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Abstract

We are interested in the L2 cohomology groups of coverings of different
geometric objects.
In the first part we are dealing with a non-compact manifold with bound-
ary X that admits a free, holomorphic and properly discontinuous group
action of a discrete group Γ such that the orbit space X̃ = X/Γ is a
compact q-convex manifold with boundary. Assume furthermore that
there is a holomorphic Γ-invariant holomorphic line bundle E. We show
that the Γ-dimension of the L2-cohomology groups H0,j

(2) (X,E) is finite if
j > q.
In the second part we are dealing with infinite coverings of a relatively
compact pseudoconvex domain X in a normal Stein space with isolated
singularities that are generated by a group action of a discrete group Γ.
We assume that the group action is again free, holomorphic and properly
discontinuous. We show that the space of L2 holomorphic functions on
X has infinite Γ-dimension.





Zusammenfassung

Wir untersuchen die L2-Kohomologie Gruppen überlagerter geometri-
scher Objekte.
Im ersten Teil behandeln wir den Fall einer nicht-kompakten Mannigfal-
tigkeit mit Rand X, die eine freie, holomorphe und eigentlich diskontinuir-
liche Gruppenwirkung einer diskreten Gruppe Γ zulässt derart, dass der
Quotient nach der Gruppenwirkung X̃ = X/Γ eine kompakte q-konvexen
Mannigfaltigkeit mit Rand ist. Ebenfalls setzen wir voraus, dass ein Γ-
invariantes holomorphes Geradenbündel E auf X existiert. Wir zeigen,
dass die L2-Kohomologie Gruppen H0,j

(2)(X,E) endliche Γ-Dimension ha-
ben sofern die Ungleichung j > q gilt.
Im zweiten Teil behandeln wir den Fall einer unendlichen Überlagerung
eines relativ kompakten pseudokonvexen Gebietes X in einem normalen
Stein Raum mit isolierten Singularitäten, die durch eine Gruppenwirkung
einer diskreten Gruppe Γ erzeugt wird. Die Gruppenwirkung wird dabei
als frei, holomorph und eigentlich diskontinuierlich vorausgesetzt. Wir
zeigen, dass der Raum der L2-holomorphen Funktionen auf X unendliche
Γ-Dimension hat.
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Introduction

The classical motivation to study cohomology groups comes from de
Rham cohomology groups which arise as follows. Given a smooth compact
manifold M , denote by Ωr(M) the vector bundle of smooth differential
r-forms and let d : Ωr(M) → Ωr+1(M) denote the exterior differential.
Hence it is natural to ask: Given any closed r-form u (i.e. du = 0), does
there exist a (r − 1)-form v such that the equation

dv = u

is satisfied?
This leads automatically to the notion of cohomology groups which are
defined as

Hr
dR(M) =

Ker d : Ωr(M)→ Ωr+1(M)

Im d : Ωr−1(M)→ Ωr(M)
.

This is always well defined since we have d2 = 0 and thus Im d|Ωr(M) ⊂
Ker d|Ωr(M). An important tool to compute these cohomology groups is
the Hodge isomorphism which states that on a compact smooth mani-
fold the cohomology groups Hr

dR(M) are isomorphic to the kernel of the
Laplace operator ∆ = dd∗+d∗d restricted to the space of smooth r-forms.
Here d∗ denotes the adjoint operator of d with respect to the standard
inner product.

Pierre Dolbeault transferred this concept to complex manifolds in 1953
and the resulting cohomology theory, as an analogue to the de Rham the-
ory, is named after him Dolbeault cohomology. Here he used the natural
splitting of the exterior differential d = ∂ + ∂̄ to define the ∂̄-complex
∂̄ : Ωp,q(M)→ Ωp,q+1(M). Now one can ask again:
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Given u ∈ Ωp,q(M) with ∂̄u = 0, does there exist v ∈ Ωp,q−1(M) such
that

∂̄v = u?

This question, also known as the ∂̄-equation, engaged several mathem-
aticians in research for a long time and still today. This includes famous
mathematicians like for example Lars Hörmander, John Joseph Kohn and
Kunihiko Kodaira. There are several ways to determine the ∂̄-cohomology
which is defined in the same way as the de Rham cohomology. Dolbeault
showed that there is an isomorphism

Hp,q
DB(M) ∼= Hq(M,Ωp(M))

which relates the cohomology of the complex of differential forms on a
complex manifold to sheaf cohomology in the sense of algebraic geometry
(Ωp(M) is the sheaf of holomorphic p-forms). There is also a complex
analog of the Hodge isomorphism that states that Hp,q

DB(M) ∼= H p,q(M)

with H p,q(M) being the kernel of the associated complex laplacian
2 = ∂̄∂̄∗ + ∂̄∗∂̄ - but only in the case that M is compact.

One approach to study cohomology on non-compact manifolds is
L2-cohomology. This theory is based on the "classical” theory in the sense
that we take Ωp,q0 (M) to be the space of compactly supported (p, q)-forms
and take its completion with respect to the metric on M . The result of
this procedure is a Hilbert space, called the L2 space of square-integrable
(p, q)-forms and denoted by Lp,q(X).
In order to perform analysis on these spaces, we need to extend the
operators ∂̄, ∂̄∗ and 2 to the L2 space and this causes several problems,
for example we need boundary conditions for the operators mentioned
before.

Suppose now that we have a holomorphic vector bundle E on M . All
approaches mentioned before can be extended to vector-bundle-valued
differential forms which are often used in physics, for example in the
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theory of quantization. There are several papers and books dealing with
L2 theory on certain classes of manifolds like for example [Hör65] and
[Lüc02].

The paper which can be seen as the starting point of this thesis is
[GHS98] written by Mikhail Gromov, Gennadi Henkin and Mikhail Shubin
in 1998. They consider covering manifolds that are strictly pseudoconvex
of complex manifolds and analyze the L2-holomorphic functions on the
covering. The coverings considered are infinite and generated by a dis-
crete group Γ that acts on the strictly pseudoconvex manifold M such
that the quotient M/Γ is a compact complex manifold with boundary.
They show that the space of L2-holomorphic functions is in some sense
infinite-dimensional (one has to take the group action into account in
order to get a well-defined dimension for infinite coverings).
In 2002 George Marinescu, Radu Todor and Ionut Chiose generalized
their results to weakly pseudoconvex coverings in [MTC02]. Pseudocon-
vexity might be expressed in terms of eigenvalues of a certain hermitian
(1, 1)-form which is called the Levi form. If all eigenvalues are positive,
the manifold is called strictly pseudoconvex, if they are non-negative, it
is called weakly pseudoconvex.

The first part of this thesis deals with a more general situation, that
means we require that the Levi form has only n−q+1 positive eigenvalues
outside a compact set, which is also known as the notion of q-convexity.
We prove the following Theorem.

Theorem 1. Let M be a q-convex manifold with boundary bM that
admits a free and holomorphic group action by a discrete group Γ such
that the quotient M/Γ is compact and let E be a Γ-invariant holomorphic
line bundle M . Then

dimΓH
0,j
(2)(M,E) <∞ for q > j.
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In the second part of this thesis we are considering infinite coverings of
strictly pseudoconvex domains X in a normal Stein space S with isolated
singularities and determine the dimension of the space of L2-holomorphic
functions. To do this, we first blow up the singular locus of X in order to
get a manifold with complete metric in a neighbourhood of the exceptional
divisor which we push down on the regular locus of X. Then we prove
the following Theorem.

Theorem 2. Let X ⊂ S be a relatively compact strictly pseudoconvex
domain in a normal Stein space S and let q : S̃ → S be a Galois covering
of S by a discrete group Γ. Set X̃ = q−1(X). Then

dimΓH
0,0
(2) (X̃) =∞.

xiv



1 Preliminaries

In this chapter we will start with a brief summary of notions and concepts
from many areas of mathematics that will be used frequently in the
sequel.

1.1 Vector bundles on complex manifolds

In this Section we will recall some foundational material of complex
geometry and fix notations that are used in this thesis.

Let (X, J) be a n-dimensional complex manifold with complex structure
J and let (E, hE) be a holomorphic vector bundle of rank r on X with
hermitian metric hE . We denote by

Ωr(X,E) = C∞(X,Λr(T ∗X)⊗ E)

the vector bundle of smooth E-valued differential r-forms on X. Recall
that a hermitian metric on E is an assignment of a hermitian inner
product 〈·, ·〉x to each fiber Ex of E such that for any open set U ⊂ X

and sections f, g ∈ Ω(U,E) the map

〈f, g〉 : U → C, 〈f, g〉(x) = 〈f(x), g(x)〉x

is smooth.
On E we have a connection ∇ which is a first order linear differential
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1 Preliminaries

operator acting on Ωr(X,E) that is given by

∇ : Ωr(X,E)→ Ωr+1(X,E),

∇(u ∧ v) = du ∧ v + (−1)pu ∧∇v,

for any u ∈ Ωp(X) and v ∈ C∞(X,E), with du being the usual exterior
derivative of u. The connection is called hermitian if it is compatible
with the hermitian structure of E, i.e.

d〈u, v〉hE = 〈∇u, v〉hE + 〈u,∇v〉hE .

On a complex manifold we have a canonical splitting of the complexified
tangent bundle

TX ⊗R C = T (1,0)X ⊕ T (0,1)X

induced by the complex structure J , where T (1,0)X and T (0,1)X are
the eigenspaces corresponding to the eigenvalues

√
−1 and −

√
−1 of

J respectively. Let T ∗(1,0)X and T ∗(0,1)X be the corresponding dual
bundles. This inherits a splitting

Ωr(X,E) =
⊕
p+q=r

Ωp,q(X,E).

Sections of Ωp,q(X,E) are called smooth E-valued (p, q)-forms on X.
The connection ∇ splits also in a natural way into two first order linear
differential operators

∇ = ∇1,0 +∇0,1,

which act on E-valued (p, q)-forms imitating the usual operators ∂ and ∂̄.
More precisely we have

∇0,1 : Ωp,q(X,E)→ Ωp,q+1(X,E),

∇0,1(u ∧ v) = ∂̄u ∧ v + (−1)deg uu ∧∇0,1v,

for any u ∈ Ωp1,q1(X) and v ∈ Ωp2,q2(X,E) with p1 + p2 = p and
q1 + q2 = q. The definition for the (1, 0) part of the connection is similar.
On a vector bundle we have in general a lot of different connections, but
there is one which is special in a certain sense.
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1.1 Vector bundles on complex manifolds

Theorem 1.1.1. On any holomorphic vector bundle E on X there exists
a unique hermitian connection ∇ that is compatible with the holomorphic
structure, i.e. (∇)0,1 = ∂̄. This connection is called Chern connection
of E.

A proof of this can be found for example in [Wel08, Theorem 2.1].
A fundamental property of a connection ∇ is that in contrast to the
operators ∂ and ∂̄, its square does not have to be zero. This allows us
to study the operator ∇2 which plays an important role in differential
geometry.

Definition 1.1.2. The curvature Θ(E) of a connection ∇ on a vector
bundle E is defined to be the composition

Θ(E) = ∇ ◦∇ : Ω(X,E)→ Ω2(X,E).

Let (e1, . . . , er) be a smooth orthonormal frame of E over an open set
U ⊂ X with complex coordinates (z1, . . . , zn). Since by assumption E is
a holomorphic hermitian vector bundle, we can express the curvature in
these coordinates as

√
−1Θ(E) =

√
−1

n∑
j,k=1

r∑
α,β=1

cjkαβdzj ∧ dz̄k ⊗ e∗α ⊗ eβ . (1.1)

The property of being a hermitian vector bundle implies that the matrix
(cjkαβ) is hermitian, i.e. c̄jkαβ = ckjβα.
Note, that in the case that E is a line bundle, E∗ ⊗ E ∼= C and thus the
formula above simplifies to

√
−1Θ(E) =

√
−1

n∑
j,k=1

cjkdzj ∧ dz̄k. (1.2)

Definition 1.1.3. Let L be a holomorphic hermitian line bundle on X.
We say that L is positive (respectively negative) if the hermitian matrix
(cjk(z)) of its curvature form (1.2) is positive (respectively negative)
definite at every point z ∈ X.

3



1 Preliminaries

Remark 1.1.4. Let L be a holomorphic line bundle on a complex manifold
X and denote by L∗ the corresponding dual line bundle. Note that L
positive implies that the dual bundle L∗ is negative.

We denote by Lk = L⊗ . . .⊗ L︸ ︷︷ ︸
k−times

the k-fold tensor product of L.

Example 1.1.5. Consider the compact Kähler manifold X = CPn and let

O(−1) =
{

(ζ, z) ∈ CPn × Cn+1 | z ∈ ζ
}

(1.3)

be the tautological line bundle on CPn. The dual bundle of O(−1) is
O(−1)∗ = O(1) and the curvature of O(1) is positive since on compact
Kähler manifolds we can identify a Kähler form ω on X to a hermitian
metric on L and a Kähler form is by definition positive definite.

Definition 1.1.6. The canonical bundle KX on X is defined as the
top dimension exterior power of the (1, 0) part of the cotangent bundle
on X, i.e.

KX = ΛnT ∗(1,0)X.

Let K∗X be the dual bundle of KX . Since it is again a line bundle, we
have K∗X ⊗KX

∼= C and also we have an isometry

Ψ: Λ0,q(T ∗X)⊗ E → Λn,q(T ∗X)⊗ E ⊗K∗X , (1.4)

which will be useful later on.

1.2 Pseudoconvexity and the Levi Form

In this Section we are going to introduce the notion of pseudoconvexity
in terms of plurisubharmonic functions and in terms of the Levi form.

We start with the definition of plurisubharmonicity.

Definition 1.2.1. Let ϕ : Cn ⊃ U → [−∞,∞) be an upper semicontinu-
ous function defined on an open set U in Cn. We call the function ϕ
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1.2 Pseudoconvexity and the Levi Form

subharmonic if for any closed ball Br(z0) ⊂ U with radius r, center
z0 and any real function h ∈ C0(Br(z0)) ∩ C2(Br(z0)) that is harmonic
in the interior satisfying ϕ(z) ≤ h(z) for all boundary points z, then
ϕ(z) ≤ h(z) for all z ∈ Br(z0). We call ϕ plurisubharmonic, if ϕ is up-
per semicontinuous and the restriction of ϕ to any complex line L ⊂ Cn is
subharmonic on U ∩L. Moreover we call ϕ strictly plurisubharmonic
if ϕ ∈ L1

loc(U) and for any point z ∈ U there is a neighbourhood V of
z and a positive constant c > 0 such that the function ϕ(z) − c |z|2 is
plurisubharmonic on V . Here

L1
loc(U) =

{
f : U → C measurable

∣∣∣∣ ∫
Cn
f(z)φ(z)dλ <∞, φ ∈ C∞0 (U)

}
denotes the set of locally integrable functions on U and dλ is the Lebesgue
measure. We call ϕ additionally exhaustion function or exhaustive
on U if all sublevel sets

Uc = {z ∈ U | ϕ(z) < c}

are relatively compact for any c ∈ R.

Plurisubharmonic exhaustion functions play a quite important role in
complex geometry because many geometric properties of spaces can be
written in terms of them, as can be seen in the following definition.

Definition 1.2.2. Let X be a complex manifold of (complex) dimension
n. Then X is called

(i) weakly pseudoconvex, if there exists a smooth plurisubhar-
monic exhaustion function and

(ii) strictly pseudoconvex, if there exists a smooth strictly plur-
isubharmonic exhaustion function.

In the case that we are dealing with an n-dimensional compact complex
manifold X with boundary bX, X = X ∪ bX, such that X is contained
in some open manifold M , it turns out that pseudoconvexity is actually
a local property of the boundary. To see this, we introduce the Levi form
which uses the concept of defining functions for manifolds.
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1 Preliminaries

Definition 1.2.3. Consider a function ρ ∈ C2(M,R). We call ρ a
defining function for X, if ρ has the following properties:

(i) ρ(z) < 0 for all z ∈ X,

(ii) ρ(z) = 0 for all z ∈ bX and

(iii) |dρ| 6= 0 on bX.

