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Prof. Dr. Oliver Rheinbach, TU Bergakademie Freiberg

Prof. Dr. Olof B. Widlund, New York University

Tag der mündlichen Prüfung: 23. 10. 2015
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Abstract

Iterative substructuring methods are well suited for the parallel iterative so-

lution of elliptic partial differential equations. These methods are based on

subdividing the computational domain into smaller nonoverlapping subdo-

mains and solving smaller problems on these subdomains. The solutions are

then joined to a global solution in an iterative process. In case of a scalar dif-

fusion equation or the equations of linear elasticity with a diffusion coefficient

or Young modulus, respectively, constant on each subdomain, the numerical

scalability of iterative substructuring methods can be proven. However, the

convergence rate deteriorates significantly if the coefficient in the underly-

ing partial differential equation (PDE) has a high contrast across and along

the interface of the substructures. Even sophisticated scalings often do not

lead to a good convergence rate. One possibility to enhance the convergence

rate is to choose appropriate primal constraints. In the present work three

different adaptive approaches to compute suitable primal constraints are dis-

cussed. First, we discuss an adaptive approach introduced by Dohrmann and

Pechstein that draws on the operator PD which is an important ingredient in

the analysis of iterative substructuring methods like the dual-primal Finite

Element Tearing and Interconnecting (FETI-DP) method and the closely

related Balancing Domain Decomposition by Constraints (BDDC) method.

We will also discuss variations of the method by Dohrmann and Pechstein

introduced by Klawonn, Radtke, and Rheinbach. Secondly, we describe an

adaptive method introduced by Mandel and Soused́ık which is also based on

the PD-operator. Recently, a proof for the condition number bound in this

method was provided by Klawonn, Radtke, and Rheinbach. Thirdly, we dis-

cuss an adaptive approach introduced by Klawonn, Radtke, and Rheinbach

that enforces a Poincaré- or Korn-like inequality and an extension theorem.

In all approaches generalized eigenvalue problems are used to compute a

coarse space that leads to an upper bound of the condition number which is



independent of the jumps in the coefficient and depend on an a priori pre-

scribed tolerance. Proofs and numerical tests for all approaches are given in

two dimensions. Finally, all approaches are compared.



Übersicht

Nichtüberlappende Gebietszerlegungsverfahren sind geeignete Methoden zur

parallelen iterativen Lösung elliptischer partieller Differentialgleichungen. In

diesen Verfahren wird das Gebiet in kleinere Teilgebiete zerlegt und es werden

kleinere Probleme auf den Teilgebieten gelöst. Anschließend werden in einem

iterativen Prozeßdie Lösungen zu einer globalen Lösung zusammengefügt.

Im Fall von skalaren Diffusionsproblemen oder linearer Elastizität mit einem

Koeffizienten oder einem Elastizitätsmodul der konstant auf jedem Teilge-

biet ist, kann die numerische Skalierbarkeit dieser Verfahren bewiesen wer-

den. Jedoch verschlechtert sich die Konvergenzrate beträchtlich, falls der

Koeffizient der zugrundeliegenden partiellen Differentialgleichung (PDGL)

sowohl entlang als auch über Teilgebietsgrenzen hinweg einen hohen Kon-

trast aufweist. Auch anspruchsvolle Skalierungen führen häufig nicht zu einer

guten Konvergenz. Eine Möglichkeit die Konvergenz zu verbessern besteht

darin, passende primale Bedingungen zu wählen. In der vorliegenden Arbeit

werden drei verschiedene Herangehensweisen vorgestellt um adäquate Be-

dingungen zu berechnen. Zuerst wird ein adaptiver Ansatz von Dohrmann

und Pechstein dargestellt. Dieser Ansatz nutzt den PD-Operator, welcher

eine wichtige Rolle in der Analysis von iterativen Substrukturierungsmetho-

den wie der dual-primal Finite Element Tearing and Interconnecting (FETI-

DP) Methode und der eng verwandten Balancing Domain Decomposition

by Constraints (BDDC) Methode spielt. Außerdem werden Varianten des

Algorithmus von Dohrmann und Pechstein diskutiert, welche von Klawonn,

Radtke und Rheinbach eingeführt wurden. Zweitens wird ein adaptiver Al-

gorithmus von Mandel und Soused́ık vorgestellt, der auch am PD-Operator

ansetzt. Kürzlich wurde eine Konditionszahlabschätzung für diesen Algo-

rithmus in zwei Raumdimensionen von Klawonn, Radtke und Rheinbach be-

wiesen. Drittens wird ein adaptiver Algorithmus bewiesen, welcher von Kla-

wonn, Radtke und Rheinbach eingeführt wurde und Bedingungen berechnet,

3



die eine Poincaré ähnliche Ungleichung und einen Fortsetzungssatz ermöglicht.

In allen Ansätzen werden verallgemeinerte Eigenwertprobleme verwendet um

einen Grobgitterraum auszurechnen, der zu einer oberen Schranke der Kon-

ditionszahl führt, welche unabhängig von Sprüngen im Koeffizienten ist und

von einer a priori vorgegebenen Toleranz abhängt. Es werden Beweise aller

Verfahren und numerische Tests für zwei Raumdimensionen dargelegt. Ab-

schließend werden alle Verfahren verglichen.
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Introduction

Many physical processes in nature can be modeled by partial differential

equations (PDEs). In engineering applications, e.g., structural mechanics, in

particular elliptic partial differential equations play an important role. Un-

der certain conditions, e.g., on the boundary and the underlying domain,

the existence and uniqueness of a solution can be proven. Solutions to these

equations on specific domains can be impossible to derive analytically. How-

ever, numerical algorithms can often solve the equations approximately up to

a sufficient precision. With an increasing computational effort the accuracy

of the solution will be improved. One of these methods is the Finite Element

Method. The precision is mainly limited by the available computational re-

sources and the condition of the problem. Usually, the required precision of

the approximate solution dictates the size of a system of linear equations that

has to be solved, either by direct or iterative methods. In Finite Element

Methods the dimension of the space of finite element functions V h determines

the accuracy of the solution. This results in very large systems of equations.

Additionally, these systems are mostly ill-conditioned. Direct methods have

a complexity which depends polynomially on the number of unknowns and

have a high demand of memory. At a certain size, a linear system is there-

fore not solvable in a reasonable time with a direct method and iterative

algorithms are needed. Since the convergence of iterative methods applied

to elliptic systems heavily depends on the condition number, they need good

preconditioners.

Modern computers have an increasingly parallel architecture and require
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Introduction

new algorithms that perform efficiently in these environments. An efficient

approach to parallelize the finite element method for the use on modern par-

allel computers are domain decomposition methods (DDMs). These methods

are based on subdivision of the computational domain of the PDE into many

subdomains which makes it possible to solve many smaller problems on many

processors at the same time instead of solving one big problem in a sequential

way. The subdivision can be either overlapping or nonoverlapping. Unfor-

tunately, communication is still needed between the subproblems such that

the parallelism is not trivial. A small global problem needs to be solved ad-

ditionally, to join the solutions of the subproblems to a global solution of the

PDE.

The concept of scalability of a parallel algorithm was introduced to de-

note if an algorithm performs well on parallel machines. The performance

of DDMs is mainly driven by two kinds of scalability, i.e., numerical and

parallel scalability. Numerical scalability is achieved if a domain decompo-

sition algorithm solves problems of different sizes with the same number of

iterations. A DDM is weakly parallel scalable if the runtime to solution

remains constant while increasing the number of unknowns and the num-

ber of processors by the same factor. Strong parallel scalability is attained

if a problem with constant size is solved in half the time by doubling the

number of processors. Two very successful nonoverlapping decomposition

methods are the FETI-DP and BDDC algorithms, which have been intro-

duced in [23] and [14], respectively. These algorithms have been proven to

be numerical scalable for different partial differential equations under certain

assumptions [61, 56, 49, 52, 83, 53, 66] and achieve strong parallel scalability

in simulations; see, e.g., [23, 14, 43, 44, 55].

The preconditioned system obtained by solving elliptic problems by DDMs

is usually positive definite and solved by the preconditioned conjugate gradi-

ents method (PCG). The convergence rate of PCG is determined by the con-

8
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dition number. Thus it is an important indicator for the numerical scalability.

The condition number in FETI-DP and BDDC highly depends on the chosen

primal variables and the underlying equation. For scalar elliptic equations

in two dimensions with constant coefficients on each subdomain it suffices to

choose constraints associated with the vertices at the cross points of subdo-

mains as primal variables, e.g., the cross points of the subdomain interfaces.

This results in a condition number which is bounded by C
(
1 + log

(
H
h

))2
,

where H/h is a measure for the number of degrees of freedom in each sub-

domain and the constant is often independent of critical parameters, such as

coefficient jumps. The iteration counts grow only weakly in a logarithmical

sense with the number of unknowns in each subdomain. In three dimensions

edge averages over edges of the subdomains need to be chosen primal to

obtain the same bound.

However, for a general distribution of coefficient jumps, the constant in

the condition number bound can depend on the contrast of the coefficient

function if the coarse space is not chosen appropriately. In the classical the-

ory the constant in the condition number bound depends, among others,

on constants in the Poincaré or Korn inequality and in the extension theo-

rem [72, 82]. In [72] a detailed analysis of constants in weighted Poincaré in-

equalities for different coefficient functions is given. Certain coefficient func-

tions that satisfy a quasimonotonicity condition result in a Poincaré constant

that is independent of the contrast in the coefficient function. An application

to iterative substructuring methods can result in a condition number bound

independent of the contrast in the coefficient if weighted edge averages are

used [71, 45]. However, in many cases the Poincaré constant depends on the

jump in the coefficient.

Adaptive coarse spaces have been developed to obtain robust condition

number estimates in these cases. Typically these coarse spaces are selected by

computing certain eigenvectors of local generalized eigenvalue problems. In

9
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[4] an adaptive coarse space construction for a two-level Neumann-Neumann

method was discussed where low energy modes related to the substructure

are included in the Neumann-Neumann coarse solve. In [3] this approach

was considered in the context of a large scale industrial finite element solver

and applied to industrial problems. In [59, 60, 58] localized indicators of the

condition number depending on a localization of the PD-operator, used in

the analysis of iterative substructuring, on two neighboring subdomains are

heuristically developed. An adaptive coarse space was designed to guaran-

tee that this indicators are small. An abstract coarse space for overlapping

Schwarz algorithms has been developed in [79, 80]. Recently, in [81] a variant

for FETI and BDD based on this Schwarz coarse space was established. This

coarse space relies on the solution of eigenvalue problems that have the size

of one subdomain interface which are based on a localization of the precondi-

tioner to the neighborhood of the subdomains. Some related block strategies

to this adaptive coarse space were considered in [30]. In a recent paper [78] an

adaptive strategy without explicitly solving generalized eigenvalue problems

but using an adaptive strategy inside of a multi-preconditioned conjugate

gradients algorithm has been proposed. An adaptive coarse space for two-

level Schwarz preconditioners that is based on certain eigenvalue problems

with stiffness and mass matrices was analyzed in [28, 27]. In [32] general-

ized eigenvalue problems with stiffness and mass matrices have been used for

the computation of a special finite element discretization instead of for the

enrichment of the coarse space. This computation has been carried out in

parallel. In [42], we introduced a coarse space designed to replace weighted

Poincaré inequalities and an extension theorem. A coarse space related to

a local PD-estimate and an extension theorem was developed in [35]. Re-

cently, Dohrmann and Pechstein [68] proposed an adaptive coarse space for

BDDC methods which is based on a localization of PD-estimates to equiv-

alence classes. We proposed a variant of this method using different kinds

10
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of scalings in [39]. In [38], we presented a comparison of the approaches

in [59, 68, 39, 42] as well as a proof of the condition number estimate in two

dimensions for the coarse space given in [59], new variants of the algorithms

in [68, 39, 42] based on eigenvalue problems on slabs instead of subdomains,

and a new scaling for the coarse space from [42].

This thesis has the following outline: In Chapter 1, we first introduce

various model problems and their variational formulations. We review the

FETI-DP and BDDC domain decomposition methods and give an overview

on how to implement arbitrary primal constraints using a transformation of

basis or projector preconditioning. In the last section of this chapter, we

provide some spectral estimates that we will use throughout the thesis.

In the following three chapters we elaborate on three different approaches

to compute adaptive primal constraints in the FETI-DP and BDDC methods

for difficult problems, e.g., a high contrast in the coefficient of the underlying

PDE. In Chapter 2, we describe approaches recently introduced in [68] with

variants developed in [39, 38]. In Chapter 3, we briefly sketch an adaptive

coarse space developed in [59] and give a condition number estimate for this

coarse space in two dimensions; see also [38]. We also give an example for an

application to a Newton-Krylov algorithm for perfect plasticity. In Chapter 4,

we provide an adaptive approach, designed closely on the classical theory

of substructuring methods for elliptic equations aiming at replacing certain

inequalities such that the constants in these inequalities become independent

of critical parameters. The Poincaré inequality and an extension theorem are

replaced by estimates obtained from the solution of appropriate eigenvalue

problems. We introduced this approach in [42, 36]. In Chapter 5, we compare

the different approaches regarding computational cost and give numerical

examples.

11





1 Fundamentals

The present chapter contains concepts which will be frequently used through-

out this thesis. In Section 1.1, we will introduce different model problems.

Then, we will briefly recapitulate the Galerkin method for the discretization

of the variational formulations in Section 1.1.1. In Sections 1.2 and 1.3, we

will review two well known nonoverlapping domain decomposition algorithms,

the FETI-DP and BDDC methods. Section 1.4 gives a brief exposition of

how to transform the finite element basis in this methods to obtain arbi-

trary primal constraints. In Section 1.5, we will describe another possibility

how to introduce additional primal constraints in a second coarse level. Fi-

nally, in Section 1.6, we will review two lemmas from linear algebra regarding

eigenvectors of generalized eigenvalue problems.

1.1 Model Problems and Finite Elements

Let Ω ⊂ Rd, d = 2, 3 be a Lipschitz domain and ∂ΩD ⊂ ∂Ω a closed subset

of positive measure where we impose Dirichlet boundary conditions. We

denote by ∂ΩN = ∂Ω \ ∂ΩD the Neumann boundary. In the following we

will introduce the Galerkin method and various model problems considered

throughout this thesis.

13



1.1. Model Problems and Finite Elements

1.1.1 The Galerkin Method

We define the Sobolev space

H1
0 (Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}.

Let V = H1
0 (Ω, ∂ΩD) in the scalar case or V = H1

0 (Ω, ∂ΩD)d in the vector

valued case. Consider a bilinear form a(·, ·), a linear functional F (·), and the

variational problem: Find u ∈ V , such that

a(u, v) = F (v) ∀ v ∈ V.

The classical Galerkin approach is to replace the infinite dimensional space

V by a finite dimensional subspace V h ⊂ V , e.g. the space of conforming

piecewise linear finite element functions. By replacement of v ∈ V by vh ∈ V h

we obtain

a(uh, vh) = F (vh) ∀vh ∈ V h. (1.1)

Expressing uh =
∑n

i=1 uiϕi by the basis ϕi, i = 1, . . . , n of V h and replacing

vh by the basis functions yields

n∑
i=1

uia(ϕi, ϕj) = F (ϕj) ∀j = 1, . . . , n

or equivalently

Au = b, (1.2)

with A = (aij)i,j , aij = a(ϕi, ϕj), u = (ui)i, and b = (bi)i, where bi = F (ϕi).

In order to solve (1.1) we have to solve (1.2) for u.

1.1.2 Diffusion Equation

Let ρ(x) ∈ L∞(Ω) be piecewise constant on Ω and constant on any finite

element T ∈ Th with ρ(x) > 0. We consider the scalar elliptic boundary

14



Chapter 1. Fundamentals

value problem

−∇ · (ρ∇u) = f in Ω,

ρ∇u · n = 0 on ∂ΩN ,

u = 0 on ∂ΩD,

where n denotes the outer unit normal on ΩN . We obtain the weak formu-

lation: Find u ∈ H1
0 (Ω, ∂ΩD), such that

a(u, v) = F (v) ∀v ∈ H1
0 (Ω, ∂ΩD),

where

a(u, v) =

∫
Ω
ρ∇u · ∇v dx and F (v) =

∫
Ω
fv dx.

1.1.3 Linear Elasticity

In linear elasticity, Ω can be interpreted as a body which is exposed to a vol-

ume force f ∈ L2(Ω)d and a surface force g ∈ L2(∂ΩN )d, and deforms under

their influence. The difference between the starting configuration and the

deformed configuration is denoted as the displacement and can be expressed

by a function u : Rd → Rd. The linear elastic strain is then given by the

symmetric gradient

ε(u) =
1

2

(
∇(u) +∇(u)T

)
.

In the linear elastic model the displacement u is the solution of the boundary

value problem

−div σ(u) = f in Ω,

σ(u) · n = g on ∂ΩN ,

u = 0 on ∂ΩD,

where n denotes the outer unit normal on ∂ΩN . The tension tensor σ(u) is

given by σ(u) = Cε(u) with the fourth order elasticity tensor C and can be
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1.1. Model Problems and Finite Elements

alternatively expressed by

σ(u) = λtr ε(u)I + 2µε(u)

with the Lamé constants λ and µ. The Lamé constants of a material can

easily be derived from Young’s modulus E and Poisson’s ratio ν by

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.

In the following, we assume the material parameters to be piecewise constant

on Ω and constant on any finite element T ∈ Th. By multiplication with a

test function we obtain the variational formulation in the case of compressible

linear elasticity: Find u ∈ H1
0 (Ω, ∂ΩD)d, such that

a(u, v) = F (v) for all v ∈ H1
0 (Ω, ∂ΩD)d,

where a(u, v) =

∫
Ω
λ div(u) div(v) dx+

∫
Ω

2µε(u) : ε(v) dx,

and F (v) =

∫
Ω

f · v dx+

∫
∂ΩN

g · v ds.

For more details on linear elasticity in the finite element context, see, e.g., [5].

1.1.4 Almost Incompressible Linear Elasticity

For Poisson’s ratio approaching 1/2, locking phenomena will occur in the

standard displacement formulation. A well known remedy is to introduce a

displacement-pressure saddle point formulation and its mixed finite element

discretization. With the bilinear forms

a(u,v) =

∫
Ω
µ ε(u) : ε(v) dx,

b(v, p) =

∫
Ω

div(v)p dx,

c(p, q) =

∫
Ω

1

λ
pq dx,
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and the linear functional

F (v) =

∫
Ω

f · v dx+

∫
∂ΩN

g · v ds

the saddle point variational formulation is of the form:

Find (u, p) ∈ H1
0 (Ω, ∂ΩD)d × L2(Ω), such that

a(u,v) + b(v, p) = F (v) ∀v ∈ H1
0 (Ω, ∂ΩD)d,

b(u, q)− c(p, q) = 0 ∀ q ∈ L2(Ω).

For a stable mixed finite element discretization, special care has to be taken of

the choice of the finite element basis functions for the displacement and pres-

sure. Only pairs of basis functions should be chosen that fulfill the discrete

Babuška-Brezzi condition. For more details, see, e.g., [5]. The discretization

results in the linear systemA BT

B −C

u
p

 =

f
0

 .

In our numerical examples we use P2 − P0 elements. These elements are

inf-sup stable [7]. We can eliminate the discontinuous pressure elementwise

to obtain the Schur complement A+BTC−1B.

1.1.5 Perfect Elastoplastic Material Model

First, we will introduce the locally nonlinear variational formulation. In the

second paragraph, we will linearize this formulation by a Newton scheme

with a globalization strategy. The presentation here is based on [40].

Variational Formulation

The material model is derived from the quasistatic equation of equilibrium

divσ(x, t) = f(x, t);
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1.1. Model Problems and Finite Elements

see, e.g., [10, 75, 31]. Multiplying the equation with v ∈ H1
0 (Ω, ∂ΩD)d and

application of the Gauss theorem yields the weak formulation:

Find u ∈ H1
0 (Ω, ∂ΩD)d, such that for all v ∈ H1

0 (Ω, ∂ΩD)d∫
Ω
σ(u) : ε(v)dx =

∫
Ω

f · vdx+

∫
∂ΩN

g · vds.

By discretization in time using the implicit Euler method, we obtain in the

n-th timestep:

Find un ∈ H1
0 (Ω, ∂ΩD)d, such that for all v ∈ H1

0 (Ω, ∂ΩD)d∫
Ω
σn : ε(v) dx =

∫
Ω

fn · v dx+

∫
∂ΩN

gn · v ds,

where σn is dependent on the displacement un. This dependency is deter-

mined by the von Mises flow function and the chosen type of hardening. In

this thesis, we consider perfect elastoplastic material behavior and hardening

effects are absent. In this case, the von Mises flow function is given by

Φ(σ) = |dev(σ)| − σy,

where σy is the yield point of the material and the deviator of a tensor is

defined by

dev (σ) = σ − 1

d
tr (σ)Id×d.

The tension tensor in the n-th timestep is then linear elastic if Φ(σn) ≤ 0

and plastic otherwise. In the first case, we have

σn = (λ+ µ)tr
(
ε(un − un−1) + C−1σn−1

)
+ 2µ dev

(
ε(un − un−1) + C−1σn−1

)
with the Lamé constants λ and µ and the fourth order elasticity tensor C.

In the second case, the tension tensor in the n-th timestep reads

σn = (λ+ µ)tr
(
ε(un − un−1) + C−1σn−1

)
+ σy

dev
(
ε(un − un−1) + C−1σn−1

)
|dev (ε(un − un−1) + C−1σn−1) |

.

18



Chapter 1. Fundamentals

Note that in the first case, we have a linear relationship between the ten-

sion and the displacement, while in the second case, we have a nonlinearity

introduced by normalizing the deviatoric term. Here, by | · | we denote the

Frobenius norm. For a more detailed description how to obtain the time

discrete tension tensor explicitly for different types of hardening, see [10].

Linearization

The nonlinear discrete problem has to be linearized in every time step. Thus,

we will represent the problem as a root finding problem. We define the p-th

component of the vector field F by

Fp (un) =

∫
Ω
σn : ε(ϕp) dx−

∫
Ω

fn · ϕp dx−
∫
∂ΩN

gn · ϕp ds.

Then, the nonlinear problem reads: Solve F (un) = 0. Using Newton’s

method, the Newton update in the (k + 1)-th Newton step is

uk+1
n = ukn + τ∆uk+1

n

where τ is a step length parameter and with ∆uk+1
n defined as the solution

of

DF
(
ukn

)
∆uk+1

n = −F
(
ukn

)
.

Here, the tangential stiffness matrix DF is given componentwise by(
DF

(
ukn

))
pq

=
∂Fp

(
ukn
)

∂ukn,q
.

Let un−1 be the solution and σn−1 the resulting tension tensor in the (n−1)-

th timestep, respectively. Following [10], we obtain for the derivative

∂Fp
(
ukn
)

∂ukn,q
=

∫
Ω

(λ+ µ)tr (ε(ϕp))tr (ε(ϕq)) + κ1dev (ε(ϕp)) : dev (ε(ϕq))

− κ2(dev (ε(ϕp)) : dev (ε(v)))(dev (ε(v)) : dev (ε(ϕq))) dx,
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1.2. The FETI-DP Algorithm

where v = ε
(
ukn − un−1

)
+ C−1σn−1,

κ1 =


σy

|dev (v)|
, if |dev (v)| − σy

2µ > 0,

2µ, else,

and

κ2 =


σy

|dev (v)|3
, if |dev (v)| − σy

2µ > 0,

0, else.

In our numerical examples, we iterate in each timestep until the residual

satisfies the mixed stopping criterion

||F (ukn)||2 ≤ 10−10 + 10−6||F (u0
n)||2,

where u0
n := 0; for the stopping criterion, see, e.g. [10, p. 171, l. 34 of the

source code], [34, p. 73, (5.4)]. To guarantee the convergence we will use

the Armijo rule, see, e.g., [34], as a line search algorithm. In each Newton

iteration, we will assemble local stiffness matrices K(i) = DF
(
u
k,(i)
n

)
and

right-hand sides f (i) = F
(
u
k,(i)
n

)
, i = 1, . . . , N. Then we solve the linearized

system

DF
(
ukn

)
∆uk+1

n = −F
(
ukn

)
using FETI-DP as described in Section 1.2. We set τ = 1 as an initial step

length. Our trial update is given by uk+1
n,τ = ukn + τ∆uk+1

n . We test if the

Armijo condition∣∣∣∣∣∣F (uk+1
n,τ

)∣∣∣∣∣∣
2
<
(
1− 10−4 · τ

) ∣∣∣∣∣∣F (ukn

)∣∣∣∣∣∣
2

(1.3)

is satisfied. In this case we update u
k+1,(i)
n ← u

k+1,(i)
n,τ . Otherwise we halve

the step length τ ← τ/2 until (1.3) holds.

