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Abstract 

Hormone Nuclear Receptors are transcription factors that can respond to 

ligands, and modulate diverse biological functions, including development, 

metabolism, energy homeostasis, and reproduction. The Hormone Nuclear 

Receptor (HNR) DHR96 is a key regulator of the xenobiotic response, and is 

involved in cholesterol and Triacylglycerol metabolism. In humans, the Steroid 

X Receptor (SXR), the Constitutive Androstane Receptor (CAR) and the 

Vitamin D Receptor (VDR) are closely related to DHR96, and CAR and SXR 

share conserved function with DHR96 by modulating xenobiotic response and 

energy homeostasis.  

In C. elegans, DAF-12 and NHR-8 are the DHR96 orthologs. Interestingly, DAF-

12 is a key regulator of lifespan. The identification of the DAF-12 ligand, the 

dafachonic acids, and EMS generated daf-12 mutants made a great 

contribution to DAF-12 longevity studies. In adult worms ligand-insensitive daf-

12 alleles are long-lived. Although DHR96 was shown to bind to cholesterol, the 

natural ligand for DHR96 is unknown, thus DHR96 is classified as an orphan 

nuclear receptor as is the case for most HNRs in Drosophila.  

Interestingly, dhr96 has been identified as a target gene of the transcription 

factor dFOXO (Forkhead bOX-containing protein, subfamily O), a key regulator 

in the insulin/insulin-like growth factor signalling (IIS) pathway. IIS signalling is a 

highly conserved, nutrient-responsive pathway, and reduced IIS signalling 

increases lifespan across species and retards many age-related phenotypes. 

Insulin signalling blocks dFOXO transcriptional activity by nuclear exclusion, 

whereas reduced IIS signalling induces dFOXO transcriptional regulation of 

target genes.  

Reduced insulin signalling also affects fecundity, stress response, growth and 

metabolism. In D. melanogaster, extension of lifespan and increased xenobiotic 

resistance in IIS-reduced mutants are dependent upon dFOXO activity, while 

body size, fecundity and oxidative stress resistance are not affected. As many 

long-lived mutants are accompanied by an increased cytoprotective response, 
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we hypothesis that the improved ability to metabolize toxic compounds might 

lead to the dFOXO mediated lifespan extension. Indeed, RNA transcript profiles 

of long-lived IIS-reduced flies indicate that many genes involved in 

detoxification processes are up-regulated. Altered expression of detoxification 

genes has been also shown in long-lived IIS mouse and worm mutants. 

According to the DHR96 function in xenobiotic response and the DAF-12 

function in longevity, I investigated the role of DHR96 in ageing by using genetic 

tools in Drosophila. In addition, I studied the relationship between DHR96 and 

IIS signalling by epistatic analysis.  

 

My results show that ubiquitous over-expression of wild type as well as ligand-

insensitive dhr96, which carries the equivalent mutation as in ligand-insensitive 

daf-12 mutants, extended lifespan, increased stress resistance, and reduced 

fecundity. Moreover, I could dissect a role of DHR96 in the xenobiotic response 

downstream of the IIS pathways, while lifespan effects were independent 

between DHR96 and IIS signalling. 

I could also show that the innate immunity in long-lived dhr96-lbd over-

expressing flies was suppressed. This topic is of major interest, as suppressive 

effects on immunity are linked to aging in Drosophila. 
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Kurzzusammenfassung 

Kernrezeptoren sind Transkriptionsfaktoren, die durch die Bindung eines 

Liganden aktiviert werden und unterschiedlichste biologische Funktionen 

ausüben. Dazu gehören Entwicklung, Energie Homöostase, 

Stoffwechselprozesse und Reproduktion. Der Kernrezeptor DHR96 ist ein 

wichtiger Regulator im Prozess der Verstoffwechselung von Fremdstoffen 

(xenobiotischer Stoffwechsel). Des Weiteren ist DHR96 an Cholesterin und 

Triacylglycerin Stoffwechselvorgängen beteiligt. Im Menschen sind der Steroid 

X Rezeptor (SXR), der Konstitutive Androstane Rezeptor (CAR), und der 

Vitamin D Rezeptor (VDR) eng verwandt mit DHR96. Die Funktionen zwischen 

CAR, SXR und DHR96 sind konserviert, da diese den xenobiotischen 

Stoffwechsel und die Energie Homöostase modulieren.  

In C. elegans sind DAF-12 und NHR-8 ortholog zu DHR96. Interessanterweise 

ist DAF-12 ein wichtiger Regulator im Alterungsprozess. Die Identifizierung des 

DAF-12 Liganden, den sogenannten Dafachronic Acid (DA), sowie EMS 

generierte daf-12 Mutanten haben einen bedeutenden Beitrag zu DAF-12 

Langlebigkeitsstudien geleistet. In adulten Würmern sind liganden-insensitive 

daf-12 Mutante langlebig.  Auch wenn Interaktionsstudien gezeigt haben, dass 

DHR96 an Cholesterin binden kann, ist ein natürlicher Ligand von DHR96 noch 

unbekannt. Daher wird dieser wie auch die meisten anderen Drosophila 

Kernrezeptoren als „Orphan“ klassifiziert.  

 

Interessanterweise ist dhr96 ein Ziel Gen des Transkriptionsfaktors dFOXO 

(Forkhead-Box-Proteine), welcher eine Schlüsselkomponente des 

Insulin/Insulin-ähnlichen Wachstum Faktor Signalweges (IIS) darstellt. Der IIS-

Signalweg ist ein hochkonservierter Mechanismus, der durch die Ernährung 

moduliert wird. Eine reduzierte Signal Übertragung des IIS-Signalweges erhöht 

die Lebensspanne unterschiedlicher Spezies und verzögert zahlreiche 

Alterungsmerkmale. Die Insulin Signalfolge hemmt die transkriptionelle Aktivität 

des dFOXO Proteins, wohingegen ein reduzierter IIS-Signalweg die 

transkriptionelle dFOXO Regulation induziert.  
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Eine reduzierte Insulinsignalübertragung wirkt sich ebenso auf Fortpflanzung, 

Stressresistenz, Wachstum und Stoffwechselprozesse aus. Bei Fliegen 

Mutanten mit reduzierten IIS sind die erhöhte Lebensspanne und eine 

verbesserte xenobiotische Verstoffwechselung Effekte welche die Aktivität des 

dFOXO Proteins erfordern. Dagegen sind Effekte in Körpergröße, Fruchtbarkeit 

und oxidative Stressresistenz nicht von dFOXO beeinflusst. Da viele langlebige 

Mutanten von einer verstärkten zellschützenden Fähigkeit begleitet werden, ist 

eine Hypothese, dass die verbesserte Leistung toxische Stoffe abzubauen zu 

einer verlängerter Lebensspanne führt. Tatsächlich weisen RNA 

Transkriptionsprofile von langlebigen IIS-reduzierten Fliegenmutanten eine 

Hochregulation von zahlreichen Genen auf, die im Entgiftungsprozess involviert 

sind. Eine alterierte Expression von Entgiftungsgenen wurde ebenso in 

Langlebigkeitsstudien von IIS genetisch veränderten Mäusen und Würmern 

nachgewiesen. 

 

Aufgrund der Funktion des DHR96 Proteins in xenobiotischen Vorgängen und 

der Funktion des DAF-12 Proteins in der Regulation der Lebensdauer, habe ich 

unter Verwendung von genetischen Studien die Rolle von DHR96 im 

Alterungsprozess untersucht. Des Weiteren, habe ich den Zusammenhang 

zwischen DHR96 und dem IIS signalweg durch epistatische Analysen geprüft. 

Meine Resultate zeigen, dass eine ubiquitäre Überexpression des Wildtyp 

dhr96 sowie einer liganden-insensitive dhr96 Form die Lebenspanne und 

Stressresistenz erhöht, die Reproduktion verringert, und sich auf die Immunität 

auswirkt. Außerdem konnte ich eine Rolle von DHR96 in xenobiotischen 

Reaktionen innerhalb des IIS Signalweges nachweisen, wohingegen die 

jeweiligen Effekte in der Lebensdauer keinen direkten Zusammenhang 

aufweisen.    

Um die Regulation des DHR96 Proteins besser zu verstehen, habe ich in 

Kooperation mit Dan Magner und Shruti Chreti versucht den DHR96 Liganden 

zu identifizieren. Trotz der positiven Kontrolle, dass das DHR96 Liganden 

Sensor System funktioniert, war uns die Identifizierung des natürlichen 

Liganden nicht gelungen.   
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Chapter 1 General Introduction  

 

1.1 Ageing 
Ageing is a process that concerns almost all living organisms and is defined as 

a progressive decline in physiological function (Young, 1997). It is caused by an 

accumulation of internal damage and accompanied by a higher risk for diverse 

diseases like cancer, diabetes or neurodegenerative diseases (Lopez-Otin et 

al., 2013).  Internal damage can arise from different sources and contribute 

cooperatively to ageing. Cellular and molecular phenomenon promoting ageing 

are reviewed in nine “ageing hallmarks” stemming from a broad range of 

studies in diverse organisms. Ageing hallmarks fulfil different criteria. (1) One 

criterion is to show a characteristic force during natural ageing, whereas the 

other two criteria include experimental modulation to (2) promote or ideally also 

to (3) delay ageing. The nine hallmarks include genomic instability, telomere 

attrition, epigenetic drift, defective proteostasis, deregulated nutrient sensing, 

mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and 

altered intercellular communication (Lopez-Otin et al., 2013) (figure 1.1). 

 

 
Figure 1.1 Ageing hallmarks (modified from Lopez-Otin et al. (2013)). Proposed ageing 
hallmarks include genomic instability, telomere attrition, epigenetic alterations, loss of 
proteosasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem 
cell exhaustion, and altered intercellular communication. Primary hallmarks (red) have all 
negative effects, antagonistic hallmarks (blue) effects are dependent on their intensity, 
integrative hallmarks (green) are initiated by damages stemming from the other hallmarks. 
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(1) Damaging effects of nuclear DNA, mitochondrial DNA, or nuclear 

architecture induce genomic instability (Lopez-Otin et al., 2013). Deficits in DNA 

repair mechanisms, which cannot efficiently compensate for DNA mutations or 

alterations, shorten lifespan (Gregg et al., 2012). In contrast, experimental 

modulation providing correct chromosome segregation reveals beneficial effects 

for ageing and health (Baker et al., 2013).  

(2) Telomere shortening occurs due to gradual DNA damage at the 

chromosome ends, and the lack of the enzyme telomerase in the somatic cells, 

which would be able to replicate these ends (Lopez-Otin et al., 2013). 

Experimental studies extending the length of telomere or inducing the activity of 

telomerase in mice increases lifespan (Bernardes de Jesus et al., 2012; Bodnar 

et al., 1998).  

(3) Epigenetic alterations include histone modification, DNA methylation, 

chromatin remodelling or transcriptional remodelling (Lopez-Otin et al., 2013). 

One example of longevity modulators are the sirtuins that possess deacylase or 

mono-ADP-ribosyltransferase activity (Guarente, 2011). SIRT6 loss of function 

decreases lifespan, whereas induced activity increases lifespan in mice 

(Mostoslavsky et al., 2006).  

(4) The word proteostasis arises from the words protein and homeostasis, and 

dysfunction in protein homeostasis is associated with numerous diseases (Hartl 

et al., 2011). Quality control mechanisms evolved to ensure proteostasis. Main 

components are chaperone proteins that provide correct protein folding and the 

degradation of misfolded proteins via proteasomal (ubiquitin-proteasome 

system, UPS) or lysosmal (chaperon-mediated autophagy) pathways to prevent 

proteotoxicity of aggregated proteins. These quality control systems decline 

with ageing, leading to many (neurodegenerative) disorders (Morimoto and 

Cuervo, 2014). Modulation of key regulators, such as of heat shock factor 1 

(HSF-1), a transcription factor that induces the expression of heat shock 

proteins (Hsps) in response to stress, affects ageing. Over-expression of Hsf-1 

in worms extends lifespan (Hsu et al., 2003). 

(5) Caloric intake and nutrition have a significant impact upon lifespan and a 

key nutrient responsive pathway is the insulin/insulin-like growth factor 

signalling (IIS) pathway (Ribaric, 2012). Downstream targets of this pathway are 
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FOXO (Forkhead bOX-containing protein, subfamily O) transcription factors and 

mTOR signalling. Reduced insulin signalling extends lifespan across species 

and can retard many age-related phenotypes (Bonkowski et al., 2006; Cohen et 

al., 2006; Giannakou and Partridge, 2007; Kenyon, 2005; Selman et al., 2008; 

Tatar et al., 2003; Wessells et al., 2009). 

(6) Mitochondrial dysfunction includes effects from mitochondrial ROS, and 

reduced mitochondrial function (Lopez-Otin et al., 2013). The free radical theory 

postulated that age increases the production of mitochondrial free radicals, 

which cause damaging effects (HARMAN, 1992). Recent ROS studies propose 

contrary outcomes (Hekimi et al., 2011), showing lifespan beneficial effects for 

increased ROS levels in C. elegans and S. cerevisae, or showing no effects in 

mice where ROS levels were increased by genetic manipulation.  New roles of 

ROS are proposed, in which ROS is induced in response to stress conditions to 

sustain survival, but excessively high levels might induce toxic effects (Lopez-

Otin et al., 2013). 

(7) Cellular senescence describes a type of cellular arrest and is more frequent 

in aged than in young mice.  Telomere shortening, DNA damage of certain 

gene loci, mitotic, or oncogenic modifications can cause cellular senescence 

(Lopez-Otin et al., 2013). Prominent oncogenes are p16 INK4a and p53, two 

tumour suppressors regulating cell cycle. P16INK4a levels correlate with age, 

thus increased P16INK4a levels prohibit ageing (Krishnamurthy et al., 2004). 

However, mild increases of P16INK4a or P53 levels shows anti-ageing effects 

(Matheu et al., 2009; 2007).  Thus opposing effects might occur dependent on 

conditions.  

(8) The potential of stem cells to regenerate declines with age, and can be 

caused by different damages such as DNA damage or telomere attrition. Mice 

with Progeroid syndromes – a disease mimicking ageing- show extended 

lifespan upon transplantation with muscle-derived stem cells from young mice 

(Lavasani et al., 2012).  

(9) Intercellular communication of endocrine or neuronal signals alter with age, 

affecting a broad range of signalling pathways that might be accompanied with 

changes in the immune response, known as “inflammaging” (Salminen et al., 

2012). Aged organisms show chronic inflammation and a deregulation of the 
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immune response that might emerge due to effects in other ageing hallmarks 

(e.g. stem cell exhaustion) (Lopez-Otin et al., 2013). Inhibition of chronic 

inflammation using pharmacological inhibitors that repress the activity of the 

immune response regulator NF-κB extends lifespan in Drosophila 

(Shaposhnikov et al., 2011). Tissue-tissue communication is another issue of 

this hallmark that can lead to indirect ageing effects (Lopez-Otin et al., 2013).  

 

1.2 Insulin/insulin-like growth factor signalling (IIS) 
pathway 
The IIS pathway is a nutrient responsive mechanism to maintain nutrient 

homeostasis, growth, and survival and is induced by insulin, which is secreted 

from ß-cells of the pancreas, in response to increased blood glucose (Saltiel 

and Kahn, 2001). Insulin induces the uptake of glucose in adipose tissue and 

muscle for use and storage, and blocks the production of glucose in the liver. 

Moreover, it promotes cell growth and differentiation. 

Diabetes is becoming a chronic healthcare issue due to increasing obesity in 

developed, and increasingly, developing countries. Diabetes is a consequence 

of high blood sugar caused by the failure to produce insulin (Diabetes I) or by 

insulin resistance (Diabetes II) (Salsali and Nathan, 2006).  

 

The transduction of insulin signalling is initiated by the binding of insulin to the 

alpha-subunit of the insulin receptor, a homodimeric tyrosine kinase (Patti and 

Kahn, 1998). Ligand binding results in auto phosphorylation of the IR beta-

subunit, and subsequently in tyrosine phosphorylation of cellular proteins, 

including insulin receptor substrates 1-4 (IRS1, IRS2, IRS3, IRS4) (White, 

1998), SHC (Src homology 2 domain containing protein), and CBL (Casitas b-

lymphoma) (Pessin and Saltiel, 2000). Phosphorylated tyrosines of substrates 

display docking sites to the SRC homology 2 (SH2) domain of signalling 

partners, leading to the induction of diverse signalling cascade. Ras and MAP 

kinase signalling results in mitogenic and cell growth response (Boulton et al., 

1991). Another cascade is initiated by phosphoinositide 3-kinase (PI3K) through 

its SRC homology 2 (SH2) domain (Myers et al., 1992). PI3K phosphorylates 
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the membrane phosphorinositides (PIP2) that turns into phosphatidylinositol-3-

phosphates (PIP3). PIP3 can induce multiple signals; among them it activates 

together with phosphoinositide-dependent kinase 1 (PDK1) the serine kinase 

PKB/Akt (Alessi, 2001; Alessi et al., 1997). Glycogen synthase kinases 3 (GSK-

3), Forkhead family transcription factors  (FOXO), and S6-kinase/mammalian 

target of rapamycin (mTOR) pathway are key downstream components of 

PKB/Akt and affect gene expression, glucose metabolism, and 

glycogen/lipid/protein synthesis (figure 1.2) (Nakae et al., 1999; Saltiel and 

Kahn, 2001) . 

Akt inactivates glycogen synthase kinase 3 (GSK-3) by phosphorylation 

resulting in the induction of glycogen synthase and thus glycogen synthesis 

(Cross et al., 1995). Akt also induces GLUT-4 translocation to the cell 

membrane to enhance glucose uptake (Czech, 1995). Protein synthesis is up-

regulated via mTOR/S6-kinase signalling (Marygold and Leevers, 2002). FOXO 

transcription factors regulate diverse mechanism like metabolism, cellular 

proliferation, stress response and apoptosis (Tzivion et al., 2011a). 

 
Figure 1.2 The IIS/TOR signalling pathway (modified from Saltiel and Kahn (2001) and 
Partridge et al. (2011)). Inulin initiates insulin signalling through auto phosphorylation of the 
insulin receptor. PKB cascade is induced by the insulin receptor substrate via PI3K, PIP3 and 
PDK1. PKB inhibits FOXO nuclear translocation and GSK3, resulting in glycogen synthesis and 
cell survival. Enhanced protein synthesis is mediated via TOR/S6K pathway. 
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The IIS pathway is highly conserved and shown to have an important impact on 

lifespan in different organism. Pioneering studies in C. elegans revealed that 

mutation of age-1 and of the insulin receptor homolog daf-2 increases lifespan 

(Kenyon et al., 1993). Further studies of IIS downstream components reducing 

insulin signalling enhanced an anti-ageing effect in different organisms (chapter 

4) (Kenyon, 2010; Tatar et al., 2003).   

 

Drosophila has seven insulin-like peptides (dILPs) (Brogiolo et al., 2001), and 

transduction of the insulin signalling is mediated through conserved 

homologous components, including the Drosophila insulin receptor, the insulin 

substrate homolog CHICO, Drosophila PDK1 and AKT (Giannakou and 

Partridge, 2007; Kenyon, 2010). A key downstream target of AKT is the 

transcription factor dFOXO, the homolog of mammalian FOXO1, FOXO3a, and 

FOXO4.  Insulin signalling inhibits dFOXO transcriptional regulation by 

cytoplasmic translocation via 14-3-3 (Tzivion et al., 2011b).  

Genetic manipulation of IIS components directed to reduce IIS signalling 

extends lifespan, reduces fecundity, increases stress response, and affects 

metabolism. Reduced IIS results in activation of dFOXO by phosphorylation and 

nuclear translocation (Kenyon, 2010). Indeed, over-expression of dFOXO in the 

muscle or fat body (equivalent to the mammalian liver) is sufficient to extend 

lifespan (Demontis and Perrimon, 2010; Giannakou et al., 2004; Hwangbo et 

al., 2004). Interestingly, increased xenobiotic response and longevity of IIS 

reduced flies are dependent upon dFOXO, whereas the other IIS reduced 

phenotypes are dFOXO independent effects (Slack et al., 2011). Thus, the 

question arose whether dFOXO enhancement of longevity is a result of a higher 

ability to clear toxins. Hence, downstream components regulating detoxification 

are of major interest to test this hypothesis in epistatic analysis.  

The identification of the hormone nuclear receptor DHR96 as a direct target 

gene of dFOXO (Alic et al., 2011) led to the initiation of my thesis project. The 

interesting findings that DHR96 is a key regulator in xenobiotic response (King-

Jones et al., 2006), and moreover that the DHR96 homolog DAF-12 is a key 

regulator in C. elegans longevity (Mooijaart et al., 2005) give this protein an 

important position according to IIS reduced signalling. 
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1.3 Hormone nuclear receptors 
Hormone nuclear receptors (HNRs) act as transcription factors that directly 

regulate the expression of target genes in response to hormones. They are 

involved in diverse biological processes including reproduction, lifespan, 

diapause, detoxification and sex determination (Aranda and Pascual, 2001). 

The typical nuclear receptor structure, as shown in figure 1.3, is characterised 

by an N-terminal DNA-binding domain, a hinge region comprising the nuclear 

localisation signal, and a C-terminal ligand-binding domain (LBD) (Mangelsdorf 

and Evans, 1995). In addition to its function in ligand binding, the LBD induces 

dimerization, and for some it facilitates the recruitment of a chaperon-mediated 

complex whose dissociation is required for nuclear translocation.  

 
Figure 1.3 Nuclear Receptor (NR) Organisation. The structure of NRs are defined by a highly 
variable N-terminal A/B domain, a DNA-binding-domain containing two zinc fingers for 
specificity and weak dimerization, a hinge region harbouring the NLS region and the ligand-
binding domain, which is required for ligand binding, dimerization and interaction to chaperones. 
Transactivation region AF-1 contributes ligand-independent regulation of the NR. 
 

 

Ligands are mostly lipophilic hormones (e.g. sterols, bile acids and fatty acids) 

and can be generated via three different ways: (1) the active hormone is 

synthesized in a classical endocrine organ and enters the target cells, (2) the 

ligand is generated from a precursor or prohormone and is activated in the 

target cell, (3) the ligand may be a metabolite synthesized within the target cells 

(Aranda and Pascual, 2001). Localisation differs between nuclear receptors. 

Some are located in the cytoplasm, bound to the machinery of a chaperone 

complex. Ligand binding to the transcription factor induces conformational 

changes of the NR, leading to the dissociation from the complex, nuclear 

translocation, and the induction of target gene expression (Yamashita, 1998). 

Others are solely nuclear. Upon initiation of transcription, nuclear receptors 
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form multi-protein complexes, which target a specific DNA-sequences in target 

genes, known as the hormone response elements (Härd et al., 1990). 

Furthermore, many NRs are known to bind as homo- or heterodimers to the 

response elements (Forman and Samuels, 1990; King-Jones et al., 2006) 

(figure 1.4). 

Ligand binding to HNRs is not always inductive for target gene expression; 

ligand binding to nuclear receptors can also repress transcript expression 

(Bodenner et al., 1991; Carr and Wong, 1994). However, a ligand-independent 

pathway is also possible for nuclear receptors. Activity may be regulated by 

other means, for example by phosphorylation (Kato et al., 1995; White et al., 

1997).  

 

 

  
Figure 1.4 Regulation of Nuclear Receptor (NR) activity. NRs can be regulated in a (1-3) 
ligand-dependent or a (4) ligand-independent manner. The ligand can be synthesized in 
different ways: (1) it is synthesized in an endocrine organ and enters the target cell. (2) It enters 
the target cell as a pre-hormone, and has to be activated within the target cell. (3) It is 
generated within the target cell. (4) In a ligand-independent regulation, the Nuclear Receptor is 
regulated by posttranslational modification, for example by phosphorylation. Activated NRs bind 
to hormone response elements (HRE), and dependent on HRE they modulate expression of 
target genes in form of (A) monomers (B) homodimers(C) or heterodimers. 
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1.4 DHR96 in Drosophila melanogaster 
Studies concerning the nuclear receptor DHR96 have mostly focused on 

developmental research, where DHR96 functions in Triacylglycerol 

homeostasis (TAG) and in cholesterol metabolism (Horner et al., 2009; Sieber 

and Thummel, 2009). TAG homeostasis plays a key role in fat metabolism, and 

TAG represents a fat intermediate that gets stored in adipose tissues in time of 

abundant nutrients (Lusis and Pajukanta, 2008). In contrast, starvation leads to 

the release of TAG in the form of fatty acids as an energy supply. In this context 

it has been shown that TAG levels in adipose tissues are reduced in dhr96 null 

mutants, resulting in sensitivity to starvation. Dhr96 over-expression has the 

contrary phenotype of increased TAG levels and starvation resistance (Sieber 

and Thummel, 2009).   

Drosophila and C. elegans are not able to synthesize cholesterol, and their 

homeostasis is therefore completely dependent on food uptake (CLARK and 

BLOCK, 1959; Crowder et al., 2001). As cholesterol is a precursor of many 

ligands for hormone nuclear receptors, it is especially relevant in this context. A 

further important aspect is its critical role in health and disease, as defects in 

cholesterol homeostasis play a role in various diseases, for example in 

Alzheimer’s and cardiovascular diseases (Tabas, 2002). During larval 

development it has been found that cholesterol uptake is affected in dhr96 null 

mutants due to misregulation of npc1b, an ortholog of mammalian NPC1L1 

(Niemann-Pick C1-like 1). As a result, dhr96 null mutants show an accumulation 

of cholesterol when exposed to a high cholesterol diet. A low cholesterol level in 

the medium leads to decreased survival rate of the mutants (Horner et al., 

2009).  Furthermore, it has been suggested that a critical low cholesterol level 

induces activation of DHR96, as a protective mechanism to cholesterol 

deficiency (Bujold et al., 2010). 

In the adult stage, DHR96 functions in cholesterol and TAG homeostasis via the 

Drosophila LipA homolog magro and npc1b (Sieber and Thummel, 2009; 2012). 

Magro is highly expressed in the midgut (intestine), where it is secreted into the 

intestinal lumen to digest dietary triacylglycerol. In the dhr96 null mutant magro 

is down-regulated, thus dietary TAG and cholesterol esters cannot be 

hydrolysed, and accumulate in the lumen (Sieber and Thummel, 2012).  
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In addition, in the adult stage DHR96 is known to regulate the xenobiotic 

response (King-Jones et al., 2006). This topic will be introduced in chapter 3. 

