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Abstract

Population structure and other nuisance factors represent a major challen-
ge for the analysis of genomic data. Recent advances in statistical genetics
have lead to a new generation of methods for quantitative trait mapping
that also account for spurious correlation as caused by population struc-
ture. In particular, linear mixed models (LMMs) gained considerable at-
tention as they enable easy black box-like control for population structure
in a wide range of genetic designs and analysis settings.

The aim of this work is to transfer the advantages of LMMs into a random
bagging framework in order to simultaneously address a second pressing
challenge: the recovery of complex non-linear genetic effects. Existing me-
thods that allow for identifying such relationships like epistasis typically do
not provide any robust and interpretable means to control for population
structure and other confounding effects.

The method we present here is based on random forests, a bagged variant
of the well established decision trees. We show that the proposed method
greatly improves over existing methods not only in identifying causal ge-
netic markers but also in the prediction of held out phenotypic data.

Zusammenfassung

Populationsstrukturen sowie andere unerwünschte Faktoren erschweren
häufig die Analyse genomischer Daten. Aufgrund von Fortschritten in der
statistischen Genetik sind neuere Methoden in der Lage, unerwünschte
Korrelationen, die z.B. durch Populationsstrukturen entstehen, zu korri-
gieren. Insbesondere haben lineare Mixed Models stark an Popularität ge-
wonnen. Durch ihre anwenderfreundliche Kontrolle der Populationsstruk-
tur sind sie für viele genetische Strukturen und in vielen Studiendesigns
anwendbar.

Ziel dieser Arbeit ist es, die Vorteile der linearen Mixed Models mit denen
eines Random Bagging Verfahrens zu vereinen, um das Finden komple-
xer genetischer Effekte, zu erleichtern. Bestehende Methoden, die solche
Signale wie Epistasis erkennen, sind bisher nicht in der Lage, Populati-
onsstrukturen und andere Störfaktoren zu berücksichtigen.

Die hier vorgestellte Methode ist eine Erweiterung des Random Forests,
eines Random Bagging-Verfahrens welches auf Entscheidungsbäumen ba-
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siert. Wie auch bei linearen Mixed Models korrigiert es Störfaktoren durch
einen Random Effect. Mit Hilfe von simulierten und realen Daten zeigen
wir, dass diese neue Methode nicht nur mehr kausale genetische Marker
gegenüber bestehenden Ansätzen findet, sondern auch die Vorhersage un-
gesehener Phenotypen verbessert.
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Motivation

During the past decades biomedical research has received increasing at-
tention as it significantly furthered our understanding of complex medical
conditions such as type-II diabetes, Alzheimers- or Crohns disease. In one
of its main directions, researchers aim to unveil inherited and environmen-
tal contributions to a specific phenotype, as for instance, the state of a dis-
ease they are interested in. With steadily increasing amount of genomic
data, the application computational tools to guide researchers becomes
more and more important. Among these, quantitative trait locus (QTL)
mapping methods assess the strength of a link between a genotypic region
to quantitative phenotypic condition (trait).

Whereas most QTL mapping methods model phenotypes as a simple linear
function of the genotype, it is assumed that for many of the complex
diseases multiple genetic factors contribute in a non-linear fashion. In
addition, individuals in a sample can be related by means of population
structure. Not correcting for such sources of confounding effects leads to
an increase in false positive hypotheses and therefore more recent work
focuses on correcting for population effects when the underlying genotype
to phenotype relationship is linear [28,30,34,50,66]

On the other hand, numerous alternative approaches have been devel-
oped in order to detect non-linear effects like gene-gene epistasis. For
example, linear models with interaction terms can be fit using a greedy
algorithms [14, 44] or by sampling techniques, e.g. [12]. Also, random
bagging techniques [9] have gained considerable attention. In particular,
random forests [10] have been shown to accurately capture epistatic effects
(e.g. [41, 43,49]).

All these approaches - including random forests - assume that correlations
between genotype and phenotype are genuine and, unlike extensions of
linear models, do not explicitly correct for population structure or other
confounding effects. Thus, there is a lack of methods that can perform both
tasks: correcting for population structure while accounting for epistasis.
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Outline of this thesis

Following Part I of this thesis, the reader will learn about linear QTL
mapping methods and their extensions to correct for population structure
as well as decision tree based approaches.

These methodological concepts are required for Part II, where we show
how a decision tree based approach can be extended to a simple yet ef-
ficient correction for population structure maintaining its ability to map
multivariate non-linear associations.

We compare our new approach, termed mixed random forest, to alternative
state of the art methods using simulations as well as data obtained from
a large scale study in mice [62].
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Part I.

Introduction to genomic
association mapping
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1

Univariate linear models

Linear models are established tools for QTL mapping. The simplest and
probably most commonly used is the so called univariate linear model
where a single independent variable like the state of a gene is used to
explain a continuous outcome. More elaborate variants are capable of
including several features in a linear-additive fashion. We review the uni-
variate model in the following before we discuss several ways to obtain
multivariate linear models in Chapter 2.

Assume we are given a continuous phenotypic trait measured for N in-
dividuals that is stored within a N -dimensional vector y. Our goal is to
explain y as a linear function of genomic information. If we allow for
additive noise ψ on our measurements we can write our model as follows

y = β0 + xβ +ψ. (1.1)

Here, x is a real- or integer-valued vector of size N that encodes the genetic
state for each of individual. Remaining parameters of our model in Equa-
tion (1.1) are the weight or slope of our linear function β and the intercept
with the y-axis β0. We shall not concern ourselves with the intercept and
thus set β0 = 0.

For now, β remains the only parameter we want to fit. We optimize this
linear model by minimizing the mean squared error between phenotype y
and its linear reconstruction xβ w.r.t. β, i.e.

β̂ = arg min
β

1

N
‖y − xβ‖2 = arg min

β

2

N

1

2

N∑
i=1

(yi − xiβ)2

︸ ︷︷ ︸
E(β)

. (1.2)

In Section 1.3, we will learn which assumptions are made about the nature
of the error ψ when using this so called least squares optimization.

The solution of Equation (1.2) can be found analytically by setting the
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1. Univariate linear models

derivative of the sum of squares error function1 E(β) w.r.t. β to zero

β̂ =

(
N∑
i=1

x2
i

)−1( N∑
i=1

yixi

)
. (1.3)

We can now evaluate the goodness of the learned model by plugging the
optimal solution β̂ back into Equation (1.2)

E(β̂) =
1

2

∥∥∥y − xβ̂
∥∥∥2
, (1.4)

where a low error indicates a good fit. An algorithm for univariate linear
association mapping can be established as follows:

1. For each of the given genetic features, optimize the linear model in
Equation (1.3) and

2. evaluate the error function (Equation (1.4))

3. Return the error for each feature

The lower the associated error, the stronger we consider the association
between genetic feature and phenotype.

Feature scoring using the error function. Importance measures such
as the sum of squares error above only tell about the relative importance of
genetic features in a given analysis. This becomes an issue if we intend to
compare our results to those of other studies. To obtain more comparable
scores, we can evaluate the ratio of the sum of squares errors before and
after fitting a model, i.e.

∆ E(β̂) =
E(0)

E(β̂)
(1.5)

where

E(0) =
1

2

N∑
i=1

(yi − ȳ)2 (1.6)

and ȳ is the mean of our phenotype across all individuals. This ratio of
errors turns out to be proportional to the logarithm of odds (LOD) that is
introduced at the end of this chapter.

1Also referred to as residual sum of squares
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1.1. Including covariates

1.1. Including covariates

Phenotypes are usually driven by other non-genetic factors like the time
at which a measurement was taken, environmental variables such as tem-
perature and humidity or even the experimenter herself/himself. We refer
to these factors as confounders as there are not of interest to the study.
Careful modelling of such variables is essential to avoid false positive dis-
coveries. To illustrate this, suppose there exists a genetic feature which
happens to be correlated to a confounder that explains a large fraction of
phenotypic variance. If this confounder is not included into our model,
the correlated genotypic feature will take its place in explaining pheno-
typic variance and therefore receive a good score. It is, on the other hand,
very unlikely that this particular genetic feature is relevant for the ob-
served trait. So what we consider to be genetic driver of our phenotype is
probably a false positive.

We can deal with covariates the same way as for genotypic information by
including them as linear additive factors into our model, i.e.

y = c1βc1 + c2βc2 + · · ·+ ckβck + xβ +ψ. (1.7)

This turns our univariate- into a multivariate linear model. In the context
of (genomic) association mapping, however, it is still considered to be a
univariate model as only the importance of a single (genetic) feature x is
of interest.

To evaluate the improvement in residual error that can be attributed to
x we need to optimize the full model in Equation (1.7) w.r.t. all weights
and compute the corresponding error. We do the analogue for the baseline
model, which does not include the genomic feature to be tested for asso-
ciation.

Starting with the error functions

E0(βc) =
1

2
‖y −Cβc‖

2 baseline model (1.8)

E(βc, β) =
1

2
‖y − (Cβc + xβ)‖2 alternative model (1.9)

where we introduced the matrix containing the covariates as columns
C =

[
c1, c2, · · · , ck

]
and the weight vector βc =

[
βc1 , βc2 , · · · , βck

]t
. Af-

ter taking the derivative of Equation (1.8) w.r.t. βc, setting it to zero

5



1. Univariate linear models

and manipulating the expressions algebraically, we obtain for the baseline
model

β̂c =
(
CTC

)−1
CTy. (1.10)

We run the analogue optimization for our alternative model E(βc, β) and
report

∆ E =
E0(β̂c)

E(β̂c, β̂)
(1.11)

as score for the association strength of the genetic feature x. Note, that
the minimized squared error for the baseline model E0(β̂c) only needs to
be computed once.

Fitting the intercept. We can equally regard the intercept β0 of our
model from the beginning (Equation (1.1)) as a N × 1 vector multiplied
by the (scalar) weight β0

y = 1β0 + xβ +ψ, (1.12)

which allows us to run optimization as before (Equations (1.10) and (1.11))
where the one-valued vector enters as additional covariate.

0.0 0.2 0.4 0.6 0.8 1.0

x (continuous)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0

x (binary)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

β0

β1

(b)

Figure 1.1.: Univariate linear models. (a) 20 individuals are simulated by first
sampling uniformly between 0 and 1 in predictor-space x. Corresponding re-
sponses in y are then computed as a linear function of x plus a small amount of
independent Gaussian noise. (b) the same sample where the predictor values have
been “binarized” such that all xi ≤ 0.5 are set to 0 and the remaining xi > 0.5 to
1. Red lines indicate the means β0 and β1 as fitted for the two resulting groups
of samples.
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1.2. Binary predictors

1.2. Binary predictors

Genetic variants of some stretch of DNA (called ’alleles’) are often distin-
guished by measuring single nucleotide polymorphisms (SNPs) in such a
region. Assume that Adenin is the most frequent base at a given position
in our population and Cytosin being the less common alternative. We
say that individuals that contain Adenin are carrier of the major allele,
whereas the rest of our population has the minor allele (Cytosin). A com-
mon way of encoding is to use “0” to refer to major- and “1” to minor
alleles.

For continuous x a linear model can be visualized by a regression line
indicating slope and intercept that have been fitted (Figure 1.1(a)). The
special case of binary predictors, enables us to take an alternative point
of view where the model computes means within two distinct groups: the
individuals that contain xi = 0 and the ones that have xi = 1, respectively.
As shown in Figure 1.1(b), these will turn out to be the intercept β0 and
the weight β1 from our linear model in Equation (1.12).

Note, that most species have more than a single copy of a chromosome in
each cell. Since each copy of a chromosome can harbor a different allele
of every marker, in general we have more than two states per marker.
For example, in humans (with two copies per chromosome) we have three
possible states: both copies are major, both copies are minor, or one copy
is the major and the other the minor allele. However, for task of fitting
regression trees, we can still take advantage of this binary perspective
by converting a single predictor (that has more than two values) into an
equivalent set of binary predictors (see Chapter 4).

1.3. Gaussian interpretation

Now we turn to a probabilistic interpretation of what we referred to as
least squares linear model so far. probability distributions. We start by
constraining our measurement noise from Equation (1.1) ψ to be Gaus-
sian, specifically we have identical and independently (i.i.d.) distributed
Gaussian noise with zero mean

ψ ∼ N
(
0, σ2I

)
. (1.13)

7



1. Univariate linear models

Including the linear relationship as mean into the noise model, we can
regard the phenotype as sample from a Gaussian distribution

y ∼ N
(
Cβc + xβ, σ2I

)
. (1.14)

Taking the log transformed

log(p(y|x,C,βc, β, σ2) =
N

2
log

(
1

2πσ2

)
− 1

σ2

1

2

N∑
i=0

(yi − (ciβc + xiβ))2

︸ ︷︷ ︸
E(βc,β)

.

(1.15)
and our goal becomes to maximize this so-called log likelihood w.r.t. the
model parameters βc, β and σ2. This leads to the same optimal solution as
by working on the Gaussian directly but the log transformed is preferred
for reasons of numerical stability. Furthermore, we notice that the weights
βc and β only depend on the log likelihood only through the negative of the
error function −E (βc, β). In other words, maximizing the log likelihood
of a linear model is equivalent to minimizing the least squares in the case
of i.i.d. Gaussian noise. We therefore reuse Equation (1.10) to find β̂c and
β̂. Putting these optimal weights back into Equation (1.15) and setting
the derivative w.r.t. σ2 to zero we obtain

σ̂2 =
1

N

N∑
i=0

(yi − (ciβ̂c + xiβ̂))2. (1.16)

Now we can use our optimal parameters to reevaluate the log likelihood

log(p(y|x,C, β̂c, β̂, σ̂
2) = N log

(
1

2πσ̂2

)
− N

2
. (1.17)

As before we also need to maximize the log likelihood of our baseline model
log(p(y|C, β̂c, σ̂2

0).

Logarithm of odds. The logarithm of odds (LOD) is defined as

LOD = log
p(y|x,C, β̂, β̂c, σ̂

2)

p(y|C, β̂c, σ̂
2
0)

=
N

2
log(σ̂2

0)− N

2
log(σ̂2) (1.18)

and can equivalently be computed as difference of the optimized likelihoods
for baseline- and alternative model. Associations that have a LOD greater

8



1.3. Gaussian interpretation

than 3 are commonly considered as statistically significant, but in general
it is hard to define such a meaningful threshold [3].

P-Values. As alternative to the LOD, we can use the fitted variances
of baseline- and alternative model in order to compute the F-Score. This
measure can subsequently be used to evaluate the significance of a genetic
association by means of a P-Value, see e.g. [3]. P-Values should be handled
with care as this approach is very sensitive towards non-normality on the
data [7].
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2

Multivariate linear models

Here we give a brief review on multivariate linear models. Instead of
considering a single genetic feature for a given phenotype, multivariate
linear models account for multiple effects in a linear-additive fashion, i.e.

y = Cβc + x1β1 + x2β2 + · · ·+ xMβM +ψ. (2.1)

Once we selected all features to be included, optimization is analog to the
linear model with covariates (see Section 1.1).

In most association studies we expect only a small fraction of features to be
relevant for the phenotype. A model containing all genotypic information
might explain a great proportion of variance, but it is useless if we are to
select the subset of features driving phenotypic changes. Therefore, most
(if not all) multivariate linear models used today, implement a mechanism
to control for the number of features included.

In the following, we present three popular variants of multivariate linear
models, a greedy approach called forward selection, its counterpart back-
ward elimination and the LASSO.

