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Kurzzusammenfassung

Diese Arbeit untersucht die Beziehung zwischen strukturellen Eigen-
schaften und dem Verhalten von dynamischen Prozessen in komplexen
Netzwerken. Aufbauend auf Ideen aus der biologischen Evolution
oder Monte Carlo-Simulationen wird die Methode der Netzwerk-
evolution entwickelt. Sie dient zur Generierung von Netzwerken mit
vorgegebenem dynamischen Verhalten ohne explizite Vorkenntnis, wie
strukturelle Eigenschaften die Dynamik beeinflussen. Insbesondere
werden Laplace-Dynamiken als Klasse von grundlegenden – einfachen
jedoch hochgradig relevanten – Prozessen betrachtet. Ziel der Evolution
ist ein Potenzgesetz im Spektrum der Laplace-Matrix, das die spektrale
Dimension als charakteristische Größe für die Beschreibung von
Diffusionsprozessen definiert. Die erfolgreich evolvierten Netzwerke
weisen heterogene Strukturen, bestehend aus dicht verbundenen
Kernen und dünnen Randbereichen, auf. Durch Rekonstruktion der
evolvierten Netzwerke wird der Einfluss von Gradverteilung und Grad-
Korrelationen auf die spektralen Eigenschaften untersucht. Hierfür
werden Zufallsnetzwerke mit der Gradverteilung und den Grad-
Korrelationen der evolvierten Netzwerke generiert und die Laplace-
Spektren verglichen. Schließlich werden homogene Netzwerke mit dem
vorgegebenen Potenzgesetz im Laplace-Spektrum durch Beschränkung
der Evolution auf reguläre Netzwerke erzeugt. Die so evolvierten
Netzwerke sind gekennzeichnet durch gehäuft auftretende symmetri-
sche Motive. Dies wird für ein systematisches Coarse-Graining der
Netzwerkstrukturen genutzt. Dadurch lassen sich die Laplace-Spektren
eindeutig in Beiträge der symmetrischen Motive einerseits und der
unterliegenden großskaligen Strukturen andererseits aufspalten.





Abstract

In this thesis the relationship between the structure of complex
networks and the behavior of dynamical processes on these networks
is studied by network evolution. Adopting ideas from biological
evolution or Monte Carlo simulations the method of network evolution
is developed as strategy to generate networks with a prescribed
dynamical behavior without any prior knowledge about the structure-
dynamics relation. Here, Laplacian dynamics are considered forming
a basic—simple but highly relevant—class of dynamics. Networks are
successfully evolved towards a power-law scaling in the spectrum of the
graph Laplacian which defines the spectral dimension as important
characteristic of diffusion behavior. The resulting evolved networks
exhibit heterogeneous structures with densely connected cores and
sparse peripheries. The influence of the degree distribution and degree
correlations on the spectral behavior is investigated. To this end
random networks with the degree distribution and degree correlations
of the evolved networks are generated and the Laplacian spectra
are compared. Finally, homogeneous networks with the prescribed
power law in the Laplacian spectrum are generated by restricting
the evolution to regular networks. The resulting evolved networks
are found to be highly symmetric. The symmetry is exploited to
construct quotient networks as systematic coarse-graining separating
the Laplacian spectra into contributions from the repeating symmetric
motifs on small scales and the underlying large-scale structures, which
are particularly relevant in determining the spectral dimension.
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the evolutionary optimization . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4. Average return probability P0(t) for initial and evolved networks . . . . . 56
3.5. Degree distributions P (k) of initial and corresponding evolved networks . 56
3.6. Evolution of degree assortativity r and clustering coefficient C . . . . . . 57
3.7. Typical network configurations taken from the evolutionary optimization . 59

4.1. Histogram of spectral distances in individually reconstructed networks . . 63
4.2. Averaged logarithmically integrated Laplacian spectral density of recon-

structed networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3. Typical network configurations taken from the individual reconstruction . 65
4.4. Histogram of spectral distances for the reconstruction from independently

averaged correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5. Distributions of number of connected components and average spectral

distances by number of components . . . . . . . . . . . . . . . . . . . . . . 67
4.6. Typical network configurations reconstructed from independently aver-

aged distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7. Reconstruction averages of evolutionary time series . . . . . . . . . . . . . 69

5.1. Schematic of the edge-crossing update . . . . . . . . . . . . . . . . . . . . 72
5.2. Typical configurations of k-regular networks evolved towards a target

spectral dimension of d
(1)
s = 1.4 . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3. Redundant Laplacian eigenvectors of the most prominent motifs in
evolved networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4. Illustration of the coarse-graining procedure . . . . . . . . . . . . . . . . . 78
5.5. Logarithmically integrated Laplacian eigenvalue densities of evolved

networks together with quotients and s-quotients . . . . . . . . . . . . . . 80
5.6. Typical 3-regular evolved network and corresponding s-quotient for target

spectral dimension d
(2)
s = 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7. Histogram of linear segment lengths s in s-quotients . . . . . . . . . . . . 82

9





List of Tables

3.1. Spectral distances Dini before and Dfin after the evolutionary optimization 54

5.1. The coarse-graining in numbers . . . . . . . . . . . . . . . . . . . . . . . . 79

11





Symbols

N Number of vertices in a network.

M Number of edges in a network.

Aij Elements of the adjacency matrix.

Lij Elements of the graph Laplacian.

ki Degree of vertex i, the number of edges connected to it.

P (k) Degree distribution, the probability that a randomly chosen
vertex has degree k.

Pe(k) Edge end distribution, the probability that a vertex at the end of
a randomly chosen edge has degree k.

P (j, k) Joint degree distribution, the probability that a randomly chosen
edge connects vertices of with degrees j and k.

r Assortativity coefficient measuring the degree-degree correlations.

C Global clustering coefficient measuring the overall transitivity.

Ci Local clustering coefficient measuring the transitivity at vertex i.

C(k) Degree-dependent clustering coefficient measuring the transitivity
of vertices in the degree class k.

P0(t) Average return probability, probability that a random walker is
located at its origin at time t, averaged over all starting vertices.

I(λ) Integrated Laplacian eigenvalue density.

ds Spectral dimension, describing the scaling of the Laplacian
spectral density.

D(Ĩ , Ĩ ′) Spectral distance between the two logarithmically integrated
densities Ĩ and Ĩ ′.
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1. Introduction

Everything is simple and neat—except, of course, the world.
Goldenfeld and Kadanoff

Complex Systems

Undoubtedly, the world we are living in with the phenomena we are observing and,
not only as physicists, trying to understand is a complex world. It consists of a vast
amount of entities of extremely different sizes, masses, and many other properties with
an even larger number of interactions between them. Describing the whole complexity
of this world would not only be cumbersome but is truly impossible.—To mention
just two reasons for this, consider the fact that we will never be able attain full
information about the state of each and every atom in the universe due to quantum
mechanical uncertainty and the relativistic event horizon. Additionally, and in a certain
sense more fundamentally, the device to describe the world would have to be part of
and interacting with the rest of the world, leaving us without any material to store
information and perform computations.—The sciences in general and in particular
physics have made much progress in the description and the understanding of the
world by the use of reductionism. The idea to separate the essential aspects from the
less important has led to the discovery of again and again more elementary entities
and more fundamental interactions. The importance of these discoveries like quantum
mechanics and elementary particle physics as well as general relativity and cosmology
is, of course, beyond any doubt. Nevertheless, it is a naive fallacy to conclude that
other fields of science can be simply deduced from more the fundamental ones. The
emergence of collective phenomena and the shifts in which aspects are considered as
essential, depending on the level of description, are subsumed in the manifestation “More
Is Different” by Anderson (1972):

The behavior of large and complex aggregates of elementary particles, it
turns out, is not to be understood in terms of a simple extrapolation of the
properties of a few particles. Instead, at each level of complexity entirely
new properties appear, and the understanding of the new behaviors requires
research which I think is as fundamental in its nature as any other.

In this hierarchy of science the elementary entities of one level of description are governed
by the laws of the more fundamental level, but in the transition from one to the other
a completely new field emerges. These transitions are studied in statistical physics and
complex systems science. The basic entities of a system and their local interactions
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1. Introduction

are considered to be known. From the non-trivial interplay of many of those entities,
however, the complexity of the new field arises.

But what actually is complexity? A strict definition of which systems and phenomena
are considered as “complex” and which as “simple” does not exist so far. However, there
seems to be an agreement on a number of aspects a complex system has. The emergence
of collective phenomena as a central feature of complex systems was already mentioned
above. On the level of observations important features are structure formation and
intermittency or “structure with variations” (Goldenfeld and Kadanoff, 1999). Also self-
organization is considered as an important feature of many complex systems. This idea
was very successfully driven forward in the concept of self-organized criticality (Bak
et al., 1987). In a systematic analysis, Chu et al. (2003) reason that necessary features
of complexity are internal inhomogeneity, adaptivity of agents, nonlinear interactions,
and a net-like causal structure as well as radical openness and contextuality. While
the first four form the constituents of complex adaptive systems which can be described
by agent-based models they conclude that together with the latter two a general unified
theory of complexity might not be possible to achieve. For the study of complex systems,
Amaral and Ottino (2004) consider nonlinear dynamics, statistical physics, and network
theory as the most important tools. Out of these three, network theory is the youngest
and most rapidly developing field. As an integral component of complex systems it has
become a very active research topic over the last fifteen years.

Networks

A network model describes binary relations between elements of a discrete set of entities.
This includes traditional arrangements such as regular lattices (as studied, e.g., in
solid state physics), all-to-all or randomly chosen interactions as well as more complex
structures with very distinct features. Since interactions in many natural, technological,
or socio-economic systems are indeed pairwise, or can at least be approximated as such,
networks provide a quite general description of interaction patterns. In the following,
some important examples of systems which were successfully modeled as networks are
presented. More detailed information on these systems and references can be found
in several review articles (Albert and Barabási, 2002; Dorogovtsev and Mendes, 2002;
Newman, 2003b) and a book (Newman, 2010).

In biology, a number of systems over all relevant length scales can be usefully
represented as networks. On the sub-cellular level, protein-protein interaction networks
describe the interactions between different proteins in a biological cell. Two types of
proteins are connected in this description if they can, in their native folded state,
interlock to form protein complexes. These interactions primarily do not involve chemical
reactions. In a metabolic network the pathways of cell metabolism are recorded, i.e.,
the chemical substances and their reactions involved in the process of breaking down
nutrients and making energy and useful biomolecules available for the functioning of the
cell. This is an example of a system which is most effectively modeled as a directed
network. In order to have well defined metabolic pathways the chemical reactions are
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Figure 1.1. Illustration of a neural network. Shown is a network of nerve cells from the
chick cerebellum in an original drawing by the Nobel laureate Santiago Ramón y Cajal.
(Ramón y Cajal, Estructura de los centros nerviosos de las aves, Madrid, 1905)

best described by asymmetric relations between the different metabolites. The same
holds true for gene regulation networks describing how the expression of different genes
in a cell regulate each other. If a certain gene is expressed, i.e., DNA is transcribed into
messenger RNA which is then translated into gene products such as proteins, its products
may promote (excitatory interaction) or suppress (inhibitory interaction) the expression
of other genes building up a complex regulatory system. Similar regulatory mechanisms
with excitatory and inhibitory connections which are, however, of completely different
origin are found in neural networks. They consist of specialized excitable nerve cells,
so-called neurons, which are electrically connected by synapses or gap junctions. While
there are about 1011 neurons found in a human brain the neural network of the nematode
worm Caenorhabditis elegans consist of only 302 neurons making it an ideal model system
which has been very well studied. A historic illustration of a neural network in the
cerebellum of a chick is displayed in figure 1.1. On the scale of a whole organism, vascular
networks describe the connectivity structure of blood vessels or equivalent transport
systems in plants. Physiological networks are used as models for the interactions of
different organs of the human body. On even larger, ecological scales food webs describe
the hunting relations between different species in an ecosystem. As predator-prey
relation are in general asymmetric, these are also most naturally modeled as directed
networks.

There is also a number of technological systems which can be very effectively described
as networks. Although these systems are man-made they are often not completely under
control of a central organization unit and exhibit features of complex systems. A very
famous and well-studied example is the Internet, a network of physical data connections
between computers and other telecommunication devices such as routers. It has no
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1. Introduction

Figure 1.2. The structure of the Internet as connections between the “class A subnets”,
groups of computers with similar IP addresses, in 2003. The connections indicate the
observed routes taken by data packages sent through the Internet and the colors indicate
different groups of domain names. (Image: The Opte Project / Barrett Lyon)
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superordinated organization or central authority and there is no “official map” of the
Internet. Instead, its topology has to be explored by experimental measurement just
like in any natural system. Figure 1.2 shows the connectivity structure of the Internet
derived from such a measurement. Not to be confused with the Internet must be the
World Wide Web, a network of web pages connecting to one another via hyperlinks
without any physical structure. Just as in the case of the Internet, the structure of
the World Wide Web has to be measured experimentally. Another class of network
systems our daily live depends on crucially are supply networks like power grids and
the supply infrastructure for gas, water, oil, etc. In this context, mostly the large-
scale distribution networks such as the high-voltage transmission lines for the long-
distance transport of electrical energy are considered. These grids are usually managed
and supervised by single authorities and complete maps are available. In this case,
determining the topology is not a difficult task. Nevertheless, also power grids show
complex structures and sometimes counterintuitive behavior. Finally in the group of
technological systems, transportation networks form a very important part of our modern
infrastructure. Obviously, roads and railway lines form networks connecting cities and
railway stations. Although these networks are restricted to exist on a plane (except
for tunnels and bridges) they exhibit complex structures. Networks of airplane or ship
connections, on the other hand, are not that strictly bound to any man-made connecting
infrastructure.

A third realm in which network models are applied are the social and economic
sciences. For most people the term might be associated with online social networking
platforms like Facebook but the notion of a social network was introduced long before
the Internet even existed. In fact, sociology may actually have the longest tradition in
quantitative, empirical work on network systems. The concept of sociograms—a network
representation of social relations in a group—even dates back to the 1930s (Moreno,
1934). In general, a social network describes a set of people and some relation like
friendship, partnership, sexual contacts, or professional relations between them. The size
of such networks may range from small groups like the 34 members of a karate club (one of
the most famous examples in the literature, the network structure is shown in figure 1.3)
to possibly all human beings on the earth. The collection of data for these networks
by traditional methods like interviews and questionnaires was quite cumbersome and
restricted to smaller communities. Today, much larger datasets exist—but might not be
publicly accessible—for online networking platforms. A special case of social networks
are collaboration networks recording the participation of people in joint projects like
actors appearing in the same movie or scientists co-authoring an article. Large datasets
for these networks can be extracted from online databases such as the Internet Movie
Database or the Web of Science. By means of the latter, also citation networks can
be recorded, describing the citation relations between scientific publications. These
relations are strictly directed, mutual relations are (almost) impossible since only
previously published articles can be cited. In economic sciences, networks of business
relations are studied. These might be banking networks describing interbank lending and
therefore interdependencies of banks. In the study of markets, trading networks record
trade relationships between companies, states, or whole economic zones.
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Figure 1.3. Zachary’s karate club network. A network of friendship between the 34
members of a university karate club, recorded by Zachary (1977). By analyzing the
structure of the network, Zachary was able to predict how the club divided in two
groups, which was observed later on in a conflict between the instructor (number 1) and
the administrator (number 34) of the club.

The various systems mentioned here are of completely different nature. The
constituent elements and also the represented relations of one example might have
nothing in common with those of another one. Most of the systems vary substantially
in their sizes, in the way they formed, and how they evolve. However, if one solely
focuses on the network representation and forgets about what this abstraction stands
for some reappearing structural properties shared among many of those systems can be
uncovered. This observation triggered the general interest in networks by themselves
as objects of scientific studies. The hope to discover universal properties of networked
systems is what made them especially interesting from the view of theoretical physics. In
the most simple description, a network consists of a set of points connected by lines. In
mathematical terms the points are referred to as vertices, the lines are called edges, and
together they form a graph. The number of edges that are connected to a given vertex
is called its degree. One observation in many networks is a rather broad distribution of
the vertex degrees. This means that most elements have just a few connections while
a small but significant number of elements have extremely many, the so-called “hubs”.
Specifically, such heavy tails are found if the degree distribution follows a power law.
In this case, the network is often referred to as a scale-free network. Although already
observed in the 1960s in the context of citation networks (de Solla Price, 1965), the
phenomenon was popularized more recently by Barabási and Albert (1999). Another
intriguing characteristic of many network systems is the small-world effect. The distance
between two vertices in a network can be defined by the minimum number of edges that
have to be traversed in order to reach one vertex from the other, the so-called geodesic
distance. It has been observed that the mean geodesic distance between vertex pairs
in many networks is surprisingly small, the networks form a “small world”. This has
been popularized as the “six degrees of separation” referring to the average number of
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acquaintance connections necessary to link two randomly chosen people in the United
States of America (Milgram, 1967). Although it might sound peculiar at first, the
small-world property alone is also found in random networks, even in the most simple
random graph models, the famous Erdős-Rényi networks (Erdős and Rényi, 1959).
Only together with a high level of clustering, the tendency to find groups of densely
interconnected vertices, it becomes a non-trivial and astonishing characteristic of many
empirical networks. This has been addressed in a seminal work by Watts and Strogatz
(1998), a second foundation of modern network theory.

Network Dynamics

Why do people study networks and complex systems? By themselves the complex
structures found in real-world network systems might appear fascinating but in the
end it is the understanding of how these systems function that drives the interest in
network research. In most of the systems described above the pattern described by the
network actually serves as substrate for a dynamical process taking place on top of it,
one sometimes speaks of dynamics on networks. Each vertex in the network stands for a
dynamical variable and edges describe which variables are influenced by the dynamical
state of which other variables. In gene regulation networks, the vertices stand for the
different genes and the dynamical variables are their expression levels. The expression of
a certain gene dynamically regulates the expression of all other genes connected to it by
an edge. Similarly, the dynamics of neural networks may be viewed. The neurons form
the vertices of the network and their activities are the dynamical variables regulating each
other via the synaptic connections. In food webs, the number of individuals of certain
species is described by dynamical variables that change due the foraging interactions.
A slightly different point of view can also be taken by considering the distribution
of biomass as dynamical quantity and the network as describing its flow through the
ecosystem. In supply networks, usually a single commodity has to be transported
from sources to sinks. One can simply consider the amount of the commodity at a
vertex as dynamical variable. This might, however, not be enough if more complicated
processes are imposed by the special system. In AC power grids, for example, the voltage
oscillations govern the dynamics of the whole system and Kirchhoff’s laws have to be
satisfied. In contrast to the single commodity case, in a transportation network different
objects need to be transported to their individual targets. In this case, their individual
positions in the network might be a better choice of dynamical variables. The Internet
can also be considered as a transport network for data packages which are sent from
one computer to another. On social networks, a large variety of dynamical processes is
taking place which can be considered separately or in combination. Of high practical
importance are epidemic spreading dynamics describing how infectious diseases spread
from individual to individual through personal contacts. Also the spread of information,
of fads, or of innovations in a society are dynamical processes on social networks. The
term “viral phenomenon” has been adapted from epidemic spreading for these processes,
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1. Introduction

if the piece of information, the fad, or the innovation is passed on from one individual
to the next without a central broadcaster, just like a contagious disease.