1.2 The FETI-DP Algorithm

In this section, which is based on the presentation in [42], we briefly review

an algorithmic description of the dual-primal Finite Element Tearing and
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Figure 1.1: Substructures that are partially assembled in primal vertices.

Interconnecting (FETI-DP) method in two dimensions; see, e.g., [23, 24,

49, 46, 45] and [14, 13, 56, 54, 57] for the closely related BDDC algorithm

described in the next section. For a more detailed introduction to FETI-DP,

see, e.g., [49, 43, 82].

Let Ω be decomposed into N nonoverlapping subdomains Ωi, i = 1, . . . , N .

Here, each Ωi is the union of shape regular triangular elements of diameter

O(h) with matching finite element nodes on neighboring subdomain bound-

aries across the interface

Γ :=

N⋃
i=1

∂Ωi \ ∂Ω.

Let Ω be additionally the union of a uniformly bounded number of shape reg-

ular finite elements with a diameter of O(H). We note that this assumption

is only needed for the analysis given in Chapter 4.

The interface in two dimensions is composed of subdomain edges and ver-

tices. In the following, we will define those sets by equivalence classes. We

define the sets of nodes on ∂ΩN , ∂Ωi, and Γ by ΩN,h, Ωi,h and Γh, re-

spectively. Following [49, 43], let for each interface node x ∈ Γh the set
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1.2. The FETI-DP Algorithm

Nx := {j ∈ {1, . . . , N} : x ∈ ∂Ωj,h} be the set containing the indices of sub-

domains which have x on their boundary. For a given node x ∈ Γh we

define Ccon(x) as the connected component of the nodal subgraph, defined

by Nx, to which x belongs. For two interface points x, y ∈ Γh, we define an

equivalence relation by

x ∼ y ⇔ Nx = Ny and y ∈ Ccon(x)

x ∈ E ⇔ |Nx| = 2 and x ∈ Γh \ ∂ΩN,h

x ∈ V ⇔ |Nx| ≥ 3 and @ y ∈ Γh such that x ∼ y.

We partition the set E by building connectivity components and denote the

edge between two subdomains Ωi and Ωj by Eij and the vertices of Ωi by

V ik. For the theoretical analysis of the coarse space in Chapter 4 we will also

assume that all the edges of Ωi are straight line segments.

In the following the standard piecewise linear finite element space on Ωi is

denoted by W h(Ωi). We assume that these finite element functions vanish

on ∂ΩD and that the triangulation on each subdomain is quasi-uniform. The

diameter of a subdomain Ωi is denoted by Hi or generically by H. For a part

of the boundary Ξ ⊂ ∂Ωi with positive measure, we denote by W h(Ξ) the

corresponding finite element trace space.

For each subdomain, we introduce local finite element trace spaces Wi :=

W h(∂Ωi ∩ Γ), i = 1, . . . , N and the product space W := ΠN
i=1Wi. Further-

more, we define by Ŵ the space of functions in W which are continuous

across the interface and introduce an intermediate space W̃ , Ŵ ⊂ W̃ ⊂ W ,

which consists of functions that are continuous in the primal variables, i.e.,

in all primal vertices and other primal constraints if a transformation of basis

has been carried out; see Section 1.4. All these notations are standard; see,

e.g., the monograph by Toselli and Widlund [82, Chapter 6] or Klawonn and

Widlund [49, p. 1546].
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For each subdomain Ωi, i = 1, . . . , N , we assemble a local stiffness matrix

K(i) and a local right hand side f (i). We denote the unknowns in Ωi by u(i)

which we further partition into unknowns, u
(i)
I , in the interior part of the

subdomain and unknowns, u
(i)
Γ , on the interface. We further partition the

unknowns on the interface into primal unknowns, u
(i)
Π , and dual unknowns,

u
(i)
∆ . Continuity in the primal unknowns is enforced by global subassembly.

For the dual unknowns, we introduce a jump operator and Lagrange multipli-

ers to guarantee continuity at convergence of the iterative method. The local

stiffness matrices K(i) and right hand sides f (i) are partitioned correspond-

ingly to the unknowns u(i). Combining, for each subdomain, the nonprimal

unknowns u
(i)
I and u

(i)
∆ to a vector u

(i)
B and partitioning the coefficients in the

local stiffness matrices and right hand sides accordingly, we obtain

u
(i)
B =

 u
(i)
I

u
(i)
∆

 , f
(i)
B =

 f
(i)
I

f
(i)
∆

 and K
(i)
BB =

 K
(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

 .
The local stiffness matrices and right hand sides are then of the form

K(i) =

 K
(i)
BB K

(i)
ΠB

T

K
(i)
ΠB K

(i)
ΠΠ

 , f (i) =

 f
(i)
B

f
(i)
Π

 . (1.4)

We define

K = diagNi=1(K(i)), u =
[
u(1)T , . . . , u(N)T

]T
, f =

[
f (1)T , . . . , f (N)T

]T
,

and the global block matrices

KII = diagNi=1(K
(i)
II ), K∆I = diagNi=1(K

(i)
∆I), K∆∆ = diagNi=1(K

(i)
∆∆),

KΠI = diagNi=1(K
(i)
ΠI), KΠ∆ = diagNi=1(K

(i)
Π∆), KΠΠ = diagNi=1(K

(i)
ΠΠ),

KBB = diagNi=1(K
(i)
BB), and KΠB = diagNi=1(K

(i)
ΠB).

(1.5)

The block diagonal matrix K will be partially assembled in the primal vari-

ables resulting in a matrix K̃. Therefore, we define finite elements assembly

operators mapping the local numbering to the global numbering. They con-

sist of entries in {0, 1} and are denoted by R
(i)T
Π . We also define the global
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assembly operator

RTΠ = [R
(1)T
Π . . . R

(N)T
Π ]

and denote the global assembled primal degrees of freedom by

ũΠ = RTΠuΠ =
N∑
i=1

R
(i)T
Π u

(i)
Π .

The non primal variables are not assembled. The result is a partially assem-

bled global stiffness matrix

K̃ =

 KBB K̃T
ΠB

K̃ΠB K̃ΠΠ

 =

 IB 0

0 RTΠ

 KBB KT
ΠB

KΠB KΠΠ

 IB 0

0 RΠ

 .
We obtain the corresponding right hand side

f̃ =

 fB

f̃Π

 =

 IB 0

0 RTΠ

 fB

fΠ

 .
See Figure 1.1 for a graphical representation of partially assembled substruc-

tures. Thus, we have a global coupling in a few variables and keep the block

diagonal structure of KBB. With the local block matrices, we have

K̃ =


K

(1)
BB K̃

(1)T
ΠB

. . .
...

K
(N)
BB K̃

(N)T
ΠB

K̃
(1)
ΠB . . . K̃

(N)
ΠB K̃ΠΠ

 , f̃ =


f

(1)
B
...

f
(N)
B

f̃Π

 .

The local problems are invertible and the variables ũ can be eliminated. The

factorization of K̃ involves a factorization of the Schur complement

S̃ΠΠ = K̃ΠΠ −
N∑
i=1

K̃
(i)
ΠB

(
K

(i)
BB

)−1
K̃

(i)T
ΠB .

The coupling, and thus S̃ΠΠ, provides a coarse problem. If we choose a

sufficient number of primal variables u
(i)
Π the matrix K̃ is symmetric positive

definite for elliptic problems. Let x ∈ (∂Ωi ∩ ∂Ωj) ⊂ Γ be a node on the

dual part of the interface belonging to the two subdomains Ωi and Ωj . The
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condition u(j)(x)− u(i)(x) = 0 needs to be satisfied for the continuity of the

solution in that point. We enforce this using a jump operator

BB =
[
B

(1)
B . . . B

(N)
B

]
together with Lagrange multipliers λ. The operator BB consists of entries in

{−1, 0, 1} and enforces the continuity in the dual part by

BBuB =

N∑
i=1

B
(i)
B u

(i)
B = 0.

We obtain a saddle point problem of the form
KBB K̃T

ΠB BT
B

K̃ΠB K̃ΠΠ 0

BB 0 0



uB

ũΠ

λ

 =


fB

f̃Π

0

 (1.6)

or  K̃ BT

B 0

 ũ

λ

 =

 f̃

0

 ,
where B = [BB 0]. By eliminating uB in (1.6), we obtain S̃ΠΠ −K̃ΠBK

−1
BBB

T
B

−BBK−1
BBK̃

T
ΠB −BBK−1

BBB
T
B

 ũΠ

λ

 =

 f̃Π − K̃ΠBK
−1
BBfB

−BBK−1
BBfB

 .
We reduce the system of equations to an equation in λ. It remains to solve

Fλ = d,

where

F = BBK
−1
BBB

T
B +BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠK̃ΠBK

−1
BBB

T
B = BK̃−1BT and

d = BBK
−1
BBfB −BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠ(f̃Π − K̃ΠBK

−1
BBfB).

As a preconditioner for F , we use the standard Dirichlet preconditioner

M−1
D := BDR

T
ΓSRΓB

T
D.
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Here, S is the Schur complement obtained by eliminating the interior vari-

ables in every subdomain, i.e.,

S =


S(1)

. . .

S(N)


with

S(i) =

 S
(i)
∆∆ S

(i)T
Π∆

S
(i)
Π∆ S

(i)
ΠΠ

 =

 K
(i)
∆∆ K

(i)T
Π∆

K
(i)
Π∆ K

(i)
ΠΠ

−
 K

(i)
∆I

K
(i)
ΠI

K(i)−1
II

[
K

(i)T
∆I K

(i)T
ΠI

]
.

The restriction matrix RΓ consists of zeros and ones and removes the interior

variables when applied to a vector ũ. The matrices BD are scaled variants

of the jump operator B. Various kinds of scalings can be introduced in

the preconditioner. We define the multiplicity of a node as the number of

subdomains containing the node. The simplest form of scaling is to scale each

row by the inverse of the multiplicity 1/|Nx| of the corresponding node x.

This is denoted as multiplicity scaling or cardinality scaling in the literature;

see, e.g., [74]. In the following we will describe a scaling that only depends on

the maximum of the coefficient function that is attained on each subdomain.

For this, we define weighted counting functions on the interface by

δj(xk) :=

 ∑
i∈Nxk

ρ̂i

/ρ̂j , (1.7)

where

ρ̂j = max
x∈Ωj,h

ρj(x), (1.8)

for xk ∈ ∂Ωj,h ∩ Γh, j = 1, . . . , N . The pseudoinverses are defined by

δ†j(xk) := ρ̂j/
∑
i∈Nxk

ρ̂i. (1.9)

Each row of B(i) with a nonzero entry connects a point of Γ
(i)
h with the

corresponding point of a neighboring subdomain xk ∈ Γ
(i)
h ∩Γ

(j)
h . Multiplying
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each such row with δj(xk)
† for each B(i), i = 1, . . . , N , results in the scaled

operator BD. Formally, we can write

BD = [D(1)B(1), . . . , D(N)B(N)].

We will refer to this approach as max -ρ-scaling. Another possible variant is

to define

ρ̂j(x) = max
x∈ω(x)∩Ωj,h

ρj(x), (1.10)

where ω(x) is the support of the finite element basis function associated with

the node x. We will denote this approach by patch-ρ-scaling. In the case of

coefficients that are constant on each subdomain both approaches reduce to

the standard ρ-scaling; see, e.g., [50, 82, 49] for more details.

A more recently introduced kind of scaling uses scaling matrices which are

obtained from local Schur complements; cf. Section 2.4.1, Definition 2.4.1. In

the literature this approach is referred to as deluxe scaling ; see, e.g., [17, 18,

16, 68]. Note that the resulting scaling matrices are not diagonal anymore.

Thus, they do not define a scaling in the strict sense.

The standard FETI-DP algorithm is the preconditioned conjugate gradient

method to solve Fλ = d with the preconditioner M−1
D .

In our approach we choose every node with multiplicity of three or higher

as primal. Later we also choose weighted edge averages as primal variables

and will enforce additional constraints by subassembly or by a projection

method as described in following sections.

1.3 The BDDC Algorithm

The BDDC algorithm has been introduced in [14]. Related algorithms were

also proposed in [13] and [26]. It was shown in [57] and in [54] that FETI-DP

and BDDC share essentially the same spectra with the exception of eigenval-

ues that are zero or one.
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1.3. The BDDC Algorithm

To describe the BDDC algorithm in 2D, we consider a domain Ω which is

decomposed into N nonoverlapping subdomains

Ω =
N⋃
i=1

Ωi

with diameter Hi or generically H := maxiHi. As in the FETI-DP method,

for each subdomain Ωi, we assemble local stiffness matrices K(i) and load

vectors f (i) and denote the unknowns on subdomain Ωi as u(i). We partition

the indices in our stiffness matrices, right hand sides, and unknowns into an

interior part and an interface part

u(i) =

 u
(i)
I

u
(i)
Γ

 , K(i) =

 K
(i)
II K

(i)T
ΓI

K
(i)
ΓI K

(i)
ΓΓ

 , and f (i) =

 f
(i)
I

f
(i)
Γ

 .
For the definition of the BDDC-preconditioner we further partition the inter-

face part of the subdomain stiffness matrices, right hand sides, and unknowns

into a primal set, analogously to the FETI-DP algorithm, denoted by the in-

dex Π and a remaining dual set denoted by the index ∆. The primal variables

consist of subdomain vertices and possibly - after a transformation of basis -

certain weighted edge averages. The dual variables consist of the remaining

unknowns. We define block matrices and right hand sides in the same way

as for the FETI-DP algorithm; see (1.5). In the global block matrix
KII KT

∆I KT
ΠI

K∆I K∆∆ KT
Π∆

KΠI KΠ∆ KΠΠ


we eliminate the interior unknowns and obtain the Schur complement S∆∆ STΠ∆

SΠ∆ SΠΠ

 =

 K∆∆ KT
Π∆

KΠ∆ KΠΠ

−
 K∆I

KΠI

K−1
II

[
KT

∆IK
T
ΠI

]
as well as right hand side g∆

gΠ

 =

 f∆ −K∆IK
−1
II fI

fΠ −KΠIK
−1
II fI

 .
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Let RTΠ be defined as in the previous section and let R
(i)T
∆ for i = 1, . . . , N

be the operator that maps local dual degrees of freedom of subdomain Ωi to

global degrees of freedom. By

RT∆ = [R
(1)T
∆ . . . R

(N)T
∆ ],

we denote the assembly operator that assembles dual degrees of freedom on

the interface. By assembly we obtain the matrix

SΓΓ =

 RT∆

RTΠ

 S∆∆ STΠ∆

SΠ∆ SΠΠ

 R∆

RΠ


and the right hand side

gΓ =

 RT∆

RTΠ

 g∆

gΠ

 .
Additionally, we need a scaled version of the operator RT∆ denoted by RT∆,D.

The same scalings as in the FETI-DP algorithm can be used. Instead of

scaling the jump operator associated with the dual degrees of freedom, here

we scale the assembly operator which connects the dual degrees of freedom

on opposing sides of the interface, e.g., for ρ-scaling an entry in a row of

RT∆ associated with a node x in subdomain Ωj will be scaled by δ†j(x). Let

R∆B be the operator restricting the remaining degrees of freedom uB to dual

degrees of freedom by R∆BuB = u∆. The BDDC preconditioner is defined

by

M−1
BDDC =

 RTD,∆R∆B 0

0 IΠ

 KBB K̃T
ΠB

K̃ΠB K̃ΠΠ

−1  RT∆BRD,∆ 0

0 IΠ

 .

The BDDC algorithm is the preconditioned conjugate gradient method to

solve SΓΓuΓ = gΓ with the preconditioner M−1
BDDC.
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1.4 Transformation of Basis in the FETI-DP and

BDDC Methods

In this section, we describe how to transform the basis such that weighted

edge average constraints can be enforced by subassembly. The presentation

in this chapter is based on the proceedings article [41]. Supposing that a set of

primal constraints is given, e.g., weighted edge averages which are computed

in a preprocessing step, we describe a way to enforce these constraints as

primal variables. For a transformation of basis for standard edge averages

or certain weighted averages, see, e.g., [43, 54, 33]. To implement these

edge averages, we transform our local stiffness matrices K(i) and right hand

sides f (i) with a transformation matrix T (i). Then, the resulting transformed

stiffness matrices

K
(i)

= T (i)TK(i)T (i)

and right hand sides

f
(i)

= T (i)T f (i)

will replace K(i) and f (i) in the FETI-DP or BDDC algorithm; see, e.g.,

[37] for more details. We construct the transformation matrices T (i) edge by

edge. Let us consider an edge E of Ωi and denote by TE the restriction of T (i)

to this edge. Suppose we have selected a set of weighted edge averages with

weights described by orthonormal column vectors {v(i)
E,1, . . . , v

(i)
E,m}. Then, we

augment this set to an orthonormal basis

{v(i)
E,1, . . . , v

(i)
E,m, v

(i)
E,m+1, . . . , v

(i)
E,nE
} (1.11)

of RnE , where nE denotes the number of degrees of freedom of the edge E.

The transformation matrix TE is defined by

TE = [v
(i)
E,1, . . . , v

(i)
E,m, v

(i)
E,m+1, . . . , v

(i)
E,nE

]
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and describes the change of basis from the new to the original nodal basis.

The first m columns of TE correspond to the new additional primal variables

and the remaining columns correspond to the new dual unknowns. Denoting

the edge unknowns in the new basis by ûE and the unknowns in the original

basis by uE , we have uE = TE ûE . We denote by T
(i)
E the transformation

matrix which operates on all edges of ∂Ωi. The transformation matrix T (i)

is then defined by

T (i) =


II

IV

T
(i)
E

 ,
where II and IV denote the identities on interior variables and on vertex

variables, respectively. The transformed stiffness matrices are of the form

T (i)TK(i)T (i) =


K

(i)
II K

(i)
IV K

(i)
IET

(i)
E

K
(i)
V I K

(i)
V V K

(i)
V ET

(i)
E

T
(i)T
E K

(i)
EI T

(i)T
E K

(i)
EV T

(i)T
E K

(i)
EET

(i)
E

 ,

with right hand sides T (i)T f (i) = [f
(i)T
I f

(i)T
V f

(i)T
E T

(i)
E ]T . We can now

perform our FETI-DP or BDDC algorithm on the transformed problem.

1.5 Projector Preconditioning and Balancing

An alternative is to enrich the coarse space of FETI-DP by additional con-

straints using projections; see, e.g., [47, 33]. This subsection is partly based

on [42].

Here, we give a brief revision of the approach known as projector precondi-

tioning or deflation; see [47] for more details. In the following we will recall

the notation for projector preconditioning and deflation as in [47]. For pro-

jection methods in the context of Krylov subspace methods, see [20, 64, 63].

For a given rectangular matrix U containing the constraints as columns, the

31



1.5. Projector Preconditioning and Balancing

constraint

UTBu = 0

is enforced in each iteration of the preconditioned conjugate gradient (PCG)

method. We define the F -orthogonal projection P onto the range of U as

P = U(UTFU)−1UTF

if F is symmetric positive definite or as

P = U(UTFU)+UTF

with a pseudoinverse of UTFU if F is symmetric positive semidefinite and

UTFU is singular. Then, we will solve the projected system

(I − P )TFλ = (I − P )Td.

Since Range (P ) and Ker (P ) are F -orthogonal the projection P is called an

F -conjugate projection or conjugate projector. If λ ∈ Range (U), we have

(I − P )TFλ =Fλ− P TFλ = FUλ̂− P TFUλ̂

=FUλ̂− FU(UTFU)+(UTFU)λ̂ = 0,

which yields

UT (I − P )TFλ = 0

with Uλ̂ = λ. Since U has full column rank, we have

λ ∈ Ker ((I − P )TF ).

Let F be nonsingular and λ ∈ Ker ((I − P )TF ). With

(I − P )TFλ = (F − FU(UTFU)−1UTF )λ = 0,

we obtain

λ = U(UTFU)−1UTFλ
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and see that λ ∈ Range (U). It follows

Ker((I − P )TF ) = Range(U).

The matrix (I − P )TF is singular but the linear system is consistent and

can be solved by CG. The preconditioned system is

M−1(I − P )TFλ = M−1(I − P )Td (1.12)

with the Dirichlet preconditioner M−1. Let λ∗ be the solution of the original

system Fλ = d and we define

λ := PF+d

for any pseudoinverse F+ or

λ := PF−1d

for invertible F , respectively. We denote the solution of (1.12) by λ. The

solution of the original problem can then be written as

λ∗ = λ+ (I − P )λ.

We will include the projection (I − P )T into the preconditioner and project

the correction onto Range (I−P ) in each iteration. This yields the symmetric

preconditioner

M−1
PP = (I − P )M−1(I − P )T .

We then solve the original problem applying this preconditioner. This pre-

conditioned system is singular but still consistent. The solution λ of this

system is in the subspace Range (I − P ). The solution λ∗ of the original

problem is then computed by

λ∗ = λ+ λ.
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1.5. Projector Preconditioning and Balancing

If we include the computation of λ into the iteration, we get the balancing

preconditioner

M−1
BP = (I − P )M−1(I − P )T + U(UTFU)−1UT . (1.13)

We use this preconditioner to solve Fλ = d by PCG and directly obtain the

solution without an additional correction.

Let us briefly describe how the projection in the deflation approach can be

built efficiently since the cost of a naive implementation is prohibitive. First

FU = BK̃−1BTU

has to be computed. This is performed by exploiting neighborship informa-

tion as in one and two-level FETI methods; see, e.g., [25]. Let us consider

the standard block factorization KBB K̃T
ΠB

K̃ΠB K̃ΠΠ

−1

=

 I −K−1
BBK̃

T
ΠB

0 I

 K−1
BB 0

0 S̃−1
ΠΠ

 I 0

−K̃ΠBK
−1
BB I

 .
Applying K−1

BB, only a small number of subdomains has to be considered,

i.e., the computation involves only neighboring subdomains. For edges in

2D, for each column of U , only two subdomain solves are necessary. A coarse

solve follows for every column of U . Finally, the matrix UT (FU) has to be

assembled, again exploiting neighborship information.

Let us note that our strategy is to start with a small and cheap coarse

space which is large enough to ensure invertibility of K̃. Then, in order

to accelerate the convergence, the coarse space is enriched using additional

constraints. In the approaches presented here, these are built using certain

eigenvectors; see Chapters 2, 3, and 4, for details. The new, larger coarse

space can be implemented in many different ways, including transformation

of basis, local saddle point problems, or deflation. From the discussion above,

for the deflation approach, we see that the number of applications of S̃−1
ΠΠ is
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reduced, compared to the small first coarse problem, if an additional con-

straint (eigenvector) reduces the number of iterations by one. Note that a

similar decomposition of the coarse problem into two stages is also used in

the two level FETI method; see [25] and [81], where in the latter the second

level is also based on certain eigenvectors. The implementation of the second

level in two-level FETI methods is the same as in projector preconditioning.

The following lemma is an alternative to the proof for the condition number

bound provided in [47] using projector preconditioning or deflation applied

to FETI-DP methods. It directly applies to a larger class of scalings.

Lemma 1.5.1. Let PD = BT
DB. Assuming that ||PDw||2S̃ ≤ C||w||2

S̃
for all

w ∈ {w ∈ W̃ |UTBw = 0} with a constant C > 0, we have

κ (M−1
PPF ) ≤ C.

Here, the constant C can depend on H/h or η/h (cf. Definition 2.6.1), and

possibly on a prescribed tolerance from local generalized eigenvalue problems.

