light input. The figure is adapted after Alabadí et al. (2001). 
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A series of observations placed TOC1 centrally in the TTFL model. First, the toc1-1 point 

mutation causes a short-period phenotype both under WLc (Millar et al., 1995a; Alabadí et al., 

2001) as well as in the dark (Somers et al., 1998b; Strayer et al., 2000) and rhythms with diverse 

phases are affected in this respect. Then, the short-period phenotype of toc1-1 is independent of 

fluence-rate during free run and it is not specific to the zeitgeber used for entrainment (light or 

temperature cycles) (Somers et al., 1998b), indicating that TOC1 operates closer to a central 

oscillator rather than within input pathways. The interpretation of these findings was later 

challenged, as phenotypes of the toc1-2 null mutant (and of TOC1-RNAi lines in support) depend on 

light quality. In these experiments RLc caused the mutant to become arrhythmic, while under BLc 

the mutant exhibited a short-period phenotype indicating that TOC1 might not be unrelated to light 

input pathways after all (Más et al., 2003a). The centrality of TOC1 was questioned independently, 

as it appears that TOC1 is dispensable in the root, where it is not required for proper clock function 

and entrainment (James et al., 2008). 

As progress was achieved the single-loop model was not adequate to explain all of the 

accumulated data. A few of these are as follows: (1) oscillations of TOC1, LHY and CCA1 

transcripts dampen after three cycles in the absence of light (Wang and Tobin, 1998; Schaffer et al., 

1998; Strayer et al., 2000). Therefore oscillations in the levels of these proteins do not account for 

several rhythmic processes observed in DD. (2) Constitutive expression of components of a central 

clock should abolish periodicity of diverse rhythms under free running conditions; CCA1 (Wang and 

Tobin, 1998) and LHY (Schaffer et al., 1998) were initially assigned properties of central clock 

components based on this notion, whereas later it was claimed that TOC1 over-expression causes 

arrhythmia as well (Makino et al., 2002; Más et al., 2003a). In opposition to this, oscillations in 

transcript levels of EARLY FLOWERING3 (ELF3) were found in plants that over-express LHY. It 

was concluded that additional genes, and potentially additional feedback loops, might exist
41

 (Hicks 

et al., 2001). (3) A problem with the single-loop model was that it could not explain non-parametric 

entrainment, as described in PRCs (Kim et al., 2003). In brief, according to the simple TTFL model 

entrainment to light should be mediated through the induction of the light responsive genes CCA1 

and LHY
42

. Light-induction of LHY (Kim et al., 2003) and entrainment to light-pulses (Covington et 

                                                 
41. Alternative explanations can be given though, as arrhythmia is nothing more than the luck of detectable 

rhythms. 

42. In etiolated seedlings CCA1 and LHY expression is acutely induced by light pulses (Martínez-García et 

al., 2000; Wang et al., 1997), whereas TOC1 expression is not (Makino et al., 2001). TOC1 was thought of as 
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al., 2001) are though not correlated to each other, as the former is maximal at dawn and the later in 

the middle of the subjective night. Conclusively, non-parametric entrainment should not be mediated 

by the light-responsive elements represented in the single TTFL model. Moreover the cca1-1;lhy-21 

double mutant entrains to LD cycles and re-entrains faster than the wild-type in jet-lag experiments 

(12 hours shift of the LD cycle) (Alabadí et al., 2002; Mizoguchi et al., 2002; Kim et al., 2003), 

whereas a mutant that lacks all three CCA1, LHY and TOC1 proteins is capable of resetting to dusk 

signals (Ding et al., 2007). These findings together and independently establish that entrainment can 

take place without this corresponding TTFL. (4) Another paradox with the single-loop model was 

that oscillations of the cca1-11;lhy-21 mutant do not dampen immediately implying clock function 

in the absence of these genes for at least three cycles (Alabadí et al., 2002; Mizoguchi et al., 2002; 

Locke et al., 2005b; Locke et al., 2006; Ding et al., 2007). A recent publication even reported robust 

and sustained oscillations from the cca1-11;lhy-21 double mutant (Lu et al., 2009) in support of a 

multiple loop model. (5) In addition to these, over-expression (Makino et al., 2002) and loss-of-

function mutations of TOC1 (Alabadí et al., 2001), both have a negative effect on CCA1 and LHY 

transcript levels, indicating that perhaps interactions between these genes would not be attributed to 

a unique feedback loop. 

Computational analysis confirmed that the single-loop model could not account for a number 

of additional experimental observations (Locke et al., 2005a; Locke et al., 2005b): (1) importantly, 

the observed photoperiodic regulation in gene expression (Millar et al., 1996) could not be 

successfully simulated, because LHY and CCA1 proteins are depleted before the end of the 12 hour 

light period (Wang and Tobin, 1998; Kim et al., 2003), and thus, the light responsive components of 

the single-loop model should not be able to track dusk. (2) TOC1 levels reach their minimum just 

before dawn (Más et al., 2003b), the time when activity of the protein in up-regulating CCA1 and 

LHY should be at its highest (Locke et al., 2005a). (3) Simulation models (Locke et al., 2005a) failed 

to compromise the short-period phenotypes of cca1 and lhy single mutants to the inverse phase 

relationship between TOC1 and CCA1/LHY expression (Green and Tobin, 1999; Mizoguchi et al., 

2002; Alabadí et al., 2002). (4) The aforementioned responsiveness of the cca1-11;lhy-21 mutant to 

parametric light entrainment could not be simulated as all entries of light input in the mutant were 

deleted. These inconsistencies led Locke and coworkers to propose the next model (fig. 1.10) that 

incorporates an additional "evening TTFL", formed between TOC1 and an unidentified "Y" 

component. In this model TOC1 is a repressor of "Y" that feedbacks to induce TOC1 expression 

                                                                                                                                                    
unrelated to light perception also because of the aforementioned light-fluence-independent short-period 

phenotype of toc1-1 (Somers et al., 1998b). 
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(Locke et al., 2005b). Subsequently it was shown that GIGANTEA (GI) partially fulfills 

computationally predicted properties of Y (Locke et al., 2005b; Locke et al., 2006)
 43

. 

 

 

 

Figure 1.10: The double transcriptional/translational feedback loop model in Arabidopsis 

The two-loop model contains, in 

addition to CCA1/LHY and TOC1, 

elements X and Y. The evening 

expressed gene GIGANTEA (GI) was 

proposed to be a component of Y. This 

model can explain many experimental 

findings not satisfied by the single-loop 

model such as photoperiodic perception 

and several gene-expression patterns; the 

observed negative effect of TOC1-over-

expression on CCA1 and LHY transcripts 

levels is not satisfied though. Red arrows 

show gene expression (transcription and 

translation). Green lines show 

transcriptional regulation and yellow 

shapes light input (adapted after Locke et al., 2005b). 

                                                 
43. According to the two–loop model expression of Y should be light regulated and should peak later in the 

day towards dusk; this property would introduce photoperiodic perception (through the tracking of dusk) and 

also explain the observed light responsiveness of the cca1;lhy mutant. In order to successfully simulate the 

accumulated experimental data the model predicted that Y should be negatively regulated by CCA1 and LHY. 

A consequence of this regulation was that in cca1;lhy simulated expression of Y was advanced by 12 hours 

(relative to the wild-type), because the acute peak of Y at dawn could not be antagonized by CCA1 and LHY 

in the double mutant. Such pattern was not known at the time and was recognized in GI after analyzing 

expression of a number of dusk phased clock controlled genes (in vivo). This model could explain many 

experimental findings regarding the expression patterns of central clock components in wild-type and clock 

mutants, photoperiodism, entrainment and the amplitude phenotypes of cca1;lhy. Not all experimental data 

could be explained though; for instance the fact that TOC1 over-expression has a negative (not a positive) 

effect on CCA1 and LHY transcript levels could not be simulated (Locke et al., 2005b). 

Y 

Y 

X 
CCA1/LHY 

TOC1 

X 

TOC1 

CCA1/LHY 



 32 

CCA1/LHY 

PRR9/7/5 

TOC1 Y (GI) 

X 

Figure 1.11: The triple transcriptional/translational feedback loop model in Arabidopsis 

The figure is adapted after Locke et al. (2006) to also include PRR5. Y and X are explained in figure 

1.10. The regulatory network is made of the coupling between two-component feedback loops. 

 

 

 

 

 

 

 

 

 

 

 

 

The two-loop model predicted that TOC1 would interact with an unknown factor designated X 

that would close the phase gap between TOC1 expression in the middle of the night and its activity 

in up-regulating CCA1 and LHY expression as dawn approaches. CCA1 HIKING EXPEDITION 

(CHE) was proposed to be X (Pruneda-Paz et al., 2009) as it binds both the TOC1 protein and the 

CCA1 promoter, but this idea received criticism as CHE does not bind the promoter of LHY and the 

relationship between CHE and TOC1 in regulating CCA1 expression is antagonistic (Imaizumi, 

2010). This later inconsistency led Haydon et al. (2011) to propose that TOC1 is a negative regulator 

of CHE. It should be pointed out though that the CHE transcript reaches its minimum levels before 

dawn (Pruneda-Paz et al., 2009), precisely when the gap between TOC1 and CCA1/LHY expression 

needed be "filled". Consequently CHE could not be X unless its encoded transcript and protein were 

to be expressed with a considerably large phase difference. An alternative idea is that an additional 

factor X would modulate transcriptional activity of TOC1 between being a transcriptional repressor 

and a transcriptional activator (Gendron et al., 2012). 

A third feedback loop (fig. 1.11) that functions early in the day has been described between 

LHY, CCA1 and the PSEUDO RESPONSE REGULATORs 5, 7 and 9 (PRR5, PRR7, PRR9) that 

together with TOC1/PRR1
44

 form a gene-family due to their similarity to response-regulators (RRs) 

                                                 
44. PRR9, PRR7, PRR5, PRR3 and TOC1/PRR1 are members of the TOC1/PRR pseudo-response regulators 

that were originally identified in Arabidopsis data bases due to their sequence similarity to TOC1 (Makino et 
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of two-component-systems
45

. CCA1 and LHY promote the expression of PRR7 and PRR9 (Farré et 

al., 2005) whereas PRR9, PRR7 and PRR5 are expressed sequentially and suppress expression of 

CCA1 and LHY through out the day via direct promoter binding (Nakamichi et al., 2010). 

Consequently in the triple mutant prr975 transcriptional oscillations are ceased (Nakamichi et al., 

2005). Related computational models were first presented by Locke et al. (2006) and later by 

Zeilinger et al. (2006) and Pokhilko et al. (2010)
46

. 

None of the genes represented in the models in figures 1.9 to 1.11 are required singularly for 

nuclear oscillations. However, mutants with conditional arrhythmic phenotypes are known at three 

loci. These are EARLY FLOWERING 3 (ELF3) (Hicks et al., 1996; McWatters et al., 2000; 

Covington et al., 2001; Kolmos et al., 2011), ELF4 (Doyle et al., 2002; McWatters et al., 2007; 

Kolmos et al., 2009; Wenden et al., 2011) and LUX ARRHYTHMO (LUX) (Hazen et al., 2005) that 

are co-expressed and encode for the components of a circadian-regulated DNA-binding complex, 

termed EVENING COMPLEX (EC)
47

 (Nusinow et al., 2011). Further analysis revealed that LUX, 

which mediates DNA binding, is bridged by ELF3 to ELF4 (Nusinow et al., 2011). These 

biochemical events match genetic epistasis as ELF4 is upstream of ELF3 and LUX (Herrero et al., 

2012). This lends further support that the EC components affect clock function in concert. In favor 

                                                                                                                                                    
al., 2000; Matsushika et al., 2000). Their transcripts are expressed sequentially (PRR9 → PRR7 → PRR5 → 

PRR3 → PRR1) in a manner that could predict the time of the day; this mechanism does not fully describe the 

nuclear oscillator as it was originally proposed (Matsushika et al., 2000). PRRs share an atypical response-

receiver domain (pseudo-receiver domain, PR) and two putative transcriptional domains. The later are an 

acidic domain and the basic CCT motif conserved within the family of CONSTANS transcription factors 

(Makino et al., 2000; Strayer et al., 2000) involved in the photoperiodic induction of flowering.  

45. Two component systems are found throughout the phylogenetic scale. In Arabidopsis they participate in 

phytohormone, stress and light signaling. In response to environmental signals His-protein kinases undergo 

phosphorylation at a conserved His residue followed by phosphor-transfer to an Asp site of the protein. The 

phosphor is then transferred to the His residue of a different phosphor-transfer protein and eventually to an 

Asp residue in the receiver domain of a third protein, the response-regulator (RR). However, the receiver 

domains of the Arabidopsis PRRs luck the catalytic Asp residue involved in the His to Asp phosphorelay; 

these receiver domains are thus defined as pseudo-receiver (PR) (reviewed in Hanano and Davis, 2005). 

Recently it was shown that the PR domain of TOC1 is a transcriptional repressor (Gendron et al., 2012). 

46. The post-translational regulation of clock protein stability (chapter 1.6.3.b) is successfully simulated and 

correlated with accumulated experimental data by Pokhilko et al. (2010) and later by Pokhilko et al. (2012). 

47. The EC was shown to link the circadian clock to diurnal regulation of hypocotyl growth (Nusinow et al., 

2011). It is viewed as a central component of nuclear oscillations in Arabidopsis. 
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of this it was shown that nuclear localization of ELF3 is directed by ELF4 and that all evening 

complex components are localized in nuclear bodies (Herrero et al., 2012). 

Computational analysis has led to the hypothesis that, under diel conditions and in the light, the 

Arabidopsis TTFL is formed by a three-component "repressilator" (fig. 1.12; for a recent review see 

Bujdoso and Davis, 2013). Simulations based on data from the elf3 and elf4 mutant lines (Herrero et 

al., 2012; Pokhilko et al, 2012) indicate that EC is a direct negative regulator of clock gene 

expression during the early night (of LUX, ELF4, GI, TOC1 and PRR9). Consistent with that, LUX 

(Helfer et al., 2011), ELF3 and ELF4 (Dixon et al., 2011; Herrero et al., 2012) are known to be 

associated with the PRR9 promoter and repress its expression. Additionally, in silico analysis 

employing data from the cca1;lhy mutant (Pokhilko et al., 2012) and a reduced function allele of elf3 

(Kolmos et al., 2011), indicate that LHY and CCA1 are direct negative regulators of the EC 

components. This connection is consistent with the finding that CCA1 is a transcriptional repressor 

that binds to the promoters of ELF4 (Li et al., 2011) and ELF3 (Lu et al., 2012). These 

computational and biochemical approaches confirm preceded genetic studies suggesting that the 

TTFL components in Arabidopsis are connected to each other via negative/repressive interactions 

(fig. 1.12). These include the aforementioned negative regulation of CCA1 and LHY expression by 

the PRR proteins throughout the day (Nakamichi et al., 2010), followed by inhibition of the PRR 

genes by the rise of the EC in the early night and of EC genes by LHY and CCA1 later as dawn 

approaches (see references above). Certain positive interactions, such as the effect of ELF3 and 

ELF4 on the expression of CCA1 and LHY [as observed in elf3 (Kolmos et al., 2011) and elf4 

(Kolmos et al., 2009)], are attributed to a double-negative connection. Similarly, the observed 

positive effect of CCA1 and LHY on expression of PRR9 and PRR7 (fig. 1.11 and 1.12) is supported 

by genetic and biochemical data and thus cannot be excluded (Farré et al., 2005). This could also be 

attributed to a double-negative mechanism (Pokhilko et al., 2012). 

In the model proposed by Pokhilko et al., (2012) (fig. 1.12.b), TOC1 is a repressor of CCA1 

and LHY around dawn. This approach reconciles more accurately experimental data and simulations 

regarding the prr9;prr7 and zeitlupe (ztl) circadian mutants and removes the necessity for the 

controversial (Imaizumi, 2010) factor X
48

. The work of Gendron et al., (2012), who showed that 

TOC1 binds CCA1 and LHY promoters to inhibit their expression, provides strong support to the 

                                                 
48. X was introduced to explain the extreme delayed positive effect of TOC1 on CCA1 and LHY expression 

(fig. 1.10 and Locke et al., 2005b). Subsequently, assigning a negative role for TOC1 in CCA1 and LHY 

expression resulted in improved simulations of the prr7;prr7 and ztl mutants without having the need for a 

factor X (Pokhilko et al., 2012). 
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model. It is worth mentioning that the observed downregulation of LHY and CCA1 transcripts in toc1 

loss-of-function mutants (which led to the initial idea that TOC1 is a positive regulator of CCA1 and 

LHY; Alabadi et al., 2001) is not in contrast to the change of sign of TOC1 action, as this 

downregulation is explained by the elevation of the remaining CCA1 and LHY inhibitors (PRR9, 

PRR7 and PRR5) in the simulated toc1 mutant (Pokhilko et al., 2012). It was further shown 

(Pokhilko et al., 2012) that loss-of-function (Alabadí et al., 2001) and over-expression (Makino et 

al., 2002) mutations of TOC1 do not affect CCA1 and LHY expression similarly, as previously 

thought, as long as the effect of the mutations is measured at dawn, when TOC1 is predicted to be 

the major inhibitor of these genes (Pokhilko et al., 2012). To conclude, changing the sign of TOC1 

action on the expression of CCA1 and LHY improved the fitness between current experimental data 

and computational models and explained several inconsistencies of the previous models. 

In the model of Locke et al., (2005b), light directly regulates the TTFL through the Y factor. 

The later in the model of Pokhilko et al., (2012) is removed and light input is delivered, amongst 

other entries (see fig. 1.12.b), through the light-dependent regulation of ELF3 stability. This involves 

the destabilization of ELF3 during the night by CONSTITUTIVE PHOTOMORPHOGENIC 1 

(COP1) E3 ubiquitin ligase and perhaps the light-dependent regulation of ELF3 stability by GI and 

F-box proteins
49

 (Yu et al., 2008). Experimentation and computer simulations with the cca1;lhy 

double mutant are in favor of this (Pokhilko et al., 2012). 

Inhibition of ELF4 and ELF3 by the EC (Kikis et al., 2005; Helfer et al., 2011) creates a 

negative feedback loop that accounts for residual oscillations in the cca1;lhy mutant (Pokhilko et al., 

2012). These are though not self-sustained. The current model of the "repressilator" lacks adequate 

activators required for robustness of the oscillatory network (Bujdoso and Davis, 2013). In my work 

here, I addressed the possibility that metabolic (reviewed in chapter 1.6.5) and hormonal oscillatory 

feedback (chapter 1.6.6) may play such a role in providing rhythm sustainability in wild-type plants 

and in the cca1;lhy mutant. It is noteworthy, that none of the existing models can explain sustained 

oscillations in the cca1;lhy mutant, as described here (in the Results chapter) and in Lu et al., (2009). 

The importance of metabolic oscillations in rhythm sustainability is placed in a context predicted by 

the zeitnehmer model (Merrow et al., 1999). 

                                                 
49. GI binds and stabilizes the F-box protein ZTL under BL; these dissociate after dusk allowing thereafter 

TOC1 degradation mediated by ZTL (Kim et al., 2007; see also chapter 1.6.3.b). The observed binding of GI 

to ELF3 (Yu et al., 2008) led Pokhilko et al., (2012) to assume that GI would regulate ELF3 (and thus the 

EC) and TOC1 similarly, by bringing F-box proteins into their vicinity. 
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Figure 1.12: Current transcriptional/translational feedback loop models in Arabidopsis comprised by 

repressors 

 

The figures are adapted after respective publications. Colored red and blue lines represent 

transcriptional regulation, inhibition and activation respectively. Light input entries are represented with 

purple letters and lines. The observed effect of GI and ZTL on TOC1 protein stability (chapter 1.6.3.b) is 

omitted for clarity. 
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1.6.3. Light input 

 

Apart from being the energy source for plants and the predominant zeitgeber, light is also an 

environmental signal during development and photomorphogenesis. Light is also a stress factor that 

induces production of Reactive Oxygen Species (ROS) at the chloroplastic Electron Transport 

Chains (ETC) capable of causing damage and cell death. 

Different classes of photoreceptor molecules monitor light from UV-B to the near infrared. The 

UV-B part of the spectrum is perceived by the UV RESISTANCE LOCUS 8 (UVR-8) photoreceptor 

(Heijde and Ulm, 2012), phytochromes maximally absorb RL and FRL and the cryptochromes, the 

phototropins, and members of a third gene-family that includes ZTL (see below) are the UV-A/BL 

sensors (Kami et al., 2010). Phytochrome, cryptochrome and phototropin classes are composed of 

distinct members whose expression, stability and/or biochemical properties are functions of light 

intensity and quality. These two environmental parameters provide important spatial information, 

resulting from the fact that photosynthetic pigments absorb RL and BL, allowing green and far-red 

enriched light to pass to the lower levels of the canopy (reviewed in Kami et al., 2010). Light 

intensity and quality also contain temporal information, as the red portion of the spectrum and the 

RL/FRL ratio are not constant through out the day
50

. 

Genetic analysis employing FRCs (fig. 1.4) and PRCs (fig. 1.3) has revealed that non stressful 

photomorphogenic UV-B light entrains the clock through the UV-B photoreceptor UVR-8 and its 

interacting signaling partner COP1. These are specific for entrainment to UV-B and appear 

dispensable for entrainment to white light (Fehér et al., 2011; Heijde and Ulm, 2012). Similar 

genetic studies and biochemical approaches described below established the importance of 

phytochromes, cryptochromes (chapter 1.6.3.a), and of ZTL (chapter 1.6.3.b) in light input to the 

clock in respect to light quality and intensity; genetic data on circadian gating of phototransduction 

pathways in Arabidopsis are also presented (chapter 1.6.3.c). 

 

a. Phytochromes and cryptochromes in light input to the clock 

In Arabidopsis the family of phytochromes is comprised of five members, phytochromes A to 

E (phyA-phyE) (Sharrock and Quail, 1989; Clack et al., 1994). These form homodimers through 

their carboxyl-terminal regions while their highly conserved amino-terminal regions bind the 

chromophore, an open tetrapyrolic ring that during light absorption undergoes isomerization, leading 

to structural changes of the photoreceptor and ultimately to signal transduction. The unique 

                                                 
50. At dawn and dusk there is more RL in the atmosphere. 
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photochromic properties of phytochrome
51

 are responsible for its regulatory functions. Phytochrome, 

purified or in vivo, exists in one of two reversible conformations, the RL absorbing Pr form and the 

FRL absorbing Pfr form. Upon absorption of RL the Pr form is converted to the biologically active 

Pfr form that can be converted back to Pr by FRL or by dark thermal reversion. Phytochromes also 

exhibit a secondary absorption peak in the UV-A/BL region. Consequently the action spectra of 

phytochrome-induced responses exhibit maxima at the RL, FRL and UV-A/BL range. phyA being 

light sensitive is responsible for mediating responses to low-light intensities, though it is involved in 

distinct photomorphogenic, gravitropic and phototropic responses under high intensities of RL as 

well. Due to its unique photochemical properties phyA is also responsible for perception of FRL, 

because in this case a small portion of active Pfr is formed at equilibrium. In contrast to phyA, 

phytochromes B to E proteins are generally more stable in vivo and mediate responses to higher 

fluence-rates (Smith et al., 2000; Kami et al., 2010).  

Due to the availability of phytochrome mutants, distinct modes of actions (responses to light 

shown on the range of inductive Pfr values) can be monitored separately. The classic Low-Fluence-

Response (LFR) mode is characterized by RL/FRL photo-reversibility and has been attributed to 

phyB (though photo-reversibility is a property of all phytochromes); these responses are usually 

observed with light pulses of 10 to 1000 μMol m
-2

. Very-Low-Fluence-Responses (VLFR) require as 

little as 100 pMol m
-2

 and are mediated by both RL and FR light, they are thus not photo-reversible; 

subsequently, VLFRs were ascribed to phyA that is photosensitive and forms the active Pfr form 

even under FRL. The High-Irradiance-Response (HIR) mode is defined based on the law of 

reciprocity that is said to be valid when at equal total fluence continuous light and light pulses have 

the same effect. Otherwise, when the light pulse cannot substitute for continuous light, reciprocity 

failure occurs, defining a HIR; this mode has been observed so far only with FRL and is accordingly 

associated with phyA (Casal et al., 1998; Kami et al., 2010). 

Cryptochromes are UV-A/BL light photoreceptors that are structurally related to DNA-

repairing photolyases. The Arabidopsis genome encodes for two cryptochrome photoreceptors, cry1 

and cry2, while a third cryptochrome implicated in DNA repair mechanisms (cry3) may not 

represent a photosensory photoreceptor. Two chromophores have been elucidated as a pterin and a 

flavin adenine nucleotide (Cashmore et al., 1999; Lin and Todo, 2005; Kami et al., 2010). Recently 

it was shown that BL favors formation of the biologicaly active state of the flavin (a 

flavosemiquinone) that is then shifted to the biologically inactive state (fully reduced flavin) by 

                                                 
51. Use of singular instead of plural is still accustomed, according to the classic studies that preceded cloning 

of distinct phytochrome molecules. 
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green light; in agreement with these photochemical properties, green light attenuates developmental 

responses to BL that are attributed to cryptochromes (floral induction, hypocotyl growth and 

anthocynin accumulation; Bouly et al., 2007; Banerjee et al., 2007). cry2 is negatively regulated by 

BL
52

 (Lin et al., 1998), whereas green light temporally rescues cry2 from BL mediated degradation 

(Bouly et al., 2007). Cryptochromes sense BL with respect to fluence-rate, with cry1 and cry2 

perceiving broad and low intensities of BL respectively during photomorphogenetic responses (Lin 

et al., 1998). One current hypothesis is that the BL to green light ratios in the canopy are perceived 

by cryprochromes, just like phytochromes sense the RL/FRL ratios (Sellaro et al., 2010). It should 

also be mentioned that the cry1;cry2 mutant is not blind to green light, therefore other photosensory 

mechanisms are expected to be involved in plant responses to green light (Zhang et al., 2011). 

Functional specialization of different photoreceptors within light input to the clock was 

assigned in genetic studies that described the FRCs of photoreceptor mutants. The general concept 

behind this is that photoreceptors exhibit long-period phenotypes at distinct intensities and qualities 

of light (fig. 1.4 B)
53

. phyA was shown in this manner to be the low-fluence photoreceptor, whereas 

phyB functions as the dominant RL photoreceptor and cry1 the dominant BL photoreceptor 

(reviewed in Devlin, 2002 and in Sanchez et al., 2011). The phyA and phyB mutants exhibit long-

period phenotypes under low- and high-light intensities respectively. In agreement with this the 

phyA;phyB double mutant has a long-period phenotype under all light intensities tested and 

consequently the roles of phyA and phyB in RL input to the clock are complementary with respect to 

light intensity. With experiments of this kind it was further shown that phyA, in addition to its role in 

RL signaling, mediates circadian perception at low intensities of BL; moreover it was shown that BL 

signaling to the clock does not involve phyB
54

 (Somers et al., 1998a; Devlin and Kay, 2000). This 

has been questioned though because the carboxyl-terminal region of phyB (responsible for the 

photoreceptor’s His-kinase activity) is dispensable for the complementation of the short-period 

phenotype of a null phyB mutation under RLc, but not under WLc (Palágyi et al., 2010). This was 

interpreted as that phyB mediates circadian perception of light qualities other than RL. Based on 

                                                 
52. The same effect is caused by UV-A and green light. 

53. One cannot help noticing (fig. 1.4) that according to the Aschoff rule the photoreceptor mutants assigned 

with input at low intensities are more sensitive to light than the wild-type. This is a mathematical consequence 

resulting from a long-period phenotype restricted at low-light intensities and is manifested as steeper (relative 

to those of the wild-type) FRCs of the mutants. 

54. Here I show that the phyB mutant has a conditional circadian phenotype under BLc. The condition that 

unmasks the phenotype is metabolic. 
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FRC-phenotypes, cry1 mediates light input to the clock at low and high but not at intermediate 

intensities of BL. Then the role for cry2 in light input to the clock is revealed only in the cry1;cry2 

double mutant that exhibits the long-period phenotypes at all light intensities, including intermediate 

ones. Cryptochromes are also involved in RL input to the clock, mostly at low-light intensities 

(Somers et al., 1998a; Devlin and Kay, 2000). Based on these findings and given that cryptochromes 

do not absorb at the RL region of the spectrum, cry1 was placed downstream of phyA during 

circadian perception of low fluence-rates of RL (Devlin and Kay, 2000). In agreement with this 

notion it was found that cryptochromes can be substrates of the kinase activity
55

 of phyA (Ahmad et 

al., 1998; Más et al., 2000). It should be mentioned that both phytochromes and cryptochromes pose 

light-regulated kinase activities but their physiological relevance remains to be established (reviewed 

in Kami et al., 2011). 

The circadian phenotypes of phyA, phyB, cry1 and cry2 mutants indicate that these 

photoreceptors are involved in light signaling to the clock. Despite this, the quadruple 

phyA;phyB;cry1;cry2 mutant is capable of photic parametric entrainment and exhibits circadian 

regulated leaf movement under WLc (Yanovsky et al., 2000). The same observations were recently 

repeated with the quintuple phytochrome mutant (Strasser et al., 2010). These findings show clearly 

that in Arabidopsis the photoreceptors are not integral elements of the core clock and most 

importantly that photic parametric entrainment can take place without them. One explanation for this 

could be that other photoreceptors mediate light signals to TTFLs. More alternatives can be 

considered though, as recent literature has provided several examples to support the idea that 

metabolic oscillations interact with TTFLs and thus could entrain them. This opinion is supported by 

findings in Neurospora, cyanobacteria and in mammals reviewed here (see also additions 1, 2 and 3) 

as well as by several works conducted with Arabidopsis discussed below (paragraph 1.6.5). 

                                                 
55. Phytochromes are considered to be serine-threonine kinases that may have descended from bacterial His-

kinases of two component systems (Yeh and Lagarias, 1998; Vierstra and Davis, 2000). This kinase-signaling 

mode remains to be established for plant phytochromes. Other well described phytochrome signaling cascades 

are defined by light-induced interactions between Pfr and members of the PHYTOCHROME 

INTERACTING (PIF) family (Castillon et al., 2007). 
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b. ZEITLUPE – a novel blue light photoreceptor 

Several publications have established that ZEITLUPE (ZTL)
56

 is a novel circadian 

photoreceptor. Together with LOV-KELCH-PROTEIN 2 (LKP2) and FLAVIN BINDING KELCH 

REPEAT F-BOX 1 (FKF1) they form a small gene family due to their common domain structure
57

. 

All three proteins contain a Light-Oxygen-Voltage (LOV) domain at their amino-terminal region 

similar to the LOV flavin-binding domain of known BL photoreceptors, such as the phototropins and 

the Neurospora WC-1 protein (Somers et al., 2000). 

The involvement of ZTL within light-input pathways was first suggested based on the fluence-

rate dependent long-period phenotypes of ztl mutants. Such a phenotype is enhanced at low fluence-

rates of monochromatic BLc or RLc (Somers et al., 2000). Interestingly, period lengthening in the 

mutant is exacerbated in the dark, indicating that ZTL does not function exclusively in the light 

(Somers et al., 2004). Even though flavin binding at the LOV domain has not been demonstrated so 

far, there is strong evidence that ZTL is a photoreceptor because a mutation (C28A) that would 

compromise the proteins photochemical activities attenuates its observed binding to GI in response 

to light (Kim et al., 2007). In this work, it was shown that the role of ZTL is to promote degradation 

of TOC1 at night and that BL inhibits this function by promoting binding of GI to ZTL (Kim et al., 

2007; see below for more details). Additional evidence in favor of ZTL being a BL circadian 

photoreceptor was provided by findings that a mutation located in the protein’s LOV domain alters 

the slope of FRCs under BLc, but not under RLc (thus ZTL works in a light-quality specific manner; 

Kevei et al., 2006). It should be clarified though that ZTL activity is not restricted to BL signaling, 

as the fluence-rate dependent period-phenotypes of other ztl mutants are observed also under RLc 

(Somers et al., 2000; Somers et al., 2004; Kevei et al., 2006). This indicates that ZTL, not having 

any domains that would confirm RL absorption, functions downstream of other photoreceptors or 

pigments, and in support of this, phyB (and cry1) interacts with ZTL in a yeast-two-hybrid system 

(Jarillo et al., 2001). 

It has been proposed that the role of ZTL in clock function is distinct from its role in 

photomorphogenetic responses. Circadian phenotypes of ztl-mutants are observed in the dark and 

under BLc or RLc, but their hypocotyl-length is only affected under RLc. Moreover in the light (RLc 

                                                 
56. ZTL was isolated in a genetic screen; unlike most single clock mutants that show a moderate short period 

phenotype, ztl mutants exhibit an extreme long-period phenotype (Somers et al., 2000). 

57. The LOV domain is followed by an F-box motif and carboxyl-terminal kelch repeats (Somers et al., 

2000); F-box motives target specific substrates for ubiquitination and subsequent proteolytic degradation, 

whereas kelch repeats are known to facilitate protein-protein interactions. 
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or BLc) the long-period phenotypes ztl loss-of-function mutations are moderated at higher fluence-

rates, whereas, by contrast, hypocotyl-length phenotypes are exacerbated at high fluence rates of 

RL
58

 (Somers et al., 2000; Somers et al., 2004; Kevei et al., 2006). These findings are also indicative 

that during photomorphogenetic responses ZTL activities are restricted downstream of RL 

photoreceptors. 

The lkp2 mutant does not display any circadian phenotypes while the fkf1 mutant causes only 

subtle circadian effects. The fkf1 mutation though exacerbates the long-period phenotype of ztl, 

while a circadian role of LKP2 becomes evident only in a mutant ztl;fkf1 background, manifested as 

decreased oscillatory robustness in the expression of clock- and clock-controlled-genes (Baudry et 

al., 2010). These observations suggest that FKF1 participates in the regulation of TTFLs and that 

circadian period is buffered against transcriptional perturbations resulting from lkp2 mutations. 

Oscillations of ZTL protein levels are established via a post-transcriptional mechanism. This is 

because ZTL transcript levels are constant (Somers et al., 2000), whereas the ZTL protein peaks at 

dusk (Kim et al., 2007). Moreover ZTL is involved in the course of BL input to the clock through 

the post-translational regulation of several other clock proteins. A central role of ZTL in regulating 

circadian period is through the targeted proteasome-dependent degradation of TOC1 (Más et al., 

2003b) and of PRR5 (Fujiwara et al., 2008). PRR5 and TOC1 proteins peak at dusk (Fujiwara et al., 

2008), they are found in the nucleus (Strayer et al., 2000; Fujiwara et al., 2008) and when mutated 

they both result in similar short-period phenotypes (Nakamichi et al., 2005). Together these findings 

are well in agreement with the proposal that PRR5 facilitates transportation of TOC1 in the nucleus 

(Wang et al., 2010). Degradation of TOC1 via ZTL occurs at night when expression of TOC1 is 

maximal (Mas et al., 2003b). This function of ZTL is counteracted not only by the PRR5-mediated 

translocation of TOC1, but also by other proteins represented in the Arabidopsis TTFL models, such 

as GI and PRR3 (see references below). During the late day TOC1 is temporally rescued from ZTL-

mediated degradation through the binding of GI to ZTL (Kim et al., 2007); this interaction is 

enhanced under BL, requires a potentially photoactive LOV domain in ZTL, and stabilizes not only 

TOC1, but ZTL as well (that is otherwise downregulated in gi mutants). As their interaction is light-

dependent, GI and ZTL dissociate after dusk allowing thereafter TOC1 degradation (Kim et al., 

                                                 
58. Closer examination in Somers et al. (2000) and (2004) is indicative that perhaps the roles of ZTL in 

clock-responses and photomorphogenesis might no bet so distinct from each other. This is because ztl mutants 

produce steeper FRCs than the wild-type in both cases; an interpretation of this is that the mutants are 

oversensitive to light. As ZTL is a photoreceptor this could mean that ZTL antagonizes light signaling 

pathways. 
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2007). Consequently oscillations in the levels of TOC1 are amplified through the light-mediated 

interaction of ZTL with GI. Later in the night TOC1 is stabilized through its interaction with PRR3 

that competes with ZTL for binding to the N-terminus of TOC1. The interaction between PRR3 and 

TOC1 is enhanced by their phosphorylation. In agreement with these, TOC1 and PRR3 have similar 

temporal expression patterns (even though they are co-expressed only in the vascular system) and 

deficiencies in either protein result in similar short-period phenotypes (Para et al., 2007; Fujiwara et 

al., 2008). Collectively, ZTL is a circadian BL photoreceptor whose stability is regulated at the post-

translational level by BL and oscillations in GI, as part of a mechanism that establishes robust 

rhythms in the levels of the TOC1 protein, required for proper clock function. 

 

 

c. Gating 

Gating of rhythmic gene expression in Arabidopsis was first observed for the acute response of 

CAB2 to light (Millar and Kay, 1996) and then with PRCs (fig. 1.3); under DD the acute response of 

CAB2::LUC
59

 expression is restricted during the subjective day (Millar and Kay, 1996), whereas 

PRC depict that the clock is responsive to BL or RL pulses predominantly during the night, when 

advances and delays are observed around subjective dusk and dawn respectively (Covington et al., 

2001; see also Locke et al., 2005b). The mechanism behind gating is not clarified; it has been 

genetically connected to EARLY FLOWERING3 (ELF3) (McWatters et al., 2000; Covington et al., 

2001) ant to TIME FOR COFFEE (TIC) (Hall et al., 2003), and in theory it could also be affected by 

the rhythmic expression of phytochromes and cryptochromes (described in Tóth et al., 2001) as well 

as by their nucleoplasmic partitioning (references listed below). 

In Arabidopsis photoreceptor transcripts accumulate rhythmically under LL and consequently 

photoreceptors are both upstream and downstream of the central oscillator. Rhythmicity in the 

expression of the photoreceptor genes that affect the clock (phyA, phyB, cry1 and cry2) is also 

observed with the promoter::luciferase system that represents transcript-synthesis-rate. In the dark, 

these transcriptional oscillations dampen or their rhythmic amplitude is decreased, therefore, not 

surprisingly, coupling of photoreceptor-gene-expression to the clock requires light. Interestingly, the 

phase by which the circadian-photoreceptors are expressed is correlated to their sensitivity to light. 

                                                 
59. CAB2::LUC is the construct comprised of the CAB2 promoter fused to the firefly luciferase. Similarly to 

CAB2 expression, the acute light induction of CCA1 mRNA in etiolated plants (Wang et al., 1997) and of 

LHY protein in LD grown seedlings (Kim et al., 2003) are also gated; the maximum acute induction coinsides 

with maximum expression of respective genes under free running conditions in every case. 
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phyA and cry2 both encode for the light labile photoreceptors that are maximally transcribed close to 

the end of the day, while phyB and cry1 that encode for the light stable photoreceptors peak during 

the first half of the subjective day (Tóth et al., 2001; Bognár et al., 1999
60

). The significance of this 

observation in the establishment of gating has not been investigated. 

In dark grown Arabidopsis and tobacco seedlings, phyA and phyB proteins are initially located 

in the cytosol in the dark Pr form. Upon illumination the proteins translocate to the nucleus where 

they form speckles
61

 (first observed by Yamaguchi et al., 1999 and Kircher et al., 1999). phyB 

nuclear translocation in Arabidopsis (Sakamoto and Nagatani, 1996) and subsequent nuclear speckle 

formation (observed in tobacco, Kircher et al., 1999) exhibit R/FR reversibility and therefore they 

are characteristic of the LFRs attributed to phyB. Translocation and nuclear speckle formation of 

phyA in Arabidopsis are triggered by both RL and FRL pulses (VLFRs) as well as by continuous 

FRLc (FR-HIR) (Kim et al., 2000). These publications show that nuclear translocation of a 

phytochrome species and its attributed modes of action are well correlated, and indicate that 

phytochrome signaling involves, at least in part, nuclear translocation and phytochrome-mediated 

changes in gene-expression. It is noteworthy, that nuclear speckle formation anticipates dawn and 

for this it is very likely that the speckle formation and nucleoplasmic partitioning of phytochromes 

are under circadian control (Kircher et al., 2002). Conclusively, nucleoplasmic partitioning and 

speckle formation of phyA and phyB could, like rhythmic photoreceptor gene-expression, be 

involved in the mechanisms that establish gating. 

The ELF3 gene, now viewed as part of the oscillator (fig. 1.12), is required for proper circadian 

gating of light input. The loss-of-function mutant elf3-1 is aphotoperiodic in regard to flowering time 

and exhibits light-dependent arrhythmia. In constant darkness, however, the mutant exhibits limited 

signs of clock function. Similarly to this light-dependent phenotype of elf3-1, over-expression of 

ELF3 results in light-dependent period lengthening (Hicks et al., 1996; Covington et al., 2001). 

Keeping these in mind and the observation that temperature cycles can bypass the requirement for 

normal ELF3 circadian function, it was proposed that ELF3 affects the oscillator specifically through 

                                                 
60. Bognár et al. (1999) reported some interesting aspects of rhythmic expression of phyB. They 

demonstrated that expression of phyB is rhythmic at the level of transcription and of translation in 

Arabidopsis and in tobacco. It was also found that in tobacco overall phyB protein levels do not oscillate. 

This, according to the authors, could mean that newly synthesized phyB is rhythmic but the phyB pool is too 

large thus not affected. 

61. Speckles are observed in transgenic plants expressing photoreceptor-GUS or more often photoreceptor-

GFP protein fusions. 
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light-input pathways (McWatters et al., 2000). In addition to these conditional phenotypes, elf3 

mutants are also disrupted in circadian gating. This includes gating of acute responses to light 

(McWatters et al., 2000) as well as gating of light input to the clock, as observed with PRCs 

(Covington et al., 2001). PRC show that the elf3-1 mutant is over-responsive to light relative to the 

wild-type. Therefore ELF3 should mediate gating by inhibiting light input. Interestingly, ELF3 

expression is rhythmic and its peak of expression, in the middle of the night, coincides with a phase 

of the oscillator that is oversensitive to light (when light pulses are applied at this time, rhythmicity 

is lost in the elf3-1 mutant, whereas in the wild-type phase shifts change sign; see fig. 1.3). These 

observations indicate that gating is required for rhythmicity that is otherwise lost when unregulated 

light signals are channeled to the oscillator in the middle of the night (Covington et al., 2001).  

 

 

1.6.4. Entrainment to temperature 

 

In Arabidopsis, daily temperature fluctuations as low as 4˚C are potent resetting signals 

(Somers et al., 1998b). The responsible mechanism and the initial "thermometers" are still largely 

unknown, reflecting perhaps the fact that most studies addressing entrainment in Arabidopsis are 

focused on light (McClung and Davis, 2010). The effect of temperature is further complicated by the 

fact that temperature resets the clock without affecting circadian period significantly (see appendix 5 

for temperature compensation in Arabidopsis). Recently it was shown that downstream events of 

temperature entrainment involve the PRR7 and PRR9 components of the morning TTFL. Of note, 

these proteins are also implicated in the temperature compensation response (Salomé et al., 2010). 

The prr7 and prr9 mutants do not entrain to 22˚C/12˚C thermo-cycles and to cold pulses (Salomé 

and McClung, 2005), but maintain responsiveness to 28˚C/22˚C cycles; moreover, responsiveness to 

22˚C/12˚C treatments is restored when etiolated seedlings are employed. It should be mentioned that 

the prr7;prr9 mutant is capable of photic entrainment, therefore the relationship between PRR7 and 

PRR9 with entrainment is temperature specific. It should not be concluded that these proteins are not 

involved in light input pathways though, because oscillations in the double prr7;prr9 mutant are 

arrested in the dark (Salomé and McClung, 2005; Salomé et al., 2010). 

Recently it was shown that ELF3 is required for entrainment of etiolated seedlings to 

temperature cycles, but this gene is not considered to be a temperature zeitnehmer because it does 

not regulate gating to warm treatments in the dark (Thines and Harmon, 2010). These findings show 

that the functional role of ELF3 in the Arabidopsis TTFL is not soley restricted to light conditions. 
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1.6.5. Sugars, metabolism and cytosolic oscillations are circadian determinants in 

Arabidopsis 

 

In Arabidopsis cytosolic oscillations and changes in the concentration of metabolites contribute 

to oscillator function and possibly rhythm generation (reviewed in Haydon et al., 2010; Sanchez and 

Davis 2011). One of the earliest publications that demonstrated experimentally feedback regulation 

between nuclear and metabolic oscillations in Arabidopsis came from the Webb lab (Dodd et al., 

2007). They showed that oscillations in cyclic adenosine diphosphate ribose (cADPR), a molecule 

that is derived from NAD+, are not simply under the control of TTFLs, rather they feedback to 

regulate circadian period and amplitude of central TTFL-components. The starting point of this 

study was to examine the relationship between cytosolic oscillations and clock function, in particular 

of Ca2
+
 oscillations and its upstream signaling component cADPR. To do so, a time course of the 

Arabidopsis transcriptome in the absence of supplementary sucrose was obtained
62

, because sucrose 

is known to inhibit Ca2
+
 oscillations (Johnson et al., 1995). Subsequently, a significant overlap was 

observed between the cADPR- and the ensuing circadian-controlled transcriptomes. cADPR levels 

were then shown to be rhythmic and drive Ca2
+
 oscillations, because the later were inhibited by 

nicotinamide, an inhibitor of the former; in agreement with this, cADPR and Ca2
+
 oscillations peak 

with similar phase during the day. Nicotinamide, unlike inhibitors of calcium signaling, also 

lengthens the period and increases amplitude of TOC1, CCA1, and LHY expression, indicating that 

cADPR regulates nuclear oscillations via a downstream pathway that does not employ calcium
63

. A 

                                                 
62. Circadian studies during the last 15 years or so have been conducted in the presence of supplementary 

sucrose due to the requirement of energy from the luciferase transgene used for rhythmic gene expression 

analysis (see references below). 

