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Abstract

In the simulation of deformation processes in material science the considera-
tion of a microscopic material structure is often necessary, as in the simulation
of modern high strength steels. A straightforward finite element discretization
of the complete deformed body resolving the microscopic structure leads to very
large nonlinear problems and a solution is out of reach, even on modern super-
computers. In homogenization approaches, as the computational scale bridging
approach FE2, the macroscopic scale of the deformed object is decoupled from
the microscopic scale of the material structure. These approaches only consider
the microstructure in a localized fashion on independent and parallel repre-
sentative volume elements (RVEs). This introduces massive parallelism on the
macroscopic level and is thus ideal for modern computer architectures with large
numbers of parallel computational cores.
Nevertheless, the discretization of an RVE can still result in large nonlinear
problems and thus highly scalable parallel solvers are necessary. In this context,
nonlinear FETI-DP (Finite Element Tearing and Interconnecting - Dual-Primal)
and BDDC (Balancing Domain Decomposition by Constraints) domain decom-
position methods are discussed in this thesis, which are parallel solution methods
for nonlinear problems arising from a finite element discretization. These ap-
proaches can be viewed as a strategies to further localize the computational
work and to extend the parallel scalability of classical FETI-DP and BDDC
methods towards extreme-scale supercomputers. Also variants providing an in-
exact solution of the FETI-DP coarse problem are considered in this thesis,
combining two successful paradigms, i.e., nonlinear domain decomposition and
AMG (Algebraic Multigrid). An efficient implementation of the resulting inex-
act reduced Nonlinear-FETI-DP-1 method is presented and scalability beyond
200000 computational cores is showed.
Finally, a highly scalable FE2 implementation using recent inexact reduced
FETI-DP methods to solve the RVE problems on the microscopic level is pre-
sented and scalability on all 458752 cores of the JUQUEEN BlueGene/Q system
at Forschungszentrum Jülich is demonstrated.
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Zusammenfassung

In der Simulation von Deformationsprozessen in den Materialwissenschaften
ist die Berücksichtigung mikroskopisch kleiner Materialstrukturen oft essentiell.
Ein gutes Beispiel dafür sind moderne Hochleistungsstähle. Eine detailge-
treue Auflösung des gesamten Deformationsproblems mit Finiten Elementen
in der Größenordnung der mikroskopischen Struktur würde zu Problemgrößen
führen, die selbst auf den größten Supercomputern nicht zu handhaben wären.
Homogenisierungsmethoden, wie das FE2-Verfahren, entkoppeln deshalb die
makroskopische Skala von der mikroskopischen und betrachten die Material-
struktur nur lokal, innerhalb unabhängiger repräsentativer Volumenelemente
(RVE). Diese Methoden liefern somit einen massiven Parallelismus auf der
makroskopischen Ebene und sind wie geschaffen für moderne Computerar-
chitekturen mit vielen parallelen Rechenkernen.
Jedoch kann auch die Diskretisierung der RVEs zu großen nichtlinearen Prob-
lemen führen, zu deren Lösung wiederum effiziente und skalierbare Verfahren
notwendig sind. In diesem Zusammenhang werden nichtlineare FETI-DP
(Finite Element Tearing and Interconnecting - Dual-Primal) und BDDC (Bal-
ancing Domain Decomposition by Constraints) Gebietszerlegungsverfahren
betrachtet. Diese Löser nichtlinearer Finite Elemente Probleme können als
Strategie angesehen werden, die vom Computer zu verrichtende Arbeit weiter
zu lokalisieren und somit die Skalierbarkeit klassischer FETI-DP und BDDC
Methoden zu verbessern. Es wird ebenfalls eine Variante besprochen, in der
das nichtlineare FETI-DP Verfahren mit inexaktem FETI-DP kombiniert
wird, was die inexakte Lösung des FETI-DP Grobgitterproblems mithilfe eines
algebraischen Mehrgitterverfahrens (AMG) ermöglicht. Außerdem wird eine
effiziente Implementierung dieses Verfahrens vorgestellt und Skalierbarkeit auf
mehr als 200.000 Kernen gezeigt.
Zum Abschluss der Arbeit wird eine vollständige Implementierung des FE2-
Verfahrens präsentiert, in der inexakte FETI-DP Methoden zur Lösung der
RVE-Probleme eingesetzt werden. Für dieses Softwarepaket wird Skalierbarkeit
auf der gesamten JUQUEEN (BlueGene/Q mit 458.752 Rechenkernen im
Forschungszentrum Jülich) präsentiert.
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1 Introduction

Finite element simulation of deformation processes in the field of structural me-
chanics can lead to very large and ill conditioned problems, especially if the
considered material has a fine granular microstructure. This is the case in mod-
ern high strength steels combining higher strength and resistance with lower
weight. During the fabrication process, including different heating and cooling
phases, a characteristic structure of, e.g., martensite and austenite, embedded
in a ferritic matrix material is formed, which can only be described in a scale up
to 106 times smaller than the macroscopic scale of the deformed object. This
microstructure is responsible for the great performance of modern high strength
steels, but can also cause local peaks in stresses and a highly inhomogeneous
material behavior. In order to detect the location of material instabilities under
large forces, the microstructure cannot be neglected in realistic simulations rep-
resenting experimental results. Unfortunately, a straightforward discretization
with finite elements small enough to resolve the microscopic structure would
lead to problem sizes demanding more than the computational power of current
or even future supercomputers.
Different homogenization approaches have been introduced in the last decades
separating the macroscale from the microscale; see, e.g., [14, 35, 49–52, 96, 110,
115, 127–129]. The discretized macroscopic deformation problem is small com-
pared to a straightforward discretization resolving the microscale and the mi-
crostructure is only considered inside many localized and parallel problems based
on representative volume elements (RVEs). These micro-macro simulations thus
introduce a massive parallelism on the macroscale by providing independent mi-
croproblems. Nevertheless, the problems on the microscale can still be large and
further levels of parallelism might be necessary. Efficient parallel solvers for non-
linear PDEs are thus a major factor driving the performance and scalability of
large micro-macro simulations.
In this thesis, we consider three levels of parallelism. On the macroscopic and
first level, the computational scale bridging approach FE2 [49, 96, 110, 127–129]
directly incorporating micromechanics into macroscopic simulations is used.
While the macroscopic problem is discretized with comparable large finite ele-
ments, a boundary value problem resolving the microscopic structure is solved at
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CHAPTER 1. INTRODUCTION

each macroscopic Gauß integration point. The microscopic problems are based
on the definition of a representative volume element (RVE). Volumetric aver-
ages of microscopic stress distributions are returned to the macroscopic level
and replace a phenomenological material law. The communication between the
microscopic problems in this homogenization approach is minimal, since the
problems are weakly coupled through the solution of the macroscopic problem.
Using a parallel solver for the independent RVEs, a second level of parallelism
comes into play. Here, we suggest the usage of domain decomposition methods
of the FETI-DP type (Finite Element Tearing and Interconnecting - Dual Pri-
mal) since FETI-DP methods [43,44,85,87,93,94] are well known to be robust
in problems of structural mechanics. A classical FETI-DP method has been
awarded a Gordon Bell price in 2002 [10] for a structural mechanics simulation
on unstructured grids. Let us remark that combinations of domain decomposi-
tion methods and homogenization approaches have already been discussed in,
e.g., [19, 66,98].
Scalability on more than 100000 cores can finally be obtained by introducing a
third level of parallelism by the incorporation of an algebraic multigrid method
(AMG) on the FETI-DP coarse level. We refer to this class of three level parallel
methods, combining FE2 method with FETI-DP and AMG methods as FE2TI
and we will present a parallel FE2TI implementation, which recently scaled up
to the complete JUQUEEN BlueGene/Q machine at Forschungszentrum Jülich
and qualified for the High-Q Club; see [79,89].

The development of efficient micro-macro scale bridging methods (as FE2TI)
in order to simulate deformation processes of modern high strength steels is one
goal of the DFG (Deutsche Forschungsgemeinschaft) project EXASTEEL [119].
The EXASTEEL project consists of five groups from applied mathematics, com-
puter science, and material science and is one of thirteen consortia in the DFG
Priority Programme 1648 and the research presented in this thesis is part of
it. Although we will discuss all three levels of parallelism the FE2TI method
provides, the main focus of this work lies on the efficient solution of the nonlin-
ear PDEs on the microscale. We will discuss the usage of nonlinear and linear
domain decomposition approaches of FETI-DP and BDDC type. We will give
a detailed overview of the theory of new nonlinear FETI-DP and BDDC meth-
ods, show scalability on more than 200000 cores, and compare the nonlinear
FETI-DP methods with some traditional approaches.
The traditional domain decomposition approach for the solution of nonlinear
problems resulting from the discretization of nonlinear partial differential equa-
tions can be characterized by a geometric decomposition after linearization.
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There, we solve a given discrete nonlinear problem

A(u) = 0 (1.1)

by using a Newton type method u(k+1) = u(k)−α(k)δu(k) with a suitable step
length α(k). Newton methods are often a good choice because of their quadratic
and thus optimal convergence rate in the neighborhood of the solution. In prin-
ciple, the nonlinear methods in this thesis can also be formulated using any other
nonlinear solution method. A recent overview of approaches to nonlinear solu-
tion methods and their combination can be found in [18]. In a Newton’s method,
in each iteration, we have to solve the linearized system DA(u(k))δu(k) = A(u(k)),
where DA(u(k)) is the Jacobian or tangential matrix of A in the k-th iteration
step u(k). In the context of domain decomposition methods, this can be done
by overlapping or nonoverlapping algorithms, e.g., finite element tearing and in-
terconnecting (FETI-1), dual-primal finite element tearing and interconnecting
(FETI-DP), balancing domain decomposition by constraints (BDDC) or over-
lapping Schwarz. Such approaches are typically named Newton-Krylov Domain-
Decomposition, e.g., Newton-Krylov-FETI-DP or Newton-Krylov-Schwarz.

Alternative approaches to the traditional domain decomposition approach
can be characterized by linearization after a geometric decomposition. For a
discussion “linearize first” vs. “decompose first” for fluid-structure-interaction
problems see [48]. A powerful approach based on a nonlinear and overlapping
domain decomposition method is the ASPIN (Additive Schwarz Preconditioned
Inexact Newton) approach; see [22] and [95], where an overview on Jacobian-
free Newton methods is given. In ASPIN, instead of solving (1.1) directly by
a Newton method, first a nonlinear preconditioner G, constructed from a non-
linear additive Schwarz domain decomposition is applied, which finally reads
G(A(u)) = 0. The ASPIN approach has shown to be more robust than the tra-
ditional Newton-Krylov-Schwarz approach and to be highly scalable, even for
flow problems with high Reynolds numbers. An ASPIN implementation has also
been successfully applied to nonlinear structural mechanics problems; see [65].
The ASPIN method can be equipped with a linear or a nonlinear coarse prob-
lem [23,71,72].
Nonlinear Schwarz type domain decompositions can also be used to construct
a nonlinear solver instead of a preconditioner; see, e.g., [21,40]. For a recursive
trust region globalization framework applied to a nonlinear Schwarz domain de-
composition, see [64].
In contrast to the above mentioned methods, the methods we are interested in
are based on a nonlinear and nonoverlapping domain decomposition. Nonlinear
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nonoverlapping domain decomposition methods have already been used for the
special case of two subdomains in multiphysics coupling, see [32–34], and also
for the coupling of a multiphase flow, see, e.g., [53, 54].
We will present and discuss versions of nonlinear FETI-DP and BDDC meth-
ods, which can also be characterized as nonlinear and nonoverlapping domain
decomposition methods. These new methods are related to the nonlinear do-
main decomposition methods mentioned above, especially to the Nonlinear-
FETI-1 domain decomposition approach introduced in [117]. As in FETI-
DP [43, 44, 85, 87, 93, 94] and BDDC [26, 36, 99, 104, 105] for linear or linearized
problems, the coarse spaces for our nonlinear methods are constructed from par-
tial assembly of the finite elements. This has extended the scalability of these
methods, see, e.g., [84, 86, 107, 130, 134, 135]. Let us note here that the coarse
problem of the nonlinear FETI-DP method is incorporated into the nonlinear
operator and not into the preconditioner. We will see later that the choice
of the coarse space will therefore directly affect the Newton iteration rather
than only the Krylov space iteration. As in the ASPIN approach, a nonlinear
preconditioner can be used additionally, but we will not discuss such methods
here.

The standard FETI-DP and BDDC methods were derived from the earlier
FETI-1 [9,45–47,92] and Balancing Neumann-Neumann [41,92,103,133] iterative
substructuring methods; see also [133]. A nonlinear Neumann-Neumann method
was then introduced in [11].

One important building block of our nonlinear FETI-DP and BDDC meth-
ods is the solution of weakly coupled nonlinear subdomain problems. A similar
algorithmic step has already been denoted nonlinear localization or nonlinear
relocalization and is also a essential part of nonlinear FETI-1 methods [117]
and also nonlinear Neumann-Neumann methods [11]. A simple linear/nonlinear
strategy, which can be interpreted as a nonlinear localization, has been intro-
duced in [102] for brittle material problems with strong localized nonlineari-
ties. Nonlinear localization has also been proposed as an enhancement step for
Newton-Krylov methods; see [25].

We will discuss different strategies of nonlinear dual primal FETI methods,
named Nonlinear-FETI-DP-1 method (linearization first) and Nonlinear-FETI-
DP-2 method (elimination first). In order to improve scalability, we will combine
Nonlinear-FETI-DP-1 with the parallel strength of inexact FETI-DP domain
decomposition methods introduced in [84]. Inexact reduced FETI-DP (irFETI-
DP) has scaled up to 65 536 BlueGene/P cores in 2009 [87], which was a major
step in improving the parallel efficiency of FETI-DP type methods since in [87]
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a traditional FETI-DP method could not solve linear elasticity problems beyond
16 384 cores on the same machine. We refer to the method combining nonlinear
FETI-DP and irFETI-DP as irNonlinear-FETI-DP-1. This method was first
introduced in [77]. In inexact reduced FETI-DP methods, parallel algebraic
multigrid (AMG) methods are used on the FETI-DP coarse level and thus, as
already mentioned, a further and third level of parallelism is introduced.

For highly scalable parallel algebraic multigrid solvers, see, e.g., [2], where
the BoomerAMG preconditioner has shown to be parallel scalable to 100 000
cores in 2012. Scalability for another algebraic multigrid solvers to the complete
JUQUEEN machine at Forschungszentrum Jülich, Germany, has recently been
shown for porous media [73] using DUNE [7, 8] and for earth mantle convec-
tion [120].
Since we are concerned with problems from structural mechanics we will also
discuss the usage of AMG methods in the context of linear and nonlinear
elasticity problems. Classical AMG approaches designed for scalar partial
differential equations always assume that the nullspace of the operator only
consists of constant vectors. This is not the case in the field of structural
mechanics, where also rotations do not affect the strain energy. AMG methods
are iterative multigrid methods and correct the error of the current iterate by
several smoothing steps and by a solution on the coarsest grid. Error vectors
belonging to small or even zero eigenvalues are, in general, not corrected by
the smoothing steps. Therefore, these error vectors, as, e.g., the rigid body
modes, have to be handled by the coarse grid correction and thus have to be
present on the coarsest level. An AMG interpolation operator reproducing
the rigid body modes can be crucial for a fast convergence of AMG methods
applied to elasticity problems. We will focus on the general matrix (GM)
approach introduced in [3]. The GM approach has shown the ability to improve
numerical convergence for linear elasticity problems with the help of an exact
interpolation of the rigid body modes. Several other AMG approaches for linear
elasticity problems have been suggested in the last decades, as, e.g., smoothed
aggregation [16,136], unsmoothed aggregation [12,20,111,113,114], AMGe [15],
element-free AMGe [67], or local optimization problems to incorporate the rigid
body modes in the interpolation [37].

The remainder of the thesis is organized as follows. In Chapter 2 we first pro-
vide a brief overview of the traditional methods FETI-DP and Newton-Krylov-
FETI-DP. We then introduce nonlinear FETI-DP and BDDC methods and give
some remarks on their convergence behavior. A description of the algorithmic
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building blocks, as well as a presentation of the different approaches in form of a
pseudocode are presented. Some sequential results for different model problems
including the nonlinear p-Laplace operator provide an overview of the strengths
and weaknesses of the different methods and show the numerical scalability of
the nonlinear domain decomposition methods.
Parallel implementations and results are then provided in Chapter 3. First
the inexact reduced Nonlinear-FETI-DP-1 method is introduced, combining the
strength of inexact FETI-DP methods and nonlinear FETI-DP methods. A de-
scription of the parallel implementation and, once more, a presentation in form
of a pseudocode is given. We finally present weak and strong scalability results
on up to 262144 cores, using different machines and considering different model
problems. Again, we consider the p-Laplace equation and also provide results
for nonlinear hyperelasticity problems in two and three dimensions.
In Chapter 4, we discuss the influence of the AMG method on the convergence
and scalability of irFETI-DP methods. Therefore, we give a brief overview of
the classical AMG approach for scalar PDEs and different AMG strategies for
systems of PDEs. Then we provide a more detailed description of the global
matrix (GM) approach introduced in [3], constructed to interpolate the rigid
body modes exactly. Finally, a comparison of the parallel performance of the
different AMG methods, used as preconditioner for irFETI-DP coarse space, is
presented.
The fifth chapter provides a brief description of the FE2TI method. We present
a new parallel implementation using inexact reduced FETI-DP methods on the
microscopic level, which automatically incorporates an AMG methods and thus
a third parallel level. We will show scalability up to 1.8M MPI-ranks in two and
three spatial dimensions.
Finally, we will summarize the content of this thesis and provide an outlook on
possible and planned future work; see Chapter 6.
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1.1. LINEAR SOLVERS

1.1 Linear Solvers

In all domain decomposition methods discussed in this thesis, two different
types of solution methods are used, namely direct solvers and iterative Krylov
subspace methods. Although these methods are well known, we will provide a
brief overview of the LU decomposition, the preconditioned conjugate gradient
method [61,69,123], and the generalized minimal residual method (GMRES) [61,
74,124].

1.1.1 The LU Decomposition

One of the most common ways to solve a linear equation system

Au = f (1.2)

is the computation of an LU decomposition

PA = LU,

with L is a lower triangular matrix, U is an upper triangular matrix, and P

a permutes the rows of A. Let us remark that we have A,L,U,P ∈ Rn×n. The
solution of system (1.2) is obtained in two steps by first solving

Ly = P f ,

and then solving
Uu = y.

These solves only cause a simple forward-backward substitution and have a com-
plexity of O(n2) since both matrices L and U are triangular matrices.
The simplest way to compute an LU decomposition is the well known Gauß
elimination and has, in its basic form, a complexity of O(n3). Taking the spar-
sity of A into account and therefore only saving nonzero entries, can significantly
reduce the complexity and the memory consumption. During the elimination
process the sparsity pattern can change drastically and new nonzero entries,
so called fill-in, will appear. Too much fill-in can destroy the efficiency since
many allocations have to be performed due to save the new entries. Here, a
reordering of the rows or columns of A is necessary to reduce the fill-in. Effec-
tive reordering algorithms are, e.g., nested dissection [55, 101] or the minimum
degree approach [56]. For a typical sparsity pattern arising from a finite ele-
ment discretization of a partial differential equation, the complexity of the LU

7



CHAPTER 1. INTRODUCTION

decomposition can be reduced to O(n2).
Effective and fast sparse direct solver implementations have been presented in
the last decades, as, e.g., UMFPACK [27], MUMPS [28], SuperLU [31, 100],
Spooles [1], or PARDISO [97, 125, 126]. A numerical evaluation and compar-
ison of the different packages can be found in [60]. In this thesis, we always
use MUMPS or UMFPACK. We recently tested PARDISO in order to obtain a
hybrid MPI/OpenMP parallel FETI-DP method; see [80].

1.1.2 The Preconditioned Conjugate Gradient Method

Let us first consider the classical conjugate gradient (CG) method without a
preconditioner, introduced in [69]. The CG method is based on the minimization
of the quadratic energy

E(u) :=
1
2

uT Au− f T u (1.3)

over a Krylov subspace. This minimum will be equivalent to the solution of the
system

Au = f

if A is symmetric and positive definite. The CG method is an iterative method
with iterates uk+1 := uk +αk pk and the search directions pK are chosen to be A-
orthogonal to each other, i.e., pT

i Ap j = 0 for all i 6= j. The iterate pk is obtained
by an orthonormalization step of the residual rK := Auk− f against all former
search directions pi, i < k. In the CG method, assuming exact arithmetics, only
the last two search directions have to be stored; see, e.g., [61, 123].
The preconditioned conjugate gradient method (PCG) is simply applying the
CG method to the preconditioned system

M−1
1 A(M−1

1 )T u1 = M−1
1 f ,

with M := MT
1 M1 and u1 = MT

1 u. This is equivalent to the preconditioned system

M−1Au = M−1 f ,

and we obtain a convergence estimation of PCG by

||uk−u∗||A
||u0−u∗||A

≤ 2

κ
(
M−1A

) 1
2 −1

κ (M−1A)
1
2 +1

k

,

with the condition number κ(·) := λmax(·)
λmin(·) , the exact solution u∗ of Au = f , and

the operator norm ||x||A := (xT Ax)
1
2 . Thus, M−1 is a good preconditioner for
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A, if κ(M−1A) is small. Additionally, matrix vector products of the kind M−1x

should be cheap.

1.1.3 The Generalized Minimal Residual Method

As the PCG method, the generalized minimal residual method (GMRES),
see [61, 124] algorithm solves linear equation systems

Au = f

by minimizing the residual over a Krylov subspace using A-orthogonal search
directions pk. Left or right preconditioners M−1 can also be used in GMRES
methods to accelerate convergence. Opposed to the PCG approach, the matrix
A can be unsymmetric and thus GMRES can be seen as a generalization of
PCG. In the GMRES method the full Krylov basis has to be saved in order to
perform the orthogonalization of the search directions. This results in a higher
memory consumption. A truncation of the basis can be used in order to save
memory, which is well known as restarted GMRES.
In general, the convergence behavior of GMRES cannot be described only by
the condition number or the eigenvalues of the preconditioned matrix M−1A.
However, in several special cases an estimate is possible, as, e.g., in the case
that A is symmetric positive definite, we obtain

||uk−u∗||A
||u0−u∗||A

≤
(

2κ
(
M−1A

)
−1

2κ (M−1A)

) k
2

,

which has a similar quality as the convergence estimation of the PCG method.

1.2 Newton’s Method

Newton’s method is an iterative method to find roots of a nonlinear function
K(u). We consider the minimization problem

min
u∈Rn

J(u),

with J : Rn→ R , and the first-order necessary condition

K(u) := ∇J(u) = 0.

9



CHAPTER 1. INTRODUCTION

Then, the Newton iteration to find a root of K(·) reads

uk+1 := uk−αk (DK(uk))
−1 K(uk),

with the tangential matrix DK(uk) and a suitable step length αk. If we assume
that DK(uk) is positive definite, the search direction pk :=−DK(uk)

−1K(uk) will
be the minimizer of the second-order Taylor series of J, and thus pk will be a
decent direction.
The convergence rate of the Newton iteration uk will be quadratic and the iter-
ates uk will converge to the solution u∗ of K(u) = 0 if DK(u∗) is positive definite
and the initial value u0 lies in a sufficiently small environment of u∗; see, e.g.,
Theorem 3.5 in [112]. To obtain global convergence, a globalization technique
as a line search or a trust region method has to be used; c.f. Sections 1.3 and
1.4.
Let us remark that, in general, DK(·) is not positive definite. In this case the
search direction might not be a decent direction with respect to the energy J.
Therefore, additional effort has to be invested in order to obtain global conver-
gence. Typically, a Quasi-Newton method, using positive definite approxima-
tions of DK(·) can be combined with any globalization technique; see [112].

1.3 The Line Search Approach

For an iterative method of the form

uk+1 = uk +αk pk

constructed to minimize an energy functional J(u), as, e.g., Newton’s method
or steepest decent method (see [112]), the choice of a proper step length αk can
be crucial for a fast convergence. In general, the perfect choice would be the
minimizer

αk := arg min
α∈R+

J(uk +α pk).

In most cases, it is too expensive to compute this value exactly. Exceptions are
iterative solvers as CG or GMRES method, where the energy E is quadratic;
see equation (1.3).
Alternatively, in common line search methods, we demand αk to fulfill weaker
conditions ensuring at least a reduction of J. The simplest strategy is to fulfill
the Armijo condition

J(uk +αk pk)≤ J(uk)+ c1αk∇J(uk)
T pk,
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Choose initial α > 0 and ρ < 1

Repeat until Armijo condition is fulfilled:

α := ρα

end (repeat)

αk := α

Fig. 1.1: Simple backtracking algorithm to obtain a step length fulfilling the Armijo

condition.

with a given constant c1 ∈ (0,1). Here, the reduction of J has to be proportional
to the length of the step αk and the derivative ∇J in direction pk. The Armijo
condition can be obtained with the help of a simple backtracking algorithm; see
Fig. 1.1.

In the algorithms discussed during this thesis, we often consider step lengths
fulfilling the Wolfe conditions in our Newton iteration. The two Wolfe condi-
tions are stronger than the Armijo condition since they additionally take the
derivative ∇J(uk +αk pk) into account. The Wolfe conditions read

J(uk +αk pk) ≤ J(uk)+ c1αk∇J(uk)
T pk (1.4)

∇J(uk +αk pk)
T pk ≥ c2∇J(uk)

T pk, (1.5)

with 0 < c1 < c2 < 1. For further types of line search conditions, as, e.g., strong
Wolfe conditions or Goldstein conditions, see [112].

1.4 The Trust Region Approach

Although we always use a Newton search direction combined with a line search
globalization approach in our computations, we provide a brief description of
the alternative trust region method. As in line search methods, we consider a
quadratic approximation or a quadratic model of our nonlinear function based
on Taylors series. Recall that in Newton’s method the quadratic model is only
used to obtain the search direction and the step length is computed afterwards.
In trust region methods the direction and the step lengths are computed si-
multaneously regarding the quadratic model function. Since we cannot rely on
the correctness of the quadratic approximation far away from the current iter-
ate uk, an environment of uk is determined. In this trust region, we rely on our
quadratic model and detect search direction and step length with the additional

11



CHAPTER 1. INTRODUCTION

constraint that the new iterate has to be within the trust region. This is done
by a minimization with constraints of the model problem. Depending on the
quality of the new iterate, the size of the trust region is enlarged or reduced in
the next step; see [112] for more details.

1.5 Numerical and Parallel Scalability

We distinguish between three different types of scalability: numerical scalability,
weak parallel scalability, and strong parallel scalability. In general, an algorithm
is scalable if the computational effort to obtain a solution of the same accuracy
is proportional to the problem size.
In the context of the solution of nonlinear PDEs with the help of domain decom-
position methods, we have, in general, two types of iterative methods and both
are crucial for scalability. We always have a linearization strategy, as, e.g., New-
ton’s method, and an iterative method in order to solve the linearized systems,
as, e.g., CG or GMRES. An algorithm can only be scalable if the number of
iterations of both methods is independent of the global problem size. For New-
ton’s method, the number of iterations can be kept small with the help of some
globalization technique, as, e.g., line search or trust region methods. In Krylov
subspace methods as CG or GMRES, the number of iterations strongly depends
on the condition number of the preconditioned linear system. Therefore, we can
only expect scalability with a proper preconditioner, as, e.g., the FETI-DP pre-
conditioner. Additionally, the condition number should only depend weakly on
the diameter of the subdomains, e.g., a polylogarithmic dependency. To sum-
marize, we call a domain decomposition method weakly scalable if the number
of Newton- and Krylov iterations is independent of the problem size and only
weakly dependent of the subdomain diameter. Let us remark that we neglect
the computational effort caused by the small coarse problem in the discussion
above.
A parallel implementation of an algorithm will be called weakly parallel scalable,
if the time to solution remains constant while varying the number of compu-
tational cores and the problem size proportional to each other. In the context
of domain decomposition methods, we typically keep the size of the subdomain
problems and the number of subdomains on each computational core constant.
In order to obtain weak scalability, the number of iterations has to be indepen-
dent of the number of subdomains and thus numerical scalability is a crucial
requirement.
Finally, strong scalability will be obtained if the time to solution for a problem of
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a fixed size is inversely proportional to the number of computational cores. In
the context of domain decomposition methods, we typically keep the problem
size of the subdomain problems and the total number of subdomains fixed. We
only vary the number of subdomains on each computational core. In general, it
is harder to achieve strong parallel scalability than weak parallel scalability.
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2 Nonlinear FETI-DP and BDDC

The focus of this chapter lies on the discussion of several new nonlinear FETI-
DP and BDDC methods to solve nonlinear partial differential equations. This
chapter is partially published in [76] and [75], where these nonlinear methods
have been introduced for the first time. Nonlinear FETI-DP and BDDC meth-
ods are based on a nonoverlapping domain decomposition of a nonlinear energy
before linearization. We compare all suggested methods with the Newton-
Krylov FETI-DP approach for which the domain decomposition is established
after linearization and we present numerical results in order to analyze the
numerical behavior of the different methods. These sequential computations
are performed in MATLAB [109] and thus only provide a rough estimate of
the computational cost. Therefore, we also present first parallel results in
order to confirm our estimates. Later on, we combine our nonlinear framework
with the parallel strength of inexact reduced FETI-DP, see, e.g., [87, 118], and
present parallel scalability results on more than 200000 computational cores;
see Chapter 3.

2.1 Classical FETI-DP

Let us briefly introduce the classical FETI-DP method constructed to solve lin-
ear or linearized systems arising from a finite element discretization of a partial
differential equation. The FETI-DP (Finite Element Tearing and Interconnect-
ing - Dual Primal) method, first introduced in [43], is a domain decomposi-
tion method based on the geometric decomposition of a computational domain
Ω⊂ Rd , d = 2,3, into N nonoverlapping subdomains Ωi. Thus, we have

Ω =
N⋃

i=1

Ωi,

where Ω denotes the closure of Ω and each subdomain is a union of finite
elements. We denote the associated local finite element spaces byWi, the product
space by W =W1× . . .×WN , and we define Ŵ ⊂W as the subspace of functions
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Fig. 2.1: Decomposition of a square domain Ω into 16 subdomains Ωi. The global as-

sembly in primal vertices denoted by Π is marked with dots. On the remain-

ing interface variables continuity is enforced weakly with Lagrange multipli-

ers λ , enforcing a jump condition BBuB = 0.

from W , which are continuous in all interface variables in between subdomains.
We denote by

Ri : V h→Wi, i = 1, . . . ,N,

local restriction operators, where V h =V h(Ω) is the space of globally assembled
finite element functions. Note that V h and Ŵ are isomorphic. These notations
are standard in the theory of FETI-DP methods; see, e.g., [81, 93, 94, 133]. In
general, all domain decomposition methods are based on the same concept, i.e.,
divide and conquer. Here, instead of solving a single and large problem

DK̂ û = f̂

arising from a finite element discretization on the whole domain Ω, several
smaller problems

DK(i) u(i) = f (i),

associated with the subdomains Ωi, are solved in parallel and the local solutions
are reconnected on the interface. Here, the local stiffness matrices denoted by
DK(i) and the local load vectors denoted by f (i) arise from a finite element assem-
bly on the subdomains Ωi, i = 1, ...,N. Since we predominantly regard nonlinear
problems, we decided to denote linear and linearized systems always with DK

instead of K, which is the most common notation in the linear theory. This
choice ensures a consistent notation throughout all methods and chapters since
DK(·) often denotes the tangent of a nonlinear function K(·). The continuity of
the solution on the interface

Γ :=
N⋃

i=0

∂Ωi \∂Ω (2.1)
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is enforced by a combination of a global subassembly in some variables and
additional dual conditions on the remaining variables. Therefore, we partition
the degrees of freedom on Γ into sets of primal and dual variables, denoted by
Π and ∆, and define the set of interior and dual variables B := [I,∆]. Here, I

denotes the set of all variables which are contained in the interior part of the
subdomains. Thus, the local stiffness matrix reads in block form

DK(i) :=

[
DK(i)

BB DK(i)
BΠ

DK(i)
ΠB DK(i)

ΠΠ

]
, with DK(i)

BB :=

[
DK(i)

II DK(i)
I∆

DK(i)
∆I DK(i)

∆∆

]
. (2.2)

The global assembly in primal variables Π is performed by means of the standard
FETI-DP partial assembly operator RT

Π
; see, e.g., [87, 133]. The assembled

system in the primal variables is also named FETI-DP coarse problem and
can include more than just vertex constraints; e.g., [93]. The FETI-DP coarse
problem is a global problem and in general all subdomains contribute primal
constraints. Nevertheless, the coarse problem is up to 3 or 4 magnitudes smaller
compared to the full problem, and computations can also be parallelized in
inexact FETI-DP variants; see Chapter 3. To obtain continuity in the remaining
interface variables we introduce the jump operator BB, cf. the definition in [87,
133], and Lagrange multipliers λ to enforce the continuity condition BBuB = 0 on
the variables uB. A row in BBuB = 0 enforces equality of two variables belonging
to the same physical point and quantity but two different subdomains. A typical
row in

BB =
[
B(1)

B , · · · ,B(N)
B

]
thus contains only a single 1 and a single −1 and multiplications with BB only
cause nearest neighbor communication. An illustration of a typical FETI-DP
decomposition can be found in Fig. 2.1.
All this leads to the FETI-DP master system DKBB DK̃T

ΠB BT
B

DK̃ΠB DK̃ΠΠ 0

BB 0 0


 uB

ũΠ

λ

=

 fB

f̃Π

0

 . (2.3)

Here, DKBB is a block diagonal matrix

DKBB :=


DK(1)

BB
. . .