Proof. Similar to [49, p. 1553] by using (I − P )TF = F (I − P ) and the

standard Dirichlet preconditioner M−1 and observing that

S̃−1BT (I − P )λ ∈ W̃ and

(I − P )U = 0 ⇒UTB(S̃−1BT (I − P )λ) = UT (I − P )TBS̃−1BTλ = 0
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1.5. Projector Preconditioning and Balancing

we obtain for the upper bound

〈
M−1
PPFλ, λ

〉
F

=
〈
(I − P )M−1(I − P )TFλ, Fλ

〉
=
〈
M−1F (I − P )λ, F (I − P )λ

〉
=
〈
BT
DBS̃

−1BT (I − P )λ,BT
DBS̃

−1BT (I − P )λ
〉
S̃

=|PD(S̃−1BT (I − P )λ)|2
S̃

=|PDw|2S̃ ≤ C|w|
2
S̃

=C|S̃−1BT (I − P )λ|2
S̃

=C
〈
S̃−1BT (I − P )λ, S̃−1BT (I − P )λ

〉
S̃

=C 〈(I − P )λ, (I − P )λ〉F .

Since λ ∈ range (I − P ), we have λ = (I − P )λ. Hence, we have

λmax(M−1
PPF ) ≤ C.

We will now derive an estimate for the lower bound. With

EDw(x) :=
∑
j∈Nx

D(j)wj(x),

we see that PDw = BT
DBw = (I−ED)w, and, since EDw is continuous across

the interface, PD preserves the jump of any function w ∈ W̃ in the sense that

Bw = Bw − 0 = B(I − ED)w = BPDw. We obtain for the lower bound,
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analogously to [49, p. 1552]

〈λ, λ〉2F =
〈
λ,BS̃−1BTλ

〉2

=
〈
λ,BS̃−1P TDB

Tλ
〉2

=
〈
λ,BS̃−1BTBDB

Tλ
〉2

=
〈
λ,BDB

Tλ
〉2

F

=
〈
Fλ,BDS̃

1/2S̃−1/2BTλ
〉2

≤
〈
S̃1/2BT

DFλ, S̃
1/2BT

DFλ
〉〈

S̃−1/2BTλ, S̃−1/2BTλ
〉

=
〈
M−1Fλ, Fλ

〉
〈Fλ, λ〉

=
〈
M−1F (I − P )λ, F (I − P )λ

〉
〈Fλ, λ〉

=
〈
M−1
PPFλ, λ

〉
F
〈Fλ, λ〉 .

Hence, we have λmin(M−1
PPF ) ≥ 1.

Remark 1.5.2. In [47], it was shown that eigenvalues of M−1
PPF and M−1

BPF

which are nonzero and not one are the same. Thus Lemma 1.5.1 also holds

for M−1
BPF . If all primal constraints are implemented using a transformation

of basis instead of projector preconditioning, we can use Lemma 1.5.1 with

P = 0 to obtain the estimate for the Dirichlet preconditioner given in [49,

p.1553].

1.6 Some Spectral Estimates

We repeat some properties of projections on eigenspaces of generalized eigen-

value problems. The following two lemmas can also be found in [38]. The

next lemma is a standard argument from linear algebra.

Lemma 1.6.1. Let A ∈ Rn×n be symmetric positive semidefinite and B ∈

Rn×n be symmetric positive definite. Consider the generalized eigenvalue
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problem

Axk = λkBxk for k = 1, . . . , n. (1.14)

Then, the eigenvectors can be chosen to be B-orthogonal and such that

xTkBxk = 1. All eigenvalues are positive or zero.

Proof. Set yk = B1/2xk. Then we have

Axk = λkBxk ⇔ AB−1/2yk = λkB
1/2yk ⇔ B−1/2AB−1/2yk = λkyk.

All eigenvalues are positive or zero and the eigenvectors yk are orthogonal

since B−1/2AB−1/2 is symmetric positive semidefinite and the xk = B−1/2yk

are B-orthogonal. If we choose x̂k = (xTkBxk)
−1/2xk, then x̂k are eigenvectors

of (1.14) and x̂TkBx̂k = 1.

The proof of the next lemma is based on arguments from classical spectral

theory. For completeness, we provide the arguments in detail. A related

abstract lemma, also based on classical spectral theory, can be found in [80,

Lemma 2.11].

Lemma 1.6.2. Let A,B be as in Lemma 1.6.1 and define ΠB
m :=

∑m
i=1 xix

T
i B.

Let the eigenvalues be sorted in an increasing order 0 = λ1 ≤ . . . ≤ λm <

λm+1 ≤ . . . ≤ λn. Then, x = ΠB
n x and

|x−ΠB
mx|2B = (x−ΠB

mx)TB(x−ΠB
mx) ≤ λ−1

m+1x
TAx = λ−1

m+1|x|
2
A.

Additionally, we have the stability of ΠB
m in the B-norm

|x−ΠB
mx|2B ≤ |x|2B.

Proof. Since {x1, . . . , xn} forms a B-orthonormal basis of Rn, we can write

x =
∑n

i=1 αixi with scalars α1, . . . , αn ∈ R. From the B-orthogonality of the

xk and xTkBxk = 1 we obtain

xTBxi = αix
T
i Bxi = αi ⇒ x =

n∑
i=1

xTBxixi = ΠB
n x.
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Since x−ΠB
mx =

∑n
i=m+1(xTi Bx)xi, we obtain with Lemma 1.6.1

(x−ΠB
mx)TB(x−ΠB

mx) =

(
n∑

i=m+1

(xTi Bx)xi

)T
B

 n∑
j=m+1

(xTj Bx)xj


=

n∑
i=m+1

n∑
j=m+1

xTi Bxx
T
j Bxx

T
i Bxj

=
n∑

i=m+1

(xTi Bx)2

=
n∑

i=m+1

(λi)
−1xTBxi x

TAxi

≤ (λm+1)−1
n∑

i=m+1

λi(x
TBxi)

2

= (λm+1)−1
n∑

i=m+1

xTi Axi(x
TBxi)

2

= (λm+1)−1
n∑

i=m+1

n∑
j=m+1

(xTi Bx)(xTi Axj)(x
T
j Bx)

≤ (λm+1)−1
n∑
i=1

n∑
j=1

(xTi Bx)(xTi Axj)(x
T
j Bx)

= (λm+1)−1xTAx.

The second assertion follows by

(x−ΠB
mx)TB(x−ΠB

mx) =
n∑

i=m+1

(xTi Bx)2 ≤
m∑
i=1

(xTi Bx)2

=
m∑
i=1

m∑
j=1

(xTi Bx)xTi Bxj(x
T
j Bx) = xTBx.
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2 Equivalence Class Coarse Space

Based on the Operator PD

In this chapter, we consider two approaches where general eigenvalue prob-

lems are solved which are based on a localization of the PD-estimate |PDw|2S̃ ≤

C|w|2
S̃

; see Lemma 1.5.1. By solving these eigenvalue problems, adaptive

constraints will be computed to guarantee a bound on the condition number.

This chapter is based on [38] and organized as follows. In Section 2.1, we

introduce the relevant notation and in Section 2.2 we show how the energy of

the PD operator can be bounded by local estimates. We collect some known

information on the parallel sum of matrices and show some related spectral

estimates in Section 2.3. We introduce two approaches to enhance the coarse

space with adaptively computed constraints in Sections 2.4 and 2.5. In both

approaches, the constraints are computed with local generalized eigenvalue

problems. This first approach has been proposed in [68] and relies on deluxe

scaling. In the second approach, first proposed in [39], any kind of scaling is

possible as long as it satisfies the partition-of-unity property (2.2). For the

special case of deluxe scaling, the second approach is the same as the first.

In Section 2.6, we consider an economic variant solving eigenvalue problems

on slabs that we introduced in [38]. We conclude this chapter by proving

a condition number bound for the FETI-DP algorithm with adaptive con-

straints as described in Sections 2.4.2, 2.5.1, or 2.6.2. For the corresponding

numerical results see Section 5.2.
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2.1. Notation

2.1 Notation

We define the energy minimal extension of v from the local interface to the

interior of the subdomain Ωl as

H(l)v := arg min
u∈V h(Ωl)

{
al(u, u) : u|∂Ωl = v

}
for l = i, j.

Let θEij be the standard finite element cutoff function, which equals 1 at the

nodes on the edge Eij and is zero on ∂Ωi\Eij . With Ih we denote the standard

finite element interpolation operator. We will make use of the seminorm

|v|2El := al(v, v), (2.1)

and of an energy minimal extension from an edge Eij to the interface Γ(l),

l = i, j.

Definition 2.1.1. Let E ⊂ Γ(i) := ∂Ωi be an edge and Ec ⊂ Γ(i) be the

complement of E with respect to Γ(i) and let S(i) be partitioned as follows

S(i) =

S(i)
EE S

(i)T
EcE

S
(i)
EcE S

(i)
EcEc

 .

We define the extension operator H(i)
E v :=

 v|E

−S−1
EcEcSEcEv|E

 and the matrices

S
(l)
Eij ,0

:= S
(l)
EijEij and S

(l)
Eij

:= S
(l)
EijEij − S

(l)T
EcijEij

S
(l)−1
EcijEcij

S
(l)
EcijEij

.

The proof of the next lemma follows from a standard variational argument.

Lemma 2.1.2. Using the same notation as in Definition 2.1.1, for all wi ∈

V h(Γ(i)) with wi|E = vE , we have |H(i)
E vE |2S(i) ≤ |wi|2S(i) .

Proof. Define

F (x) =

vE
x

T SEE STEcE

SEcE SEcEc

vE
x

 .
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With

∂F (x)

∂x
=
∂
(
vTE SEEvE + 2vTE S

T
EcEx+ xTSEcEcx

)
∂x

= 2vTE S
T
EcE + 2xTSEcEc

we obtain

∂F (x)

∂x
= 0⇔ x = −S−1

EcEcSEcEvE .

With Definition 2.1.1, we have the following correspondences between

(semi)norms and the matrices given in Definition 2.1.1:

|H(l)Ih(θEijv)|2El=v
T
|EijS

(l)
Eij ,0

v|Eij l = i, j

|H(l)H(l)
Eijv|

2
El

=vT|EijS
(l)
Eij
v|Eij .

Let D(l), l = i, j, be scaling matrices, such that

D(i) +D(j) = I, (2.2)

where I is the identity matrix; this is a partition-of-unity.

2.2 Splitting the PD-Operator into Local

Contributions

In the following, we will assume that vectors are restricted to the edge Eij if

they are multiplied by a matrix with the index Eij or Eij,0 to avoid excessive

use of restriction operators. As a classical result in the analysis of iterative

substructuring, see, e.g., [49, 82], we have

|PDw|2S̃ = |RPDw|2S =

N∑
i=1

|R(i)PDw|2Si .

Let NE denote the maximum number of edges of a subdomain. For w ∈ W̃ ,

we define wi = R(i)w and wj = R(j)w. In the following, in order to avoid the
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introduction of additional extension and restriction operators, whenever the

difference wi − wj is used, we assume that wi and wj are first restricted to

the edge Eij and that the difference is then extended by zero to the rest of

the interface Γ. Under the assumption that all vertices are primal, we obtain

|R(i)PDw|2Si ≤ NE
∑
j∈Ni

|H(i)Ih(θEijD
(i)(wi − wj))|2Ei ,

where Ni denotes the set of indices of the subdomains that share an edge with

Ωi. Hence, we are interested in obtaining bounds for the local contributions

on the edges Eij of the form:

|H(i)Ih(θEijD
(i)(wi − wj))|2Ei + |H(j)Ih(θEijD

(j)(wj − wi))|2Ej

≤C
(
|H(i)H(i)

Eijwi|
2
Ei + |H(j)H(j)

Eijwj |
2
Ej

)
≤ C

(
|wi|2Ei + |wj |2Ej

)
.

Using Definition 2.1.1, this is equivalent to

(wi − wj)TD(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

(wi − wj) + (wj − wi)TD(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

(wj − wi)

≤C
(
wTi S

(i)
Eij
wi + wTj S

(j)
Eij
wj

)
.

Note that C depends on the chosen primal space.

2.3 Parallel Sum of Matrices and Spectral Estimates

The next lemma introduces the notion of the parallel sum of matrices of two

symmetric positive semidefinite matrices and properties of that operation.

The definition of a parallel sum of matrices was first given in [1] and used for

the first time in our context in [68]. The first two properties of Lemma 2.3.2

are given and proven in [1]. The third property is given, without a proof,

in [68].

Remark 2.3.1. Using that

Ker (A+B) ⊂ Ker (A) and Ker (A+B) ⊂ Ker (B)
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for symmetric positive semidefinite matrices A and B and that U ⊂ V implies

V ⊥ ⊂ U⊥ we obtain

Range (A) ⊂ Range (A+B) and Range (B) ⊂ Range (A+B).

In [62, Theorem 2.1] it was shown for matrices C, D which satisfy

Range (C) ⊂Range (C +D) and

Range (CH) ⊂Range
(
(C +D)H

)

or equivalently

Range (D) ⊂Range (C +D) and

Range (DH) ⊂Range
(
(C +D)H

)

that C : D := C(C+D)+D is invariant under the choice of the pseudoinverse

(C + D)+. With the symmetry of A and B we conclude that this holds true

for A : B.

Lemma 2.3.2 (Parallel sum of matrices). Let A,B be symmetric positive

semidefinite and define

A : B = A(A+B)+B

as in Remark 2.3.1 where (A+B)+ denotes a pseudoinverse with

(A+B)(A+B)+(A+B) = (A+B)

and (A+B)+(A+B)(A+B)+ = (A+B)+.

Then, we have

1. the spectral estimate

A : B ≤ A and A : B ≤ B. (2.3)
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2. A : B is symmetric positive semidefinite.

3. With DA := (A+B)+A and DB := (A+B)+B, we have additionally:

DT
ABDA ≤ A : B and DT

BADB ≤ A : B. (2.4)

Proof. For the proof of 1. and 2., see [1]. Next, we provide a proof of 3.

Since A and B are symmetric positive semidefinite (s.p.s.d.), DT
BADB and

DT
ABDA are also s.p.s.d., and we obtain

DT
ABDA +DT

BADB = (A : B)DA + (A : B)DB = (A : B)(A+B)+(A+B).

Since A and B are s.p.s.d., xT (A + B)x = 0 implies xTAx = −xTBx = 0.

Thus, we have

Ker (A+B) = Ker (A) ∩Ker (B).

For any x we can write x = xR + xK with

xR ∈Range (A+B)+

and xK ∈Ker (A+B) = Ker (A) ∩Ker (B).

Using that (A+B)+(A+B) is a projection onto Range (A+B)+, we obtain

xTDT
ABDAx+ xTDT

BADBx = xT (A : B)(A+B)+(A+B)x

= xT (A : B)xR

= xT (A : B)x.

2.4 First Approach

In this section, we discuss a first adaptive coarse space which is computed us-

ing local eigenvalue problems. The construction of these eigenvalue problems

relies on the notion of the parallel sum of matrices introduced in Lemma 2.3.2.

This approach was first proposed in [68].
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2.4.1 Notation

In the following, we define a scaling for the FETI-DP and BDDC method,

denoted as deluxe scaling, which was first introduced in [17]; for further

applications, see [2, 51, 65, 9, 12, 41]. Note that this is not a scaling in the

common sense since more than just a multiplication with a diagonal matrix

is involved.

Definition 2.4.1 (Deluxe scaling). Let Eij ⊂ Γ(i) be an edge and let the

Schur complements S
(i)
Eij ,0

, S
(j)
Eij ,0

be as defined in Definition 2.1.1. We define

the following scaling matrices

D
(l)
Eij

=
(
S

(i)
Eij ,0

+ S
(j)
Eij ,0

)−1
S

(l)
Eij ,0

, l = i, j.

Let R
(l)
Eij

be the restriction operator restricting the degrees of freedom of La-

grange multipliers on Γ to the degrees of freedom of Lagrange multipliers on

the open edge Eij. Then, we define the subdomain (deluxe) scaling matrices

by

D(i) =
∑
Eij⊂Γ(i)

R
(i)T
Eij

D
(j)
Eij
R

(i)
Eij
.

Each pair of scaling matricesD(i), D(j) andD
(i)
Eij

, D
(j)
Eij

satisfies the partition-

of-unity property (2.2). The scaled jump operator BD in the FETI-DP algo-

rithm is then given by

BD := [D(1)TB(1), . . . , D(N)TB(N)].

The transpose is necessary since theD(i) are not symmetric. Using Lemma 2.3.2,

we obtain

D
(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij
≤ S(i)

Eij ,0
: S

(j)
Eij ,0

and D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij
≤ S(i)

Eij ,0
: S

(j)
Eij ,0

.

2.4.2 Generalized Eigenvalue Problem (First Approach)

We solve the eigenvalue problem

S
(i)
Eij

: S
(j)
Eij
xk =µk S

(i)
Eij ,0

: S
(j)
Eij ,0

xk, (2.5)
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2.4. First Approach

where µk ≤ TOL for a chosen tolerance TOL and enforce the constraints

xTk (S
(i)
Eij ,0

: S
(j)
Eij ,0

)(wi − wj) = 0,

e.g., as described in Section 1.5.

Lemma 2.4.2. Let

Πk :=
k∑

m=1

xmx
T
mS

(i)
Eij ,0

: S
(j)
Eij ,0

using the eigenvectors xm of the generalized eigenvalue problem (2.5). Then,

we have Πk(wi − wj) = 0 and the following inequality holds:

(wi − wj)T
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj)

≤C(µk+1)−1
(
wTi S

(i)
Eij
wi + wTj S

(j)
Eij
wj

)
.

Proof. The property Πk(wi − wj) = 0 follows directly. We have

(wi − wj)TD(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

(wi − wj) + (wj − wi)TD(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

(wj − wi)

= (wi − wj)TS(j)
Eij ,0

(S
(i)
Eij ,0

+ S
(j)
Eij ,0

)−1S
(i)
Eij ,0

D
(j)
Eij

(wi − wj)

+ (wi − wj)TS(i)
Eij ,0

(S
(i)
Eij ,0

+ S
(j)
Eij ,0

)−1S
(j)
Eij ,0

D
(i)
Eij

(wi − wj)

= (wi − wj)T ((S
(i)
Eij ,0

: S
(j)
Eij ,0

)D
(j)
Eij

+ (S
(i)
Eij ,0

: S
(j)
Eij ,0

)D
(i)
Eij

)(wi − wj)

= (wi − wj)T (S
(i)
Eij ,0

: S
(j)
Eij ,0

)(wi − wj) (2.6)

≤ 2(µk+1)−1
(
wTi S

(i)
Eij

: S
(j)
Eij
wi + wTj S

(i)
Eij

: S
(j)
Eij
wj

)
≤ 2(µk+1)−1

(
wTi S

(i)
Eij
wi + wTj S

(j)
Eij
wj

)
.

For the last two estimates notice that

wi − wj = wi −Πkwi − (wj −Πkwj)

and apply Lemma 1.6.2 with A = S
(i)
Eij

: S
(j)
Eij

and B = S
(i)
Eij ,0

: S
(j)
Eij ,0

. Using

the first property of Lemma 2.3.2, we obtain the desired bound.
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Remark 2.4.3. Up to equation (2.6) no generalized eigenvalue problem is

used but only deluxe scaling. Since the term in (2.6) is bounded by

2
(
wTi S

(i)
Eij ,0

wi + wTj S
(j)
Eij ,0

wj

)
the inequality

(wi − wj)TD(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

(wi − wj) + (wj − wi)TD(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

(wj − wi)

≤ 2
(
wTi S

(i)
Eij ,0

wi + wTj S
(j)
Eij ,0

wj

)
replaces a classical extension theorem. In [48], the analysis of FETI-DP

methods in two dimensions has been extended to uniform domains which are

a subset of John domains. Since all tools were provided for John domains

with the exception of the extension theorem which requires uniform domains,

by using deluxe scaling, the analysis carries over to the broader class of John

domains.

2.5 Second Approach

In this section, we describe a variant of the first approach that allows different

types of scalings. In the case of standard deluxe scaling, this algorithm is the

same as the algorithm introduced in [68]; cf., Section 2.4. A short description

of this variant has already been presented in the proceedings article [39]. In

this section, we use the same notation as in Section 2.1.

2.5.1 Generalized Eigenvalue Problem (Second Approach)

We solve the eigenvalue problem

S
(i)
Eij

: S
(j)
Eij
xk =µk

(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
xk. (2.7)

We select the xk for which µk ≤ TOL and enforce the constraints

xTk

(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj) = 0,
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e.g., as described in Section 1.5. Note that (2.5) and (2.7) are the same in the

case of deluxe scaling. Analogously to Lemma 2.4.2, we obtain the following

bound.

Lemma 2.5.1. Let

Πk :=

k∑
m=1

xmx
T
m(D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)

using the eigenvectors xm of the generalized eigenvalue problem (2.7). Then,

we have

Πk(wi − wj) = 0

and the following inequality holds:

(wi − wj)T
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj)

≤ 2(µk+1)−1wTi

(
S

(i)
Eij
wi + wTj S

(j)
Eij
wj

)
where D

(l)
Eij

, l = i, j are arbitrary scaling matrices that provide a partition-

of-unity, i.e., satisfy (2.2).

Proof. Notice that

wi − wj = wi −Πkwi − (wj −Πkwj)

and apply Lemma 1.6.2 with

A = S
(i)
Eij

: S
(j)
Eij

and B = D
(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij
.

With (2.4), we obtain the desired bound.

2.6 Economic Variant of the Algorithm

In this section, we introduce a new, more economic variant, solving eigenvalue

problems on slabs, see Definition 2.6.2. Using such a variant for deluxe scaling

but without such eigenvectors in the coarse space was first introduced and

numerically tested in [18]; see Remark 2.6.4. Let us note that with respect

to the eigenvalue problems on slabs, this variant was first proposed in [38].
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Iη

Eij

(∂Ω̃iη ∩ Γ(i)) \ Eij

Figure 2.1: Illustration of the sets of indices for the slab variant.

2.6.1 Notation

We first give the definition of an η-patch; see, e.g., also [82, Lemma 3.10],

[42, Def. 6.1] and [71, Def. 2.5 and 2.6].

Definition 2.6.1. An η-patch ω ⊂ Ω denotes an open set which can be

represented as a union of shape regular finite elements of diameter O(h) and

which has diam(ω) = O(η) and a measure of O(η2).

The definition of a slab in three dimensions was introduced in [29]; see

also [42, 36].

Definition 2.6.2. Let Eij ⊂ ∂Ωi be an edge. Then, a slab Ω̃iη is a subset

of Ωi of width η with Eij ⊂ ∂Ω̃iη which can be represented as the union of

η-patches ωik, k = 1, . . . , n, such that (∂ωik ∩ Eij)◦ 6= ∅, k = 1, . . . , n.

In addition to |v|El , c.f. (2.1), we define |v|2El,η := al,η(v, v), where al,η(v, v)

is the same bilinear form as al(v, v) but only integrating over the slab Ω̃l,η,

e.g., for scalar diffusion we have

al,η(u, v) :=

∫
Ω̃l,η

ρl∇u∇v dx.
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Let K
E,(l)
η be the corresponding locally assembled stiffness matrix of the

slab of width η corresponding to an edge E of subdomain Ωl. Here, we use

homogeneous Neumann boundary conditions on the part of the boundary of

the slab which intersects the interior of Ωl.

Definition 2.6.3. Let E ⊂ Γ(l) ∩ ∂Ω̃l,η be an edge and Ec ⊂ Γ(l) ∩ ∂Ω̃l,η be

the complement of E with respect to Γ(l) ∩ ∂Ω̃l,η. Let K
E,(l)
η be partitioned as

follows

KE,(l)η =

KE,(l)η,II K
E,(l)T
η,ΓI

K
E,(l)
η,ΓI K

E,(l)
η,ΓΓ


where the index Γ corresponds to degrees of freedom on Γ(l) ∩ ∂Ω̃l,η and the

index I corresponds to the remaining degrees of freedom in Ω̃l,η. Define the

extension operator

H(l)
η v =

 v|Γ(l)∩∂Ω̃l,η

−KE,(l)−1
η,II K

E,(l)T
η,ΓI v|Γ(l)∩∂Ω̃l,η

 .
Let

SE,(l)η =

 S
E,(l)
EE,η S

E,(l)T
EcE,η

S
E,(l)
EcE,η S

E,(l)
EcEc,η


be the Schur complement of K

E,(l)
η after elimination of the interior degrees of

freedom. Eliminating further all degrees of freedom except those on the edge

we obtain the Schur complement

S
(l)
E,η = S

E,(l)
EE,η − S

E,(l)T
EcE,η S

E,(l)−1
EcEc,η S

E,(l)
EcE,η.