It turns out that we can actually substitute condition (iii) in Definition
1.2.3 without loss of generality by |dρ| = 1 on bX since we can replace ρ
by ρ′ = ρ/ |dρ| and a short calculation shows that ρ′ is again a defining
function for X.
Since X is by assumption a n-dimensional manifold, the boundary bX is
of real dimension 2n− 1. We define the holomorphic tangent space
TC
z bX at a boundary point z ∈ bX as the maximal complex subspace

of TzbX. Choosing local coordinates {zk}nk=1 around a boundary point
z ∈ bX, we can describe the holomorphic tangent space in terms of the
defining function as follows:

TC
z bX =

{
w = (w1, . . . , wn) ∈ TzX

∣∣∣∣∣
n∑
k=1

∂ρ

∂zk
(z)wk = 0

}
. (1.5)

Definition 1.2.4. The Levi form of ρ at a point z ∈ bX is the hermitian
form defined by

Lρ(z;w) = (∂∂̄ρ)(z;w) =

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(z)wjw̄k. (1.6)

Since the Levi form depends on the defining function, it is a priori not
clear which kind of (geometric) information is contained in Lρ. Note also
that Lρ is a hermitian form, hence the eigenvalues of its coefficient matrix
are real.

Lemma 1.2.5. The number of positive and negative eigenvalues of the
Levi form is independent of the choice of the defining function ρ.

Proof. See [MM07, Lemma B.3.8].
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1.3 Functional Analysis

Lemma 1.2.5 is extremely useful in practice because given a complex
manifold X we can work with a defining function for X which is easy
to handle in the sense that for example the eigenvalues of the matrix(

∂2ρ
∂zj∂z̄k

)
j,k

are easy to compute. This observation is used in the following

Lemma.

Lemma 1.2.6. Let X be a complex manifold with boundary bX. Let
Lρ(z) be the Levi form of ρ at a boundary point z ∈ bX. Then

(i) X is weakly pseudoconvex ⇐⇒ Lρ(z; ·) is positive semidefinite,

(ii) X is strictly pseudoconvex ⇐⇒ Lρ(z; ·) is positive definite.

A proof of this can be found for example in [Dem12, Chapter 1, §7,
Theorem 7.12].

1.3 Functional Analysis

In this Section we will recall some basic facts from functional analysis.
Suppose throughout the Section that H is a complex Hilbert space and
denote by B(H) the set of bounded operators on H.

Definition 1.3.1. Let T ∈ B(H). The weak operator topology on
B(H), abbreviated WOT, is the topology of the pointwise weak conver-
gence, i.e. it is the topology induced by the seminorms

T 7→ |〈Tx, y〉| , x, y ∈ H.

The WOT is the weakest topology among all topologies on B(H). It
has several useful properties, for example for fixed S ∈ B(H), the maps
T 7→ TS and T 7→ ST are continuous. Also the adjoint mapping T → T ∗

is continuous in the WOT. We need the WOT later on in Section 1.7 to
define the von Neumann dimension.
In the following we recall some basic properties of linear (differential)
operators.

7



1 Preliminaries

Recall that the adjoint of a densely defined operator T : Dom(T )→ H
is defined by

Dom(T ∗) = {u ∈ H | ∃C > 0 : |〈Tu, v〉| ≤ C ‖v‖ ∀ v ∈ Dom(T )} ,

and for u ∈ Dom(T ∗) we set T ∗u to be the unique w ∈ H such that
〈Tv, u〉 = 〈v, w〉 for any v ∈ Dom(T ) by using the Riesz representation
theorem.

Definition 1.3.2. Let T : Dom(T ) ⊂ H → H be a linear operator where
Dom(T ) is a dense linear subspace in H. We call T

(i) closed if Graph(T ) = {(u, Tu) | u ∈ Dom(T )} is closed,

(ii) preclosed if the closure Graph(T) is again the graph of a linear
operator,

(iii) self-adjoint if T = T ∗,

(iv) positive if 〈Tu, u〉 ≥ 0 for all u ∈ H.

Another concept which we use is that of Friedrichs extensions. This is
a particular way of extending positive operators to self-adjoint operators
on a Hilbert space H which makes use of quadratic forms. We start with
a brief description of the latter.

Definition 1.3.3. A quadratic form is a sesquilinear map

Q : Dom(Q)×Dom(Q)→ C,

where Dom(Q) is a dense linear subspace of H.

On Dom(Q) we introduce a norm by setting

‖u‖Q =
(
Q(u, u) + ‖u‖2

) 1
2

.

We call the quadratic form Q

(i) closed, if (Dom(Q), ‖.‖Q) is complete, and

8



1.3 Functional Analysis

(ii) positive, if Q(u, u) ≥ 0 for any u ∈ Dom(Q).

The connection to operators on Hilbert spaces is established by the
following propositions.

Proposition 1.3.4. To any positive and self-adjoint operator T we can
associate a closed quadratic form QT such that

Dom(T ) = {u ∈ Dom(QT ) | ∃v ∈ H QT (u,w) = 〈v, w〉 ∀w ∈ Dom(QT )} ,

Tu = v ∀u ∈ Dom(T ).

We call QT the quadratic form associated to T .

Proof. See [MM07, Proposition C.1.4].

The whole procedure works also vice versa.

Proposition 1.3.5. Let Q be a closed positive quadratic form. Then
there exists a positive self-adjoint operator T such that QT = Q.

Proof. See [MM07, Proposition C.1.5].

Propositions 1.3.4 and 1.3.5 ensure that we can without loss of gener-
ality jump back and forth between the levels of positive operators and
quadratic forms and work with what is more convenient in the present
situation.

Let T : Dom(T ) ⊂ H → H be a positive operator. We set

Dom(Q′T ) := Dom(T ), Q′T (u, v) = 〈Tu, v〉 for u, v ∈ Dom(T ).

There is one last technicality that is needed to define the Friedrichs
extension.

Proposition 1.3.6. Let T be a positive operator. Then Q′T is closable,
i.e. there exists a positive closed form Q̂ that extends QT .

Proof. See [MM07, Proposition C.1.6].
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1 Preliminaries

We consider the smallest closed positive extension Q̂T .

Definition 1.3.7. Let T be a positive operator on H. The Friedrichs
extension TF of T is the self-adjoint operator with QTF = Q̂T .

Keeping this small summary in mind, we will focus now on differential
operators on manifolds.

Definition 1.3.8. Let M be a differentiable manifold and suppose E
and F are arbitrary vector bundles on M . Let T : Ω(X,E)→ Ω(X,F ) be
a differential operator of degree k given in local coordinates (x1, . . . , xn)

by the formula
Tu(x) =

∑
|α|≤k

tα(x)Dαu(x),

where Dα = (∂/∂x1)α1 . . . (∂/∂xn)αn , u ∈ Ω(X,E).
The map σT : T ∗M → Hom(E,F ) defined by

T ∗xM 3 ξ 7→ σT (x, ξ) ∈ Hom(Ex, Fx),

σT (x, ξ) =
∑
|α|=k

tα(x)ξα,

is called the principal symbol of T . We call T elliptic , if σT is injective
for every x ∈M and every ξ ∈ T ∗xM \ {0}. Moreover we call T strongly
elliptic , if there exists c > 0 such that

|σT (x, ξ)| ≥ c |ξ|k

for all (x, ξ) ∈M × T ∗M .

When we study the behavior of self-adjoint operators like for example
the Laplacian, one thing we can start with is to analyze the spectrum.
Let T be self-adjoint. A complex number λ lies in the resolvent set if
the operator (T − λ id) is a bounded operator of Dom(T ) onto H. The
complement of the resolvent set in C is called spectrum of T and is
denoted by σ(T ). The spectrum itself is again subdivided into two parts.
The discrete spectrum σd(T ) is the subset of σ(T ) which is the set of
all eigenvalues λ of T of finite multiplicity which are isolated in the sense
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1.3 Functional Analysis

that for small ε > 0 the eigenvalue λ is the only one in Bε(λ).
The other part of the spectrum is called essential spectrum and
is defined as the complement of discrete spectrum, i.e. σess(T ) =

σ(T ) \ σd(T ).
Determining the essential spectrum of an operator can a priori be com-
plicated, but there is a nice statement about the non-existence of σess.

Theorem 1.3.9. Let T be a positive self-adjoint (unbounded) operator
on a Hilbert space H. Then the following conditions are equivalent:

(i) The resolvent operator (T − λ id)−1 is compact.

(ii) The operator T has empty essential spectrum.

(iii) There exists a complete orthonormal set of eigenvectors {vk}k∈N
of T with corresponding eigenvalues λk ≥ 0 which converge to +∞
as k →∞.

Proof. See [Dav95, Corollary 4.2.3].

Definition 1.3.10. The spectral family or spectral resolution as-
sociated to T is the family (Eλ)λ∈R with Eλ = E((−∞, λ]), where
E : Bor(R)→ B(H) is the spectral measure of T and Bor(R) denotes the
family of Borel sets on R. If we want to stress the dependence on the
operator T , we write {Eλ(T )}.

Remark 1.3.11. Note that any self-adjoint operator T has a unique spectral
measure in the sense that for any u ∈ DomT we have

Tu =

(∫
R
x dE(x)

)
u.

For more details we refer to [Lüc02, §1.4].

We are also making use of Sobolev spaces at some point.

Definition 1.3.12. Let M be a compact differentiable manifold, k an
integer and let E be an arbitrary hermitian vector bundle on M . The
space W k(M,E) which consists of sections s : M → E whose derivates
up to order k are in L2(M,E) is called Sobolev space .

11



1 Preliminaries

The Sobolev spaces W k(M,E) have several benefits, for example they
are all complete metric spaces with respect to the Sobolev norm

‖u‖2k =
∑
|α|≤k

∥∥∥∥ ∂α

∂αxα
u

∥∥∥∥2

L2

, u ∈W k(M,E).

Obviously we haveW k+1(M,E) ⊂W k(M,E) which leads to the following
observation.

Lemma 1.3.13 (Rellich Lemma). For every integer k, the embedding

W k+1(M,E) ↪→W k(M,E)

is compact.

Proof. See [Tay11, Proposition 4.4].

1.4 Analytic Sets in Cn

In this Section we will give a brief summary about analytic sets in Cn and
we will focus on the structural background which comes from (classical)
algebraic geometry. The goal of this will be the formulation of Hironakas
theorem about resolutions of singularities of complex spaces which will
be essential in Chapter 3. We start with some definitions.

Definition 1.4.1. Let A ⊂ Cn. We call the set A complex analytic
set if A is closed and every point z0 ∈ A has a neighbourhood U ⊂ A

and there exist finitely many holomorphic functions f1, . . . , fn ∈ O(U)

such that

A ∩ U = {z ∈ U | f1(z) = . . . = fn(z) = 0} .

It is clear from the definition that there are in general many systems
of functions f1, . . . , fk which describe the same analytic set A. But
among all these systems there exists one defined in a suitably small
neighbourhood U of z0 where the k is minimal. The number k is called

12



1.4 Analytic Sets in Cn

the analytic dimension of A at z0 and is denoted by dimz0 A. Obviously
we have

dimz0 A = 0 ⇐⇒ z0 is an isolated point of A.

Recall that a germ (A, z0) of an analytic set A at a point z0 ∈ A is an
equivalence class of elements of the power set P(A), where

B ∼ C ⇐⇒ ∃ V open neighbourhood of z0 : B ∩ V = C ∩ V

for any B,C ∈ P(A).

Definition 1.4.2. A germ (A, z0) of an analytic set A is called reducible
if there are analytic subsets A1, A2 ⊂ A with (A1, z0) ∪ (A2, z0) = (A, z0)

and (Aj , z0) 6= (A, z0), j ∈ {1, 2}. Otherwise we call (A, z0) irreducible
.

Given an analytic set A, it is in practice hard to check from the
definition whether A is irreducible or not, but fortunately there is an
algebraic condition which is easier to verify.
We assume from now on that A is an analytic subset of a complex manifold
M . We denote by O(M)z0 the ring of holomorphic functions at z0 ∈M .
Consider the set

IA,z0 = {f ∈ O(M) | f |A = 0} .

Then IA,z0 is an ideal which is called the defining ideal for A.

Proposition 1.4.3. Let (A, z0) be a germ of an analytic set and let IA,z0
be the defining ideal for A. Then (A, z0) is irreducible if and only if IA,z0
is a prime ideal in the ring O(M)z0 .

The proof of this is direct and can be found for example in [Dem12,
Chapter 2, Proposition 4.5].
The notion of irreducibility is quite powerful since it provides a classifica-
tion of analytic sets.

13



1 Preliminaries

Theorem 1.4.4. Every germ (A, z0) of an analytic set has a finite
decomposition into irreducible germs (Aj , z0) such that

(A, z0) =

n⋃
j=1

(Aj , z0),

with (Aj , z0)  (Ak, z0) for j 6= k and the decomposition is unique apart
from ordering.

Proof. See [Dem12, Chapter 2, Theorem 4.7].

1.5 Complex Spaces

In this Section we will give a short introduction to complex spaces which
are the objects of study in Chapter 3. We use primarily the notation
from [For11].

Let X be a complex manifold. We denote the set of germs of holo-
morphic functions at a point x ∈ X as Ox. The germ is denoted
by [f ]x ∈ Ox and it is represented by a holomorphic function f in a
neighbourhood U of x. By definition of the germ, two functions f and g
represent the same germ if they agree on U .
The ring Ox is isomorphic to the ring OCn,0 via any coordinate map
sending x to 0 and thus it is a Noetherian ring and a unique factorization
domain. Moreover, Ox has no zero divisors so that we can form its
quotient field Mx. The elements of Mx are called germs of mero-
morphic functions onX and locally any meromorphic function f ∈Mx

at a point x ∈ X has a representation f = g/h with f, g ∈ Ox and f, g
being relatively prime.
Set OX = ∪x∈XOx. We equip the set OX with the topology that is given
by the basis of sets {[f ]x | x ∈ U } with f : U → C being holomorphic.
This turns OX into a sheaf, called the sheaf of holomorphic functions
or structure sheaf on X.
Recall that a topological space X is called countable at infinity if

14



1.5 Complex Spaces

there exists a countable family of compact subsets Kj of X such that
X ⊂ ∪jKj and Kj ⊂ intKj+1.

Definition 1.5.1. A reduced complex space is a pair (X,OX) con-
sisting of a paracompact Hausdorff space X, countable at infinity, and
a sheaf of continuous functions OX such that for every point x ∈ X

there is a neighbourhood U and a homeomorphism φ : U → A ⊂ CN onto
an analytic subset A ⊂ CN such that the comorphism φ∗ : OA → OX|U
induces an isomorphism of sheaves of rings. The triple (U, φ, V ) is called
a chart on X and the map φ is called a local embedding of X.
We call X pure dimensional if we have

dimxX = dimX for all x ∈ X.

Further on we say that X is pure dimensional at a point x ∈ X if there
exists an open neighbourhood U of x such that U is pure dimensional.

Remark 1.5.2. The term reduced in Definition 1.5.1 actually means that
the nilradical NX = ∪x∈XNx (which is an ideal subsheaf of OX) is zero,
where Nx is the ideal of all nilpotent germs in Ox.

Roughly speaking X is obtained by gluing analytic subsets in CN via
biholomorphic maps. One main part in the analysis of complex spaces is
the presence of singular points.

Definition 1.5.3. Let X be a complex space. A point x ∈ X is called
regular or smooth, if X has the structure of a complex manifold in
a neighbourhood of x. A point which is not regular is called singular.
The sets of regular and singular points respectively are denoted by Xreg

and Xsing. We will refer to them as the regular locus and singular locus
respectively.

Singular points of a complex space are of particular interest because
their presence can be seen as a kind of generalization of the the concept of
manifolds as any complex manifoldX is a complex space with the property
that Xsing = ∅. The singular locus itself provides some (topological)
structure as can be seen in the following Theorem from [Fis76, § 2.15].
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1 Preliminaries

Theorem 1.5.4. Xsing is an analytic subset of X.

In order to analyze the singular locus of a complex space, we know by
Theorem 1.5.4 that Xsing has a well-defined codimension in X. It turns
out that among the singular points there are some which are in some
sense "simpler".

Definition 1.5.5. A point x ∈ X is called normal , if the ring Ox
is integrally closed in its quotient field Mx and X is called normal if
every point x ∈ X is normal. All points which are not normal are called
non-normal. The set of non-normal points is denoted by Xn-n.

By looking at the definition of regular points, we obtain that any regular
point x ∈ X is normal since we have Ox ∼= OCn,0 and thus Ox is a factorial
ring and hence integrally closed. Therefore we also have Xn-n ⊂ Xsing.
Moreover we have a result (cf. [Dem12, Chapter 2, Theorem 7.6]) that
describes the connection between non-normal and singular points.