63. The work of Dodd et al. (2007) clearly shows that Ca2
+
 oscillations do not feedback on TTFL function. It 

is very likely though that, through Ca2
+
 oscillations, metabolic and rhythmic signals are transferred to gene 

expression and photoperiodic responses (reviewed in Haydon et al., 2010; Dodd et al., 2010). Firstly, 

cytosolic Ca2
+
 oscillations are inhibited by sucrose and require light whereas in the chloroplast they are only 

observed in the dark (Johnson et al., 1995), thus Ca2
+
 oscillations could potentially incorporate information 

regarding the state of energy metabolism. Secondly, under short-days (8hL/16hD) cytosolic calcium reaches 

maximum levels just before dusk, whereas under long-days (16hL/8hD) dusk coincides with lower calcium 

concentration relative to midday peaks, thus Ca2
+
 oscillations could potentially mediate photoperiodic 

information to their downstream targets (Love et al., 2004; Dodd et al., 2010). It was further proposed that 

dual regulation of calcium oscillations by TTFLs (Xu et al., 2007) and by light is involved in the 

photoperiodic regulation of circadian phase, in the context of an external coincidence model. According to 
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reciprocal feedback was proposed between TTFLs and cADPR oscillations as the later were 

abolished in CCA1 over-expressing plants. 

Poly-ADP-ribosylation, a post-translational modification implicated in stress signaling, is well 

correlated to circadian function and period. The tej mutant being deficient in poly-ADPribose 

glycohydrolase (PARG) activity accumulates more pADPr polymers than the wild-type and exhibits 

a long-period phenotype. Accordingly, inhibitors of poly-ADP-ribosylation, that would decrease the 

amount of pADPr polymers, shorten period in both the tej mutant and in the wild-type. The circadian 

phenotype of tej is light-independent indicating that the role of TEJ in timekeeping is likely central 

and not found in light input pathways (Panda et al., 2002). This was the first report in Arabidopsis 

assigning homeostatic cellular function to poly-ADP-ribosylation that is otherwise induced in 

response to stress such as heat, high-light, drought and ROS; under such stress conditions NAD+ 

breakdown is used for production of pADPr polymers resulting in high energy consumption, 

increased respiration and consequently ROS formation (de Block et al., 2005). In 2002 Panda et al. 

concluded that the long-period phenotype of tej would result from altered posttranslational poly-

ADP-ribosylation of a clock protein, but today after the work of Dodd et al. (2007), an alternative 

explanation could invole ROS and energy homeostasis, as defined by NAD+ (a precursor of both 

cADPR and pADPr polymers). In support of this, tej exhibits enhanced activity of transgenic 

luciferase relative to wild-type (Panda et al., 2002)
64

, indicating altered energy homeostasis in the 

mutant. 

During the last decade, a great deal of knowledge has accumulated concerning the role of stress 

and hormone signaling in clock function (see chapters 1.6.6. and 1.6.7) and the possibility that poly-

ADP-ribosylation and stress hormone ABA affect the clock through metabolites such as NAD+ and 

cADPR has been considered (Sanchez et al., 2011). The relationship of ABA signaling to cADPR 

and poly-ADPribosylation was pointed out in independent studies
65

 that dealt with stress signaling. 

                                                                                                                                                    
this model activity of a rhythmically expressed transcription factor would be sensitive to light directly via 

calcium dependent signaling networks of phosphorylation, degradation and/or activation/repression (Dodd et 

al., 2010). Interestingly, Ca
2+

 oscillations are lost in the cca-11 mutant. 

64. tej is the Sanskrit word for bright. 

65. In one of these studies the involvement of cADPR in ABA signaling was suspected due to the significant 

overlap (25%-30%) between the ABA- and cADPR-regulated transcriptomes; accordingly, it was shown that 

the ADPR cyclase activity is induced by ABA (Sánchez et al., 2004). In a second publication, de Block et al. 

(2005) proposed a mechanism whereby stress, energy consumption, redox and ADP-ribosylation are 

interconnected. The authors observed that a transgenic line with reduced poly-ADP-ribosylation capacity is 

resistant to a broad range of abiotic stresses relative to wild-type and suggested that the resistance phenotypes 
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Now it remains to be clarified if ABA, ADP-ribosylation, and cADPR affect circadian rhythms in 

concert. 

Sucrose has been used extensively in circadian assays that measure rhythmic transcriptional 

rates because of the ATP requirements of the luciferase enzyme. By contrast, flowering time 

experiments are usually performed on soil grown plants without supplementary sucrose. Aiming to 

investigate this discrepancy Knight et al. (2008) observed that sucrose had a minor period shortening 

effect (of less that 0.8 hours) on leaf movement rhythms of Arabidopsis and that the late-flowering 

sensitive to freezing6 (sfr6) mutant was resistant to sucrose in this respect. In addition to its small 

period effect on leaf movement, sucrose also caused a significant increase in expression of CCA1, 

TOC1 and GI, whereas the sfr6 mutant was again resistant or less sensitive to sucrose relative to 

wild-type. Despite the small sucrose-dependent long-period phenotype of sfr6 (restricted in the 

presence of sucrose), it is significantly altered in clock-specific gene-expression (Knight et al., 

2008). This implies that the plant clock is resilient to large changes in the expression of TTFL 

components. It should be mentioned that even though the period-shortening effect of sucrose on 

rhythmic leaf movement is small (Knight et al., 2008), it has been reproduced independently with 

GI::LUC (Dalchau et al., 2011). These studies together with others described below, show that 

sugars exert control on clock function. 

Photosynthates such as maltose that is exported from the chloroplast and sucrose that is the 

main sugar exported from green tissues accumulate rhythmically under diurnal conditions and under 

continuous light (Lu et al., 2005). In addition to this, sucrose has been implicated in entrainment by 

a number of independent publications, demonstrating that metabolism is not simply a circadian 

output, but instead it feedbacks via rhythmically accumulated metabolites. In one of these 

publications Blaesing et al. (2005) observed that a high proportion of carbon-responsive (induced or 

repressed) genes is circadian regulated and is in resonance with the endogenous oscillations of sugar 

solutes, indicating that sugars contribute to diurnal transcriptional patterns. Additional evidence for 

the role of sugars in driving oscillations was provided by experiments with the phosphoglucomutase 

(pgm) mutant that does not accumulate starch and exhibits amplified oscillations in sugar content 

relative to wild-type (Gibon et al., 2004). In the pgm mutant the percentage of carbon-responsive 

                                                                                                                                                    
would stem from reduced energy consumption (NAD+ and ATP) by the process of ADP-ribosylation (de 

Block et al., 2005). An alternative hypothesis was presented by Vanderauwera et al. (2007) in a third study 

who found that in this same transgenic line ABA content and signaling were upregulated relative to the wild-

type in response to high-light induced stress. It was proposed that the mutant is resistant to abiotic stresses 

due to the enhanced ABA signaling. 
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genes that are rhythmic as well as the amplitude in their oscillation was increased relative to wild-

type, as expected if sugars contribute to rhythmic gene expression. Principal component analysis 

identified sugars and the circadian clock as being the two most significant inputs that drive rhythmic 

gene expression. Of note, it was shown that global gene expression is more responsive to sugar 

depletion during the night rather than to sugar excess during the day (Blaesing et al., 2005). 

It was reported that exogenously applied sucrose exhibits "antizeitgeber" properties because it 

prevents parametric entrainment of morning genes in the root. It was then shown that the root and 

areal tissues are responsive primarily to those zeitgebers that they normally encounter; aerial tissues 

are preferably entrained by light in a manner that is not altered by supplemented sucrose, whereas by 

contrast, the root-clock is not only sucrose-responsive but also light-insensitive as it does not obey to 

the rule of Aschoff (oscillations in roots are equally fast under LL and in DD). In addition to these, 

photosynthesis-inhibitor DCMU was shown to disturb expression of morning-phased genes in the 

root but not in the shoot. Based on these the authors proposed that the root clock is synchronized by 

a photosynthesis-related signal, possibly sucrose, from the shoot
66

 (James et al., 2008). Evidence of 

the role of sucrose in entrainment was provided by a third publication again from the Webb lab. 

They showed that sucrose triggers and re-entrains oscillations in clusters of Arabidopsis seedlings 

that were previously entrained and then kept in the dark for 60 to 72 hours. The response to sucrose 

required GI
67

 that was thus proposed to permit metabolic input to circadian timing in Arabidopsis 

(Dalchau et al., 2011). When considered together, these works are suggestive that sucrose 

accumulates rhythmically due to photosynthesis during the subjective (or objective) day and 

contributes to entrainment. Notably, carbon assimiation can set the Arabdopsis clock (Haydon et al. 

2013). The idea that photosynthesis is a "receptor" becomes particularly interesting given the fact 

that the quadruple phyA;phyB;cry1;cry2 (Yanovsky et al., 2000) and the quintuple phytochrome 

mutants (Strasser et al., 2010) are capable of photic entrainment. Therefore it remains to be seen 

whether, similarly to cyanobacteria (Rust et al., 2011), photic entrainment in higher plants is 

initiated at the photosynthetic electron transport chain, in agreement with the emerging trend that 

events downstream of energy transduction affect TTFLs.  

                                                 
66. They even they even made an analogy between the fact that in mammals RF entrains peripheral tissues but 

not the light-sensitive SCN, and their findings that a metabolic-photosynthetic signal entrains the root but not 

the light responsive clock in the shoots (James et al., 2008). 

67. Dalchau et al. (2011) performed imaging of clusters of seedlings. Here I show that imaging of individual 

seedlings yields different results. 



 50 

The aforementioned experiments of James et al. (2008) with DCMU point specifically to that 

direction by demonstrating the involvement of electron transport in entrainment of the Arabidopsis 

clock. In addition to this, it was recently shown that retrograde signaling and the functional state of 

chloroplasts control amplitude and phase of nuclear oscillations; mutations in a putative RNA-

binding protein CLOROPLAST RNA BINDING (CRB) that exhibit altered chloroplast morphology, 

a distinct pale phenotype and are deficient in chlorophyll synthesis, where shown to result in 

increased amplitude and delayed expression of LHY and CCA1 (though period length was not 

affected). Mutations in GENOMES UNCOUPLED1 (GUN1) and STATE TRANSITION7 (stn) 

involved in retrograde signaling, had a similar effect on expression of CCA1, indicating that the 

circadian phenotypes of CRB mutants stem from an overall dysfunction of chloroplasts rather than 

being a consequence of specific signaling events downstream of CRB (Hassidim et al., 2007). 

Moreover, the fact that the stn7 mutant exhibits a circadian phenotype is implicit that electron 

transport in Arabidopsis is a circadian determinant, because stn7 encodes for a Ser/Thr kinase that 

phosphorylates the major light harvesting complex LHCII, as part of the mechanism that controls 

partitioning of the later between photosystem I (PSI) and PSII. This could be tested through 

mutations in stn7 that are known to cause over-reduction of the PQ pool (Bellafiore et al., 2005). If 

the redox state of the PQ pool were to be of circadian relevance it could mean that photosynthetic 

electron transport is a universal feature of entrainment in photosynthetic organisms (see appendix 2 

for the involvement of PQ in entrainment of the clock of cyanobacteria). Conclusively, the 

publications reviewed here are suggestive of a link between photosynthetic ETCs and photic 

entrainment of nuclear oscillations in higher plants. It is now more feasible than ever, after the 

publications of O'Neill et al. (2008)
68

 in mammals, of Rust et al. (2011)
69

 in cyanobacteria, of 

Yoshida et al. (2011)
70

 in Neurospora and the publications with Arabidopsis described here and in 

chapter 1.3 (regarding the universal peroxiredoxin rhythms; Edgar et al., 2012), that the redox state 

and the energy charge of the cell, defined as nucleotide ratios, are employed during entrainment 

throughout the phylogenetic scale. 

                                                 
68. They showed that synchrony of neurons depends on cAMP oscillations. 

69. They showed that the PRC obtained by altering the ATP/ADP ratio in vitro was similar to the PRC 

observed in living cells treated with pulses of darkness; KaiC phosphorylation was used to asses the rhythm in 

both cases. 

70. They showed that light input to the clock of Neurospora employs ROS. 
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1.6.6. Plant hormones in circadian rhythms 

 

Microarray expression analysis has demonstrated that the plant transcriptome is rhythmic. 

Early findings suggested that expression of about 6% (Harmer et al., 2000) to 15% (Edwards et al., 

2006) of the genes in Arabidopsis oscillate on a circadian basis, but more recent estimations raise 

this percentage between 30% and 40% (Covington et al., 2008). In these same studies cluster 

analysis indicated that primary and secondary metabolism are rhythmic (Harmer et al., 2000; 

Edwards et al., 2006). Due to the high proportion of rhythmic gene expression, reaching up to 89% 

when diurnal microarray data sets are considered (Michael et al., 2008b), rhythmic transcription 

alone is no proof that a process is also rhythmic, rather transcriptional oscillations in Arabidopsis are 

inherent. 

System-wide analysis has shown that hormone-responsive and circadian regulated genes 

overlap in a greater proportion than expected by chance, predicting that hormone and stress 

responses are anticipated; this analysis included genes responsive to ABA, brassinosteroids, auxin, 

gibberellins, ethylene, methyl jasmonate and salicylic acid (SA) (circadian data sets: Covington and 

Harmer, 2007; Covington et al., 2008 and Legnaioli et al., 2009; diurnal data sets: Mizuno and 

Yamashino, 2008; see also Sanchez et al., 2011 for a recent review). A series of publications dealing 

with hormone signaling has proven this transcriptome-based prediction. First, several responses to 

hormones, such as auxin, ABA and GA, are gated by the circadian clock at specific times of the day 

(Covington and Harmer, 2007; Legnaioli et al., 2009; Arana et al., 2011). Then, levels of ABA (Lee 

et al., 2006) and brassinosteroids (Bancos et al., 2006) oscillate under LD cycles, whereas under free 

running conditions auxin (Jouve et al., 1999) and ethylene levels (Thain et al., 2004) are also 

rhythmic, peaking in the middle of the day. Rhythmicity in hormone levels results from 

transcriptional regulation of respective biosynthetic pathways in the case of ABA, auxin and 

brassinosteroids and from posttranscriptional regulation in the case of ethylene; it is noteworthy that 

the clock controls transcription of enzymes performing the rate limiting steps of ABA and 

brassinosteroid biosynthesis, whereas auxin signaling is rhythmic at multiple levels from 

biosynthesis, transport and inactivation to hormone binding to receptors and signal transduction 

thereafter (Thain et al., 2004; Bancos et al., 2006; Covington and Harmer, 2007; Covington et al., 

2008; Rawat et al., 2009). 

In addition to being clock-controlled some hormones feedback on clock function regulating 

several parameters of circadian rhythms. Exogenously applied brassinosteroids shorten circadian 

period and in agreement with this brassinosteroid-defect mutants exhibit long-period phenotypes 

(under both LL and DD; Millar et al., 1995a; Hanano et al., 2006); ABA application lengthens 
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circadian period and accordingly an ABA-deficient mutant exhibits a short-period phenotype
71

; 

cytokinin application delays phase particularly in DD whereas cytokinin-hypersensitivity lengthens 

circadian period in the dark; exogenously applied ethylene has little if any effect on circadian 

parameters even though several ethylene related mutants show altered circadian phase and 

periodicity under distinct light conditions (Hanano et al., 2006). Finally auxin application does not 

affect circadian function at physiological concentrations, though it reduces amplitude of certain 

circadian luciferase-markers (Hanano et al., 2006; Covington and Harmer, 2007). Collectively 

pharmacological and genetic approaches have shown that brassinosteroid-, ABA- and cytokinin-

related signaling pathways exert feedback regulation on clock function. Here I show that SA 

application shifts the phase of the clock in a gated manner. Below the studies that have dealt with the 

gating of hormonal responses (ABA, GA and auxin) by the circadian clock are reviewed. 

 

 

1.6.7. Sensitivity to hormones is gated: rhythmic hypocotyl elongation and anticipated 

stress responses 

 

Under free running conditions hypocotyl elongation is rhythmic with maximum growth
72

 

observed near the end of the subjective day (Dowson-Day and Millar, 1999). Under short-day 

conditions maximal growth is shifted 8 to 12 hours earlier, just before dawn, underlying the 

importance of events of coincidence between the endogenous clock and external periodic 

environmental parameters in the regulation of growth (Nozue et al., 2007). This coincidence is 

achieved through dual regulation, by light and the clock, of transcriptional regulators 

PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 that promote growth. In more 

detail, PIF4 and PIF5 transcript levels are regulated by CCA1 and peak in the day, whereas PIF4 

and PIF5 proteins are sharply downregulated by light at dawn, resulting in maximum diurnal growth 

at the end of the night. These events promote rhythmic growth that is lost in the pif4pif5 double 

mutant. It is noteworthy, that PIF4 and PIF5 together with the light activated transcription factor 

                                                 
71. The phenotype is though observed under LL and in DD, whereas the response to ABA is restricted in DD 

(Hanano et al., 2006). 

72. In this chapter the term growth refers to hypocotyl elongation that is distinct from increase of biomass. 
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ELONGATED HYPOCOTYL5 (HY5) are required for rhythmic growth (Nozue et al., 2007) and at 

the same time they are part of the developmental network responsible for de-etiolation
73

. 

Rhythmic growth and de-etiolation are subjected to hormonal regulation. Accordingly, PIF4-

downstream targets include a set of genes associated with GA, auxin, brassinosteroids, ethylene and 

cytokinins (Nomoto et al., 2012). The relationship between rhythmic growth and hormones is further 

indicated by transcriptome analysis that revealed a coincidence between maximum growth under 

short-days and the expression of genes involved in GA, auxin, brassinosteroids and ABA signaling 

(all of which are important to growth) (Michael et al., 2008a). Our current knowledge on hormonal 

regulation of rhythmic growth is focused on auxin and GA; circadian studies dealing with ABA on 

the other hand focus more on water relations and carbon fixation and allocation (see below). 

 

a. GA de-represses etiolated growth in the dark 

GA regulates de-etiolation and diurnal growth through HY5, PIF4 and PIF5 proteins, which are 

known to be involved in both processes (Nozue et al., 2007; Alabadí and Blázquez, 2008; Alabadí et 

al., 2008; Arana et al., 2011). The importance of GA in de-etiolation was discovered when Alabadí 

et al. (2004) observed that deficiency in GA biosynthesis and signaling promotes de-etiolation in the 

dark. This would mean that GA is a negative regulator of de-etiolation (Alabadí et al., 2004). In 

addition to this, GA is important for rhythmic growth. Mutations that result in enhanced GA-

signaling cause arrhythmic growth or expansion of the growth period into the objective day (Arana 

et al., 2011). GA inhibits de-etiolation by stimulating degradation of DELLA proteins in the dark. 

These in turn function as integrators of light and hormonal signals to negatively regulate PIF4and 

PIF5, and positively regulate HY5. Together this promotes photomorphogenesis (i.e. growth 

inhibition) (Alabadí and Blázquez, 2008). As shown in figure 1.13, in the dark GA releases PIF4 

from DELLA-mediated repression resulting in promotion of growth (de Lucas et al., 2008), whereas 

in the light phytochrome signaling reduces bioactive GA levels (reviewed in Kami et al., 2010 and in 

Alabadí and Blázquez, 2008), thus favoring accumulation of DELLA proteins and growth-repression 

(Achard et al., 2007). In addition to these, phyB contributes to growth inhibition in the light by 

reducing stability of PIF4 (de Lucas et al., 2008). The mechanisms responsible for these interactions 

are well described
74

. The extensive regulation of GA-signaling by the clock
75

 likely accounts for the 

                                                 
73. PIF4 and PIF5 promote etiolated growth whereas HY5 promotes photomorphogenesis (reviewed in 

Alabadí and Blázquez, 2008). 

74. The effect of GA on DELLA stability requires a group of GA-receptors, termed GID1, that interact with 

DELLA proteins in a GA-dependent manner, leading to the degradation of DELLAs via the ubiquitin 
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observed gated effect of GA on growth. Of note, under short days GA application de-represses from 

DELLA-mediated growth repression specifically in the night (thus in a gated manner; Arana et al., 

2011), that is when diurnal growth reaches its maximum (Nozue et al., 2007; Alabadí and Blázquez, 

2008). Collectively, GA contributes to the diurnal growth pattern observed under short-days and to 

etiolated growth in the dark via the same network components (fig. 1.13). 

 

 

Figure 1.13: The GA signaling network regulates 

rhythmic growth and de-etiolation 

Factors and regulatory events that promote 

photomorphogenesis are drawn with purple and those that 

promote etiolated growth in the dark are drawn with blue. 

Dashed lines show circadian regulation. See text for details. 

 

 

                                                                                                                                                    
pathway (Griffiths et al., 2006). DELLA proteins do not bind DNA and inhibit transcriptional activity of PIF 

proteins by direct binding, to promote photomorphogenesis (de Lucas et al., 2008; Feng et al., 2008); for the 

same reason DELLAs promote accumulation of HY5 post-transcriptionally by increasing its stability. HY5 on 

the other hand (like several other light activated transcription factors) is down-regulated by the COP1 E3 

ubiquitin ligase (Alabadí et al., 2008; Alabadí and Blázquez, 2008) that is central in suppressing the default 

de-etiolation program in the dark (reviewed in Huq, 2006 and Kami et al., 2010). 

75. Several steps of the GA signaling network described above oscillate diurnally. These steps include the 

expression of genes encoding GA-biosynthetic enzymes (Covington et al., 2008) and the levels of DELLA 

proteins and of GID1 transcripts (Arana et al., 2011). Additionally, in the light (thus in a diurnal fashion) 

phytochromes and cryptochromes inhibit COP1 via unknown mechanisms, preventing thereafter degradation 

of light signaling components (Huq, 2006; Kami et al., 2010). Recently in silico analysis suggested that 

several additional steps in GA signaling are rhythmic, including transcriptional regulation of GID1 expression 

(Marín-de la Rosa et al., 2011) and of DELLA targets due to the high incidence of E-box cis-elements (found 

in promoters of dawn-phased genes; Michael et al., 2008a) at their promoters (Gallego-Bartolomé et al., 

2011). 
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b. Auxin promotes rhythmic growth 

The involvement, requirement to be exact, of auxin in rhythmic growth depends on auxin 

transport and auxin production (Jouve et al., 1999). The later is rendered rhythmic through the tissue 

specific MYB-like transcription factor REVEILLE1 (REV1) (Rawat et al., 2009). PIF4 and PIF5 

growth-related downstream gene-targets overlap significantly with auxin-regulated genes, 

suggesting that the effect of auxin on rhythmic growth may be exerted through these proteins. 

Genetic assays aiming to test this hypothesis are indicative that indeed PIF4 and PIF5 modulate the 

effect of auxin on growth, though the exact nature of this control is not yet understood (Nozue et al., 

2011). Based on the epistatic relationships and dose response curves to auxin of mutants lucking or 

over-expressing CCA1, LHY, PIF4, PIF5, and RVE-1, it was proposed that auxin regulates growth 

via two rhythmic pathways. The first pathway modulates auxin responsiveness and involves CCA1 

upstream of PIF4 and PIF5 and the other pathway is dependent on RVE-1 upstream of auxin 

production (Nozue et al., 2007; Rawat et al., 2009; Nozue et al., 2011). 

Arabidopsis seedlings are not equally sensitive to auxin around clock time, as the effects of the 

hormone on growth under short-days and on amplitude of rhythmic transcription
76

 are gated. Auxin 

sensitivity reaches its maximum at the end of the objective or subjective night. At subjective dawn 

abrupt changes in auxin responsiveness coincide with the onset in the expression of negative 

regulators of auxin signaling
77

 that peak later in the day. Interestingly, the expression of transcription 

factors that activate responses to auxin reach maximum at this time also, indicating that sensitivity to 

auxin is gated because of the concerted action of positive and negative rhythmic signaling 

components (Covington and Harmer, 2007). It is noteworthy, that under short-days sensitivity to 

auxin (Covington and Harmer, 2007) and maximum growth (Nozue et al., 2007) occur 

simultaneously at around dawn. 

 

 

c. Rhythmic stress anticipation 

Abiotic stress can be the direct result of the daily rhythmic exposure to zeigebers and for this it 

is no surprise that stress and hormone signaling pathways are rhythmic. Consequently several 

drought-, salt-, cold- and heat-regulated genes and genes involved in the dissipation of 

                                                 
76. A synthetic luciferase rhythmic marker was used in these experiments conducted under free running 

conditions. 

77. These include transcriptional inhibitors as well as enzymes responsible for auxin inactivation through 

amino acid conjugation. 
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photosynthetic ROS have a higher degree of clock regulation than expected by chance (Harmer et 

al., 2000; Kreps et al., 2002; Covington et al., 2008). For example, the clock regulates the 

expression of several genes of the methyl-erythritol-phosphate (MEP) pathway in plastids, the rate 

limiting pathway in the production of isoprenes such as chlorophyls, tocopherols, carotens and the 

phytohormones ABA and GA. Seven out of eight and ten out of twelve genes involved in tocopherol 

and carotenoid biosynthesis respectively are rhythmic and most of these are phased in the morning. 

As tocopherols and carotenoids prevent formation of ETC-derived ROS, it is likely that they are 

synthesized rhythmically to protect from ROS production on a daily basis (Covington et al., 2008). 

Another example of repetitive stress is the daily exposure to heat and cold. Resistance to these 

stress inducing factors is gated by the clock (observed in cotton seedlings) so that extreme heat- or 

cold-treatments are tolerated best at subjective dawn and dusk, respectively. Moreover in 

Arabidopsis seedlings heat-induced transcripts peak by average at dawn and cold-induced transcripts 

at dusk, indicating that the observed anticipation/gating in resistance to heat- and cold-treatments (in 

cotton) may result from rhythmic gene expression (see Covington et al., 2008 and references 

therein). The circadian clock controls cold-responsive genes through the C-REPEAT BINDIND 

FACTOR 1/DEHYDRATION RESPONSIVE ELEMENT BINDING 1 (CBF1/DREB1) family of 

transcription factors that, as implied by their name, regulate a set of genes (termed the CBF/DREB1 

regulon) that provide not only freezing tolerance but also resistance to salt and drought; for the 

purpose of this the CBF/DREB1 regulon contains a considerable amount of ABA targets, though 

CBF/DREB1 transcription factors act independent of ABA signaling. Interestingly expression of 

CBFs is enhanced by a low RL/FRL ratio (increased FRL) that is typical of dawn and dusk 

particularly at higher latitudes. Together these findings (reviewed in Sanchez et al., 2011) indicate 

that the clock and phytochrome signaling at dusk prepare plants for the oncoming night on a daily 

basis. 

A third well-described example of anticipated stress concerns the stress hormone ABA that 

plays a major role in the determination of water relations. Stomatal aperture in Arabidopsis is a 

rhythmic output, with opening occurring at dawn and closing before dusk (Dodd et al., 2005). ABA 

promotes stomatal closure notably in a gated manner, with the hormone being less effective in the 

morning as if its role is to protect against water loss specifically in the heat of the afternoon 

(Robertson et al., 2009). Recently it was shown that ABA signaling and drought-dehydration 

responses are linked to the clock via TOC1 (Legnaioli et al., 2009). A connection between ABA and 

TOC1 was initially implied by the observation that mis-regulated rhythmic genes in TOC1 mutant 

lines (TOC1 over-expressing and in the toc1-21) are enriched with ABA-regulated genes involved in 

dehydration responses. It was also found that TOC1 levels in the wild-type, in toc1-21 (a null 
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mutation) and in a TOC1 over-expressing line are correlated to drought-sensitivity and to 

responsiveness to exogenous ABA
78

. Further investigation revealed that TOC1 binds the promoter 

and inhibits expression of GENOME UNCOUPLED 5 (ABAR/GUN5) that encodes an ABA 

receptor, explaining the dehydration-related phenotypes of these TOC1 mutant lines. Interestingly 

ABA and ABAR exert a positive feedback on ABA-signaling in a gated manner, by inhibiting 

expression of toc1 specifically during the day (Legnaioli et al., 2009). These findings together are 

suggestive that gating of ABA signaling by the clock is important for cellular homeostasis under dry 

environments or even in response to daily fluctuations in water availability. 

In addition to its well-described role in water relations, ABA is also involved in the regulation 

of carbon metabolism. The crosstalk between ABA and carbon metabolism is underlined by the fact 

that ABA-deficient and ABA-insensitive mutants, compromised in biosynthesis and signaling of 

ABA respectively, are allelic to several mutants identified in genetic screens for altered responses to 

sugars
79

. Subsequently, several well described ABA-deficient and ABA-insensitive mutants where 

also found to be insensitive to high levels of sugars not tolerated by wild-type plants (Rook et al., 

2006). Sugars being the product of carbon fixation are central in the regulation of photosynthesis and 

resource allocation via feedback mechanisms. High sugar levels inhibit photosynthetic gene 

expression and induce starch biosynthetic genes. By contrast, sugar depletion results in expression of 

genes required for photosynthesis and mobilization of stored carbohydrates (Koch, 1996). Notably, 

ABA and high sugar levels affect carbon metabolism similarly, in that both compromise 

photosynthetic gene expression and promote expression of starch biosynthetic genes. This finding, 

together with the sugar-insensitive phenotypes of the aforementioned ABA-related mutants, 

designates that ABA and sugars similarly affect carbon metabolism (Rook et al., 2006). For this it 

was originally proposed that sugars feedback on carbon metabolism (fixation, allocation and storage) 

                                                 
78. The TOC1 over-expressing line was found to be oversensitive and the toc1-21 resistant to dehydration 

stress. The TOC1 over-expressing line was also less responsive than the wild-type and toc1-21 to ABA 

mediated stomatal closure. 

79. Genetic approaches that aimed to identify components of sugar responses in plants led to the identification 

of several mutants that fall in one of four categories; these are the glucose-insensitive (gin) mutants (Zhou et 

al., 1998) and sugar-insensitive (sis) mutants (Laby et al., 2000) that tolerate high glucose and sucrose 

concentrations in the growth medium respectively, the sucrose-uncoupled (sun) mutants (Dijkwel paper 1997) 

that are impaired in the sucrose-mediated suppression of photosynthetic gene expression and the impaired 

sucrose-induction (isi) mutants in which the sugar-induced expression of starch biosynthetic genes is reduced 

(Rook et al., 2001). Interestingly, all of these screens identified mutants that were subsequently shown to be 

compromised in ABA synthesis and/or signaling (Rook et al., 2006). 
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through ABA signaling (Arenas-Huertero et al., 2000). An alternative hypothesis was presented by 

Rook et al. (2001) who presented evidence that ABA enhances the ability of tissues to respond to 

sugar signals
80

. The connection between light (photosynthesis) and ABA signaling is further 

supported by the observed proximity between cis-elements responsive to light and ABA at the 

promoters of photosynthetic genes. As the effects of light and ABA on photosynthetic gene 

expression are opposite, the proximity between these promoter elements is suggestive that the 

respective signaling cascades are competitive in the regulation of photosynthesis (Rook et al., 2006). 

Based on these findings, Rook et al. (2006) suggested that signaling pathways responsive to light, 

CO2 fixation and ABA are linked as part of the compensatory mechanism that balances CO2 uptake 

and water loss by stomata. Notably ABA and stress signaling entail cADPR (Sánchez et al., 2004) 

and poly-ADP-ribosylation (de Block et al., 2005; Vanderauwera et al., 2007) that in turn affect not 

only energy metabolism but also homeostatic clock function (Panda et al., 2002; Dodd et al., 2007). 

For this reason cADPR and poly-ADP-ribosylation are good candidates for mediators of diurnally 

anticipated stress responses. Interactions between ABA and the clock in this case would stretch 

beyond anticipated stress responses to serve homeostatic regulation (see starch metabolism below). 

From the above it becomes easily featured that in Arabidopsis the clock, through gating of 

auxin (Covington and Harmer, 2007), ABA (Legnaioli et al., 2009) and GA (Arana et al., 2011) 

responses, orchestrates various hormonal/stress-related signals and environmental cues, such as the 

photoperiod and the increased water turgor pressure and photosynthate availability that occur at 

dawn, to regulate growth (Nozue et al., 2007). Several genetic, genomic and biochemical studies 

from the recent literature described above, point out PIF4 as being central in the integration of these 

hormonal and environmental signals. 

 

 

1.6.8. Photoperiodic regulation of carbon fixation and allocation 

 

"Most studies addressing the effect of sugars in plants are divided into feast and famine 

programs, reflecting responses to excessive sugar and to sugar starvation (Koch, 1996)" (taken from 

Blaesing et al., 2005). Both of these conditions are stressful and the first attempt to describe sugar-

effects within the concentration limits of endogenous oscillations in Arabidopsis was performed by 

Blaesing et al. (2005) through the study of the pgm mutant. Under diurnal conditions pgm shows 

                                                 
80. This opinion was based on the observation that expression of starch biosynthetic genes was synergistically 

induced by exogenous sucrose and ABA, but not by ABA alone. 
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amplified oscillations in sugar content relative to wild-type and for this its phenotypes are thought to 

provide a measure of the effects that result from changes in endogenous sugar levels. Sugar content 

in pgm is higher during the day relative to the wild-type and lower during the night. Consequently, 

due to sugar depletion every night, the mutant undergoes starvation. This approach revealed that 

global gene expression is more responsive to falling sugar levels near the end of the night and after 

dusk rather than to high sugar content during the day (Blaesing et al., 2005). 

Because of its timing and due to the requirement for sugar depletion, transcriptional 

reprogramming in response to sugar depletion is reminiscing of the stressful effect caused by 

extension of the night beyond objective dawn. At this time, depletion of sugars represses growth 

(measured as expansion of organs; Thimm et al., 2004; Gibon et al., 2004; Graf and Smith, 2011) 

and induces a gene-expression profile that would promote nutrient and cell wall break-down and at 

the same time would inhibit cell wall modifications and anabolic procedures such as nitrogen and 

carbon assimilation and nutrient biosynthesis (Thimm et al., 2004). Interestingly, this transcriptional 

reprogramming also entails changes in the expression of genes involved in synthesis and sensing of 

ABA, cytokinins
81

 and ethylene (Thimm et al., 2004). Genes implicated in ABA and ethylene 

synthesis and sensing are induced, whereas genes involved in cytokinin synthesis are repressed, 

indicating that the transcriptional reprogramming to starvation (similarly induced by night 

extensions and by the pgm mutation) may predispose towards growth inhibition and senescence at 

the same time (Thimm et al., 2004). 

The importance of hormones in dealing with starvation-induced stress is also implied by the 

observed crosstalk between sugar signaling and responsiveness to ABA (Rook et al., 2006; chapter 

1.6.7.c) and ethylene
82

 (Smalle et al., 1997; León and Sheen, 2003; Ellison et al., 2011). All of these 

data raise two questions. First, could periodic stress entrain (and would it then be called a zeitgeber)? 

I predict this given the interplay between hormones, metabolites and the clock. Second, could the 

effect of sugars on the clock, similarly to the effect of hormones (and of zeitgebers), be gated. This is 

also is a prediction as sugar-starvation is initiated near dawn. Interestingly, Gibon et al. (2004) 

                                                 
81. ABA and cytokinins also affect circadian function (Millar et al., 1995a; Hanano et al., 2006; chapter 

1.6.7). 

82. Noteworthy in light grown plants that are not supplemented with sucrose, ethylene signaling promotes 

hypocotyl elongation which is moderated in the dark or when plants are placed on growth medium that 

contains sucrose. The crosstalk between sucrose and ethylene signaling is also underlined by the fact that 

exogenously applied sucrose (tested under blue light) stimulates ethylene emission from Arabidopsis 

seedlings (Smalle et al., 1997; Ellison et al., 2011). 
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proposed that the levels of sugars at this time are of photoperiodic significance. They claimed that 

the small differences in sugar context at the end of the night between plants grown under short-day 

(less sugars) and long-day (more sugars) conditions are partly responsible for the photoperiodic 

differences in growth and biomass of Arabidopsis
83

. Conclusively, rhythmic sugar levels and their 

photoperiodic variation could be held responsible for the photoperiodic growth-patterns of 

Arabidopsis (Gibon et al., 2004), through their effect on growth-related hormone signaling (chapter 

1.6.7) and global gene expression (Blaesing et al., 2005). 

Despite the aforementioned differences in sugar context observed at the end of the night 

between short- and long-day grown plants, severe starvation-induced stress in the lab in both cases is 

avoided. This is because the linear rate of starch degradation during the night is subjected to 

photoperiodic regulation, slowing down when days become shorter (fig. 1.14). Photoperiodic 

regulation of carbon metabolism is also observed during the day, as more photosynthate is 

partitioned towards starch synthesis during shorter days relative to longer ones
84

; this happens likely 

because the longer the nigh, the more starch is needed to avoid starvation-induced stress prior to 

dawn. Collectively, in order to optimize growth carbon metabolism is subjected to photoperiodic 

regulation during the day (starch accumulation) as well as during the night (starch degradation), 

(Gibon et al., 2004). 

Several observations have demonstrated the involvement of the circadian clock in the 

photoperiodic regulation of the rate of starch degradation at night. First, skeleton photoperiods 

(midday dark treatments) do not disturb the match between the time required for starch exhaustion 

and the duration of the night. This is indicative of circadian regulation, as the ineffectiveness of 

skeleton photoperiods is a classic test and a hallmark of circadian rhythms whenever an "hour glass 

mechanism" is suspected. Then the rate of starch degradation is such that under 28h (14hL/14hD) or 

under 17h T-cycles (8.5hL/8.5hD) starch is exhausted 24 hours after the previous dawn. At this time 

expression of rhythmic genes that mark subjective dawn coincides with the onset in the expression 

of genes that mark carbon starvation, when plants are released into DD. This means that a circadian 

pacemaker regulates carbon metabolism at night, because starch exhaustion and starvation occur 

every 24 hours even when plants are entrained to non-circadian cycles. Interestingly, when the cca1-

11;lhy-21 short-period mutant is grown under 24h T-cycles it displays patterns in starch degradation 

                                                 
83. They proposed that short-day grown plants are smaller relative to long-day grown plants, because in the 

former sugar depletion before dawn directs photosynthates towards starch biosynthesis at the expense of other 

anabolic processes during the first part of the next light period. 

84. Despite this, more starch is accumulated by dusk when days become longer (fig. 1.14). 
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and in expression of starvation markers that are similar to those observed in wild-type plants, when 

the later are grown under 28h T-cycles; on the other hand, when the cca1-11;lhy-21 double mutant is 

placed under 17h T-cycles, that approaches the duration of its free running oscillations, starvation is 

avoided. These findings further support the idea that the match between the duration of the night and 

the time required for starch degradation is attributed to the circadian clock rather than to an "hour 

glass" mechanism (Graf et al., 2010). Consistent with these, wild-type and cca1-11;lhy-21 plants 

grow best under T-cycles that match their free running period, 24h and 20h T-cycles respectively, 

likely because starvation-induced stress is avoided. By contrast, the short-period mutant toc1-21 and 

the long-period mutant ztl-3 grow best under 24h T-cycles leading Graf et al. (2010) to propose that 

optimal growth requires correct anticipation of dawn rather than a match between the free running 

period and the length of the T-cycle. In other words, a photoperiodic mechanism allows plants to 

anticipate dawn in order to avoid depletion of sugars before dawn and consequently starvation and 

growth inhibition; the authors added in proof that exogenously applied sucrose corrects growth 

inhibition imposed by T-cycles that deviate from the free running period in the wild-type (Graf et al., 

2010; see also Graf and Smith, 2011). The same experiments were also commented by Haydon et al. 

(2011) who concluded that starch metabolism is directed from the morning loop. To summarize, 

photoperiodic regulation of starch metabolism is exerted at the level of starch degradation at night as 

well as at the level of photosynthate partitioning during the day between immediate usage and 

storage for night growth (reviewed in Graf and Smith, 2011)
85

. 

Several observations when combined are implicit of the involvement of ABA signaling and of 

carbon metabolism in the homeostatic-photoperiodic function of carbon partitioning that happened 

during the day. First, the ability of sugars to mediate a transcriptional reprogramming at both dawn 

and dusk (Blaesing et al., 2005) indicates that metabolism, in addition to being subjected to 

photoperiodic control, has the potential of mediating photoperiodic regulation itself. Of note, the 

importance of metabolism in photoperiodic regulation through calcium oscillations (that could 

incorporate metabolic information; see chapter 1.6.5) has been considered in the literature (reviewed 

in Haydon et al., 2010 and in Dodd et al., 2010). Second, the engagement of ABA in homeostatic 

clock function (meaning not stress related) is implied by the participation of NAD+ derived 

                                                 
85. At the moment photoperiodic regulation of starch accumulation during the day is less understood relative 

to the photoperiodic regulation in starch mobilization during the nigh. Of note, photoperiodic regulation of 

starch synthesis should not be confused to the well described short-term regulation of photosynthate 

partitioning during the day (i.e. the aforementioned effect of sugars on photosynthetic gene expression and 

starch biosynthetic genes; reviewed in Koch, 1996 and Rook et al., 2006). 
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metabolites of circadian relevance (such as cADPR and perhaps also ADPribose polymers; Dodd et 

al., 2007; Panda et al., 2002) in ABA signaling (Sánchez et al., 2004; de Block et al., 2005; 

Vanderauwera et al., 2007). Third, the likelihood that ABA is involved in the homeostatic 

mechanisms that affect carbon metabolism is further supported by the observation that ABA and 

sugar signaling pathways intersect (Rook et al., 2001); noteworthy, the involvement of ABA in 

photoperiodic responses, induction of flowering to be exact, has been considered in the literature 

(Barth et al., 2006). 

 

 

Figure 1.14: Photoperiodic regulation of starch metabolism 

in Arabidopsis 

Photoperiodic regulation of starch metabolism is exerted 

at the level of starch degradation at night as well as at the level 

of photosynthate partitioning during the day between immediate 

usage and storage for night growth. Under short-days (dashed 

line) the rate of starch synthesis in the day is higher relative to long-days (continuous line; compare the two 

slopes), even though eventually more starch is accumulated by dusk of long-days relative to short ones. 

Photoperiodic regulation partitions more photosynthate towards starch synthesis during shorter days relative 

to longer ones. The rate of starch degradation is such that stressful carbon starvation is avoided by dawn under 

both short- and long-days. Objective dusk coincides with peaks in starch accumulation. The figure is adapted 

after Gibon et al. (2004), Graf et al. (2010) and Graf and Smith (2011). 

 

 

In this thesis I present my studies to provide genetic evidence that CCA1 and LHY, expressed 

at dawn and previously shown to affect starch metabolism (Graf et al., 2010), as well as all the genes 

represented in the model of Locke et al., (2005b; fig. 1.10), are required for mediating sugar signals 

to nuclear oscillations. Importantly, these signals are relevant to parametric entrainment (results 

chapter). I have also observed a correlation between photosynthetic electron transport and circadian 

period. This can explain the rule of Aschoff. I also propose that stress and hormone signaling, in 

particular ROS and SA, could function as zeitgebers. I also provide insights on the importance of the 

known TTFLs and of hormones in the regulation of photosynthate partitioning during the day. 
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2.1. Materials 

 

 

2.1.1. Mutant lines 

 

Mutants and transgenic lines used in this lines used in this study are listed in table 2.1 (lines 

used for luciferase imaging) and table 2.2 (lines used for leaf movement). 

 

Table 2.1: Wild-type and transgenic lines used for luciferase imaging 

 

Line Ecotype Luciferase marker Reference 

Wild type (wt) Ws CCR2 Doyle et al., (2002) 

wt Ws CCA1 Doyle et al., (2002) 

wt Ws CAB2 Hall et al., (2001) 

wt Ws LHY McWatters et al., (2007) 

wt Ws TOC1 McWatters et al., (2007) 

wt Ws GI Ding et al., (2007) 

wt Ws PHYB Tóth et al., (2001) 

toc1-21 Ws CAB2 Ding et al., (2007) 

toc1-21 Ws GI This study 

cca1-11 Ws CAB2 Ding et al., (2007) 

lhy-21 Ws CAB2 Ding et al., (2007) 

cca1-11;lhy-21 Ws CAB2 Ding et al., (2007) 

gi-11 Ws CAB2 Gould et al., (2006) 

gi-11 Ws CCA1 This study 

gi-11 Ws PHYB This study 

phyB-9 Col-0 GI Oh et al., (2004) 

hsp90.2-3 Col-0 GI This study 
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Table 2.2: Mutant lines used for circadian leaf movement assays 

 

Line Ecotype Reference 

hsp90.2-3 Col-0 Hubert et al., (2003)  

RbohD Col-0 Tissier et al., 1999; Torres et al., 2002 

RbohF Col-0 Tissier et al., 1999; Torres et al., 2002 

rcd1 Col-0 Overmyer et al., 2000 

pad4 Ws Feys et al., 2001 

eds1 Ws Parker et al., 1996 

lsd1 Ws Jabs et al., 1996 

fmo1 Col-0 Mishina and Zeier, 2006 

 

 

 

2.1.2. Growth media for plants and chemicals 

 

All media used for plant growth was bought from DUCHEFA. Murashige&Skoog (MS) basal 

salts used for plant growth, entrainment and luciferase imaging was prepared as follow: 

1. 4.4 g/L MS 

2. 0.5 g/L 2-N-morpholino-ethanesulfonic acid (MES) 

3. 1% (w/v) phytoagar 

4. When sucrose was used this was added to a final concentration of 3%. 

 

pH was adjusted to 5.7 with KOH and sterilized in an autoclave for 20 minutes at 121˚C. 