DK(N)
BB

 ,
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and the diagonal blocks DK(i)
BB are the restrictions of the local matrix DK(i) to

the set of dual and interior variables and are thus local to the subdomains. Of
course, the vectors fB and uB have an equivalent block structure. The matrices
including primal variables Π are, as already mentioned, partially assembled in
the primal variables and thus global but small. It is also common in FETI-DP
notation to mark the primal assembled matrices and vectors with a tilde, as,
e.g., DK̃ΠΠ.
Elimination of uB and ũΠ in system (2.3) leads to

Fλ = d, (2.4)

where F = BB DK−1
BB BT

B +BB DK−1
BB K̃T

ΠB S̃−1
ΠΠ

K̃ΠB DK−1
BB BT

B (2.5)

and d = BB DK−1
BB fB +BB K−1

BB DK̃T
ΠB S̃−1

ΠΠ
( f̃Π− K̃ΠBDK−1

BB fB). (2.6)

Here,
S̃ΠΠ := DK̃ΠΠ−DK̃ΠBDK−1

BB DK̃T
ΠB

is the Schur complement on the primal variables. Due to its block structure,
the inversion of DKBB only consists of local operations (DK(i)

BB)
−1. Finally, the

FETI-DP method is the iterative solution of the preconditioned system

M−1Fλ = M−1d (2.7)

using a Krylov subspace method such as CG [69] or GMRES [61, 124]; see also
Sections 1.1.2 and 1.1.3. In this thesis, we always use the standard Dirichlet
preconditioner

M−1
FET ID

=: M−1, (2.8)

which is a weighted sum

M−1
FET ID

:=
N

∑
i=1

B(i)
∆,D S(i)

∆∆
B(i)T

∆,D (2.9)

of local Schur complements

S(i)
∆∆

:= DK(i)
∆∆
−DK(i)

∆I (DK(i)
II )
−1 DK(i)T

∆I

based on the decomposition of the local tangential or stiffness matrix depicted
in (2.2). Here, B∆,D is a scaled and restricted version of the jump operator BB

to the dual variables ∆; see, e.g., [87, 133] for a complete notation and different
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choices of weights. Let us remark that there are several other choices for M−1,
e.g., the lumped preconditioner

M−1
FET IL

:=
N

∑
i=1

B(i)
∆,D K(i)

∆∆
B(i)T

∆,D , (2.10)

where only the stiffness matrix on the interface is considered.
The application of M−1 is embarrassingly parallel and, choosing M−1 := M−1

FET ID
,

the polylogarithmic condition number bound

κ(M−1F)≤C
(

1+ log
(

H
h

))2

(2.11)

has been shown for several model problems in two and three dimensions; see [82,
90,93,94,108] for the different model problems. Here, H is the typical diameter
of a subdomain, h is the typical diameter of a finite element, and C is a constant
independent of H, h, and jumps in PDE coefficients. Of course, in all cases
sufficient and problem dependent primal constraints Π and proper weights for
the preconditioner induced by the PDE coefficients have to be chosen.
Defining ũ := [uT

B , ũT
Π
]T , f̃ = [ f T

B , f̃ T
Π
]T , B := [BB 0], and

DK̃ :=

[
DKBB DK̃T

ΠB

DK̃ΠB DK̃ΠΠ

]
(2.12)

we can compress the blocksystem (2.3) and obtain[
DK̃ BT

B 0

][
ũ

λ

]
=

[
f̃

0

]
. (2.13)

Using this compact notation, equation 2.4 also reads

B(DK̃−1)BT
λ = B(DK̃−1) f̃ . (2.14)

We predominantly use the compact notations in the remainder of this thesis.
Let us remark that, recalling RΠ, we can also reads

DK̃ = RT
Π (DK)RΠ,
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with the block system

DK =


DK(1)

. . .

DK(N)

 . (2.15)

2.2 Newton-Krylov-FETI-DP

A common and effective way to solve a discretized, nonlinear equation A(û)= 0 is
the linearization with Newton’s method; cf. Section 1.2. The linearized system
can then be solved with an iterative method, as, e.g., a domain decomposition
method. We refer to these methods as Newton-Krylov-DD and give a detailed
description of the variant Newton-Krylov-FETI-DP in this section. To obtain
a consistent notation in all of our methods we first reformulate the problem
A(û) = 0 operating on V h, using the nonoverlapping decomposition of Ω, to

RT K(Rû)−RT f = 0, (2.16)

where A(û) = RT K(Rû)−RT f , R =
[
RT

1 , ...,R
T
N
]T ,

K(u) :=


K1(u1)

...
KN(uN)

 , and f :=


f1
...
fN

 . (2.17)

Here, Ki(ui), fi and Ri correspond to the subdomain Ωi, where Ki(ui) = fi is the
discretized nonlinear problem living on Ωi; see also Section 2.4 for more details.
Next, we linearize and obtain the Newton iteration

û(k+1) = û(k)−α
(k)

δ û(k), (2.18)

with a suitable step length α(k). In our numerical experiments, we often use a
line search with the step length α(k) satisfying the Wolfe conditions; see [112]
and Section 1.3. Let us briefly recall that for a minimizing problem minu∈RnJ(u)

and a search direction δu the Wolfe conditions read

J(u+αδu)≤ J(u)+ c1αδuT
∇J(u) (2.19)

and
δuT

∇J(u+αδu)≥ c2δuT
∇J(u) (2.20)

with 0 < c1 < c2 < 1.
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2.2. NEWTON-KRYLOV-FETI-DP

To obtain the update δ û(k), we have to solve the fully assembled linearized
system

RT DK(Rû(k))Rδ û(k) = RT K(Rû(k))−RT f .

Here, DK(Rû(k)) is a block diagonal matrix with the subdomain associated tan-
gential matrices DK(i)(u(k)i ) on the diagonal and u(k)i := Riû(k) is the restriction
of û(k) to the subdomain Ωi. In order to solve the linearized problem with a
FETI-DP method we again introduce a set of primal variables Π and the cor-
responding jump operator B, acting on the remaining dual interface variables.
We then solve[

RT
Π

DK(RΠũ(k))RΠ BT

B 0

][
δ ũ(k)

λ

]
=

[
RT

Π
K(RΠũ(k))−RT

Π
f

0

]
, (2.21)

where RT
Π

DK(RΠũ)RΠ is the partially assembled form of the local tangential
matrices and RT

Π
f =: f̃ the partially assembled right hand side. Introducing the

notations
DK̃(ũ) := RT

Π DK(RΠũ)RΠ (2.22)

and
K̃(ũ) := RT

ΠK(RΠũ), (2.23)

we write (2.21) also as[
DK̃(ũ(k)) BT

B 0

][
δ ũ(k)

λ

]
=

[
K̃(ũ(k))− f̃

0

]
, (2.24)

which is equivalent to formulation (2.13) in FETI-DP for linear equations.

The partially assembled variables ũ and the assembled variables û are re-
lated to each other in the usual canonical way. Formally, we can introduce
corresponding operators, i.e., we can write ũ(k) := RT

Π,DRû(k) and, after solving,
δ û(k) := RT

DRΠδ ũ(k). The matrix RT
Π,D is a scaled version of RT

Π
, i.e., the rows

in RT
Π
which correspond to a primal variable are scaled with the inverse of the

multiplicity of the primal variable. The matrix RT
D is a scaled version of the

matrix RT , where the rows are scaled with the inverse of the multiplicity of the
corresponding global degree of freedom. By one step of block elimination, we
obtain from (2.24)[

DK̃(ũ(k)) BT

0 −B(DK̃(ũ(k)))−1BT

][
δ ũ(k)

λ

]
=

[
K̃(ũ(k))− f̃

−B(DK̃(ũ(k)))−1(K̃(ũ(k))− f̃ )

]
.

(2.25)
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It remains to solve the reduced system for the Lagrange multipliers

FNK(ũ(k))λ = dNK(ũ(k)), (2.26)

where

FNK(ũ(k)) = B(DK̃(ũ(k)))−1BT ,

dNK = B(DK̃(ũ(k)))−1(K̃(ũ(k))− f̃ ).

This can again be solved by some preconditioned Krylov iteration using one of
the standard FETI-DP preconditioners M−1, e.g., the Dirichlet preconditioner
defined in Section 2.1 or [133].

Finally, we may formulate an equivalent Newton iteration operating on Ŵ .
Remember that Ŵ is isomorphic to V h and therefore we simply have

u(k+1) = u(k)−α
(k)

δu(k),

where u(k) ∈ Ŵ , u(k+1) ∈ Ŵ , and δu(k) ∈ Ŵ . The Newton update δu(k) = RΠδ ũ(k)

is obtained by solving (2.24) with ũ(k) := RT
Π,Du(k).

2.3 Nonoverlapping and Nonlinear Domain
Decomposition

In this chapter, we describe the idea of decomposing a nonlinear energy function
in general and derive a nonlinear FETI-DP master system presented in (2.34).
Let us remark that all our nonlinear FETI-DP methods are based on this
nonlinear master system. First, we recall the decomposition Ωi, i = 1, . . . ,N of
Ω⊂ Rd , d = 2,3, into nonoverlapping subdomains.

Instead of the solution of the discrete nonlinear problem (1.1), we consider
the minimization of the related nonlinear energy functional J : V h→ R,

min
û∈V h

J(û). (2.27)

We make the following assumption.

Assumption 1 There exist local energy functionals Ji : Wi → R, i = 1, . . . ,N,
such that for û ∈V h, the global energy functional can be represented as a sum of
local energies

J(û) =
N

∑
i=1

Ji(ui),
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2.3. NONLINEAR DOMAIN DECOMPOSITION

where ui := Riû.

Assumption 1 is satisfied for the p-Laplace problem as well as for relevant
nonlinear problems such as standard or incompressible hyperelasticity. In the
remainder of this thesis we consider both, the p-Laplace equation and nonlinear
hyperelasticity, as model problems. In general, Assumption 1 is satisfied for
standard problems discretized by finite elements. Assumption 1 then simply
follows from the additivity of the integral. It may not be satisfied for prob-
lems with nonlocal phenomena such as nonlocal damage models in structural
mechanics.

Let us define the jump operator B = [B1, ...,BN ] which enforces continuity
across the interface Γ given as the union of the interior subdomain boundaries.
Here, for u = [uT

1 , ...,u
T
N ]

T with ui ∈Wi, Bu = 0 corresponds to u ∈ Ŵ . Let us
remark that the jump operator B introduced in Section 2.1 enforcing continuity
in the dual variables u∆ can be obtained from B in this section by removing all
lines corresponding to primal variables from the set Π. We reuse the notation
here for simplicity.

Using Assumption 1 and the notation u = [uT
1 , . . . ,u

T
N ]

T ∈W , we obtain

min
û∈V h

J(û) = min
û∈V h

ui=Riû

N

∑
i=1

Ji(ui) = min
u∈Ŵ

N

∑
i=1

Ji(ui) = min
u∈W

Bu=0

N

∑
i=1

Ji(ui). (2.28)

We introduce the space of Lagrange multipliers V := range(B). Now, it is pos-
sible to derive a nonlinear saddle point problem.

We have to compute the stationary points of the Lagrange function

L : W ×V → R
L (u,λ ) = ∑

N
i=1 Ji(ui)+(Bu)T λ .

(2.29)

which are the solutions of the equation[
∑

N
i=1 J′i(ui)(vi)+(Bv)T λ

(Bu)T µ

]
=

[
0

0

]
, ∀v ∈W,∀µ ∈V. (2.30)

For each i = 1, . . . ,N, we denote by ϕi, j, j = 1, . . . ,Ni, the Ni nodal finite element
basis functions for the local finite element space Wi. We assume that for each i =

1, . . . ,N, we have the following representation J′i(ui)(ϕi, j) = (Ki(ui)− fi) j. Here,
fi is independent of ui. With using the notation
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K(u) :=


K1(u1)

...
KN(uN)

 , f :=


f1
...
fN

 , and u :=


u1
...

uN

 (2.31)

from (2.17) we obtain from (2.30) the discrete nonlinear system of equations

K(u)+BT λ = f

Bu = 0,
(2.32)

which can be seen as nonlinear analogon of the linear FETI master system.

2.4 Nonlinear FETI-DP Methods

Let us recall the definition of the jump operator B from Section 2.1 which en-
forces continuity in all dual variables u∆ but not in the primal variables ũΠ.

To construct our nonlinear FETI-DP methods we use partial assembly of K(u)

and f from equation (2.32) in the primal variables. All our nonlinear FETI-DP
methods are then based on the following nonlinear FETI-DP master system

RT
Π

K(RΠũ)+BT λ −RT
Π

f = 0

Bũ = 0,
(2.33)

where ũ ∈ W̃ , and the Lagrange multipliers λ ∈V . We denote the space of finite
element functions in W , which are continuous in all primal variables, by W̃ . Note
that we have Ŵ ⊂ W̃ ⊂W . Using the notation from (2.23) we will also write
(2.33) in compact form

K̃(ũ)+BT λ − f̃ = 0

Bũ = 0,
(2.34)

where again f̃ := RT
Π

f . From the chain rule and recalling definition (2.22), we
have

D(K̃(ũ)) = D(RT
ΠK(RΠũ)) = RT

Π DK(RΠũ)RΠ = DK̃(ũ), (2.35)

i.e., the derivative of the partially assembled nonlinear operator K̃ can be com-
puted by partially assembling DK. This is equivalent to a primal assembly of
the local derivatives DK(i) of the local subdomain operators Ki; see also (2.15)
for the definition of DK.

We can proceed in two different ways in order to solve (2.34). We may linearize
first and then reduce the result to Lagrange multipliers (Nonlinear-FETI-DP-1),

24



2.4. NONLINEAR FETI-DP METHODS

or, by the help of the inverse function theorem, we can perform a nonlinear elimi-
nation and then linearize the reduced nonlinear system (Nonlinear-FETI-DP-2).
Both variants will be discussed in the remainder of this thesis in Sections 2.4.1
and 2.4.3.

2.4.1 Nonlinear-FETI-DP-1 Method (Linearize First)

We now consider the first approach, denoted by Nonlinear-FETI-DP-1, in which
we first linearize the system (2.34) and then reduce the resulting linear system
to the space of Lagrange multipliers.

Newton linearization with respect to (ũ,λ ) of the saddle point problem (2.34)
results in the linear system[

DK̃(ũ(k)) BT

B 0

][
δ ũ(k)

δλ (k)

]
=

[
K̃(ũ(k))+BT λ (k)− f̃

Bũ(k)

]
. (2.36)

Here, ũ(0) ∈ W̃ and λ (0) ∈ V are initial values and our Newton iteration to
solve problem (2.34) is defined as[

ũ(k+1)

λ (k+1)

]
=

[
ũ(k)

λ (k)

]
−α

(k)

[
δ ũ(k)

δλ (k)

]
, (2.37)

with a suitable step length α(k). Here, as in Newton-Krylov-FETI-DP, a step
length fulfilling the Wolfe conditions depicted in (2.19) and (2.20) can be used.

The linear system (2.36) can be solved as in the standard (linear) FETI-DP
framework, i.e., we can eliminate the variables δ ũ(k) by a step of block Gauss
elimination under the assumption that DK̃ is regular; see also Assumption 2 in
Section 2.5.1. This yields[

DK̃(ũ(k)) BT

0 −B(DK̃(ũ(k)))−1BT

][
δ ũ(k)

δλ (k)

]
=

[
fNL1(ũ(k),λ (k))

−dNL1(ũ(k),λ (k))

]
(2.38)

where

fNL1(ũ,λ ) = K̃(ũ)+BT
λ − f̃ , (2.39)

dNL1(ũ,λ ) = −Bũ+B(DK̃(ũ))−1(K̃(ũ)+BT
λ − f̃ ). (2.40)

The second row in (2.38) yields the FETI-DP system. As in the case of
standard linear FETI-DP, we have reduced the problem of computing the update
in (2.37) to the solution of a linear system operating on the Lagrange multipliers,
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and it remains to solve

FNL1(ũ(k))δλ
(k) = dNL1(ũ(k),λ (k)), (2.41)

where
FNL1(ũ) := B(DK̃(ũ)−1)BT . (2.42)

This system can be solved by a preconditioned Krylov iteration using one
of the standard FETI-DP preconditioners M−1, e.g., the Dirichlet precondi-
tioner [133]. Note that here continuity of the solution may not be reached until
convergence of the Newton iteration. It can easily be seen that, if the lineariza-
tion is performed at the same ũ, then FNL1(ũ) = FNK(ũ). This does not imply
that the methods are identical. For the same ũ, the Nonlinear-FETI-DP-1 ap-
proach differs from the standard Newton-Krylov-FETI-DP by using a different
right hand side, i.e., dNK(ũ) = dNL1(ũ,0)−Bũ; cf., also (2.24) and (2.36). Note
that, as a result of

Bδ ũ(k) = Bũ(k) (2.43)

the jumps in the Newton update will be present only if the initial value ũ(0) has
jumps. This special jump condition (2.43) gives us the possibility of choosing
initial values ũ(0) for Nonlinear-FETI-DP-1 with nonzero jumps in all non-primal
interface variables; see Section 2.4.2. In general, this is not possible in standard
Newton-Krylov methods, where a continuous initial value is necessary.

2.4.2 Choosing Initial Values for Nonlinear-FETI-DP-1

A suitable initial value ũ(0) for Nonlinear-FETI-DP-1 has to be continuous in
all primal variables and should provide a good local approximation to the given
problem. But it may be discontinuous in the dual variables. A possible choice of
an initial value ũ(0) can be obtained from the solution of the nonlinear problem

K̃(ũ(0)) = f̃ −BT
λ
(0) (2.44)

by some Newton type iterations for some given initial value λ (0). Throughout
this thesis we use λ (0) = 0. This step can be seen as a nonlinear localization step.
It can thus be performed not only in the initialization but also during the itera-
tion. Nonlinear localization was already used in [25] and, of course, in [11,117].
Note that in (2.44) we solve local nonlinear subdomain problems which are only
coupled in the primal unknowns. This step thus requires only communication in
the primal variables and is otherwise completely solvable in parallel. More so-
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phisticated choices for λ (0), especially for hard problems as, e.g., incompressible
hyperelasticity and problems with strong local nonlinearities, are also possible.

2.4.3 Nonlinear-FETI-DP-2 Method (Eliminate First)

Let us now consider the second approach denoted by Nonlinear-FETI-DP-2.
Instead of linearizing the nonlinear saddle point problem (2.33), we may first
perform a nonlinear elimination of the variables ũ. From (2.23), we recall

K̃(ũ) = RT
ΠK(RΠũ).

Assuming that K̃(ũ) is locally invertible, see Section 2.5.1 for a more detailed
discussion, the first equation of (2.33) can be written as

ũ = K̃−1( f̃ −BT
λ ), (2.45)

where K̃−1 is the inverse operator of K̃. Inserting (2.45) into the continuity
condition in (2.33), we obtain

F(λ ) := BK̃−1( f̃ −BT
λ ) = 0. (2.46)

To be able to apply the inverse function theorem, we assume that K̃(·) is con-
tinuously differentiable in a neighborhood of ũ∗, where (ũ∗,λ ∗) is a solution of
(2.33). For more details, see Assumption 2 in Section 2.5.1. Again, we use a
Newton type iteration to solve (2.46), and obtain the iteration

λ
(k+1) = λ

(k)−α
(k)(Dλ F(λ (k)))−1F(λ (k)). (2.47)

We compute Dλ F(λ ) using the chain rule, the inverse function theorem, and
(2.45),

Dλ F(λ ) = Dλ (BK̃−1( f̃ −BT λ )) = −B(DK̃−1( f̃ −BT λ ))BT

= −B(DK̃(ũ))−1BT = −B(RT
Π(DK(RΠũ)RΠ︸ ︷︷ ︸

=DK̃(ũ)

)−1BT . (2.48)

Note that, since the coarse space is included in the nonlinear operator F , and
choosing different primal conditions leads to different nonlinear operators F ,
the choice of the coarse space not only affects the Krylov subspace iteration but
also the convergence of the Newton scheme. The coarse space can thus be used
to improve the convergence of the Newton iteration for nonlinear problems.
Therefore, we have a nonlinear coarse problem introducing a coupling of the
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local nonlinear problems on the subdomains. A good coarse problem should
be small but at the same time the resulting coupling should lead to a good
approximation of the original global nonlinear problem. We also present some
numerical results in Tables 2.3 and 2.4, which show the effect of different coarse
spaces on the number of Newton and Krylov iterations. A detailed description of
the associated model problem and the two different coarse spaces can be found
in Section 2.7.2.
Remark that the pair (ũ,λ ) in (2.48) has to satisfy equation (2.45), such that
we can use the inverse function theorem. We may now define

FNL2(ũ) := B(DK̃(ũ))−1BT . (2.49)

We have FNL2(ũ) =−Dλ F(λ ) and F(λ ) = Bũ, if the pair (ũ,λ ) fulfills (2.45).

In each Newton step, we first have to solve the nonlinear system

K̃(ũ(k)) = f̃ −BT
λ
(k), (2.50)

to compute the right hand side, e.g., by some Newton type iteration. Note that
the form of the systems (2.50) and (2.44) is identical. Subsequently, we obtain
our Newton update δλ (k) by solving

FNL2(ũ(k))δλ
(k) =−Bũ(k) (2.51)

or, equivalently,
Dλ F(λ (k))δλ

(k) = F(λ (k)) (2.52)

with some Krylov subspace iteration and update

λ
(k+1) = λ

(k)−α
(k)

δλ
(k)

with a suitable step length α(k).

Note that the system matrix in (2.51) for the Krylov iteration is the same as in
NL-FETI-DP-1 and NK-FETI-DP if the linearization is performed in the same
point, i.e., we have FNL1(ũ) = FNL2(ũ) = FNK(ũ), where FNK(ũ) is defined as in
Section 2.2. Only the right hand side differs. To obtain the right hand side and
to calculate the matrix FNL2(ũ(k)) we have to solve local nonlinear subdomain
problems which are only coupled in the primal unknowns.

Nevertheless, Nonlinear-FETI-DP-2 as Nonlinear-FETI-DP-1 iterate in W̃

and therefore continuity on the interface is not reached until convergence. In
Fig. 2.2 we give a visual comparison of the convergence behavior of Nonlinear-
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FETI-DP-2 and Newton-Krylov-FETI-DP solving our second model problem
introduced in Section 2.7.2.

2.4.4 Algorithms and Cost Comparison

In this section, we give an algorithmic description of our nonlinear FETI-DP
methods and of NK-FETI-DP; see Figures 2.3, 2.4, and 2.5. We also roughly
discuss the computational cost of the algorithms. This will help to compare
the numerical results of the different methods using our Matlab implementa-
tion in Section 2.7. We also provide a more detailed discussion on the parallel
implementation of the different building blocks of our nonlinear methods in Sec-
tion 3.3.
Note that the Newton direction is a descent direction if the Jacobi matrix is
symmetric positive definite, which is always the case in our model problems us-
ing the p-Laplace or Laplace operator; see Section 2.7 for the model problems.
The tangential matrix DK(·) of the p-Laplace problem is only not positive defi-
nite in constant functions. Avoiding this function, Newton direction will always
be a decent direction; c.f., also Section 1.2

Typical Work and Cost

As opposed to a standard Newton-Krylov-FETI-DP approach in our nonlin-
ear FETI-DP methods weakly coupled nonlinear local problems are solved; see
(2.44) and (2.50). By increasing the local computational work we aim to reduce
the amount of communication as well as the need for synchronization.

For a rough cost comparison, in order to estimate the local computational
work, we will count the number of factorizations of DK̃, denoted “#Factor.”, and,
for the global communication, we will count the number of Krylov iterations,
denoted “#Krylov It.”. The factorization of DK̃ also includes some communication
but only in the primal variables.

In all of the three algorithms, NK-FETI-DP, Nonlinear-FETI-DP-1, and
Nonlinear-FETI-DP-2, we have to solve two different types of linear systems.
The first type of system is of the form

DK̃(ũ)δ ũ = rhs1 (2.53)

with some right hand side rhs1. This system appears in each Newton step in
the computation of the initial value in Nonlinear-FETI-DP-1, see (2.44), and in
each Newton step on the right hand side of Nonlinear-FETI-DP-2, see (2.50).
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Newton-Krylov-FETI-DP Nonlinear-FETI-DP-2

Initial
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Third
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15th
Iteration:

Fig. 2.2: Comparison of the convergence behavior of Newton-Krylov-FETI-DP (left column)

and Nonlinear-FETI-DP-2 (right column) for our second model problem decom-

posed in 16 subdomains; see also Section 2.7.2 for a detailed problem description.

Numerical scalability results for this problem can be found in Table 2.1. While

Nonlinear-FETI-DP-2 needs three iterations until convergence, it takes Newton-

Krylov-FETI-DP 15 steps to reach the same accuracy. Of course, in each Nonlinear-

FETI-DP-2 iteration local nonlinear problems have to be solved to evaluate the right

hand side and thus the effort of one iteration is higher.
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NK-FETI-DP

Init: ũ(0) ∈ Ŵ

for k = 0, ...,convergence

build: K̃(ũ(k)) and DK̃(ũ(k))

solve:

B(DK̃(ũ(k)))−1 BT λ = B(DK̃(ũ(k)))−1 (K̃(ũ(k))− f̃ ) // See (2.26)

compute:

δ ũ(k) = DK̃(ũ(k))−1 (K̃(ũ(k))− f̃ −BT λ ) // Compute δ ũ from λ .

compute: steplength α(k)

update: ũ(k+1) := ũ(k)−α(k) δ ũ(k)

end

Fig. 2.3: Algorithmic description of Newton-Krylov-FETI-DP. Figure already pub-

lished in [76].

Linear systems as in (2.53) are typically solved directly in exact FETI-DP
methods and thus the solution requires one factorization of DK̃.

The second type is of the form

B(DK̃(ũ))−1BT
δλ = rhs2 (2.54)

with some right hand side rhs2. This system appears on the left hand side in
Nonlinear-FETI-DP-1, see (2.41), Nonlinear-FETI-DP-2, see (2.51), as well as
NK-FETI-DP, see (2.26). We solve this system iteratively and matrix-free by a
preconditioned Krylov method. The solution of this system requires the com-
putation of the factorization of DK̃ for the setup and, in addition, a number of
Krylov iterations. In each of these iterations one forward backward substitution
has to be performed.

In our cost estimate we thus consider the solution of the linear system (2.54)
as requiring one factorization of DK̃ and a certain number of Krylov iterations.

2.4.5 Transformation of Basis in the Nonlinear FETI-DP Methods

A well known and effective way to implement weighted or arithmetic edge aver-
ages in the FETI-DP coarse problem is the local transformation into a new basis,
which can be performed independently for all edges and subdomains. Of course
alternative approaches to implement coarse problems in FETI-DP methods are
also possible here.
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Nonlinear-FETI-DP-1

Init: ũ(0) ∈ Ŵ , λ (0) = 0

for k = 0, ...,convergence // Compute initial value.

build: K̃(ũ(k)) and DK̃(ũ(k))

solve: DK̃(ũ(k))δ ũ(k) = K̃(ũ(k))+BT λ (0)− f̃ // See (2.44).

compute: steplength α(k)

update: ũ(k+1) := ũ(k)−α(k)δ ũ(k)

end

ũ(0) := ũ(k+1)

for k = 0, ...,convergence // Main iteration loop.

build: K̃(ũ(k)) and DK̃(ũ(k))

solve:
B(DK̃(ũ(k)))−1 BT δλ (k)

=−Bũ(k)+B(DK̃(ũ(k))−1 (K̃(ũ(k))+BT λ (k)− f̃ )) // See (2.41).

compute: δ ũ(k) = DK̃(ũ(k))−1 (K̃(ũ(k))+BT λ (k)−BT δλ (k)− f̃ )
// Compute δ ũ from δλ .

compute: steplength α(k)

update: ũ(k+1) := ũ(k)−α(k) δ ũ(k) , λ (k+1) := λ (k)−α(k) δλ (k)

end

Fig. 2.4: Algorithmic description of Nonlinear-FETI-DP-1. Figure already published

in [76].

Here, for robustness, we use orthogonal transformations constructed by a
local Gram-Schmidt process on the edge as in [85]. In the new basis, the edge
averages are represented by one nodal constraint for each former edge constraint.
We mostly retain the sparsity of the tangential matrices, see [83], and the form
of RΠ and B, we only have to augment RΠ with one new nodal constraint for
each edge constraint and remove the new primal variables from our dual space
and thus also corresponding rows from the jump matrix B. With given local
and orthogonal transformations Ti, operating on Wi, we can write an ũT , where
the index T marks the description in the transformed basis, in the form ũT =

RT
Π,DT T RΠũ. Here ũ is described in the nodal basis and we define the matrix

T := diag(T1, ...,TN). We reformulate the saddle point problem (2.33) in the new
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Nonlinear-FETI-DP-2

Init: ũ(0) ∈ Ŵ , λ (0) = 0

for k = 0, ...,convergence // Main iteration loop.

for l = 0, ...,convergence // Compute right hand side.

build: K̃(ũ(l)) and DK̃(ũ(l))

solve: DK̃(ũ(l))δ ũ(l) = K̃(ũ(l))+BT λ (k)− f̃ // See (2.50).

compute: steplength α(l)

update: ũ(l+1) := ũ(l)−α(l)δ ũ(l)

end

ṽ(k) := ũ(l+1)

build: K̃(ṽ(k)) and DK̃(ṽ(k))

solve: B(DK̃(ṽ(k)))−1 BT δλ (k) =−Bṽ(k) // See (2.51).

update: λ (k+1) := λ (k)−α(k) δλ (k)

ũ(0) = ṽ(k)

end

Fig. 2.5: Algorithmic description of Nonlinear-FETI-DP-2. Figure already published

in [76].

basis by
RT

Π
T T K(T RΠũT )+BT λ −RT

Π
T T f = 0

BũT = 0,
(2.55)

or, in a shorter notation, by

K̃T (ũT )+BT λ −RT
Π

T T f = 0

BũT = 0,
(2.56)

where K̃T (ũT ) := RT
Π

T T K(T RΠũT ).