With the discrete energy minimal extension operator H(l)
η from Γ(l) ∩ ∂Ω̃l,η

to the interior, we have

|H(l)
η H

(l)
E vE |

2
El,η
≥vTES

(l)
E,ηvE .
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Let the local finite element space be partitioned into variables on the edge

E and the remaining variables Ec. Then the local stiffness matrices K(l) can

be partitioned accordingly and we obtain

K(l) =

K
(l)
EE K

(l)T
EcE

K
(l)
EcE K

(l)
EcEc

 .

Thus, by removing all columns and rows related to the degrees of freedom

outside the closure of the slab and those on (∂Ω̃lη ∩ Γ(l)) \ E , we obtain a

matrix of the form K
(l)
EE K

(l)T
IηE

K
(l)
IηE K

(l)
IηIη

 .

Here, the index Iη relates to the degrees of freedom on the closure of the

slab except those on ∂Ω̃lη ∩Γ(l); see Figure 2.1 for an illustration. We define

another Schur complement by

S
(l)
E,0,η = K

(l)
EE −K

(l)T
IηE K

(l)−1
IηIη

K
(l)
IηE .

We define an extension operator H(l)
η,0 from the local interface ∂Ω̃l,η ∩ Γ(l) of

a subdomain Ωl to the interior by

H(l)
η,0 v =


v, on ∂Ωl ∩ ∂Ω̃l,η,

minimal energy extension, in Ω̃l,η ∩ Ωl,

0, elsewhere.

Then, we have vTS
(l)
E,0,ηv=|H(l)

η,0I
h(θEv)|2El .

Remark 2.6.4 (economic deluxe scaling). In [18], the authors proposed an

economic variant of deluxe scaling by replacing the Schur complements S
(l)
E,0,

l = i, j by S
(l)
E,0,η with η = h. As in [18] we will denote this variant by e-deluxe

scaling.
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2.6.2 Generalized Eigenvalue Problem (Economic Version)

We solve the eigenvalue problem

S
(i)
Eij ,η

: S
(j)
Eij ,η

xk =µk

(
D

(j)T
Eij

S
(i)
Eij ,0,η

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0,η

D
(i)
Eij

)
xk, (2.8)

where µk ≤ TOL and

D
(l)
Eij

=
(
S

(i)
Eij ,0,η

+ S
(j)
Eij ,0,η

)−1
S

(l)
Eij ,0,η

for l = i, j.

We then enforce the constraints

xTk

(
D

(j)T
Eij

S
(i)
Eij ,0,η

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0,η

D
(i)
Eij

)
(wi − wj) = 0,

as in Section 1.5.

Lemma 2.6.5. We define

Πk :=

k∑
m=1

xkx
T
k

(
D

(j)T
Eij

S
(i)
Eij ,0,η

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0,η

D
(i)
Eij

)

using the eigenvectors xm of the generalized eigenvalue problem (2.8). Then

Πk(wi − wj) = 0 and the following inequality holds:

(wi − wj)T
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj)

≤2(µk+1)−1wTi S
(i)
Eij
wi + wTj S

(j)
Eij
wj .

Proof. Since the discrete harmonic extension |H(l)Ih(θEijv)|2El = vTS
(l)
Eij ,0

v
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has the smallest energy, we obtain

(wi − wj)T
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj)

≤ (wi − wj)T
(
D

(j)T
Eij

S
(i)
Eij ,0,η

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0,η

D
(i)
Eij

)
(wi − wj)

≤ (µk+1)−1(wi − wj)TS(i)
Eij ,η

: S
(j)
Eij ,η

(wi − wj)

≤ 2(µk+1)−1

(
|wi|2

S
(i)
Eij,η

+ |wj |2
S
(j)
Eij,η

)
≤ 2 (µk+1)−1

(
|H(i)

η H
(i)
Eijwi|

2
Ei,η + |H(j)

η H
(j)
Eijwj |

2
Ej,η

)
≤ 2 (µk+1)−1

(
|H(i)H(i)

Eijwi|
2
Ei,η + |H(j)H(j)

Eijwj |
2
Ej,η

)
≤ 2 (µk+1)−1

(
|H(i)H(i)

Eijwi|
2
Ei + |H(j)H(j)

Eijwj |
2
Ej

)
= 2 (µk+1)−1

(
wTi S

(i)
Eij
wi + wTj S

(j)
Eij
wj

)
.

2.7 Condition Number Bound

Based on the estimates for PD for the first coarse space, given in Sec-

tions 2.4.2, 2.5.1, and 2.6.2, we now present our condition number estimate.

Lemma 2.7.1. Let NE be the maximum number of edges of a subdomain.

The condition number κ(M̂−1F ) of the FETI-DP algorithm with adaptive

constraints defined as in Sections 2.4.2, 2.5.1, or 2.6.2 either enforced by

the projector preconditioner M̂−1 = M−1
PP or the balancing preconditioner

M̂−1 = M−1
BP satisfies

κ(M̂−1F ) ≤ 2N2
ETOL−1.
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Proof. For w ∈ W̃ we have the estimate

|PDw|2S̃ =
N∑
i=1

|R(i)PDw|2Si

≤ NE
N∑
i=1

∑
j∈Ni

|Ih(θEijD
(i)(wi − wj))|2Si

≤ NE
∑
Eij⊂Γ

(wi − wj)T
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

)
(wi − wj).

Using Lemma 2.4.2 for the coarse space in Section 2.4.2, Lemma 2.5.1 for

the coarse space in Section 2.5.1, and Lemma 2.6.5 for the coarse space in

Section 2.6.2 and using that µk+1 ≥ TOL we obtain the estimate

|PDw|2S̃ ≤ 2NE
∑
Eij⊂Γ

TOL−1
(
wTi S

(i)
Eij
wi + wTj S

(j)
Eij
wj

)
≤ 2NE

∑
Eij⊂Γ

TOL−1
(
wTi Siwi + wTj Sjwj

)
≤ 2N2

E TOL−1
N∑
i=1

|R(i)w|2Si

≤ 2N2
E TOL−1 |w|2

S̃
.
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3 Coarse Space Based on a Local

Jump Operator

We will now discuss an approach which has been successfully used in FETI-

DP and BDDC for some time [59]. Let us note that this approach is also

based on eigenvalue estimates related to the PD-operator. In the following,

we give a brief description of the algorithm in [59] for the convenience of the

reader. The chapter is based on [38]. In Section 3.1, we introduce the relevant

notation and in Section 3.2 the specific eigenvalue problem. In Section 3.3, we

also give an estimate of the condition number in the case of a two-dimensional

problem where all vertices are primal in the initial coarse space. We proved

this result in [38]. In Section 3.4, we will give some numerical results for

perfect elastoplasticity from [40]. For numerical results comparing this coarse

space to various other adaptive coarse spaces, see Section 5.2.

3.1 Notation

For an edge Eij let BEij =
[
B

(i)
Eij

B
(j)
Eij

]
be the submatrix of

[
B(i) B(j)

]
with the rows that consist of exactly one 1 and one −1 and are zero otherwise.

Let BD,Eij =
[
B

(i)
D,Eij

B
(j)
D,Eij

]
be obtained by keeping the same rows of[

B
(i)
D B

(j)
D

]
. Let

Sij =

 Si 0

0 Sj


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3.1. Notation

and a local version of the PD-operator PDij = BT
D,Eij

BEij . By W̃ij we denote

the space of functions in Wi × Wj which are continuous in those primal

variables that the subdomains Ωi and Ωj have in common. We define by Πij

the l2-orthogonal projection from Wi ×Wj onto W̃ij . Another orthogonal

projection Πij maps from Wi×Wj to Range (ΠijSijΠij + σ(I −Πij)), where

σ is a positive constant, e.g., the maximum of the entries of the diagonal of

Sij .

Let us briefly describe how the projections Πij and Πij can be obtained.

Let R
(l)T
ij be the assembly operators which assemble the primal variables on

∂Ωi ∩ ∂Ωj and are the identity on the remaining variables of Γ(i) × Γ(j). We

define an operator Rij by

Rij =

 R
(i)
ij

R
(j)
ij

 .
Then, we obtain the l2-orthogonal projection onto W̃ij by

Πij = Rij(R
T
ijRij)

−1RTij .

For the construction of Πij let

{v1, . . . , vl} (3.1)

be an l2-orthonormal basis of Ker (ΠijSijΠij + σ(I − Πij)). In the case of

linear elasticity, we take the approximations of the rigid body modes re-

stricted to Γ(i) × Γ(j) that move both structures Ωi and Ωj simultaneously

and orthonormalize them with the modified Gram-Schmidt algorithm. In

case of a diffusion problem (3.1) consists of a constant vector. Then, we have

(I − Πij) =
∑l

r=1 vrv
T
r and thus Πij = I −

∑l
r=1 vrv

T
r . For the case that

Ker (ΠijSijΠij + σ(I −Πij)) is unknown, we note that we could also use the

matrices Ψ(i) and Ψ(j) containing the coarse basis functions of Γ(i) and Γ(j)

to compute (3.1). The matrix Ψ(i) is obtained by extending the columns of

R
(i)
Π to the substructure Ωi discrete harmonically and restricting them to the

58



Chapter 3. Coarse Space Based on a Local Jump Operator

interface Γ(i). For details on computing (3.1), see [59]. For the computation

of the functions Ψ(i), cf. [59, 54].

Note that Πij(I − Πij)wij = (I − Πij)wij since (I − Πij) is an orthogonal

projection onto the space of rigid body modes that are continuous on Wi×Wj .

Hence, PDijΠij(I −Πij)wij = 0 and thus

PDijΠijΠijwij = PDijΠijwij . (3.2)

3.2 Generalized Eigenvalue Problem

We solve the eigenvalue problem

ΠijΠijP
T
DijSijPDijΠijΠijw

k
ij = µkij(ΠijSijΠij + σ(I −Πij))w

k
ij , (3.3)

where µkij≥TOL and

Sij = ΠijSijΠij + σ(I −Πij).

We then enforce the constraints wk Tij P
T
Dij
SijPDijwij = 0. From (3.3), we

obtain by using (3.2)

ΠijP
T
DijSijPDijΠijw

k
ij = µkij(Πij(ΠijSijΠij + σ(I −Πij))Πij + σ(I −Πij))w

k
ij .

(3.4)

From (3.4) using [59, Theorem 9] and [59, Theorem 11], we obtain the esti-

mate

wTijΠijP
T
DijSijPDijΠijwij ≤ µk−1

ij wTijΠijSijΠijwij (3.5)

for all wij in Wi ×Wj with wk Tij P
T
Dij
SijPDijwij = 0, µkij ≥ TOL.

3.3 Condition Number Estimate of the Coarse Space

in 2D

To the best of our knowledge, the following estimate for the classic ap-

proach [59] was first proposed in [38].
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3.3. Condition Number Estimate of the Coarse Space in 2D

Theorem 3.3.1. Let NE be the maximum number of edges of a subdomain.

The condition number κ(M̂−1F ) of the FETI-DP algorithm with adaptive

constraints defined in Section 3.2 either enforced by the projector precondi-

tioner M̂−1 = M−1
PP or by the balancing preconditioner M̂−1 = M−1

BP satisfies

κ(M̂−1F ) ≤ N2
ETOL.

Proof. The local jump operator in the eigenvalue problems is

PDij =

B(i)T
D,Eij

B
(i)
Eij

B
(i)T
D,Eij

B
(j)
Eij

B
(j)T
D,Eij

B
(i)
Eij

B
(j)T
D,Eij

B
(j)
Eij

 .
Application to a vector yields

PDij

R(i)w

R(j)w

 =

Ih(θEijD
(i)(wi − wj))

Ih(θEijD
(j)(wj − wi))

 .

For w ∈ W̃ we have

R(i)w

R(j)w

 ∈ W̃ij , and therefore Πij

R(i)w

R(j)w

 =

R(i)w

R(j)w

 .
All vertices are assumed to be primal. Thus, for w ∈ W̃ , we obtain

|PDw|2S̃ =
N∑
i=1

|R(i)PDw|2Si

≤ NE
N∑
i=1

∑
j∈Ni

|Ih(θEijD
(i)(wi − wj))|2Si

= NE
∑
Eij⊂Γ

|Ih(θEijD
(i)(wi − wj))|2Si + |Ih(θEijD

(j)(wj − wi))|2Sj

= NE
∑
Eij⊂Γ

wi
wj

T ΠijP
T
Dij

Si
Sj

PDijΠij

wi
wj


(3.5)

≤ NE
∑
Eij⊂Γ

µk−1
ij

wi
wj

T Πij

Si
Sj

Πij

wi
wj


≤NE TOL

∑
Eij⊂Γ

|wi|2Si + |wj |2Sj
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Chapter 3. Coarse Space Based on a Local Jump Operator

≤ N2
E TOL

N∑
i=1

|R(i)w|2Si

=N2
E TOL |w|2

S̃
.

3.4 Nonlinear Numerical Example for Perfect

Elastoplasticity

In the following, we will present numerical examples for the case of per-

fect elastoplasticity. Note that these can also be found in [40]. Consider a

square domain Ω = (0, 1)2 with zero Dirichlet boundary conditions imposed

on the lower edge {(x, y) ∈ ∂Ω | y = 0} which is exposed to a surface force

g(x, y, t) = (150t, 0)T if (x, y) ∈ {(x, y) ∈ ∂Ω | y = 1} and g(x, y, t) = 0 else-

where. The material has a Young modulus of E = 206900, a Poisson ratio

of ν = 0.29 and σy = 200. We compute the solution in the time interval

T = [0, 0.45] in nine time steps of step length ∆t = 0.05. In all our examples

in this section the space is discretized with P2 finite elements. In the first set

of numerical experiments, we consider a classical coarse space with vertex and

edge average constraints using different partitions into elements and subdo-

mains. The classical coarse space is sufficient if the plastically activated zone

n = H/h N = 1/H max. cond max. CG-It. Newton its

per timestep

20 2 4.06 13 1/1/1/4/4/6/7/9/11

30 2 4.53 14 1/1/3/5/5/7/8/10/11

40 2 4.87 14 1/1/3/4/5/7/9/13/13

Table 3.1: FETI-DP maximal condition numbers and iteration counts in

Newton’s scheme with a coarse space consisting of vertices and edge averages.

We use P2 finite elements; published in [40].
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3.4. Nonlinear Numerical Example for Perfect Elastoplasticity
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Figure 3.1: Unit square with zero Dirichlet boundary conditions at the lower

edge y = 0 exposed to a surface force g(t) = (150t, 0)T at the upper edge

y = 1 (left). Displacement magnified by factor 20 and shear energy density

in the last timestep (right). Material parameters E = 206900, ν = 0.29 and

σy = 200; published in [40].

n = H/h N = 1/H max. cond max. CG-It.

4 15 900837 371

6 15 > 106 > 1000

8 15 > 106 > 1000

Table 3.2: Problems with the Classical Coarse Space. FETI-DP maximal

condition numbers and iteration counts. We use P2 finite elements; published

in [40].
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Chapter 3. Coarse Space Based on a Local Jump Operator

Figure 3.2: Plastically activated zone in the last timestep. Decomposition

into 2×2 subdomains. The plastically activated zones stay completely inside

of subdomains (left). Decomposition into 15×15 subdomains. The plastically

activated zones intersect the interface (right); published in [40].

does not intersect the interface; see Table 3.1 for a decomposition in 2 × 2

subdomains. In this case each linearized system can be analyzed as in [29] us-

ing a slab technique. However, if the plastically activated zone intersects the

interface, the condition numbers and iteration counts increase considerably;

see Table 3.2 for the results with a decomposition into 15× 15 subdomains.

If H/h exceeds six, the method does not converge in 1000 iterations. For the

results with the adaptive coarse space described in Section 3.2, see Table 3.3.

The eigenpairs were computed using the MATLAB built-in function ’eig’.

The complexity thus is cubic with respect to the number of nodes on the

subdomain edges. For constant H/h the number of nodes on the subdomain

edges is constant. Moreover, the global number of subdomain edges, and

thus also the number of eigenvalue problems, grows linearly with the number

of subdomains. The solution of the eigenvalue problems can be performed in

parallel. The condition numbers and iteration counts in Table 3.3 compared

to the classical coarse space decrease significantly compared to Table 3.2 for

the cost of a few more primal constraints in the last time steps. The toler-

ance is currently determined heuristically; see Table 3.3. For more numerical
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3.4. Nonlinear Numerical Example for Perfect Elastoplasticity

results with the adaptive approach introduced in this chapter, see Chapter 5.

n = N = TOL max max elas. constraints/ global #EV/

H/h 1/H cond it it timestep dofs #dofs

4 15 6.0 5.84 25 25 0/0/0/0/0/ 8316 1.5%

0/20/46/121

6 15 7.0 7.06 28 27 0/0/0/0/0/ 11676 1.5%

0/30/71/180

8 15 8.0 8.01 30 29 0/0/0/0/0/ 15036 1.5%

0/37/82/225

4 15 5.9 5.84 25 25 0/0/0/0/0/ 8316 1.5%

0/20/46/124

6 15 7.1 7.06 28 27 0/0/0/0/0/ 11676 1.5%

0/30/71/180

Table 3.3: For each subdomain in each spatial direction, there are n finite el-

ements and in each spatial direction there are N subdomains. ’TOL’ denotes

the prescribed tolerance for the condition number, ’max cond’ the maximal

condition number in the Newton iterations, ’max it’ the maximal number of

preconditioned conjugate gradient iterations, and ’constraints/timestep’ the

amount of constraints in each timestep. The tolerances ’TOL’ were chosen

from considering the condition numbers of corresponding linear elastic prob-

lems. The number in the ’elas. it’ column refers to the iteration counts of

these corresponding elasticity problems. We can also use the condition num-

ber of the first few time steps, where the material still behaves elastically, as

a reference. It can be seen that the results are not very sensitive to small

changes in the tolerance; published in [40].

64



4 Coarse Space Related to Weighted

Poincaré Inequalities

The following approach is aimed at replacing different technical tools that

may no longer be available in a general context, in particular a weighted

Poincaré inequality and an extension theorem. This is the case, e.g., if the

coefficient in the diffusion equation has many jumps across and along the

interface of the partition into subdomains. The presentation here is based

on [42] and [38]; see also the proceedings articles [41, 36].

In some special cases of varying coefficients, robustness of FETI-DP and

BDDC methods can be obtained at no or almost no additional computational

cost. If the coefficient of the partial differential equation is constant or only

slightly varying on every subdomain but possibly has arbitrarily large jumps

across the interface, a robust coarse space can be constructed using only ver-

tices as primal variables in combination with a proper scaling in the precon-

ditioner; see, e.g., [73, 48]. Other simple configurations where the coefficient

jump is not across the interface can be treated by weighted constraints [45].

Some configurations do not need any modification of the algorithm [70, 29].

In this section, we present coarse spaces which are tailored for more general

coefficient distributions. Of course, we obtain the robustness at additional

computational cost, i.e., we have to solve local eigenvalue problems and we

have to accept a slightly larger coarse space.

Let Eij be an edge shared by the subdomains Ωi and Ωj and let S
(i)
Eij ,c,ρ

be the Schur complement that is obtained from K(i) after eliminating all
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variables except of the degrees of freedom on the closure of the edge. Let

s
(i)
Eij ,c,ρ(u, v) := uTS

(i)
Eij ,c,ρv

be the corresponding bilinear form. In addition, we define the weighted

L2(Eij)-inner product

m
(l)
Eij ,ρ(u, v) :=

∫
Eij
ρl u · v ds, for l = i, j.

For ρ|Eij = 1 we have the Poincaré inequality on an edge Eij

||v(i) − v(i)||2L2(Eij) =mEij ,1(v(i) − v(i), v(i) − v(i))

≤CHi|v(i)|2H1(Ωi)
∀ v(i) ∈ H1(Ωi),

where

v(i) =
1

|Eij |

∫
Eij
v(i)ds

is the edge average of v(i). However, if the coefficient on a subdomain has a

large variation, the constant in the Poincaré inequality may depend on the

ratio of the largest and the smallest value of the coefficient, and the higher

the contrast the larger the Poincaré constant becomes; see, e.g., [72, Theorem

2.9, Proposition 3.7].

Definition 4.0.1 ([72]). Let the weight function ρ ∈ L∞+ (Ω) be piecewise con-

stant with respect to a nonoverlapping partitioning of Ω into open, connected

Lipschitz polygons (polyhedra) Y :=
{
Y (l) : l = 1, . . . , n

}
, i.e.,

Ω = ∪nl=1Y
(l)

and ρ|Y (l) ≡ ρ(l)

for some constants ρ(l) and let l∗ be such that ρ(l∗) = max{ρ(l)}nl=1.

1. We call the region

P (l1,ls) :=
(
Y

(l1) ∪ Y (l2) ∪ · · ·Y (ls)
)◦
, 1 ≤ l1, . . . , ls ≤ n

a quasimonotone path from Y (l1) to Y (ls) (with respect to ρ), if the

following two conditions are satisfied:
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Chapter 4. Coarse Space Related to Weighted Poincaré Inequalities

a) for each i = 1, . . . , s − 1, the regions Y
(li) and Y

(li+1)
share a

common (d− 1)-dimensional manifold Xi,

b) ρ(l1) ≤ ρ(l2) ≤ · · · ≤ ρ(ls).

2. We say ρ is quasimonotone on Ω, if for any k = 1, . . . , n there exists a

quasimonotone path P (k,l∗) from Y (k) to Y (l∗).

Note that Definition 4.0.1 is a generalization of quasimonotone coefficients

as introduced in [21]. In case of a quasimonotone coefficient it is possible

to show the independence of the constant on the contrast by introducing

weighted Poincaré inequalities and weighted edge averages. If the coefficient

is not quasimonotone, this approach is not successful. For a coefficient that is

quasimonotone on the subdomains, see Figure 4.4 (right); for counterexam-

ples, see, e.g., Figure 4.5. In the following, we will use a different approach

to obtain a constant independent of the jump of the coefficients which are

not quasimonotone by solving local eigenvalue problems and enriching the

coarse space with certain eigenvectors. Similar approaches have been used

for overlapping Schwarz methods in [28, 27, 19, 80, 22]. To obtain a similar

estimate for coefficients which are not quasimonotone, we need to replace the

Poincaré inequality by a more general estimate since the Poincaré constant

is contrast dependent in this case. However, we need to enforce more con-

straints on the function to get a contrast independent estimate. In general,

the Poincaré constant can also depend on the geometric scale; for a more

detailed discussion of quasimonotone coefficients and generalized Poincaré

inequalities, see [72, 67, 69].

4.1 First Eigenvalue Problem and a Spectral Estimate

Let Eij be an edge. We solve the following generalized eigenvalue problem on

Eij .
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4.1. First Eigenvalue Problem and a Spectral Estimate

Eigenvalue Problem 1. Find (u
(i)
k , µ

(i)
k ) ∈W h(Eij)× R such that

s
(i)
Eij ,c,ρ(u

(i)
k , v) = µ

(i)
k m

(i)
Eij ,ρ(u

(i)
k , v) ∀v ∈W h(Eij), k = 1, . . . , nEij . (4.1)

We do not need to solve this problem for all but only for a number of small

eigenvalues and their corresponding eigenvectors. Let the eigenvalues

0 = µ
(i)
1 ≤ . . . ≤ µ

(i)
nEij

be sorted in an increasing order. For a given natural number L ≤ nEij and

for every subdomain, we define the projection

I
Eij ,(l)
L v :=

L∑
k=1

m
(l)
Eij ,ρ(u

(l)
k , v)u

(l)
k , l = i, j,

where u
(l)
k are the eigenvectors of (4.1) corresponding to the eigenvalues µ

(l)
k .