The local dynamical rules—the internal dynamics of an isolated node as well as the
couplings—of these systems obviously differ a lot. Nevertheless, they share an important
feature putting them in the focus of dynamical network research. Namely, their internal
dynamical rules and local coupling can be considered as rather “simple”. The complex
dynamics of a system as a whole arise from the way they are coupled, i.e., the network
structure. Concerning the practical question of how the dynamics of such a system can
be controlled or at least influenced, often not much can be done about the local dynamics.
Instead, the important question is how the network structure has to be altered in order to
change (or preserve) the overall dynamics. In the case of epidemic spreading dynamics,
for example, one might want to know which individuals should be removed from the
process by vaccination in order to efficiently prevent the disease from spreading over the
whole population. In the case of the Internet or other infrastructure networks usually
the opposite case is desired, how can the whole system be kept running if some parts of
it fail.

A second dynamical aspect of networks is the evolution of network structure,
sometimes called dynamics “of” networks to distinguish it from the dynamics “on”
networks mentioned above. An evolving network changes its structure in the course of
time, i.e., vertices or edges are added to or removed from the network. Again, almost all
of the exemplary systems mentioned above are actually evolving their structure in time.
The technological networks are often expanded to increase their capacity or downsized
to make them more cost efficient. Frequently, new computers are added to the Internet
and others are removed, new websites appear and old ones are deleted from the servers
of the World Wide Web, new streets and railways are built, new airline connections are
established while others are closed down, old power plants are replaced by new ones.
Also social networks are constantly changing, people die and others are born, every
day we meet different people and new technological developments or changing habits
allow us to interact with other people. In biological networks, biological evolution is one
ubiquitous source of changes in the constituents and interaction patterns. Especially on
molecular scales, genetic mutations can directly change protein sequences and therefore
their structure and interactions with other proteins or modify the metabolic pathways
of certain substances and, by this, the ability of an organism to make use of different
nutrients. Additionally, there may exist other sources of structural changes in biological
networks like the brain plasticity in neural networks or the invasion of alien species into
an ecosystem.

In the case when both kinds of dynamics, dynamics on a network and network
evolution, are to be considered, the typical time scales of the two processes become
important. They may either be of the same order of magnitude meaning that the
dynamical variables of the process change their state more or less at the same rate as
the network structure is modified. In this case, one speaks of coevolutionary or adaptive
networks (Gross and Blasius, 2008) since the network structure can adapt to the state
of the dynamical variables. Or the two time scales are well separated meaning that
the dynamical variables change many times and probably have enough time to reach an
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attractor until the network structure changes. In this case it is reasonable to assume
that the evolution “sees” the overall behavior or performance of the dynamical process
instead of a single dynamical state. This is certainly the case in biological evolution
where, for example, gene expression levels change many, many times during the lifetime
of an organism until mutations might occur from one generation to the next. Also the
dynamics of neuronal activity is much faster than the formation of synaptic connections.
In most technological networks a similar situation is found. Data packages are sent
through the Internet much faster than new computers are installed, trains and cars
run faster than new streets or railways are built, and voltage oscillations in a power
grid have obviously a higher frequency than the construction of new power plants and
transmission lines. In social networks, the situation can be different. It is very likely
that people change their behavior and the way they interact with other people when
they become infected by a disease or when they change their political opinion. In these
cases the interaction network adapts to the current dynamical state. A different situation
might have to be considered on other scales of human interaction. To describe the global
spreading of some disease one might use airports as network vertices and consider them
as infected if a certain threshold of people in the city or region carry the infection. In
this case, the airline connectivity will usually not adapt to the dynamical state and time
scales are well separated again.

In this thesis, the relation between network structure and the global behavior of
dynamical processes is studied. The focus lies on Laplacian dynamics, an important
class of processes in which the time evolution is governed by the graph Laplacian
operator. This class comprises very basic but highly relevant processes such as diffusion
and random walks or synchronization of oscillators with many significant applications.
Inspired by the evolution of dynamical networks under a separation of time scales,
a method of evolutionary optimization of network structure for a prescribed global
dynamical behavior is developed. The overall dynamical behavior is characterized by
the eigenvalue spectrum of the graph Laplacian bridging between network structure
and dynamics. By this, the dynamics do not have to be carried out explicitly.
Related ideas were applied before in studies on optimal or pessimal network structures
for the synchronizability of oscillator systems (Donetti et al., 2005, 2006, 2008) and
reconstruction of networks from their Laplacian spectra (Comellas and Diaz-Lopez, 2008;
Ipsen and Mikhailov, 2002).

Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces the
mathematical concepts and tools for the description of complex networks. Observables
to quantify topological characteristics are covered as well as random network models
reproducing different structural properties. An overview of dynamical processes on
networks is given with a focus on diffusion and random walks. Finally, the graph
Laplacian as generator of an important class of dynamics is introduced together with
its relation to structural and dynamical network properties. In chapter 3 the method of
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1. Introduction

evolutionary optimization of network structure for anomalous diffusion described by the
spectral dimension is developed. The technique is successfully applied and the resulting
network structures are analyzed. Chapter 4 investigates the influence of structural
correlations on the dynamical behavior in the evolved networks. To this end, random
networks are generated having the same correlation functions as the evolved networks
and their Laplacian spectra are compared. In chapter 5 the evolutionary optimization
is further restricted to find networks which are homogeneous in their local connectivity.
The resulting evolved networks exhibit a high level of structural symmetry which is
exploited in a systematic coarse-graining to find the underlying backbone structures and
their relevance for the anomalous diffusion behavior. Chapter 6 summarizes the results
of this thesis and discusses its findings. In the appendix, the algorithm applied for the
random network generation is explained in detail and the numerical libraries which were
used are listed.
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2. Dynamical Networks

In this chapter, the mathematical concepts for the quantitative description of networks
and their dynamics are introduced. The corresponding mathematical field is graph
theory. Since this is a large field with a long history, only the concepts and results
that are necessary for the understanding of this thesis are covered. More extensive
information about the presented concepts and additional topics can be found in the
literature (e.g. Barrat et al., 2008; Newman, 2010).

2.1. The Structure of Complex Networks

A network, as already introduced above, consists of a set of basic entities and a collection
of pairwise connections between them. In the language of graph theory the basic entities
are called vertices or nodes. The connections are described as pairs of vertices and
are called edges or links. Together, the vertex set V and the corresponding edge set E
form a graph G = {V, E}. Two vertices that are connected by an edge are called
adjacent or neighboring. Some authors distinguish between networks as objects of
empirical observations and graphs as strictly mathematical concepts that can be models
for these “real-world” networks. In this thesis, as in most physical literature, no such
differentiation is made, the terms “graph” and “network” are used interchangeably.
Several cases, or types of networks, have to be distinguished. The edges may be either
directed or undirected, so that the edge set consists of either ordered or unordered pairs
of vertices. In the former case, one speaks of a directed network or directed graph, shortly
called digraph. Secondly, it may be allowed or forbidden to have multiedges (several edges
between the same pair of vertices) so that the edge set contains an element more than
once. Thirdly, it may be allowed or forbidden to have edges from a vertex to itself, so-
called self-edges or self-loops. An undirected network which contains neither multiedges
nor self-loops is referred to as a simple network.

2.1.1. Formal Description

Vertex and edge sets provide the defining representation of networks. There exist,
however, a number of equivalent ways to describe a network formally. The vertices
are most easily identified by their position in the vertex set, which can then be simply
written as V = {1, . . . , N} where N = |V| denotes the number of vertices in the network.
In physics, N is called the size of the network although in graph theory the “size” of the
graph is |E|, the number of edges, whereas |V| is called the “order” of the graph. An
edge between vertices i and j is then denoted as the pair (i, j), the edge is called incident
to i and to j. The edge set is then the list of pairs E = {(i1, j1), . . . , (iM , jM )} where
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2. Dynamical Networks

M = |E| is the total number of edges in the network. Such edge lists are sometimes
used to represent a network on a computer. For most computational purposes, however,
the adjacency list representation is more efficient. It associates with each vertex a
list of all its adjacent vertices. In a directed network, only the outgoing or only the
incoming connections are considered in the adjacency list. For analytical calculations,
it is usually more convenient to work with matrices rather than with lists. The basic
matrix representation of a network is the adjacency matrix A. For a network with N
vertices it is a N ×N square matrix with elements

Aij =

{
1 if there is an edge between vertices i and j,

0 otherwise.
(2.1)

The adjacency matrix of an undirected network is symmetric, Aij = Aji. For directed
networks, it has to be specified whether Aij relates to an edge from i to j or from j to
i. Both conventions are found in the literature and often the authors do not explicitly
specify which definition they use. In this thesis, Aij in a directed network will stand for
edges from i to j, i→ j. Also networks with multiedges and self-loops can be uniquely
described by an adjacency matrix. For this, Aij simply has to be generalized to be the
number of edges between the vertices i and j. A self-loop in an undirected network is
most practically described by setting the corresponding diagonal element Aii = 2, or
Aii = 2n in the case of n self-loops at vertex i. This definition is consistent with the idea
that every undirected network can be equivalently described as a directed network in
which each undirected edge is replaced by two oppositely oriented directed edges between
the same pair of vertices. A single directed self-loop at vertex i is then described by
Aii = 1. A second important matrix is the graph Laplacian which will play a major role
in the section on dynamical processes. In the case of a simple network it is also uniquely
defined and characterizes the network structure completely. Recall that the degree ki of
a vertex i is the number of edges incident to it. In terms of the adjacency matrix it can
be calculated as ki =

∑
j Aij . The graph Laplacian L is another N ×N matrix defined

as

L = D −A . (2.2)

Here, D is the diagonal N ×N matrix of vertex degrees, Dij = kiδij , where δij denotes
Kronecker’s delta, δii = 1 and δij = 0 if i 6= j. Since the diagonal elements of the
adjacency matrix are zero for a simple network, the elements of the graph Laplacian
simply read

Lij =


ki if i = j,

−1 if there is an edge between vertices i and j,

0 otherwise.

(2.3)
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The graph Laplacian L is sometimes called “algebraic Laplacian” in order to distinguish
it from slightly different matrices which are sometimes also called Laplacian. The
“random walk” normalized Laplacian L′ has elements

L′ij =


1 if i = j,

− 1
ki

if there is an edge between vertices i and j,

0 otherwise

(2.4)

whereas the “symmetric” normalized Laplacian L′′ is defined by

L′′ij =


1 if i = j,

− 1√
kikj

if there is an edge between vertices i and j,

0 otherwise.

(2.5)

Throughout this thesis, only the “algebraic” Laplacian L is called graph Laplacian,
Laplacian matrix, or simply Laplacian. The others will always be specified as normalized
Laplacians. For completeness, also the incidence matrix B shall be mentioned here as
another matrix describing a network’s structure. It is an N ×M matrix in which each
row represents a vertex and each column an edge of the network. For a directed network
its elements are defined as

Bij =


−1 if edge j starts at vertex i,

+1 if edge j ends at vertex i,

0 otherwise.

(2.6)

An undirected network first has to be given an orientation by arbitrarily assigning a
direction to each edge. Then, the incidence matrix is constructed as above. The incidence
matrix provides a second way to define the graph Laplacian as

L = BBT (2.7)

where BT is the matrix transpose of B. Note that for an originally directed network,
this definition provides the graph Laplacian of the underlying undirected network, i.e.,
the network obtained by taking the same vertex set and introducing an undirected edge
between each pair of vertices where a directed edge in either or both directions was
present.

Some additional notions from graph theory will become important later on in this
thesis. A subgraph of a given graph is another graph that consists of a subset of the
original vertex set and all edges from the original edge set which connect vertices that
are both in this subset. A simple graph with N vertices in which all possible edges are
present is called a complete graph. It has M = N(N − 1)/2 edges. A path connects
two vertices of a graph through intermediate vertices by traversing edges. Formally, it
is a sequence of vertices in which each pair of consecutive vertices is connected by an
edge. The length of a path is the number of traversed edges. A geodesic path between
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2. Dynamical Networks

two vertices is a shortest path connecting those vertices. The length of a geodesic
path is called the geodesic distance, chemical distance, or simply distance ` of the two
vertices. A graph is said to be connected if every pair of vertices can be connected by
a path. Otherwise the graph is disconnected. A connected component, sometimes just
called component, of a graph is a maximal connected subgraph, i.e., a subgraph which
is connected and to which no additional vertex from the original graph can be added
without loosing this property. Here, when speaking of networks all these concepts will
be also used with “graph” in their names replaced by “network”.

2.1.2. Basic Observables

Some standard observables to quantify and compare network structures have been
established during the last years. The probably most prominent feature of a network is
the degree distribution P (k), the distribution of the degrees ki over all vertices i ∈ V.
P (k) represents the probability that a randomly chosen vertex has degree k. To be
distinguished is the edge end (degree) distribution Pe(k). Pe(k) is the probability that
the vertex at one of the two ends of a randomly chosen edge has degree k. As the
probability for a vertex to be selected in such a process is proportional to its degree, the
edge end distribution is related to the degree distribution by

Pe(k) =
k

〈k〉P (k) (2.8)

where 〈k〉 is the average vertex degree,

〈k〉 =
1

N

∑
i∈V

ki =
∑
k

k P (k) . (2.9)

Since Pe(0) = 0 always holds the edge end distribution does not capture vertices of
degree zero which then have to be described separately.

The degree distributions are one-point properties of a network. They only capture
properties of single vertices, namely their degree, and do not relate them to their
surroundings. The next step in a systematic treatment is to consider two-point
correlations between vertex degrees. The joint degree distribution P (j, k) describes these
correlations. P (j, k) is the probability that a randomly chosen edge connects vertices
with degrees j and k. It is symmetric under the exchange of arguments, P (j, k) = P (k, j).
The edge end distribution can be directly recovered by marginalization over one of the
arguments,

Pe(k) =
∑
j

P (j, k) . (2.10)

If the vertex degrees are independent then the joint degree distribution factorizes as
P (j, k) = Pe(j)Pe(k). This is used to quantify the overall degree-degree correlations of
a network in a single scalar. The assortativity coefficient r, sometimes called Newman
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factor, is the Pearson correlation coefficient of the degrees of adjacent vertices (Newman,
2002, 2003a),

r =
1

σ2
e

∑
j,k

jk [P (j, k)− Pe(j)Pe(k)] . (2.11)

The normalization σ2
e =

∑
k k

2Pe(k) − [
∑

k kPe(k)]2 is the variance of k with respect
to the edge end distribution Pe(k) and guarantees that r is in the interval [−1, 1]. If
r = 0 the degrees of neighboring vertices are uncorrelated and the network is said to
be non-assortative. If r > 0 (r < 0) the degrees of neighboring vertices are positively
(negatively) correlated and the network is said to be (dis)assortative. All the observables
introduced so far have been defined for undirected networks but their generalizations for
directed networks are straightforward.

In the next step, three-point correlations are considered. A full systematic treatment
of three-point correlations between vertex degrees is, however, rather involved. Instead,
these are usually subsumed as clustering coefficients. The term clustering refers to
the tendency to find clusters of densely connected vertices observed in many empirical
networks. One way to characterize this is to analyze the level of transitivity in a network,
i.e., the tendency that two neighbors of a vertex are also connected to each other. The
(global) clustering coefficient C quantifies this as the density of triangles in the network,

C =
3× (number of triangles)

(number of connected triples)
. (2.12)

In this definition, a connected triple consists of three vertices u, v, w ∈ V with at least two
edges (u, v), (v, w) ∈ E , and a triangle is a fully connected triple which additionally has
the third edge (u,w) ∈ E . The factor 3 appears since each triangle consists, according
to this definition, of three connected triples. C takes values between 0 (no transitivity,
no triangles in the network) and 1 (complete transitivity, all components are complete
subgraphs). One can also consider the clustering as a local property at a single vertex i
by relating the number of edges between neighbors of i, Ti, to its maximally possible
value ki(ki − 1)/2. This defines the local clustering coefficient Ci,

Ci =
2Ti

ki(ki − 1)
. (2.13)

Note that Ti is also the number of triangles of which vertex i is a part. This clustering
coefficient was introduced by Watts and Strogatz (1998) where they also proposed its
average over all vertices

〈Ci〉 =
1

N

∑
i∈V

Ci (2.14)

as measure for the global clustering of a network. The average local clustering coefficient
lies between 0 and 1 as well but is generally different from the global clustering coefficient
defined above, 〈Ci〉 6= C. In order to relate the clustering effect to the degree, a degree-
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dependent clustering coefficient C(k) can be constructed by averaging the local cluster
clustering coefficient over all vertices with the same degree k (Vázquez et al., 2002),

C(k) =
1

Nk

∑
{i∈V|ki=k}

Ci , (2.15)

where Nk = NP (k) is the number of vertices with degree k.

A different approach to study a network structure is to systematically analyze its
substructures from small building-blocks up to their large-scale arrangement. Small
frequently reappearing subgraphs are called network motifs (Milo et al., 2002). A
network can be scanned for these motifs recording the numbers of their occurrences.
The smallest non-trivial subnetworks consist of 3 nodes, but also larger motifs can be
traced systematically. The frequency of a motif is usually compared to its frequency in a
randomized network in order to see if it is statistically over- or underrepresented in the
system under study. These statistics provide a different classification of networks and
might reveal useful information about the various functions in a complex system or how
it evolved.

The small-world effect mentioned above can also be translated into a more rigorous
mathematical statement. A network is said to have the small-world property if the
geodesic distance ` averaged over all pairs of vertices grows logarithmically or more
slowly with the size N ,

〈`〉 ∼ logN . (2.16)

In many empirical networks, this definition cannot be applied, since they only exist with
one given size. In such a case, one considers the number of vertices with distance ` or
less from a given vertex, M(`). In a regular lattice, this number is expected to increase
as a power law with `, while in a small-world network it grows exponentially or faster.

2.2. Network Models

The study of empirical networks and the analysis of their topology reveals many
structural features of various network systems. This knowledge, on the one hand,
allows for a classification of networks by their structural properties. On the other hand,
these features provide a data basis for the search of structural properties that shape
the behavior of dynamical processes and ensure the functionality of network systems.
There is, however, one pitfall. By just working with the empirical data one can never
be sure if a given property is a special characteristic of the system or just a product of
either randomness or some external constraint. It is therefore very useful to have null
models available that reproduce certain structural properties but are apart from that
completely random. For this reason, a large part of network research is devoted to the
development of network models and to the study of their properties. A random network
model always defines an ensemble of networks by a probability distribution P (G) over a
set of networks {G}. The properties of a network model are then the properties of the
ensemble and not the properties of a single realization. For the modeling of macroscopic
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systems it is often convenient to consider a “thermodynamic limit” N → ∞. As usual
when dealing with infinities, all kinds of divergences and counterintuitive behavior are
observed in infinite graphs. To avoid such problems only a restricted class of infinite
networks are considered. Such “physical graphs” are characterized by a limited growth
with bounded maximum degree and at most polynomial growth in the number of vertices.
An advantage of working with infinite networks is that there is no distinction between a
single realization and the ensemble. Also, singularities and universal asymptotic behavior
can only be observed in infinite systems (Burioni and Cassi, 1996, 2005).

The notion of random graphs and also their extensive study is mostly attributed to
Paul Erdős and Alfréd Rényi who published a series of papers on those models in the
beginning of the 1960s (Erdős and Rényi, 1959, 1960, 1961). A similar model was
introduced as “random net” about a decade earlier by Solomonoff and Rapoport (1951)
and already related to neural networks and epidemic spreading. Consider a simple graph
with N vertices and M edges randomly chosen out of the N(N−1)/2 possible edges. This
defines the random graph G(N,M). A very similar model is the random graph G(N, p)
in which each possible edge is present with probability p and absent with probability
1−p. In the limit of large N the two models are statistically equivalent. With an average
vertex degree

〈k〉 =
2M

N
= (N − 1)p (2.17)

their degree distribution tends to a Poisson distribution,

P (k) = e−〈k〉
〈k〉k
k!