2.1. Forward selection and backward elimination

In forward selection we start testing each feature in a univariate linear
model for association (using some statistic like the LOD). The feature
obtaining the highest score is included as covariate into the (updated)
baseline model. This procedure of testing is repeated for the remaining
features. Again, the best feature will be included into the baseline model
and so on. . . . This way, covariates are added to the model until it cannot
be improved by a predefined threshold.

Backward elimination, on the other hand, starts with the model including
all covariates. The feature that leads to the least reduction in a predefined
score is removed. Covariates are being eliminated as long as reduction in
score stays below a predefined threshold.

11



2. Multivariate linear models

For both of these stepwise regression methods (see e.g. [24]) the final model
contains the set of genetic features considered important.

2.2. The LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) [60] is a
linear model that, depending on the adjustment of a so called shrinkage
parameter, includes a limited number of features.

We derive LASSO extending the linear model’s optimization function by
a regularizer that sums over the absolute values of the weights

E(λ,β) =
1

N

1

2
‖y −Xβ‖2

︸ ︷︷ ︸
E(β)

+λ

 M∑
j=1

|βj |


︸ ︷︷ ︸

regularizer

. (2.2)

To minimize the total error E(λ,β) our aim is to keep the regularizers
contribution low. Depending on the choice of λ we encourage weights βi
that are zero. So, rather than explicitly including or excluding features like
in forward selection or backward elimination, LASSO controls the number
of active features through their weights.

There is no analytical solution to find the optimum for our objective (Equa-
tion (2.2)). Nevertheless, we are dealing with a convex optimization prob-
lem and efficient numerical methods are available to obtain good approx-
imations. Most LASSO solvers use gradient descent which makes a local
quadratic approximation to the optimization function [15].

Bayesian interpretation. We conclude this review of LASSO giving a
Bayesian interpretation. By taking the exponent of its negative objective
(Equation (2.2))

p(β|y,X)︸ ︷︷ ︸
posterior

∝ N
(
y
∣∣Xβ, σ2

vI
)

︸ ︷︷ ︸
likelihood

M∏
j=1

exp

(
−1

2
λ |βj |

)
︸ ︷︷ ︸

prior

. (2.3)

we find that the regularizer can be seen as Laplace prior over weights βj
whereas our error function E(β) turned into a Gaussian likelihood. As

12



2.3. Bagging for feature selection in multivariate linear models

the marginal p(X,y) is constant, the product of prior and likelihood is
proportional to the posterior over the weights. In other words, minimiz-
ing LASSO’s objective in Equation (2.2) is equivalent to maximizing the
posterior over β in this probabilistic view.

2.3. Bagging for feature selection in multivariate
linear models

A problem common to all these methods is that we end up with a set
of active predictors while having little information about their relative
importance. Note, that considering the LOD or similar statistical measures
when including features using forward selection can be misleading. Imagine
that the baseline model already includes a covariate which is correlated to a
feature we intend to test/include. The feature under consideration is prone
to receive a relatively low score, as a significant proportion of phenotypic
variance is already accounted for by the other correlated covariate. In the
worst case, we may not consider this feature after all. Using the absolute
of the weights βj as importance measure when fitted in a LASSO approach
(see Equation (2.2)) is problematic for similar reasons.

There are several methods that address this problem. A conceptually
simple way to obtain more robust feature scores uses bagging [9]. That
is, we randomly sample N times with replacement from the whole set of
individuals. We obtain what is called a bootstrap sample which is used
to fit the multivariate linear model of choice. We repeat bootstrapping
and fitting several times and record the features selected at each run. The
fraction of bootstraps in which a given feature was included in the model
is used as importance measure.

Bagging does not come without issues. We need to fit our model several
times which can easily exhaust computational resources. In addition, the
interpretability of a single linear model is sacrificed for a collection of noisy
variants.

For LASSO feature selection, bagging is encouraged by the work of Mein-
shausen and Bühlmann [40] in which they show that resulting scores are
admissible w.r.t. false discovery rates. Bagging has also been successfully
applied in combination with forward selection to map complex traits of
heterogeneous mouse populations [62].
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3

Linear mixed models

Linear mixed models are an extension to linear models containing addi-
tional summands u1,u2, . . .uK , called random effects

y = Xβ + z1u1 + z2u2 + · · · zkuK +ψ, (3.1)

were z1, z2, . . . zK weight their relative contributions. Random effects can
be regarded as random variables, each following some probability distribu-
tion. Here, we will focus on the class of mixed models containing a single
Gaussian random effect u, i.e.

y = Xβ + u +ψ (3.2)

where
u ∼ N (0,Σ) .

Omitting the weight z is not constraining the model as we can simply
include z as a factor into the covariance matrix Σ. To keep naming short
and simple, we refer to this variant as linear mixed model in the following.

Throughout this work, we use random effects to model those parts of
sample variance that are not in the focus of our study. Including known
covariates is one way to account for confounding variance (see Chapter 1.1).
However, with large heterogeneous populations, the number of additional
factors needed can increase rapidly. Unregularized linear models are then
prone to overfit. Random effect modelling, on the other hand, provides a
robust way to deal with such complex covariate structures.

3.1. Bayesian motivation of the random effect

We start considering a linear model that just includes our matrix of co-
variates C

y = Cβc +ψ. (3.3)
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3. Linear mixed models

Setting the so called fixed effect Xβ to zero is not compromising the im-
portant insights of this Bayesian view, allowing us to update the following
derivation for non-zero fixed effects later.

We further assume, that C is a N ×M matrix where M is in the range
of N . As mentioned before, joint inference of all covariates using ordinary
least squares is prone to result in overfitting. In case of M < N we
are guaranteed to run in numerical problems while computing the matrix
inversion in Equation (1.10). A common way to address these issues is to
introduce a prior distribution over the weights βc. Here we use an i.i.d.
Gaussian

βc ∼ N
(
0, σ2

gI
)
. (3.4)

Multiplying our model for p(y|X,βc) with the prior, we arrive at the joint
distribution of βc and the observations y

p(y,βc) = p(y|βc)p(βc). (3.5)

Direct maximization of this joint distribution w.r.t. βc would lead to an
instance of the so called ridge regression, a method developed in order to
more robustly solve ill posed least-squares problems (see for instance [61]).

When modelling nuisance factors, we are not interested in reporting values
for the weights βc (or other types of importance measures). This allows
us to take Bayesian modelling one step further marginalizing over βc. The
resulting model accounts for the whole range of possible configurations
of βc weighted by their prior distribution. Following the usual steps of
marginalization would require integrating the joint distribution w.r.t. βc,
i.e.

p(y) =

∫
p(y|βc)p(βc)dβc. (3.6)

Our particular case allows a simpler derivation: As both, p(y|βc) and p(βc)
are Gaussian, it follows that the joint distribution p(y,βc) is Gaussian as
well. Joining the individual quadratic forms

(y −Xβc)
T Iσ−2

v (y −Xβc) and βTIσ−2
g β

T

in the exponents to of p(y|βc) and p(βc) into an equivalent quadratic
form over the concatenated vector [y,βc]

T we note that the matrix in this
quadratic form must be the inverse covariance of the joint distribution.
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3.2. Efficient inference in linear mixed models

We have

p(y,βc) = N (y |Cβc, σvI)N
(
βc
∣∣0, σ2

gI
)

= N

([
y
βc

] ∣∣∣∣∣
[
0
0

]
,

[
Iσ−2
v Cσ−2

v

CTσ−2
v CTCσ−2

v + Iσ−2
g

]−1
)
.

(3.7)

Applying the rules for Gaussian marginalization (Equation (B.4)) and in-
version of partitioned matrices (Equation (B.6)), we find the marginal
distribution of y

p(y) = N
(
y
∣∣0, σ2

gCCT + σ2
vI
)
. (3.8)

Individual samples are now related through the covariance matrix σ2
gCCT+

σ2
vI. In contrast to our model in Equation (3.5) this marginalized version

contains M − 1 parameters less.

Let’s get back to our full linear model including a linear fixed effect

y = Xβ + Cβc +ψ. (3.9)

Applying the same Gaussian prior and doing the analogue marginalization
over βc, we note that the fixed effect Xβ only enters the mean and not
the covariance of the joint distribution Equation (3.7). We find for the
updated marginal distribution

p(y|β) = N
(
y
∣∣Xβ, σ2

gΣ + σ2
vI
)
, (3.10)

where we defined Σ := CCT. Note, that the fixed effect can be replaced
by any function f(X) which is independent of the confounders contained
in C.

3.2. Efficient inference in linear mixed models

Linear mixed models can be optimized analytically, but in contrast to
the vanilla linear model from before, computational complexity increases
drastically. The main reason lies in the inversion of the covariance matrix
σ2
gΣ + σvI that is required to evaluate the derivative of our objective

function (log of Equation (3.10)) w.r.t. β. As a result, runtime scales
cubic in the number of samples, and if we intend to test M features for
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3. Linear mixed models

association, the total computational cost multiplies up to O(MN3). So
using the näıve analytical approach will render large scale studies with
millions of SNP features infeasible.

More efficient methods joined the scene recently. These reduce runtime
by clever algebraic tricks [29, 34, 35, 66] and making weak assumptions
about confounding effects [28, 34, 35, 65, 66]. Here, we present in parts
the work of Lippert and others [34]. Their proposed FaST LMM utilizes
a singular value decomposition (SVD) of Σ in order to reduce the total
runtime complexity to O(n3 + n2m)1. The same trick is later applied to
the method that is in the focus of this thesis.

We start with the log likelihood of the linear mixed model (Equation (3.10)),
this time including all parameters of the conditioning set

LL(β, σ2
v , σ

2
g) = log p(y|X,β, σ2

g , σ
2
v) = logN

(
y
∣∣Xβ, σ2

gΣ + σ2
vI
)
.

(3.11)
Our first step is to substitute δ for σv

σg
to rewrite Equation (3.11) as

LL(β, σ2
g , δ) = log

1

Z
− 1

2
log

(
1

σ2
g

(y −Xβ)T(Σ + δI)−1(y −Xβ)

)
.

(3.12)
Here, Z denotes the Gaussian’s normalizing constant. Second, we replace
Σ by a singular value decomposition USUT, where U is a orthonormal-
and S is a diagonal matrix. Utilizing that UUT = I, we rearrange Equa-
tion (3.12) to

LL(β, σ2
v , σ

2
g) = log 1

Z −
1
2 log

(
1
σ2
g
(y −Xβ)T(USUT + δUUT)−1(y −Xβ)

)
.

(3.13)
After factoring out U and UT in the next step, we manipulate the in-
verse covariance

(
U(S + δI)UT

)−1
algebraically to obtain U(S+δI)−1UT.

Plugging this back into Equation (3.13) we have

LL(β, σ2
v , σ

2
g) = log 1

Z + 1
2 log

(
1
σ2
g
(UTy −UTXβ)T(S + δI)−1(UTy −UTXβ)

)
.

(3.14)
A closer look on this reformulated log-likelihood reveals a quadratic form
in UTy. In other words, we can alternatively express Equation (3.14) as

1In their work they further show that, when using a low rank approximation of Σ,
runtime can even be further reduced.
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3.2. Efficient inference in linear mixed models

Gaussian under orthonormal projection by UT

LL(β, σ2
g , δ) = logN

(
UTy

∣∣UTXβ, σ2
g (S + δI)

)
= log

N∏
i=1

N
([

UTy
]
i

∣∣∣ [UTX
]
i:
β, σ2

g ((Si,i + δ))
)
.

(3.15)

The covariance σ2
g(S+δI) is a diagonal matrix which allows us to factorize

our likelihood model. Also note, that the normalization of a Gaussian dis-
tribution is invariant w.r.t. orthonormal projection such that Z correctly
normalizes this reformulated likelihood. We use this factorized version
(Equation (3.15)) for efficient optimization and evaluation in the follow-
ing.

Optimization w.r.t. β. Setting the derivative of Equation (3.15) with
respect to β to zero we obtain:

β̂ =

[
N∑
i=1

1

(Si,i + δ)

[
UTX

]T
i:

[
UTX

]
i:

]−1 [ N∑
i=1

1

(Si,i + δ)

[
UTX

]T
i:

[
UTy

]
i

]
.

(3.16)

Optimization w.r.t. σ2
g . Optimization of Equation (3.15) requires eval-

uation of the normalization constant Z which we can conveniently write
in terms of our diagonal covariance from Equation (3.15)

Z = (2π)
N
2

∣∣σ2
g (S + δI)

∣∣ 1
2 = (2π)

N
2 σ2

g

(
N∑
i=0

(Si,i + δ)

) 1
2

. (3.17)

After substituting Z in the log-likelihood by the right hand side of Equa-
tion (3.17) we take its derivative w.r.t. σ2

g . We find our maxima at

σ̂2
g =

1

N

N∑
i=0

([
UTy

]
i
−
[
UTX

]
i:
β̂
)2

(Si,i + δ)
, (3.18)

which can be seen as the weighted mean squared error between projected
response and (projected) linear prediction.
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3. Linear mixed models

Optimization w.r.t. δ. Plugging the expressions for β̂ and σ̂2
g back in

to Equation (3.15) the log-likelihood only depends on δ

LL(δ) = -
1

2

 N∑
i=1

log (Si,i + δ) +N log
1

N

N∑
i=0

([
UTy

]
i
−
[
UTX

]
i:
β̂(δ)

)2

(Si,i + δ)


− N

2
log(2π)− N

2
.

(3.19)
Finding the maximum w.r.t. δ is a non-convex optimization problem for
which no analytical solution is available. However, once our data {y,X}
has been rotated by UT, a single evaluation of the log likelihood is linear
in sample size N , as compared to O(N3) using Equation (3.12). Thus,
we revert to numerical optimization which requires multiple evaluations
of the log likelihood for different values of δ. Lippert and others [34] use
Brent’s method [11], a simple one-dimensional optimization technique on
a fine grid of predefined intervals over δ.

Univariate association tests. Here, we follow in outline the procedure
used for the vanilla linear model (see section 1.3). The genetic feature to
be tested for association and a one valued vector fitting the intercept are
included in the design matrix X of the alternative model. Our baseline- or
null model just includes the intercept. We optimize and evaluate the log
likelihood using Equation (3.19) for both models and compute the LOD
or P-Value as measure for association strength (see Equation (1.18)).

Lippert and others fit δ once on the null model keeping it fixed for all sub-
sequent association tests. So, in order to assess each genetic feature, they
just require a single evaluation of the log likelihood (Equation (3.19)). This
trick was first implemented by Kang and others [28] helping to drastically
reduce the overall runtime.

3.3. Multivariate linear mixed models

The multivariate linear models presented in Section 2 can be extended
to also include random effects. Here, we present the linear mixed model
LASSO (LMM LASSO) [50] referring to the work of Segura and others (
[55]) for a treatment on forward selection. Based on the probabilistic
interpretation we introduced in Equation (2.3), LASSO is completed to a
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3.3. Multivariate linear mixed models

random effect model marginalizing over additional covariates as shown for
unregularized linear models in Section 3.1

p(β|y,X) ∝ N
(
y
∣∣Xβ, σ2

gΣ + σ2
vI
) M∏
j=1

exp

(
−1

2
λ |βj |

)
. (3.20)

Applying the same algebraic tricks introduced in Section 3.2 we can write
this posterior as

p(β|y,X) ∝ N
(
ỹ
∣∣∣ X̃β, σ2

gI
) M∏
j=1

exp

(
−1

2
λ |βj |

)
(3.21)

where ỹ = (S + δI)−1UTy and X̃ = (S + δI)−1UTX,

and we also rescaled the transformed data by (S + δI)−1 to obtain an
isotropic Gaussian likelihood. In the space of the transformed data {ỹ, X̃}
we arrive at the Bayesian view of the vanilla LASSO Equation (2.3).