Chemicals mentioned above and solvent (DMSO or water) were eventually added to the indicated 

concentrations. 
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Chemicals listed below were purchased from SIGMA. Whenever water was used as solvent 

(vitC and paraquat) Millipore grade filtered water was used. Stock solutions were as follow: 

 

1. Salicylic acid (SA) :  350mM in DMSO 

2. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) :  20mM in DMSO 

3. 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) :  20mM in DMSO 

4. Vitamin C (vitC) :  250 mM in dH20 

5. paraquat :  5mM in dH20 

6. rifampicin :  40mg/ml in DMSO 

7. geldanamycin :  5mM or 10mM in DMSO 

 

 

 

2.2. Methods 

 

 

2.2.1. Growth conditions and luciferase imaging 

 

Seed was surface-sterilized (with ethanol followed by bleach solution) and sown on 1% agar 

(pH 5.7) containing Murashige and Skoog plant salt mixture (MS, Murashige and Skoog, 962) and 

sucrose 3% w/v or no sucrose as indicated and then stratified at 4˚C for 3 days. Seedlings were 

entrained during growth to 12 hours light/12 hours dark (12hL/12h/D) photoperiods under a fluence 

rate of WL at 100 μE and a constant temperature of 21˚C. Six-day old seedlings were transferred in 

96-well imaging microtiter plates (Perkin Elmer, Juegesheim, Germany) containing sucrose 3% w/v 

or no sucrose as indicated; transfer took place during the second half of the objective day before 

dusk. This system allows rhythm imaging from single seedlings. The microtiter plates where placed 

in a luminescence scintillation counter (TopCount NXT, Perkin Elmer) at objective dusk for 

luciferase imaging according to standard protocols (Southern and Millar, 2005; Hanano et al., 2006). 

Plants received a dark period of 12 hours that corresponds to the objective night and then entered 

free running conditions under monochromatic RLc or BLc at the low fluence rate (~2 μE) provided 

by constructed LEDs. Alternatively an additional entrainment event was applied in the TopCount 

before the onset of free run. 
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2.2.2. Circadian leaf (cotyledon) movement assays 

 

Circadian period can be measured by video imaging of leaf movement under a range of 

ambient temperatures without having to perform Agrobacterium transformation. Seedlings were 

entrained under 12hL/12hD (100 μE WL) for 5 days before transfer to 25-compartment plates 

(BIBBY STERILIN, UK) (20 seedlings per plate). The seedlings were transferred on agar blocks 

(approximately 1cm
2
x0.5cm) in a vertical position. Agar blocks were then placed in the top 20 

compartments of the plates and water was added in the bottom 5 compartments to avoid moisture 

loss. The plates were then sealed and placed for an additional entrainment event in the growth 

cabinets. Care was taken so that plants in plates were always kept in a vertical position. Imaging 

took place the next day starting at objective dusk under low light intensity (low intensity WLc, 

average 15 μE, lighting from the sides) and 12˚C, 16˚C
 
 or 21˚C

 
 for 7 days. The images were taken 

with video cameras every 30 minutes using METAMORPH. The rhythms of the cotyledon 

movements were analyzed in METAMORPH. A general threshold was applied when analyzing each 

plate, which allowed detection of as many of the leaves on the plate as possible over the time course. 

Regions were defined for each leaf and the (x,y) pixel coordinates corresponding to the 

spatiotemporal pattern of each leaf was measured (Edwards et al., 2005). The data were logged into 

EXCEL spreadsheets and analyzed as described below. 

 

 

2.2.3. Data analysis 

 

Luminescence levels were quantified and graphically depicted using the macrosuites 

TopTempII and Biological Rhythms Analysis Software System (BRASS) (Southern and Millar, 

2005). Cotyledon movement was recorded with METAMORPH. Period length and relative 

amplitude of error (RAE) were subsequently estimated using the fast Fourier transform–nonlinear 

least squares (FFT–NLLS) program (Plautz et al. 1997). From these, RAE-normalized period 

(noPer) of a rhythmic population is is calculated as described below. 

For time course images (e.g. fig.3.1 A), a threshold of 100 counts per second (cps) in average 

luminescence was applied unless otherwise mentioned. FFT-NLLS took place with remaining plants. 

For each period value presented, the portion of plants that generated a RAE value lower than 0.6 was 

obtained and from that period values that fell out of the noPer±3*SD range were excluded as 

outliers. Thereafter accuracy was defined by its inverse correlation to the standard deviation of the 

resulting noPer. Direct-rhythmicity was defined by its inverse correlation to the average of RAE 
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values. Indirect rhythmicity was defined by its inverse correlation to the average of RAE values 

where plants rejected by BRASS were assigned with a value of 1. For estimation of rhythmicity 

period- and RAE- outliers were removed in that order using the av ± 3*SD criterion; period outliers 

were calculated from the subpopulation that produced a RAE lower than 0.9 and the ensuing 

population was used to estimate RAE outliers after RAE values greater than 0.9 were returned in the 

corresponding files. Statistical tests of multiple independent and combined replicates were carried 

out with one-factor anova. Each time window analyzed with FFT-NLLS included three oscillatory 

peaks. Consecutive time windows where apart approximately by one cycle and are described in 

figures 1, 2 and 3. 

To quantify expression of luminescence of marker PHYB::LUC (ws) data from TopTempII 

files was first restricted between 24 and 96 hours. Overall luminescence was then averaged by 

TopTempII, as an automated process, for each plant separately. Expression-outliers were thereafter 

defined as plants that emitted by average less luminescence than a certain value (ranging between 15 

and 30cps; value varied between experiments) during this time period. After expression-outliers 

were removed, timing of the 1
st
 circadian peak was defined for each oscillating population by visual 

inspection of respective graphs from TopTempII. Average luminescence at that time point was then 

used to assess the effect of SA on expression of the marker. Plants that produced luminescence 

greater than average luminescence + 3*SD at this time where removed as outliers. A certain SA 

concentration is included in the graphs and the analysis, as long as it was represented in at least two 

independent experiments. 
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3.1. Responses to sucrose 

 

3.1.1. The response of the wild-type
86

 to sucrose 

 

The majority of Arabidopsis circadian experiments using the luciferase-promoter system 

(Millar et al., 1995) have been conducted with plants growing on medium supplementated with high 

levels of sucrose (3% w/v). This is because of a previous perception that the original luciferase 

construction generated a protein limited in energy from ATP. On the other hand, metabolism, known 

to be under circadian control (e.g. Harmer et al., 2000), also determines circadian function via 

metabolites in just about every model organisms used in the circadian field of research
87

. For these 

reason, I was intrigued to test if sucrose affects circadian oscillations. Given the new generations of 

luciferase vectors available in Arabidopsis, this is now a feasible question to test. While this project 

was in progress the effect of sucrose in circadian assays under WLc and in the dark was published 

(Knight et al., 2008; Dalchau et al., 2011). For this reason I will focus here on the effect of sucrose 

on rhythmic gene expression under monochromatic BLc and RLc. I wished to identify luciferase 

markers whose rhythmicity would not be much dependent on the sucrose status of the growth 

medium in order to continue with genetic assays. 

I assessed the effect of sucrose on oscillation speeds of CAB2::LUC (Ws), GI::LUC (Ws) and 

GI::LUC (Col-0) under monochromatic BLc and RLc. For this, I compared oscillations of the 

markers in the presence and absence of 3% w/v supplementary sucrose. The marker CAB2::LUC 

(Ws) did not produce oscillations in the absence of sucrose, and for this reason, it was assayed with a 

sucrose gradient; these data will be discussed separately. In the remaining experiments, I observed a 

period shortening effect of sucrose addition (fig. 3.1, 3.2 and 3.3). This is similar as that reported by 

others in WLc experiments (Knight et al., 2008; Dalchau et al., 2011). I also noticed that, in the 

absence of supplementary sucrose, circadian period was gradually shortened over time. By contrast, 

when sucrose was added in the growth medium, oscillations were rendered equally fast between 

consecutive time windows of the FFT analysis. Consequently, the period-shortening effect of 

sucrose was temporal [restricted during the first time window (1
st
-tw)] for CAB2::LUC (Ws) (under 

                                                 
86. "Wild-type" is refered to transgenic plants currying promoter::luciferase transgenes. 

87. The circadian effect of metabolites in Arabidopsis (Panda et al., 2002; Dodd et al., 2007; James et al., 

2008; Knight et al., 2008; Dalchau et al., 2011) in mammals (Asher et al., 2008; Nakahata et al., 2008; 

Nakahata et al., 2009; Ramsey et al., 2009), in cyanobacteria (Rust et al., 2011; see appendix 2 for an 

extensive review) and in Neurospora (see appendix 1) is well described. 
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BL; fig. 3.3) or moderated over time for GI::LUC (under BLc or RLc; fig. 3.1 and 3.2). In every 

case, sucrose caused a permanent phase shift that persistent by the end of the experiment. 

Temporal instability in terms of period length, termed transients, was first reported by 

Pittendrigh and Bruce in 1959 (Buenning, 1973 and fig. 4.1); they were observed in response to non-

parametric entrainment to light pulses and changes in ambient temperature and consequently they 

are a "byproduct" of entrainment. Here I report that such transients are inhibited by supplementary 

sucrose. For this I subjected plants to various combinations of sucrose treatments during 

growth/entrainment (with 12 hour WL/12 hour DD treatments) and during luciferase imaging under 

BLc
88

. Against my expectations, I observed that the sucrose status of entrainment was "remembered" 

during the free run, in that the transients that took place during free run were inhibited not only by 

sucrose application, but also when sucrose was applied only during the preceeding entrainment 

process (thus, the free run took place without supplementary sucrose). Specifally I noticed that when 

the treatment suc 0%→0% (plants never exposed to sucrose) was subjected, the accuracy of the 

marker GI::LUC (Col-0) (fig. 3.1 E, G) increased with time (SD-noPer during the 1
st
-tw=2.57h; 2

nd
-

tw=1.27h), whereas with the treatment suc 3%→3% (plants always exposed to sucrose), accuracy 

was relatively stable between examined time windows (SD-noPer during the 1
st
-tw=0.95h; 2

nd
-

tw=0.74h). By contrast, when sucrose was applied only during entrainment (treatment suc 3%→0%), 

these transients in accuracy were again inhibited (SD-noPer during the 1
st
-tw=1.82h; 2

nd
-tw=1.51h). 

Consequently the sucrose status of entrainment was "remembered" during free run, confirming my 

hypothesis that transients in circadian parameters (here, accuracy) are a quantitative measure of the 

effect of sucrose on parametric entrainment. Similar results were obtained in four independent 

experiments as well as from the combined data of all experiments. 

On several occasions, treatment suc 3%→0% yielded intermediate values in circadian 

parameters relative to those obtained with treatments suc 0%→0% and suc 3%→3% during the 

initial time window of the FFT analysis. When data from six independent BL experiments conducted 

with GI::LUC (Col-0) were combined, these intermediate values were scored for period (3.39*10
-53

 

<p< 1.53*10
-7

; fig. 3.1 C, G; see also table 3.1 that refers to the same data as figure 3.1), accuracy 

(fig. 3.1 E, G; see SD-noPer in table 3.1) and indirect rhythmicity (4.48*10
-16

 <p< 0.01; table 3.1); I 

observed the same for indirect rhythmicity (5.54*10
-13

 <p< 2.2*10
-4

; table 3.1) and accuracy (fig. 3.3 

                                                 
88. Initially I performed these tests under BLc, because under BLc robust oscillations are produced 

irrespective of the status of supplementary sucrose; this is important because I could then calculate the effect 

of sucrose on circadian period that reflects the actual state of the oscillator and not the output process or 

luciferase activity. 
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B; table 3.1) of the marker CAB2::LUC (Ws), when data from seven independent experiments were 

combined. In addition to these results, the period of CAB2::LUC (Ws) acquired intermediate values 

in a data set that combined four experiments entailing an additional entrainment event of BL (period 

± SE during 1
st
-tw: suc 0%→0%=28.64±0.29h; suc 3%→0%=27.11±.0.16h; suc 

3%→3%=25.95±0.07h; 3.78*10
-9

 <p< 4.03*10
-4

). These findings further showed that the sucrose 

status applied during parametric entrainment is "remembered" and suggest that supplementary 

sucrose affects parametric entrainment of both markers described. 

I next focused on the effect of supplementary sucrose during the free run. As expected, due to 

the ATP requirement of luciferase, application of exogenous sucrose during the free run increased 

the mean luciferase signal; however, this was accompanied by a tendency to reduce oscillatory 

robustness. In more detail, even though the accuracy of GI::LUC (under BLc in fig. 3.1 E, G and 3.2 

E; G under RLc in fig. 3.1 F, H and 3.2 F, H), as well as accuracy of CAB2::LUC (under BLc in fig. 

3.3 B), were increased by sucrose addition, accuracy was increased over time (between time 

windows; SD-noPer decreased) only if free run was performed in the absence of sucrose. 

Consequently, when the effect of sucrose on accuracy was assessed by comparison between the 

treatments suc 0%→0% and suc 3%→3%, the aforementioned positive effect of sucrose on the 

accuracy of the marker CAB2::LUC (Ws) (fig. 3.3 B, compare panels with consecutive time 

windows) was temporal and restricted during the 1
st
-tw, whereas the positive effect of sucrose on the 

accuracy of GI::LUC oscillations was moderated over time [Columbia: under BLc in fig. 3.1 E, G 

and under RLc in 3.1 F, H; Wassilewskija: under RLc in fig. 3.2 F, H. Under BLc, shown in fib. 3.2. 

E, G, I did not detect any transients in accuracy of GI::LUC (Ws), perhaps because the "no sucrose 

control" was assessed only with the treatment suc 3%→0% which would inhibit transients]. 

Sucrose-dependent transients were recorded for rhythmicity. The indirect rhythmicity of 

examined circadian markers under the indicated light conditions increased with time only if sucrose 

was not supplemented during free run, whereas in the presence of sucrose, indirect rhythmicity was 

either constant between time windows [CAB2::LUC (Ws) and GI::LUC (Col-0) under BL] or even 

decreased over time (GI::LUC markers under RL). The result of these sucrose-dependent transients 

was that sucrose increased the indirect rhythmicity of the marker GI::LUC (Col-0) only temporally 

(Student’s t-test: under BLc during the 1
st
-tw p=1.38x10

-10
 and during the 2

nd
-tw p>0.14; under RLc 

during the 1
st
-tw p=4.72x10

-10
 and during the 2

nd
-tw p>0.05 or sucrose decreased rhythmicity) and 

even decreased the indirect rhythmicity of the marker GI::LUC (Ws) in later time windows under 

RLc (2
nd

-tw, p=2.51x10
-5

; 3
rd

-tw, p= 9.05x10
-7

). Similar results were scored with direct rhythmicity 

of the GI::LUC markers. The indirect rhythmicity of the marker CAB2::LUC (Ws) was increased by 

sucrose only temporally (suc 3%→0% vs. suc 3%→3%; 1st-tw, p=5.54x10
-13

; 2
nd

-tw, p=0.17), or 
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this effect was moderated over time (suc 0%→0% vs. suc 3%→3%), depending on the experimental 

details. Collectively, these experiments show clearly that sucrose can potentially decrease the 

robustness of oscillations, especially in later time windows. Moreover all of these examples define 

sucrose-dependent transients that show that supplementary sucrose affects the clock and not the 

controlled process or the enzymatic activity of the luciferase transgene. 

Having described the effect of sucrose on oscillations of the GI::LUC and CAB2::LUC 

markers, I proceeded with similar tests using markers CCA1::LUC (Ws), LHY::LUC (Ws), 

CCR2::LUC (Ws) and TOC1::LUC (Ws). CCR2::LUC (Ws) oscillations exhibited a requirement for 

sucrose and the same was observed for oscillations of the LHY::LUC (Ws) marker in two 

preliminary experiments, one under RLc and one under BLc (not shown). Sucrose shortened 

circadian period in all of these cases [CCA1::LUC (Ws) under BLc, shown in fig. 3.5 C, and 

TOC1::LUC (Ws) under RLc in fig. 3.3 D], except for the marker TOC1::LUC (Ws) under BLc (fig. 

3.3 C). It is noteworthy that oscillations of the later were reported to be resistant to sucrose under 

WLc in the literature (Dalchau et al., 2011). Moreover, I confirmed that the effect of sucrose on 

period of CCA1::LUC (Ws) under BLc is temporal and observed the same in preliminary 

experiments for TOC1::LUC (Ws) uner RLc and for LHY::LUC (Ws) under BLc (not shown). 

 

 

 

 

Table 3.1: The sucrose status of entrainment is remembered during free run 

Treatment suc 3%→0% yielded intermediate values in circadian parameters relative to those obtained 

with treatments suc 0%→0% and suc 3%→3% during the initial time window of the FFT analysis (figures 3.1 

and 3.3). The indirect measure of mean RAE was calculated after plants discarded by FFT analysis were 

assigned with a RAE value of 1. SD-noPer is the SD of the RAE-normalized period after FFT analysis was 

performed. 

 

Marker – circadian parameter suc 0%→0% suc 3%→0% suc 3%→3% 

 

GI::LUC 

(Col-0) 

period 30.61±0.20h 28.37±.0.14h 25.34±0.06h 

Mean RAE (indirect measure) 0.29±0.02h 0.24±0.01h 0.17±0.005h 

SD-noPer 2.57h 1.82h 0.95h 

CAB2::LUC 

(Ws) 

Mean RAE (indirect measure) 0.56±0.05 0.36±0.02 0.18±0.01 

SD-noPer 1.83h 1.39h 0.88h 
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Figure 3.1: The effect of sucrose on rhythmic expression of the luciferase marker GI::LUC (Col-0) 

Seedlings were entrained for six days under WL and then placed in 96-well-microplates during the 

second half of the objective day; the sucrose status is indicated. Plates were placed in a TopCount 

luminometer at dusk of the same day and plants entered free running conditions under monochromatic BLc 

(A, C, E, G) or RLc (B, D, F, H) at the next dawn (ZT 0h). Panels A and B show the time-course of average 

luminescence from representative experiments, while the rest show combined data from the independent 

experiments (six experiments under BLc and three under RLc). In panels E and F RAE and circadian period 

are paired for all the plants that generated an FFT output (RAE<0.9; see Methods). In panels G and H mean-

RAE and noPer of populations are paired after plants rejected by BRASS were assigned with a value of 1; 

later time windows are represented by smaller symbols. Error bars represent SE in all panels except for the 

horizontal bars in G and H that represent SD of noPer. In A, B, G and H vertical error bars are smaller than 

the symbols. 

Under RLc FFT analysis was performed during the time windows 06-101 h (1
st
-tw), 31-126 h (2

nd
-tw) 

and 56-151 h (3
rd

-tw) (beginning of free run was initiated at 0 h, as indicated in the figures). Under BLc, FFT 

analysis was performed during the time windows 06-96 h (1
st
-tw) and 31-121 h (2

nd
-tw). The interval of 

period values allowed by the BRASS software during FFT analysis was set between 15 and 45 h for RL 

experiments and between 15 and 40 h for BL experiments. Error bars represent SE. 

Sucrose-mediated period shortening (C, D) and the increase in accuracy (E, F, G, H) were moderated with 

time. Sucrose increased rhythmicity only temporally (G, H). The effect of time (between time windows) on 

these parameters was sucrose-dependent (G, H). 
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Figure 3.2: The effect of sucrose on rhythmic expression of the luciferase marker GI::LUC (Ws) 

Seedlings were grown and entrained under WL as described in figure 3.1. Two independent 

experiments were performed under BLc (A, C, E, G) and two under RLc (B, D, F, H). The vertical/horizontal 

axes, error bars, symbols and FFT analysis are as described in figure 3.1. 

Sucrose shortened the circadian period (C, D) and this effect was moderated with time; in both cases, the 

effect of time on circadian period was sucrose-dependent (see also G and H). Under RLc, the effect of time 

(comparison between time windows) on the robustness of oscillations was sucrose-dependent (F, H). Under 

BLc, I did not detect any transients in oscillatory robustness, likely because the treatment suc 0%→0% was 

not performed (see text for more details). 
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Figure 3.3: The effect of sucrose on rhythmic expression of CAB2::LUC (Ws) under BLc and on 

TOC1::LUC (Ws) oscillations 
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Figure 3.3: Seedlings were grown and entrained as described in figure 3.1 for BLc. The 

vertical/horizontal axes, the error bars and the symbols used in B are as described in figure 3.1. All four 

sucrose shifts were conducted with this marker. FFT analysis was performed during the time windows 21-96 

h (1
st
-tw) and 46-121 h (2

nd
-tw) (beginning of free run took place at 0 h). The interval of period values 

allowed by the BRASS software during FFT analysis was set between 15 and 35 h. 

(A) Sucrose temporally shortened the circadian period of the marker CAB2::LUC (Ws). Plants that 

received the suc 0%→3% treatment produced the strongest period response to sucrose. The effect of time on 

the circadian period (comparison between time windows) was sucrose-dependent. (B) Robustness (indirect 

rhythmicity and accuracy) was increased by sucrose; sucrose-dependent transients in robustness are shown. 

(C, D) Sucrose shortened the circadian period of the marker TOC1::LUC under RLc (one of two experiments 

shown in D) but not under BLc (in independent experiments and their combined data in C). noPer is shown as 

large open symbols (large circles: with sucrose; large rhomboids: no sucrose). 

 

 

 

3.1.2. The response of the toc1-21 mutant to sucrose 

 

The toc1-21 loss-of-function mutation shortens period (Strayer et al., 2000; Alabadí et al., 

2001) of circadian oscillations and exhibits distinct circadian phenotypes under RLc and BLc. The 

mutation also causes CAB2::LUC and CCR2::LUC oscillations to dampen under RLc, but 

oscillations persist under BLc, although with decreased amplitude (Más et al., 2003a). Consequently, 

TOC1 contributes to light-dependence on rhythmicity. I also noticed that oscillations in toc1-21 were 

more robust under BLc when compared to those under RLc (compare fig. 3.4 A with B), but I was 

able to detect weak oscillations under RLc in the mutant using the marker GI::LUC (Ws) instead. 

Importantly, despite the observed dampening, these oscillations [GI::LUC (Ws) in toc1-21 

under RL] produced an FFT output in three consecutive time windows. The toc1-21 mutant then 

appeared more sensitive to sucrose-mediated period shortening and surprisingly its short-period 

phenotype was sucrose dependent and could not be detected in the absence of supplementary sucrose 

(fig. 3.4 B and D). The sucrose-dependent phenotype of toc1-21 under RLc was persistent across 

three time windows indicating that sucrose-dependent long-term circadian responses are altered in 

the mutant. In contrast, the short-term circadian consequences of the toc1-21 mutation were sucrose-

independent. This is because the mutation advanced the first circadian peak (fig. 3.4B) irrespective 

of the sucrose status during free run. 

Under BLc, the sucrose-related circadian phenotypes of toc1-21 were similar, but less severe, 

relative to those observed under RLc. The short-period phenotype in this case [measured with the 
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timing of the third peak of CAB2::LUC (Ws) during free run, fig. 3.4 C] was not restricted in the 

presence of sucrose, but was enhanced by it; moreover, the mutant appeared more sensitive to 

sucrose than the wild-type. 

 

 

 

Figure 3.4: The effect of sucrose on oscillations of the toc1-21 mutant 

Seedlings were grown and entrained as described in figure 3.1. Figures represent combined data from 

three independent experiments under BLc with the marker CAB::LUC (Ws) (C) and from two experiments 

under RLc with the marker GI::LUC (Ws) (D). Representative experiments under BLc (A) and RLc (B) are 

also shown. FFT analysis was performed as described in figure 3.3 for BL experiments and as described in 

figure 3.1 for RL experiments. Error bars represent SE. Under RLc, oscillations in the toc1-21 mutant 

dampened gradually (B), while under BLc they were maintained until the end of the experiment (A). Under 

RLc, the short-period phenotype of the toc1-21 mutant was restricted on growth medium that contained 

sucrose (D); similarly, the phenotype was enhanced by sucrose under BLc (shown indirectly in C with the 

timing of the third circadian peak). The mutant was more sensitive than the wild-type to sucrose-mediated 

period shortening under both light conditions. 
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3.1.3. The response of the gi-11 mutant to sucrose 

 

The gi-11 mutant produced oscillations that were less robust relative to those of the wild-type, 

irrespective of light quality and the sucrose status during free run (fig. 3.5 A and C). A previous 

study that tested oscillations of the marker CCR2::LUC in this mutant under monochromatic BLc or 

RLc (in the presence of sucrose; Martin-Tryon et al., 2007) reported similar findings. To my 

surprise, despite the lack of persistent rhythms in the gi-11 population under RLc (fig. 3.5 A; see 

both gi-11 curves, with and without sucrose), individual seedlings of gi-11 produced an FFT output. 

This is suggestive that the lack of detectable oscillations in the population-graphs of gi-11 was due to 

the lack of synchrony between individual seedlings, which was confirmed by visual inspection of the 

respective data files. Oscillations under RLc were tested with the marker GI::LUC (Ws) and under 

BLc with CCA1::LUC (Ws) and CAB2::LUC (Ws). Under BLc, reproducibility was achieved during 

the 1
st
-tw only. For this reason, comparisons between RLc and BLc experiments refer to this time 

interval. 

Under RLc, the gi-11 mutant exhibited sucrose-dependent phenotypes and responses [marker 

GI::LUC (Ws) in fig. 3.5 B] that were opposite those seen with BLc [marker CCA1::LUC (Ws) in 

fig. 3.5 D; marker CAB2::LUC (Ws) in fig. 3.5 E]. In more detail, (1) under RLc, the gi-11 mutant 

was oversensitive to sucrose in terms of period shortening while under BLc it was resistant and (2) 

under RLc, sucrose increased the accuracy of the gi-11 mutant and the opposite was observed under 

BLc, where sucrose decreased the accuracy of the mutant. Notably, in the latter case, the mutant, 

known for its lack of robust oscillations (Martin-Tryon et al., 2007), was less accurate than the wild-

type only if sucrose was supplemented. (3) Under BLc, sucrose moderated the short-period 

phenotype, whereas under RLc, a short-period phenotype was observed only if sucrose was 

exogenously applied. 

A series of observations were suggestive that GI has a distinct role during metabolic 

entrainment to sucrose under RL. Firstly, in the presence of sucrose, the mutant showed a short-

period phenotype that was moderated over time, whereas in the absence of supplemented sucrose, 

there was a long-period phenotype that was enhanced over time (fig. 3.5 B). These observations 

define a phenotype in transients; notably, the gi-11 mutant did not exhibit the characteristic period-

transients (fig. 3.5 B) described earlier for the wild-type under RLc with the suc 0%→0% treatment. 

Secondly, the gi-11 mutant was oversensitive (more than three-fold) relative to wild-type in terms of 

short-term circadian responses to sucrose, seen in the sucrose-mediated advance of the first circadian 

peak (phase difference ± SD is 10.43±2.07h for the mutant versus 3.1±1.11h for the wild-type; fig. 

3.5 A). Both phenotypes, in terms of transients and phase, demonstrate that GI is part of a pathway 
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that mediates metabolic signals to the clock during entrainment to RL because phase and, as earlier 

explained, transients result from entrainment. In agreement with these, previously GI was proposed 

to act within light-input pathways (Park et al., 1999; Locke et al., 2006), via phyB signaling in 

particular (Huq et al., 2000). 

 

 

Figure 3.5: The effect of sucrose on oscillations of the gi-11 mutant 

GI affects sucrose signaling to nuclear oscillations in a light quality-dependent manner. Seedlings were 

grown and entrained as described in figure 3.1. Plants were exposed to the same sucrose status during entrainment 

and during free run (A, B, E) or were entrained in the presence of sucrose (C, D). FFT analysis was performed as 

described in figure 3.3 for BL experiments and as described in figure 3.1 for RL experiments. Two independent 

experiments were performed under RLc with the marker GI::LUC (Ws) (B), two under BLc with the marker 

CCA1::LUC (Ws) (D) and four under BLc with the marker CAB2::LUC (Ws) (E). Representative experiments 

are shown in A and C, while panels B, D and E show combined data from the independent experiments. Large 

black symbols in D represent average values of the respective populations. Error bars represent SE in all figures 

except for the colored bars in B that represent SD of noPer. In B later time windows are represented by smaller 

symbols. 
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3.1.4. The response of the phyB-9 mutant to sucrose 

 

phyB is known to be the RL photoreceptor in circadian responses. The involvement of phyB in 

BL input to the clock was genetically excluded with experiments that failed to detect period 

phenotypes in phyB-1 under a wide range of fluence rates in the presence of exogenous sucrose 

(Somers et al., 1998a; Devlin and Kay, 2000). By contrast, I found that, under BLc, the loss-of-

function mutant phyB-9 had a sucrose-dependent short-period phenotype (masked by sucrose; fig. 

3.6 A). This phenotype was scored during an early time window of the analysis (defined in fig. 3.1) 

and was not reproducibely observed later than that. Sucrose similarly affected phyB-9 phenotypes 

under RLc. I observed the known weak long-period phenotypes of loss-of-function alleles under RLc 

(Somers et al., 1998a; Delvin and Kay 2000; Palágyi et al., 2010) with phyB-9 in the presence of 

sucrose and further showed that, in the absence of sucrose, this phenotype is attenuated or even 

reversed to a short-period phenotype in some experiments. Similar phenotypes were scored with the 

timing of the third circadian peak, which was delayed by the mutation only in the presence of 

sucrose, whereas in the absence of sucrose, peaks were advanced or not affected by the mutation 

(fig. 3.6 B). 

 

 

 

Figure 3.6: The effect of sucrose on oscillations of the phyB-9 mutant 

The phyB-9 mutant showed similar sucrose-dependent period phenotypes under BLc (A) and under RLc (B). 

Growth and entrainment of seedlings and FFT analysis were performed as described in figure 3.1. Error bars 

represent SE. 
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3.1.5. The responses of the cca1-11, lhy-21 and cca1-11;lhy-21 mutants to sucrose 

 

The single cca1-11, lhy-21 and double cca1-11;lhy-21 mutants that harbor respective null 

alleles (Green and Tobin, 1999; Hall et al., 2003) were analyzed under RLc and BLc with marker 

CAB2::LUC (Ws). Visual inspection of the TopTemp graphs surprisingly showed that under BLc the 

double mutant produced robust oscillations, as long as there was no supplementary sucrose added 

during free run (fig. 3.7 D). Quantification of rhythmicity revealed that the mutant was equally 

rhythmic to wild-type with treatment suc 0%→0% (Student’s t-test for differences in indirect 

rhythmicity between mutant and wild-type, p=0.90) and less rhythmic with any other treatment (suc 

3%→0% p=4.90x10
-6

, suc 3%→3% p=1.31x10
-8

, suc 0%→3% p=1.65x10
-8

). In addition this, the 

mutant was to my surprise more accurate than the wild-type as long as plants were never exposed to 

supplementary sucrose (fig. 3.7 E). Under RLc, the mutant did not produce robust oscillations, and 

this was not modified by exogenous sucrose (fig. 3.8). 

Together, these results show that, under BLc, the cca1-11;lhy-21 mutant expresses a sucrose-

sensitive oscillator whose sustainability depends on and requires cytosolic sucrose-related 

oscillations. Moreover, the fact that the phenotypes described here in oscillatory robustness 

(measured by the transcriptional rate rhythm) are dependent on the sucrose status during entrainment 

[e.g. the low rhythmicity phenotype of cca1-11;lhy-21 is observed with treatment suc 3%→0% 

(p=4.90x10
-6

) but not with treatment suc 0%→0%], suggests that metabolic oscillations entrain 

nuclear ones (see chapter 4.4. for more on this issue). Whether oscillations of the cca1-11;lhy-21 

mutant are sustained over time under WLc is a subject of controversy in the literature (see Lu et al., 

2009 and references below). My findings show that sucrose could be the source of this controversy, 

as authors that used sucrose reported gradual dampening in the oscillations of cca1-11;lhy-21 (see 

Materials and Methods of Alabadí et al., 2002; Mizoguchi et al., 2002; Ding et al., 2007; Locke et 

al., 2005b), while authors that used less sucrose reported sustained oscillations (Lu et al., 2009). Of 

note, none of these studies addressed the effect of sucrose in circadian rhythms. 

 

 

 

Figure 3.7: The effect of sucrose on oscillations of the CAB2::LUC (Ws) marker in cca1-11, lhy-21 and 

cca1-11;lhy-21 mutants and the wild-type under blue light 

Growth and entrainment of wild-type (wt) and mutant (mut) seedlings were performed as described in 

fig. 3.1. FFT analysis for panels B, C and E was performed as described in fig. 3.3, only in E the minimum 

period value allowed by the BRASS software during FFT analysis was lowered from 15 to 12 h. Error bars 
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represent SE. The cca1-11 mutant was resistant to sucrose-mediated period shortening and over-resistant 

(sucrose lengthened circadian period) during the late time window (A, B). The lhy-21 mutant was temporally 

oversensitive to sucrose-mediated period shortening (C). The cca1-11;lhy-21 double mutant was robustly 

rhythmic in the absence of supplementary sucrose (D). Sucrose increased the accuracy of the wild-type but 

decreased the accuracy of the cca1-11;lhy-21 double mutant. 
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Figure 3.8: The effect of sucrose on oscillations of the CAB2::LUC (Ws) marker in the cca1-11, lhy-21 

and cca1-11;lhy-21 mutants under red light 

Growth and entrainment of seedlings were performed as described in fig. 3.1. FFT analysis in panels A 

and B was performed during the time window 16-116h (1
st
-tw) and in panels C and D during the time window 

46-146 h (2
nd

-tw, approximately one wild-type oscillation from the 1
st
-tw) for. For the cca1-11 and lhy-21 

single mutants and their wild-type controls, the period interval required by the BRASS program was set 

between 15 and 35 h. For the cca1-11;lhy-21 double mutant this interval was extended between 12 and 35 h. 

The wild-type produced almost identical (A) or identical results (B) in both intervals; thus, the data of the 

single and double mutants were comparable to each other. In panels B and D (no sucrose), the RAE and 

circadian period were paired for plants that generated an FFT output (RAE<1 instead of 0.9). Large symbols 

represent the average RAE and noPer of the populations. In panels A and C, the effect of sucrose is shown 

with sucrose response curves. Experiments of figure 3.8 were designed and analyzed by the author of this 

work and performed by Mr. Zisong Ma and Mrs. Amanda Davis who worked at the MPIZ at the time. 
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Sucrose-related phenotypes and responses of the single cca1 and lhy mutants were not severely 

affected by light quality. In every case, cca1-11 was related to long-term and lhy-21 to short-term 

circadian responses to sucrose. In more detail, under BLc, the cca1-11 mutant was resistant to 

sucrose during the 1
st
-tw and over-resistant (sucrose lengthened the circadian period) during the 2

nd
-

tw (fig. 3.7 A and B). Similarly, under RLc, cca1-11 plants were less sensitive relative to wild-type 

to sucrose in terms of period shortening (almost resistant) and the short-period phenotype of the 

mutant was moderated by sucrose. This is shown in the sucrose dose-response curves (SRCs, 

showing period as a function of sucrose concentration) of wild-type and the cca1-11 mutant that 

converge towards high concentrations of sucrose (1
st
-tw in fig. 3.8 A; 2

nd
-tw in 3.8 C). The FFT 

output produced in the absence of sucrose (fig. 3.8 B and D) was consistent with these results. 

Similar to what was observed under BLc, these phenotypes of cca1-11 under RLc were persistent 

between time windows. Therefore, CCA1 is involved in long-term circadian responses to sucrose. 

The lhy-21 mutant under BLc was oversensitive to sucrose period shortening (fig. 3.7 C) during the 

1
st
-tw and consequently at this time, and then only, the short-period phenotype of the mutant 

required sucrose to appear. Under RLc, the SRCs of lhy-21 were parallel to those of the wild-type 

(fig. 3.8 A and C), indicating that in this case LHY does not affect responsiveness to sucrose. On the 

other hand, FFT analysis of the oscillations conducted with the suc 0%→0% treatment showed that 

the short-period phenotype of the mutant was essentially absent (fig. 3.8 B) during the 1
st
-tw but 

reappeared during the 2
nd

-tw (fig. 3.8 D). Consequently, the phenotype of lhy-21 was dependent on 

sucrose, but only temporally. It is noteworthy that the phenotypes of the single mutants were 

opposite to each other, in that cca1-11 was persistently resistant or over-resistant (BLc) or less 

sensitive (RLc) than the wild-type to sucrose, whereas the lhy-21 mutant was temporally over-

responsive to sucrose (at least under BLc). Under BLc, the cca1-11;lhy-21 mutant was not resistant 

to sucrose (fig. 3.7 D and E). Therefore, the cca1-11 mutation is not epistatic to the lhy-21 mutation. 

In addition to these, the short-period phenotypes of the single and the double mutants were not 

additive (as previously shown), perhaps supporting that CCA1 and LHY can act synergistically (Lu 

et al., 2009; Yakir et al., 2009). 
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3.2. Circadian responses to chemicals that affect metabolism 

 

A chemical approach was used to investigate the potential crosstalk between TTFLs and 

metabolism. ROS and redox-related chemicals from a small library were exogenously applied on 6 

day old seedlings in microtiter plates and the effect of the chemicals on rhythmicity was monitored 

via the promoter:luciferase system. For this I tested chemicals affecting the thioredoxin and 

glutaredoxin systems (inhibitor of glutathione synthesis buthionine sulfoximine and inhibitor of 

thioredoxin reductase chlorodinitrobenzene), respiration inhibitors (antimycin A, rotenone and 

inhibitor of respiratory alternative oxidase salicylhydroxamic acid), oxidants (menadione, paraquat, 

butylhydroxyperoxide) and antioxidants (vitamin C and dithiocarbamate). I also tested the 

phytohormone SA, norbornadiene (inhibitor of ethylene perception), diphenylene iodonium 

(inhibitor of plasma membrane NADPH oxidases involved in the hypersensitive reaction during 

pathogen recognition), photosynthesis inhibitor DCMU and butanedione monoxime (ROS inducing 

inhibitor of cytoplasmic streaming). Bioluminescence was measured in an automated luminometer 

(Packard TopCount) and rhythmic traces were subsequently scored with FFT-NLLS. Various 

markers were used on medium that contained sucrose, while some experiments were later conducted 

without sucrose. Chemicals that altered the noPer of marker GI::LUC (Ws) on medium that 

contained sucrose are shown in figure 3.9 A. The antioxidant vitC shortened the period of the 

rhythmic marker under RLc and in the dark, but no effect was observed under BLc. The inhibitor of 

organellar transcription rifampicin lengthened the circadian period in more than five experiments 

conducted with various protocols, two in the dark (fig. 3.9 A), two under BLc and one under RLc 

(not shown). The inhibitor of photosynthetic electron transport DCMU lengthened the circadian 

period under monochromatic RLc and under monochromatic BLc. Figure 3.9 B shows the effect of 

the oxidant paraquat on the period of the markers GI::LUC (Ws) and CCR2::LUC (Ws) under 

monochromatic light. Under RLc, paraquat shortened the period of the marker GI::LUC (Ws), while 

it lengthened the period of the marker CCR2::LUC (Ws). Under BLc, paraquat lengthened the period 

of circadian oscillations in two independent experiments, one conducted with the marker GI::LUC 

(Ws) and one with the marker CCR2::LUC (Ws). 
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Figure 3.9: Chloroplast-related chemicals perturb nuclear oscillations 

The differences in period discussed below were always greater than 1 hour. In (A) and (B), the controls 

are colored dark blue or red according to the light conditions used during the free run. (A) The effect of SA, 

vitC, rifampicin and DCMU on the circadian period of marker GI::LUC (Ws) is shown. SA 1 mM shortened 

the circadian period. VitC (white bars: 2 mM; dashed bar: 3 mM) shortened the circadian period of the marker 

under RLc and in the dark; oscillations where not affected under BLc (not shown). Rifampicin (150 μg/ml) 

lengthened the circadian period of the marker in the dark and under monochromatic light [not shown; in one 

experiment under BLc and in one under RLc with the marker GI::LUC (Ws) and in one with the marker 

CCR2::LUC (Ws) under BL]. DCMU (white bars: 5 μM; vertically dashed white bar: 7.5 μM; horizontally 

dashed gray bars 10 μM) lengthened circadian period under RLc and under BLc. (B) The effect of paraquat 

(white bars: 7.5 μΜ; gray bars: 10 μΜ) on the circadian period markers GI::LUC (Ws) and GI::LUC (Ws) is 

presented. Under RLc, paraquat lengthened the period of marker CCR2::LUC (Ws) (in three experiments), 

and shortened the period of marker GI::LUC (Ws) (in two out of three experiments). Under BLc, paraquat 

increased the period of circadian oscillations in two independent experiments; one experiment was conducted 

with the marker GI::LUC (Ws) and one with the marker CCR2::LUC (Ws). (C), (D), (E), (F) The effect of 

SA on circadian parameters of various markers under RLc+BLc. Plants received two dawn events in the 

presence of SA, one in a WL cabinet and one in a luminometer, and were then released into free running 

conditions. Each marker was tested for responsiveness to SA in two to four experiments. The circadian period 

was shortened inconsistently between experiments, but when the results were combined, the descriptive (not 

RAE normalized) circadian period of the markers GI::LUC (Ws) (C) and CCA1::LUC (Ws) (D) was 

shortened by SA. Accuracy and rhythmicity were always increased by SA at 1 mM. The markers GI::LUC 

(Ws) and TOC1::LUC (Ws) were the most responsive to SA when accuracy was measured. The markers 

TOC1::LUC (Ws) and CCR2::LUC (Ws) were the most responsive to the SA-mediated increase of 

rhythmicity as they responded to SA at 0.5 mM when the data from independent experiments were combined. 
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3.2.1. The effect of salicylic acid on the rhythms of wild-type plants 

 

Under continuous RL+BL (a "synthetic" WLc), the stress hormone SA shortened the period of 

the rhythmic markers tested, including GI::LUC (Ws), CCA1::LUC (Ws), CCR2::LUC (Ws) and 

TOC1::LUC (Ws). This was inconsistent between experiments (all markers were tested in two to 

four experiments). When the results from independent experiments were combined, the period 

shortening effect of SA was statistically significant for the markers GI::LUC (Ws) and CCA1::LUC 

(Ws) (fig. 3.9 C and D). This contradicts a previous report according to which SA does not act on 

circadian rhythmicity (Hanano et al., 2006). Notably, in the experiments shown in figures 3.9 C to F, 

SA increased the robustness of oscillations of all four markers tested. SA at 1 mM increased the 

rhythmicity of oscillations of the rhythmic markers in every experiment, while SA at 0.5 mM 

increased the rhythmicity only of the markers TOC1::LUC (Ws) and CCR2::LUC (Ws). Accuracy 

was always increased by SA at 1 mM, while SA at 0.5 mM reproducibly increased the accuracy of 

the markers GI::LUC (Ws) and TOC1::LUC (Ws). The effect of SA on accuracy suggests that SA 

affects the clock through entrainment pathways. 
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Figure 3.10: The effect of salicylic acid on promoter::luciferase constructs is marker specific 

Plants were entrained on medium with sucrose and then placed on medium with sucrose or without and 

the indicated SA concentrations. (A), (B) Under RLc (A) and under BLc (B), SA increased the expression of 

PHYB::LUC (Ws), and the effect was enhanced by supplementary sucrose. Similar results were obtained from 

individual experiments and the combined data are shown. Under RLc, bars represent the luminescence of the 

acute peak that followed dawn (t-test for differences in average luminescence between SA and DMSO treated 

plants on medium with sucrose: SA 0.5 mM, p=4.3x10
-4

; SA 1 mM, p=5.6x10
-8

); under BLc, bars represent 

the luminescence of the first circadian peak (SA 0.1 mM, p=0.03; SA 0.5 mM, p=3.9x10
-6

; SA 1 mM, 

p=6.7x10
-12

). (C), (D) SA increased the expression of TOC::LUC (Ws) (C) and decreased the expression of 

GI::LUC (Ws) (D) under RLc+BLc. Therefore the effect of SA on luciferase activity, being marker-specific, 

could not be dependent on luciferase activity alone. 
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I next tested the effect of SA on PHYB::LUC (Ws) expression. SA increased the expression of 

the marker under RLc + BLc (not shown), as well as under monochromatic light RLc or BLc (fig. 

3.10 A, B; see experiments conducted in the presence of 3% sucrose). I reasoned that the SA-

mediated induction of the marker PHYB::LUC (Ws) could not depend on luciferase activity alone, 

since SA changed luminescence in a marker-specific manner. Under WLc, expression of the marker 

TOC1::LUC (Ws) (fig. 3.10 C) was increased by SA, while expression of the markers GI::LUC 

(Ws) (fig. 3.10 E) and CCA1::LUC (Ws) (not shown) was decreased. Interestingly, the inductive 

effect of SA on the expression of PHYB::LUC (Ws) was enhanced by supplementary sucrose (fig. 