, (2.18)

which is the reason why they are sometimes called Poisson random graphs to distinguish
them from other random graph models. In recent network literature also the terms
“Erdős-Rényi model” or “Erdős-Rényi network” are commonly used. Apart from
the rather narrow light-tailed degree distribution, Erdős-Rényi networks have a small
clustering coefficient which vanishes in the limit of large N ,

C =
〈k〉

N − 1
→ 0 for N →∞ , (2.19)

and an average geodesic distance 〈`〉 growing logarithmically with the network size,

〈`〉 ∼ logN , (2.20)

making them “small worlds”. Since all vertices in an Erdős-Rényi random graph are
equivalent by construction there are no degree-degree correlations. So, Erdős-Rényi
model networks have the small-world property like many real-world networks but can
never reproduce heavy-tailed degree distributions, degree-degree correlations, or a given
clustering.

Regular lattices have a clustering coefficient which is well defined and easily
controllable by the local structure. The average number of vertices within distance
` of a vertex M(`), however, grows as a power law making them “large worlds”. By
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interpolation between the extremes of a clustered regular lattice and a small-world
random graph Watts and Strogatz (1998) set up a model which combines both properties.
The small-world model, or Watts-Strogatz model, starts with a circle of N vertices
which are connected to their 2m nearest neighbors. In a second step, each edge is with
probability p “rewired”, i.e., disconnected from one or both of its vertices and then
reconnected to randomly chosen vertices, or left in place with probability 1 − p. For a
large parameter region, 1/N � p � 1, the resulting networks share both properties, a
high clustering coefficient and the small-world effect.

Another way to extend the random graph model in order to better resemble the
structures found in empirical networks is to accommodate degree distributions which
are different from the Poisson distribution. The configuration model (Molloy and Reed,
1995) is a generalized random graph model accomplishing this task. The starting point is
a degree sequence k1, . . . , kN . If a degree distribution P (k) instead of a single sequence
is to be sampled, the {ki} can be simply drawn from that distribution in advance.
The degrees are assigned to the vertices of the network such that the ith vertex has ki
dangling half-edges or “stubs” attached to it. These stubs are then randomly matched
and connected to form the edges of the network. By this procedure, networks with
the given degree sequence are generated that are completely random in every other
respect. It was shown that, in the limit of infinite size, the configuration model samples
all networks with the given degree sequence with equal probability (Molloy and Reed,
1995). The algorithm can also be used to construct networks of finite size N <∞. There
are, however, some subtleties to be taken into account. First of all, the degree sequence
has to be graphical, i.e., there has to exist at least one graph with that degree sequence.
Luckily, it is known from graph theory that as long as the sum of all degrees is an even
number (obviously,

∑
i ki = 2M has to be even in any graph) this is satisfied by some

multigraph with self-loops. Secondly, by matching the stubs completely at random, in
general, a multigraph with self-loops will be generated. If the goal is to sample simple
networks, one has to restart the whole matching procedure whenever a multiedge or
self-loop is generated. A simple rejection of such an edge would introduce a bias into
the sampling. Since, for some sequences, this can lead to very high and uncontrolled
rejection rates, more sophisticated algorithms were proposed for an unbiased sampling
(Blitzstein and Diaconis, 2011; Del Genio et al., 2010). Nevertheless, due to its simplicity
the configuration model is widely used to generate random networks. It has also been
extended in various ways to accommodate other measures in addition to the degree
distribution. An extension of the configuration model to create correlated and clustered
random networks will be discussed and applied in chapter 4.

A completely different class of random networks is formed by growth models. These
models do not uniformly sample networks with a given set of properties but rather
focus on the process of network formation. The study of how the history and formation
principles of such a process shape the final outcome shall provide possible explanations
for certain properties observed in empirical networks. In a growing network, vertices
are added steadily and connected to the existing ones following certain rules. In this
simple setting, the growth process will obviously not converge. A network generated by
such a growth process is just a snapshot taken after some “growth time”. Therefore, the
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distribution of such networks will certainly not be an equilibrium distribution and models
of network growth are non-equilibrium models. The first model aiming to explain power
laws in the degree distribution of citation networks was introduced by de Solla Price
(1976). At that time, it was already known that “rich-get-richer” phenomena can lead
to power-law distributions in other contexts. In Price’s model, every time a new paper
(vertex) is added to the network it cites (is linked to) on average m of the existing ones.
Those are chosen with a probability proportional to their in-degree k (plus one to give
also non-cited papers finite probability) such that vertices with a high in-degree have a
“cumulative advantage”. This results in an in-degree distribution with a power-law tail
of the form

P (k) ∼ k−(2+1/m) . (2.21)

The effect was rediscovered some decades later by Barabási and Albert (1999) who called
it “preferential attachment”. The Barabási-Albert model is very similar to Price’s model
but for undirected networks. In each time step, a vertex is added to the network and
connected to m existing vertices which are selected with a probability proportional to
their degree k (no additive constant is needed here). Independently of m, this generates
networks with a power-law tail with exponent γ = 3 in the degree distribution,

P (k) ∼ k−3 . (2.22)

Although these networks are not exactly in the focus of this thesis, the growing networks
are an important example of network evolution. They are not “typical realizations” of
scale-free networks but, like most real-world systems, shaped by the non-equilibrium
process of their generation (Callaway et al., 2001). In the real world, a second
mechanism, the selection pressure on a system depending on its functional performance,
will additionally shape the evolution of many network systems.

2.3. Dynamical Processes on Networks

The study of dynamical processes on networks is an even more diverse topic than the
characterization of structural network properties. For the investigation of the relation
between structure and dynamics in networks, a broadly applicable characterization
of dynamical processes on networks would be highly desirable. Although there have
been attempts to categorize network dynamics and find stereotypical models for those
categories (e.g. Barzel and Barabási, 2013), a widely accepted general classification
scheme is still missing.

In general, a dynamical process on a network with N vertices is a N -dimensional
dynamical system. The state of the system at time t is described by a vector x(t) =
(x1(t), . . . , xN (t)) where each xi(t) characterizes the state of vertex i at time t. The time
evolution of xi(t) is determined by its own value and the values xj(t) of the adjacent
vertices j only. The network structure describes this interaction pattern. The variable xi
itself is usually a real or complex number or an element of some discrete set, but can also
be a more complicated mathematical object. The first distinction between dynamical
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processes is whether time is a discrete or a continuous variable. In the case of discrete
time t ∈ N, the dynamics are governed by an equation of the form

xi(t+ 1) = f̂i (xi(t), {xj(t) | j ∈ Ni}) . (2.23)

Here, the function f̂i describing the time evolution of vertex i consists of an internal
part depending on xi(t) and an external part depending on the xj(t) from Ni, the
set of all neighbors of i. In the most simple setting, the xi are just binary variables
(describing “on” and “off” states). Such Boolean networks were introduced by Kauffman
(1969) to model genetic networks. Boolean networks are the most prominent example of
time- and state-discrete dynamical networks exhibiting a rich and well-studied behavior
(Bornholdt, 2001; Drossel, 2008). The case of continuous time t ∈ R and real-valued
state variables xi ∈ R on an undirected network is generally described by a differential
equation of the form

dxi
dt

= fi(xi(t)) +
∑
j∈V

Aijgij(xj(t), xi(t)) . (2.24)

In this case, the function fi specifies the intrinsic dynamics of vertex i—as if it was
isolated from all other vertices—and the gij describe the influence of the neighbors j
on the dynamics of i. In the most common case, the model system consists of basically
identical units which are all coupled in the same way. This means that the functions fi,
and the gij , respectively, are all identical fi ≡ f , and gij ≡ g. Many important processes,
such as synchronization and spreading dynamics, fall into this class of dynamics.

The study of synchronization phenomena on networks has attracted much attention in
the scientific community. The problem can be formulated in relatively simple terms and,
at the same time, has applications to a broad range of relevant research questions (Arenas
et al., 2008). AC power grids, earthquakes, economic cycles, neuronal activity during
an epileptic seizure, flashing of fireflies, or oscillations in predator-prey dynamics are
some examples where synchronization plays an important role. The paradigmatic model
for the synchronization of non-identical oscillators with non-linear interactions is the
Kuramoto model, originally formulated with all-to-all couplings. On a network, consider
a planer rotor with phase variable φi and angular frequency ωi at each vertex i. With
sinusoidal couplings of strength K along the edges of the networks, the time evolution
is described by

dφi
dt

= ωi +K
∑
j∈V

Aij sin(φj(t)− φi(t)) . (2.25)

For small differences in the phase variable, linearization of the coupling term by sinx ≈ x
leads to

K
∑
j

Aij(φj(t)− φi(t)) = K
∑
j

Aijφj(t)− kiφi(t) = K
∑
j

(Aij − kjδij)φj . (2.26)
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If additionally all the natural angular frequencies are the same, ωi ≡ ω, one can transform
to a co-moving frame φi → θi = φi − ω. The linearized system of differential equations
reads then

dθi
dt

= K
∑
j∈V

(Aij − kjδij) θj = −K
∑
j∈V

Lijθj . (2.27)

Here, the graph Laplacian L appears as time evolution operator of the linearized
oscillator dynamics.

In the general case of equation (2.24) with identical intrinsic dynamics f and
couplings g, a similar equation is the result of linearization around a fixed point {x∗i }.
Writing xi(t) = x∗i + εi(t) and performing a Taylor expansion around the fixed point up
to linear order in the {εi(t)}, the linearized equation

dεi
dt

=
[
αi +

∑
j

βijAij

]
εi(t) +

∑
j

γijAijεj(t) (2.28)

is obtained. The constants αi, βij , γij are the first order derivatives of f and g at the
fixed point,

αi =
∂f

∂x

∣∣∣∣
x=x∗i

, βij =
∂g(u, v)

∂u

∣∣∣∣
u=x∗i ,v=x∗j

, γij =
∂g(u, v)

∂v

∣∣∣∣
u=x∗i ,v=x∗j

. (2.29)

The linearized equation (2.28) can be written in matrix form as

dε

dt
= T ε(t) , (2.30)

where ε(t) is the vector whose components are εi(t). The time evolution operator is the
matrix T with elements

Tij =
[
αi +

∑
l

βilAil

]
δij + γijAij . (2.31)

The equation can be solved by expanding ε(t) in terms of the right eigenvectors vr of T ,

ε(t) =
∑
r

cr(t)vr . (2.32)

Since Tvr = λrvr, equation (2.30) transforms into equations for the expansion
coefficients cr(t),

dcr
dt

= λrcr(t) , (2.33)

which can be solved easily by
cr(t) = cr(0) eλrt . (2.34)

By this, the eigenvectors {vr} and eigenvalues {λr} of the time evolution operator
completely determine the behavior of any linear (or linearized) dynamical system on
a network. Note how both, the rules of the dynamical process, as described by the
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functions f and g, and the network structure, in form of the adjacency matrix A,
are encoded in the matrix T and, thus, in its eigenvalues and eigenvectors. Following
the picture induced by equation (2.32), the resulting dynamics can be viewed as being
composed of different modes corresponding to the eigenvectors vr. For the stability of
such a dynamical system—or its fixed points, in the case of linearization—the signs of the
respective eigenvalues λr play a major role. Only if the real parts of all eigenvalues are
smaller or equal to zero the system—or the fixed point under consideration—is stable.
All modes corresponding to eigenvalues with negative real parts decay exponentially.
Only those which are zero or purely imaginary survive in the long-time limit, resulting
in a constant or oscillatory state.

Consider now the special case when the coupling has the form of a difference between
the values of a single function h of xi and xj individually, i.e., g(xi, xj) = h(xi)−h(xj). If
additionally the fixed point is symmetric, x∗i ≡ x∗, the matrix T can be further analyzed.
The constants defined in equation (2.29) now take the simpler form

αi → α =
∂f

∂x

∣∣∣∣
x=x∗

, βij → β =
∂h(x)

∂x

∣∣∣∣
x=x∗

, γij → γ = −β , (2.35)

such that the elements of the time evolution operator T read

Tij = (α+ βki)δij − βAij = αδij + β(kiδij −Aij) . (2.36)

Written in matrix form, equation (2.30) for this case becomes

dε

dt
= (αI + βL) ε(t) , (2.37)

where I is the identity matrix with elements Iij = δij . Again, the graph Laplacian L
appears as (essential part of the) time evolution operator in the linearized dynamics. As
in the case of the linearized oscillator dynamics, its eigenvalues determine the dynamical
behavior. In particular, the fixed point can be stable only if for all eigenvalues λr of the
graph Laplacian

α+ βλr ≤ 0 . (2.38)

Since λ1 = 0 is always a Laplacian eigenvalue and all eigenvalues are non-negative (this
will be derived in section 2.4 below), necessary conditions for the stability are α ≤ 0 and
λN ≤ −α/β with λN denoting the largest Laplacian eigenvalue.

2.3.1. Diffusion Dynamics, Random Walks, and Graph Laplacians

A particularly simple but generic class of dynamics is formed by diffusion processes. It
is simple because the mathematical formulation of diffusion on a network is as basic as
it could be. It is a linear process, there are no intrinsic dynamics, f(x) = 0, and the
coupling function is just the difference between the two variables, g(xi, xj) = xj − xi.
On the other hand, diffusion is rather generic because it is a paradigmatic model for all
kinds of spreading dynamics. Traditionally, diffusion in physics describes the movement
of a gas from regions with high concentration to regions with low concentration or
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along some gradient, for example in pressure or temperature. But also other types
of spreading dynamics are modeled as diffusion processes. The spread of infectious
diseases in a population, the transfer of information or fads from individual to individual
without a common broadcaster, the change of opinions in a society, and the exploration
of the World Wide Web by random searching are just some examples. Additionally,
diffusion forms a basis of more complicated dynamics such as reaction-diffusion processes
describing spatial aspects of chemical reactions (Burioni et al., 2012). In the context of
diffusion, the state variable xi(t) describes, for example, the amount of a substance at
vertex i. The substance will flow along the edges from vertices with a high value to
vertices with a lower value. Hence, xi(t) changes with time according to

dxi
dt

= c
∑
j∈V

Aij (xj(t)− xi(t)) . (2.39)

The constant c is a diffusion coefficient. Splitting the two terms in the sum as in
equation (2.26) yields

dxi
dt

= −c
∑
j

Lijxj(t) , (2.40)

or, in matrix notation,
dx

dt
+ cLx(t) = 0 . (2.41)

This equation has the form of a continuum diffusion equation with the Laplace
operator ∇2 replaced by −L which is the reason why it is called the graph Laplacian.

A possible microscopic picture of diffusion are random walks. On a network, consider
a particle that moves randomly along the edges from vertex to vertex in discrete steps.
The diffusion process is recovered from the random walk by either considering a number
of n→∞ random walkers and let xi(t) describe their density at vertex i or, equivalently,
let xi(t) simply be the probability of a random walker to be at vertex i at time t. On a
heterogeneous network, in which not all vertex degrees are the same, two types of random
walks have to be distinguished. The total rate of escape from a given vertex equals the
sum of the random walker’s jump rates across all incident edges. For a “completely
random” process either this total escape rate is set constant or the jump rate across
each individual edge is set constant, resulting in two slightly different processes. In
the latter case, the total escape rate from a vertex is proportional to the vertex degree
and the random walker will, on average, spend less waiting time at high-degree vertices
than at low-degree vertices. This describes the “diffusing substance” case where the
total capacity of flux out of or into a vertex is also proportional to its degree. The
time evolution is correctly described by equation (2.39). The first case corresponds to
a random walker in discrete time that has to jump to the next vertex at each time
step. Here, the jump rate across each edge is normalized by the degree of the vertex the
random walker is currently occupying, i.e., the rate to jump from vertex i to vertex j is
k−1
i . The corresponding diffusion equation thus reads

dxi
dt

= c
∑
j∈V

Aij

(
xj(t)

kj
− xi(t)

ki

)
. (2.42)
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As before, the sum on the right hand side can be split,

dxi
dt

= c
∑
j

Aij
xj(t)

kj
− cxi(t)

ki
ki

= c
∑
j

(
Aij
kj
− δij

)
xj(t) = −c

∑
j

L′ijxj(t) . (2.43)

In this case, the normalized Laplacian L′ is the time evolution operator of the diffusion
process which is obviously the reason why it is called the “random walk” normalized
Laplacian.

2.3.2. Directed Graph Laplacian

Up to this point, the mathematical descriptions of dynamical processes were formulated
for undirected networks. In most cases, the equations are straightforwardly generalized
to dynamics on directed networks. Some care has to be taken with placing the indices
of the adjacency matrix in the correct order. As noted before, here the convention is
used that the matrix element Aij stands for an edge from vertex i to vertex j, denoted
by i→ j, which is often found in the mathematical literature.

While the adjacency matrix for directed networks is completely defined by this
convention, for the graph Laplacian it is not obvious which numbers have to be put on
the diagonal replacing the vertex degrees. Plausible alternatives could be the in-degrees,
the out-degrees, or the sum or average of both, depending on what is to be described.
In order to find the correct choice here, consider a diffusion process as formulated in
equation (2.39). As before, let xi(t) be the amount of a diffusing substance at vertex i.
The flux of the substance along an edge i → j shall be proportional to xi(t). (If the
oppositely directed edge j → i is also present this results a net flux proportional to the
difference xi(t) − xj(t) as in the undirected case.) Then, xi(t) increases at rate cxj(t)
for each incoming edge j → i and decreases at rate cxi(t) for each outgoing edge i→ j.
The resulting coupled differential equations read

dxi
dt

=
∑
j∈V

Ajicxj(t)−
∑
j∈V

Aijcxi(t) = c
∑
j

Ajixj(t)− ckout
i xi(t)

= c
∑
j

(
Aji − δjikout

j

)
xj(t) = −c

∑
j

Lout
ji xj(t) (2.44)

where kout
i =

∑
j Aij denotes the out-degree of vertex i and

Lout
ji = kout

j δji −Aji (2.45)

are the elements of the out-degree Laplacian Lout. To express this in matrix notation,
it is most convenient to consider vectors as row matrices. Then, the action of a matrix
operator on a vector is calculated by the multiplication of the row vector from the left
to the matrix, just as the sum in the last term of equation (2.44) suggests. In matrix
form, the equation for directed diffusion thus reads

dx

dt
= −cx(t)Lout . (2.46)
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Concluding, in the setting of diffusion-like dynamical processes with the flux along
edges being proportional to the state variable of the source vertex the out-degree
Laplacian is the correct generalization of the graph Laplacian as time-evolution operator
on directed networks.

2.3.3. Spectral and Other Dimensions

There are different ways to characterize the overall behavior of diffusion or random
walks. Let Pij(t) denote the probability that a random walker starting from vertex i is
at vertex j after t time steps. If rij denotes the (Euclidean) distance between vertices i
and j then

R2(t) =
〈
R2
i (t)
〉

=

〈∑
j

r2
ijPij(t)

〉
(2.47)

is the mean-square displacement averaged over all starting vertices i. It characterizes the
average spread of a diffusive process. Many networks are not naturally embedded in any
Euclidean space. Not only in such a case but generally the displacement of a random
walker can be measured in terms of the chemical distance `ij between two vertices i and
j,

L2(t) =
〈
L2
i (t)
〉

=

〈∑
j

`2ijPij(t)

〉
. (2.48)

A second measure is the probability Pii(t) that a random walker returns to its origin
exactly at time t. The average return probability is defined as

P0(t) = 〈Pii(t)〉 (2.49)

and also called random walk autocorrelation function. A slightly different measure is
the probability that a random walker has returned up to time t. To characterize this
property, often the number of distinct sites visited after time t by a random walker
starting from vertex i, denoted by Si(t), or its average S(t) = 〈Si(t)〉 is used. On a finite
network, there is always a finite probability for the random walker to visit any site (of
the connected component it started in). So, in the limit of t → ∞ the random walker
will have returned to its starting vertex at some point in time with probability one. On
an infinite network, this probability can be less than one and the random walk is called
transient. Otherwise, it is recurrent.