 

1.5 Project aims 
That IIS pathway is involved in lifespan regulation has been show in different 

organisms, but how this effect occurs is not clear. In C. elegans, cytoprotective 

mechanisms represent important factors for the lifespan extension in IIS-

reduced worms. Indeed, many other long-lived animals also exhibit an 

increased cytoprotective response.  

In Drosophila, effects of reduced-IIS on xenobiotic response and lifespan are 

dependent upon dFOXO activity, a downstream key regulator of the IIS 

pathway. The question arose whether improved detoxification might confer 

longevity in IIS-reduced flies. Interestingly, dhr96 is a target gene of dFOXO 

and might represent an interesting candidate for xenobiotic response and 

longevity.  

 

As DHR96 is involved in xenobiotic metabolism, and studies from the dhr96 

homolog daf-12 in C. elegans revealed an important role in ageing, the first 

approach was directed to investigate the role of this hormone nuclear receptor 

in lifespan and in life history traits. The second approach included epistatic 

analysis between the IIS network and DHR96 to address the question of 

whether DHR96 might mediate IIS phenotypes. A further aim was to identify 

possible downstream targets that have relevance for DHR96 phenotypes. 

In addition, the known DAF-12 ligand, dafachronic acid, has facilitated different 

DAF-12 studies, whereas the ligand of DHR96 and its regulation is not known. 

Thus, we attempted to identify the DHR96 ligand (s).   

 

These studies are summarized in different chapters with the following structure: 

(1) Chapter 3 covers studies on dhr96 transgenic flies and their effects upon life 

history traits.  

(2) Epistatic analysis between DHR96 and the IIS network are reported in 

Chapter 4.   

(3) Chapter 5 includes studies on DHR96 downstream components.  
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(4) Results from chapter 5 initiated immunological studies on dhr96 transgenic 

flies. 

(5) DHR96 ligand identification is the topic of the last chapter 7. 
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Chapter 2 Materials and methods 

 

2.1    Nucleic acid-based methods 

2.1.1 Cloning 

2.1.1.1 Polymerase Chain Reaction (PCR) 
Polymerase chain reaction (PCR) was used as a technique to amplify target 

DNA using specific primer pairs. All primers were synthesised by the company 

Biomers, purified by HPLC, and dissolved in nuclease-free water to a final 

concentration of 100 pmol/µl. A complete oligonucleotide primer list used in this 

thesis is attached in supplement S.2.1. 

Pfu Polymerase (Promega) was used for PCR reactions requiring high fidelity.  

The standard protocol for Pfu DNA Polymerase-mediated PCR is summarized 

in table 2.1.1. The Recommended thermal cycling condition is described in 

table 2.1.2. The annealing temperature is dependent on primer pair properties 

and was adapted to 5°C below the lowest melting temperature of each used 

primer pair.  

 

 

Component Final 
concentration 

Volume 

Pfu Buffer with MgSO4 (10x) 1x 5 µl 

dNTP (10mM) 200 µM 5µl 

5’ primer (5 pmol/µl) 0,5 µM 5 µl 

3’ primer (5 pmol/µl) 0,5 µM 5 µl 

Template DNA 150 ng 2-5 µl 

Pfu Polymerase (2–3u/µl) 2–3u 1 µl 

H2Odd  to 50 µl  

Table 2.1.1 Standard protocol for PCR reaction using Pfu DNA polymerase 
(Promega).  
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Step Temperature  Time  Cycle number 

1. Initial Denaturation 95 °C 1 minute 1 

2. Denaturation 

    Annealing 

    Extension 

95 °C 1 minute 35 

42-65 °C * 45 seconds 

72 °C 1 minute per kb 

3. Final extension 72 °C 10 minutes 1 

4. Final hold 4 °C   

Table 2.1.2 Thermo cycler settings for PCR reaction. * Annealing temperature was 
adapted 5°C below melting temperature of primer pairs. 
 

For genotyping purposes, PCR reactions were performed using HotStarTaq 

Plus DNA Polymerase (Qiagen) (table 2.1.3) and carried out with the following 

PCR program, shown in table 2.1.4. 

 

Component Final 
concentration 

Volume 

HotStarTaq Plus Master Mix (2x) 1x 10 µl 

5’ primer (5 pmol/µl) 0,5 µM 2 µl 

3’ primer (5 pmol/µl) 0,5 µM 2 µl 

Template DNA 150 ng 2-5 µl 

H2Odd  to 20 µl  

Table 2.1.3 PCR reactions using HotStarTaq Plus DNA Polymerase (Qiagen). 
 

Step Temperature  Time  Cycle number 

1. Initial Denaturation 95 °C 5 minute 1 

2. Denaturation 

    Annealing 

    Extension 

95 °C 30 seconds 35 

42-65 °C * 30 seconds 

72 °C 1 minute per kb 

3. Final extension 72 °C 10 minutes 1 

4. Final hold 4 °C - - 

Table 2.1.4 Thermo cycler settings for HotStarTaq Plus DNA Polymerase 
mediated PCR reaction. * Annealing temperature was adapted 5°C below melting 
temperature of primer pairs. 
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2.1.1.2 In-Fusion® HD cloning 

The In-Fusion HD Cloning Kit allows fast, directional insertion of DNA 

fragments. Primers were designed for the gene of interest by using the GENtle 

program, but with an extension of 10-15 base pairs, which were complementary 

to the ends of the linearized vector.  Insert was amplified by PCR, the vector 

linearized by digestion (see chapter 2.1.1.3), and both products were isolated 

by gel extraction (see chapter 2.1.1.4). To obtain the concentration of the 

purified DNA fragments, 2 µl of each sample was tested on an agarose gel next 

to an appropriate DNA ladder with known concentration. The In-Fusion reaction 

was set up as shown in table 2.1.5. 

 

Component Volume 

In-Fusion HD Enzyme Premix 2 µl 

Linearized vector x µl (50-100 ng) 

Insert x µl (10-200ng)* 

H2Odd To 10 µl 

Table 2.1.5 InFusion reaction. * Volume was dependent on the size of the insert: <0.5 kb: 
10-50ng, 0.5 to 10kb: 50-100ng. 
 

The reaction was induced for 15 minutes at 50°C, and subsequently cooled on 

ice. DNA were transformed into bacteria as described below, and resulting 

colonies were tested by restriction digestion on an agarose gel. Where the 

fragmentation pattern was positive, samples were sequenced with 100% 

coverage to ensure fidelity.  

 

2.1.1.3 Restriction digestion 
To prepare DNA for cloning or analysis, DNA was digested by restriction 

enzymes (New England BioLabs, NEB), special endonucleases isolated from 

bacteria, which cleave DNA at specific sites. Digestions of vectors or control 

restriction digestion were conducted as shown in table 2.1.6. 
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Component Volume 

DNA (200ng-1µg) 2-10 µl 

10x NEB Buffer 5 µl 

Enzyme(s) 1 µl (each) 

H2Odd 50 µl 

Table 2.1.6 Digestion of DNA by restriction enzymes (NEB). 

Corresponding NEB Buffers to each restriction enzyme, and if required BSA 

were used according to the manufacturers’ instructions (NEB). Reactions were 

incubated at 37 °C for 1 hour. 

 

2.1.1.4 Agarose gel electrophoresis and plasmid purification 
DNA fragments were separated by length by running linear DNA (PCR 

products, digested plasmids) on a 1% TAE agarose gel (supplement S.1). To 

visualize DNA, the gel was stained with 0.5 µg/ml Ethidium Bromide (Sigma-

Aldrich) or SYBR®-Safe (1:10.000, Life Technologies).  Samples were mixed 

with 6x DNA loading dye buffer (thermo scientific), which contained the marker 

bromophenole blue. Dependent on the size range of the DNA fragments, 

different ladders were used to determine DNA size. The electrophoretic 

separation of DNA was performed at 80-120 V in 1x TAE buffer. DNA was 

visualized with UV-light and results were imaged by a gel documentation 

system (G-BOX, Syngene). 

For cloning or sequencing, DNA fragments of interest were excised from the gel 

with a sterile scalpel or razor blade. The DNA was subsequently purified from 

the agarose gel using the QIAquick® Gel Extraction Kit (Qiagen) according to 

the manufacturer’s instructions. 

 

2.1.1.5 Transformation 
In-Fusion ligation samples were transformed into XL2-Blue MRF' 

Ultracompetent (Stratagene) strains. Alternatively E. coli XL1-Blue competent 

cells (Stratagene) were used. To amplify plasmids, transformation in chemically 

competent One Shot TOP 10 (Invitrogen) was performed. A 100µl aliquot of or 

XL2-Blue or XL1-blue bacteria was thawed on ice for 10 min. 5, 10 and 15 µl of 
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the InFusion ligation was added to 100µl aliquots of cells and gently mixed. For 

the transformation into One Shot TOP 10 bacteria, 100ng plasmid was used in 

a 50µl aliquot of cells. After an incubation time of 30 minutes, cells were heat 

shocked for 30 seconds in a 42 °C water bath, and immediately placed back on 

ice for 2 minutes. 500 µl pre-warmed S.O.C medium was added to the cells and 

samples were incubated at 37°C for 60 minutes at 225 rpm in a thermomixer 

(Eppendorf). 50µl of the culture was spread on pre-warmed LB-plates 

(Lysogeny broth, supplement S.1) containing the appropriate antibiotic 

(ampicillin, kanamycin, 50-100 µg/ml). The plates were incubated at 37°C over 

night and single colonies were used for mini- or maxipreparation next day. 

 

2.1.1.6 Mini- and maxipreparation of plasmid DNA 
The minipreparation is a method to purify small amounts of DNA from E.coli 

cultures. Single colonies were inoculated in 2 ml selective LB-media, which 

contained the appropriate antibiotic, and incubated at 37 °C and 225 rpm in a 

thermomixer overnight. Bacteria were transferred to microcentrifuge tubes and 

pelleted at 8000g for 1 minute at 4 °C. To obtain DNA of high purity, the 

QIAprep Spin Miniprep Kit (Quiagen) was used according to the manufactures’ 

protocol, and DNA was eluted in 50µl nuclease-free water.  

 

Maxipreparation ensures isolation of higher DNA amounts. 2 ml starter cultures, 

as prepared for minipreparation, were amplified in 200-400ml selective LB-

media at 37°C and 225 rpm in an incubator shaker (New Brunswick Scientific) 

overnight. Bacterial cultures were harvested at 4°C and 6000g for 15 minutes 

(JA10.5000 Rotor, Beckmann centrifuge). DNA was purified by using the 

QIAGEN Plasmid Maxi Kit and following the manufacturer’s instruction. Plasmid 

DNA was eluted in 1 ml nuclease-free water.  
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2.1.2 RNA analysis 
2.1.2.1 RNA extraction 
RNA was extracted from Drosophila whole bodies and specific tissues to 

quantify gene expression. Tissues and bodies, which were stored at -80 or in 

liquid nitrogen until RNA extraction, were transferred to FastPrep™ Lysing 

Matrix tubes (MP Biomedical) and homogenized in 700 µl Trizol Lysis Reagent 

(Invitrogen) using the FastPrep®-24 instrument (MP Biomedical) at maximum 

speed for 20 seconds. Each sample was mixed with 200µl chloroform and 

incubated at room temperature for 3 minutes. After centrifuging for 15 minutes 

at 13500g at 4 °C, the upper clear phase was transferred into nuclease free 

tubes. RNA was precipitated by adding 1 volume of isopropanol and 1/10 

volume of 3M NaOAC, incubated at -80 °C for 40 minutes and pelleted by 

10.000 g at 4°C for 10 minutes. The RNA pellet was washed three times with 

ice-cold nuclease free 70% ethanol. To remove ethanol residue after the last 

washing step, pellets were air-dried. RNA was suspended in 20µl nuclease-free 

water. 

 

2.1.2.2 DNase treatment  
TURBO DNA-free™ Kit (Ambion) was used to remove genomic DNA 

contamination following manufacturer’s instruction. RNA concentrations and 

RNA quality were measured by using the NanoDrop 2000c Spectrophotometer 

(PEQLAB Biotechnologie GmbH) or the Eppendorf BioPhotometer plus 

instrument. Samples were diluted to an end concentration of 500 ng/µl 

 

2.1.2.3 cDNA synthesis 
The synthesis of cDNA from RNA was performed using the SuperScript® 

VILO™ cDNA Synthesis Kit, according to manufacturer’s instructions.  

Reactions were set up as shown in table 2.1.7, gently mixed and incubated first 

at 25 °C for 10 minutes, then at 42 °C for 60 minutes. The reactions were 

terminated by incubation at 85 °C for 5 minutes. 
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Table 2.1.7 VILO reaction to synthesise cDNA from extracted RNA samples.  

 

2.1.2.4 Quantitative real-time PCR (qRT-PCR) 
To quantify mRNA level of a gene of interest in a specific tissue or in the whole 

body, qRT-PCR analysis were performed by using the TaqMan® Universal 

PCR Master Mix No AmpErase® UNG (Applied Biosystems). TaqMan primers 

were provided by Applied Biosystems. A detailed list of used real-time primers 

is attached in supplement S.2.2. PCR reactions for each cDNA sample were 

conducted according to the protocol of the company and are summarized in 

table 2.1.8. Components were pipetted by a JANUS pipetting robot on a 384 

well plate. Depending on the number of candidates and cDNA samples, master 

mixes were prepared. Each cDNA-Primer sample was tested in quadruplets.  

 

Component Volume 

Primer 0,5 µl 

cDNA 1 µl 

TaqMan® Master Mix 5 µl 

Nuclease-free water 3,5 µl 

Table 2.1.8 Reaction for qRT-PCR using TaqMan® Universal PCR Master Mix and 
TaqMan probes. 
 

 

The PCR program as shown in table 2.1.9 was performed using the 7900HT 

Fast Real-Time PCR System (Applied Biosystems). 

 

 

 

Components Volume (20µl) Master mix (for 15 rxn) 

5X VILO™ Reaction Mix 4 µl 60 µl 

10X SuperScript® Enzyme Mix 2 µl 30 µl 

RNA (up to 2.5 µg) 4  µl - 

DEPC-treated water  10  µl 150 µl 
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Step Temperature  Time  Cycle number 

1. Initial Denaturation 95 °C 10 minutes 1 

2. Combined annealing 

and extension step  

 

95 °C 15 seconds 40 

60 °C 1 minute 

Table 2.1.9 7900HT Fast Real-Time PCR setting for qRT-PCR reaction 
 

2.1.2.5 Data analysis and statistics of qRT-PCR data 
Data was evaluated by using sequence detection system’s software 2.3 

(Applied Biosystems). Data were validated using the ΔΔCt method and 

normalized to different internal controls (Rpl32, Actin, α-Tubulin). Student’s t-

test was used to evaluate significance of data.  

 

2.2 Protein-based methods  

2.2.1 Protein extraction 
For proteomic analysis, 10 day old flies were collected in microcentrifuge tubes, 

snap frozen in liquid nitrogen and stored at -80°C. Protein from at least 15 

whole flies of each genotype was extracted by using RIPA buffer ingredients 

with 0.1% SDS.  Flies from each genotype were homogenised in 350µl lysis 

buffer with EDTA free protease inhibitor mix (7x concentration, Roche) by using 

a pestle and motor mixer (VWR international). Samples were incubated for 30 

minutes on ice and centrifuged for 10 minutes at 10.000 g at 4 °C.  Supernatant 

was transferred to new microcentrifuge tubes and protein concentration was 

measured subsequently by using bradford assay. 

 

2.2.2 Bradford assay 
A BSA standard curve, in a range of 0.25 to 10 µg/µl was used to calibrate 

extracted samples.  2µl of standard, a blank and sample was mixed each with 

200 µl bradford dye solution (BioRad). Measurement was performed with the 

Infinite M200 photometer plate reader (Tecan) by an absorption at 595 nm. The 

concentration of extracts was calculated in excel by adjusting to the calibration 
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curve.  Samples were mixed with SDS-sample lamelli buffer (Biomol) to a 

concentration of 3 µg/µl and heated at 95 °C for 5 minutes.  

 

2.2.3 SDS Gel electrophoresis 
Proteins were size-separated by SDS polyacrylamide gel electrophoresis (SDS-

PAGE), using 12% Mini-PROTEAN® TGXTM Gels with 15 wells and a capacity 

of 15 µl per well (BioRad). Separation was conducted with 30µg each sample at 

100 V for about 1 hours in a Tris/Glycin/SDS buffer (BioRad). To determine the 

size of proteins the Precision Plus Protein™ Dual Colour Standard ladder 

(BioRad) was used. 

 

2.2.4 Western Blot 
Samples were transferred from the SDS gel to a PVDF membrane (Amersham 

HybondTM–P, GE Healthcare) with a Trans Blot instrument (BioRad) in a 

TRIS/Glycine/Methanol Buffer (BioRad) following the manufacturer’s 

instructions. Protein transfer was controlled by staining the membrane with 

Ponceau S (Serva).  Blots were blocked with a 5% non-fat milk (Roth)/TBST 

buffer for one hour at room temperature. Membranes were incubated with 

primary antibodies over night at 4 °C on a shaker. Used antibodies and sera 

were diluted in 5% milk/TBST buffer and are listed in table 2.2.1. 

 

Antibody Dilution Company  Host 

Monoclonal Anti-α-

Tubulin 

1: 50.000 Sigma-Aldrich Mouse 

Anti-actin 1: 50.000 Sigma-Aldrich Rabbit 

Monoclonal anti-

FLAG M2 

1: 10.000 Sigma-Aldrich Mouse 

Anti-DHR96 serum 1:500 Janne Toivonen / Eurogentec  Rabbit 

Table 2.2.1 Antibody list 
 

Membranes were rinsed three times with TBST for 10 minutes, before 

incubating them with an appropriate second antibody (Invitrogen) for an hour at 
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room temperature.  Secondary antibodies were diluted 1: 50.000 in a 5% non-

fat milk buffer. After washing blots again three times with TBST for 10 minutes, 

membranes were developed with a standard ECL WB detection kit or a ECL 

plus WB detection kit (GE Healthcare) if increased sensitivity was required. 

Both reagents were used according to the protocol of the company and 

visualised with either a Luminescent Image Analyzer (Fujifilm) or a developer 

(AGFA, Curix60). 

 

 

2.3 Standard methods for Drosophila melanogaster 

2.3.1 Drosophila melanogaster strains 
The white Dahomey wolbachia plus (wDah w+) fly strain was used as a wild type 

stock. These flies contain the intracellular bacterium Wolbachia. All Drosophila 

lines were backcrossed for 8-10 generations into wDah w+ background. Fly 

strains are listed in table 2.2.2. 

 
 

Wild type, balancer and mutant flies  

Fly strain Reference Details 

White Dahomey 
wolbachia plus (wDah 
w+) 

(Grönke et al., 2010) Wild type Drosophila 
stock 

wDah w+, CyO Bloomington Drosophila 
Stock Center 

Balancer fly on the 2nd 
Chromosome, 
homozygous lethal, 
Curly wings 

wDah w+, TM3Sb Bloomington Drosophila 
Stock Center 

Balancer fly on the 3rd, 
Chromosome, 
homozygous lethal 

wDah w+, CyO, TM3Sb Sonita Afschar 
 

Double balancer on the 
2nd and 3rd Chromosome 

wDah w+, dfoxoΔ94 (Slack et al., 2011) dfoxo null mutation on 
the 3rd Chromosome 

wDah w+, dhr96Δ (King-Jones et al., 2006) dhr96 null mutation on 
the 3rd Chromosome 
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GAL4 driver lines   

Fly strain Reference Details 

wDah w+;  daughterless  
Gene-Switch 

(Tricoire et al., 2009) Ubiquitous expression of 
GAL4, Chromosome 2  

wDah w+; tubulin Gene-
Switch 

(Fernandez-Ayala et al., 
2009) 

Ubiquitous expression of 
GAL4, Chromosome 2 

wDah w+; mhc-GAL4 Bloomington Drosophila 
Stock 
Center 

Muscle-specific driver, 
Chromosome 3 

wDah w+;  daughterless  
Gene-Switch;  dfoxo 

Δ94 

Sonita Afschar 
 

Ubiquitous driver in a 
dfoxo null background 

wDah w+; mhc-Gal4/ 
dhr96 Δ 

Sonita Afschar 
 

Muscle-specific driver in 
a dhr96 null background 

wDah w+; dilp2-GAL4 
 

(Broughton et al., 2010) MNC-specific driver 
(median neurosecretory 
cell) 

UAS-responder lines 

Fly strain Reference Details 

wDah w+; UAS-dhr96-
R539C-D2 

J. Toivonen, Lab 
collaboration 

LBD-mutated UAS-hr96 
line on Chromosome 3 

wDah w+; UAS-dhr96-
WT-9M 

J. Toivonen, Lab 
collaboration 

Wild type UAS-dhr96 
line on Chromosome 2 

wDah w+; UAS-dhr96-
R539C-D2; dfoxo Δ94 

M. Piper (UCL, London), 
Lab collaboration 

LBD-mutated UAS-
dhr96 line in a dfoxo null 
background 

wDah w+; UAS-dhr96-
WT-9M; dfoxo Δ94 

M. Piper (UCL, London), 
Lab collaboration 

Wild type UAS-hr96 line 
in a dfoxo null 
background 

wDah w+; UAS-dfoxo (Giannakou, 2004) dfoxo inserted through 
attp40 sites into the 2nd 
Chromosome 

wDah w+; UAS-dfoxo; 
dhr96Δ 

Sonita Afschar 
 

UAS-dfoxo in a dhr96 
null background 

wDah w+; UAS-rpr;  (Broughton et al., 2010) 
 

UAS-reaper  

wDah w+; UAS-reaper; 
dhr96Δ 

Sonita Afschar 
 

UAS-reaper in a dhr96 
null background 

Table 2.2.2 Drosophila strains. 
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2.3.2 Drosophila melanogaster food media 
General fly stocks were kept on a standard sugar/yeast/agar medium (1x SYA 

medium) (Ashburner, 1989). Lifespan experiments were also performed on SYA 

medium with a higher yeast concentration (1.5x SYA medium).  The ingredients 

are summarized in table 2.2.3. Agar was boiled in distilled water first, then 

sugar and yeast were added, and mixture was re-boiled while stirring it. The 

media was cooled to 55°C and two anti-fungal reagents (nipagin and propionic 

acid) were added.   

 

Components 1 x SY-Medium 1.5 x SY-Medium 

Distilled water (ml) 700 700 

Agar (g) 15 15 

Sugar (g) 50 50 

Yeast (g) 100 150 

Water to add at the end (ml) 170 144 

Nipagin (ml) 30 30 

Propionic acid (ml) 3 3 

Table 2.2.3 Recipe for 1 liter Drosophila food media. 
 
Fly experiments with wild type flies, mutants or transgene flies using a 

constitutive driver were performed on 1x SYA medium in glass vials. Fly 

experiments with the need of an inducible driver (chapter 2.3.5) were arranged 

on 1.5x SYA medium in plastic vials (9.5 cm x 2.5 cm diameter) containing the 

drug Mifepristone (RU-486, Sigma-Aldrich, solved in ethanol) or ethanol. 

 

2.3.3 Fly stock maintenance 
Flies were kept in glass bottles (13.5 cm x 6 cm diameter) on a standard 1x 

SYA medium in a controlled temperature (CT) room with a 12:12 light:dark 

cycle, 65% humidity and a temperature of 18°C for general stocks and 25 °C for 

experiments.  
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2.3.4 Crossings and egg collection 
Drosophila melanogaster flies are virgins in the first 6 hours at 25 °C or first 16 

hours at 18 °C after they enclose (Ashburner, 1989). Therefore, bottles were 

cleared of flies, and virgins were collected within this time window. Females and 

males were separated on a gas pad under carbon dioxide anaesthesia 

treatment using a Binocular (Leica). Genders were distinguished by size and 

sex-specific structures. Crossings were performed in glass bottles on 1x SYA 

food at room 25°C over night. To standard larval density and age of 

experimental flies, parental flies were transferred to plastic cages with grape 

plates smeared with fresh yeast paste (S.I.Lesaffre). After an egg-laying time of 

12 hours, eggs were washed in PBS from grape plates into falcon tubes and 

were allowed to settle by gravity. Supernatant was removed and 20µl of 

compact egg/PBS solutions were dispensed in glass bottles, resulting in 

between 300-350 eggs per bottle (Clancy and Kennington 2001).  

 

2.3.5 The GAL4-UAS system 
The GAL4-UAS system is a powerful genetic tool, which allows the expression 

of a gene of interest in Drosophila melanogaster (Brand and Perrimon, 1993).  

The binary system, shown in figure 2.1, requires two fly lines: A driver line 

which harbours the yeast transcription factor gal4 under the control of an 

enhancer, and a UAS-responder line, which carries the gene of interest under 

the control of a UAS-promoter, a GAL4-binding site. Crossing these fly lines 

results in progeny containing both factors. The GAL4 protein binds to the UAS-

promoter site, which induces the expression of the gene of interest. Dependent 

on the enhancer, expression can be directed in the whole body, or in specific 

tissues. Ubiquitous driver lines can differ in their expression pattern. 
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Figure 2.1 GAL4-UAS system. The GAL4-UAS system allows expression of a gene of 
interest in whole bodies or specific tissues. A GAL4-driver line that express gal4 (a 
transcription factor in yeast) and a UAS-responder line that harbours the gene of 
interest under a UAS promoter are required for the GAL4-UAS system. Progeny 
contains both components, resulting in the expression of the gene of interest by the 
GAL4 transcription factor. 
 

 

The Gene-Switch GAL4-UAS system is an inducible system and allows 

expression in a time dependent manner (Osterwalder et al., 2001) (figure 2.2). It 

consists of GAL4-progesterone receptor fusion protein, whose transcriptional 

activity is dependent on the steroid RU486 (mifepristone, Sigma-Aldrich). This 

drug was dissolved in ethanol and added to the food media to an end 

concentration of 200µM. As a control, the same volume of ethanol alone was 

added to the food media.  
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Figure 2.2 The Gene-Switch (GS) GAL4-UAS system. This system allows the 
expression of a target gene (Gene X) in a time and tissue dependent manner. The drug 
RU486 induces activity of the GAL4 GS fusion transcription factor. 
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Chapter 3 DHR96 regulates life history traits 
in Drosophila melanogaster 

 

3.1 Introduction 
The worm homologue of DHR96, DAF-12, is a key regulator of longevity. In 

Drosophila, dhr96 null flies are characterized by a short lifespan (Janne 

Toivonen, unpublished data) and decreased xenobiotic resistance (King-Jones 

et al., 2006). Interestingly, dhr96 has been identified as a target gene of the 

transcription factor dFOXO (Alic et al., 2011), which is a key regulator in the IIS 

pathway and modulates lifespan in Drosophila. Thus I hypothesised that 

DHR96 might play a role in regulation of lifespan, possibly downstream of the 

IIS pathway. 