Transformation of Basis in the Nonlinear-FETI-DP-1 Method

Let us first consider the initial value ũT for Nonlinear-FETI-DP-1 and therefore
equation (2.44). In the transformed basis, we now have to solve

K̃T (ũT )+BT
λ
(0)−RT

ΠT T f = 0 (2.57)
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by a Newton iteration of the form

ũ(k+1)
T = ũ(k)T −α

(k)
δ ũ(k)T . (2.58)

We can actually perform the complete iteration in the new basis by starting
with ũ(0)T := RT

Π,DT T RΠũ(0) and with the Newton updates defined by

RT
ΠT T DK(T RΠũ(k)T )T RΠ δ ũ(k)T = K̃T (ũ

(k)
T )+BT

λ
(0)−RT

ΠT T f . (2.59)

For a shorter notation we define DK̃T (ũT ) := RT
Π

T T DK(T RΠũT )T RΠ.
We obtain the following iteration for our Nonlinear-FETI-DP-1 method[

ũ(k+1)
T

λ (k+1)

]
=

[
ũ(k)T

λ (k)

]
−α

(k)

[
δ ũ(k)T

δλ (k)

]
, (2.60)

where the update is obtained by solving[
DK̃T (ũ

(k)
T ) BT

B 0

][
δ ũ(k)T

δλ (k)

]
=

[
K̃T (ũ

(k)
T )+BT λ (k)−RT

Π
T T f

Bũ(k)T

]
. (2.61)

We can proceed as in the case without a transformation of basis. After conver-
gence, we obtain the solution in the nodal basis by applying the transformation
T .
In our implementation we perform all Newton iterations in the original nodal
basis and only solve the linearized systems in the new basis. This is convenient,
because discretized functions, gradients and tangential matrices are typically
represented in the nodal basis, as well as the stopping criteria. Therefore, we
remark that

ũ(k+1) : = RT
Π,DT RΠũ(k+1)

T

= RT
Π,DT RΠ

(
ũ(0)T +

k

∑
i=0

δ ũ(i)T

)

= ũ(0)+
k

∑
i=0

RT
Π,DT RΠδ ũ(i)T .

The iteration for the computation of the initial value (2.58) becomes

ũ(k+1) = ũ(k)−α
(k)RT

Π,DT RΠδ ũ(k)T (2.62)
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where the update is obtained by solving

RT
ΠT T DK(ũ(k))T RΠ δ ũ(k)T = RT

ΠT T K(ũ(k))+BT
λ
(0)−RT

ΠT T f .

Now, we will also formulate (2.60) and (2.61) in the nodal basis and obtain[
ũ(k+1)

λ (k+1)

]
=

[
ũ(k)

λ (k)

]
−α

(k)

[
RT

Π,DT RΠδ ũ(k)T

δλ (k)

]
(2.63)

where the update is obtained by solving[
RT

Π
T T DK(ũ(k))T RΠ BT

B 0

][
δ ũ(k)T

δλ (k)

]
=

[
RT

Π
T T K(ũ(k))+BT λ (k)−RT

Π
T T f

BRT
Π,DT T RΠũ(k)

]
.

(2.64)

In this approach we have the same linearized systems because we evaluate the
discrete operators in the same points, but all solutions and iterations are formu-
lated in the nodal basis. In all cases we only have local multiplications of T or
T T with vectors RΠũ or discrete operators K(·) and tangential matrices DK(·).

Transformation of Basis in the Nonlinear-FETI-DP-2 Method

Let us recall
K̃T (ũT ) = RT

ΠT T K(T RΠũT ).

By performing a nonlinear elimination of ũT in (2.55), we obtain

FT (λ ) = BK̃−1
T (RT

ΠT T f −BT
λ )

and
Dλ FT (λ ) =−B(DK̃T (ũT ))

−1BT .

Here, the pair (λ , ũT ) has to satisfy the equation

K̃T (ũT )+BT
λ −RT

ΠT T f = 0. (2.65)

Now we have all ingredients to formulate Nonlinear-FETI-DP-2 completely in
the new basis. The computation of a ũT , which satisfies (2.65) for the iterate
λ (k), can be carried out analogously to (2.58) with λ (k) replacing λ (0) in (2.59).
For the dual Newton iteration, we have

λ
(k+1) = λ

(k)−α
(k)

δλ
(k)

35



CHAPTER 2. NONLINEAR FETI-DP AND BDDC

and the update is obtained by solving

B(DK̃T (ũT ))
−1BT

δλ
(k) =−BũT .

As in Nonlinear-FETI-DP-1 we can perform all iterations in the nodal basis.
Therefore, we compute a variable ũ such that RT

Π,DT T RΠũ satisfies (2.65) for the
iterate λ (k) analogously to (2.62). The dual update δλ (k) can be obtained by
solving

B(RT
ΠT T DK(ũ)T RΠ)

−1BT
δλ

(k) =−BRT
Π,DT T RΠũ.

Again, we only perform local multiplications with T or T T .

2.5 On the Convergence of Nonlinear FETI-DP

In general, we expect a quadratic convergence rate of Newton’s method in a
sufficiently small environment of the solution. It is well known that this envi-
ronment can be enlarged by using a step length or trust region globalization
technique; see Sections 1.3 and 1.4, and [112]. As already mentioned, we of-
ten use step lengths fulfilling the Wolfe conditions. Additionally, we describe
an alternative approach to compute a step length α for Nonlinear-FETI-DP-2,
which has less computational intensity; see Section 2.5.3. In Section 2.5.1, we
also make some additional Assumptions which are necessary for equations (2.38)
and (2.45) and thus for the derivation of our nonlinear methods. We also dis-
cuss the invertibility of DK̃(·). Finally, we provide some remarks on the usage
of redundant Lagrange multiplier variables in nonlinear FETI-DP methods; see
Section 2.5.2.

2.5.1 Additional Assumptions

First, let us note that our nonlinear FETI-DP methods are identical to standard
FETI-DP methods if they are applied to linear problems. Moreover, nonlinear
FETI-DP methods using a transformation of basis are also identical to standard
FETI-DP methods using a transformation of basis if applied to linear problems.

Second, as in the ASPIN method [22], the equivalence of the original problem
(2.27) to the nonlinear FETI-DP formulations (2.33) and (2.46) relies on certain
assumptions which we discuss briefly now.

To ensure the equivalence of the original problem (2.27) and the saddle point
system (2.32), Assumption 1 has to be satisfied. From the saddle point system
(2.32) we will obtain the saddle point system (2.33) by replacing some of the
dual constraints by primal constraints implemented by partial assembly. This
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does not essentially change the solution. Let us now assume that (2.33) has
a solution (ũ∗,λ ∗). Then, from the first set of equations of (2.33), we have
K̃(ũ∗) = f̃ −BT λ ∗. We make the following assumption.

Assumption 2 Let U be an open neighborhood of ũ∗. The function K̃ is con-
tinuously differentiable in U . The derivative DK̃(ũ∗) of K̃ in ũ∗ is a regular
matrix.

Under Assumption 2 and using the inverse function theorem, there exist some
neighborhoods Ua⊂U with ũ∗ ∈Ua and Va with f̃ −BT λ ∗ ∈Va such that K̃ : Ua→
Va is a diffeomorphism. Under these assumptions, ũ∗ is a point of attraction of
the Newton method for K̃(ũ∗)+BT λ ∗− f̃ = 0; see, e.g., Ortega and Rheinboldt
[116, Section 10.2.2]. An analogous result holds for the Nonlinear-FETI-DP-1
system (2.34) and the Nonlinear-FETI-DP-2 system (2.46) if, in addition, the
saddle point system on the left hand side of (2.36) is nonsingular for (ũ∗,λ ∗);
this is satisfied if B has full rank. In general, B has only full rank, if we consider
nonredundant Lagrange multipliers, i.e., in two dimensions, one multiplier per
degree of freedom on edges, two multipliers in degrees of freedom with three
neighboring subdomains, and three multipliers in degrees of freedom with four
neighboring subdomains.

2.5.2 Nonlinear FETI-DP using Redundant Lagrange Multipliers

In linear FETI-DP methods the usage of redundant Lagrange multipliers is
common and the Krylov subspace method converges to the correct solution
since it operates on range(B). The same holds for Newton-Krylov-FETI-DP,
since the Lagrange multipliers only exist in the linearization and, as a result
of that, do not affect the Newton iteration. In nonlinear FETI-DP methods,
the Newton iteration directly acts on the Lagrange multiplier variables and also
affects the right hand sides of the linearized systems.
Let us recall the nonlinear FETI-DP master system from equation (2.34) in the
exact solution [ũ∗

T
, λ ∗

T
]T

K̃(ũ∗)+BT λ ∗− f̃ = 0

Bũ∗ = 0.
(2.66)

Assuming that the jump matrix B corresponds to a set of redundant Lagrange
multiplier variables enforcing continuity on the interface, we can formulate an
equivalent FETI-DP master system using a maximal subset of nonredundant
Lagrange multipliers and the corresponding jump matrix B1 in the exact solution
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[ũ∗
T

1 , λ ∗
T

1 ]T

K̃(ũ∗1)+BT
1 λ ∗1 − f̃ = 0

B1ũ∗1 = 0.
(2.67)

Obviously, we have ũ∗ = ũ∗1, since B1 and B enforce the same set of constraints.
In the remainder of this section, we will show that nonlinear FETI-DP applied to
the nonlinear master system in (2.66) converges to the same result as nonlinear
FETI-DP applied to (2.67), and both methods have the same convergence rate.
For simplicity we assume the decomposition

B =

[
B1

B2

]
. (2.68)

Since all n2 rows of B2 are linear combinations of the n1 rows of B1, we can
represent B2 by B2 = L1B1, where L1 ∈ Rn2×n1 . We also have

B = L

[
B1

0

]
, (2.69)

with

L :=

[
In1 0

L1 In2

]
is a regular matrix. Here, In1 and In2 are identity matrices of matching sizes.

Nonlinear-FETI-DP-1 with Redundant Lagrange Multipliers

We first consider Nonlinear-FETI-DP-1. Let us recall iteration (2.37) to solve
(2.66): [

ũ(k+1)

λ (k+1)

]
=

[
ũ(k)

λ (k)

]
−α

(k)

[
δ ũ(k)

δλ (k)

]
. (2.70)

The update is obtained by solving the linear system

[
DK̃(ũ(k)) BT

B 0

][
δ ũ(k)

δλ (k)

]
=

[
K̃(ũ(k))+BT λ (k)− f̃

Bũ(k)

]
. (2.71)

Let us assume we start within the convergence radius of Newton’s method.
Since we first reduce system (2.71) to the Lagrange multipliers and solve the
resulting positive semidefinite system with a Krylov subspace method, we obtain
a valid update δλ (k). Under Assumption 2, DK̃(ũ(k)) is regular and thus we
get an update δ ũ(k), which is unique with respect to δλ (k). Analogously, the
Nonlinear-FETI-DP-1 iteration in order to solve (2.67) reads

38



2.5. ON THE CONVERGENCE OF NONLINEAR FETI-DP

[
ũ(k+1)

1

λ
(k+1)
1

]
=

[
ũ(k)1

λ
(k)
1

]
−α

(k)

[
δ ũ(k)1

δλ
(k)
1

]
, (2.72)

with updates defined by[
DK̃(ũ(k)1 ) BT

1

B1 0

][
δ ũ(k)1

δλ
(k)
1

]
=

[
K̃(ũ(k)1 )+BT

1 λ
(k)
1 − f̃

B1ũ(k)1

]
. (2.73)

The jump matrix B1 has full row rank and, under Assumption 2, DK̃(ũ(k)1 ) is in-
vertible. The saddle point matrix in equation (2.73) is therefore regular and has
a unique solution (δ ũ(k)1 ,δλ

(k)
1 ). If we start in a sufficiently small neighborhood

of the solution (ũ∗1,λ
∗
1 ) of equation (2.67) , we have (ũ(k)1 ,λ

(k)
1 )→ (ũ∗1,λ

∗
1 ) with a

quadratic convergence rate. In the remainder of this section, we will show that
(2.70) and (2.72) have the same convergence behavior in W̃ .

Remark 1 Let (ũ(0),λ (0)) be the initial value of Newton’s iteration defined by
(2.70) and (2.71) and let (ũ(0)1 ,λ

(0)
1 ) be the initial value of Newton’s iteration

defined by (2.72) and (2.73). Let us assume that for the chosen initial value
(ũ(0)1 ,λ

(0)
1 ) the iteration (2.72) converges to the unique solution (ũ∗1,λ

∗
1 ). If ũ(0)1 =

ũ(0) and
λ
(0)
1 = Rn1LT

λ
(0), (2.74)

where Rn1 =
[
In1 0

]
restricts a vector of length (n1 +n2) to the first n1 entries,

the following two equations will hold in all iterations:

δ ũ(k)1 = δ ũ(k) (2.75)

and
δλ

(k)
1 = Rn1LT

δλ
(k). (2.76)

If ũ(k+1)
1 satisfies a chosen stopping criterion, ũ(k+1) fulfill the same criterion

and both iterations have the same convergence behavior in W̃ .

Proof. Let us note that assumption (2.74) is always fulfilled for λ (0) :=

(λ
(0)T

1 , 0)T . Next, we assume that Remark 1 holds for all Newton steps 0≤ i < k,
and thus we have δ ũ(i)1 = δ ũ(i) and δλ

(i)
1 = Rn1LT δλ (i) for all 0≤ i < k. We then

obtain

ũ(k) = ũ(0)+
k−1

∑
i=0

δ ũ(i) = ũ(0)1 +
k−1

∑
i=0

δ ũ(i)1 = ũ(k)1 . (2.77)

Since the solution (δ ũ(k)1 ,δλ
(k)
1 ) of system (2.73) is unique, it is sufficient to

show that (δ ũ(k),Rn1LT δλ (k)) solves system (2.73), which immediately proves
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equalities (2.76) and (2.75). For the first row of (2.73) we have to show

DK̃(ũ(k)1 )δ ũ(k)+BT
1 Rn1LT

δλ
(k) = K̃(ũ(k)1 )+BT

1 λ
(k)
1 − f̃ .

Therefore, we have

DK̃(ũ(k)1 )δ ũ(k)+BT
1 Rn1LT

δλ
(k)

(2.77)
= DK̃(ũ(k))δ ũ(k)+

[
BT

1 0
]

LT
δλ

(k)

= DK̃(ũ(k))δ ũ(k)+BT
δλ

(k)

(2.71)
= K̃(ũ(k))+BT

λ
(k)− f̃

= K̃(ũ(k))+
[
BT

1 0
]

LT
λ
(k)− f̃

= K̃(ũ(k))+
[
BT

1 0
]

LT

(
λ
(0)+

k−1

∑
i=0

δλ
(i)

)
− f̃

= K̃(ũ(k))+
[
BT

1 0
]

LT
λ
(0)+

k−1

∑
i=0

[
BT

1 0
]

LT
δλ

(i)− f̃

= K̃(ũ(k))+BT
1 λ

(0)
1 +

k−1

∑
i=0

BT
1 δλ

(i)
1 − f̃

= K̃(ũ(k)1 )+BT
1 λ

(k)
1 − f̃ .

It remains to prove that (δ ũ(k),Rn1LT δλ (k)) is also a solution for the second row
of (2.73):

Bδ ũ(k) = Bũ(k)

⇔ L

[
B1

0

]
δ ũ(k) = L

[
B1

0

]
ũ(k)

⇔
[

B1

0

]
δ ũ(k) =

[
B1

0

]
ũ(k)

⇔ B1δ ũ(k) = B1ũ(k)

(2.77)⇔ B1δ ũ(k) = B1ũ(k)1 .

40



2.5. ON THE CONVERGENCE OF NONLINEAR FETI-DP

By adding the updates, we directly obtain ũ(k+1)
1 = ũ(k+1) and λ

(k+1)
1 =

Rn1LT λ (k+1). The initial step of this induction can be shown analogously
by choosing k = 0. �

Nonlinear-FETI-DP-2 with Redundant Lagrange Multipliers

We will now show the same independence of the choice of Lagrange multipliers
for Nonlinear-FETI-DP-2. In Nonlinear-FETI-DP-2 we get the update of the
Lagrange multipliers δλ (k) by solving

B(DK̃(ũ(k)))−1BT
δλ

(k) =−Bũ(k), (2.78)

where ũ(k) has to fulfill the equation

K̃(ũ(k)) = f̃ −BT
λ
(k), (2.79)

which can be solved by some Newton iteration. Again, with (2.69), we can
formulate a similar iteration considering nonredundant Lagrange multipliers.
We obtain

B1(DK̃(ũ(k)1 ))−1BT
1 δλ

(k)
1 =−Bũ(k)1 , (2.80)

where ũ(k)1 has to fulfill the equation

K̃(ũ(k)1 ) = f̃ −BT
1 λ

(k)
1 . (2.81)

This leads to the following remark analogously to Remark 1.

Remark 2 Let λ (0) be the initial value of a Newton iteration with updates de-
fined by (2.78) and let λ

(0)
1 be the initial value of a Newton iteration with updates

defined by (2.80). Let the iteration with updates defined by (2.80) converge for
the chosen initial value λ

(0)
1 to the unique solution λ ∗1 . The corresponding unique

solution ũ∗ is obtained by solving (2.81). Given that

λ
(0)
1 = Rn1LT

λ
(0),

with Rn1 =
[
In1 0

]
restricts a vector of length n to the first n1 entries, the fol-

lowing equations hold in all Newton steps:

δ ũ(k)1 = δ ũ(k) (2.82)

and
δλ

(k)
1 = Rn1LT

δλ
(k). (2.83)
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If ũ(k+1)
1 satisfies a chosen stopping criterion, ũ(k+1) fulfills the same criterion

and both iterations have the same convergence behavior in W̃ .

Proof. Since the matrix B1 has full row rank and DK̃(ũ(k)) is positive definite,
B1(DK̃(ũ(k)1 ))−1BT

1 is regular and we have a unique solution δλ
(k)
1 . We first show

δλ
(k)
1 = Rn1LT δλ (k) under the assumption ũ(k)1 = ũ(k). Because of the uniqueness

of δλ
(k)
1 it is sufficient to show that Rn1LT δλ (k) solves (2.80). Therefore, we show

the equivalence

B1(DK̃(ũ(k)1 ))−1BT
1 Rn1LT

δλ
(k) =−B1ũ(k)1

⇔ B(DK̃(ũ(k)))−1BT
δλ

(k) =−Bũ(k).

Therefore, we have

B1(DK̃(ũ(k)1 ))−1BT
1 Rn1LT

δλ
(k) =−B1ũ(k)1

⇔ B1(DK̃(ũ(k)1 ))−1
[
BT

1 0
]

LT
δλ

(k) =−B1ũ(k)

⇔ B1(DK̃(ũ(k)1 ))−1BT
δλ

(k) =−B1ũ(k)

⇔ B1((DK̃(ũ(k)1 ))−1BT
δλ

(k)+ ũ(k)) = 0

⇔ L

[
B1

0

]
((DK̃(ũ(k)1 ))−1BT

δλ
(k)+ ũ(k)) = 0

⇔ B(DK̃(ũ(k)))−1BT
δλ

(k) =−Bũ(k).

We proved that for a solution δλ (k) of (2.78), and under the assumption
ũ(k) = ũ(k)1 , Rn1LT δλ (k) is the unique solution of (2.80). Therefore, we obtain
δλ

(k)
1 = Rn1LT δλ (k). It is left to verify the correctness of the assumption ũ(k)1 =

ũ(k). Therefore, it is sufficient to show the equality of the right hand sides of
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(2.79) and (2.81) assuming that δλ
(i)
1 = Rn1LT δλ (i) , ∀0≤ i < k. We have:

f̃ −BT
λ
(k)

= f̃ −
[
BT

1 0
]

LT
λ
(0)−

k−1

∑
i=0

[
BT

1 0
]

LT
δλ

(i)

= f̃ −BT
1 Rn1LT

λ
(0)−

k−1

∑
i=0

BT
1 Rn1LT

δλ
(i)

= f̃ −BT
1 λ

(0)
1 −

k−1

∑
i=0

BT
1 δλ

(i)
1

= f̃ −BT
1 λ

(k)
k .

We easily get the initial step of the induction by repeating this proof with k = 0.
�

Summarizing, we have shown that the convergence of the Newton iteration in
nonlinear FETI-DP methods is independent of the choice of the jump matrix B.
Therefore, all common FETI-DP jump matrices can be used in our nonlinear
methods. Of course, as in linear FETI-DP, the choice of the jump conditions
may slightly affect the convergence of the Krylov method.
Let us briefly remark that in the case of redundant Lagrange multipliers updates
δλ (k) in nonlinear FETI-DP methods may be of the form δλ (k) = δ λ̃ (k)+δ λ̂ (k)

with δ λ̂ (k) ∈ ker (BT ) and δ λ̂ (k) 6= 0. As we have shown in this section, this will
not affect the convergence of the method. But it might influence the stopping
criterion. For example, a stopping criterion including the condition ||δλ || ≤ ε

may never be fulfilled. We suggest to use stopping criteria considering the
residual instead of the Newton update. This would include BT δλ instead of δλ .
Also a criterion considering δ ũ and Bũ is possible.

2.5.3 Improving the Convergence of Nonlinear-FETI-DP-2

Since we generate a fully nonlinear problem F(λ ∗) = 0 in the dual variables
by nonlinear elimination of the variables ũ, we will collect some remarks on the
convergence of the resulting Newton iteration (2.47). We can hope for quadratic
convergence of the Newton method if we start in a sufficiently small neighbor-
hood of the solution λ ∗. In general, e.g., in nonlinear continuum mechanics,
sufficient conditions for local quadratic convergence of the Newton method may
not hold. The radius of convergence can be enlarged if a suitable globalization
strategy is used. Here, we only consider line search methods. Trust region
methods can also be used for the subdomain problems as well as for the coarse
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problem. In nonlinear multilevel methods for elasticity, globalization using re-
cursive trust region methods has been a successful approach; see [63].

Choosing the Initial Value and Choice of the Coarse Space

For an initial value λ (0) we have

F(λ (0)) = Bũ

for a ũ which satisfies the equation

K̃(ũ)+BT
λ
(0)− f̃ = 0.

Thus, we may search a λ (0) such that the jump on the interface of the corre-
sponding ũ is sufficiently small. Alternatively, for a given λ (0), we can manip-
ulate our primal constraints, such that a ũ with sufficiently small jumps in the
dual variables, satisfies

K̃(ũ) =−BT
λ
(0)+ f̃ .

Recently developed strategies of adaptive coarse space selection for standard
FETI-DP and BDDC methods, see, e.g., [38,39,82,106,131], may be especially
valuable in this nonlinear context since they can help to improve the convergence
of the Newton method. Also a coarse space based on a zero-net flux condition,
as suggested in [57, 59], may improve convergence for almost incompressible
elasticity problems.

Approach for a Step Length Calculation for the Nonlinear-FETI-DP-2
Method

In our Newton iteration

λ
(k+1) = λ

(k)−α
(k)(Dλ F(λ (k)))−1F(λ (k)),

we still need to define a suitable step length. In some of our numerical experi-
ments a good step length is necessary for convergence, especially if the FETI-DP
coarse space is insufficient. In this special case, for Armijo or Wolfe conditions,
the expression F(λ (k)−αδλ (k)) has to be computed for several α . In the context
of Nonlinear-FETI-DP-2, for each α , a weakly coupled nonlinear system

F(λ (k)−αδλ
(k)) = Bũ = B(K̃−1( f̃ −BT (λ (k)−αδλ

(k)))) = 0 (2.84)
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has to be solved, e.g., using a Newton iteration. We note that the computational
work is mostly local. At this point we should remember that we have to compute

ũ = K̃−1( f̃ −BT
λ
(k+1)) (2.85)

in every step of our algorithm, in order to compute the right hand side; see
(2.50).

Here, we describe our strategy to save computational cost. First, it is often not
necessary to solve (2.84) until convergence. Second, let us assume a backtracking
strategy (see also 1.1) for α , e.g., α(0) := 1 and then α(i) = ρ iα(0), i = 1,2, . . .,
where 0 < ρ < 1. In this case, ũ resulting from (2.84) can be reused as a start
value for the iteration for the next value of α .

Note that, in our FETI-DP method, we want to minimize the jump, e.g.,
the norm ||Bũ||= ||F(λ (k)−αδλ (k))||. We thus solve equation (2.84) until, e.g.,
stagnation of ||Bũ||.

Finally the value of ũ resulting from this minimization can also be reused
when computing (2.85). Once, we have found the final step length α , we choose
the stopping criterion defined in Section 2.7.2.

In cases where our simple and less expensive step length strategy is not suf-
ficient for convergence, we suggest to verify the Wolfe condition, cf. (2.19) and
(2.20), or even the strong Wolfe condition; see [112]. This can be combined with
the computation of ũ in (2.85) in a similar way, but will be more expensive.

2.6 Nonlinear BDDC Method

In the spirit of our nonlinear FETI-DP methods we can also formulate a non-
linear BDDC method. A nonlinear Neumann-Neumann or BDD method was
already introduced by Bordeu et al. in [11]. In our nonlinear BDDC method
we will eliminate all interior variables and build a nonlinear Schur complement,
which then can be linearized. This approach is thus similar to Nonlinear-FETI-
DP-2.

2.6.1 Newton-Krylov-BDDC

We briefly review the classical use of the linear BDDC preconditioner within
a Newton-Krylov approach. Here, we recall the fully assembled system (2.16)
operating on V h using the nonoverlapping domain decomposition of Ω into sub-
domains Ωi , i = 1, ...,N, which reads

RT K(Ru)−RT f = 0, (2.86)
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where K is defined in (2.17). This system is solved by a Newton iteration

u(k+1) = u(k)−α
(k)

δu(k)

with the update δu(k) obtained by

RT DK(Ru(k))Rδu(k) = RT K(Ru(k))−RT f . (2.87)

As usual, we partition the variables into interior variables denoted by uI and
interface variables denoted by uΓ. This leads us to the following partition of the
tangential matrix

DK(Ru(k)) =

[
DK(Ru(k))II DK(Ru(k))IΓ

DK(Ru(k))ΓI DK(Ru(k))ΓΓ

]

and also the partition of the right hand side

K(Ru(k))− f =

[
(K(Ru(k))− f )I

(K(Ru(k))− f )Γ

]
=

[
K(Ru(k))I− fI

K(Ru(k))Γ− fΓ

]
.

Here, I denotes the set of interior variables and Γ the set of interface variables.
Using the BDDC algorithm to solve the linearized system (2.87) we first elimi-
nate the interior variables and solve for the assembled interface variables

M−1
BDDC(Ru(k)) Sg(Ru(k)) δu(k)g = M−1

BDDC(Ru(k)) gg(Ru(k))

by some Krylov iteration. Here, we have the assembled Schur complement Sg(u)

defined by

Sg(u) := RT
ΓSΓ(u)RΓ = RT

Γ(DK(u)ΓΓ−DK(u)ΓI(DK(u)II)
−1DK(u)IΓ)RΓ, (2.88)

with the restriction operator RT
Γ

:=
[
R(1)T

Γ
, ...,R(N)T

Γ

]T
, where R(i)

Γ
is the restriction

from the global interface Γ to the local interface on subdomain Ωi. The BDDC
preconditioner is defined by

M−1
BDDC(u) := RT

D(R
T
Π DK(u)RΠ)

−1 RD (2.89)

with

RT
D :=

[
RT

∆,DRB
∆

0

0 IΠ

]
,
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and RT
∆,DRB

∆
is the weighted restriction from the set [I,∆] to ∆. The right hand

side gg is defined by

gg(u) := RT
Γ((K(u)− f )Γ−DK(u)ΓI(DK(u)II)

−1(K(u)− f )I).

Finally, we get the full Newton update by

δu(k) :=

[
(DK(Ru(k))II)

−1((K(Ru(k))− f )I−DK(Ru(k))IΓδu(k)g )

δu(k)g

]
.

2.6.2 Nonlinear Schur Complement

To formulate a nonlinear BDDC algorithm let us first introduce the nonlinear
Schur complement system. For the moment, let us assume that K(u) = f is the
discretization of our nonlinear problem on a single domain, e.g., this could be
a subdomain. Let us recall the partition of all degrees of freedom into the set
of interface variables Γ and interior variables I from the last section. This leads
us to the following partition of the operator K(u) and the right hand side f

K(u)− f =

[
KI(uI,uΓ)

KΓ(uI,uΓ)

]
−
[

fI

fΓ

]
=

[
0

0

]
. (2.90)

We also partition the tangential matrix DK(u) in the same way and obtain

DK(u) =

[
DuI KI(uI,uΓ) DuΓ

KI(uI,uΓ)

DuI KΓ(uI,uΓ) DuΓ
KΓ(uI,uΓ)

]
=

[
DK(uI,uΓ)II DK(uI,uΓ)IΓ

DK(uI,uΓ)ΓI DK(uI,uΓ)ΓΓ

]
.

(2.91)

Under the sufficient assumptions that KI is continuously differentiable, that
there exists an (uI,uΓ), which satisfies KI(uI,uΓ)− fI = 0, and that DuI KI(uI,uΓ)

is invertible, there exists an implicit function h(uΓ) = uI and in a neighborhood
of uΓ we have

0 = KI(uI,uΓ)− fI = KI(h(uΓ),uΓ)− fI.

From the implicit function theorem we then obtain the derivative of h,

Dh(uΓ) =−(DK(h(uΓ),uΓ)II)
−1DK(h(uΓ),uΓ)ΓΓ. (2.92)

Now, we can define the nonlinear Schur complement by

S(uΓ) := KΓ(h(uΓ),uΓ)− fΓ (2.93)
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and, using the chain rule in combination with (2.92), the derivative of S is given
by

DS(uΓ) = DuI KΓ(h(uΓ),uΓ)Dh(uΓ)+DuΓ
KΓ(h(uΓ),uΓ)

= −DK(h(uΓ),uΓ)ΓI (DK(h(uΓ),uΓ)II)
−1 DK(h(uΓ),uΓ)IΓ + DK(h(uΓ),uΓ)ΓΓ.

Let us note that the derivative of the nonlinear Schur complement DS is the
same as the Schur complement SΓ of the derivative of the nonlinear operator K;
see also (2.88) in Section 2.6.1.

If we now consider more than one subdomain, then S(uΓ) has a block form. Let
us reintroduce the index i = 1, ...,N and define the nonlinear Schur complement
on a subdomain Ωi by Si(uiΓ). Then, we have

S(uΓ) :=
[
S1(u1Γ

)T , ...,SN(uNΓ
)T ]T , (2.94)

where uΓ :=
[
uT

1Γ
, ...,uT

NΓ

]T .

2.6.3 Nonlinear BDDC Formulation

Our nonlinear BDDC method is obtained by linearizing the nonlinear Schur
complement and using a BDDC preconditioner to solve the linearized problem.
As in the Nonlinear-FETI-DP-2 method we have to solve local nonlinear prob-
lems on the right hand side. We recall the assembly operator on the interface

RT
Γ

:=
[
R(1)T

Γ
, ...,R(N)T

Γ

]T
. Next, we solve the assembled nonlinear Schur comple-

ment system, cf. (2.94),
RT

ΓS(RΓūΓ) = 0

by a Newton type iteration of the form

ū(k+1)
Γ

= ū(k)
Γ
−α

(k)
δ ū(k)

Γ

for a given initial value ū(0)
Γ

:= [0, RT
Γ
] u(0) , u(0) ∈W . We obtain the update δ ū(k)

Γ

by solving the linear system

RT
ΓDS(RΓū(k)

Γ
)RΓ δ ū(k)

Γ
= RT

ΓS(RΓū(k)
Γ
) (2.95)

or, using the notation from (2.88),

Sg(h(RΓū(k)
Γ
),RΓū(k)

Γ
)δ ū(k)

Γ
= RT

ΓS(RΓū(k)
Γ
). (2.96)
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To obtain the right hand side of (2.96), we have to solve local nonlinear systems.
From (2.93) we have

RT
ΓS(RΓū(k)

Γ
) = RT

Γ(KΓ(h(RΓū(k)
Γ
),RΓū(k)

Γ
)− fΓ).