The behavior of random walks on various types of lattices as well as deterministic
and random structures has been studied extensively (ben-Avraham and Havlin, 2000).
On regular lattices, many properties are independent of the specific lattice structure
but depend only on the spatial dimension d. In an infinite lattice for t → ∞ many
quantities exhibit power-law dependencies with exponents that are independent of the
local structures. The asymptotic behavior of the return probability and the number of
visited sites are

P0(t) ∼ t−d/2 (2.50)
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and
S(t) ∼ tmin(1,d/2) (for d 6= 2), (2.51)

respectively. The mean-square displacement is even independent of d,

R2(t) ∼ t . (2.52)

In disordered systems, this is not necessarily the case which led to the introduction
of generalized dimensions. The fractal dimension df is not related to dynamics. As
generalization of the spatial dimension it describes the scaling of the mass M of an
object, i.e. the number of sites, with its linear extension l,

M(l) ∼ ldf . (2.53)

The random walk dimension dw is introduced to generalize the scaling of the mean-square
displacement in equation (2.52),

R2(t) ∼ t2/dw . (2.54)

The spectral dimension ds generalizes the scaling of the return probability in
equation (2.50),

P0(t) ∼ t−ds/2 , (2.55)

and also describes the scaling of the number of visited sites in equation (2.51),

S(t) ∼ tmin(1,ds/2) (for ds 6= 2). (2.56)

The three fractal dimensions are not independent but related (Havlin and ben-Avraham,
2002) by

ds =
2df

dw
, (2.57)

which agrees with the scaling behavior in regular d-dimensional lattices where they take
the values df = d, dw = 2, and ds = d.

The property of recurrence can be related to the spectral dimension by simply
integrating equation (2.55). The integral∫ ∞

t0

P0(t)dt ∼
∫ ∞
t0

t−ds/2dt (2.58)

diverges for ds < 2 and, hence, the random walk is recurrent. For ds > 2 the integral
remains finite and the random walk is transient. For the marginal case ds = 2, the
integral diverges logarithmically but sub-leading corrections to the power law may
influence the random walk behavior (Burioni and Cassi, 2005).

As introduced above, all the scaling relations can also be set up in terms of the chemical
distance instead of the Euclidean metric. The fractal dimension df and the random walk
dimension dw are then replaced by the connectivity dimension or fractal dimension in

chemical space d` and the random walk dimension in chemical space d
(`)
w , respectively,

M(`) ∼ `d` , L2(t) ∼ t2/d
(`)
w . (2.59)

40



2.4. The Spectrum of the Graph Laplacian

Since equation (2.57) is analogously valid, the spectral dimension in chemical space is
the same as in Euclidean space (ben-Avraham and Havlin, 2000),

ds =
2df

dw
=

2d`

d
(`)
w

. (2.60)

Due to this property, the spectral dimension is the most convenient out of the three
generalized dimensions to characterize networks that are not naturally embedded in
some Euclidean space.

2.4. The Spectrum of the Graph Laplacian

The graph Laplacian was introduced in section 2.3 as time evolution operator of
an important class of dynamical processes on networks. Its eigenvalue spectrum
completely determines the dynamical behavior of such processes in terms of the Laplacian
eigenvectors. But the Laplacian spectrum also encodes important structural properties
of a network. It is, besides the spectrum of the adjacency matrix, the second central
mathematical object studied in spectral graph theory (Chung, 1997). Much work has
been dedicated to the understanding of its properties and its relations to the network
structure.

First, recall equation (2.7) stating that the graph Laplacian can be written as matrix
product between the incidence matrix and its transpose, L = BBT. Let λi be an
eigenvalue of L with corresponding normalized eigenvector vi, Lvi = λivi. Then,

λi = vT
i (λivi) = vT

i (Lvi) = vT
i (BBTvi) = (vT

i B)(BTvi) = (BTvi)
T(BTvi) , (2.61)

which is nothing but the inner product of the real vector BTvi with itself. Hence, all
eigenvalues of the graph Laplacian are non-negative,

λi ≥ 0 . (2.62)

Since all row sums in the graph Laplacian are zero the constant vector 1 = (1, 1, . . . , 1) is
a Laplacian eigenvector with corresponding eigenvalue 0. So, the zero is always present
in the Laplacian spectrum and the eigenvalues are usually numbered in ascending order,

0 = λ1 ≤ λ2 ≤ · · · ≤ λN . (2.63)

Some additional intuitively understandable as well as more involved properties are well
known and proven (Mohar, 1997). The multiplicity of zero as an eigenvalue is equal to
the number of connected components in the network. The second smallest eigenvalue λ2

is referred to as the algebraic connectivity. λ2 is non-zero if and only if the network
consists of a single connected component and its magnitude is a measure for “how well”
the network is connected. The smaller λ2 the easier it is to disconnect some part of the
network by the removal of edges. λ2 is bounded from above by

λ2 ≤
N

N − 1
kmin (2.64)
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where kmin is the minimum degree in the network. The largest Laplacian eigenvalue λN
can be estimated by the maximum degree kmax,

N

N − 1
kmax ≤ λN ≤ 2kmax . (2.65)

The eigenvalue spectra of the normalized Laplacians L′ and L′′ are the same but
different from the spectrum of L (Samukhin et al., 2008). Nevertheless, the two different
spectra share a number of properties. The eigenvalues {λ′i} of the normalized Laplacian
are also positive but bounded from above by 2. The smallest eigenvalue λ′1 is always
zero, hence, 0 = λ′1 ≤ λ′2 ≤ · · · ≤ λ′N ≤ 2. Also in this case, the multiplicity of the zero
eigenvalue equals the number of connected components in the network and the second
smallest eigenvalue λ′2 is called the algebraic connectivity—although it is, of course,
different from λ2. These are the most simple out of a large number of mathematical
properties of the spectrum of the normalized Laplacian (Chung, 1997).

The Laplacian spectrum of a finite network is a set of N numbers. For a more easily
tractable description and to make the spectra of different networks straightforwardly
comparable it is better represented as a function. A natural choice for such a function
is the eigenvalue density

ρ(λ) =
1

N

N∑
i=1

δ(λ− λi) , (2.66)

where δ(·) denotes the Dirac delta function. For a finite network, δ(·) is usually replaced
by smoothing kernel, for example a Gaussian distribution with finite width, in order to
obtain a real-valued function which can be plotted and analyzed. By this, the spectra
of individual realizations of finite networks can be compared among each other but
also with infinite networks and network ensembles. Such spectral plots were used to
characterize different classes of empirical networks and network models (Banerjee and
Jost, 2008, 2009). The problem of smoothing can be avoided by working with the
integrated eigenvalue density I(λ) instead,

I(λ) =

∫
dλ ρ(λ) =

1

N

N∑
i=1

Θ(λ− λi) , (2.67)

where Θ(·) denotes the Heaviside step function, Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for
x < 0. For a finite network, I(λ) is a step function with discrete steps of size 1/N at
each eigenvalue.

The spectrum of the graph Laplacian provides a second way to define the spectral
dimension of a network by its asymptotic behavior for small λ. This is, obviously, the
reason why the quantity is called “spectral”. For an infinite network, the definition of
the “vibrational” spectral dimension is given by the relation

I(λ) ∼ λds/2 for λ→ 0 . (2.68)

This definition of the spectral dimension is referred to as “vibrational” because it relates
to the density of vibrational modes in a network of particles connected by harmonic
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springs (ben-Avraham and Havlin, 2000). It is independent of the choice of the Laplacian
or the normalized Laplacian,

ds

2
= lim

λ→0

log(I(λ))

log(λ)
= 1 + lim

λ→0

log(ρ(λ))

log(λ)
= 1 + lim

λ′→0

log(ρ(λ′))
log(λ′)

, (2.69)

and equal to the “random walk” spectral dimension defined in equation (2.55) for the
“physical graphs” (Burioni and Cassi, 2005) as introduced in section 2.2. The average
return probability is then related to the spectral density by a Laplace transform,

P0(t) =

∫ ∞
0

dλe−λtρ(λ) . (2.70)

A derivation of this relation can be found in Samukhin et al. (2008) and Barrat et al.
(2008, appendix 5).

All real systems are of course finite. But a system might be large enough to be
successfully described by an infinite model system. This is the case when the bulk
properties dominate over the boundary properties, i.e., in the case of dynamics, the
process does not reach the boundary. The long time limit in such a finite system actually
refers to the period after the transient behavior—determined by the initial conditions
and local structures—has ceased but before the process experiences the finite size. The
“asymptotic” power-law scalings in time are then observed at these intermediate times.
The simplest way to achieve such a situation is to have a power law at all times. Such a
power law in the average return probability is generated by a power law in the spectral
density. Assume

ρ(λ) ∝ λds/2−1 , (2.71)

then the average return probability can be calculated easily using equation (2.70) and
the definition of the gamma function,

Γ(x) =

∫ ∞
0

e−yyx−1dy
[y=λt]

= tx
∫ ∞

0
e−λtλx−1dλ , (2.72)

to be

P0(t) ∝
∫ ∞

0
dλe−λtλds/2−1 = Γ (ds/2) t−ds/2 ∝ t−ds/2 . (2.73)

By these relations the Laplacian spectrum in general and in particular the spectral
dimension build an important bridge between the structure and dynamics, in this case
diffusion processes, on networks.

As the graph Laplacian appears as time-evolution operator in other dynamical
processes as well, its spectrum and eigenvectors can also be useful for the characterization
of their dynamical behavior. In oscillator dynamics, the overall synchronizability of a
network was found to be determined by the ratio of the smallest (non-zero) eigenvalue to
the largest eigenvalue λ2/λN , the so-called Laplacian eigenratio. Due to the boundedness
of λN , see equation (2.65), it was also argued that already λ2 alone is the major factor
for the synchronizability of an oscillator network (Arenas et al., 2008). Historically, the
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first definition of a spectral dimension was the “vibrational” spectral dimension defined
in equation (2.69). The model system is a network of particles connected by harmonic
springs. Such systems can be viewed as generalization of a bead-and-spring polymer
model which is why they are called generalized Gaussian structures (Gurtovenko and
Blumen, 2005). The density of vibrational modes with frequency ω is directly related to
the Laplacian spectral density by ρ(λ)dλ = ρ(ω)dω with λ = ω2. Thus, if ρ(λ) ∝ λds/2−1

then ρ(ω) ∝ ωds−1 (ben-Avraham and Havlin, 2000).
In the following chapters of this thesis, the argumentation will be focused on diffusion

as basic dynamical process. One should, however, keep in mind the much more general
importance of the Laplacian spectrum in network dynamics.
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This chapter describes how the strategy of evolutionary optimization can be applied to
construct networks with a non-trivial anomalous diffusion behavior. The key idea is to
start from any valid network configuration and, by successive steps of local changes in
the structure, approach networks with a prescribed value of the spectral dimension. For
this, a “spectral distance” function has to be defined measuring how far a given network
configuration is away from the target spectral dimension ds defined by the power law

I(λ) ∝ λds/2 (3.1)

in the integrated spectral density. Then, this distance function is minimized by the
evolutionary optimization (Karalus and Porto, 2012).

3.1. Anomalous Diffusion

The overall behavior of diffusion or random walk dynamics is characterized by the
asymptotic power laws as in equations (2.54) and (2.55). In regular lattices the power-law
exponents are determined by the spatial dimension d of the lattice only. This behavior
is called normal diffusion. The random walk dimension of normal diffusion is dw = 2
and the spectral dimension is ds = d such that equations (2.50) and (2.52) are recovered.
Otherwise, one speaks of anomalous diffusion. If dw < 2 the mean square displacement
increases faster than normal and the process is called superdiffusive. For dw > 2, the
average spreading is slower than normal which is referred to as subdiffusion. In terms of
the spectral dimension, all non-integer values of ds describe anomalous diffusion behavior.
In this work, the focus lies on the construction of networks which exhibit anomalous
diffusion in the sense of a non-trivial value of the spectral dimension.

The occurrence of anomalous diffusion can have various causes. A possible source
of anomalous behavior is the dynamical process itself. In the case of Lévy flights the
jump lengths of a random walk in continuous space are drawn from a heavy-tailed
distribution resulting in a superdiffusive spreading. In continuous-time random walks,
on the other hand, random waiting times between between two jumps are drawn. A
broad distribution of waiting times leads to subdiffusive behavior. A second possible
reason for anomalous diffusion is the underlying structure on which the diffusion
takes place. In disordered or irregular structures like fractals subdiffusion is a very
well-studied phenomenon (Havlin and ben-Avraham, 2002). The different generalized
dimensions of many fractal structures have been determined by analytical or numerical
methods. Networks provide the most general description of discrete substrates for
diffusion processes comprising regular lattices, deterministic and random fractals, and
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completely disordered structures which not necessarily need to be embedded in any
space.

Although the anomalous diffusion properties of many discrete structures have been
studied extensively, there is no constructive method available to form networks with a
prescribed diffusion behavior. Since each variation in the network structure possibly
affects the whole spectrum of the graph Laplacian there is no way to predict the
Laplacian eigenvalues of a network, and thus its spectral dimension, from its constituent
subnetworks. So, it is in general not possible to build up networks with a prescribed value
of the spectral dimension from smaller building blocks with known Laplacian spectra.
Other methods have to be applied to find networks with the desired anomalous diffusion
behavior.

3.2. Evolutionary / Monte Carlo Optimization

A rather generally applicable strategy for a complex optimization problem—especially
if no constructive method is available—is to explore the space of valid configurations
by successive steps of (local) modifications towards overall improvements. This method
can, of course, be applied to the optimization of networks with respect to their spectral
dimension.

The strategy of optimization by successive improvements is a basic principle of
biological evolution. In a simplified picture, evolution optimizes the viability of living
organisms by modifications in the genetic information from one generation to the next
and selection for the fitter individuals or groups. In the language of evolution, the
optimization consists of two steps, mutation and selection. A mutation is a (local)
change in the current state of the system. A fitness function measures how well a state
of the system performs with respect to the optimization goal. It is a mapping from the
state space into the real numbers. The second step is selection which decides, based on
the fitness values of the different mutants, which one spreads and possibly takes over the
population. In this picture, evolutionary optimization means finding states of maximal
fitness by successive steps of mutation and selection.

The method of sequential sampling of a previously unknown configuration space is
also the principle of Monte Carlo (MC) simulations in statistical physics (Newman
and Barkema, 1999). At each MC time step an update of the current state of the
system by a (local) modification is proposed. An acceptance function decides whether
the proposed update is accepted as new state or discarded. The acceptance is based
on the energy of the two states and possibly additional parameters like temperature.
Usually the subspace sampled by MC simulations represents the Boltzmann distribution
or some other ensemble grounded on basic physical laws. The seminal algorithm
by Metropolis et al. (1953) sampling the Boltzmann distribution at a fixed temperature
forms the basis of essentially all modern MC methods. In the Metropolis algorithm
the acceptance probability equals the maximum value satisfying the detailed balance
condition. Grounding on this sampling strategy very efficient optimization algorithms
were developed. An example is simulated annealing (Kirkpatrick et al., 1983) in which
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the idea is to lower the temperature in the course of a standard Metropolis MC simulation
in order to drive the system towards states of lower energy while giving it enough
time at higher temperatures to escape from local minima. Other algorithms like taboo
search (Cvijović and Klinowski, 1995) or energy landscape paving (Hansmann and Wille,
2002) introduce additional weights to lead the simulation away from previously sampled
states into “unexplored” regions.

Evolutionary optimization of network structure has been successfully applied in
various contexts such as:

• The emergence of critical connectivity in networks of Boolean threshold dynamics
(Bornholdt and Rohlf, 2000).

• The evolution of reliability in such networks (Braunewell and Bornholdt, 2008).

• The effect of degree distributions in the evolution of Boolean threshold networks
towards predefined output functions (Greenbury et al., 2010; Oikonomou and
Cluzel, 2006).

• The emergence of heterogeneous structures in local majority dynamics (Shao and
Zhou, 2009).

• The optimization of Boolean networks with respect to their stability as well their
ability to switch between different attractors (Szejka and Drossel, 2010).

• The emergence of modularity and network motifs in changing environments
(Kashtan and Alon, 2005).

• The emergence of complex network structures in evolutionary food webs (Allhoff
et al., 2015).

• The synchronizability of networks with explicit calculation of the synchronization
dynamics (Gorochowski et al., 2010).

• The optimization of the Laplacian eigenratio λN/λ2 as measure for the synchro-
nizability (Donetti et al., 2005, 2006, 2008; Rad et al., 2008).

• The reconstruction of networks from their Laplacian spectra (Comellas and Diaz-
Lopez, 2008; Ipsen and Mikhailov, 2002).

The most simple optimization strategy is to accept only modifications improving
the current state of the system. In the language of evolution this means that only
beneficial mutations are selected. The resulting evolutionary process is an adaptive
walk in the configuration space. In the context of biological evolution adaptive walks
occur in the regime of strong selection and weak mutations (Orr, 2002). In this regime,
mutations happen rarely such that at any time only single mutations are present in a
population and selection is so strong that, with a certain probability, the fitter mutant
takes over the whole population before the next mutation occurs. In biological evolution,
the choice of the transition probability distinguishes different types of adaptive walks.
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The algorithm used here corresponds to the random adaptive walk in which any fitter
mutant always becomes prevalent, independently of the fitness difference. From the
viewpoint of MC simulation the optimization strategy simply corresponds to a simulation
at zero temperature. In this case only updates lowering the energy are accepted. As
an optimization algorithm, the viability of such a strategy will strongly depend on the
difficulty of the optimization problem. On a “rugged landscape”, a fitness or energy
function with many local minima and maxima, this simple algorithm will very likely not
find the global optimum but get trapped in a local fitness maximum or energy minimum.
However, if the fitness or energy function has a simple form, e.g., a funnel-like shape,
it can be a very efficient method since it is easy to implement and computationally less
costly than more advanced algorithms. Since the shape of the function to be optimized
is unknown in advance there is no way to decide a priori which is the best optimization
method. So, it is usually a good strategy to start with the simplest algorithm and
introduce more advanced techniques if needed.

Here, the simple adaptive walk strategy is combined with the most simple mutation
rule sampling the space of connected networks with fixed numbers of vertices N and
edges M . Namely, at each evolutionary time step a randomly chosen edge is removed
from the network and reintroduced between two previously unconnected random vertices.
This results in a minimal change in the adjacency and, hence, in the Laplacian matrix. As
a consequence, one expects a minimal change in the Laplacian eigenvalues as well. There
is, however, no guarantee for how small the resulting change in the spectrum actually
is. If the mutated network does not consist of a single connected component, the edge
is put back in its place and the whole procedure is repeated. The mutated network is
selected as new state if its spectral distance is lower than the spectral distance of the
previous state, i.e., if its integrated spectral density better resembles the power law in
equation (3.1).