Using LASSO solvers on Equation (3.21) requires that δ has been fixed
beforehand. A reasonable estimation can be obtained by fitting δ once on
the null model (i.e. the model that only includes the intercept) as applied
in the univariate case (see Section 3.2).

The shrinkage parameter λ can be found, for instance, using cross-validation.
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4

Decision tree based approaches

Decision trees are among the oldest machine learning methods and ini-
tially developed for use in medical- and military applications [8]. With the
introduction of ensemble based approaches such as boosting [19–22] and
bagging [9], recently, they regained popularity particularly in the fields of
bioinformatics (e.g. [6, 41,49,59]) and image analysis (e.g. [5, 47,56])

Decision trees can either be used for classification or regression [8]. Here,
we restrict ourselves to a review of least squares regression trees [8] as they
are extended by our method that is introduced in Part II. Furthermore,
we show that, while being a non-linear method at the global level, build-
ing trees can be seen as fitting (multiple) linear models when considering
individual operations during learning (splits).

4.1. Least squares regression trees

We follow the notation of [8] and define a least squares regression tree by its
set of nodes T = {t0, . . . , tn}, where t0 denotes the root. Note, that indexes
of the elements in T are sufficient to specify the exact structure of the tree
(see Figure 4.1). Given our response vector of phenotypic observations y
in N dimensions and our N ×M matrix of genetic features X, let y(t) be
the subvector of observations associated to a node t and let N(t) denote
the total number of observations at t.

Learning

Learning starts with the tree having only a single node T (0) = {t0} to which
all observations are associated, i.e. y(t0) = y. When growing the tree at
root node t0, the best splitting point ŝ in the set of possible partitions S
is then determined by maximizing the reduction in variance:

ŝ = argmax
s∈S

R(t0)− R(t1|s)− R(t2|s), (4.1)
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4. Decision tree based approaches

which leads to daughter nodes t1 and t2. Here we defined for a given node
t

R(t) =
1

N(t)

∑
i∈t

(yi − ȳ(t))2

which corresponds to the within-node variance, and ȳ(t) to the samples’
mean at t.

Viable partitions s ∈ S are implied by the candidate features xj , as given
by the column vectors of X. If we assume that - for the sake of simplicity -
we are having binary values, there exists at most one possibility to split per
feature xj , i.e. all samples where xij = 1 will be separated from samples
having xij = 0. So each feature contributes at most one split to S thus
allowing us to operate on the features’ indexes j ∈ {1, . . . ,M} directly.
We therefore rewrite equation 4.1 as

ĵ = argmax
j∈{1,...,M}

∆R′(xj , t0) (4.2)

where
∆R′(xj , t0) = R(t0)− R(t1|xij = 0)− R(t2|xij = 1).

The objective of variance minimization (Equation (4.1)) can equivalently
be formulated as maximum likelihood selection of splitting points in a
linear model

ĵ = argmax
j∈{1,...,M}

LL(y | β̂b, β̂j , σ̂2
v ,xj) (4.3)

where

LL(y | β̂b, β̂j , σ̂2
v ,xj) = logN


[
y(t1)
y(t2)

] ∣∣∣∣∣∣∣∣∣ β̂b
[
1(t1)
1(t2)

]
+ β̂j

[
0(t1)
1(t2)

]
︸ ︷︷ ︸

xj

, σ̂2
vI

 .

(4.4)
Here, y(t1) and y(t2) are reordered versions of y, such that they correspond
to all samples with xij = 0 and xij = 1 respectively. In this representation,

β̂b and β̂j denote sample bias at node t and splitting weight of xj . We
summarize this equivalency in

Proposition 1. Let xj ∈ {x0, . . . ,xM} be a binary predictor and y(t) be
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4.1. Least squares regression trees

the measurements associated with node t ∈ T , then

ĵ = argmax
j∈{1,...,M}

∆R′(xj , t) = argmax
j∈{1,...,M}

LL(y(t) | β̂, σ̂2
v ,xj).

A proof of this statement is given in Appendix C.

Splitting proceeds recursively from the subtrees rooted by the daughter
nodes t1 and t2. Growing of the regression tree is stopped at terminal
(or leaf) node tT if, either no more splitting is possible (i.e. tT contains a
minimal number of samples) or the scoring function shows no improvement
(i.e. ∆R′(xj , t) ≈ 0;∀j).

t0

t2

t6t5

t1

t4t3

t0

t2

t6t5

t1

t0

t2t1

t4t3

t8t7

Figure 4.1.: Examples of binary regression using labelling introduced in [8].
Nodes t are indexed starting with zero and subsequently labelled breath-first.
Nodes that do not exist are still counted by the index (as it is the case for the
tree in the middle). Using this labelling a node’s index specifies its exact position
in the tree.

Features having more than two levels. In cases where we have more
than two levels per predictor, we can as well convert this problem into our
linear model perspective. The idea is to transform our matrix of features
X into an equivalent matrix X̃ that leads to same set of splits S.

Suppose that a predictor x has three levels, say 0, 1 and 21. In order to
partition a given node t in a binary regression tree we have two possibilities:
joining all individuals that have xi < 1 into the first daughter node and
the remainder into the second daughter node, or splitting the individuals
that have xi < 2 from the rest.

1This encoding is common for organisms that have two copies of a chromosome such
as humans. Here we have three possible combinations of alleles for a given marker:
minor-minor, major-minor and major-major.
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4. Decision tree based approaches

Instead of using xj directly we can construct two binary features, where for
the first we set all entries having xj < 1 to 0, the rest being set 1. For the
second, all entries in xj smaller than 2 are set to 0 (again, the rest being
set to 1). Now, we can apply our splitting objective (Equation (4.1)) and
our linear model equivalent (Equation (4.3)) on the alternative features
which will lead to the same splits considered than working on x directly.

It is straightforward to extend this procedure to features having more than
three levels. For each additional level we have to introduce a new binary
feature. Consequently, a single feature having k levels can be replaced by
k − 1 binary features.

Prediction

Using a tree T to predict an outcome (such as disease sate) to given input
x? (e.g. the genetic makeup of an individual) is the result of a series of
binary decisions. Starting with the root node t0, the first decision is based
on its feature selected for splitting during learning. Let j be the index of
this feature, we proceed to child t1 if xj? = 0 otherwise to t2. We apply this
procedure recursively for the subtrees rooted by t1 or t2 until a terminal
node tT is reached. The prediction (response) y? is given by the average
over the training samples associated to tT , i.e. y? = ȳ(tT ).

4.2. Random Forests

Random forests (RF) [10] are among the most commonly used ensemble
methods. Individual learners - here decision trees - are built on a noisy
variant of the training sample (bootstrap). To add further variation to
individual trees, splits are performed on a random subset of all available
features.

Predictions are obtained by aggregating responses of individual trees. This
procedure of bootstrapping, fitting several weak learners and aggregation
makes random forest an instance of a bagged2 learning method [9].

In our particular case of random forest regression, let {Tb}B1 denote such an
ensemble of B trees, whereas each learner is built on a random subsample3

of the data {X,y}. For a test input x?, prediction is defined to be the

2“bagging” is an acronym for bootstrap aggregation
3Both versions, subsampling with and without replacement can be applied
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4.2. Random Forests

average response of individual trees, i.e.

fBrf (x∗) =
1

B

B∑
b=1

Tb(x∗). (4.5)

Out of bag error

The out of bag error was introduced as an unbiased measure of predictive
accuracy for bagged predictors alongside with the initial publication of
random forests [10].

As a consequence of subsampling some part of the training data remains
unused while building each tree Tb, the so called out of bag sample. Con-
versely, to each datum {xi, yi} we have a set of trees where {xi, yi} is
part of the out of bag sample. We can use this subensemble to make a
prediction for xi (analog to Equation (4.5)) and take yi to compute the
corresponding prediction error.

Repeating this procedure for the rest of the training sample, we take the
mean over individual prediction errors to obtain the out of bag error.

Feature scoring

Several feature scoring measures have been proposed for random forests,
here we give an overview about the three that are most commonly used.

Breiman [10] suggested the so called permutation importance. That is, af-
ter learning the ensemble of trees, values of a specified feature are randomly
permuted. The resulting difference in predictive accuracy (estimated with
the out of bag error) serves as importance measure for the feature specified.

A simple alternative is the selection frequency (SF) which is the total num-
ber a given feature is selected for splitting during learning. Despite being
prone to several biases [6, 59] it has proven to be the most sensitive score
towards interacting features [41] when compared to alternative measures
and methods.

In all our experiments we use the residual sums of squares (RSS) which is
the default importance measure of the random forest R package [33].

Briefly, at each node in a tree we add the improvement in variance to the
score of the feature chosen for splitting. The sum over all improvements for
a given genetic feature is used as final score. This measure behaves similar
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4. Decision tree based approaches

to the selection frequency when it comes to the detection of interacting
features [41]. Being on a continuous scale, however, the RSS provides a
higher resolution (as compared to selection frequency) which makes this
measure is particularly attractive when large data sets with thousands of
SNPs and individuals are considered.
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Mixed random forests
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5

Mixed model regression trees

Mixed model regression trees extend least squares regression trees by in-
cluding an additional random effect term (see Figure 5.1). It is the same
modelling principle that we applied in Chapter 3 to obtain linear mixed
models (LMMs). At every stage of building a mixed model regression tree,
variation in the data is modelled by a split according to a selected feature
and the random effect. As a consequence of this joint modelling approach,
features tend to be selected that lead to splits minimizing those parts of
variance which are not captured by the random effect.

In this chapter, we formalize our idea of the mixed model regression tree
and explain how computational speed-ups introduced for LMMs (Sec-
tion 3.2) can be adapted for our approach, thereby enabling applications
to large (genetic) datasets.

5.1. A linear mixed model view

The key innovation of mixed model regression trees is to take advantage
of the linear model perspective introduced with least squares regression
trees (Equation (4.3)). If we subsequently extend this splitting model by
a random effect we obtain following linear mixed model

LL(y |βb, βj ,Σ, σ2
g , δ,xj) = logN

(
y
∣∣βb1 + βjxj , σ

2
g (Σ + δI)

)
. (5.1)

Given feature xj , our objective is to perform a least squares optimiza-
tion w.r.t. weights βb (bias), βj (splitting weight) and the random effect
variance σ2

g . Like for the LMM and the LMM LASSO in Section 3.2 we
estimate δ once on the null model, keeping it fixed during subsequent
branching decisions.

In the following, we omit constant parameters on the conditioning set of
the likelihood in order to simplify our notation. To assess feature xj as
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ATGACCTGCAACTGGGGC
ATGACCTGCAACTGGGGC

ATGCCCCGCGACTGGGGC
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Figure 5.1.: Schematic overview of mixed model regression trees. (a) QTL data
is considered where individuals are descendants from two different populations
as illustrated by the phylogenetic tree. Confounding effects caused by related-
ness between individuals are captured by the random effect term with covariance
shown on the right. Submatrices corresponding to within relatedness of the two
populations are indicated by numbers. Remaining parts of the matrix model
cross-relatedness. (b) Response y (coat colour of mice) is modelled by the sum
of a (genetic) fixed effect and a random effect. The fixed effect is captured using
a decision tree; at the same time, the random effect u with the covariance derived
from the population phylogeny explains confounding by population structure ef-
fects. As a result of this joint learning, splits in the regression tree are more
likely to occur along informative features that are orthogonal (i.e. not correlated)
to confounding effects. In this example the mouse coat colour is a non-linear
function of the three polymorphic sites X1, X2 and X3.

candidate for splitting, we evaluate

LL(y | β̂b, β̂j , σ̂2
g ,xj) = log(N

(
y
∣∣∣ β̂b1 + β̂jxj , σ̂

2
g (Σ + δI)

)
).

The index of the best predictor can then be found by

ĵ = argmax
j∈{1,...,M}

LL(y | β̂b, β̂j , σ̂2
g ,xj). (5.2)

This optimization is equivalent to a (univariate) linear mixed model asso-
ciation test and thus the inference presented in Section 3.2 can be used.

Let x̂t := xĵ . As for least squares regression trees (Section 4.1), we apply
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5.2. Mixed random forests

reordering by combining the samples for which x̂it = 0 into y(t1) and leave
remaining observations to y(t2).

In contrast to least squares regression trees, we note that further splitting
of the samples in t1 cannot be regarded independently from the samples
assigned to t2 and vice versa. Both branches of the tree remain coupled
through the covariance Σ and hence the full dataset needs to be consid-
ered in subsequent splits. Tree growing, however, proceeds by recursively
selecting further predictors while keeping x̂t and the bias in the model.
For node t2 we consider the following mixed model

LL

([
y(t1)
y(t2)

]∣∣∣∣βb, βj , σ2
g ,xj

)
= (5.3)

log N
([

y(t1)
y(t2)

] ∣∣∣∣βT
b Ct2 + βj1[x̂t=1](xj), σ

2
g(Σ + δI)

)
where the bias vector and x̂t are joined into the matrix

Ct2 =

[
1(t1) 0(t1)
1(t2) 1(t2)

]
and 1[x̂t=1](xj) denotes the vector having xij at all the indices i where
x̂it = 1, and 0 otherwise. Alternatively, one can regard 1[x̂t=1](xj) as
modelling an interaction between predictors x̂t and xj . Importantly, all
the previous weights (which are combined into βb) will be refitted and we
find the index of the next splitting feature x̂t2 by

ĵ = argmax
j∈{1,...,M}

{
LL(y|β̂b, β̂j , σ̂2

g ,xj)
}
. (5.4)

Optimization for node t1 follows analogously replacing the last summand
of the mean in Equation 5.3 with βj1[x̂1=0](xj) and Ct1 by

Ct1 =

[
1(t1) 1(t1)
1(t2) 0(t2)

]
.

5.2. Mixed random forests

The mixed random forest (mixed RF) is the method in focus of this thesis
and obtained by bagging mixed model regression trees. We learn this
ensemble analog to random forests creating random subsamples of the
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5. Mixed model regression trees

data and building individual trees1 Similarly, we only consider a random
subset of all available features for each split (see Section 4.2).

Prediction

To a given test genotype x? we traverse each learned tree in the ordinary
decision tree manner until we reach a terminal node and return its as-
sociated mean. Analog to a standard random forest, the response m? is
computed as the average over the means returned by the individual trees
(see Equation (4.5)).

In addition, the population structure captured by the random effect term
contributes to the predictive distribution. Under the random effect model,
the joint distribution of training and test responses is a multivariate Gaus-
sian [

y
y?

]
∼ N

([
m
m?

]
, σ2

g

[
ΣX,X + δI ΣX,x?

Σx?X Σx?,x? + δI

])
(5.5)

where m is the training-fixed effect estimated during the forest building
procedure. The training covariance ΣX,X and the cross covariance Σx?,X

are obtained by subsetting Σ which has been estimated on the whole pre-
dictor matrix in advance. The predictive distribution for the unseen test
phenotype y∗ can be derived by conditioning on y and completing the
square (see Equation (B.4) in Appendix B.2).