Theorem 1.5.6. Let x ∈ X be a normal point. Then codimx(Xsing) ≥ 2.

Consider a normal complex space X. Let us also mention a topological
characterization of normal points.

Proposition 1.5.7. If x ∈ X is a normal point, then X is irreducible
at x.

Proof. See [GR84, Chapter 6, §4].

Hence every normal complex space is locally irreducible and also loc-
ally pure dimensional since a complex space is pure dimensional at all
irreducible points x ∈ X (cf. [GR84, Chapter 5, § 4]). The following
Theorem from [AG06, Theorem 7.5] relates irreducibility to a topological
obstruction of the regular locus.

Theorem 1.5.8. Let X be a reduced complex space. Then X is irreducible
if and only if Xreg is connected.

We also have the following extension Theorem for holomorphic functions
on normal complex spaces.
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1.5 Complex Spaces

Theorem 1.5.9 (Riemann Extension Theorem). Let X be a normal
complex space. Then every holomorphic function on the complex manifold
Xreg = X \Xsing extends uniquely to a holomorphic function on X.

The proof of Riemann’s Extension Theorem involves the concept of
so called weakly holomorphic functions which we will not introduce here
and so we refer to [GR84, Chapter 7, § 4.2] for the proof.

Let X be a complex space. A complex-valued function f on X is called
smooth, if for every point x ∈ X there exists an isomorphic embedding
of a neighbourhood U of x as an analytic subset A in a ball B ⊂ CN such
that f (considered as a function on A) is the restriction to A of a smooth
function in B. We define plurisubharmonic functions on a complex space
X similar to the definitions given in Section 1.2.

Definition 1.5.10. Let ϕ be an upper semicontinuous function on X.
We call ϕ plurisubharmonic if the following holds: Any point x ∈ X
has a neighbourhood U which is realized isomorphically as an analytic
subset V in a domain G ⊂ CN by ψ : U → V such that ϕ ◦ ψ−1 is the
restriction to V of a plurisubharmonic function in G. If ϕ ◦ψ−1 is locally
the restriction of a strictly plurisubharmonic function, ϕ is called strictly
plurisubharmonic.

When we are talking about metrics on complex spaces, we also have to
make some slight modifications of the Definition given in Section 1.1.

Recall that a Hermitian form on a complex manifold is a smooth positive
(1, 1)-form and can be identified to a Hermitian metric. Consider a cov-
ering {Uα} of X and local embeddings τα : Uα → CNα . A Hermitian
form on a complex space X is a hermitian form ω on the regular locus
Xreg which on every open set Uα is the pullback of a Hermitian form on
the ambient space CNα , i.e. ω = τ∗αωα. A positive Hermitian (1, 1)-form
is called Kähler, if dω = 0.

17
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We will also consider line bundles on a complex space X. Let L be a
holomorphic line bundle on X and assume that L|Uα is the inverse image
by τα of the trivial line bundle Cα on CNα . In order to introduce a metric
on L we have to modify the definition given in Section 1.1.

Definition 1.5.11. Let L be a holomorphic line bundle on X. Consider
Hermitian metrics hα = e−2χα on Cα, χα ∈ L1

loc(CNα) and smooth outside
τ(Xsing) such that τ∗αhα = τ∗βhβ on Uα ∩ Uβ ∩Xreg. The family {τ∗αhα)

is called a Hermitian metric on L.

We will also work with Stein spaces in Chapter 3.

Definition 1.5.12. A second countable complex space X is called Stein,
if

(i) the global holomorphic functions separate points, i.e. for all
x 6= y in X there is a holomorphic function f ∈ OX such that
f(x) 6= f(y),

(ii) X is holomorphically convex, i.e. for every compact set K ⊂ X

the convex hull

K̂ =

{
x ∈ X

∣∣∣∣ |f(x)| ≤ max
y∈K
|f(y)| , ∀f ∈ OX

}
is compact again and

(iii) every local ring Ox is generated by functions in OX .

Example 1.5.13. (i) Cn is Stein.

(ii) Any closed analytic subspace of a Stein space (in particular of Cn)
is a Stein space.

(iii) An open subset U ⊂ X of a Stein space is Stein if and only if it is
holomorphically convex.

(iv) Cn \ {0} is not Stein for n ≥ 2.

Stein spaces provide a lot of structure as can be seen in the following
Proposition.
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Proposition 1.5.14. Let X be a complex space such that the global
holomorphic functions separate points. Then every compact analytic
subset A ⊂ X is finite.

The proof of Proposition 1.5.14 is straightforward since we can use
that a holomorphic function on an irreducible component of A must be
constant and hence the irreducible component consists of one point by
the open map theorem. Since the global holomorphic functions of Stein
spaces always separate points, the assumptions of Proposition 1.5.14 are
fulfilled in any case.

1.6 Coverings

In this Section we will introduce infinite coverings of manifolds and com-
plex spaces.

Let X be a complex manifold of complex dimension n and suppose Γ

is a discrete group which acts on X freely and properly discontinuously.
Note that the assumptions on the group action ensure that the quotient
X/Γ is a manifold since a proper discontinuous action implies that the
quotient is Hausdorff and a free action that there are no fixed points.
Denote by

πΓ : X → X/Γ =: X̃

the canonical projection. We assume further on that X is paracompact
so that Γ is countable.

Remark 1.6.1. Given a manifold X̃ we can always consider its universal
cover X. In this case the group Γ can be chosen to be the group of Deck
transformations which is isomorphic to the fundamental group π1(X̃) and
it acts on X via representations of π1(X̃).
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We consider further a holomorphic vector bundle Ẽ on X̃ and denote
by E = π∗ΓẼ its pullback bundle. To keep things straight, we will decorate
objects living on the quotient with a tilde as we visualize in the following
diagram:

E = π∗ΓẼ

��

// Ẽ

��
X

πΓ // X̃

.

If we have a closer look at the construction of the pullback bundle, we
see that it is Γ-invariant because by definition we have

π∗ΓE =
{

(x, e) ∈ X × Ẽ
∣∣ πΓ(x) = πẼ(e)

}
and by setting

γ.(x, e) = (γ.x, e) γ ∈ Γ, (x, e) ∈ X × Ẽ,

we ensure that the action of Γ lifts.

Definition 1.6.2. Let Γ be a discrete group acting on a manifold X. A
fundamental domain for the Γ-action is an open set U ⊂ X such that

(i) X =
⋃
γ∈Γ

γU ,

(ii) U ∩ γU = ∅ ∀γ 6= e and

(iii) the topological boundary U \ U has measure zero.

Later on we will define L2-cohomology which depends on the choice of
the metrics on both the manifold as well as on the vector bundle. Due
to the presence of the Γ-action, invariant metrics are a key ingredient to
define these spaces.

Remark 1.6.3. Given any Lie group G acting properly and differentiably
on a paracompact differentiable manifold M , there exists a G-invariant
Riemannian metric on M (cf. [Kos65, Chapter 1, §4, Theorem 2]).
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1.7 The Γ-dimension

A discrete group Γ can be seen as a 0-dimensional Lie group and a
complex manifold is clearly differentiable, hence existence of Γ-invariant
metrics is always guaranteed.

Let us assume for the moment that M is a compact manifold with
boundary bM and set M = M ∪ bM .

Lemma 1.6.4. Given any Γ-invariant metric on M , any point x ∈M
and any positive constant r ∈ R+ the ball of the corresponding geodesic
metric

{
y ∈M | dist(x, y) < r

}
is relatively compact in M .

Proof. See [Kos65, Chapter 1, §4, Theorem 3].

Coverings which are generated by a discrete group Γ are infinite cover-
ings and of fundamental importance in this thesis. When we are taking
quotients by the action of the group, there are several things to keep in
mind. One natural question is for example whether or not the structure
of a manifold or a complex space is preserved. In the case of complex
spaces, we have the following important result.

Theorem 1.6.5. Let X̃ be a reduced Stein space and let π : X → X̃ be
a covering of X̃ such that X/Γ = X̃ and Γ is a discrete group that acts
holomorphically, freely and properly discontinously on X. Then X is
Stein.

Proof. See [Ste56, Satz 2.1].

1.7 The Γ-dimension

We will give a brief introduction into the theory of von Neumann Dimen-
sions in this Section, for details we refer for example to [Kol95, Chapter
6] or [Lüc02, Chapter 1, §1].

In general the von Neumann Dimension, which we will shortly call Γ-
dimension, is a tool to measure dimensions of invariant spaces with respect
to a group action of a discrete group Γ on a vector space.
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Suppose throughout this Section that H is a complex Hilbert space and
let Γ be a discrete group acting on H. As a motivating example consider
the Hilbert space L2Γ which consists of all complex valued L2-functions
on Γ. Here the L2 structure is chosen with respect to the Dirac measure.
The group Γ acts on this space unitarily by left regular representations
of the form γ 7→ lγ , γ ∈ Γ with lγ being defined in the following way: If
x ∈ Γ and f ∈ L2Γ, the group action is defined as

lγf(x) = f(γ−1x).

Most of the times we will work on arbitrary (complex) Hilbert spaces. In
this context we call the tensor product L2Γ⊗H a free Hilbert Γ-module
with Γ-action given by

γ 7→ Lγ := lγ ⊗ 1. (1.7)

Since all the spaces considered are supposed to be Hilbert spaces, we
will drop the word "Hilbert" and call L2Γ⊗H simply a free Γ-module.
Subspaces of this which are invariant under the Γ-action (i.e. under the
maps Lγ) and closed in the induced topology are called Γ-modules.

We consider the von Neumann algebra N (H) on H, which is defined
in the following way.

Definition 1.7.1. The von Neumann Algebra N (H) of bounded op-
erators on H is defined as the ∗-algebra of bounded linear operators which
are closed in the weak operator topology (cf. Definition 1.3.1) containing
the identity.

Remark 1.7.2. Recall that a ∗-algebra A is an algebra where the multiplic-
ation ∗ : A → A is given by an antiautomorphic and involutive mapping,
i.e. for any A,B ∈ A we have

(A+B)∗ = A∗ +B∗, (AB)∗ = B∗A∗,

(A∗)∗ = A and 1∗ = 1.
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By definition N (H) is a ∗-algebra and according to this the multiplica-
tion is given by an involutive mapping. The group Γ acts by assumption
on the Hilbert space via unitary transformations which are continuous
and thus bounded. Since the map that sends an unitary operator to
its adjoint is involutive, we can form the von Neumann algebra NΓ of
bounded linear operators on L2Γ⊗H which additionally commute with
the action of Γ. This algebra NΓ is a tensor product in the sense of von
Neumann algebras:

NΓ = RΓ ⊗ B(H),

where RΓ is the von Neumann algebra of bounded operators on L2Γ and
B(H) is the algebra of bounded operators on the Hilbert space H. The
algebra RΓ is generated by right translations, i.e. by the maps

Rγf(x) = f(xγ),

again with f ∈ L2Γ and x ∈ Γ (cf. [Kol95, Chapter 6]). We define a
trace on RΓ in the following way: The L2-structure on Γ is chosen with
respect to the Dirac measure, that means if we consider the group Γ as
the diagonal element in Γ× Γ, we have an orthonormal basis (δγ)γ∈Γ in
L2Γ where δγ denotes the Dirac Delta function at γ. According to this
we get δγ(x) = 1 ⇐⇒ x = γ. In this basis every operator Rγ ∈ RΓ has
the property that all of its diagonal elements are equal. We define a trace
function for any A ∈ RΓ by

trΓA = (Aδe, δe).

If Tr denotes the usual trace on B(H), we get an induced trace on the
algebra NΓ setting

TrΓ = trΓ⊗Tr .

This leads to the definition of the Γ-dimension.

Definition 1.7.3. Let L be an arbitrary Γ-invariant subspace of L2Γ⊗H.
We define the Γ-dimension of L as

dimΓ L = TrΓ PL
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where PL is the orthogonal projection on L in L2Γ⊗H.

Remark 1.7.4. The idea of introducing the Γ-dimension is a normalization
of the usual complex dimension. In the case that Γ is a finite group and
H a Hilbert module, we simply have dimΓH = 1

|Γ| dimH.

Obviously dimΓ ∈ [0,∞]. We introduce the notion of Γ-morphisms.
Consider two given Γ-modules L1, L2 ⊂ L2Γ ⊗ H. A bounded linear
operator T : L1 → L2 is called Γ-morphism if it commutes with the
action of Γ. Let us recall some basic properties of the Γ-dimension as
proved in [Kol95, Chapter 6].

Lemma 1.7.5. Let T : L1 → L2 be a Γ-morphism. Then the following
holds:

(i) dimΓ L
2Γ = 1.

(ii) If T is injective, then dimΓ L1 ≤ dimΓ L2.

(iii) If T has dense image, then dimΓ L1 ≥ dimΓ L2.

(iv) dimΓ(KerT )⊥ = dimΓ[ImT ],

where the brackets in (iv) denote the closure as a vector space.

In Chapter 3 we will also need an unbounded analogue of Γ-morphisms
which we define in the following way.

Definition 1.7.6. Let L1, L2 be Γ-modules and let T : L1 → L2 be a
closed and densely defined operator which commutes with the action of
Γ. We call the operator T Γ-Fredholm if

(i) dimΓ KerT <∞ and

(ii) there exists a closed Γ-invariant subspace Q ⊂ L2 such that
Q ⊂ ImT and codimΓQ <∞.

When we are dealing with Γ-modules we also need a slightly different
notion of density which we define in the following way.
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Definition 1.7.7. Let L be a Γ-module and let Q ⊂ L be a Γ-invariant
subspace. Then we call Q Γ-dense in L if for any δ > 0 there exists a Γ-
invariant subspace Qδ ⊂ Q such that Qδ is closed in L and codimΓQδ < δ

in L.

We conclude this Section with a Lemma that connects the notions of
Γ-Fredholm operators and Γ-density as introduced in Definitions 1.7.6
and 1.7.7, respectively.

Lemma 1.7.8. Let T : L1 → L2 be a Γ-Fredholm operator and let L3 ⊂
L2 be a closed Γ-invariant subspace such that L3 ⊂ ImT . Then L3∩ ImT

is Γ-dense in L− 3.

Proof. See [GHS98, Corollary 2.6].

1.8 L2 Cohomology

The main goal of this thesis is to study L2 cohomology spaces. In this
Section we will describe how they are constructed.

Let X be a complex manifold with boundary bX and set as before
X = X∪bX. Let E be a hermitian vector bundle on X and let Ωp,q(X,E)

be the vector bundle of smooth E-valued (p, q)-forms on X. We denote
by Ωp,q

0 (X,E) the space of smooth E-valued p, q-forms with compact
support which are smooth up to the boundary (the zero as subscript will
always mean compactly supported forms). In the following we set p = 0.

Definition 1.8.1. The completion of Ω0,q
0 (X,E) with respect to the

metrics on X and E is called the corresponding L2 space and denoted by
L0,j(X,E). By convention we write L2(X,E) for L0,0(X,E).

Actually L0,q(X,E) consists of (0, q)-forms with values in E which
have measurable coefficients that satisfy∫

X

|u|2hE dVX <∞, (1.8)
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where |.|hE denotes the pointwise norm induced by the hermitian metric
hE on E.

In order to perform analysis on these L2 spaces, we need to extend
differential operators, for example the ∂̄-operator, which is a priori only
defined on forms with compact support. There are different possibilities
to do this, but we will focus on one of them.

Let in general D : Ω0,•
0 (X,E) → L0,•(X,E) be a differential operator,

which is in particular a preclosed operator. Let further D∗ be the formal
adjoint operator of D, i.e. the operator defined by

〈Du, v〉 = 〈u,D∗v〉 ∀u, v ∈ Ω0,•
0 (X,E).

Definition 1.8.2. The maximal extension of D is defined by

Dom(Dmax) =
{
u ∈ L0,•(X,E)

∣∣ Du ∈ L0,•(X,E)
}
, (1.9)

Dmaxu = Du, for u ∈ Dom(Dmax),

where Du is calculated in the sense of distributions.

This way of extending D has several benefits as can be seen in the next
lemma.

Lemma 1.8.3. The operator Dmax is a densely defined and closed oper-
ator.

The proof of Lemma 1.8.3 is straightforward and can be found in
[Ada07, Theorem 2.5]. We will use these properties for the operators ∂̄E

and 2E , which are defined in the following way.