The goal of the work reported in this chapter was to investigate if over-

expression of dhr96 could increase lifespan and resistance to xenobiotics in 

Drosophila. A main aim was to discover if there is evolutionary conservation of 

the molecular and functional roles of DHR96 and the C. elegans homologue 

DAF-12. Ligand-insensitive daf-12 mutants extended lifespan (Fisher and 

Lithgow, 2006), and I therefore investigated the effects of over-expression for 

both wild type (dhr96) and a putative ligand-insensitive mutation version of 

dhr96 (dhr96-lbd).  

 
 
 

3.1.1 DHR96 is a key regulator of xenobiotic response in Drosophila  
The xenobiotic pathway is a protective system in almost all organisms, and 

essential for organismal survival (Jakoby and Ziegler, 1990). Xenobiotics are 

chemical compounds from the environment, such as drugs, poison or 

pollutants, and possibly endogenously generated lipophilic toxins (Niwa et al., 

2009). Xenobiotic metabolism leads to the neutralisation and clearance of 

toxins by detoxification enzymes (Jakoby and Ziegler, 1990).  
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The detoxification process is divided into three phases: (I) In the first phase, 

enzymes modify xenobiotic substrates by the insertion of a polar or reactive 

group. The most well-known group catalysing these reactions is the cytochrome 

P450 family. (II) In the second step, modified substrates are conjugated with 

anionic molecules. The most prominent group here is the family of the 

glutathione S-transferase (GST) (Jakoby and Ziegler, 1990) (Liska, 1998). (III) 

Because of the negative charge, transporter proteins can bind xenobiotic 

conjugates and excrete them out of the cell (Commandeur et al., 1995). 

 

In the adult stage, DHR96 mediates the xenobiotic response by regulating the 

expression of detoxification enzymes. Although dhr96 null mutants are fertile 

and viable, they show an elevated sensitivity to the xenobiotics phenobarbital 

and DDT (King-Jones et al., 2006). Phenobarbital is a xenobiotic drug that 

induces the expression of numerous detoxification genes (Waxman, 1999; 

Zelko and Negishi, 2000). In dhr96 null mutants many of these detoxification 

genes are misregulated (King-Jones et al., 2006). Accordingly, at the third larval 

stage, DHR96 protein is detected predominantly in tissues that function in 

metabolizing xenobiotic compounds including the Malphigian tubules, fat body, 

salivary glands and gastric caeca of the midgut (King-Jones et al., 2006). Dhr96 

mRNA levels in adult Drosophila flies are elevated in the gut, tubules and the 

ovary, whereas dhr96 is expressed at lower levels in the adult fat body 

(Chintapalli et al., 2007). 

 

Also in other model organisms, mutant animals were used to study xenobiotic 

function of dhr96 homologues. In the mammalian system, the DHR96 homologs 

CAR and PXR are well known as xenobiotic receptors, regulating expression of 

cytochrome genes in response to xenobiotic drugs like phenobarbital (Wei et 

al., 2002; Xie et al., 2000b). CAR and PXR deficient animals were used to 

investigate their function in the xenobiotic response, and to identify cytochrome 

target genes (Wei et al., 2002) (Willson and Kliewer, 2002).  

In C. elegans, daf-12, nhr-8 and nhr-48 are the dhr96 orthologues. NHR-8 

overlaps in its function with DHR96 to regulate the xenobiotic response. LBD-

deficient nhr-8 mutants were characterized as sensitive to chloroquine and 

colchicinen (Lindblom et al., 2001). Moreover, long-lived daf-12 mutants reveal 
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also increased stress resistance (Fisher and Lithgow, 2006). In deed, many 

long-lived animals show improved xenobiotic resistance (chapter 4.1.3 

Xenobiotic response and Ageing). Hence, xenobiotic metabolism displays an 

important issue, as DHR96 is a key regulator in detoxification metabolism and 

possibly involved in ageing.  

 

3.1.2 Life history traits and adult longevity in C. elegans  
DAF-12, the C. elegans DHR96 homologue, regulates various life history traits, 

including developmental timing, arrest at the larval diapause, and adult 

longevity  (Antebi et al., 2000; Gerisch et al., 2007; Bethke et al., 2009). The 

identification of the DAF-12 ligand, the dafachronic acids (Motola et al., 2006), 

has made a decisive contribution to understanding how DAF-12 activity affects 

life history traits and adult longevity. 

 

Biosynthesis of DAF-12 ligand in C. elegans is dependent on environmental 

conditions, and its binding to DAF-12 is responsible for the switch between 

dauer formation and reproductive growth during larval development (figure 

3.1.1) (Antebi et al., 2000; Gerisch et al., 2007a). In unfavourable situations 

(e.g., stress, starvation, overcrowding), reduced IIS and TGF-ß signalling result 

in complete or partial inhibition of DAF-12 ligand production in the cell, and 

DAF-12 remains in a ligand-unbound state. Under these conditions the nuclear 

receptor is associated to its co-repressor DIN-1 and leads to dauer diapause, a 

long-lived and stress resistant stage (long life history). In contrast favourable 

conditions activate IIS and TGF-ß signalling, that in turn induce biosynthesis of 

the dafachronic acids (Gerisch et al., 2007a; Riddle et al., 1981). There are two 

key regulators involved in DAF-12 ligand production, the Rieske-like 

oxygenase/DAF-36, which acts in the first step of cholesterol modification into 

7-dehydrocholesterol, and DAF-9, which catalyses the last step of the 

dafachronic acid synthesis (Jia et al., 2002; Motola et al., 2006; Wollam et al., 

2011). Ligand binding activates DAF-12 via conformational changes that 

subsequently induce the expression of genes that promote reproductive 

development and increased ageing (short life history).  
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Figure 3.1.1 DAF-12 regulation of dauer longevity by (A) favourable or (B) unfavourable 
environment. Modified from Rottiers and Antebi (2006). (A) A favourable environment 
promotes dafachronic acid (DA) production via DAF-36 and DAF-9. DA binding to DAF-12 
induces expression of genes that promote reproductive development and short life. (B) In the 
absence of the ligand, DAF-12 is bound to the co-repressor DIN-1, inducing stress resistance 
and longevity.  
 

 

 

In the adult stage, signals from the germ line are involved in the regulation of 

adult longevity (figure 3.1.2). The C. elegans gonad consists of four precursor 

cells, Z1-Z4. The germ line emerges from Z2 and Z3, whereas somatic gonad 

arises from Z1 and Z4 cells. Removal of germ stem cells result in a 30-60% life 

span extension (Arantes-Oliveira et al., 2002; Hsin and Kenyon, 1999). This 

effect is not caused by sterility of the worms, as ablation of all four precursor 

cells does not affect lifespan (Kenyon et al., 1993). Only the ablation of the 

germ line precursor (Z2 and Z3) enhances lifespan (Hsin and Kenyon, 1999).  

Transcriptional activity of DAF-12 and DAF-16 are required for the increase in 

lifespan of germ line ablated worms (Hsin and Kenyon, 1999). Here, DAF-12 

mediated longevity requires ligand, as shown by the dependency upon DAF-36 

and DAF-9 (Gerisch et al., 2007a; Rottiers et al., 2006).  
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In wild type worms, DAF-9 activity is inhibited in the somatic gonad by signals 

from the germ line. As a consequence, DAF-12 signalling is repressed due to 

diminished ligand synthesis in the somatic gonad. However, in long-lived 

animals with an ablated germ line, DAF-9 repression is abrogated, and 

synthesised dafachronic acid induces DAF-12 activity. In parallel, ablation of the 

germ line induces DAF-16 transcriptional activity by nuclear translocation in the 

intestine.  Both transcription factors, DAF-12 and DAF-16, contribute to the 

lifespan extension in these animals.  

Although DAF-16 and DAF-12 signalling are modulated in an independent 

manner, the pathways involved are suggested to be co-dependent for the 

lifespan extension of worms with ablated germ line (Berman and Kenyon, 

2006). 
 

 

 

 

 

 

 

 
Figure 3.1.2 Germ line signals regulate adult longevity.  Description see next page. 
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Figure 3.1.2 Germ line signals regulate adult longevity.  (A) In wild type worms signals from 
the germ line inhibit the synthesis of DAF-12 ligand, the dafachronic acids (DA), and DAF-16 
signalling. (B) Ablation of the germ line gonad extends adult longevity by induced DA synthesis 
and activation of DAF-12. Furthermore inhibitory effect on DAF-16 signalling is abrogated; thus 
DAF-16 induced activation promotes to an enhanced lifespan.  
 

 

Although germ line longevity is enhanced by ligand-bound DAF-12, a mutation 

in the ligand-binding domain, which interrupts the ligand interaction, extends 

lifespan and increases resistance to oxidative stress (Fisher and Lithgow, 

2006). Daf-9 null mutants show a similar phenotype to the DAF-12 ligand-

insensitive mutant, which is described as a weak constitutive partial dauer 

phenotype daf-c (Gerisch et al., 2001; Riddle et al., 1981). Larval daf-9 null 

worms survive to give rise to adults that are long-lived (Gerisch et al., 2001; Jia 

et al., 2002). However, this effect is dependent upon DAF-12 and its co-

repressor DIN-1 (Ludewig et al, 2004). Remarkably, hypomorphic mutations of 

daf-9 and daf-36, in contrast, can decrease lifespan, suggesting that regulation 

is highly complex (Gerisch et al., 2007b).  
 

Furthermore, adult longevity regulated by DAF-12 signalling is dependent on 

temperature. Although liganded DAF-12 enhances lifespan in the germ line 

ablated worms, unliganded DAF-12 activity together with the co-repressor DIN-
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1S increases longevity at 15°C (Gerisch et al., 2007a). However, at 20°C 

unliganded DAF-12 worms are short-lived.  

 

Drosophila DHR96 shares characteristics with DAF-12. Worms with predicted 

daf-12 null-mutations are short-lived and show the daf-d phenotype, a stage in 

which worms are unable to enter the long-lived dauer larvae form (Riddle et al., 

1981).  
 

3.1.3 Daf-12 mutants 
In worms, daf-12 mutants were characterized for lifespan traits. Interestingly, 

exchange of a single amino acid in the ligand-binding domain (R539C) of daf-

12, which is predicted to interrupt binding (Fisher and Lithgow, 2006), results in 

a lifespan extension. As different daf-12 alleles cause opposing phenotypes, it 

is essential to introduce DAF-12 and daf-12 mutants. 

 

For wild type daf-12, three different isoforms has been identified (12A1, 12A3 

and 12B), modulating different nuclear receptor functions. Two of them contain 

DNA- and ligand-binding domains, whereas one only contains a LBD (isoform 

12B) (Antebi et al., 2000). The expression pattern of a daf-12 fusion construct 

with gfp (Chalfie et al., 1994), shows that it is present in tissues, including 

epidermis, vulva, somatic gonad, intestine, pharynx, sex myoblasts, as well as 

in tissues with no known DAF-12 role, including nervous system and body wall 

muscle.  Its expression is detected throughout lifespan, but decreased transcript 

levels are reported in the larval dauer (Antebi et al., 2000). It is suggested that 

isoforms A1 and A2 are required for dauer formation in certain tissues or at 

specified time points, whereas the B isoform might have an autoregulatory 

function (Snow et al).  

 
Mutants of daf-12 generated by ethylmethanesulfonate (EMS) mutagenesis 

lead to various dauer phenotypes, thus a constellation of daf-12 alleles in six 

classes, shown in supplement S.3.1, has been established (Antebi et al., 1998). 

Class 6, which includes the mutation in the ligand-binding domain (R539C), 

show a daf-constitutive phenotype and an inhibition of gonadal heterochrony 



Chapter 3   

 42 

(Antebi et al., 2000). The affected amino acid of the R539C mutant is located in 

Helix 3 of the ligand-binding domain (12 helices in all). Comparison with related 

mammalian nuclear receptors with known LBD crystal structure revealed strong 

conservation of helices 3-5, 8 and 12 in the LBD (Antebi et al., 2000). 

Remarkably, the double mutant allele rh61rh411, containing the R539C 

mutation, and in addition a mutation in the DNA-binding domain, results in 

mutants characterized as short-lived and show an opposing phenotype (Fisher 

and Lithgow, 2006). This suggests that lifespan extension of ligand-insensitive-

mutants is dependent on subsequent regulation of target gene function, which is 

attenuated, when the DNA-binding function is affected.  

Alignments of the daf-12-DBD to DBDs of other related nuclear receptor 

identified nhr-8 (59%) and nhr-48 (79%) as the closest C. elegans nuclear 

receptors (Sludder et al, 1999), and dhr96 (63%), vertebrate PXR (57%) and 

VitD receptor (52%) as the closest orthologous DBD within the nuclear receptor 

family (Antebi et al., 2000). Drosophila dhr96, C. elegans daf-12, nhr-8 and nhr-

48 share a sequence of 13 residues, which comprises the ESCKAFFR helix 

(Luisi et al, 1991; Schwabe et al, 1993). This feature functions to contact 

hormone response elements (HRE), which are short DNA binding sites in the 

genome. Due to the conserved sequence, HRE might be equal or similar 

between the NRs. The related mammalian NRs differ in the DNA recognition 

site (EGCKG), suggesting that the ESCKA family evolved after the metazoan 

radiation.  

Alignments of the LBD sequences show that dhr96 (40%), nhr8 (36%), 

Drosophila ecdysone receptor (34%), and vertebrate thyroid hormone receptor 

(31%) are most closely related to daf-12 LBD (Antebi et al, 2000). The residue 

responsible for life span extension, is located in helix 3. This helix together with 

helices 4-5,8 and 12 are regions with the highest conservation. Although it is 

known that nuclear receptors can act in a ligand-independent manner, the 

reported similarities in the LBD, and the fact that for many DHR96 orthologues 

ligands are already identified, enhance the likelihood that DHR96 activity is 

modulated by a ligand. 

 

Based on the DAF-12 studies in C. elegans, two UAS-lines were used for the 

experimental approach in Drosophila, one which contains the wild type dhr96, 
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and one which contains the LBD-mutated dhr96 with the daf-12 equivalent 

mutation (R539C) (alignment see supplement S.3.2).  
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3.2 Materials and methods  
 

3.2.1 Drosophila stocks  
Two UAS-HR96 lines, generated by Janne Toivonen (UCL, London), were used 

for experiments. The first transgene line harbours the dhr96 wild type construct 

on the second chromosome, integrated randomly by P-element insertion. The 

second transgene contains a UAS-HR96-R539C construct on the third 

chromosome, which is mutated in the ligand-binding domain. The mutation is 

equivalent to the C. elegans long-lived daf-12 rh274 line, which is ligand-

insensitive (Fisher and Lithgow, 2006). The amino acid that is exchanged in this 

transgene, is conserved between dhr96, daf-12 and nhr-8. Thus, UAS-HR96-

R539C might represent a ligand-insensitive construct. Also here, the P-element 

was integrated randomly.  Both UAS-lines and driver lines (daughterless GS 

and tubulin GS) were backcrossed for 10 generation into a white Dahomey 

Wolbachia plus (wDah w+) background. The cytoplasmic transmission of the 

Wolbachia bacteria occurs through female flies. Thus, the first crossing was 

done between wDah w+ virgin females and males of the fly lines of interest. All 

the following crossings were conducted between UAS- or driver virgins with 

wDah w+ males. For each backcross ≥30 virgins were mated with ≥30 male flies. 

To obtain homozygous fly lines, flies were crossed with the appropriate 

backcrossed balancer: CyO for lines containing an insert on the second 

chromosome and TM3Sb for transgenes on the third chromosome. 

 

3.2.2 Lifespan assay 
150 virgins were crossed with 80 male flies in glass bottles containing 1x SYA 

food, supplemented with live yeast (S.I.Lesaffre). The next day, flies were 

transferred to plastic cages to lay eggs on grape plates, supplemented with 

yeast paste, over night. Eggs were squirted into new bottles to ensure standard 

density of larvae (see chapter 2.3.4). After 8 days, bottles were emptied in the 

evening and 16 hours after clearing newly eclosed flies were transferred to 

fresh 1x SYA food and incubated at 25°C for 2 days to mate. 200 experimental 

flies per crossing were sorted under carbon dioxide anaesthesia treatment into 
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narrow plastic vials containing 1.5x SYA food with the drug RU486 or an 

equivalent amount of ethanol.  Gas treatment was standardised, with a 

maximum treatment time of 4 minutes. Flies were separated by sex and 10 

female or male flies were allocated per vial. The sorting day was classified as 

day 0 of the lifespan experiment. 

All fly cultures were kept at 25 °C on a 12:12 light:dark cycle and 65 % humidity. 

Experimental flies were transferred to new vials three times per week and dead 

flies were counted.  

 

3.2.3 Stress assays 
Flies for stress assay analysis were prepared the same way as for lifespan 

experiments. At least 120 flies from each crossing were sorted according to 

their gender into wide plastic vials. 20 flies were placed per vial containing 

ethanol or the drug RU486 and flipped three times a week. Flies were assayed 

for stress resistance at the age of 10 days. 

Drugs were supplemented to 1.5x SYA food after cooling it to 55°C. Fresh 

stress media was used for experiments, with a volume of 6ml per vial. 

 

3.2.4 DDT and phenobarbital assay  
DDT (Dichlordiphenyltrichlorethan; Greyhound) was dissolved in 100% ethanol 

at 275mg per litre 1.5x SYA food was used for experiments.  Phenobarbital was 

dissolved in ethanol and prepared in the food to an end concentration of 5% 

(w/v). 

Because of the toxicity of drugs, dispensing was performed under the hood. 

Flies exposed to drugs were not tipped into new vials as flies died within a few 

days and no progeny developed. Dead flies were counted every 4-8 hours 

during the day. 

 

3.2.5 Hydrogen peroxide (H2O2) assay 
H2O2 (Sigma Aldrich) was not prepared in SYA media due to indications that a 

component in the SYA food quenches the effect of this drug (unpublished data).  

5% H2O2 was cooked in 1% agar. 
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3.2.6 Starvation assay 
For starvation analysis, media without yeast and sugar was cooked. 1% agar 

(Sigma Aldrich) was boiled in water and dispensed into vials once it cooled 

below 60°C.  

 

3.2.7 Fecundity assay 
Fecundity from the same 5 vials of lifespan flies was measured at different time 

points throughout the lifespan. Female flies were exposed to new food to lay 

eggs for 16 hours. After removing them, the number of eggs was counted by 

using a hand counter under a microscope. Vials which were not analysed 

immediately were stored at -20°C and processed at a later date. Fecundity was 

measured by the number of eggs produced by female Drosophila flies in 16h 

and data display the cumulative eggs laid per female fly. Significance of data 

was tested by Wilcoxon rank test. 
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3.3 Results  
 

3.3.1 Over-expression of dhr96 and dhr96-lbd extended lifespan, 
increased stress resistance, and reduced fecundity in Drosophila 
females 
 

3.3.1.1 Over-expression of dhr96 in adult Drosophila flies using a 
daughterless GS driver 
Constitutive over-expression of dhr96 and dhr96-lbd in the whole body by using 

a daughterless driver resulted in lethality during development (Janne Toivonen, 

see figure 3.3.1).  To avoid developmental lethality and facilitate investigation of 

ageing, studies on dhr96 by the inducible Gene-Switch (GS) system were 

performed.  

 

 
Figure 3.3.1 Constitutive over-expression of dhr96 in the whole body caused 
developmental lethality. Experiment was performed by Janne Toivonen (UCL, London). Over-
expression of (A) dhr96 (DHR96WT) or (B) dhr96lbd (DHR96LBD) by using the daughterless-Gal4 
driver revealed lethality in different stages of Drosophila development, and few survivors. Lower 
expression level at 18°C were increased for survival during the development. 
 

For functional analysis in adult flies, dhr96 and dhr96-lbd were over-expressed 

using the daughterless GS driver. Experimental flies used for qRT-PCR, 

lifespan, stress, and fecundity analysis (see below) stem from the same 

parental crossings.  

 

Transcript levels of dhr96 were controlled by qRT-PCR and revealed significant 

dhr96 induction in both dhr96 and dhr96-lbd over-expressing flies (figure 3.3.2, 
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p-value ***<0.001, Student’s t-test). Dhr96 transcript levels were induced by 

about 10-fold in dhr96 over-expressor, and about 13-fold in dhr96-lbd over-

expressing flies.  

Wild type dhr96 over-expressor showed a higher induction compared to ligand-

mutated dhr96 over-expressor. However, this difference was not significant (P-

value: 0.07). 

 
Figure 3.3.2 Dhr96 transcript levels in dhr96 and dhr96-lbd over-expressing females. 
Ubiquitous over-expression of wild type dhr96 (UAS-HR96) or ligand-insensitive dhr96 (UAS-
HR96LBD) significantly induced dhr96 expression (p-value ***<0.001, Student’s t-test). Dhr96 
transcript levels were induced by 10-fold in wild type dhr96 over-expressor, and by 12.5-fold in 
dhr96-lbd over-expressor. 

 

3.3.1.2 Over-expression of dhr96 and dhr96-lbd using a daughterless GS 
driver extended lifespan of Drosophila females  
Over-expression of dhr96 (UAS-HR96) or LBD-mutated dhr96 (UAS-HR96LBD) 

by using the daughterless Gene-Switch driver (da-GS) extended longevity 

significantly for both transgene lines in female flies (figure 3.3.3 A, p-value 

***<0.001, Log Rank Test). Median lifespan was increased by 15,97% and 

maximum lifespan by 9,4% in dhr96 over-expressing flies, when compared to its 

non-induced ethanol control. Dhr96-lbd over-expression extended median 

lifespan by 20,3% and maximum lifespan by 13,3%. There was also no 

significant difference between dhr96 and dhr96-lbd over-expressing flies. 

There was no significant effect on lifespan between UAS- and driver controls on 

ethanol and on RU (figure 3.3.3 A and B).  
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Figure 3.3.3 Dhr96 over-expression extends D. melanogaster lifespan. (A1) Ubiquitous 
over-expression of wild type dhr96 (UAS-HR96) or ligand-insensitive dhr96 (UAS-HR96LBD) 
significantly extended lifespan (Log Rank Test, p-value ***<0.001). Expression was induced in 
the adult stage by using the daughterless Gene-Switch system (da-GS). RU feeding, marked as 
(+), induces gene expression. Control vials contained equivalent concentrations of ethanol (-). 
(A2) UAS-control flies on ethanol and RU did not show any effect on lifespan. 
 

3.3.1.3 Over-expression of dhr96 and dhr96-lbd using a daughterless GS 
driver reduced fecundity in adult Drosophila females  
Fecundity was significantly reduced in dhr96 and dhr96-lbd over-expressing 

flies compared to non-induced ethanol controls, or to driver controls (figure 

3.3.4) (p-value ***<0.001, Kruskal-Wallis test, Dunn's test for multiple 

comparisons). The reduction in fecundity in the first and second time point (7 

A1

A2
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and 10 days) was significantly greater for dhr96 over-expressing flies than for 

LBD-mutated dhr96 over-expressing flies (p-value ***<0.001, Kruskal-Wallis 

test).  

 

 
Figure 3.3.4 Dhr96 or dhr96-lbd over-expression reduces fecundity. Driver control did not 
show any effect on fecundity when exposed to RU, whereas both over-expressor lines (UAS-
HR96/da-GS (+) and UAS-HR96LBD/da-GS (+)) showed significantly reduced egg laying (p-
value ***<0.001, Kruskal-Wallis test, Dunn's test for multiple comparisons). 
 

 

3.3.1.4 Over-expression of dhr96 and dhr96-lbd using a daughterless GS 
driver increased stress resistance of female flies 
As DHR96 is involved in xenobiotic response (King-Jones et al., 2006), we 

investigated the effect of dhr96 and dhr96-lbd in stress response.  

RU-induced dhr96 and dhr96-lbd over-expressing flies and controls were 

exposed at the age of 10 days to drugs and chemicals. Interestingly, dhr96 and 

dhr96-lbd over-expression increased resistance to different xenobiotic drugs 

(figure 3.3.5 and 3.3.6). 

Over-expression of both lines increased survival to the xenobiotics DDT (figure 

3.3.5) and phenobarbital (figure 3.3.6 B) (p-value ***<0.001, Log Rank Test). 

Interestingly, the increase in resistance to phenobarbital was significantly higher 

in dhr96-lbd over-expressing flies than in the wild type dhr96 over-expressing 

flies (p-value ***<0.001, Log Rank Test). Furthermore, only the dhr96-lbd over-

expressor line showed a significant increase in resistance to H2O2 (figure 3.3.6 

A). Survival in the dhr96 over-expressor remained unchanged compared to 

non-induced and driver controls, when exposed to H2O2. 
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Figure 3.3.5 Over-expression of dhr96 and dhr96-lbd by the daughterless GS driver 
increased resistance to DDT. (A) RU-induced expression of dhr96-lbd (UAS-HR96LBD/ da-
GS) resulted in DDT resistance compared to driver- and UAS-controls on ethanol or RU. (B) 
The same effect was observed for dhr96 over-expression (UAS-HR96/da-GS) (Log Rank Test, 
p-value ***<0.001).  
 

 

 

 
Figure 3.3.6 Responses of dhr96 and dhr96-lbd over-expressors to phenobarbital and 
H2O2. (A) Only the RU-induced expression of dhr96-lbd resulted in significant H2O2 resistance 
(Log Rank Test, p-value ***<0.001) whereas dhr96 over-expressor remained unchanged 
compared to its controls. (B) Both over-expressor lines showed significantly higher resistance to 
phenobarbital (PB) (Log Rank Test, p-value ***<0.001). Dhr96-lbd over-expressor showed 
significant higher survival compared to dhr96 over-expressor. 
 

Dhr96 over-expressing flies were sensitive to starvation (figure 3.3.7 B). 

Survival was significantly reduced in these flies compared to driver and UAS 

controls (p-value ***<0.001, Log Rank Test). In two repeats dhr96-lbd over-

expressing flies showed significantly reduced survival to its ethanol control, but 

A B

A B
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the reduction did not reach significance when compared to the driver control on 

ethanol or RU (figure 3.3.7 A). 