Note that the eigenvectors u
(l)
k can be chosen orthonormal with respect to

m
(l)
Eij ,ρ(·, ·). For our analysis, we will use the seminorm

|v|2H1
ρl

(Ωl)
:=

∫
Ωl

ρl(∇v)2dx

and the norms

||v||2L2
ρl

(Eij) :=

∫
Eij
ρlv

2ds, ||v||2L2
ρl

(Ωl)
:=

∫
Ωl

ρlv
2dx.

Furthermore, we define the ρl-harmonic extension of v as

H(l)
ρl
v := arg min

u∈H1(Ωl)

{∫
Ωl

ρl(∇u)2dx : u|∂Ωl = v

}
.

By standard variational arguments we obtain the following lemma.

Lemma 4.1.1. Let E ⊂ Γ(i) := ∂Ωi be an edge, E its closure, and Ec ⊂ Γ(i)

be the complement of E with respect to Γ(i). Define an extension from the

edge E ⊂ Γ(i) to Γ(i) by

v(i) =

 v
(i)
E

−S(i)−1
EcEcS

(i)
EcEv

(i)
E .

 , where S(i) =

S(i)
EE S

(i)T
EcE

S
(i)
EcE S

(i)
EcEc

 .
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For w(i) ∈W h(Γ(i)) we denote by v
(i)
E the nodal vector of w

(i)
|E . Then, for all

w(i) ∈W h(Γ(i)), we have |v(i)|2
S(i) ≤ |w(i)|2

S(i) .

Proof. The proof is analogous to Lemma 2.1.2.

Remark 4.1.2. Note that in contrary to Lemma 2.1.2 in Section 2.1 the

extension established in Lemma 4.1.1 is constructed using the boundary data

on the closed edge.

Remark 4.1.3. Using the extension operator

HE→Γ(i)v
(i)
E :=

 v
(i)
E

−S−1
EcEcSEcEv

(i)
E

 (4.2)

constructed in Lemma 4.1.1, we have

|H(i)
ρi HE→Γ(i)v

(i)
E |

2
H1
ρi

(Ωi)
= s

(i)
E,c,ρi(v

(i)
E , v

(i)
E ) ∀v(i)

E ∈W
h(E). (4.3)

Here, v
(i)
E denotes the nodal vector of v

(i)
E .

Lemma 4.1.4. For v ∈ W h(Eij) and w :=
(
v − IEij ,(l)L v

)
∈ W h(Eij), we

have

||v − IEij ,(l)L v||2L2
ρl

(Eij) = m
(l)
Eij ,ρ(w,w) ≤ 1

µ
(l)
L+1

s
(l)
Eij ,c,ρ(v, v)

=
1

µ
(l)
L+1

|H(l)
ρi HEij→Γ(l)v|2H1

ρl
(Ωl)

(4.4)

and

s
(l)
Eij ,c,ρ(w,w) ≤ s(l)

Eij ,c,ρ(v, v). (4.5)

Proof. We first prove (4.5). Since u
(l)T
k S

(l)
Eij ,ρu

(l)
m = 0 for eigenvectors u

(l)
k and

u
(l)
m with k 6= m, we have

sEij ,ρ(I
Eij ,(l)
L v, w) = sEij ,ρ(I

Eij ,(l)
L v, v − IEij ,(l)L v) = 0. (4.6)
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We obtain

s
(l)
Eij ,c,ρ(w,w) = s

(l)
Eij ,c,ρ(v − I

Eij ,(l)
L v, v − IEij ,(l)L v)

= s
(l)
Eij ,c,ρ

 nEij∑
i=L+1

m
(l)
Eij ,ρ(v, u

(l)
i )u

(l)
i ,

nEij∑
j=L+1

m
(l)
Eij ,ρ(v, u

(l)
j )u

(l)
j


=

nEij∑
i=L+1

m
(l)
Eij ,ρ(v, u

(l)
i )2 s

(l)
Eij ,c,ρ

(
u

(l)
i , u

(l)
i

)
(4.7)

and analogously

s
(l)
Eij ,c,ρ(v, v) =

nEij∑
i=1

m
(l)
Eij ,ρ(v, u

(l)
i )2 s

(l)
Eij ,c,ρ

(
u

(l)
i , u

(l)
i

)
. (4.8)

The inequality (4.5) follows by noting that the terms of the sums in (4.7)

and (4.8) are all positive or zero. Let S
(l)
Eij ,c,ρ be the matrix associated with

the bilinear form s
(l)
Eij ,c,ρ in the sense that

s
(l)
Eij ,c,ρ(v, v) = vTS

(l)
Eij ,c,ρv for all v ∈W h(Eij)

and let M
(l)
Eij be the corresponding matrix associated with m

(l)
Eij ,ρ(·, ·). Now

we apply Lemma 1.6.2 with

A = S
(l)
Eij ,c,ρ, B = M

(l)
Eij , m = L, and ΠB

m = I
Eij ,(l)
L

and obtain (4.4).

A similar inequality for the whole domain Ωi instead of just the edge Eij is

given in [28] and [27, (3.10)]. In [19] an analogous inequality has been shown

for ∂Ωi instead of Eij . Let us note that all these inequalities are also related

to different eigenvalue problems. The eigenvalue problem considered here,

cf. (4.1), is more local than those in [28, 27] and [19]. To take advantage of

inequality (4.4) in our FETI-DP algorithm using projector preconditioning

or our BDDC algorithm using a transformation of basis, we need to enforce

the projected jumps across the interface to be zero to obtain

I
Eij ,(i)
L v(i) = I

Eij ,(i)
L v(j) and I

Eij ,(j)
L v(i) = I

Eij ,(j)
L v(j).
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Let v
(l)
Eij be the restriction of v(l) to the edge Eij . To guarantee this equality,

we enforce the constraint

m
(l)
Eij ,ρ(u

(l)
k , v

(i)
Eij − v

(j)
Eij ) = 0, for k = 1, .., L.

To enrich the coarse space, we first multiply the eigenvectors by the mass

matrix corresponding to m
(l)
Eij ,ρ(·, ·)), then discard the entries associated with

primal vertices, and finally extend these vectors by zero on the remaining

part of the interface. Note that discarding these values at the primal vertices

has no effect because the jump wi − wj is zero there. Therefore, the origi-

nal constraint holds. Then, these vectors define the corresponding columns

of U from Section 1.5 or the transformation matrices T
(i)
E and T

(j)
E from

Section 1.4, respectively. We carry out this process for each edge of each

subdomain and for each eigenvector of the generalized eigenvalue problem

(4.1) for which the corresponding eigenvalue is smaller than or equal to a

chosen tolerance TOLµ, i.e.,

µL ≤ TOLµ. (4.9)

Let us note that linearly dependent eigenvectors are removed by using a

singular value decomposition as described later in this chapter. Only this

reduced set of eigenvectors is used to define the columns of U in the deflation

approach or the columns of the transformation matrices T
(i)
E and T

(j)
E in case

of a transformation of basis.

4.2 Technical Tools

In this section, we provide a few technical tools, together with their proofs,

which are needed for the proof of our condition number estimate. We will

show a weighted edge lemma, a weighted Friedrichs inequality and an ex-

tension theorem for the case that the coefficient functions on the subdomain

satisfy certain conditions.
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Ωi \ Ω̃iη

Ω̃iη

ωi1

ωi2

ωi3

ωi4

ωi5

Eij

V(2)
ij

V(3)
ij

V(4)
ij

V(5)
ij

E(5)ij

E(4)ij

E(3)ij

E(2)ij

E(1)ij

ωi,k+1

ωik

E(k+1)
ij

E(k)ij

V(k+1)
ij

Figure 4.1: Example for the notation in Lemma 4.2.2.

ωi1 ωi2 ωi3

ϑ
(1)
Eij ϑ

(2)
Eij ϑ

(3)
Eij

ϑV(2)
ij

ϑV(3)
ij

Figure 4.2: Decomposition of the edge cutoff function ϑEij in Lemma 4.2.2.

For convenience of the reader we recall Definition 2.6.2 from Chapter 2.

Definition 4.2.1. Let Eij ⊂ ∂Ωi be an edge. Then, a slab Ω̃iη is a subset

of Ωi of width η with Eij ⊂ ∂Ω̃iη which can be represented as the union of

η-patches ωik, k = 1, . . . , n, such that

E(k)
ij := (∂ωik ∩ Eij)◦ 6= ∅, k = 1, . . . , n.

Next, we formulate and prove an edge lemma.
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Lemma 4.2.2. Let Ω̃iη ⊂ Ωi be a slab of width η, such that Eij ⊂ ∂Ω̃iη. Let

ωik ⊂ Ω̃iη, k = 1, . . . , n, be η-patches, such that

Ω̃iη =
n⋃
k=1

ωik,

and the coefficient function ρi|ωik = ρik is constant on each ωik. Let

ωik ∩ ωil = ∅, k 6= l,

θEij be the standard finite element cutoff function which equals 1 at the nodes

on the edge Eij and is zero on ∂Ω̃iη \ Eij, and let H(i)
ρi be the ρi-harmonic

extension. Then, there exists a finite element function ϑEij , which equals θEij

on ∂Ω̃iη, such that for u ∈W h(Ωi)

|H(i)
ρi I

h(θEiju)|2H1
ρi

(Ωi)
≤ |Ih(ϑEiju)|2

H1
ρi

(Ω̃iη)

≤ C
(

1 + log
(η
h

))2
(
|u|2

H1
ρi

(Ω̃iη)
+

1

η2
||u||2

L2
ρi

(Ω̃iη)

)
,

where C > 0 is a constant independent of H,h, η, and the contrast of ρi.

Proof. We define

E(k)
ij := (∂ωik ∩ Eij)◦,

where M◦ is the interior of the set M , i.e., E(k)
ij is an open edge without its

endpoints, and

V(k+1)
ij := E(k)

ij ∩ E
(k+1)
ij

is an endpoint of that edge. For each patch ωik and its local edge E(k)
ij , there

exists a finite element function ϑ
(k)
Eij which equals one on E(k)

ij and zero in all

other nodes on the boundary of ωik. In the interior of the patch ωik, the

function ϑ
(k)
Eij can be defined such that

|Ih(ϑ
(k)
Eiju)|2H1(ωik) ≤ C(1 + log

(η
h

)
)2

(
|u|2H1(ωik) +

1

η2
||u||2L2(ωik)

)
; (4.10)
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see, e.g., [48, proof of Lemma 4.4] or [82, Lemma 4.24], which is a three-

dimensional analogon. For the endpoints V(k)
ij and V(k+1)

ij of E(k)
ij , we denote

by ϑ
(k)
Vij and ϑ

(k+1)
Vij , respectively, the corresponding nodal finite element basis

function. Next, we define the finite element function

ϑEij :=
n∑
k=1

ϑ
(k)
Eij +

n∑
k=2

ϑ
(k)
Vij .

Note that ϑEij equals 1 in all nodes on Eij and 0 in all nodes on ∂Ω̃iη \ Eij ,

the boundary of the slab without the edge. Since the discrete ρi-harmonic

extension has the smallest energy, we have

|H(i)
ρi I

h(θEiju)|2H1
ρi

(Ωi)
≤ |Ih(ϑEiju)|2

H1
ρi

(Ω̃iη)
.

For the function ϑ
(l)

Vij , l = k, k + 1, we have

|Ih(ϑ
(l)
Viju)|2H1(ωik) =|ϑ(l)

Viju(V(l)
ij )|2H1(ωik)

≤C
(

1 + log
(η
h

))(
|u|2H1(ωik) +

1

η2
||u||2L2(ωik)

)
, (4.11)

which follows from an inverse inequality, see, e.g., [6] or [82, Lemma B.5],

and a Sobolev inequality for finite element functions; see, e.g., [15, Lemma

3.2] or [6]. From (4.10), (4.11), and a triangle inequality, we obtain

|Ih(ϑEiju)|2
H1
ρi

(Ω̃iη)
=

n∑
k=1

|Ih(ϑEiju)|2H1
ρi

(ωik) (4.12)

≤ 3

n∑
k=1

|Ih(ϑ
(k)
Eiju)|2H1

ρi
(ωik) + 3

n−1∑
k=1

|Ih(ϑV(k+1)
ij

u)|2H1
ρi

(ωik)

+ 3
n∑
k=2

|Ih(ϑV(k)
ij

u)|2H1
ρi

(ωi,k)

≤C
(

1 + log
(η
h

))2
(
|u|2

H1
ρi

(Ω̃iη)
+

1

η2
||u||2

L2
ρi

(Ω̃iη)

)
.

Here, we have used that ρi is constant on each patch ωik, k = 1, . . . , n.

For a graphical illustration of the notation in Lemma 4.2.2, see Figures 4.1

and 4.2. Let us note that similar techniques using patches for heterogeneous
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coefficients have been also used in [71]. For inequalities related to the next

lemma, see [19, Lemma 2.4] and [82, proof of Lemma 3.10].

Lemma 4.2.3 (Weighted Friedrichs inequality). For u ∈ H1(Ω̃iη), we have

||u||2
L2
ρi

(Ω̃iη)
≤ C

(
η2|u|2

H1
ρi

(Ω̃iη)
+ η||u||2L2

ρi
(Eij)

)
.

Proof. Let ωik ⊂ Ω̃iη, k = 1, . . . , n be η-patches, such that Ω̃iη = ∪nk=1ωik,

and let the coefficient function ρi|ωik = ρik be constant on each ωik. Further-

more, let

u E
(k)
ij :=

1

|E(k)
ij |

∫
E(k)ij

u dx

be the standard edge average. Then, we obtain by using a standard Poincaré

inequality

||u||2L2
ρi

(ωik) = ρik||u||2L2(ωik) ≤ 2ρik

∥∥∥∥u− u E(k)ij

∥∥∥∥2

L2(ωik)

+ 2ρik

∥∥∥∥u E(k)ij

∥∥∥∥2

L2(ωik)

≤ 2ρikCkη
2|u|2H1(ωik) + 2ρikη

2

(
u E

(k)
ij

)2

≤ 2 max{Ck, 1}
(
η2|u|2H1

ρik
(ωik) + η||u||2

L2
ρik

(E(k)ij )

)
.

In the last step, we applied a Cauchy-Schwarz inequality. Summing over k

completes the proof.

In order to obtain a condition number estimate independent of the contrast

of the coefficient function, it is sufficient to have an extension operator from a

slab to a neighboring slab across the shared edge, which is uniformly bounded

with respect to the contrast.

Assumption 4.2.4 (special case). We assume that there exists an extension

operator

Eji : W h(Ωj)→W h(Ωi)

with

|Ejiu|2H1
ρi

(Ωi)
≤ C|u|2H1

ρj
(Ωj)

,
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(j)

3

Y
(j)

4

Y
(j)

5

Y
(j)

6

Y
(j)

7

Figure 4.3: Example of the polygons in Lemma 4.2.5.

where C > 0 is a constant independent of H, h, and the contrast of ρ.

The following Lemma shows that Assumption 4.2.4 is satisfied for some

special coefficient distributions; see, e.g., Section 4.6, Figures 4.4, and 4.5.

In these cases, the coefficient distributions are symmetric with respect

to the interface and Eji can be obtained by reflecting the function across

the edge and using the standard nodal finite element interpolation operator.

This interpolation operator restricted to finite element spaces is stable be-

tween non-nested spaces; see, e.g., [8, Lemma 2.1], [82, Lemma 3.8], or [11,

Lemma 1]. Here, we restrict ourselves to straight edges Eij . Thus, without

loss of generality, let Eij ⊂ {0} × R. Let T be the transformation with

T : (x, y)→ (−x, y).

Let

ρi(x, y) = ρj(−x, y), (x, y) ∈ Ωi,

ρj(x, y) = ρi(−x, y), (x, y) ∈ Ωj .

Using the transformation formula for integrals, we obtain the next lemma.
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Lemma 4.2.5. Let u ∈W h(Ωj). With the extension operator

Eji : W h(Ωj)→W h(Ωi)

Eji (u(x, y)) = Ih(u ◦ T )(x, y) = Ihu(−x, y),

we have

|Ejiu|2H1
ρi

(Ωi)
≤ C|u|2H1

ρj
(Ωj)

.

Proof. As in Definition 4.0.1, we partition the subdomains Ωi and Ωj into

open, connected Lipschitz polygons Yk := {Y (l)
k : l = 1, . . . , n}, k = i, j, such

that Ωk =
⋃n
l=1 Y

(l)
k and define ρ(l) := ρ|Y (l)

k

. Note that ρ|Y (l)
j

= ρ|Y (l)
i

and

T−1(Y
(l)
i ) = Y

(l)
j . For each Y

(l)
i , we have |Ihu|2

H1(Y
(l)
i )
≤ Cl|u|2

H1(Y
(l)
i )

; see,

e.g., [8, Lemma 2.1], [82, Lemma 3.8], or [11, Lemma 1]. With C := maxl Cl,

we obtain

|Ejiu|2H1
ρi

(Ωi)
=

n∑
l=1

ρ(l)

∫
Y

(l)
i

|∇(Eji(u(x, y))|2 dx dy

≤C
n∑
l=1

ρ(l)

∫
Y

(l)
i

|∇(u ◦ T )|2 dx dy

=C
n∑
l=1

ρ(l)

∫
T−1(Y

(l)
i )

(∇u)2|det(DT−1)| dx̂ dŷ

=C
n∑
l=1

ρ(l)

∫
Y

(l)
j

(∇u)2 dx̂ dŷ

=C|u|2H1
ρj

(Ωj)
.

Remark 4.2.6. Note that it is also possible to prove

|Eji u|2H1
ρi

(Ω̃iη)
≤ C|u|2

H1
ρj

(Ω̃jη)
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for an extension operator Eji : W h(Ω̃jη) → W h(Ω̃iη) if the coefficient func-

tion satisfies

ρi(x, y) = ρj(−x, y), (x, y) ∈ Ω̃iη,

ρj(x, y) = ρi(−x, y), (x, y) ∈ Ω̃jη.

In the proof, the Lipschitz polygons Y
(l)
k can then be replaced by the patches

ωlk, l = i, j, in Definitions 2.6.1 and 4.2.1.

Remark 4.2.7. For terms with the energy minimal extension operators H(l)
ρl

and H(l)

Eij→Γ(l), l = i, j, we obtain

|H(j)
ρj HEij→Γ(j)u|2H1

ρj
(Ωj)
≤ |EjiH(i)

ρi HEij→Γ(i)u|H1
ρj

(Ωj)

≤ C|H(i)
ρi HEij→Γ(i)u|2H1

ρi
(Ωi)

.

4.3 Second Eigenvalue Problem - Bounds on

Extensions

Assumption 4.2.4 can only be used for special coefficient distributions. To

be able to treat more general cases, we now consider a second set of primal

constraints to bound the terms

|H(i)
ρi HEij→Γ(i)ŵ(j)|2H1

ρi
(Ωi)
≤ C|H(j)

ρj HEij→Γ(j)w(j)|2H1
ρj

(Ωj)
.

Here ŵ(j) is a projection of w(j) on a subspace; see the discussion below.

To compute these additional primal constraints, we consider the following

second generalized eigenvalue problem.

Eigenvalue Problem 2.

s
(j)
Eij ,c,ρj (v, wκ) = ν(i)

κ

ρ̂j
ρ̂i
s

(i)
Eij ,c,ρi(v, wκ) ∀v ∈W h(Eij), κ = 1, . . . , nEij .

(4.13)
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We note that the bilinear forms in the generalized eigenvalue problem

(4.13) may have nontrivial nullspaces. However, we can solve the problem on(
Ker

(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

))⊥
.

Let w(j) = w
(j)
K + w

(j)
R with

w
(j)
K ∈ Ker

(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

)
and w

(j)
R ∈

(
Ker

(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

))⊥
.

We consider the l2-orthogonal projection Π onto(
Ker

(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

))⊥
and the positive semidefinite bilinear forms

s
(j)
Eij ,c,ρj (v, w) := s

(j)
Eij ,c,ρj (Πv,Πw)

s
(i)
Eij ,c,ρi(v, w) := s

(i)
Eij ,c,ρi(Πv,Πw).

The orthogonal projection Π can be obtained by Π = I − (I −Π) with

I −Π =

p∑
r=1

vrv
T
r ,

where {v1, . . . , vp} is an orthonormal basis of

Ker
(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

)
.

In exact arithmetic, we have s
(l)
Eij ,c,ρj = s

(l)
Eij ,c,ρj , l = i, j, but we use the

projection Π for stability in our computations. We can formulate a modified

problem on
(

Ker
(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

))⊥
by

s
(j)
Eij ,c,ρj (v, wκ) = ν(i)

κ

ρ̂j
ρ̂i
s

(i)
Eij ,c,ρi(v, wκ),

∀v ∈
(

Ker
(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

))⊥
, κ = 1, . . . , nEij , (4.14)

79



4.3. Second Eigenvalue Problem - Bounds on Extensions

where ρ̂l, l = i, j, is defined by (1.8). The eigenpairs (ν
(i)
κ , w

(i)
κ ) are also

eigenpairs of the original problem (4.13). Let K ∈ {1, . . . , nEij} and the

corresponding eigenvalues

ν
(i)
1 ≤ . . . ≤ ν

(i)
K ≤ . . . ≤ ν

(i)
nEij

be sorted in an increasing order. We define the projection

Π
(i)
K v :=

K∑
κ=1

ρ̂j
ρ̂i
s

(i)
Eij ,c,ρi(v, wκ)wκ

and obtain the following lemma.

Lemma 4.3.1. We have for all w(j) ∈W h(Eij)

s
(i)
Eij ,c,ρi

(
w(j) −Π

(i)
K w

(j), w(j) −Π
(i)
K w

(j)
)
≤ 1

ν
(i)
K+1

ρ̂i
ρ̂j
s

(j)
Eij ,c,ρj

(
w(j), w(j)

)
(4.15)

which is equivalent to

|H(i)
ρi HEij→Γ(i)

(
w(j) −Π

(i)
K w

(j)
)
|2H1

ρi
(Ωi)
≤ 1

ν
(i)
K+1

ρ̂i
ρ̂j
|H(j)

ρj HEij→Γ(j)w(j)|2H1
ρj

(Ωj)
.

Additionally, we have

s
(i)
Eij ,c,ρi

(
w(i) −Π

(i)
K w

(i), w(i) −Π
(i)
K w

(i)
)
≤ s(i)
Eij ,c,ρi

(
w(i), w(i)

)
. (4.16)

Proof. Using the additive decomposition w(j) = w
(j)
K + w

(j)
R with

w
(j)
K ∈

(
Ker

(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

))
,

w
(j)
R ∈

(
Ker

(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

))⊥
,

we have

Π
(i)
K w

(j)
K =

K∑
κ=1

ρ̂j
ρ̂i
s

(i)
Eij ,c,ρi(w

(j)
K , wκ)wκ =

K∑
κ=1

ρ̂j
ρ̂i
s

(i)
Eij ,c,ρi(Πw

(j)
K , wκ)wκ = 0.

The proof can be completed using that s
(i)
Eij ,c,ρi(wκ, wκ) = 0 for wκ ∈

Ker
(
S

(i)
Eij ,c,ρi

)
and s

(i)
Eij ,c,ρi(wκ, wl) = δκl else, for the eigenvectors wκ and

wl. As usual δkl is the Kronecker symbol. Using Lemma 1.6.2 we conclude

the proof.
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The additional primal constraints which we enforce for each edge Eij are of

the form

Π
(i)
K w

(i) = Π
(i)
K w

(j) and Π
(j)
K w(i) = Π

(j)
K w(j).

The following remark is motivated by [59].

Remark 4.3.2. We are only interested in eigenvectors in(
Ker

(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

))⊥
of (4.14). Instead of solving this problem

on
(

Ker
(
S

(i)
Eij ,c,ρi

)
∩Ker

(
S

(j)
Eij ,c,ρj

))⊥
, we can consider instead

S
(j)
Eij ,c,ρjw = ν

(
S

(i)
Eij ,c,ρi + σ

(
I −Π

))
w, (4.17)

where S
(k)
Eij ,c,ρk , k = i, j, is the matrix associated with the bilinear form s

(k)
Eij ,c,ρk

and σ is any positive constant. In our computations we have chosen σ as the

maximum diagonal entry of S
(i)
Eij ,c,ρi; see also [59]. The projection ensures that

there are no arbitrary eigenvalues in (4.17) in the sense that every vector in

Ker (S
(i)
Eij ,c,ρi) ∩Ker (S

(j)
Eij ,c,ρj ) satisfies (4.13) for all ν ∈ C.