3.3. Quantification of Spectral Distance

In order to apply any optimization method a function is needed measuring how different
a given (integrated) spectral density is from the target power law in equation (3.1).
Such a mapping from the space of valid network configurations into the real numbers is
called spectral distance measure and corresponds to the energy in a MC simulation or
the negative fitness in an evolutionary context.

For the general problem of quantifying the similarity between two Laplacian spectra
several distance functions were proposed. Jurman et al. (2011) analyze six different
spectral distances, labeled D1 to D6. For two graphs G and H with Laplacian spectra

{λ(G)
1 ≤ . . . ≤ λ

(G)
N } and {λ(H)

1 ≤ . . . ≤ λ
(H)
N }, respectively, and corresponding spectral

densities ρG(λ) and ρH(λ) they are defined as follows.
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3.3. Quantification of Spectral Distance

D1: The symmetrically normalized sum of squared differences between the ordered
eigenvalues,

D(1)(G,H) =
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(3.2)

D2: Let ωi =
√
λi be the eigenfrequencies of the network of harmonic springs and ρ̃(ω)

the corresponding eigenvalue densities. For the calculation, ρ̃(ω) is approximated
by a sum of Lorentz distributions, ρ̃(ω) = K

∑
i γ/[(ω − ωi)2 + γ2], with width γ

and normalization K. Then,

D(2)(G,H) =

√∫
[ρ̃G(ω)− ρ̃H(ω)]2 dω . (3.3)

D3: The square root of the summed squared differences between the ordered
eigenvalues,

D(3)(G,H) =

√∑
i

(
λ

(G)
i − λ(H)

i

)2
. (3.4)

D4: The same as D3 without taking the square root,

D(4)(G,H) =
∑
i

(
λ

(G)
i − λ(H)

i

)2
. (3.5)

D5: Integration over the difference between the spectral densities raised to the pth
power. Additionally, a weight function µ(λ) is introduced,

D(5)(G,H) =

∫
µ(λ) [ρG(λ)− ρH(λ)]p dλ . (3.6)

For the computations, a binning into K equally spaced bins and a weight function
µ(λ) = (1− λ)4 is suggested.

D6: Uses the Jensen-Shannon measure

JS[p1, p2] =
1

2
KL

[
p1,

p1 + p2

2

]
+

1

2
KL

[
p2,

p1 + p2

2

]
(3.7)

which is a symmetrization of the Kullback-Leibler divergence

KL[p1, p2] =

∫
p1(x) log

p1(x)

p2(x)
dx (3.8)
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3. Network Evolution

as measure for the difference between two (probability) distributions. The spectral
distance is then defined as the square root of the Jensen-Shannon measure,

D(6)(G,H) =
√

JS(ρG, ρH) . (3.9)

For the computations, a Gaussian kernel is used, i.e., the densities are
approximated as sum of Gaussian distributions, ρ(λ) = 1/

√
2πσ

∑
i exp(−(λ −

λi)
2/2σ2), with a finite width σ.

Some of these measures where originally suggested as distances between spectra of the
normalized Laplacian. The integration ranges in D2, D5, and D6 can be restricted to
[0, 2] in this case and [0,∞) for the algebraic Laplacian. Only the binning suggested
for the approximate calculation of D5 can exclusively be carried out on a finite interval
and is, hence, restricted to the normalized Laplacian. However, other approximations
to calculate D(5) like a Gaussian or Lorentzian kernel as suggested for D2 and D6 can
be used here as well.

The six spectral distances mentioned above obviously share some common ideas.
D1, D3, and D4 are based on the summation of differences between the eigenvalues
in ascending order. They differ only in the rescaling of the total range. D2 and D5
are based on an integration over the difference in spectral densities while D6 builds
on the Kullback-Leibler divergence as an established “distance function” between two
probability distributions. All six measures have their particular (dis)advantageous
properties. For example, consider two spectra which are identical up to a removal of
the largest and introduction of an additional small eigenvalue. D1, D3, and D4 will
estimate a large distance between these spectra since always eigenvalues of the same
rank in the spectrum, and not of similar size, are compared. D2 and D5 will produce a
much smaller distance in this case since only two peaks in the densities will contribute to
the integrals. For explicit calculations of D2, D5, and D6 between realizations of finite
networks approximations like the use of a kernel function are needed. By means of D1,
D3, and D4 it is not possible to compare a specific realization of a finite network with an
ensemble or some other theoretical spectral density. Jurman et al. (2011) compared the
spectral distances D1 to D6 in several benchmark tests. They do, however, not achieve
to construct a clear picture of which one is, in general, better or worse suited.

For the purpose of the evolutionary optimization in this thesis a different spectral
distance will be used. Like D2 and D5 it is based on an integration over the difference
between the spectral densities. Instead of the spectral density function ρ(λ) itself
the integrated spectral density I(λ) is used here. This has the advantage that no
approximation—for example by means of a Gaussian or Lorentzian kernel as suggested
in D2, D6—is needed for the comparison of specific finite networks. Additionally,
it is straightforward to compare the Laplacian spectrum of a specific network with
any theoretical, and not necessarily realizable, spectral function. In this work, the
evolutionary targets are spectral densities that follow a power law as in equation (3.1).
It is therefore convenient to work on logarithmic scales and introduce a logarithmically
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3.3. Quantification of Spectral Distance

integrated spectral density. To this end, first the Laplacian eigenvalues are rescaled by
their maximum value,

λ̃i =
λi

maxj{λj}
. (3.10)

This results in a rescaled spectrum between 0 and 1, 0 = λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃N = 1, so
that the integration can be restricted to a finite interval. The logarithmically integrated
spectral density is then defined as a step function, similar to equation (2.67), on double-
logarithmic scale,

Ĩ(log λ̃) = log

[
1

N

N∑
i=1

Θ(log λ̃− log λ̃i)

]
. (3.11)

The spectral distance D here is considered to be a function of two logarithmically
integrated spectral densities Ĩ and Ĩ ′,

D(Ĩ , Ĩ ′) =

∫ 0

log λ̃∗min

∣∣∣Ĩ(log λ̃)− Ĩ ′(log λ̃)
∣∣∣2 d(log λ̃) . (3.12)

The lower integration boundary log λ̃∗min has to be chosen carefully. Since λ̃1 = 0, log λ̃1

is not defined. For any connected network λ2 is the smallest non-zero eigenvalue and
Ĩ(log λ̃) = log(N−1) for log λ̃ < log λ̃2. In the case of Ĩ and Ĩ ′ being the logarithmically
integrated spectral densities of two connected networks of the same size, both functions
will have the same value in that range. Thus, the lower integration boundary log λ̃∗min

can be chosen as the minimum of the two second eigenvalues, λ̃∗min = min{λ̃2, λ̃
′
2}, where

the two functions become different. For comparison of a given connected network with a
general target function Ĩtarget by D(Ĩ , Ĩtarget), the lower integration boundary is chosen
such that Ĩtarget(log λ̃) < log(N−1) for log λ̃ < log λ̃∗min and Ĩtarget(log λ̃) ≥ log(N−1)
for log λ̃ ≥ log λ̃∗min. Note that Ĩtarget should be monotonically increasing but is not
necessarily continuous. If Ĩtarget is continuous, then Ĩtarget(λ̃∗min) = log(N−1). For the
power-law integrated spectral density (3.1) the target logarithmically integrated spectral
density reads

Ĩtarget(log λ̃) =
ds

2
log λ̃ (3.13)

and the resulting lower integration boundary is

log λ̃∗min = − 2

ds
logN . (3.14)

Compared to an integration on linear scales, the defined spectral distance introduces
an effective weight function λ̃−1 enhancing the importance of the smaller eigenvalues.
This, on the one hand, accounts for the fact that in the target density I(λ) ∝ λds/2 the
eigenvalues are not equally distributed but actually more dense in the lower part of the
spectrum. On the other hand, in the limit N → ∞ the spectral dimension is defined
by the limit λ→ 0 so that the correct scaling in the regime of small eigenvalues can be
considered as more important.
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3. Network Evolution

Figure 3.1. Network topology of the finite Sierpinski triangle of generation 6.

3.4. Application to Anomalous Diffusion in Networks

The stage is now set for the evolutionary optimization of networks towards a power law
in the spectral density with a prescribed non-trivial spectral dimension. The evolution
target is the logarithmically integrated spectral density defined by equation (3.13) with

two exemplary values d
(1)
s = 1.4 and d

(2)
s = 1.1. Being non-integer values, both are non-

trivial in the sense that it is assured that no regular lattices exist with these values of the

spectral dimension. The first target d
(1)
s = 1.4 is chosen close to the spectral dimension

of a well-studied deterministic fractal, the Sierpinski triangle, which takes the value
ds = 2 log(3)/ log(5) ≈ 1.365 (ben-Avraham and Havlin, 2000). The finite Sierpinski
triangle network of generation 6, shown in figure 3.1, has N = 366 vertices and M = 729
edges. So, choosing a network size in the same order of magnitude, it can be expected

that the construction of a network with a spectral dimension around d
(1)
s = 1.4 is not

an impossible task. The second evolutionary target d
(2)
s = 1.1 is more demanding in the

sense that this number is already close to 1 and the given numbers of edges and vertices
will definitely not fit to form a 1-dimensional lattice (chain). Thus, configurations with
ds = 1.1 can be expected to be more difficult to achieve than those with ds = 1.4. The
spectral distance from these evolution targets is calculated by D(Ĩ , Ĩtarget) as defined in
equation (3.12). It is minimized by an adaptive walk in the space of connected networks
with fixed numbers of vertices N and edges M . In each evolutionary time step one edge
of the network is randomly moved. A move is accepted if it lowers the spectral distance.

In order to evaluate to what extent the outcome depends on the starting conditions two
kinds of initial configurations are chosen, i) 2-dimensional square lattices with periodic
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Figure 3.2. Change of spectral distance D(Ĩ , Ĩtarget) with evolutionary time steps n

for target spectral dimensions (a) d
(1)
s = 1.4 (solid lines) and (b) d

(2)
s = 1.1 (dashed

lines). The lines display the mean spectral distance of 100 realizations and the error bars
mark one standard deviation of the respective distribution. The initial configurations
are indicated by the colors, red for random graphs G(N,M) and blue for 2d square
lattices. In the insets, the mean distances are shown on a linear scale for small number
of evolutionary time steps.

boundary conditions and ii) connected random graphs G(N,M). In both cases the same
numbers of vertices and edges are chosen,

N = 19× 19 = 361 ,

M = 2N = 722 ,

yielding an average degree of 〈k〉 = 4. Each evolution is carried out for 106 evolution
steps and repeated with different random numbers for 100 independent realizations. In
the following, the outcome of this optimization procedure is discussed.

The first question is whether the evolutionary algorithm was appropriately chosen
and succeeds to find network configurations with a minimal spectral distance to the
target eigenvalue density. To this end, figure 3.2 shows the evolution of the spectral
distance in the course of the evolutionary time. For both target spectral dimensions,

(a) d
(1)
s = 1.4 in the upper panel and (b) d

(2)
s = 1.1 in the lower panel, a significant drop

in the spectral distance during the first 2000 evolution steps followed by a slow further
decay can be observed. After around 104 evolution steps the variation between the
individual realizations and also the difference between the two initial conditions vanish.
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3. Network Evolution

Target spectral Inital Spectral distances Factor
dimension configuration Dini Dfin Dini/Dfin

d
(1)
s = 1.4 lattice 1.3(0) 0.0046(3) 280

random 1.5(2) 0.0047(5) 320

d
(2)
s = 1.1 lattice 2.9(0) 0.0077(6) 380

random 3.0(2) 0.0077(6) 390

Table 3.1. Spectral distances Dini before and Dfin after the evolutionary optimization.
The values in parentheses indicate the standard deviations of the respective distributions.

This is a strong indication that the spectral distance “landscape” has a rather simple
form and most of the evolution runs end up in the same region of the configuration space.
The exact figures of the initial and final spectral distances Dini and Dfin, respectively, are
given in table 3.1. The relative improvement factor Dini/Dfin indicates that the evolution
succeeds to lower the spectral distance by approximately a factor of 300, more then two
orders of magnitude.

The absolute figures of the spectral distance are not easy to interpret. There is no
scale involved telling which values of D can be considered as small or large in absolute
numbers. Hence, the question to what extent the evolutionary optimization succeeds to
construct networks with the prescribed spectral dimension cannot be answered just by
the absolute values of the spectral distance. A power law in the spectral density, i.e., a
linear relation in the logarithmically integrated spectral density Ĩ(log λ̃), however, should
be easily recognizable by visual inspection. Figure 3.3 shows typical logarithmically
integrated spectral densities of the initial and evolved networks after 106 evolution steps.
While among the initial networks the logarithmically integrated spectral density of the
square lattice might exhibit a linear region, the spectra of the random graphs clearly
do not follow any power law.1 The spectra of the evolved networks, however, follow the
respective target functions, Ĩtarget(log λ̃) = ds/2 log λ̃, very closely. Only for the larger

eigenvalues a systematic deviation above the target function, especially for d
(2)
s = 1.1,

can be observed. Of course, also the discretization due to the immanent finite step size
in the integrated densities leads to a deviation from the linear target function.

How do these spectra translate into the dynamical behavior of diffusion? The average
return probability of a random walker P0(t) is related to the eigenvalue density by
equation (2.70). For a discrete spectrum {λ1, . . . , λN}, this yields a simple relation to
calculate P0(t) from Laplacian eigenvalues,

P0(t) =

∫ ∞
0

e−λtρ(λ) dλ =
1

N

N∑
i=1

∫ ∞
0

e−λtδ(λ− λi) dλ =
1

N

N∑
i=1

e−λit . (3.15)

The average return probability for the initial as well as for the evolved networks is shown
in figure 3.4. The lines are averaged over 100 realizations with the respective standard

1Although not explicitly derived, the spectral density of Erdős-Rényi random networks should follow
a semi-circle law. An exact expression is available only implicitly via the solution of a nonlinear
integral equation (Bray and Rodgers, 1988).
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Figure 3.3. Logarithmically integrated eigenvalue densities Ĩ(log λ̃) of individual
realizations before and after the evolutionary optimization. The initial configurations
are (a) 2d square lattices (light blue line) and (b) connected random graphs G(N,M)
(light red lines). The spectra of the corresponding evolved networks are shown in the

same panels in dark colors. The target spectral dimensions are d
(1)
s = 1.4 (solid lines)

and d
(2)
s = 1.1 (dashed lines). The black dotted lines show the two target logarithmically

integrated densities Ĩtarget(log λ̃) = ds/2 log λ̃ with annotated slopes.

deviations indicated by the error bars. For the evolved networks, P0(t) indeed follows

the expected power law P0(t) ∝ t−ds/2 with d
(1)
s = 1.4 and d

(2)
s = 1.1, respectively,

up to around 102 to 103 time steps. Also the square lattice exhibits this behavior

with the expected spectral dimension of normal diffusion in 2 dimensions, d
(n)
s = 2.

As indicated by the standard deviation, the dynamical variation between the individual
realizations is rather small. Hence, the return probability in the evolved networks follows
the prescribed power law very closely—not only on the level of averages but also for the
individual realizations.

Having seen that the evolutionary optimization succeeds to minimize the defined
spectral distance and that the resulting networks indeed exhibit the prescribed eigenvalue
scaling and dynamical behavior, the subsequent question is what the structural
properties of the evolved networks are. The size and the average degree of the networks
are kept fixed, so the first property to look at shall be the distribution of vertex degrees.
Figure 3.5 displays the degree distributions P (k) of the two initial and the corresponding
evolved networks for both target spectral dimensions. Despite the large dissimilarity
between the initial configurations, a delta distribution for the square lattice and a Poisson
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Figure 3.4. Average return probability P0(t) for initial and evolved networks. The lines
display the mean P0(t) averaged over 100 realizations each with the error bars indicating
one standard deviation. Shown are curves for random graphs G(N,M) (red), 2d square

lattices (blue), and evolved networks for the two evolution targets, d
(1)
s = 1.4 (solid

green) and d
(2)
s = 1.1 (dashed green). The black dotted lines are linear guides to the eye

and have the slopes annotated, d
(n)
s = 2 for normal diffusion in 2 dimensions.
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Figure 3.5. Degree distributions P (k) of—from left to right—the initial networks,
square lattices (light blue) and random graphs (light red), as well as the corresponding
evolved networks (dark blue and dark red, respectively) for target spectral dimensions

(a) d
(1)
s = 1.4 and (b) d

(2)
s = 1.1. The histogram bars show the average P (k) over 100

realizations of the evolution and the error bars mark one standard deviation.
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Figure 3.6. Evolution of the degree assortativity r (upper panels (a) and (c)) and
clustering coefficient C (lower panels (b) and (d)) with the number of steps n for target

spectral dimensions d
(1)
s = 1.4 (left panels (a) and (b)) and d

(2)
s = 1.1 (right panels (c)

and (d)). The lines display the average values over 100 realizations of the evolution
and the error bars mark one standard deviation. For comparison, the evolution of the
spectral spectral distances from figure 3.2 is shown qualitatively as gray curves in the
background.

distribution for the random graphs G(N,M), the degree distributions of the networks
which have been evolved towards the same target spectral dimension closely resemble
each other. For both target spectral dimensions bimodal degree distributions emerge.
The fraction of vertices with degrees around the average degree 〈k〉 = 4 is very small
while the number of vertices with higher and lower degrees is enhanced by the evolution.

For the target spectral dimension d
(1)
s = 1.4 the distribution is peaked highest at k = 6

and secondly around k = 2, see figure 3.5(a). For d
(2)
s = 1.1, highest fraction of vertices

is found with k = 2 and a second peak is located at k = 7, 8, as seen in figure 3.5(b).
In both cases, the networks become more heterogeneous in their degree in the course of
the evolution.

Further insight into the topological properties of the evolved networks can be achieved
by examining correlations in the network structures. In figure 3.6 the evolution of the
degree assortativity r and the clustering coefficient C for all four combinations of the
two initial conditions and both evolution targets are shown. The lines show the change
of the average values of r and C over 100 realizations and the error bars display one
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standard deviation indicating the spread in the respective quantity. As before, the curves
for the different initial conditions become indistinguishable in the course of the evolution
supporting the conjecture that the outcomes are independent of the initial configurations.
The degree assortativity r as shown in figure 3.6(a) and (c) increases in the course of
the evolution to rather high values, r = 0.76(3) and r = 0.89(4) for target spectral

dimensions d
(1)
s = 1.4 and d

(2)
s = 1.1, respectively. This positive correlation between the

vertex degrees strongly indicates a segregation of vertices with high and low degrees, a
second level of heterogeneity in the network structure. Interestingly, the increase in r
is not simultaneous with the drop in the spectral dimension but occurs only afterwards

in the course of the evolution. For the second target spectral dimension d
(2)
s = 1.1 an

intermediate drop followed by an even stronger rise in r is observed. Hence, the observed
heterogeneity might actually be associated with the fine tuning of the spectrum instead
of its overall shape. This interpretation is supported by the evolution of the clustering

coefficient C shown in figure 3.6(b) and (d) for the target spectral dimensions d
(1)
s = 1.4

and d
(2)
s = 1.1, respectively. C also increases in the course of the evolution. Since the

low degree vertices with k = 1, 2 in a connected network cannot form any triangles an
increasing clustering coefficient must be generated by more densely connected regions
of the vertices with higher degree. The increase in C, however, happens even later in
evolutionary time than the change of the spectral distance and the degree assortativity.
Additionally, the clustering coefficient seems not to converge but instead continues to
increase and diversify in the course of the evolution. This, again, suggests that the
segregation might actually be a secondary effect associated with the fine tuning of the
spectrum.