Fitting the optimal tree depth

Adjusting tree depth in the ensemble is a simple way to control model
complexity [16] which can be efficiently done while training. For each tree
T we use the out of bag sample (i.e. the part of the training set that is
not used building T ) to compute the out of bag prediction. Out of bag
prediction for mixed random forests is the conceptual extension to that
of random forests (see Section 4.2) when additionally accounting for a
random effect. We formalize the joint model of in bag- and out of bag

1Note, that for each tree we have to provide the covariance matrix ΣT considering the
subsample, which is obtained by selecting corresponding rows and columns of the
global covariance Σ .
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5.2. Mixed random forests

sample for each tree T as follows:[
yb
ỹo

]
∼ N

([
mb

mo

]
, σ2

g

[
ΣXb,Xb

+ δI ΣXb,Xo

ΣXo,Xb
ΣXo,Xo + δI

])
,

The estimation for the fixed effect is the vector composed of the tree’s
response mo given out of bag sample features Xo, and the mean fitted
for in bag sample mb. The (cross)covariances of this model are obtained
by subsetting Σ for in bag- and out of bag sample, respectively. We use
the entire tree based model to make a prediction for ỹo, computing the
conditional (Gaussian) distribution of ỹo|yb (see Appendix B.2 for details).
Averaging over all trees up to a particular depth, we obtain the out of bag
prediction of the whole training vector ỹ which is then compared to y
computing the out of bag error.

We (re)evaluate this error after each cycle of the forest growing procedure
increasing the depth of all trees by one. Tree growing is (usually) stopped
if the out of bag error is not decreasing anymore. The (forest) depth
resulting in the lowest error is returned.
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6

Application of mixed random
forest to genomic data

In this chapter, we evaluate the proposed mixed random forest. First, we
simulate a wide range of genetic architectures to show that the model is
able to improve detection of genuine (genetic) signals when compared to
a standard random forest and linear mixed models. In the second part,
we map hundreds of individual gene-expression levels measured in mice to
demonstrate that associations uncovered by mixed RF are in better agree-
ment with known pathway annotations than those detected by competing
methods. Finally, we apply mixed RF to QTL data of the same mouse
cohort, to show that our method is able to recover complex genetic models.

6.1. Association mapping on simulated data

In order to validate the mixed RF, we initially consider synthetic datasets
where the ground truth genetic architecture is known. We use genotype
data of Arabidopsis thaliana in form of single nucleotide polymorphisms
(SNPs) covering a total of 1,179 samples [1]. These data are well suited for
this test as the given A. thalina population is very structured and hence
effects due to population structure can be effectively simulated (see also
discussion in [1]).

We compared alternative association models in their ability to recover true
causal genetic markers. In addition to mixed random forest (mixed RF), we
include the standard random forest (RF), LASSO and LMM LASSO [50].
Introduced in Chapter 3.3, the LMM LASSO extends LASSO by a random
effect that accounts for population structure. As further references, we
consider the univariate linear model (LM) and the linear mixed model
(LMM) both of which assume that a single causal locus underlies the trait
(see Chapters 1.3 and 3.2).
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6. Application to genomic data

Method parameter settings. In general, we aim to keep parameter
settings between RF and mixed RF as consistent and comparable as pos-
sible. We therefore learn ensembles of 250 trees for both, RF and mixed
RF. Each tree is grown on a bootstrap sample (sampling with replacement)
of full training set size, whereas a random subsample of 2/5 of all available
predictors is used to find each split.

To obtain feature scores for both the LASSO and LMM LASSO we follow
the procedure of [50] and rank features by their order of inclusion into the
LASSO model. Univariate linear models (LM and LMM) use the LOD as
importance measure (see Chapters 3.2 and 1.3, respectively).

For methods correcting population structure (LMM, LMM LASSO and
mixed RF), we set the covariance Σ to the realized relationship matrix as
used for simulation.

Simulation setup. To generate a synthetic dataset, we randomly select
1,000 from a total of 214,553 genome wide SNPs with a minor allele fre-
quency > 0.1 and simulate a total of 100 traits for 250 individuals in our
baseline setting as follows: three SNPs are picked randomly to simu-
late linear additive and a further three pairs of SNPs contribute epistatic
effects

y = x1β1 + x2β2 + x3β3︸ ︷︷ ︸
additive effects

+ int(x4,x5)β4 + int(x6,x7)β5 + int(x8,x9)β6︸ ︷︷ ︸
epistatic interactions

+ u +ψ

(6.1)

where

βi ∼ N
(
0, σ2

β

)
, u ∼ N

(
0, σ2

uΣ
)

and ψ ∼ N
(
0, σ2

gI
)
.

Interactions are simulated by randomly picking two genetic features and
taking the component-wise binary product as indicated by the “int” oper-
ator above. The resulting vector is multiplied by the simulated effect size
βi. The polygenic effect u is a sample from a multivariate Gaussian having
the realized relationship matrix Σ (see Appendix B.1) as covariance. Here,
Σ is constructed from another subsample of 1,000 SNPs. Contributions
of fixed genetic-, polygenic effect and independent Gaussian noise to the
total trait variance are split into 0.375:0.5:0.125 adjusting σ2

β, σ
2
g and σ2

v

accordingly.
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6.1. Association mapping on simulated data

To simulate different genetic settings, we vary the number of additive terms
(from 1–20 in Figure 6.1 (a)), the fraction of additive- to interaction terms
(6:0 – 0:6, Figure 6.1 (b)) and relative contributions of population structure
and independent Gaussian noise

σg
σv

, (0.1 – 0.9, Figure 6.1 (c)) adjusting
the simulation setup (Equation (6.1)) accordingly.
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Figure 6.1.: Comparison of alternative methods to identify causal genetic loci on
simulated datasets. The proposed mixed random forest (mixed RF) is compared
to the standard random forest (RF), a univariate linear association test (LM)
and a multivariate linear model (LASSO). We also consider extensions of both
linear models to also account for polygenic background (LMM and LMM LASSO).
Methods are assessed by their ability to recover true causal loci as measured by
the area under the precision recall curve (PR). The asterix indicates our baseline
setting including 3 additive and 3 multiplicative effects and 50% of the phenotypic
variance explained by population effect (see Figure E.1 in Appendix E for PR
curves of alternative methods on our baseline setting). In individual simulations
we vary the total number of effects (a), the ratio between direct additive and
epistatic effects (b) and the relative contribution of population structure to the
phenotypic variance (c).

Results. For each of the 15 simulation settings, we compare the accu-
racy of all methods in terms of the area under the precision-recall curve
(Figure 6.1). Briefly, this approach quantifies the precision (proportion
of correct predictions) as a function of the recall (sensitivity), thereby
avoiding choosing arbitrary cut-off values for significance when comparing
alternative methods. See Figure E.1 in Appendix E for an example of a
typical precision-recall curve.

As expected, the vanilla random forest (RF) is more accurate than any of
the linear models in regimes where epistatic effects dominate the associa-
tion signals (Figure 6.1 (b)). However, the performance of RF is severely
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6. Application to genomic data

affected by population structure (Figure 6.1 (c)). RF is outperformed by
linear models correcting for population structure, whenever traits are sig-
nificantly affected by confounding effects. Unlike RF, our mixed RF is not
affected by these artefacts, demonstrating how the proposed random effect
extension is able to account for population structure. The mixed RF is also
remarkably robust with respect to the trait architecture (Figure 6.1 (b))
and the number of of causal variants (Figure 6.1 (a)). Notably, our model
performs favourably even in the limit of a purely additive architecture
(Figure 6.1 (b)), where the mixed RF achieves a level of accuracy simi-
lar to that of the LMM LASSO, which a priori imposes a linear additive
genetic architecture.

6.2. Mapping expression QTLs in mouse
Hippocampus data

A significant drawback of simulations is that they inevitably require to
make assumptions about the genetic architecture of traits and the nature
of noise in the data. We therefore sought to additionally assess mixed
RF based on quantitative trait loci (QTL) data without requiring any as-
sumptions about how traits are affected by genetic variants. However, in
real settings, accurate ground truth information for genotype-phenotype
associations is difficult to obtain and hence it is necessary to revert to a
bronze standard. Our approach is based on the notion that expression
QTLs (eQTLs) at genes that are functionally related to the target genes
whose expression they affect are more likely to be true than eQTLs not
fulfilling this criterion [41]. This benchmark does not account for cis asso-
ciations where the marker is close to the target gene itself (see Figure E.2
in Appendix E for the relative proportion of cis and trans effects by differ-
ent methods). A possible concern of this approach is that several genuine
associations may not be in agreement with the pathway databases, for
example because of incomplete annotations. Nevertheless, this scheme to
assess associations provides a robust test as results are aggregated over
hundreds of target genes and individual eQTLs.

Reactome analysis. Here, we consider gene expression from mouse Hip-
pocampus as phenotypes [25] and assess the plausibility of eQTLs using
known pathways obtained by the Reactome database [27]. Because of the
low number of unique genetic markers (12,545, from an inbred cross of eight
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6.2. Mapping expression QTLs in mouse Hippocampus data

Figure 6.2.: Concordance of detected expression QTLs using alternative methods
with annotated pathways from Reactome. For a total of 468 individuals a selection
of 300 gene-expression traits are mapped to 12,545 available SNP features using
the same methods as in Figure 6.1. Resulting feature scores are ranked for each
trait (and method). We compute the pathway enrichment as the number of
SNPs up to a given feature importance rank that are in consensus to the links
inferred from Reactome. We normalize this measure by subtracting the number
of consensus links that are to be expected under random ranking of SNPs. Shown
is the averaged enrichment across all the expression traits. To exclude cis effects,
SNPs located within a window of 500kB of the gene are discarded.

founders), we apply individual models to individual chromosomes where
the population structure is estimated from all remaining chromosomes.
While this leave-one out approach may miss inter-chromosomal epistatic
interactions between markers, it has been shown to avoid proximal con-
tamination when the same SNPs are used for mapping and for predicting
population structure [35]. Jointly considering all genome-wide markers
leads to similar overall conclusions, where the performance of all mixed-
model based approaches is decreased (see Figure E.3 in Appendix E).

From a total of 19,892 expression traits we select the top 10 percentile
when ranked by variance (1,989). From these, 373 could be associated
to at least a single Reactome pathway. To elaborate our SNP to path-
way memberships, we consider all (ENSEMBL) annotated genes within
a 500kB window from the SNPs position in the genome. A SNP xj is
linked to a expression trait (via Reactome) if at least one of its associated
pathways contains a gene that is in proximity to xj . We do not consider
links that are induced by cis effects according to our 500kB window. We
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6. Application to genomic data

further exclude expression traits that are linked to less than 10 or more
than 1,000 SNPs.

For each method we rank SNPs by their scores for all of the 300 remaining
traits. Each point on a curve as shown in Figure 6.2 reports the num-
ber of Reactome-consistent (i.e. plausible) associations that are recovered
relative to the number of “hits” expected under random SNP ranking.

Method parameter settings. Method parameter settings and feature
importance measures are the same as in the simulation study (Section 6.1),
for RF, mixed RF and both univariate linear models (LM and LMM).
In case of LASSO, we find that the recently proposed stability selection
(see [40] and Chapter 2.3) is more robust than inclusion rank for scoring
eQTL when given genetic features are in linkage disequilibrium (see also
the discussion in [50]). We apply stability selection as follows: for each
expression trait we randomly sample 90% of the data without replacement
and learn the LASSO/LMM LASSO model such that it includes 20 fea-
tures (adjusting the shrinkage parameter accordingly). We repeat random
sampling and learning 1,000 times, reporting the fraction of times a feature
is selected as importance score.

As for the simulation study, we require the inter-sample covariance Σ which
can be estimated on the basis of genetic features X, when (for instance)
using the Realized Relationship matrix (RRM) [23].

To estimate Σ, we first use a simple linear association test to rank all SNPs
by their LOD-score [31] and subsequently select the top 1000 genetic fea-
tures in order to build the RRM. This ranking avoids inclusion of features
that explain little of the overall variance (see also [35] for a discussion on
selecting subsets of features for building RRMs).

Results. Notably, all considered methods identify regulator-target gene
associations with greater frequency than random assignment, which con-
firms that this assessment using the Reactome database is an informative
criterion to evaluate alternative association methods. Moreover, the sys-
tematic difference between linear association models and the random forest
approaches underlines once more the importance to account for epistatic
effects [4, 13,39,49].

This analysis also confirms that modelling population structure is impor-
tant: methods correcting for population structure perform better than
their non-correcting counterparts (LMM versus LM; LMM LASSO versus
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LASSO, mixed RF versus RF). Although this trend is weak, we observe it
consistently for all three classes of mapping methods considered. Finally,
the proposed mixed random forest yields associations that are more en-
riched among known pathway annotations than any other method, again
demonstrating the merits of combining methods to correct for confounding
effects with non-additive association mapping. The differences between RF
and mixed RF are most visible in the tail of the association distribution,
suggesting that in particular weak associations are obscured by population
structure, if not accounted for.

6.3. Phenotype prediction

Complementary to evaluating methods in terms of recovering true asso-
ciations, the ability to explain phenotypic variation has recently gained
considerable attention. The task of phenotype prediction is also linked to
“missing heritability” and several studies have noted that single marker
association methods are not sufficient to fully explain the heritable compo-
nent of phenotype variability [4, 45, 64, 67]. Indeed, more complex genetic
models, for example considering epistatic effects, have been shown to sig-
nificantly improve the fraction of explained phenotypic variance in out of
sample prediction experiments [4, 67].

To this end, we also investigate the ability of mixed RF to predict phe-
notype from genotype. Our assessment is based on phenotypes measured
in heterogeneous stock mice [62], which is the same outbred population of
mice used in the Hippocampus eQTL study above (Section 6.2) and char-
acterized by a strong family structure. As physiological and behavioural
traits are highly complex, we expect them to be affected by a compa-
rably large number of genetic variants. We compare our mixed RF to
the vanilla RF, LASSO and, its counterpart modelling population effects,
LMM LASSO [50]. Univariate linear approaches (i.e. LMM and LM) are
not included in this analysis, as they are conceptually inappropriate for
prediction tasks.

In addition, we compare all methods above to the Best Linear Unbiased
Predictor (BLUP) [52] which corresponds to the mixed RF and the LMM
LASSO when the estimation of direct genetic factors is dropped such that
prediction is solely based on the (marginal linear) model of the polygenic
background. Note, that we derived the BLUP (without explicitly naming
it) in Chapter 3.1.
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Methods

Mouse data. We select a total of 124 phenotypes (ranging from bio-
chemical to behavioural traits) measured in a total of 1904 mouse HS
individuals [57, 62] (see Table E.1 in Appendix E for a full list). Parts of
the same cohort are used for eQTL mapping (see Section 6.2), thus we
have the same genotype information of 12,545 genome-wide SNPs.

Model parameter settings. Compared to the eQTL study considered
before (Section 6.2), we have a larger samplesize and in turn more features
are likely to explain phenotypic variance. Thus, we use all 12,545 genetic
features to estimate the realized relationship matrix. Nevertheless, a rank-
based feature filtering as used before might further improve performance
of the methods that handle population structure.

For the prediction of mouse phenotypes we use ensembles of 100 trees
(mixed RF and RF). In case of the mixed RF, we learn each regression
tree on a bootstrap sample of half the training set (drawn without replace-
ment). This leaves the remaining half of the training data to adjust the
depth of the trees. For the vanilla RF, we keep the bootstrapping as for
feature selection (subsampling with replacement), since the used python
package [48] does not provide subsampling without replacement.

We give a runtime evaluation for this task of phenotype prediction in
Chapter 8.

Assessment of alternative models. The performance of all models
is quantified via randomized three-fold cross-validation. That is, for each
prediction experiment we randomly sample two third of the data for train-
ing and use the remaining third of the sample for validation. Predictions
are then assessed using the squared correlation coefficient (R2) on the test
set. For each phenotype and method, we repeat this procedure five times
and report the average over correlation coefficients (Figure 6.3(a)). The
full list of selected phenotypes with correlation coefficients for all methods
is contained in Table E.1 of Appendix E. In order to quantify the rela-
tive performance of various methods, we report the fraction of phenotypes
where one method performs better than another. We call two averaged
R2s significantly different if there is no overlap in intervals according to
standard errors.