 
Figure 3.3.7 Dhr96 over-expressor was sensitive to starvation. (A) Dhr96-lbd over-
expressing flies were significantly sensitive to starvation when compared to its ethanol control 
(Log Rank Test, p-value ***<0.001), but not to the daughterless GS controls. (B) RU-induced 
expression of dhr96 caused significant reduced survival in starvation conditions compared to 
driver control and its ethanol control (Log Rank Test, p-value ***<0.001). 

 

3.3.2. Effects of dhr96 and dhr96-lbd over-expressing flies was 
dependent upon dhr96 induction levels in female flies 
Over-expression of dhr96 or dhr96-lbd using the ubiquitous tubulin Gene-Switch 

driver increased lifespan only for the LBD-mutated dhr96 over-expressing 

females (Janne Toivonen, London, supplement S.3.3), whereas in my hands 

over-expression of both the dhr96 and dhr96-lbd using the daughterless GS 

driver extended lifespan in female flies (figure 3.3.3). To investigate if these 

different results are caused by the use of different ubiquitous driver lines, 

lifespans of daughterless GS and tubulin GS driven dhr96 and dhr96-lbd over-

expression were conducted under same conditions. 

 

3.3.2.1 Repeat lifespan and DDT assay of dhr96 and dhr96-lbd over-
expressing females using the daughterless GS driver 
QRT-PCR analysis revealed that dhr96 induction in both transgenic dhr96 over-

expressing flies was higher than in previous experiment. Dhr96 over-expressing 

females showed an about 19-fold significant dhr96 induction and dhr96-lbd 

over-expressing females an about 14-fold significant induction of dhr96 

transcript levels (p-value ***<0.001, Student’s t-test) (figure 3.3.8). Interestingly, 

A B
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dhr96 transcript levels were significantly higher in dhr96 over-expressor than in 

dhr96-lbd over-expressor (Student’s t-test, *p<0.05). 

Figure 3.3.8 Dhr96 transcript levels in dhr96-lbd over-expressing females using the 
daughterless GS driver. Ubiquitous over-expression of dhr96 (UAS-HR96) and ligand-
insensitive dhr96 (UAS-HR96LBD) significantly induced dhr96 expression (p-value ***<0.001, 
Student’s t-test). Dhr96 expression was significantly higher in wild type dhr96 over-expressor 
(19-fold) than in LBD-mutated dhr96 over-expressor (14-fold) (p-value *<0.05, Student’s t-test). 
 

Dhr96-lbd and especially dhr96 over-expressing flies showed bacterial 

contamination during the lifespan experiment in form of an observed egg-

jamming problem, which can occur when fecundity is strongly reduced. Thus, 

the survival was affected by bacterial contamination. 

However, the repeat lifespan of daughterless GS-driven dhr96 and dhr96-lbd 

over-expression confirmed significant increase in lifespan for both transgene 

lines (figure 3.3.9). The grade of lifespan extension was in this repeat smaller 

than in the previous experiment (figure 3.3.3). In dhr96-lbd over-expressing 

flies, median lifespan was increased by 12% compared to its ethanol control 

whereas dhr96 over-expression extended median lifespan by only 4,5%. Wild 

type dhr96 over-expressing flies indicated a smaller lifespan extension than 

LBD-mutated dhr96 over-expressing flies, but this indication is not significant. 

There was no significant effect on lifespan between UAS-controls. 

Dhr96 transcript levels
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Figure 3.3.9 Repeat lifespan of dhr96 over-expression in D. melanogaster females. Using 
the daughterless GS driver, over-expression of wild type dhr96 (UAS-HR96) or ligand-
insensitive dhr96 (UAS-HR96LBD) significantly extended lifespan (Log Rank Test, p-value 
***<0.001). There was no significant difference between the ethanol control flies. Extension is 
smaller than in previous experiment (figure 3.3.3). 

 
Over-expression of both lines increased resistance to the xenobiotic DDT  

(Figure 3.3.10), and is therefore overlapping with previous result shown in 

chapter 3.3.1. Moreover, dhr96-lbd over-expressing females showed a higher 

increase in DDT resistance than wild type dhr96 over-expressing females. 

 
Figure 3.3.10 DDT repeat assay of daughterless GS dhr96 and dhr96-lbd over-expressor. 
(A) Both over-expressor lines showed increased survival to DDT compared to controls, when 
using the daughterless GS driver (Log Rank Test, p-value ***<0.001). Increase was significantly 
higher in dhr96-lbd over-expressing flies compared to dhr96 over-expressing flies (Log Rank 
Test, p-value **<0.01). 
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3.3.2.2 Over-expression of tubulin GS-driven dhr96 and dhr96-lbd 
decreased lifespan and stress response 
QRT-PCR analysis and western blot analysis revealed that dhr96 expression 

was higher induced in tubulin GS-driven dhr96-lbd over-expressing females 

than in daughterless GS-driven dhr96-lbd over-expressing flies (figure 3.3.8 and 

3.3.11, western blot see supplement S.3.4). Dhr96-lbd over-expressing females 

using the tubulin GS driver showed an about 32-fold significant induction of 

dhr96 transcript levels. Dhr96 expression of dhr96 over-expressing flies was not 

tested. 

 

 
Figure 3.3.11 Induction of dhr96-lbd over-expressing flies by tubulin GS driver. Using the 
tubulin GS driver caused a 32-fold strong induction of dhr96 in females over-expressing dhr96-
lbd (p-value ***<0.001; Student's t-test). 
 

 

Over-expression of both tubulin-driven dhr96 and dhr96-lbd in female flies both 

caused a lifespan shortening effect compared to their ethanol controls (figure 

3.3.12 A1) (p-value ***<0.001, Log Rank Test). The LBD-mutated dhr96 

expression (median lifespan: 56,5 days) decreased lifespan significantly more 

than the wild type dhr96 expression (median lifespan: 62,5 days). There was 

also RU-induced toxicity in the driver line, as the tubulin GS-driver control on 

the drug RU showed a significant reduction by 8,5% in median lifespan 

compared to the driver control on ethanol. The UAS-control did not show any 

effects on lifespan (figure 3.3.12 A2). 
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Figure 3.3.12 Tubulin GS-driven dhr96 and dhr96-lbd over-expression shortens lifespan 
compared to control flies. (A1) Over-expression of both transgene lines by using the strong, 
ubiquitous tubulin GS diver significantly reduced longevity (Log Rank Test, p-value ***<0.001). 
The reduction in lifespan was higher for LBD-mutated dhr96 (UAS-DHR96LBD) than for wild 
type dhr96. Driver control on RU showed a significant decrease in survival when compared to 
its ethanol control (Log Rank Test, p-value ***<0.001). (A2) There was no effect on lifespan 
between UAS-controls on ethanol and these lines on RU. 
 
  
 

Fecundity was strongly reduced in the tubulin GS-driven dhr96 flies (figure 

3.3.13) (p-value ***<0.001, Kruskal-Wallis test, Dunn's test for multiple 

comparisons). These flies showed significantly higher reduced egg laying than 

daughterless GS-driven dhr96 over-expressing flies. But also the tubulin Gene-

A1

A2
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Switch driver control on RU showed significantly lower fecundity than its non-

induced ethanol control. These flies were strongly affected by bacterial 

contamination as a consequence of reduced fecundity. 

 

 
Figure 3.3.13 Using the tubulin GS-driver, dhr96 and dhr96-lbd over-expression strongly 
reduced fecundity. Dhr96 and dhr96-lbd over-expressing lines significantly decreased egg 
laying when compared to UAS-controls and the non-induced driver control. But also the RU-
induced tubulin driver control significantly lowered fecundity compared to control flies (p-value 
***<0.001, Kruskal-Wallis test, Dunn's test for multiple comparisons). 
 

Furthermore, dhr96 over-expressing flies using the tubulin Gene-Switch driver 

were significantly sensitive to the xenobiotic DDT compared to controls (p-value 

***<0.001, Log Rank Test) (figure 3.3.14). There was no significant difference in 

survival between RU-induced and non-induced tubulin controls.  

 
Figure 3.3.14 Tubulin GS dhr96 and dhr96-lbd ove-rexpressor were sensitive to DDT. (A) 
Both over-expressor lines showed reduced survival to DDT compared to controls, when using 
the tubulin GS driver (Log Rank Test, p-value ***<0.001).  
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3.3.3 Quantitative RT-PCR analysis of genes involved in xenobiotic 
metabolism 
Induction of dhr96 expression in dhr96-lbd over-expressing flies was more than 

two times higher using the tubulin GS driver (32-fold induction) (figure 3.3.11) 

than with the daughterless GS driver (about 14-fold induction) (figure 3.3.8).  

Over-expression of dhr96 transgenic lines using the daughterless driver 

increased lifespan and stress resistance whereas over-expression of dhr96 

transgenic lines using the tubulin driver decreased lifespan and DDT resistance. 

Transcript levels of several cytochrome genes were tested by quantitative real-

time PCR (qRT-PCR) analysis in long-lived dhr96-lbd daughterless GS over-

expressing flies and in short-lived dhr96-lbd tubulin GS over-expressing flies to 

identify enzymes which might confer increased or decreased resistance to 

xenobiotics.  

 

The transcript level of cytochrome P450 6g1 (Cyp6g1) was increased in the 

long-lived dhr96-lbd female over-expressor flies (figure 3.3.15) (*p<0.05, 

Student's t-test). The increase in Cyp6g1 levels was not significant when whole 

bodies were used. However, transcript levels of Cyp6g1 in dissected guts of 

dhr96-lbd female over-expressing females were significantly increased. 

 

 
Figure 3.3.15 Cytochrome P450 6g1 transcript levels in the gut of dhr96-lbd over-
expressing flies. Over-expression of dhr96-lbd by the daughterless GS driver significantly up-
regulated Cyp6g1 expression in the gut (*p<0.05, Student's t-test). 
 

QRT-PCR analysis on GS tubulin-driven dhr96-lbd over-expressors (whole 

body) showed a strong and significant down-regulation of Cyp6g1 (p-value 

***<0.001, Student's t-test) and glucose-6-phosphate-1-dehydrogenase or 

Zwischenferment (Zw) (p-value **<0.01; Student's t-test) (figure 3.3.16). 

Cyp6g1 transcript level
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Transcript levels of Cyp6g1 were reduced by 76%, and transcript levels of Zw 

were reduced by 46% in the tubulin-driven dhr96-lbd over-expressing flies 

compared to the driver control on RU.   

 

Figure 3.3.16 Cyp6g1 and Zw transcript levels were altered in dhr96-lbd over-expressing 
flies. Using the tubulin GS driver, over-expression of dhr96-lbd caused a significant down-
regulation of (A) Cyp6g1 (p-value ***<0.001, Student's t-test) and (B) Zw (p-value **<0.01, 
Student's t-test). 
 

3.3.4 Over-expression of dhr96-lbd increased DDT resistance in male 
flies, but not their lifespan 
Experiments were also performed with male flies to investigate if phenotypes 

are gender-specific. Over-expression of dhr96 with the ubiquitous daughterless 

or tubulin Gene-Switch driver lines did not affect lifespan in males (figure 3.3.17 

and 3.3.18). There was no life shortening effect of the tubulin Gene-Switch 

driver on RU, as it was shown for the life span experiment in female flies.   
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Figure 3.3.17 Using the daughterless GS driver, over-expression of dhr96 did not affect 
lifespan in male flies. No significant difference was observed in male flies, when dhr96 or 
dhr96-lbd was over-expressed by using the daughterless GS driver compared to control flies. 
 

Figure 3.3.18 Tubulin GS-driven over-expression of dhr96 and dhr96-lbd did not change 
lifespan in male flies. Also possibly stronger induction of dhr96 did not affect lifespan in male 
Drosophila flies. 
 

Treatment with the xenobiotic DDT using the daughterless GS driver revealed 

an increase in DDT resistance in dhr96-lbd over-expressing male flies (figure 

3.3.19 A). DDT experiments with males were conducted on 150mg/L DDT, as 

male flies were more sensitive to DDT than female flies in pre-experiments 

(data not shown). Whereas in female flies dhr96-lbd over-expression enhanced 
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H2O2 resistance, over-expression of dhr96-lbd in male flies did not increase 

resistance to H2O2 (figure 3.3.19 B). Instead, a significant reduction in H2O2 

resistance was observed. 

 

 
Figure 3.3.19 DDT and H2O2 stress assay with male dhr96-lbd over-expressing flies. Over-
expression of dhr96-lbd significantly increased DDT resistance in male flies (Log Rank Test, p-
value ***<0.001) (B), but also significantly reduced resistance to H2O2 (Log Rank Test, p-value 
***<0.001). 
 

 

Dhr96 and dhr96-lbd over-expressing male flies were significantly sensitive to 

starvation conditions when compared to ethanol controls (figure 3.3.20), as was 

the case for females.  

 

 
Figure 3.3.20 Dhr96 and dhr96-lbd over-expressing males were sensitive to starvation. 
Using the daughterless GS driver, survival was significantly reduced in dhr96-lbd and dhr96 
over-expressor lines compared to ethanol controls, when flies were starved (Log Rank Test, p-
value ***<0.001). 
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3.4 Discussion 
 

3.4.1 Xenobiotic response of dhr96 and LBD-mutated dhr96 over-
expressing flies  
The xenobiotic response is an essential defence system to clear toxins from the 

body by detoxification enzymes. An involvement in detoxification for DHR96 

was already shown in dhr96 null mutants, which are sensitive to DDT and 

phenobarbital treatment (King-Jones et al., 2006). Thus, DHR96 was suggested 

to regulate the expression of detoxification enzymes (King-Jones et al., 2006).  

I used genetic tools of Drosophila melanogaster to investigate the effects of 

dhr96 over-expression. That dhr96 over-expressing flies showed increased 

resistance to the xenobiotics DDT, phenobarbital and H2O2 (in addition to 

chloroquine, nicotine and paraquat by Janne Toivonen, UCL London) in 

females is novel.  

In Drosophila, one study was focused on Cyp6g1 and its correlation with 

DHR96 (Shah et al., 2011). Knockdown of this cytochrome gene decreased 

stress resistance, which would agree with these thesis results, in terms that 

tubulin GS-driven dhr96 over-expressing flies showed reduced Cyp6g1 

transcript levels and were stress sensitive. However, ubiquitous expression of 

transgene dhr96 and dhr96 RNAi lines induces lethality, thus transgenic lines 

with weak dhr96 expression were used in this study. Knockdown of dhr96 

increased resistance to imidaclopric (an insecticide and neurotoxin). This 

seems contrary to my data, as dhr96 null flies showed a stress sensitive 

phenotype (chapter 4). It is not clear if developmental effect of transgene lines 

used in this paper might contribute to pleiotropic effects. In addition, dhr96 over-

expression caused changes in expression of a broad range of detoxification 

enzymes in a sex-specific manner, which is in agreement with my results. 

However, dhr96 transgene lines were functionally not tested (e.g. survival 

assay) and induction of dhr96 was also not measured in this study. This might 

be a critical point, as dhr96 induces or represses Cyp6g1 expression dependent 

on its transcript level.  

In addition, transgenic mice of the mammalian DHR96 homolog PXR were 

investigated for xenobiotic studies. PXR knock-out mice, and transgenic mice 
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with an activated form of human PXR revealed that CYP3A is one of the 

specific targets (Xie et al., 2000a). Null mutants were incapable of CYP3A 

expression in response to xenobiotics, whereas the transgenic mice induced 

CYP3A expression and showed increased protection to the toxicants 

tribromoethanol and zoxazolamine. Interestingly, Cyp6g1 is the homologous 

gene to mammalian CYP3A. Our results are in agreement with their findings, in 

that in both model organisms enhanced protection against toxins was observed 

with over-expression. Overlapping with this study, Cyp6g1 was induced in 

dhr96-lbd over-expressing flies. Furthermore, it was shown that both human 

CYP3A and Drosophila Cyp6g1 confer resistance to the same toxin 

methylmercury, indicating that role of this Cytochrome gene is conserved 

across species (Rand et al., 2012). 

 

3.4.2 Dhr96 over-expressing flies and daf-12 ligand-insensitive 
mutants are long-lived 
In C. elegans, the DHR96 homologue DAF-12 affects lifespan. Ligand-

insensitive daf-12 mutants are long-lived (Fisher and Lithgow, 2006), whereas 

daf-12 null mutants are short-lived (Riddle et al., 1981). Also DHR96 affects 

lifespan, as dhr96 null mutants were short-lived (Janne Toivonen, unpublished 

data), and over-expression of dhr96 and dhr96-lbd (dependent on transcript 

levels) increased lifespan in females. Although phenotypes are similar in that 

Drosophila dhr96-lbd over-expression using the daughterless GS driver and C. 

elegans ligand-insensitive DAF-12 extend lifespan, conditions were not the 

same. In C. elegans, long-lived daf-12 mutant were generated by EMS, which 

means that mutation is present in the genomic, endogenous daf-12 gene 

(Antebi et al., 1998). However, in the dhr96 over-expressor lines used in this 

thesis, dhr96 was integrated in the Drosophila genome by P-element insertion. 

Dhr96 gene expression was under the control of a UAS-promoter, and 

expression was induced by GAL4 binding in a normal wild type background. 

That means that dhr96 or LBD-mutated dhr96 was over-expressed in flies that 

harboured also the endogenous wild type dhr96 and thus the lifespan extension 

may be independent of the ligand. Taking this information into account, the life 

span extension of ligand-insensitive daf-12 is caused by the mutation in the 
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ligand-binding domain, whereas the lifespan extension in dhr96 over-expressing 

flies might be due to the enhanced dhr96 transcript expression and protein 

level.  

It would be interesting to investigate, if ligand-insensitive DAF-12 might induce 

its own expression, as hormone nuclear receptors are regulated by feedback 

loops (Hammell et al., 2009; Sasaki et al., 1999), and confer enhanced 

longevity by a similar mechanism as for dhr96 over-expressing flies. If not, it 

would be significant to investigate whether the two different manipulations 

(ligand-insensitive daf-12 and over-expression of dhr96) would cause the same 

changes, for example the same changes in the transcriptional regulation of 

target genes leading to an altered lifespan. At least for DAF-12, it lifespan 

extension is dependant on the DNA-binding domain, as rh61rh411 double 

mutants, which contain an additional mutation in the DBD-domain, are short-

lived (Fisher and Lithgow, 2006). 

 

3.4.3 Dhr96 expression level was a critical criterion for xenobiotic 
response and lifespan 
The expression level of dhr96 and/or expression pattern was shown to play a 

major role as these can cause contrary effects, a beneficial or a damaging 

phenotype. Whereas daughterless GS-driven dhr96 over-expressing flies (12-

16 fold induction) were long-lived and showed increased DDT resistance, 

tubulin GS-driven dhr96 over-expressors (32-fold induction) were sensitive to 

DDT and showed decreased lifespan. These non-beneficial effects were 

accompanied by sensitivity to bacterial infection during the lifespan. Thus, high 

level of induction causes non-beneficial effects and is toxic. 

 

The expression pattern might also be critical, as the daughterless GS driver and 

the tubulin GS driver induce dhr96 expression in different tissues, with different 

induction levels. So far, the tissue(s) that might confer a lifespan extension have 

not been identified. Different tissue-specific drivers were tested and none of 

them resulted in increased longevity (Matt Piper and Janne Toivonen, UCL 

London, unpublished data). That may be due to expression levels, or that over-

expression in more than one tissue may be required to extend lifespan. In case 
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it might be level dependent, a tissue-specific, inducible system would be useful 

to modulate induction levels. However, a beneficial effect was seen in the 

Malphigian tubules. Over-expression of dhr96 and dhr96-lbd in the Malphigian 

tubule increased resistance to DDT (Matt Piper, see figure 3.4.1, unpublished 

data). Taking into account that dhr96-lbd over-expression induced Cyp6g1 

expression, these results are in agreement with studies showing that tissue-

specific over-expression of Cyp6g1 in the Malphigian tubule confers DDT 

resistance, whereas knockdown of Cyp6g1 in this tissue causes sensitivity to 

DDT (Yang et al., 2007).  

 

 
Figure 3.4.1. Increased DDT resistance by over-expressing dhr96 and dhr96-lbd 
in the Malphigian tubule. Experiment was performed by Matt Piper, (UCL London). 
Induced expression of dhr96 (UAS wt-B) and dhr96-lbd (UAS LBD-A) in the Malphigian 
tubule (Uo-GAL4) confer significantly DDT resistance compared to driver (Uo-Gal4/+) 
and their UAS-controls (UAS-LBD-A/+,; UAS-wt-B/+) (DDT concentration 275 mg/L). 

 

3.4.4 Dhr96 over-expressing flies versus dhr96-lbd over-expressing 
flies 
Dhr96 and ligand-mutated dhr96 over-expression gave differing phenotypes in 

lifespan using the tubulin GS driver (Janne Toivonen, supplement S.3.3), and in 

the xenobiotic response using either the tubulin GS or the daughterless GS 

driver (Janne Toivonen, chapter 3.3.2).  

The dhr96-lbd over-expressor possessed stronger resistance to different 

xenobiotic drugs than the dhr96 over-expressor. Moreover, dhr96-lbd over-
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expressing females were less affected by bacterial contamination, and indicated 

a better lifespan extension than dhr96 over-expressing females in the repeat 

experiment using the daughterless GS driver (chapter 3.3.2). It is suggested, 

that the stronger reduced fecundity of dhr96 over-expressing flies might be a 

possible reason that dhr96 over-expressing flies were more affected by 

bacterial infection. Thus, dhr96-lbd over-expressing females might display more 

robust phenotypes.  

 

These differences between dhr96 and dhr96-lbd over-expressing flies might 

occur due to different induction levels. Dhr96 over-expressing flies showed a 

stronger induction of dhr96 transcript levels than dhr96-lbd over-expressing 

flies. In the first lifespan experiment, induction was not significantly different and 

lifespan curves looked very similar between the two transgenic over-

expressors. In the repeat experiment, levels of dhr96 were in general higher for 

both over-expressors. As dhr96 over-expressing flies showed higher induction 

levels, that might have caused non-beneficial effects, possibly in fecundity and 

subsequently in sensitivity to bacterial infection. In experiments with dhr96 and 

dhr96-lbd over-expressing flies using the tubulin GS driver these effects were 

even stronger. In tubulin GS-driven dhr96-lbd over-expressing females, 

induction of dhr96 transcript levels was much higher than in experiments using 

the daughterless driver (32-fold versus 12-16-fold). Both (tubulin GS-driven) 

over-expressor flies showed strong reduction in fecundity and were strongly 

sensitive to bacterial infection.  The strong induction affected survival due to 

bacterial infection.  

 

Two possible reasons for the different dhr96 transcript levels are suggested. As 

the induction of dhr96 and dhr96-lbd is dependent on RU, one possible 

explanation is that dhr96 over-expressing flies might differ in their feeding 

behaviour and eat more RU-containing SYA media. That would also give 

different results in stress assays between dhr96 and dhr96-lbd over-expressing 

flies. Another reason might be that the two UAS-lines are integrated in different 

insertion sites in the Drosophila genome. The chromosomal position effects 

could cause different induction levels between the UAS-HR96 and the UAS-

HR96LBD lines (Tubon and Yin, 2008). Nowadays genes of interest are 
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inserted in so-called attP insertion-sites, which are defined insertion sites in the 

Drosophila genome to provide similar induction level and to prevent site specific 

effects (Groth et al., 2004). For future experiments dhr96 and dhr96-lbd has 

been cloned in attP-flanked vectors and injected in flies (supplement S.3.5). 

These flies will be used in stress assays that exclude the route of drug feeding. 

 

3.4.5 Gender-specific effects of dhr96 and dhr96-lbd over-expression 
Although dhr96 over-expression in male flies increased resistance to DDT, 

lifespan was not affected. Two different driver lines with different induction 

levels, daughterless GS and tubulin GS, were used. In female flies, over-

expression of dhr96 transgenes showed opposing effects between the two 

driver lines. Using the daughterless GS driver, dhr96 and dhr96-lbd over-

expression extended lifespan, whereas using the tubulin GS driver to over-

express dhr96 and dhr96-lbd shortened lifespan. In male flies neither drivers 

had any beneficial or non-beneficial effect on lifespan, but beneficial effects in 

DDT resistance. Thus, DHR96 modulates xenobiotic resistance in a way that 

does not translate to increased longevity in males, at least in these conditions. 

As induction levels turned to be a significant criteria for lifespan, it might be that 

other RU concentration are required to extend lifespan of dhr96 or dhr96-lbd 

over-expressing male flies. Thus, to define whether the lifespan effect is 

restricted to females, future studies will include lifespan analysis of dhr96 or 

dhr96-lbd male flies on different RU concentration combined with qRT-PCR 

analysis of dhr96 induction levels. 

 

So far, dhr96 and dhr96-lbd female transgenes enhanced DDT, phenobarbital 

and H2O2 resistance whereas male dhr96-lbd over-expressing flies showed 

increased resistance only to DDT. Interestingly, chemical H2O2 treatment 

decreased survival in male flies, suggesting that oxidative stress response to 

H2O2 is regulated in a gender specific manner. QRT-PCR analysis of key anti-

oxidant enzymes, including Superoxide Dismutase (SOD) and catalase, 

between transgene males and transgene females, might contribute to support 

this conclusion. In addition, oxidative damage by ROS (reactive oxygen 

species) represents a feature in many ageing studies (HARMAN, 1956). Many 
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long-lived animals show increased resistance to oxidative stress mediated by 

an enhanced activity of anti-oxidant enzymes, which metabolize toxic ROS 

(reactive oxygen species). Furthermore, over-expression of sod or catalase 

extends lifespan in Drosophila melanogaster (Orr and Sohal, 1994). Oxidative 

stress response might be therefore a gender-specific pro-ageing possible 

mechanism in long-lived dhr96 and dhr96-lbd transgene females.   

Differences between male and female dhr96-lbd over-expressing flies might be 

caused by gender-specific responses. Studies in Drosophila have already 

shown that transcriptional expression of cytochrome genes by xenobiotic or 

chemical drugs differ between gender (Le Goff et al., 2006). Moreover, the 

expression profile of dhr96 transgene indicated gender-specific regulation. 

Thus, it is necessary to test male dhr96 over-expressing flies against a wide 

range of xenobiotic drugs to support this conclusion.  