Taken together, the observed structural properties suggest that rather heterogeneous
structures evolve out of the homogeneous initial configurations. The bimodal degree
distributions together with large degree-degree correlations and increasing clustering are
indicators for a core-periphery structure. The high-degree vertices in the core form
a rather den-sly connected community while in the periphery the low-degree nodes are
more loosely connected. To verify whether such a core-periphery structure can indeed be
seen in the evolved network, exemplary network configurations taken from the evolution
are shown in figure 3.7. Figure 3.7(a) and (b) display the initial networks, a 2d square
lattice which due to the periodic boundary conditions has the global topology of a torus
and a connected random graph G(N,M). While the local structure of the lattice should
be still recognizable although not all vertices and edges can be distinguished clearly,
random graphs are usually almost impossible to visualize in a plane. Nevertheless,
one can guess from the visual appearance that vertices of different degrees are well
mixed and overall form a rather homogeneous network. Exemplary evolved networks

with target spectral dimensions d
(1)
s = 1.4 and d

(2)
s = 1.1 are shown in figure 3.7(c)

and (d), respectively. Although the structures of the den-sly connected regions are
again not visually accessible in this planar representation the pictures support the core-
periphery conjecture. In both cases, a fraction of vertices is found in one or several
den-sly connected cores while the periphery is formed by an extended tree-like structure.
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(a) (b)

(d)(c)

Figure 3.7. Visualization of typical network configurations taken from the evolutionary
optimization. Top: Initial configurations (a) 2d square lattice with periodic boundary
conditions and (b) random graph G(N,M). Bottom: Evolved networks with target

spectral dimensions (c) d
(1)
s = 1.4 and (d) d

(2)
s = 1.1. For better visibility, two very

dense regions of the evolved networks are additionally shown enlarged.
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For the lower target spectral dimension d
(2)
s = 1.1 more vertices are in the periphery

which seems to be further extended and less interconnected than for d
(1)
s = 1.4.

Concluding this chapter, it was shown that evolutionary optimization can be
successfully applied to construct networks of a prescribed non-trivial spectral dimension
with satisfactory precision. To this end, a spectral distance measure was defined which
allows for comparison of a given discrete spectrum with other spectra as well as with a
general function. The simple mutation-selection scheme of moving a single edge in each
evolutionary step and accepting only those mutations that lower the spectral distance
proved sufficient to explore the relevant part of the configuration space. The evolution
improves the spectral distance by more than two orders of magnitude and the evolved
networks closely reproduce the prescribed eigenvalue scaling and, consequently, the
dynamical behavior. Structurally, the networks become heterogeneous in the course of
the evolution. They exhibit a bimodal degree distribution with the high-degree vertices
forming den-sly connected cores and the low-degree vertices spreading out in a more
loosely connected tree-like periphery.

60



4. Reconstruction of Evolved Networks

In the previous chapter, networks were successfully evolved towards an approximative
power-law scaling of the Laplacian spectrum. The degree distributions of these networks
as well as correlations, measured by the assortativity and clustering coefficients, were
observed to change significantly in the course of the evolution. To which extent do these
structural properties determine the spectral and, consequently, the dynamical behavior
of the networks? Is there a way to construct random networks with power-law Laplacian
spectra from scratch based on the correlation functions? These questions are addressed
in the following. The correlations are extracted from the evolved networks and used to
generate random networks following the prescribed distributions.

4.1. Generation of Two-Point Correlated Random Networks
with Clustering

Several algorithms have been proposed to construct random networks with a given
degree distribution and correlations between vertex degrees. Mostly, these algorithms are
extensions of the configuration model (Molloy and Reed, 1995) explained in section 2.2.
The basic idea of the configuration model is to first assign a number of half-edges
according to a degree sequence to each vertex and then randomly pair these in order to
form the edges of the networks. If the algorithm succeeds, the result is a random network
with exactly the chosen degree sequence. Ángeles Serrano and Boguñá (2005) extended
the configuration model algorithm to incorporate the degree-dependent clustering C(k),
defined in equation (2.15), as additional specification of the random networks to be
constructed. In a two-step process, first those half-edges are selected to be paired
that form additional triangles in the classes of vertex degrees in which the prescribed
level of clustering is not yet reached. Secondly, remaining free half-edges are matched
randomly. A different approach was proposed by Weber and Porto (2007) for the
generation of networks with a prescribed degree-degree correlation matrix P (j, k) which
also defines the degree distribution P (k). In this algorithm, the half-edges to be paired
are selected according to the remaining number of edges to be built between vertices of
the corresponding degree class.

In order to incorporate both, degree-degree correlations and clustering, into random
network generation, Pusch et al. (2008) extended the algorithm by Ángeles Serrano and
Boguñá in order to additionally include prescribed two-point correlations P (j, k). Just
as the original configuration model actually generates random networks with a given
discrete degree sequence instead of a degree distribution, this algorithm takes discrete
frequency distributions as input. The vertex degrees are given by P̂ (k), the number
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4. Reconstruction of Evolved Networks

of vertices with degree k, the two-point correlations by P̂ (j, k), the number of edges
between vertices with degrees j and k, and the clustering by T̂ (k), the number of triangle
corner vertices with degree k. The specification of T̂ (k) or the corresponding normalized
distribution T (k)—the probability that a randomly chosen triangle vertex has degree
k—is completely equivalent to the degree-dependent clustering C(k). The distributions
only differ in their normalization. The algorithm itself consists of three steps. First,
half-edges are selected by the degree of the vertices to which they are connected under
the conditions that in the corresponding degree classes the prescribed number of edges
is not yet reached and that their paring forms triangles in the degree classes that have
not reached the prescribed number of triangle corners. Secondly, random half-edges are
chosen to form edges in the degree classes which are not satisfied yet. Thirdly, still
remaining half-edges are paired randomly as in the configuration model. The algorithm
will, if possible, exactly reproduce the prescribed degree sequence, very closely resemble
the given two-point correlations, and approximately generate the prescribed numbers of
triangle corners. A more detailed description of the algorithm is presented in appendix A.

This random network generation algorithm is used here to reconstruct the evolved
networks of chapter 3 from their two-point correlations and degree-dependent clustering.
The goal is to find out to which extent the spectral properties of these networks are
determined by the correlations.

4.2. Individual Reconstruction of Evolved Networks

First, different realizations of the evolved networks are reconstructed individually. The
network configurations are taken from the evolution of random networks towards the

target spectral dimension d
(1)
s = 1.4. The degree distribution, the degree-degree

correlations, and the degree-dependent clustering of the final configurations, i.e., after
106 evolution steps, are calculated as discrete frequencies P̂ (k), P̂ (j, k), and T̂ (k). This
is done individually for the 100 realizations of the evolution. For each of the triples P̂ (k),
P̂ (j, k), and T̂ (k), 100 samples of the random networks are generated and analyzed.

In order to see how well the reconstructed networks reproduce the evolution target, i.e.,
the prescribed power-law scaling in the Laplacian spectrum, the first quantity to look at is
the spectral distance D to the evolution target. Figure 4.1 displays the distribution f(D)
of the spectral distances for the reconstructed networks. For comparison, the
distributions P̂ (k), P̂ (j, k), and T̂ (k) were also calculated for an uncorrelated random
network of the same size, the initial configuration of the evolutionary optimization. These
distributions were used for the generation of 1000 realizations of reconstructed random
networks by the same algorithm. The spectral distance of the reconstructed evolved
networks is always higher than the average value of the evolved networks but significantly
lower than the values of the random network and its reconstructed networks. Hence,
the degree distribution and the two correlation measures together indeed encode the
spectral behavior to a significant extent. Interestingly, the distribution shows a structure
of several, mostly well-separated peaks. As indicated by the different colors in figure 4.1,
the multi-peak structure is generated by different numbers of connected components nc
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Figure 4.1. Histogram of spectral distances in the individually reconstructed networks.
Shown is the fraction f(D) of networks with spectral distance D to the evolution target
reconstructed from the evolved networks (colored lines) and a random network of the
same size (black line). In the former, the different colors stand for different numbers of
connected components nc, indicated by the numbers above the curves. Networks with
nc = 1 and nc = 11 appear with very low frequencies. The (average) spectral distances
of the networks which were reconstructed are indicated by the vertical gray lines. The
inset shows an enlarged segment such that the networks with nc = 1 become visible
(blue lines), now in terms of absolute frequencies h(D) = f(D)× 104.

in the reconstructed networks. In contrast to the network evolution, the construction
of the correlated random networks provides no possibility to control the number of
components the generated networks will have. Only a very small fraction of the resulting
reconstructed networks, namely 12 out of 104, are found to be globally connected like the
evolved networks. An explanation for the separation of the distribution into classes of
equal number of connected components is that the degeneracy of the smallest eigenvalue
λ1 = 0 is given by the number of components and the smallest eigenvalues have the
largest influence on the spectral distance. Interestingly, the globally connected networks
with nc = 1 deviate from the trend and do not exhibit spectral distances lower than those
with nc = 2. Due to the small number of realizations this observation can, however, not
be considered as statistically significant.

The influence of the small eigenvalues on the spectral distance is also clearly visible
in the integrated spectral densities. Figure 4.2(a) displays the averaged logarithmically
integrated spectral densities of the evolved and their reconstructed networks. Evidently,
the higher presence of small eigenvalues is the main cause for the larger deviation from
target function. In figure 4.2(b) the spectral densities are individually averaged for the
different classes of equal number of connected components. It shows how the deviation
from the target function in the region of small eigenvalues indeed increases with the

63



4. Reconstruction of Evolved Networks

−2.5

−2.0

−1.5

−1.0

−0.5

0.0
(a)

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

log λ̃

−2.5

−2.0

−1.5

−1.0

−0.5

0.0
(b)

1

2

3

4
5

6
7

8
9

1011

Ĩ
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Figure 4.2. Averaged logarithmically integrated Laplacian spectral density of recon-
structed networks. In the upper panel (a), the averaged spectral densities of the
evolved (blue line) and the reconstructed (red line) networks are shown. The dotted
black line displays the evolution target. The latter is broken down to the number
connected components in the lower panel (b). The curves are labeled by their numbers
of components in the inset, the color code is the same as in figure 4.1. For comparison,
the transparent lines in the background show the curves of panel (a) again.

number of connected components in the network. The increasing degeneracy of the
zero eigenvalue makes the integrated densities start out from higher values so that an
increasing initial exceedance of the target function is inevitable. The integrated densities
of the globally connected networks with nc = 1 actually fall below the target function
explaining the higher spectral distance than for nc = 2 although the global trend of a
lower initial value is continued. But again, due to the small number of realizations this
observation should not be considered as statistically significant.

Exemplary configurations of the reconstructed networks are shown in figure 4.3. The
displayed networks are chosen with (a) an average, (b) a small, and (c) a large number of
connected components. In all three examples, the networks consist one large and several
very small components. The largest components of these networks also exhibit a core-
periphery structure, although less pronounced as in the evolved network in figure 3.7(c).

64
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(a) (b) (c)

nc = 5 nc = 2 nc = 10

Figure 4.3. Typical network configurations taken from the individual reconstruction.
The shown networks are representatives of configurations with (a) an average number of
connected components nc = 5, (b) a low number nc = 2, and (c) a rather high number
nc = 10.

4.3. Reconstruction from Independently Averaged Correlations

In the previous section, the distributions P (k), P (j, k), and T (k) were extracted as
discrete frequencies P̂ (k), P̂ (j, k), and T̂ (k) and directly fed into the reconstruction
algorithm. The three distributions are, of course, highly correlated. So, it is worth
to note that in this case the three discrete frequency distributions “fit” to each other,
i.e., it is guaranteed that at least one network configuration with the given discrete
distributions exists. A different approach is to first calculate average distributions from
all the realizations of the evolved networks and then draw samples of discrete frequencies
from these distributions. For this, the three distributions are treated separately here
and the samples P̂ (k), P̂ (j, k), and T̂ (k) are drawn independently from the averaged
distributions. As before, the evolved networks are taken from the evolution of random

networks towards the target spectral dimension d
(1)
s = 1.4. The degree distribution P (k),

the two-point correlations P (j, k), and the distribution of triangle corner degrees T (k)
are calculated as normalized averages over the 100 realizations of the evolved networks.
Also, the distribution of the total number of triangles h(S) is calculated. From these
distributions, 1000 samples are generated in the following way.

1. N = 361 vertex degrees k are drawn from P (k) to form P̂ (k).

2. M = 722 edges with end degrees (j, k) are drawn from P (j, k) to form P̂ (j, k).

3. A number of triangles S is drawn from h(S).
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Figure 4.4. Histogram of spectral distances for the reconstruction from independently
averaged correlations. The colored lines display the fraction f(D) of reconstructed
networks with spectral distance D broken down into classes of equal number of connected
components nc. The numbers range from nc = 1 to nc = 39, colors are repeated after
every seventh curve. For comparison, the gray curves in the back shows the same for
the individually reconstructed networks and a random network of the same size as in
figure 4.1.

4. 3S triangle corner degrees k are drawn from T (k) to form T̂ (k).

These triples of P̂ (k), P̂ (j, k), and T̂ (k) are used to construct one random network each.
Of course, it is very likely that the correlations between the three distributions are not
satisfied so that, in other words, the triple is not graphical. The algorithm will in this
case generate random networks with only approximately the desired distributions.

Looking at the distribution of spectral distances in the reconstructed networks as
shown in figure 4.4, a much broader spread than for the individual reconstructions can
be observed. Nevertheless, the reconstructed networks on average still have a smaller
spectral distance to the evolution target than in the reconstruction of a random network.
Again, the distribution is multi-peaked and the separations are generated by different
numbers of connected components in the reconstructed networks.

The distributions of the resulting numbers of connected components nc for the
individual reconstructions and the reconstruction from averaged correlation functions
are compared in figure 4.5. The first observation is that the distribution of nc is much
broader in the latter case. As seen before, the number of components largely influences
the spectral distance. Is this the only effect giving the networks reconstructed from the
averaged correlation functions a higher spectral distance? To see this, figure 4.5 also
shows the average spectral distance for each class of networks with equal number of
connected components. Except for the networks with a small number of components,
where only few realizations exist and the fluctuations are large, the spectral distances
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Figure 4.5. Distributions of number of connected components and average spectral
distances by number of components. The histogram bars display the distribution f(nc)
of the number of components nc in the individually (blue bars) and from independently
averaged distributions (red bars) reconstructed networks. The symbols indicate the
average spectral distance of reconstructed networks with the respective number of
components for the individually (blue triangles) and from independently averaged
distributions (red circles) reconstructed networks. The error bars mark one standard
deviation.

indeed appear very similar for the same numbers of connected components in both
cases. The conclusion is that indeed the number of connected components is the major
influence for the on average higher spectral distances here and not the choice of individual
reconstruction or independently averaging the correlation functions.

Figure 4.6 shows three exemplary configurations of the reconstructed networks, again
with (a) an average, (b) a low, and (c) a rather high number of connected components.
As before, the networks seem to consist of one large and several very small components,
out of which many are even single isolated vertices. In the largest component, again a
core-periphery structure can be observed. But it seems less pronounced than before.

4.4. Reconstruction of Evolution Time Series

Thirdly, the relevance of the correlations in the evolutionary process shall be examined.
To see if the degree distribution, two-point correlations, and degree-dependent clustering
equally well characterize the network configurations at different stages of the evolution
process, the reconstruction is applied to all intermediate steps of one exemplary evolution

from a random graph towards the target spectral dimension of d
(1)
s = 1.4. As in

section 4.2, the distributions are extracted as discrete frequencies P̂ (k), P̂ (j, k), and
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(a) (b) (c)

nc = 15 nc = 3 nc = 38

Figure 4.6. Visualization of typical network configurations reconstructed from indepen-
dently averaged distributions. The shown networks are representatives of configurations
with (a) an average number of connected components nc = 15, (b) a low number nc = 3,
and (c) a rather high number nc = 38.

T̂ (k), now for each evolutionary time step. For each point in this time series, 100
samples of the random correlated networks are generated and analyzed.

The results of the time series reconstruction are summarized in figure 4.7 showing
(a) the spectral distance D and (b) the coefficients r, C, and 〈Ci〉 of the reconstruction
at each time step n of the evolution. The spectral distance of the reconstructed networks
takes values in the same range as the evolving network until around 103 evolution steps.
Afterwards, the reconstructed networks have significantly higher spectral distances to the
evolution target than the evolving networks themselves. The assortativity coefficient r is
very precisely reproduced in the reconstructed networks during the whole evolutionary
process. Also the clustering coefficients C and 〈Ci〉 of the reconstructed networks follow
the respective values of the evolving network. Their values are, however, always slightly
higher. The fluctuations between the different realizations are negligible in the degree
assortativity and rather small in both clustering coefficients. The spectral distance
exhibits larger fluctuations at all time steps which additionally increase in the period
between 102 and 103 evolutionary time steps where the largest drop in the spectral
distance is observed. As the algorithm is designed to reproduce the given correlations
in the generated random networks, it is no surprise that the correlation coefficients are
reasonably well reproduced. Also the overrepresentation of triangles and the slightly
larger fluctuations in the clustering can be attributed to the fact that the corresponding
distribution is less precisely reproduced by the algorithm. Notably, no difference in the
recreation of the two clustering coefficients is observed, although the distribution T̂ (k)
fed into the generation algorithm is describing the local clustering Ci and not the global
clustering coefficient C.

Concluding this chapter, it was shown that, to a certain extent, the power-law scaling
in the Laplacian spectrum is encoded in the degree distribution and degree correlations

68



4.4. Reconstruction of Evolution Time Series

0.0

0.5

1.0

1.5

D

(a)

100 101 102 103 104 105 106

n

0.0

0.2

0.4

0.6

0.8

r

r

(b)

0.0

0.5

1.0

1.5

0.0

0.1

0.2

C
,〈
C
i〉

C

〈Ci〉

Figure 4.7. Reconstruction averages of evolutionary time series. Shown are averages
of (a) the spectral distance D and (b) the assortativity coefficient r (left scale), the
clustering coefficient C, and the mean local clustering coefficient 〈Ci〉 (both right scale)
of reconstructed networks at each evolutionary time step n. The averages are calculated
over 100 samples of the reconstruction and the error bars indicate one standard deviation.
The light colored curves in the background display the time series of the respective
quantities in the evolving network.

of the evolved networks. To this end, evolved networks were reconstructed from their
degree distribution, two-point degree correlations, and degree-dependent clustering as
random networks with the prescribed functions. The spectral densities of the evolved
networks are surprisingly well reproduced up to one major issue. The algorithm mostly
generates networks with several connected components. This is an inherent problem of
all constructive methods of random network generation. To my knowledge, there is no
way known to incorporate the number of connected components as additional constraint
in the network generation. A large number of components produces a high degeneracy
of the zero eigenvalue and, thus, results in a significant deviation from the target
spectral density in the regime of low eigenvalues. No qualitative difference was observed
between the individual reconstruction of evolved networks and the reconstruction based
on independently averaged correlation functions. However, the independently drawn
degree distributions and correlation functions are very likely to be non-graphical. This
results in a worse performance of the random network algorithm such that the generated
networks posses a high number of very small components. As mentioned before, this
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produces an even larger deviation from the power-law scaling in the Laplacian spectrum.
The reconstructed networks exhibit a core-periphery structure which seems, however,
less pronounced than in the evolved networks themselves. The reconstruction of a whole
evolution time series shows that the reconstructed networks are as close to the target
density as the evolving networks up to a certain point in evolutionary time. Afterwards,
a significant difference in the spectral distances is observed although the correlations are
still well reproduced. This is an indication that at later stages of the evolution the large
scale structure of the networks becomes more important.
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5. Regular Evolved Networks and
Symmetry-Based Coarse-Graining

This chapter extends the evolutionary optimization procedure of chapter 3 to k-regular
networks, i.e., networks in which each vertex has the same degree k. The evolved
networks exhibit an abundance of symmetric motifs which are arranged in loops and
linear segments of different lengths. The underlying backbone structures are extracted
by a systematic coarse-graining based on the network’s symmetry. This allows for a
full decomposition of the Laplacian spectrum of the network into the contributions from
the symmetric motifs on the one hand and the coarse-grained backbone network on the
other hand (Karalus and Krug, 2015).