We use that notion to investigate the performance of mapping methods
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Figure 6.3.: Prediction of mouse phenotypes. (a) Accuracy of alternative meth-
ods in predicting 124 traits is assessed in a randomized three-fold cross validation.
For given phenotype and method we compute the squared correlation coefficient
(R2) to the test fold and report the averaged R2 across five random restarts as
final measure for accuracy in prediction. Averaged R2s of mixed RF are then
compared to RF, LMM LASSO and the best linear unbiased predictor (BLUP)
by correlation plots. Univariate methods (LMM and LM in Figures 6.1 and 6.2)
were excluded from this comparison as they are conceptually inappropriate for
prediction tasks. (b) Performance of alternative models as a function of trait
complexity estimated by the fitted mixed RF tree depth. For each method we
consider all random restarts from (a) and group correlations to held out samples
by the optimal depth found for the corresponding mixed RF. Shown is the average
improvement in R2 w.r.t. the mixed RF. Shaded areas indicate the bounds of the
standard error and digits above the graphs the number of random restarts each
given depth.

as a function of trait complexity (Figure 6.3(b)): we quantify each trait’s
complexity as the depth of the respective mixed RF model and subse-
quently analyse the performance of the association methods as a function
of that measure. Note, as depth was estimated within each of 620 ran-
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dom restarts of the cross-validation, some traits may end up in several
complexity classes.

In general, we observe that the proposed mixed RF is the most robust
predictor across the entire spectrum from simple to complex traits (Fig-
ure 6.3(b)). Whereas linear methods (BLUP and LMM LASSO) perform
similarly to mixed RF for simple traits (Figure 6.3(b), tree depths ≤ 1),
their predictive power breaks down for more complex traits (i.e. tree depth
> 1). In particular, the improved performance in comparison to the LMM
LASSO indicates that non-linear structure (like epistasis) is present in the
data, which is better captured by the regression tree based approaches.

Furthermore, RF and mixed RF become similar in performance if the fit-
ted depth of the ensemble gets large (Figure 6.3(b), tree depths > 4). A
possible explanation is that the amount of variance attributable to popula-
tion structure decreases in relative magnitude as trait complexity increases
and/or that assuming linearity to model population structure is adverse
in some of these cases. On this note, we find for tree depths of 6 (where
the vanilla RF shows best average performance) the number of cases is
low (13) when compared to the total of 605 random restarts considered
(indicated by numbers on top of Figure 6.3(b)). Note that, 15 random
restarts with tree depth > 6 were were excluded from this analysis as they
constituted less than 10 cases per depth.

6.4. Author contributions and acknowledgements

Oliver Stegle conceived the general idea. I implemented, optimized and
conducted theoretical analyses of our apporach. Andreas Beyer, Oliver
Stegle and I designed the mapping and prediction experiments. I per-
formed and refined the analysis. Andreas Beyer, Oliver Stegle and I wrote
the related manuscript. I like to thank Barbara Rakitsch for her help with
questions related to the LMM LASSO.

46



7

Mapping of rare genetic variants

With this chapter, we widen the field of possible applications of mixed
random forests to the mapping of rare genetic variants. As “rare” sug-
gests, we refer to cases where only a limited number of individuals carry
the minor allele in a given study population (usually less than 1%–5%).
Nevertheless, rare variants are assumed to explain a significant amount of
missing heritability [18,38] as well as to play an important role in complex
phenotypes [38,54].

Univariate association test such as the linear- and the linear mixed model
introduced in Part I are conceptually inappropriate for detection of rare
variants. Assessing a single genetic feature in isolation, they will receive
only a limited number of cases that contain the minor allele and are con-
sequently prone to fail in finding (statistically) meaningful scores. Also
reweighting schemes accounting for underrepresentation of such variants
are problematic as rare variants are virtually indistinguishable from se-
quencing errors when testing for univariate association.

Apart from improving data quality by increasing study population sizes
or sequencing depth, the only way to increase sensitivity for rare vari-
ants is to leverage information from their (local) genetic context. Purpose
designed methods make the assumption that rare variants segregate to-
gether with other common- and/or rare variants that are in linkage dise-
quilibrium. Instead of scoring individual features they summarize multiple
genetic features within a predefined genomic window by means of a single
aggregated score [32,37,42] or - in a more rigorous Bayesian fashion - using
random effect modelling [46, 63]. Figure 7.1 illustrates common principles
where highlighted parts indicate the regions that are tested for associa-
tion. The basic window-based framework as implemented by [32,37,42,63]
(Figure 7.1(a)) lacks in that it just considers (independent) noise and the
genomic region to be tested.

Random effect modelling, on the other hand, provides a simple and robust
way to also incorporate effects of features outside the genomic window [46].
Accounting for variance explained by the genomic background avoids that
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phenotype genetic information (e.g. SNPs)

(a)
phenotype genetic information (e.g. SNPs)

(b)

Figure 7.1.: Common principles of rare variant detection. Methods designed for
rare variant testing usually employ a sliding window of fixed size (i.e. measured
by number of bases). (a) genetic features within the window are used to predict
phenotypic variance with a learned model f. Alternatively, scores that aggregate
over features are used to assess linkage of a particular region. (b) extended version
of the model in (a) that also accounts for the contribution of features in the genetic
background extending the overall predictive model by another function b.

features within our window explain trait variance that can otherwise be
attributed to correlated features within the genetic background.

This extension of the simple framework is also illustrated in Figure 7.1(b)
and can be formalized as follows

y = f (Xw) + u(Xr). (7.1)

Here, f (Xw) is the function of the region to be learned and u(Xr) is
the random effect correcting for the features which are not within the
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foreground window.

So employing our mixed RF, we can use its random effect to also account
for the genetic background and - unlike alternative methods ( [32, 37, 42])
- being able to model non-linear effects within our window of genomic fea-
tures considered (learning f (Xw) through its regression tree component).
In the following, we learn a separate mixed random forest for each win-
dow and score linkage of regions using the out of bag prediction error (see
Chapter 5.2).

7.1. Experimental setup

We take genotype data from the same Arabidopsis thaliana population
considered in Chapter 6.1 ( [1]). Simulation of phenotypes, however, is
fundamentally different.

From 386 individuals of Arabidopsis thaliana we consider a total of 50,435
SNPs from the first chromosome from which we uniformly sample five
percent (2521) to simulate a genetic background. We take a sample of
further 10 SNPs within a randomly selected region (r1) of 100kB to sim-
ulate direct additive effects as well as further 10 SNPs of another 100kB
region (r2) to simulate five interactions. Simulation of a single phenotype
can be formalized as follows

y = X(r1)β(r1) + int
(
x

(r2)
1 ,x

(r2)
2

)
β

(r2)
1

+ int
(
x

(r2)
3 ,x

(r2)
4

)
β

(r2)
2 + · · ·+ int

(
x

(r2)
9 ,x

(r2)
10

)
β

(r2)
5

+ Xbgβbg +ψ.

(7.2)

Here the superscripts r1 and r2 refer to the regions selected. The “int”-
operator takes the component-wise product of selected (binary) feature
vectors to simulate interactions. Furthermore, the background effect weight
βbg is a sample from a Gaussian distribution

(
βbg ∼ N

(
0, 0.42I

))
, and the

region effect weights are both sampled from a bi-normal distribution, par-
ticularly

β
(r1/r2)
j = N (1, 1) z −N (1, 1) (1− z), (7.3)

where z is a Bernoulli distributed random variable taking value 0 or 1
with probability 0.5 . With this simulation we further ensure that effect
sizes of individual regions are relatively small. Therefore, contributions
of background-, foreground effects and independent Gaussian noise to the
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total simulated trait variance are split into 0.5:0.1:0.4 (rescaling sampling
distributions accordingly).

In comparison to mixed RF we consider the vanilla random forest, which
does not account for genetic background but is also able to capture inter-
actions, and two marginal linear models. The first variant tests for a linear
kernel which is build on the features within the window (SKAT) [63]. The
second variant, LMM SKAT [46]1, also considers the background through
random effect modelling similar to that used for the mixed RF.

Alternative methods are used/implemented as follows:

Mixed random forest. Here, we use ensembles of 100 trees each fitted
on the features considered in the (current) foreground window. To save
computational resources, we reuse bootstraps that are created for the en-
semble fitted on the first window. This allows us to reuse singular value
decompositions of the trees’ local covariances ΣT (see Chapter 5.2) which
would otherwise needed to be recomputed if new bootstrap samples are
created.

We measure importance of each region by the out of bag prediction error
which is obtained after fitting the optimal depth of the ensemble (see
Chapter 5.2). To account for the genetic background signal, we construct
the realized relationship matrix (RRM) (see Appendix B.1) on all features
of the first chromosome.

Random forest. Here, we apply the vanilla random forest using our
mixed random forest implementation by setting the covariance correcting
for background (Σ) to the identity matrix. The same parameter settings
are applied as for the mixed random forest, including fitting of the optimal
depth.

Marginal linear models. LMM SKAT uses the same RRM computed
for the mixed RF to correct for genetic background. Features within each
window are used to compute a second RRM (foreground covariance). Both
foreground and background covariances are then combined into a marginal

1The method is originally termed ASKAT (Adjusted Sequence Kernel Association
Test) but is, for the sake of consistency to the other methods, referred to as LMM
SKAT in the following.
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7.2. Results

log-likelihood model:

LL(y|σ2
f , σ

2
b ) = logN

(
y
∣∣ 0, σ2

fΣf + σ2
bΣb

)
, (7.4)

where weights for both, foreground and background covariances (σ2
f and

σ2
b ) are fitted using python’s limix package. For each window we obtain

a marginal linear model, for which we compute the log-likelihood as the
regions score.

Fitting of SKAT follows analog setting the RRM modelling the background
effects to the identity matrix.

7.2. Results

We evaluate performance of alternative methods through summary plots
which report the average number of recovered causal regions across 500
restarts of our simulation setup. Note, that we employ a sliding window,
where “adjacent” regions are overlapping. We call all sliding windows
which have overlap with any causal region as a true positive (if recov-
ered), such that we arrive at a total of eight true positive windows (see
Figure 7.2).

Considering all effects (Figure 7.2 (a)), we find that the LMM SKAT is
superior over alternative methods, whereas our mixed RF ranks second be-
fore the (simple) variance component test (SKAT) and RF. Furthermore,
we notice a comparably large difference between RF and mixed RF which
underlines the importance to account for background signals, especially
for the regression tree based approaches. In addition, we considered two
alternative evaluations of our simulation experiment considering regions
that carry additive effects as true positives (Figure 7.2 (b)) while ignoring
regions carrying interactions and vice versa (Figure 7.2 (c)). Consider-
ing additive effects in isolation we find the same trends as before (Fig-
ure 7.2 (a)) while relative differences are larger. When it comes to the
detection of interactions (Figure 7.2 (c)) alternative methods become sim-
ilar in performance.

All in all, the proposed mixed RF is able to robustly assess the linkage
of whole genomic regions. Nevertheless, using a state of the art method
(LMM SKAT) gives similar or better results in the scenarios considered.
An advantage of the LMM SKAT is its inherent Bayesian motivation of
the (linear) foreground effect, which follows analog to that of the marginal
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Figure 7.2.: Comparison of alternative methods for detecting rare variants on
semi-empirical data using genotypes from Arabidopsis thaliana. For each of 500
randomly initialized experiments a simulated phenotype is influenced by a ge-
nomic region containing simple additive effects, a second region contributing
epistatic effects as well as a genetic background signal (see text for details).
Methods compute importance scores for individual regions considered in a sliding
window. Plots show the number of causal regions recovered as a function of the
regions’ rank when averaged over the random restarts of the simulation.

linear model considered in Chapter 3.

Recursive kernels [17] combine the advantages of this Bayesian motivation
while being able to account for non-linear structure in the data. They can
be learned through our mixed RF framework and might therefore be an
interesting alternative.

7.3. Author contributions and acknowledgements

Oliver Stegle conceived the idea. I implemented the underlying algorithm
and contributed further ideas to its optimization. Oliver Stegle and I
designed experiments on simulated data and I performed the analysis. My
sincere thanks go to Paolo Casale who provided and supported me with
the initial source code of our simulation study.
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8

Theoretical Analysis of the mixed
random forest

Theoretical analyses of random forests are challenging and most estab-
lished insights build on empirical studies, e.g. [6, 41, 58, 59]. The main
caveat for in depth studies lies in the dependence of the learned tree struc-
ture on the data-generating distribution p(X,y). To overcome this con-
cern, Biau ( [2]) uses a modification of the random forest algorithm dividing
the training data into one set used for finding the optimal splits whereas
the remaining samples are partitioned. It can be shown that the resulting
learning algorithm is consistent and its rate of convergence solely depends
on the number of informative features. e

However, given the non-i.i.d. sample structure in the focus of this work,
the strategy proposed in [2] does not provide similar guarantees.

In the following, we give a runtime analysis and show that in the limit of
no population structure (i.e. δ → ∞) our approach will behave like the
standard random forest.

8.1. Runtime

Here, we consider the runtime for building a mixed random forest (i.e. the
fitting stage). During prediction, the mixed random forest behaves like
the standard random forest and requires no further treatment.

The main computational burden lies in the evaluation of the splitting func-
tion. In our case, this corresponds to testing O(M) predictors in a linear
mixed model with O(N) samples. Making use of the same computational
tricks introduced in [34] the runtime of a single split is bound by

ct(d(t), N,M) ∈ O(d(t)MN) (8.1)

where d(t) denotes the depth of node t, i.e. the distance from its root t0
in T .
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8. Theoretical Analysis

The runtime for building a single tree T is determined by its structure
which in turn depends on the data generating distribution p(X,y) (see
above). In general, we cannot estimate the runtime in the average case
since this would require knowledge of the expected structure of T under
p(X,y). Before proceeding with the worst case scenario, we consider the
following alternative:

Balanced case. We suppose that our trees have a balanced structure,
i.e. their depth is bounded by O(log(N)). In this case, the runtime for
building as single estimator is dominated by the O(N) splits leading to its
O(N) terminal nodes, i.e.

cbal
T (M,N) ∈ O(d(tT )N2M +N3) = O(log(N)N2M +N3). (8.2)

Here the additional summand N3 accounts for the singular value decompo-
sition of Σ prior to growing T which is needed for applying computational
tricks of [34] during splitting (see Chapter 3.2).

Worst case. In the worst case, a tree T is a chain of N − 1 inner nodes.
Since the expected depth of any node tC along this chain is O(N), we find
that we require

cworst
T (N,M) ∈ O(〈d(tC)〉N2M +N3) = O(N3M) (8.3)

steps to build T .

Note, that the optimal tree depth for prediction tasks we consider in this
work is always below log(N) (see Figure 6.3) and therefore runtime for
building a single tree stays within bounds of the balanced case.

Further Considerations. Overall, the runtime of our mixed RF scales
linearly with the number of genetic features, whereas - owing to the singu-
lar value decomposition of Σ - we require a qubic number of computations
in the number of samples N . Thus our method is advantageous in sce-
narios where M � N . Better scalability w.r.t. large N can be obtained
using a low rank approximation of the relationship matrix (Σ) which al-
lows to apply additional computational tricks introduced by Lippert and
others [34].