 

In females, the RU fed tubulin GS control was short-lived compared to its 

ethanol control. This was not observed in male flies, indicating that the site 

effect of the driver line is also gender specific. Furthermore, the driver line 

showed an effect on fecundity in female flies, which intensifies this argument. 

 

Many studies correlate effects on the reproductive system with the lifespan of 

organism (Hansen et al., 2013). Reproduction is a cost-intense process, thus 

reduced fecundity or abolished reproduction affects the energy storage of an 

organism, in terms that fat reservoir is not consumed and is available for other 

biological processes. This ‘energetic trade-off’ as a consequence of reduced 

reproductive rate might represent a possible mechanism to extend lifespan. In 

C. elegans, ablation of the germ line leads to an extension in lifespan (Hsin and 

Kenyon, 1999). Interestingly, the C. elegans dFOXO homologue DAF-16, as 

well as the DHR96 homologue DAF-12 are required to extend lifespan in germ 

line ablated nematodes (Hsin and Kenyon, 1999).  

In Drosophila, lifespan modulation by the ablation of germ line cells (GC) is not 

as clear as in worms and can show pleiotropic effects. GC ablation by using 

grandchildless-mutants does not affect the lifespan of the organism (Barnes et 

al., 2006) whereas GC ablation in Drosophila subobscura grandlchildless-

mutants extends lifespan (SMITH, 1958). Although both mutants lack the 
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primordial germ line, they cause different phenotypes. Grandchildless-mutants 

have their impact during development. It is suggested that developmental 

effects on the somatic gonad might supress the lifespan extension in 

grandchildless-mutants (Flatt et al., 2008b). Another study avoided possible 

developmental effects by inducing the ablation of the germ line in later stages. 

They could show an extended lifespan and altered insulin signalling, implying 

that ageing regulation by gonadal activity is conserved between worms and flies 

(Flatt et al., 2008b). Moreover, other methods to down-regulate reproduction, 

including the ovoD sterile mutation (Clancy et al., 2001; Sgro and Partridge, 

1999), reduced egg production (Partridge et al., 1987) or mating (Fowler and 

Partridge, 1989), revealed enhanced lifespan in Drosophila. 

Some IIS long-lived mutants in flies show reduced fecundity. MNC ablation in 

the brain of flies or dfoxo over-expression in the fat body reduces egg laying 

(Broughton et al., 2005; Giannakou, 2004). In Drosophila, different studies have 

uncoupled lifespan and fecundity in IIS-reduced signalling. Chico1 heterozygous 

mutants show normal fecundity and have extended lifespan (Clancy et al., 

2001). Furthermore, it was shown that effects on fecundity is a dFOXO 

independent effect whereas lifespan extension of IIS-reduced flies requires 

dFOXO (Slack et al., 2011). Thus, in Drosophila, longevity and reproduction can 

be uncoupled. However, that does not subsequently mean that germ line 

signalling is not required for DHR96 lifespan extension. Signals from the 

reproductive system might be necessary to extend lifespan in dhr96-lbd over-

expressing flies, as shown for DAF-12.   

Another interesting fact, which might give the reproductive tissue an importance 

for DHR96 regulation is, that dhr96 expression is highest during adult stage in 

the ovary (http://flybase.org/reports/FBgn0015240.html). Furthermore, it has 

been suggested that DHR96 might modulate epithelial follicle stem cell (FSC) 

proliferation via ribosomal protein S6 kinase (S6K) activity in the fly ovary in 

response to dietary conditions (Hartman et al., 2013). Interestingly, S6K acts as 

a key component of the TOR (target of rapamycin) pathway, affecting 

processes including protein translation and growth in response to insulin 

signalling and nutrition (Marygold and Leevers, 2002). Reduced S6K-activity by 

over-expression of a dominant negative S6-kinase were reported to extend 

lifespan in male flies (Kapahi et al., 2004). In our hands and laboratory 
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conditions these results were not reproducible. However, heterozygous S6-

kinase knockout enhanced longevity in female flies but not in males (Andrew 

Finlayson, unpublished data). If S6K activity might be regulated by DHR96, it 

would represent an important candidate, in terms that the role of DHR96 in 

lifespan might be linked to S6K regulation. 

 

One possibility to investigate is, whether lifespan extension is due to signals 

from or in the female reproductive system in Drosophila, is the use of a mutant 

stock, called ovoD. Female germ line development is blocked in these mutants, 

which are as a consequence sterile and long-lived (Mevel-Ninio et al., 1991; 

Oliver et al., 1987). If lifespan extension of dhr96 and dhr96-lbd over-expressing 

flies were lost in these mutants, the lifespan effect would be dependant on the 

female germ line.  

 

 

The conclusion of this chapter is that over-expression of dhr96 and dhr96-lbd 

using the daughterless GS driver extended lifespan in female flies and 

increased stress resistance in a possibly gender-specific manner. Cytochrome 

P450 6g1 (Cyp6g1) was up-regulated in the gut of dhr96-lbd over-expressing 

female flies and might confer DDT resistance.  
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Chapter 4 Does DHR96 act downstream of 
the IIS network? 
 

4.1 Introduction 

4.1.1 Long-lived IIS mutants 
The Insulin/insulin like signalling (IIS) network is evolutionally conserved in 

multicellular organisms, and is involved in diverse biological process, including 

growth, reproduction, and stress resistance. Lowered activity of components in 

the IIS signalling network can increase lifespan and retard many age-related 

phenotypes in diverse species including mammals (Bonkowski et al., 2006; 

Cohen et al., 2006; Fontana et al., 2010; Giannakou and Partridge, 2007; 

Kenyon, 2005; 2010; Selman et al., 2008; Tatar et al., 2003; Wessells et al., 

2009).  

 

Pioneering studies began in C. elegans by genetic screens of long-lived 

mutants (Klass, 1983), and uncovered age-1 mutants, the mammalian 

phosphatidiylinositol 3-kinase ortholog, to extend lifespan (Friedman and 

Johnson, 1988). Moreover, worms enter a dauer formation (daf) stage in 

unfavourable conditions (chapter 3.1). Mutation genes regulating dauer 

formation can show a constitutive dauer phenotype, a stage characterized by a 

long life and increased stress resistance (Klass, 1983). The worm insulin 

receptor daf-2 was discovered by Johnson to regulate dauer formation, and 

Kenyon studies revealed that down-regulation of daf-2 leads to dauer formation 

at 25°C, but circumvents dauer at lower temperatures (20°C) and double adult 

lifespan (Kenyon et al., 1993).  Furthermore, daf-2 longevity is dependent upon 

the transcription factor DAF-16 (Kenyon et al., 1993) and the heat-shock 

transcription factor HSF-1 (Hsu et al., 2003; Morley and Morimoto, 2004). DAF-

16 is the C. elegans orthologue of the FOXO transcription factor family 

(Forkhead bOX-containing protein, subfamily O) (Lin et al., 1997). Insulin 

signalling reduces FOXO activity by phosphorylation, and consequent nuclear 
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exclusion. In contrast, reduced IIS caused by daf-2 mutation enhances nuclear 

localisation of DAF-16 and its transcriptional activity (Kenyon, 2010). 

 

In flies, studies with different IIS mutants again revealed a link between the IIS 

network and ageing (figure 4.1.1). Drosophila produces seven insulin-like 

peptides (dILPs), which modulate growth control dependently on the insulin 

receptor (Brogiolo et al., 2001). Dilp-2,3,5 mutants are long-lived (Grönke et al., 

2010) and ablation of the median neurosecretory cells (MNC), which produces 

these three ligands, also results in longer lifespan (Broughton et al., 2010). 

Downstream IIS components also modulate lifespan. For instance, over-

expression of a dominant negative version of the insulin receptor (dnIR) (Slack 

et al., 2011), and mutation in chico (Clancy et al., 2001), which encodes for the 

insulin receptor substrate in Drosophila, increase lifespan. Reduced IIS also 

decreases growth and fecundity, and increases xenobiotic and oxidative stress 

response. Growth and fecundity are affected in chico1 homozygous mutants, 

but these phenotypes are not coupled with the lifespan effect, as heterozygous 

chico1 mutants have a long lifespan with no altered growth or fecundity effects 

(Bohni et al., 1999; Clancy et al., 2001).  
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Figure 4.1.1 Reduced IIS extends lifespan. Altered activity of components in this 
pathway affect lifespan. Up-regulation of dfoxo and dpten activity  (green) as well as 
down-regulation of dilp2,3,5 production by MNC ablation, mutation in chico and the 
insulin receptor (red) extends lifespan in Drosophila. 
 

 

Many recent studies have focussed on the IIS downstream target dFOXO 

(figure 4.1.2). Over-expression of this transcription factor in the gut/fat body 

(Giannakou et al., 2004; Hwangbo et al., 2004) or in the muscle (Demontis and 

Perrimon, 2010) extends lifespan. Muscle-specific dfoxo over-expression 

induces 4E-BP signalling, which is a key regulator of protein translation. 

Endocrine signals, regulated by 4E-BP and activated in these transgenic flies, 

causes reduced insulin signalling in the whole body (Bai et al., 2013; Demontis 

and Perrimon, 2010; Hwangbo et al., 2004). As a consequence, dfoxo is 

induced in the whole body, contributing to the enhanced lifespan. However, 

tissue-specific over-expression of dfoxo in the gut and fat body in a dfoxo null 

background extends lifespan to a similar extend as over-expression in a wild 

type background (Alic et al., 2014). That indicates that the lifespan extension 

caused by dfoxo over-expression in the gut/fat body does not require dfoxo 

induction in another tissue to increase lifespan (Alic et al., 2014). Moreover, 

induced transcriptional expression of dfoxo in the median neurosecretory cells 
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(MNC) by using a dilp2-GAL4 driver also extends lifespan. Interestingly, Dilp2, 3 

and 5 levels are not reduced in these flies, indicating that the lifespan effect is 

independent of dfoxo induction in other tissues (Alic et al., 2014). 

 

 
Figure 4.1.2 dFOXO regulation of longevity. Over-expression of dfoxo in the brain, 
gut/fat body or muscle extends lifespan in Drosophila. The lifespan effect of dfoxo over-
expression in the muscle is non-autonomous and mediated via endocrine signals 
induced by 4E-BP (purple arrow). As a consequence dilp2, 3, and 5 expression level is 
decreased, leading to reduced IIS in the whole body. Over-expression of dfoxo in the 
gut/fat body extends longevity in an autonomous manner. Moreover, dfoxo over-
expression in the brain enhances longevity without decreasing insulin signalling in 
other tissues. 
 

4.1.2 Target genes of DAF-16/dFOXO 
DAF-16 and dFOXO represent the key worm/fly forkhead transcription factor 

downstream of IIS, regulating the expression of target genes. Its transcriptional 

activity is induced in response to reduced IIS, which is beneficial for longevity. 

Thus, it is of major interest to uncover FOXO target genes, and identify those 

that contribute to an extended lifespan in IIS-reduced animals. Genetic 

approaches in C. elegans (Oh et al., 2006) (Schuster et al., 2010) and in 

Drosophila adult female flies (Alic et al., 2011) have identified direct targets 

transcriptionally regulated by DAF-16 and dFOXO.  
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DAF-16 affects development, metabolism, fecundity, stress resistance and 

ageing. In agreement with its diverse biological functions, ChIP (Chromatin 

Immunoprecipitation) sequencing using wild type worms, daf-2 mutants (as 

DAF-16 is enhanced located in the nucleus), and a daf-16 null worms revealed 

103 direct targets, which regulate various biological processes including 

detoxification, development, transcription, apoptosis and more (Oh et al., 2006). 

DAF-16 can function hereby either as an activator or a repressor and agrees 

with previous studies (Lee et al., 2003; Murphy et al., 2003; Oh et al., 2006). 

Another study using the DamID technique (DNA adenine methyltransferase 

identification) identified about 900 DAF-16 targets using DAM-tagged daf-16 

transgenic lines, and worms containing the DAM-tag without the gene, both fed 

with daf-2 RNAi. (Schuster et al., 2010). Many genes identified in the previous 

study by ChIP-seq (Oh et al., 2006) were enriched among the ~900 genes 

identified by DamID. Moreover, data were cross-referenced to up-regulated 

genes in daf-2 versus daf-16;daf-2 worms (McElwee et al., 2007) and revealed 

65 regulatory targets (Schuster et al., 2010). Here, results indicate that DAF-16 

as an activator regulates only a small subset of targets. For example, no 

detoxification genes were identified as a direct target, suggesting that this 

process is not directly regulated by DAF-16, and moreover might be mediated 

by other regulators, which are induced by DAF-16 (Schuster et al., 2010).  

 

In Drosophila, dFOXO effects are restricted to the xenobiotic response and 

longevity in reduced IIS flies. In contrast, fecundity, growth and oxidative stress 

are dFOXO-independent traits (Slack et al., 2011) (figure 4.1.3). Thus, the 

suggestion arose that dFOXO might retard the ageing process through 

increased detoxification. Indeed, many IIS long-lived flies show an enhanced 

resistance to xenobiotics.  

In a ChIP-chip (microarray hybridization technique) study with adult female flies, 

more than 700 putative target genes of dFOXO were identified (Alic et al., 

2011). Interestingly, the genomic location bound by dFOXO does not change in 

response to stress induced by paraquat or starvation, or in response to reduced 

insulin signalling by ubiquitous expression of the dominant-negative form of the 

Drosophila insulin receptor. However, dFOXO binding was enhanced at sites 

that were already dFOXO-bound. 
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In adult female wild type flies under normal conditions, dFOXO directly 

modulates the expression of 356 genes. Functional evaluation discovered 

dFOXO to act either as an activator or a repressor. Furthermore, target genes 

were identified that encode for transcription factors, indicating that a second 

layer of regulators might contribute to effects downstream of dFOXO. One of 

these identified regulators was the hormone nuclear receptor DHR96.  

Furthermore, comparison studies between Drosophila and C. elegans revealed 

that dFOXO transcriptional regulation of the IIS response is evolutionally 

conserved. 121 conserved genes, including dhr96 and daf-12, were uncovered 

that are direct targets of both DAF-16 and dFOXO (Alic et al., 2011).  

 

 
 

4.1.3 Xenobiotic response and Ageing 
A variety of longevity studies in the last decade revealed genetic, 

pharmacological, and dietary interventions that extend lifespan in a range of 

model organisms. In many of these studies, long-lived animals were hallmarked 

by an increased cytoprotective response. Effectors of this response are 

involved in many different pathways, including the heat shock response, 

detoxification, inflammation, and anti-oxidation. A link between IIS signalling 

and detoxification was already proposed by Gems as the “Green Theory”, 

suggesting that ageing results from an accumulation of xenobiotic and 

endobiotic toxicity as a consequence of a declined detoxification response 

(Gems and McElwee, 2005). Thus, IIS-reduced mutants were predicted to 

Figure 4.1.3. dFOXO 
dependent and independent 
effects in IIS-reduced flies. 
Reducing insulin signalling 
affects reproduction, body size, 
lifespan, xenobiotic response 
and oxidative stress. Lifespan 
and xenobiotic effects in IIS-
reduced flies are dependent 
upon dFOXO, whereas effects 
in body size, reproduction and 
oxidative stress are 
independent upon dFOXO. 
Modified from Slack et al. 
(2011). 
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extend lifespan by an improved cytoprotective response as many detoxification 

genes are up-regulated.  

The question arose if these protective mechanisms are required for the 

increased longevity or if they constitute a non-related consequence.  

 

In C. elegans, analysis of long-lived daf-2 mutants revealed that longevity 

requires the transcription factor Heat shock factor 1 (HSF-1) and DAF-16 (Hsu 

et al., 2003; Morley and Morimoto, 2004). HSF-1 is a key regulator of the heat-

shock response, as it induces the expression of chaperones in response to 

stress to reduce proteotoxicity of protein aggregates. Furthermore, it is not only 

essential for daf-2 longevity; over-expression of this effector itself also extends 

lifespan (Hsu et al., 2003). But not only chaperones are affected in daf-2 mutant 

worms, microarray analysis uncovered genes that operate in the xenobiotic 

metabolism of toxic drugs, including cytochrome p450 (cyp p450) and 

glutathione s-transferases (gsts) (Gems and McElwee, 2005). A recent study 

discovered a set of cytoprotective genes (hsp-6, hsp-4, gst-4 and sod-3) that is 

required for the lifespan extension in 3 long-lived mutants, including daf-2 

(reduced insulin signalling), isp-1 (mitochondrial dysfunction), and eat-2 (caloric 

restriction) mutants (Shore et al., 2012). This illustrates the importance of these 

defense systems in longevity. 

 

In Drosophila, many long-lived IIS mutants are associated with a higher ability 

to detoxify xenobiotics or chemical drugs. Long-lived dilp2,3,5-mutants show 

increased resistance to DDT and H2O2 (Grönke et al., 2010). Ablation of the 

MNC, over-expression of a dominant negative version of the insulin receptor, or 

over-expression of dominant negative, catalytically inactive form of Type I PI3-

kinase, which all reduce insulin signalling, extend lifespans and enhance 

resistance to paraquat and DDT (Slack et al., 2011). These effects are 

dependent on the transcription factor dFOXO.  

 

Also mammalian longevity studies enhance the link between ageing and 

xenobiotic metabolism. Mutation of the Snell dwarf gene extends lifespan in 

mice by reducing growth hormone (GH) and IGF-1 signalling. Gene expression 

profiles from the liver of long-lived dwarf male mice revealed an up-regulation of 
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many detoxification genes (Amador-Noguez et al., 2004). Further analysis on 

fibroblast of long-lived Snell dwarf mutant mice showed increased level of Nrf2 

(NF-E2-Related Factor 2), a key transcription factor of detoxification genes 

(Leiser and Miller, 2010). 

 

 

4.1.4 Project approach  
Xenobiotic resistance is improved in many long-lived IIS-reduced animals, and 

in Drosophila increased lifespan and xenobiotic response of IIS-reduced flies 

require the activity of dFOXO (Slack et al., 2011).  

Interestingly, dFOXO is required for basal dhr96 expression levels (Alic et al., 

2011). Dhr96 over-expression extended lifespan and increased xenobiotic 

resistance in females, thus it might represent a crucial target of dFOXO, 

necessary for both increased xenobiotic resistance and longevity in IIS-reduced 

flies. However, expression of dhr96 is not altered in IIS-reduced flies. 

Subsequently, dFOXO does not confer xenobiotic resistance and lifespan 

extension by inducing dhr96 transcription, at least not in these circumstances. It 

could be that dFOXO induces dhr96 expression in specific tissues or at later 

stages, or affect co-factors or the DHR96 ligand. It could also be that the 

increased xenobiotic resistance is mediated by other transcription factors and 

DHR96 activity is not required. Moreover, it is not clear whether xenobiotic 

response and longevity effects are dependent or not, but in C. elegans such a 

casual connection between IIS-reduced longevity and cytoprotective factors 

were shown. 

Therefor, to investigate whether lifespan extension and the improved xenobiotic 

response of dfoxo over-expressing flies is mediated via dhr96, two different 

approaches were performed (1-2). A third approach was conducted to 

investigate whether DHR96 might modulate dFOXO activity. 

 

1. dfoxo was over-expressed in a dhr96 null background  

2. MNC was ablated in a dhr96 null background. 

3. Dhr96-lbd as the robust allele has been over-expressed in dfoxo null 

flies. 
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 (1-2) Over-expression of dfoxo in the muscle tissue or the ablation of the MNC 

extends lifespan and increases xenobiotic response. If the enhanced lifespan 

and stress resistance is conferred by DHR96, these effects should be lost in a 

dhr96 null background. 

(3) Over-expression of dhr96 and dhr96-lbd resulted in an extended lifespan 

and increased xenobiotic resistance. If DHR96 acts downstream of dFOXO, 

phenotypes of dhr96-lbd over-expressing flies should not be affected in a dfoxo 

null background.  
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4.2 Materials and methods 

 

4.2.1 Fly stocks 
For epistatic analysis, transgenic flies were used to make flies with the relevant 

combination of mutants.  The crossing scheme was dependent on the genomic 

location of the UAS- or driver-constructs, and of null mutation of interest. If 

genomic locations were on the same chromosome, flies had to be recombined 

by homologous recombination.  

The UAS-dhr96lbd line in a dfoxoΔ94 background was generated and provided 

by Matt Piper (UCL, London). 

 

4.2.2 Generation of a daughterless GS driver in a dfoxoΔ94 

background 
Daughterless GS flies are marked by red eyes, whereas dfoxoΔ94 flies are white-

eyed. The driver is inserted on the second chromosome and was therefore 

balanced over CyO. The deletion of dfoxo in dfoxoΔ94 flies is located on the third 

chromosome, and thus was balanced with TM3Sb. Balanced flies were crossed 

together. To distinguish daughterless GS flies in a dfoxoΔ94 background to 

daughterless GS flies in a normal wild type background, genomic DNA was 

extracted from the leg of single flies and PCR was performed with specific dfoxo 

primers (see below). Positive flies as shown in supplement S.4.1 were used for 

further crossings. 

 

4.2.3 DNA extraction from Drosophila melanogaster leg and PCR 
The middle leg was removed from live Drosophila flies using forceps, and these 

flies were transferred to single vials. Each leg was placed into a PCR tube filled 

with 50µl lysis buffer (squishing buffer with 0,2µg/µl protein kinase K (Roche), 

supplement S.1.1).  For the extraction of genomic DNA, samples were set in the 

thermo cycler (Applied Biosystems) with the program shown in table 4.2.1.  
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Temperature Time 

65 °C 60 minutes 

95 °C 10 minutes 

4 °C Until removal 
Table 4.2.1 Thermo cycler program for genomic DNA extraction of Drosophila 
leg.  
 

For genotyping purposes, PCR of extracted DNA was performed by using 

HotStarTaq Plus DNA Polymerase (Qiagen), following the protocol in chapter 

2.1.1.1. Primers that were used to distinguish between dfoxoΔ94 (Sol 236 and 

Sol 238) and wild type (Sol 236 and Sol 237) flies, are displayed in table 4.2.2. 

 

Primer Sequence 

Sol 236 TTGCCGCTGACAATTATGATCAAG 

Sol 237 AAGGTAGTGCCTATGATCCAG  

Sol 238 GAGAACAACAAGAAGATAAGTCCGCC 
Table 4.2.2 Genotyping primer for dfoxo wild type and dfoxo null flies. Sol 236 
and Sol 237 are primers for wild type dfoxo, resulting in a fragment of a size of 600bp. 
Sol 236 and Sol 238 are primers to identify dfoxo null flies by giving a fragment at a 
size of 350bp. 
 
PCR samples were analysed by agarose gel electrophoresis. Wild type dfoxo 

produces fragments at a size of 350bp using Sol 236 and Sol 237 primers. Flies 

carrying the dfoxoΔ94 mutation show a DNA fragment at a size of 650bp using 

Sol 236 and Sol 237 primers. In a final crossing 25 positive dfoxoΔ94 virgin 

females were crossed with 25 positive dfoxoΔ94 male flies to produce 

homozygous offspring. 

 

4.2.4 Generation of UAS-dfoxo and of mhc-GAL4 in a dhr96 null 
background 
UAS-dfoxo is inserted at the attp40 locus on the second chromosome, and flies 

are marked with red colored eyes and balanced over CyO. The deletion in 

dhr96 null flies is located on the third chromosome and mutants are white-eyed, 

but marked with GFP-expressing eyes (King-Jones et al., 2006) and balanced 
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over TM3Sb. Positive UAS-dfoxo;	   dhr96 null	  were identified by orange, GFP 

expressing eyes and were crossed to homozygosity. 

Both mhc-GAL4 and dhr96 null are on the third chromosome, and were 

recombined. Both were balanced over TM3Sb before recombining them. After 

screening for GFP, positive mhc-GAL4; dhr96 null were crossed to 

homozygosity.	   

 

4.2.5 Generation of UAS-reaper and dilp2-GAL4 in a dhr96 null 

background 
The crossing for dilp2-GAL4 in a dhr96 null background was performed as for 

the mhc-GAL4; dhr96 null,	   as the driver is inserted on the third chromosome. 

UAS-reaper is integrated into the X-Chromosome and was balanced by an X-

chromosome balancer (FM6). 

 

4.2.6 Lifespan and fecundity 
Lifespan and fecundity assays were set up as described in chapter 3.2.2 and 

3.2.7. For the over-expression of dfoxo in a normal or in a dhr96 null 

background, a constitutive muscle-specific driver was used. For the MNC 

ablation, a constitutive driver for the median neurosecretory cells, the dilp2-

GAL4 driver, was used (Broughton et al., 2010). Due to the use of a constitute 

driver in these experiments, no induction by the drug RU486 was required and 

flies were sorted into 1x SYA glass vials. Lifespan experiment were conducted 

on 1x SYA food, as this type of SYA food was used in published longevity 

studies of MNC-ablated flies (Broughton et al., 2005) and dfoxo over-expression 

in the muscle (Demontis and Perrimon, 2010). 

 

 

4.2.7 Stress assays 
Stress assays were conducted as summarized in chapter 3.2.3. Due to the 

sensitivity of some fly lines, lower concentrations of DDT (Dichlordiphenyl-

trichlorethan, Greyhound) were used for the DDT assay: 175mg/L or 100mg/L. 
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4.2.8 Quantitative real-time PCR analysis of dissected tissues 
(thorax and brain) 
To ensure over-expression of dfoxo in muscle tissue, or ablation of the MNC in 

the brain, whole flies were transferred to microcentrifuge tubes and snap frozen 

in liquid nitrogen. Using a lab prepared sieve, frozen thorax (for muscle) and 

heads (for brain) were separated from the whole fly and stored at -80 °C. qRT-

PCR was set up as described in chapter 2.1.2, and the RT-primers that were 

used are listed in supplement S.2.2. 
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4.3 Results 
 

4.3.1 Functional analysis of dfoxo over-expressing flies in a dhr96 
null background  
 

4.3.1.1 Lifespan extension of dfoxo over-expression in the muscle was not 
dependent upon DHR96 
Muscle-specific over-expression of dfoxo in a wild type background significantly 

extended lifespan in females when compared to its driver and UAS-dfoxo 

controls (Log Rank Test, p-value ***<0.001) (figure 4.3.1 A). Median lifespan of 

dfoxo over-expressing flies (74,5 days) was increased by 7,1% compared to the 

UAS-dfoxo control (69,5 days) and by 3,5% compared to mhc-GAL4 control 

flies.  