Definition 1.8.4. The extension of ∂̄ to E-valued (0, q)-forms is defined
as

∂̄E : Ω0,q
0 (X,E)→ Ω0,q+1(X,E)

∂̄E = ∂̄ ⊗ 1.
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We shall work with the maximal extension ∂̄Emax given in (1.9) in the
sequel and denote for simplicity ∂̄E = ∂̄Emax. Clearly (∂̄E)2 = 0, so we get
a complex

∂̄E : L0,•(X,E)→ L0,•+1(X,E).

The cohomology of this complex is the L2 cohomology of X with values
in E and is defined as

H0,q
(2) (X,E) =

Ker ∂̄E : L0,q(X,E)→ L0,q+1(X,E)

Im ∂̄E : L0,q−1(X,E)→ L0,q(X,E)
.

The reduced L2 cohomology is defined as

H
0,q

(2)(X,E) =
Ker ∂̄E : L0,q(X, e)→ L0,q+1(X,E)

[Im ∂̄E : L0,q−1(X,E)→ L0,q(X,E)]
, (1.10)

where the brackets in the denominator stand for the closure of vector
spaces. Hence the reduced L2 cohomology spaces are again Hilbert spaces.
For several reasons we are interested in the dimension of these spaces, for
example consider

H0,0
(2) (X,E) = Ker ∂̄E : L2(X,E)→ L0,1(X,E).

Since by definition u ∈ H0,0
(2) (X,E) if and only if ∂̄Eu = 0, it is convenient

to determine the dimension if you want to know how many L2-holomorphic
functions on X with values in E exist. In the case that X is a covering
manifold as described in Section 1.6 we use the Γ-dimension from Section
1.7.
One important tool to compute the dimension of these cohomology spaces
is the Laplace operator.

Definition 1.8.5. Let ∂̄E be as in Definition 1.8.4 and let ∂̄E∗ be its
formal adjoint operator. The Kodaira Laplacian is defined as

2E : Ω0,q
0 (X,E)→ Ω0,q(X,E)

2E = ∂̄E ∂̄E∗ + ∂̄E∗∂̄E . (1.11)
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1 Preliminaries

It is a densely defined and positive operator which makes it possible to
introduce its Friedrichs extension (cf. Definition 1.3.7). For simplicity we
denote the Friedrichs extension by the same symbol 2E . We denote by
H 0,j(X,E) the space of harmonic (0, j)-forms which is defined by

H 0,j(X,E) := Ker2E ∩ L0,j(X,E).

One goal of using the Laplace operator is that we have an L2 analogue of
the Hodge decomposition theorem similar to the classical one. But before
we can state this, we need an estimate which will play an important role
in the following chapters.

Definition 1.8.6. Let K be a compact subset of X. We say that the
fundamental estimate holds if there exists a constant C ∈ R+ such
that the inequality

‖u‖2L2 ≤ C
(∥∥∂̄Eu∥∥2

L2 +
∥∥∂̄E∗u∥∥2

L2 +

∫
K

|u|2 dV
)

(1.12)

is satisfied for any u ∈ Dom ∂̄E ∩Dom ∂̄E∗ ∩ L0,j(X,E).

The fundamental estimate is a very useful tool because it provides a
weak Hodge-Kodaira decomposition.

Theorem 1.8.7 (Hodge Theory). Let X be a complex manifold with
boundary. Then the following weak orthogonal decomposition holds:

L0,j(X,E) = [Im(∂̄E ∂̄E∗)]⊕H 0,j(X,E)⊕ [Im(∂̄E∗∂̄E)],

where the brackets denote the closure as a vector space. In particular
we have an isomorphism of Γ-modules

H
0,j

(2)(X,E) = H 0,j(X,E).

Proof. See [GHS98, Proposition 1.4].
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2 Coverings of q-convex
Manifolds

In this chapter we will be concerned with coverings of q-complete mani-
folds. Let Γ be a discrete group acting freely and properly discontinuously
on a complex manifold X and set X̃ = X/Γ. We consider a q-complete
submanifold M̃ of X̃ and define by π : M = π−1M̃ → M̃ the induced cov-
ering. Let Ẽ be a holomorphic line bundle on M̃ and denote by E = π−1Ẽ

its pullback. In Section 2.1 we introduce the notion of q-convex and q-
complete manfifolds. Afterwords we study spectra of differential operators
in Section 2.2 on this class of manifolds and finally in Section 2.3 we
study the L2 cohomology groups H0,j

(2)(M,E).

2.1 q-Convexity

In this Section we will describe the general setup for this Chapter.

Let X be a complex manifold of complex dimension n, Γ be a discrete
group acting holomorphically and properly discontinuously on X and
let E be a holomorphic vector bundle on X. Set X̃ = X/Γ. Then X

becomes naturally a covering space of X̃. We fix Γ-invariant metrics on
both X and E (cf. Remark 1.6.3).
Next let us consider a relatively compact open set M̃ ⊂ X̃ with smooth
boundary and let M = π−1

Γ M̃ be its preimage. Since M is a subset of
X, the group Γ acts on it. Let U ⊂M be a fundamental domain for the
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2 Coverings of q-convex Manifolds

Γ-action (cf. Definition 1.6.2).
We define the Hilbert space of square integrable sections on M with
values in E with respect to the Γ-invariant metrics on X and E chosen
before and denote it as in Section 1.8 by L2(M,E). The corresponding
L2-space on U is defined in the same way and denoted by L2(U,E|U ).
These spaces are indeed related, as the following result shows (cf. [MM07,
§3.6.1]).

Lemma 2.1.1. Under the assumptions of the situation above we have
isomorphisms

L2(M,E) ∼= L2Γ⊗ L2(U,E|U ) ∼= L2Γ⊗ L2(M̃, Ẽ).

This formula will play an important role in the analysis of differential
operators acting on L2-sections of the bundle E because due to this
splitting we can keep apart the action of the group and the differential
operators on them.

Let Ω0(M,E) be the space of smooth sections of E with compact support.
Let D̃ : Ω•,•(X̃, Ẽ)→ Ω•,•(X̃, Ẽ) be a formally self-adjoint, strongly el-
liptic and positive first order differential operator acting on the sections of
Ẽ (cf. Definitions 1.3.2 and 1.3.8). Denote by D its pullback on X which
is a Γ-invariant first order differential operator acting on Ω•,•(X,E). Note
that the Γ-invariance is a direct consequence of the second isomorphism
of Theorem 2.1.1 since D acts only on the second factor.

Consider two extensions of the previously described operator D on
the domains U and M introduced earlier: Let D0 denote the Friedrichs
extension (cf. Definition 1.3.7) of D to L2(U,E|U ) and for simplicity
we call the Friedrichs extension to L2(M,E) again D. Note that the
assumption that D is formally self-adjoint and positive ensure that these
Friedrichs extensions exist (cf. Propositions 1.3.4, 1.3.5). Since any form-
ally self-adjoint operator is closed, its extensions are closed, too. Both
extensions of D coincide with the corresponding Dirichlet Laplacians on
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2.1 q-Convexity

U and M respectively because these extensions are constructed out of
compactly supported sections which by definition vanish outside their
domain and thus satisfy the Dirichlet boundary conditions on U and M
respectively.
We will later analyze the spectra of the operators constructed above in
detail, so let us sum up some properties which should be kept in mind.
Let {Eλ(D)}λ∈R as defined in 1.3.10 be the spectral family associated
to D. We saw already that the operator D is Γ-invariant which means
that it commutes with the maps Lγ defined in (1.7). Thus the spectral
projections Eλ(D) commute with Lγ , too, and are according to this also
Γ-invariant. Note also that by the Rellich Lemma 1.3.13 the operator D0

has compact resolvent (since the embedding of W 1(U,E) ↪→ L2(U,E) is
compact) and because of this has discrete spectrum.

From now on let M be a complex manifold of complex dimension n
with smooth boundary bM . We denote by M = M ∪ bM and we will
assume that there exists a complex neighbourhood X of M such that
every boundary point of M is an interior point of X. We will further
on suppose that bM is given as the zero set of a Γ-invariant defining
function for X. Let TC

x bM be the holomorphic tangent space at x ∈ bM
as defined in (1.5).

Definition 2.1.2. The manifold X is called q-convex in the sense of
Andreotti and Grauert which we will shortly call q-convex if there exists
a smooth exhaustion function ϕ : X → [a, b), a ∈ R, b ∈ R ∪ {+∞}, such
that the sublevel sets Xc = {x ∈ X | ϕ(x) < c} are relatively compact in
X and the complex Hessian ∂∂̄ϕ has at least n−q+1 positive eigenvalues
outside a compact set K ⊂ X. We call X q-complete if the choice
K = ∅ is possible.

Remark 2.1.3. The notion of q-convexity in Definition 2.1.2 goes back to
Andreotti and Grauert who introduced this in [AG62].

Definition 2.1.4. Let M be a domain in a complex manifold X with
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2 Coverings of q-convex Manifolds

C2-boundary. Then M is called Levi q-convex if the Levi form Lρ(x;w)

has n− q positive eigenvalues at every boundary point x ∈ bM .

The concepts of q-convexity and Levi q-convexity are related as the
following Lemma from [HL88, Lemma 5.8] shows.

Lemma 2.1.5. Let M be a complex manifold of complex dimension n

with smooth boundary bM and let ρ be a defining function for M . If the
Levi form of ρ

Lρ(x;w) =

n∑
k,l=1

∂2ρ

∂zk∂z̄l
(x)wkwl. (2.1)

has n− q positive eigenvalues at every boundary point x ∈ bM , then M
is q-convex.

Proof. Consider the holomorphic tangent space TC
x (bM). Since the Levi

form has n − q positive eigenvalues at x ∈ bM , we choose an n − q-
dimensional subspace T of TC

x (bM) such that Lρ(x,w)|T is positive defin-
ite. Choose further a n− q + 1-dimensional subspace T ′ of TC

x (bM) such
that
T ′ ∩ TC

x (bM) = T and set

K = {t ∈ T ′ | ‖t‖ = 1, Lρ(x; t) < 0} ,

where ‖.‖ is some norm on TC
x (bM). Then K is compact and t(ρ) 6= 0

for all t ∈ K. Then we know by the min-max theorem that we can find a
constant cx > 0 such that

max
t∈K
|Lρ(x; t)| < cx min

t∈K
|t(ρ)|2

for a constant C > cx. Hence

LeCρ(x; t) = eCρ
(
CLρ(x; t) + C2 |t(ρ)|2

)
,

and thus we get LeCρ(x; t) > 0 if 0 6= t ∈ T ′ and C > cx.

Let X be complex manifold and Γ be a discrete group that acts on X
freely and properly discontinuously and let as before E be a Γ-invariant
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2.1 q-Convexity

holomorphic vector bundle on X. Then X/Γ is a normal covering and we
fix Γ-invariant metrics on X and E. Let M be a smooth open set in X
and suppose that

(i) M is q-convex,

(ii) M = M ∪ bM is Γ-invariant and

(iii) M/Γ is compact.

Let Ω0,j(M,E) be the space of smooth (0, j)-forms on M with values
in E and denote by Ω0,j

0 (M,E) the space of compactly supported (0, j)-
forms which are smooth up to the boundary. Let L0,j(M,E) be the
L2-space of (0, j)-forms with respect to the Γ-invariant metrics on M and
E. We denote by ∂̄E the maximal extension of the usual ∂̄-operator as in
Definition 1.8.4 and (1.9) respectively. It is a closed and densely defined
operator with domain

Dom ∂̄E =
{
u ∈ L0,j(M,E)

∣∣ ∂̄Eu ∈ L0,j+1(M,E)
}
,

where ∂̄Eu is defined in the sense of distributions. We consider the
reduced L2 cohomology spaces H0,j

(2)(M,E) as described in (1.10). Using
Theorem 2.1.1 we obtain that ∂̄E is a Γ-invariant operator since it acts
only on the second factor. Thus the cohomology spaces are naturally
Γ-modules. Let ∂̄E∗ be the Hilbert space adjoint of ∂̄E .

Remark 2.1.6. Note that the cohomology spaces are naturally Γ-modules
since the operators ∂̄E and ∂̄E∗ are Γ-invariant.

Later on we will use for technical reasons also the formal adjoint
operator of ∂̄E which is denoted by ϑE . Since we are working on manifolds
with boundary, these two operators do not have to coincide since there
might appear boundary values. The following formula is taken from
[FK72, Proposition 1.3.1].

Lemma 2.1.7. Let u, v ∈ Ω0,j(M,E) and let σ(ϑE , ·) be the principal
symbol of the formal adjoint operator ϑE. Then

(∂̄Eu, v) = (u, ϑEv) +

∫
bM

〈σ(ϑE , dρ)u, v〉 dVbM .
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2 Coverings of q-convex Manifolds

As we will see, there is a relation between ∂̄E∗ and ϑE . We introduce
the boundary condition σ(ϑE , dρ)u = 0 to the effect that the boundary
integral in the preceded lemma vanishes and thus the operators coincide.
We set

B0,j(M,E) :=
{
u ∈ Ω0,j

0 (M,E)
∣∣ σ(ϑE , dρ)u = 0 on bM

}
.

Integration by parts as in [FK72, Proposition 1.3.1 and 1.3.2] shows that

B0,j(M,E) = Ω0,j
0 (M,E) ∩Dom ∂̄E∗, (2.2)

∂̄E∗ = ϑE on B0,j(M,E). (2.3)

Moreover, (2.2) and (2.3) implie

〈∂̄Eu, v〉 = 〈u, ∂̄E∗v〉 for u ∈ Ω0,j
0 (M,E), v ∈ B0,j+1(M,E). (2.4)

Thus we can consider the operator 2E with domain

Dom(2E) =
{
u ∈ B0,j(M,E)

∣∣ ∂̄Eu ∈ B0,j+1(M,E)
}
, (2.5)

2Eu = ∂̄E ∂̄E∗u+ ∂̄E∗∂̄Eu, for u ∈ Dom(2E),

for all j which is by (2.4) a positive operator.

Definition 2.1.8. The boundary conditions of Dom(2E) in (2.5) are
called ∂̄-Neumann boundary conditions and are given by

Dom(2E) =
{
u ∈ Ω0,•(M,E)

∣∣ σ(ϑE , dρ)u = σ(ϑE , dρ)∂̄Eu = 0 on bM
}
.

2.2 Spectral Counting Functions

In this Section we will analyze the spectrum of differential operators via
spectral distribution functions.

In Section 1.3 we introduced the Friedrichs extension of a formally self-
adjoint, strongly elliptic and positive differential operator. This extension
enables us to study spectral properties of the operators considered. Let
{Eλ(D)}λ∈R and {Eλ(D0)}λ∈R respectively be the spectral resolutions
of the operators D and D0 from Section 2.1.
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2.2 Spectral Counting Functions

Definition 2.2.1. The spectral distribution function associated to
D0 is the function N(λ,D0) = dim ImEλ(D0).

Since N(λ,D0) equals the number of eigenvalues ≤ λ (counted with
multiplicity), we will refer to it as the "counting function". Similarily we
denote by NΓ(λ,D) = dimΓEλ(D) the counting function associated to D.
According to the remarks before the image of the spectral projection is a
Γ-module and has thus a well-defined Γ-dimension. We want to compare
the counting functions NΓ(λ,D) and N(λ,D0). The following lemma
provides a formula for NΓ(λ,D).

Lemma 2.2.2 (Variational Principle). Let D be a positive self-adjoint
Γ-invariant differential operator and let D act on a free Hilbert module of
the form L2Γ⊗H where H is a Hilbert space. If Q denotes the quadratic
form associated to D, the counting function satisfies

NΓ(λ,D) = sup
{

dimΓ L
∣∣∣ L ⊂ Dom(Q), Q(u, u) ≤ λ ‖u‖2 ∀u ∈ L

}
,

(2.6)
whereas L runs over all Γ-modules that are contained in Dom(Q).

Proof. See [Shu96, Lemma 2.4].

We are looking for upper and lower bounds of NΓ(λ,D). Since the
spectrum of D0 is discrete, the spectral projections onto eigenspaces
bounded by λ are of finite dimension. The first estimate relating NΓ(λ,D)

to N(λ,D0) is what we intuitively expect.