To enhance our coarse problem, we consider for a given tolerance TOLν

the eigenpairs (wk, νk), where k ≤ K and

νK ≤ TOLν . (4.18)

For these eigenvectors, we first build
(
S

(i)
Eij ,c,ρi + σ

(
I −Π

))
wk, discard the

entries related to primal vertices, and finally extend them by zero on the

remaining interface. We add these vectors to the constraints obtained from

the eigenvalue problem (4.1). Let us now consider the set of all constraints

obtained from Eigenvalue Problems 1 and 2. We need to remove linearly

dependent vectors from this set. In our experiments we orthonormalize all

these vectors and remove linearly dependent vectors. The resulting vectors

are added as columns to the matrix U from Section 1.5 or the matrices T
(i)
E

and T
(j)
E from Section 1.4. In our FETI-DP method we use a singular value

decomposition with a drop tolerance of 1e − 6. In our BDDC method we
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use a modified Gram-Schmidt algorithm with a drop tolerance of 1e − 12.

The orthogonal basis in (1.11) is computed using a QR decomposition with

Householder reflections.

4.4 Condition Number Estimate

We can now prove our condition number estimate. For simplicity we will

restrict ourselves to the case of second order scalar elliptic equations.

Theorem 4.4.1. The condition number for the FETI-DP method with a ρ-

scaling, as defined in (1.9), and using adaptive constraints computed from

eigenvalue problems (4.1) and (4.13) satisfies

κ(M̂−1F ) ≤ C
(

1 + log
(η
h

))2 1

νK+1

(
1 +

1

ηµL+1

)
,

where M̂−1 = M−1
PP or M̂−1 = M−1

BP , or alternatively M̂−1 = M−1 if all

constraints have been enforced by a transformation of basis. Here, C > 0 is

a constant independent of H, h, and η and

1

µL+1
= max

k=1,...,N

{
1

µ
(k)
Lk+1

}
,

1

νK+1
= max

{
1, max
k=1,...,N

1

ν
(k)
K+1

}
.

Remark 4.4.2. 1. Note that in the case of a coefficient distribution where

Assumption 4.2.4 is satisfied, we have an estimate of the form

κ(M̂−1F ) ≤ C
(

1 + log
(η
h

))2
(

1 +
1

ηµL+1

)
.

In general, such an estimate holds for coefficient distributions where an

extension operator exists with an upper bound independent of the values

of the coefficients.

2. A similar result can be obtained for linear elasticity, e.g., by using the

tools provided in [49].

3. An algorithm for the related BDDC method using a transformation of

basis can be found in [41]; see also the numerical results with this algo-

rithm in Section 4.6.2.
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4. The constant in the condition number estimate for the third coarse space

(cf. Theorem 4.4.1) depends on N2
E in the same way as the condition

number estimate for the first coarse space in Lemma 2.7.1 and as for the

second coarse space in Lemma 3.3.1. Additionally, the constant depends

on the constants in the weighted edge lemma (Lemma 4.2.2) and in the

weighted Friedrichs inequality (Lemma 4.2.3); see also Remark 4.5.4.

Proof of Theorem 4.4.1. We can either directly use Lemma 1.5.1 or observe

that FETI-DP with projector preconditioning and FETI-DP using a trans-

formation of basis have the same spectra if the same constraints are enforced;

see [47, Theorem 6.9]. Therefore, it makes no difference if we assume for the

proof that a transformation of basis has been carried out to enforce the eigen-

vector constraints. Then the proof of the condition number estimate can be

modeled on the corresponding proof of Lemma 8.5 in Klawonn and Widlund

[49]. As usual, we always assume functions from these trace spaces to be

ρ-harmonically extended to the interior of the subdomains.

We consider an arbitrary w̃ ∈ W̃ . Let R(i)T be the local operator assem-

bling in the primal variables and RT =
[
R(1)T , . . . , R(N)T

]
; see, e.g., [49, p.

1533]. In the following, we will use the notation w(i) := R(i)w̃ ∈ Wi and

w(j) := R(j)w̃ ∈Wj . With v(i) := R(i)PDw̃ and S̃ρ = RTSρR, we obtain

|PDw̃|2S̃ρ = |RPDw̃|2Sρ =

n∑
i=1

|R(i)PDw̃|2
S
(i)
ρi

=

n∑
i=1

|v(i)|2
S
(i)
ρi

.

If all vertices are chosen to be primal, we can write v(i) =
∑
Eij I

h(θEijv
(i)).

Here, we sum over all edges Eij ⊂ Γ(i). In the following, we will develop

bounds for the edge contributions

|H(i)
ρi I

h(θEijv
(i))|2H1

ρi
(Ωi)

.

Obviously, we have v
(i)
|Eij = (δ†j(w

(i)−w(j)))|Eij . We use max -ρ-scaling (cf. (1.8))

in this approach and thus δ†j is given by (1.9) with ρ̂l defined in (1.8). We

choose L such that µ
(l)
L+1 is independent of the contrast in the coefficient ρ.
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4.4. Condition Number Estimate

To avoid excessive use of extension operators we define H(i)
Eij = H(i)

ρi H
(i)

Eij→Γ(i) .

Moreover we enforce the equalities

I
Eij ,(i)
L w(i) = I

Eij ,(i)
L w(j), I

Eij ,(j)
L w(i) = I

Eij ,(j)
L w(j),

Π
(i)
K w

(i) = Π
(i)
K w

(j), and Π
(j)
K w(i) = Π

(j)
K w(j),

either with projector preconditioning or a transformation of basis. Further,

we define ŵ(l) := w(l) − Π
(i)
K w

(l) and w(l) = ŵ(l) − IEij ,(i)L ŵ(l) for l = i, j.

Then, using Lemma 4.2.2, we have

|H(i)
ρi I

h(θEijv
(i))|2H1

ρi
(Ωi)

= |H(i)
ρi I

h(θEijHEij→Γ(i)δ
†
j(w

(i) − w(j)))|2H1
ρi

(Ωi)

= |H(i)
ρi I

h(θEijHEij→Γ(i)δ
†
j(ŵ

(i) − ŵ(j)))|2H1
ρi

(Ωi)

= |H(i)
ρi I

h(θEijHEij→Γ(i)δ
†
j(w

(i) − w(j)))|2H1
ρi

(Ωi)

≤ 2(δ†j)
2|H(i)

ρi I
h(θEijHEij→Γ(i)w(i))|2H1

ρi
(Ωi)

+ 2(δ†j)
2|H(i)

ρi I
h(θEijHEij→Γ(i)w(j))|2H1

ρi
(Ωi)

≤ C
(

1 + log
(η
h

))2
(δ†j)

2

(
|H(i)
Eijw

(i)|2
H1
ρi

(Ω̃iη)
+

1

η2
||H(i)
Eijw

(i)||2
L2
ρi

(Ω̃iη)

+ |H(i)
Eijw

(j)|2
H1
ρi

(Ω̃iη)
+

1

η2
||H(i)
Eijw

(j)||2
L2
ρi

(Ω̃iη)

)
.

Now, Lemma 4.2.3 yields with the stability of the projections I
Eij ,(i)
L and Π

(i)
K

1

η2
||H(i)
Eijw

(i)||2
L2
ρi

(Ω̃iη)
≤ C

(
|H(i)
Eijw

(i)|2
H1
ρi

(Ω̃iη)
+

1

η
||w(i)||2L2

ρi
(Eij)

)
(4.19)

≤ C

(
|H(i)
Eijw

(i)|2
H1
ρi

(Ω̃iη)
+

1

ηµ
(i)
L+1

|H(i)
Eij ŵ

(i)|2H1
ρi

(Ωi)

)

≤ C

(
1 +

1

ηµ
(i)
L+1

)
|w(i)|2H1

ρi
(Ωi)

.

In the penultimate step, we have applied (4.4). In the last step, we have used
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Chapter 4. Coarse Space Related to Weighted Poincaré Inequalities

Remark 4.1.3, (4.5), and (4.16). Finally, we obtain

(δ†j)
2|H(i)

Eijw
(i)|2

H1
ρi

(Ω̃iη)
+

1

η2
(δ†j)

2||H(i)
Eijw

(i)||2
L2
ρi

(Ω̃iη)

≤C

(
1 +

1

ηµ
(i)
L+1

)
|w(i)|2H1

ρi
(Ωi)

.

We can estimate the term (δ†j)
2||H(i)

Eijw
(j)||2

H1
ρi

(Ω̃iη)
analogously and obtain

(δ†j)
2||H(i)

Eijw
(j)||2

H1
ρi

(Ω̃iη)
≤ C

(
1 +

1

ηµ
(i)
L+1

)
(δ†j)

2|H(i)
Eij ŵ

(j)|2H1
ρi

(Ωi)
.

Application of Lemma 4.3.1 yields

(δ†j)
2|H(i)

Eij

(
w(j) −Π

(i)
K w

(j)
)
|2H1

ρi
(Ωi)
≤ 1

ν
(i)
K+1

(δ†j)
2 ρ̂i
ρ̂j
|H(j)
Eijw

(j)|2H1
ρj

(Ωj)

≤ 1

ν
(i)
K+1

|w(j)|2H1
ρj

(Ωj)

and we obtain the estimate

|H(i)
ρi I

h(θEijv
(i))|2H1

ρi
(Ωi)

≤ Ĉ
(

1 + log
(η
h

))2
(

1 +
1

ηµ
(i)
L+1

)(
|w(i)|2H1

ρi
(Ωi)

+ |w(j)|2H1
ρi

(Ωi)

)

with Ĉ = C max

{
1, 1

ν
(i)
K+1

}
.

Remark 4.4.3. In our final estimate we see that there is no dependence on(
H
η

)2
for the upper bound. The reason for this is the eigenvalue estimate.

Consider a problem where the smallest non-zero eigenvalue µ2 does not de-

pend on the contrast in the coefficient ρ, e.g., the case where the coefficient

is constant on each subdomain. In that case, we can estimate the L2-term in

(4.19) with the trace theorem and a Poincaré inequality. To get an explicit

dependence of the trace theorem constant on H/η we transform the integral

on the edge to unit length and transform integrals over Ω̃iη to the unit square

Ω̂. Without loss of generality, let Ω̃iη = [0, η]× [0, H] and u ∈ H1(Ω̃iη). Let

Φ(x̂1, x̂2) = (ηx̂1, Hx̂2) =: (x1, x2)
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4.4. Condition Number Estimate

be the linear transformation from the unit square Ω̂ to the slab Ω̃iη and

φ(1, x̂2) = (η,Hx̂2) = (η, x2)

be the transformation from an edge of unit length to the edge {η} × [0, H].

Further let û := u ◦Φ. We then have û|Ê = (u ◦Φ)|Ê = u|E ◦ φ. Applying the

trace theorem on the edge of unit length for the trace γu yields

1

η
||γu||2L2(E) =

1

η

∫
E
(γu)2dσ

=

∫
Ê
(γu ◦ φ)2

√
(Dφ)T (Dφ)dσ

=
1

η

∫
Ê
(γu ◦ φ)2Hdσ

=
H

η
||γu ◦ φ||2

L2(Ê)

≤H
η
||γu ◦ φ||2

L2(∂Ω̂)

≤C(Ω̂)
H

η

(
||u ◦ Φ||2

L2(Ω̂)
+ |u ◦ Φ|2

H1(Ω̂)

)
,

where C(Ω̂) depends on the shape and on the diameter of Ω̂. By transforma-

tion to the slab with Φ−1 we obtain

1

η
||u||2L2(E) ≤ C(Ω̂)

H

η

(
1

Hη
||u||2

L2(Ω̃iη)
+

(
H

η

)
|u|2

H1(Ω̃iη)

)

= C(Ω̂)

(
1

η2
||u||2

L2(Ω̃iη)
+

(
H

η

)2

|u|2
H1(Ω̃iη)

)
.

Using this estimate for w(i) − c and applying a Poincaré inequality, we have

1

η
||w(i) − c||2L2(Eij) ≤ C(Ω̂)

(
1

η2
||w(i) − c||2

L2(Ω̃iη)
+

(
H

η

)2

|w(i)|2
H1(Ω̃iη)

)

≤ C(Ω̂)

(
H

η

)2

|w(i)|2
H1(Ω̃iη)

.

For similar scaling arguments regarding slabs, see also [29, 70].
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4.5 Extension by Scaling

In the following, we construct a scaling for the extension which can be used

as an alternative to (4.13), i.e., the Eigenvalue Problem 2.

Definition 4.5.1 (Extension scaling). For a pair of subdomains Ωi and Ωj

sharing an edge Eij, let D
(i)
Eij ,c

and D
(j)
Eij ,c

be defined by

D
(i)
Eij ,c

= (S
(i)
Eij ,c,ρi + S

(j)
Eij ,c,ρj )

+S
(i)
Eij ,c,ρi +Aij ,

D
(j)
Eij ,c

= (S
(i)
Eij ,c,ρi + S

(j)
Eij ,c,ρj )

+S
(j)
Eij ,c,ρj +Aij ,

where Aij is defined by

Aij =
1

2

(
I − (S

(i)
Eij ,c,ρi + S

(j)
Eij ,c,ρj )

+(S
(i)
Eij ,c,ρi + S

(j)
Eij ,c,ρj )

)
.

By removing those columns and rows associated with the primal vertices at

the endpoints of Eij, from the matrices D
(l)
Eij ,c

, l = i, j, we obtain the matrices

D
(l)
Eij

. We define subdomain scaling matrices by

D(i) =
∑
Eij⊂Γ(i)

R
(i)T
Eij

D
(j)
Eij
R

(i)
Eij
.

The scaled jump operator BD in the FETI-DP algorithm is consequently given

by BD := [D(1)TB(1), . . . , D(N)TB(N)] where the transpose is necessary since

the D(i) are not symmetric.

When using the scaling in Definition 4.5.1, we build the vectorsD
(j)T
Eij ,c

M
(i)
Eij
x

(i)
k

and D
(i)T
Eij ,c

M
(j)
Eij
x

(j)
k instead of M

(l)
Eij
x

(l)
k , l = i, j, where x

(l)
k are the eigenvec-

tors computed from (4.1) and M
(l)
Eij

is the mass matrix corresponding to the

bilinear form m
(l)
Eij ,ρ(·, ·). We then discard the entries which are not associated

with dual variables to obtain our constraints u
(l)
k .

Lemma 4.5.2. For an edge Eij, let I
Eij ,(l)
Ll

for l = i, j be defined by

I
Eij ,(l)
Ll

=

Ll∑
k=1

x
(l)
k x

(l)T
k M

(l)
Eij
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where x
(l)
k are the eigenvectors from (4.1). Let D

(l)
Eij ,c

be the scaling matrices

in Definition 4.5.1. With the choice of the constraints u
(l)T
k (wi − wj) = 0,

l = i, j where u
(i)
k and u

(j)
k are obtained by discarding the entries not asso-

ciated with dual variables in the vectors D
(j)T
Eij ,c

M
(i)
Eij
x

(i)
k and D

(i)T
Eij ,c

M
(j)
Eij
x

(j)
k

with µ
(l)
k ≤ TOL for k = 1, . . . , Ll we have

I
Eij ,(i)
Li

D
(j)
Eij ,c

(wi − wj) = 0 and I
Eij ,(j)
Lj

D
(i)
Eij ,c

(wj − wi) = 0.

Proof. The entries not associated with dual variables in wi−wj are zero since

wl = R(l)w with w ∈ W̃ . Therefore, we have

I
Eij ,(i)
Li

D
(j)
Eij ,c

(wi − wj) =

Li∑
k=1

x
(i)
k u

(i)T
k (w∆,i − w∆,j) = 0.

where w∆,l denotes the dual part of wl, l = i, j. By an analogous argument,

we conclude that I
Eij ,(j)
Lj

D
(i)
Eij ,c

(wj − wi) = 0.

For simplicity, we prove the next theorem only for the diffusion problem.

Theorem 4.5.3. The condition number for our FETI-DP method with a

scaling, as defined in Definition 4.5.1, with all vertices primal, and the coarse

space enhanced with solutions of the eigenvalue problem (4.1), satisfies

κ(M̂−1F ) ≤ C
(

1 + log
(η
h

))2
(

1 +
1

ηµL+1

)
,

where M̂−1 = M−1
PP or M̂−1 = M−1

BP . Here, C > 0 is a constant independent

of ρ, H, h, and η, and

1

µL+1
= max

l=1,...,N

{
1

µ
(l)
Lk+1

}
.

Proof. The proof is modeled on the proof of Theorem 4.4.1; see also [42].

With application of Lemma 4.5.2 and noting that the jump wi − wj is zero

in the endpoints of an edge we obtain for each edge Eij in |PDw|2S̃ the term

|Ih(θEijD
(i)(wi − wj))|2Si =|Ih(θEij ((I − I

Eij ,(i)
Li

)D(i)(wi − wj)))|2Si .
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Using Lemma 4.2.2 and Lemma 4.2.3, we obtain

|Ih(θEijD
(i)(wi − wj))|2Si = |Ih(θEij ((I − I

Eij ,(i)
Li

)D(i)(wi − wj)))|2Si

≤C
(

1 + log
(η
h

))2
(
|H(i)
Eij ,c

(
(I − IEij ,(i)Li

)D
(j)
Eij ,c

(wi − wj)
)
|2
H1
ρi

(Ω̃iη)

+
1

η2
||H(i)
Eij ,c

(
(I − IEij ,(i)Li

)D
(j)
Eij ,c

(wi − wj)
)
||2
L2
ρi

(Ω̃iη)

)

≤C
(

1 + log
(η
h

))2
(
|H(i)
Eij ,c

(
(I − IEij ,(i)Li

)D
(j)
Eij ,c

(wi − wj)
)
|2
H1
ρi

(Ω̃iη)

+
1

η
||
(

(I − IEij ,(i)Li
)D

(j)
Eij ,c

(wi − wj)
)
||2L2

ρi
(Eij)

)

≤C
(

1 + log
(η
h

))2
(∣∣∣((I − IEij ,(i)Li

)D
(j)
Eij ,c

(wi − wj)
)∣∣∣2
S
(i)
Eij ,c,ρi

+
1

η

∣∣∣((I − IEij ,(i)Li
)D

(j)
Eij ,c

(wi − wj)
)∣∣∣2
MEij

)

≤ C
(

1 + log
(η
h

))2
(

1 +
1

ηµ
(i)
Li+1

)∣∣∣D(j)
Eij ,c

(wi − wj)
∣∣∣2
S
(i)
Eij ,c,ρi

≤ C
(

1 + log
(η
h

))2
(

1 +
1

ηµ
(i)
Li+1

)(
|wi|2

S
(i)
Eij ,c,ρi

+ |wj |2
S
(j)
Eij ,c,ρj

)
.

Here, I denotes the identity operator. In the penultimate step, we have

used Lemma 1.6.2 with B = MEij , x = D
(j)
Eij ,c

(wi − wj), m = Li, ΠB
M =

I
Eij ,(i)
Li

, and A = S
(i)
Eij ,c,ρi . For the last step, note that each column of Aij in

Definition 4.5.1 is in Ker (S
(i)
Eij ,c,ρi+S

(j)
Eij ,c,ρj ) and with the same argument as in

the proof of Lemma 2.3.2, we have Ker (S
(i)
Eij ,c,ρi + S

(j)
Eij ,c,ρj ) = Ker (S

(i)
Eij ,c,ρi)∩

Ker (S
(j)
Eij ,c,ρj ). Thus, we obtain S

(i)
Eij ,c,ρiAij = 0 and

S
(i)
Eij ,c,ρiD

(j)
Eij ,c

= S
(i)
Eij ,c,ρi(S

(i)
Eij ,c,ρi + S

(j)
Eij ,c,ρj )

+S
(j)
Eij ,c,ρj .

Applying Lemma 2.3.2 with A = S
(i)
Eij ,c,ρi , B = S

(j)
Eij ,c,ρj , and DA = D

(j)
Eij ,c

we

obtain the estimate.
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Remark 4.5.4. The constant in the condition number estimate in Theo-

rem 4.5.3 depends on N2
E in the same way as the condition number estimate

for the first coarse space in Lemma 2.7.1 and as for the second coarse space

in Lemma 3.3.1. Additionally, the constant depends on the constants in the

weighted edge lemma (Lemma 4.2.2) and in the weighted Friedrichs inequality

(Lemma 4.2.3); see also 4. in Remark 4.4.2.

Remark 4.5.5. As in Section 2.6, we can replace the matrices S
(l)
Eij ,c,ρl, l =

i, j, by the economic version S
(l)
Eij ,c,η,ρl in the scaling in Definition 4.5.1 and

in the generalized Eigenvalue Problem 1.

4.6 Numerical Results

4.6.1 FETI-DP with Projector Preconditioning or Balancing

In this section, we present numerical results for our algorithm with the adap-

tive coarse space defined in this chapter applied to scalar diffusion and linear

elasticity problems using Eigenvalue Problem 1; see (4.1). We solve the eigen-

value problems in all experiments using the MATLAB function ’eig’ which

itself uses LAPACK. We always start with a FETI-DP coarse space using only

vertices, often denoted as Algorithm A; cf. [82]. In this section, we choose

the tolerance τµ = 1; see (4.9) and use max -ρ-scaling in this section. The

numerical results are also published in [42]. Some of the results for elasticity

are published in [36].

Diffusion Equation

We present numerical results for different coefficient distributions. We de-

compose the unit square into square subdomains and consider a coefficient

distribution with different numbers of channels, cutting through subdomain

edges; see Figures 4.4 and 4.5. All experiments for the diffusion equation are

carried out with a homogeneous Dirichlet boundary condition on ∂Ω and a
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Chapter 4. Coarse Space Related to Weighted Poincaré Inequalities

constant right hand side f = 1/10. In Figure 4.6 the solutions for the dif-

fusion equation with coefficient distributions from Figure 4.5 are shown. In

case of one channel for each subdomain, we have a quasimonotone coefficient;

cf. [72] and Definition 4.0.1. In this case, illustrated in Figure 4.4, on each

interior edge the eigenvector corresponding to the eigenvalue zero is added to

the coarse space. On interior edges, which do not intersect a channel with a

high coefficient, the resulting constraint is a standard edge average. On inte-

rior edges intersecting a channel, the constraint is a weighted edge average,

cf., also [45], up to a multiplicative constant. See also [67] for an analysis

of the scalar elliptic case. This results in eight additional constraints; see

Table 4.1. In case of two disjunct channels with a high coefficient on each

edge, which intersects these channels, a maximum of two eigenvectors and

in case of three channels, a maximum of three eigenvectors for each edge

intersecting the channels are added to the coarse space; see Figure 4.5 for the

coefficient distribution and Table 4.1 for the results. In Table 4.2, we see that

the condition number of the algorithm with an enriched coarse space remains

bounded if we change the contrast ρ2/ρ1 ∈ {1e3, 1e4, 1e5, 1e6}. Moreover,

the number of adaptive constraints remains bounded. From Table 4.3 it can

be seen that the number of adaptive constraints grows roughly in proportion

to the number of subdomains and channels. Note that the adaptive algorithm

chooses only constraints on subdomains where the Dirichlet boundary does

not intersect the inclusions. In case of three channels on subdomains with

Dirichlet boundary conditions that do not intersect the channels, six con-

straints, and on all inner subdomains, eight constraints are chosen. Linearly

dependent constraints are detected using a singular value decomposition with

a tolerance of 1e− 6 and afterwards removed. The additional constraints are

implemented using balancing, i.e., MBP . Alternatively, a transformation of

basis could also be used. Our stopping criterion is the reduction of the pre-

conditioned residual to (1e−10)||z0||2+1e−16, where z0 is the preconditioned
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Figure 4.4: Domain decomposition in nine subdomains (left); coefficient

distribution (right): One channel in black for each subdomain with high

coefficient ρ = ρ2 and ρ = ρ1 = 1 in the white area; published in [42].
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Figure 4.5: Coefficient distribution: Two channels for each subdomain (left),

three channels for each subdomain (right). The black channels correspond

to a high coefficient ρ = ρ2, in the white area the coefficient is ρ = ρ1 = 1;

published in [42].

initial residual.