 

In a dhr96 null background, over-expression of dfoxo in muscle revealed a 

significant lifespan extension compared to its driver- or the UAS-dfoxo control 

(Log Rank Test, p-value ***<0.001). Median lifespan of dfoxo over-expressing 

flies in a dhr96 null background (74,5 days) was extended by 14,6% compared 

to its UAS-control (65 days) and by 11,2% compared to its driver control (67 

days) (figure 4.3.1 B).  

Control transgenic lines in a dhr96 null background were short-lived compared 

to the same lines in a wild type background. Median lifespan of UAS-dfoxo was 

reduced by 6,9% and of mhc-GAL4 by 7,4%. Median lifespan of UAS-

dfoxo/mhc-GAL4 was not changed by removal of genomic dhr96.  

 

Interaction analysis using Cox proportional hazards (CPH) revealed that 

genomic dhr96 (p-value ***<0.001) and over-expression of dfoxo (p-value 

***<0.001) significantly affected lifespan, but these effects did not show a 

significant interaction (p-value=0.09) (supplement S.4.2). Thus, the degree on 

lifespan effect was not affected between the two dhr96 backgrounds (dhr96 

versus dhr96 null). 
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Figure 4.3.1 Lifespan of dfoxo over-expressing flies in a wild type and in a dhr96 null 
mutant background. (A) Over-expression of dfoxo in the muscle significantly extended 
longevity in Drosophila females (Log Rank Test, p-value ***<0.001). (B) Lifespan was also 
increased when dfoxo was over-expressed in a dhr96 null background (Log Rank Test, p-value 
***<0.001). 

 

 

4.3.1.2 DDT stress resistance of dfoxo over-expressing flies required 
dhr96 expression 
Flies in a dhr96 null background were sensitive to the usual DDT concentration 

used, 275 mg/L, compared to flies in a wild type background (pre-experiments, 

data not shown). DDT assay was therefore performed on a lower concentration 

for transgenic lines in dhr96 null background of 150mg/L. Over-expression of 

dfoxo in the muscle of female flies significantly increased resistance to the 

A

B
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xenobiotic DDT compared to the diver control or the UAS-dfoxo control (Log 

Rank Test, p-value ***<0.001) (figure 4.3.2 A). Increased DDT resistance was 

lost when dfoxo was over-expressed in a dhr96 null background (figure 4.3.2 

B). A direct interaction test by statistical analysis was not possible, as the two 

DDT assays were performed on two different DDT concentrations. 

 

 

 
Figure 4.3.2 DDT stress assay of dfoxo over-expressing flies in a wild type and in a dhr96 
null mutant background. (A) Over-expression of dfoxo in the muscle increased resistance to 
DDT (275mg/L) (Log Rank Test, p-value ***<0.001). (B) Enhanced DDT resistance was lost, 
when dfoxo was over-expressed in a dhr96 null background (150 mg/L). 
 
 
 

A

B
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4.3.2 Functional analysis of MNC ablation in a dhr96 null 
background  
 

4.3.2.1 Lifespan extension of MNC-ablated females was not dependent 
upon DHR96 
 
Ablation of the MNC by over-expressing reaper with the dilp2 specific GAL4-

driver significantly extended lifespan in female flies (Log Rank Test, p-value 

***<0.001) (figure 4.3.3 A). Median lifespan of MNC-ablated flies was enhanced 

by 11,1% compared to the UAS-rpr-control, and by 5,6% compared to the dilp2-

GAL4 control.  

 

Transgenic flies in a dhr96 null background were significantly short-lived 

compared to the same lines in a wild type background: UAS-rpr by 8%, dilp2-

GAL4 by 11% and UAS-rpr/dilp2-GAL4 by 7,1%   (Log Rank Test, p-value 

***<0.001). 

Lifespan was also significantly increased when MNC were ablated in dhr96 null 

female flies. In a dhr96 null background, median lifespan of MNC-ablated flies 

was extended by 12% compared to the UAS-rpr control and by 7,6% compared 

to the dilp2-GAL4 driver control (Log Rank Test, p-value ***<0.001) (figure 4.3.3 

B).  

 

Statistical analysis by CPH revealed that genomic dhr96 (p-value ***<0.001) 

and MNC ablation (p-value ***<0.001) had significant effects on lifespan, but 

these effects did not show any significant interaction (p-value=0.305) 

(supplement S.4.2). 
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Figure 4.3.3 Lifespan of MNC-ablated flies in a wild type and in a dhr96 null mutant 
background. MNC-ablated flies revealed a lifespan extension in both (A) a wild type and (B) a 
dhr96 null background compared to their driver and UAS-controls (Log Rank Test, p-value 
***<0.001).  
 

 

4.3.2.2 Phenobarbital stress resistance of MNC-ablated flies required 
dhr96 expression 
Treatment of MNC-ablated flies in a wild type background with the drug 

phenobarbital resulted in a significant increase in survival compared to its UAS- 

and driver-control (Log Rank Test, p-value ***<0.001) (figure 4.3.4). This 

B

A
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increase in phenobarbital resistance disappeared when MNC was ablated in a 

dhr96 null background.   

Statistical analysis (CHP) revealed that the dhr96 background (dhr96 versus 

dhr96 null) significantly affected lifespan, and that the two different responses 

between the two dhr96 backgrounds were significant (p-value=0.0012).   

 
Figure 4.3.4 Phenobarbital stress assay of MNC-ablated flies in a wild type and in a dhr96 
null mutant background. Ablation of the MNC resulted in an increased resistance to the drug 
phenobarbital (Log Rank Test, p-value ***<0.001). This enhanced resistance was lost when 
MNC were ablated in a dhr96 null background. 
 

 

4.3.3 Dhr96-lbd over-expression in a dfoxo null background 

4.3.3.1 Lifespan-extension of dhr96-lbd over-expressing females was not 
dependent upon dfoxo  
Over-expression of dhr96-lbd in a wild type background (solid red line) resulted 

in a significant lifespan extension (Log Rank Test, p-value ***<0.001) (figure 

4.3.5). Median lifespan in dhr96-lbd over-expressors (70,5 days) was extended 

by 12,8% compared to its ethanol control (62,5 days).  

Over-expression of dhr96-lbd in a dfoxo null background significantly increased 

lifespan (Log Rank Test, p-value ***<0.001). Median lifespan (35 days) of this 

transgenic line was increased by 16,6% when compared to its ethanol control 
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(30 days). The experiment was repeated and confirmed that results were 

reproducible.  

Cox proportional hazard (CPH) interaction test was used to determine whether 

the degree of lifespan extension between the two dfoxo backgrounds (dfoxo 

versus dfoxo null) was significantly affected. This statistical analysis revealed 

that the dfoxo background (p-value ***<0.001) and dhr96-lbd over-expression 

(p-value ***<0.001) significantly affected lifespan, but the two status did not 

show a significant interaction in their lifespan effects (p-value= 0.621) 

(supplement S.4.2). 

 

 

 
Figure 4.3.5 Lifespan of dhr96-lbd over-expressing flies in a wild type and in a dfoxo null 
mutant background. Over-expression of dhr96lbd resulted in an extension of longevity 
compared to controls (ethanol and UAS-controls). This effect remained when over-expression 
was conducted in a dfoxo null background (Log Rank Test, p-value ***<0.001). 
 

 

Over-expression of dhr96-lbd in a wild type background reduced fecundity when 

compared to controls (figure 4.3.6, figure 3.3.4). The dfoxo null background 

decreased fecundity in all transgenic lines when compared to wild type flies. 

Over-expression of dhr96-lbd in a dfoxo null background did not reduce 



  Chapter 4 

 91 

fecundity to a greater extent than in dfoxo null control flies (Kruskal-Wallis test, 

Dunn's test for multiple comparisons).   

 

 
Figure 4.3.6 Fecundity of dhr96-lbd over-expressor in a wild type and in a dfoxo null 
mutant background. Over-expression of dhr96-lbd reduced fecundity compared to its ethanol 
control (Log Rank Test, p-value ***<0.001). Fecundity was also reduced in dfoxo null flies (Log 
Rank Test, p-value ***<0.001). Over-expression of dhr96-lbd in a dfoxo null background did not 
show significant changes compared to dfoxo null control flies. 
 

 

4.3.3.2 DDT resistance of dhr96-lbd over-expressing flies was not wholly 
dependant on dfoxo 
Treatment with DDT at a usual concentration of 275mg/L in 1.5x SYA food 

revealed an significant increase in DDT resistance for dhr96-lbd over-

expressing flies in a wild type background, but not for dhr96-lbd over-

expressing flies in a dfoxo null background (supplement S.4.3). As dfoxo null 

flies were strongly sensitive to DDT, the experiment was repeated with a lower 

DDT concentration  (100mg/L DDT in 1.5x SYA food). In a dfoxo null 

background, flies with induced dhr96-lbd over-expression showed significantly 

increased DDT resistance compared to non-induced ethanol controls or 

controls on RU (Log Rank Test, p-value ***<0.001) (figure 4.3.7).   
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Figure 4.3.7 DDT stress assay (100mg/L) of dhr96-lbd over-expressing flies in a dfoxo 
null mutant background. Dhr96-lbd over-expressing flies in a dfoxo null background showed 
enhanced DDT resistance compared to RU and ethanol controls (Log Rank Test, p-value 
***<0.001). 
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4.4 Discussion  

4.4.1. Dhr96-lbd over-expression in dfoxo null flies 
 

Over-expression of dhr96-lbd in a dfoxo null background significantly extended 

lifespan (figure 4.3.5) and increased DDT resistance (figure 4.3.7). Statistical 

analysis (CHP) on the lifespan effects between the two different backgrounds 

(with and without genomic dfoxo) revealed no significant interaction. Thus, 

longevity of dhr96-lbd over-expressing flies was not affected upon dFOXO 

activity.  

Stress resistance was increased also in a dfoxo null background but direct 

comparison by statistical interaction were not tested, as experiment was 

performed on very low DDT concentration. However, results indicated that DDT 

resistance was not wholly dependent on genomic dfoxo expression.  

Flies harbouring the dfoxo null mutation are strongly short-lived and sensitive to 

DDT. Although dhr96-lbd over-expression enhanced longevity and DDT 

resistance in a dfoxo null background, it did not restore these to levels seen in 

flies with a wild type background. That indicates that dFOXO affects a broad of 

additional genes or pathways, which show no dependency upon DHR96 

signalling and are additionally important for modulating these lifespan and DDT 

resistance. This is in agreement with ChIP-chip of wild type and dfoxo null flies, 

showing that expression of more than 2000 genes was altered by removal of 

dfoxo (Alic et al., 2011). This modulation of target gene expression signifies the 

importance of dFOXO for ordinary maintenance.  

 

4.4.2 Stress resistance of long-lived IIS-reduced flies in dhr96 null 
flies 
Ablation of the MNC, or over-expression of dfoxo in the muscle tissue both 

extended lifespan in agreement with published data (Broughton et al., 2010; 

Demontis and Perrimon, 2010). Increased DDT resistance in IIS-reduced flies 

was previously shown for dilp2,3,5-mutants (Grönke et al., 2010), MNC-ablated, 

flies over-expressing a dominant negative version of the insulin receptor, and 
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flies over-expressing a dominant negative, catalytically inactive form of PI3-

kinase (Slack et al., 2011).  

The increased DDT resistance for dfoxo over-expressing flies in the muscle 

tissue is novel. DDT detoxification in Drosophila occurs mainly in tissue with 

known xenobiotic function, including the fat body, gut, Malphigian tubules, and 

salivary glands. This supports the assumption of tissue-tissue communication. 

For longevity muscle-specific over-expression of dfoxo induces 4E-BP, which in 

turn reduces insulin signalling in the whole body by endocrine signalling 

(Demontis and Perrimon, 2010). Thus, it might be that in muscle-specific dfoxo 

over-expressing flies, endocrine signals from the muscle induce xenobiotic 

response in distal tissues.  

Interestingly, the increased DDT resistance of dfoxo over-expressing flies was 

lost in a dhr96 null background. This clarifies that dFOXO modulation of DDT 

resistance is dependent on DHR96 function. Results in chapter 3.3.3 indicated 

that Cyp6g1 might mediate DDT resistance of dhr96-lbd over-expressing flies in 

the gut and Malphigian tubule. This is in agreement with a study showing that 

Cyp6g1 expression is regulated by a tissue-specific enhancer in the gut and 

Malphigian tubule (Chung et al.). These findings indicate that muscle-specific 

dfoxo over-expression might promote stress resistance via direct or indirect 

tissue-tissue communication between the muscle and the gut/ Malphigian 

tubules. 

 

An additional drug was tested in the MNC ablation epistasis experiment, namely 

the xenobiotic phenobarbital (PB). This drug was one of the first xenobiotics 

shown to induce expression of detoxification genes (Conney, 1967). 

Interestingly, the mammalian DHR96 homologues CAR and PXR are key 

regulators of the PB induced xenobiotic response (Honkakoski et al., 1998; 

Sueyoshi and Negishi, 2001). Treatment with PB causes nuclear translocation 

of CAR and PXR, and induces their transcriptional activity as heterodimers with 

the retinoid X receptor (CAR-RXR, PXR-RXR) (Sueyoshi and Negishi, 2001). 

The CAR and PXR response to PB is conserved in Drosophila, where DHR96 is 

also involved in the PB response. Dhr96 null flies are sensitive to treatment with 

phenobarbital, implying that DHR96 function might be required to metabolize 

this xenobiotic (King-Jones et al., 2006). Furthermore, microarray analysis of 
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phenobarbital treated wild type and dhr96 null flies revealed that there is a 

overlap of detoxification genes that are altered upon PB treatment and 

regulated by DHR96 (King-Jones et al., 2006). One of the PB-inducible genes is 

Cyp6d1 (Scott et al., 1996), and a promoter assay of this gene revealed a 

putative binding site for the Drosophila Broad complex (BR-C) (Lin et al., 2010). 

Br-c, which encodes for an ecdysone responsive gene, and dhr96 RNAi 

experiments using the Cyp6d1 promoter assay, showed that these two 

transcription factors regulate Cyp6d1 induction in response to PB; BR-C as a 

negative and DHR96 as a positive regulator (Lin et al., 2010). 

As is the case for dhr96-lbd over-expressing flies, MNC-ablated flies showed 

enhanced resistance to phenobarbital. This resistance disappeared when 

MNCs were ablated in a dhr96 null background, indicating that phenobarbital 

resistance in IIS-reduced flies is dependent upon DHR96. This conclusion 

enhances published findings that DHR96 is, like CAR and PXR, a key regulator 

in PB induced xenobiotic response. My results would also agree with the idea 

that DHR96 represents an activator in PB induced xenobiotic response.  

 

4.4.3 Longevity of IIS-reduced flies in a dhr96 null background 
In contrast to DDT and phenobarbital stress resistance, lifespan extension of 

IIS-reduced flies did not require DHR96 activity. Lifespan of MNC-ablated and 

dfoxo over-expressing flies remained extended in a dhr96 null background. 

These results separate DHR96-dependent and independent effects. Whereas 

DDT and phenobarbital resistance in IIS-reduced flies require DHR96 activity, 

the lifespan effect was mediated through other regulators. For dFOXO 

longevity, xenobiotic regulators are suggested to play an important role, as 

lifespan and xenobiotic response are dFOXO dependent effect in IIS reduced 

flies (Slack et al., 2011). Although DHR96 does not mediate this link, dFOXO 

regulates many other genes, which might modulate a cytopreotective 

mechanism to extend lifespan.  One prominent key regulator in detoxification 

regulation is Nrf2 (NF-E2-Related Factor 2). In Drosophila, CncC (cap ‘n’ collar 

isoform-C) is the Nrf2 ortholog (Misra et al., 2011). Nrf2/CncC is a transcription 

factor, regulating the expression of detoxification enzymes and suggested to 

have anti-ageing function (Sykiotis and Bohmann, 2010). In a non-induced 
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condition, Nrf2 is located in the cytoplasm, where it interacts with the E3-ligase 

KEAP-1 (Kelch-like ECH-Associated Protein 1). This protein promotes the 

proteasomal degradation of Nrf2. Stress induces the release of Nrf2 from 

KEAP-1 and its translocation into the nucleus, where it induces the expression 

of target genes (Nguyen et al., 2009). Epistatic analysis between CncC and 

insulin signalling might help to understand if there is a correlation. 

Interestingly, in C. elegans such an interaction between the Nrf2 analog SKN-1 

and IIS signalling is shown (Tullet et al., 2008). Reduced insulin signalling 

promotes SKN-1 nuclear translocation and its transcriptional activity to enhance 

stress tolerance. However, although SKN-1 contributes to stress resistance in 

IIS-reduced worms, constitutive active SKN-1 increases longevity independently 

of DAF-16. 

 

For DHR96 itself, it seems that the xenobiotic response and lifespan does not 

seem to be coupled. One indication is that dhr96-lbd over-expressing male flies, 

as shown in chapter 3.3.4, did not show enhanced lifespan although stress 

resistance was increased. Furthermore, over-expression of Cyp6g1 did not 

extend lifespan, but increased DDT resistance, implying that this cytochrome 

gene is not essential for longevity (Matt Piper, unpublished data). In addition, N-

terminally tagged Flag-Strep-6xHis-dhr96 (tagged-dhr96) over-expressing flies 

(provided by Teresa Niccoli), which were planned for ChIP sequencing 

experiments, were used for functional analysis (supplement S.3.6). Over-

expression of tagged-dhr96 or tagged-dhr96-lbd using a daughterless GS driver 

did not increase lifespan, but enhanced DDT resistance. Thus, the tag (in frame 

to dhr96 DNA binding domain) interfered in DHR96 function important for 

longevity but not for xenobiotic resistance.  

 

In C. elegans, the relationship between DAF-12 and DAF-16 or DAF-2 is very 

complex, as DAF-12 longevity is already intricate. Different conditions can lead 

to opposing effects on longevity in daf-12 mutants. Signals from the germ line 

and temperature are critical factors and were discussed in chapter 3.1.2. 

Furthermore, lifespan can be extended in a ligand-dependent and in a ligand-

independent manner, which in turn is again dependent on environmental 

conditions. These different regulatory mechanisms in combination with tissue-
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tissue signalling create a complex network, which poses a challenge to analyse 

and compare to Drosophila data.  

The relationship between DAF-2 and DAF-12 was studied using different daf-2 

alleles. Several EMS generated daf-2 alleles were investigated and dependent 

on their phenotype, alleles were sorted into two pleiotropic classes, which are 

summarized in supplement S.4.4. It was shown that daf-12 affects longevity of 

daf-2 mutants in an allelic-dependent manner. As an example, the non-null 

allele daf-12 (m20) (Loss of function, decreased lifespan) enhances longevity of 

daf-2(e1370) mutants (mutation in tyrosine kinase domain) but shortens 

lifespan of daf-2(e1368) mutants (mutation in ligand-binding domain)  (Gems et 

al., 1998; Patel et al., 2008). Nevertheless, a recent study focused on epistatic 

analysis between DAF-2 and ligand-bound or ligand-unbounded DAF-12 

(Dumas et al., 2013). The results indicated that the DAF-12 effect on daf-2 

longevity is also dependent upon whether DAF-12 is bound to the ligand or not. 

Thus, it is important to test also wild type dhr96 in epistatic analysis. 

 

Although the relationship between DAF-12 and DAF-16 is not fully understood, 

there is a co-dependency between the two regulators. DAF-12 signalling 

stimulates nuclear translocation of DAF-16, but constitutively nuclear DAF-16 is 

dependent on DAF-9, but not DAF-12 (Berman and Kenyon, 2006). This 

indicates that DAF-12 might have ligand-independent activities in worms 

(Antebi, 2013). In relation to possible ligand-dependent and ligand-independent 

DHR96 activities, it might be interesting, to test, whether over-expression of wild 

type or LBD-mutated dhr96 induces dFOXO nuclear translocation, for example 

in S2 cells.  

In induced IIS signalling, phosphorylated AKT kinase phosphorylates dFOXO 

leading to nuclear exclusion (Brunet et al., 1999). Reduced insulin signalling 

induces dFOXO nuclear translocation. Thus, the phosphorylation level of AKT 

and dFOXO in response to dhr96 over-expression might be a further alternative 

to test DHR96 effects on dFOXO subcellular localization. 
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4.4.4 Conclusion 
My results indicate that phenobarbital and DDT resistance in IIS-reduced flies is 

dependent upon DHR96 activity whereas longevity of dhr96-lbd over-expressor 

and IIS-reduced flies did not affect each other. Stress resistance results were 

obtained by feeding assays. As in chapter 3 discussed, feeding behavior might 

be affected in dhr96-lbd over-expressing flies. Thus, it is also here important to 

conduct stress assays via non-feeding assays to ensure results. 

It is of major interest to uncover the different mechanisms that affect lifespan in 

DHR96 and in IIS signalling.  ChIP sequencing analysis of dhr96-lbd over-

expressing flies will help to attain a better understanding of DHR96 regulation 

and uncover target genes, which might mediate longevity. Moreover, epistatic 

analysis of IIS-reduced flies in a dhr96 null background with a broader range of 

xenobiotics or oxidative stressors might help to separate detoxification 

processes that might not mediate longevity in IIS-reduced flies. 

 

 

 

 

 

 

 

 

 

 

 

 



  Chapter 5 

 99 

Chapter 5 Bioinformatic analysis of dhr96 
transcript profiles and qRT-PCR analysis of 
candidate genes  

 

5.1 Introduction 
Over-expression of dhr96 and dhr96-lbd using the daughterless GS driver 

extended lifespan and increased xenobiotic resistance in females. However, the 

mechanisms leading to these phenotypes are not known. Thus, the next priority 

is to identify DHR96 downstream targets that might confer longevity and stress 

resistance.  

In Chapter 4, Cyp6g1 was indicated to confer DDT resistance in dhr96 and 

dhr96-lbd over-expressing females. As dhr96 and dhr96-lbd over-expression 

modulated other stress responses in addition, it is of interest to identify further 

DHR96 regulated detoxification genes (cyps and gsts).  

Moreover, cytochrome enzymes play a major role in hormone metabolism. For 

the dhr96 homologue gene daf-12, it has been shown that cytochrome P450 

genes (DAF9 and Rieske) are involved in the ligand (dafachronic acid) 

biosynthesis pathway (Jia et al., 2002; Motola et al., 2006; Wollam et al., 2011). 

In Drosophila, cytochrome enzymes metabolize sterols from the precursor 

cholesterol. For example, Halloween cytochrome enzymes are identified to 

function in the biosynthesis pathway of 20-Hydroxyecdysone, which is the 

known ligand for the ecdysone receptor (Koelle, 1992; Thomas et al., 1993; Yao 

et al., 1993). Thus, analysis of components of the ligand biosynthesis pathway 

is another possible way to detect the DHR96 ligand.  

 

5.1.1 Dhr96 ChIP sequencing and microarray experiments 
Future aims are directed to identify genes important for longevity, detoxification 

and ligand biosynthesis, downstream of DHR96. ChIP experiments facilitate the 

studies of downstream processes.  
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So far, a suitable DHR96 antibody to purify DHR96 bound DNA has not been 

available, and tagged dhr96-lbd over-expressing flies failed to extend lifespan 

and so were not suitable, for use in ChIP sequencing experiments. New tagged 

transgenic dhr96 lines were generated to facilitate IP of chromosomes bound 

DHR96, using the tag. Nevertheless, microarray data between long-lived or 

short-lived and control animals can give information on which genes are 

affected downstream of DHR96. 

Microarray experiments were performed for dhr96 null mutants versus wild type 

in a CantonS (CanS) background (King-Jones et al., 2006), and for long-lived 

wDah+ ligand-insensitive dhr96 versus not long-lived wDah+ wild type dhr96 over-

expressing females using a ubiquitous tubulin GS driver (Janne Toivonen and 

Matt Piper, unpublished data). Using daughterless GS and tubulin GS driver led 

to different results in my hands, as wild type dhr96 over-expressing flies 

extended lifespan in daughterless driven flies (Chapter 3), and over-expression 

of wild type or ligand-insensitive dhr96 shortened lifespan when tubulin GS 

driver was used. The induction level was discussed as a possible reason, and 

food type represents an important factor. Although microarray data stem from 

over-expression of dhr96 and dhr96-lbd using a tubulin GS driver, comparison 

of the two data sets is valid, as in their condition lifespan was only extended in 

dhr96-lbd over-expressing flies. Thus, micro array data includes changes from 

wild type dhr96 over-expressing females which were not long-lived and 

changes from ligand-insensitive dhr96 over-expressing females which were 

long-lived, and are therefore of major interest to identify longevity genes. 

 

5.1.2 Approach for bioinformatics analysis of microarray data sets 
Ligand-insensitive dhr96 might induce compensatory changes in the expression 

of genes, which might regulate DHR96 or its ligand production in form of a 

feedback loop. Moreover, ligand-insensitive over-expressing flies were long-

lived, but wild type dhr96 over-expressors had no effect on lifespan using the 

tubulin GS driver (Janne Toivonen). Thus, the criterion was to search for 

cytochrome genes that show a differential expression between ligand-

insensitive and wild type dhr96 transcript profiles, or genes, which show a 

contrary effect between both. These genes are possibly relevant to lifespan, as 
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on the one hand they may be involved in life span extension, on the other hand 

they may be involved in ligand biosynthesis. For the second issue, genes that 

show changed expression in dhr96 over-expressed wild type flies but not in 

ligand-insensitive dhr96 over-expressed mutant flies have been also selected. 

 

Flies used for microarray experiments were also tested for xenobiotic resistance 

(Janne Toivonen, unpublished data) and although lifespan was only extended 

for dhr96-lbd over-expressing flies using the tubulin GS driver, both lines were 

resistant to certain stresses and had decreased fecundity. The criterion to 

identify important candidates for detoxification or fecundity downstream of 

DHR96 was therefore to search for genes that were up- or down-regulated in 

both lines. 

 

5.1.3 Candidates for qRT-PCR 
High priority candidates selected from the microarray data sets were tested in 

qRT-PCR between dhr96-lbd over-expressing flies and driver or UAS-controls. 

Moreover, IIS components including dfoxo and S6-kinase, as well as longevity 

genes, anti-microbial peptide (AMP) genes and the gene magro (discussed 

below) were tested in qRT-PCR.  

 

5.1.3.1 Magro – a downstream target of DHR96 
Magro is reported as a target of DHR96 and represents therefore an interesting 

candidate (Sieber and Thummel, 2012).  