Lemma 2.2.3 (Estimate from below). Under the assumptions of Lemma
2.2.2 the following estimate holds for any λ ∈ R:

NΓ(λ,D) ≥ N(λ,D0). (2.7)

Proof. Let λ0 ≤ λ1 ≤ . . . be the spectrum of D0. Next we consider the set
of eigenfunctions {ψ̃j} corresponding to the eigenvalues λj which form an
orthonormal basis in L2(U,E). Then we can extend these eigenfunctions
by 0 to the whole of M to get an orthonormal basis {Lγψj} of L2(M,E)
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2 Coverings of q-convex Manifolds

with Lγ as in (1.7). Finally we consider the Γ-module Ψλ spanned by
the orthonormal functions {Lγψj , λj ≤ λ}. Then dimΓ Ψλ = N(λ,D0),
Ψλ ⊂ Dom(Q) and Q(u, u) ≤ λ ‖u‖2 , u ∈ Dom(Q) and the claim follows
now from Lemma 2.2.2 as Dom(Q) is complete in the graph norm.

In order to get an estimate from above, there are some things to be
kept in mind. The strategy will be to enlarge the fundamental domain U
of the Γ-action a bit and compare the counting functions of D on U and
on the enlarged domain with Dirichlet boundary conditions. The latter
means that we consider the Friedrich extension of D on the enlarged
domain restricted to compactly supported forms. For more details see
[TCM01, Chapter 1].
For h ∈ R+ we let Uh = {x ∈M | dist(x, U) < h} be the enlarged domain
where the distance is chosen with respect to the metric on M . Let h be
fixed and let us visualize the situation.

U MM

γU

Uh

The extension of D onto Ω0(Uh, E) will be denoted by D(h)
0 where the
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2.2 Spectral Counting Functions

h indicates the chosen parameter.

Lemma 2.2.4 (Estimate from above). Under the assumptions of Lemma
2.2.2 there exists a constant C ∈ R+ such that for all λ ∈ R

NΓ(λ,D) ≤ N(λ+ C,D
(h)
0 ). (2.8)

Proof. See [TCM01, Proposition 1.4].

Summing up both implications of Lemma 2.2.3 and Lemma 2.2.4 we
get

N(λ,D0) ≤ NΓ(λ,D) ≤ N(λ+ C,D
(h)
0 ). (2.9)

So the counting function of the Γ-dimensions gets wedged in between two
"usual" dimensions.

In order to determine the Γ-dimension of the L2 cohomology spaces
we will work with the Laplacian 2E defined in (2.5).

Lemma 2.2.5. 2E is a strongly elliptic, positive and formally self-adjoint
operator.

Proof. First, the principal symbol of ∂̄E is σ∂̄E (x, ξ) = ξ0,1 ∧ · with ξ0,1

being the (0, 1)-part of ξ. Similarly we have σ∂̄E∗(x, ξ) = ιξ0,1 , where ι·
denotes the contraction operator. Hence we have σ2E (x, ξ) =

∣∣ξ0,1
∣∣2, so

2E is elliptic. Positivity and formally self-adjointness follow automatically
from the definition.

Thus we are able to use the results described in the preceded lemmas
in our context. Sometimes it will be useful to work rather with the
associated quadratic form Q of 2E .

Lemma 2.2.6. The quadratic form Q (as introduced in Section 1.3)
associated to 2E on Dom(Q) := Dom(∂̄E) ∩Dom(∂̄E∗) is given by

Q(u, v) := (∂̄Eu, ∂̄Ev) + (∂̄E∗u, ∂̄E∗v) for all u, v ∈ Dom(Q).

(2.10)
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2 Coverings of q-convex Manifolds

For a proof see e.g. [MTC02, Lemma 3.2]. There is a close connection
between the spaces B0,j(M,E) and Dom(Q).

Lemma 2.2.7. B0,j(M,E) is dense in Dom(Q) with respect to the norm

‖u‖Q =
(
‖u‖2 +

∥∥∂̄Eu∥∥2
+
∥∥∂̄E∗∥∥2

) 1
2

.

Proof. We will give in the proof in two steps. First we reduce to the case
of compactly supported forms and second we proof the assertion in the
reduced case.
Let ε > 0. Using Lemma 1.6.4 we can construct [0, 1]-valued cut-off
functions ηε ∈ C∞0 (M) such that supp ηε bM exhaustM and sup |dηε| →
O(ε) as ε→ 0.
For any u ∈ Dom(∂̄E) ∩Dom(∂̄E∗) we consider the form ηεu. It follows
that ηε ∈ Dom(∂̄E) ∩Dom(∂̄E∗) and moreover we have∥∥∂̄E(ηεu)− ηε∂̄Eu

∥∥
L2 = O(ε) ‖u‖L2 ,∥∥∂̄E∗(ηεu)− ηε∂̄E∗u
∥∥
L2 = O(ε) ‖u‖L2 .

Hence we have for ε→ 0 convergence of ηεu→ u, ∂̄E(ηεu)→ ∂̄Eu and
finally ∂̄E∗(ηεu)→ ∂̄E∗u. Since the form ηεu has compact support, any
form u ∈ B0,j(M,E) is the limit of a sequence {ηεu} with respect to
the graph norm. So we can prove the assertion for forms with compact
support. But in this case this is a consequence of the Friedrichs Theorem
on the identity of weak and strong extensions of differential operators,
see e.g. [Hör65, Proposition 1.2.4] for the proof.

Later on we will use cut-off functions, i.e. smooth functions η ∈ C∞0 (X)

that satisfy ‖η‖ ≤ 1, η = 1 on some relatively compact set V b U with
U ⊂ X being an open set in X.

Lemma 2.2.8. Let V b U ⊂ X as described before and let η ∈ C∞0 (X)

be a cut-off function. Let Q be the quadratic form from Lemma 2.2.6.
Then

Q(ηu, ηu) ≤ 3

2
Q(u, u) + 6 sup |dη|2 ‖u‖2

holds for any u ∈ Dom(Q).
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2.3 Γ-dimension of coverings

Proof. This is a direct computation.

2.3 Γ-dimension of coverings

We will estimate this Section the Γ-dimension for the reduced Γ-modules
H

0,j

(2)(M,E). Our strategy here is to compute upper and lower bounds
for the dimension of the cohomology spaces with the help of the spectral
counting functions from Section 2.2 associated to the Laplacian 2E on
the fundamental domain of the Γ-action.

Our starting point for the sequel is the Bochner-Kodaira-Nakano for-
mula for manifolds with boundary. To state it, we need some further
terminology. Let End (Ω•,•(M,E)) be the algebra of endomorphisms of
smooth differential forms on M with values in E. We denote by [·, ·] the
graded commutator (or graded Lie bracket) on it which is defined as

[A,B] = AB − (−1)degA degBBA

for A,B ∈ End (Ω•,•(M,E)). Here degA denotes the degree of A with
respect to the bigrading on Ω•,•(M,E). Let further L be the Lefschetz
operator associated to the real (1, 1)-form ω of the metric on M and let
Λ be the adjoint operator of L, i.e. the operators

L : Ω•,•(M,E)→ Ω•+1,•+1(M,E), u 7→ ω ∧ u, and

Λ: Ω•,•(M,E)→ Ω•−1,•−1(M,E), u 7→ ιωu,

where ι denotes the contraction operator. The torsion operator of the
metric ω on M is defined by T = [Λ, ∂ω]. There is one last thing we need
to define in order to state the Bochner-Kodaira-Nakano formula. Let Lρ
be the Levi form as defined in (2.1). We set

Lρ(u, u) = [Lρ,Λ]u (2.11)

for any u ∈ B0,j(M,E).
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2 Coverings of q-convex Manifolds

Theorem 2.3.1 (Bochner-Kodaira-Nakano). Let KX be the canonical
bundle on X and denote by ∇1,0 the (1, 0)-part of the connection on
E ⊗KX . Then for every u ∈ B0,j(M,E) we have

Q(u, u) =
∥∥∂̄Eu∥∥2

+
∥∥∂̄E∗u∥∥2

=
∥∥∇1,0∗u

∥∥2
+ 〈i[Θ(E ⊗K∗X),Λ]u, u〉+

∫
bM

Lρ(u, u)dVbM

+ 〈T ∗u,∇1,0∗u〉 − 〈[∂̄E , T ∗]u, u〉. (2.12)

This formula is studied intensively in [Paragraph 1.4.4][MM07]. We
compute the spectrum of the Laplacian (2.5) and use the Bochner-Kodaira-
Nakano formula to get an estimate for the quadratic form. We start with
the latter and follow [MM07, Chapter 3.5]. Let M be q-convex.

Remark 2.3.2. We work rather with the twisted bundle E⊗KX than with
E itself because there are estimates of the eigenvalues of hermitian forms
which are in some sense "preferable". The twist also does not change
dimensions of the cohomology spaces since the complex of (0, j)-forms
is canonically isomorphic to the one of (n, j)-forms via the isomorphism
(1.4).

At first we give an estimate for Lρ(u, u) in Theorem (2.3.1). Let
γ ∈ Ω1,1(X) be an arbitrary real (1, 1)-form on X. By the Gram-Schmidt
process we can find an ω-orthonormal basis (ζ1, . . . , ζn) of T ∗(1,0)X which
diagonalizes ω and γ at the same time, hence we can write

ω = i

n∑
j=1

ζj ∧ ζj , γ =

n∑
j=1

γjζj ∧ ζj .

Lemma 2.3.3. For any u ∈ Ω0,q(X), u =
∑
|J|=q uJζJ we have

[γ,Λ]u =
∑
|J|=q

∑
k∈J

γk −
n∑
j=1

γj

 |uJ |2 .
Proof. See [Dem12, Chapter VI, §5.2] with p = 0.

Since Lρ is a hermitian (1, 1)-form, it is real and so we can apply
Lemma 2.3.3 with γ = Lρ.
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2.3 Γ-dimension of coverings

Secondly we show that the torsion in (2.3.1) is bounded and therefore
negligible.

Lemma 2.3.4. Let X be a complex manifold of complex dimension n

and let γ be a real smooth (1, 1)-form having at least n− q + 1 positive
eigenvalues. For any N ∈ N there exists a metric ω on X such that

(i) at least n− q + 1 eigenvalues of γ are bigger than N and

(ii) the negative eigenvalues of γ are bigger than − 1
N .

Proof. See [Ohs82, Lemma 4.3].

Lemma 2.3.5. Let M be Levi q-convex and let (E, hE) be a holomorphic
line bundle on M . For any C ∈ R+ there is a metric ω on X such that
for all u ∈ Ω0,j

0 (X,E) with support in a neighbourhood U of bM with
j ≥ q, we have

Lρ(u, u) ≥ C |u|2 . (2.13)

Proof. Since M is Levi q-convex, the Levi form has n− q positive eigen-
values at every boundary point. Consider local coordinates (U, z1, . . . , zn)

around x ∈ bM such that Lρ(x;w) is positive definite on the subbundle
of TxX|U generated by ∂

∂zq
, . . . , ∂

∂zn
. We define a metric on U depending

on ε ∈ R+ by

ωε =

n∑
k=1

εkdzk ⊗ dz̄k,

with εk = 1
ε if k < q and εk = ε else. Since the form ∂∂̄ρ is a hermitian

form, all eigenvalues are real. Denote them with respect to ωε by µ1 ≤
. . . ≤ µn. By choosing ε small enough we get the estimates µ1 ≥ − 1

c0
and

µq ≥ c0 for some c0 ∈ R+ by Lemma 2.3.4. Using Lemma 2.3.3 we get

Lρ(u, u) ≥ (µ1 + . . .+ µn) |u|2

≥
(

(j − q + 1)c0 −
1

c0
(q − 1)

)
|u|2 . (2.14)
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2 Coverings of q-convex Manifolds

Choosing c0 sufficiently large implies (2.13) for u ∈ Ω0,j
0 (U,E). Patching

the metrics constructed above with the help of a partition of unity we
obtain the Lemma.

Lemma 2.3.6. The the torsion operator T : L0,j(Xc, E)→ L1,j(Xc, E)

given by T = [Λ, ∂ω] is bounded.

Proof. By definition the Torsion operator acts by a composition of interior
multiplication with the metric ω and multiplication with ∂ω. Since this
means that we multiply continuous functions on a compact set this implies
that T is bounded.

We also multiply the hermitian metric on the fibers of E with
exp(−χ(ρ)), where χ a smooth convex increasing weight function χ
on R, i.e. a function χ ∈ C∞(R) satisfying χ′ > 0 and χ′′ ≥ 0, such that

hEχ = exp(−χ(ρ))hE and Eχ = (E, hEχ ).

A direct computation yields

iΘ(Eχ) = iΘ(E) + iχ′(ρ)∂∂̄ρ+ iχ′′(ρ)∂ρ ∧ ∂̄ρ. (2.15)

Then iχ′′(ρ)∂ρ ∧ ∂̄ρ is positive semidefinite since ρ is real and χ′′ ≥ 0

and by assumption we have that iχ′(ρ)∂∂̄ρ has at least n− q+ 1 positive
eigenvalues outside Xc. Thus for j ≥ q we obtain similar to (2.14)

〈[iΘ(Eχ ⊗K∗X ,Λ)]u, u〉 ≥ (χ′(ρ)A−B) |u|2 (2.16)

with A,B ∈ R+. Choosing χ increasing sufficiently fast, the bracket
becomes positive.

In order to get an estimate for the boundary term in (2.3.1), we need
that bM is the sublevel set X0. We obtain this by replacing the defin-
ing function ρ for M by ρ0 = (ρ − c)/ |dρ| near bM . This implies that
the boundary term is Lρ0(u, u) with u being compactly supported in a
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2.3 Γ-dimension of coverings

neighbourhood of bM . Accordingly we conclude

Lρ0
= ∂∂̄ρ0

= ∂∂̄

(
ρ− c
|dρ|

)
=

1

|dρ|
∂∂̄ρ+ (ρ− c)∂∂̄ 1

|dρ|
+ ∂

1

|dρ|
∧ ∂̄ρ+ ∂ρ ∧ ∂̄ 1

|dρ|
.

This computation in collaboration with Lemma 2.3.5 implies

Lρ0(u, u) ≥ C

|dρ|
|u|2 , C ∈ R+ (2.17)

for any form u ∈ B0,j(M,E) provided j ≥ q. Using (2.15), (2.16) and
(2.17), we get that (2.12) simplifies to

Q(u, u) ≥
∥∥∇1,0∗u

∥∥2
+ 〈[iΘ(E ⊗K∗X),Λ]u, u〉 −D ‖u‖2

≥〈[iΘ(E ⊗K∗X),Λ]u, u〉 −D ‖u‖2

≥ (χ′(ρ)A−B −D) ‖u‖2 > 0,

where D ∈ R+ is the constant depending on the torsion and the norms
are taken with respect to the metrics ω and hEχ . The last conclusion is
obtained as in (2.16).

Theorem 2.3.7. Let E be a Γ-invariant holomorphic line bundle on
X with a Γ-invariant metric on the fibers and let M ⊂ X be a smooth
open Γ-invariant q-convex subset of X. Let U, V ⊂ X be Γ-invariant
neighbourhoods of bM such that V ⊂ U . Suppose there is a Γ-invariant
cut-off function η which satisfies η = 1 on V and η = 0 outside U . There
exists a constant C ∈ R+ such that for every u ∈ Dom(Q) provided j > q

we have

‖u‖2 ≤ C

(∥∥∂̄Eu∥∥2
+
∥∥∂̄E∗u∥∥2

+

∫
M\V

|(1− η)u|2 dV

)
.

Proof. First, Lemma 2.2.7 implies that the space B0,j(M,E) is dense in
DomQ. Let u ∈ B0,j(M,E) with suppu ⊂ U and let us visualize the
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2 Coverings of q-convex Manifolds

setup we are working in the following picture.

U

U

bM

bM

M

supp u

supp u

(M \ V )/Γ

The neighbourhoods U, V as well as the bundle E are by assumption
Γ-invariant and thus we can repeat the arguments from the proof of
Lemma 2.3.5 as well as (2.17) before to get

‖u‖2 ≤ C0

(∥∥∂̄Eu∥∥2
+
∥∥∂̄E∗u∥∥2

)
(2.18)

for some constant C0 ∈ R+ and suppu ⊂ U . Taking η into account this
yields∥∥∂̄E(ηu)

∥∥2
+
∥∥∂̄E∗(ηu)

∥∥2 ≤ 3

2

(∥∥∂̄Eu∥∥2
+
∥∥∂̄E∗u∥∥2

)
+ 6 sup |dη|2 ‖u‖2 ,

(2.19)
using the elementary estimate of cut-off functions (Lemma 2.2.8). By the
choice of η its gradient dη is bounded, we put C1 = 6 sup |dη|2. Summing
up we have by (2.18) and (2.19)

‖u‖2 ≤ C0

(∥∥∂̄Eu∥∥2
+
∥∥∂̄E∗u∥∥2

)
≤ C0

(
3

2

(∥∥∂̄Eu∥∥2
+
∥∥∂̄E∗u∥∥2

)
+

∫
M\V

|(1− η)u|2 dV

)
.
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2.3 Γ-dimension of coverings

Note that since we have Neumann boundary conditions on M and
Dirichlet boundary conditions on V , we can interpret the function (1− η)

as a kind of "transition" of these two conditions.