Elasticity with Discontinuous Coefficients

We test our algorithm for linear elasticity problems with certain distributions

of varying coefficients inside subdomains. We impose homogeneous Dirichlet
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Chapter 4. Coarse Space Related to Weighted Poincaré Inequalities

# Channels Algorithm A Adaptive # Adaptive # Dual

Method constraints Variables

H/h cond # its cond # its L

1 6 9.55e4 7 1.0412 3 8 84

12 1.20e5 7 1.1547 4 8 156

18 1.33e5 7 1.2519 4 8 228

24 1.44e5 8 1.3325 4 8 300

30 1.52e5 8 1.4011 5 8 372

2 10 1.09e5 8 1.0388 2 14 132

20 1.42e5 10 1.1509 3 14 252

30 1.59e5 10 1.2473 3 14 372

40 1.70e5 10 1.3274 3 14 492

50 1.79e5 10 1.3957 3 14 612

3 14 39.21 6 1.0387 2 20 180

28 1.34e5 10 1.1507 3 20 348

42 1.39e5 11 1.2471 3 20 516

56 1.84e5 14 1.3272 3 20 684

70 1.93e5 13 1.3954 3 20 852

Table 4.1: One, two, and three channels for each subdomain; see Figure 4.4

(right) and Figure 4.5. Adaptive method using eigenvalue problem (4.1). We

have ρ2 = 1e6 in the channel and ρ1 = 1 elsewhere. The number of additional

constraints is clearly determined by the structure of the heterogeneity and

independent of the mesh size. 1/H = 3. TOLµ=1; published in [42].
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Algorithm A Adaptive Method # Adaptive # Dual

ρ2/ρ1 cond # its cond # its constraints L Variables

1e0 3.21e0 5 1.6377 5 4 348

1e1 5.58e0 7 1.5665 7 4 348

1e2 2.00e1 9 1.4599 7 8 348

1e3 1.59e2 9 1.1506 4 20 348

1e4 1.55e3 11 1.1507 2 20 348

1e5 1.54e4 12 1.1507 2 20 348

1e6 1.34e5 10 1.1507 3 20 348

Table 4.2: Three channels for each subdomain; see Figure 4.5 (right). Adap-

tive method using eigenvalue problem (4.1). We have an increasing ρ2 in the

channels and ρ1 = 1 elsewhere. H/h = 28. The number of additional con-

straints is bounded for an increasing contrast ρ2/ρ1. 1/H = 3. TOLµ=1;

published in [42].

Algorithm A Adaptive Method # Adaptive # Dual

1/H cond # its cond # its constraints L Variables

2 1.01e0 4 1.0100 1 0 114

3 1.34e5 10 1.1507 3 20 348

4 2.38e5 16 1.1507 3 42 702

5 3.02e5 45 1.1507 3 72 1176

6 3.55e5 51 1.1507 3 110 1770

Table 4.3: Three channels for each subdomain; see Figure 4.5 (right). In-

creasing number of subdomains and channels. We have ρ2 = 1e6 in the

channel and ρ1 = 1 elsewhere. H/h = 28. TOLµ=1. The table was pub-

lished in [42].
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Figure 4.6: Solution of −div (ρ∇u) = 1/10 on Ω = (0, 1)2, u = 0 on ∂Ω for

the coefficient distributions given in Figure 4.5.

boundary conditions on the lower part of the boundary where y = 0 and a

constant volume force f = (1/10, 1/10)T . First, we run a set of experiments

for the coefficient distribution above with three channels and with jumps in

the Young modulus E. We use the balancing preconditioner MBP or the

projector preconditioner MPP in our examples.

In our current strategy, we need to solve eigenvalue problems on all edges,

i.e., also on edges where no heterogeneity appears and thus no additional

constraints are necessary. A strategy to identify difficult edges, especially in

the nonlinear context, may be desirable to reduce the computational cost.

In Figure 4.8, the FETI-DP starting residual is plotted for the coefficient

distribution depicted in Figure 4.5. Clearly, the difficult edges can be iden-

tified from the distribution of the residual on the interface Γ. An automatic

strategy to identify the difficult edges may thus be developed in the future

based on the residual. We have recently learned about a similar strategy for

one-level FETI methods [77].

Elasticity with Discontinuous Coefficients and Using Eigenvalue

Problem 1 and Eigenvalue Problem 2

In our examples considered in Section 4.6, we have only used Eigenvalue
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Figure 4.7: Test Problems with a coefficient distribution which is unsym-

metric with respect to the edges for a 3x3 decomposition; see Table 4.5 (left)

and Table 4.6 (right). Young’s modulus E = 1e6 (black) and E = 1 (white);

published in [42].

Figure 4.8: First (left) and second (right) component of the starting

residuum of PCG in the test problem in Figure 4.5 (right) for linear elasticity

with vertex constraints and H/h = 28. The oscillations of the residuum on

the edges appear on the difficult edges and indicate additional constraints

needed, e.g., from our eigenvalue problems; published in [42].
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MBP MPP # Adaptive # Dual

E2/E1 H/h cond # its cond # its constraints L Variables

1 14 1.6744 11 1.6614 11 33 372

1 28 1.9208 12 1.8925 12 33 708

1 42 2.1022 13 2.0659 13 33 1044

1e2 14 2.7892 13 2.7734 13 54 372

1e2 28 2.3390 13 2.3227 13 62 708

1e2 42 2.2815 13 2.2678 14 62 1044

1e4 14 1.1701 8 1.1667 8 90 372

1e4 28 1.3431 9 1.3387 9 90 708

1e4 42 1.5064 11 1.5003 11 86 1044

1e6 14 1.1567 7 1.1703 8 114 372

1e6 28 1.3400 10 1.3363 10 114 708

1e6 42 1.5028 11 1.4974 11 114 1044

Table 4.4: Linear elasticity, three channels for each subdomain; see Fig-

ure 4.5 (right) with coefficient E2 = 1e6 in the channels, outside the channels

E1 = 1, TOLµ = 1. The number of additional constraints is determined by

the structure of the heterogeneity, independent of the mesh size and bounded

for increasing contrast E2/E1; published in [42].

Problem 1, see (4.1), to enhance our coarse space. We will now consider co-

efficient distributions where this is not sufficient anymore and the additional

Eigenvalue Problem 2, see (4.15), is necessary for the construction of a suffi-

cient good coarse space. We test a coefficient distribution with jumps across

and along the interfaces; see Figure 4.7. In these cases, it will be necessary to

bound the extensions independently of the jumps in the coefficient; see also

proof of Theorem 4.4.1. We use our strategy from Section 4.3. The numerical

results are displayed in the Tables 4.5 and 4.6 for different tolerances for the

eigenvalues ν
(i)
k in Section 4.3. With a tolerance of “−”, we denote the case

where no additional constraints are chosen based on the respective eigenvalue
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Figure 4.9: Microstructures obtained from electron backscatter diffraction

(EBSD/FIB). Courtesy of Jörg Schröder, University of Duisburg-Essen, Ger-

many, originating from a cooperation with ThyssenKrupp Steel. Left: gray

scale image. Right: binary image. See Table 4.7 for the numerical results;

published in [42].

problem, i.e., the tolerance is set to −∞. We see from the results that we

need both Eigenvalue Problems 1 and 2 to obtain a low condition number

and iteration count.

Finally, we use a coefficient distribution obtained from a steel microsection

pattern with 150 × 150 pixels; see Figure 4.9. We discretize the problem

with H/h = 50 and 1/H = 3; see Table 4.7 for the numerical results, which

show the effectiveness of the adaptive algorithm now using both eigenvalue

problems (4.1) and (4.15).

4.6.2 BDDC with a Transformation of Basis

We now present a few numerical examples that support our theory for the

BDDC method using a transformation of basis to incorporate the adaptively

computed constraints. We choose Ω = [0, 1]2 with Dirichlet boundary con-

ditions on ∂Ω and a constant right hand side f = 1/10. The coefficient

distributions that we use in our BDDC experiments are depicted in Fig-

ure 4.10, 4.7 (right), and 4.5 (right). Algorithm A corresponds to a FETI-DP
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Adaptive Method MBP # Adaptive # Dual

TOLµ TOLν H/h cond # its constraints L + K Variables

− − 14 4.57e5 > 250 0 372

− − 28 5.06e5 > 250 0 708

− − 42 4.86e5 > 250 0 1044

1 − 14 2.21e5 63 75 372

1 − 28 2.75e5 125 75 708

1 − 42 3.05e5 169 75 1044

1 1 14 1 1 312 372

1 1 28 1 1 648 708

1 1 42 1 1 984 1044

1 1/10 14 1.1910 6 160 372

1 1/10 28 1.3816 8 236 708

1 1/10 42 1.5196 8 308 1044

1 1/100 14 1.1910 6 156 372

1 1/100 28 1.3820 8 228 708

1 1/100 42 1.5201 9 300 1044

Table 4.5: Results for linear elasticity using the coefficient distribution for

the heterogenous problem from the image in Figure 4.7 (left) with a Young

modulus of E2 = 1e6 (black) and E1 = 1 (white) respectively. Decomposition

into 3×3 subdomains. The first column refers to the tolerance for Eigenvalue

Problem 1, see (4.1), the second column refers to the tolerance for Eigenvalue

Problem 2, see (4.13). With a tolerance of “−” no additional constraints

are chosen. L is the number of constraints from (4.1), K is the number of

constraints from (4.13); published in [42].
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Adaptive Method MBP # Adaptive # Dual

TOLµ TOLν H/h cond # its constraints L + K Variables

− − 14 3.00e5 > 250 0 372

− − 28 3.50e5 > 250 0 708

− − 42 3.73e5 > 250 0 1044

1 − 14 2.24e5 81 93 372

1 − 28 2.79e5 192 93 708

1 − 42 3.13e5 > 250 93 1044

1 1 14 1 2 312 372

1 1 28 1 2 648 708

1 1 42 1 2 984 1044

1 1/10 14 1.2296 7 156 372

1 1/10 28 1.3876 9 237 708

1 1/10 42 1.5124 10 297 1044

1 1/100 14 1.2357 7 152 372

1 1/100 28 1.3921 10 224 708

1 1/100 42 1.5194 10 284 1044

Table 4.6: Results for linear elasticity using the coefficient distribution for

the heterogenous problem from the image in Figure 4.7 (right) with a Young

modulus of E2 = 1e6 (black) and E1 = 1 (white) respectively. Decomposition

into 3×3 subdomains. The first column refers to the tolerance for Eigenvalue

Problem 1, see (4.1), the second column refers to the tolerance for Eigenvalue

Problem 2, see (4.13). With a tolerance of “−” no additional constraints

are chosen. L is the number of constraints from (4.1), K is the number of

constraints from (4.13); published in [42].

.
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Adaptive # Adaptive # Dual

Method constraints Variables

TOLµ TOLν H/h cond # its L + K

Fig. 4.9 1 − 50 6.75e4 > 250 89 1236

(left) 1 1e− 1 50 2.301 15 237 1236

1 1e− 2 50 6.5281 19 218 1236

1 1e− 3 50 8.5042 23 213 1236

− − 50 6.48e4 > 250 0 1236

Fig. 4.9 1 − 50 3.29e5 > 250 135 1236

(right) 1 1e− 1 50 2.5552 14 324 1236

1 1e− 2 50 2.7634 15 305 1236

1 1e− 3 50 2.7645 16 300 1236

− − 50 5.52e5 > 250 0 1236

Table 4.7: Results for linear elasticity using the coefficient distribution for

the heterogenous problem from the gray scale image in Figure 4.9. We have

set the coefficient E1 = 1 for white and E2 = 1e6 for black. An interpolated

value is used for the different shades of gray. As above, TOLµ is the tolerance

for Eigenvalue Problem 1, see (4.1), TOLν is the tolerance for Eigenvalue

Problem 2, see (4.13); published in [42].

method using only vertex constraints. In Table 4.8, we vary the number of

elements for each subdomain. In Table 4.9, we vary the coefficient in the

channels. In both cases, the coefficient distribution is symmetric with re-

spect to the interface and thus the extension from Eigenvalue Problem 2 is

not needed. Indeed, the results in Table 4.8 and 4.9 support that Eigenvalue

Problem 1 is sufficient, here. Results for a varying number of subdomains are

given in Table 4.10. We apply the adaptive method using Eigenvalue Prob-

lem 1 for the coefficient distribution in Figure 4.10 using standard ρ-scaling

and deluxe scaling; see Table 4.11. The coefficient distribution is mildly un-

symmetric and a good condition number is obtained using only Eigenvalue
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Figure 4.10: Coefficient distribution for a 3×3 domain decomposition with

one channel connecting opposite boundaries and one shorter and off-centered

channel per row of subdomains. Black corresponds to a high coefficient ρ2 =

1e6, white corresponds to ρ1 = 1; published in [41].

Problem 1. This is different for Figure 4.7 (right); see Table 4.12. Here,

Eigenvalue Problem 2 seems to be necessary. It is interesting to note that,

using deluxe scaling, results in a relatively low condition number when using

Algorithm A; see Table 4.12. This is not the case in Table 4.11.

The numerical results presented here support our theory presented in this

chapter. If the coefficient distribution is symmetric with respect to the in-

terface or, at least has jumps only along but not across the interface, it is

sufficient to use Eigenvalue Problem 1. If this is not the case both Eigenvalue

Problems 1 and 2 should be used.
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Algorithm A Adaptive Method Adaptive Method

Only vertices primal EVP (4.1) EVP (4.1)+(4.13)

TOLµ = −∞ TOLµ = 1 TOLµ = 1

TOLν = −∞ TOLν = 1e− 1

H/h cond its |Π| cond its |Π| cond its |Π|

14 1.227e5 13 4 1.0387 2 24 1.0387 2 24

28 1.545e5 17 4 1.1507 3 24 1.1507 3 24

42 1.730e5 16 4 1.2471 3 24 1.2462 4 28

56 1.861e5 16 4 1.3272 3 24 1.3272 3 24

70 1.962e5 16 4 1.3954 3 24 1.3954 5 28

Table 4.8: Three channels for each subdomain; see Figure 4.5 (right). We

have ρ2 = 1e6 in the channel and ρ1 = 1 elsewhere. The number of additional

constraints is clearly determined by the structure of the heterogeneity and

independent of the mesh size. 1/H = 3. The number of primal constraints

is denoted by |Π|; published in [41].
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Algorithm A Adaptive Method Adaptive Method

Only vertices primal EVP (4.1) EVP (4.1)+(4.13)

TOLµ = −∞ TOLµ = 1 TOLµ = 1

TOLν = −∞ TOLν = 1e− 1

ρ2/ρ1 cond # its |Π| cond # its |Π| cond # its |Π|

1e0 3.207 5 4 1.6376 5 8 1.6376 5 8

1e1 5.581 7 4 1.5663 7 8 1.5663 7 8

1e2 1.998e1 9 4 1.4599 7 12 1.4567 7 16

1e3 1.591e2 10 4 1.1505 4 24 1.1505 4 32

1e4 1.550e3 13 4 1.1507 3 24 1.1476 4 31

1e5 1.545e4 15 4 1.1507 3 24 1.1507 3 28

1e6 1.545e5 17 4 1.1507 3 24 1.1507 3 24

Table 4.9: Three channels for each subdomain; see Figure 4.5 (right). Adap-

tive method using Eigenvalue Problems (4.1) and (4.13). We have ρ2 in the

channels and ρ1 = 1 elsewhere. H/h = 28. The number of additional con-

straints is bounded for increasing contrast ρ2/ρ1. 1/H = 3. The number of

primal constraints is denoted by |Π|; published in [41].
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Algorithm A Adaptive Method Adaptive Method

Only vertices primal EVP (4.1) EVP (4.1)+(4.13)

TOLµ = −∞ TOLµ = 1 TOLµ = 1

TOLν = −∞ TOLν = 1e− 1

1/H cond # its |Π| cond # its |Π| cond # its |Π|

2 1 1 1 1.0000 1 1 1.0000 1 1

3 1.545e+ 05 17 4 1.1507 3 24 1.1507 3 24

4 2.734e+ 05 26 9 1.1507 3 51 1.1502 4 59

5 3.475e+ 05 65 16 1.1507 3 88 1.1507 3 90

6 4.078e+ 05 65 25 1.1507 3 135 1.1507 3 152

Table 4.10: Three channels for each subdomain; see Figure 4.5 (right).

Increasing number of subdomains and channels. We have ρ2 = 1e6 in the

channels and ρ1 = 1 elsewhere. H/h = 28. The number of primal constraints

is denoted by |Π|; published in [41].

Algorithm A Adaptive Method

(TOLµ = −∞, TOLν = −∞) EVP (4.1) (TOLµ = 1)

ρ-scaling Deluxe ρ-scaling Deluxe

H/h cond its cond its |Π| cond its cond its |Π|

10 6.201e4 25 6.200e4 20 4 1.1480 6 1.1421 5 24

20 7.684e4 25 7.683e4 20 4 1.1978 7 1.1948 6 24

30 8.544e4 25 8.544e4 23 4 1.2630 7 1.2618 6 24

Table 4.11: Adaptive method for the coefficient distribution in Figure 4.10.

1/H = 3. Deluxe scaling and standard ρ-scaling are used. The number of

primal constraints is denoted by |Π|; published in [41].
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Multiplicity-scaling Deluxe-scaling

TOLµ TOLν H/h cond # its cond # its |Π|

Alg. A −∞ −∞ 42 2.492e5 161 24.4261 17 4

EVP 1 1 −∞ 42 2.496e5 128 9.760e4 40 24

EVP 1+2 1 1/10 42 1.5184 10 1.4306 9 126

Table 4.12: Adaptive method for the heterogenous problem with a coeffi-

cient distribution from the image in Figure 4.7 (right) with a coefficient of

ρ2 = 1e6 (black) and ρ1 = 1 (white) respectively. 1/H = 3. Either multiplic-

ity or deluxe scaling are used. The number of primal constraints is denoted

by |Π|; published in [41].
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5 Comparison of the Coarse Spaces

In this chapter, we compare the adaptive coarse spaces presented in Chap-

ters 2, 3, and 4. This chapter is based on [38] and organized as follows. In

the first section, we briefly sketch the differences in computational cost of

the different algorithms. We compare numerical results of the algorithms in

Section 5.2. In the last section, we summarize the comparison and discuss

advantages and disadvantages of the different approaches.

5.1 A Brief Comparison of Computational Cost

For the algorithm discussed in Section 2.4 (first coarse space), the matrices

S
(l)
Eij

and S
(l)
Eij ,0

, l = i, j have to be computed. These matrices are usually

dense. For their computation a Cholesky factorization of a sparse matrix is

required and will usually need O((H/h)3) floating point operations in two

space dimensions, since the inverse involved in the Schur complement is of

size (H/h)2 × (H/h)2. If the Schur complements are computed explicitly,

which might be necessary depending on the chosen eigensolver, a matrix-

matrix multiplication, a matrix-matrix addition, and forward-backward sub-

stitutions for multiple right-hand sides with the Cholesky factorization have

to be performed. If LAPACK (or MATLAB, which itself uses LAPACK)

is used the matrices S
(i)
Eij

: S
(j)
Eij

and S
(i)
Eij ,0

: S
(j)
Eij ,0

are needed in explicit

form. Otherwise, an application of the Schur complement needs a few matrix-

vector multiplications and a forward-backward substitution. For S
(i)
Eij

: S
(j)
Eij

,

depending on the kernel of S
(i)
Eij

+S
(j)
Eij

, a pseudoinverse or a Cholesky factor-
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ization is needed. For the scaling matrices a factorization of S
(i)
Eij ,0

+ S
(j)
Eij ,0

has to be performed. If no deluxe scaling but ρ-scaling is used, the ma-

trix D
(i)T
Eij

S
(j)
Eij ,0

D
(i)
Eij

+D
(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

has to be computed instead of S
(i)
Eij ,0

:

S
(j)
Eij ,0

, which is much cheaper since no factorization of S
(i)
Eij ,0

+S
(j)
Eij ,0

is needed.

The computations of S
(l)
Eij ,0,η

and S
(l)
Eij ,η

need (η/H)3/2 times as many floating

point operations as the computations of S
(l)
Eij ,0

and S
(l)
Eij

.

The eigenvalue problem described in Chapter 3.2 (second coarse space) is

larger but sparser. The left-hand side is not dense because of the structure

of the local jump operator PDij which contains only two non zero entries

in each row. The right-hand side consists of two dense blocks and two zero

blocks in the dual part. The size of the eigenvalue problem is determined by

the number of degrees of freedom on Γ(i) × Γ(j) while the other algorithms

are determined by the number of degrees of freedom on an edge Eij , e.g., in

two dimensions it can be eight times larger. The computation of the left-

hand side of the generalized eigenvalue problem in Section 3.2 also needs

applications of the scaling matrices D(i) and D(j), which in case of deluxe

scaling is more expensive than in case of multiplicity or ρ-scaling.

Eigenvalue Problem 1 discussed in Chapter 4 is completely local and needs

no inter-subdomain communication but needs to be solved for two neigh-

boring subdomains for each edge. For a chosen edge Eigenvalue Problem 2,

presented in Chapter 4, has to be solved once for each subdomain sharing

that edge but it needs inter-subdomain communication. While the algorithm

in Chapter 2 needs to exchange the matrices S
(l)
Eij ,0

and S
(l)
Eij

, l = i, j and

the scaling matrices, the algorithm in Section 3.2 needs to exchange S(l), the

local jump matrices B
(l)
E , l = i, j, and the scaling matrices. Nonetheless, if

ρ-scaling or deluxe scaling is used, the scaling data needs to be communi-

cated for the construction of BD in the FETI-DP algorithm anyways. The

algorithm in Chapter 4 only needs to exchange S
(l)
Eij ,c,ρl , l = i, j. However, lo-

cally, in two dimensions, a one dimensional mass matrix has to be assembled
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Coarse space in Chapter 2 First coarse space

Coarse space in Chapter 3 Second coarse space

Coarse space in Chapter 4 Third coarse space

Table 5.1: Short notation in the tables.

for each edge of a subdomain. Note that this matrix has tridiagonal form

if piecewise linear finite element functions are used. This makes a Cholesky

factorization very cheap.

A disadvantage of the algorithm in Chapter 4 (third coarse space) com-

pared to the other algorithms is that no ρ-scaling with varying scaling weights

inside of a subdomain can be used. In Section 5.2, we will see that using mul-

tiplicity scaling can lead to a large number of constraints. However, if the

extension constant is nicely bounded, only local generalized eigenvalue prob-

lems with a tridiagonal mass matrix on the right-hand side need to be solved

and the number of constraints remains bounded independently of H/h. This

is the case, e.g., for coefficient distributions which are symmetric with respect

to the subdomain interfaces (at least on slabs) and have jumps only along

but not across edges. If the scaling in Section 4.5 is used, only the scaling

matrices of neighboring subdomains have to be transferred. The eigenvec-

tors in the first eigenvalue problem can be computed completely locally. The

computation of the constraints includes an application of the mass matrix

and the scaling matrix of a neighbor.

5.2 Numerical Examples

In this section, we will compare the different adaptive coarse spaces numer-

ically. In Table 5.1, we introduce a short notation for the different coarse

spaces. In all following numerical examples, we will remove linearly depen-

dent constraints using a singular value decomposition of U . Constraints
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5.2. Numerical Examples

related to singular values less then a drop tolerance of 1e − 6 are removed.

In an efficient implementation this may not be feasible.

As a stopping criterion in the preconditioned conjugate gradient algorithm,

we used ||rk|| ≤ 10−10||r0|| + 10−16, where r0 is the preconditioned starting

residual and rk the preconditioned residual in the k-th iteration.

In our numerical experiments, whenever we need to compute a pseudoin-

verse of a symmetric matrix A, we first subdivide

A =

App ATrp

Arp Arr

 ,

where App is an invertible submatrix of A and Arr is a small submatrix of A

with a size of at least the dimension of the kernel of A. Then, we compute

A+ =

I −A−1
pp A

T
rp

0 I

A−1
pp 0

0 S†rr

 I 0

−ArpA−1
pp I


using the Schur complement Srr = Arr −ArpA−1

pp A
T
rp. Here, S†rr denotes the

Moore-Penrose pseudoinverse of Srr. In the singular value decomposition of

Srr, we treat all singular values less then (1e− 3) ·min(diag (A)) as zero.