In order to avoid the worst case scenario in feature selection tasks, adjust-
ing the model complexity (tree depths) may be considered here as well.
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8.2. Limiting Cases

Measured runtime. Here, we restrict our runtime evaluation to the
mouse phenotype prediction, which is computationally the most demand-
ing task considered in this work (see Chapter 6.3). Our methods run on
data with 1940 individuals for each of which we have 12,545 genetic fea-
tures (SNPs). For a given phenotype the current mixed RF implementation
takes about 4400 seconds for a full five-fold (randomized) cross-validation
on a single Intel© Xeon© L5420 core (Figure E.5 in Appendix E). Thus,
a typical runtime of 15–30 minutes is to be expected if one intends to train
a single model on a dataset of comparable size. Note, that the relatively
large difference in mean runtime between LASSO and LMM LASSO is a
result of the wider range needed to fit the shrinkage parameter in the case
of LMM LASSO.

In the case of our mixed RF implementation, the memory requirement
never exceeded 2 gigabyte of RAM.

8.2. Limiting Cases

Mixed random forests with optimal depth of 0. When fitted for
prediction tasks, the lower limit for the optimal forest depth is 0 cor-
responding to an ensemble of means, each fitted to a bootstrap sample.
Provided little variance between these means, this model closely resembles
the Best Linear Unbiased Predictor (BLUP), a widely used approach for
genomic prediction which does omit a feature selection step (see Chap-
ters 3.1 and 6.3).

Mixed random forests in the limit of δ →∞. In this limit our split-
ting objective (Equation 5.1) turns into a linear model with i.i.d. Gaussian
noise which (in turn) is an equivalent objective used for the standard ran-
dom forest (i.e. Equation (4.3)). So we have,

Proposition 2. In the limit of δ →∞ the mixed random forest is consis-
tent with the random forest.

A sketch of this proof is given in Appendix C.
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Conclusions

In this thesis we presented a new method for QTL mapping and phenotype
prediction which can be regarded as an extension to both, the popular
linear mixed models as well as random forests. By combining the strengths
of random effect modelling with tree-based models our approach is capable
of producing robust predictions and phenotype associations over a wide
range of potential use cases, and particularly in scenarios where both,
polygenic- and non-linear effects like epistasis co-occur.

QTL mapping

To show our method’s capabilities in mapping quantitative traits, we com-
pared the proposed mixed random forest to four state of the art methods,
each of which has previously been shown to be superior in their respec-
tive modelling domain (epistasis, multiple additive- and/or polygenic ef-
fects) [41,50,53,65]. Results on simulated QTL data show that our mixed
RF is not only the most robust across these different domains but also out-
performs all competitors when multiple epistatic- and polygenic effects are
present (Chapter 6.1). On real QTL data from heterogeneous stock mice,
we show that mixed RF recovers more effector-target gene relationships
than any of the other methods (Chapter 6.2).

Instead of mapping single nucleotide polymorphisms, we also considered
whole genomic regions in Chapter 7. The idea exploited here is that sensi-
tivity for rare genomic variants can be increased if other rare and/or com-
mon genetic variants in local linkage are considered as well. We compared
our mixed random forest to the vanilla random forest and two marginal
linear models, SKAT [42] and its extension to account for polygenic and
genetic background LMM SKAT [63]. On simulated data we found that
LMM SKAT was the only method that outperformed our mixed random
forest, which only emphasises the versatility of our approach.
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9. Conclusions

Phenotype prediction and learning of trait complexity

As in RF, LASSO and LMM LASSO, the proposed mixed RF is capable
of modelling more than a single genetic feature at a time which renders it
useful for prediction tasks. On held-out mouse phenotypes, we find that
mixed RF is the best predictor for the majority of phenotypes consid-
ered. Moreover, it is the only method that is consistently among the top
predictors across the entire range of trait complexity (see Chapter 6.3).

An appealing feature of mixed RF is that model complexity can be easily
adjusted to the data: since only a subset of samples is used to build each
tree, the remaining, so called “out of bag samples” are left over to fit
the optimal depth of the trees. This mechanism to control the model
complexity is implemented into our method and does not require further
input by the user. Importantly, the learned tree depth provides insight
into the relevance of the fixed genetic effects in relation to the polygenic
background - or in other words - this approach can be used to quantify
the complexity of the trait. In principle, tree depth can be adjusted for
the vanilla RF as well. However, its interpretability is limited because
relative contributions of direct genetic effects and polygenic background
to the overall trait complexity cannot be disentangled.

Although it may seem trivial that an optimal model should account for the
true number of (genetic) factors contributing to trait variation, there is a
scarcity of examples actually performing such model adjustment. Methods
such as bagging create an additional computational overhead that in the
past may often not have been deemed necessary. Our results question this
view - at least when it comes to explaining trait variation.

Limitations

Mixed RF also has its limitations most of which are common among ran-
dom bagging approaches. First of all, computational demand is generally
larger when compared to alternative (linear) methods (see Chapter 8).

While our mixed RF adds interpretability to the model by dissecting trait
variance into direct genetic and polygenic contributions, interpretation of
the RF component remains a challenge. For example, while RF and mixed
RF account for epistatic interactions, it is non-trivial to determine which of
the markers considered significant are in epistasis with each other (if any).
We have recently proposed a method for extracting epistatic interactions
from random forests [49] that is readily applicable to mixed RF.
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Future work

Our future work is divided into two main directions: further optimization
of the presented mixed random forest algorithm and exploiting new use
cases in which different sources of confounding than polygenic effects are
captured by our random effect model. Here, we present a brief overview
of potential areas of future work.

Low rank population structure

Our model faces the same limitation as linear models in that runtime in-
creases cubically with the number of samples. In analogy to LMM [34],
computational tricks combined with low rank approximations to the pop-
ulation structure covariance can be used to scale the mixed RF to even
larger cohort sizes. In future work, we may update and refine the provided
implementation accordingly.

Variable importance on a selected subset of features

In this work we use random effect modelling to account for population
structure and genetic background. In future work, we plan to consider large
scale data sets (as, for instance, obtained from human cancer cell lines)
where features are additionally categorized. Such additional annotation
usually specifies the type of mutation/variant that is indicated by the
particular feature.

Our idea is to consider a subset/category of features that is of particular in-
terest to the study (like deletions and insertions in developing cancer) using
the random forest component of our model, whereas remaining variables
- which may also explain a significant fraction of (phenotypic) variation -
are captured by the random effect term. This way, our method can help
to greatly reduce runtime by computing variable importances for features
that are in focus of a particular study.
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Batch effect correction

Batch effects are another source of confounding which can be dealt with
using a random effect term (e.g. [26, 36]). Therefore our method can be
readily applied to scenarios where strong batch effects are present (e.g.
analysis of gene expression data).

Non-linear random effect models

As introduced in Chapter 7, random effect models like SKAT and LMM
SKAT are state of the art when it comes to mapping of whole genomic
regions to phenotypes. However, they are built on the notion that genomic
features influence phenotypes in a linear fashion. In future work, we can
utilize our mixed random forest to construct a random effect term along
the lines of [17] while also accounting for (genetic) background variation.
As well as LMM SKAT, the resulting model will contain one random effect
term modelling genetic features considered within a specified genomic re-
gion, while additionally allowing for non-linear effects. The second random
effect models features that are not tested for association.
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Appendix A

Notation used throughout this
work

Symbol Meaning

N the number of samples

M number of features (variables)

a ∈ R a scalar value

a ∈ RN a column vector with n rows

A ∈ RN×M a matrix with N rows and M columns

[a]i or ai the ith entry of vector a

[A]ij or aij entry in the ith row and jth column of matrix A

[A]i: the ith row of matrix A

AT is the transpose of matrix A

A−1 denotes the inverse of matrix A

|A| the determinant of matrix A

Id the identity matrix of dimension d. If no subscript
is given the dimension is implied by the context

1 column vector where all entries are one with dimen-
sionality implied by the context

0 depending on the context either a matrix or a col-
umn vector where all entries a zero

[A,B] horizontal concatenation of matrices A and B[
A

B

]
vertical concatenation of matrices A and B

N
(
y
∣∣µ, σ2

)
is the univariate normal distribution with mean µ
and variance σ2

N (y |µ,Σ) denotes the multivariate normal distribution with
mean µ and covariance matrix Σ
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Appendix B

Mathematical Background

Here we summarized some rules, derivations and theorems that are used
throughout this thesis. They most of them can also be found for instance
in [51].

B.1. Realized Relationship matrix

The Realized Relationship matrix [23] is constructed by taking the outer
product genetic features considered, i.e.

ΣRRM = X̃TX̃. (B.1)

Here X̃ is the standardized version of X such that each genetic feature
(i.e. matrix column) has mean zero and a standard deviation of one. This
adjustment gives more weight to variants having low frequencies in the
study population which is a commonly made assumption.

B.2. Gaussian Identities

In the following we are given a multivariate Gaussian distribution with
mean µ and covariance Σ in N dimensions

N (x |µ,Σ) =
1

Z
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (B.2)

where Z = (2π)N/2 |Σ|1/2 is the normalizing constant. Let x and y be
jointly Gaussian distributed[

x

y

]
∼ N

([
µx

µy

]
,

[
A C

CT B

])
(B.3)
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then the marginal distribution of x and the conditional distribution of x
given y are both Gaussian:

x ∼ N (µx, A) and (B.4)

x|y ∼ N
(
µx + CB−1(y − µy), A−CB−1CT

)
. (B.5)

B.3. Matrix reformulations

Let an invertible N ×N matrix A and its inverse A−1 be partitioned to

A =

[
P Q

R S

]
and A−1 =

[
P̃ Q̃

R̃ S̃

]
, (B.6)

then we have for the submatrices of the inverse A−1

P̃ = P−1 + P−1QMRP−1,

Q̃ = −P−1QM,

R̃ = −MR−P−1 and

S̃ = M, (B.7)

where we defined

M = (S−RP−1Q)−1. (B.8)
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Appendix C

Proofs

We start with an equivalent representation of the optimization in Equa-
tion (4.3) where we changed basis

LL(y(t) |β, σ2
v ,xj) = logN

([
y(t1)

y(t2)

] ∣∣∣∣∣βL
[
1(t1)

0(t2)

]
+ β2

[
0(t2)

1(t2)

]
, σ2

vI

)
.

(C.1)

Taking the derivative w.r.t. β and setting it to zero we obtain

β̂ =

(
1

N(t1)

∑
i∈t1

yi,
1

N(t2)

∑
i∈t2

yi

)T

= (ȳ(t1), ȳ(t2))T

and doing the analogue for σ2
v gives us the following:

σ̂2
v =

1

N(t)

(∑
i∈t1

(yi − ȳ(t1))2 +
∑
i∈t2

(yi − ȳ(t2))2

)
.

Plugging the results for β̂ and σ̂2
v back into (C.1) we have

LL(y(t)|β̂, σ̂2
v ,xj) =

N

2
log(σ̂−2

v )− N

2
−N

= −N
2

log (R(t1) + R(t2)) + const. .

(C.2)

Noting that R(t0) is constant and that the log is a strictly monotonic
increasing function we have

argmax
j∈{1,...M}

LL(β̂, σ̂2
v |xj) = argmax

j∈{1,...M}
− log (R(t1) + R(t2))

= argmax
j∈{1,...M}

−(R(t1) + R(t2))

= argmax
j∈{1,...M}

∆R′(xj , t),

(C.3)
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C. Proofs

provided R(t1) + R(t2) > 0. In case R(t1) + R(t2) = 0, mixed random
forest directly returns the corresponding index ĵ avoiding an evaluation of
log(0).

Before getting to prove Proposition 2 we require some general properties
that hold for least squares optimization in linear models. First, we note
that

LL(β̂1, σ̂
2|B1) = LL(β̂2, σ̂

2|B2), (C.4)

provided B1 and B2 are each bases of a common euclidean space V . Sec-
ondly we need:

Lemma 1. Let W and Uj ∈ {U1, · · · , UM} be euclidean spaces such that
W ⊥ Uj, ∀j ∈ {1, · · · ,M}. Let further B and Cj denote bases of W and
Uj. Then

argmax
j∈{1,··· ,M}

LL(β̂, σ̂2| 〈B, Cj〉) = argmax
j∈{1,··· ,M}

LL(β̂, σ̂2|Cj).

Sketch proof of Proposition 2

For any given node t in T and predictor xj we find a decomposition of the
optimization space given by 〈C,xj〉 in to a fixed part W and a variable
part Uj such that xj ∈ Uj and W ⊥ Uj . Construction of W follows
by subtracting the last column xp of C from all previous columns. We

denote the resulting matrix as C̃ and set W =
〈
C̃−xp

〉
and Uj = 〈xp,xj〉.

Now W ⊥ Uj follows simply from the property that all entries in W are

zero where the basis vector entries of Uj are one. Furthermore,
〈
W̃ , Uj

〉
=

〈C,xj〉. We thereby found a decomposition such that Lemma 1 allows us to
solely consider the subspaces {U1 . . . Uj} for least squares optimization in
a linear model. Finally, we identify {U1 . . . Uj} to be the spaces considered
by the random forest splitting optimization in equation (4.3).
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Appendix D

Tutorial on how to use mixed
random forests

This tutorial shows how to use mixed random forests (mixed RF) for fea-
ture selection and prediction. The reader may benefit from having some
background on Gaussian process prediction and the general use of the
random forest as provided by the python scikit-learn package. However,
knowledge of neither is required to execute the steps of this tutorial. All
source files for the following examples can be found in the examples direc-
tory of the mixed RF module.

D.1. Installation

Mac OS, Linux and other Unix based systems. In order to install,
the mixed RF requires:

� an installed C++ compiler

� python (2.7) with the following modules installed (do not use python 3
or beyond!):

– numpy (1.7.1)

– scipy (0.13.0)

– cython (0.19.2)

– matplotlib (1.3.1)

Numbers in brackets indicate the versions for which this tutorial was used
to generate the following results. Older and newer versions of these pack-
ages may work as well.

Installing the mixed random forest package

� extract the files provided with “mixed rf.zip” and change to the gen-
erated “mixed rf” directory
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D. Tutorial on how to use mixed random forests

� make sure that python 2.7 is loaded when calling “python” from the
terminal by running

python --version

� build the mixed rf-package
python setup.py build

� install the package running
python setup.py install --user

or
python setup.py install

for a global installation (requires administrator rights)

D.2. Examples

For each example we require the loaded mixed RF module, some helper
functions, the scipy library and matplotlib for plotting.

from mixed_forest.MixedForest import Forest as LMF

import mixedForestUtils as utils

import scipy as SP

import pylab as PL

D.2.1. Example 1: Recovering a single fixed effect

Please see the source file examples/tutorial.py in the module’s directory.

At first we need to create some data.

SP.random.seed(43)

n_sample = 100

X = SP.empty((n_sample,2))

X[:,0] = SP.arange(0,1,1.0/n_sample)

X[:,1] = SP.random.rand(n_sample)

noise = SP.random.randn(n_sample,1)*.05

y_fixed = (X[:,0:1] > .5)*.5

y_fn = y_fixed + noise
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Figure D.1.: Components of simulated data.

Here we consider a simulated data set of size 100. For each sample we sim-
ulate features in 2D where the first dimension is sampled from a grid on
[0, 1]. The second dimension contains random samples from the uniform
distribution on the interval ]0, 1[. We combine features for all samples into
the matrix X. The fixed effect yfixed shall only be affected by the first
feature dimension. In addition, we add some Gaussian noise to obtain the
simulated observation yfn The second part of the simulation adds struc-
tured noise to the observations yfn. The sample become connected (i.e.
correlated) through the simulated covariance.

kernel = utils.getQuadraticKernel(X[:,0], d=0.0025)

y_conf = .5*SP.random.multivariate_normal(\

SP.zeros(n_sample), kernel)

y_conf = y_conf.reshape(-1,1)

y_tot = y_fn + y_conf

We can now visualize our simulated data (Figure D.1).