5.1. Regular Evolved Networks

The anomalously diffusive networks found by the evolutionary optimization presented
in chapter 3 show very heterogeneous structures. They exhibit a bimodal degree
distribution with large fractions of vertices above and below but only few vertices around
the mean degree. Additionally, various signs of a segregation of the high- and low-degree
vertices into rather densely connected cores on the one hand and sparse, mostly tree-
like, peripheries on the other hand have been observed. This is supported by visual
inspection of the evolved networks. An interesting follow-up question is whether it is
also possible to construct networks with a similar dynamical behavior but which are
more homogeneous in their structure. If possible, what are the structural properties of
those networks? To elucidate this issue, the evolutionary optimization can be performed
on networks that are more homogeneous by construction. This is done here by the
introduction of degree regularity as an additional constraint in the evolution. Starting
the evolution from k-regular random graphs or lattices and performing only structural
mutations that conserve the degree of each vertex results in an evolutionary process
satisfying this constraint.

The goal of this evolution is to search the space of connected k-regular networks
with given size N and M for networks with an approximate power law in the Laplacian
spectrum, I(λ) ∝ λds/2. The evolution target is, as before, the logarithmically integrated

spectral density (3.13) with given spectral dimension d
(1)
s = 1.4 or d

(2)
s = 1.1. The

spectral distance (3.12) is minimized by an adaptive walk. For two different choices of k
the evolutions are started from square lattices (k = 4) and honeycomb lattices (k = 3)
with periodic boundary conditions as well as corresponding 4- and 3-regular random
networks. All the 4-regular networks have N = 361 vertices and M = 722 edges, while
for the 3-regular networks N = 360 and M = 540. The conservation of the vertex degrees
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Figure 5.1. Schematic of the edge-crossing update. Two edges v1–v2 and v3–v4 are
crossed to v1–v4 and v3–v2 as proposed new state. All other edges incident to the
vertices v1, v2, v3, v4 ∈ V—as indicated by the dashed lines—remain unchanged.

in the course of the evolution is realized by an “edge-crossing” update as sketched in
figure 5.1. In each evolution step, two randomly chosen edges v1–v2 and v3–v4 are crossed
to v1–v4 and v3–v2. The only important restrictions are that all vertices v1, v2, v3, v4 ∈ V
have to be distinct and that the new edges v1–v4 and v3–v2 do not exist before the
update. As in chapter 3, updates are rejected directly if they result in a separation of the
network in several connected components. In fact, also the k-regular random networks
are most easily constructed by randomization of the respective lattices, that means,
by an evolution using the edge-crossing update without any selection, i.e., accepting
each proposed mutation. This corresponds to an infinite-temperature MC simulation,
so all possible states are sampled with equal probability. The evolutions are, again, run
for 106 evolutionary time steps. Exemplary configurations of the evolved networks are
displayed in figure 5.2(a) for a 4-regular and (b) for a 3-regular network. In contrast
to most random and the evolved networks in figure 3.7, their structural properties seem
to be visually accessible in this planar representation. The networks appear rather
homogeneous without any regions of clearly distinguished structures. They exhibit a
peculiar modular structure of small symmetric motifs arranged into—probably fractal—
loops of different lengths. Since similar fractal-like or comb structures are known to
generate anomalous diffusion (Havlin and ben-Avraham, 2002) the obvious question is
whether the observed backbone structures can be related to the Laplacian spectrum and,
hence, the diffusion behavior. In general it is not possible to construct the Laplacian
spectrum of a network from its subnetworks or underlying structures. There is, however,
an exception if the network is symmetric. In this case, the symmetric structures can
be coarse-grained and the Laplacian spectrum decays into the spectra of the resulting
backbone and the symmetric motifs.

In the following, this symmetry-based coarse-graining is applied to the regular evolved
networks. For a visual impression, the resulting backbone structures, called network
quotients, of the exemplary networks in figure 5.2(a) and (b) are shown in figure 5.2(c)
and (d), respectively. The Laplacian spectrum and eigenvectors of such a network as
a whole can be decomposed in the spectra of the quotient and the symmetric motifs.
In order to be more specific, some background from algebraic graph theory on network
symmetries has to be introduced first.
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(a) (b)

(d)(c)

Figure 5.2. Typical configurations of k-regular networks evolved towards a target

spectral dimension of d
(1)
s = 1.4 starting from (a) a square lattice and (b) a honeycomb

lattice. The corresponding s-quotients are shown in (c) and (d). In the enlarged
segments, the colors indicate the orbits to which the respective vertices belong.
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5.2. Symmetries in Networks

A network being symmetric means that some of its vertices can be permuted without
changing the network structure. This means that the vertices are interchangeable and
play the same role in the network’s function. They build up a redundancy in the network.
In this section, a summary of the basic concepts and results on network symmetries is
given. More details and proofs can be found in the literature (Godsil and Royle, 2004;
MacArthur and Sánchez-Garćıa, 2009; MacArthur et al., 2008).

A network automorphism is a permutation of vertices in the network that does not
alter the adjacency of the network. The set of all automorphisms of a network G forms
a group, the automorphism group Aut(G), compactly describing all symmetries of the
network. A network is called symmetric if it has a non-trivial automorphism group. The
set of vertices which are “moved” by an automorphism p ∈ Aut(G) is called the support
of p, supp(p) = {i ∈ V | p(i) 6= i}. Two sets of automorphisms P and Q are called
support disjoint if all possible pairs of p ∈ P and q ∈ Q have disjoint supports. In this
case, P and Q act independently on the network, pq = qp for all p ∈ P and q ∈ Q.

This notion of independence is used to define the symmetric motifs of a network. Let
Aut(G) be generated by the set S = S1∪· · ·∪Sk with all pairs of Si being support-disjoint
and minimal in the sense that each Si cannot be further decomposed into support-disjoint
subsets. Then the subgroups Hi generated by the Si form a direct product decomposition
of the automorphism group,

Aut(G) = H1 ×H2 × · · · ×Hk . (5.1)

This decomposition is called the geometric decomposition of the automorphism group
and it can be shown that it is unique (MacArthur et al., 2008). The Hi are called
geometric factors. A symmetric motif MH is the induced subgraph on the support of
a geometric factor H, i.e., the subgraph consisting of the vertices in the support of H
together with all edges of G that have both ends in that set. Intuitively speaking, a
symmetric motif MH is a minimal subnetwork whose vertices are moved by H. Note
that the definition of a symmetric motif is much more restrictive than the definition of
motifs by Milo et al. (2002). This is, however, necessary for the relation to the network
spectra.

An automorphism permutes the vertices of a network without changing the network
structure. It can be viewed as mapping the vertices “onto each other”. This provides a
partition of the vertex set V into disjoint classes called orbits. The orbit a vertex i ∈ V
belongs to is the set of vertices ∆(i) ⊂ V to which i is mapped under the action of
Aut(G),

∆(i) = {g(i) ∈ V | g ∈ Aut(G)} . (5.2)

In the enlarged segments of figure 5.2(a) and (b) the vertex colors indicate examples of
how different vertices are grouped into orbits. Note that in order to map the vertices
of an orbit onto each other without altering the adjacency it may be necessary to move
a larger fraction of vertices at the same time. The vertices in the same orbit are
interchangeable so they are structurally completely equivalent. Therefore, the orbits
describe the redundancy in a network.
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This structural equivalence is exploited in the coarse-graining to a network quotient.
If a graph G contains r distinct orbits, ∆ = {∆1,∆2, . . . ,∆r}, then its quotient graph
Q = G/∆ has r vertices. The vertices of Q are the orbits of its parent graph G. Due to
the structural equivalence of the vertices in the same orbit the number of neighbors in
∆y of vertex i ∈ ∆x, called qxy, does not depend on the choice of i but only on x and
y. This property makes the orbit partition equitable which is important for the relation
between the spectra of Q and G. The quotient graph Q has the vertex set V(Q) = ∆ and
an adjacency matrix with elements {qxy}x,y=1,...,r. The qxy are not necessarily symmetric
and the diagonal elements qxx may be non-zero. Hence, the quotient graph, even of a
simple parent graph, is directed and generally contains multiedges and self-loops.

The networks in figure 5.2(c) and (d) actually do not show the quotients of the evolved
networks but their underlying simple networks. All directions, multiedges, and self-loops
have been left out. The resulting network is called simplified quotient or s-quotient Qs.
It already captures essential properties such as the size and the underlying adjacency of
the quotient.

A key result from algebraic graph theory establishes a relation between the adjacency
spectra and eigenvectors of a network G and its quotient G/π from any equitable
partition π. Here, the interest lies, of course, in the orbit partition ∆ and the
corresponding quotient Q = G/∆. All eigenvalues of the quotient are also in the
spectrum of the parent. Furthermore, each eigenpair (µ,v = (v1, . . . , vr)) of Q has
a corresponding eigenpair (µ, v̄ = (v̄1, . . . , v̄N )) of G with v̄i = vx for all i ∈ ∆x,
i.e., the eigenvectors are constant vx on each orbit ∆x. These eigenvectors are called
lifted from the eigenvectors of the quotient. The symmetric motifs of G provide the
remaining eigenpairs ofG. An eigenvector v∗ = (v∗1, . . . , v

∗
m) of the symmetric motifM—

isolated from the rest of the network—is called redundant if
∑

i∈∆ v
∗
i = 0 for each orbit

∆ ∈ M. The corresponding eigenvalues are also in the spectrum of G. Moreover,
for each redundant eigenpair (µ,v∗) of a symmetric motif M there exists an eigenpair
(µ, v̂ = (v̂1, . . . , v̂N )) of G with v̂i = v∗i for all i ∈ M and v̂i = 0 for all i /∈ M, i.e., the
eigenvectors are localized on the symmetric motifs. Summarizing these statements, the
eigenvalues and the corresponding eigenvectors of the adjacency matrix of a symmetric
network G completely divide into two classes:

(1) The eigenvalues of the quotient of G are also eigenvalues of G itself. The
corresponding lifted eigenvectors are constant on each orbit by assigning the value
of each orbit in the eigenvector of the quotient to all vertices belonging that orbit.

(2) The redundant eigenvalues of each symmetric motif of G are also eigenvalues of
G itself. The corresponding redundant eigenvectors of the isolated motifs are also
eigenvectors of G localized on the motifs.

For the adjacency spectrum and eigenvectors, these results are elaborated and proven
by MacArthur and Sánchez-Garćıa (2009). For this study, similar statements for the
Laplacian spectrum and eigenvectors are needed.
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5.2.1. Coarse-Graining Relations for the Laplacian Spectrum

In this section, the proof for the relations between the adjacency spectra and eigenvectors
of a symmetric network on the one hand and its quotient and symmetric motifs on the
other hand by MacArthur and Sánchez-Garćıa (2009, appendix A) is extended to the
case of the graph Laplacian.

Consider a network G with N vertices together with a partition π = {C1, . . . , Cr} of
its vertices. Here, the indices i, j will number the vertices of G and, hence, run from
1 to N . The indices x, y run from 1 to r and denote the cells of the partition. The
partition π is equitable if the number of neighbors in Cy of any vertex in Cx is a constant
Ãxy. The quotient Q = G/π is a multidigraph with r vertices corresponding to the r
cells of the partition π. The adjacency matrix Ã of the quotient has the elements Ãxy.
The characteristic matrix P of the partition π is an N × r matrix with entries Pix = 1
if vertex i ∈ Cx and Pix = 0 otherwise. In a column notation P = (w1| . . . |wr) the
characteristic matrix is formed by the vectors wx ∈ {0, 1}N with entries 1 in the vertices
belonging to Cx and 0 otherwise. MacArthur and Sánchez-Garćıa showed that

AP = PÃ (5.3)

which means that the space W spanned by the column vectors of P is A-invariant, i.e.,
Au ∈W for all u ∈W . At this point, two statements from linear algebra are needed (e.g.
Godsil and Royle, 2004). (i) Every non-zero A-invariant subspace has an orthonormal
basis of eigenvectors of A. (ii) The orthogonal complement of an A-invariant subspace
is also A-invariant. Hence, RN = W ⊕W⊥ and there are orthogonal bases of W and
W⊥ consisting of eigenvectors of A. The proof finishes with the observation that

1. dim(W ) = r,

2. u ∈W ⇔ u is constant on each Cx,

3. u ∈W⊥ ⇔ the sum of coordinates of u is zero on each Cx.

Consequently, a basis of eigenvectors was found such that the first r eigenvectors are
constant on each orbit Cx and the last N − r are redundant, i.e., their coordinates sum
to zero on each orbit.

In order to extend this proof to the spectrum of the graph Laplacian L, it remains
to shown that W is also L-invariant. This is true if and only if there exists a matrix L̃
such that

LP = PL̃ . (5.4)

The matrix L̃ is then the graph Laplacian of the quotient network Q. Let L̃ = D̃ − Ã
where D̃xy = k̃xδxy with k̃x =

∑
y Ãxy. Then, with equation (5.3)

LP = DP −AP = DP − PÃ . (5.5)

It remains to show that DP = PD̃. In components, the left hand side reads

(DP )ix =
∑
j

DijPjx =
∑
j

kiδijPjx = kiPix (5.6)
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which is the degree of vertex i if i ∈ Cx and zero otherwise. The right hand side is

(PD̃)ix =
∑
y

PiyD̃yx =
∑
y

Piyk̃yδyx = Pixk̃x = Pix
∑
y

Ãxy . (5.7)

Remember that Ãxy was defined to be the number of neighbors in Cy of a vertex from
Cx. Hence, summation over all y yields the total number of neighbors a vertex in Cx has.
Equation (5.7), thus, evaluates to the degree of vertex i if i ∈ Cx and zero otherwise.
This is equal to the right hand side in equation (5.6) which completes the proof that W
is also L-invariant.

For the case of the orbit partition π = ∆ discussed in section 5.2, Ãxy = qxy. Note
that the graph Laplacian L̃ of the quotient as defined here is the same as the out-
degree Laplacian Lout defined in section 2.3.2. Hence, the way how Ãxy is defined here
corresponds to the previously used convention that Aij stands for a directed edge from
i to j.

5.3. Application to Regular Evolved Networks

After 106 evolutionary steps the regular evolved networks, as before, exhibit no traces
of the initial conditions, random network or lattice, any more. Also in this case, the
conclusion is that the optimization “landscape” seems to be sufficiently smooth so that
even the simple evolutionary algorithm succeeds to find network topologies matching
the target power-law scaling in the spectrum reasonably well. The networks depicted in
figure 5.2 for the case of (a) 4-regular and (b) 3-regular initial states represent typical
outcomes of the evolution. In these evolved networks, frequently reappearing small
symmetric motifs are encountered on small length scales. On larger scales, these motifs
are apparently arranged to form loops and linear chains of different lengths. In the two
cases of k = 4 and k = 3, the motifs are, of course, different. The way how they are
arranged, however, seems to be very similar in both cases. This becomes even more
clearly visible in the s-quotients of the evolved networks shown in figure 5.2(c) and
(d). Here, the backbones of the evolved networks clearly exhibit structures of linear
segments arranged in loops and chains of different lengths. The three enlarged motifs
from figure 5.2(a) and (b) are shown separately in figure 5.3. The vertices are labeled
by the redundant Laplacian eigenvectors of the motifs with the respective eigenvalues
annotated. As can be seen, the redundant Laplacian eigenvalues of the abundant motifs
in the 4-regular evolved networks are all equal to 5, and equal to 4 in the 3-regular
networks. Thus, a high degeneracy of those eigenvalues in the spectra of the networks
as a whole is expected.

The way how the coarse-grained backbone structures are constructed is sketched in
figure 5.4. First, the quotient of the evolved network by its orbits is formed according
to the procedure explained in section 5.2. Then the s-quotient is simply the underlying
simple network of the quotient. Table 5.1 summarizes the change of the network sizes
and spectral distances in the coarse-graining procedure. Remember that the numbers of
the spectral distance cannot be compared directly for different network sizes N . In order
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Figure 5.3. Redundant Laplacian eigenvectors of the most prominent motifs in the
(a)/(b) 4-regular and (c) 3-regular evolved networks. The orbits are colored as in
figure 5.2. The corresponding redundant eigenvalues are annotated.

(a) (b) (c)

Figure 5.4. Illustration of the coarse-graining procedure from (a) the evolved network
as shown in figure 5.2 via (b) the quotient of the evolved network constructed by the
procedure explained in section 5.2 to (c) the underlying simple network of the quotient
(s-quotient). For a better visibility of the detailed structure the boxed segment is
additionally shown enlarged in the three networks.
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4-regular evolution 3-regular evolution
Network N M D N M D
regular evolved 361 722 0.0507(3) 360 540 0.02400(1)
quotient 229(6) 914(25) 0.09(1) 281(6) 842(19) 0.035(5)
s-quotient 229(6) 302(17) 0.03(2) 281(6) 330(10) 0.030(2)
randomized s-quotient 229(6) 302(17) 0.39(9) 281(6) 330(10) 0.27(6)
evolved s-quotient 229(6) 302(17) 0.0045(1) 281(6) 330(10) 0.0045(1)

unrestricted evolved 361 722 0.0046(3) – – –

Table 5.1. The coarse-graining in numbers. Average numbers of vertices N and
edges M and average spectral distance D for the coarse-graining of the 4-regular
evolved (left) and 3-regular evolved (right) networks together with the numbers for
the respective quotients, s-quotients, and randomized as well as evolved networks of the
same sizes as the s-quotients (“randomized/evolved s-quotient”). For comparison, the
values for the unrestricted evolution (see table 3.1) are repeated in the last row. The
numbers in parentheses denote one standard deviation.

to get an idea of the absolute numbers of the spectral distance of the quotients and s-
quotients, they are compared with the spectral distance of networks having the same size
as the s-quotients but which are fully randomized (“randomized s-quotient”) and then
evolved without the restriction of regularity (“evolved s-quotient”). To this end, random
networks with the same numbers of vertices and edges are constructed by randomization
(keeping the network as a whole connected) and then the evolutionary optimization
as described in chapter 3 is applied. Looking at the precise figures, it turns out that
the networks evolved under the regularity constraint have a final spectral distance of
about one order of magnitude higher than those without the additional constraint. The
quotients as well as the s-quotients have spectral distances around the same order while
the unrestricted evolution of those succeeds to lower the spectral distance again by about
an order of magnitude.