In Section 2.2 we introduced some properties of spectral spaces of
coverings with respect to a formally self-adjoint, strongly elliptic and
positive differential operator. Lemma 2.2.5 ensures that 2E satisfies
these conditions and thus we can apply everything achieved before to the
operator 2E . We set

Ej(λ) := ImEλ(2E) ∩ L0,j(M,E)

and
EjD(λ) := ImEλ(2E0 |M\V ) ∩ L0,j(M \ V ,E),

where the subscript 0 is chosen to indicate the Dirichlet boundary condi-
tions on this domain.

Lemma 2.3.8. Suppose the assumptions of Theorem 2.3.7 hold and let
C0 and C1 be as in the proof of 2.3.7. For j ≥ q and λ < 1

2C0
, the

Γ-morphism given by

Ej(λ)→ Ej0(3C0λ+ 2C0C1) u 7→ E3C0λ+2C0C1
(2E0 |M\V )(1− η)u

(2.20)

is injective. In the sense of counting functions, we have

NΓ(λ,2E) ≤ N(3C0λ+ 2C0C1,2
E
0 |M\V ). (2.21)

Proof. First we show that the map given by (2.20) is a Γ-morphism. Since
η is Γ-invariant and the spectral projections are Γ-morphisms, the map
considered is also a Γ-invariant morphism.
For injectivity, we take u ∈ Ej(λ) with λ < 1

2C0
. So by the properties of

spectral spaces:∥∥∂̄Eu∥∥2
+
∥∥∂̄E∗u∥∥2 ≤ λ ‖u‖2 ≤ 1

2C0
‖u‖2 .
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Using theorem 2.3.7 we obtain

‖u‖2 ≤ 2C0

∫
M\V

|(1− η)u|2 dV, (2.22)

for u ∈ Ej(λ) with λ < 1
2C0

. We denote by ‖.‖0 the norm of the quadratic
form associated to 2E0 |M\V . Combining (2.19) and (2.22) yields

∥∥∂̄E(1− η)u
∥∥2

0
+
∥∥∂̄E∗(1− η)u

∥∥2

0
≤ 3

2

(∥∥∂̄Eu∥∥2
+
∥∥∂̄E∗u∥∥2

)
+ C1 ‖u‖2

≤ (3C0λ+ 2C0C1)

∫
M\V

|(1− η)u|2 dV.

The previous estimate shows that (1− η)u ∈ ImE3C0λ+2C0C1
(2E0 |M\V ),

hence

E3C0λ+2C0C1(2E0 |M\V ) = (1− η)u.

If now E3C0λ+2C0C1(2E0 |M\V ) = 0, it follows (1− η)u = 0.

Note that Lemma 2.3.8 implies, that the spectral spaces Ej(λ) are of
finite Γ-dimension for λ < 1

2C0
and j > q.

Theorem 2.3.9. Let M be a complex manifold which is acted upon by
a discrete group Γ freely and properly discontinuously such that M is a
covering of a compact q-convex manifold M̃ with smooth boundary bM̃ .
Assume that E is a Γ-invariant holomorphic line bundle on M . Then we
have for j > q

dimΓH
0,j

(2)(M,E) <∞.

Proof. At first we sum up some remarks. Since the operator ∂̄E is Γ-
invariant and commutes with 2E , it follows that ∂̄EEj(λ) ⊂ Ej+1(λ).
The restriction of ∂̄E onto the spectral spaces is by construction also
bounded by λ, we denote it by ∂̄Eλ . Additionally, ∂̄E is a Γ-morphism
and by Lemma 1.7.5 it has the property dimΓ Ker(∂̄E)⊥ = dimΓ Im ∂̄E

and thus

dimΓ Ker ∂̄Eλ + dimΓ Im ∂̄Eλ = dimΓE
j(λ), j > q.
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2.3 Γ-dimension of coverings

Especially, dimΓ Ker ∂̄Eλ is finite and because of this we have found a
lower bound for the L2-cohomology since

dimΓH
0,j
(2)(M,E) ≥ dimΓ Ker ∂̄Eλ .

We remark that Hodge theory (1.8.7) implies that we have an isomorphism
of Γ-modules

Ker2E ∩ L0,j(M,E) ∼= H0,j
(2)(M,E).

Since

Ker2E |Ej(λ) ∩ L0,j(M,E) ⊂ Ker ∂̄E |Ej(λ) ∩ L0,j(M,E),

we have that dimΓ Ker2E ≤ dimΓE
j(λ) for any λ ∈ R. Using Lemma

2.3.8, we obtain

NΓ(λ,2E) ≤ N(3C0λ+ 2C0C1,2
E
0 |M\V )

and the number on the right hand side is finite.
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In this Chapter we will be concerned with coverings of normal Stein
spaces with isolated singularities. Let S be a normal Stein space with
isolated singularities and of (pure) dimension n. Consider a relatively
compact strictly pseudoconvex domain X ⊂ S with smooth boundary as
in Section 1.2. In particular we assume that Xsing ∩ bX = ∅.
We consider further a Galois covering S̃ of S, that is, S̃ admits a free
holomorphic and properly discontinuous action of a discrete group Γ such
that the orbit space S̃/Γ = S. We denote by q : S̃ → S the canonical
projection and define the induced covering X̃ := q−1(X) of X. Our goal
is to study the L2 holomorphic functions on X̃.

3.1 Stein spaces

All complex spaces considered in this Section are assumed to be countable
at infinity and reduced. Let S be a complex space.

Let us sum up some properties of the singular locus Ssing that have
been mentioned in Sections 1.4 and 1.5 respectively. By Theorem 1.5.4
Ssing is an analytic subset of S and hence a closed complex subspace of
S. By assuming normality Theorem 1.5.6 implies that codimSsing ≥ 2

which means that we only have isolated singularities.

From now on we will additionally assume that S is Stein, i.e. S is
holomorphically convex and the global holomorphic functions f ∈ OS
separate the points of S (cf. Definition 1.5.12).
The following Lemma by Naramsinhan (cf. [Nar61, Chapter 3]) establishes
a connection between Stein spaces and plurisubharmonic functions as
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3 Stein Coverings

introduced in Definition 1.5.10.

Lemma 3.1.1. Let S be a Stein space. Then there exists a real ana-
lytic, strictly plurisubharmonic function ϕ : S → R such that the sets
{x ∈ S | ϕ(x) < c} are relatively compact in S for any c ∈ R.

Let ϕ be the plurisubharmonic function from Lemma 3.1.1. We set
ω =
√
−1∂∂̄ϕ on the regular locus Sreg. Hence we conclude the following.

Corollary 3.1.2. Any Stein space admits a Kähler form ω defined on
the regular locus.

This can be seen quite easily since ω =
√
−1∂∂̄ϕ is a Kähler form if

and only if the function ϕ is strictly plurisubharmonic.
Strictly plurisubharmonic functions are used to describe pseudoconvex
domains in a complex space X in the same way as they are used in the
context of manifolds.

Definition 3.1.3. Let S be a complex space. An open subset X ⊂⊂ S
of S is called strictly pseudoconvex if for any x0 ∈ bX there exists a
neighbourhood U and a strictly plurisubharmonic function ρ on U such
that U ∩X = {x ∈ U | ϕ(x) < 0}.

We also have the notion of Levi pseudoconvexity as defined in Definition
1.2.4.

Definition 3.1.4. Let X be a domain in a complex space S and let ρ
be a smooth defining function for X and suppose bX ∩Xsing = ∅. Then
X is called Levi pseudoconvex if and only if the Levi form

Lρ =

n∑
j,k=1

∂2ρ

∂zj∂z̄k
dzj ∧ dz̄k

is positive definite on the complex tangent space of bX.

3.2 Resolution of Singularities

In this Section we will give a short introduction to the notion of blow ups
and state the famous desingularization Theorem by Hironaka. We start
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by introducing the blow up procedure.

Let X be a Stein space and denote as before by Xsing the singular
locus of X. The singular points (and thus the non-normal points) can be
resolved by blow ups. The general idea of blowing up points or blowing up
along submanifolds is to cut out a point (or a submanifold respectively)
and replace it with a projective space. Because of this we need the
notion of projectivized bundles. We illustrate the method in the setup of
manifolds because we have the following theorem by Bishop, Remmert
and Narasimhan (see [Nar60, Theorem 6]).

Theorem 3.2.1. Let X be a Stein space of dimension n and of finite
type m > n which means that we can locally realize X as an analytic set
in Cm. Then the set of proper regular embeddings of X in Cn+m is dense
in the set of all holomorphic mappings from X to Cm+n endowed with
the topology of uniform convergence.

Remark 3.2.2. Note that any reduced complex space X is of finite type
m > n since being reduced implies that for any point x ∈ X there is a
local embedding of a neighbourhood U of x as an analytic subset of some
CN .

According to Theorem 3.2.1 we can assume that our Stein space is
embedded in some CN for a (possibly very large) N ∈ N. This allows us
to introduce the notion of blow ups as mentioned before in the context of
manifolds.

Definition 3.2.3. Let M be a complex manifold of complex dimension
n and let Y be a closed submanifold with codimesion s in M .

(i) The normal bundle of Y in M is defined as the quotient bundle

NY = TM |Y /TY

with fibers
(NY )y = TyM/TyY .

51
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(ii) The projectivized bundle associated to the normal bundle NY
is the vector bundle

P (NY )→ Y, (P (NY ))y := P (NYy).

This means that every fiber of the normal bundle is replaced by
its projective space.

The blow up of M along Y is the complex manifold M̂ together with
a holomorphic map π : M̂ →M with the following properties:

(i) The set E = π−1(Y ) is a smooth hypersurface in M̂ an there is
an isomorphism of fiber bundles

P (NY )
∼= //

ν
##

E

π′��
Y

.

(ii) The restriction π : M̂ \ E →M \ Y is a biholomorphism.

Concretely, the manifold M̂ is given as

M̂ = (M \ Y ) ∪̇ E

with induced projection map

π = idM\Y ∪ π′.

Y is called the center of the blow up π and E is called the exceptional
variety (or exceptional divisor). This means that we obtain X̂ by
replacing any point y ∈ Y by the projective space of the directions normal
to Y .

In general there are several ways to resolve singularities besides blow
ups (e.g. by normalization, see e.g. [Kol07] for further information), but
the concept of blow ups has a big advantage as we see in the following
Theorem.

52



3.2 Resolution of Singularities

Theorem 3.2.4 (Hironaka’s resolution of singularities). Let X be a
complex space. There exists a locally finite sequence of blow ups

X̂ = Xr
τr // Xr−1

// . . . // X1
τ1 // X0 = X

along smooth centers Cj ⊂ Xj, π = τr ◦ τr−1 ◦ . . . ◦ τ1, such that

(i) X̂ is smooth (i.e. a complex manifold),

(ii) Σ = π−1(Xsing) is a divisor with normal crossings and

(iii) π : X̂ \ Σ→ X \Xsing = Xreg is a biholomorphism.

Moreover we have that for any local embedding X|U ↪→ CN this sequence
of blow-ups is induced by the embedded desingularization of X|U .

The original proof of Hironaka he gave in [Hir64] was more than 200
pages long which indicates that the assertion of Theorem 3.2.4 is hardly
non-trivial. However, Bierstone and Milman gave a shorter proof (which
is still 96 pages long) in their paper [BM97] to which we refer for the proof.

In the sequel we will study properties of the exceptional divisor Σ which
is why we recall some basic facts about divisors. We start with a formal
definition.

Definition 3.2.5. A divisor on a complex manifold M is a locally finite
linear combination

D =
∑
j

cjVj ,

with coefficients cj ∈ Z and irreducible analytic hypersurfaces Vj of M .
We denote the set of all divisors on M by Div(M). Moreover a divisor
D is said to have normal crossings if cj = 1 for all j and all Vj are
distinct irreducible hypersurfaces which intersect transversally, i.e. for
all x ∈ supp(D) there are local coordinates (U, z1, . . . , zn) around x such
that

supp(D) ∩ U = {z1z2 . . . zr = 0} for some 1 ≤ r ≤ n.

We say that D has simple normal crossings if the hypersurfaces Vj
are smooth.
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The advantage of studying divisors is that we can associate a line
bundle to each divisor as can be seen as follows. Let O∗M be the sheaf
of nonvanishing holomorphic functions on M and letM∗M be the sheaf
of nonvanishing meromorphic functions on M . We have a natural short
exact sequence of sheaves

0 // O∗M //M∗M //M∗M/O∗M // 0 . (3.1)

By applying the (left exact) global section functor to the sequence (3.1)
we get an induced sequence in cohomology

0 // H0(X,O∗M ) // H0(X,M∗M ) //

// H0(X,M∗M/O∗M )
δ // H1(X,O∗M ) // . . .

.

The space H0(X,M∗M/O∗M ) can actually be identified with the group
of divisors Div(M) on M (cf. [Dem12, Chapter 5]) and by the discus-
sion in [MM07, Chapter 2, §1] we have an isomorphism of groups from
Pic(M)→ H1(X,O∗M ), where Pic(M) denotes the group of isomorphism
classes of holomorphic line bundles on M . Note that the map δ is the
usual connecting homomorphism that occurs in homological algebra. By
now we only know that the association of a divisor to a holomorphic line
bundle is natural, so let us turn to the explicit construction of the line
bundle.
Let D =

∑
j cjVj be a divisor on M and let {Uα} an open cover for M

such that every Vj has a local defining function gjα ∈ O(Uα). We set

gα =
∏
j

g
cj
jα ∈MM (Uα), hαβ :=

gα
gβ
. (3.2)

Then hαβ ∈ OM (Uα ∩ Uβ).

Definition 3.2.6. The holomorphic line bundle defined by the cocycle
(hαβ)αβ in (3.2) is called the line bundle associated to D and is
denoted by OM (D). When it is clear from the context where bundle is
defined, we write shortly O(D) = OM (D).
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3.3 Poincaré metric

3.3 Poincaré metric

In this Section we introduce the generalized Poincaré metric which we
will use in the sequel as the metric on the regular locus of our normal
Stein space X.

We fix from now on a resolution of singularities π : X̂ −→ X of
our normal space X as described in Section 3.2, and we denote by
Σ = π−1(Xsing) the exceptional divisor. By further applying Hironaka’s
theorem of resolution of singularities we can blow up X̂ and achieve that
the divisor Σ has simple normal crossings (cf. [MM07, Theorem 2.1.13]).

Lemma 3.3.1. There exists a metric hΣ with positive curvature on the
line bundle O(Σ) associated to the divisor in a neighbourhood of Σ.

Proof. Consider the blow up of the singular points Σ . This yields a
divisor in normal crossings. We choose a sufficiently small neighbourhood
Ux around a singular point x ∈ Xsing such that no other singular point is
contained in Ux. Furthermore let ι : Ux → CN be an embedding of Ux
as an analytic subset of a ball BNε =

{
z ∈ CN

∣∣∣ ∑N
j=1 |zj |

2
< ε2

}
⊂ CN

in CN . By definition of the blow-up there exist holomorphic sections
s1, . . . , sk of O(Σ) that give a map

φ : π−1(Ux)→ CPk,

φ(x) = [s1(x), . . . , sk(x)]

such that the map

π × φ : π−1(Ux)→ BNε × CP
k (3.3)

is an embedding. Consider also the projection map

p : BNε × CP
k → CPk. (3.4)

Composing the maps from (3.3) and (3.4), we get can express O(Σ) as

O(Σ) = φ∗O(1) = (π × φ)∗p∗O(1),

55



3 Stein Coverings

where O(1) is the hyperplane bundle on CPk defined as the dual bundle
of O(−1) in (1.3). Thus endowing p∗O(1) with a metric with positive
curvature (e.g. the Fubini-Study metric), we get that the pullback by
π × φ remains positive.