3.10 A and B). This cannot soley be attributed to luciferase activity since SA favors alternative 

respiration and thus inhibits the production of respiratory ATP (reviewed in Rivas-San Vicente and 

Plasencia, 2011). 

Visual inspection of the timecourse graphs that assessed the effect of SA on rhythmic gene 

expression suggested that, amongst all markers tested, PHYB::LUC (Ws) was the most responsive to 

SA in terms of oscillatory robustness. Previously, the promoter of phyB was shown to be under 

circadian control (Bognár et al., 1999), but this oscillation was found to be weak (Toth et al., 2001). 

In my experiments (conducted in the presence of supplementary sucrose), a PHYB::LUC (Ws) 

transgenic marker produced weak oscillations that were greatly strengthened by SA application (fig. 

3.11 A and B). Under RLc, SA induced robust oscillations because it increased rhythmicity and 

accuracy (fig. 3.11 A), while under BLc SA had a greater impact on rhythmicity (fig. 3.11 B) rather 

than on accuracy. 

 

 

 

Figure 3.11: The effect of salicylic acid on the robustness of marker PHYB::LUC (Ws) and on the phyB-

9 mutant under monochromatic red or blue light 

Under RLc (A) and BLc (B), SA increased the robustness of PHYB::LUC (Ws) oscillations. Plants 

were entrained for one cycle under monochromatic light before being released into free running conditions in 

the presence of sucrose and DMSO or SA, as indicated. Experiments were repeated twice with similar results. 

Under RLc (A), SA increased oscillatory robustness due to an increase in indirect rhythmicity (t-test DMSO 

vs. SA: SA 0.5 mM, p=4.8x10
-3

 and 5.2x10
-4

, SA 1 mM, p=7.5x10
-7

 and 7.9x10
-12

) and accuracy (SA 1 mM). 

Under BLc (B), SA had a greater impact on indirect rhythmicity (t-test DMSO vs. SA: SA 0.5 mM, p=0.03 

and 0.04, SA 1 mM, p=1.5x10
-5

 and 0.01), rather than on the accuracy of the rhythmic marker. (C), (D) 

Transgenic plants expressing the GI::LUC (Col-0) construct were placed in 96-well microplates containing 

growth medium without sucrose and DMSO or SA, as indicated. The phyB-9 mutant was less sensitive than 

the wild-type to SA-mediated phase advance under RLc (C). Under BLc the phyB-9 mutant was less sensitive 
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(D) than the wild-type to SA-mediated period shortening when plants were previously entrained in the 

presence of supplementary sucrose (prior to SA application); the mutant was though resistant in this respect 

when plants were never exposed to sucrose (E). Additional entrainment events were not applied. FFT analysis 

of (D and E) did not include the first circadian peak and spanned at least three cycles. 
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Taken together, these results are indicative that SA acts on rhythmic transcription through light 

and/or entrainment pathways. This is notable given my findings on the effects of SA application on 

accuracy of the PHYB::LUC (Ws) promoter. To examine this further, I subjected plants to 

parametric and non-parametric entrainment in the presence and absence of SA (experiments were 

conducted in the presence of supplementary sucrose). In the non-parametric-entrainment 

experiments, I tested circadian responses to SA in a time-course, because sensitivity to the hormones 

ABA, GA and auxin were previously reported to be gated by the biological clock (Covington and 

Harmer, 2007; Legnaioli et al., 2009; Arana et al., 2011; see also Robertson et al., 2009). Plants 

expressing the marker GI::LUC (Ws) were grown and entrained for 5 days under WL and at a 

constant temperature of 22
˚
C, before entering continuous darkness at dusk. Every three hours, a 

subset of plants was retrieved and subjected to non-parametric entrainment with 3-hour light pulses 

(WL) on growth medium that contained SA at 1 mM or DMSO (SA solvent). The chemical pulse 

was slightly shorter than the light pulse (by 15 minutes). At the end of each light/chemical pulse, 

plants were placed in 96-well microplates (without SA or DMSO) and luminescence was monitored 

in continuous darkness. Four light-chemical pulses were applied between ZT0 and ZT12 hours and 

the time-course experiment was repeated twice. In both experiments, the effect of SA on circadian 

period (SA treated plants vs. DMSO treated plants) was gated and restricted during the first half of 

the subjective day (fig 3.12, data combined from two independent experiments). Notably, in one of 

the experiments, SA application altered circadian period only during the first morning pulse. Two 

more experiments conducted with a different protocol produced similar results (not shown). In these 

experiments, plants were grown and entrained for 5 days as described above, and then placed in 96-

well microplates that contained SA or DMSO during the second half of the objective day. At 

objective dusk, the plates were placed in continuous darkness at 22
o
C and parametric entrainment to 

light pulses (1 hour in the first experiment and 3 hours in the second) was applied every 3 hours 

during a time course between ZT0 and 12 hours; each plate was subjected to a single pulse and then 

placed in the TopCount for visualization. Visual inspection of oscillating curves from these 

experiments showed that the timing of circadian peaks was advanced by the end of each experiment 

irrespective of the timing of the light pulse because SA was continuously applied. Nevertheless, the 

effect of SA on the timing of the second peak after release in the dark was gated and restricted or 

enhanced once more by light pulses applied during the first half of the subjective day. To conclude, 

plants were more sensitive to SA during the first half of the day in all four experiments conducted 

with non-identical protocols. 
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Figure 3.12: The effect of salicylic acid on circadian period is gated 

Plants were grown and entrained for 5 days under WL and then released into continuous darkness at 

dusk. A subset of plants was retrieved every three hours between ZT0 and ZT12 and received a light pulse on 

medium with 3% sucrose and either DMSO or SA. The combined data from two independent experiments for 

RAE-normalized period are presented in the figure. Individual experiments yielded similar results. The effect 

of SA was gated and restricted during the first half part of the day or during the first morning pulse in two 

experiments (t-test on combined data: ZT0-3 hours, p = 3.15x10
-3

; for all other pulses, p ≥ 0.19). DD 

corresponds to the DMSO control that did not receive chemical or light pulses. Similar results were found in 

two other experiments conducted with different protocols (see text). 

 

 

 

 

 

 

 

 

 

 

 

I then examined the effect of continuous SA application on oscillations under parametric 

entrainment. Plants expressing the marker CCR2::LUC (Ws) (fig. 3.13) or GI::LUC (Ws) (not 

shown) were placed in 96-well microplates with various SA concentrations or DMSO and entrained 

under WL for 1, 2 or 3 days, or not at all (0 days). Luminescence was monitored in a TopCount 

luminometer in the dark, starting at the last objective dusk (lights off at ZT 12 hours followed by 

DD). Surprisingly, oscillations gradually dampened (fig. 3.13 A) with every entrainment event 

unless SA was applied. Moreover, the circadian phase of the DMSO-control plants was delayed by 

consecutive entrainment events in 96-well microplates, but in the presence of SA, the phase was 

independent or even advanced with each entrainment event (fig. 3.13 A and B). Accuracy and direct 

(fig. 3.13 A) and indirect rhythmicity (inversely correlated to the y axis in fig. 3.13 B) of DMSO-

control plants expressing either marker were decreased after each entrainment event in 96-well 

microplates. Again, these parameters were relatively constant (or even increased) by parametric 

entrainment in the presence of SA. Notably, the DMSO-control population expressing the marker 

CCR2::LUC (Ws) was rendered so arrhythmic by the second entrainment event that direct and 

indirect rhythmicity had considerably deviated from each other. Direct rhythmicity was not 
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representative of overall rhythmicity, as FFT analysis discarded arrhythmic plants (fig. 3.13 C), 

resulting in a seemingly rhythmic population that contradicted the dampening effect of entrainment 

observed in the time-course curves (fig. 3.13 A). Indirect rhythmicity could, however, explain the 

entrainment-mediated dampening of oscillations of the DMSO-control populations as it incorporated 

the FFT-discarded plants. Collectively, the effect of SA on the circadian periodicity of CCR2::LUC 

(Ws) during entrainment in 96-well microplates was confirmed using various measures: with the 

timing of circadian peaks (fig. 3.13 A and B), with indirect rhythmicity in all three independent 

experiments tested (fig. 3.13 B shows combined data from these experiments), with direct 

rhythmicity only after data from all independent experiments were combined (fig. 3.13 A, 

quantification not shown) and as the percentage of plants discarded by FFT analysis (fig. 3.13 C). 

The GI::LUC (Ws) marker responded similarly as the marker CCR2::LUC (Ws) to SA and 

entrainment when phase and robustness were quantified (not shown) [note that the direct and indirect 

rhythmicity of the marker GI::LUC (Ws) were similar to each other, as the percentage of FFT-

discarded plants was always low]. Moreover, SA application by as little as 0.2 mM was adequate to 

rescue oscillations in GI::LUC (Ws) from dampening and prevented phase delays imposed by 

parametric entrainment. This was in experiments that experienced up to three entrainments events or 

more (not shown). Together, these data showed that the SA-mediated phase-advance and SA-

mediated increases in robustness were enhanced by parametric entrainment in 96-well-microplates, 

because these parameters were relatively constant and independent of entrainment only if SA was 

applied. 

In my assays, high SA concentrations were toxic and caused chlorosis of plants. This could be 

attributed to the fact that SA induces the production of ROS (Chen et al., 1993); this was afterall the 

reason why SA was included in the initial ROS-related chemical screen. I then noticed that 

Arabidopsis plants were more sensitive to SA-mediated chlorosis if SA was applied without adding 

sucrose. This observation was made while trying to genotype the PHYB::LUC transgene with a 

camera of relatively low sensitivity. To enhance and detect the luminescence signal with this camera, 

I added SA to the plants being genotyped, because the transgenic marker is positively regulated by 

SA [PHYB::LUC (Ws), fig. 3.10 A and B]; I used the same SA concentration employed in every 

other experiment but did not add sucrose. To my surprise, the plants being genotyped died, which 

indicates that sucrose moderates SA-induced toxicity. I then proceeded to test if sucrose modifies the 

effect of SA in circadian assays as well. I found that, under monochromatic RLc or BLc, sucrose 

moderated or abolished SA-mediated period shortening [fig. 3.14; for the marker CAB2::LUC (Ws), 

see also fig. 3.17 A and B]. In more detail, sucrose moderated the SA-mediated period shortening of 

the marker CAB2::LUC (Ws) in four experiments under BLc (in one of these experiments, sucrose 
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moderated the effect of SA on phase and in a fifth experiment I obtained negative results), of the 

marker GI::LUC (Ws) under BLc (in three experiments; combined data in fig. 3.14 A) and under 

RLc (two experiments in the presence of sucrose and four in its absence were combined in fig. 3.14 

B) and of the marker GI::LUC (Col-0) under BLc (three experiments with sucrose and seven without 

were combined in fig. 3.14 C). Similar preliminary results (no replicates available) were obtained 

under BLc with the markers CCA1::LUC (Ws) and TOC1::LUC (Ws) and under RLc with the 

markers GI::LUC (Col-0) and TOC1::LUC (Ws). These experiments show that sucrose moderates or 

even inhibits the effect of SA on the circadian period and are in agreement with a previous 

publication from Hanano et al. (2006) that reported that SA does not act on the circadian period in 

the presence of sucrose. Together, these findings are suggestive that SA affects nuclear oscillations 

through ETCs. 

 

 

Figure 3.13: Salicylic acid increases the oscillatory robustness of CCR2::LUC (Ws) through parametric 

entrainment 

Plants from symchronized populations received the indicated number of additional entrainment events 

on medium with sucrose 3% and SA or DMSO in 96-well-microplates. They were then placed in a TopCount 

luminometer in continuous darkness and at a constant temperature of 21
˚
C. (A) The effect of SA during free 

run is enhanced by the preceding parametric entrainment events. Panels on the right represent the combined 

data from three independent experiments that produced similar results to each other. Each panel on the left 

shows a representative experiment. Note that the y axis in the right panels is negatively correlated to direct 

rhythmicity and the standard deviation on the x axis is negatively correlated to accuracy. (B) Quantification of 

data shown in A. Populations that did not receive the additional entrainment events, are represented by white 

symbols; darker symbols correspond to additional entrainment events. On growth medium with DMSO (SA 

solvent) consecutive entrainment events delay phase (timing of the second circadian peak; 0 d vs. 1 d, 

p=3.0x10
-5

; 0 d vs. 2 d, p=4.1x10
-7

, 0 d vs. 3 d, p=4.9x10
-14

). Phase is rendered independent to entrainment 

with application of 0.5 mM SA. Application of 1m M SA reverses the effect of entrainment on phase by the 

third day (0 d vs. 3 d, p=1.5x10
-6

). The SA-mediated increase in indirect rhythmicity (inversely correlated to 

the y axis) is enhanced by parametric entrainment (compare different symbols with the same color). (C) The 

effect of entrainment and SA on rhythmicity is shown in the percentage of plants discarded by BRASS 

software. BRASS discarded only 0-2% of plants that did not receive the additional entrainment events before 

free run. BRASS discarded 25% (from 117 plants) and 27% (from 156 plants) of DMSO-control plants that 

received two and three additional entrainment events, respectively. In the presence of SA at 1 mM the 

percentage of discarded plants was always near 0% (in populations numbering 68 to 100 plants). The 

percentage of discarded plants was kept relatively low on medium with SA at 0.5 mM also. 
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Figure 3.14: Salicylic acid -induced period shortening is moderated by sucrose 

Transgenic plants carrying the designated promoter::luciferase markers were grown and entrained under 

WL before being released into free running conditions under monochromatic BLc or RLc; SA and sucrose 

concentrations were as indicated. The effect of SA was inhibited or moderated by sucrose. Control-DMSO 

bars of the marker GI::LUC (Ws) under BLc (A) represent four experiments without sucrose and three with 

sucrose. Control-DMSO bars of the marker GI::LUC (Ws) under RLc (B) represent four experiments without 

sucrose and two with sucrose. Control-DMSO bars of the marker GI::LUC (Col-0) under BLc (C) represent 

seven experiments without sucrose and three with sucrose. Similar results were obtained for the marker 

CAB::LUC (Ws) under BLc (wild-type controls from a representative experiment is shown in fig. 3.17). 

Similar results were obtained in preliminary experiments (not shown) with the marker GI::LUC (Col-0) under 

RLc, with the marker CCA1::LUC (Ws) under BLc and with the marker TOC1::LUC (Ws) under RLc and 

under BLc. 
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3.2.2. The response of clock mutants to salicylic acid 

 

In order to identify mediators of SA signaling, I performed genetic tests with known clock-

mutants (gi-11, toc1-21, cca1-11, lhy-21 and cca1-11;lhy-21) compromised in central clock genes 

represented in the model of Locke et al. (2005b). The phyB-9 mutant was also tested in this genetic 

analysis because of the distinct response to SA displayed by the PHYB::LUC marker (Figures 3.10 A 

and B and 3.11A and B) and because the phyB mutant is recognized as a mediator of SA signaling 

during defense responses (Genoud et al., 2002). Plants were grown and entrained according to 

standard protocols under WL (in the presence of 3% sucrose; see Materials and Methods) and then 

transferred to 96-well microplates with SA or DMSO during the second half of the subjective day. 

Subsequently, the plates were placed in a TopCount luminometer at dusk and exposed to free 

running conditions under monochromatic RLc or BLc the following dawn, in the presence or 

absence of sucrose, as indicated. In some experiments, plants received one additional entrainment 

event under monochromatic light before being released into free running conditions. 

The GI::LUC marker was used to assess the effect of SA on the phyB-9 (Col-0) mutant. As 

expected, when oscillations took place in the absence of supplementary sucrose, SA shortened the 

period of wild-type oscillations. Under BLc, the mutant appeared less sensitive relative to the wild-

type in this respect when four independent experiments where combined (fig. 3.11 D). It is 

noteworthy that the sucrose status of the growth medium during entrainment affected the extent of 

the phenotype, since when plants were not exposed to sucrose at this time the phyB-9 mutant was 

resistant to SA period shortening (figure 3.11 E). Similarly, under RLc, the phyB-9 (Col-0) mutant 

was less sensitive relative to wild-type to SA-mediated phase advance in three independent 

experiments (fig. 3.11 C). 

The toc1-21 mutant was oversensitive to SA in all three experiments performed under RLc. 

Two of these were conducted on medium without sucrose and with plants expressing the marker 

CAB2::LUC (Ws) (fig. 3.15 A). In these experiments, as expected, in the absence of sucrose, wild-

type plants responded to SA with period shortening whereas the mutant responded with a greater 

magnitude, compared to the wild-type (fig. 3.15 A). The toc1-21 mutant was additionally found to 

be oversensitive to SA relative to wild-type when the effect of SA on the robustness of oscillations 

was considered (including direct rhythmicity, indirect rhythmicity and accuracy; see fig. 3.15 A and 

the figure legend for numerical data). Similar phenotypes (in terms of period and the robustness of 

oscillations) were also scored in the third experiment that was conducted on growth medium with 

sucrose and that used the CCR2::LUC marker (Ws) (not shown). Notably, in this experiment, SA 

shortened the period of toc1-21 oscillations while, as expected, the wild-type did not respond 
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similarly to SA due to the presence of sucrose. Under BLc, the toc1-21 mutant appeared less 

sensitive than the wild-type to SA-mediated period shortening. This was observed in two 

experiments performed without sucrose, one with the marker GI::LUC (Ws) (fig. 3.15 B) and one 

with the marker CAB::LUC (Ws) (not shown; in these experiments, the mutant was not resistant to 

SA since the hormone advanced phase). Conclusively, light quality had a significant impact on the 

SA-related phenotypes of toc1-21, the mutant being oversensitive to SA under RLc and less 

sensitive than wild-type under BLc. 

 

 

Figure 3.15: The effect of continuous salicylic acid application on GI::LUC (Ws) in the toc1-21 mutant 
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Figure 3.15: 

(A) Under RLc, the toc1-21 mutant was oversensitive to SA relative to the wild-type. The 

oversensitivity the phenotype was confirmed in three independent experiments. Figure A shows the combined 

data from two of the experiments that were conducted without supplementary sucrose and with the marker 

GI::LUC (Ws). The mutant was more sensitive than the wild-type to SA for period shortening. In the absence 

of multiple entrainment events SA did not improve the robustness of oscillations in wild-type (see also fig. 

3.13); on the other hand the mutant was oversensitive to SA to the point that, in the absence of additional 

entrainment events, direct rhythmicity (t-test for DMSO vs. SA 0.1mM: p=7.1x10
-7

), indirect rhythmicity 

(p=0.01) and accuracy (the SD of noPer was unaffected by SA in the wild-type and decreased almost three-

fold in the mutant) were increased. A third experiment conducted on medium with sucrose and the marker 

CCR2::LUC (Ws) produced identical phenotypes (not shown). 

(B) Under BLc, the toc1-21 mutant was less sensitive than the wild-type to SA-mediated period 

shortening. This was reproduced in two experiments conducted without supplementary sucrose, one with the 

marker GI::LUC (Ws) and one with the marker CAB::LUC (Ws) (not shown). 

 

 

 

Figure 3.16: The effect of salicylic acid on the gi-11 mutant 

On medium that lucks sucrose SA increased expression of marker PHYB::LUC (Ws) in two 

experiments (one conducted under BLc and one under RLc). This response was exacerbated in the gi-11 

mutant. Under RLc, bars represent the luminescence of the acute peak that followed dawn; under BLc, bars 

represent the luminescence of the first circadian peak that followed the acute peak of dawn. 
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experiments. The gi-11 mutant was consistently oversensitive relative to wild-type to SA when the 

effect of the hormone on expression of the marker PHYB::LUC (Ws) was considered (fig. 3.16). The 

oversensitivity phenotype was scored on medium that did not contain sucrose, likely because in this 

case the wild-type response to SA was weak (see also fig. 3.10 A and B). The effect of SA on the gi-

11 mutant was reproduced in two experiments, one under BLc and one under RLc, and observed 

numerous times under WLc. These findings are indicative that GI and phyB might affect 

responsiveness to SA in concert. 

I then tested the single cca1-11, lhy-21 and the double cca1-11;lhy-21 mutants for their 

responses to SA (fig. 3.17). This was in the presence or the absence of sucrose under BLc with the 

marker CAB2::LUC (Ws), respectively. Visual inspection of the TopTempII graphs indicated that 

the lhy-21 mutant was oversensitive to SA-mediated period shortening. This was particularly evident 

when sucrose was supplemented, in which case the effect of the hormone was hardly observed in the 

wild-type (compare timing of the third peak in fig. 3.17 A and C). FFT-NLLS analysis confirmed 

that the lhy-21 mutant was more sensitive than the wild-type to SA-mediated period shortening in 

only two of five such experiments. For this, I calculated the timing of the third peak after release into 

free running conditions and found that, in four of these five experiments, the lhy-21 mutant was 

more sensitive than the wild-type to SA mediated peak advance. Notably, the experiment that did not 

reproduce the oversensitivity phenotype of lhy-21 was the only one that did not entail additional 

entrainment events in the presence of SA. The four experiments that entailed additional entrainment 

(and thus exposed plants to SA for a longer period of time) were combined and are presented in 

figure 3.17C. Similar results were obtained in a sixth experiment with the marker CCR2::LUC (Ws), 

as the lhy-21 mutant was oversensitive relative to wild-type to SA-mediated period shortening (in the 

presence of sucrose; not shown). 

The lhy-21 oversensitivity phenotype prompted me to test for responses to SA in the cca1-11 

mutant. Three experiments were performed in the presence and three experiments in the absence of 

supplementary sucrose. In these (fig. 3.17 A) the cca1-11 mutant did not display any SA-related 

phenotypes in terms of period or phase (timing of the third peak of oscillations). Consequently, 

CCA1 does not contribute to SA sensitivity in the same manner as LHY. 

I then assessed the effect of SA on the cca1-11;lhy-21 double mutant in the presence and in the 

absence of sucrose. The first experiment was conducted without additional entrainment events and 

produced weak phenotypes (see below). For this and because of the quantitative relationship 

between SA and parametric entrainment (fig. 3.13), I continued with experiments that entailed one 

additional entrainment event. Visual inspection of the TopTempII graphs (fig. 3.17 A) suggested that 

the cca1-11;lhy-21 mutant was, similarly to the lhy-21 single mutant, oversensitive to SA-mediated 
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period shortening relative to wild-type in the presence of supplementary sucrose (whereas the latter 

is not responsive to SA). 

Because in the presence of sucrose oscillations in the cca1-11;lhy-21 double mutant gradually 

dampened (fig. 3.7 D; see also Alabadí et al., 2002 for this under BLc), I performed FFT-NLLS 

during a time window that ended before dampening (between ZT12 and 72 hours). This time 

window included three oscillations of cca1-11;lhy-21 and provided a reliable FFT output. FFT 

analysis confirmed that the cca1-11;lhy-21 mutant was oversensitive to SA-mediated period 

shortening in every experiment conducted in the presence of sucrose. In more detail, the wild-type 

response was less than 0.6 hours (that is less than the 0.9 hour interval that separated consecutive 

measurements), whereas the mutant responded by 2 to 3 hours in three experiments that entailed an 

additional entrainment event and by 1.1 hours in the experiment that did not include additional 

entrainment events. During any fixed time window, the cca1-11;lhy-21 mutant with an extremely 

short period phenotype (Mizoguchi et al., 2002; Alabadí et al., 2002; Ding et al., 2007; Locke et al., 

2005b; Locke et al., 2006; Lu et al., 2009) would have been exposed to SA for longer than the wild-

type, if the duration of exposure is measured as the number of cycles. Such a difference in the 

duration of exposure to the hormone could easily account for a false positive oversensitivity-

phenotype. For this, I repeated FFT-NLLS for a longer time window that extended from 21 to 126 

hours (or until 104 hours in one experiment that was shorter). With this approach, I could show that, 

in the presence of sucrose, the response of the cca1-11;lhy-21 mutant during the small time window 

(between 12 and 72 hours, when the mutant was oscillating) was greater than the response of the 

wild-type during the longer time window (between 21 and 104 or 126 hours), provided though that 

SA was kept lower than 1 mM (optimal results were obtained with 0.5 mM SA in the experiments 

that entailed an additional entrainment event; not shown). 

Because the wild-type and the mutant were occasionally equally sensitive to SA at 1 mM, and 

because of the level of subjectivity in the determination of time windows chosen for FFT analysis, I 

confirmed the oversensitivity phenotype of cca11;lhy-21 with phase analysis. I calculated the timing 

of the second and third circadian peaks in these experiments and, as expected, the second and the 

third peaks produced from the mutant were more responsive to SA than the third peak produced 

from the wild-type (in all four experiments; see fig. 3.17 D for combined data from experiments that 

included an additional entrainment event). Therefore, the oversensitivity phenotype of the cca1-

11;lhy-21 mutant to SA did not result from the extreme short period of the mutant and the 

consequences of the number of cycles in which the plants were exposed to the hormone. 
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Figure 3.17: The effect of continuous salicylic acid application on CAB2::LUC (Ws) in the cca1-11, lhy-

21 and cca1-11;lhy-21 mutants under blue light 

Plants were grown and entrained on growth medium that contained sucrose for five days under 

12hL:12hD. During the second half of the sixth day plants were placed into 96-well microplates that 

contained sucrose, SA or DMSO, as indicated. An additional entrainment event was applied in the TopCount 

with BLc before free run was initiated at ZT0 hours. Sucrose moderated the period-shortening effect of SA 

(A, B) in the wild-type. In the presence of supplementary sucrose, the effect of SA was moderated in the wild-

type but not in the lhy-21 (C) and cca1-11;lhy-21 (D) mutants. 
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3.3. A reverse genetic approach – HSP90 

 

Having found that nuclear oscillations are perturbed by ROS-related chemicals, I proceeded to 

investigate whether mutations that affect ROS homeostasis alter circadian parameters. Initially I 

focused on mutations that would compromise the antioxidant system of the cell; I tested mutant lines 

that are predicted to be compromised in their aintioxidant capacity (see below), for circadian 

phenotypes with leaf movement assays at 21˚C. In this effort, I included mutations involved in sulfur 

metabolism, because previously it was connected to circadian timekeeping and temperature 

compensation in Neurospora (Onai and Nakashima, 1997; see chapter 1.4.2.b). I also included 

mutations in genes directly involved in the enzymatic antioxidant system of the cell (thioredoxin 

system, glutaredoxin system, catalases)
89

 and mutations that compromise protein methionine repair 

enzymes because they result in time specific ROS alternations (Bechtold et al., 2004). It is 

noteworthy that sulphur metabolism is coupled to the antioxidant system through thioredoxins and 

glutaredoxins, the reducing systems that render thiol groups as redox sensors (Rouhier, et al., 2004; 

Gelhaye et al., 2005). All of the mutants I decided to test (not shown) displayed a wild-type period 

length in leaf movement at 21˚C. 

Several researchers have proposed that compensation against environmental perturbation, as 

observed in circadian (Wagner et al., 1976; Roennenberg and Merrow, 1999) and ultradian (Lloyd 

and Murray, 2007; Lloyd, 2008) rhythms, is an inherent property of networks. For this I repeated the 

leaf movement assays under 12˚C and 16˚C, but did not run into any positive phenotypes (not 

shown), perhaps due to the extensive redundancy and compensatory properties of antioxidant and 

metabolic networks. 

I then turned my interest to mutations implicated in plant defense mechanisms because it is 

well established that these affect ROS homeostasis (Torres and Dangl, 2005; Wiermer et al., 2005) 

and because certain aspects of defense such as the hypersensitive response require photosynthetic 

pigments (Genoud et al., 2002), which I had suspected to be involved in light input to the clock (the 

implication of photosynthetic ETC in circadian timekeeping in Arabidopsis is discussed in chapter 

4). I included mutations in LESION STIMULATING DISEASE1 (LSD1; Jabs et al., 1996; Mateo et 

al., 2004), PHYTOALEXIN DEFICIENT4 (PAD4; Feys et al., 2001), ENHANCED DISEASE 

SUSCEPTIBILITY1 (EDS1; Parker et al., 1996), RESPIRATORY BURST OXIDASE HOMOLOG D 

                                                 
89. Amongst all the genes of the antioxidant system of plant cells, peroxiredoxins are perhaps the only ones 

known to this date to affect nuclear oscillations (based on this study and the results of Edgar et al., 2012, see 

chapter 1.3). I did not include these in my survey. 
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(RBOHD), RBOHF (Tissier et al., 1999; Torres et al., 2002), FLAVIN DEPENDENT 

MONOOXYGENASE1 (FMO1); (Mishina and Zeier, 2006) and the hsp90.2-3 mutation (Hubert et 

al., 2003). These mutations are known to perturb antioxidant networks and ROS homeostasis (see 

references above), but their respective phenotypes are conditional; perhaps this would explain the 

negative circadian results I obtained with pad4, RbohD, RbohF, lsd1 and fmo mutants, and the 

inconsistent (between several experiments) long-period phenotype of eds1. As such, I did not pursue 

this hypothesis any further. Of the mutations listed here (see materials and methods table 2.2) only 

hsp90.2-3 consistently lengthen circadian period, and did so in a temperature dependent manner, the 

phenotype being favored at cold temperatures of 12˚C (fig. 3.18). I also found that the circadian 

phenotype of hsp90.2-3 is phenocopied by geldanamycin application, which is an HSP90 inhibitor 

(fig. 3.19). 

Noteworthy geldanamycin inhibits ATP turnover (binding or hydrolysis) by the HSP90 

chaperone (Prodromou et al., 1997; Grenert et al., 1999) thereby interfering with substrate release 

(Young and Hartl, 2000). The hsp90.2-3 mutation is also predicted to affect ATP turnover, as the 

amino-acid substitution is located at the ATP-binding site of the protein; these and other findings 

have led Hubert et al. (2003) to suggest that inhibition of ATP turnover results in instability of 

HSP90 "clients". The experiments presented in figure 3.19 were conducted in the dark as 

geldanamycin is light labile. Despite this, I also tested the effect of geldanamycin under 

monochromatic BLc and preliminary results in these experiments suggest that the effect of 

geldanamycin on GI::LUC (ws) rhythms may be moderated by sucrose (Table 3.2). The effect of 

sucrose on geldanamycin effectiveness was striking, as in the experiment conducted in the absence 

of sucrose the inhibitor lengthened circadian period by 14 hours, whereas in the other experiment 

that was conducted with supplementary sucrose period was lengthened only by 4 hours. 

 

 

Table 3.2: Sucrose moderates the period lengthening effect of geldanamycin 

The period lengthening effect of geldanamycin (7.5μM) on GI::LUC (Ws) was severely moderated by 

sucrose in two preliminary experiments under BLc, one with supplementary sucrose and one without. FFT 

was conducted between ZT 30 and 145 hours. Interval of period-values allowed by BRASS software during 

FFT analysis was set between 15 and 45 hours. 

 sucrose 3% 

(ttest=3.82*10-7) 

no sucrose 

(ttest=1.93*10-11) 

DMSO control 25.07±0.12 30.06±0.38 

Geldanamycin 7.5μM 29.42±0.55 44.07±0.77 
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Figure 3.18: Leaf movement is affected by the hsp90.2-3 mutation at cold temperatures 

The hsp90.2-3 shows a long-period phenotype of leaf movement specifically at 12
˚
C. At 16

˚
C the 

phenotype is either gone or severely moderated, while at 21
˚
C period of rhythmic leaf movement was 

identical between wild-type and mutant (not shown). Leaf movement experiments are conducted under low 

light in a growth cabinet (see materials and methods). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: Geldanamycin and the hsp90.2-3 mutation similarly affect nuclear oscillations 

The hsp90.2-3 mutation and geldanamycin lengthen circadian period of oscillations of GI::LUC 

markers. Luminescence was recorded in continuous darkness at 21
˚
C. 
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4.1. Summary 

 

The circadian clock has been recognized as a major coordinator of metabolism in plants 

(Harmer et al., 2000). However, as I initiated this research, it was not widely accepted that metabolic 

processes are circadian determinants in Arabidopsis. Indeed, classic literature suggests a 

compensation mechanism whereby oscillator function resists changes in metabolic balances 

(Buenning, 1973
90

). I showed here that sucrose and chemical perturbation on photosynthetic 

metabolic processes can have profound effects on clock performance. Notably these are coupled as 

sucrose availability modulates the effects of oxidant and stress agents, such as salicylic acid, in a 

manner that suggests that photosynthetic electron transport affects circadian gene expression in the 

nucleus. 

In chapter 3.1.1 I showed that supplemented sucrose, now typical as a community standard, 

shortens circadian period in a temporal/transient manner; transients on the other hand are dependent 

on the sucrose status of the growth medium during entrainment indicating that supplementary 

sucrose perturbs entrainment. This in turn is implicit that endogenous sucrose signals are important 

to entrainment. 

I then applied a chemical-epistasis approach (in chapter 3.1.2 to 3.1.15) to infer the entry points 

of metabolism to the oscillator. Long-term circadian responses to sucrose were suppressed in the 

cca1-11 mutant irrespective of light quality. By contrast, under RL, the toc1-21 mutant was found to 

be oversensitive to sucrose. The cca1-11 and lhy-21 single mutants were opposite with respect to 

their sucrose-dependent phenotypes, as the later was affected in short-term circadian responses to 

sucrose under monochromatic RLc or BLc. More over, under BLc, lhy-21 was, unlike cca1-11, 

temporally oversensitive to sucrose-mediated period shortening. Under RLc, the gi-11 mutant 

exhibited sucrose-dependent phenotypes and responses that were opposite those seen with BLc. 

Interestingly, the phyB-9 mutant displayed circadian phenotypes under BLc that were masked by 

supplementary sucrose. Mutants that are altered in ROS and redox homeostasis were also tested for 

circadian phenotypes. Of these, an altered-function allele of HSP90.2 was found to display a 

temperature compensation long period phenotype. Together these findings reveal multiple links 

between TTFLs and metabolism in Arabidopsis. 

It was further shown that the cca1-11;lhy-21 double mutant is capable of producing robust 

oscillations that are masked by sucrose application. Based on this, I proposed that the zeitnehmer 

model previously outlined for the clock of Neurospora is applicable in Arabidopsis as well. This 

                                                 
90. See chapter 9. 
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notion was further supported by a number of predictions of the model, such as the finding that 

circadian mutants in Arabidopsis are altered for both temperature compensation (previously 

published) and nutrient compensation (shown here). By definition a zeitnehmer loop is comprised of 

a rhythmic input to a rhythmic process; as the chemicals that affected nuclear oscillations target 

chloroplasts and affect metabolic pathways with oscillatory potential, I proposed that photosynthesis 

and nuclear oscillations are coupled to each other in the context predicted by the zeitnehmer model. 

Having applied chemicals and light treatments that affect the redox state of plastoquinone (PQ) 

(chapter 3.2), I noticed a correlation between the inferred redox state and periodicity of rhythmic 

gene expression. Several of the findings presented here, as well as a considerable amount of 

published data, including the rule of Aschof, can be explained by this correlation. In this discussion I 

will highlight those findings that support the relationship of metabolism and the clock as one 

determinant of the effect increasing ligt intensity has on accelerating periodicity. 

 

 

 

4.2. Wild-type responses to sucrose 

 

 

4.2.1. Transients in circadian parameters are inhibited by sucrose 

 

In Chapter 3 I started by exploring the consequences of surose application on luciferase 

measurements. This was done as historic use of this technology had created an assay protocol with 

extremely high levels of sucrose to be able to image light from the first-genteration of luciferase 

transgenes (Millar et al., 1995a). With the new luciferase vairants typically imployed, this is no 

longer necessary (this study, James et al., 2008; Dalchau et al., 2011), which thus allows for this test. 

I investigated the effect of sucrose on oscillations of CAB2::LUC (ws), GI::LUC (ws) and GI::LUC 

(Col) under monochromatic BLc or RLc (fig. 3.1, 3.2 and 3.3). The marker CAB2::LUC (Ws) did 

not produce oscillations in the absence of sucrose under RLc, and for this reason, it was assayed with 

a sucrose dose-response gradient (fig. 3.8). In all of these experiments, I observed the period 

shortening effect of sucrose (fig. 3.1, 3.2 and 3.3) previously reported by others (Knight et al., 2008; 

Dalchau et al., 2011). I also noticed temporal instability or transients in circadian parameters 

including period, rhythmicity and accuracy; here, temporal instability refers to the changes observed 

in a circadian parameter after FFT analysis is performed during consecutive time windows that are 

one cycle apart from each other. These transients were inhibited by sucrose application during free 
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run, and consequently, the effect of exogenous sucrose on various circadian parameters was 

temporal [period, accuracy and rhythmicity of the marker CAB2::LUC (Ws); rhythmicity of the 

GI::LUC markers] or moderated with time (period and accuracy of the GI::LUC markers) (fig. 3.1, 

3.2 and 3.3). 

Temporal instability of period length, termed transients, was first reported by Pittendrigh and 

Bruce in 1959 (for more on this issue see fig. 4.1), in response to non-parametric entrainment to light 

pulses and changes in ambient temperature. Because of this, I hypothesized that transients are a 

consequence of entrainment. I further investigated this and found that transients depend on the 

sucrose status of the growth medium used for entrainment (see chapter 4.2.2). This observation 

supported that transients are indeed a consequence of entrainment and moreover, that sucrose 

application affected the oscillator through entrainment. 

Buenning (1973) presented two possibilities for the origin of these transients. In the first, 

transients do not affect the actual timekeeper. Rather, they are the result of perturbation of the output 

after a brief chemical treatment (e.g. oxygen withdrawal or respiration inhibitors). In this case, 

treated and control subjects (usually plants) soon return to synchronous interactions. In the second, 

the transients reflect the actual state of the clock, because the treatment that triggered them resulted 

in a permanent phase shift (even though the effect on period may have been only transient). I 

assumed that, in this latter case, the oscillator would have been affected indirectly via entrainment 

pathways, whereas persistent (not transient) period shortening would mean that central events were 

perturbed directly. In my experiments the effect of sucrose on circadian phase was not temporal. 

Sucrose caused a permanent phase shift in the oscillations of the GI::LUC markers (fig. 3.1 A and B 

and 3.2 A and B) as well as of CAB2::LUC (Ws) (see wild-type controls in fig.3.7 A and D) and 

consequently, the clock rather than the output pathways was perturbed
91

. It should be noted that, 

even though the effect of sucrose on the period of the GI::LUC marker was moderated over time, 

period shortening was nonetheless persistent (varying between 1.5 to 4 hours during the 2
nd

-tw), 

which suggests that in this case sucrose affected the clock through events that are closer to the 

central oscillator rather than through entrainment pathways. By contrast sucrose shortened the 

                                                 
91. Given the known regulation of photosynthetic genes by sucrose (Koch, 1996) and the fact that the effect 

of sucrose on period of CAB2::LUC (Ws) was only temporal (fig.3.3 A and B), it is reasonable to assume that 

sucrose inhibits transients in cab2 expression directly and not via the clock. I would like to stress that this is 

very unlikely to be the case, because the phase difference caused by sucrose during free run was persistent 

(lasting for up to 4 or 5 cycles and until the end of each experiment; see wild-type controls in fig.3.4 A and 

fig. 3.7 A vs. D). 
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circadian period of CAB2::LUC (Ws) only during the 1
st
-tw, indicating that nuclear encoded 

photosynthetic gene expression is prone to metabolic cues through entrainment pathways rather than 

through central events. In chapter 4.2.2 I discussed how I put to the test the hypothesis that 

exogenously applied sucrose affects entrainment. 

 

 

Figure 4.1: Transients 

Transients, first reported by Pittendrigh and Bruce in 

1959, produce PRCs; therefore they reflect the oscillator 

and not the controlled process. The straight dotted line 

represents the period length of adapted, non-treated 

controls. Continuous, dashed and dotted curves show the 

period of the 1
st
, 2

nd
 and 3

rd
 cycles respectively, that follow 

non-parametric perturbation (pulsed increments of 

temperature or light intensity). Eventually by the third 

peak oscillations are adapted to the same period length as 

non-treated controls; this defines a transient effect. See 

Buenning (1973), 3
rd

 edition, pages 77 and 102 for 

references. 

 

 

 

4.2.2. Supplementary sucrose applied during entrainment is "remembered" during 

subsequent free run 

 

To test my hypothesis that supplementary sucrose affects entrainment, I subjected plants to 

various combinations of sucrose treatments during growth/entrainment and during luciferase 

imaging. I chose to perform these tests under BLc, because under this condition robust oscillations 

did not require sucrose addition. Consequently I observed that the sucrose status of entrainment is 

"remembered" during free run. This "memory" was noted in the differences between circadian 

parameters - period, rhythmicity and accuracy - produced by the treatments suc 0%→0% (plants 

never exposed to sucrose) and suc 3%→0% (plants exposed to 3% w/v sucrose only during 

entrainment, not during free run) that differed only in the sucrose status during entrainment. In more 

detail, under BLc transients in the accuracy of GI::LUC (col) were observed only when plants where 

never exposed to sucrose (SD-noPer was halved by the 2
nd

-tw). By contrast transients were not 
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observed when sucrose was applied during free run (treatment suc 3%→3%) as well as when 

sucrose was applied solely during entrainment (treatment suc 3%→0%). Moreover upon several 

occasions, the circadian parameters scored with the treatment suc 3%→0% were intermediate 

relative to those obtained with the treatments suc 0%→0% and suc 3%→3%, especially during the 

1
st
-tw of my analysis (table 4.1; see also fig. 3.1 and 3.3)

92
. Together these findings show that the 

sucrose status of entrainment is "remembered" during free run (even when sucrose had not been 

further supplemented), suggesting that the sucrose-dependent transients are a quantitative product of 

entrainment. This in turn was indicative that exogenously applied sucrose functions as an 

antizeitgeber because it inhibits the product of entrainment (transients) in aerial tissues. It is 

noteworthy, that supplementary sucrose was previously attributed antizeitgeber properties based on 

the fact that it prevented entrainment of the root clock to LD cycles (James et al., 2008). In that 

study it was shown that short-term circadian responses in aerial tissues are not responsive to sucrose. 

This is not in contrast to my findings, because transients are by definition a long-term circadian 

response
93

. It should also be pointed out that accurate oscillations might result from synchrony 

between individual oscillations therefore the modification of accuracy-transients by supplementary 

sucrose further supports the involvement of sucrose in parametric entrainment. 

I propose that sucrose affects the marker GI::LUC (Col-0) via multiple pathways. Based on the 

aforementioned antizeitgeber properties of sucrose, one of these pathways should depend on 

entrainment (see also chapter 4.2.1 and fig. 3.1 C). The fact that period shortening in response to 

sucrose was persistent further suggests that GI::LUC oscillations respond to sucrose through central 

events (see also chapter 4.2.1 and figures 3.1 and 3.2). By contrast, as earlier explained, oscillations 

of the marker CAB2::LUC (Ws) should respond to metabolic cues through pathways that are more 

related to entrainment rather than to central oscillations. 

                                                 
92. I observed the same for indirect rhythmicity and accuracy (fig.3B) of marker CAB2::LUC (Ws), when 

data from seven independent experiments were combined. In addition to these the period of CAB2::LUC (Ws) 

acquired intermediate values in a data set that combined four experiments entailing an additional entrainment 

event under BL (not shown). 

93. More differences can be traced between this study and that of James et al. (2008). First the experimental 

setup with hydroponically grown seedlings used in that study was different than the one I was using. Then 

James et al., (2008) showed that sucrose does not affect entrainment of rhythmic transcript levels in shoots, 

whereas I used luciferase activity that represents rhythms in transcriptional rate. The major difference 

between the two studies is that James et al. (2008) were measuring sucrose sensitivity with short-term 

circadian responses whereas I was measuring long term circadian responses. 
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4.2.3. Sucrose affects robustness of nuclear oscillations in a marker-specific manner 

 

Sucrose has been used in circadian assays that measure rhythmic transcriptional rates because 

it amplifies the luciferase signal. However, this was accompanied by a tendency to reduce oscillatory 

robustness (described in fig. 1.2). To be more exact, even though oscillations of the GI::LUC and of 

the CAB2::LUC (Ws) markers were rendered more robust by supplementary sucrose, oscillatory 

robustness was increased over time provided that sucrose was not supplemented (see chapter 3.1.1 

for a more detailed analysis). Consequently the effect of sucrose (assessed by comparison between 

the treatments suc 0%→0% and suc 3%→3%) on oscillatory robustness (accuracy and rhythmicity) 

was temporal for the marker CAB2::LUC (Ws), whereas it was temporal (rhythmicity) or moderated 

(accuracy) over time for the GI::LUC markers; interestingly, under RLc rhythmicity of the marker 

GI::LUC (Ws) was decreased by sucrose application in later time windows. These experiments show 

clearly that supplementary sucrose can potentially decrease robustness of oscillations especially in 

later time-windows. 

In addition to the GI::LUC and CAB2::LUC markers, I also tested the effect of sucrose on 

CCA1::LUC (Ws), LHY::LUC (Ws), CCR2::LUC (Ws) and TOC1::LUC (Ws). CCR2::LUC (Ws) 

oscillations exhibited a requirement for sucrose and the same was observed for marker LHY::LUC 

(Ws) in two preliminary experiments, one under RLc and one under BLc (not shown). Sucrose 

shortened the circadian period in every case except for the marker TOC1::LUC (Ws) under BLc (fig. 