Magro encodes for a lipase that is highly expressed in the midgut of Drosophila 

and is secreted into the intestine lumen (Sieber and Thummel, 2009). As with 

its mammalian homolog LipA, magro has esterase activity and digests dietary 

triacylglycerol (TAG) into free fatty acids and monoacylglycerols. Moreover it 

breaks down cholesterol esters into free sterols. Intestine cells absorb these 

digested forms, and resynthesized TAG and cholesterol esters circulate in the 

blood/haemolymph in form of lipoprotein particles to target tissues. TAG supply 

cells with energy, and are stored in the fat body. Excess conditions lead to the 

breakdown of TAG and cholesterol esters to promote energy metabolism and to 
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excrete cholesterol from the body. Misregulation in TAG homeostasis affects 

energy metabolism, and can cause physiological disorders like obesity or 

diabetes (Sieber and Thummel, 2009). 

Drosophila is an cholesterol auxotrophic organism, unable to synthesize 

cholesterol and fully dependent on its uptake (Hoog, 1936). Cholesterol is 

significant for a broad array of biological functions, and altered regulation in 

cholesterol uptake affects normal physiology. Thus, regulators of these 

mechanisms are important for diverse biological function, from hormonal 

regulation to metabolism. Interestingly, DHR96 regulates the expression of 

genes, which encode proteins involved in TAG and cholesterol homeostasis like 

magro (Horner et al., 2009; Sieber and Thummel, 2009).  

In dhr96 null flies TAG levels are decreased, and cholesterol levels are 

increased. Altered expression of the genes magro and npcb1 are suggested to 

partially cause these effects. Decreased transcription of magro reduces TAG 

levels in the body, as they cannot be absorbed by the gut. Npcb1 mediates the 

absorbance of cholesterol and up-regulation of this gene in dhr96 null flies 

increases cholesterol uptake. As magro is reduced, cholesterol efflux is 

unbalanced and consequently cholesterol levels are increased (Sieber and 

Thummel, 2012; Voght et al., 2007). 

 

As expression levels of these genes are affected in dhr96 null mutants, I 

investigated how the over-expression of dhr96-lbd modulates the transcript 

levels of these genes, as they display important links to energy and cholesterol 

homeostasis. 
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5.2 Materials and methods 

5.2.1 Bioinformatic analysis 
Microarray experiments and data of dhr96 and dhr96-lbd over-expressing flies 

by using the tubulin GS driver were performed and provided by Janne Toivonen 

(UCL, London). Analyses were focused on transcript levels of cytochrome P450 

genes with changed expression in only one of the two microarray sets, in both 

microarray sets, or with a contrary expression between both transcript profiles 

and were selected for further studies. The changes are shown as log2 fold 

changes (FC), indicating that positive log2 FC values are up-regulated genes 

and negative log2 FC describes down-regulated genes. 

 

5.2.2 Fly strains and maintenance 
Dhr96-lbd was over-expressed using the daughterless GS driver, and RNA of 

these and control flies (ethanol and driver control) were extracted at an age of 

10 days for qRT-PCR analysis. Crossings and maintains were performed the 

same way as described in chapter 3. 

 

5.2.3 RNA extraction and qRT-PCR 
To test transcript levels of candidate genes in dhr96-lbd over-expressing flies, 

RNA was extracted from whole bodies or dissected tissues, including gut, and 

ovaries. Dissections were performed in Schneider’s Drosophila medium (Gibco) 

using forceps. Quantitative RT-PCR was set up as described in chapter 2.1.2, 

and used Taqman primers are listed in supplement S.2.2. Data was analysed 

using sequence detection systems software 2.3 (Applied Biosystems). QRT-

PCR data were validated using the ΔΔCt method and normalized to three 

different internal controls (Rpl32, Actin, α-Tubulin). 

Candidates which showed significant changes in transcript levels were repeated 

in two additional biological replicates.  
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5.3 Results 

5.3.1 Analysis of transcript profiles  

5.3.1.1 Candidates for longevity and for regulation of ligand synthesis 
Bioinformatic analysis of transcript profiles from microarrays of wild type dhr96 

versus ligand-insensitive dhr96 over-expressing flies revealed 18 cytochrome 

genes as candidates for ligand production and lifespan (table 5.3.1).  

 

Three cytochrome genes (Cyp18a1, Cyp12a4, Cyp6g1) showed opposing 

expression levels between the wild type and ligand-insensitive dhr96 over-

expressing females. These genes were selected as high priority candidates for 

further analysis (chapter 6.3.3, Cyp6g1 chapter 3). 

Fifteen cytochrome genes showed a changed expression only in one situation 

but remained unchanged in the other. Strikingly, all eight cytochrome genes that 

are differentially expressed in ligand-insensitive dhr96 over-expressor but 

unchanged in wild type dhr96 over-expressing flies were down-regulated.  Also 

the transcript levels of genes with opposing expression were all decreased in 

the ligand-binding mutants, even though Cyp6g1 (involved in DTT resistance) 

and Cyp12a4 are characterized as detoxification enzymes (Chung, 2008).  

Cytochrome genes that were differentially expressed in dhr96 over-expressing 

females but unchanged in dhr96 ligand-insensitive over-expressing females 

showed low log2 fold changes in transcript level. Cyp12a5 showed the highest 

fold change with an up-regulation of 0,35 log2 fold change. Two genes including 

Cyp4p3 and Cyp6u1 show a trend to be down-regulated, but did not reach 

significance. Excluding these two genes, all other cytochrome genes were up-

regulated in dhr96 over-expressing flies. 

 

Cyp9h1 was selected from published transcript profiles between wild type CanS 

flies versus dhr96 null flies and wilt type CanS flies versus dhr96 heat-induced 

over-expressing flies (King-Jones et al., 2006). Cyp9h1 is down-regulated in 

induced dhr96 expressed flies, and up-regulated in dhr96 null flies (table 5.3.1). 
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Table 5.3.1 Transcript profiles from wild type dhr96 versus ligand-insensitive dhr96 over-
expressing or dhr96 null Drosophila flies. Cytochrome P450 genes were selected as 
candidate genes with the following framework conditions: (A) Genes which showed a opposing 
effect between both transgenic flies (dhr96 and ligand-insensitive dhr96), or between dhr96 null 
and wild type dhr96 over-expressing flies. (B) Genes in which expression was changed in dhr96 
over-expressors, but not in ligand-insensitive dhr96 over-expressors, or candidate cytochrome 
genes with changed expression in ligand-insensitive dhr96 over-expressors but not in wild type 
dhr96 over-expressors. 

 

5.3.1.2 Candidates for increased stress response and reduced fecundity  
Many cytochrome genes were either down-regulated or up-regulated in both the 

dhr96 and the ligand-insensitive dhr96 females. These genes were not included 

as putative candidates for DHR96 ligand production, but they might represent 

candidates for reduced fecundity and increased stress response as these 

phenotypes were observed in both dhr96 and dhr96-lbd over-expressing 

females. Candidates were therefore listed in table 5.3.2 arrayed by their log2 
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fold change in dhr96-lbd over-expressing flies with the highest log2 fold change 

on top.  

Other than in the list for candidates important for ligand production, log2 fold 

changes were higher for candidates important for fecundity or stress response.  

Cyp313a showed with a log2 fold change of 1,11 in dhr96 over-expressing flies 

and a log2 fold change of 1,055 in dhr96-lbd over-expressing flies, the highest 

up-regulation compared to other cyp candidates. Cyp6w1, Cyp6a8, Cyp6a2, 

Cyp6a21, and Cyp6a14 were down-regulated by a log2 fold change of about 

one or higher. Comparing up-regulated or down-regulated cytochrome gene 

levels between wild type dhr96 and dhr96-lbd over-expressing flies revealed 

similar log2 fold changes for most cytochrome genes. Among up-regulated 

genes, Cyp28d1 showed higher up-regulation in wild type dhr96 over-

expressing flies. Among down-regulated genes Cyp6d5, Cyp4d1 and Cyp4s3 

showed higher log2 fold changes in ligand-insensitive dhr96 over-expressing 

flies.  

 

 

 
Table 5.3.2 Transcript profiles of cytochrome genes from wild type dhr96 versus ligand-
insensitive dhr96 over-expressing flies. Cytochrome P450 genes, which were up- or down-
regulated in both transcript profiles (dhr96 over-expressors and ligand-insensitive dhr96 over-
expressors) were selected as candidate genes for reduced fecundity and stress resistance. 
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5.3.2 qRT-PCR analysis of dhr96-lbd over-expression using the 
daughterless GS driver in females 

5.3.2.1 qRT-PCR analysis of candidate genes in whole bodies  
Candidates, including Cyp12a4, Cyp18a1 and Cyp6g1, were selected from 

microarray analysis and tested by qRT-PCR for changed expression levels 

between dhr96-lbd over-expressing flies and control flies. Using whole bodies, 

Cyp18a1 transcript levels were significantly reduced in dhr96-lbd over-

expressing flies (p-value ***<0.001, Student's t-test) (figure 5.3.1 A).  In 

contrast, Cyp12a4 and Cyp6g1 trended towards up-regulation, which did not 

reach significance (data not shown).  

Remarkably, transcript levels of the anti-microbial peptide metchnikowin (mtk) 

were significantly down-regulated (p-value **<0.01, Student's t-test) (figure 

5.3.1 B). The decrease amounted about to 70% in dhr96-lbd over-expressing 

flies when compared to driver control flies on RU. There was no significant 

change between ethanol and RU controls.  

Hsp27 and hsp26 were significantly up-regulated in the ligand-insensitive 

dhr96-lbd transcript profile, and represent possible longevity genes, as over-

expression of hsp26 or hsp27 can extend lifespan in Drosophila (Wang et al., 

2004). However, no change in expression levels was observed for either in 

dhr96-lbd over-expressing females (supplement S.5.1). S6-kinase and dfoxo 

transcript levels were investigated as well and revealed no significant changes 

in dhr96-lbd over-expressing females when whole bodies were used 

(supplement S.5.1).  

Figure 5.3.1 Cytochrome P450 18a1 (Cyp18a1) and metchnikowin (mtk) transcript levels 
were reduced in dhr96-lbd over-expressing females. Over-expression of dhr96-lbd by the 
daughterless GS driver revealed to significantly down-regulate Cyp18a1 and mtk expression in 
whole body of females (p-value **<0.01, p-value ***<0.001, Student's t-test). 
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5.3.2.2 qRT-PCR analysis of candidate genes in the gut of dhr96-lbd over-
expressing flies 
As expression changes in specific tissues might not be detectable when whole 

bodies are used, some candidates were tested in dissected tissues, including 

gut and ovaries.  

In the gut of dhr96-lbd over-expressing females dhr96 expression was induced 

by about 3.2 fold (p-value ***<0.001, Student's t-test) (figure 5.3.2 A). As shown 

in chapter 4, over-expression of dhr96-lbd in females significantly increased 

Cyp6g1 levels in the gut (*p<0.05, Student's t-test) (figure 5.3.2 B). Cyp12a4 

expression levels were higher in dhr96-lbd over-expressing flies compared to 

driver control on RU, but the increase did not reach significance in the gut 

(figure 5.3.2 C). Interestingly, expression of magro was significantly reduced in 

these flies when compared to control flies (p-value **<0.01, Student's t-test) 

(figure 5.3.2 D).  

 
Figure 5.3.2 Quantitative RT-PCR of candidates in the gut of dhr96-lbd over-expressing 
females. (A) Over-expression of dhr96-lbd by the daughterless GS driver induced dhr96 
expression by 3.2 fold in the gut of females (p-value ***<0.001, Student's t-test). (B) Cyp6g1 
expression level was significantly increased (*p<0.05, Student's t-test), whereas Cyp12a4 
indicated increased expression levels, but increase did not reach significance. (D) Magro 
expression level was reduced in the gut of dhr96-lbd over-expressing flies (p-value **<0.01, 
Student's t-test). 
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5.3.2.3 qRT-PCR analysis of candidate genes in the ovary of dhr96-lbd 
over-expressing flies 
Dhr96 expression was induced by a fold change of 7.4 in ovaries of dhr96-lbd 

over-expressing females (p-value ***<0.001, Student's t-test). However, there 

was no significant change observed in transcript levels of S6-kinase, 4E-BP, 

dfoxo, hsp26, or hsp27 (figure 5.3.3, supplement S.5.2). Hsp26 and hsp27 were 

tested in the ovaries as they show very high expression in this tissue 

(Chintapalli et al., 2007). Expression levels of S6-kinase showed a reduced 

trend in two biological replicates with p-values lower than 0.1 (Student’s t-test). 

 

Figure 5.3.3 Quantitative RT-PCR of candidates in the ovaries of dhr96-lbd over-
expressing females. Over-expression of dhr96-lbd by the daughterless GS driver induced 
dhr96 by 7.4 fold in the ovaries when compared to driver control on RU (p-value ***<0.001, 
Student's t-test). No changes were observed for S6-kinase, dfoxo and 4E-BP transcript levels. 
S6-kinase showed a trend, but did not reach significance. 
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5.4 Discussion  

5.4.1 The majority of cytochrome genes were down-regulated in 
long-lived dhr96-lbd over-expressing females 
Analysing microarray data of dhr96 and dhr96-lbd over-expressing flies using 

the tubulin GS driver (provided by Janne Toivonen and Matt Piper) revealed 

that many cytochrome genes were down-regulated. Cytochrome genes that 

were differentially expressed between dhr96 and dhr96-lbd over-expressing 

flies in the whole body, were all down-regulated in the dhr96-lbd over-

expressing females. These findings overlap with the data from C. elegans 

trancript profiles of daf-12 (Fisher and Lithgow, 2006). Cytochrome genes, 

which show differential expression levels between wild type and ligand-

insensitive daf-12, were all down-regulated in the ligand-insensitive mutants.  

These findings appear contrary, as dhr96-lbd over-expressing flies showed 

increased stress resistance. Thus, increased levels of these detoxification 

genes were expected. But in transcript profiles only a few cytochrome genes 

were up-regulated in both situations. One possible reason might be that 

increased expression is not visible in whole bodies and might occur only in 

certain tissues, as was shown for Cyp6g1. Furthermore it is known that over-

expression of one detoxification gene can be sufficient to mediate resistance, 

so that the number of up-regulated genes might not be relevant (Daborn et al., 

2002). In addition, transcript profiles showed increased expression levels for 

other detoxification enzymes, including some Glutathione S-transferases (gsts), 

which were not covered in this study.  

To identify detoxification genes that are required for xenobiotic resistance in IIS-

altered flies mediated by DHR96, transcript profiles between dhr96 over-

expressors and IIS mutants should be compared. If certain stress responses of 

IIS mutants were mediated by DHR96, the array profiles of the ligand-

insensitive dhr96 over-expressors or wild type dhr96 over-expressor would be 

similar to the long-lived IIS profiles. This would restrict the number of possible 

candidates.  
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Besides their role in the xenobiotic metabolism, many cytochrome enzymes 

function in hormone metabolism, which in turn can affect a broad range of 

biological functions like reproduction, immunity and metabolism.  

The resulting hormones can represent ligands for hormone nuclear receptors. 

Cytochrome genes modulate feed back loops, thus our expectation was to see 

compensatory effects in form of up-regulated genes in ligand-insensitive dhr96 

over-expressing flies. However, transcript profiles revealed that all cytochrome 

genes, which were differentially regulated to wild type dhr96 over-expressing 

flies in the whole body, were down-regulated. Thus, the suggestion arose that 

DHR96 might be constitutively active without a bound ligand. However, it is also 

important to mention that certain tissues might be important for ligand 

biosynthesis and compensatory effects were not visible when whole bodies 

were used. 

So far it is unclear, how DHR96 is regulated, and if it acts as a repressor, an 

activator, or both. Direct target genes would give a better understanding of 

DHR96 function. Thus, ChIP sequencing experiments are part of future 

experiments.   

 

5.4.2 Cyp18a1 transcript levels were down-regulated in daughterless 
GS-driven dhr96-lbd females 
In dhr96-lbd over-expressing flies, Cyp18a1 was significantly down-regulated. 

This is in agreement with microarray data, in which Cyp18a1 levels are reduced 

in long-lived tubulin GS dhr96-lbd over-expressing flies. 

CYP18a1 is important for sterol metabolism, and shares characteristics with 

DAF-9, which catalyses the last step in the biosynthesis of the dafachronic 

acids (Jia et al., 2002).  CYP18a1 as well as DAF-9 belong to the 26-

Hydroxylase-enzyme family and thus metabolize the same type of reaction. 

Conspicuously, CYP18a1 acts on 20-Hydroxyecdysone (Guittard et al., 2011), 

which is the known ligand for the ecdysone receptor (Koelle, 1992; Thomas et 

al., 1993; Yao et al., 1993), and convert that sterol into 20-hydroxyecdysonoic 

acid. An active function of that steroid is not known and it is only described as 

an inactive form of 20-Hydroxyecdysone, as it reduces ligand levels for the 

ecdysone receptor and thus its activity. Inactivation of the ecdysone receptor is 
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proven to be required for metamorphosis in Drosophila, and loss of function 

leads to lethality in early development (Guittard et al., 2011). Thus, modulation 

of Cyp18a1 in constitutive dhr96-lbd over-expressing flies might be a reason for 

their developmental lethality. 

Moreover, 20-hydroxyecdysonoic acid may be a possible ligand or precursor 

ligand for DHR96, or may act on its ligand biosynthesis pathway. In vertebrates 

cholestenoic acid acts as a natural ligand for the liver-X-receptor alpha (Song 

and Liao, 2000) that among others is also involved in cholesterol and 

triglyceride metabolism, which are both affected by DHR96. So far, several 

ligands are known for vertebrate nuclear receptors, but only a few are known in 

C. elegans and Drosophila. 

 

5.4.3 Magro was down-regulated in daughterless GS-driven dhr96-
lbd females 
In dhr96 null mutants, magro down-regulation affects TAG and cholesterol 

homeostasis. The uptake and efflux of these components is dependent on their 

form. TAG and cholesterol esters have to be digested for absorption, or 

excretion in or by the intestine cells. Knockdown of magro decreases the efflux 

of cholesterol in the intestine, resulting in increased cholesterol level in the 

whole body (Sieber and Thummel, 2012). Dhr96 null mutants show reduced 

magro expression levels and similar phenotypes. Moreover, TAG levels are 

decreased in dhr96 null flies, which is also partially caused by reduced magro 

expression and activity to digest TAG to an absorbable form. Induced 

expression of this lipase in dhr96 null flies normalizes TAG levels (Sieber and 

Thummel, 2009).  

Interestingly, reduced magro transcript levels were observed in the gut of 

dhr96-lbd over-expressing flies. This would lead to the conclusion that TAG and 

cholesterol uptake/efflux and metabolism might be affected in these long-lived 

flies. According to the magro RNAi studies, that could mean that cholesterol 

level might also be altered in dhr96-lbd over-expressing flies. But DHR96 

affects other proteins involved in lipid metabolism, including the Niemann-pick 

genes npc1b, npc1a, npc2a and npc2b, which mediate cholesterol uptake or 

intracellular trafficking (Huang et al., 2005; 2007; Voght et al., 2007). The 
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decreased efflux might be a consequence of low cholesterol uptake in dhr96-lbd 

over-expressing flies. A next step would be to identify Npc1b transcript levels, 

since NPC1B mediates cholesterol absorbance, and moreover to identify TAG 

and cholesterol levels in dhr96-lbd over-expressing females. If these 

mechanisms were altered in dhr96-lbd over-expressing flies, a further step 

would be to investigate if dhr96-lbd phenotypes are dependent on these 

mechanisms by performing stress or lifespan experiments on food containing 

different cholesterol concentrations. For dhr96 null flies at least it was shown 

that survival is decreased on low cholesterol food (Sieber and Thummel, 2009). 

 

5.4.4 Mtk was down-regulated in daughterless GS driven dhr96-lbd 
females 
The immune system represents a further important protective mechanism, and 

has been linked to ageing in many studies. Interestingly, transcript levels of the 

antimicrobial peptide Metchnikowin (mtk) were significantly decreased to about 

70% in dhr96-lbd over-expressing females.  

Further experimental analyses were focused on this topic, and will be therefore 

introduced and discussed in the following chapter 6. 

 

5.4.5 Conclusion 
This chapter focused on downstream targets of dhr96 in dhr96-lbd over-

expressing females and validated a list of possible candidates. Expression of 

Cyp18a1, magro and mtk were altered in long-lived dhr96-lbd over-expressing 

females. Further studies are needed to understand the effect of their altered 

transcription. S6-kinase represented an interesting candidate, as it might be 

regulated by DHR96 in the ovaries (Hartman et al., 2013). A trend was 

apparent, but did not reach significance. More biological replicates are needed 

for an accurate conclusion.  

Candidates were extracted from microarray data from whole bodies of dhr96 

and dhr96-lbd over-expressing females. As genes might be differentially 

regulated in certain tissues a further step might be to perform arrays from 

specific tissues. 
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Chapter 6 Bacterial challenge of dhr96-lbd 
over-expressing females 

 

6.1 Introduction 
Although over-expression of dhr96-lbd using the daughterless GS driver 

extended lifespan and increased stress resistance, qRT-PCR analysis revealed 

a decreased basal expression level of the AMP gene Mtk. To investigate the 

effect on immune resistance, bacterial challenge of dhr96-lbd over-expressing 

females was tested by infection with the pathogen Erwinia carotovora 

carotovora (Ecc).  

The experiments were performed in cooperation with Dr. Gerrit Loch (LIMES, 

laboratory of Prof. Hoch), who is an expert in the field of Drosophila 

immunology. 

 

6.1.1 Immunity  
Immunity has evolved as a host-defense mechanism in metazoans to protect 

the body from infectious, microbial organisms (Hoffmann, 2003). The innate 

immune system represents a first-line defense system and is conserved across 

phyla. Germ-line encoded pattern recognition receptors (PRR) detect microbial 

pathogens and induce immune signalling pathways.  These activated cascades 

lead to the production of immune effectors to combat microbial infection 

(Janeway, 1989; Medzhitov and Janeway, 2000b; 2000a; 1998). 

In Drosophila, two types of immune response are described: (1) the humoral or 

systemic response induces the production of antimicrobial peptides (AMP) in 

the fat body (equivalent to mammalian liver), and their release into the 

hemolymph (mammalian blood). (2) The cellular response or acute-phase 

response involves the activation of hemocytes (blood cells) by cytokines, 

leading to phagocytic activities (Gillespie et al., 1997; Hoffmann, 2003; 

Hoffmann and Reichhart, 2002; Rizki and Rizki, 1984). 
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Vertebrates have developed an additional, sophisticated immune system, the 

adaptive immunity (Alberts et al., 2007). Two classes of lymphocytes, the B-

cells (humoral) and T-cells  (cell-mediated) mediate the immune response. B-

cells detect antigens of invaders and generate specific antibodies against them. 

Secreted and circulating antibodies in the blood bind to the foreign substrates 

and prevent their interaction with host cells. T-cells mediate the cell-based 

response, by eliminating the host cells directly or by inducing the activity of 

macrophages that eliminate microbial organism by phagocytosis. In contrast to 

innate immunity, the response in adaptive immunity is directed against specific 

pathogens, and can last for long periods. Clonal expansions in B-and T cells 

provide memorial recognition of these antigens. However, studies suggest that 

plants and invertebrates also have also trained or basal memorial immunity 

(Durrant and Dong, 2004; Kurtz, 2005; Netea et al., 2011; Quintin et al., 2014).  

 

6.1.2 Drosophila humoral immunity 
The humoral immune response is well characterized in Drosophila and includes 

two key immune signalling pathways, which are conserved across species 

(Hoffmann, 2003; Hoffmann and Reichhart, 2002). Both the Toll and Imd 

(immune deficiency) pathways activate NF-κB-like transcription factors (Dorsal/ 

Dif and Relish) respectively, which induce antimicrobial peptide (AMP) gene 

transcription. 20 AMP genes are categorized with seven classes: Attacin (4), 

Cecropin (4), Drosocin (1), Diptericin (2), Defensin (1), Drosomycin (7) and 

Metchnikowin (1). The resulting peptides are characterized by a small size and 

cationic properties. Atttacin, Drosocin, Cecropin and Diptericin are protective 

against gram-negative bacteria, Defensin against gram-positive bacteria, and 

Cecropin, Drosomycin and Metchnikowin against fungi. They can act alone or in 

combination against invaders by damaging its cell membrane (Bulet et al., 

1999; Meister et al., 2000). 

Toll signalling is initiated by the cleavage and activation of the Toll ligand 

spätzle in response to gram-positive bacteria and fungi (Levashina et al., 1999; 

Weber et al., 2003). The binding of spätzle to the Toll receptor induces a 

cascade, via several mediators, to the degradation of the repressor Cactus that 

consequently leads to the release of the NF-κB-like proteins Dorsal and Dif, and 
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nuclear translocation of these proteins (Imler and Hoffmann, 2002; Ip et al., 

1993; Nicolas et al., 1998).  

The Imd pathway does not exclusively affect the innate immune response, as it 

is also involved in the JNK (c-Jun N-terminal protein kinase) pathway. However, 

Imd signalling is induced in response to gram-negative infection and shows 

similarity to the vertebrate TNF-α (tumor necrosis factor alpha) pathway 

(Hoffmann, 2003). Binding of bacterial DAP-type peptidoglycan by the 

Peptidoglycan recognition receptor (PGRP) initiates a signalling cascade with 

several mediators (including imd, dFADD, dAK1, IKK), leading to the activation 

of the downstream target Relish (NF-κB family protein) by phosphorylation and 

cleavage (Lu et al., 2001; Rutschmann et al., 2000; Silverman et al., 2000). 

Both pathways can be induced separately, but can also act together to combat 

bacterial invaders (Rolff and Reynolds, 2009).  

 

6.1.3 Hormonal regulation of the innate immune system 
Hormones can affect diverse biological mechanisms, including metabolism, 

reproduction, development and immune response. In humans, the use of 

glucocorticoids (steroid hormones) for medical and immunological applications 

is very common (Necela and Cidlowski, 2004). Their immunosuppressive effect 

via the glucocorticoid receptor (GR) compensates the effects of diseases 

caused by an overactive immune response (allergy, sepsis, autoimmune 

disease). Further, human hormone nuclear receptors like the vitamin D receptor 

(VDR), retinoid X receptor (RXR), liver X receptor (LXR) or the estrogen 

receptor (ER) as downstream components of hormone metabolism were shown 

to regulate innate immune system and expression of pro-inflammatory 

cytokines (Baeke et al., 2010; Hong and Tontonoz, 2008; Nunez et al., 2010).  