In the sequel we will also consider line bundles on X as introduced in
Section 1.5. Let L be a positive line bundle on X and denote by π∗L its
pullback bundle to the manifold X̂. In general the bundle π∗L is only
semi-positive, but there is a way to fix this problem (see also [MM07,
Lemma 6.2.2]).

Lemma 3.3.2. Let L be a positive holomorphic line bundle on X. Then
there exists a positive holomorphic line bundle (L̂, hL̂) on X̂ such that
L̂|X̂\Σ ∼= π∗Lk for k ∈ N.

Proof. By induction. Let Σ0 = τ−1
1 (Xsing). By the definition of the

blow-up and Lemma 3.3.1 there is a positive smooth Hermitian metric
h0 on the line bundle OX1

(−Σ0) whose curvature is positive along Σ0,
bounded on X1 and equal to 0 outside a neighbourhood U0 of Σ0.
Consider the line bundle L1 := τ∗1 (Lk0)⊗OX1

(−Σ0), k0 ∈ N with metric
(hL)⊗k0 ⊗ h0 on X1. The curvature of the line bundle L1 is given by

Θ(L1) = k0τ
∗
1 Θ(L) + Θ(OX1

(−Σ0))

and by taking k0 sufficiently large we obtain that Θ(L1) is positive. Note
that taking the k0-fold tensor power is necessary since τ∗1 Θ(L) is positive
outside a small neighbourhood V of Xsing, V ⊂ U0 and Θ(OX1

(−Σ0))

might be negative on U0 \ V .
Continuing inductively, the result is a positive line bundle L̂ on X̂ that
satisfies L̂ = π∗Lk for k ∈ N.

Corollary 3.3.3. X̂ carries a Kähler metric ω̂.

Proof. By lemma 3.3.2, there exists a positive line bundle L̂ on X̂. Take
ω̂ = RL̂, then ω̂ is clearly a Kähler form.
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In the sequel we consider the case that L is globally trivial, i.e. L =

X × C equipped with the metric h = e−ϕ where ϕ is the smooth strictly
plurisubharmonic function from Lemma 3.1.1. Then

Θ(L) =
√
−1∂∂̄ϕ > 0.

We recall the construction and properties of the generalized Poincaré
metric on X̂ \ Σ ∼= Xreg (cf. [MM07, Lemma 6.2.1]).
Let Σ = ∪jΣj be the decomposition of Σ into irreducible components

Σj , σj the defining holomorphic section of the line bundle O(Σj) and
let ‖ · ‖j be the norm for a smooth Hermitian metric on the associated
line bundle such that ‖σj‖ < 1. Let ω0 be the hermitian (1, 1)-form
associated to any smooth hermitian metric on TX̂ that is invariant under
the complex structure of X̂.

Definition 3.3.4. The generalized Poincaré metric ωP on Xreg is
defined by the Hermitian form

ωP = ω0 + ε
√
−1
∑
j

∂̄∂ log

((
− log

(
‖σj‖2j

))2
)
, ε ∈ [0, 1] fixed.

(3.5)

The Poincareé metric plays a fundamental role since the L2 cohomology
spaces we defined in Section 1.8 depend on the choice of a metric in a
natural way and the following Lemma from [MM07, Lemma 6.2.1] clarifies
the importance of the Poincaré metric.

Lemma 3.3.5. The metric ωP is a complete Hermitian metric of finite
volume with bounded Hermitian torsion TP .

Proof. Let us start with a local description of the metric. Let D be the
unit disc in C. Consider (D∗)l ×Dn−l =: D. We define on D a metric Ωp

by

Ωp =

√
−1

2

l∑
k=1

dzk ∧ dz̄k

|zk|2
(

log |zk|2
)2 +

√
−1

2

n∑
k=l+1

dzk ∧ dz̄k.
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3 Stein Coverings

For any z0 ∈ Σ there exists an open neighbourhood U = Uz0 , U
∼= Dn in

which we have

(D∗)l×Dn−l ∼=
(
X̂ \ Σ

)
∩U = {(z1, . . . , zn) | z1 6= 0, . . . , zl 6= 0} , (3.6)

since Σ is a divisor with normal crossings. In order to get a repres-
entation for Ωp, we analyze the summands appearing in the definition
separately. We have

√
−1∂̄∂ log

(
(− log ‖σj‖2j )

2
)

=

=2
√
−1

Θ(OX̂(Σj))

log ‖σj‖2j
+ 2
√
−1

∂ log ‖σj‖2j ∧ ∂̄ log ‖σj‖2j
log ‖σj‖2j log ‖σj‖2j

.

The second summand is non-negative since ∂̄f ∧ ∂f ≥ 0 for any real
function f . The first summand tends to zero when we are getting close
to the divisor and can be handled as follows: σj is the defining section
of Σj , i.e. Σj is given by the equation σj = 0. Thus log ‖σj‖j tends to
minus infinity and thus the whole fraction to zero. This implies that in a
neighbourhood of the divisor we have

Ωp = ω0 + 2ε
√
−1
∑
j

Θ(OX̂(Σj))

log ‖σj‖2j

and this is positive for small ε. Let us choose now an open neighbourhood
U of the point z0 such that

(i) Σj is defined by the equation zj = 0 for j ∈ {1, . . . , k} and

(ii) Σj ∩ U = ∅ for j > k.

Then we can locally write ‖σj‖2j = ϕj |zj |2 with ϕj being a positive
smooth function on U . Hence locally
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3.4 Coverings of Stein Spaces

∂ log ‖σj‖2j ∧ ∂̄ log ‖σj‖2j
log ‖σj‖2j log ‖σj‖2j

=
∂ log(ϕj |zj |2) ∧ ∂̄ log(ϕj |zj |2)

|zj |2
(

log(ϕj |zj |2)
)2

=
dzj ∧ dz̄j

|zj |2
(

log(ϕj |zj |2)
)2 +

νj

|zj |2
(

log(ϕj |zj |2)
)2 ,

where νj ∈ Ω1,1(U) vanishes on set {zj = 0}.
We will now show that the Poincare metric is complete. Note that accord-
ing to the previous computations it is sufficient to prove completeness on
the set {z ∈ C | 0 < |z| < c}, where c > 0. Let γ : [0, c] → C be a curve
defined by γ(t) = tz. Then γ′(t) = z and thus∫

γ

dz ∧ dz̄

|z|2
(

log |z|2
)2 =

∫ c

0

1

t |log t|
dt =∞.

Hence ωp is complete.
To compute the volume of ωp, we switch to polar coordinates.

Volωp =

∫ 2π

0

∫ c

0

r

r2(log r)2
drdθ = −2π

[
1

log r

]c
0

and this is a finite number.
It remains to show that the Hermitian torsion TP is bounded. By definition
we have TP = [ι(ωp), ∂ωP ] and from (3.5) we infer that ∂ωP = ∂ω0 , hence
∂ωP extends smoothly over X̂ and thus we are done.

Let us sum up what we achieved so far. By Lemma 3.3.2 we know
that the blow up X̂ is a Kähler manifold with Kähler form ω = Θ(L̂),
so we can take ω0 = ω as our refenrence metric in (3.5). Hence ωP is a
complete metric in a neighbourhood of the singular locus Xsing.

3.4 Coverings of Stein Spaces

In this Section we are going to lay down the foundations that are needed
to prove the main Theorem in Section 3.5.
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3 Stein Coverings

Let us start with a visualization of the spaces we are considering. Our
starting point was a normal Stein space S which we blow up in order to
get a complex manfiold Ŝ such that Ŝ \ Σ ∼= Sreg and we have complete
metrics on both spaces. Now we are considering a Galois covering S̃ of
the space S and a relatively compact pseudoconvex domain X ⊂ S with
induced metrics as can be read off from the following diagram:

L̂

��

L

��

L̃ = q∗L

��
X̂

π // X X̃
qoo

Let us consider the trivial line bundle L′ ∼= π∗Lk over Xreg ∼= X̂ r Σ.
We introduce on L a new metric (hL̂)1/k in order to get a positive metric
on the whole of X.
Set

hLε := (hL̂)1/k
∏
i

(− log(‖σi‖2i ))ε , 0 < ε� 1, (3.7)

with hL̂ and k as in Lemma 3.3.2. The curvature of this new metric is
then

Θε(L
′) = π∗Θ(L) + Θ(Σ) + ε

√
−1
∑
j

∂̄∂ log

((
− log ‖σj‖2j

)2
)
, (3.8)

where Θ(Σ) is the curvature of the metric from Lemma 3.3.1. Note
that Θε(L

′) is positive on the whole of X.
We introduce on X̃reg the pullback metrics

ω̃P = q∗ωP , h̃Lε = q∗hLε , (3.9)

and we denote the L2-space of square integrable (p, q)-forms with
respect to ω̃P and h̃Lε on X̃reg by Lp,q(X̃reg, ω̃P , h̃

L
ε ). We introduce now

the L2 cohomology groups Hp,q
(2) (X̃reg, ω̃P , h̃

L
ε ) with respect to the metrics

ω̃P from (3.9) and h̃Lε as in (3.7) as in Section 1.8.
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3.4 Coverings of Stein Spaces

Let Ωp,q0 (X̃reg) denote space of compactly supported smooth (p, q)-forms
on X̃reg and let Lp,q(X̃reg, ω̃P , h̃

Lε) := Lp,q(X̃reg, ω̃P ) denote the set of
square-integrable (p, q)-forms with respect to the metrics constructed
above, i.e. Lp,q(X̃reg, ω̃P ) is the closure of Ωp,q0 (X̃reg) with respect to the
norm induced by the inner product

(u, v) =

∫
X̃reg

h̃Lε (u, v)dVω̃P . (3.10)

By convention we write L0,0(X̃reg, ω̃P ) = L2(X̃reg, ω̃P ). We denote the
maximal extension of the ∂̄-operator to Lp,q(X̃reg, ω̃P ) for simplicity again
by ∂̄. It is a closed, linear and densely defined operator with domain

Dom ∂̄ =
{
u ∈ Lp,q(X̃reg, ω̃P )

∣∣∣ ∂̄u ∈ Lp,q+1(X̃reg, ω̃P )
}
,

where the form ∂̄u is calculated in the sense of distributions (cf. Section
1.3). This induces a complex ∂̄ : L•,•(X̃reg, ω̃P )→ L•,•+1(X̃reg, ω̃P ) and
its cohomology groups are defined as

Hp,q
(2) (X̃reg, ω̃P ) :=

Ker ∂̄ ∩ Lp,q(X̃reg, ω̃P )

Im ∂̄ ∩ Lp,q−1(X̃reg, ω̃P )
. (3.11)

In particular we consider the space

H0,0
(2) (X̃reg, ω̃P ) =

{
u ∈ L2(X̃reg, ω̃P )

∣∣ ∂̄u = 0
}
. (3.12)

Let ∂̄∗ and ϑ be the Hilbert space and formal adjoint operators of the
maximal extension of ∂̄. Note that due to the presence of the boundary
bX̃reg both operators do not coincide. Let σ(ϑ, dξ) denote the principal
symbol of the operator ϑ evaluated at the cotangent vector dξ which was
introduced in Definition 1.3.8. Set

Bp,q(X̃reg) =
{
u ∈ Ωp,q0 (X̃reg ∪ bX̃reg) | σ(ϑ, dϕ)u = 0

}
. (3.13)

Integration by parts as in [FK72, Propositions 1.3.1 and 1.3.2 ] yields
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3 Stein Coverings

Bp,q(X̃reg) = Ωp,q0 (X̃reg ∪ bX̃reg) ∩Dom ∂̄∗ and ϑ = ∂̄∗ on Bp,q(X̃reg).

(3.14)
Consider from now on the case p = 0. We recall that since the connected

components of X̃reg are complex submanifolds of CN , we can use the
fundamental estimate 1.12 and the L2 Hodge Theorem 1.8.7 on X̃reg.
We will work with the Laplacian associated to ∂̄.

Definition 3.4.1. Let ∂̄ : Ω0,q
0 (X̃reg) → Ω0,q

0 (X̃reg) and let ∂̄∗ be the
Hilbert space adjoint of ∂̄. Then we define the Laplacian 2 as

2 : Ω0,q
0 (X̃reg)→ Ω0,q

0 (X̃reg),

2 = ∂̄∂̄∗ + ∂̄∗∂̄.

Note that 2 is a self-adjoint, elliptic differential operator. Since X̃reg

is not compact we define the Gaffney extension , which is a positive
self-adjoint extension of 2 to L•,•(X̃reg, ω̃P ) (cf. [MM07, Proposition
3.1.2]) as

Dom2 =
{
u ∈ Dom ∂̄ ∩Dom ∂̄∗

∣∣ ∂̄u ∈ Dom ∂̄∗, ∂̄∗u ∈ Dom ∂̄
}
,

2 = ∂̄∂̄∗u+ ∂̄∗∂̄u for u ∈ Dom2.

The quadratic form associated to the Gaffney extension is the form Q

defined by

Dom(Q) = Dom ∂̄|L0,q(X̃reg) ∩Dom ∂̄∗|L0,q(X̃reg),

Q(u, v) = 〈∂̄u, ∂̄v〉+ 〈∂̄∗u, ∂̄∗v〉 for u, v ∈ Dom(Q).

Lemma 3.4.2. The space B0,q(X̃reg) is dense in Dom ∂̄ ∩Dom ∂̄∗ with
respect to the norm

u 7→
(
‖u‖2 +

∥∥∂̄u∥∥2
+
∥∥∂̄∗u∥∥)1/2

.
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3.4 Coverings of Stein Spaces

Proof. The idea is to show that every form in B0,q(X̃reg) is a limit of a
sequence of compactly supported forms because in this case the assertion
follows from the Friedrichs identity lemma, see e.g. [MM07], Lemma
3.1.3.
Since the metric ω̃P is complete in the neighbourhood of the singular
points, we can construct a sequence of smooth cut-off functions {ηj}j ⊂
C∞0 (X̃reg ∪ bX̃reg) such that 0 ≤ ηj ≤ 1, ηj+1 = 1 on supp ηj and
|dηj | ≤ 1 and supp ηj exhaust X̃reg ∪ bX̃reg as j → ∞. Clearly u ∈
Dom ∂̄ ∩Dom ∂̄∗ implies ηju ∈ Dom ∂̄ ∩Dom ∂̄∗ and following Andreotti-
Vesentini, {ηju} → u, ∂̄(ηju)→ ∂̄u and ∂̄∗(ηju)→ ∂̄∗u as j →∞.

We will use the Bochner-Kodaira-Nakano formula with boundary term
(see e.g. [MM07], §1.4).
Let TX̃reg = T 1,0X̃reg ⊕ T 0,1X̃reg denote the splitting of the tangent
bundle of X̃reg with respect to the complex structure of S and denote by
KX̃reg

the canonical bundle on X̃reg. We set Ľ = L′ ⊗K∗
X̃reg

. By (1.4)
there is a natural isometry

∨ : Λ0,q(T ∗X̃reg)⊗ L→ Λn,q(T ∗X̃reg)⊗ Ľ,

u 7→ ǔ = (ξ1 ∧ . . . ∧ ξn ∧ u)⊗ (ξ1 ∧ . . . ∧ ξn), (3.15)

with {ξj}j=1n being an orthonormal frame of T 1,0X̃reg and {ξj}nj=1

the corresponding dual frame.
Let End(Ω•,•(X̃reg)) denote the algebra of endomorphisms of smooth
differential forms on X̃reg and let [·, ·] be the graded commutator on it.
The Hermitian torsion T of the Poincare metric mentioned before is
defined as T = [i(ω̃P ), ∂ω̃P ].
We assume further on that |dϕ| = 1 on bX̃reg (this is possible since
if necessary, we can replace ϕ by ϕ/ |dϕ| near bX̃reg and thus have a
normalized defining function).

Theorem 3.4.3. For any u ∈ B0,1(X̃reg) we have
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3 Stein Coverings

3

2

(∥∥∂̄u∥∥2
+
∥∥∂̄∗u∥∥2

)
≥
(

Θ(Ľ)(ξj , ξ̄k)ξ̄k ∧ iξ̄ju, u
)

+

∫
bX̃reg

Lϕ(u, u)dVbX̃reg

− 1

2

(∥∥T ∗ǔ2
∥∥+

∥∥T ǔ∥∥2
+
∥∥T ∗ǔ∥∥2

)
. (3.16)

By assumption the boundary bX̃reg is strictly pseudoconvex, so the
boundary integral in (3.16) is non-negative.
We set T = 1

2

(
T T ∗ + T ∗T + T T ∗

)
and define a continuous function

τ : X̃reg → R, τ(x) = sup

{
〈Tv, v〉
〈v, v〉

∣∣∣ v ∈ Λn,1T ∗x X̃reg \ {0}
}
. (3.17)

Then (3.16) simplifies to

3

2

(∥∥∂̄u∥∥2
+
∥∥∂̄∗u∥∥2

)
≥
(

Θ(Ľ)(ξj , ξ̄k)ξ̄k ∧ iξ̄ju, u
)
−
∫
X̃reg

τ(x) |u|2 .