3.3); the latter was reported to be resistant to sucrose under WLc in a previous report also (Dalchau 

et al., 2011). Moreover, I confirmed that the effect of sucrose on period of CCA1::LUC (Ws) under 

BLc is temporal and observed the same in preliminary experiments for TOC1::LUC (Ws) under RLc 

and for LHY::LUC (Ws) under BLc (not shown). 

 

 

4.2.4. Conclusive remarks on the effect of sucrose on oscillations of wild-type plants 

 

1. The effect of sucrose on circadian parameters period, accuracy and rhythmicity was 

transient (temporal, restricted during the early time windows of FFT analysis) for oscillations of the 

marker CAB2::LUC (Ws) and moderated (but persistent) over time for oscillations of the GI::LUC 

markers. Sucrose application permanently advanced circadian phase suggesting that in every case 

the clock, and not the output pathway (or luminescence activity), was affected. Transients (temporal 

instability) in period, accuracy and rhythmicity were inhibited by sucrose application during free 

run. These findings show clearly that supplementary sucrose affects nuclear oscillations. 
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2. Treatment suc 3%→0% yielded intermediate values in circadian parameters relative to 

those obtained with treatments suc 0%→0% and suc 3%→3% (table 3.1). Consequently, in my 

experiments the sucrose status of entrainment was "remembered" during free run suggesting that 

supplementary sucrose affected the entrainment process. The "memory" of the sucrose status during 

entrainment was also reflected in the transients: under BLc transients in the accuracy of the GI::LUC 

(Col-0) marker were inhibited when sucrose was applied solely during entrainment. This later 

observation is indicative that the sucrose-dependent transients are a quantitative product of 

entrainment and that exogenously applied sucrose functions as an antizeitgeber in aerial tissues. 

3. I propose that GI::LUC (Col-0) expression is responsive to sucrose via multiple 

pathways, one that is dependent on entrainment (due to the antizeitgeber properties of sucrose and its 

aforementioned "memory" effect) and one that is more central (due to the persistent sucrose-

mediated period shortening). By contrast, oscillations of the marker CAB2::LUC (Ws) should 

respond to metabolic cues through pathways that are more related to entrainment rather than to 

central oscillations, because the effect of sucrose on circadian period was in this case temporal. 

 

 

 

4.3. On genetic-epistasis experiments 

 

4.3.1. The response of the toc1-21 mutant to sucrose 

 

The toc1-21 (fig. 3.4) loss-of-function mutation shortens the period (Strayer et al., 2000; 

Alabadí et al., 2001) of circadian oscillations and exhibits distinct circadian phenotypes under RLc 

and BLc: the mutation causes CAB2::LUC and CCR2::LUC oscillations to dampen under RLc, but 

oscillations persist under BLc, although with decreased amplitude (Más et al., 2003a). My findings 

are in agreement with this (compare fig. 3.4 A with B), but I was able to detect weak oscillations 

under RLc in the mutant using the marker GI::LUC (Ws). Because TOC1 is a negative regulator of 

GI (Makino et al., 2002; Locke et al., 2006), I reasoned that increased expression of GI in the toc1-

21 mutant might account for these oscillations under RLc. This cannot be the case, because despite 

the positive effect of the toc1-21 mutation on the transcriptional rate of GI, shown in the expression 

of GI::LUC (Ws), the normalized amplitude of the rhythmic marker was similar in the mutant and in 

the wild-type (not shown). Moreover, GI transcript levels are not severely altered in the toc1-21 

mutant under WLc (Martin-Tryon et al., 2007). Together, these data indicate that GI::LUC 

oscillations are less affected by the toc1-21 mutation relative to CCR2::LUC or CAB2::LUC 
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oscillations, because of the hierarchy between these genes. The dampening effect of the toc1-21 

mutation is more severe for events that are more downstream from the mutation than the on core-

oscillator rhythms. 

Under BLc, the sucrose-related circadian phenotypes of toc1-21 were similar, but less severe 

relative to those observed under RLc. This is based on the observation that the short-period 

phenotype of the mutant was enhanced by or restricted in the presence of sucrose under BLc and 

RLc, respectively. Moreover, the mutant appeared more sensitive to sucrose-mediated period 

shortening than the wild-type irrespective of light quality. 

The aforementioned discrepancy between short-term (phase) and long-term (transients) 

circadian responses to sucrose is supported by the sucrose-related phenotypes of the toc1-21 mutant 

as I observed them under RLc. The sucrose-dependent phenotype of toc1-21 under RLc was 

persistent across three time windows indicating that long-term circadian responses to sucrose are 

altered in the mutant. In contrast, the short-term circadian consequences of the toc1-21 mutation 

were sucrose-independent, as the mutation advanced the first circadian peak irrespective of the 

sucrose status during free run. 

Endogenous levels of sucrose, the major photosynthate exported from green tissues, are 

circadian regulated (Lu et al., 2005). James et al. (2008) proposed that sucrose or a sucrose-related 

signal entrains a TOC1-independent root-clock. In my experiments, TOC1 was genetically 

dispensable under RLc for a normal circadian period so long as sucrose was not supplemented (fig. 

3.4 D). Similarly, under BLc TOC1 was less important in the absence than in the presence of sucrose 

(based on the magnitude of the toc1-21 period phenotype; fig. 3.4 C). These experiments together 

are suggestive that TOC1 is rendered pleonastic (or less important) when the clock is allowed to 

entrain to sucrose signals, which is seen in the root (James et al., 2008), or in the absence of 

supplemented sucrose (fig. 3.4). In this later case, endogenous sucrose-related signals are not blunted 

(this is known for calcium oscillations for example; Johnson et al., 1995) and could therefore serve 

entrainment. These findings raise the question as to what purpose a gene like TOC1 serves if related 

phenotypes are induced by a state as artificial as supplementary sucrose. An answer could come 

from studying the clock of etiolated seedlings, because there is a possibility that TOC1 is 

dispensable there as well (Kikis et al., 2005; Wenden et al., 2011). Importantly, in these plants, the 

carbon supply during germination is not driven by rhythmic photosynthesis, but this does not mean 

that carbon fluxes are arhythmic; current knowledge in the literature is limited on this subject (Kikis 

et al., 2005; Thines and Harmon, 2010; Wenden et al., 2011). 

The idea that TOC1 is rendered pleonastic when entrainment shifts to a metabolic mode is 

further supported by my finding that SA, known to improve photosynthetic performance (see chapter 
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4.6), alleviated the differences between the circadian curves of toc1-21 and of the wild-type under 

RLc (fig. 3.15 A). 

 

 

4.3.2. The response of the gi-11 mutant to sucrose 

 

Under RLc the gi-11 mutant exhibited sucrose-dependent phenotypes and responses [marker 

GI::LUC (Ws) in fig. 3.5 B] that were opposite those seen with BLc [marker CCA1::LUC (Ws) in 

fig. 3.5 D; marker CAB2::LUC (Ws) in fig. 3.5 E]. In more detail, (1) under RLc, the gi-11 mutant 

was oversensitive to sucrose in terms of period shortening while under BLc it was resistant and (2) 

under RLc, sucrose increased the accuracy of the gi-11 mutant and the opposite was observed under 

BLc, where sucrose decreased the accuracy of the mutant. Notably, in the latter case, the mutant, 

known for its lack of robust oscillations (Martin-Tryon et al., 2007), was less accurate than the wild-

type only if sucrose was supplemented. (3) Under BLc, sucrose moderated the short-period 

phenotype of the gi-11 mutant, whereas under RLc, a short-period phenotype was observed only if 

sucrose was exogenously applied. 

When the gi-11 mutant was subjected to the suc 0%→0% treatment under RLc, it did not 

exhibit the characteristic period-transients described earlier for the wild-type (fig. 3.5 B)
94

. 

Consequently, GI should be involved in a light-input pathway during metabolic entrainment to RL, 

because as earlier explained the sucrose-dependent transients are related to entrainment. Moreover 

the calculation of the sucrose-mediated advance of the first circadian peak (a short-term circadian 

response that as such should relate to entrainment and/or light input) revealed that the gi-11 mutant 

was oversensitive to sucrose (more than three-fold) relative to the wild-type (see Results chapter and 

fig. 3.5 A). These findings are well in agreement with the assigned role of GI within light input 

pathways (Park et al., 1999; Locke et al., 2006) and phyB signaling (Huq et al., 2000) 

Under RLc both short-term and long-term circadian responses were affected by the gi-11 

mutation. Short-term circadian responses were altered in that the mutant was oversensitive to sucrose 

relative to the wild-type when the effect of sucrose was measured with the timing of the 1
st
 circadian 

peak (fig. 3.5 A). Similarly long-term circadian responses were affected because several phenotypes 

of the gi-11 mutant were persistent across time windows; in more detail the gi-11 mutant was 

                                                 
94. Consequently the mutant showed a short-period phenotype that was moderated over time in the presence 

of supplementary sucrose and a long-period phenotype that was enhanced over time in the absence of 

supplementary sucrose (fig. 3.5 B). 
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oversensitive relative to wild-type to sucrose for period shortening (fig. 3.5 B) and to sucrose-

mediated increase of oscillatory robustness (fig. 3.5 A), rhythmicity in particular (not shown). By 

contrast, Dalchau et al., (2011) proposed that gi-11 is resistant to the long-term circadian response to 

sucrose (induction of oscillations in the dark). Due to this discrepancy, I looked closer at the data 

from Dalchau et al. (2011) and noticed that luciferase imaging had been conducted with clusters of 

seedlings. This would indeed mask latent oscillations of individual gi-11 seedlings if they were out 

of phase with each other, as I have observed under RLc. Consequently, gi-11 would appear resistant 

to the long-term sucrose response when it can potentially be oversensitive. Of note, in that study, the 

gi-11 mutant did appear responsive to sucrose, in terms of the acute induction of CAB2::LUC. From 

the above, it should be made clear that gi-11 can be both oversensitive and resistant to sucrose, 

depending on light quality. The aforementioned light-specific phenotypes of gi-11 were restricted to 

period and accuracy whereas rhythmicity was defined more by the gi-11 mutation rather than light 

quality (fig. 3.5 B and D). To conclude, the light-specific phenotypic responses of gi-11 to sucrose 

are indicative that GI has distinct roles under BLc and under RLc. 

Previously, Martin-Tryon et al. (2007) proposed a similar conclusion based on their findings 

that (in the presence of sucrose) the phenotypes of gi-201 regarding period and of gi-200 regarding 

circadian amplitude (similar to what I quantify as robustness) are dependent on light quality. My 

findings further add to this, that the light-specific roles of GI are related to sucrose. GI was 

previously thought to be connected to sucrose specifically in the dark because sucrose induced 

oscillations in the marker CAB2::LUC (Ws) in the wild-type, but not in gi-11 (Dalchau et al. 2011). 

Moreover, in this work, gi-11 had a sucrose-independent long-period phenotype under continuous 

light, indicating that the putative GI-sucrose interaction is not active in the light. The same was 

concluded based on the observation that, in continuous light, sucrose failed to shorten the circadian 

period in both the wild-type and gi-11 (this was attributed to the fact that high light intensity masks 

responses to sucrose due to the effect of light on photosynthate production). By contrast, I found that 

under low fluence rates (in which case photosynthate production is limited) gi-11 has long- and 

short-term circadian phenotypes, that depended on the combination of the sucrose status and light 

quality. It is possible therefore that under WLc (presented by Dalchau et al., 2011), the BL-specific 

effect of sucrose on gi-11 was eliminated by the RL-specific effect, as these are opposite to each 

other (fig. 3.5). My data on period and accuracy are suggestive that GI is not only involved in 

sucrose signaling to nuclear oscillations in the light, but also that GI has distinct roles in sucrose 

sensing under monochromatic BLc and RLc. 
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4.3.3. Sucrose masks the circadian phenotypes of phyB-9 under blue light 

 

phyB is known to be the RL photoreceptor in circadian responses. The involvement of phyB in 

BL input to the clock was genetically excluded with experiments that failed to detect period 

phenotypes in phyB-1 under a wide range of fluence rates in the presence of exogenous sucrose 

(Somers et al., 1998a, Devlin and Kay, 2000). In contrast, I found that under BLc the loss-of-

function mutant phyB-9 had a sucrose-dependent short-period phenotype (masked by sucrose; fig. 

3.6 A). This phenotype was temporal and enhanced or restricted during the initial time window of 

the FFT analysis in independent experiments. Interestingly, phyB is related to several responses to 

BLc including certain aspects of de-etiolation (growth inhibition, cotyledon expansion and 

anthocyanin accumulation), as well as vegetative growth (root greening) and phototropism (reviewed 

in Kami et al., 2010). It is thus reasonable that phyB additionally contributes to BLc inputs to the 

clock. 

I reproduced the known weak long-period phenotypes of loss-of-function alleles under RLc 

(Sommers et al., 1998a, Devlin and Kay 2000, Palágyi et al., 2010) with phyB-9 in the presence of 

sucrose and further showed that, in the absence of sucrose, this phenotype is absent, or even reversed 

to a short-period phenotype in some experiments. Similar phenotypes were scored with the timing of 

the third circadian peak that was delayed by the mutation only in the presence of sucrose, whereas in 

the absence of sucrose, peaks were advanced or not affected by the mutation (fig. 3.6 B). Sucrose 

affected the phenotypes of phyB-9 under BLc and under RLc similarly, as the mutation advanced 

circadian peaks only in the absence of supplementary sucrose. 

The importance of phyB in BL input to the clock is furthered by the finding that the phyB-9 

mutant was less sensitive to SA-mediated period shortening relative to the wild-type under BLc (fig. 

3.11 D). In these experiments, growth and entrainment were performed with supplementary sucrose, 

whereas SA application during free run was conducted on growth medium that was not 

supplemented with sucrose. Because the phenotype of the phyB-9 mutant under BLc was masked by 

sucrose (fig. 3.6 A) and because of the implication of sucrose (chapter 3.1.1) and SA (fig. 3.12 and 

3.13) in entrainment, I proceeded to investigate the effect of phyB-9 in entrainment to BL. For this I 

tested the response of the phyB-9 mutant to SA in a second set of experiments that did not entail 

sucrose during entrainment. In these the phyB-9 mutant was resistant to SA (fig. 3.11 E), and 

consequently, the extent of the phenotype was dependent on entrainment condittions (compare fig. 

3.11 D with E). These experiments show that phyB is not only involved in BL input to the clock, but 

also in entrainment to BL. 
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4.3.4. The responses of the cca1-11, lhy-21 and cca1-11;lhy-21 mutants to sucrose 

 

The cca1-11, lhy-21 and cca1-11;lhy-21 mutants that harbor respective null alleles (Green and 

Tobin, 1999; Hall et al., 2003) were analyzed under RLc and BLc with marker CAB2::LUC (Ws). 

Visual inspection of the TopTemp graphs surprisingly showed that under BLc the double mutant 

produced robust oscillations, as long as there was no supplementary sucrose added during free run 

(fig. 3.7 D). The quantification of rhythmicity revealed that the mutant was equally rhythmic to wild-

type with treatment suc 0%→0% and less rhythmic with any other treatment
95

. In addition to this, 

the mutant was more accurate than the wild-type so long as the plants had not been prevously 

exposed to supplementary sucrose (fig. 3.7 E). Under RLc, the mutant did not produce robust 

oscillations, and this was not modified by exogenous sucrose (fig. 3.8). Together, these results show 

that, under BLc, the cca1-11;lhy-21 mutant expresses a sucrose-sensitive oscillator whose 

sustainability depends on and requires cytosolic sucrose-related oscillations. Moreover, the fact that 

these phenotypes in oscillatory robustness (measured by the transcriptional rate rhythm) are 

dependent on the sucrose status during entrainment, suggests that metabolic oscillations entrain 

nuclear ones. 

Whether oscillations of cca1-11;lhy-21 are sustained over time under WLc is a subject of 

controversy in the literature. My findings show that sucrose could be the source of this controversy, 

as authors that used sucrose 3% reported gradual dampening in the oscillations of cca1-11;lhy-21 

(see Materials and Methods of Alabadí et al., 2002, Mizoguchi et al., 2002; Ding et al., 2007; Locke 

et al., 2005b), while authors that used less sucrose reported sustained oscillations (Lu et al., 2009). 

The role of sucrose in the rhythm sustainability of cca1-11;lhy-21 is not mentioned in any of these 

publications. 

Sucrose-related phenotypes and responses of the single mutants were not severely affected by 

light quality (see fig. 3.7 for BLc data and fig. 3.8 for RLc data). In every case the cca1-11 mutation 

had long-term consequences (phenotypes did not change between time windows) whereas the lhy-21 

mutation was related to short-term circadian responses. It is noteworthy that the phenotypes of the 

single mutants were opposite to each other, in that cca1-11 was persistently resistant or over-

resistant (BLc) or less sensitive (RLc) than the wild-type to sucrose, whereas the lhy-21 mutant was 

temporally over-responsive to sucrose (at least under BLc). Under BLc, the cca1-11;lhy-21 mutant 

was not resistant to sucrose (fig. 3.7 D and E), therefore, the cca1-11 mutation is not epistatic to the 

lhy-21 mutation. In addition to these, the short-period phenotypes of the single and the double 

                                                 
95. With treatment suc 3%→0% p=4.90x10

-6
; suc 3%→3% p=1.31x10

-8
; suc 0%→3% p=1.65x10

-8
. 
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mutants were not additive (as previously shown), indicating that in this respect CCA1 and LHY act 

synergistically (Lu et al., 2009, Yakir et al., 2009), rather than in parallel. 

Circadian rhythms in the absence of transcription and translation have been repeatedly shown 

for photosynthetic organisms. The oldest example comes from cells of the giant algae Acetabularia 

that exhibit rhythms in photosynthetic capacity and chloroplast shape for several days after the 

nucleus is removed (reviewed in Buenning, 1973). Cyanobacteria exhibit temperature-compensated 

circadian rhythms in the presence of chemical inhibitors and in continuous darkness that do not 

allow transcription and translation (Xu et al., 2000; Tomita et al., 2005). In addition to this, the 

cyanobacterial clock was reconstructed in vitro in all its properties - sustainability, temperature 

compensation and entrainment - by the sole presence of KAI proteins and adenine phosphate 

nucleotides in solution (thus in the absence of DNA, transcription and translation; Nakajima et al., 

2005; Rust et al., 2011). Subsequently, in the dark and in the presence of inhibitors of transcription 

and translation, the phototrophic green alga Ostreococcus tauri (O’Neil et al., 2011) was found to 

exhibit temperature-compensated circadian rhythms in the immuno-detected conformational states of 

peroxiredoxins. As well, the peroxiredoxin rhythm was also observed in transgenic Arabidopsis 

plants whose nuclear clock was blunted by over-expression of the TOC1 protein (Edgar et al., 2012). 

Similarly, the described TTFLs are dispensable for circadian rhythmicity in flies (Yang and Sehgal, 

2001; Kim et al., 2002; see also chapter 1.4.1) and in Neurospora (Lakin-Thomas and Brody, 2000; 

de Paula et al., 2006; see also paragraph 1.4.2.b). In addition to these, a purely transcriptional 

oscillator has been excluded in mouse fibroblasts, because pretreatment with transcriptional 

inhibitors, instead of slowing the clock down as would have been predicted by the TTFL model, 

resulted in period shortening (Dibner et al., 2009; see also O’Neil, 2009). This issue is more settled 

for human red blood cells that lack nuclei and exhibit the peroxiredoxin rhythm (O’Neil and Reddy, 

2011). Given the central role attributed to the CCA1/LHY/TOC1 oscillator (Locke et al., 2006; 

Zeilinger et al., 2006; Ding et al., 2007; Pokhilko et al., 2010), it is very unlikely that the 

transcriptional network is fully functional in the double cca1-11;lhy-21 mutant (see also Ding et al., 

2007). With this in mind, as well as the observed rhythmicity of the mutant in the absence of sucrose 

(fig. 3.7 D), TTFLs should not be an absolute requirement for rhythmicity at the circadian range, at 

least not under BL. Alternatively, the centrality of CCA1 and LHY within the oscillator should be 

questioned or additional unknown factors would compensate for their loss in the cca1-11;lhy-21 

mutant. These data confirm the prediction of Dodd et al. (2007) that in Arabidopsis cytosolic 

metabolic oscillations should contribute to rhythm generation. 
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4.4. The zeitnehmer model in Arabidopsis 

 

Mathematical modeling (Roenneberg and Merrow, 1998, 1999), confirmed experimentally in 

Neurospora (Merrow et al., 1999), has led to the identification of certain criteria that define 

zeitnehmer loops
96

. These are (1) rhythmicity per se of a biochemical pathway (the zeitnehmer) that 

perceives zeitgeber signals and then (2) through coupling to a central oscillator the provision of 

rhythm-sustainability and (3) compensation against external perturbations, metabolic and changes in 

temperature; (4) the coupling process also ensures a period within the circadian range. It was pointed 

out by the authors that certain aspects of the zeitnehmer model are also satisfied by the TTFLs of 

Drosophila (Roenneberg and Merrow, 1998, 1999; Merrow et al., 1999). 

Several findings presented in this work, when combined with others in the literature, 

demonstrate that the CCA1/LHY/TOC1 TTFL of Arabidopsis meets all four of the aforementioned 

criteria that define a zeitnehmer loop. First, the model requires that oscillations in separate sub-

cellular compartments should be coupled if they are to entrain each other. Several publications have 

shown that in Arabidopsis nuclear and diverse cytosolic oscillations are indeed coupled to each 

other. Interactions of this sort were initially implied by the circadian phenotype of the tej mutant 

(Panda et al., 2002) that accumulates more pADPr polymers and could therefore be altered for 

several related metabolites, including those involved in energy/redox (ATP and NAD+) and ROS 

homeostasis (de Block et al., 2005), as well as ABA (Vanderauwera et al., 2007), and its potential 

signaling partner (Sanchez et al., 2004) cADPR. A reciprocal regulation has also been proposed for 

cytosolic oscillations of cADPR and the CCA1/LHY/TOC1 oscillator (Dodd et al., 2007). Cytosolic 

peroxiredoxin rhythms are no exception, as their phase is altered when the TOC1 protein is over-

expressed (Edgar et al., 2012). The data presented in this thesis are in agreement with the notion that 

nuclear and cytosolic oscillations are coupled and further expand our knowledge regarding the entry 

points of metabolic signals, through the characterization of sucrose circadian responses in the wild-

type (fig. 3.1, 3.2 and 3.3) and mutants (fig. 3.4, 3.5, 3.7, and 3.8) represented in the two loop model 

(Locke et al., 2005b). Most importantly the coupling between cytosolic sucrose-related signals and 

nuclear oscillations is underlined by several findings presented here, especially the sucrose-

dependent robustness phenotype of the cca1-11;lhy-21 mutant under BLc. This phenotype can be 

explained assuming that, under BLc, transcriptional rhythms are driven by both nuclear and 

cytosolic oscillations. In the cca1-11;lhy-21 mutant, nuclear oscillations are severely impaired and in 

                                                 
96. The zeitnehmer model for the circadian clock of of Neurospora is shown in figure 1.8. It consists of 

coupled nuclear and cytosolic-metabolic oscillations. 
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the presence of sucrose so would be cytosolic ones, leading to the known dampening phenotype of 

the mutant (Alabadí et al., 2002; Mizoguchi et al., 2002; Locke et al., 2005b; Locke et al., 2006; 

Ding et al., 2007). Consequently, in the absence of sucrose (under BLc), CAB2::LUC transcriptional 

rhythms of the cca1-11;lhy-21 mutant are mainly driven by residual cytosolic oscillations. These 

findings demonstrate that the dual regulation of CAB2::LUC rhythms by TTFLs and sucrose satisfies 

the second criterion of the zeitnehmer model, that of rhythmic sustainability through the coupling 

procedure. In agreement with this, supplementary sucrose has the potential of reducing the 

robustness of CAB2::LUC (Ws) and GI::LUC oscillations during free run (see paragraph 4.2.3). 

Another prediction of the zeitnehmer model in Acetabularia, Drosophila and Neurospora 

(Roenneberg and Merrow, 1999; Merrow et al., 1999 and references therein) is that when TTFLs are 

eliminated, residual metabolic oscillations continue to run. The observed sucrose-dependent 

robustness phenotype of the cca1-11;lhy-21 mutant (fig. 3.7 D) confirms this prediction in 

Arabidopsis as well. 

A fundamental requirement of the zeitnehmer model is the perception of zeitgebers through a 

rhythmic zeitnehmer biochemical pathway, as described in the first criterion (see above). It is well-

established that the three loop model (Locke et al., 2006) has several entries for light input, such as 

LHY and CCA1 at dawn (even though this is not correlated to parametric and non-parametric 

entrainment; Kim et al., 2003) and GI at dusk. Another well-characterized entry point of light to 

TTFLs is the zeitnehmer ELF3 that is required for rhythmicity in continuous light (McWatters et al., 

2000). Here it is shown that the Arabidopsis TTFL has several entry points of a rhythmically 

synthesized potential metabolic zeitgeber, sucrose; interestingly, all the genes represented in the two 

loop model are pontential sucrose sensors (fig. 3.4 to 3.8). 

The fourth criterion (period in the circadian range) is clearly satisfied by the extreme short-

period phenotype of the cca1-11;lhy-21 mutant that falls down to 18.5 h or in the presence of the 

hormone salicylic acid to 17 h (and occasionally even less; fig.3. 17). The third criterion is 

confirmed by the fact that all of the mutants represented in the two loop model (Locke et al., 2005b) 

show both temperature compensation (Gould et al., 2006) and nutrient compensation phenotypes 

(fig. 3.4, 3.5, 3.7, and 3.8). Firstly, the short-period phenotype of the toc1-21 mutant was enhanced 

by or restricted in the presence of sucrose under monochromatic BLc (fig. 3.4 C) and RLc, 

respectively (fig. 3.4 D). Moreover, the toc1-21 mutant was more sensitive than the wild-type to 

sucrose regarding period shortening (fig. 3.4) and was previously shown to have a temperature 

compensation phenotype that is enhanced at high temperatures (Salomé et al., 2010). Secondly, the 

phenotypes of the cca1-11 and lhy-21 mutants were opposite, not only with respect to sucrose (cca1-

11: persistently resistant or over-resistant; lhy-21: temporally over-sensitive; fig. 3.7 and 3.8), but 
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also with respect to temperature, with the cca1 and the lhy phenotypes being more important at 

lower and at higher temperatures, respectively (Gould et al., 2006; Salomé et al., 2010). Finally, the 

gi-11 mutant, required for wild-type period at 12˚C and 27˚C, but not at 17˚C (Gould et al., 2006), 

exhibited sucrose-dependent phenotypes in accuracy and period that were modified by light quality 

(fig. 3.5). Markedly, these phenotypes were opposite between RLc and BLc, implying a complex 

interplay between light, metabolism and TTFLs in the establishment of robust and compensated 

rhythms. Together, these results provide strong evidence that the zeitnehmer model proposed for 

Neurospora applies to Arabidopsis as well. It is noteworthy that in both organisms the zeitnehmer 

TTFL is linked to reproduction, i.e. induction of flowering (Fowler et al., 1999) and rhythmic 

conidiation. 

 

 

 

4.5. Perspectives on circadian regulation of carbon metabolism 

 

Circadian regulation of carbon metabolism has been an intensive field of study, and the role of 

the CCA1/LHY morning loops in this respect has proven crucial (Graf and Smith, 2011; Haydon et 

al., 2011). Carbon partitioning towards starch reserves during the day and utilization at night are 

under photoperiodic control, ensuring that plants will not suffer starvation during the night and that 

carbon allocation during the day is balanced between storage supplies and immediate usage for 

anabolic reactions. Consequently, through this, photoperiodic growth regulation is optimized (Gibon 

et al., 2004; Graf et al., 2010). 

During the night, photoperiodic regulation of carbon metabolism is exerted in the rate of starch 

degradation, whereas during the day in the proportion of the photosynthate partitioned into starch. 

(see fig. 1.14 and Gibon et al., 2004). Of note, unlike photoperiodic regulation of starch metabolism 

at night, the events that allow photoperiodic regulation of starch metabolism during the day are not 

well understood (and should not be confused with the well-described short-term regulation of 

photosynthesis and starch synthesis by photosynthesis products; Graf and Smith, 2011). Graf et al. 

(2010) proposed that the photoperiodic regulation of starch mobilization at night requires proper 

anticipation of dawn, rather than a match between the duration of endogenous and forced cycles, so 

that depletion of sugars during the night and consequently starvation and growth inhibition are 

avoided. This is because a mismatch between the endogenous and forced LD cycles impairs growth 

in the cca1;lhy mutant, but not in the toc1 or ztl mutants that are deficient in night-phased clock 

proteins. My findings, although they do not address photoperiodic regulation, are indicative that 
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potentially all the genes represented in the two loop model, originally brought out to explain 

photoperiodism (Locke et al., 2005b) in gene expression (Millar and Kay, 1996) and floral induction 

(Mizoguchi et al., 2005), are sucrose sensors and could therefore be involved in photoperiodic 

regulation of starch metabolism and photosynthesis. This idea is in agreement with my proposal that, 

in Arabidopsis, metabolic and nuclear oscillations are coupled to each other for the purposes of 

entrainment. The data presented here add to those of Graf et al. (2010) and Dalchau et al. (2011), in 

that nuclear oscillations are capable of tracking the metabolic status both at dawn (via CCA1 and 

LHY; fig. 3.7 and 3.8) and at dusk (via TOC1 and GI, fig. 3.4 and 3.5, respectively). This is a 

prerequisite if TTFLs (serving a zeitnehmer function in this case) are to mediate photoperiodic 

information to metabolic oscillations. Here I note my findings that the expression of TOC1 is highly 

responsive to photoperiod (fig. 4.2). 

 

 

 

Figure 4.2: TOC1::LUC (Ws) expression is responsive to the photoperiod 

Photoperiodic regulation of TOC1::LUC (ws) expression is shown. Imaging took place on agar with 3% 

sucrose. One additional entrainment event was applied before transfer at objective dusk into a top-count 

luminometer. Luminescence was monitored under photoperiodic conditions that were always as indicated. 

Anticipation during the day is delayed under 4hL:20hD and 8hL:16hD relative to longer photoperiods. The 

pattern of expression of the marker contains three peaks, one acute peak at dawn, one acute peak at dusk (not 

seen with 4hL:20hL) and a circadian peak in the night; the relative amplitude of the later two is also under 

photoperiodic regulation. Black circles: 4hL:20hL; gray circles: 8hL:16hL; cyan rhombs: 12hL:12hL; purple 

triangles: 16hL:8hL. 

White and black bars 

represent objective 

day and night 

respectively. 

Experiments were 

repeated twice with 

similar results 

(Philippou and Davis, 

unpublished data). 
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4.6. Chemical perturbation of chloroplast function is reflected in nuclear oscillations 

 

The pace of the clock is resilient to most chemicals, as several hundreds or even thousands of 

compounds needed be tested for a single positive score (e.g. Tóth et al., 2012). This, and the fact that 

all the chemicals that caused a circadian effect in my study are related to perturbations on chloroplast 

function (fig. 3.9 A), is suggestive that photosynthesis and electron transport chains (ETCs) exert an 

input to nuclear oscillations. In more detail: (1) the inhibitor of organellar transcription rifampicin 

lengthened the circadian period in the dark as well as under continuous light. Previously, Vanden 

Driessche et al. (1970) and Mergenhagen and Schweiger (1975) reported that rifampicin does not 

affect rhythmic oxygen evolution from individual cells of the unicellular algae Acetabularia. (2) The 

antioxidant vitC and (3) the oxidant paraquat altered the circadian period in a light quality- and 

marker-specific manner. The importance of vitC in photosynthesis is underlined by its high 

concentration in chloroplasts (20-300 mM) and by its photo-protective activities manifested in the 

regulation of the redox state of photosynthetic electron carriers, in the direct or enzymatic 

detoxification of ROS and in the role of vitC as an enzymatic cofactor during thermal dissipation of 

excess excitation energy (reviewed by Smirnoff, 2000). Paraquat is a non-selective contact herbicide 

that generates ROS by accepting electrons from PSI and transfers them to molecular oxygen 

[interestingly, several gi mutants are resistant to paraquat-induced oxidative stress (Kurepa et al., 

1998), but it is not known if this constitutes a circadian phenotype]. (4) DCMU, which lengthened 

circadian period in my experiments, is known to shift the PQ poll to its oxidized state as it inhibits 

photosynthetic electron transport chains upstream of PQ. (5) The relationship of SA to chloroplasts 

has been noted in several studies. First, the major biosynthetic pathway of the hormone, the 

isochorismate pathway, is located in chloroplasts (Chen et al., 2009). Moreover, SA is increased 

after exposure to high light (Chang et al., 2009) and contributes to acclimation and photosynthetic 

energy dissipation through photorespiration (Mateo et al., 2004) and through the induction of the 

antioxidant molecule glutathione (Mateo et al., 2006) and likely also of vitC (Chang et al., 2009). 

Further investigation led Mühlenbock et al. (2008) to propose that LSD1, PAD4 and EDS1, all genes 

of the SA pathway in biotic stress responses, form a homeostatic switch downstream of the PQ pool 

that regulates defense mechanisms and acclimation to high light through ROS and ethylene 

signaling. This network has emerged as a type of hormonal crosstalk during biotic and abiotic stress 

responses (see also Huang et al., 2010). Genetic studies have shown that endogenous SA levels 

affect photosynthetic electron transport under low light conditions as well. This has been 

investigated with low and high SA content mutants in which photosynthetic electron transport is 

impaired, resulting in decreased efficiency of PSII and increased non-photochemical energy 
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dissipation relative to wild-type under low light conditions (Mateo et al., 2006). Consequently, SA is 

involved in photosynthetic homeostatic regulation under non-stressful conditions as well. In addition 

to these, application of SA at low concentrations improves photosynthetic performance in mustard 

seedlings (reviewed in Rivas-San Vicente and Plasencia, 2011) and alleviates the negative effects of 

several abiotic stresses in diverse plant species, likely due to the induction of the antioxidant system 

(reviewed in Horváth et al., 2007). The protective role of SA through the induction of antioxidants 

has been an extensive field of study and was addressed by several publications that followed 

Horváth et al., (2007)
97

; it is noteworthy, that on numerous occasions (cited below with bold letters) 

the application of SA at low concentrations improved photosynthetic performance after exposure to 

the stressful conditions. All of these studies reviewed here have established a relationship between 

chloroplast function and the compounds that caused a circadian effect in this work (fig. 3.9 A). 

Based on this correlation, and as isolating chemicals that perturb the oscillator are rare, I believe that 

chemical perturbation of photosynthetic electron transport and chloroplast function were reflected in 

nuclear oscillations. 

 

 

4.6.1. Vitamin C, salicylic acid, sucrose and electron transport chains form light-

dependent rhythmic inputs to the clock – the multiple zeitnehmer model 

 

a. Electron transport chains affect nuclear oscillations 

The role of ETCs in the regulation of a given process can be shown with distinct 

experimentation. Yabuta et al. (2007) claimed that vitC levels are under the regulation of 

photosynthetic ETCs rather than of sugars, because DCMU and sucrose both had a negative impact 

on the accumulation of vitC after exposure to continuous light. This argument is based on the fact 

that, similarly to DCMU, photosynthates inhibit photosynthesis (Koch, 1996). The involvement of 

ETCs in the regulation of a given process has also been demonstrated through the controlled 

manipulation of the redox state of PQ by chemicals and light quality. In more detail, treatment of 

                                                 
97. These publications are as follow: (1) salt induced stress in chamomile (Kovácik et al., 2009), mungbean 

cultivars (Nazar et al., 2011), tomato (Poór et al., 2011; Gémes et al., 2011), mustard (Yusuf et al., 2012), 

burclover (Palma et al., 2013) and in wheat (Al-Whaibi et al., 2012; Mutlu and Atici 2013; Li et al., 2013); 

(2) heavy metal toxicity in maize (Krantev et al., 2008; Wang et al., 2009), pea (Popova et al., 2009) and in 

mustard (Yusuf et al., 2012); (3) chilling stress in tomato (Duan et al., 2012) and (4) heat induced stress in 

Arabidopsis (Alonso-Ramirez et al., 2009; Khan et al., 2013) and wheat (Kolupaev et al., 2012). 
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low light–grown plants with the inhibitors of photosynthetic ETCs DCMU or DBMIB elicits similar 

effects on the redox status of the PQ pool as light enriched with the wavelengths 700 nm (FRL) or 

680 nm (RL), respectively (DCMU and FRL cause the oxidation and DBMIB and RL the reduction 

of PQ). An antagonistic effect between these factors is therefore indicative that a process is sensitive 

to signals derived from PQ (Pfannschmidt et al., 2009). It was demonstrated in this manner that 

acclimation to high light is controlled by the redox state of the PQ pool, through the induction of the 

antioxidant system of the cell (Karpinski et al., 1999) and through the aforementioned SA signaling 

gene network (Mühlenbock et al., 2008). In addition to these, DCMU and DBMIB were used to 

show that in cyanobacteria light-induced reduction of the photosynthetic ETCs is responsible for 

phase resetting in a process that involves, amongst other, quinone binding by redox sensitive 

proteins (Ivleva et al., 2005; Ivleva et al., 2006; Wood et al., 2010; see also appendix 2). 

My findings that the photosynthesis inhibitor DCMU and SA at low concentrations (known to 

favor photosynthetic electron transport; Rivas-San Vicente and Plasencia, 2011) have opposite 

effects on the circadian period are indicative that nuclear oscillations are under the regulation of 

ETCs. The fact that the period-shortening effect of SA is inhibited by sucrose (see fig. 3.14 and 

wild-type controls in fig. 3.17) further supports this notion, as photosynthates inhibit photosynthetic 

activity (Koch, 1996). Moreover, my preliminary results (fig. 4.3) show that under BLc, DBMIB and 

DCMU (fog. 3.9 A) do not perturb the clock synergistically; consequently, the latter should lengthen 

the circadian period through its effect on the redox state of the PQ pool. 

 

 

Figure 4.3: 2,5-dibromo-3-methyl-6-isopropylbenzoquinone does not affect circadian period 

DBMIB, unlike DCMU (fig. 9A) did not disturb rhythmic expression of GI::LUC (Ws) under BLc in a 

preliminary experiment. Consequently DCMU and DBMIB do not affect the clock synergistically and the 

former would lengthen 

circadian period 

through its effect on 

the redox state of PQ 

in the chloroplasts. 
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b. The redox state of PQ is correlated with circadian period 

Chemical and light treatments (summed in 4.6.1.a and below) act on circadian period in a 

manner predicted by their effect on the redox state of plastoquinone; a reduced state would favor 

period shortening. In agreement to this, Wenden et al. (2011) showed that oscillations under RLc are 

faster relative to oscillations under FRLc. Factors that reduce the PQ pool (RLc vs. FRLc) and exert 

a protective role during photosynthesis through the regulations of PSII (SA, see chapter 4.6; vitC, 

reviewed in Smirnoff, 2000; see also Karpinski et al., 1999) induce period shortening, whereas 

factors that cause oxidation of the PQ pool (DCMU and FRL, Mühlenbock et al., 2008; DD or 

lowering light intensity, Oswald et al., 2001) promote period lengthening (see also fig. 3.9). 

Together, these studies and my data (fig. 3.9) showed a positive correlation between circadian period 

length and electron transport downstream of PSII. Based on this correlation, I propose the following: 

(a) ETCs entrain nuclear oscillations; my experiments show a connection between sucrose 

(paragraph 4.2.2), SA and entrainment (fig. 3.12 and fig. 3.13) and are in agreement with this idea; 

(b) ambient light intensity defines the circadian period as predicted by the rule of Aschoff and FRCs, 

through the observed (Oswald O et al., 2001) effect of fluence rate on the redox state of PQ. In 

agreement with this hypothesis, James et al. (2008) showed that the root clock, lacking 

photosynthetic activity, does not obey the rule of Aschoff. I stress that the proposed correlation 

between photosynthetic electron transport and the circadian period of nuclear oscillations are not 

contradicted by the proposed period-shortening effect of sucrose on nuclear oscillations (e.g. 

Dalchau et al., 2011). This is because sucrose acts on the phase, not the period, of CAB2::LUC (Ws) 

(fig. 3.3 A and B; see also paragraph 4.2.2), which links chloroplasts to the clock in the nucleus. The 

role of the redox state of PQ propsosed here could be further tested through the study of mutations in 

STATE TRANSITION7 (STN7) that are known to cause over-reduction of the PQ pool (Bellafiore et 

al., 2005). 

 

 

c. Oscillations in the vitC concentration, SA activity and photosynthetic electron 

transport meet certain criteria predicted by zeitnehmer loops. 

VitC is light induced and accumulates in a diurnal fashion (in tobacco, Dutilleul et al., 2003; in 

Arabidopsis, Tamaoki et al., 2003). Several findings are indicative that the vitC pool is also clock 

controlled. In Arabidopsis, expression of the VTC2 and VTC5 homologues that encode for GDP-L-

Gal phosphorylase activity in the ascorbate biosynthetic pathway are both light and clock regulated, 

whereas the VTC2 transcript is downregulated by vitC supplementation, indicating feedback 

regulation (Dowdle et al., 2007). This and the observed reciprocal regulation between the vitC pool 
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and photosynthetic electron transport (Yabuta et al., 2007) are suggestive of a strong oscillatory 

potential. In this work, it is shown that vitC shortens the circadian period of GI::LUC (Ws) (Figure 

1A), therefore, rhythmic vitC levels and nuclear oscillations affect one another reciprocally. These 

findings also specify that vitC levels form a zeitnehmer loop, comprised by definition of a rhythmic 

clock-input pathway (Roenneberg and Merrow, 1999; Merrow et al., 1999; McWatters et al., 2000). 

Importantly, vitC is found in all cellular compartments, and due to this, it could physically and 

directly relate to a signal connecting chloroplasts and nuclear oscillations. This signal could be vitC 

itself or the redox state of the cell that is linked to vitC through reduction by glutathione, NADPH or 

directly from PSI (Smirnoff, 2000). Noteworthy oscillations in the redox state of the cell [defined by 

oscillations in NAD(P) nucleotides] were recently proposed to regulate circadian function in 

mammalian cells (reviewed in Bass and Takahashi, 2011), whereas this view has also been 

considered in plants (Wagner, 1976; Wagner et al., 1975). 

Oscillatory potential is also observed for SA signaling, as implied by the induction of the 

hormone by light (Genoud et al., 2002) and here displayed in the gated effect of the hormone on the 

timing of GI::LUC (Ws) (fig. 3.12). The resulting system meets all the criteria of the zeitnehmer 

model set out by Roenneberg and Merrow (1999) (see paragraph 4.4). In this model, metabolic 

rhythms are not simply under the control of TTFLs, rather reciprocal regulation between these 

compartmentalized oscillations sets the period within the circadian range and serves entrainment, 

rhythmic sustainability and compensation against environmental perturbation. McWatters et al. 

(2000) further demonstrated that zeitnehmers signal to the clock in a gated manner. The involvement 

of SA in parametric and non-parametric entrainment, the effect of SA on rhythmic sustainability (fig. 

3.13) and the gated effect of SA on circadian timing (fig. 3.12) strongly suggest that this hormone is 

involved in a zeitnehmer loop that entrains nuclear oscillations. The reciprocal regulation between 

nuclear and metabolic oscillations is further supported by the SA-related phenotypes of the toc1-21 

(fig. 3.15), phyB-9 (fig. 3.16) and lhy-21 (fig. 3.17) mutants. Moreover, the inhibitory effect of 

sucrose on SA-mediated period shortening (fig. 3.14 and fig. 3.17 A vs. B) indicates that SA affects 

nuclear oscillations through photosynthetic electron transport. Based on the circadian effects of 

sucrose, SA, DCMU and vitC, I propose that these and/or ETCs form multiple zeitnehmer loops with 

nuclear oscillations that regulate each other reciprocally. All of these oscillations could, in theory, be 

coupled in the redox state of the cell. 

The zeitnehmer model could explain the ability of multiple photoreceptor mutants to respond to 

LD cycles through metabolic entrainment (Yanovsky et al., 2000; Strasser et al., 2010). 

Alternatively, entrainment in these photoreceptor mutants could be attributed to ZTL. ZTL is an F-

box protein that targets TOC1 (Más et al., 2003b) and PRR5 (Fujiwara et al., 2008) for proteasome-
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mediated degradation; both of these functions are inhibited under BLc, suggesting a mechanism 

whereby ZTL acts within light input pathways. Moreover, GI binds ZTL and subsequently inhibits 

degradation of TOC1, in a manner that requires the absorption of light by a photoactive ZTL protein 

(Kim et al., 2007). These findings confirm the preceding genetic studies that connected GI (Park et 

al., 1999; Locke et al., 2005b) and ZTL (Somers et al., 2000; Somers et al., 2004; Kevei et al., 

2006) with light input to the clock. Despite this relationship established between GI and ZT with 

light input to the clock, a relationship between these proteins and light entrainment (a distinct from 

light input entity) has not been found. ZTL alone could not explain entrainment in the multiple 

photoreceptor mutants, especially under RL where the ZTL photoreceptor is unlikely to be 

photoactive (Kim et al., 2007) and should therefore be involved in RL input to the clock downstream 

of other photoreceptors (e.g. phyB; Jarillo et al., 2001). Based on what was presented here, I suggest 

that studies dealing with entrainment in higher plants should focus more on photosynthetic electron 

transport. 