We thus need to compute the nonlinear extension u∗I := h(RΓū(k)
Γ
) of the values

on the interface by solving

KI(u∗I ,RΓū(k)
Γ
)− fI = 0. (2.97)

We obtain u∗I by carrying out the Newton iteration u( j+1)
I = u( j)

I −α( j)δu( j)
I with

DK(u( j)
I ,RΓū(k)

Γ
)II δu( j)

I = KI(u
( j)
I ,RΓū(k)

Γ
)− fI. (2.98)

We remark that the problems in (2.98) are uncoupled and therefore com-
pletely local. In the last step we apply the linear BDDC preconditioner
M−1

BDDC(u
∗
I ,RΓū(k)

Γ
) to equation (2.96), cf. also (2.89), and solve with some Krylov

iteration. We also need h(RΓū(k)
Γ
) = u∗I to obtain Sg(h(RΓū(k)

Γ
),RΓū(k)

Γ
) in (2.96).

With the equivalence of (2.96) and FNL1(ũ) = FNL2(ũ) = FNK(ũ) for nonlinear
FETI-DP, and since we use the standard linear preconditioner, we also have
the equality of the eigenvalues of the preconditioned system matrices of the
nonlinear FETI-DP and nonlinear BDDC methods except of the eigenvalues
zero and one. Of course this is only true if the tangential matrix is built in the
same point ũ for all methods. But as a result of the different right hand sides
the nonlinear methods are indeed very different from each other and can show
a drastically different convergence behavior. Also note that in our nonlinear
FETI-DP methods the coarse problem can improve the Newton convergence
whereas in Nonlinear-BDDC this is not the case, since the coarse space is only
included in the linear preconditioner applied to the linearized system.

2.6.4 Comparison of the Nonlinear FETI-DP Methods and
Nonlinear-BDDC

Since the coarse problem is included in the operator in the nonlinear FETI-DP
methods, the coarse space has a direct influence on the Newton iteration, in
addition to the Krylov subspace iteration. This is not the case for the nonlinear
BDDC method. Since the primal assembly is only part of the linear precondi-
tioner in Nonlinear-BDDC, the choice of the coarse space has no effect on the
Newton iterations but only on the convergence of the Krylov space method.
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In the nonlinear formulations that we choose for FETI-DP and BDDC, both
algorithms therefore have a quite different convergence behavior.

Note that the local nonlinear problems in the Nonlinear-BDDC method are
completely decoupled whereas in the nonlinear FETI-DP methods the local non-
linear problems are coupled in the primal variables. This increases the communi-
cation cost but improves the convergence. Note that an additional coarse space
can be applied to the linearized problems, e.g., using deflation; see, e.g., [88].

The coarse space of the nonlinear FETI-DP methods is nonlinear whereas in
the Nonlinear-FETI-1 approach by Pebrel, Rey, and Gosselet [117] the coarse
space is linear. From a theoretical viewpoint, Nonlinear-BDDC relies on similar
assumptions as the nonlinear FETI-DP methods, see Section 2.5.1.

We may also construct nonlinear FETI-DP and BDDC methods by applying
a nonlinear preconditioner to the dual or primal nonlinear Schur complement
systems. In this case two nonlinear systems would have to be solved on the right
hand side of each global Newton iteration, but this is not topic of this thesis.

2.7 A Nonlinear Model Problem and Numerical Results

In this section, we present numerical results for different model problems based
on the p-Laplace operator with homogeneous Dirichlet boundary conditions.
Results are shown for the two nonlinear FETI-DP methods, for Newton-Krylov-
FETI-DP, and for the nonlinear BDDC algorithm. All algorithms are imple-
mented in Matlab and use the same building blocks; see Section 2.4.4 for a
description of the building blocks and for pseudocodes of the different algo-
rithms. The results can thus be seen as numerical scalability studies of the
different approaches. We will also present a brief outlook on the improved par-
allel performance and efficiency of the new nonlinear methods compared to the
standard Newton-Krylov-FETI-DP approach in Section 2.7.4.

2.7.1 The p-Laplace Equation

Let us define the p-Laplace operator for p≥ 2 by

∆pu := div(|∇u|p−2
∇u).

A solution of the partial differential equation

−∆pu = b in Ω

u = 0 on ∂Ω,
(2.99)
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minimizes the energy

J(u) :=
∫

Ω

1
p
|∇u|p−bu dx.

Using the decomposition of Ω into nonoverlapping subdomains Ωi, i = 1, ...,N,
we define

Ji(ui) :=
∫

Ωi

1
p
|∇ui|p−bui dx , i = 1, ...,N.

This decomposition satisfies Assumption 1; see Section 2.3. We have to compute
the derivative of Ji(ui), see Section 2.3, and obtain

J′i(ui)(vi) =
∫

Ωi

|∇ui|p−2
∇uT

i ∇vi−bvi dx. (2.100)

Therefore, given a finite element basis {ϕ1, . . . ,ϕNi} on a subdomain Ωi, we have

Ki(ui) :=
(∫

Ωi

|∇ui|p−2
∇uT

i ∇ϕ1dx , ... ,
∫

Ωi

|∇ui|p−2
∇uT

i ∇ϕNidx
)T

and the right hand sides

fi :=
(∫

Ωi

bϕ1dx , ... ,
∫

Ωi

bϕNidx
)T

.

For the tangential matrices DK(i)(ui), we obtain

(DK(i)(ui)) j,k :=
∫

Ωi

|∇ui|p−2
∇ϕ

T
j ∇ϕkdx + (p−2)

∫
Ωi

|∇ui|p−4 (∇uT
i ∇ϕ j) (∇uT

i ∇ϕk)dx

directly by computing the derivative of J′i(ui)(vi) in the direction wi and by using
the basis representations of vi and wi.

2.7.2 Numerical Results for Nonlinear FETI-DP

We test our algorithms for four different nonlinear model problems based on
variants of the p-Laplace equation. First, we consider the standard p-Laplace
equation (2.99). The second model problem has nonlinearities which are local
with respect to the subdomains. In the third model problem, we have local
nonlinearities which are not confined to the subdomains. The fourth model
problem is nonlinear on the complete domain but has large discontinuities in
the coefficients.

In all experiments in this section, we consider the unit square Ω := [0,1]× [0,1]
and decompose it into square subdomains Ωi, i = 1, ...,N. We have chosen piece-
wise linear finite elements. In all tests all vertices are primal and, additionally,
all edges are primal, i.e., edge averages are used as primal edge constraints in
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our linear and nonlinear FETI-DP methods. We carry out experiments using
both standard arithmetic edge averages and weighted averages. For a given edge
E , we consider edge averages uE of the form

uE :=
∑

NE
i=1 ρiui

∑
NE
i=1 ρi

, (2.101)

where NE is the number of nodes x on the edge E , ρi is a weight associated with
such a node, and ui = u(x) is the nodal evaluation of the function to be averaged.
For ρi = 1, i = 1, . . . ,NE , we have standard arithmetic edge averages. Otherwise,
the weights ρi are defined by using the coefficients of the differential equations;
see equation (2.105). We always use the following stopping criteria. Newton
iterations, which solve systems of the form K̃(ũ)+BT λ − f̃ = 0, see (2.44) and
(2.50), are stopped when ||K̃(ũ(k))+BT λ − f̃ ||L2 < 1e−12. Furthermore, in all
our FETI-DP algorithms, we stop the global Newton iteration when the fully
assembled residual satisfies ||RT K(RΠũ(k))−RT f ||L2 < 1e−12. Here, RT is the
global assembly operator on the interface from (2.16). Our stopping criterion
is thus based on the variable u and not on λ for NL-FETI-DP-1 as well as
NL-FETI-DP-2. We thus have identical stopping criteria for all three FETI-DP
methods. As initial values we always use

λ
(0) = 0

and
u(0)(x1,x2) = x1 (1− x1)x2 (1− x2)

which satisfies our homogeneous Dirichlet boundary condition. We cannot use
u(0) = 0 since the tangential matrix is then singular. For u 6= 0 the assembled
or also partially assembled tangential matrix is always positive definite and the
Newton direction a decent direction. In our experiments in this section, we
always choose the conjugate gradient method (CG) as a Krylov space method.
The stopping criterion for the preconditioned Krylov iterations is the relative
reduction of the preconditioned residual to 1e−10. Note that we always use
recycled Lagrange multipliers as start values, i.e., we use the resulting Lagrange
multiplier of the previous Newton iteration as a start value for the Krylov sub-
space iteration in the current Newton iteration. If an absolute convergence cri-
terion is used for the CG iteration this simple strategy can lead to a substantial
reduction of the number of Krylov iterations.

If a relative convergence criterion is used for the CG iteration, the absolute
accuracy of the Krylov solution increases during the Newton iteration, since the
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Fig. 2.6: Solution of the p-Laplace equation −∆4u = 1 defined in (2.99). The typical

diameter of a finite element is h = 1/64 in this case.

residual norm of the initial value decreases by using a recycling of λ . Therefore,
a relative reduction of 1e−10 is sufficient for the Krylov iteration. In all our
computations the Dirichlet preconditioner was used in the CG iterations.

First Model Problem

Our first model problem is the p-Laplace equation (2.99) for p = 4 with a con-
stant right hand side b = 1. A visualization of the solution can be found in
Fig. 2.6. We present some numerical scalability results for the two nonlinear
FETI-DP methods and for Newton-Krylov-FETI-DP in Table 2.1 (right) and
Table 2.2 (right). Here, we have H/h = 16, i.e. 2(162) finite elements per sub-
domain, and we increase the number of subdomains. In the usual linear setting,
a domain decomposition method is considered numerically scalable, if, for an
increasing number of subdomains, the number of iterations is asymptotically
bounded. Generally, numerical scalability of a domain decomposition method
cannot be obtained without incorporating a coarse problem to accelerate con-
vergence, by ensuring a global transport of information. Numerical scalability
is usually regarded as necessary to obtain weak parallel scalability of a domain
decomposition method.

In our nonlinear FETI-DP methods the coarse problem is constructed from
local constraints as in case of the linear method and will accelerate the Krylov
iteration. But an important property of the nonlinear FETI-DP methods is the
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possibility to accelerate also the Newton convergence by the choice of the coarse
problem.

From the results in Table 2.1 (right) we see that for all methods we obtain
Newton convergence using our initial value u(0). Moreover, the performance of
the two nonlinear FETI-DP methods is similar. Note that for our nonlinear
FETI-DP methods, we seem to have numerical scalability in terms of the global
number of Krylov iterations. This is a strong statement since this requires the
scalability of the Krylov iteration as well as of the Newton iteration.

The most important result is that using the nonlinear FETI-DP methods the
number of the global Krylov iterations is reduced by a factor of between 4 and 9
compared to the Newton-Krylov-FETI-DP approach. In a parallel environment
the global communication in the Krylov method can thus be reduced signifi-
cantly. At the same time the number of factorizations is always higher in the
nonlinear methods, i.e., by a factor of up to 1.5. This represents an increase of
local computational work on the subdomains and is expected.

In general, Newton’s method will not converge without some kind of load
stepping or globalization strategy. We therefore also report on results using
the Wolfe step optimization in all methods; see Table 2.2 (right). Indeed, the
Newton-Krylov-FETI-DP approach profits most from the optimized step length.
Nevertheless, using the nonlinear methods the number of global Krylov space
iterations is still reduced by a factor of between 2 and 4.

Second Model Problem

By design, we expect our new methods to perform best for problems with strong
localized nonlinearities. In order to analyze problems with such local nonlinear-
ities we consider the p-Laplace equation with different values of p in different
parts of the computational domain as a second model problem. Note that the
p-Laplace operator for p = 2 is the standard, linear Laplacian. More precisely,
we consider a matrix material, where in each subdomain an inclusion is embed-
ded; see Fig. 2.7 (left). Each inclusion is surrounded by a hull of width η of
the matrix material. We consider the p-Laplace operator with p = 2 in the hull
and with p = 4 in the inclusions. This configuration can be seen as a nonlinear
analog to the problems in [58].

Let us denote the hull inside each subdomain Ωi by

Ωi,η := {x ∈Ωi : dist(x,∂Ωi)< η}

and the inclusion by
Ωi,I := Ωi \Ωi,η .
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Ωi,η

∆4u = −1

∆u = −1

Ωi,I Ω2,C

Ω3,C

Ω1,C
Ωi,R

Ωi,C

α∆4u = −1

∆4u = −1 or ∆u = −1

Fig. 2.7: Left: Subdomain Ωi with an inclusion Ωi,I surrounded by a hull Ωi,η with

width η = H
8 . Middle: Example for a decomposition in N = 9 subdomains,

intersected by 3 channels Ωi,C, i = 1,2,3. Right: Subdomain Ωi with channel

Ωi,C of width H
2 ; published in [76].

Furthermore we define the union of all inclusions by

ΩI :=
N⋃

i=1

Ωi,I

and the union of all hulls by

Ωη :=
N⋃

i=1

Ωi,η .

We then consider

−α∆pu−β∆u = 1 in Ω

u = 0 on ∂Ω,
(2.102)

where α,β : Ω→ R are coefficient functions given by

α(x) =

{
1 if x ∈ΩI

0 elsewhere
β (x) =

{
0 if x ∈ΩI

1 elsewhere;
(2.103)

see Fig. 2.8 for a plot of the solution.

We again carry out numerical experiments to analyze the numerical scalability
of the different methods; see Table 2.1 (left) and Table 2.2 (left). Again, in the
nonlinear variants significantly fewer Krylov iterations are needed in comparison
to NK-FETI-DP, indicating a considerable reduction of the communication in
a parallel environment. If the Wolfe step strategy is used in all methods the
number of Krylov iterations is reduced by a factor of between 3 and 4 compared
to classical NK-FETI-DP, see Table 2.2 (left).
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Fig. 2.8: Solution of model equation defined in (2.102) with coefficients defined in

(2.103). The domain Ω is decomposed into 16 subdomains and all finite

elements have a typical diameter of h = 1/64.

For comparison, we also provide the results for the case when no globalization
technique is used. In this case the number of Krylov iterations can be reduced by
a factor of 4 to 11 when using the nonlinear methods; see Table 2.1 (left). Again,
the number of factorizations is higher in the new methods, as expected. We also
provide a visual comparison of the convergence behavior of NK-FETI-DP and
NL-FETI-DP-2 for this kind of model problem in Fig. 2.2.

Third Model Problem

As a third model problem, we consider localized nonlinearities which are not
confined to the subdomains. Instead of inclusions, we now consider channels of
width H

2 which intersect rows of subdomains from the left boundary to the right
boundary of Ω. All channels are parallel and each subdomain is intersected by
exactly one channel; see Figure 2.7 (middle and right). We have p = 2 in the
matrix material outside of the channels and p = 4 in the channels. In addition,
we scale the p-Laplace operator in the channels with a large coefficient α̃ ; see
(2.104). Let us denote by ΩC the union of the channels Ωi,C , i = 1, ...,N

1
2 , and

the rest of the domain by ΩR := Ω \ΩC; see Figure 2.7 (left and middle). We
consider problem (2.102) with coefficient functions α,β : Ω→ R

α(x) =

{
α̃ if x ∈ΩC

0 elsewhere
β (x) =

{
0 if x ∈ΩC

1 elsewhere,
(2.104)
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Fig. 2.9: Solution of the equation defined in (2.102) with coefficients defined in

(2.104) with with α̃ = 103 (left) and α̃ = 106 (right). The domain Ω is de-

composed into 16 subdomains and all finite elements have the typical diame-

ter h = 1/64.

where α̃ ∈ {103,106}; see Fig. 2.9 for the solution.
Again, we test for numerical scalability. In a first set of experiments with

H/h = 16, only standard arithmetic edge averages are used for the primal edges;
see Table 2.3. We see the typical behavior, i.e., in the nonlinear methods the
number of Krylov iterations is reduced but the number of factorizations, i.e., the
local work, is increased. We also see that increasing the coefficient α̃ from 103

to 106 affects all methods, i.e., the number of Krylov iteration grows. For the
first time, we also see significant differences in the maximal condition numbers
of the linearized systems. In the NK-FETI-DP approach, for α̃ = 106, systems
with very high condition numbers appear whereas in the nonlinear methods the
condition numbers remain small.

Next, we consider a coarse space with weighted edge averages. The scaling is
inspired by the weights used in edge averages of linear FETI-DP methods for
problems with jumps not aligned to the interface; see [85].

Here, the weights in the weighted edge averages, see (2.101), are defined as

ρi :=
∫
E (α(x)+β (x))ϕi(x)dx∫

E ϕi(x)dx
(2.105)

in each degree of freedom xi on the edge E with corresponding basis function ϕi.
The numerical scalability results are presented in Table 2.4. Again, the nonlinear
methods reduce the number of Krylov iterations significantly, i.e., by a factor of
between 2 and 7. The local work, as measured by the number of factorizations,
is increased by a factor of up to 1.5. Comparing Table 2.3 to Table 2.4, we see
that the scaling improves the results of all methods. The results from Table 2.4
also indicate that for the nonlinear methods, i.e., Nonlinear-FETI-DP-1 and
Nonlinear-FETI-DP-2, we have robustness of the number of Krylov iterations
with respect to the coefficient α̃ . This does not seem to be the case for NK-
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Fig. 2.10: Solution of the equation defined in (2.102) with coefficients defined in

(2.106) with α̃ = 103 (left) and α̃ = 106 (right). The domain Ω is decom-

posed into 16 subdomains and all finite elements have the typical diameter

h = 1/64.

FETI-DP, here the total number of Krylov iterations increases. Note that at
the same time the maximal condition number does not increase. The higher
number of Krylov iterations is thus a result of slower Newton convergence in
NK-FETI-DP.

Fourth Model Problem

Finally, in our fourth model problem, we present results for a nonlinear problem
where some methods do not converge without a linesearch.

We have p = 4 in the whole domain but we have high contrasts in the coeffi-
cient α between the channels and the matrix material. We have

α(x) =

{
α̃ if x ∈ΩC

1 elsewhere
β (x) = 0 in Ω, (2.106)

with α̃ ∈ {103,106}; see Fig. 2.10 for a plot of the solution. We present nu-
merical scalability results in Tables 2.5 and 2.6. Once more we see a reduction
of the number of Krylov iterations in case of a well chosen coarse space, see
Table 2.6, where weighted edge averages are used; cf. (2.105). It can also be
seen that NL-FETI-DP-2 needs a good coarse space to converge, or, alterna-
tively, an optimization of the step length as introduced in Section 2.4.4. The
latter increases the computational cost by some additional factorizations but
increases the convergence radius and reduces the number of Krylov iterations;
see Table 2.5.
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Summary of the Numerical Results

From all our experiments with nonlinear FETI-DP, we can conclude that the
nonlinear algorithms always reduce the number of Krylov iterations in compar-
ison to NK-FETI-DP. The reduction can be substantial, i.e., up to 80% if we
use Wolfe step length optimization and up to 90% if no globalization technique
is used. This will be an important advantage in highly nonlinear parallel sim-
ulations since a reduction of the number of Krylov iterations will also reduce
the amount of communication between processors and nodes. Notably, the new
methods show superior performance, with respect to the total number of Krylov
iterations, not only for problems with localized nonlinearities but also for the
standard p-Laplace problem.

For some problems, see the third and fourth model problem above, a suffi-
ciently good coarse space has to be chosen. Then, we can also save Newton iter-
ations and factorizations. It should be pointed out that in some cases, without
a carefully chosen coarse space, the NL-FETI-DP-2 method does not converge
without using an appropriate line search method. This is not a drawback since,
in general, suitable globalization techniques are necessary for Newton-based it-
erative algorithms when applied to nonlinear problems. It also merely reflects
the additional flexibility to influence the Newton convergence by the nonlinear
FETI-DP coarse space. The choice of a good coarse space is thus even more
vital than in linear problems. Our results suggest that known strategies for the
construction of problem specific coarse spaces may carry over from the linear
case. Finally, let us point out that in some cases the nonlinear algorithms clearly
have smaller condition numbers than NK-FETI-DP.
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p-Laplace inclusions p-Laplace
#Krylov #Factor. max. min. #Krylov #Factor. max. min.

N Solver It. cond. cond. It. cond. cond.
NK-FETI-DP 33 14 1.0048 1.0001 72 18 1.1352 1.0608

4 NL-FETI-DP-2 5 14 1.2813 1.0000 8 19 1.0644 1.0604
NL-FETI-DP-1 5 15 1.2805 1.0001 12 20 1.0644 1.0604
NK-FETI-DP 105 15 1.4719 1.2914 164 20 1.4605 1.4107

16 NL-FETI-DP-2 21 18 1.4240 1.4233 32 29 1.4208 1.4012
NL-FETI-DP-1 28 18 1.4240 1.4233 40 24 1.4208 1.4108
NK-FETI-DP 164 17 1.5680 1.4264 226 22 1.5302 1.4895

64 NL-FETI-DP-2 30 20 1.5255 1.5197 52 33 2.1258 1.4878
NL-FETI-DP-1 40 20 1.5254 1.5197 52 26 2.1258 1.4850
NK-FETI-DP 190 19 1.5852 1.5281 268 24 1.6846 1.5394

256 NL-FETI-DP-2 31 22 1.5643 1.5412 44 34 2.1523 1.5237
NL-FETI-DP-1 42 22 1.5654 1.5406 55 28 2.1523 1.5375
NK-FETI-DP 209 21 1.5786 1.4939 293 26 1.9809 1.5642

1024 NL-FETI-DP-2 31 24 1.5827 1.5409 45 35 2.1669 1.4921
NL-FETI-DP-1 43 24 1.5852 1.5409 56 30 2.1669 1.5560
NK-FETI-DP 215 23 1.5784 1.4972 330 28 2.5309 1.5657

4096 NL-FETI-DP-2 19 25 1.5768 1.5451 45 37 2.1743 1.4890
NL-FETI-DP-1 41 26 1.5938 1.5451 45 31 2.1743 1.5588

Table 2.1: Numerical scalability for the different methods. The p-Laplace problem

described in (2.99) and the p-Laplace inclusions’ problem is described

in (2.102). For “p-Laplace inclusions” see also Fig. 2.7 (left). Here we

used vertex constraints and arithmetic edge averages as primal constraints.

In both problems we have H
h = 16; N is the number of subdomains; all tests

are done without any step length optimization; #Krylov It. gives the sum

of all Krylov iterations; #Factor. gives the total number of factorizations of

DK̃ required, see also Section 2.4.4; min./max. cond gives the minimal and

maximal condition number of the FETI-DP systems; published in [76].

p-Laplace inclusions p-Laplace
#Krylov #Factor. max. min. #Krylov #Factor. max. min.

N Solver It. cond. cond. It. cond. cond.
NK-FETI-DP 16 8 1.0000 1.0000 32 8 1.1243 1.0255

4 NL-FETI-DP-2 5 8 1.2819 1.0000 8 12 1.0644 1.0604
NL-FETI-DP-1 5 9 1.2809 1.0000 12 10 1.0644 1.0604
NK-FETI-DP 77 11 1.4719 1.4166 96 12 1.4605 1.3919

16 NL-FETI-DP-2 21 14 1.4240 1.4235 32 23 1.4208 1.4012
NL-FETI-DP-1 28 14 1.4240 1.4233 40 16 1.4208 1.4050
NK-FETI-DP 117 12 1.5680 1.5079 122 12 1.5196 1.4895

64 NL-FETI-DP-2 30 17 1.5256 1.5197 52 27 2.1258 1.4910
NL-FETI-DP-1 40 16 1.5254 1.5197 52 16 2.1258 1.4896
NK-FETI-DP 109 11 1.5808 1.5162 143 13 1.5521 1.5306

256 NL-FETI-DP-2 30 15 1.5520 1.5515 45 24 2.1905 1.5409
NL-FETI-DP-1 42 15 1.5653 1.5405 56 18 2.1905 1.5470
NK-FETI-DP 118 12 1.5814 1.5428 155 14 1.7908 1.5655

1024 NL-FETI-DP-2 30 17 1.5428 1.5407 45 25 2.2061 1.5657
NL-FETI-DP-1 42 16 1.5853 1.5407 45 19 2.2061 1.5633
NK-FETI-DP 128 14 1.5792 1.5464 167 16 2.4030 1.5626

4096 NL-FETI-DP-2 18 17 1.5467 1.5464 42 26 2.2138 1.5640
NL-FETI-DP-1 40 17 1.5932 1.5467 44 20 2.2138 1.5671

Table 2.2: Numerical scalability. Same set of experiments as in Table 2.1, but Wolfe

step length optimization has been used additionally; published in [76].
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α̃ = 103 α̃ = 106

#Krylov #Factor. max. min. #Krylov #Factor. max. min.
N Solver It. cond. cond. It. cond. cond.

NK-FETI-DP 37 8 1.0226 1.0020 85 17 1.0713 1.0022
4 NL-FETI-DP-2 10 9 1.0228 1.0184 17 19 1.0719 1.0712

NL-FETI-DP-1 15 10 1.0303 1.0184 18 19 1.0719 1.0703
NK-FETI-DP 65 8 1.9083 1.2425 181 16 902.9105 4.0830

16 NL-FETI-DP-2 32 14 1.2433 1.2399 42 22 4.0951 3.8415
NL-FETI-DP-1 32 11 1.2429 1.2182 52 20 4.1331 3.8415
NK-FETI-DP 77 8 3.0447 1.4598 499 19 2065.0183 7.4192

64 NL-FETI-DP-2 35 14 1.4603 1.3811 80 24 7.4483 6.5773
NL-FETI-DP-1 34 11 1.4657 1.3811 144 22 7.6288 6.5773
NK-FETI-DP 101 9 4.3795 1.6339 1062 19 3391.8105 9.3041

256 NL-FETI-DP-2 40 14 1.6355 1.5248 139 28 9.3917 8.1879
NL-FETI-DP-1 40 11 1.6466 1.5248 231 22 9.6438 8.1879
NK-FETI-DP 111 9 5.6480 1.7906 1468 18 4664.6562 10.8297

1024 NL-FETI-DP-2 47 15 1.7906 1.6541 151 37 10.9412 9.5575
NL-FETI-DP-1 70 13 1.8105 1.6541 272 22 11.2717 9.5575

Table 2.3: Numerical scalability for the different algorithms for problems with a high

contrast in coefficients. Results for (2.102) with α and β defined as in

(2.104). We have p = 4 and a scaling α̃ ∈ {103,106} in the channels.

The matrix material is linear since here we have p = 2. We have H
h = 16.

The primal set consists of vertex constraints and arithmetic averages on

all edges; N is the number of subdomains; #Krylov It. gives the sum of

all Krylov iterations; #Factor. gives the total number of factorizations of

DK̃ required, see also Section 2.4.4; min./max. cond gives the minimal and

maximal condition number of the FETI-DP systems; published in [76].

α̃ = 103 α̃ = 106

#Krylov #Factor. max. min. #Krylov #Factor. max. min.
N Solver It. cond. cond. It. cond. cond.

NK-FETI-DP 46 8 1.1915 1.1580 88 17 1.1363 1.1004
4 NL-FETI-DP-2 12 9 1.1915 1.1916 18 19 1.1116 1.1108

NL-FETI-DP-1 18 10 1.1916 1.1904 18 19 1.1201 1.1116
NK-FETI-DP 63 8 1.2588 1.1693 115 16 1.1502 1.1541

16 NL-FETI-DP-2 24 12 1.2588 1.2114 21 18 1.1539 1.1541
NL-FETI-DP-1 32 11 1.2582 1.2114 21 18 1.1551 1.1523
NK-FETI-DP 70 8 1.3414 1.2161 141 19 1.1609 1.1507

64 NL-FETI-DP-2 27 12 1.3414 1.3397 21 21 1.1591 1.1578
NL-FETI-DP-1 35 11 1.3526 1.2726 21 21 1.1601 1.1578
NK-FETI-DP 81 9 1.4586 1.3532 152 19 1.1716 1.1502

256 NL-FETI-DP-2 36 13 1.3977 1.3506 24 21 1.1716 1.1704
NL-FETI-DP-1 36 11 1.4426 1.3503 22 21 1.1733 1.1704
NK-FETI-DP 75 8 1.7873 1.3626 144 18 1.1907 1.1505

1024 NL-FETI-DP-2 42 14 2.4643 1.5127 24 21 1.2794 1.1907
NL-FETI-DP-1 40 11 1.5115 1.5000 22 21 1.1910 1.1819
NK-FETI-DP 102 10 2.0980 1.4107 142 18 1.2317 1.1508

4096 NL-FETI-DP-2 52 19 3.6975 1.6316 25 20 1.3335 1.2036
NL-FETI-DP-1 43 14 1.6462 1.5998 23 20 1.2227 1.1760

Table 2.4: Numerical scalability. Same set of experiments as in Table 2.3 but we used

weighted edge averages instead of arithmetic ones; published in [76].
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without LS with LS
#Krylov #Factor. max. min. #Krylov #Factor. max. min.

N Solver It. cond. cond. It. cond. cond.
NK-FETI-DP 117 18 1.1647 1.0230 82 13 1.1646 1.0230

4 NL-FETI-DP-2 18 20 1.0902 1.0691 18 15 1.0902 1.0691
NL-FETI-DP-1 18 20 1.0903 1.0691 18 15 1.0903 1.0691
NK-FETI-DP 361 20 30277.9739 19.3219 237 15 30277.9739 12.4992

16 NL-FETI-DP-2 no conv. - - 95 56 21.8174 4.3789
NL-FETI-DP-1 141 29 36.2894 4.3789 141 28 36.2892 4.3789
NK-FETI-DP 1317 22 50186.1358 58.1841 961 19 50186.1358 34.6106

64 NL-FETI-DP-2 no conv. - - 220 71 68.4028 7.1685
NL-FETI-DP-1 517 35 250.9781 7.1685 513 33 250.9749 7.1685

Table 2.5: Numerical scalability results for (2.102) with α and β defined as in (2.106).

We have p = 4 in the whole domain and in the channels a coefficient

α̃ = 106; “without LS” means that no step length optimization is used and

“with LS” means that we use Wolfe conditions in all Newton type itera-

tions, except the interface problem of Nonlinear-FETI-DP-2, where we use

algorithm from Section 3.4.2. We have H
h = 16. The coarse space consists

of vertex constraints and arithmetic edge averages; N is the number of sub-

domains; #Krylov It. gives the sum of all Krylov iterations; #Factor. gives

the total number of factorizations of DK̃ required, see also Section 2.4.4;

min./max. cond gives the minimal and maximal condition number of the

FETI-DP systems; published in [76].

without LS with LS
#Krylov #Factor. max. min. #Krylov #Factor. max. min.

N Solver It. cond. cond. It. cond. cond.
NK-FETI-DP 121 18 1.1644 1.0259 92 14 1.1708 1.0259

4 NL-FETI-DP-2 18 20 1.0905 1.0689 18 17 1.0905 1.0689
NL-FETI-DP-1 18 20 1.0902 1.0689 18 17 1.0902 1.0689
NK-FETI-DP 270 20 67.6310 1.0923 181 14 142.3859 1.0923

16 NL-FETI-DP-2 18 22 1.0926 1.0650 18 16 1.0926 1.0650
NL-FETI-DP-1 18 22 1.0935 1.0650 18 16 1.0935 1.0650
NK-FETI-DP 523 22 492.5349 1.0937 354 14 467.6129 1.0937

64 NL-FETI-DP-2 18 24 1.0939 1.0670 18 19 1.0939 1.0670
NL-FETI-DP-1 20 24 1.0948 1.0670 20 19 1.0948 1.0670

Table 2.6: Numerical scalability. Same set of experiments as in Table 2.5, but using

weighted edge averages instead of arithmetic ones; ‘without LS” means that

no step length optimization is used and “with LS” means that we use Wolfe

conditions in all Newton type iterations, except in the interface problem of

Nonlinear-FETI-DP-2, where we do not use any globalization strategy this

time; published in [76].