PL.plot(X[:,0], y_fn, 'c')

PL.plot(X[:,0], y_conf+y_fn, 'm')

PL.plot(X[:,0], y_conf + y_fixed, 'g')

PL.show()

PL.close()

Next, we divide our data into training- and test sample.

training_sample = SP.zeros(n_sample, dtype='bool')

training_sample[SP.random.permutation(n_sample)\
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D. Tutorial on how to use mixed random forests

[:SP.int_(.66*n_sample)]] = True

test_sample = ~training_sample

X_train = X[training_sample]

y_train = y_fn[training_sample]

We proceed by fitting the standard random forest to the training sam-
ple. We can do so using our mixed RF module with the identity as the
covariance matrix (i.e. setting kernel=’iid’).

random_forest = LMF(kernel='iid')

random_forest.fit(X[training_sample],\

y_tot[training_sample])

response_rf = random_forest.predict(X[test_sample])

For fitting the mixed RF we need to pick the rows and columns of the
covariance according to the training sample indexes. For prediction we
need to use the cross covariance between training and test sample.

kernel_train = kernel[SP.ix_(training_sample,\

training_sample)]

kernel_test = kernel[SP.ix_(test_sample,\

training_sample)]

lm_forest = LMF(kernel=kernel_train)

lm_forest.fit(X[training_sample],y_tot[training_sample])

response_lmf = lm_forest.predict(X[test_sample],\

k=kernel_test)

Finally, we plot the results of our prediction.

PL.plot(X[:,0:1], y_fixed + y_conf, 'g')

PL.plot(X[test_sample,0:1], response_lmf, '.b-.')

PL.plot(X[test_sample,0:1], response_rf, '.k-.')

PL.ylabel('predicted y')

PL.xlabel('first dimension of X')

PL.show()

PL.close()
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Figure D.2.: Prediction of mixed random forest and random forest on the test
sample.

D.2.2. Example 2: Recovering interactions and evaluating
feature importances

In the second toy example we predict held-out simulated data when the
phenotype is the result of an interaction between two features and the
random effect. Now our feature vector is a sorted array of integers rang-
ing from 0 to 28 − 1 = 255. We can easily convert this into an eight-
dimensional feature vector using binary encoding of each integer, i.e. 0→
(0, 0, 0, 0, 0, 0, 0, 0) , 1→ (0, 0, 0, 0, 0, 0, 0, 1), . . . and 255→ (1, 1, 1, 1, 1, 1, 1, 1).

SP.random.seed(42)

n_samples=2**8

x = SP.arange(n_samples).reshape(-1,1)

X = utils.convertToBinaryPredictor(x)

Our simulated fixed effect shall be an interaction of the first and third
feature dimension.

y_fixed = X[:,0:1] * X[:,2:3]

Finally, like in the previous example, we simulate confounding effects by
adding a sample from a multivariate Gaussian with a squared quadratic
covariance function.

kernel=utils.getQuadraticKernel(x, d=200)

y_conf = y_fixed.copy()

y_conf += SP.random.multivariate_normal(\
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SP.zeros(n_samples), kernel).reshape(-1,1)

y_conf += .1*SP.random.randn(n_samples,1)

In addition, we also add a small amount of independent Gaussian noise.

After splitting, we fit both, the mixed RF and the random forest on the
training sample. The test sample is used obtain predictions.

(training, test) = utils.crossValidationScheme(\

2, n_samples)

lm_forest = LMF(kernel=kernel[SP.ix_(\

training, training)])

lm_forest.fit(X[training], y_conf[training])

response_tot = lm_forest.predict(X[test],\

kernel[SP.ix_(test,training)])

# make random forest prediction for comparison

random_forest = LMF(kernel='iid')

random_forest.fit(X[training], y_conf[training])

response_iid = random_forest.predict(X[test])

So far everything is analog to our previous example. In addition, the mixed
RF allows us to predict the fixed effect only. All we need to do is dropping
the cross covariance from the parameters of the prediction function, i.e.

response_fixed = lm_forest.predict(X[test]).

The results of all predictions and ground truth can be observed in the
upper panel of Figure D.3. To visualize the whole binary predictor matrix
X in a single dimension we just need to plot the prediction against the
original (decimal) feature vector x.

PL.plot(x, y_fixed, 'g--')

PL.plot(x, y_conf, '.7')

PL.plot(x[test], response_tot, 'r-.')

PL.plot(x[test], response_fixed, 'c-.')

PL.plot(x[test], response_iid, 'b-.')

PL.title('prediction')

PL.xlabel('genotype (in decimal encoding)')

PL.ylabel('phenotype')

PL.show()

PL.close()
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Figure D.3.: Results for a simulated data set with a single interaction

Finally, we evaluate the feature importances which are automatically com-
puted while fitting the forests.

feature_scores_lmf = lm_forest.log_importance

feature_scores_rf = random_forest.log_importance

These scores are plotted in Figure D.4. We generate this plot by:
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Figure D.4.: Variable importances as computed by random forest and mixed
random forest

n_predictors = X.shape[1]

PL.bar(SP.arange(n_predictors),\

feature_scores_lmf, .3, color='r')

PL.bar(SP.arange(n_predictors)+.3,\
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feature_scores_rf, .3, color='b')

PL.title('feature importances')

PL.xlabel('feature dimension')

PL.ylabel('log feature score')

PL.xticks(SP.arange(n_predictors)+.3,\

SP.arange(n_predictors)+1)

PL.legend(['mixed random forest', 'random forest'])

PL.show().
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Appendix E

Supplementary Figures and Tables
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Figure E.1.: Precision-recall curves for alternative methods in our baseline sim-
ulation setting indicated by the asterix in Figure 6.1 where variation of simu-
lated traits is caused by three linear additive-, three pairwise epistatic genetic
effects, population structure and independent noise. Relative contributions of
fixed genetic-, population effect and independent Gaussian noise to the total trait
variance are split into 0.375:0.5:0.125.
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Figure E.2.: Fraction of discovered pathway-member genes in trans in depen-
dence of the feature importance rank. Overall, the fraction of cis annotated
SNPs was relatively low, however, as expected the highest ranking predictors are
strongly enriched for cis associations.

Figure E.3.: Concordance of detected expression QTLs using alternative meth-
ods. The experimental setup is identical to the analysis shown in Figure 6.2.
However, instead of applying alternative association methods to individual chro-
mosomes, they were applied to genome-wide markers. In line with the hypothesis
of proximal contamination ( [35]), the performance of all mixed-model based ap-
proaches decreased.
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Figure E.4.: Additional correlation plots of the relative out-of-sample prediction
accuracy when using alternative methods (see Figure 6.3(a)). Shown is the out-
of-sample correlation coefficient, for different pair-wise comparisons of prediction
methods.
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Figure E.5.: Empirical runtime for the mixed RF and alternative methods when
applied for prediction of mouse phenotypes. Each single prediction experiment
considers all genome-wide 12,545 markers for a total of 1,940 individuals, employ-
ing five-fold cross validation for out-of-sample prediction. The runtimes as shown
correspond to the average time complexity across all 124 phenotypes. Errobars
correspond to the empirical variance across phenotypes.
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E. Supplementary Figures and Tables

Table E.1.: Complete list of results for mouse phenotype prediction as shown
in Figure 6.3. For each phenotype the best predicting method (out of sample
correlation coefficient) is marked in bold font.

mfex rfsci LmmLasso Lasso BLUP

AdrenalMeanWeight 0.62 ±4.4e-03 0.62 ±3.8e-03 0.52 ±5.5e-03 0.51 ±5.3e-03 0.44 ±5.6e-03

Context 0.23 ±2.9e-03 0.21 ±3.7e-03 0.22 ±5.0e-03 0.16 ±7.7e-03 0.23 ±3.1e-03

Anx 0.33 ±3.5e-03 0.31 ±4.9e-03 0.33 ±3.5e-03 0.29 ±2.3e-03 0.34 ±4.2e-03

Freeze 0.28 ±6.1e-03 0.25 ±4.9e-03 0.28 ±7.2e-03 0.24 ±7.7e-03 0.28 ±6.1e-03

Explore 0.37 ±5.6e-03 0.32 ±5.7e-03 0.37 ±5.5e-03 0.32 ±6.1e-03 0.37 ±5.8e-03

Biochem.Albumin 0.24 ±2.9e-03 0.25 ±2.7e-03 0.23 ±3.5e-03 0.20 ±2.8e-03 0.23 ±3.3e-03

Biochem.ALP 0.59 ±3.3e-03 0.56 ±2.4e-03 0.55 ±4.9e-03 0.53 ±3.8e-03 0.56 ±3.7e-03

Biochem.ALT 0.15 ±1.3e-02 0.19 ±8.9e-03 0.15 ±1.2e-02 0.11 ±1.0e-02 0.16 ±1.2e-02

Biochem.AST 0.16 ±8.0e-03 0.16 ±3.9e-03 0.19 ±7.3e-03 0.17 ±8.2e-03 0.18 ±7.2e-03

Biochem.Calcium 0.25 ±8.7e-03 0.27 ±8.3e-03 0.22 ±8.0e-03 0.22 ±8.3e-03 0.22 ±8.9e-03

Biochem.Chloride 0.34 ±5.4e-03 0.35 ±3.9e-03 0.29 ±5.5e-03 0.29 ±3.3e-03 0.30 ±4.6e-03

Biochem.Creatinine 0.17 ±7.1e-03 0.16 ±8.0e-03 0.16 ±7.8e-03 0.13 ±8.8e-03 0.15 ±6.3e-03

Biochem.Glucose 0.26 ±3.9e-03 0.25 ±5.0e-03 0.24 ±3.6e-03 0.22 ±3.4e-03 0.24 ±3.8e-03

Biochem.HDL 0.61 ±7.2e-03 0.60 ±5.6e-03 0.57 ±5.0e-03 0.56 ±6.3e-03 0.52 ±5.4e-03

Biochem.LDL 0.37 ±3.7e-03 0.31 ±3.4e-03 0.36 ±4.2e-03 0.33 ±5.8e-03 0.37 ±4.1e-03

Biochem.Phosphorous 0.22 ±2.8e-03 0.22 ±1.6e-03 0.22 ±3.9e-03 0.18 ±3.3e-03 0.22 ±3.5e-03

Biochem.Potassium 0.10 ±1.2e-02 0.11 ±1.4e-02 0.01 ±1.2e-02 0.01 ±1.4e-02 0.09 ±1.4e-02

Biochem.Sodium 0.33 ±6.3e-03 0.34 ±6.1e-03 0.28 ±5.5e-03 0.26 ±7.2e-03 0.28 ±5.4e-03

Biochem.Tot.Cholesterol 0.48 ±6.0e-03 0.48 ±6.4e-03 0.46 ±5.0e-03 0.45 ±5.6e-03 0.38 ±4.6e-03

Biochem.Tot.Protein 0.18 ±7.1e-03 0.17 ±6.1e-03 0.15 ±6.9e-03 0.17 ±1.8e-03 0.15 ±7.1e-03

Biochem.Triglycerides 0.40 ±5.3e-03 0.40 ±5.6e-03 0.37 ±4.8e-03 0.36 ±1.6e-03 0.33 ±6.7e-03

Biochem.Urea 0.31 ±6.0e-03 0.32 ±7.9e-03 0.33 ±7.3e-03 0.24 ±8.2e-03 0.32 ±7.1e-03

BurrowedPelletWeight 0.36 ±1.7e-03 0.34 ±2.6e-03 0.35 ±1.1e-03 0.31 ±2.2e-03 0.36 ±1.9e-03

Imm.PctCD4andCD3 0.39 ±4.8e-03 0.38 ±5.6e-03 0.37 ±4.1e-03 0.36 ±4.4e-03 0.39 ±4.3e-03

CD4Count 0.35 ±4.3e-03 0.34 ±7.2e-03 0.32 ±2.9e-03 0.29 ±3.7e-03 0.36 ±4.4e-03

Imm.PctCD4inCD3 0.69 ±5.2e-03 0.65 ±3.9e-03 0.62 ±3.8e-03 0.62 ±3.8e-03 0.58 ±4.6e-03

Imm.PctCD3 0.48 ±7.2e-03 0.49 ±6.2e-03 0.46 ±6.8e-03 0.44 ±6.9e-03 0.47 ±8.1e-03

Imm.PctCD8inCD3 0.73 ±3.4e-03 0.70 ±1.9e-03 0.68 ±2.8e-03 0.67 ±3.7e-03 0.64 ±3.9e-03

Imm.PctCD8andCD3 0.72 ±6.6e-03 0.68 ±6.0e-03 0.66 ±6.7e-03 0.65 ±7.0e-03 0.65 ±5.4e-03

CD8Count 0.33 ±7.3e-03 0.34 ±5.3e-03 0.32 ±9.4e-03 0.26 ±9.3e-03 0.33 ±6.4e-03

Context.Mean.Freeze 0.32 ±4.9e-03 0.29 ±8.0e-03 0.31 ±4.7e-03 0.30 ±3.3e-03 0.32 ±3.7e-03

Cue.Mean.Freeze.Corrected.D. 0.35 ±2.2e-03 0.33 ±3.2e-03 0.23 ±5.3e-03 0.21 ±2.6e-03 0.23 ±5.5e-03

Cue.Freeze.Base12.Increase 0.01 ±5.6e-03 -0.02 ±7.2e-03 0.01 ±1.0e-02 0.01 ±6.3e-03 0.01 ±9.6e-03

Cue.Mean.Freeze.Post 0.16 ±7.1e-03 0.11 ±7.7e-03 0.17 ±6.9e-03 0.09 ±6.1e-03 0.17 ±6.8e-03

Cue.Mean.Activity.Corrected.D. 0.02 ±8.9e-03 0.00 ±1.0e-02 -0.00 ±6.7e-03 -0.03 ±8.5e-03 -0.00 ±7.1e-03

Cue.Mean.Activity.Post -0.01 ±1.2e-02 -0.02 ±1.1e-02 -0.01 ±7.5e-03 -0.05 ±1.0e-02 -0.00 ±6.9e-03

Cue.Activity.Base12.Increase -0.01 ±6.4e-03 0.01 ±4.9e-03 -0.01 ±6.1e-03 -0.01 ±8.8e-03 -0.01 ±5.7e-03

Cue.Raw.Activity.Before.Tone1 0.26 ±5.0e-03 0.24 ±2.8e-03 0.22 ±4.5e-03 0.22 ±3.5e-03 0.22 ±4.8e-03

EMO 0.28 ±4.7e-03 0.27 ±5.2e-03 0.29 ±5.4e-03 0.25 ±7.5e-03 0.29 ±5.4e-03

EPM.ClosedArmDistance 0.27 ±1.7e-03 0.24 ±2.3e-03 0.27 ±2.2e-03 0.26 ±4.3e-03 0.27 ±2.1e-03

EPM.ClosedArmEntries 0.17 ±6.5e-03 0.17 ±4.4e-03 0.17 ±5.6e-03 0.16 ±7.7e-03 0.17 ±5.8e-03

EPM.ClosedArmTime 0.29 ±2.5e-03 0.26 ±3.0e-03 0.30 ±2.7e-03 0.25 ±4.2e-03 0.31 ±3.4e-03

EPM.JunctionDistance 0.45 ±1.9e-03 0.43 ±5.0e-03 0.43 ±2.2e-03 0.39 ±1.3e-03 0.43 ±2.4e-03