The involvement of phyB in BL input to the clock had previously been genetically excluded 

(Somers et al., 1998a; Devlin and Kay, 2000). Here it is shown that sucrose employed in those 

experiments may have masked the circadian phenotypes of phyB mutants (fig. 3.6 A). The role of 

phyB in BL input to the clock (in the absence of supplementary sucrose) was further supported by 

the reduced sensitivity of the phyB-9 mutant to SA (a similar phenotype was observed under RLc as 

well; fig. 3.11 C, D and E). It is noteworthy that phyB is required downstream of SA during the 

hypersensitive reaction (production of ROS and subsequently cell death) and expression of 

pathogenesis-related proteins that accompany biotic stress responses. Interestingly, the 

hypersensitive reaction after pathogen infection requires light and chlorophyll (Genoud et al., 2002). 

Consequently, it is possible that SA, phyB and ETCs may affect entrainment (parametric and non-

parametric) and defense responses through the same pathways. 

 

 

4.7. Periodic stress and the clock regulate each other reciprocally - future insights 

 

System-wide analysis has shown that hormone-responsive and circadian regulated genes 

overlap in a greater proportion than expected by chance, predicting that hormone and stress 

responses are anticipated (Covington and Harmer, 2007; Covington et al., 2008; Legnaioli et al., 

2009; Mizuno and Yamashino, 2008; see also Sanchez et al., 2011 for a recent review). A series of 

publications dealing with hormone signaling has proven this transcriptome-based prediction correct 

(see chapter 1.6.6). Noteworthy, responsiveness to auxin, ABA and GA is gated by the circadian 
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clock at specific times of the day (Covington and Harmer, 2007; Legnaioli et al., 2009; Arana et al., 

2011; see chapter 1.6.7). These findings suggest that plants orchestrate responsiveness to hormones 

around the clock in a fashion that would predict periodic stress imposed by night/dark cycles or 

simply to restrict hormonal responses at certain times of the day. This idea of anticipated stress was 

recently expanded to pathogen responses, as the cca1 loss-of-function mutant is oversensitive to the 

obligate biotrophic oomycete Hyaloperonospora arabidopsitis specifically at dawn. At this time, the 

oversensitivity phenotype of the mutant coincides with CCA1 expression in wild-type plants and 

sporulation of the pathogen. Therefore, it is possible that plants anticipate the rhythmic behavior of 

pathogens (Wang et al., 2011). Alternatively, pathogens anticipate the rhythmic behavior of plants, 

including the daily dawn-phased stomatal opening (Dodd et al., 2005) required for gas exchange. 

Whatever the case might be, wild-type plants are more sensitive to pathogen infection at dusk rather 

than at dawn (Wang et al., 2011). The gated effect of SA presented here is indicative that SA 

signaling will not only initiate defense mechanisms, but will also enhance the ability of plants to 

measure time (fig. 3.13) and will also reset the clock (fig. 3.12). Perhaps then, in the wild, pathogens 

and abiotic stresses would function as zeitgebers. If this was the case, then it would connect to my 

observation that the effect of SA on phase is gated (fig. 3.12), as expected for any zeitnehmer 

pathway
98

. I would also like to stress that this is the first report that shows gated hormonal feedback 

to the clock, as previous gating responses to ABA, auxin and GA referred to the effects of the 

hormones on the amplitude, not the timing, of rhythmic processes (Covington and Harmer, 2007; 

Legnaioli et al., 2009; Arana et al., 2011). 

 

 

4.8. CCA1 and LHY are not redundant in their roles as SA and sucrose sensors 

 

My findings add to the growing list of evidence that LHY and CCA1 have distinct circadian 

roles. Previously the short-period phenotypes of single loss-of-function mutants indicated that CCA1 

and LHY are redundant, but the extreme short-period phenotype of cca1;lhy double mutant suggests 

that CCA1 and LHY actions are not independent to each other or just additive (Green and Tobin 

1999, Mizoguchi et al., 2002, Alabadí et al., 2002). In support of this, it was recently demonstrated 

that CCA1 and LHY co-localize in the nucleus, form homodimers and heterodimers and are part of 

                                                 
98. Note added in proof from a preliminary experiment: Pathogens amplify oscillations in the tic (time for 

coffee; Hall et al., 2003) mutant (Ding Z, Philippou K, Davis SJ, unpublished data). I suspect for this that 

pathogens or in general stressful conditions may function as zeitgebers. 
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the same large protein complex at dawn (Yakir et al., 2009, Lu et al., 2009), suggesting that the 

action of the two proteins is synergistic. Accordingly distinct roles of CCA1 and LHY have been 

proposed at different ambient temperatures (Gould et al. 2006) and during biotic stress responses 

(Wang et al., 2011). Here I show that the effect of SA on circadian rhythms is related more to LHY 

rather than to CCA1 (fig. 3.17). Additionally cca1-11 and lhy-21 have distinct, opposite sucrose-

related phenotypes (fig. 3.7 and fig. 3.8), affecting long- and short-term circadian responses, 

respectively. 

 

 

 

4.9. Why would HSP90.2 be involved in timekeeping 

 

HSP90.2 affects an entire network of proteins (Zhao et al., 2005) and several environmental 

responses (Sangster et al., 2007). Because of this and based on the idea that compensation of period 

(circadian or ultradian) against temperature is a property of biochemical networks (Wagner et al., 

2000; Morgan et al., 2001; Murray et al., 2007; Lloyd and Murray, 2007), it is possible that the 

temperature compensation phenotype of hsp90.2-3 is due to network perturbation. Noteworthy, 

sucrose inhibited the period-lengthening effect of geldanamycin in a preliminary experiment (table 

3.1), which suggests that case this hypothesis is right then the networks involved might be metabolic. 

An alternative explanation was given by Kim et al., (2011) who found that ZTL is a client of HSP90. 

Interestingly, HSP90 "clients" in plants [e.g. Resistance (R) proteins] as well as in animals (e.g. 

steroid hormone receptors) are inherently unstable signaling proteins, as they are meant to be 

degraded upon activation (reviewed in Sangster and Queitsch, 2005). This is easily featured for 

clock proteins that should be synthesized and "tell" time before being removed. 

HSP90 is known for its role as a capacitor of phenotypic variation in Drosophila (Rutherford 

and Lindquist, 1998) and in Arabidopsis (Queitsch et al., 2002). In both organisms HSP90 

suppresses the consequences of underlying genetic variation on environmentally regulated 

developmental responses
99

 (Sangster and Queitsch, 2005; Sangster et al., 2008). Consequently 

"clients" of HSP90 include clock-proteins perhaps because the later link development (e.g. growth 

and flowering time) to the environment (reviewed in McClung et al., 2006). ZTL is no exception to 

                                                 
99. Presumably this function is relevant to evolutionary processes, as stress compromises the buffering 

capacity of HSP90 allowing thereafter phenotypic expression of cryptic genetic variation that would be prone 

to selection under suboptimal environments (Sangster and Queitsch, 2005; Sangster et al., 2008). 
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this as when mutated hypocotyl growth and circadian period become oversensitive to changes of 

ambient light intensity (Somers et al., 2000; Somers et al., 2004; Kevei et al., 2006) and of ambient 

temperature (Edwards et al., 2005). It should be mentioned though that the circadian phenotypes of 

ztl mutants (Edwards et al., 2005) and of hsp90.2-3 (fig. 3.18 and 3.19) are exacerbated under warm 

and cold temperatures respectively. Consequently, if the two proteins affect temperature 

compensation in concert (as implied by their extreme circadian long-period phenotypes not seen in 

any other single clock mutant) then perhaps the circadian phenotype of hsp90.2-3 under cold 

temperatures is due to a "gain of function", meaning that the mutated protein would acquire a 

temperature dependent role not adopted by wild-type HSP90. This I stress because hsp90.2-3 is 

thought of as a gain-of-function mutation (Hubert et al., 2003). 

 

 

 

4.10. Conclusive remarks 

 

Sucrose shortens the period of circadian nuclear gene expression. The effect of sucrose on 

rhythmic photosynthetic gene expression [CAB2::LUC (Ws)] is transient. By contrast, the effect of 

sucrose is persistent, though moderated over time, for oscillations of GI::LUC markers. The sucrose 

status of entrainment is "remembered" during free run, indicating that supplementary sucrose is an 

antizeitgeber that affects parametric entrainment. This in turn is implicit that endogenous sucrose 

signals might be important for entrainment. Moreover, supplementary sucrose limits oscillatory 

potential in a marker specific manner indicating that metabolic oscillations are important for rhythm 

sustainability. 

Exogenous sucrose employed in luciferase assays modifies the known phenotypes of well 

described circadian mutants in Arabidopsis
100

. Noteworthy, robust oscillations in the cca1-11;lhy-21 

                                                 
100. Sucrose input is downregulated in the cca1-11 mutant (that is resistant to supplementary sucrose relative 

to the wild-type) and up-regulated in the toc1-21 mutant (that is oversensitive to supplementary sucrose). 

Noteworthy, under RLc the short-period phenotype of the later is restricted in the presence of exogenous 

sucrose; similarly, its phenotype is enhanced by sucrose application under BLc. The lhy-21 mutant is 

temporally oversensitive to exogenous sucrose under BLc. Under RLc the gi-11 mutant exhibits sucrose-

dependent phenotypes and responses that are opposite those seen with BLc (the mutant is oversensitive to 

supplementary sucrose under RL and resistant under BL). Interestingly, the phyB-9 mutant displays circadian 

phenotypes under BLc that were previously masked by supplementary sucrose. Long-term circadian 

responses to sucrose are altered in the cca1-11 mutant, but not in the lhy-21 mutant, under RLc as well as 
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double mutant were previously masked by supplementary sucrose; this is indicative that the coupling 

between nuclear and cytosolic oscillations provides rhythm sustainability. These results further show 

that nuclear and metabolic oscillations are coupled through known circadian elements. 

SA increases oscillatory robustness in a manner that depends on parametric entrainment. 

Moreover it shortens circadian period and this effect is gated with maximum responsiveness during 

the first half of the subjective day. The period shortening effect of SA is moderated by sucrose, 

indicating that SA affects nuclear oscillations through photosynthetic electron transport. Circadian 

mutants show distinct responses to SA
101

. 

The circadian phenotypes of the phyB-9 mutant under BLc are masked by supplementary 

sucrose. Moreover, the response of the mutant to SA under BL is dependent on the sucrose status of 

entrainment, indicating that phyB and sucrose affect BL input to the clock and entrainment to BL in 

concert. 

Circadian period of nuclear gene expression is not compensated against chemicals that target 

photosynthesis and chloroplasts. This includes SA, vitC, paraquat, sucrose, DCMU and rifampicin. 

Chemical and various light treatments (as shown here and in the literature) act on circadian 

parameters in a manner predicted by their effect on photosynthetic electron transport and on the 

redox state of plastoquinone; a reduced state favors period shortening. The data presented here 

regarding the effect of chemicals on circadian period and a considerable amount of publish data, 

including the rule of Aschoff, can be explained by this correlation. 

The circadian system of Arabidopsis is tightly linked to metabolic control. Metabolic and 

nuclear oscillations are coupled to each other in the context set by the zeitnehmer model that predicts 

that rhythmic metabolic input pathways affect central oscillations in a gated manner to provide 

rhythm sustainability, a period within the circadian range and compensation against metabolic 

perturbation (shown here) and against changes in ambient temperature. 

Of the "non-circadian" mutants tested, hsp90.2-3, known to be altered for reactive-oxygen-

species metabolism and related defense responses, had a temperature compensation long-period 

phenotype. Preliminary results are supportive to one hypothesis that circadian defects in hsp90.2-3 

are affiliated to metabolism. 

                                                                                                                                                    
under BLc; in addition to these, under RLc I was able to show that long-term circadian responses are altered 

in the gi-11 and in the toc1-21 mutants; short term circadian responses to sucrose are not altered in the later 

under RLc. 

101. Under BLc the lhy-21 and the cca1;lhy-21 mutants are oversensitive and the toc1-21 less sensitive to SA 

than the wild-type in circadian assays; moreover, under RLc the toc1-21 mutant is oversensitive to SA. 
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4.11. Future perspectives 

 

Nuclear oscillations in Arabidopsis are thought of as being driven by TTFLs that form a 

"repressilator" (fig. 1.12). An interpretation of this is that the plant clock model lucks adequate 

activators to be rationally defined (reviewed in Bujdoso and Davis, 2013). Here it is shown that 

positive interactions could be attributed to metabolic oscillations, likely photosynthesis. Moreover, it 

is shown through genetic-epistasis approaches that long-term circadian responses to sucrose are 

altered in the cca1-11 and the toc1-21 mutants. Based on the sucrose dependent phenotypes of these 

mutant lines, TOC1 could be a negative regulator and CCA1 could be a positive regulator of long-

term circadian responses to sucrose, but knowledge on the biochemistry of these putative 

interactions is required for them to be established. This hypothesis on the roles of TOC1 and CCA1 

in metabolic input to TTFLs fits well into the "reppresilator" model, explaining the sucrose-related 

phenotype of the toc1-21 mutant. Expanding the toc1-21 mutant would be oversensitive to sucrose 

relative to wild-type not only because it lacks the negative mediator of metabolic input TOC1, but 

also due to the observed up-regulation of the putative positive element CCA1 at dawn (Pokhilko et 

al., 2012). I would refrain from combining the sucrose-related phenotypes of the single cca1-11 and 

lhy-21 mutants with the current models because in these CCA1 and LHY are considered redundant, 

when the sucrose-related phenotypes of the respective mutants are opposite. The cca1-11;lhy-21 

mutant on the other hand is well described by the "repressilator" model. This mutant appeared 

responsive to supplementary sucrose, despite the luck of CCA1. Alternatively the responsiveness of 

the cca1-11;lhy-21 mutant to sucrose could be attributed to the extreme phase advance of evening-

phased clock genes including that of TOC1 (reported in Pokhilko et al., 2012). These issues are 

worth investigating when the metabolic input to the TTFLs of Arabidopsis is considered in 

computational models. These findings are also indicative that the "repressilator" is capable of 

tracking the metabolic status at both dawn (through CCA1 and LHY) and dusk (through GI and 

TOC1), providing insights on the photoperiodic regulation of starch metabolism. 

Putative biochemical interactions between metabolism and the TTFLs could be found in the 

literature. A connection between circadian rhythmicity and metabolism is indicated in the structure 

of the promoters of CCA1 and LHY that contain G-box sequences (Martínez-García et al., 2000), 

known to respond to diverse environmental stimuli, including light and redox changes (Vranová et 

al., 2002). Interestingly, TOC1 associates with the G-boxes of CCA1 and LHY (Gendron et al., 

2012). For these reasons, and given the sucrose-related phenotypes of the toc1-21, lhy-21 and cca1-

11 mutants, it is worth investigating whether the repression of CCA1 and LHY expression by TOC1 

is prone to redox regulation. Protocols for testing redox regulation of gene expression through G-
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boxes (e.g. Shaikhali et al., 2012) and for the association of TOC1 to the G-boxes of CCA1 and LHY 

(Gendron et al., 2012) are available. Another metabolic input to the TTFLs of Arabidopsis might 

connect to TOC1/PRR pseudo-response regulators and their pseudo-receiver domains; this is implied 

in the recent finding that the pseudo-receiver domain of the cyanobacterial clock protein KaiA binds 

quinones and thus senses the redox state of the cell as defined by photosynthetic electron transport 

(Wood et al., 2010). 

The present work is the first report connecting phyB signaling to BL input to the clock, and 

moreover, supports that phytochromes mediate entrainment. That the circadian phenotypes of the 

phyB-9 loss-of-function mutant were masked by sucrose application raises the possibility that phyB 

signaling under BLc is dependent on photosynthetic electron transport. In agreement to this 

hypothesis is a proposal by Salomé et al., (2013) that the sensor governing the newly defined 

circadian responses to iron defines a novel retrograde pathway that involves phytochromes and the 

functional state of chloroplasts. The importance of photosynthetic electron transport and of the redox 

state of plastoquinone in the regulation of TTFLs could be further investigated through the study of 

mutations in STATE TRANSITION7 (STN7) that are known to cause over-reduction of the PQ pool 

(Bellafiore et al., 2005). 
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Ap.1. Metabolic oscillations in Neurospora – the zeitnehmer model 

 

 

It is known for quite some time that rhythmicity of conidiation in frq and wc single null 

strains is recovered by mutations involved in lipid synthesis (reviewed in Lakin-Thomas et al., 

1990). The list of residual FRQ- and WC-independent (FRQ-less; FLOs) oscillations has been 

expanded by several independent studies over the last decade. In several of these studies rhythmicity 

was assessed by rhythmic conidiation: (1) rhythmic conidiation of all three frq, wc-1 and wc-2 single 

null mutants is rescued by menadion, a reactive-oxygen species stimulator. Noteworthy in the wild-

type conidiation is not rhythmic in the light, whereas in these mutants menadion application recovers 

oscillations regardless of ambient light (Brody et al., 2010). (2) Residual oscillations in the frq, wc-1 

and wc-2 mutants are also induced by terpens farnesol and garaniol (Granshaw et al., 2003; 

Lombardi et al., 2007). (3) In the dark, the wc-1 and wc-2 mutants are rhythmic provided that 

glucose is not added in the growth medium (Dragovic et al., 2002) and (4) so is the frq-10 null 

mutant when placed in the sod-1 (superoxide dismutase 1) mutant background (Yoshida et al., 

2008). FLOs are not restricted to conidiation rhythms and have also been observed at the molecular 

level: (1) nitrate reductase activity oscillates in frq-9 and in wc-1 loss-of-function strains (in the light 

as well as in the dark; Christensen et al., 2004). (2) Genome-wide analysis revealed three genes 

(encoding for a bZIP transcription factor that regulates expression of amino acid biosynthetic genes, 

a predicted 1,4 α glucan involved in glycogen synthesis and an unknown protein) whose expression 

is rhythmic in the frq-10 mutant in the dark; the FLO that drives these oscillations is not entirely 

independent of FRQ as these were faster in the  frq-7 strain (otherwise known as a long period 

mutant) relative to the wild-type (Correa et al., 2003). (3) In the frq-10 mutant catalase-1 transcript-

levels oscillate with a period similar to that of the wild-type, surprisingly with increased amplitude in 

the mutant. (4) None of the frq, wc-1 or wc-2 genes are required for oscillations of ROS in the dark 

(Yoshida et al., 2011). (5) In addition to these rhythmic expression of clock-controlled gene 16 (ccg-

16) requires WC-1 and WC-2 but not FRQ (de Paula et al., 2006). In several of the occasions 

mentioned above, the nature of the residual oscillations or the conditions by which they are unveiled 

are related to metabolism. For instance, ROS are metabolic products that serve as signaling 

molecules (reviewed in Belozerskaya et al., 2012), whereas farnesol and geraniol are intermediates 

in the biosynthesis of ergosterol (Karst and Lacroute, 1977) that in yeast is required for resistance to 

ROS (Schmidt et al., 1999) and is found in ROS generating membranes such as the plasma 

membrane and the inner mitochondrial membrane (Zinser et al., 1993). Conclusively, the 

repetitiveness and amount of accumulated data around FLOs show that transcription and translation 
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alone are not adequate in describing the central oscillator of Neurospora. Moreover the nature of the 

FLOs is indicative that these oscillations are metabolic. 

Lipids had received great attention and were involved quite early in research around 

metabolic oscillations. The role of lipids in circadian timekeeping is underlined by the fact that 

rhythmic conidiation in frq and wc single null strains is recovered on minimal growth medium by 

mutations cel (chain elongation) and chol-1 (choline requiring) that affect lipid synthesis. The cel 

(Brody and Martins, 1979; Mattern and Brody, 1979; Mattern et al., 1982) strain that is 

compromised in synthesis of saturated fatty acids due to a deficiency in fatty acid synthetase activity 

and the chol-1 (Lakin-Thomas, 1996; Lakin-Thomas, 1998; Lakin-Thomas and Brody, 2000) that is 

defective in the synthesis of the phospholipid phosphatidylcholine, both exhibit long period 

phenotypes and loss of temperature compensation below 22˚C on minimal growth medium. These 

phenotypes (in long period and temperature compensation) are restored in the single cel and chol-1 

mutants by supplementation with palmitic acid and choline respectively. Moreover these mutations 

alleviate from the arrhythmia imposed by frq and wc loss-of-function mutations, as long as growth 

conditions are again minimal. Epistasis in this case is observed as recovery of rhythmicity in the 

double mutants with a circadian period that approaches that of the cel and chol-1 single mutants. The 

recovered oscillations in frq;chol-1 and frq;cel are though incomplete. First, they are not responsive 

to light entrainment (unlike oscillations in wild-type and single chol-1 and cel mutants) and second, 

chol-1 mediated recovery of rhythmicity produces oscillations that, unlike those in the wild-type, 

persist in continuous light, indicating that the recovered oscillations are unresponsive to light in 

general; moreover the "restored" oscillations are also incomplete with respect to temperature 

compensation (Lakin-Thomas and Brody, 2000). Consequently a complete circadian system should 

require both metabolic and nuclear oscillations. 

Supplementary lipids that modify the period phenotypes of cel and chol-1 do not change 

circadian period in the wild-type. By contrast, the cel and chol-1 mutants exhibited both temperature 

and nutrient compensation phenotypes (period is sensitive to fatty-acid levels) (Brody and Martins, 

1979; Mattern and Brody, 1979; Mattern et al., 1982; Lakin-Thomas and Brody, 2000), indicating 

that temperature compensation is affiliated to metabolism (see also Roenneberg and Merrow, 1999 

and Morgan et al., 2001). Interestingly, exposure to fatty acids 18:1, 18:2, 18:3 and saturated fatty 

acids with 8 to 13 carbons lengthens circadian period of cel (Brody and Martins, 1979; Mattern and 

Brody, 1979; Mattern et al., 1982) and this effect is reversed by the prd-1 mutation and by metabolic 
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perturbation that targets mitochondria
1
. Supplementary fatty acids that alter the period of cel also 

change the temperature breakpoint below which the temperature compensation phenotype of the 

mutant appears: fatty acids that lengthen the period of cel (12:0, 18:1, 18:2 and 18:3) raise the 22˚C 

temperature breakpoint at 26˚C, whereas fatty acids 16:0 and 14:0 reverse or cancel the effect of the 

former (e.g. at 22˚C) in cel by lowering the breakpoint at 18˚C (Brody and Martins, 1979; Mattern et 

al., 1982). None of the sugars tested reversed the effect of period lengthening fatty acids, unlike non 

fermentable carbon courses of which acetate is known to have a similar effect on the 22˚C 

breakpoint as fatty acids 16:0 and 14:0. These findings indicate that non-fermentable carbon courses, 

lipids and acetate, may perturb circadian rhythms via a common mechanism. Together these findings 

suggest that part of the oscillator is located in the mitochondria and that lipid metabolism or even 

membrane composition in Neurospora are involved in circadian timekeeping (Lakin-Thomas et al., 

1990 and Brody, 1992). 

The findings reviewed here, and particularly the fact that the cel and chol-1 mutations are 

epistatic to frq and wc null mutations in a manner that is dependent on the composition of the growth 

medium, indicate that lipid metabolism is involved in circadian timekeeping (references sited 

above). The same can be concluded from the observation that a third mutation, phenylalanine 

requiring (phe-1), causes deficiency in sterol synthesis and shortens circadian period (even in the 

presence of supplemented phenylalanine). It has been proposed that the temperature compensation 

response is compromised when the fatty acid biosynthetic pathway is blocked at an early stage, 

because the unsaturated fatty acid requiring1 strain (ufa-1), that affects lipid metabolism 

downstream of the cel mutation, does not exhibit altered circadian parameters (period at 22˚C and at 

lower temperatures is normal in the ufa-1 mutant). Flux through the pathway of saturated fatty acid 

biosynthesis does not seem to be required for normal temperature compensation either, because the 

cel strain shows a wild-type rhythm above 18˚C when supplemented with palmitic acid (reviewed in 

Lakin-Thomas et al., 1990). Lipids are known to be signaling molecules and such a role in the 

circadian system of Neuropsora is suggested by the observed altered levels of the lipid signaling 

molecule diaglycerol (DAG; a signaling molecule in animal cells) in chol-1. Choline depletion in 

chol-1 results in up-regulation of rhythmic DAG levels which is likely to be the cause, not a result of 

period lengthening in chol-1. This is because the observed correlation between DAG levels and 

                                                 
1. These perturbations include (1) mitochondrial mutations olir (oligomycin resistance) and maternally 

inherited mutations mi-2 and mi-5, (2) antimycin (inhibitor of mitochondrial cytochrome c reductase), (3) non 

fermentable carbon sources (metabolized exclusively in mitochondria) and (4) supplementary fatty acids 16:0 

(palmitic acid) and 14:0 (reviewed in Lakin-Thomas et al., 1990). 
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circadian period observed in chol-1 is not universal (i.e. it is not observed in frq mutants with 

different periods). Consequently up-regulation of DAG is not a result of period lengthening in 

general. On the contrary, DAG up-regulation is likely to be the cause of period lengthening in chol-1 

because induction of DAG, whether due to choline-depletion or chemically induced, always 

lengthens the circadian period of the chol-1 mutant (Ramsdale and Lakin-Thomas, 2000). 

Mitochondrial mutations that perturb energy metabolism shorten circadian period. These 

mutations include oli
r
 (oligomycin resistance) that affects the DCCD

2
-binding subunit of the 

mitochondrial ATP synthetase (Diekmann and Brody, 1980) and several mutations that affect 

mitochondrial cytochromes
3
 (reviewed in Lakin-Thomas et al., 1990). Together, these observations 

provide strong evidence that mitochondrial activity and respiratory electron transport are involved in 

circadian regulation (Lakin-Thomas et al., 1990; Brody, 1992). This idea is well in agreement with 

the aforementioned findings regarding the effect non-fermentable carbon courses, lipids and acetate, 

on the circadian period of cel, as well as with the emerging role of ROS in the circadian system of 

Neurospora (presented below). 

Several mutations affecting amino acid synthesis shorten circadian period of the conidiation 

rhythm. These include the aforementioned phe-1 mutation and mutants that require cysteine or 

arginine to grow. The mutant arg-13 is puzzling as other arginine auxotrophs have normal period; 

similarly, not all cystein auxotrophs exhibit circadian phenotypes (Lakin Thomas et al., 1990). 

Circadian rhythms of ten cystein auxotrophs were investigated by Onai and Nakashima (1997) who 

found that seven of these were altered for period and/or temperature- and nutrient-compensation. 

These phenotypes could not be attributed to cystein deficiency as they varied from strain to strain 

and most importantly, because one auxotrophic strain did not show any circadian defects at all. The 

strongest circadian defects were seen in the cys-9 mutant, that exhibits distinct methionine-

dependent phenotypes
4
 and is the only one of the ten cystein auxotrophs included in that study that 

                                                 
2. Dicyclohexyl carbodiimide (DCCD) is a mitochondrial ATPase inhibitor. 

3. These mutations include: (1) the cytochrome b-deficient cyb-2 and cyb-3 mutations, (2) cytochrome αα3-

deficient cyα-5 mutant, (3) cyt-4, that is deficient in both cytochromes b and αα3 and is defective in 

mitochondrial rRNA processing and (4) mutations mi-2, mi-3 and mi-5 (maternally inherited locus), encoded 

in the mitochondrial genome, that lead to defects in subunit 1 of the mitochondrial cytochrome c oxidase 

(reviewed in Lakin-Thomas et al., 1990). 

4. At low methionine concentrations the period of the cys-9 mutant was shown to be faster relative to that of 

the wild-type by 4 to 5 hours, whereas high methionine concentrations caused instability in period length of 

the mutant. Moreover, the cys-9 mutant responded to methionine with period lengthening, when the wild-type 

exhibited nutrient compensation. 
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was defective in the temperature compensation response. Cys-9 encodes for the NADPH-dependent 

thioredoxine reductase (NTR) of Neurospora, indicating that the pathway of sulfate assimilation 

(and perhaps the step between adenosine-5’-phosphosulfate and thiosulfate, substrate and product of 

NTR respectively) is of circadian relevance (Onai and Nakashima, 1997). To conclude, the 

involvement of NTR in clock function implies a potential relationship between the redox state of the 

cell and circadian rhythmicity
5
, temperature compensation in particular. Moreover through cys-9 it is 

shown that the mechanisms responsible for temperature- and nutrient-compensation share common 

elements. 

Recently it was shown that ROS levels are under the control of both the clock and light (ROS 

levels are downregulated by pulses of light, whereas temperature-pulses are inactive in this respect). 

The TTFL regulates ROS oscillations through ROS-generating NADPH oxidases (NOX) and ROS-

destroying catalases
6
 (Yoshida et al., 2011). Most importantly, the control is reciprocal

7
. This is 

supported by the observed positive correlation between ROS levels, the expression of frq and 

circadian amplitude of conidiation, in experiments where ROS homeostasis was manipulated by 

pharmacological (oxidants, antioxidants) and by genetic means
8
. ROS might affect TTFLs by 

regulating the DNA binding activity of WCC, because ROS mimic the effect of light on the 

absorption spectrum of WC-1 and on the DNA binding activity of WCC in vitro; together these 

findings are also indicative that light input to the clock employs ROS signaling (Belden et al., 2007; 

Yoshida et al., 2011). The same can be said for entrainment, given the fact that the sod-1 strain is 

hypersensitive to light entrainment relative to wild-type (Yoshida et al., 2008). 

                                                 
5. The data of Onai and Nakashima (1997), considered in the context of this review, provide evidence that the 

redox state of the cell to which NTR is sensitive (Gelhaye et al., 2005) or even lipid metabolism and perhaps 

sulfolipids are of circadian relevance in Neurospora. 

6. The FRQ/WCC oscillator regulates overall activity (amplitude) of the NOX enzymes and drives 

oscillations of the ROS-destroying catalases. 

7. It should be kept in mind that most circadian experiments curried out with Neurospora employ the 

conidiation rhythm of the band (bd, also designated ras-1; rat sarcoma) strain that persists in race tubes in the 

dark and under inactive RL, in oppose to non-rhythmic conidiation of the wild-type under the same conditions 

(Lakin-Thomas et al., 1990). Though of unquestionable value, the bd mutation shows significant 

circadian/metabolic-related phenotypes, such as growth resistance to CO2 and increased ROS levels (Yoshida 

et al., 2011). Moreover, WC-1 is a downstream component of RAS signaling that is in turn interconnected 

with ROS signaling (Belden et al., 2007). 

8. ROS can be genetically manipulated in Neurospora with the sod-1 and NADPH Oxidase-1 (Δnox-1) 

mutants that display high and low ROS levels, respectively. 
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Conclusively, the experiments described here show that metabolism is a driving force of 

circadian rhythmicity. In particular energy metabolism in mitochondria and/or its byproducts (e.g. 

ROS) and/or the molecules that sum metabolic pathways of energy transduction (e.g. redox 

molecules), membrane composition, the metabolic map as it is defined by various states of lipid 

metabolism and/or lipid signaling are somehow important for proper time keeping in Neurospora. 

Based on the findings presented here, and especially the aforementioned conditional, residual and 

incomplete oscillations of frq and wc mutants (incomplete in that they are not temperature 

compensated and entrain to temperature but not to light cycles), Roenneberg and Merrow proposed a 

model for the clock of Neurospora comprised of two interacting oscillators (fig. 1.8). These are the 

FRQ/WCC oscillator and a metabolic FRQ-less Oscillator (FLO). According to this model the 

FRQ/WCC oscillator is required for compensation against both temperature fluctuations and 

metabolic variation, but it is not central in the sense that it is does not generate rhythmicity, rather it 

is part of a rhythmic light input pathway that signals towards a central, temperature-entrainable, 

metabolic oscillator. In this model the TTFL is given zeitnehmer properties (German for "time-

taker"), meaning that the role of the transcriptional loop is not to "generate time" but to entrain and 

provide sustainability by receiving zeitgeber signals (light entrainment). According to the zeitnehmer 

model isolated metabolic oscillations are temperature dependent and thus cannot ascribe for 

temperature compensation. As transcription is also temperature dependent, temperature 

compensation should result from the interaction/coupling between the two temperature dependent 

oscillatory networks. The model predicts that single mutations should exhibit both temperature- and 

nutrient-compensation phenotypes (e.g. the, cys-9, cel and chol-1 mutants, see references above; vvd 

null strain, Schneider et al., 2009), because these responses would share a common mechanism 

(Roenneberg and Merrow, 1999; Merrow et al., 1999). Iwasaki and Dunlap (2000) proposed a 

similar model that however does not assign peripheral roles to either of the two interacting 

oscillators. In support of these models it was recently demonstrated that a strain lucking all 

functional frq, wc-1, wc-2 and vvd genes is still entrained to temperature cycles (Hunt et al., 2012). 

Moreover, based on the epistatic relationships between prd-2, prd-3 and prd-6 with frq alleles, it was 

suggested that interactions between the two oscillators would be mediated by these genes to generate 

temperature compensated circadian rhythms (Morgan et al., 2001; see also chapter 1.4.2.b). 
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Ap.2. The cyanobacterial circadian system is metabolic 

 

 

For decades after their description circadian clocks were believed to exist only in eukaryotes, 

as prokaryotic organization was regarded as too simple to generate a 24-h timing mechanism. 

However, co-existence of two incompatible biochemical processes – oxygenic photosynthesis and 

oxygen-sensitive nitrogen fixation – in some unicellular cyanobacteria led to the identification of 

their temporal "compartmentalization" via endogenous, entrainable and temperature compensated 

circadian rhythms (reviewed in Mackey et al., 2011). 

High-throughput genetic screens for clock mutants were rendered possible in the 

cyanobacterium Synechococcus elongatus after a bacterial luciferase gene was introduced 

downstream of the rhythmic promoter of the psbAI gene, that encodes a photosystem II protein 

(Kondo et al., 1993). Arrhythmic strains and period-mutants were isolated with this approach 

(Kondo et al., 1994). Complementation of the mutants with a genomic DNA library of S. elongatus 

led to the identification of a single locus that rescued each of the circadian defects. Within this locus 

three adjacent genes named kaiA, kaiB and kaiC are organized in two rhythmically expressed 

transcriptional units of KaiA and KaiBC (Ishiura et al., 1998). The Kai genes were proposed to fulfill 

criteria and properties expected of clock components. First, KaiB and KaiC (but not KaiA) protein 

levels oscillate and second, the clock is rendered arrhythmic by deletion of each of the kai genes or 

by over-expression of kaiA or kaiC. Third, a transcriptional negative feedback between these genes 

was proposed based on the fact that kaiC inactivation or over-expression nullifies the kaiBC 

promoter; KaiA was regarded as a positive element in the feedback loop, because inactivation or 

over-expression of the gene results respectively in low and high levels of arrhythmic kaiBC 

expression (Ishiura et al., 1998; Xu et al., 2000). In addition to its documented role in feedback 

regulation, KaiC is also responsible for phase resetting. This is because temporal over-expression of 

KaiC resets the clock (Ishiura et al., 1998) in a manner that phase resetting and KaiC induction are 

correlated to each other (Xu et al., 2000). Moreover, a kaiC mutant termed pr1 (phase response 1), 

fails to entrain to a dark pulse that induces a strong 10 hour phase shift in the wild-type (Kiyohara et 

al., 2005). Together these findings established the model of Ishiura et al. (1998), according to which 

the basis of the cyanobacterial clock is a TTFL, with KaiA and KaiC providing positive and negative 

feedback respectively and KaiC levels determining the "state variable" of the clock. 

Due to the photoautotrophic nature of S. elongatus detection of oscillations in the dark has 

proven rather laborious and the kaiABC–based clock was initially regarded as restricted in the light; 

this is because expression of output by which rhythms are detected has an absolute requirement for 
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light (reviewed in Mackey et al., 2011). Eventually it was shown that the clock of S. elongatus is not 

ceased in the dark; for this purpose LD-entrained cultures were exposed to a final night phase of 

varying duration and then allowed to oscillate in continuous light
1
. If the clock is ceased in the dark 

then ensuing oscillations in continuous light should have been entrained to the last dark-to-light 

treatment. By contrast, circadian phase was set by the initial LD-entrainment demonstrating that 

prolonged darkness had not abrogated rhythmicity (Xu et al., 2000). In retrospect this would have 

been the first firm indication that the prokaryotic clock is not a TTFL, provided that the Kai proteins 

and RNA levels do not oscillate in the dark (Tomita et al., 2005). Instead, Xu et al. (2000) claimed 

that the levels of KaiC protein oscillated in the dark in their experiments, but it is possible that they 

were detecting post-translational oscillations in the phosphor-state of KaiC (Tomita et al., 2005). 

Hints of a non-TTFL based circadian oscillator were provided again by Xu et al. (2003) and later by 

Ditty et al. (2005) who showed that the endogenous KaiBC promoter is dispensable for normal 

period and phase of KaiBC::LUC expression
2
. Solid proof that the generation of circadian rhythms 

in cyanobacteria does not require transcription and translation was provided when rhythmicity in the 

phosphor-state of KaiC was observed in continuous darkness that inhibits overall as well as kai-

specific gene expression and in the presence of inhibitors of transcription and translation; under 

these conditions the phosphor-state of KaiC was persistently rhythmic (Tomita et al., 2005), 

indicating that it may account for the timekeeper responsible for residual oscillations in prolonged 

darkness (observed by Xu et al., 2000). The phosphor-state of KaiC results from the auto-kinase 

(Nishiwaki et al., 2000) and auto-phosphatase (Xu et al., 2003) activities of the KaiC protein that are 

temperature-independent and could therefore hold responsible for temperature compensation 

(Tomita et al., 2005). Indeed, temperature compensated circadian rhythms in the phosphor-state of 

KaiC can be reconstructed in vitro (thus in the absence of transcription and translation) by the sole 

presence of KaiA, B and C proteins and ATP (Nakajima et al., 2005). Based on these findings 

Nakajima et al. (2005) proposed that KaiC phosphorylation is the actual molecular timer of S. 

elongatus and added in proof that period-variants of KaiC affect circadian period in vitro (KaiC 

phosphorylation rhythm) and in vivo (KaiBC promoter-activity) similarly. Terauchi et al. (2007) 

even suggested that the actual "state variable" of the circadian oscillator is the ATPase activity of 

KaiC that is temperature compensated, oscillates in vitro in the presence of KaiA and KaiB and is 

                                                 
1. This is called a "release experiment". 

2. The kaiBC promoter can be functionally replaced by inducible promoters (Xu et al., 2003) or heterologous 

promoters that peak 12 hours out of phase from the norm (Ditty et al., 2005), without affecting period or 

phase of kaiBC-promoter-driven luminescence. 
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directly proportional to the circadian frequencies produced in vivo by wild-type KaiC and its 

aforementioned period-variants. 

Oscillations in the phosphor-state of KaiC are reconstructed in vitro only if all three Kai 

proteins are included in the mixture (Nakajima et al., 2005). KaiA alone will increase the steady-

state of the KaiC auto-kinase activity, whereas KaiB abrogates the positive effect of KaiA on KaiC 

auto-phosphorylation; KaiB alone has no effect on KaiC activities (Iwasaki et al., 2002; Williams et 

al., 2002; Kitayama et al., 2003). With the phosphocycles of KaiC regarded as being the cellular 

timekeeper (Tomita et al., 2005; Nakajima et al., 2005; Terauchi et al., 2007), KaiC activities and 

their modification by KaiA and KaiB were studied further and more extensively. Crystallographic, 

mass-spectrometric and mutational analyses demonstrated three important phosphorylation sites in 

KaiC, Ser- 431, Thr-432 and Thr-426 (reviewed in Mackey et al., 2011). Phosphorylation at these 

sites is essential because when mutated to Ala that mimics the unphosphorylated state, rhythmicity 

in kaiBC expression is lost (Nishiwaki et al., 2004; Xu et al., 2004). The same is observed when 

Thr-426 is mutated to Glu that mimics the phosphoblocked state (Xu et al., 2009). These findings 

are in agreement with the idea that the cyanobacterial clock lies in the phosphor-state of KaiC. Of 

note, biochemical data obtained in vitro and kinetic analysis of the oscillations of the KaiC 

phosphor-forms at Ser-431 and Thr-432 are suggestive that phosphorylation at Ser-431 provides the 

negative feedback on KaiC phosphorylation by attracting KaiB to the KaiC-KaiA complex (Rust et 

al., 2007); Nishiwaki et al. (2007) who reconstructed the in vitro reactions with mutated KaiC forms 

that mimic the phosphorylated or dephosphorylated states of Ser-431 and Thr-432 came to similar 

conclusions and moreover proposed that KaiC phosphorylation enhances the auto-phosphatase 

activity of KaiC and vice-versa (de-phosphorylation enhances the auto-kinase activity) as part of the 

clock feedback mechanism. These studies have contributed to the current model of the S. elongatus 

clock that is comprised of a "periodosome"
3
 made of a KaiC hexamer that sequentially interacts with 

KaiA and KaiB to produce oscillations in the phosphor-states of KaiC (reviewed in Golden, 2004). 

Genetic studies failed to show a relationship between the known photoreceptors and light 

input to the clock of S. elongatus. Two out of the three genes that were eventually connected to light 

input in S. elongatus are potentially redox-sensors (see below). These genes are circadian input 

kinase (cikA)
4
 and light-dependent period A (ldpA), that when mutated the ability to reset to dark 

                                                 
3. "Unlike the tag-team relay of eukaryotic clock parts, the cyanobacterial clock components engage in a 

group hug" [exact sentence taken from Golden (2004)]. 

4. The involvement of CikA in entrainment is, amongst other findings, supported by the fact that it is required 

for the observed de-phosphorylation of KaiC in response to dark pulses. This is achieved likely through the 
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pulses is lost (Schmitz et al., 2000) and the rule of Aschoff is broken (increasing light intensity will 

not shorten circadian period; Katayama et al., 2003), respectively. Further experimentation (see 

references below) has verified that the clock of cyanobacteria is entrained to the environment via 

metabolic cues. 

CikA (Mutsuda et al., 2003) and KaiA (Williams et al., 2002) contain PsR domains
5
 that 

bind quinone analogs such as DBMIB (Ivleva et al., 2006; Wood et al., 2010), whereas LdpA 

contains two Fe4S4 clusters (Ivleva et al., 2005); these properties would allow the respective proteins 

to sense the redox state of the cell as determined by light and photosynthetic electron transport. At 

the same time, CikA and LdpA form large complexes with KaiC and KaiA in a circadian manner, a 

property that would allow the former to mediate entrainment to the periodosome (Ivleva et al., 2005; 

Ivleva et al., 2006). KaiA, CikA and LdpA are downregulated by DBMIB that is predicted to shift 

the PQ pool to its reduced state; by contrast, DCMU that would shift the PQ pool to its oxidized 

form does not change the state of any of these proteins. These experiments with DBMIB and DCMU 

together with the potential of CikA and LdpA to sense the redox state of the cell and the ability of 

these proteins to interact with the periodosome indicate that light-induced reduction of the 

photosynthetic electron transport chain is responsible for phase resetting (Ivleva et al., 2005; Ivleva 

et al., 2006), i.e. these proteins may sense light indirectly through the redox state of PQ. In support 

of this idea it was shown that PsR-dependent quinone binding by KaiA results in downregulation of 

the later and thus elimination of the KaiA-mediated KaiC phosphorylation (Wood et al., 2010). It 

should be mentioned that the effect of DBMIB on CikA and LdpA is post-translational as it persists 

in the presence of translational inhibitor chloramphenicol; the exact nature of the signal between PQ 

and these proteins is not clarified to this point (Ivleva et al., 2005; Ivleva et al., 2006). 

Recently it was shown that the in vitro reconstructed oscillator of KaiC phosphor-cycles is 

entrained to ATP/ADP ratios in the absence of additional proteins; this means that entrainment of the 

KaiABC-based clock to the energy state of the cell is intrinsic and does not require any additional 

signaling pathways. It was further shown that the PRC obtained by altering the ATP/ADP ratio in 

                                                                                                                                                    
inhibition of the ATPase activity of KaiC by CikA. Accordingly, CikA is upregulated in the dark and is 

required for normal resetting to dark pulses; (Schmitz et al., 2000; Ivleva, 2006; Dong et al., 2010). When 

combined these findings suggest that CikA elevation in response to a dark pulse would promote de-

phosphorylation of KaiC and phase resetting. 

5. PsR: Pseudo Reciever domains found in proteins of two-component regulatory systems but luck catalytic 

aspartic residues. 
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vitro was similar to the PRC observed in living cells treated with pulses of darkness
6
 (Rust et al., 

2011). Consequently, it is very likely that in the dark ensuing ADP would function in the place of a 

zeitgeber that inhibits KaiC phosphorylation. To conclude, S. elongatus expresses a metabolic clock 

(fig. Ap.2.1), that as such is entrained to the environment via metabolic cues, like the redox potential 

of photosynthetic ETCs and the energy state of the cell. Similar trends have emerged from the study 

of the mammalian clock (see paragraph 1.4.1.b and appendix 3). 