(3.18)

Lemma 3.4.4. There are constants A,B,C > 0 such that

(i)
√
−1Θ(Ľ) > Aω̃P ,

(ii)
√
−1Θ(K∗

X̃reg
) > −Bω̃P and

(iii) |Tω̃P | < C.

Proof. The first assertion follows for a small ε from (3.5) and (3.7) and
the assumption that X is relatively compact. The second and the third
assertion are a direct consequence of Lemma 3.3.5 since ω̃P = q∗ωP and
hence ω̃P is complete in a neighbourhood of the singular locus.

Combining Theorem 3.4.3 and Lemma 3.4.4 we obtain the following
Theorem.
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3.5 Proof of the Main Theorem

Theorem 3.4.5. For any u ∈ B0,1(X̃reg) we have

3

2

(∥∥∂̄u∥∥2
+
∥∥∂̄∗u∥∥2

)
≥ (A−B) ‖u‖2 . (3.19)

Moreover Lemma 3.4.2 states that B0,1(X̃reg) is dense in Dom ∂̄ ∩
Dom ∂̄∗, so (3.19) holds for any u ∈ Dom ∂̄ ∩ Dom ∂̄∗ ∩ L0,1(X̃reg, ω̃P ).
Note that the right hand side of (3.19) is positive without loss of generality
since by taking higher tensor powers of the curvature of L̂ ∼= π∗Lk we
ensure that A > B.
In particular, Theorem 1.8.7 tells us that

Ker2|L0,1(X̃reg,ω̃P )
∼= H0,1

(2) (X̃reg, ω̃P ).

3.5 Proof of the Main Theorem

In this Section we will prove the main Theorem of this thesis which is as
follows.

Theorem 3.5.1. Let X ⊂ S be a relatively compact strictly pseudoconvex
domain in a normal Stein space S and let q : S̃ → S be a Galois covering
of S by a discrete group Γ. Set X̃ = q−1(X). Then

dimΓH
0,0
(2) (X̃) =∞.

The proof of Theorem 3.5.1 is organized in different steps which are
inspired by the paper of Gromov, Henkin and Shubin [GHS98].
Let us start with an important remark. Since S is a Stein space by
assumption we know by Theorem 1.6.5 that S̃ is Stein, too. Hence
Riemann’s Extension Theorem 1.5.9 holds also on S̃ and thus we get

H0,0
(2) (X̃reg, ω̃P ) ⊂ H0,0

(2) (X̃, ω̃P ).

For technical reasons we will make use of Sobolev spaces with real
exponents which are defined in the following way (see [GHS98], [Ati76]
or [Shu92]).
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3 Stein Coverings

Definition 3.5.2. Let M be a differentiable manifold with a free action
of a discrete group Γ such that M/Γ is compact, E be a vector bundle on
M with Γ-invariant metric and let s ∈ R. Let M̃ be a Γ-invariant complex
neighbourhood of M.The space W s(M,E) is defined to be the Hilbert
space which consists of all restrictions to M finite linear combinations
of all sections Tu where u ∈ L2(M̃,E) and T is a properly supported
Γ-invariant pseudodifferential operator of order −s on M̃ .

Next we state a condition for the Γ-dimension which is sufficient to
show finiteness of our L2-cohomology modules.

Lemma 3.5.3. Let L ⊂ L2(X̃reg, ω̃P ) be a closed Γ-invariant subspace
such that L ⊂W ε(X̃reg, ω̃P ) for some ε > 0 and suppose that there is a
constant C > 0 such that for u ∈ L we have

‖u‖ε ≤ C ‖u‖L2 . (3.20)

Then dimΓ L <∞.

Proof. See [GHS98, Proposition 1.5].

We can now use Lemma 3.5.3 to state a condition for an operator to
be Γ-Fredholm in the sense of Definition 1.7.6.

Lemma 3.5.4. Let T be a self-adjoint operator on L2(X̃reg, ω̃P ) such
that T commutes with the action of Γ and assume that Dom(T ) ⊂
W ε(X̃reg, ω̃P ) for some ε > 0 and moreover that there exists a constant
C > 0 such that the inequality

‖u‖2ε ≤ C
(
‖Tu‖2L2 + ‖u‖2L2

)
(3.21)

is satisfied for any u ∈ Dom(T ). Then T is Γ-Fredholm.

Proof. We have to check two conditions: First that dimΓ KerT <∞ and
second that there exists a closed Γ-invariant subspace Q ⊂ L2(X̃reg, ω̃P )

such that Q ⊂ Im(T ) and codimΓQ <∞.
To prove the first assertion we notice that (3.21) implies that (3.20)
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3.5 Proof of the Main Theorem

is satisfied for any u ∈ Ker(T ) and hence Lemma 3.5.3 implies that
dimΓ Ker(T ) <∞.
For the second assertion we put Q = ImEδ, where Eδ is the spectral
projection of T onto the interval (−δ, δ). Then we get by Lemma 3.5.3
that dimΓEδ <∞. But we also know that

Im(id−Eδ) = (ImEδ)
⊥ ⊂ ImT,

and hence T is Γ-Fredholm.

Lemma 3.5.5. Let U be an arbitrary set and let f : U → C be an
unbounded function. Then for any N ∈ N the functions f, f2, . . . , fN are
linearly independent modulo bounded functions on U which means that if

c1f + c2f
2 + . . .+ cNf

N

is a bounded function on U , then c1 = c2 = . . . = cN = 0.

The proof is straightforward and left to the reader.

Theorem 3.5.6. Let X̃ be as in Theorem 3.5.1 and assume that bX̃ 6= ∅.
Then every boundary point x ∈ bX̃ is a local peak point for H0,0

(2) (X̃).

Proof. By Lemma 3.1.1 we know that there exists a strictly plurisubhar-
monic function ϕ on X̃ such that its Levi form Lϕ is positive definite on
X̃. We know that we can rescale ϕ if necessary such that the boundary
bX̃ =

{
z ∈ X̃ | ϕ(z) = 0

}
, hence we choose (the possibly rescaled) ϕ as

defining function for X̃. Since ϕ is smooth we can consider its Taylor
expansion at a boundary point x ∈ bX̃

ϕ(z) = ϕ(x) + 2 Re f(z, x) + Lϕ(z − x, z̄ − x̄) +O(|z − x|3), (3.22)

where f(z, x) is a complex quadratic polynomial and Lϕ is the Levi
form of ϕ at x. Morover (3.22) implies that Re f(z, x) must be negative if
z is sufficiently close to x because the Levi form is by assumption positive
definite, ϕ(x) = 0 and z is an interior point of X̃. Hence we can choose
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a branch of log f(z, x) in a possibly very small neighbourhood Ux of x
such that the function hx(z) = log f(z, x) is holomorphic on Ux ∩ X̃.
Consider the functions hx, h2

x, . . . . Then these functions clearly satisfy
hNx ∈ L2

(
Ux ∩

(
X̃ ∪ bX̃

))
and additionally have a peak point at x. Us-

ing Lemma 3.5.5 we obtain that the functions hNx are linearly independent
modulo bounded functions on Ux.

Remark 3.5.7. Note that it is essential in the proof of Theorem 3.5.6 that
we assume that there is no singularity of X̃ at the boundary.

In order to proof Theorem 3.5.1 we are now going to construct a sub-
space of Ω0,1(X̃ ∪ bX̃) on which we will solve the ∂̄-equation in order to
be able to apply the results on H0,0

(2) (X̃).

Let us consider the set of functions {hNx } from the proof of Theorem
3.5.6. Since these functions are only defined on a small neighbourhood
Ux of a boundary point x ∈ bX̃, we use the group action of Γ to cover
the whole boundary.
Let χ ∈ C∞(Ux) be a smooth cutoff function such that χ = 1 on a
neighbourhood V ⊂ Ux of x and we will also identify χ with its extension
by 0 to X̃ ∪ bX̃. Let γ ∈ Γ and denote the translation on X̃ induced by
the group element again for simplicity by γ. Keeping this in mind we can
define the translation of χ by γ as

γ∗χ(z) = χ
(
γ−1z

)
, (3.23)

where the function γ∗χ is supported in a neighbourhood of γx. This
means basically that we move Ux by γ ∈ Γ around the boundary. Let us
consider now the functions χhjx for j ∈ {1, . . . , N}. Then we obtain a
closed Γ-invariant subspace L in L2(X̃) that is spanned by these functions

L =

u
∣∣∣∣∣∣ u =

∑
γ∈Γ

N∑
j=1

aj,γγ
∗(χhjx),

∑
j,γ

|aj,γ |2 <∞

 , (3.24)
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where the aj,γ are constants. The set L consists of functions u that
are a linear combination of the functions χhjx that are moved around by
γ ∈ Γ. Hence dimΓ L = N .
Consider next the forms

∂̄(χhjx), j = 1, . . . , N. (3.25)

Since the ∂̄-operator is linear and the functions hjx are holomorphic
in a neighbourhood of the boundary, the functions ∂̄(χhjx) are linearly
independent, too, as a consequence of Lemma 3.5.5. Note that due to
the construction all these forms have compact support. Now we can play
the same game again and consider the closed Γ-invariant subspace L′ of
L0,1(X̃) that is spanned by the forms (3.25), i.e.

L′ =

u
∣∣∣∣∣∣ u =

∑
γ∈Γ

N∑
j=1

aj,γ ∂̄
(
γ∗(χhjx)

)
,
∑
j,γ

|aj,γ |2 <∞

 . (3.26)

By the same arguments presented before we obtain dimΓ L
′ = N .

Let us describe the elements of L′ a bit more in detail. First, any u ∈ L′

has compact support and is smooth on X̃ ∪ bX̃. Obviously we have
L′ ⊂ Im ∂̄ and thus also L′ ⊂ Im2 by the Hodge decomposition Theorem
1.8.7.

Lemma 3.5.8. Suppose (3.19) holds. The domain Dom(2)|L0,q(X̃reg,ω̃P )

is included into W 1(X̃reg, ω̃P ) for q > 0 and there is a constant C such
that for any u ∈ Dom(2)|L0,q(X̃reg,ω̃P ) we have

‖u‖21 ≤ C
(
‖2u‖2L2 + ‖u‖2L2

)
. (3.27)

Proof. Let {Uj} be a Γ-invariant covering of X̃ and suppose that there
exists another Γ-invariant open covering {Vj} such that Uj ⊂ Vj . Let
us further choose partitions of unity {ψj} and {Ψj} subordinate to the
chosen coverings such that Ψj ≡ 1 on suppψj . Note that by Lemma 3.4.2
the space B0,q(X̃reg) is dense in Dom ∂̄ ∩Dom ∂̄∗ and hence we can start
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with u ∈ B0,q(X̃reg).
Assume first that u is supported in a neighbourhood of the boundary.
Then by (3.19) we can use Theorem 1.2 from [GHS98] to get for any
u ∈ Ωp,q(X̃reg ∪ bX̃reg) ∩Dom(2) the estimate

‖ψju‖21 ≤ C2

(
‖Ψj2u‖2L2 + ‖Ψju‖2L2

)
.

Since the coverings chosen are Γ-invariant and the quotient X̃/Γ = X

is relatively compact, the constant can be chosen independent of j and
hence the proof is completed in this case.
Let us assume now that u is supported in a neighbourhood of the singular
locus X̃sing. Since the Poincare metric ω̃P is complete in a neighbourhood
of the singular locus by Lemma 3.3.5, the Andreotti-Vesentini density
lemma [MM07, Lemma 3.3.1] implies that (3.27) holds for any u ∈
Dom(2)|L0,q(X̃reg,ω̃P ). Using a partition of unity we can patch forms u
and v that have support near the boundary and near the singular locus
respectively. Hence the proof is complete.

Theorem 3.5.9. The Laplacian 2 is Γ-Fredholm on Dom(2)|L0,q(X̃reg,ω̃P )

and Im2|L0,1(X̃reg,ω̃P ) ∩ L
′ is Γ-dense in L′ defined in (3.26).

Proof. Lemma 3.5.8 implies that the conditions of Lemma 3.5.4 are
satisfied on Dom(2)|L0,q(X̃reg,ω̃P ) and hence 2 is Γ-Fredholm.
Since 2 is Γ-Fredholm, Lemma 1.7.7 implies the second assertion.

Finally we are able to prove Theorem 3.5.1.

Proof of Theorem 3.5.1. The idea of the final step is to solve the ∂̄-
equation on a certain subspace of L2(X̃reg, ω̃P ) and to generalize it to an
arbitrary choice of a metric.
Note that by Theorem 3.5.9 the Laplacian 2 is Γ-Fredholm on
L0,1(X̃reg, ω̃P ) and Im(2)|L0,1(X̃reg,ω̃P ) is Γ-dense in the space L′ defined
in (3.26). By the definition of Γ-density we know that for any δ > 0

there exists a closed Γ-invariant subspace Y ′ ⊂ L′ such that Y ′ ⊂ Im2

and dimΓ Y
′ > N − δ. Since Y ′ ⊂ Im2 we know that for any u ∈ Y ′
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there exists a v with the property that v ⊥ Ker2 such that 2v = u and
moreover v is unique with this property.
Call the space of all such solutions Z. Then we have immediately

dimΓ Z = dimΓ Y
′ > N − δ.

Consider now the ∂̄-problem for the equation 2v = u. Then

∂̄(2v) = ∂̄
(
(∂̄∂̄∗ + ∂̄∗∂̄)v

)
= ∂̄∂̄∗∂̄v = ∂̄u = 0,

and according to that ∂̄v = 0. This means that ∂̄∂̄∗v = u since by
assumption v ⊥ Ker2.
Let us now consider the space Y defined by

Y =
{
f ∈ L

∣∣ ∂̄f = g ∈ Y ′
}
.

By Lemma 3.5.5 and the definition of L we know that the ∂̄-operator is
injective on L as we can see easily: Assume

µ1∂̄(χhx) + µ2∂̄(χh2
x) + . . .+ µN ∂̄(hNx ) = 0,

then by linearity of ∂̄ we get immediately that

µ1χhx + . . .+ µNχh
N
x = 0

is a holomorphic function with compact support and hence is identially 0

which implies µ1 = . . . = µN = 0.
By injectivity of the ∂̄-operator on L we conclude

dimΓ Y = dimΓ Y
′ > N − δ.

Let us analyze elements f ∈ Y a bit more in detail. For f ∈ Y we know
that by the construction of Z we can find a unique solution g ∈ Z such
that

2g = u = ∂̄f.

But this means that the function h = f − ∂̄∗g is in L2(X̃reg, ω̃P ). Since
all these functions h form again a closed Γ-invariant subspace H ⊂
L2(X̃reg, ω̃P ) with dimΓH > N − δ for any N ∈ N, and

H0,0
(2) (X̃reg, ω̃P ) ⊂ H0,0

(2) (X̃, ω̃P ),
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3 Stein Coverings

we proved Theorem 3.5.1 for the Poincare metric ω̃P .
In order to get the result in general let θ be a different hermitian metric
on X̃reg. If the metric θ is dominated by ω̃P , i.e. θ ≤ ω̃P , then we are
done since for any u ∈ L2(X̃reg, ω̃P ) we have∫

X̃reg

|u|2 dVθ =

∫
X̃reg

|u|2 θ
n

n!
≤
∫
X̃reg

|u|2 ω̃
n
P

n!
=

∫
X̃reg

|u|2 dVω̃P ,

which immediately shows that u ∈ L2(X̃reg, θ). Hence we have to show
that θ ≤ ω̃P for any given metric θ.
Let us choose coordinates as in (3.6). Then it is clear that ω̃P dominates
the Euclidean metric in these coordinates in a neighbourhood of X̃sing

and thus it dominates some positive multiple of any hermitian metric
θ on X̃reg. Taking θ = ω0 in (3.5) this means that there exists some
constant C > 0 such that ω̃P ≥ Cθ on X̃reg, hence we proved Theorem
3.5.1 in full generality.
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