62



2.7. A NONLINEAR MODEL PROBLEM AND NUMERICAL RESULTS

2.7.3 Numerical Results for Nonlinear-BDDC

Here, we present numerical results for Nonlinear-BDDC applied to some of the
model problems from the previous subsection. We restrict ourselves to two of
our model problems.

First, in Table 2.7, we present some results for the first model problem; see
Section 2.7.2. The setting is the same as in the experiments for Table 2.1.
It can be seen that in Nonlinear-BDDC a higher number of Krylov iterations
and factorizations is needed compared to Nonlinear-FETI-DP-2. Note that the
solution of the local nonlinear problems (2.97) that appear on the right hand
side of (2.96) are completely local to the subdomains and thus have a lower
computational cost than the problems (2.44) and (2.50) that appear in nonlinear
FETI-DP methods. Let us also note that the nonlinear BDDC and the nonlinear
FETI-DP algorithms have a difference in the coarse space. The coarse space of
the nonlinear FETI-DP algorithms is nonlinear whereas that of the nonlinear
BDDC methods is linear. This might explain the difference in the number of
Krylov iterations of the two methods.

We also present numerical results for Nonlinear-BDDC applied to the third
model problem; see Section 2.7.2. The setting is the same as in the experiments
for Table 2.4. Again, a higher number of Krylov iterations and factorizations
can be seen for Nonlinear-BDDC in comparison to Nonlinear-FETI-DP-2.

p-Laplace inclusions p-Laplace
#Krylov #Factor. max. min. #Krylov #Factor. max. min.

N Solver It. cond. cond. It. cond. cond.
4 NL-FETI-DP-2 5 14 1.2813 1.0000 8 19 1.0644 1.0604

NL-BDDC 16 23 1.2939 1-2891 31 31 1.8322 1.0585
16 NL-FETI-DP-2 21 18 1.4240 1.4233 32 29 1.4208 1.4012

NL-BDDC 40 28 1.4582 1.4238 84 40 2.4491 1.4176
64 NL-FETI-DP-2 30 20 1.5255 1.5197 52 33 2.1258 1.4878

NL-BDDC 44 30 1.5479 1.5110 109 45 3.1721 1.4960
256 NL-FETI-DP-2 31 22 1.5643 1.5412 44 34 2.1523 1.5237

NL-BDDC 43 32 1.5687 1.5145 136 51 9.5875 1.5358
1024 NL-FETI-DP-2 31 24 1.5827 1.5409 45 35 2.1669 1.4921

NL-BDDC 41 34 1.5750 1.5311 227 54 278.1628 1.5420
4096 NL-FETI-DP-2 19 25 1.5768 1.5451 45 37 2.1743 1.4890

NL-BDDC 36 36 1.5415 1.5160 229 56 306.0650 1.5706

Table 2.7: Comparison of nonlinear FETI-DP and nonlinear BDDC methods. Same

problem setting as in Table 2.1; published in [76].

2.7.4 First Parallel Results

In order to verify if we can also benefit from our new nonlinear FETI-DP ap-
proaches in parallel computations, we will provide some first parallel weak scal-
ability results in this section. All algorithms are implemented in PETSc [4–6]
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α̃ = 103 α̃ = 106

#Krylov #Factor. max. min. #Krylov #Factor. max. min.
N Solver It. cond. cond. It. cond. cond.
4 NL-FETI-DP-2 12 9 1.1915 1.1916 18 19 1.1116 1.1108

NL-BDDC 40 22 1.1896 1.0828 90 51 1.1206 1.0843
16 NL-FETI-DP-2 24 12 1.2588 1.2114 21 18 1.1539 1.1541

NL-BDDC 78 23 3.9861 1.2292 217 57 2.8897 1.1596
64 NL-FETI-DP-2 27 12 1.3414 1.3397 21 21 1.1591 1.1578

NL-BDDC 75 24 2.3734 1.2761 227 68 10.1874 1.1676
256 NL-FETI-DP-2 36 13 1.3977 1.3506 24 21 1.1716 1.1704

NL-BDDC 75 25 2.1582 1.3116 223 69 9.2638 1.1850
1024 NL-FETI-DP-2 42 14 2.4643 1.5127 24 21 1.2794 1.1907

NL-BDDC 77 26 1.9539 1.4420 211 71 8.9207 1.2115
4096 NL-FETI-DP-2 52 19 3.6975 1.6316 25 20 1.3335 1.2036

NL-BDDC 90 35 2.1861 1.4748 207 69 7.9532 1.2531

Table 2.8: Comparison of nonlinear FETI-DP and nonlinear BDDC methods. Same

problem setting as in Table 2.4; published in [76].

using the same building blocks and thus we obtain a fair comparison. We use
the same sequential sparse direct solver to factorize matrices KBB and S̃ΠΠ after
broadcasting a serial copy of S̃ΠΠ to all ranks. Of course, this is a well known
scalability limit in exact FETI-DP methods, since the coarse space grows with
the number of subdomains and computational cores. A strategy to overcome
this scalability limit based on the parallel and inexact solution of the FETI-DP
coarse problem is therefore presented in the next chapter. We will also provide
a more detailed description of our parallel implementations in Section 3.3. With
this in mind, the results presented here can be seen as a motivation or preview
for the upcoming chapters.
We again consider inclusions of p-Laplace in a matrix material of linear Laplace.
Thus, the setup is largely identical to the p-Laplace inclusions setup introduced
in Table 2.1, but we consider a higher problem resolution with H/h = 160 and
iterate to an accuracy of 1e−8 instead of 1e−12. We present weak scalability
starting with 64 cores of the JUQUEEN BlueGene/Q machine at Forschungszen-
trum Jülich and scale up to 16384 cores in Table 2.9. The parallel results show a
similar numerical behavior as our serial although the subdomain size is now ap-
proximately hundred times larger, with H/h = 160. Again the number of Krylov
iterations is reduced in the nonlinear methods and a slightly higher number of
factorizations of KBB and S̃ΠΠ is necessary. As expected in our discussion of
the sequential results this directly affects the time to solution and the parallel
performance. Choosing the shortest runtime on 64 cores as a baseline (61.93s

of Nonlinear-FETI-DP-2) we finally obtain a parallel efficiency of 40% using
Newton-Krylov-FETI-DP, 67% using Nonlinear-FETI-DP-2, and an optimum
of 71% using Nonlinear-FETI-DP-1 on 16384 cores. On the one hand, this
shows the parallel superiority of the nonlinear methods we hoped for, but, on
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the other hand we see a capital loss of parallel efficiency in all three methods
stepping from 4096 cores to 16384 cores. This is caused by an increased fac-
torization time of S̃ΠΠ of approximately 1 second, which has to be performed
#Factor. times. This is an expected effect and directly motivates the discussion
of inexact and nonlinear FETI-DP methods in the upcoming chapter. Of course,
we could also obtain better parallel scalability in exact FETI-DP methods using
parallel sparse direct solvers. Also larger subdomain sizes decrease the impact of
the coarse direct solve since the ratio between local and global work is increased.

JUQUEEN BlueGene/Q Supercomputer

#Krylov Total Time Parallel
N Solver It. #Factor. to Solution Eff.

NK-FETI-DP 365 15 90.34s 69%
64 NL-FETI-DP-2 103 19 61.93s 100%

NL-FETI-DP-1 168 19 71.83s 86%
NK-FETI-DP 471 16 102.15s 61%

256 NL-FETI-DP-2 125 19 61.56s 101%
NL-FETI-DP-1 144 18 64.43s 96%
NK-FETI-DP 520 17 111.11s 56%

1 024 NL-FETI-DP-2 161 19 66.56s 93%
NL-FETI-DP-1 149 18 65.67s 94%
NK-FETI-DP 568 18 124.98s 50%

4 096 NL-FETI-DP-2 130 19 67.81s 91%
NL-FETI-DP-1 123 18 66.16s 94%
NK-FETI-DP 579 18 157.77s 40%

16 384 NL-FETI-DP-2 132 19 91.92s 67%
NL-FETI-DP-1 123 18 87.01s 71%

Table 2.9: Setting as in the p-Laplace inclusion experiments from Table 2.1, but here

we have H/h = 160 and we only consider vertex constraints.
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3 Inexact Reduced Nonlinear FETI-DP

In the theory of linear FETI-DP, it is a well known fact that the exact solution
of the FETI-DP coarse problem is a limiting factor for the parallel scalability. A
possible strategy to increase the parallel efficiency is the usage of parallel sparse
direct solvers but nonetheless, the parallel efficiency of the direct solver remains
to be a bottleneck on large scales. In [84,87], Klawonn and Rheinbach suggested
to move the solution of the FETI-DP coarse problem S̃ΠΠ to the preconditioner,
which facilitates the usage of an inexact solution, e.g., provided by an additional
algebraic multigrid (AMG) method. This approach leads to a fast and stable
convergence and enables scalability to a larger number of cores.
In this chapter, we combine the highly parallel efficiency of the linear inexact
reduced FETI-DP framework [84, 87] with our Nonlinear-FETI-DP-1 method.
This new approach was first proposed in a DD22 plenary talk [77] and is denoted
irNonlinear-FETI-DP-1 (inexact reduced Nonlinear-FETI-DP-1) method.
We first provide a detailed description of the inexact reduced Nonlinear-FETI-
DP-1 method and our parallel implementation. Then we present weak and
strong scalability results for different model problems, as, e.g., problems includ-
ing the p-Laplace operator as well as nonlinear hyperelasticity problems. The
computations have been performed on different architectures and the results
are partially taken from the submitted paper [78]. Additionally, in Section 3.5,
we will introduce another inexact and nonlinear FETI-DP method, which is
based on a nonlinear elimination of interior- and interface variables, denoted by
inexact reduced Nonlinear-FETI-DP-2.

3.1 Inexact Reduced Nonlinear-FETI-DP-1

As the exact nonlinear FETI-DP methods described in Chapter 2, inexact re-
duced Nonlinear-FETI-DP-1 is based on the nonlinear FETI-DP master system
(2.34). Recall that Newton linearization of (2.34) with respect to (ũ,λ ) results
in the linear system[

DK̃(ũ) BT

B 0

][
δ ũ

δλ

]
=

[
K̃(ũ)+BT λ − f̃

Bũ

]
. (3.1)
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With the standard FETI-DP notation introduced in Chapter 2, we partition
δ ũ into primal variables δ ũΠ and dual variables δuB, i.e.,

δ ũ =

[
δuB

δ ũΠ

]
.

Since by construction, we have continuity in the primal variables δ ũΠ, the jump
operator can again be written as B = [BB 0], where the first block BB corre-
sponds to the dual plus interior variables δuB and the second zero block to the
(subassembled) primal variables δ ũΠ. We can write (3.1) as block system (DK̃(ũ))BB (DK̃(ũ))T

ΠB BT
B

(DK̃(ũ))ΠB (DK̃(ũ))ΠΠ 0

BB 0 0


 δuB

δ ũΠ

δλ

=

 (K̃(ũ))B +BT
Bλ − fB

(K̃(ũ))Π− f̃Π

BBuB

 . (3.2)

Assuming that (DK̃(ũ))BB is invertible, we perform one step of block Gauss
elimination of uB and obtain a reduced system

Arxr = Fr, (3.3)

with

Ar =

[
S̃ΠΠ –(DK̃(ũ))ΠB(DK̃(ũ))−1

BBBT
B

−BB(DK̃(ũ))−1
BB(DK̃(ũ))T

ΠB –BB(DK̃(ũ))−1
BBBT

B

]
, (3.4)

Fr =

[
((K̃(ũ))Π− f̃Π) − (DK̃(ũ))ΠB(DK̃(ũ))−1

BB ((K̃(ũ))B +BT
Bλ − fB)

BBuB − BB(DK̃(ũ))−1
BB ((K̃(ũ))B +BT

Bλ − fB)

]
, (3.5)

and

xr =

[
δ ũΠ

δλ

]
; (3.6)

cf. the notation in [84] for linear problems. The Schur complement S̃ΠΠ in (3.4),
i.e.,

S̃ΠΠ = (DK̃(ũ))ΠΠ− (DK̃(ũ))ΠB(DK̃(ũ))−1
BB(DK̃(ũ))T

ΠB (3.7)

provides the coarse problem of the method. An elimination of ũΠ yields the
Nonlinear-FETI-DP-1 (NL1) system

FNL1δλ = dNL1;
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c.f., equation (2.41). Here, we will choose to solve the block system (3.4) instead,
using the left block-triangular preconditioner

B−1
r,L := B−1

r,L (Ŝ
−1
ΠΠ

,DK̃(ũ)−1
BB ,M

−1) :=

[
Ŝ−1

ΠΠ
0

−M−1BB(DK̃(ũ)−1
BB(DK̃(ũ))T

ΠBŜ−1
ΠΠ

−M−1

]
.

(3.8)

The application of Ŝ−1
ΠΠ

will consist of a few cycles of a parallel AMG method.
For DK̃(ũ)−1

BB we will use concurrent sparse direct solvers on the subdomains.
Remark that we no longer have the inverse S̃−1

ΠΠ
in the system operator, but

an approximate solution Ŝ−1
ΠΠ

in the preconditioner. This move of the coarse
problem solution to the preconditioner enables the usage of fast and inexact
solvers, as, e.g., an AMG method.

In (3.8), M−1 is a good, parallel preconditioner for the dual Schur comple-
ment. We choose M−1 as one of the standard FETI-DP preconditioners, e.g., the
Dirichlet preconditioner from equation (2.8). Its application is embarrassingly
parallel.

We use a Krylov space method suitable for unsymmetric systems as GMRES
(see also Section 1.1.3) since the preconditioner (3.8) is unsymmetric. The use
of conjugate gradients requires a symmetric reformulation; see, e.g., [84].
Let us remark that inexact reduced FETI-DP will have convergence bounds of
the same quality as exact FETI-DP, if ŜΠΠ is a good preconditioner for S̃ΠΠ;
see [84] for the theoretical aspects. In general, algebraic multigrid will be a
sufficient preconditioner for the FETI-DP coarse space, if smooth error vectors
lie in the range of the AMG interpolation operator; see, e.g., [15]. This is al-
ways the case in our Laplace or p-Laplace model problems, since all classical
AMG interpolation operators for scalar PDEs exactly interpolate constant vec-
tors. In our experience also rotations have to be controlled to obtain optimal
convergence considering elasticity and hyperelasticity problems . Therefore, we
briefly describe the global matrix (GM) approach in Section 4, first introduced
by Baker, Kolev, and Meier-Yang in [3], and present some parallel results for
linear and nonlinear elasticity problems, where we use GM interpolations in the
AMG preconditioner for irNonlinear-FETI-DP-1. In the GM approach chosen
smooth error vectors are interpolated exactly without losing the sparsity of the
interpolation operator. Let us remark that for the model problems considered
in Section 3.4 and in [78] a classical AMG method was always a sufficient pre-
conditioner.
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3.2 Computing an Initial Value

A good initial value can be crucial for the convergence of Newton-type methods.
A suitable initial value ũ(0) for the Newton method as presented in Section 3.1
has to be continuous in all primal variables ũ(0)

Π
and should provide a good local

approximation of the given problem; cf. Section 2.4.2. Note that the initial
value is allowed to be discontinuous in the dual variables u(0)B . Let us recall from
Section 2.4.2 that an initial value can be obtained from solving the nonlinear
problem

K̃(ũ(0)) = f̃ −BT
λ
(0). (3.9)

For simplicity, we use λ (0) = 0. Here, (3.9) requires the solution of concurrent
nonlinear subdomain problems which are only coupled in the primal unknowns.
The communication is thus limited to the primal variables, i.e., a few unknowns
for each MPI rank. This step can also be seen as a nonlinear localization step.

Linearization of (3.9) results in[
(DK̃(ũ))BB (DK̃(ũ))T

ΠB

(DK̃(ũ))ΠB (DK̃(ũ))ΠΠ

][
δuB

δ ũΠ

]
=

[
(K̃(ũ))B +BT

Bλ − fB

(DK̃(ũ))Π− f̃Π

]
, (3.10)

and a block Gauss elimination of uB yields the symmetric system

S̃ΠΠ δ ũ = d̃Π, (3.11)

where S̃ΠΠ is defined as in (3.7) and

d̃Π = (DK(ũ))Π− f̃Π− (DK̃(ũ))ΠB(DK̃(ũ))−1
BB

(
(K̃(ũ))B +BT

Bλ − fB
)
.

We solve (3.11) by a Krylov method using the algebraic multigrid preconditioner
Ŝ−1

ΠΠ
; see (3.8). We will also refer to the initialization phase as Phase 1 of the

algorithm. The solution phase corresponding to Section 3.1 is then referred to
as Phase 2; cf. Fig. 3.1

3.3 Algorithmic Building Blocks

Although our approach differs substantially from the Newton-Krylov-FETI-
DP approach, the building blocks of the new algorithm are largely identical.
In Fig. 3.1 the inexact reduced nonlinear FETI-DP algorithm presented in Sec-
tion 3.1 is summarized and, for comparison, in Fig. 3.2 the more traditional
Newton-Krylov irFETI-DP approach is outlined. Both approaches include an
inexact solution of the coarse problem using an AMG method.
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Inexact Reduced Nonlinear-FETI-DP-1

init: ũ(0) ∈ Ŵ , λ (0) = 0

for k = 0, ...,convergence // Phase 1: Compute initial value

build: K̃(ũ(k)) and DK̃(ũ(k))

iterative Krylov solve for δu(k)
Π

using

AMG preconditioner Ŝ−1
ΠΠ

:
S̃ΠΠ δ ũ(k)

Π
= d̃Π // see eq. (3.11)

update: // see eq. (3.10)

δu(k)B := (DK̃(ũ(k)))−1
BB

{
(K̃(ũ(k)))B +BT

Bλ (0)− fB− (DK̃(ũ(k)))T
ΠB δ ũ(k)

Π

}
δ ũ(k) := [δu(k)TB ,δ ũ(k)T

Π
]T

compute: steplength α(k)

ũ(k+1) := ũ(k)−α(k) δ ũ(k)

end
ũ(0) := ũ(k+1)

for k = 0, ...,convergence // Phase 2: Main iteration loop

build: K̃(ũ(k)), DK̃(ũ(k)), and M−1

iterative Krylov solve for xr = [δ ũ(k)T
Π

,δλ (k)T ] using left

preconditioner B−1
r,L := B−1

r,L (Ŝ
−1
ΠΠ

,DK̃(ũ)−1
BB ,M

−1):

Arxr = Fr // (see eq. (3.3))

update: // see eq. (3.2)

λ (k+1) := λ (k)−α(k) δλ (k)

δu(k)B := (DK̃(ũ(k)))−1
BB

{
(K̃(ũ(k)))B +BT

B(λ
(k+1))− fB− (DK̃(ũ(k)))T

ΠB δ ũ(k)
Π

}
δ ũ(k) = [δu(k)

T

B ,δ ũ(k)
T

Π
]T

ũ(k+1) := ũ(k)−α(k) δ ũ(k)

end

Fig. 3.1: Pseudocode of the inexact reduced Nonlinear-FETI-DP-1 algorithm. The

application of Ŝ−1
ΠΠ

will consist of cycles of a parallel AMG method, for

DK̃(ũ)−1
BB uses concurrent forward-backward substitutions of a sparse direct

solver on the subdomains. Figure already published in [78].

71



CHAPTER 3. INEXACT REDUCED NONLINEAR FETI-DP

Newton-Krylov Inexact Reduced FETI-DP Method

Init: ũ(0) ∈ Ŵ

for k = 0, ...,convergence

build: K̃(ũ(k)), DK̃(ũ(k)), and M−1

iterative Krylov solve for xr = [δ ũ(k)T
Π

,λ ] using left

preconditioner B−1
r,L := B−1

r,L (Ŝ
−1
ΠΠ

,DK̃(ũ)−1
BB ,M

−1):

Arxr = Fr // (see eq. (3.3))

update:

δu(k)B := (DK̃(ũ(k)))−1
BB

{
(K̃(ũ(k)))B− fB +BT

Bλ − (DK̃(ũ(k)))T
ΠB δ ũ(k)

Π

}
// see eq. (3.2)

δ ũ(k) = [δu(k)
T

B ,δ ũ(k)
T

Π
]T

ũ(k+1) := ũ(k)−α(k) δ ũ(k)

end

Fig. 3.2: Pseudocode of the Newton-Krylov inexact reduced FETI-DP algorithm.

The application of Ŝ−1
ΠΠ

will consist of cycles of a parallel AMG method, for

DK̃(ũ)−1
BB uses concurrent forward-backward substitutions of a sparse direct

solver on the subdomains; published in [78].

Besides the algorithmic description in Fig. 3.2 we will not give any description of
Newton-Krylov irFETI-DP, since it only differs from Newton-Krylov-FETI-DP
(Section 2.2) by using inexact reduced FETI-DP to solve the linearized system.

In our implementation, for the solution of linearized sparse systems, we build
upon sparse direct and iterative solvers. For linear problems on the subdo-
mains we apply a multifrontal sparse direct solver which is known for its robust-
ness [28]. Cycles of an algebraic multigrid preconditioner (BoomerAMG) [42,68]
are applied to the (linearized) global coarse problem S̃ΠΠ. This adds further
(algebraic) coarse levels to the method. All packages were interfaced through
PETSc [4–6]. We make use of the infrastructure provided by PETSc where
possible.

72



3.3. ALGORITHMIC BUILDING BLOCKS

3.3.1 Parallel Application of (DK̃)−1 to a Vector

We have the product representation

DK̃−1 =

[
I −(DK̃)−1

BB (DK̃)T
ΠB

0 I

]
×

[
(DK̃)−1

BB 0

0 S̃−1
ΠΠ

]
×

[
I 0

−(DK̃)ΠB (DK̃)−1
BB I

]
.

(3.12)

Here, the block operator

(DK̃)−1
BB =


((DK(1))BB)

−1 0
. . .

0 ((DK(N))BB)
−1

 (3.13)

is completely parallel and is implemented by embarrassingly parallel forward-
backward substitutions of a sparse direct solver.

For standard FETI-DP methods with an exact solution of the coarse problem
the sparse direct solver is also used to factor S̃ΠΠ. This can be performed by
first broadcasting S̃ΠΠ to all ranks before factoring it locally. In this case, in
the subsequent Krylov iteration, no communication is necessary for the coarse
problem. Alternatively, S̃ΠΠ can be factored in parallel on a subset of ranks
or on separate ranks. Of course, the parallel scalability of this approach is
eventually limited by the scalability of the sparse direct solver.

In our inexact reduced Nonlinear-FETI-DP-1 approach the application of
DK̃−1 on a vector is not required in the main iteration loop; see Fig. 3.1 (Phase
2). Instead, only the application of (DK̃)−1

BB to a vector and of the AMG pre-
conditioner Ŝ−1

ΠΠ
to a vector is needed in each Krylov iteration step. In our

experiments, only one or two V-cycles of the AMG preconditioner are used in
each Krylov space iteration.

3.3.2 Building the Coarse Operator S̃ΠΠ

As in multigrid methods it is vital to build the coarse operator efficiently. In par-
allel multigrid methods this is achieved by carrying out a parallel triple matrix
product to build the RAP Galerkin operator, where R and P are the restriction
and prolongation operator, respectively, and A is the system matrix. It is well
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known that repartitioning of the coarse problem is also vital for efficiency. For-
tunately, in FETI-DP methods the coarse problem is small compared to the
fine level, i.e., it can be smaller by a factor of 103 to 104 compared to to origi-
nal problem [83,87]. FETI-DP and related domain decomposition methods can
apply such aggressive coarsening since direct solvers are used on the fine level
instead of smoothers.

The FETI-DP coarse operator S̃ΠΠ can be built from local contributions com-
puted in parallel, i.e.,

S̃ΠΠ = ∑
N
i=1 R(i)T

Π
S(i)

ΠΠ
R(i)

Π
, (3.14)

where the S(i)
ΠΠ

are distributed among the processor cores. The parallel assembly
can be partially overlapped with the parallel computation of the local Schur
complement contributions S(i)

ΠΠ
= (DK(i))ΠΠ− (DK(i))ΠB(DK(i)−1)BB(DK(i)T )ΠB of

the processor cores.
In some of our experiments on the Mira and Vulcan supercomputers, the

coarse problem is first distributed over all MPI ranks and then redistributed to
a subset of cores, i.e., 16K coarse cores are used for the problems running on
65K and 262K total cores. We also provide results for an improved approach on
the Vulcan BlueGene/Q, avoiding the redistribution process; see Sections 3.4.4
and 3.4.5 for details.

It is interesting to note that in our experiments the current implementation
of the assembly of the coarse problem starts to be a bottleneck for more than
131K cores. This has not been observed previously.

3.3.3 Parallel Matrix-free Inversion of B(DK̃(ũ(k)))−1BT

Systems with a left hand side B(DK̃(ũ(k)))−1BT are solved using a Krylov
subspace method such as GMRES. Nearest neighbor communication is neces-
sary when applying the operators BT and B to a vector. The application of
DK̃(ũ(k)))−1 to a vector is implemented as described above in Section 3.3.1.
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3.4 Numerical Results

3.4.1 Model Problems

We again consider different model problems based on the nonlinear p-Laplace
operator ∆p and, additionally, on nonlinear hyperelasticity. Besides the model
problems described in Section 2.7.2 we use some additional setups.

For scaling runs on the Mira BlueGene/Q, we use the model problem

−∆u−4∆pu = 1, (3.15)

with p = 4, where ∆ is the usual Laplace operator and ∆p the nonlinear p-
Laplace operator. Recalling our notation from equation (2.102) in Section 2.7.2,
we obtain (3.15) with the coefficient functions

α(x) = 4 and β (x) = 1. (3.16)

For this problem the number of Newton iterations and the time to solution is
small compared to our other model problems. The computations are carried out
on the unit square Ω = (0,1)× (0,1). For the discretization, we use linear finite
elements. The energy is given by

J(u) :=
∫

Ω

1
2
|∇u|2 + |∇u|4−u dx.

Our next model problem is nonlinear hyperelasticity. We consider a Neo-
Hooke material with a soft matrix material and stiff circular inclusions; see
Fig. 3.3 for the geometry.

The strain energy density function W [70, 139] is given by

W (u) =
µ

2
(
tr(FTF) − 3

)
− µln(det(F)) +

λ

2
ln2 (det(F))

with the Lamé constants

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

and the deformation gradient F(x) := ∇ϕ(x); here, ϕ(x) = x+ u(x) denotes the
deformation and u(x) the displacement of x. The energy functional of which
stationary points are computed, is given by

J(u) =
∫
Ω

W (u)−V (u)dx−
∫

Γ

G(u)ds,
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where V (u) and G(u) are functionals related to the volume and traction forces.
In our experiments in 2D, we have the following material parameters E and ν ,
see Fig. 3.3 for the geometry: In the circular inclusions we have E = 210000

and in the surrounding matrix material, E = 210. We have chosen ν = 0.3 in
the complete domain Ω. The nonlinear elasticity problem is discretized with
piecewise quadratic finite elements. For our three-dimensional problems, we
have chosen a similar setup with stiff spherical inclusions in softer material.
Again, we choose E = 210000 in the inclusions, E = 210 inside the surrounding
material, and ν = 0.3 in the complete domain.

Fig. 3.3: Decomposition of the computational domain Ω into 64 subdomains; each

subdomain has an (slightly off-centered) circular inclusion of stiffer material.

The problem depicted here is the smallest in Table 3.5.

We always use one iteration of BoomerAMG [2, 42, 68] with symmetric-
SOR/Jacobi for the coarse problem. In all our two-dimensional experiments we
choose all vertices to be primal. We additionally use edge averages as primal
constraints on all edges in three-dimensional problems and perform a local
transformation of basis; see [83, Section 4] for details on the implementation of
edge constraints.
In all weak scaling experiments in this chapter, the number of subdomains is
identical to the number of cores.

3.4.2 Computational Platforms

We perform our computations on four different supercomputers: Mira is a 49 152
node 10-petaflops Blue Gene/Q system at Argonne National Laboratory (USA)
with a total number of 786432 processor cores (Power BQC 16C 1.6GHz; 16
cores and 16 GB memory per node). Mira is ranked No. 5 in the current
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TOP500 list (November 2014, www.top500.org). JUQUEEN is also a Blue
Gene/Q system at Forschungszentrum Jülich with 458752 cores and ranked
No. 8 in TOP500 list (Power BQC 16C 1.6GHz; 16 cores and 16 GB memory
per node). Vulcan is a 24576 node 5 Petaflop BlueGene/Q production sys-
tem at Lawrence Livermore National Laboratory (USA) with a total number of
393216 processor cores (Power BQC 16C 1.6GHz; 16 cores and 16 GB memory
per node), and is ranked No. 9 in the current TOP500 list (November 2014).
SuperMUC is a 9400 node 3.2-petaflops system at Leibniz Supercomputing Cen-
ter (Munich, Germany) with a total number of 155656 processor cores (Sandy
Bridge-EP Xeon E5-2680 8C 2.7GHz; 16 cores and 32 GB memory per node).
It is ranked No. 14 in the current TOP500 list (November 2014).

On SuperMUC the Intel compiler and on Vulcan and JUQUEEN the IBM XL
compiler was used. As we encountered internal compiler errors with the IBM
compiler on the BlueGene/Q system in certain templated C++ code we had to
resort to the GNU compiler on the Mira supercomputer.

3.4.3 Comparison with Existing Methods

In Table 3.1 a comparison of inexact reduced Nonlinear-FETI-DP-1 with the
more traditional Newton-Krylov inexact reduced FETI-DP method [87] is pre-
sented. For linear problems both methods are mathematically identical.

We consider the second nonlinear model problem from Section 2.7.2, i.e., the
p-Laplace with p = 4 in the inclusions embedded inside subdomains and p = 2,
elsewhere. We have H/h = 128 and the inclusions have a distance of η = 2h to
the subdomain boundary. Here, we use piecewise quadratic finite elements. The
runs from 16 up to 65536 cores have been performed on the Vulcan BlueGene/Q
at Lawrence Livermore National Laboratory. By parallel efficiency we refer to
the fraction of the actual time to solution compared to the base line, which
is, in this case, the time to solution on a single BlueGene/Q node (16 cores).
The total time to solution (or total execution time) includes the time for the
assembly of the problem as well as its solution. We see a reduction of the
number of Krylov iterations and the time used in the Krylov iterations by 70%.
As a results, the parallel efficiency of the inexact reduced Nonlinear-FETI-DP-1
method appears to be superior compared to the efficiency of the more traditional
Newton Krylov inexact reduced FETI-DP approach. Of course, for these simple
nonlinear problems, the time used in the Krylov iteration is small. Nonetheless,
the reduction of the total time increases from 28% on 16 cores to 37% on 65536

cores, i.e., the advantage of the new method increases with the number of cores.
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Fig. 3.4: Comparison of exact Nonlinear-FETI-DP-2, cf. right column, with the more

traditional Newton-Krylov-FETI-DP approach, cf. left column, on a Cray

XT6 (Universität Duisburg-Essen). In both methods a line search method

with a Wolfe condition is used as globalization technique. The total time to

solution can be reduced by a factor of two for this problem; published in [78].

This results verify the similar results presented in Table 2.9 using exact nonlinear
FETI-DP methods and piecewise linear finite elements.