 

 

Figure Ap.2.1: The circadian system of S. elongatus 

The circadian system of S. elongatus is metabolic and consisted of cycles of phosphorylation of the 

KaiC protein. According to current trends entrainment is also metabolic. The minimal oscillator in the box is 

responsible for driving overall gene expression by regulating chromosome compaction. Figure adapted after 

Tomita et al. (2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
6. KaiC phosphorylation was used to asses the rhythm in both cases. 
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Ap.3. Circadian metabolic oscillations in mammalian cells 

 

 

Ap.3.1. Metabolic and cytosolic oscillations 

 

Several energy and redox related molecules couple cytosolic oscillations with TTFLs in 

mammalian cells (reviewed in Gallego and Virshup, 2007; Hastings et al., 2008). Metabolites 

involved in this process include heme, CO (Dioum et al., 2002; Kaasik and Lee, 2004), and adenine 

nucleotides [i.e. cAMP and NAD(P)+/NAD(P)H and AMP/ATP ratios; reviewed in Hastings et al., 

2008 and in Froy, 2011]. Related studies are presented here (paragraph 5.3.1), together with studies 

that established that circadian entrainment of the mammalian autonomous oscillator is metabolic 

(paragraph 5.3.2) and publications that focus on post-translational modifications (PTMs) that affect 

stability and sub-cellular localization of components of the TTFL (paragraph 5.3.3). These works 

have contributed to our current understanding of redox-sensitive PTMs as part of the mechanism 

whereby cytosolic/metabolic oscillations feedback to regulate TTFLs. Consequently, circadian 

outputs are viewed as indistinguishable from the core timekeeping mechanism
1
. 

O'Neill et al., (2008) showed that cytosolic cAMP oscillations define amplitude, phase and 

circadian period of PER gene expression in the SCN as well as synchronization between neurons. 

Amplitude of rhythmic gene expression was shown to depend on cAMP signaling through its known 

downstream components (i.e. HCN channels and the guanine nucleotide-exchange factor EPAC
2
). 

Oscillations of cAMP levels and TTFLs interact in peripheral tissues as well (O'Neill et al., 2008). 

Of note, these events depend on CRE-promoter elemnents and do not require E-box mediated trans-

activation by CLOCK/BMAL1 (Travnickova-Bendova et al., 2002). 

CLOCK/BMAL1 and E-box trans-activation are also involved in the crosstalk between 

cytosolic and nuclear oscillations. Rutter et al. (2001) proposed that the heterodimer of BMAL1 with 

                                                 
1. Canonical signaling networks involved in this process are reviewed in Hastings et al., (2008); these include 

cAMP-dependent and Ca2+ dependent kinases, casein kinases, C-Jun aminoterminal kinases, ras-dependent 

(MAP) kinases and their downstream signaling partners. Many of these networks converge on transcriptional 

activators such as the CRE-BINDING PROTEIN (CREB) and its co-activators CREB-BINDING PROTEIN 

(CBP) and p300. CREB/CRE-mediated signaling was originally connected to photic entrainment in neurons 

of the suprachiasmatic nucleus (SCN), but it is now viewed as part of the pacemaker per se, facilitating both 

acute (i.e. entrainment, through induction of Per mRNA; Travnickova-Bendova et al., 2002) and circadian 

activation (CLOCK-BMAL1-dependent; Sanada et al., 2002; Akashi et al., 2008) of the TTFL. 

2. EPAC: EXCHANGE PROTEIN directly ACTIVATED by cAMP. 
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NEURONAL PAS DOMAIN PROTEIN 2 (NPAS2), a functional analog of CLOCK in the 

mammalian forebrain (Reick et al., 2001), regulates the redox state of the cell through the induction 

of LDHA, the A isophorm of lactate dehydrogenase that reversibly catalyses the conversion of 

pyruvate to lactate in a reaction that consumes NADH. The redox state of the cell was then shown to 

regulate TTFLs through the modulation of the DNA-binding activities of CLOCK-BMAL1 and 

NPAS2-BMAL1; induction and suppression of these DNA binding activities were shown to be  

promoted by [NAD(P)H]) and [NAD(P)+]), respectively (Rutter et al., 2001). 

A series of independent publications have established that the redox state of the cell is 

coupled to TTFLs through the metabolic sensor SIRT1. This is an NAD+ dependent deacetylase that 

binds CLOCK in a circadian manner and counteracts CLOCK HAT activity. Subsequently, through 

acetylation and deacetylation, the expression of clock-controlled genes (DBP
3
 and PER2) and 

BMAL1 and PER2
4
 protein stability are rendered sensitive to the redox state of the cell. SIRT1 and 

CLOCK bind E-boxes to facilitate chromatin remodeling; this has been observed at the PER2 

promoter and, notably, at the promoter of NICOTINAMIDE PHOSPHORIBOSYL TRANSPHERASE 

(NAMPT), that encodes for the rate limiting enzyme in the synthesis of the SIRT1 cofactor NAD+. 

Based on these findings it was proposed that SIRT1 is an enzymatic rheostat of CLOCK activity. 

Consequently, oscillations in the redox state of the cell (observed within the range of circadian or 

ultradian period) and nuclear oscillations are coupled to each other (Asher et al., 2008; Nakahata et 

al., 2008; Nakahata et al., 2009; Ramsey et al., 2009). 

The formation and DNA binding of NPAS2:BMAL1 is inhibited by CO at physiological 

concentrations. This response requires binding of heme to the two PAS domains of NPAS2. By 

contrast, the response of NPAS2:BMAL1 to the redox state of the cell is independent of heme, 

therefore the formation of NPAS2:BMAL1 and its binding to DNA should be inhibited 

independently by conditions that favor low redox potential or high CO formation (Dioum et al., 

2002). It should be mentioned that the same forebrain regions that express NPAS2 also express heme 

ogygenase 2, an enzyme that generates CO during heme breakdown. Consequently, the circadian 

system is rendered sensitive to CO as part of a metabolic feedback that is formed in specific neurons 

(see Dioum et al., 2002 and references therein). Kaasik and Lee (2004) have reported independently 

                                                 
3. DBP: D-site of albumin promoter binding protein. 

4. Acetylation and deacetylation are rhythmic. When de-acetylated, BMAL1 and PER2 are destabilized. The 

enzymes responsible for PER2 acetylation are not known, but CLOCK is an attractive candidate. Of note, 

acetylation stabilizes BMAL1 likely because it affects its phosphorylation state (Nakahata et al., 2008). 
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that rhythmic heme biosynthesis
5
 and nuclear oscillations are coupled to each other through a 

feedback mechanism that involves PER2 and NPAS2:BMAL1. 

Several independent studies have pointed out the role of AMPK in the crosstalk between 

nuclear and cytosolic oscillations. AMPK is a metabolic sensor of the energy state of the cell 

(AMP/ATP ratio) that acts in peripheral tissues and in the central nervous system where it 

potentiates food intake (Minokoshi et al., 2004; Kahn et al., 2005). The circadian role of AMPK 

seems to be exerted at multiple levels: (1) A mutation in the AMPKγ3 subunit of AMPK results in 

increased basal levels of PER1 protein and disrupts the diurnal regulation of the respiratory 

exchange ratio between day and night (Vieira et al., 2008). (2) AMPK phosphorylates CASEIN 

KINASE 1 ε (CKIε) that is involved in the stability and sub-cellular localization of the PER proteins 

(see below). AMPK phosphorylates Ser-389 of CKIε, resulting in increased CKIε activity and 

degradation of PER2 (Um et al., 2007). (3) In addition to these, AMPK phosphorylates and targets 

CRY1 for degradation (Lamia et al., 2009). (4) Recently it was shown that AMPK enhances the 

activity of SIRT1 by increasing the levels of NAD+ in the cell, resulting in the deacetylation and 

regulation of downstream effectors (Cantó et al., 2009). 

To conclude, several rhythmic metabolites such as CO, heme, cAMP, and molecules whose 

ratios define the energy state and redox charge of the cell are not regarded simply as outputs. 

Keeping this in mind and the recent discovery of temperature-compensated and entrainable circadian 

oscillations in red blood cells that luck nuclei (O'Neill and Reddy, 2011), it becomes very likely that 

oscillations in the levels of these metabolites curry-out circadian function. Interestingly, ETCs 

responsible for ultradian oscillations in the levels of redox molecules (see appendix 5) are present in 

the plasma membrane of red blood cells where they serve a metabolic function (reviewed in 

Matteucci and Giampietro, 2007). For this, the importance of cytosolic and plasma membrane 

ultradian oscillations in the generation of circadian rhythms should be re-examined in the context of 

the theories of Pavlidis and Kauzman (1969) who suggested that coupling of ultradian oscillations 

could generate circadian rhythms. 

                                                 
5. The expression of the rate limiting enzyme AMINOLEVULINIC ACID SYNTHASE (ALAS1) in heme 

biosynthesis is rhythmic. 
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Ap.3.2. Entrainment to metabolic cues 

 

A relationship between metabolism and entrainment in mammals is known since 1922 when 

Richter reported that restricted feeding (RF)
6
 could entrain locomotor activity in rats (reported in 

Stokkan et al., 2001). Feeding also entrains gene expression in peripheral tissues (Schibler et al., 

2003) as well as in certain brain areas (Wakamatsu et al., 2002; Rutter et al., 2001), in vivo. In 

agreement with these observations, Hirota et al., (2002) found that glucose triggers and thus entrains 

rhythmic gene-expression also in rat-1 fibroblasts. Since then research performed with cell cultures 

has helped substantially in elucidating entrainment and core-clock events in mammalian circadian 

research. 

Early models considered that the SCN is the master oscillator, because at the time the only 

known example of persistent oscillations (more than 30 days in isolation) was in single cultured 

neurons from the SCN; in the absence of this brain structure (in cultured cells or in SCN-lesioned 

mice) rhythmic behavior and gene expression, whether in the periphery or other brain areas, was not 

sustained for long (Sakamoto et al., 1998; Yamazaki et al., 2000; Akhtar et al., 2002; Reppert and 

Weaver, 2002). This model was characterized hierarchical because the SCN would deliver 

rhythmicity to the periphery that could not otherwise sustain oscillations. Eventually persistent 

oscillations in peripheral tissues were discovered in cultured cells that derived from transgenic mice 

in which the luciferase gene was expressed downstream of the endogenous PER2 promoter. This 

luciferase gene construct produced robust oscillations even in SCN-lesioned mice, though these 

oscillations were asynchronous between tissues and between animals. The authors assumed that in 

their experiments, unlike previous studies, rhythmicity did not dampen at the periphery because 

luciferase was driven by the endogenous promoter and/or because their luciferase transgene was 

fused with part of the PER2 protein allowing post-transcriptional regulation (Yoo et al., 2004). 

These findings have contributed to the current understanding of the SCN as a "master synchronizer" 

that is entrained to light via a pathway from the retina and sets the time in light-insensitive peripheral 

organs, as opposed to previous theories that regarded the SCN as a "master oscillator" that delivers 

rhythmicity (Yoo et al., 2004). 

                                                 
6. RF (restricted feeding) as opposed to ab libitum (at free will): mice being nocturnal organisms consume 

most of their food during the night when allowed to feed ab libitum. 
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Peripheral tissues from intact animals are preferably entrained to RF rather than to LD 

cycles
7
. On the contrary, the SCN pacemaker is not entrained by feeding patterns (Damiola et al., 

2000; Stokkan et al., 2001). Experiments with SCN-lesioned mice have shown that the SCN is 

dispensable for entrainment to RF
8
. To be more precise, the SCN counteracts the phase shifting 

effect of food on peripheral tissues, as when the hypothalamus–pituitary gland–adrenal (HPA) axis is 

blocked (by removal of the adrenal glands) phase resetting by daytime RF is accelerated (Le Minh et 

al., 2001); the connection between the SCN and peripheral clocks was attributed, at least in part, to 

glucocorticoids secreted by the HPA axis (Balsalobre et al., 2000). Based on these findings it was 

proposed that the SCN synchronizes peripheral clocks indirectly, by imposing behavioral rest-

activity cycles, thus by defining feeding behavior. According to this model, nutrients, metabolites 

and/or hormonal signals elicited by feeding behavior and/or food processing, and not light, are the 

principal zeitgebers
9
 of peripheral oscillators. The role of the SCN in the entrainment of peripheral 

organs, in addition to mediating light entrainment through rest-activity cycles, would likely be to 

provide stability of phase against metabolic perturbation
10

, by regulating the daily fluctuations of 

corticosterone levels through the HPA axis (reviewed in Schibler et al., 2003). For this purpose, the 

SCN does not posses glucocorticoid receptors and is resistant to both glucocorticoid- (Balsalobre et 

al., 2000) and RF-mediated resetting (Le Minh et al., 2001).  

Evidently, hormonal regulation of metabolic entrainment is not restricted to glucocorticoids 

(Stokkan et al., 2001) and may also involve insulin. Primary metabolism in peripheral tissues is 

sensitive to insulin and nutrients through the regulation of the activity of GSK-3β (reviewed in 

Doble and Woodgett, 2003) that is in turn involved in entrainment (to serum shock; Yin et al., 2006) 

and affects circadian phase
11

 (Itaka et al., 2005) in cultured cells. Interestingly, GSK-3β and TTFLs 

                                                 
7. This is because daytime feeding of nocturnal lab rodents inverts the phase of circadian gene expression 

under diurnal conditions (Damiola et al., 2000; Stokkan et al., 2001). 

8. Behavior (Stephan et al., 1979) and rhythmic gene expression [in the brain (Wakamatsu et al., 2002) and at 

the periphery (Hara et al., 2001)] entrain to RF in SCN-lesioned mice. 

9. Nutrients are the "principal zeitgeber" in the sense that rhythms in peripheral tissues entrain preferably to 

meals rather than to LD cycles (Damiola et al., 2000; Stokkan et al., 2001). 

10. In this manner, immediate re-entrainment in response to non-repetitive midnight snacks is prevented. 

Food is the major zeitgeber at the periphery, whereas the SCN attempts to counteract food induced resetting 

via the HPA axis, so that random shifts in feeding patterns would not immediately produce lasting circadian 

physiological consequences (Schibler et al., 2003). 

11. Inhibition and over-expression of GSK-3β activity delays and advances circadian phase of rhythmic gene 

expression, respectively. 
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regulate each other reciprocally (reviewed in Gallego and Virshup, 2007) and consequently GSK-3β 

is part of a rhythmic metabolic input pathway to the clock
12

. Of note, GSK-3β affects circadian 

rhythms in Drosophila also
13

. 

GSK-3β is a constitutively active kinase whose activity is regulated post-transcriptionally 

through inhibitory phosphorylation at Ser-9 by multiple pathways (Doble and Woodgett, 2003). 

Known targets of GSK-3β of circadian relevance in mammalian cells include the PER proteins, 

CRY2 and Rev-ERBα (see paragraph 5.3.3). Even though GSK3-β levels do not oscillate the 

inhibitory phosphorylation at Ser-9 is rhythmic in vivo (in the SCN and in the liver) and in cultured 

cells, resulting in robust circadian oscillations in enzymatic activity (Iitaka et al., 2005). Signaling 

pathways that induce phosphorylation of GSK-3β at Ser-9 include the classical mitogen-activated 

protein kinase (MAPK) cascade and the phosphoinositide 3-kinase (PI 3-kinase) dependent pathway, 

the later in response to insulin binding at the plasma membrane of cells in the liver, adipose tissue 

and muscle. Eventually, insulin-mediated inhibition of GSK-3β promotes glycogen and protein 

synthesis likely because GSK-3β catalyses the phosphorylation and inhibition of glycogen synthase 

and of eukaryotic protein synthesis initiation factor 2B, respectively (reviewed in Doble and 

Woodgett, 2003). Keeping these in mind and the fact that glucose and insulin levels in the blood 

oscillate in a circadian fasion
14

 (Morris et al., 2012), it is possible that GSK-3β is involved in 

metabolic entrainment of TTFLs in peripheral tissues (Gallego and Virshup, 2007; Hastings et al., 

2008). The importance of GSK-3β in metabolic entrainment is further supported the fact that in 

cultured cells the inhibitory phosphorylation of GSK-3β at Ser-9 occurs in response to metabolic 

perturbation that is known to promote synchrony, such as treatments with cAMP elevating agents 

and analogs (Fang et al., 2000; Li et al., 2000; Tanji et al., 2002) and in response to serum shock 

(Yin et al., 2006). Moreover, Rev-ERBα is crucial for synchronizing and maintaining nuclear 

oscillations in peripheral tissues downstream of GSK-3β, as a mutated form of Rev-ERBα that is not 

phosphorylated by GSK-3β confirms resistance to the synchronization effect of serum shock (see 

Yin et al., 2006 and paragraph 5.3.3). 

                                                 
12. This is indicative that the zeitnehmer model (Roenneberg and Merrow, 1999) applies to mammalian cells. 

13. When SHAGGY (SGG), the orthologue of the mammalian GSK-3β, is over-expressed then circadian 

period is shortened. Accordingly, when SGG activity is reduced then activity cycles become slower (Martinek 

et al., 2001). 

14. Glucose and insulin levels in the blood could function as zeitgebers in the periphery also because they are 

regulated by the SCN (that is now viewed as a "master synchronizer"; Yoo et al., 2004) and by activity 

(increased levels during wakefulness and REM sleep; reviewed in Morris et a., 2012). 
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Despite their apparent differences, it has been proposed that entrainment of SCN neurons to 

light and entrainment of other mammalian tissues (in the brain and in peripheral organs) to RF could 

all be mediated by a common mechanism. Such a mechanism may rely upon changes in the redox 

state of the cell and subsequent changes in the DNA-binding activity of NPAS2-BMAL1 and 

CLOCK- BMAL1 (see references above). It is easily featured that RF mediates entrainment at the 

periphery via controlling directly the redox-state of the cell. In the brain though, circulating glucose 

levels are steady and do not fluctuate diurnally or in response to feeding. This leaves with the option 

that TTFLs in neurons are entrained by changes in the redox state of the cell in response not to 

feeding, but to LD cycles (in the SCN) and neural activity (e.g. in the forebrain). A mechanism 

whereby this could be achieved was proposed by Rutter et al. (2001). It is known that extracellular 

glutamate, produced during neurotransmission at areas of increased neural activity, stimulates 

glycolysis and lactate production in astrocytes. Lactate is then released extracellularly and received 

from nearby neurons (that depend on lactate for energy) via a diurnally controlled neuron-specific 

lactate transporter (MCT2). According to the model, the SCN would create diurnal fluctuations in 

neural activity in response to LD cycles and entrain other brain regions that regulate feeding 

behavior. Eventually peripheral tissues would also be entrained to the LD cycles (see Rutter et al., 

2001 and references therein). Conclusively, the redox state of the cell may connect the appropriate 

zeitgebers to TTFLs in various cell types, such as the light sensitive SCN-neurons, in neurons of the 

forebrain that respond to glutamate/neural activity and in cells at the periphery that entrain to diurnal 

fluctuations of reduced fuels and hormonal signals. Consequently, circadian entrainment in 

mammals, including entrainment to LD cycles, is metabolic. This is no surprise, given the fact that 

the mammalian autonomous oscillator is, at least in part, also metabolic (see paragraph 1.4.1.b). 

 

 

Ap.3.3. Post-translational modifications in the mammalian circadian system that affect 

protein stability and subcellular localisation 

 

Known PTMs of circadian relevance in mammals are now viewed as steps that couple 

nuclear with metabolic oscillations. They include cycles of phosphorylation/de-phosphorylation, 

ubiquitination, sumolation and acetylation/de-acetylation. PTMs regulate several properties of clock-

proteins including stability, intracellular localization and activity (Gallego and Virshup, 2007; 

Hastings et al., 2008). Current knowledge on this issue concentrates around well established sensors 

of energy metabolism; these are AMPK, SIRT1 and GSK-3β. 
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It has been suggested that CRY proteins are predominantly located in the nucleus and interact 

with and translocate each PER protein to the nucleus (Kume et al., 1999). In a study though it was 

reported that in hepatic cells CRY2 is localized in both the nucleus and the cytoplasm and evidence 

was provided that nuclear translocation of the protein oscillates and favored by rhythmic 

phosphorylation at Ser-557 (Harada et al., 2005). More recently it was shown that the formation of a 

ternary complex between PER, CRY and Casein kinase I ε (CKIε) proteins contributes to their 

cytoplasmic/nuclear partitioning (see below). 

CKIε phosphorylates and destabilizes PER1 and PER2 through the recruitment of βTRCP
15

 

F-box proteins. Subsequently PER1 and PER2 are ubiquitinated and degraded by the proteasome 

(Eide et al., 2005; Shirogane et al., 2005; Gallego et al., 2006). In addition to these, CKIε mediated-

phosphyorylation also affects localization of the PER proteins, though it seems that such events vary 

between cell lines. In COS-7 cells CKIε binds and phosphorylates all three PER proteins leading to 

translocation of PER1 and PER3 to the nucleus (Takano et al., 2000), whereas in HEK-293 cells 

CKIε-mediated phosphorylation masks the nuclear localization signal of PER1; nuclear entry of the 

later is also retarded by its interaction with PER2 (Vielhaber et al., 2000). Having different binding 

sites for CKIε and CRY proteins, PER1 and PER2 function as scaffolds between the former. 

Consequently, formation of a ternary complex allows overcoming of the CKIε-dependent 

cytoplasmic retention of PER1 in HEK-293 cells and leads to phosphorylation of CRY1 by CKIε, 

though the physiological consequences of the later are unknown (Eide et al., 2002). In addition to 

these, CKIε also activates BMAL1-dependent transcription in reporter assays (Eide et al., 2002). 

Phosphorylation of CRY2 in hepatic cells at Ser-557, in addition to its aforementioned role in 

nucleoplasmic partitioning, allows subsequent phosphorylation at Ser-553 by GSK-3β promoting 

thereafter degradation of CRY2 by a proteasome pathway (Harada et al., 2005). GSK-3β also 

phosphorylates and promotes nuclear translocation of PER2 in COS-1 cells (Iitaka et al., 2005). Yin 

et al. (2006) have shown that certain circadian responses to lithium are attributed to Rev-ERBα and 

GSK-3β. GSK-3β phosphorylates and protects Rev-ERBα against ubiquitin mediated degradation, 

whereas treatment with lithium inhibits GSK-3β in this respect; subsequently Rev-ERBα is degraded 

and BMAL1 expression is increased in response to lithium
16

. A form of Rev-ERBα that lucks the 

serine residues phosphorylated by GSK-3β confirms resistance to lithium in cultured cells, as well as 

                                                 
15. βTRCP: β-TRANSDUCIN REPEAT CONTAINING PROTEIN. 

16. The authors raised the possibility that the pathways formed between GSK3-β and Rev-ERBα might be of 

therapeutic interest for patients with bipolar and circadian disorders. 
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resistance to the synchronization effect of serum shock (on BMAL1 expression). Consequently, 

GSK3-β mediated phosphorylation of Rev-ERBα is important for metabolic entrainment. 

In several occasions PTMs regulate the activity of BMAL1. Known examples are as follow: 

(1) the activation of CLOCK-BMAL1 dependent transcription by CKIε mediated phosphorylation 

(Eide et al., 2002). (2) The inhibitory phosphorylation of BMAL1 at several sites by MAP kinases 

(Sanada et al., 2002; see also Hastings et al., 2008). (3) CLOCK mediated acetylation of BMAL1 at 

Lys537 is rhythmic and results in recruitment of CRY1 to CLOCK-BMAL1, promoting thereby 

transcriptional repression (Hirayama et al., 2007). Of note, SIRT1 mediated deacetylation of 

BMAL1 destabilizes the later in cultured cells (Nakahata et al., 2008). 

Whenever there is a crucial event regulated by phosphorylation, a phosphoprotein 

phosphatase is also involved. CKIε kinase activity is tightly regulated through inhibitory 

autophosphorylation, requiring dephosphorylation of up to eight sites at the carboxyl-terminal region 

for activation (Rivers et al., 1998; Cegielska et al., 1998; Gietzen and Virshup, 1999). The kinase 

activity of CKIε is stimulated by PROTEIN PHOSPHATASE5 ((PP5) that reduces the extent of 

CKIε phosphorylation. Moreover, through the formation of a ternary complex CRY2 abrogates the 

positive effect of PP5 on CKIε activity; through this interaction CRY2 modulates the activity of 

CKIε on PER2 (Partch et al., 2006). Another phosphatase, PP1, stabilizes PER2 by counteracting the 

effect of CKIε (Gallego et al., 2006). Consequently, phosphorylation of PER2 that leads to its 

ubiquitination and degradation is tightly controlled.  

Degradation of circadian proteins has been investigated extensively. From the examples 

mentioned above it becomes obvious that phosphorylation destabilizes circadian proteins in several 

occasions, though this is not absolute (e.g. see for the positive effect of GSK-3β on stability of Rev-

ERBα in Yin et al., 2006). Ubiquitination regulates abundance of the CRY proteins via the 

SCF(Fbxl3) ubiquitin ligase complex. Consequently, Fbxl3 mutations delay degradation of CRY1 

and CRY2 resulting in prolonged CRY-mediated negative feedback and period lengthening 

(Godinho et al., 2007; Siepka et al., 2007). Accordingly, silencing of Fbxl3 has no effect in mouse 

embryonic fibroblasts lucking both CRY1 and CRY2 genes (Busino et al., 2007) indicating that 

SCF(Fbxl3) is related to the clock mainly via CRY protein degradation. In agreement with the role 

of protein degradation in circadian timekeeping, proteasome inhibitors cause period lengthening in 

rat-1 cells (Eide et al., 2005). Recently it was shown that in hepatic cells BMAL1 is sumolated at a 

highly conserved lysine residue in a circadian manner. Sumolation of BMAL1 requires its 

heteromerization partner CLOCK, destabilizes BMAL1 and is necessary for proper rhythmicity in 

cell cultures (Cardone et al., 2005). 
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Ap.4. Ultradian oscillations 

 

 

Ap.4.1. Plasma membrane electron transport chains with ultradian activity 

 

Plasma membrane oxidoreductase electron transport chains of plant and animal cells (Morré 

and Morré, 2004) and ultradian oscillations in their activities (Morré and Morré, 1998; Morré et al., 

2002a) have been known for quite some time. Terminal oxidases of plasma membrane electron 

transport chains, termed PMORs, have been proposed to serve a time-keeping function (see 

references below). A well described category of PMORs are the ECTO-NOX
1
 proteins that are 

located at the cell surface of animal and plant cells. Because there is little if any NAD(P)H at the cell 

surface, the term NOX [NAD(P)H oxidase] does not designate function, rather it was adopted after 

"convenient" biochemical assays with pyridine nucleotides as electron donors (Morré, 1998; Morré 

et al., 1999b; Morré and Morré, 2004). Natural electron donors of ECTO-NOX proteins are plasma 

membrane hydroquinones that are in turn reduced from cytosolic NAD(P)H (Kishi et al., 1999; 

Bridge et al., 2000), whereas natural electron acceptors of ECTO-NOX proteins are protein thiols 

and oxygen (Morré and Brightman, 1991; Brightman et al., 1992; Chueh et al., 1997; Morré et al., 

1998; see also fig. Ap.4.1). Noteworthy, in anaerobic cells that luck functional mitochondia ECTO-

NOX proteins serve a metabolic function, as they regenerate NAD+ from NADH (Larm et al., 1994; 

Morré et al., 2000) 

The NAD(P)H oxidase activity and the protein disulfide-thiol interchange activity of ECTO-

NOX proteins oscillate with a period of 24 minutes (Morré and Morré, 1998; Wang et al., 2001; 

Morré et al., 2002a). Moreover, the NAD(P)H oxidase activity is entrainable and temperature 

compensated (Morré and Morré, 1998; Morré et al., 1999a; Morré et al., 2002a; Morré et al., 2002b; 

Morré et al., 2002c) indicating a potential timekeeping role of ECTO-NOX proteins. Such a role is 

particularly evident in cultured animal cells in which the circadian period of a metabolic biomarker 

and certain genetically determined ultradian periodicities of ECTO-NOX activities are proportional 

to each other
2
 (Morré et al., 2002a). This is perhaps the most striking example whereby ultradian and 

                                                 
1. ECTO-NOX PMORs should not be confused to the phox-NOX proteins involved in plant host defenses. 

2. In more detail, when COS cells are transformed with cDNAs encoding different forms of ECTO-NOX 

proteins that display ultradian periodicities of 22, 24, 36 or 42 minutes in NADPH oxidation, circadian 

periodicities of 22, 24, 36 and 40 to 42 hours are detected respectively, in glyceraldehyde-3-phosphate 

dehydrogenase activity. 
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circadian periodicities are linked to each other in the literature; publications in favor of such a 

relationship are reviewed by Lloyd and Murray (2007). 

It is worth mentioning that ultradian ECTO-NOX activity is correlated to ultradian cell 

growth of plant and animal cells, as both the activity and growth oscillate with a temperature 

compensated periodicity of 24 minutes (or 22 minutes in HeLa cells) and are stimulated by the same 

hormones and growth factors (Morré and Brightman, 1991; Morré, 1998; Morré, 2000; Pogue et al., 

2000; Wang et al., 2001). Moreover, in animal cells PMORs are related to aging processes (Morré et 

al., 2000). 

 

 

 

Figure Ap.4.1: Plasma membrave NADPH oxidoreductases (ECTO-NOX proteins) function as plasma 

membrane oxidoreductases (PMORS) 
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Figure Ap.4.1: Plasma membrave NADPH oxidoreductases (ECTO-NOX proteins) are non-

transmembrane proteins that function as terminal plasma membrane oxidoreductases (PMORS). The electron 

donor is quinone (Q10) that is in turn reduced from intracellular NAD(P)H; notably, the NOX nomenclature is 

only due to "convenient" biochemical assays that trace enzymatic function in the oxidation of pyridine 

nucleotides. Natural electron acceptors are oxygen and/or protein thiol groups. ECTO-NOX proteins are 

present in both plant and animal cells (including red blood cells that function as ROS scavengers for the entire 

body). In cells that do not perform aerobic respiration ECTO-NOX proteins serve a metabolic function. The 

NOX activity oscillates with a temperature-compensated period of 24 minutes and is responsive to 

entrainment and hormones. The values of x are 2 and 1 for the reactions that produce oxygen and water 

respectively. Figure adapted after Morré et al. (2000). 

 

 

 

Ap.4.2. Ultradian oscillations in yeast – the short metabolic cycles 

 

Several ultradian metabolic cycles have been documented in yeast in the form of glycolytic 

and respiratory oscillations. It has been claimed that glycolytic oscillations, known for more than 60 

years, are unlikely to serve any time-keeping function as they are temperature dependent (e.g. 

Chance et al., 1964; Ghosh and Chance, 1964; Das and Busse, 1985; see also Lloyd et al., 2002 and 

references therein). Respiratory oscillations on the other hand are more likely to function as clocks, 

because they are temperature-compensated and as they appear spontaneously in continuous culture 

they are also entrainable (in a manner implying cell to cell cominication) (Murray et al., 2001; Lloyd 

and Murray, 2007). 

Up to date, the budding yeast has not displayed any clear and sustained circadian oscillations 

(reviewed in Merrow and Raven, 2010). By contrast, ultradian oscillations between glycolysis and 

respiration, termed yeast metabolic cycles (YMCs), are easily observed in continuous aerobic 

cultures where the concentration of glucose is limiting for growth (Lloyd and Murray, 2007). 

TheYMC, first observed in 1992 (Satroutdinov et al., 1992), are accompanied by several rhythmic 

parameters that oscillate in synchrony with a period of 40 to 50 minutes. These cycles can be 

detected as changes in mitochondrial morphology and energization (Lloyd et al., 2002), as well as 

with related molecular metabolic oscillations (e.g. oscillations in the redox states of NAD(P)H and 

glutathione and rhythmic fluxes through the citric acid cycle and the main electron transport chain) 

(Murray et al., 1998; Murray et al., 1999; Lloyd et al., 2002). Early studies reported rhythmicity also 

in pH, in the levels of fermentation products (ethanol, acetaldehyde, acetic acid), ATP, stored 
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carbohydrates (Satroutdinov et al., 1992), H2S (Sohn et al., 2000) and in the levels of amino acids 

(Murray et al., 2007). Recently, with the use of mass spectrometry, it was shown that 40 minute 

oscillations are metabolome-wide and consequently biosynthetic events in cells have a defined order 

(Murray et al., 2007). The phase of the rhythm and its outputs are defined in reference to the easily 

monitored cycles of residual dissolved oxygen (RDO) in the continuous culture (Lloyd and Murray, 

2007). 

Temperature compensated respiratory oscillations are independent of glycolytic oscillations 

as the former persists under conditions that abolish the later, i.e. when ethanol is used as the major 

carbon source (Keulers et al., 1996a; Murray et al., 2001). Ultradian respiratory oscillations on the 

other hand dependent on the redox state of the cell, as redox-active reagents, like glutathione and 

NO
+
-releasing molecules, perturb oscillations, when redox-neutral molecules (such as NO gas and 

NO
.
-releasing agents) are inactive in this respect (Murray et al., 1998). During high respiration (low 

RDO, initiated at phase 0
o
) the inner mitochondrial membrane potential is enhanced by comparison 

with measurements taken during low respiration (high RDO) (Lloyd et al., 2002); for this the high 

and low respiration phases (fig. Ap.4.2) are also designated as oxidative and reductive respectively, 

reflecting the levels of total flavoprotein and the redox states of cytochromes, NAD(P)H (Lloyd et 

al., 2002) and of the glutathione pool (Murray et al., 1999). Taken together, these findings are 

suggestive that the metabolic-respiratory cycle is under the control of the oscillating redox state of 

the cell and of rhythmic mitochondrial activity. 

Ultradian rhythmicity is spontaneously achieved in continuous culture in the absence of 

glucose or when the later is supplied in growth-limiting concentrations. Rhythmicity in this case is 

dependent on the synchrony between individual cells (Lloyd and Murray, 2007) and arises only 

within a well defined range of temperature, dilution rate, pH and aeration rate values (Keulers et al., 

1996b; Porro et al., 1988; Murray et al., 2001; Futcher, 2006). The fact that synchrony is abrogated 

when the aeration rate exceeds a certain value suggests that a volatile compound is involved in the 

synchrony process (Keulers et al., 1996b). Subsequently, H2S and acetaldehyde fulfilled expected 

criteria of synchrony compounds, such as rhythmic accumulation and their ability to reset phase 

(Sohn et al., 2000; Murray et al., 2003). H2S resets the rhythm by inhibiting respiration, as shown in 

perturbation experiments where inhibition was always preceded by a rise in H2S (Sohn et al., 2000). 

Ethanol has also been considered responsible for the synchronization between cells (reviewed in 

Futcher, 2006). Together these findings are suggestive that the respiratory cycles are under the 

control of a metabolic temperature-compensated ultradian oscillator, manifested in the levels of 

several rhythmic redox-related metabolites that feedback to reset the oscillator. 
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Figure Ap.4.2: The short yeast metabolic cycles 

Under glucose limiting conditions yeast cells undergo ultradian oscillations with a period of 40 to 50 

minutes (reviewed in Lloyd and Murray, 2007). Their phase is defined in reference to the easily monitored 

cycles of residual dissolved oxygen (RDO) in the continuous culture (continuous black line). The oscillations 

are characterized by alternating low and high respiration rates that are synchronized between cells through 

H2S (green continuous line) and/or acetaldehyde secreted in the growth medium. Phase 0
o
 represents the onset 

of the respiratory phase (dashed arrow; phase 0
o
 is the time point when the first derivative of RDO reaches 

minimum). Clearly defined cristae are only observed during the non-respiratory phase. During the respiratory 

oxidative phase a transcriptional program is initiated that results in the accumulation of reducing metabolites 

in the upcoming reductive phase. DNA replication occurs in the reductive phase when DNA damage is less 

likely to happen. NAD(P)H and GSH oscillations are shown with the red dotted and the dashed blue lines 

respectively. Ethanol is produced in the non-respiratory phase and oscillates in parallel to reducing agents 

(e.g. reduced nicotinamide nucleotides and GSH). Acetaldehyde and pyruvate levels oscillate anti-parallel to 

ethanol. Of note, 70% of the oscillating metabolites traced with large scale analysis peak in the reductive 

phase. 
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Reconstruction of a large scale oscillatory network consisting of the yeast metabolome, 

transcriptome and the activities of several transcription factors has revealed a biosynthetic program 

and organization tightly coordinated around the 40 minute cycles. Rhythmic respiration is paralleled 

by genome-wide transcriptional oscillations involving (1) low amplitude cycles in the transcripts of 

house keeping genes (such as those encoding for actin and for cytosolic ribosomal proteins), that 

peak three times during the reductive-oxidative cycle and (2) cycles in the levels of ubiquitin-

constituent transcripts of the proteasome, that cluster and peak during the reductive phase. (3) 

Transcripts of mitochondrial ribosomal proteins and transcripts responsible for mitochondrial 

biogenesis and respiration peak during the reductive phase, when mitochondria are resting and (4) 

transcripts associated with cellular reduction (e.g. involved in methionine synthesis and sulfur 

assimilation) peak during the oxidative phase. In every case the onset of transcription anticipates the 

process being regulated. For example transcripts whose abundance peak during the oxidative phase 

are engaged in biosynthetic events required for the establishment of the upcoming reductive phase 

such as production of ATP, H2S, NADPH, sulfur assimilation and biosynthesis of several amino 

acids, including cysteine and methionine. Through this regulation, 70% of the rhythmic metabolites 

peak in the reductive phase (Klevecz et al., 2004; Murray et al., 2007). 

A crucial task of the 40 minute cycles is the temporal regulation of DNA replication so that it 

coincides with the reductive non-respiratory phase when oxidative damage is less likely to happen. 

Transcription of the genes encoding the four subunits of the a-DNA-polymerase/primase complex is 

activated in three clusters, one observed during the second half of the oxidative phase and the other 

two in the reductive phase. This pattern of expression is consistent with the observation that DNA 

replication is limited during the reductive phase (Klevecz et al., 2004). Previously Murray and Lloyd 

proposed that the rhythmic ROS production that follows the energization-rest cycles of mitochondria 

(Lloyd et al., 2002), would cause cumulative damage to DNA and to other macromolecules and 

organelles, leading to cellular senescence and apoptotic cell death (Lloyd et al., 2003). This 

hypothesis links the ultradian clock and aging, or to be more exact, the clock would contribute to 

longevity if its purpose was to temporally segregate incompatible biochemical reactions that would 

be futile and thus increase ROS levels and cause oxidative damage to DNA and cellular structures. 

Analysis of large scale networks has revealed that the Cbf1-Met
4
-Met

28
-Met

31
-Met

32
- 

transcription regulatory complex (CMtr) involved in sulfur assimilation, is required for the 

establishment of the reductive phase, the progression of the cell cycle and likely the ultradian cycles 

per se. Subunits of the CMtr-complex are maximally transcribed in the oxidative phase and soon 

after their transcriptional activity peaks, resulting in a burst of cellular reduction [NAD(P)H and 

sulfide] in the next reductive phase (Murray et al., 2007). These events affect the progression of the 
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cell cycle through the rhythmic accumulation of the sulfur metabolite S-adenosylmethionine (SAM) 

that is the major methyl donor in the cell. In more detail, the cell cycle will progress provided that 

the methylation potential of the cell, defined by SAM levels, is permissive, because methylation of 

macromolecules is required as part of the biosynthetic events that precede cellular division. 

Accordingly, it has been proposed that when the methylation potential of the cell is low, MET4, a 

subunit of CMtr, would activate the expression of genes that promote cell cycle arrest (Kaiser et al., 

2000). When the methylation potential of the cell is high and permissive for cell division, MET30, 

an F-box protein, promotes progression through Start via ubiquitination and proteolysis-independent 

inactivation of MET4 transcriptional activity (Thomas and Surdin-Kerjan, 1997; Kaiser et al., 2000; 

Patton et al., 2000). Interestingly, once SAM levels are low, non-ubiquitinated active MET4 

promotes expression of genes involved in sulfur assimilation, including expression of MET30, and 

SAM production (Rouillon et al., 2000). Consequently a feedback is formed providing a strong 

oscillatory potential (Murray et al., 2007). 

In addition to being under transcriptional regulation, respiratory oscillations are also 

subjected to translational control through GCN4 (Murray et al., 2007). GCN4 is a transcriptional 

activator central to the general amino acid control by which metabolism of amino acid-deprived cells 

is coordinated. Translational de-repression of GCN4 expression occurs under conditions of amino 

acid deprivation, resulting in full induction of genes participating in every amino acid biosynthetic 

pathway (Natarajan et al., 2001; Hinnebush, 2005; Murray et al., 2007). During the YMCs GCN4 

protein levels and activity oscillate and are antiphasic to oscillations of amino acids that peak in the 

reductive phase. Considering that GCN4 mRNA levels are constant throughout the YMCs, it has 

been proposed that amino acids inhibit translation of GCN4 during the reductive phase, when amino 

acid levels are high and GCN4 protein levels are low. In addition to their role in GCN4 production, 

amino acids also inhibit respiration, suggesting that the transcriptional/translational feedback loops 

formed between GCN4 and amino acids might be involved in the progression of the respiratory 

cycles
3
 (Murray et al., 2007). Interestingly, the expression of MET4 is regulated by GCN4 through 

general amino acid control (Mountain et al., 1993), suggesting that the YMC is driven by interacting 

transcriptional and translational networks and rhythmic metabolites that form feedback loops with 

oscillatory potential. 

With their large scale analysis focusing on top oscillatory transcriptional components and 

their activities, Murray et al. (2007) have shown that the yeast respiration cycles are regulated by a 

                                                 
3. It is reasonable to assume that this control is reciprocal as the respiratory cycles provide the energy required 

for all biosynthetic events, including synthesis of amino acids. 
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transcriptional/translaitonal core network. It should not be disregarded though, that these processes 

result in the rhythmic production of several metabolites (H2S, redox molecules, amino acids, SAM) 

that in turn feedback on respiration as well as on the activity of the related transcriptional regulators 

themselves (CMtr, GCN4). Moreover, a purely metabolic computational model incorporating sulfate 

assimilation, ethanol degradation and respiration reproduces certain aspects of respiratory 

oscillations (Wolf et al., 2001). These studies combined have led to the proposal that ultradian 

timekeeping should not stem from a hierarchical relationship between of transcriptome-proteome-

metabolome, rather the later form coupled oscillating networks that provide stable cycles responsible 

for a biosynthetic program that serves fluctuating energetic demand and separates incompatible 

processes from each other (Klevecz et al., 2004; Murray et al., 2007). 

Mathematical modeling is suggestive that ultradian oscillations could be coupled via 

metabolites such as ATP, glutathione and NAD(P)H to generate circadian rhythms that would resist 

environmental perturbation (Lloyd and Murray, 2007). This view is supported by the aforementioned 

findings regarding ECTO-NOX proteins in COS cells (Morré et al., 2002a) as well as by the shared 

properties between the two types of rhythms, such as temperature compensation and the period 

lengthening effect of lithium (reviewed in Lloyd and Murray, 2007). Lloyd who studied chaotic 

dynamics of oscillating parameters (in transcription and in the redox state of the cell) in continuous 

cultures of S. cerevisiae proposed that a controlled chaotic attractor provides a single multi-oscillator 

capable of tunable outputs of variable frequencies (ultradian, circadian), as opposed to the limit cycle 

model that refers to a more or less fixed period that depends on environmental conditions (reviewed 

in Lloyd and Murray, 2007 and Lloyd, 2008). Conformation awaits the discovery of sustained 

circadian rhythms in yeast. 
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Ap.4.3. Ultradian oscillations in yeast – the long metabolic cycles 

 

a. Description of the long yeast metabolic cycles 

 

Recently ultradian oscillations of about 5 hours in gene expression and respiration were 

described in a yeast strain, under continuous and glucose-limiting conditions; these cycles are termed 

long YMCs and make the timeframe of coordinated intracellular activities (Tu et al., 2005; Tu et al., 

2007) in a manner reminiscent
4
 of that of the 40 minutes oscillations (reviewed in Lloyd and 

Murray, 2007). The long yeast metabolic cycle (long YMC), was initially identified in RDO and 

then in the reductive potential (NADPH) and in several metabolites, including fermentation products 

and acetyl-CoA. Eventually it was hsown that the long YMC is accompanied by a highly organized 

transcriptional cycle implicating over half of the yeast genome. Mitochondrial function is important 

to the long YMC as most periodic genes encode proteins associated with energy and redox related 

aspects of metabolism. The importance of mitochondria in the establishment of the long YMC is 

further supported by the fact that amongst the top 100 periodic genes, about two-thirds are nuclear-

encoded and are involved in mitochondrial function (Tu et al., 2005). Rhythmic transcription 

precedes numerous rhythmic metabolic and cellular processes of the long YMC (as it is the case with 

the short YMC), resulting in temporal accumulation of metabolites. The cycle is divided in three 

phases with distinct metabolic profiles. These are in temporal order the Oxidative (Ox) phase, the 

reductive/building (RB) phase and the reductive/charging (RC) phase (Tu et al., 2005). 

During the first and shorter Ox phase the metabolome reflects respiratory metabolism. 