EPM.JunctionEntries 0.18 ±5.7e-03 0.16 ±1.1e-02 0.19 ±2.3e-03 0.16 ±5.0e-03 0.19 ±2.7e-03

EPM.JunctionTime 0.20 ±2.7e-03 0.20 ±2.7e-03 0.20 ±3.2e-03 0.19 ±3.6e-03 0.20 ±3.2e-03

EPM.OpenArmDistance 0.39 ±3.1e-03 0.38 ±1.8e-03 0.38 ±6.7e-03 0.35 ±5.2e-03 0.38 ±6.8e-03

EPM.OpenArmEntries 0.36 ±8.7e-03 0.36 ±7.8e-03 0.38 ±9.1e-03 0.33 ±7.0e-03 0.38 ±8.9e-03

EPM.OpenArmLatency 0.23 ±5.0e-03 0.19 ±7.0e-03 0.24 ±5.4e-03 0.19 ±4.0e-03 0.24 ±5.4e-03

EPM.OpenArmLatencyC. 0.17 ±4.5e-03 0.15 ±8.6e-03 0.18 ±3.9e-03 0.14 ±4.4e-03 0.18 ±4.0e-03

EPM.OpenArmTime 0.34 ±7.0e-03 0.33 ±5.8e-03 0.34 ±8.9e-03 0.28 ±6.5e-03 0.34 ±8.9e-03

FirstEarHoleArea 0.39 ±4.8e-03 0.36 ±4.7e-03 0.39 ±5.9e-03 0.37 ±4.4e-03 0.38 ±4.8e-03

SecondEarHoleArea 0.39 ±7.7e-03 0.38 ±6.7e-03 0.40 ±8.5e-03 0.36 ±5.5e-03 0.37 ±8.5e-03

EarHoleMeanArea 0.45 ±5.1e-03 0.43 ±5.7e-03 0.45 ±4.3e-03 0.41 ±4.7e-03 0.43 ±4.6e-03

FN.Latency 0.22 ±4.7e-03 0.18 ±4.6e-03 0.22 ±5.0e-03 0.16 ±5.4e-03 0.23 ±5.2e-03

FN.LatencyCensored 0.20 ±4.8e-03 0.16 ±3.7e-03 0.20 ±4.9e-03 0.17 ±3.4e-03 0.20 ±5.1e-03

FN.PctWtLoss 0.27 ±5.4e-03 0.29 ±6.2e-03 0.24 ±5.8e-03 0.22 ±7.9e-03 0.24 ±5.3e-03

Glucose 0 0.51 ±7.2e-03 0.51 ±7.2e-03 0.42 ±6.0e-03 0.41 ±4.5e-03 0.37 ±6.4e-03

Glucose 15 0.32 ±2.7e-03 0.31 ±6.2e-03 0.30 ±2.0e-03 0.27 ±1.2e-03 0.31 ±3.2e-03
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Table E.1.: Complete list of results for mouse phenotype prediction as shown
in Figure 6.3. For each phenotype the best predicting method (out of sample
correlation coefficient) is marked in bold font.

mfex rfsci LmmLasso Lasso BLUP

Glucose 30 0.27 ±3.1e-03 0.28 ±3.7e-03 0.26 ±3.2e-03 0.27 ±1.5e-03 0.26 ±3.1e-03

Glucose 75 0.30 ±5.5e-03 0.29 ±6.7e-03 0.26 ±5.0e-03 0.22 ±3.7e-03 0.26 ±4.6e-03

Glucose.Slope 0.09 ±3.3e-03 0.09 ±3.0e-03 0.08 ±6.6e-03 0.12 ±2.5e-03 0.09 ±5.1e-03

Haem.ALYabs 0.07 ±6.3e-03 0.07 ±6.7e-03 0.07 ±6.1e-03 0.08 ±6.2e-03 0.07 ±6.2e-03

Haem.BASabs 0.11 ±7.8e-03 0.01 ±7.1e-03 0.11 ±7.9e-03 0.03 ±5.7e-03 0.11 ±7.9e-03

Haem.HCT 0.13 ±9.6e-03 0.13 ±9.2e-03 0.14 ±9.4e-03 0.11 ±3.5e-03 0.13 ±8.3e-03

Haem.HGB 0.16 ±1.1e-02 0.16 ±7.6e-03 0.17 ±9.8e-03 0.15 ±7.7e-03 0.18 ±8.2e-03

Haem.LICabs 0.15 ±1.3e-02 0.21 ±1.7e-02 0.17 ±1.0e-02 0.16 ±8.4e-03 0.17 ±9.5e-03

Haem.MCH 0.49 ±6.6e-03 0.40 ±7.7e-03 0.51 ±6.7e-03 0.50 ±5.7e-03 0.49 ±6.8e-03

Haem.MCHC 0.41 ±3.2e-03 0.42 ±2.1e-03 0.38 ±5.5e-03 0.36 ±4.8e-03 0.39 ±3.6e-03

Haem.MCV 0.50 ±4.9e-03 0.45 ±3.9e-03 0.48 ±5.8e-03 0.47 ±5.0e-03 0.50 ±5.0e-03

Haem.MONabs 0.14 ±8.6e-03 0.16 ±1.0e-02 0.15 ±7.8e-03 0.12 ±5.2e-03 0.15 ±7.5e-03

Haem.MPV 0.32 ±1.1e-02 0.33 ±1.1e-02 0.33 ±6.5e-03 0.27 ±5.8e-03 0.29 ±5.8e-03

Haem.NEUabs 0.28 ±5.7e-03 0.29 ±8.6e-03 0.28 ±6.3e-03 0.23 ±6.5e-03 0.28 ±6.3e-03

Haem.PCT 0.27 ±4.8e-03 0.25 ±4.6e-03 0.22 ±4.1e-03 0.19 ±3.0e-03 0.22 ±4.8e-03

Haem.PLT 0.27 ±8.8e-03 0.29 ±8.7e-03 0.24 ±9.6e-03 0.20 ±7.6e-03 0.24 ±1.1e-02

Haem.RBC 0.15 ±5.3e-03 0.17 ±4.8e-03 0.17 ±4.6e-03 0.17 ±3.1e-03 0.17 ±4.9e-03

Haem.RDW 0.49 ±1.8e-03 0.49 ±2.9e-03 0.48 ±2.2e-03 0.45 ±1.9e-03 0.49 ±1.9e-03

Haem.WBC 0.31 ±5.2e-03 0.33 ±6.3e-03 0.31 ±4.2e-03 0.26 ±4.2e-03 0.33 ±2.1e-03

Imm.Bcell.size 0.49 ±5.5e-03 0.52 ±3.0e-03 0.42 ±6.3e-03 0.39 ±6.2e-03 0.46 ±3.5e-03

Imm.CD4.size 0.52 ±5.6e-03 0.54 ±3.5e-03 0.44 ±6.5e-03 0.42 ±6.4e-03 0.47 ±4.2e-03

Imm.CD8.size 0.50 ±5.0e-03 0.53 ±3.6e-03 0.43 ±6.0e-03 0.41 ±6.3e-03 0.46 ±3.7e-03

Imm.B220Median 0.35 ±8.7e-03 0.38 ±1.1e-02 0.36 ±9.0e-03 0.34 ±7.8e-03 0.35 ±8.8e-03

Imm.CD4XGeoMean 0.59 ±2.8e-03 0.54 ±4.3e-03 0.57 ±2.4e-03 0.55 ±2.9e-03 0.59 ±2.1e-03

Imm.CD4YGeoMean 0.29 ±7.7e-03 0.36 ±8.7e-03 0.30 ±8.7e-03 0.29 ±8.0e-03 0.29 ±7.6e-03

Imm.CD4inCD3XGeoMean 0.61 ±4.5e-03 0.61 ±4.7e-03 0.61 ±4.6e-03 0.59 ±5.3e-03 0.61 ±4.7e-03

Imm.CD4inCD3YGeoMean 0.30 ±7.7e-03 0.34 ±9.3e-03 0.31 ±8.8e-03 0.30 ±7.9e-03 0.30 ±7.4e-03

Imm.CD8XGeoMean 0.28 ±8.6e-03 0.29 ±6.6e-03 0.28 ±8.7e-03 0.23 ±9.8e-03 0.29 ±8.8e-03

Imm.CD8YGeoMean 0.34 ±4.5e-03 0.36 ±4.5e-03 0.33 ±5.6e-03 0.30 ±5.3e-03 0.34 ±4.6e-03

Imm.CD8inCD3XGeoMean 0.28 ±8.6e-03 0.28 ±6.9e-03 0.28 ±8.6e-03 0.23 ±9.9e-03 0.29 ±8.8e-03

Imm.CD8inCD3YGeoMean 0.33 ±5.0e-03 0.35 ±8.6e-03 0.31 ±4.5e-03 0.28 ±2.4e-03 0.31 ±3.9e-03

Imm.PctB220 0.49 ±2.3e-03 0.46 ±5.0e-03 0.47 ±3.0e-03 0.46 ±2.9e-03 0.49 ±3.3e-03

Imm.PctCD3 0.48 ±7.2e-03 0.49 ±6.2e-03 0.46 ±6.8e-03 0.44 ±6.9e-03 0.47 ±8.1e-03

Imm.PctCD4 0.41 ±9.5e-03 0.41 ±7.4e-03 0.41 ±8.9e-03 0.39 ±6.8e-03 0.40 ±9.8e-03

Imm.PctCD4inCD3 0.69 ±5.2e-03 0.65 ±3.9e-03 0.62 ±3.8e-03 0.62 ±3.8e-03 0.58 ±4.6e-03

Imm.PctCD8 0.72 ±3.4e-03 0.68 ±5.0e-03 0.67 ±3.4e-03 0.69 ±2.9e-03 0.66 ±3.3e-03

Imm.PctCD8inCD3 0.73 ±3.4e-03 0.70 ±1.9e-03 0.68 ±2.8e-03 0.67 ±3.7e-03 0.64 ±3.9e-03

Imm.CD4CD8Ratio 0.70 ±4.7e-03 0.68 ±5.4e-03 0.65 ±4.6e-03 0.64 ±5.7e-03 0.63 ±5.6e-03

Insulin 0 0.33 ±4.7e-03 0.30 ±6.7e-03 0.33 ±5.0e-03 0.28 ±3.8e-03 0.35 ±5.3e-03

Insulin 15 0.35 ±6.3e-03 0.34 ±5.7e-03 0.38 ±8.1e-03 0.33 ±5.6e-03 0.38 ±8.5e-03

Insulin 30 0.37 ±3.3e-03 0.39 ±2.7e-03 0.38 ±3.6e-03 0.35 ±3.8e-03 0.38 ±3.7e-03

Insulin 75 0.29 ±3.7e-03 0.32 ±3.0e-03 0.30 ±7.4e-03 0.27 ±4.3e-03 0.31 ±6.7e-03

KI67 0.54 ±5.8e-03 0.52 ±1.0e-02 0.49 ±3.3e-03 0.48 ±3.4e-03 0.54 ±6.1e-03

OFT.CenterTime 0.27 ±4.7e-03 0.24 ±5.1e-03 0.28 ±2.6e-03 0.23 ±5.9e-03 0.28 ±2.9e-03

OFT.Latency 0.25 ±4.7e-03 0.23 ±4.5e-03 0.26 ±5.1e-03 0.24 ±5.7e-03 0.26 ±5.2e-03

OFT.Latency.Censored 0.23 ±3.1e-03 0.22 ±2.6e-03 0.24 ±3.6e-03 0.22 ±3.8e-03 0.24 ±3.1e-03

OFT.TotalActivity 0.37 ±5.3e-03 0.35 ±3.4e-03 0.37 ±4.8e-03 0.33 ±7.6e-03 0.38 ±4.2e-03

Obesity.BMI 0.42 ±1.9e-03 0.41 ±4.1e-03 0.34 ±2.7e-03 0.33 ±2.2e-03 0.28 ±2.3e-03

Obesity.BodyLength 0.34 ±2.7e-03 0.34 ±2.6e-03 0.33 ±3.3e-03 0.30 ±4.7e-03 0.33 ±3.0e-03

PAS.Ambulatory1 0.31 ±3.1e-03 0.30 ±5.1e-03 0.32 ±3.6e-03 0.28 ±7.0e-03 0.32 ±3.3e-03

PAS.Ambulatory6 0.19 ±9.0e-03 0.21 ±7.5e-03 0.19 ±9.4e-03 0.16 ±6.5e-03 0.19 ±9.1e-03

PAS.TotalAmbulatory 0.33 ±5.5e-03 0.31 ±2.7e-03 0.34 ±6.2e-03 0.32 ±8.8e-03 0.34 ±5.4e-03

PAS.TotalFine 0.27 ±8.0e-03 0.26 ±6.4e-03 0.27 ±7.5e-03 0.23 ±8.9e-03 0.27 ±8.0e-03

Pleth.EnhancedDiff 0.36 ±5.5e-03 0.34 ±7.1e-03 0.36 ±6.2e-03 0.33 ±5.9e-03 0.36 ±5.9e-03

Pleth.base.BreathFrequency 0.32 ±5.2e-03 0.30 ±6.6e-03 0.30 ±5.3e-03 0.26 ±4.9e-03 0.31 ±5.0e-03

Pleth.base.EnhancedPause 0.28 ±2.6e-03 0.30 ±5.2e-03 0.28 ±3.0e-03 0.27 ±4.8e-03 0.28 ±2.7e-03

Pleth.base.ExpiratoryTime 0.32 ±5.5e-03 0.31 ±4.4e-03 0.32 ±5.7e-03 0.27 ±3.1e-03 0.32 ±5.5e-03

Pleth.base.InspiratoryTime 0.25 ±9.4e-03 0.26 ±7.3e-03 0.27 ±9.4e-03 0.22 ±7.9e-03 0.27 ±9.4e-03
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E. Supplementary Figures and Tables

Table E.1.: Complete list of results for mouse phenotype prediction as shown
in Figure 6.3. For each phenotype the best predicting method (out of sample
correlation coefficient) is marked in bold font.

mfex rfsci LmmLasso Lasso BLUP

Pleth.base.MinuteVolume 0.39 ±3.3e-03 0.36 ±4.3e-03 0.36 ±3.9e-03 0.33 ±3.6e-03 0.35 ±3.4e-03

Pleth.base.TidalVolume 0.43 ±7.6e-03 0.41 ±8.2e-03 0.40 ±7.2e-03 0.38 ±4.3e-03 0.37 ±7.0e-03

Pleth.meta.BreathFrequency 0.35 ±5.4e-03 0.33 ±6.7e-03 0.36 ±4.6e-03 0.30 ±9.1e-03 0.36 ±4.8e-03

Pleth.meta.EnhancedPause 0.41 ±4.0e-03 0.38 ±3.6e-03 0.42 ±4.6e-03 0.38 ±6.4e-03 0.41 ±4.3e-03

Pleth.meta.ExpiratoryTime 0.36 ±3.3e-03 0.36 ±5.6e-03 0.36 ±3.2e-03 0.29 ±4.7e-03 0.36 ±3.2e-03

Pleth.meta.InspiratoryTime 0.40 ±2.9e-03 0.37 ±4.4e-03 0.39 ±3.0e-03 0.35 ±5.0e-03 0.40 ±3.1e-03

Pleth.meta.MinuteVolume 0.49 ±4.8e-03 0.48 ±2.5e-03 0.42 ±6.7e-03 0.37 ±6.0e-03 0.43 ±6.7e-03

Pleth.meta.TidalVolume 0.52 ±4.5e-03 0.50 ±6.0e-03 0.48 ±4.9e-03 0.45 ±4.5e-03 0.46 ±5.2e-03
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