For numerically harder nonlinear problems the time used in the Krylov iter-
ation can constitute a larger portion of the time to solution. Recall results for
one such example are given in Fig. 3.4. The model problem considered here
is the third benchmark problem defined in Section 2.7.2: We have considered
the p-Laplace with p = 4 and a multiplicative weight of α = 106 in 64 channels
of width 1/4H and p = 2,α = 1, elsewhere. In this example the total time to
solution is reduced by a factor of two by using the nonlinear method already on
4096 cores. Here we used our exact FETI-DP implementations. For a compar-
ison of the different methods we also recall the results from Table 2.9 and the
corresponding discussion.

3.4.4 Weak Parallel Scalability

Weak Parallel Scalability on the Mira BlueGene/Q (Argonne National
Laboratory)

In Table 3.2 and Fig. 3.5 weak parallel scalability results on the Mira Blue-
Gene/Q node are presented for the p-Laplace (−(∆+ 4∆p)u = 1, p = 4,H/h =

180). Again, the total time to solution, denoted total execution time in the
table, includes the time for the assembly of the problem as well as its solution.
For the parallel efficiency, our reference base line is the time on a single node (16
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Vulcan BlueGene/Q Supercomputer (LLNL)
Newton Total

Problem Steps Krylov Execution Parallel
Cores Size Solver Phase1/2 Iter Time Time Effic.

16 1 050 625 NK – / 20 219 57.5s 459.7s 100%
NL 13 / 7 84 20.3s 332.0s 100%

64 4 198 401 NK – / 21 438 110.4s 534.9s 86%
NL 14 / 7 138 33.17s 356.1s 93%

256 16 785 409 NK – / 22 546 137.9s 587.1s 78%
NL 14 / 8 185 44.94s 396.6s 84%

1 024 67 125 249 NK – / 23 599 152.7s 624.3s 74%
NL 15 / 8 208 51.3s 413.6s 80%

4 096 268 468 225 NK – / 23 624 160.6s 630.1s 73%
NL 16 / 7 199 49.6s 410.6s 81%

16 384 1 073 807 361 NK – / 24 688 178.4s 676.9s 68%
NL 16 / 8 228 57.5s 441.2s 75%

65 536 4 295 098 369 NK – / 24 722 190.0s 720.5s 64%
NL 17 / 7 211 54.1s 453.9s 73%

Table 3.1: New, irNonlinear-FETI-DP-1 (abbreviated by NL) algorithm compared to

more traditional Newton-Krylov irFETI-DP (abbreviated by NK) on the

Vulcan supercomputer at Lawrence Livermore National Laboratory; p-

Laplace inclusions in linear Laplace equation; p = 4; H/h = 128; piece-

wise quadratic finite elements. The base line for the parallel efficiency is a

single BlueGene/Q node (16 cores); published in [78].

cores). The parallel scalability is satisfactory, although we do see an increase
in the total time especially when scaling from 65K to 262K cores. A paral-
lel efficiency exceeding 100% stems from a variation in the number of Newton
steps by one iteration. In Table 3.3 the weak parallel scalability for both solu-
tion phases is shown separately. As expected, since it includes significantly less
communication, Phase 1 scales better than Phase 2.

In the next paragraphs, we discuss possible reasons for some of the inefficien-
cies observed and we are able to present improved results on Vulcan after having
implemented some modifications.

Analysis and Discussion of the Results on the Mira BlueGene/Q

A better understanding why the time to solution increases when scaling from
65K to 262K cores on Mira can be achieved by an analysis of several subtimers.
Considering Fig. 3.6 we can see that a better scalability for Phase 1 is prevented
by an noticeable, undesired increase of the time used in the Krylov iterations

79



CHAPTER 3. INEXACT REDUCED NONLINEAR FETI-DP

Mira BlueGene/Q Supercomputer (ANL)
Total

Problem Newton Steps Krylov Execution Parallel
Cores Size Phase 1/Phase 2 Iter Time Time Effic.

16 514 089 5 / 1 10 1.23s 64.4s 100%
64 2 053 489 5 / 1 18 2.16s 66.0s 98%

256 8 208 225 4 / 1 23 3.17s 57.0s 113%
1 024 32 821 441 4 / 1 23 3.79s 57.9s 111%
4 096 131 262 849 4 / 1 22 4.04s 58.2s 111%

16 384 525 005 569 5 / 1 21 3.97s 69.8s 92%
65 536 2 099 930 625 4 / 1 23 3.59s 64.9s 99%

262 144 8 399 539 201 4 / 1 23 4.77s 90.2s 71%

Table 3.2: Weak scalability for the irNonlinear-FETI-DP-1 algorithm with Wolfe line

search on the Mira supercomputer at Argonne National Laboratory; see also

the detailed analysis in Fig. 3.6. Improvements resulting from this analysis

are discussed in the text; published in [78].

Fig. 3.5: Weak parallel scalability on the Mira BlueGene/Q; cf. the data in Table 3.2;

published in [78].

(yellow color in Fig. 3.6). Since, in Phase 1, the Krylov method operates exclu-
sively on the coarse problem, this suggests an inefficiency in the coarse problem.
Indeed, for this problem, as a result of the larger number of Newton iterations
in Phase 1, the coarse problem has to be solved more often in Phase 1 than
in Phase 2. For improving scalability, we therefore have to revisit the coarse
problem. In fact, in recent results on the Vulcan BlueGene/Q the scalability of
the coarse problem solve has been improved by optimizing several BoomerAMG
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Mira BlueGene/Q Supercomputer (ANL)
Phase 1 Phase 2

Problem Newton step Newton step
Cores Size ø Time Effic. ø Time Effic.

16 514 089 10.0s 100% 14.4s 100%
64 2 053 498 10.1s 99% 15.5s 93%

256 8 208 225 10.1s 99% 16.5s 87%
1 024 32 821 441 10.2s 98% 17.1s 84%
4 096 131 262 849 10.2s 98% 17.4s 83%

16 384 525 005 569 10.4s 96% 17.7s 81%
65 536 2 099 930 625 11.6s 86% 18.7s 77%

262 144 8 399 539 201 16.0s 63% 26.1s 55%

Table 3.3: Scalability of the two different solution phases for irNonlinear-FETI-DP-1

algorithm with Wolfe line search on the Mira supercomputer at Argonne

National Laboratory; see also the detailed analysis in Fig. 3.6. Improve-

ments resulting from this analysis are discussed in the text; published

in [78].

parameters and by using a better distribution of the coarse problem to MPI
ranks; see Fig. 3.7, the following paragraphs, and Section 3.4.5.

Second, there is a noticeable increase in the remaining time phase (orange
color in Fig. 3.6), especially in Phase 2 of the algorithm. Here, the remaining
time consists of the update of the solution, the computation of some parallel
norms for the global Newton iteration, and the cleanup of some parallel data
structures. Further investigations on the Vulcan BlueGene/Q, see Section 3.4.4,
have exposed an inefficiency in the parallel update of the Lagrange multipliers
which affected the solution phases of all our nonlinear FETI-DP implementa-
tions. The update was then replaced by an improved implementation which
subsequently was used to obtain the weak scaling results for Vulcan in Table 3.8
and Fig. 3.10 and the strong scaling results presented in Table 3.9 and Fig. 3.11.

Third, for 262K cores we see an unexpected increase in the portion of the
total time that is spent in the FETI-DP setup (green color in Fig. 3.6). This
phase contains the assembly of the coarse problem, the local LU factorizations,
the construction of several scatters, the AMG setup and the construction of the
Dirichlet preconditioner (only necessary in Phase 2). The increase in runtime
of the FETI-DP setup time affects both, Phase 1 and Phase 2. Since we expect
the local factorizations to scale perfectly the increase can only be a result of
the coarse setup, i.e., the construction of the coarse problem; cf. Section 3.3.2.
This has been confirmed by a detailed additional analysis on the Vulcan Blue-
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Fig. 3.6: Detailed analysis of Phase 1 (left) and Phase 2 (right) performed on the Mira

supercomputer of the first implementation of the irNonlinear-FETI-DP-1 al-

gorithm; cf. Table 3.3. Improvements resulting from this analysis are dis-

cussed in the text; see also the improved results on Vulcan in Fig. 3.10; pub-

lished in [78].

Gene/Q; see the following paragraphs for the discussion. Better results have
then been achieved on Vulcan by avoiding a certain redistribution step for the
coarse problem. We can conclude that not only the solution of the FETI-DP
coarse problem but also its efficient construction will be the key to obtain scal-
ability to one million cores.

The results presented in this chapter are based on pure MPI, i.e., the largest
problem uses 262K MPI ranks. A hybrid MPI/OpenMP model offers further
potential to increase scalability. We can reduce the number of MPI ranks by
using a threaded solver on the subdomain level. Results for this approach are
promising but beyond the scope of this thesis. Hybrid MPI/OpenMP aspects
and corresponding computational results have been discussed elsewhere [80].
Threaded BLAS or LAPACK libraries were also not used here. From our expe-
rience on BlueGene/P, the sparse direct solver [28] does not profit from the fine
grained parallelism of a threaded BLAS.

Weak Parallel Scalability on the SuperMUC Sandy Bridge Petascale
System (Leibniz Supercomputing Centre, Munich)

The same model problem as on Mira has been solved on SuperMUC at Leibniz
Rechenzentrum (LRZ) in Munich, Germany. The weak parallel scalability for
both phases can be seen in Table 3.4, showing a similar behavior as on Mira. For
the nonlinear hyperelasticity problem, we have similar results but on SuperMUC
so far on a smaller scale; see Table 3.5.

82



3.4. NUMERICAL RESULTS

SuperMUC (Leibniz Supercomputing Centre)
Phase 1 Phase 2

Problem Newton step Newton step Total
Cores Size ø Time Effic. ø Time Effic. Time Effic.

32 9M 11.1s 100% 16.2s 100% 112.5s 100%
128 38M 11.4s 97% 17.2s 94% 117.8s 96%
512 151M 11.4s 97% 17.2s 94% 119.1s 95%

2 048 604M 11.5s 97% 17.4s 93% 119.1s 95%
8 192 2 416M 12.3s 90% 18.8s 86% 127.9s 88%

32 768 9 664M 14.6s 76% 23.3s 70% 151.4s 74%

Table 3.4: Inexact reduced Nonlinear-FETI-DP-1 algorithm on the SuperMUC su-

percomputer at Leibniz-Rechenzentrum in Munich; −∆u− 4∆pu = 1, p =

4,Hx/hx = 768,Hy/hy = 384; published in [78].

SuperMUC (Leibniz Supercomputing Centre)
Phase 1 Phase 2

Problem Newton step Newton step Total
Cores Size ø Time Effic. ø Time Effic. Time Effic.

64 4M 15.9s 100% 26.2s 100% 126.6s 100%
256 16M 17.1s 93% 29.1s 90% 138.5s 91%

1024 67M 17.5s 91% 30.9s 85% 127.9s 99%
4096 268M 19.6s 81% 34.2s 77% 141.8s 89%

Table 3.5: Inexact reduced Nonlinear-FETI-DP-1 algorithm on the SuperMUC su-

percomputer at Leibniz-Rechenzentrum in Munich; Neo-Hooke material;

E = 210000 in circular inclusions and E = 210 in the surrounding matrix

material; Poisson ratio ν = 0.3 in the complete domain; see Fig. 3.3 for the

geometry; a fixed displacement of 1% in x-direction is prescribed in each

boundary node; published in [78].

Weak Parallel Scalability on the Vulcan BlueGene/Q (Lawrence
Livermore National Laboratory)

In Table 3.6 the weak scalability of the complete application for a nonlinear and
two-dimensional elasticity problem is presented. Here, we consider a rectangular
domain Ω = (0,0)× (2,1) and apply a fixed 1% displacement in x-direction in
each degree of freedom on the boundary, i.e.

x =

[
1.01 0

0 1

]
X
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for all nodes X ∈ ∂Ω. We use a Neo-Hooke material model and consider a
heterogenous material characterized by two different elasticity modules; cf. Sec-
tion 3.4.1 and Fig. 3.3 for the distribution of the coefficients. The smallest
problem with 1.6 million degrees of freedom is decomposed into 32 subdomains
and the largest problem with 6.7 billion degrees of freedom is decomposed into
131072 subdomains. All in all, a nearly constant behavior of the time spent
in Krylov iterations can be observed. This is comparable to the behavior of
our irNonlinear-FETI-DP-1 method applied to the p-Laplace model problem;
cf. Section 3.4.3. The parallel efficiency of the application is always better than
90%. But again we see an increase in runtime and, consequently, a drop in
efficiency from 96% to 90% when scaling from 32K to 131K cores. We provide
detailed time measurements in the next paragraph to explain this effect, and
how we obtain improvements.

We also present weak scaling results for nonlinear elasticity in three dimen-
sions; see Table 3.7. The problem setup in this experiment is similar to the two-
dimensional model problem: We have one stiff spherical inclusion (E = 210000)
in each subdomain embedded in softer material (E = 210). To increase the
memory available for each subdomain, we use 8 of the 16 cores of one Vulcan
node. The parallel efficiency on 65K cores compared to 128 cores is 78% and
thus seems satisfactory.

Vulcan BlueGene/Q Supercomputer (LLNL)
Total

Problem Newton Steps Krylov Execution Parallel
Cores Size Phase 1/Phase 2 Iter Time Time Effic.

32 1 642 242 4 / 3 93 23.2s 250.3s 100%
128 6 561 282 4 / 3 107 27.2s 256.0s 98%
512 26 229 762 4 / 3 109 27.9s 257.7s 97%

2 048 104 888 322 4 / 3 109 28.4s 258.7s 97%
8 192 419 491 842 4 / 3 107 28.7s 261.0s 96%

32 768 1 677 844 482 4 / 3 105 27.2s 261.7s 96%
131 072 6 711 132 162 4 / 3 102 26.7s 278.9s 90%

Table 3.6: Inexact reduced Nonlinear-FETI-DP-1 algorithm on the Vulcan super-

computer at Lawrence Livermore National Laboratory; Neo-Hooke ma-

terial; E = 210000 in circular inclusions and E = 210 in the surround-

ing matrix material; Poisson’s ratio ν = 0.3 in the complete domain; see

Fig. 3.3 for the geometry; a fixed displacement of 1% in x-direction is

prescribed in each boundary node; two-dimensional and rectangular do-

main (0,0)×(2,1); H/h=80; piecewise quadratic finite elements; published

in [78].
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Vulcan BlueGene/Q Supercomputer (LLNL)
Average Total

Problem Krylov Newton Time Execution Parallel
Cores Size Iter Time Steps Newton Step Time Effic.

128 698 691 85 9.3s 4 22.2s 88.7s 100%
1 024 5 447 811 98 11.8s 4 23.1s 92.2s 96%
8 192 43 022 595 116 15.5s 4 24.7s 98.9s 90%

65 536 341 955 075 181 27.2s 4 28.5s 113.9s 78%

Table 3.7: Newton-Krylov irFETI-DP on the Vulcan supercomputer at Lawrence Liv-

ermore National Laboratory; Neo-Hooke material; E = 210000 in spher-

ical inclusions and E = 210 in the surrounding matrix material; Poisson’s

ratio ν = 0.3 in the complete domain; a fixed displacement of 1% in x-

direction is prescribed in each boundary node; three-dimensional cubic do-

main; H/h=7; piecewise quadratic finite elements; published in [78].
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Analysis and Discussion of the Results on the Vulcan BlueGene/Q

In Fig. 3.7, we partition the average runtime of one Newton step in four differ-
ent phases: Assembly of the local problems (blue color in Fig. 3.7), FETI-DP
and preconditioner setup including the local LU factorizations (green color in
Fig. 3.7), Krylov iteration (yellow color in Fig. 3.7), and the remaining time
(orange color in Fig. 3.7). In Fig. 3.7 (left) we present the average timings
over all Newton steps of Phase 1, in Fig. 3.7 (right) the respective timings for
Phase 2 (solution phase). Let us remark that Phase 2 is comparable to classical
Newton-Krylov irFETI-DP.

The assembly time (blue color in Fig. 3.7) scales, as one should expect, nearly
perfectly for both phases.

In Phase 1, the Krylov iteration time can now be neglected after our improve-
ments on the coarse problem solve: We have better adapted BoomerAMG to
the properties of our FETI-DP coarse operator and use a better distribution of
the coarse problem to the MPI ranks, i.e., we use, e.g., 16K cores for the coarse
problem in the run using a total of 131K cores. The combination of these two
specific changes alone results in a noticeable improvement compared to the Mira
results.

In Phase 2, the time spent in the Krylov method takes a larger part, but scales
quite well, also because the nonlinear FETI-DP method keeps the number of
Krylov iterations nearly constant. We also notice that the remaining time (or-
ange color in Fig. 3.7) does not scale perfectly when reaching 131K cores. This
was caused by an inefficiency in the implementation of the update of the La-
grange multipliers, already mentioned in the discussion of the Mira results. This
does not affect this weak scaling experiment on Vulcan substantially, but proved
a crucial point in later strong scaling tests on Vulcan. We have reimplemented
the update and present corresponding results in Section 3.4.5.

A noticeable parallel inefficiency in the FETI-DP setup time (green color in
Fig. 3.7) is caused by the assembly of the coarse problem. This corresponds
to the earlier results on Mira. We present a detailed analysis of the FETI-DP
setup time in Phase 1 in Fig. 3.8. The FETI-DP setup phase is split into the
LU factorizations (green color in Fig. 3.8), the assembly and redistribution of
the globally coupled coarse problem (red and purple colors in Fig. 3.8), the
construction of the scatters representing B and RΠ (yellow color in Fig. 3.8),
and the BoomerAMG setup (orange color in Fig. 3.8). Apparently, only the
phases related to the coarse problem are not scaling perfectly. It is possible
to avoid the redistribution process, see Section 3.3.2, by assembling the coarse
problem directly on a subset of MPI ranks. This proves to be more efficient:
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We reimplemented this part of the code and repeated the tests from Table 3.6.
The improved results can be found in Table 3.8 and Fig. 3.9. In Fig. 3.9 the
redistribution (purple color in Fig. 3.9 and Fig. 3.8) is removed resulting in an
improvement of the overall parallel efficiency from 90% (Table 3.6) to 92% in
Table 3.8 and Fig. 3.10.

Nevertheless, we assume that improvements are still possible in the construc-
tion of the coarse problem since a detailed performance analysis for a number
of cores this large has not previously been undertaken for this code. We may
be able to learn from highly scalable parallel multigrid codes which also rely on
an efficient construction of the coarse operator.

Fig. 3.7: Detailed analysis of Phase 1 (left) and Phase 2 (right) of the irNonlinear-

FETI-DP-1 method; average time per Newton step; corresponds to the data

in Table 3.6; published in [78].

Vulcan BlueGene/Q Supercomputer (LLNL)
Total

Problem Newton Steps Krylov Execution Parallel
Cores Size Phase 1/Phase 2 Iter Time Time Effic.

32 1 642 242 4 / 3 93 23.2s 249.9s 100%
128 6 561 282 4 / 3 107 27.4s 256.2s 98%
512 26 229 762 4 / 3 108 27.9s 258.2s 97%

2 048 104 888 322 4 / 3 109 28.6s 258.9s 97%
8 192 419 491 842 4 / 3 106 28.9s 261.2s 96%

32 768 1 677 844 482 4 / 3 105 28.3s 263.7s 95%
131 072 6 711 132 162 4 / 3 102 26.8s 273.1s 92%

Table 3.8: Setting as in Table 3.6; assembly of the coarse problem on a subset of

min(MPI-size,16K) cores instead of redistribution of the coarse space;

published in [78].
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Fig. 3.8: Detailed subtimers of the irFETI-DP setup in Phase 1; average time per New-

ton step; corresponds to the data in Table 3.6; published in [78].
.

Fig. 3.9: Detailed subtimers of the irFETI-DP setup in Phase 1; average time per New-

ton step; corresponds to the data in Table 3.8. Improved results compared to

Fig. 3.8; published in [78].
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Fig. 3.10: Detailed analysis of Phase 1 (left) and Phase 2 (right) of the hybrid

irNonlinear-FETI-DP-1 method; average time per Newton step; corre-

sponds to the data in Table 3.8. Improved results compared to Fig. 3.7;

published in [78].
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3.4.5 Strong Parallel Scalability

Finally, we present strong scaling tests for a nonlinear elasticity problem in two
dimensions; see Table 3.9. We, again, use the problem setup with stiff circular
inclusions, cf. Fig. 3.3. We decompose a problem with 419 million degrees of
freedom and 131072 inclusions into 131072 subdomains and solve with our new
inexact reduced Nonlinear-FETI-DP-1 method using an increasing numbers of
BlueGene/Q cores. We start with 1024 cores (16 nodes) and scale up to 131K
cores (8192 nodes). This implies that we solve between one and 128 subdomain
problems on each processor core, and each of these has approximately 6.6K
degrees of freedom, which is comparable small. We are not able to start our
strong scaling test on fewer cores, due to memory constraints. The result of 63%

parallel efficiency on 131K cores is convincing. Let us also remark that we even
gain a mentionable speedup when scaling from 65K to 131K cores. A graphical
presentation of the parallel speedup can be found in Fig. 3.11.

We also provide and discuss some detailed timings for this strong scaling ex-
periment. In Fig. 3.12, we present four different subtimers: Krylov iterations
(yellow color in Fig. 3.12), assembly of local problems (blue color in Fig. 3.12),
FETI-DP setup (green color in Fig. 3.12) and updates and parallel norms (or-
ange color in Fig. 3.12). On the left, the average measurements of these sub-
timers for each Newton step of Phase 2 is presented. On the right, the percentage
as portion of the total time for these subtimers is depicted.

Let us remark that three main improvements compared to the Mira results
enabled these strong scaling results. First, the elimination of the inefficiency in
the update of the Lagrange multipliers. It has made the remaining time (orange
color in Fig. 3.12) insignificant. Second, we have removed the redistribution of
the coarse problem and replaced it by a faster assembly process on a subset of
MPI ranks; see also Section 3.4.4. For the strong scaling results, we assemble
the coarse problem at most on 16K cores. This also results in a better scalability
of the FETI-DP setup phase. Third, we have better adapted BoomerAMG to
the properties of the FETI-DP coarse problem.

Still, the FETI-DP setup phase does not show optimal parallel efficiency
and the percentage of this phase of a single Newton step grows (green color in
Fig. 3.12). Further investigations and optimizations of the assembly process of
the coarse problem may be necessary.
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Vulcan BlueGene/Q Supercomputer (LLNL)
Total

Problem Execution Actual Ideal Parallel
Cores Subdomains Size Time Speedup Speedup Effic.
1 024 131 072 419 471 361 3 365.1s 1.0 1 100%
2 048 131 072 419 471 361 1 726.4s 1.9 2 97%
4 096 131 072 419 471 361 868.0s 3.9 4 97%
8 192 131 072 419 471 361 453.5s 7.4 8 93%

16 384 131 072 419 471 361 231.4s 14.6 16 91%
32 768 131 072 419 471 361 119.8s 28.1 32 88%
65 536 131 072 419 471 361 64.3s 51.6 64 81%

131 072 131 072 419 471 361 41.7s 80.6 128 63%

Table 3.9: Inexact reduced Nonlinear-FETI-DP-1 algorithm on the Vulcan supercom-

puter at Lawrence Livermore National Laboratory; Neo-Hooke material;

E = 210000 in circular inclusions and E = 210 in the surrounding ma-

trix material; Poisson’s ratio ν = 0.3 in the complete domain; see Fig. 3.3

for the geometry; a fixed displacement of 1% in x-direction is prescribed in

each boundary node; piecewise quadratic finite elements; published in [78].

3.4.6 Using Multiple MPI Processes per Core

Each BlueGene/Q core has a maximum number of 4 hardware threads and
it is possible to execute up to four MPI processes on each core by specifying
the “- -overcommit” option. In strong scaling experiments, as presented above,
several subdomain problems have to be solved on each core. It is natural to
handle these subdomains sequentially on each core. Alternatively, we can handle
subdomains in parallel by using several MPI processes per core, which may help
to fill the pipelines and better utilize the execution units. Of course, the memory
of the node will be partitioned accordingly. We present results for a Neo-Hooke
hyperelasticity problem with 838942722 degrees of freedom in Fig. 3.13 and
compare computations on 1024, 2048, and 4096 nodes with one process per
core (upper, blue line) and four, two, and one MPI processes per core (lower,
green line). We use the maximum number of four processes per core on 1024

nodes and two processes per core on 2048 nodes. Of course we can not expect
perfect scalability, but we do achieve a significant speedup of 30% compared to
the standard approach by using two MPI processes per processor core. We then
do not obtain a significant additional benefit from using four MPI processes per
core. Thus, if feasible an overcommit should be considered.
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Fig. 3.11: Strong Scaling on Vulcan: Visualization of the speedup from Table 3.9;

published in [78].

Fig. 3.12: Detailed subtimer for the strong scaling experiments from Table 3.9. Aver-

age time per Newton step in Phase 2; published in [78].
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Fig. 3.13: Effect of using multiple MPI processes for each processor core (overcom-

mit): One process per core compared to four/two/one processes per core.

For the upper (blue) line we use 65 536 subdomains and 16 384, 32 768, and

65 536 MPI ranks on 16 384, 32 768, and 65 536 BG/Q cores, respectively.

For the lower (green) line we use 65 536 subdomains and 65 536 MPI ranks

on 16 384, 32 768, and 65 536 BG/Q cores; published in [78].
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3.5 Outlook on a New Method: Inexact Reduced
Nonlinear-FETI-DP-2

Especially in problems with strongly localized nonlinearities, Nonlinear-FETI-
DP-2 often shows the best performance, since localized nonlinear problems are
solved in each Newton step on the right hand side; see Chapter 2.7 for nu-
merical results. Unfortunately, the idea of inexact reduced FETI-DP cannot
be transferred to Nonlinear-FETI-DP-2 in a straightforward fashion, since we
perform a nonlinear elimination of our coarse space variables ũΠ. Therefore,
we present a third nonlinear FETI-DP approach, where a nonlinear elimination
of all interior and dual variables B = [I ∆] is performed before linearization. In
other words, we suggest to nonlinearly eliminate as many variables as possible
before linearization without loosing the opportunity to solve the coarse problem
inexactly. We denote this algorithm by inexact reduced Nonlinear-FETI-DP-2
(irNonlinear-FETI-DP-2); see [91].

3.5.1 Derivation of the Method

A Nonlinear Schur Complement

We start again with the nonlinear FETI-DP master system introduced in equa-
tion (2.34)

K̃(ũ)+BT λ = f̃

Bũ = 0.
(3.17)

Recalling the partitioning ũ :=
[
uT

B , ũT
Π

]T and f̃ :=
[

f T
B , f̃ T

Π

]T into primal vari-
ables Π and interior and interface variables B = [I ∆], and, accordingly, K̃(ũ) :=[
KB(uB, ũΠ)

T , K̃Π(uB, ũΠ)
T
]T

, we can reformulate (3.17) to

KB(uB, ũΠ)+BT
Bλ − fB = 0

K̃Π(uB, ũΠ) − f̃Π = 0

BBuB = 0.

(3.18)

We analogously partition the tangential matrix DK̃(ũ) and obtain

DK̃(ũ) =

[
DuBKB(uB, ũΠ) DũΠ

KB(uB, ũΠ)

DuBK̃Π(uB, ũΠ) DũΠ
K̃Π(uB, ũΠ)

]
=:

[
DK̃(ũ)BB DK̃(ũ)T

ΠB

DK̃(ũ)ΠB DK̃(ũ)ΠΠ

]
.

(3.19)

Instead of linearizing equation (3.17), which would lead to NL-FETI-DP-1,
or instead of performing a nonlinear elimination of ũ in equation (3.17), which
would lead to NL-FETI-DP-2, we perform a nonlinear elimination of uB in (3.18).
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This finally results in concurrent local nonlinear problems in the variable uB. In
order to derive our inexact reduced Nonlinear-FETI-DP-2 method, we first in-
troduce a nonlinear Schur complement on

[
ũT

Π
,λ T

]T .
Let us assume that

[
u∗

T

B , ũ∗
T

Π
,λ ∗

T
]T

is a solution of (3.18). Under the sufficient as-

sumption that KB is continuously differentiable, that the solution
[
u∗

T

B , ũ∗
T

Π
,λ ∗

T
]T

exists and satisfies KB(u∗B, ũ
∗
Π
)+BT

Bλ ∗− fB = 0, and that DK̃(u∗B, ũ
∗
Π
)BB is invert-

ible, there exists an implicit function h(ũ∗
Π
,λ ∗) = u∗B. Additionally, we then have

KB(h(ũΠ,λ ), ũΠ)+BT
Bλ − fB = 0, (3.20)

in a sufficiently small neighborhood of
[
ũ∗

T

Π
, λ ∗

T
]T

. From the implicit function
theorem we obtain the derivative of h,

Dh(ũΠ,λ ) = [DũΠ
h(ũΠ,λ ) Dλ h(ũΠ,λ )] (3.21)

with
DũΠ

h(ũΠ,λ ) =−(DK̃(h(ũΠ,λ ), ũΠ))
−1
BB DK̃(h(ũΠ,λ ), ũΠ)

T
ΠB (3.22)

and
Dλ h(ũΠ,λ ) =−(DK̃(h(ũΠ,λ ), ũΠ))

−1
BB BT

B (3.23)

Inserting the implicit function in row two and three of (3.18), we can define
a nonlinear Schur complement by

S(ũΠ,λ ) :=

[
K̃Π(h(ũΠ,λ ), ũΠ)− f̃Π

BBh(ũΠ,λ )

]
. (3.24)

irNonlinear-FETI-DP-2 is then linearizing the Schur complement problem
S(ũ∗

Π
,λ ∗) = 0 with Newton’s method. We obtain the iteration[

ũ(k+1)
Π

λ (k+1)

]
=

[
ũ(k)

Π

λ (k)

]
− (DS(ũ(k)

Π
,λ (k)))−1S(ũ(k)

Π
,λ (k)). (3.25)

Using (3.22), (3.23), and the notation from (3.19) leads to

DS(ũΠ,λ ) = (3.26)[
(DK̃(h(ũΠ,λ ), ũΠ))ΠΠ +(DK̃(h(ũΠ,λ ), ũΠ))ΠBDũΠ

h(ũΠ,λ ) (DK̃(h(ũΠ,λ ), ũΠ))ΠBDλ h(ũΠ,λ )

BBDũΠ
h(ũΠ,λ ) BBDλ h(ũΠ,λ )

]
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=

[
(DK̃)ΠΠ− (DK̃)ΠB((DK̃)BB)

−1(DK̃)BΠ −(DK̃)ΠB((DK̃)BB)
−1BT

B

−BB((DK̃)BB)
−1(DK̃)BΠ −BB((DK̃)BB)

−1BT
B

]

(3.4)
= Ar(ũΠ,λ ). (3.27)

Here, we partially removed variables h(ũΠ,λ ) and ũΠ for simplicity. If per-
formed in the same linearization point ũ, the derivative of the nonlinear Schur
complement in (3.26) is identical to the left hand side Ar in equation (3.4) of
the inexact reduced Nonlinear-FETI-DP-1 method. Therefore, we can again
solve the linearized system from (3.25) using an Krylov space method and the
preconditioner defined in (3.8); see Section 3.1 for details.