Several intermediates of the tricarboxylic acid (TCA) cycle peak indicating increased flux through 

the respiratory electron transport chain. NADPH required for protection against the oxidative 

damage that accompanies respiratory activity and acetyl-CoA that feeds the TCA cycle reach 

maximum levels at this time. The oxidative burst during acetyl-CoA breakdown, results in oxygen 

consumption, low RDO levels and increased ATP abundance (Tu et al., 2005). The later enables 

                                                 
4. In brief, transcripts responsible for several biosynthetic processes (e.g. synthesis of amino acids and 

nucleotides and sulfur metabolism) were shown to be accumulated during the oxidative phase (Ox), whereas 

during the reductive phase gene expression peaked around two clusters, the reductive-building phase (RB) 

that includes genes involved in mitochondrial biogenesis, respiration and DNA replication, and the reductive-

charging phase (RC) with genes related to ubiquitination and the proteasome system (Tu et al., 2005). A 

similar gene-expression profile was reported for the short metabolic cycles (Klevecz et al., 2004; Murray et 

al., 2007). 
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assembly of the translation machinery that in turn might be important for the progression of the cell 

cycle (see references below). Moreover, the Ox phase is enriched with transcripts of genes encoding 

ribosomal proteins and of genes involved in RNA metabolism (such as translation initiation factors, 

small nuclear RNAs and RNA processing enzymes). Other genes maximally expressed at this time 

are those involved in sulfur metabolism and uptake and genes implicated in several biosynthetic 

processes, such as synthesis of nucleotides, of certain amino acids and of heme
5
. Consequently, 

several precursors of amino-acids and of nucleotides peak at this time and so do amino-acids whose 

biosynthesis requires NADPH. Several of the aforementioned biosynthetic processes are sensitive to 

oxidative damage and for this they are initiated transcriptionally at this time and completed later in 

the reductive (non-oxidative) phase of the YMC. It has been concluded that biosynthetic events that 

take place in the Ox phase are likely a provision for the upcoming RB phase when structures are 

built and cells divide (Tu et al., 2005; Tu and McKnight, 2007; Tu et al., 2007). 

The RB phase is initiated as respiration is in the process of shutting down, thus RDO levels 

gradually increase. At this time metabolites associated with high glycolytic flux (e.g. pyruvate and 

glucose-6-phosphate) rise and fermentation products (ethanol, acetate) peak as cells become 

dependent on non-respiratory metabolism. During each RB phase about half the cells initiate cell 

division and genes involved in DNA replication, the cell division cycle and mitochondrial biogenesis 

reach their maximum expression (e.g histone, spindle pole and DNA replication genes). In 

agreement with these, sulfur metabolism that is known to promote cell division is upregulated at this 

time. This temporal organization ensures that DNA is replicated in a reducing environment; 

accordingly, during the RB phase mitochondria are duplicated and rebuilt, while they are resting 

(low respiration rates) (Tu et al., 2005; Tu and McKnight, 2007; Tu et al., 2007). The importance of 

restricting DNA replication in the reductive phase for genome integrity has been illustrated with 

growth-rate mutants that allow DNA replication outside of the RB phase and accumulate higher 

levels of spontaneous mutations relative to wild-type (Chen et al., 2007). 

Heme, like DNA, is also protected against oxidative damage due to the temporal segregation 

of biosynthetic events. During the RB phase the levels of the heme precursor ALA peak, and near by 

HEM2 and HEM3, that execute the next two steps in heme biosynthesis, reach their maximum 

expression, illustrating the principle of "just in time synthesis". Consequently, ALA levels and heme 

synthesis are rhythmic. Heme is a prosthetic group in respiratory cytochromes and being susceptible 

to oxidative damage it needs to be synthesized rhythmically in the reductive phase after each round 

                                                 
5. This includes hem1 that encodes for the enzyme that catalyzes the first and rate limiting step in heme 

biosynthesis. 



 4-12 

of intensive respiration (Tu et al., 2007). It is noteworthy that in specialized mammalian neurons 

heme feedbacks to regulate the TTFL (Kaasik and Lee, 2004), and for this it would be interesting if 

the same molecule was part of the regulatory networks that drive the long YMC as well. 

During the RC phase respiration rates remain low therefore RDO levels are high. At this time 

metabolism is devoted to the production of acetyl-CoA and NADPH that serve respectively as 

precursor molecules for the TCA cycle and for protection against oxidative stress in the upcoming 

Ox phase (Tu et al., 2005); antioxidant GSH is also produced during the RC phase, very likely for 

the same reason. Genes involved in glycolysis, fatty acid oxidation, the pentose phosphate pathway, 

ethanol mobilization for the TCA cycle and in breakdown of storage carbohydrates are maximally 

expressed at this time, it is therefore apparent that production of NADPH (through the pentose 

phosphate pathway) and acetyl-CoA are regulated transcriptionally. Subsequently, acetyl-CoA and 

NADPH peak soon after the transition to the next oxidative phase, at the same time when storage 

carbohydrates are broken down. In agreement with the transcriptional profile of fatty acid oxidation, 

the abundance of carnitine, an amino acid required for transport of fatty acid to mitochondria from 

the cytoplasm, peaks during the RC phase (Tu et al., 2005; Tu and McKnight 2007; Tu et al., 2007). 

Transcriptional regulation causes oscillations between the two branches of sulfur 

metabolism. One of these provides the antioxidant GSH and the other provides SAM. The SAM 

pathway is activated transcriptionally during the RB phase when methylation of histones, DNA, 

RNA, lipids and of other macromolecules is required, as structures are built in anticipation of cell 

division. In addition to these, at the end of the RC phase transcriptional regulation channels 

metabolites from the GSH into the SAM branch. A consequence of this is that GSH levels peak at 

the end of the RC phase, perhaps in anticipation of the next Ox phase (Tu et al., 2007). 

During the RC phase heme oxygenase (that degrades heme) and genes associated with 

peroxisomal function, the ubiquitination machinery, vacuolar trafficking and autophagy are 

upregulated, perhaps in anticipation of the next RB phase when structures are built and repaired. 

Accordingly vacuoles emerge near the shift between the RC and Ox phases (Tu et al., 2005; Tu et 

al., 2007). Several events observed at this time (peroxisomal gene expression and production of 

acetyl-CoA and NADPH from non-fermentable carbon courses, like fatty acids and ethanol) are 

regulated by the transcription factor ADR1 (Young et al., 2003) whose activity peaks during the RC 

phase (see below, Rao and Pellegrini, 2011). 

Tu et al. (2007) discuss several temporally orchestrated biosynthetic events such as (1) the 

coincidence between the synthesis of certain amino acids that require NADPH (e.g. ornithine, 

proline, homoserine) and high NADPH during the Ox phase, (2) co-regulation of NADPH–

independent amino acids (Asp, Asn, Glu) in the RC phase and (3) the common accumulation pattern 
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of the aromatic side-chain amino acids (phenylalanine, tryptophan, tyrosine; they share a biphasic 

pattern of expression with a major peak in the RC phase), that likely reflects their interconnected 

biosynthetic pathways. 

Sulfur metabolism, synthesis of nucleotides and amino acids, RNA and DNA metabolism, 

heme biosynthesis, energy metabolism, catabolic processes and biogenesis, repairmen and recycling 

of organelles are orchestrated around the long YMC. Several related rhythmic metabolites cluster 

together when they are synthesized or utilized by a common pathway, often in anticipation of the 

next phase of the YMC. Collectively, ultradian oscillations serve a timekeeping function by 

orchestrating processes within the cell (Tu et al., 2007). 

 

 

b. The role of transcription in driving the long yeast metabolic cycles 

 

The role of transcription factors in the establishment of the long YMC has been the subject of 

extensive study the last few years. Rao and Pellegrini (2011) used the high-throughput 

transcriptional data of Tu et al. (2005) and provided a purely computational insight regarding the top 

regulatory transcription factors that control the long YMC. Thirteen transcription factors and a 

dynamic network between them were identified this way. These transcription factors include (1) 

ADR1 that is involved in amino acid and non-fermentative metabolism. (2) GCN4 that is central to 

the general amino acid control. (3) SPT2 that regulates chromatin structure and likely contributes to 

genome stability. (4) HAP1 that is a heme-dependent oxygen sensor that may be important for the 

transition between the respiratory and reductive phases of the YMC. (5) The regulatory subunit 

HAP4 of the HAP complex that is a carbon-responsive global regulator of respiratory gene 

expression and is involved in mitochondrial biogenesis. (6) BAS1 that is involved in histidine and 

nucleotide biosynthesis. Transcription factors that regulate the cell cycle were also identified in this 

study (due to their rhythmic activity), but it cannot be said that these regulate the YMC, as in most 

cases reported in the literature (presented below) the cell cycle is under the control of timekeepers, 

not vive-versa. 

ADR1 regulates synthesis and transport of amino acids and several modes of non-

fermentative metabolism such as utilization of ethanol, of glycerol and of fatty acids (Young et al., 

2003). As maximum activity of ADR1 in the RC phase coincides with ethanol utilization and β-

oxidation, it is possible that ADR1 drives oscillations of these pathways and consequently 

oscillations in the levels of NADPH and acetyl-CoA (Rao and Pellegrini 2011). Rao and Pellegrini 

(2011) proposed that the activity of ADR1 is rendered rhythmic via the anti-parallel (Tu et al., 2007) 
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oscillations of intracellular glucose levels, because the DNA-binding activity of ADR1 is induced 

only after the diauxic transition
6
 when glucose has been depleted (Young et al., 2002). This would 

mean that when glucose runs out, ADR1 is activated and consequently non-fermentable carbon 

sources are mobilized. In support of this idea most ADR1-dependent genes are glucose-repressed 

(Young et al., 2003). In addition to these, it was proposed that ADR1 is involved in retrograde 

signaling, due to the considerable overlap between many ADR1-dependent genes and components of 

retrograde signaling (Young et al., 2003). This last observation is indicative that a crosstalk between 

the nucleus and mitochondria is important to the YMC. 

GCN4, a master regulator of amino acid synthesis (Natarajan et al., 2001), is more active in 

the Ox phase of both the short and the long YMC. By contrast, the CMtr complex that controls sulfur 

assimilation shows highly periodic activity during the short YMC alone (Murray et al., 2007) and 

was not included in the thirteen regulatory transcription factors identified by Rao and Pellegrini 

(2011). As sulfur metabolism is rhythmic during both types of respiratory cycles (Murray et al., 

2007; Tu et al., 2007), it is possible that CMtr activity is rendered ultradian post-transcriptionally 

(Rao and Pellegrini 2011), through the known regulation of the CMtr subunit MET4 by GCN4 and 

the general amino acid control (Mountain et al., 1993). 

A transcription factor identified by Rao and Pellegrini (2011) due to its rhythmic activity is 

SPT2 that regulates Histone 3 (H3) levels and chromatin dynamics during recombination and 

elongation of transcription (Nourani et al., 2006). The role of SPT2 in driving the long YMC is not 

quite clear, because on one hand SPT2 is though of as a transcriptional repressor
7
, but on the other 

its activity peaks in the Ox phase (Rao and Pellegrini 2011) when genes that promote RNA 

metabolism are expressed (Tu et al., 2005). During the long YMC rhythmic SPT2 activity is 

required for genomic stability, because a spt2 mutant that lowers H3 levels at coding regions exhibits 

increased recombination events relative to the wild-type (Nourani et al., 2006). If so, it is possible 

that through SPT2 cells modify chromatin structure and prepare in advance (in the Ox phase) to 

prevent hyper-recombination in the reductive phase when cells divide. 

                                                 
6. S. cerevisiae is a respiro-fermentative yeast that represses respiratory metabolism when growing in medium 

containing glucose as the sole carbon source, even in an oxygenated environment. DIauxic shift is the 

metabolic shift from fermentative to respiratory metabolism that occurs as fermentable carbon sources run out 

and cells turn to ethanol for aerobic growth. 

7. When a gene is transcriptionally active then the levels of H3 in that gene drop and because a mutation in 

SPT2 lowers H3 levels even further, SPT2 is considered to be a negative regulator of transcription (see 

Nourani et al., 2006 and references therein). 
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In yeast intracellular heme synthesis correlates directly with ambient oxygen tension in the 

environment. HAP1 is a heme-binding protein (Zitomer et al., 1997; Zhang and Hach, 1999) and a 

key transcriptional regulator of respiratory cycles (Lelandais et al., 2009) that senses the ambient 

oxygen tension in the environment and activates the transcription of respiratory genes and of genes 

that regulate oxidative damage. In an oxygen rich environment the HAP1-heme complex functions 

as a transcriptional activator, whereas under hypoxic conditions a heme-deficient HAP1 complex 

suppresses transcription
8
. This dual role of HAP1 is likely to mediate tight transcriptional regulation 

in response to changing levels of oxygen in the environment (Zitomer et al., 1997; Zhang and Hach, 

1999; Hickman and Winston, 2007). Lelandais et al. (2009) proposed that HAP1 senses not only 

ambient oxygen levels but also their ultradian changes. Moreover they suggested that through this 

mechanism HAP1 regulates the long YMC. This opinion was based on two observations: first, the 

reductive phase is enriched with nuclear genes that contain cis HAP1 binding elements and encode 

for mitochondrial proteins. Second, at this time HAP1 transcript levels and dissolved oxygen reach 

their maximum levels. Taken together these findings are indicative that HAP1 regulates 

mitochondrial activity in response to oxygen on an ultradian basis (Lelandais et al., 2009). 

Using a subset of the data of Tu et al. (2005) Lelandais et al. (2009) focused on 626 genes 

(out of 3552 that represent the ultradian transcriptome and over half of the yeast genome) that are 

nuclear encoded, directed in mitochondria and thus involved in mitochondrial biogenesis. These 

genes fall within six temporal clusters termed A to F, two in each RB, RC and Ox phase. Starting 

from the RB phase when mitochondrial biogenesis is initiated, sequential gene expression in phases 

A to F clearly reflects the logic of mitochondria construction: during the beginning of the RB phase 

(phase A=25 minutes) 262 transcripts coding for important mitochondrial proteins (such as those 

involved in the translation machinery, regulation of translation, assembly factors and protein import) 

are followed by several transcripts (in phases B and C, 50 minutes each) of structural proteins of the 

mitochondrial machinery (including respiratory chain components and enzymes of the TCA cycle). 

                                                 
8. In an oxygen rich environment the HAP1-heme complex activates expression of respiratory genes and the 

rox1 gene that encodes for a repressor of a set of hypoxic genes. Under hypoxic conditions on the other hand, 

heme levels drop and subsequently a heme-deficient HAP1 complex represses rox1 expression, resulting in 

de-repression of the hypoxic genes. Under hypoxic conditions HAP1 is also a transcriptional repressor of a set 

of genes involved in ergosterol biosynthesis that requires oxygen; this last function of HAP1 is inhibited by 

heme in an oxygen-rich environment (Zitomer et al., 1997; Zhang and Hach, 1999; Hickman and Winston, 

2007). 
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Expression of HAP4, a carbon responsive global regulator of respiratory gene expression 

(Forsburg and Guarente, 1989; DeRisi et al., 1997), peaks in phase A (beginning of RB phase; 

Lelandais et al., 2009). HAP4 encodes for the regulatory subunit of the HAP complex
9
 (Forsburg 

and Guarente, 1989), and hence several target-genes of the HAP complex follow in phases B and C; 

these targets include nuclear encoded genes that are directed in the mitochondria (Lelandais et al., 

2009), such as genes encoding subunits for every respiratory chain complex and enzymes of the 

TCA cycle, as well as nuclear genes involved in the mitochondrial translation machinery (Buschlen 

et al., 2003). Consequently, HAP4 is an important factor of mitochondrial biogenesis during the long 

YMC (Lelandais et al., 2009). However, it is not clear if HAP4 is required for respiratory 

oscillations directly as it is for ultradian biogenesis of mitochondria
10

. 

 

 

c. The role of metabolites in driving the long yeast metabolic cycles 

 

Metabolism drives the long YMCs through rhythmically accumulated metabolites such as 

NADPH and intermediates of sulfur metabolism (Tu and McKnight, 2006
11

). During the RC phase 

flux through the phosphate-pentose pathway, dedicated at this time in the production of NADPH
12

, is 

required for the progress of the respiratory cycles, as a mutant strain that is compromised in the 

pathway’s entry-step (catalyzed by glucose-6-phosphate-dehydrogenase) is arrhythmic. Based on 

                                                 
9. The HAP complex is made of four subunits, HAP2, HAP3 and HAP5 that form a trimeric complex 

required for DNA binding (McNabb et al., 1995; McNabb and Pinto, 2005) and the regulatory HAP4 protein 

(Forsburg and Guarente, 1989) that is required for transcriptional activation 

10. It should be clarified that the long YMC is not a cycle of repeated diauxic shifts. This is because during 

the YMC ultradian expression of HAP4 and of targets of the HAP-complex is maximal at the beginning of 

the RB phase when the respiratory mode of metabolism is shut (Lelandais et al., 2009), whereas during a 

diauxic shift this same gene-expression profile is observed when respiratory metabolism is initiated 

(Buschlen et al., 2003). 

11. They also suggested that metabolism regulates not only ultradian cycles but also circadian, sleep-awake 

and even hibernation cycles. 

12. The phosphate-pentose pathway generates both NADPH and pentose sugars. In the RC phase though co-

regulation of the pathway with two enzymes, transketolase and transaldolase, that convert five-carbon 

molecules back to glycolytic intermediates is indicative that at this time pentose sugars are channeled towards 

NADPH production (Tu et al., 2005). 
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this it was proposed that oscillations in the levels of NADPH and activities of NADPH-dependent 

enzymes are driving the long YMCs (Tu et al., 2007).  

Proper temporal regulation of sulfur metabolism is also important in the establishment of the 

long YMC (Tu et al., 2007), or perhaps for synchrony between cells (considering that H2S is a 

synchronizing agent during the short YMC; Murray et al., 2003; Sohn et al., 2000). The importance 

of sulfur metabolism in ultradian timekeeping is underlined by several observations: (1) sulfur 

metabolites accumulate rhythmically ((Tu et al., 2007). (2) Respiratory cycles are lost in a strain that 

has a partial loss-of-function mutation in cystathione β-synthase, an enzyme that generates H2S 

(Singh et al., 2009) and could mediate, in analogy to the short YMC, synchrony between cells. The 

effect of cystathione β-synthase on respiratory cycles may also be redox-dependent, as the enzyme 

also functions in the GSH branch of sulfur metabolism (Tu et al., 2007). (3) In a yeast strain that has 

more mitochondrial DNA than the wild-type sulfur metabolic flux is increased and ultradian period 

of respiratory cycles is lengthened (Blank et al., 2009). 

Evidence for the regulatory role of redox molecules in entrainment of the long YMC comes 

from the observation that pulses of H2O2 and of methionine (a reductant) elicit PRCs reminiscent of 

curves describing non parametric entrainment of circadian oscillations to light pulses; phase-

advances and phase-delays occur at distinct times of the YMC indicating that entrainment is 

controlled by redox (Chen et al., 2007). 

 

 

 

Ap.4.4. Ultradian oscillations in other microorganisms 

 

Circahoralian (of about one hour) respiratory oscillations are well described for 

Schizosaccharomyces pombe and for the soil amoeba Acanthamoeba castellanii. In S. Pombe and A. 

castellanii circahoralian respiratory cycles are correlated with oscillations in the redox state of 

mitochondria, in adenine nucleotide pool sizes and in sensitivity to uncouplers, agents that dissociate 

electron flow from oxidative phosphorylation in mitochondria (Pool et al., 1973; Poole and Salmon, 

1978; Edwards and Lloyd, 1978; Edwards and Lloyd, 1980; Bashford et al., 1980; Lloyd, 2008). As 

expected of "genuine clocks", in both organisms the rhythm is compensated against temperature 

changes (Lloyd et al., 1982; Marques et al., 1987) and makes the time frame around which 

intracellular processes are coordinated; thus in addition to the above, in A. castellanii total protein 

and RNA oscillate in phase with respiration (Edwards and Lloyd, 1980; Marques et al., 1987) and 

the same has been observed in S. pombe for fermentation, acidification of the growth medium, DNA 
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synthesis, levels of cytochromes, activities of enzymes of the respiratory chain, mitochondrial 

ATPase activity and NADH levels (Poole and Lloyd, 1974; Edwards and Lloyd, 1977; Kippert and 

Hunt, 2000; Lloyd, 2008). Compensation of the period of circahoralian oscillations is not restricted 

to ambient temperature changes and has been documented in yeasts for several growth conditions 

including the pH, the aeration rate of the culture and for various nutrients, further supporting the role 

of ultradian oscillations as "genuine clocks" that are able to keep track of time irrespectively of 

environmental noise (Kippert and Hunt, 2000; Lloyd and Murray, 2007; Lloyd, 2008). Functions for 

circahoralian clocks have also been determined in the yeast Candida utilis and in several protists as 

well as in cultured mammalian cells, leading Lloyd and Murray to propose that ultradian 

timekeeping is a basic universal necessity of coordinated intracellular coherence (Lloyd and Murray, 

2005; Lloyd and Murray, 2007). 

It is worth mentioning that in S. pombe several mutations interfering with signaling pathways 

involved in global regulation of metabolism and physiology are known to affect ultradian period. 

Such mutations cause arrhythmia or alter the length of the period and concern (1) factors involved in 

calcium and lithium signaling that are related to each other via phosphoinositide signaling, (2) major 

components of the cAMP/protein kinase A pathway and (3) components of the MAP kinase cascade 

(reviewed in Kippert and Hunt, 2000). Interestingly, these pathways are also involved in circadian 

time-keeping in mammalian cells (Lloyd and Murray, 2007; Hastings et al., 2008), which suggests a 

link between circadian and ultradian pacemakers. 

 

 

 

Ap.4.5. The cell cycle vs. ultradian cycles and outcome 

 

Synchronous cycles of oxidative respiration are observed in continuous culture when yeast is 

fed with limiting concentrations of glucose. Under these conditions cells grow slowly but they are 

not starving as they store carbohydrates in the form of trehalose and glycogen (reviewed in Futcher, 

2006). It has been proposed that mobilization of storage carbohydrates and the concomitant 

oxidative burst during the oxidative phase provide enough energy to assemble the translational 

machinery (Tu et al., 2005), resulting in increased cyclin levels. In the absence of adequate ATP and 

robust protein synthesis cyclins would not rise above the level required for S-phase initiation as they 

are very unstable. Therefore it is possible that the oxidative burst provides the energy (and materials) 

required for cyclin accumulation and progression of the cell cycle, by allowing high rates of protein 

synthesis. This model termed finishing-kick hypothesis can explain the necessity for a critical size 
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before cell division, as critical size is equivalent to stored carbohydrates that provide the required 

energy (Futcher, 2006). 

As the cell cycle is in several occasions not temperature compensated (Kippert and Hunt, 

2000) it should be conditionally coupled and uncoupled to the ultradian oscillator. In the former 

case, the energy dependence of cyclin-synthesis provides one explanation for the observed ultradian 

regulation of cell cycle progression. In synchronous cell cultures a portion of the population is 

allowed to divide synchronously around specific phases of ultradian cycles. This gated cell division 

results in that generation time is equal to or a multiple of the ultradian period (a phenomenon also 

known as "quantized generation times"; see Edwards and Lloyd, 1978 for A. castellanii; reviewed in 

Kippert and Hunt, 2000 for Paramecium tetraurelia, Tetrahymena and for strains of S. Pombe; see 

Klevecz et al., 2004 and Tu et al., 2005 for S. cerevisiae). As for the purpose of this gating, recent 

studies with S. cerevisiae have led to the assumption that the ultradian pacemaker gates DNA 

replication and cell division away from the Ox phase, when oxidative damage is more likely to 

happen (for the short YMCs see Klevecz et al., 2004; for the long YMCs see Tu et al., 2005). This 

hypothesis was confirmed by the observation that the accumulation rate of spontaneous mutations is 

increased in yeast strains in which cell division is not restricted in the reductive phase (Chen et al., 

2007)
13

. Given the fact that sulfur metabolites required for the establishment of the reductive phase 

also promote cell division, it is possible that the ultradian oscillator and the cell cycle are coupled to 

each other through sulfur metabolism. SAM could play this role
14

 as it is part of the transcriptional-

translational-metabolic feedback network that also incorporates top regulatory proteins of amino 

acid and sulfur metabolism, such as the CMtr complex and GCN4 (Klevecz et al., 2004; Tu et al., 

2005; Murray et al., 2007; Tu et al., 2007; Rao and Pellegrini, 2011). Cystathione-β-synthase might 

be part of this network also because, unlike other enzymes that function within the two branches of 

sulfur metabolism, it is required for both rhythmic respiration (Tu et al., 2007) and cell-cycle-

progression (Blank et al., 2009). 

Circadian clocks, like ultradian ones, allow cell division at distinct phases; this has been 

shown with many microorganisms (in a Synechococcus sp., Mori et al., 1996; in Chlamydomonas 

reinhardtii, Goto and Johnson, 1995; in Euglena gratilis, Bolige et al., 2005), in several mammalian 

tissues (see Matsuo et al., 2003; Nagoshi et al., 2004 and references therein) and in the zebrafish 

                                                 
13. Eventually ultradian and circadian rhythms could be linked to cancer, as they both gate cell division 

cycles to protect DNA from oxidative or ultraviolet light-induced damage, respectively (Chen and McNight, 

2007). 

14. Other metabolites such as NADPH, GSH, H2S and ROS could also be involved. 
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(Dekens et al., 2003). It is not clear why in some cases gating of cell division is enforced by 

ultradian and in others by circadian clocks. A possible explanation could come from observations on 

two Paramecium species and their rhythmic locomotor activity patterns. P. tetraurelia grows faster 

and shows an ultradian locomotor activity pattern, whereas P. multimicronucleatum grows slower 

and shows a circadian pattern (reviewed in Kippert and Hunt, 2000). For this it is possible that in 

Paramecium species and perhaps other organisms as well, growth rate or any other condition that 

would confirm a selective advantage would define the predominant clock, ultradian or circadian. The 

dilemma between ultradian or circadian over the same output, adds to the similarities and 

relationships between the two kinds of rhythms. The chaotic attractor proposed by Lloyd (2008) 

would provide a plausible explanation whenever such a dilemma is in order. 
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Ap.5. Temperature compensation is an integral part of the rhythm 

 

In 1931 Buenning noticed that the free running period of leaf movement was virtually 

independent of temperature (Buenning, 1931). This property termed temperature compensation was 

later shown to be universal (Sweeney and Hastings, 1960; Buenning, 1973
1
), to the point that any 

periodicity that is not buffered against changes in ambient temperature is not to be considered 

circadian (Buenning, 1973
2
). Most biochemical reactions double their speed with an increase of 

10˚C exhibiting thus a Q10 of 2. If the oscillator is made of biochemical reactions then it becomes a 

kind of a paradox that the Q10 of circadian rhythms (measured with frequency or period) is less than 

1.2, often less than 1.1 and other times even lower than 1 (in which case increasing temperature 

slows down the pace of the rhythm that is then said to be overcompensated). The discovery of 

temperature compensated circadian rhythms in warm blooded animals led to the hypothesis that 

temperature compensation should be an integral property of the clock rather than the result of 

separate antagonistic processes (Rowson, 1960; Gibbs, 1981). Publications in favor and against this 

notion are presented here. 

 

 

Ap.5.1. Temperature compensation in cynobacteria, animals and fungi 

 

In cyanobacteria temperature compensated oscillations in ATP hydrolysis were achieved in a 

tube containing isolated KaiA, KaiB and KaiC proteins and ATP, showing clearly that temperature 

compensation is inseparable from the time generating mechanism and its components (Tomita et al., 

2005). The KaiC auto-kinase, auto-phosphatase (Tomita et al., 2005) and ATPase (Terauchi et al. 

(2007) activities are independent to temperature and could therefore account for temperature 

compensation. 

                                                 
1. It is worth mentioning that transients were disregarded when temperature compensation was first examined 

in Drosophila, leading to false negative results regarding the universality of temperature compensation 

(Buenning, 1973, page 71 to 73). 

2. See pages 13 and 14 where temperature independent oscillations are attributed to a "genuine clock". In 

page 73 Buenning states that "circadian oscillations can be used for time measurement because of their 

surprisingly low dependence on temperature". It is generally accepted that "genuine clocks" serve a 

timekeeping function because they can keep track of time irrespective of random or seasonal fluctuations in 

ambient temperature. 
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In Drosophila the interaction between the circadian photoreceptor CRY and the protein 

complex composed of PER and TIM
3
 is critical for temperature compensation (Kaushik et al., 2007). 

Certain physicochemical properties of PER are well correlated to the effect of temperature on 

circadian period. In one study it was shown that naturally occurring or engineered variations in the 

number of certain Thr-Gly repeats in the PER protein are linearly related to the effect of ambient 

temperature on circadian period; three such pairs of repeats represent a conformational monomer 

that generates a β turn, indicating that temperature compensation is, at list in part, attributed to the 

structure of PER (Sawyer et al., 1997). The same conclusion was drawn from a second study that 

suggested that temperature compensation may result partly from competing inter- and intra-

molecular PER protein interactions (Huang et al., 1995). 

Dibner et al. (2009) showed that the clock in mouse fibroblasts is resilient to large scale as 

well as to clock-specific chemical inhibition of transcription and proposed that a common 

mechanism may underline compensation against transcriptional variations and changes in ambient 

temperature. This was inferred based on the observation that the effects of transcriptional inhibitors 

and of temperature on circadian period were not additive
4
; subsequently it was shown that PER1 is 

required for both of these compensatory mechanisms (Dibner et al., 2009; see also O'Neill, 2009). 

Interestingly, the mammalian PER1 gene contains short Ser-Gly repeats (Tei et al., 1997) similar to 

those found in the Drosophila PER protein and in the WC-2 and FRQ proteins of Neurospora (see 

below). So far, these repeats have been linked to temperature compensation only in Neurospora and 

in Drosophila, through FRQ and PER respectively. 

The frq-9, cel, chol-1 (chapter 1.4.2.b) strains and the vvd null strain of Neurospora show 

both temperature- and nutrient-compensation phenotypes (Loros and Feldman, 1986; Lakin-Thomas 

et al., 1990; Schneider et al., 2009; see Morgan et al., 2001 for a review)
5
. Because of this and 

considering that metabolism is temperature dependent, Roenneberg and Merrow (1999) proposed 

that the clock is shielded against metabolic and temperature variations via a common mechanism. 

                                                 
3. This interaction is also important for phase resetting in response to non parametric entrainment to light and 

heat pulses (Kaushik et al., 2007). 

4. The period-shortening effect of the transcriptional inhibitors was temperature dependent and attenuated 

when temperature dropped from 37
o
C to 33

o
C, i.e. the transcriptional inhibitors were ineffective when 

cultured cells were exposed to ambient temperatures that were lower than the normal body temperature. This 

observation cannot be attributed to separate antagonistic processes that would appear to be redundant in warm 

blooded animals, because internal tissues would never be exposed to such low temperatures in vivo. 

5. In addition to these it has been shown that temperature compensation and metabolism in Neurospora are 

linked through the thioredoxin system (Onai and Nakashima, 1997). 
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This opinion was supported by mathematical modeling (Roennenberg and Merrow, 1999), as well as 

by experimentation (Merrow et al., 1999) that led to the zeitnehmer model (see fig. 1.8 and appendix 

1). According to this model, temperature compensation is achieved through the coupling between 

two temperature dependent oscillators, the zeitnehmer (FRQ/WCC) light-sensitive oscillator and 

metabolic oscillations. Roennenberg and Merrow (1999) do not assign central clock properties to the 

zeitnehmer loop; the central oscillator in their model is not compensated against environmental and 

metabolic perturbation and consequently temperature compensation would not be intrinsic to the 

time-generating mechanism (i.e. metabolic oscillations). By contrast, Iwasaki and Dunlap (2000) 

have argued that both interacting loops are central. An interpretation
6
 of this stance is that 

temperature compensation is an integral property of a network-based central oscillator
7
. From these 

it becomes obvious that the question of whether temperature compensation is intrinsic or not to the 

oscillator of Neurospora reflects the dispute on the oscillator’s identity (fig. 1.8). 

FRQ is required for normal temperature compensation (reviewed in Lakin-Thomas et al., 

1990). Moreover, temperature compensation and thermal stability of FRQ are well correlated to each 

other, through the study of long period frq mutants (Ruoff et al., 2005). Recently it was proposed 

that normal temperature compensation results from separate (thus not intrinsic to FRQ) temperature-

                                                 
6. However, in a recent publication Dunlap reported that FRQ phosphorylation is required for proper 

temperature compensation and based on this he proposed that "temperature compensation is an independently 

involved layer that is not intrinsic to a core oscillator" (Mehra et al., 2009; see below); this opinion clearly 

reflects the idea that the "core oscillator" would be the FRQ/WCC TTFL alone, not its interactions with 

metabolic oscillations. 

7. The fact that FLOs are incomplete (Lakin-Thomas and Brody, 2000; Granshaw et al., 2003) is in agreement 

to the notion that a complete circadian system requires a network between transcriptional and metabolic 

oscillations. Considering the findings of de Paula et al., (2006), regarding a complete entrainable and 

temperature-compensated circadian pacemaker that drives the expression of ccg-16 in the absence of FRQ, 

one might assume that transcription is not part of this network. This however is not the case, because 

rhythmic expression of ccg-16 is not independent to either rhythmic transcription or it’s coupling to metabolic 

oscillations. The importance of transcriptional oscillations in the FLO that drives the expression of ccg-16 is 

clearly shown by the fact that WC-1 and WC-2 are required for these oscillations to occur. Metabolic 

regulation of ccg-16 expression on the other hand is implied in the biochemical properties of WC-1 that binds 

FAD through its LOV domain. Of note, FAD binding to WC-1 is important for entrainment (He et al., 2002; 

Froehlich et al., 2002), but a relationship of this event to temperature compensation has not been investigated 

yet. 
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dependent processes that compete to regulate FRQ stability (Mehra et al., 2009)
8
. In this work it was 

shown that the long period mutations chrono (chr) and prd-3, long known for their gain of function 

phenotypes in temperature compensation
9
, are hypomorphic alleles of the regulatory β1 and catalytic 

α subunits of CK2, respectively. It was further shown that phosphorylation of FRQ by CK2 at 

distinct sites regulates FRQ stability (reduces FRQ stability specifically at high temperatures) and 

that through this regulation FRQ stability and circadian period are compensated against changes in 

ambient temperature
10

. This model for temperature compensation assumes that the effect of CK2 on 

FRQ stability is antagonized by an unknown temperature-dependent antagonistic process (Mehra et 

al., 2009). 

It should be clarified that the presence of separate antagonistic processes that contribute to 

temperature compensation and are not intrinsic to FRQ, does not necessarily exclude the possibility 

that FRQ might possess temperature-independent physicochemical properties. On the contrary, 

evidence that temperature compensation might be inherent to the clock elements of Neurospora 

come first from the fact that the aforementioned Thr-Gly repeats are also present in WC-2 (Linden 

and Macino, 1997) and in FRQ (McClung et al., 1989) and second, from the observation that the 

partial loss of temperature compensation alleles frq-3 and frq-7 (Lackin-Thomas et al., 1990) map to 

the immediate flanking regions of the fungal repeats (Aronson et al., 1994b). Morgan et al. (2001) 

noticed a genetic interaction between these repeats and temperature compensation; the interaction is 

highlighted by the fact that alleles of the prd-2, prd-3 and prd-6 genes show epistatic relationships 

specifically with frq-3 and frq-7 that lengthen circadian period and at the same time compromise 

                                                 
8. The stability of FRQ has been linked to temperature compensation in a third publication also. A gain of 

function mutation in checkpoint kinase 2, identified in the shot period prd-4 mutant, resulted in loss of 

temperature compensation likely because premature phosphorylation of FRQ would increase its degradation 

rate in the mutant. It was further shown that checkpoint kinase 2 is part of a reciprocal link between the clock 

and DNA damage (Pregueiro et al., 2006). This is in agreement to the idea that  endogenous timekeepers not 

only predict external cues, but also provide the basis for temporal segregation between incompatible cellular 

metabolic processes that would otherwise be energetically futile and stressful (Tu et al., 2005; Tu et al., 2007; 

Lloyd and Murray, 2007; Mackey et al., 2011). 

9. The chr mutant exhibits extension of the temperature range that temperature compensation is functional. 

The prd-3 mutant is overcompensated against fluctuation in ambient temperature. 

10. When CK2 activity was compromised (i.e. in the chr and prd-3 mutants), FRQ stability was rendered 

sensitive to ambient temperature (increased stability at higher temperatures), which was then reflected in the 

overcompensation phenotypes of chr and prd-3 mutants. 
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temperature compensation (Morgan et al., 2001) and thermal stability of FRQ (Ruoff et al. (2005)
11

. 

By contrast short-period alleles of frq are not related to temperature compensation and do not 

interact genetically with these prd genes. Given the fact that the Thr-Gly repeats have been 

implicated in protein-protein interactions, Morgan et al., (2001) predicted that the temperature 

compensation response would involve physical interactions between the PRD genes and FRQ. This 

prediction is satisfied by the finding of Mehra et al. (2009) that the catalytic α subunit of CK2 is 

PRD-3, but it remains to be seen whether the interaction between FRQ and PRD-3 involves the Thr-

Gly repeats of FRQ. 

Together, the publications presented here are suggestive that similar mechanisms for 

temperature compensation, such as those implicating CK2 (see temperature compensation in 

Arabidopsis below) and the Thr-Gly repeats are either conserved or converge in the properties of 

central clock components across taxa. Moreover, it is possible that temperature compensation is 

exerted at multiple levels, such as the physicochemical properties of central clock components and 

the networks they form. This later idea has slowly gained ground, as networks have been held 

responsible for temperature compensation not only in Neurospora (Roennenberg and Merrow, 1999; 

Iwasaki and Dunlap, 2000), but also in animals (Dibner et al., 2009; O’Neil, 2009), in plants and in 

yeast
12

. 

                                                 
11. This is well in agreement with the observation of Ruoff et al. (2005) and of Mehra et al. (2009), that when 

thermal stability of FRQ is compromised, then circadian period is no longer compensated against temperature. 

12. Ultradian metabolic oscillations that are either temperature compensated (such as the respiratory cycles in 

yeast; Murray et al., 2007; Lloyd and Murray, 2007) or temperature dependent (primary metabolism in plants; 

Wagner et al., 2000), are coupled in the form of temperature compensated networks. 
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Ap.5.2. Temperature compensation in Arabidopsis 

 

Natural variation studies have shown that under non-stressful ambient temperatures (12˚C-

27˚C) 20% to 40% of the period-variance in leaf movement rhythms is genetically determined. A 

number of qualitative trait loci (QTL) involved in temperature compensation were obtained in these 

studies that by definition affect circadian period in a temperature specific manner. Analysis of near 

isogenic lines and sequence comparisons identified previously known circadian regulators as strong 

candidates for the temperature-compensation QTLs. These included the flowering-time gene GI, the 

F-box protein ZTL and the MADS-box transcription factor FLOWERING LOCUS C (FLC) (Edwards 

et al., 2005; Edwards et al., 2006)
13

. Further investigation revealed that loss-of-function mutations of 

flc compromise temperature compensation at warm temperatures (27˚C)
14

 and that this phenotype is 

genetically linked to known upstream regulators of FLC involved in pathways that affect flowering-

time. In addition to these, LUX (see figure 1.12 and chapter 1.6.2), a known FLC target that affects 

amplitude of circadian rhythms (Hazen et al., 2005; Onai and Ishiura, 2005) and is now viewed as 

part of the Arabidopsis TTFL (Pokhilko et al., 2012; see also figure 1.12 for the role of LUX in the 

"repressilator"), was proposed to function downstream of FLC in the temperature compensation 

response, because expression of this gene depends on FLC in a temperature dependent manner 

(Edwards et al., 2006). 

Three studies in Arabidopsis argue that temperature compensation is an antagonistic process. 

In one of these, Gould et al. (2006) showed that the short period phenotypes of cca1 and lhy mutants 

are temperature dependent, with LHY being more important for compensation at warm and CCA1 at 

cold temperatures. The effect of temperature on circadian phenotypes of the gi-11 loss-of-function 

mutant was also tested in this study, because previously GI was identified amongst QTLs that affect 

temperature compensation (Edwards et al., 2005). It was shown that GI is dispensable at 17˚C, but 

not at 12˚C or at 27˚C, for maintaining robust oscillations and a wild-type period value
15

 (Gould et 

al., 2006). Based on the effect of temperature on the expression patterns of CCA1, LHY, GI and 

TOC1
16

 in wild-type and in gi-11 plants, it was proposed that the antagonistic balance between 

TOC1 and LHY, (whose expression is increased and decreased respectively at elevated temperatures) 

and their regulation by GI are important for the temperature compensation response at warm 

                                                 
13. Of note, circadian assays in these studies were performed in the presence of supplementary sucrose (3%). 

14. The short period phenotypes of the flc mutants were enhanced at elevated temperatures. 

15. Leaf movement and CAB2::LUC expression rhythms were used to assess the rhythm. 

16. These genes form the two-loop TTFL model established at the time; (Locke et al., 2005). 
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temperatures. It was also shown that at 17˚C GI is dispensable not only for maintaining a wild-type 

period but also for the normal expression patterns of CCA1 and TOC1 genes. This model was further 

supported by computational simulations (Gould et al., 2006) and confirmed in an independent study 

where it was shown that the temperature compensation phenotypes of lhy and toc1 loss-of-function 

mutants are stronger at elevated temperatures (Salomé et al., 2010). The findings of Gould et al. 

(2006) are suggestive that temperature compensation can be attributed to antagonistic process that 

would not be characterized as "separate" to the TTFL; circadian period in this model would be 

compensated against changes in ambient temperature due to the formation of transcriptional 

networks. 

Portolés and Mas (2010) found that Casein Kinase 2 (CK2), that was previously shown to 

affect FRQ stability and temperature compensation in Neurospora (Mehra et al., 2009), is also 

involved in the temperature compensation response in Arabidopsis. In this case temperature 

compensation was attributed to separate antagonistic processes. It was shown that over-expression of 

the CKB4 regulatory subunit of CK2 compromises temperature compensation specifically at warm 

temperatures. Accordingly, chemical inhibition of CK2 had the opposite effect, causing 

overcompensation when temperature was elevated. The concerted action of CK2 and CCA1 in the 

temperature compensation response was further investigated because CKB4 over-expression 

moderated several circadian and circadian-related phenotypes of plants that over-expressed CCA1. It 

was then found that CK2 regulates the DNA binding affinity of CCA1 without affecting CCA1 

levels. Together these findings are indicative that CK2 phosphorylates CCA1, inhibiting binding to 

its target promoters thereafter. As ambient temperature is elevated, the circadian effect of CK2 and 

the portion of CCA1 that is phosphorylated are increased, but strikingly so is the ability of CCA1 to 

bind DNA; therefore it is possible that two temperature-dependent antagonistic processes, CK2-

mediated inhibition of CCA1 and an unknown process, mediate temperature compensation in CCA1-

tergets
17

. Based on these, the regulatory network described here would function at relatively warm 

temperatures (Portolés and Mas, 2010)
18

. Considering the previous findings of Sugano et al. (1999) 

who showed that LHY, like CCA1, is phosphorylated by CK2, Portolés and Mas (2010) suggested 

even that the regulatory network described by Gould et al. (2006) might be regulated by CK2. 

                                                 
17. These experiments however were performed with plants over-expressing CCA1 and/or CKB4 and should 

be viewed with skepticism. 

18. It should be clarified, that according to Gould et al. (2005) the role of CCA1 is more important at cold 

rather than at warm temperatures, consequently Portolés and Mas (2010) investigated a minor role of CCA1 

in temperature compensation. 
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In the third and most recent publication dealing with temperature compensation in 

Arabidopsis, Salomé et al. (2010) showed that the long-period phenotype of the prr7;prr9 mutant is 

completely restored at cold temperatures (12˚C). Moreover the period of the mutant was found to be 

overcompensated against temperature (circadian period increased when temperature was elevated); 

these observations were specific to PRR7 and 9, as they were not observed in any other clock mutant 

tested, including the prr5;prr7 mutant. Given the role of CCA1 and LHY in temperature 

compensation (Gould et al., 2005), the authors proceeded to discern the epistatic relationships 

between these genes and PRR7 and 9. They found that the overcompensation phenotype of the 

prr7;prr9 mutant is dependent on the expression of CCA1 and LHY, as when the later were 

suppressed via artificial microRNAs the circadian period of prr7;prr9 was rendered independent to 

temperature. Moreover, it was shown that at warm temperatures (27˚C) the extreme long-period 

phenotype of the prr7;prr9 mutant is accompanied by miss-regulated expression of CCA1 and 

LHY
19

. By contrast, at cold temperatures, when the long period phenotype of the prr7;prr9 mutant is 

lost, the expression of CCA1 and LHY is restored. Together these findings are suggestive that in the 

wild-type, as ambient temperature rises, the expression of CCA1 and LHY is driven by two separate 

antagonistic temperature-dependent processes. One of these would involve PRR7 and PRR9 and 

would be dominant at warm temperatures (Salomé et al., 2010; see also Eckardt, 2010). 

Interestingly, this work demonstrated that in the absence of both CCA1 and LHY rhythmic gene 

expression is compensated against changes in ambient temperature; this is indicative that these genes 

are not responsible for the generation of temperature compensation rather they should modulate 

responsiveness of rhythmic gene expression to changes in ambient temperature. 

To conclude, temperature compensation in Arabidopsis should be a property of oscillatory 

networks that incorporate transcriptional oscillations. The term "separate" (referring to separate 

antagonistic processes) becomes then redundant, if the separate process is incorporated to the 

oscillatory networks that make the complete oscillator. 

                                                 
19. See also Gould et al. (2006) where it is shown that the expression of CCA1 and LHY is moderated at 

warm temperatures relative to cold ones (especially LHY expression); in the prr7;prr9 mutant by contrast, 

expression of these genes is increased by a raise in ambient temperature (Salomé et al., 2010). 
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