Throughout this section, we use patch-ρ-scaling whenever we write ρ-

scaling.

We have considered different coefficient distributions. In Test Problem I

(Figure 5.2), we consider the simple case of horizontal channels. In Test

Problem II (Figure 5.3), the coefficient configuration is symmetric in a small

neighborhood of vertical edges. In Test Problem III (Figure 5.4), the co-

efficient configuration is constructed with no symmetry with respect to the

vertical edges. In Test Problem IV (Figure 5.6), we then have a challenging,

randomly chosen coefficient distribution. Note that the coefficient distribu-

tion does not change when the meshes are refined. For our adaptive method,

we therefore expect the number of constraints to remain bounded when H/h

is increased. We attempt a fair comparison of the adaptive methods by us-

ing suitable tolerances for the different eigenvalues, i.e., we attemt to choose
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Chapter 5. Comparison of the Coarse Spaces

tolerances such that all very large eigenvalues are removed but no more.

Exemplarily, we present detailed spectra only for Test Problem IV; see Fig-

ure 5.6.

We present our numerical results in this chapter for FETI-DP methods,

but they are equally valid for BDDC methods. The adaptive constraints are

incorporated in the balancing preconditioner M−1
BP , cf. equation (1.13), but

other methods can also be used.

In Section 5.2.1, we first consider ρ-scaling, deluxe scaling and its economic

variant for a standard case of constant coefficients on subdomains. In Sec-

tion 5.2.2, we present numerical results for a scalar diffusion equation and

Problems I-IV, using adaptive coarse spaces. In Section 5.2.3, we consider

the problem of almost incompressible elasticity.

5.2.1 Comparison of Scalings

In Table 5.2, we consider ρ-, deluxe scaling, and an economic version of

deluxe scaling (e-deluxe) for a compressible linear elasticity problem with a

checker board distribution of the Young modulus; cf. Figure 5.1. We use a

Young modulus of 106 for gray and of 1 for white subdomains and a constant

Poisson ratio of ν = 0.3. This is a standard, classic case with no jumps inside

subdomains, which can successfully be treated by ρ-scaling. We observe no

difference between the scalings in this situation.

5.2.2 Scalar Diffusion

First, we perform a comparison for our scalar diffusion problem with a vari-

able coefficient for the first (Chapter 2 [68, 39]), second (Chapter 3 [59]) and

third (Chapter 4 [42]) coarse spaces. We use homogenous Dirichlet boundary

conditions on ΓD = ∂Ω in all our experiments for scalar diffusion.

The first coefficient distribution is depicted in Figure 5.2 (Test Problem I;

horizontal channels). This coefficient distribution is symmetric with respect
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5.2. Numerical Examples

Figure 5.1: A simple checkerboard

coefficient distribution with con-

stant coefficients on subdomains is

depicted for 5× 5 subdomains; pub-

lished in [38].
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Figure 5.2: Test Problem I with

a coefficient distribution consisting

of two channels in each subdomain

for a 3x3 decomposition. In case of

diffusion the diffusion coefficient is

106 (black) and 1 (white). In case

of elasticity the Young modulus is

103 (black) and 1 (white); published

in [38].

deluxe e-deluxe ρ

1/H H/h cond its cond its cond its

3 20 3.7701 4 3.7702 4 3.7702 4

3 30 4.2200 4 4.2200 4 4.2200 4

3 40 4.5409 4 4.5409 4 4.5409 4

5 20 3.5845 5 3.5845 5 3.5845 5

5 30 3.9855 5 3.9855 5 3.9855 5

5 40 4.2701 5 4.2701 5 4.2701 5

Table 5.2: Comparison of different scalings for linear elasticity using a simple

checker board coefficient distribution for the Young modulus; see Figure 5.1.

The table was published in [38].

112



Chapter 5. Comparison of the Coarse Spaces

to vertical edges. Since there are no jumps across the interface, the simple

multiplicity scaling is sufficient, and ρ−scaling reduces to multiplicity scaling.

The numerical results are presented in Table 5.3. The estimated condition

numbers are identical for all cases and the number of constraints is similar.

In Table 5.4, we consider the coefficient distribution depicted in Figure 5.3

(Test Problem II; horizontal channels on slabs). Here, the coefficient distri-

bution is symmetric on slabs with respect to vertical edges. Again, there are

no coefficient jumps across subdomain interfaces, and multiplicity scaling is

equivalent to ρ-scaling. We remark that in this test problem e-deluxe scaling

with H/η = 14 is not equivalent to multiplicity scaling, since in the Schur

complements S
(l)
E,0,η, l = i, j, the entries on ∂Ω̃iη \(∂Ωl∩∂Ω̃iη) are eliminated.

In this case, the economic version of the extension scaling is equivalent to

multiplicity scaling because the Schur complements S
(l)
E,η, l = i, j are com-

puted from local stiffness matrices on the slab. In Table 5.4, we report on

multiplicity scaling, deluxe scaling, and e-deluxe scaling for the three cases.

Using multiplicity scaling, the results are very similar, but not identical, for

all three approaches to adaptive coarse spaces. The use of deluxe scaling can

improve the results for the first two approaches. The use of extension scaling

for the third approach has no significant impact. Where economic variants

exist, e.g., versions on slabs, we also report on results using these methods.

As should be expected using the economic versions of the eigenvalue problems

yields worse results.

Next, we use the coefficient distribution depicted in Figure 5.4 (Test Prob-

lem III; unsymmetric channel pattern). The results are collected in Table 5.5.

In this problem, coefficient jumps across the interface are present, in addition

to the jumps inside subdomains. Therefore multiplicity scaling is not suffi-

cient and all coarse space approaches are not scalable with respect to H/h,

i.e., the number of constraints increases when H/h is increased; cf. Table 5.5

(left). Using ρ-scaling or deluxe/extension scaling yields the expected scala-
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bility in H/h, i.e., the number of constraints remains bounded when H/h is

increased. Where deluxe scaling is available, it significantly reduces the size

of the coarse problem; cf. Table 5.5 (middle and right). The smallest coarse

problem is then obtained for the combination of the second coarse space with

deluxe scaling. Using extension scaling in the third coarse space approach

yields smaller condition numbers and iteration counts for ρ-, deluxe-, or ex-

tension scaling but at the price of a much larger coarse space. In Table 5.6,

we present results for Test Problem III using the slab variant of the first

coarse space. Our results show that saving computational work by using the

slab variants can increase the number of constraints significantly, namely,

the number of constraints increases with decreasing η/H. On the other hand

the condition numbers and iteration counts decrease. This implies that slab

variants can be affordable if a good coarse space solver is available. The

results may also indicate that scalability of the coarse space size with respect

to H/h may be lost.

The results for Test Problem IV are collected in Table 5.7. Also for this

difficult problem the number of constraints seems to remain bounded when

H/h is increased although for ρ−scaling the number of constraints increases

slightly with H/h. The smallest coarse problem, consisting of only four

eigenvectors, is obtained when the second coarse space approach is combined

with deluxe scaling although the difference between ρ−scaling and deluxe

scaling is not as big as in Test Problem III. The third coarse space using

extension scaling is scalable in H/h but, in this current version, yields the

largest number of constraints. In Figure 5.5, we show the solutions for the

coefficient distributions given in Figures 5.3 and 5.4 (Test Problems II and

III).

The 50 largest eigenvalues appearing in the adaptive approaches for Test

Problem IV using deluxe or extension scaling are presented in Figure 5.8.

We can see that the tolerances chosen in Table 5.7 result in the removal of
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Figure 5.3: Test Problem II has

a coefficient distribution symmetric

in slabs with respect to the edges

for a 3 × 3 decomposition. Diffu-

sion coefficient 106 (black) and 1

(white). Domain decomposition in

3 × 3 subdomains, H/η = 14; pub-

lished in [38].
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Figure 5.4: Test Problem III has a

coefficient distribution which is un-

symmetric with respect to the edges

for a 3× 3 decomposition. Diffusion

coefficient 106 (black) and 1 (white);

published in [38].

all large eigenvalues. We therefore believe that our comparison is fair.

For the third coarse space, we have also tested the combination of multi-

plicity scaling with both eigenvalue problems from [42] with TOLµ = 1/10

and TOLν = 1/10. As in the other cases where we use multiplicity scaling,

see Table 5.4, this leads to a small condition number but at the cost of a large

number of constraints, and the approach thus is not scalable with respect to

H/h.

Results for the slab variant of the third coarse space are presented in

Table 5.8. In Table 5.7, we consider the distribution from Figure 5.6 for

the different coarse space approaches. Note that we do not show the results

for multiplicity scaling here, since the coarse space grows significantly with

H/h, and this approach is therefore not recommended.
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Figure 5.5: Solution of −div (ρ∇u) = 1/10 on Ω = (0, 1)2, u = 0 on ∂Ω

for the coefficient distributions given in Figures 5.3 (Test Problem II, left)

and 5.4 (Test Problem III, right).

First coarse space Second coarse space Third coarse space

with mult. scaling with mult. scaling with mult. scaling

TOL = 1/10 TOL = 10 TOLµ = 1,

TOLν = − inf

H/h cond its #EV cond its #EV cond its #EV #dual

10 1.0388 2 14 1.0388 2 12 1.0388 2 14 132

20 1.1509 3 14 1.1509 3 12 1.1509 3 14 252

30 1.2473 3 14 1.2473 3 12 1.2473 3 14 372

40 1.3274 3 14 1.3274 3 12 1.3274 3 14 492

Table 5.3: Scalar diffusion. Test Problem I (see Figure 5.2); published

in [38].
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Figure 5.6: Test Problem IV has a ran-

dom coefficient distribution which is con-

stant on squares of size 1/21×1/21. Diffu-

sion coefficient 106 (black) and 1 (white).

Domain decomposition in 3 × 3 subdo-

mains; published in [38].
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Figure 5.7: Plot of the square root of the

condition number vs. H/h of the data

given in Table 5.7 for the third coarse

space with extension scaling using a log-

arithmic scale on the x-axis; published

in [38].
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First coarse space Second coarse space Third coarse space

with mult. scaling with mult. scaling with mult. scaling

TOL = 1/10 TOL = 10 TOLµ = 1, TOLν = −∞

H/h cond its #EV cond its #EV cond its #EV #dual

14 1.0469 5 20 1.0498 5 18 1.0467 6 20 180

28 1.1680 5 20 1.1710 5 18 1.1678 6 20 348

42 1.2696 6 20 1.2728 5 18 1.2695 6 20 516

56 1.3531 6 20 1.3564 6 18 1.3529 6 20 684

70 1.4238 6 20 1.4272 6 18 1.4237 7 20 852

First coarse space Third coarse space

on slabs Second coarse space on slabs

with mult. scaling with mult. scaling

TOL = 1/10 TOLµ = 1, TOLν = −∞

H/h cond its #EV cond its #EV cond its #EV #dual

14 1.0466 5 26 1.0465 6 24 180

28 1.1678 6 26 no 1.1677 6 24 348

42 1.2695 6 26 slab 1.2694 6 24 516

56 1.3530 6 26 variant 1.3529 6 24 684

70 1.4237 6 26 1.4236 6 24 852

First coarse space Second coarse space Third coarse space

with deluxe scaling with deluxe scaling with extension scaling

TOL = 1/10 TOL = 10 TOLµ = 1, TOLν = −∞

H/h cond its # EV cond its # EV cond its # EV # dual

14 1.2319 5 8 1.2510 6 6 1.0798 5 20 180

28 1.2948 6 8 1.3222 6 6 1.2170 5 20 348

42 1.4024 6 8 1.4403 6 6 1.3285 5 20 516

56 1.4906 6 8 1.5372 6 6 1.4189 6 20 684

70 1.5652 7 8 1.6188 7 6 1.4950 6 20 852
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First coarse space Third coarse space

on slabs Second coarse space on slabs

with e-deluxe scaling with extension scaling

on slabs

TOL = 1/10 TOLµ = 1, TOLν = −∞

H/h cond its # EV cond its # EV cond its # EV # dual

14 1.0256 5 22 1.0465 6 24 180

28 1.1218 6 26 no 1.1677 6 24 348

42 1.2143 6 26 slab 1.2694 6 24 516

56 1.2945 6 26 variant 1.3529 6 24 684

70 1.3645 6 26 1.4236 6 24 852

Table 5.4: Scalar diffusion. For the slab variants of the algorithms, we only

consider the first and the third coarse space; see Sections 2 and 4. Test

Problem II (see Figure 5.3), H/η = 14, 1/H = 3; published in [38].
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Figure 5.8: The 50 largest (inverse) eigenvalues of the generalized eigenvalue

problems for Test Problem IV for H/h = 28; see Figure 5.6. First coarse

problem using deluxe scaling, second coarse problem using deluxe scaling, and

third coarse space using extension scaling (from left to right); cf. Table 5.7.

The figure was published in [38].

Let us summarize our observations. The numerical results support the

theory in Chapters 2, 3, and 4. For coefficient distributions that are sym-

metric with respect to the interface multiplicity scaling is sufficient and all

coarse spaces have a similar size; see Table 5.3. In case of jumps both across
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First coarse space, TOL = 1/10

scal. multiplicity ρ deluxe

H/h cond its #EV cond its #EV cond its #EV #dual

14 1.2911 8 44 1.3874 9 15 4.8937 11 5 180

28 1.4148 9 74 1.5782 11 15 4.8672 12 5 348

42 1.5167 10 104 1.7405 11 15 4.8891 12 5 516

Second coarse space, TOL = 10

scal. multiplicity ρ deluxe

H/h cond its #EV cond its #EV cond its #EV #dual

14 1.5013 9 42 1.5979 9 13 5.8330 11 3 180

28 1.6407 10 72 1.7351 11 13 5.8758 12 3 348

42 1.7413 10 102 1.8474 12 13 5.9296 13 3 516

Third coarse space, TOLµ = 1

scal. multiplicity ρ extension

TOLν TOLν = 1/10 TOLν = −∞

H/h cond its #EV cond its #EV cond its #EV #dual

14 1.2870 8 55 - 1.2498 8 20 180

28 1.4154 9 88 - 1.4238 9 20 348

42 1.5186 9 118 - 1.5525 10 20 516

Table 5.5: Scalar diffusion. Comparison of the coarse spaces for Test Prob-

lem III (see Figure 5.4); published in [38].

and along the interface, approaches with multiplicity scaling need a lot of

constraints and the size of the coarse space depends on H/h. In case of

ρ-, deluxe-, or extension-scaling this dependence is removed. Deluxe scaling

yields the smallest coarse spaces in all our approaches but is also more ex-

pensive then ρ-scaling. The second approach equipped with deluxe scaling

results in the smallest coarse space. The third coarse space with extension

scaling is scalable with respect to H/h but yields more constraints than the

first and second coarse space with deluxe scaling.
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First coarse space First coarse space

on slabs, e-deluxe scaling, on slabs, mult. scaling,

TOL = 1/10 TOL = 1/10

η/h H/h cond its #EV cond its #EV #dual

1 14 1.1355 7 24 1.0776 6 52 180

1 28 1.1118 6 35 1.1831 7 89 348

1 42 1.1069 6 47 1.0881 7 133 516

2 14 1.1729 7 21 1.1552 7 48 180

2 28 1.2096 7 25 1.1867 7 82 348

2 42 1.1770 7 33 1.2897 8 116 516

3 14 1.3978 9 11 1.2912 8 44 180

3 28 1.2145 7 24 1.1865 7 82 348

3 42 1.3029 8 25 1.2941 8 112 516

5 14 1.4086 9 10 1.2911 8 44 180

5 28 1.3447 8 19 1.3021 8 78 348

5 42 1.2852 8 24 1.2927 8 112 516

10 14 2.6060 10 6 1.2911 8 44 180

10 28 1.4441 10 10 1.4148 9 74 348

10 42 1.5216 10 12 1.5171 9 105 516

14 14 4.8937 11 5 1.2911 8 44 180

28 28 4.8672 12 5 1.4148 9 74 348

42 42 4.8891 12 5 1.5167 10 104 516

Table 5.6: Test Problem III (see Figure 5.4). Results for the slab variant of

Table 5.5; published in [38].
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First coarse space, TOL = 1/10

scal. ρ deluxe

H/h cond its #EV cond its #EV #dual

14 7.3286 19 10 2.2748 11 7 180

28 8.8536 20 11 2.4667 10 9 348

42 6.4776 21 12 2.5994 10 9 516

56 7.0378 21 12 2.6947 11 9 684

84 7.8168 23 12 2.8302 11 9 1020

112 8.3651 24 13 2.9267 12 9 1356

Second coarse space, TOL = 10

scal. ρ deluxe

H/h cond its #EV cond its #EV #dual

14 7.4306 20 6 2.6263 12 4 180

28 9.0907 22 7 3.0782 13 4 348

42 8.3068 23 8 3.3914 13 4 516

56 9.0122 24 8 3.6362 14 4 684

84 7.8520 24 9 4.0141 15 4 1020

112 8.3651 24 10 4.3065 15 4 1356

Third coarse space, TOLµ = 1/10, TOLν = −∞

scal. ρ extension

H/h cond its #EV cond its #EV #dual

14 3.2109 12 19 180

28 no 4.3890 13 19 348

42 rho 5.1775 14 19 516

56 variant 5.7748 14 19 684

84 6.6648 15 19 1020

112 7.3288 16 19 1356

Table 5.7: Scalar diffusion. Test Problem IV (see Figure 5.6); published

in [38].
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Third coarse space

Economic version of extension scaling

H/h η/h cond its #EV #dual

28 1 2.2478 11 50 348

28 2 1.9102 9 50 348

28 3 1.7047 9 50 348

28 4 1.5663 9 50 348

28 5 8.7645 13 33 348

28 6 7.4083 13 33 348

28 7 6.8836 13 33 348

28 8 6.6282 13 33 348

28 9 5.3208 13 29 348

28 10 5.2299 13 29 348

28 28 4.3890 13 19 348

Table 5.8: Scalar diffusion. Test Problem IV (see Figure 5.6). Third coarse

space uses extension scaling with different η/h, see Definition 4.5.1 and Re-

mark 4.5.5, only Eigenvalue Problem 1 with TOLµ = 1/10; also compare with

the third coarse space in Table 5.7 for H/h = 28. On squares of four ele-

ments in each direction the coefficient is constant. Consequently, the number

of constraints is reduced if the slab size η/h is increased such that a multiple

of four is exceeded; published in [38].
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5.2.3 Almost Incompressible Elasticity

In this section, we compare the algorithms for almost incompressible elas-

ticity problems. First, we consider a problem with a constant coefficient

distribution. Mixed displacement-pressure P2−P0 elements are used for the

discretization.

In the first test, we solve a problem with a Young modulus of 1 and a

Poisson ratio of 0.499999. Zero Dirichlet boundary conditions are imposed

on ΓD =
{

(x, y) ∈ [0, 1]2|y = 0
}

. The results for the approach in Section 2.5.1

(first coarse space) with a tolerance 1/10 and varying H/h are presented in

Table 5.9.

For constant H/h = 20 and varying Poisson ratio ν, see Table 5.10.

In the third case, we consider a distribution of Young’s modulus from Fig-

ure 5.2 and a Poisson ratio of ν = 0.4999. The result for the approach in

Section 2.5.1 can be found in Table 5.11. For the related results of the algo-

rithm in Chapter 3 (second coarse space [59]), see Tables 5.9, 5.10, and 5.11.

Note that the third coarse space algorithm is not suitable for this problem.

Its eigenvalue problem is not based on a localization of the jump operator

but designed to get constants in Korn-like inequalities and in an extension

theorem that are independent of jumps in the coefficients. It therefore will

not find the zero net flux condition which is necessary for a stable algorithm.

The first and second coarse space are reliable if the Poisson ratio ν ap-

proaches the incompressible limit; see Tables 5.9 and 5.10. With a constant

Young modulus, the first coarse space needs approximately twice as many

constraints as the second coarse space. However, if jumps in the Young mod-

ulus are present, the performance is similar; see Table 5.11.

124



Chapter 5. Comparison of the Coarse Spaces

First coarse space Second coarse space

mult. scal., TOL = 1/10 mult. scal., TOL = 10

H/h cond its #EV cond its #EV #dual var.

10 2.2563 12 32 6.3215 22 10 516

20 2.1821 14 34 5.4016 20 16 996

30 2.4743 15 34 5.1404 20 20 1476

40 2.6969 15 34 5.4856 20 22 1956

Table 5.9: Almost incompressible elasticity using a P2− P0 finite elements

discretization for 3 × 3 subdomains. Homogeneous coefficients with E = 1

and ν = 0.499999; published in [38].

.

First coarse space Second coarse space

mult. scal., TOL = 1/10 mult. scal., TOL = 10

ν cond its #EV cond its #EV #dual var.

0.3 1.9078 12 34 7.7232 24 4 996

0.49 2.6715 14 34 5.1983 20 16 996

0.499 2.2745 14 34 5.3790 20 16 996

0.4999 2.1915 14 34 5.3993 20 16 996

0.49999 2.1830 14 34 5.4014 20 16 996

0.499999 2.1821 14 34 5.4016 20 16 996

Table 5.10: Almost incompressible elasticity using P2 − P0 finite elements

and 3 × 3 subdomains. Homogeneous coefficients with E = 1. We vary ν,

H/h = 20; published in [38].

5.3 Advantages and Disadvantages

We discuss some advantages and disadvantages of the algorithms presented

here. This section is based on our work in [38]. For the first and second coarse

space a condition number estimate is available for symmetric positive definite
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First coarse space Second coarse space

mult. scal., TOL = 1/10 mult. scal., TOL = 10

H/h cond its #EV cond its #EV #dual var.

10 11.5279 25 50 11.3414 25 50 516

20 11.9831 23 54 11.8391 26 50 996

30 12.0786 23 54 11.9445 26 50 1476

Table 5.11: Almost incompressible elasticity using a P2−P0 finite elements

discretization and 3 × 3 subdomains. Channel distribution with E1 = 1e3

(black), E2 = 1 (white) and ν = 0.4999; cf. Figure 5.2. The table was

published in [38].

problems in two dimensions; see Sections 2.4.2 and 2.5.1 for the first coarse

space and Section 3.3 for the second coarse space, respectively. Also slab

variants of the algorithms were provided, including proofs for the condition

number bounds. A condition number estimate for the third coarse space,

applied to scalar diffusion problems, can be found in Chapter 4 for constant

ρ−scaling and for extension scaling. For this, a condition number estimate

can be proven for linear elasticity using similar arguments and replacing H1-

seminorms by the elasticity seminorms. For all three coarse spaces, no theory

exists yet for the three dimensional case but the second coarse space has been

successfully applied to three dimensional problems in [60].

An advantage of the first and third coarse space is that the size of the

eigenvalue problems depends only on the number of degrees of freedom on

an edge. This has to be seen in comparison to the size of two local interfaces

of two substructures in the second adaptive coarse space. In the eigenvalue

problem for the first coarse space the involved matrices are dense while in

the second coarse space the eigenvalue problem involves a sparse matrix on

the left-hand side and a 2×2 block matrix with dense blocks on the right-

hand side. However, the first coarse space needs the factorization of a matrix
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on the left-hand side and possibly matrix-matrix multiplications with Schur

complements if a direct eigensolver is used. The third coarse space needs

the solution of two eigenvalue problems for each of two substructures sharing

an edge with a dense matrix on the left-hand side and a tridiagonal matrix

in case of piecewise linear elements on the right-hand side. It can be ad-

vantageous that these eigenvalue problems can be computed locally on one

substructure and that for building the constraints, only in case of extension

scaling, information of the neighboring substructure has to be used.

A multilevel BDDC variant for the second coarse space can be found in [76].

All coarse spaces require an additional factorization with matrix-matrix

multiplications or multiple forward-backward substitutions if deluxe scaling

is used. In case of multiplicity scaling and a nonsymmetric coefficient the

size of all coarse spaces can depend on the size of the substructures H/h as

can be seen in Section 5.2.
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[58] Jan Mandel and Bedřich Soused́ık. Adaptive coarse space selection in

the BDDC and the FETI-DP iterative substructuring methods: Optimal

face degrees of freedom. Springer, LNCSE, Domain decomposition meth-

ods in science and engineering XIX, 2007.

136



Bibliography
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fertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die
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