A Local Nonlinear Problem

To obtain the linearization point[
u(k)

T

B , ũ(k)
T

Π

]T
:=
[
h(ũ(k)

Π
,λ (k))T , ũ(k)

T

Π

]T

in (3.25), we have to solve the local nonlinear problem given in the first row
of (3.18)

KB(h(ũ
(k)
Π
,λ (k)), ũ(k)

Π
)+BBλ

(k)− fB = 0. (3.28)

Since ũ(k)
Π

and λ (k) are given as results of the k-th step of the global Newton
iteration (3.25), we are only interested in u(k)B := h(ũ(k)

Π
,λ (k)) and solve equa-

tion (3.28) by applying Newton’s method. We obtain the local iteration

u(l+1)
B = u(l)B − (DK̃(u(l)B , ũ(k)

Π
))−1

BB (KB(u
(l)
B , ũ(k)

Π
)+BBλ

(k)− fB). (3.29)

Regarding the diagonal block structure of DK̃(·)−1
BB , see (3.13), all computations

in (3.29) are completely local to the subdomains Ωi and therefore iteration (3.29)
is embarrassingly parallel. Nearest neighbor communication is only needed once
for the computation of BBλ (k), since λ (k) does not change during the local iter-
ation.

3.5.2 Algorithmic Description

We present the inexact reduced Nonlinear-FETI-DP-2 algorithm in Fig. 3.14.
The computational building blocks are identical to the building blocks of inexact
reduced Nonlinear-FETI-DP-1 and therefore already described in Section 3.3.
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3.5. INEXACT REDUCED NONLINEAR-FETI-DP-2

Inexact Reduced Nonlinear-FETI-DP-2

Init: (u(0)B , ũ(0)
Π
) = ũ(0) ∈ Ŵ , λ (0) = 0

for k = 0, ...,convergence

for l = 0, ...,convergence

build: K̃(ũ(l)) and DK̃(ũ(l))

solve: (DK̃(ũ(l)))BBδu(l)B = KB(ũ(l))+BT
Bλ (k)− fB //see eq. (3.29)

compute: steplength α(l)

update: ũ(l+1) := ũ(l)−α(l)(δu(l)B ,0)T //update uB

end

ũ(k) := ũ(l+1)

build: K̃(ũ(k)), DK̃(ũ(k)), and M−1

iterative Krylov solve for (δ ũ(k)
Π

T , δλ (k)T )T using left

preconditioner B−1
r,L (Ŝ

−1
ΠΠ

, DK̃(ũ)−1
BB , M−1):

Ar(ũ
(k)
Π
,λ (k))(δ ũ(k)

Π
, δλ (k))T = (K̃Π(ũ(k))− f̃Π , BBu(k)B )T //see (3.27)

compute: steplength α(k)

update: λ (k+1) := λ (k)−α(k)δλ (k)

update: ũ(k+1)
Π

:= ũ(k)
Π
−α(k)δ ũ(k)

Π

ũ(0) := (u(l+1)T

B , ũ(k+1)T

Π
)T //primal update

λ (0) := λ (k+1)

end

Fig. 3.14: Pseudocode of the Inexact Reduced Nonlinear-FETI-DP-2 algorithm.

The application of Ŝ−1
ΠΠ

will consist of cycles of a parallel AMG method, for

DK̃(ũ)−1
BB uses concurrent forward-backward substitutions of a sparse direct

solvers on the subdomains. See also Section 3.3 for the detailed notations.
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4 AMG as Preconditioner in Inexact
FETI-DP Methods

Fast convergence in nonlinear inexact reduced FETI-DP methods, as introduced
in Chapter 3, can only be obtained if a good preconditioner ŜΠΠ for S̃ΠΠ is avail-
able; this was already mentioned in Section 3.1. In case the preconditioner is
spectrally equivalent to S̃ΠΠ, we can expect the same polylogarithmic bound of
the condition number of the preconditioned system as in exact FETI-DP meth-
ods; cf (2.11). In all experiments presented in Section 3.4 an AMG method
with a classical nodal coarsening, see Section 4.2 for details, was used as pre-
conditioner ŜΠΠ and the performance was quite satisfying. Nevertheless, it is
well known that for more sophisticated linear or nonlinear elasticity problems
a problem-related and customized AMG setup can improve performance. Clas-
sical AMG approaches are designed for scalar partial differential equations and
assume that the nullspace of the operator only consists of constant vectors. This
assumption does not hold for many systems of PDEs, as, e.g., elasticity prob-
lems, where also rotations are part of the nullspace. Several different approaches
to handle linear elasticity problems with AMG methods have been suggested in
the last decades, as, e.g., smoothed aggregation [16, 136], unsmoothed aggrega-
tion [12,20,111,113,114], AMGe [15], element-free AMGe [67], local optimization
problems to incorporate the rigid body modes in the interpolation [37], or the
global matrix (GM) approach [3].
In this chapter, we provide a brief overview of AMG and describe the GM ap-
proach in Section 4.3, which was first introduced in [3]. This method explicitly
incorporates given smooth error vectors into the AMG interpolation in order
to handle the correction of these errors in the coarse grid correction. The GM
approach can help to improve convergence of AMG especially for elasticity prob-
lems.
We present parallel results up to 131072 BlueGene/Q cores and compare the
performance of standard AMG and the GM approach as preconditioner in irNon-
linear FETI-DP-1.
Finally, we give a short overview of inexact FETI-DP (iFETI-DP) method; in-
troduced in [84]. In this method, no exact elimination of variables is performed
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at all and the AMG preconditioner is applied to the complete matrix DK̃ instead
of the Schur complement S̃ΠΠ. We present numerical weak scalability results for
iFETI-DP using AMG and GM interpolations as a preconditioner.

4.1 Classical Algebraic Multigrid

Let us first give a brief overview of AMG for scalar PDEs and introduce some
notations. We consider the linear system Au = f arising from the discretiza-
tion of a scalar PDE with the exact solution u∗. Algebraic as well as geometric
multigrid methods are based on finding a hierarchy of coarser grids and restrict-
ing the linear system to each of them. Finally, the system is only solved on
the coarsest grid, which is computationally efficient due to the small problem
size. The solution on the coarse grid is then interpolated back to the original
grid and, additionally, some smoothing steps are applied to correct the error of
the interpolated solution. In algebraic multigrid methods the coarsening is per-
formed without any geometrical or mesh related information only considering
the entries of the system matrix A. Descriptions of several coarsening strategies
as Ruge-Stüben, HMIS or Falgout, and an investigation of their parallel per-
formance can be found in, e.g., [137]. For a given set of grids, an interpolation
operator P is constructed to interpolate quantities from one grid to the next
finer one and the transposed operator PT is a common choice as restriction op-
erator.
Let us, for simplicity, only consider the two grid case with one fine and one
coarse grid. For an approximate solution u and the exact solution u∗ of the
system Au∗ = f on the fine grid, we have the relationship Ae = r with the error
vector defined by e := u∗−u, and the residual defined by r := f −Au. One AMG
V-cycle to correct or update u then reads

1) Smooth ν1 times on: Au = f
2) Compute the residual: r = f −Au
3) Solve on the coarse grid: PT (A)Pec = PT r
4) Correct u: u = u+Pec

5) Smooth ν2 times on: Au = f .

A full algebraic multigrid V-cycle with more than two levels is depicted in
Fig. 4.1. For more details on AMG methods, see, e.g., [122,132]. In the remain-
der of this chapter we refer to AMG for scalar PDEs as classical AMG.
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smoothing

restricting

in
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finest grid

second grid

ccoarsest grid solving

Fig. 4.1: One AMG V-cycle: Smoothing on the fine grid→ Restricting to the coarsest

grid→ Solving on coarsest grid→ Interpolating to the finest grid.

4.2 Algebraic Multigrid for Systems of PDEs

We now consider discretized systems of partial differential equations Au = f .
Here, one variable or unknown describes one physical quantity in a grid point
or node. For example, in linear or nonlinear elasticity, we have one unknown
or degree of freedom describing one spatial direction in each node. For simplic-
ity, we restrict ourselves to the two dimensional case and regard an elasticity
problem with two unknowns x and y representing the two spatial directions. A
detailed three dimensional description can be found in [3].
In the theory of algebraic multigrid methods there are two common approaches
to treat systems of PDEs Au = f : the unknown coarsening approach, first de-
scribed in [122, 132], and the nodal coarsening approach; see, e.g., [24, 62, 121,
122]. While the unknown approach completely separates the different physical
quantities, the nodal approach considers all unknowns belonging to the same
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node at once and thus acts on a nodal basis.
Let us first take a brief look at the unknown approach. Therefore, we assume
an unknown related ordering of the system matrix

A =

[
Axx Axy

Ayx Ayy

]
. (4.1)

The unknown approach is now applying classical AMG coarsening and interpola-
tion strategies to the different variables separately, i.e., applying independently
classical AMG to the diagonal blocks Axx and Ayy. This strategy apparently ne-
glects all inter-unknown couplings between x and y and the AMG interpolation
P has diagonal block structure

P =

[
Px 0

0 Py

]
. (4.2)

In general, the unknown approach is the most intuitive way to handle systems
of PDEs and appears to be effective for problems with a weak coupling be-
tween the different unknowns. Of course, performance also strongly depends
on the general quality of the chosen coarsening, interpolation, and smoothing
techniques with respect to the diagonal problems.
Considering problems with a stronger coupling between the different physical
quantities the nodal approach may have a superior performance. Blocking all
unknowns sharing the same node together and considering a node related or-
dering of our system matrix leads to the representation

A =


A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 . . . ANN

 , (4.3)

with 2× 2 blocks Ai j connecting nodes i and j. All in all, we define N as the
number of nodes or grid points and thus A is a N×N block matrix.
Instead of considering the strength of the connection between two variables
to construct the coarse grid, we now consider the strength of the connection
between two nodes i and j. Therefore, we have to compare the different block
entries, as, e.g., A ji or A j j. This is possible by the help of an appropriate
measurement as the Frobenius norm || · ||F or the row-sum norm || · ||∞. Applying
the chosen norm to the system matrix DK we obtain a condensed N×N matrix
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with scalar entries describing the strength of the inter-nodal connections

C =


c11 c12 · · · c1N

c21 c22 · · · c2N
...

...
. . .

...
cN1 cN2 . . . cNN

 :=


||A11|| ||A12|| · · · ||A1N ||
||A21|| ||A22|| · · · ||A2N ||

...
...

. . .
...

||AN1|| ||AN2|| . . . ||ANN ||

 . (4.4)

The AMG coarse grids and the interpolation operators can be obtained by
applying classical AMG techniques to the condensed matrix C. In the nodal
coarsening approach all unknowns in one grid point share the same set of coarse
grids. This is not the case in grids obtained from an unknown coarsening, which
can lead to completely different coarse meshes for different unknowns.

4.3 The Global Matrix Approach

In general, in algebraic multigrid methods, errors are reduced by two different
operations: the smoothing or relaxation steps and the coarse grid correction.
For an optimal AMG setup the coarse correction and the relaxation strategy
have to be chosen carefully and to complement each other. While simple point-
wise relaxation methods as Jacobi or Gauß-Seidel rapidly reduce errors in the
directions of eigenvectors associated to large eigenvalues, the reduction in di-
rections of eigenvectors associated to small eigenvalues is less optimal; see [15]
for details. Errors, which are only poorly reduced by the smoothing steps are
also called smooth errors or, more precisely, algebraic smooth errors and can be
characterized by Ae ≈ 0 since e is an eigenvector associated to a small eigen-
value. To obtain an effective AMG method these errors should be reduced by
the coarse grid correction. For that reason, the smooth error vectors should
approximately lie in the range of the interpolation operator P, or, if an error
e exactly fulfills the equation Ae = 0 on all interior nodes, the error should be
interpolated exactly on the fine grid; see, e.g., [15].
In the case of linear elasticity all rotations and translations of the domain (rigid
body modes, RBMs) are in the nullspace of the system operator. Since clas-
sical AMG interpolations P already interpolate constant vectors exactly, we
only have to take care of rotations, or, in two dimensions, the single rotation
sF(x,y) := [y,−x]. A possible approach to incorporate an exact interpolation of
smooth error vectors in the AMG interpolation is, as already mentioned, the
GM approach, first introduced in [3]. We choose the GM approach to optimize
convergence of inexact FETI-DP methods for elasticity problems. In the follow-
ing descriptions we will again restrict ourselves to the case with two grids. A
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generalization considering the multilevel-case can be found in [3].
The name global matrix approach is based on the idea of augmenting a given
and global AMG interpolation P with several matrices Q. Each matrix Q has
the task to exactly interpolate a chosen smooth error vector. Here, we consider
the rotation sF := [y,−x] in two dimensions as algebraic smooth error. We define
sC as the restriction of sF onto the coarse grid and augment

P̃ := [P Q], such that sF ∈ range(P̃). (4.5)

There are several possibilities to define a matrix Q fulfilling equation (4.5) and
also retaining the sparsity of P. We define P̃ in order to fulfill

P̃

[
sC

1

]
= sF . (4.6)

This definition of P̃ was suggested in [3] and denoted by variant 2. The definition
of Q given in (4.7) apparently fulfills (4.6) and retains the sparsity of P. For the
entries Qi j, where i is the index of a fine grid point and j the index of a coarse
grid point, we define

Qi j := Pi j

 sF
i

∑
j∈Ci

Pi j
− sC

j

 , (4.7)

with Ci is the set of coarse points in the direct neighborhood of i, i.e., the indices
of the columns with nonzero entries in row i of the interpolation P.
Let us finally remark that the GM approach is a hybrid approach in the sense
that the coarsening strategy is nodal-based but the interpolation P is unknown
based; see Section 4.2 for a description of both methods. The hybrid approach
is necessary since we need to have all unknowns in a node to be either coarse
or fine in order to perform the interpolation of a smooth error vector. This
is obvious since the rotation [y,−x] operates on both unknowns x and y. The
unknown based GM interpolation in two dimensions then also writes

P̃ =

[
Px 0 Qx

0 Py Qy

]
,

and Qx and Qy can be computed independently and have the same sparsity as Px

and Py. In the GM implementation in BoomerAMG an independent truncation
of Q and P is possible, to influence the sparsity of the interpolation and thus
the operator complexities.
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4.4 Numerical Results for irFETI-DP

In this section, we will present numerical results in order to compare the
different AMG approaches described before and their performance as precon-
ditioners for the FETI-DP coarse problem S̃ΠΠ. We always use one V-cycle
of BoomerAMG in our implementation. The BoomerAMG package, see [68],
provides an efficient parallel implementation of the GM approach and the user
simply has to provide smooth error vectors of his or her choice on the fine
grid. In our case, in two dimensions, we have to provide the rotation sF of the
FETI-DP coarse grid.
In order to provide a fair comparison of the three different methods, we carefully
choose an AMG setup where all components have shown the potential to scale
up to large scales. We choose the highly scalable HMIS aggressive coarsening
scheme, introduced in [30], the long range extended+i interpolation method
described in [29, 138] and one step of a symmetric SOR/Jacobi smoother. Of
course, we use the same setup in all three methods: the unknown approach, the
hybrid approach with nodal coarsening, and the GM approach.
If a Dirichlet boundary condition will be applied to the bigger part of the
boundary, standard nodal or unknown approaches are known to perform well
and we do not expect any additional benefit from the GM approach. This is
also confirmed by our numerical results in Section 3.4, where we always used
a nodal coarsening. Therefore, we now choose a more difficult problem setup
and consider an elasticity problem on a rectangular domain Ω with an aspect
ratio of 8 : 1, only fixed on one of the smaller sides. A volume force orthogonal
to the longer sides is applied. We refer to this problem as 2D beam problem
and a solution considering a linear elastic material is presented in Fig. 4.3. Let
us remark that the GM approach already showed a promising performance for
such a problem layout in two and three dimensions; see [3] for the results.
We will present parallel results up to 131K computational cores for both, the
2D beam with linear elasticity solved with irFETI-DP and the 2D beam with
nonlinear hyperelasticity solved with irNonlinear-FETI-DP-1. In both cases we
choose only primal vertex constrains to build our FETI-DP coarse space.

4.4.1 Linear Elasticity Results

We first consider the linear elasticity problem

−2µ div(ε(u))−λgrad(div(u)) = f
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Fig. 4.2: Solution of the 2D beam considering linear elasticity with E = 210 and ν =

0.3.

with material parameters

λ =
νE

(1+ν)(1−2ν)
and µ =

E
2(1+ν)

,

c.f., [13]. We choose E = 210 and ν = 0.3.
Weak scalability results for the 2D beam model problem with linear elasticity are
presented in Tab. 4.1 and a graphical representation can be found in Fig. 4.3.
These tests are performed on the Vulcan BlueGene/Q and we start with a prob-
lem size of 643602 degrees of freedom on 32 MPI-ranks and scale up to a problem
size with 2621670402 degrees of freedom on 131072 MPI-ranks. Using the total
time to solution on 32 cores of the fastest approach (unknown approach) as a
baseline, we obtain 62% parallel efficiency for the unknown approach, 76% effi-
ciency for the hybrid approach, and even 95% for the GM approach on 131072

cores. As expected, we benefit from the exact interpolation of the rotation sF

and obtain both, numerical scalability with respect to the number of Krylov
subspace iterations and very good parallel scalability using the GM approach.
In fact, the number of Krylov iterations shrinks with the number of subdomains
using the GM approach, while it grows using the unknown approach. This effect
can be explained by the growing FETI-DP coarse space and thus the increasing
benefit from having a good preconditioner ŜΠΠ or, on the contrary, a deterio-
ration using an insufficient preconditioner. In the problem with 32 subdomains
computed on 32 MPI-ranks the coarse problem only consists of 30 degrees of
freedom and the effect of the AMG preconditioner on the convergence of irFETI-
DP is negligible. Therefore, all three approaches behave similar. Using 131072

cores and a coarse problem including more than 260000 degrees of freedom, the
GM approach can reduce the time spent in the Krylov method by a factor of
3.5 compared to the unknown approach, and also the time spent in the AMG
setup is still small.
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Time Time
# MPI S̃ΠΠ Time to AMG
ranks d.o.f. preconditioner It.(Cop) GMRES Solution Setup

U-AMG 76 (1.3) 6.6s 17.6s 0.03s
32 643 602 H-AMG 85 (1.1) 7.3s 18.3s 0.03s

H-AMG-GM 87 (1.1) 7.5s 18.5s 0.03s
U-AMG 83 (1.5) 7.9s 18.9s 0.05s

128 2 567 202 H-AMG 64 (1.3) 6.1s 17.1s 0.04s
H-AMG-GM 58 (1.3) 5.4s 16.4s 0.04s

U-AMG 87 (1.9) 9.0s 20.1s 0.08s
512 10 254 402 H-AMG 82 (1.5) 8.3s 19.4s 0.06s

H-AMG-GM 52 (1.6) 5.3s 16.4s 0.07s
U-AMG 112 (2.5) 10.9s 22.1s 0.12s

2 048 40 988 802 H-AMG 113 (1.8) 10.7s 21.9s 0.10s
H-AMG-GM 47 (2.1) 4.5s 15.6s 0.12s

U-AMG 111 (2.7) 11.1s 22.6s 0.17s
8 192 163 897 602 H-AMG 71 (1.6) 6.8s 18.2s 0.11s

H-AMG-GM 43 (1.8) 4.1s 15.5s 0.15s
U-AMG 119 (2.8) 13.0s 25.1s 0.28s

32 768 655 475 202 H-AMG 80 (1.6) 7.9s 19.9s 0.15s
H-AMG-GM 40 (1.8) 4.0s 16.1s 0.20s

U-AMG 123 (2.9) 14.0s 28.6s 0.46s
131 072 2 621 670 402 H-AMG 85 (1.6) 8.6s 23.1s 0.25s

H-AMG-GM 39 (1.8) 4.0s 18.5s 0.33s

Table 4.1: Results and timings for linear irFETI-DP applied to the model problem 2D

beam with one V-cycle of BoomerAMG as preconditioner for the FETI-

DP coarse problem S̃ΠΠ. We choose a linear elastic model with material

parameters E = 210 and ν = 0.3 and discretize the computational domain

with quadratic, triangular finite elements. We assign the FETI-DP coarse

problem to 5% of the MPI ranks. Here, U-AMG stands for the unknown

approach, H-AMG for the hybrid approach with nodal coarsening using

the row-sum norm, and H-AMG-GM for the GM approach also using the

row-sum norm. In all methods HMIS coarsening, extended+i interpolation,

and a symmetric SOR/Jacobi smoother is used. The remaining columns are:

It.(Cop) the number of GMRES iterations and the AMG operator complex-

ity; Time GMRES the runtime spent in GMRES; Time AMG Setup the

runtime spent in the AMG setup.
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Fig. 4.3: Graphical representation of the results presented in Tab. 4.1 for irFETI-DP

applied to the linear elastic beam with different AMG approaches as precon-

ditioner for the FETI-DP coarse problem. The unknown approach is repre-

sented by the blue lines (U-AMG), the hybrid approach by the green line

(H-AMG), and the GM approach by the yellow line. The figure at the top

left shows the number of GMRES iterations. The figure at the top right the

GMRES runtime and the figure at the bottom shows the overall runtime.
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4.4.2 Nonlinear Hyperelasticity Results

Let us now present weak scalability results for the 2D beam choosing the nonlin-
ear Neo-Hooke material model introduced in Section 3.4.1. We choose material
parameters E = 210000 and ν = 0.3 and apply a volume force of 0.01. This
nonlinear problem is solved using our inexact reduced Nonlinear-FETI-DP-1
method while applying the different AMG methods in both nonlinear FETI-DP
phases, namely the computation of an initial value (Phase 1) and the solution
phase (Phase 2). Results for this setup are presented in Table 4.2 and have been
performed on the JUQUEEN BlueGene/Q. A graphical representation can be
found in Fig. 4.4. As in the linear case, the GM approach shows the potential
to save GMRES iterations in Phase 2 and therefore reduces the iteration time
as well as the runtime. The effect is not as impressive as in the linear case,
since Phase 1 only profits marginally from the optimized preconditioner for the
coarse space. This is the case because the iteration time in Phase 1 is negligible.
In contrast to linear elasticity, the AMG setup time slightly increases with the
number of MPI-ranks and FETI-DP subdomains, especially for the unknown
approach. We made several experiments with different AMG setups in order to
reduce the time spent in BoomerAMG setup, i.e., using a more drastic trunca-
tion of the interpolation P. In fact, this leads to a faster AMG setup but also
results in higher GMRES iteration counts. This also shows the superiority of
the GM approach in this set of experiments since we have an acceptable AMG
setup time as well as fast iterations.
Nevertheless, the imperfect scalability of the AMG setup phase causes a less
optimal scalability compared to the linear case. Choosing the time to solution
of the fastest inexact method on 32 cores as a baseline (38.0s; nodal coarsen-
ing), we obtain a parallel efficiency of only 53% for the unknown approach, 64%

for the nodal coarsening, and respectable 73% for the GM approach on 131072

cores.
To obtain an estimation of the general quality of BoomerAMG using the GM
approach as a preconditioner for S̃ΠΠ, we also provide a comparison with the
exact Nonlinear-FETI-DP-1 approach. The results can also be found in Ta-
ble 4.2. Let us recall from Section 3.1 that we can expect a similar asymptotical
convergence behavior of both methods (exact and inexact reduced FETI-DP)
in the case of a good preconditioner ŜΠΠ. The results presented in Table 4.2 are
satisfying, since the number of GMRES iterations using irNonlinear-FETI-DP-1
with the GM approach (82) is only slightly higher than the number of iterations
using exact Nonlinear-FETI-DP-1 (62) for the problem decomposed into 32768

subdomains. The poor scalability of exact Nonlinear-FETI-DP-1 is expected,
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since we use the sequential sparse direct solver UMFPACK [27] to factorize
the FETI-DP coarse problem. Choosing a MPI parallel direct solver as, e.g.,
MUMPS [28], or a thread-parallel solver, as, e.g., PARDISO [97,125,126], might
improve the scalability and also the memory efficiency.
In exact FETI-DP methods we have a polylogarithmic condition number bound
with respect to H/h; see also (2.11). The distribution of the eigenvalues of
the preconditioned system plays a major role for the convergence behavior of
iterative methods as CG or GMRES; see Sections 1.1.2 and 1.1.3. We thus
would expect logarithmic increasing iteration counts with respect to H/h, at
least using exact Nonlinear-FETI-DP-1 and, considering the presented results,
also using irNonlinear-FETI-DP-1 with GM approach. Therefore, we present
numerical results for the 2D beam with Neo-Hooke material and increasing H/h

in Fig. 4.5. We use 32768 subdomains and MPI ranks. We start with H/h = 5

and increase up to H/h = 120. The case with H/h = 50 is the same problem as
presented in Table 4.2. In Fig. 4.5, we see depicted results for exact Nonlinear-
FETI-DP-1 (blue), irNonlinear-FETI-DP-1 with classical AMG (yellow), and
irNonlinear-FETI-DP-1 with GM approach (green). The iteration counts at the
dots are the measured values. We fit a logarithmic trendline and in the exact
case as well as the GM case the results indicate the expected logarithmic be-
havior. Again, AMG with GM interpolations seems to be a good preconditioner
for the FETI-DP coarse problem. Classical AMG with an unknown coarsening
approach hardly shows a logarithmic behavior and the measured values do not
coincide with the best fitted logarithmic curve.
Let us summarize that the GM approach is a valid method to optimize the
performance of inexact reduced FETI-DP methods and leads to much better
parallel and numerical scalability results compared to classical AMG methods.
This holds for linear elasticity as well as for nonlinear hyperelasticity problems.
Nevertheless, in the nonlinear case, the BoomerAMG setup does not scale opti-
mally and it might be necessary to reconsider the choice of several parameters,
e.g., the truncation of P and Q, the coarsening method, and the interpolation
strategy.
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Time Time
# MPI S̃ΠΠ Time to AMG
ranks d.o.f. preconditioner It.(Cop) GMRES Solution Setup

U-AMG 161 13.7s 38.9s 0.03s
32 643 602 H-AMG 152 12.9s 38.0s 0.02s

H-AMG-GM 174 14.7s 39.8s 0.02s
exact 57 4.7s 29.5s -

U-AMG 168 15.6s 41.0s 0.03s
128 2 567 202 H-AMG 159 14.6s 39.9s 0.03s

H-AMG-GM 127 11.7s 37.0s 0.03s
exact 60 5.0s 30.0s -

U-AMG 169 17.3s 43.0s 0.05s
512 10 254 402 H-AMG 168 16.7s 42.3s 0.06s

H-AMG-GM 102 10.3s 35.8s 0.05s
exact 62 5.3s 30.5s -

U-AMG 165 17.6s 44.0s 0.17s
2 048 40 988 802 H-AMG 162 16.6s 42.4s 0.11s

H-AMG-GM 95 9.8s 35.6 0.11s
exact 62 5.6s 31.7s -

U-AMG 163 19.5s 48.3s 0.61s
8 192 163 897 602 H-AMG 165 17.4s 44.2s 0.25s

H-AMG-GM 89 9.4s 36.2s 0.25s
exact 62 7.1s 37.9s -

U-AMG 176 23.7s 51.0s 2.23s
32 768 655 475 202 H-AMG 158 17.2s 47.1s 0.71s

H-AMG-GM 82 9.0s 39.1s 0.82s
exact 62 14.1s 67.1s -

U-AMG 166 24.5s 72.3s 6.1s
131 072 2 621 670 402 H-AMG 147 16.4s 59.1s 2.6s

H-AMG-GM 81 9.1s 52.6s 2.4s
exact OoM OoM OoM -

Table 4.2: Results and timings for inexact reduced Nonlinear-FETI-DP-1 applied to

the 2D beam model problem with one V-cycle of BoomerAMG as precon-

ditioner for the FETI-DP coarse problem S̃ΠΠ. We choose a Neo-Hooke

model with material parameters E = 210000 and ν = 0.3. The remaining

notation and the AMG setup is chosen as in Table 4.1. We additionally

provide results using exact Nonlinear-FETI-DP-1.
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Fig. 4.4: Graphical representation of the results presented in Table 4.2 for irNonlinear-

FETI-DP-1 applied to the nonlinear hyperelastic beam with different AMG

approaches as preconditioner for the FETI-DP coarse problem. The unknown

approach is represented by the blue lines (U-AMG), the hybrid approach by

the green line (H-AMG), and the GM approach by the yellow line. The figure

at the top left shows the number of GMRES iterations, the figure at the top

right the GMRES runtime, and the figure at the bottom shows the overall

runtime.
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4.5 Inexact FETI-DP

If the chosen AMG method is a strong preconditioner for the FETI-DP coarse
problem, we may be able to eliminate all direct solvers and apply AMG to
the complete system DK̃ instead of first reducing DK̃ to the primal Schur
complement matrix S̃ΠΠ. This approach is denoted by iFETI-DP (inexact
FETI-DP), first described in [84]. We will now provide a brief description of
a nonlinear version of iFETI-DP and present results for the 2D beam problem
with linear elastic material.

4.5.1 Inexact Nonlinear FETI-DP

Let us recall the linearization of the nonlinear FETI-DP master system
from (2.36)

[
DK̃(ũ) BT

B 0

][
δ ũ

δλ

]
=

[
K̃(ũ)+BT λ − f̃

Bũ

]
. (4.8)

Here, for simplicity, we drop the index k of the current Newton iterate. Following
the notation in [84] we define

A :=

[
DK̃(ũ) BT

B 0

]
,

F :=

[
K̃(ũ)+BT λ − f̃

Bũ

]
,

and

x :=

[
δ ũ

δλ

]
.

Instead of eliminating any variables, we can directly apply a Krylov subspace
method, e.g., GMRES, to the preconditioned system

B−1
L A x = B−1

L F (4.9)

and thus solve iteratively. The block triangular preconditioner BL is defined by

BL :=

[
K̂−1 0

M−1BK̂−1 M−1

]
,
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where K̂−1 is a good preconditioner for DK̃(ũ) and M−1 is again one of the
standard FETI-DP preconditioners. As in inexact reduced FETI-DP, the appli-
cation of K̂−1 will consist of few cycles of a parallel AMG method, but this time
applied to the full system DK̃(ũ). Let us remark that we no longer have the
inverse DK(ũ)−1

BB in our system matrix and we thus do not need any sparse di-
rect solvers in an application of A . That should reduce the amount of required
memory. In principal, we moved an approximation of the inverse DK(ũ)−1

BB from
the system matrix to the preconditioner since we apply an AMG method to the
block system

DK̃(ũ) :=

[
DKBB(ũ) DK̃BΠ(ũ)

DK̃ΠB(ũ) DK̃ΠΠ(ũ)

]
.

Therefore, the numerical performance of the AMG method is even more impor-
tant than in the inexact reduced (nonlinear) FETI-DP variants.
Nevertheless, if we use the common Dirichlet preconditioner M−1 := M−1

FET ID
, we

will need a sparse direct solver for the inverse operators
(

DK(i)
II (ũ)

)−1
on the

interior part of the subdomain Ωi, i = 1, ...,N; compare also (2.9) for the defini-
tion of M−1

FET ID
. To obtain a purely iterative method without LU factorizations,

we can replace an application of
(

DK(i)
II (ũ)

)−1
by some cycles of a local AMG

method. We denote this modified Dirichlet preconditioner by M−1
FET ID/AMG

. Let
us note that this approach does not guarantee to be spectral equivalent to the
(exact) Dirichlet preconditioner unless the interior system is solved accurately
enough. Nevertheless, this modified preconditioner often leads to appropriate
results; see also [81]. Let us remark that also the usage of the lumped pre-
conditioner M−1

FET IL
is possible, but this approach does not appear to be robust.

See (2.10) for a definition of M−1
FET IL

.