To see what the numbers of the spectral distance mean, figure 5.5 shows the Laplacian
spectra as logarithmically integrated densities of the two exemplary evolved regular
networks from figure 5.2(a) and (b) together with the spectra of their quotients, s-
quotients, and a network of the same size as the s-quotient evolved without the restriction
of degree-regularity (“evolved s-quotient”). Note that although the Laplacian of the
quotient is not symmetric all of its eigenvalues turn out to be real. As predicted by
the theory of symmetric networks presented in section 5.2, the Laplacian spectrum
of the quotient is a subset of the spectrum of its parent. Especially in the region of
small eigenvalues the integrated densities of the evolved networks and their quotients
are exactly parallel. Thus, the small eigenvalues, reflecting the large-scale structure
of the network, are the same in both cases. To the right hand side of the plots the
integrated densities of the evolved networks in both cases exhibit a clearly visible large
step indicating a high degeneracy of certain eigenvalues. As indicated by the vertical gray
lines, the degenerate eigenvalues are λ = 5 for the 4-regular evolved network and λ = 4 for
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Ĩ
(l

og
λ̃

)

Figure 5.5. Logarithmically integrated Laplacian eigenvalue densities of, on the left
hand side (a) a 4-regular evolved network together with its quotient and (b) the resulting
s-quotient as well as an evolved network of the same size as the s-quotient (“evolved s-
quotient”). On the right hand side: The same for (c) a 3-regular evolved network
and its quotient, (d) the corresponding s-quotient and an evolved network of the same
size. The two vertical gray lines indicate the position of the eigenvalues 5 and 4 in the
logarithmically normalized representation.

the 3-regular case. These are exactly the redundant eigenvalues of the symmetric motifs
shown in figure 5.3 and their abundance explains the high degeneracy. In the coarse-
graining from the evolved networks to the quotients, the degeneracy is largely reduced
resulting in an overall shift of the integrated densities. This observation is in agreement
with the disappearance of the symmetric motifs. For the spectra of the s-quotients no
rigorous mathematical relation to the spectra of the parent networks exits. Nevertheless,
the s-quotients seem to fit the target power-law spectrum even better than the quotients.
The values of the spectral distance measure the s-quotients attain are about one order of
magnitude lower than those of the random networks of the same size (see table 5.1). This
strongly supports the conclusion that backbone structures represented by the s-quotients
are truly a highly relevant structural feature for the power-law scaling in the Laplacian
spectrum. Further optimization of the s-quotients by the unrestricted evolution lowers
the spectral distance significantly. From the visual appearance of the spectra, however,
these further corrections seem to be secondary fine-tuning of the eigenvalues.
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(a) (b)

Figure 5.6. (a) Typical 3-regular evolved network and (b) corresponding s-quotient for

a target spectral dimension of d
(2)
s = 1.1. For a better visibility of the details, the boxed

segments are additionally shown enlarged.

The evolution towards the second target d
(2)
s = 1.1 is, again, expected to be more

difficult. A typical configuration of an evolved 3-regular network towards d
(2)
s = 1.1 is

depicted in figure 5.6(a). Again, the network appears to be set up by a few symmetric
motifs as building blocks. In this case, these building blocks are arranged in even longer
chains than before with almost no loops. The corresponding coarse-grained backbone
structure in form of the s-quotient is shown in figure 5.6(b). The long linear segments
with very few branchings indeed give the impression of an “almost 1-dimensional”
structure.

Turning back to the question why the optimization process evolves the networks into
the observed structures, a possible explanation is that there are too many edges present
to form homogeneous structures of lower (spectral) dimension. The prescribed power-law
Laplacian spectra can be approximately achieved by the backbone structures as seen in
the s-quotients but the proportions of vertices and edges do not match with the numbers
in the evolving networks. A possibility to nevertheless generate those structures on large
scales is to “hide” the excess edges inside the symmetric motifs and build up the linear
segments out of those building blocks. This agrees with the observation that in the
4-regular evolved networks the coarse-graining reduces the network size more than in
the 3-regular case where from the beginning less edges are present. A first approach to
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H(s) =
∫∞
s h(t) dt of the absolute frequencies h(s) for 100 realizations each.

a quantitative description of the backbone structure is to extract the lengths of linear
segments in the s-quotients of the evolved networks. Figure 5.7 shows the absolute
frequencies of the linear segment lengths s in cumulative histograms. Rather broad
distributions are observed which are much broader for the lower value of the spectral
dimension. This supports the idea that the quantity might be a relevant one to quantify
the structures of the evolved networks. The networks, however, appear too small for a
real systematic scaling analysis of this distribution.

Summarizing this chapter, the evolutionary optimization algorithm introduced before
was adapted to evolve k-regular networks towards given non-trivial values of the spectral
dimension. By construction, these networks have to be more homogeneous than the
previously found evolved networks which exhibited various signs of a core-periphery
structure. The evolved networks indeed appear much more homogeneous and their
overall structure seems to be surprisingly accessible just by the visual appearance. The
networks consist mainly of frequently reappearing small symmetric motifs which are
arranged in loops of varying length. A coarse-graining procedure known from algebraic
graph theory based on the symmetry properties of the networks can be applied in this
case. It was shown how the Laplacian spectrum separates into contributions from the
symmetric motifs on the one hand and the underlying backbone structures, the network
quotients, on the other hand. The quotients are formed by loops and linear segments of
different lengths and appear to build the basis for the power-law scaling of the Laplacian
spectrum. For the lower target spectral dimension, the local motif structure seems very
similar. Almost no loops but even longer linear chains forming “almost 1-dimensional”
quotient networks are observed resulting in a broad distribution in the linear segment
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lengths which seems to be a main structural characteristic for the anomalous diffusion
behavior in this case.
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6. Summary and Discussion

The work presented in this thesis investigates the relation between structure and
dynamics in complex networks. It addresses the important question how the network
structure shapes the global behavior of dynamical processes. This behavior is rather
generally determined by the spectral properties of the network, i.e., the eigenvalues and
eigenvectors of the matrix describing the (linearized) dynamical interactions. The focus
here lies on Laplacian dynamics, the class of processes in which the graph Laplacian
operator describes the time evolution of the dynamics. This class comprises very
important basic processes such as diffusion and random walks or the synchronization
of oscillators. In diffusion or random walk processes the average probability of a random
walker or diffusing particle to return to its origin is given by the Laplace transform of the
eigenvalue density of the graph Laplacian. Thus, a power-law scaling with given exponent
in the Laplacian spectrum results in power-law decay in the average return probability
with the same exponent. In this case, the exponent is the so-called spectral dimension of
the network. In general, little is known exactly about the relation between the structural
characteristics of a network and the behavior of dynamics. In particular, no constructive
method exists to generate networks with a prescribed Laplacian spectrum. Therefore,
other strategies like evolutionary search in the configuration space have to be applied
in order to find such networks. This approach was pursued here to construct networks
with a prescribed power-law scaling in the Laplacian spectrum.

In the first part, a method was developed to evolve networks towards a target
integrated Laplacian spectral density. For this, a spectral distance function was
introduced measuring the difference between two spectra as integral over the squared
difference between the logarithmically integrated eigenvalue densities. The advantage of
this spectral distance measure is that it can be directly applied to quantify the distance
of a specific spectrum from another spectrum as well as from a generic function. Inspired
by biological evolution or Monte Carlo simulations, the simplest optimization strategy is
an adaptive walk in which mutations occur at random and only beneficial mutations are
accepted. It always terminates at a local optimum, so the efficiency of this strategy
strongly depends on the structure of the optimization problem, the “optimization
landscape”. Starting from regular lattices and random network realizations, networks
were evolved towards a power-law scaling in their Laplacian spectra with two exemplary
non-trivial values of the spectral dimension characterizing anomalous diffusion behavior.
The two values of the target spectral dimension were chosen such that the first one is close
to the spectral dimension of a known deterministic fractal, the Sierpinski triangle, which
has the same average degree as the evolving networks. For the second target spectral
dimension this is not the case so it is expected to be more difficult to achieve. The
adaptive walk simulations were successful in the sense that the evolution finds networks
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with Laplacian spectra reasonably close to the power-law target function. No signs of
significant deviations between the individual realizations were observed, an indication
for a rather simple “spectral distance landscape”. Structurally, the evolved networks
exhibit bimodal degree distributions, high degree assortativity, and clustering. Taken
together, these properties are signs of structural heterogeneity, a segregation of the
vertices into densely connected cores and rather sparse peripheries. Anomalous diffusion
is well known to be generated by deterministic or random fractals, which are both mainly
characterized by self-similar structures. One might have expected related properties in
the evolved networks here. Instead, the heterogeneous core-periphery structures seem
to be the distinctive characteristic of the evolved networks. The question whether the
overall anomalous diffusion behavior results simply as an average of the diffusion in the
two regions or if the interface, the way how the two regions are connected, plays an
important role cannot be answered at this point. It could be an interesting question in
a study building upon this work.

Secondly, the influence of the degree distribution and correlations between the vertex
degrees on the power-law Laplacian spectra was studied. To this end, random networks
were generated with the same degree distributions, degree-degree correlation functions,
and degree-dependent clustering as the evolved networks. The resulting reconstructed
networks, which are apart from the three input functions completely random, were
compared with the evolved networks. The Laplacian spectra of the reconstructed
networks fit the target power-law spectra surprisingly well. However, one main problem
is that almost all reconstructed networks consist of multiple connected components. The
resulting degeneracy of the zero eigenvalue has a strong influence on the spectrum. It
causes a large deviation from the power-law scaling in the most relevant regime of small
eigenvalues. In the ensemble of reconstructed networks, the effect is clearly visible by a
segregation in the distribution of spectral distances into well-separated groups with the
same number of connected components. This is a major issue since no method is available
to control the number of components in the reconstructed networks. From a dynamical
point of view, the comparison of the evolved and reconstructed networks becomes
problematic since global connectivity is a crucial aspect in processes like diffusion or
synchronization. As only 12 out of 104 realization of the reconstructed networks were
found connected, a restriction of the analysis to those is not an option. Nevertheless, the
reconstructed networks can be analyzed and it seems that they consist mainly of one large
and several small components with the largest component exhibiting a core-periphery
structure as well. Restricting the analysis to the largest components of the reconstructed
networks would be a possibility to overcome the problem. This, however, introduces
additional deviations from the prescribed degree distributions and correlation functions
and gives no control of the resulting network sizes. In order to further pursue the
investigation of the influence of the three functions on spectral properties, a continuation
can be the reconstruction of the evolved networks based on less information using only
one or two out of the three distributions of vertex degrees, two-point correlations, and
degree-dependent clustering. This should give a more precise picture of their individual
importance in the evolution.
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In the third part, the extent to which the power-law Laplacian spectra can be realized
by more homogeneous network structures was studied. Homogeneity in the vertex
degrees was introduced as additional external constraint. Starting from lattices and
corresponding realizations of regular random graphs, the networks were restricted to
maintain the degree regularity in the course of the evolution. Also in this case the
adaptive walk optimization succeeded to evolve the regular networks towards the target
spectra. The eigenvalues of the evolved networks fit the power-law scaling especially in
the small eigenvalue regime. Additionally, a high degeneracy of certain eigenvalues was
observed. The degenerate eigenvalues were found to be associated with an abundance
of symmetric motifs in the networks. The symmetry properties can be exploited
to construct quotient networks extracting the underlying backbone structures while
removing the (local) symmetries. This coarse-graining indeed purges the eigenvalue
degeneracies but preserves the overall power-law scaling. Thus, the extracted backbones
are identified as the major factors for the scaling in the Laplacian spectrum. They
exhibit sequences of linear segments connected into loops and dangling ends of different
lengths. For the lower spectral dimension, largely tree-like structures were found which
can be considered as “almost one-dimensional”. An interpretation of this observation is
that in the evolving networks too many edges are present to form the lower-dimensional
structures. The excess edges are effectively hidden in the symmetric motifs in order
to form a network with the relevant scaling properties on larger length scales. This is
consistent with the general understanding that the large scale structures are associated
with the small eigenvalues determining the long-time dynamical behavior.

Concluding, different strategies were found that lead to the prescribed power-law
scaling in the Laplacian spectrum. For the general case of evolution with global
connectivity as sole constraint, inhomogeneous network structures were observed. This
structural heterogeneity also seems to be imprinted in the degree correlation functions.
In the case of evolution under the additional constraint of degree regularity, on the
other hand, inhomogeneity in the spectra by high degeneracy of certain eigenvalues were
found. The question whether this is purely accidental or if there exists a duality between
inhomogeneous structure with homogeneous spectrum and homogeneous structure with
inhomogeneous spectrum cannot be ultimately settled here. If, however, such a general
symmetry relation could be found it would certainly be a very interesting question of
further research.

Throughout this work, the evolution towards a prescribed Laplacian spectrum was
motivated by the resulting anomalous diffusion behavior. The significance for network
dynamics, however, goes much beyond diffusion and random walks. As presented above,
also other important processes such as synchronization of oscillators belong to the class of
Laplacian dynamics. Although in this case the Laplacian eigenratio is usually considered
as the relevant quantity to characterize the synchronizability, the dynamics towards a
synchronized state are also determined by the whole spectrum. Even more general, the
method of network evolution developed in this thesis can, in principle, be applied to any
dynamical process on networks as long as the target behavior is prescribed in terms of
the eigenvalue spectrum of the (linearized) time evolution operator.
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A. Detailed Description of Algorithms

A.1. Configuration Model with Clustering

The algorithm to construct random networks with given degree distribution, two-
point correlations, and degree-dependent clustering used in chapter 4 builds upon the
algorithm by Ángeles Serrano and Boguñá (2005). Hence, this algrithm is explained first
in the following.

The algorithm is an extension of the configuration model including the degree-depend-
ent clustering coefficient C(k) and, indirectly, degree-degree correlations as predefined
quantities. As described by Ángeles Serrano and Boguñá, the input consists of the two
distributions P (k) and C(k). The generation of the random network is carried out as
follows.

1. Assignment of degrees and number of triangles.

a) An a priori degree sequence is chosen according to P (k). Each vertex is
assigned number of stubs from this given degree sequence.

b) Each class of vertices with degree k is assigned an a priori number of triangle
corners according to C(k).

c) All vertices begin with 0 associated edges and all degree classes with 0
associated triangles.

2. Closure of triangles. For this, the set of eligible components (EC) is defined as
the set of all stubs and edges which are to form more triangles. Those stubs and
edges which cannot form more triangles or would result in additional triangles of
already satisfied classes are removed from EC. The subset of eligible components
in a degree class k is denoted by EC(k).

The following steps to form new triangles are repeated until EC is empty or all
degree classes are satisfied.

a) A degree class k1 with unsatisfied number of triangles is chosen. The number
is drawn, in general, from a distribution Π(k). The choice of this distribution
allows for the introduction of degree-degree correlations. If no assortativity is
wanted, Π(k) is chosen proportional to the number of triangles to be formed
in class k.

The first vertex v1 of the triangle to be formed is selected by randomly
choosing an element from EC(k1) and a vertex connected to it. A second
component of v1 is drawn.
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b) Two more vertices are selected to close the triangle.

i. If the two selected components of v1 are both edges, the triangle is closed
by joining free stubs of two vertices v2 and v3 at the other ends of the
two edges.

ii. If the two components are one edge and one stub, the second vertex v2

is chosen as the one at the other end of the edge. A second component
of v2 is drawn. If it is an edge, vertex v3 at the other end of this edge
closes the triangle. Otherwise, a third vertex with now at least two free
stubs is selected as in a) to find v3.

iii. If the two components are both stubs, the second vertex v2 is chosen as
in a) and a second component of v2 is drawn. If one of the components
of v2 is an edge the vertex at the other end of is chosen as v3. Otherwise,
v3 with now at least two free stubs is selected as in a).

c) The triangle (v1, v2, v3) is formed by pairing the stubs to edges and removing
all newly build edges and triangles from the respective lists. The set of eligible
components is also updated.

3. Closure of remaining free stubs. The remaining stubs are matched as in the
original configuration model.

A.2. Two-Point Correlated Random Networks with Clustering

The algorithm by Ángeles Serrano and Boguñá was further extended by Pusch et al.
(2008) for the generation of clustered random networks with a given degree distribution
and, additionally, a given two-point correlation function P (j, k). Instead of working
with the distributions, the algorithm, as described by Pusch et al., requires discrete
realizations as input. Namely,

• the degree distribution as discrete frequencies P̂ (k), the number of vertices with
degree k,

• the two-point correlation function as discrete frequency distribution P̂ (j, k), the
number of edges connecting vertices with degrees j and k,

• the degree-dependent clustering as discrete frequency distribution T̂ (k) of triangle
corners with degree k.

The network generation is done in the following steps.

1. Assign the degrees of P̂ (k) to the vertices.

2. Create copies of P̂ (j, k), T̂ (k) and a list of triangle corner degrees with T̂ (k) entries
k to updated dynamically after the formation of any edges.

3. Form triangles by repeating the following steps until the triangle list is empty or
none of the needed edges can be found.
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a) Draw k1 from the triangle list and randomly choose a vertex v1 with degree
k1 which has free stubs.

b) Out of the eligible components of v1 draw a random element. If this is an
edge the vertex at the other end is v2. Otherwise, draw the second vertex v2

with degree k2 as in a) which fulfills P̂ (k2, k1) > 0.

c) Repeat b) for v2 to find vertex v3 with degree k3. Additionally, v1 and v3

have to be already connected or P̂ (k3, k1) > 0.

d) Form the triangle (v1, v2, v3) by introducing all edges which are not present
so far. Update all the dynamical quantities.

4. Create an edge list with all remaining P̂ (k1, k2) entries (k1, k2).

5. Draw random elements (k1, k2) from the edge list and create edges between
randomly chosen vertices with degrees k1 and k2, respectively.

Repeat this step until the edge list is empty or no vertices can be found matching
the needed degrees.

6. Randomly match all remaining stubs like in the original configuration model.

The algorithm generates random networks which approximately satisfy the degree
distribution and correlations prescribed by P̂ (k), P̂ (j, k), and T̂ (k). The deviations
from P̂ (k) and P̂ (j, k) are usually very small. For small networks and a low level of
clustering, it was observed that slightly more triangles are formed than expected. This
is due to the possibility to form additional triangles in steps 5 and 6.
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B. Numerical Libraries

The scientific work presented in this thesis is mainly based on numerical simulations. The
computer programs for these simulations and for the data analysis were implemented
from scratch making use of several numerical packages for standard as well as more
specialized computational tasks. In the following, the numerical libraries that were used
for the specific tasks are listed and, if available, references are given.

• The simulation programs for the network evolution algorithm are written in the C++
programming language making extensive use of the Standard Template Library.

• For the representation of networks and their convenient handling concepts and
algorithms from the Boost Graph Library (Siek et al., 2002) are used.

• Random numbers needed for the stochastic algorithms are generated by the
Mersenne Twister pseudorandom number generator (Matsumoto and Nishimura,
1998) implemented in the Boost Random Library.

• The calculation of eigenvalues and eigenvectors is done by the respective functions
from the GNU Scientific Library (Galassi, 2009) and LAPACK (Anderson et al.,
1999).

• For the generation of random networks with given degree-degree correlations and
clustering applied in chapter 4 the original implementation in C++ by Andreas
Pusch and Sebastian Weber (Pusch et al., 2008) is used.

• The calculation of automorphism groups and orbit decompositions for the
construction of quotient graphs in chapter 5 is done by the nauty package (McKay
and Piperno, 2014).

• The analysis of the simulation data is mainly implemented in the python program-
ming language. The NumPy (van der Walt et al., 2011) and graph-tool (Peixoto,
2014) libraries are used extensively.

• For the figures presented, the plots were made with the matplotlib python
library (Hunter, 2007) and network visualizations with the graphviz pro-
gram (Gansner and North, 2000).
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