4.5.2 Algorithmic Description and Implementation Details

We implemented the inexact nonlinear FETI-DP method in PETSc 3.4.3 using
C/C++ and MPI. The basic infrastructure is more or less the same as in our
inexact reduced FETI-DP implementation introduced in Chapter 3. The major
difference is the need for an assembly of matrix DK̃(ũ), which supersedes LU
factorizations of DKBB(ũ) and the assembly of the primal Schur complement S̃ΠΠ;
see Sections 3.3.1 and 3.3.2 for a description of the building blocks. We decided
to implement the matrix DK̃(ũ) and the jump operator B as MPI parallel sparse
matrices of the type MPIAIJ, which is provided by PETSc. All rows of DK̃(ũ)

corresponding to the interior and interface nodes of the same subdomain Ωi are
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distributed to the same MPI rank, i.e., the local subdomain block[
DK(i)

BB(ũ) DK̃(i)
BΠ

(ũ)
]

is assigned to one MPI rank. The rows corresponding to the globally assembled
FETI-DP coarse space are equally distributed to all ranks and thus we do not
obtain the typical block structure

DK̃(ũ) :=

[
DKBB(ũ) DK̃T

ΠB(ũ)

DK̃ΠB(ũ) DK̃ΠΠ(ũ)

]

in our implementation. We always try to distribute a primal variable to one of
the MPI ranks handling a neighboring subdomain. This strategy should reduce
communication. The rows of BT are distributed equivalently.
As preconditioner for DK̃(ũ) we always use one V-cycle of BoomerAMG with
GM interpolation. Of course, we have to provide the rigid body modes on the
finite element space W̃ , i.e., the rotation of the coarse space and the subdomain
nodes. We also present an algorithmic description of inexact nonlinear FETI-DP
in form of a pseudocode in Fig. 4.6.

4.5.3 Numerical Results

Once more, we consider the linear elastic 2D beam and perform weak scalability
experiments for the inexact FETI-DP approach. We consider the same parame-
ters and problem details as described in Section 4.4.1 and Table 4.1. We always
use AMG with GM interpolations since classical AMG approaches appear to be
not robust and strong enough as preconditioner for DK̃(ũ).
In Table 4.3, we compare iFETI-DP with the standard Dirichlet preconditioner
M−1

FET ID
, where the application of DK−1

II (ũ) is performed by a forward backward
solve in a sparse direct solver package, to the modified Dirichlet preconditioner
M−1

FET ID/AMG
, where we replace the LU factorization of DKII(ũ) by one Boomer-

AMG V-cycle. The computations have been performed on the Vulcan Blue-
Gene/Q. The numerical scalability with respect to the number of GMRES iter-
ations is convincing and the iteration count for both methods is in the range of
23 and 35. In fact, the number of iterations is slightly decreasing when scaling
up the number of subdomains. The replacement of the LU factorization by an
AMG V-cycle does thus not deteriorate the preconditioner in this experimental
setup. In principle, the scalability of both methods is comparable, but choosing
the modified Dirichlet preconditioner is always slightly faster since the AMG
setup beats the LU factorization; see Table 4.4. Overall, we have a parallel
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Inexact Nonlinear FETI-DP Method

Init: ũ(0) ∈ W̃

for k = 0, ...,convergence

build: K̃(ũ(k)), DK̃(ũ(k)), and M−1

iterative Krylov solve for x = [δ ũ(k)T ,δλ (k)] using left

preconditioner B−1
L := B−1

L (K̂−1,M−1):

A x = F // (see eq. (4.9))

compute: steplength α(k)

update:

ũ(k+1) := ũ(k)−α(k) δ ũ(k)

λ (k+1) := λ (k)−α(k) δλ (k)

end

Fig. 4.6: Pseudocode of the inexact nonlinear FETI-DP algorithm. The application

of K̂−1 will consist of cycles of a parallel AMG method.

efficiency of 73% on 131072 cores using the classical Dirichlet preconditioner
and 82% using the modified preconditioner. As a baseline, we choose the time
to solution of 21.0 seconds of the fastest approach on 32 MPI ranks, which is
iFETI with the modified Dirichlet preconditioner.
In general, the weak parallel scalability is convincing, but we see a rapid dete-
rioration when scaling from 32786 to 131072 MPI ranks. To investigate this
effect we provide detailed time measurements in Table 4.4. The time to solution
splits up in five major parts. The first part is the finite element assembly of
the local tangential matrices DK(i)(ũ) and perfectly scalable. This is expected
and has already been observed in the inexact reduced FETI-DP methods; see,
e.g., Section 3.4.4. For the second part, namely the assembly of the global and
MPI parallel matrix DK̃(ũ), MPI communication is necessary and starts to be a
bottleneck on 131072 cores. The time spent in this assembly step takes approxi-
mately 1.75s on 131072 cores instead of 0.33s on 32 cores. This is one reason for
the increased runtime to solution on 131072 cores. We observed the same effect
in the assembly of the primal Schur complement S̃ΠΠ in irNonlinear-FETI-DP-1;
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see, e.g., Fig. 3.9. A mentionable amount of time is spent in the BoomerAMG
setup for the matrix DK̃(ũ). This is the third part and denoted by Time Setup

K̂−1 in Table 4.4. Here, we also see a slight increase in the runtime on 131072

cores, which also affects the overall scalability. Also the time spent in the setup
of the Dirichlet or modified Dirichlet preconditioner M−1 is slightly increased.
In Table 4.4, it can be seen that the BoomerAMG setup used in the setup of
M−1

FET ID/AMG
is always faster than the computation of the LU factorizations in

the setup of M−1
FET ID

. On the other hand, the forward/backward solves in an
application of M−1

FET ID
are slightly cheaper than the application of BoomerAMG.

This causes a slightly faster fifth part of the runtime, namely a slightly faster
GMRES iteration.
All these observations are also graphically presented; see Figure 4.7 for iFETI
with the Dirichlet preconditioner and Figure 4.8 for iFETI with the modified
Dirichlet preconditioner.
To summarize, we have seen a highly scalable inexact nonlinear FETI-DP im-
plementation using a modified Dirichlet preconditioner on the interface, where
all sparse direct solvers have been eliminated in order to reduce the memory
consumption. Combined with the GM interpolation approach iFETI-DP ap-
pears to be robust for linear elasticity problems and may be an alternative to
inexact reduced FETI–DP variants.

118



4.5. INEXACT FETI-DP

Time
# MPI to
ranks d.o.f. M−1 It. Solution Eff.

32 643 602 M−1
FET ID 34 23.73s 88%

M−1
FET ID/AMG

32 21.00s 100%

128 2 567 202 M−1
FET ID 35 24.57s 85%

M−1
FET ID/AMG

32 21.12s 99%

512 10 254 402 M−1
FET ID 31 23.91s 88%

M−1
FET ID/AMG

30 20.79s 101%

2 048 40 988 802 M−1
FET ID 27 22.96s 91%

M−1
FET ID/AMG

26 19.70s 107%

8 192 163 897 602 M−1
FET ID 27 23.40s 90%

M−1
FET ID/AMG

27 20.41s 103%

32 786 655 475 202 M−1
FET ID 24 23.82s 88%

M−1
FET ID/AMG

23 20.34s 103%

131 072 2 621 670 402 M−1
FET ID 24 28.66s 73%

M−1
FET ID/AMG

25 25.79s 82%

Table 4.3: Same model problem as in Table 4.1; solved with iFETI-DP; one V-cycle

of BoomerAMG with GM interpolation is used as preconditioner K̂−1; It.
denotes the number of GMRES iterations; the baseline of the parallel effi-

ciency Eff. is the fastest time to solution on 32 MPI ranks (21.00s).
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Time Time Time Time Time
# MPI Assembly Assembly Setup Setup GMRES
ranks M−1 DK(i) DK̃ K̂−1 M−1

32 M−1
FET ID 6.15s 0.33s 3.38s 4.66s 8.69s

M−1
FET ID/AMG

6.15s 0.33s 3.36s 1.17s 9.44s

128 M−1
FET ID 6.13s 0.33s 3.43s 5.07s 9.05s

M−1
FET ID/AMG

6.14s 0.34s 3.42s 1.17s 9.50s

512 M−1
FET ID 6.16s 0.33s 3.47s 5.25s 8.13s

M−1
FET ID/AMG

6.19s 0.35s 3.48s 1.18s 9.04s

2 048 M−1
FET ID 6.16s 0.35s 3.54s 5.25s 7.08s

M−1
FET ID/AMG

6.18s 0.35s 3.53s 1.21s 7.86s

8 192 M−1
FET ID 6.23s 0.39s 3.63s 5.37s 7.13s

M−1
FET ID/AMG

6.25s 0.39s 3.64s 1.26s 8.22s

32 786 M−1
FET ID 6.25s 0.62s 3.85s 5.63s 6.43s

M−1
FET ID/AMG

6.23s 0.62s 3.85s 1.50s 7.08s

131 072 M−1
FET ID 6.26s 1.74s 4.63s 6.64s 6.62s

M−1
FET ID/AMG

6.27s 1.79s 4.63s 2.48s 7.87

Table 4.4: Same model problem as in Table 4.1; solved with iFETI-DP; one V-cycle

of BoomerAMG with GM interpolation is used as preconditioner K̂−1; de-

tailed timings for the assembly of the local operator DK(i), for the assembly

of the MPI parallel matrix DK̃, the BoomerAMG setup phase (Setup K̂−1),

the setup of the preconditioner M−1, and the GMRES iteration.
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Fig. 4.7: Representation of the detailed timings for iFETI-DP with preconditioner

M−1
FET ID

presented in Table 4.4; Local Assembly is the assembly time of

DK(i)(ũ); Global Assembly is the assembly time of DK̃(ũ); AMG Setup
is the BoomerAMG setup time for K̂−1; Precond. Setup is the setup time for

the preconditioner M−1
FET ID

; GMRES is the iteration time.
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Fig. 4.8: Representation of the detailed timings for iFETI-DP with preconditioner

M−1
FET ID/AMG

presented in Table 4.4; Local Assembly is the assembly time

of DK(i); Global Assembly is the assembly time of DK̃; AMG Setup is the

BoomerAMG setup time for K̂−1; Precond. Setup is the setup time for the

preconditioner M−1
FET ID/AMG

; GMRES is the iteration time.
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5 A Parallel Implementation of the
FE2 Method

The FE2 method, see, e.g., [49,96,110,127–129], is a computational micro-macro
scale bridging approach directly incorporating micromechanics in macroscopic
simulations. In this approach, a microscopic boundary value problem based
on the definition of a representative volume element (RVE) is solved at each
macroscopic Gauß integration point. Then, volumetric averages of microscopic
stress distributions are returned to the macroscopic level, which replaces a phe-
nomenological material law at the macro scale.
As already announced in the introduction we use an inexact reduced FETI-DP
approach to solve the microscopic problems. Thus, we obtain three levels of
parallelism. On the first level, we have independent RVEs at each Gauß inte-
gration point of the macroscopic problem. Then, on the second level we provide
a FETI-DP type domain decomposition of each RVE, and on a third level we
use BoomerAMG to parallelize the solution of the FETI-DP coarse problem.
We refer to these types of methods as FE2TI methods. In this chapter we
provide a brief description of the FE2TI method and our implementation. We
present parallel results scaling up to the full JUQUEEN BlueGene/Q machine at
Forschungszentrum Jülich which qualified the FE2TI code for the HighQ club;
see [89]. The computational results have been obtained during the JUQUEEN

Extreme Scaling Workshop 2015 and are partially published in [79].

5.1 Description of the Method

We will first provide a brief description of the FE2 scale bridging approach;
see [49, 128] for a detailed description. We will follow the notation in [128] and
briefly describe the derivation of a consistent tangent modulus; cf. [128].
Let us first denote the characteristic length of a typical deformation problem
on the macroscopic scale with L and the characteristic length on the microscale
with l. We assume, that the microscopic and heterogeneous structure of the
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CHAPTER 5. FE2 IMPLEMENTATION

material can be resolved in the scale l and that

L� l.

Additionally, we assume that we have a representative volume element (RVE),
which can effectively describe the microscopic and heterogeneous material
properties on the macroscale.
We discretize the given macroscopic boundary value problem on the domain B

in the scale of L without considering any microscopic structure. Then, at each
Gauß point of the macroscopic finite elements a microscopic boundary value
problem is discretized in the scale of the microstructure l, using the definition
of the RVE. Let us remark that the boundary conditions on the microscale are
induced from the macroscopic deformation gradient at the corresponding Gauß
point. Throughout this chapter, we will mark macroscopic quantities with bars,
as, e.g., the deformation gradient with F and the first Piola-Kirchhoff stress
tensor with P. On the microscale we simply use P for the stress and F for the
deformation gradient. On the macroscale we do not consider any phenomeno-
logical law and replace it by volumetric averages of quantities on the microscale.
In Fig. 5.1 one can find a schematic illustration of the homogenization step.
Exemplary results of FE2 calculations can be found in Fig. 5.2.

Let us introduce the microscopic boundary value problem in a reference con-
figuration B0 with corresponding reference variables X . For a deformed configu-
ration B, the deformation of our reference configuration writes ϕ : B0→B and
the deformation gradient is then defined by F :=∇ϕ . The balance of momentum
in a weak formulation with a variational function δx then writes

−
∫

B0

δx · (DivX P(F)) dV = 0, (5.1)

with the first Piola-Kirchhoff stress tensor P(F). In contrast to the macroscale,
the relation between P and F is described by a phenomenological material law,
as, e.g. the Neo-Hooke hyperelasticity model:

P(F) = µ(F +F−T )+λ ln(det(F))F−T . (5.2)

The boundary conditions on the microscale are induced from the macroscopic
deformation gradient F at the corresponding Gauß integration point. In the
case of Dirichlet conditions we simply have x := FX for each boundary node
X ∈ ∂B0. Here, X are the variables in the reference configuration B0 and x the
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5.1. DESCRIPTION OF THE METHOD

Fig. 5.1: Illustration of the FE2 homogenization approach. Top: Realistic macroscopic

boundary value problem of length scale L. A representative volume element

describing the microstructure is of length scale l and we have L� l. Left:
Macroscopic and simplified boundary value problem on the domain B with

quantities P and F . The deformation gradient F induces the boundary con-

ditions of the microscopic BVP on the right. Right: Microscopic boundary

value problem on domain B.

variables in the deformed configuration B.

We can analogously formulate the macroscopic problem in a given reference
configuration B0 and reference variables X . Again, the balance of momentum
in the weak formulation with a test function δx writes

−
∫

B0

δx · (DivX P(F)+ f ) dV = 0, (5.3)

with some external load f .
On the macroscale we do not consider any material law. The first Piola-Kirchhoff
stress tensor P at a macroscopic Gauß point is obtained as a volumetric average
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Fig. 5.2: In the FE2 computational scale bridging method, in each macroscopic Gauß

point a microscopic problem is solved; published in [79].

over the Piola-Kirchhoff stresses of the corresponding RVE and thus we have

P :=
1
V

∫
B0

P(F)dV. (5.4)

In order to assemble and solve a linearized macroscopic problem, a macroscopic
tangent modulus A is required at each Gauß integration point. The tangent
modulus is, as usual, simply the derivative of P with respect to F and thus
writes

A :=
∂P
∂F

=
∂

∂F

(
1
V

∫
B0

P(F)dV
)
. (5.5)

Let us remark, that F is constant on the corresponding RVE. We consider a
decomposition of F =: F + F̃ into F and a fluctuating part F̃ , which leads, with
the help of the chain rule to

A :=
∂P
∂F

=
∂

∂F

(
1
V

∫
B0

P(F) dV
)

(5.6)

=
1
V

∫
B0

∂P(F)

∂F
:

∂F + F̃
∂F

dV (5.7)

=
1
V

∫
B0

A dV +
1
V

∫
B0

A :
∂ F̃
∂F

dV. (5.8)

The first additive part in (5.8) is simply a volumetric average over the tangent
moduli A of the microscopic problem, while the computation of the second part
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requires some additional effort. Let us remark that we only have to compute P

and A after convergence on the microscale is reached. Therefore, we can assume
an equilibrium state of the weak formulation in (5.1). Exploiting this fact,
Schröder reformulated A in [128] and obtained a discrete and overall consistent
tangent modulus

Ah
:=

1
V

(
∑
T∈τ

∫
T
Ah dV

)
− 1

V
LT (DK)−1 L. (5.9)

It is left to explain several variables. First, let τ be the decomposition of B0

into finite elements and Ah the discrete microscopic tangent modulus. Then,

1
V

(
∑
T∈τ

∫
T
Ah dV

)

is simply the discrete representation of

1
V

∫
B0

A dV

in (5.8). The second part in (5.9)

1
V

LT (DK)−1 L

is the a discrete reformulation of

1
V

∫
B0

A :
∂ F̃
∂F

dV

exploiting the balance of momentum on the microscale; see [128] for the deriva-
tion. Here, we have the tangential matrix DK of the microscopic boundary value
problem assembled in the usual way from the tangential matrices

kT :=
∫

T
BT

TAhBT dV,

on the finite elements T ∈ τ , and BT are the derivatives of the shape functions
of T . The matrix L is assembled analogously from the element matrices

lT :=
∫

T
AhBT dV.

Let us remark that L has the dimension n× s, where n is the number of degrees
of freedom in the RVE and we have s = 4 in two spatial dimensions and s = 9 in
three spatial dimensions. We finally provide an algorithmic description of the
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FE2TI method in Fig. 5.3, where a FETI-DP type method is used to solve the
microscopic RVEs.

5.2 Algorithmic Description and Implementation
Remarks

Let us summarize the FE2TI approach. We have a macroscopic boundary value
problem and at each Gauß integration point one nonlinear RVE has to be solved
using a FETI-DP type domain decomposition method. For the parallel solu-
tion of the microproblems a subset of computational cores has to be provided
at each Gauß point of the macroscopic level. This is realized by splitting the
MPI_COMM_WORLD communicator into subcommunicators.
In general, the macroscopic problem will be nonlinear since it inherits the non-
linear properties of the phenomenological material law on the microscale. This
leads to a macroscopic iteration and in each macroscopic iteration step a full
simulation on the microscale has to be performed.
For a realistic simulation of steel deformation, the macroscopic load has to be
applied in many small load steps. In the following descriptions and our scal-
ability studies we only consider one macroscopic load step in order to save
computational time. This is reasonable, since we are primarily interested in the
scalability of the method and our implementation. Of course, we ignore the
effect of a load inbalance which might occur in later load steps. This is possible
due to the fact that the microscopic problems in different Gauß points may vary
in their difficulties, as, e.g., a local plastic behavior.
We provide an algorithmic description of one macroscopic load step in Fig. 5.3.

Let us describe our implementation in some more details. We implemented
the FE2TI method in PETSc 3.5.2 using C/C++ and MPI as parallelization
paradigm. The macroscopic problem is discretized with piecewise linear trian-
gular elements (P1) in 2D and with piecewise trilinear brick elements (Q1) in
3D. We perform a sequential direct solve using UMFPACK or MUMPS for the
macroscopic problem. We solve the macro-problem on all cores redundantly
and thus have to provide the macroscopic finite element mesh on all cores. This
is reasonable due to the small macroscopic problem sizes; see also Section 5.3.
Considering larger problems on even larger machines than the JUQUEEN, a
parallel implementation of the macroscopic problem should be considered. A
parallel direct solver as well as an AMG method or a domain decomposition
method are reasonable variants.
For each Gauß point of the macroscopic problem and thus for each microscopic
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Repeat until convergence:

1. Apply boundary conditions to RVE based on macroscopic deformation
gradient: Enforce x = FX on the boundary of the microscopic problem
∂B in the case of Dirichlet constraints.

2. Solve microscopic nonlinear boundary value problem using (ir)FETI-DP
or related methods.

3. Compute and return macroscopic stresses as volumetric average over mi-
croscopic stresses Ph:

Ph
=

1
V ∑

T∈τ

∫
T

PhdV.

4. Compute and return macroscopic tangent moduli as average over micro-
scopic tangent moduli Ah:

Ah
=

1
V

(
∑
T∈τ

∫
T
Ah dV

)
− 1

V
LT (DK)−1 L

5. Assemble tangent matrix and right hand side of the linearized macro-
scopic boundary value problem using Ph and Ah

.

6. Solve linearized macroscopic boundary value problem.

7. Update macroscopic deformation gradient F .

Fig. 5.3: Algorithmic description of the FE2TI approach. Overlined letters denote

macroscopic quantities.

problem we introduce a separate MPI-Communicator. In our implementation,
we use MPI_Comm_split to create the subcommunicators. Inter-communicator
communication is not necessary during the microscopic solves and the averaging
of the different microscopic quantities; see points 2.-4. in Fig. 5.3. To solve the
microscopic BVPs we use a Newton-Krylov-irFETI-DP method and the imple-
mentation described in Chapter 3. In order to compute LT (DK)−1L, see (5.9),
we also use inexact reduced FETI-DP and solve the linear system (DK)X = L in-
stead. This equates to the solution of one linear system with several right hand
sides and thus we have 9 additional solves in 3D and 4 additional solves in 2D.
This can be an expensive step and, in extreme cases, the computation of the con-
sistent tangent moduli can take up to 40% of the total time to solution. A less
expensive approximate solution or even omitting the matrix LT (DK)−1L leads to
inexact tangent moduli and thus an inexact Newton method on the macroscale.

129



CHAPTER 5. FE2 IMPLEMENTATION

A discussion of different strategies might be interesting. However, we always
computed the complete consistent tangent modulus as suggested in [128] in or-
der to ensure a stable convergence.
Finally, we use collective communication to provide Ah and Ph on all MPI-ranks
in order to assemble the linearized macroscopic problem.

5.3 Numerical Results

We present scaling results for the computational scale bridging using the FE2

method in 2D and 3D. For the first time, scalability to 458752 cores of the
JUQUEEN BlueGene/Q at Forschungszentrum Jülich is achieved for our ap-
proach. All results presented here have been obtained during the JUQUEEN

Extreme Scaling Workshop 2015; see [17,79].
As a phenomenological material law on the microscale we choose Neo-Hooke
material; see Section 3.4.1 or equation (5.2) for the definition. As a macroscopic
model problem, we consider a cube clamped on two opposite sides. We then
pull apart both sides and extend the cube by 1%. As RVE, we consider a cubic
domain with inclusions of random shape and size. The inclusions are thus local
with respect to the FETI-DP subdomains. We consider a stiff material with
an elasticity modulus of E = 210000 in the inclusions and softer material with
an elasticity modulus of E = 210 in the surrounding material. We again choose
Poisson’s ratio as ν = 0.3 in the whole domain. This parameter set is a common
choice for steel and the coefficient jump in E represents the different materials:
martensite and ferrite. Of course, this is only a reasonable description within
the elastic range of steel and thus only valid for small deformations. Computa-
tions with a plasticity model and a realistic microstructure are already planned
for the near future; see Fig. 5.5 for the geometry of a realistic RVE and some
preliminary test results using a elasticity-plasticity model.
An illustration of the heterogeneous microstructure used in our scaling tests can
be found in Fig. 5.4.

In our weak scalability tests, we scale up the size of the macroscopic problem
while keeping the size of the microscopic RVEs fixed. We also do not change
the number of FETI-DP subdomains for each RVE fixed and use one MPI rank
for each FETI-DP subdomain. As we increase the number of processor cores in
proportion to the problem size (weak scalability), in the best case, for a parallel
efficiency of 100%, we would expect a constant time to solution.

In Tables 5.1 and 5.2, we see weak scalability for 2D and 3D. There we use
one MPI rank for each BG/Q processor core. The base line for our parallel
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Fig. 5.4: Microscopic problem decomposed into 6× 6× 6 subdomains with random

inclusions local to the subdomains. We consider stiff material in the inclu-

sions and softer hull material. Except for the L-shaped part, the hull material

is removed to highlight the microscopic structure. We see a typical stress

distribution with peaks caused by the microscopic structure.

Fig. 5.5: Left: Stress plot of a preliminary test on one RVE, using a realistic elasticity-

plasticity model. Right: Realistic representative volume element for modern

high strength steels decomposed into 8×8×8 subdomains.
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efficiency is the smallest meaningful macroscopic problem, i.e., with 8 Gauß
points in 2D and 16 Gauß points in 3D. A parallel efficiency of approximately
98% is achieved; see Tables 5.1 and 5.2. In Fig. 5.6 and Fig. 5.7 the data from
these tables is depicted.

In Tables 5.1 and 5.2, the number of subdomains for each RVE, i.e., 256 in
2D and 512 in 3D, is still small. In Table 5.3, starting from the largest problem
in Table 5.1, the size of the RVEs is increased by a factor of 4.

Next, we consider the effect of an overcommit. In Table 5.4, we show weak
scaling but using an overcommit with up to 4 MPI ranks for each BlueGene/Q
processor core. In the latter case, not more than 256 MB are available for
each MPI rank. We use 16, 32, and 64 MPI ranks for each node and the
RVE size is kept constant, i.e., the total problem size is increased by a factor
of 4. We cannot expect perfect scalability in this situation. But we still see
that acceptable scalability is obtained when scaling from a total of 458752 MPI
ranks to 917504 MPI ranks, i.e., the total time to solution is 266.47s instead
of 2 · 215.41s = 430.82s. Using 1835008 MPI ranks does only result in small
additional savings. This is partially caused by a comparable large macroscopic
problem. The time spent for the solution of the macroscopic problem is increased
by a factor of 8 when scaling from 917504 MPI ranks to 1835008 MPI ranks; see
column Time Macro. Solve in Table 5.4, where the time of the macroscopic solves
is summed up over all macroscopic Newton steps. This scalability bottleneck
shows the need for a parallel solution method on the coarse level.
Let us conclude that our FE2TI implementation shows nearly perfect scalability
and scales easily up to the complete JUQUEEN. The inexact reduced FETI-DP
methods perform well on the microscale and seem to be a good choice. Of course,
for realistic simulations with a real microstructure on the RVE and considering
plastic material behavior, we have to take care of the load balancing. In order
to solve even larger macroscopic problems on larger machines, a parallelization
of the macroscopic assembly and solve phases is necessary. The implementation
should be straight forward.
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FE2TI on JUQUEEN
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Fig. 5.6: FE2TI: FE2 in 2D using FETI-DP on each RVE. Weak scalability from 2048

to 458752 cores; data from Table 5.1; published in [79].
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Fig. 5.7: FE2TI: FE2 in 3D using FETI-DP on each RVE. Weak scalability from 8192

to 458752 cores; data from Table 5.2; published in [79].
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FE2TI in 2D (Weak scaling)
bg_size MPI-ranks #RVEs Time to Solution

128 2 048 8 158.47s 100.0%
256 4 096 16 159.03s 99.6%
512 8 192 32 159.27s 99.5%

1 024 16 384 64 159.32s 99.5%
2 048 32 768 128 159.58s 99.3%
4 096 65 536 256 159.68s 99.2%
8 192 131 072 512 159.99s 99.1%

16 384 262 144 1 024 160.62s 98.7%
24 576 393 216 1 536 161.41s 98.2%
28 672 458 752 1 792 161.78s 98.0%

Table 5.1: Scaling up the macro problem: FE2 in 2D using FETI-DP on each RVE;

heterogeneous hyperelasticity; P1 finite elements macro, P2 finite elements

micro; 5.1 million d.o.f. on each RVE; 256 subdomains for each RVE;

published in [79].

FE2TI in 3D
bg_size MPI-ranks #RVEs Time to Solution

512 8 192 16 184.86s 100.0%
1 024 16 384 32 185.09s 99.9%
2 048 32 768 64 185.61s 99.6%
4 096 65 536 128 185.72s 99.5%
8 192 131 072 256 186.43s 99.2%

16 384 262 144 512 186.61s 99.1%
24 576 393 216 768 187.32s 98.7%
28 672 458 752 896 187.65s 98.5%

Table 5.2: FE2 in 3D using FETI-DP on each RVE; heterogeneous hyperelasticity; Q1

finite elements macro, P2 finite elements micro; 1.6m d.o.f. on each RVE;

512 subdomains for each RVE; published in [79].

FE2TI in 2D (Increasing RVE sizes)
bg_size MPI-ranks #RVEs RVE-size RVE-size × #RVEs Time to

Solution
28 672 458 752 1 792 5 126 402 9 186 512 384 161.78s
28 672 458 752 1 792 7 380 482 13 225 823 744 248.19s
28 672 458 752 1 792 13 117 442 23 506 456 064 483.68s
28 672 458 752 1 792 20 492 802 36 723 101 184 817.06s

Table 5.3: We increase the RVE sizes starting from the largest problem in Table 5.1;

heterogeneous hyperelasticity; P1 finite elements macro, P2 finite elements

micro; published in [79].
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FE2TI in 3D (1x, 2x, 4x MPI overcommit)
ranks MPI Time Time to

bg_size per node ranks #RVEs Macro. Solves Solution Eff.
28 672 16 458 752 896 1.53s 215.41s 100%
28 672 32 917 504 1 792 5.31s 266.47s 81%
28 672 64 1 835 008 3 584 43.20s 522.10s 41%

Table 5.4: Weak scaling efficiency using 16 / 32 / 64 MPI-ranks per node. FE2 in 3D

using FETI-DP on each RVE. Here, due to the memory constraints, we use

1594323 d.o.f. per RVE and 512 subdomains per RVE; published in [79].
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6 Conclusion and Future Work

6.1 Conclusion

In this thesis, we have described new nonlinear and nonoverlapping domain de-
composition methods of FETI-DP and BDDC type. These methods have shown
the ability to reduce the number of Krylov steps and increase the ratio between
local work and global work. Thus, the need for communication and synchro-
nization is reduced. We have seen that the choice of the coarse space directly
influences the convergence of the Newton method, which is different to stan-
dard Newton-Krylov approaches. The algorithmic building blocks are largely
identical to classical FETI-DP or BDDC methods and in a nonlinear FETI-DP
implementation these blocks just have to be rearranged.
We presented a highly scalable implementation of the irNonlinear-FETI-DP-1
approach, combining the nonlinear FETI-DP framework and the inexact re-
duced FETI-DP method. In this method an AMG solver is incorporated on
the FETI-DP coarse variables in order to increase scalability. We presented
weak and strong scalability on up to 262144 cores on different architectures.
We also discussed the usage of different AMG approaches for systems of PDEs
and elasticity problems. We have seen that the global matrix approach can
optimize scalability of inexact nonlinear FETI-DP methods applied to elasticity
problems.
As a final application, we presented the FE2TI approach. This combination
of the computational scale bridging approach FE2 and irNonlinear-FETI-DP-1
recently scaled up to the complete JUQUEEN BlueGene/Q at FZ Jülich.

6.2 Future Work

In order to overcome the scalability limits of our current inexact reduced
Nonlinear-FETI-DP-1 implementation and to scale up to the largest machines,
we will consider different improvements. First, running the AMG preconditioner
of the FETI-DP coarse problem on a subcommunicator on separate cores could
save memory on the remaining cores and thus increase the possible problem
size. Second, we plan to incorporate an OpenMP parallel assembly and use a
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thread parallel sparse direct solver as PARDISO. We already presented some
preliminary studies in [80].
In order to further customize AMG for FETI-DP in the context of elasticity
and plasticity problems, further tests considering the GM approach in 3D with
different material laws have to be performed. Also an investigation, which
vectors have to be interpolated in the case of plasticity problems is necessary.
Also a parallel implementation of the inexact reduced Nonlinear-FETI-DP-2
approach suggested in this thesis would be interesting. In this method perfectly
independent and local nonlinear problems have to be solved in order to compute
the righthand side. Local line search methods could be considered and, if some
of the independent problems converge fast, the corresponding cores will need
new tasks, as, e.g., the acceleration of the computations on the remaining cores.
In general, in sophisticated elasticity and plasticity problems with heteroge-
neous materials, the standard FETI-DP coarse spaces with vertex and edge
constraints might not suffice. Several approaches to compute an adaptive coarse
space by solving localized generalized eigenvalue problems have been introduced
in the recent years, as, e.g., [38, 39, 82, 106, 131]. An investigation of adaptive
coarse spaces for nonlinear FETI-DP methods would be an interesting and very
challenging task since proper coarse spaces can accelerate the convergence of
the Newton method in the case of nonlinear FETI-DP.
Finally, we plan to perform some production runs for realistic steel deformation
problems with our highly parallel FE2 implementation in the near future.
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