In Drosophila, Juvenile hormone (JH) and 20-Hydroxyecdysone (20E) modulate 

cellular and humoral innate immunity (Flatt et al., 2008a; Meister and Richards, 

1996). Both hormones are required for insect development, physiology and 

reproduction (Kozlova and Thummel, 2000; Riddiford, 1993). Effects of JH on 

the innate immunity occur through 20E regulation (Flatt et al., 2008a).  

20E binds to the Ecdysone Receptor and induces its dimerization with 

ultraspiracle, the ortholog of LXR and RXR, and its transcriptional activity. 
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Transcription of early genes, like the zinc binding factor Br-c, and the nuclear 

hormone receptors Eip75B, Eip78C and Hr46 (dhr3), are induced in a time and 

hierarchical dependent manner. Dependent on the developmental stage, JH 

can induce or suppress 20E induced ER/USP signalling (Flatt et al., 2008a; 

King-Jones and Thummel, 2005; Mugat et al., 2000; Thummel, 1996).  

20E treatment of mbn-2 cells (derived blood cell line) or larval Drosophila 

induces phagocytic activity and expression of the AMP genes Diptericin and 

Drosomycin (Dimarcq et al., 1997; Lanot et al., 2001). Moreover, 20E is 

required for development of tissues or components that are important for 

cellular innate immunity, including the lymph gland and hematopoiesis 

(Sorrentino et al., 2002). In contrast, 20E treatment of blowfly (Calliphora vicina) 

revealed a down-regulation of the innate immune signalling during the diapause 

of larvae, suggesting that developmental stage is an important criterion (Flatt et 

al., 2008a). However, in most other stages and conditions, 20E acts as an 

inducer and JH as a suppressor (Flatt et al., 2005). In adult Drosophila, 20E 

regulates AMP gene expression through two different mechanisms (Rus et al., 

2013). Both mechanisms are mediated through downstream target genes of the 

EcR/USP complex. Five early genes, including Br-c, Eip93F, Eip74EF, Eip78C 

and Hr46, and two dGATA factors, Serpent (srp) and Pannier (pnr), regulate 

PGRP-LC activity. As PGRP-LC initiates the Imd signalling cascade, its 

regulation represents a critical basis for the transduction of the Imd immune 

response. In a second mechanism, gene expression of a subset of AMP genes, 

including Diptericin, Metchnikowin and Drosomycin, is regulated by PNR, SRP, 

and BR-C. This effect might occur downstream of Relish activity (figure 6.1.1). 
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Figure 6.1.1 Model for hormonal regulation of innate immune pathway in Drosophila 
(modified from Rus et al (2013)). 20-Hydroxyecdysone can modulate expression of AMP 
genes through ecdysone signalling by two mechanisms:  (1) Ecdysone-inducible transcription 
factors (red box) control expression of the peptidoglycan receptor (PGRP-LC). (2) Transcription 
of a subgroup of AMP genes is regulated independently of PGRP-LC. 

 

6.1.4 Immunity and ageing in Drosophila 
Drosophila represents an excellent model to study the relationship between 

innate immunity and ageing. Underlying biological mechanisms, including the 

Imd and Toll pathways, or IIS signalling, are conserved across species. Diverse 

genetic tools that are very well established in flies, and a short generation time, 

provide a broad range of possible studies that would be difficult in vertebrates 

due to longer lifespans and their additional adaptive immune system. In 

vertebrates, as in Drosophila (see below), although immunity declines with age, 

as aged organism are more susceptible to pathogen infection, inflammatory 

markers increase with age too (Cevenini et al., 2013; DeVeale et al., 2004).  

 

In aged flies, immune response is impaired and neutralization of pathogens is 

negatively affected. Interestingly, expression levels of AMP genes, including 

Attachin and Defensin, and other effectors in the innate immune response such 

as Relish are up-regulated in old flies. As the pathway is continuously induced, 
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aged flies suffer from chronic inflammation (Eleftherianos and Castillo, 2012). 

This phenomenon is called “inflammaging” and conserved between organisms 

(Salminen et al., 2012). 

Over-expression of PGRP-LE in the fat body induces Imd signalling and 

increases resistance against pathogens. However, this chronic induction of 

innate immune response by Relish, which is equivalent to chronic inflammation, 

reduces lifespan (Libert et al., 2006). Moreover, inhibition of NF-κB by 

pharmacological treatment extends lifespan, suggesting that a lowered basal 

innate immunity might be beneficial and reduce chronic inflammation (Moskalev 

and Shaposhnikov, 2011). These studies indicate that chronic inflammatory 

signals might affect lifespan more than an impaired immune response to 

pathogens, at least in sterile laboratory conditions. 

Given this link between immunity and ageing, many studies have focused on 

the effect on immunity in lifespan-altered flies. Chico mutants are long-lived and 

show an increased resistance to pathogens. Surprisingly, there is no change in 

AMP gene expression. Moreover, dietary restricted flies do not show improved 

survival to bacterial infection, but AMP gene expression is induced (Libert et al., 

2008). These results indicate that the underlying biological mechanisms for 

innate immunity are complex, and pathogen resistance is not necessarily 

coupled to longevity. So far there is no evidence that dFOXO regulates 

pathogen resistance, but interestingly dFOXO can bind to the AMP gene 

regulatory region and induce AMP expression when insulin signalling is 

reduced, and the Imd and Toll pathways are blocked (Becker et al., 2010). 

Thus, AMP gene expression is co-regulated by metabolism and the innate 

immune response, and dFOXO regulation of AMP gene expression might 

represent compensatory effects upon energy poverty. 

Comparing transcript levels of AMP genes over the whole fly life span between 

wild type and caloric restricted flies revealed that the age-dependent up-

regulation of innate immune effectors is delayed in caloric restricted flies 

(Pletcher et al., 2002). That would suggest that a key link between ageing and 

immunity is the time point in which basal innate immunity is up-regulated. 

Caloric restriction slows down the mechanism that induces age-related chronic 

inflammation 
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The relationship between DHR96 and IIS signalling requires more studies. But 

that there is an IIS dependency on DHR96 was shown for xenobiotic resistance. 

Although longevity was independent from each other, other phenotypes were 

similar, such as the reduced fecundity or the increased oxidative stress. The 

question arose, if they might be also linked to immunity since the expression 

levels of Mtk were drastically down-regulated in dhr96-lbd over-expressing 

females. As dFOXO regulates the expression of AMP genes, but DHR96 might 

act downstream of dFOXO, the potential link between DHR96 and immunity 

might occur through other mechanisms.  
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6.2 Materials and methods 

6.2.1 Drosophila stocks 
Dhr96-lbd was over-expressed in female flies by using the daughterless Gene-

Switch driver. Crossings and maintenance were performed the same way as 

described in chapter 3. As a standard, 10 day old females were used for 

bacterial infection studies. 

 

6.2.2 Pathogen and culture conditions 
The gram-negative strain Ecc15 (Erwinia carotovora carotovora or 

Pectobacterium carotovora carotovora (PCC)) were provided by Prof. Hoch 

labarotary (Bonn) to infect flies. This strain was modified from wild type Ecc 

bacteria by inducing a GFP-marker for tracking use (Basset et al., 2000). 

Ecc15 bacteria were grown in 100 ml overnight LB culture at 29°C at 220 rpm. 

OD was measured to identify bacterial density. Bacteria were centrifuged at 

3.000 rpm for 15 minutes at 4°C (Beckmann centrifuge, JA-10). The pellet was 

dissolved in 10% Sucrose in H2O2, and the OD was adjusted to 100 (Neyen et 

al., 2014). 

 

6.2.3 Pricking 
Very fine needles (0,1mm; Plano) were used to inject bacteria in the thorax of 

dhr96-lbd over-expressing flies and control flies (driver control on RU and 

dhr96-lbd non-induced form). Female flies were infected under carbon dioxide 

anaesthesia treatment. Gas treatment was timed to be equal between 

genotypes. Flies were pricked with 10% Sucrose without bacteria as a further 

control. 10 female flies for each genotype and condition were stabbled using 

bacterial or sucrose contaminated needle. Flies were transferred back to vials 

with 1x SYA food. 

 

6.2.4 CFU - counting colony-forming units per fly  
4 hours after infection, flies were transferred to tubes filled with glass beads and 

1ml of magnesium sulphate (10mM) on ice, and homogenized using the 
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FastPrep®-24 instrument (MP Biomedical) at maximum speed for 20 seconds.  

Different dilutions were prepared to plate flies on LB-plates containing the 

antibiotic rifampicin (100 µg/mL) as the Ecc15 strain carries genomic resistance 

to rifampicin.  

Diluted lysates were plated in two different ways. In the first approach, 3 µl of a 

serial dilution were spotted in a line per fly (1:10, 1:25, 1:50, 1:75). Five flies 

were spotted on one plate. Every line represents one fly with serial dilutions. 

Plates were stored at 25°C after spots were dried, and transferred to 4°C when 

colonies were visible. 

To quantify the number of bacterial colonies, lysates were plated on LB-plates 

containing the antibiotic rifampicin. In this second approach, three dilutions 

were chosen (1:10, 1:100, 1:1000). To reduce the number of plates, two flies 

lysates were combined on one plate (100µl each fly sample).  

 

6.2.5 ImageJ counting 
Plates were imaged by a gel documentation system (G-BOX, Syngene). The 

software ImageJ (Java based program) processed pictures for automated 

counting of colonies. Images were converted from 16-bit to 8-bit images and 

inverted by the command “watershed”. Colony counts per image were obtained 

by the command “analyse particles”.   

 

6.2.6 Data analysis  
Data displays counting colony-forming units per female fly in case of the 

spotting approach and two flies as a unit in case of the second approach. All 

quantitative data are reported as the mean ± SEM (standard error of mean). P-

values were determined by Student’s t-test. 
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6.3 Results 

6.3.1 Dhr96-lbd over-expressing flies showed increased bacterial 
density 
Dhr96lbd over-expressing and control flies were infected with the pathogen 

Ecc15, and different dilution of each lysate was spotted on LB-plates containing 

rifampicin. 

Comparing bacterial spot colonies of dhr96-lbd over-expressing females to 

spots of its ethanol control or the driver control on RU revealed that dhr96-lbd 

over-expressing flies gave more bacterial colonies than did the controls. The 

1:10 dilution spots of dhr96-lbd over-expressing flies showed dense colonies 

(figure 6.3.1 A), whereas control spots contained moderate and little colony 

density (figure 6.3.1 B and C). In higher diluted spots (1:25 and 1:50), more 

colonies grew in the dhr96-lbd over-expressing flies than in control flies. Spots 

of control flies contained none or few colonies in these dilutions. No colonies 

grew on plates that contained the 10% Sucrose control. 
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Figure 6.3.1. Serial dilutions of dhr96-lbd over-expressing and control fly lysates 4 hours 
after infection with Ecc15 bacteria. (A) Dhr96-lbd over-expressing flies showed increased 
number of bacterial colonies than in (B) control flies on ethanol or in (C) driver control flies on 
RU. (A) The 1:10 and 1:25 dilutions of fly lysates from dhr96-lbd over-expressing show dense or 
moderate dense colonies in lysate spots. It is noticeable that these dilutions in control flies (B 
and C) show reduced numbers of colonies. 
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6.3.2 Quantification of bacterial colonies in dhr96-lbd over-
expressing females 
Samples diluted to 1:100 showed that dhr96-lbd over-expressing flies gave 

significantly increased colony numbers compared to driver control flies on RU or 

control flies on ethanol (p-value **<0.01, Student’s t-test) (figure 6.3.2).  Control 

plates with sucrose samples did not show any colonies. No bacterial colonies 

grew on plates, which contained samples from 1:1000 dilutions.  

 

 
Figure 6.3.2 Dhr96-lbd over-expressing flies are sensitive to bacterial infection (1:100). 
Ecc15 gram-negative bacteria colonies of infected flies were counted by using ImageJ software. 
Dhr96-lbd over-expressing flies showed enhanced bacterial colony numbers than control flies 
(da-GS (+) and da-GS/UAS-HR96LBD (-)) (p-value **<0.01, Student’s t-test). 
 

 

 

Plates containing 1:10 diluted fly homogenates were analysed as well (figure 

6.3.3). Quantification of these data confirmed that dhr96-lbd over-expressing 

flies have significantly increased bacterial growth compared to driver control 

flies on RU (p-value **<0.01, Student's t-test) or to UAS-control flies on ethanol  

(p-value *<0.05, Student's t-test). 

 

C
FU

 (c
ou

nt
in

g 
co

lo
ny

-fo
rm

in
g 

un
its

) 
pe

r t
w

o 
fli

es

**
**



  Chapter 6 

 127 

 
Figure 6.3.3 Dhr96-lbd over-expressing flies were sensitive to bacterial infection (1:10). 
Counting of Ecc15 gram-negative colonies of infected flies in a dilution of 1:10 revealed that 
dhr96-lbd over-expressing flies showed enhanced bacterial numbers than control flies (da-GS 
(+) and da-GS/UAS-HR96LBD (-)) (p-value **<0.01, Student’s t-test). 
 
 
 

6.4 Discussion 
Over-expression of dhr96-lbd in females caused a decrease in expression of 

the AMP gene Mtk, and functional analysis of dhr96-lbd over-expressing flies 

infected with gram-negative Ecc15 revealed that the innate response after 4 

hours of infection is suppressed in these flies. Infected dhr96-lbd over-

expressing flies contained more bacteria than did the control flies. However, 

these results support only the first time point after infection and it is not proven if 

survival or the immune response at a second time point would differ between 

dhr96-lbd over-expressing flies and controls. Thus, the next steps would be 

survival assays of infected transgenic flies, and bacterial counting for several 

time points after infection.  

Although dhr96-lbd over-expressing females have beneficial effects in 

xenobiotic resistance, oxidative stress response and lifespan, the negative 

effect on bacterial immune response implies that DHR96 has both positive and 

negative effects on life history traits. Interestingly, a contrary link between 

oxidative stress and the innate immune response is shown in transcriptional 

profiling studies of wild type flies treated with the oxidative stressors paraquat 

and H2O2 (Misra et al., 2011). These flies reveal induced expression of genes 
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mediating oxidative stress response, but suppressed expression of many genes 

involved in the innate immune response. AMP genes, including Mtk, Def, dro3, 

Drs, and 3 cecropin genes, and additional main effectors in the innate immune 

response, were down-regulated. Moreover, studies with peroxiredoxin 5 

(dPrx5), a redox-sensing enzyme, revealed that over-expression of this gene 

increase lifespan and oxidative stress response, whereas the null mutation 

caused sensitivity to oxidative stress and shortened lifespan (Radyuk et al., 

2010). Interestingly, short-lived mutants exhibit an enhanced resistance to 

bacterial infection, but long-lived dPrx5 over-expressing flies show decreased 

resistance to bacteria (Radyuk et al., 2010). These results are very similar to 

DHR96 phenotypes, and might indicate that a negative correlation between 

ageing or oxidative response and the innate immune response is possible. 

 

A negative correlation is also shown for the dhr96 homolog PXR in humans. 

Rifampicin is a drug, which induces the activity of PXR, and patients that were 

treated with rifampicin in clinical trials, showed immunosuppressive effects. In 

mice, induced PXR activation decreases activity of NF-κB protein, whereas 

knock out PXR mice show increased expression of NF-κB target genes 

(Ihunnah et al., 2011). 

 

The suppressed immune response in dhr96-lbd over-expressing flies might be 

caused by hormonal regulation. Juvenile hormone (JH) and 20-

Hydroxyecdysone (20E) modulate innate immunity in Drosophila. 20E can 

induce the expression of AMP genes, whereas JH inhibits the 20E induced 

AMP expression (Flatt et al., 2008a). Interestingly, expression levels of Juvenile 

Hormone Binding Protein (JHBP) are modulated in dhr96 null mutants (King-

Jones et al., 2006). JHBP ensures the transport of JH and other lipophilic 

molecules to target tissues and protects this hormone from degradation 

(Touhara and Prestwich, 1993).  Dhr96 null mutants show induced expression 

of JHBP and treatment of dhr96 null flies with phenobarbital shows an additive 

effect to this induction. Thus, it might be interesting to test if expression levels of 

these genes are modulated in dhr96-lbd over-expressing flies, and if so, 

whether a suppressed effect of JH on 20E induced AMP gene expression might 

occur.  
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Hormones, including JH and 20E, are produced from cholesterol through 

several steps and catalyzed by cytochrome P450 enzymes. DHR96 regulates 

cholesterol homeostasis (Bujold et al., 2010). Interestingly, dhr96 null flies show 

increased cholesterol and decreased TAG that is caused by down-regulation of 

the lipase magro and increased npc1b levels (Sieber and Thummel, 2012). In 

dhr96-lbd over-expressing flies, magro was also down-regulated, which might 

cause changes in cholesterol homeostasis (chapter 5.3.2.1). Interestingly, 

Cyp18a1, which inactivates 20E (Guittard et al., 2011), was also down-

regulated in dhr96-lbd over-expressing flies. Thus, the suggestion would arise 

that 20E levels would be increased and might be beneficial for AMP gene 

expression. But the hypothesis I support is that a decrease of magro might 

cause overall low cholesterol and affect cytochrome P450 genes in a negative 

feed back loop. Thus, it is of major interest to identify the levels of cholesterol 

and 20E in dhr96-lbd over-expressing flies. Exposing wild type flies on low 

cholesterol food induced magro, but decreased Cyp18a1 expression in the 

whole body (supplement S.6.1). That would suggest that cholesterol starvation 

might cause a compensatory mechanism, for example by enhancing cholesterol 

uptake via magro and changing the activity of cytochrome P450, as is the case 

for Cyp18a1. It would be interesting to test whether these regulations are 

mediated via DHR96 by testing dhr96 null mutant and dhr96-lbd over-

expressing flies on low and normal cholesterol food for qRT-PCR analysis. 

 

In aged flies the innate immune response is up-regulated and permanently 

induced (Eleftherianos and Castillo, 2012). Over-expression of PGRP-LE that 

induces a chronic immune response via induction of Imd signalling shortens 

lifespan (Libert et al., 2006). In contrast, inhibition of NF-κB by pharmacological 

treatment extends lifespan (Moskalev and Shaposhnikov, 2011). Thus, 

inhibitory effects on the innate immunity can be anti-ageing. According to my 

results, this is very interesting as the basal expression of the AMP gene Mtk in 

dhr96-lbd over-expressing flies is reduced. However, the experiments covered 

only flies at an age of 10 days. As AMP transcript levels are increased in old 

flies it would be important to test the AMP expression levels at different ages of 

dhr96-lbd over-expressing fly lifespan. Moreover, caloric restricted flies showed 

in a delay in the up-regulation of AMP genes (Pletcher et al., 2002). Thus, it 



Chapter 6   

 130 

would be interesting to test whether this also occurs in dhr96-lbd over-

expressing flies. 

 

This chapter indicates that expression levels, at least for the AMP gene Mtk of 

dhr96-lbd over-expressing flies were reduced and that the innate immune 

system of dhr96-lbd over-expressing flies was sensitive to bacterial Ecc15 

infection. How this effect might correlate to the other phenotypes of dhr96-lbd 

over-expressing flies is so far unclear and requires further studies. But that 

immunity can be coupled to oxidative stress and to ageing has been shown in 

different studies. Thus, it represents an interesting field to invest further studies 

and to understand how the different traits are balanced. 
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Chapter 7 DHR96 ligand sensor screen with 
various drugs and Drosophila lipid extracts 

 

7.1 Introduction 
DHR96 is involved in life history traits of Drosophila but the underlying 

mechanisms are still unclear. It is unknown whether DHR96 acts as an 

activator, repressor, or both, of target genes. Identifying the natural ligand of 

DHR96 would facilitate various studies to discover DHR96 mechanism. Thus, 

the aim of this chapter is to identify the ligand(s) of DHR96. 

 

7.1.1 Function and ligands of the dhr96 human ortologs CAR, PXR 
and VDR  
Human constitutive androstane receptor (CAR), pregnane X receptor (PXR), 

and vitamin D receptor (VDR) are the closest homologs of Drosophila DHR96 

(King-Jones and Thummel, 2005; Lindblom et al., 2001). Furthermore, the liver 

x receptor (LXR) shows functional relation to DHR96 activity as both receptors 

regulate target genes that are involved in cholesterol metabolism (Horner et al., 

2009). These hormone nuclear receptors heterodimerize with retinoid X 

receptor (RXR) to induce transcriptional regulation of target genes (Haussler et 

al., 2010; Wang et al., 2012). VDR activity is induced by the sterol 1,25-

dihydroxyvitamin, and modulated bone mineral metabolism, mammalian hair 

cycling, xenobiotic response and metabolic pathways that are involved in 

cancer and immune response (Adorini et al., 2006; Haussler et al., 2008). CAR 

and PXR share target genes and are both described as xenobiotic sensors 

(Tolson and Wang, 2010). Interestingly, both HNRs are expressed highly in the 

liver and intestine, which are important for detoxification, but also crucial for 

glucose and lipid metabolism (Gao and Xie, 2012).   

 

Studies on CAR revealed diverse biological functions (Molnar et al., 2013). Next 

to the xenobiotic response, it is involved in lipid metabolism and in endobiotic 
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metabolism of steroids, bile acid, or hormones for other NHR like thyroid 

hormone (Halilbasic et al., 2013; Wagner et al., 2010). Moreover, CAR is 

involved in energy metabolism, and is crucial for hepatic glucose regulation 

(Gao and Xie, 2012). Cell cycle regulation, hepatic proliferation and response to 

chemical carcinogenesis are additional functions reported for CAR (Chen et al., 

2012; Kohle et al., 2008). 

Phenobarbital is a prominent xenobiotic identified to modulate CAR activity 

(Zelko and Negishi, 2000). PB induces the expression of cytochrome P450 2B 

genes via PB responsive DNA elements (Honkakoski et al., 1998). In CAR null 

mice these Cyp2B genes were not induced upon PB treatment (Wei et al., 

2000). Phenobarbital among other compounds were reported as ligands for 

CAR, but turned out to induce its activity in a ligand-independent manner 

(Mutoh et al., 2013). CAR under normal conditions is located in the cytoplasm, 

where it is bound to HSP90 (Yoshinari et al., 2003). PB treatment induces 

dephosphorylation of CAR by protein phosphatase 1ß and protein phosphatase 

2A, and subsequently its translocation into the nucleus (Sueyoshi et al., 2008). 

The dephosphorylation of CAR occurs by the inhibition of epidermal growth 

factor receptor (EGFR) signalling (Mutoh et al., 2013). 

 

CAR is constitutively active (Choi et al., 1997), but several identified 

compounds can modulate its activity. Some activators exhibit a low selectivity 

and can activate also other TFs, like many pesticides (CAR and PXR) or 

etrogens (estrogen receptor and CAR). However, the numbers of chemicals 

that activate specifically CAR directly or indirectly increased and include 

compounds like steroids, pesticides, synthetic, or natural compounds (Molnar et 

al., 2013). Among the few direct ligands are TCPOBOP (1,4-bis-[2-(3,5-

dichloro-pyridyloxy)]benzene) (Tzameli et al., 2000) and CITCO (6-(4-Chloro-

phenyl)Imidazo[2,1-b][1,3]Thiazole-5-CarbaldehydeO-(3,4dichlorobenzyl) ox-

ime) (Maglich, 2003), where ligand binding was shown in crystal structures. 

Inverse agonists that repress transcriptional activity of CAR have also been 

identified, like androstanol (Forman et al., 1998).  

Interestingly, the list of interaction partners of CAR contains co-activators and 

co-repressors, suggesting that it can act as an activator or a repressor, possibly 
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dependent upon an agonist or inverse agonist is interacting with CAR (Molnar 

et al., 2013).  

 

PXR and CAR overlap in some function, which occur to the overlap in some 

target gene and ligands (Tolson and Wang, 2010). In contrast to CAR, PXR 

activity is reported to be fully ligand-dependent. As with CAR, PXR is involved 

in glucose regulation and lipid metabolism in the liver (Hukkanen et al., 2014). 

 

7.1.2 Reporter assay studies of DHR96 in Drosophila melanogaster 
The activation pattern of several nuclear receptors, including DHR96, was 

investigated using an HNR-GFP fusion reporter construct, which showed the 

time point and location of activation for these transcription factors. No signal 

was detected for DHR96. However, treatment of embryos with CITCO (6-(4-

Chlorophenyl)Imidazo[2,1-b][1,3]Thiazole-5-CarbaldehydeO-(3,4-dichloroben-

zyl)oxime), which is a known non-natural ligand for DHR96 homologue nuclear 

receptor CAR, leads to DHR96 activation (Maglich, 2003).  

Of the 18 canonical hormone nuclear receptors in Drosophila (King-Jones and 

Thummel, 2005), only two have known ligands. 20-Hydroxyecdysone is 

identified as the ligand for Ecdysone receptor(Koelle et al., 1992; Thomas et al., 

1993; Yao et al., 1993). For HNR E75, heme is shown to induce E75 activity 

(Cruz et al., 2012; Reinking et al., 2005). Ligand(s) for the other 16 canonical 

Drosophila hormone nuclear receptors have not been identified yet, and 

therefore they are referred to as orphan nuclear receptors (Mangelsdorf and 

Evans, 1995).  

Interestingly, studies have revealed possible crosstalk between the Ecdysone 

receptor and DHR96. In general, nuclear receptors bind to specific promoter 

regions of target genes, which are called nuclear receptor response elements 

(Ham et al., 1988; Payvar et al., 1983). DHR96 is known to interact with the 

hsp27 response element, which is in turn a target promoter region for EcR (Fisk 

and Thummel, 1995). Competition between both nuclear receptors for the 

promoter region could serve as a further layer of regulation for the 20E 

response. Furthermore, overexpression of hsp27 leads to lifespan extension 

and starvation resistance (Wang et al., 2004).     
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7.1.3 Ligand sensor screen with various drugs and Drosophila lipid 
extracts 
Chapter 3 introduced DAF-12 and its regulation by dafachronic acid, the DAF-

12 ligand. The identification of the natural DAF-12 ligand (Motola et al., 2006) 

gave the opportunity to use a similar approach to identify the natural ligand of 

DHR96 in Drosophila (chapter 7.1.4). Although cholesterol binds to DHR96, this 

has not been proven to be the case in natural conditions. The approach was 

focused on lipids from Drosophila, and to test lipid fractions in a dhr96 reporter 

system as it was done for DAF-12. Moreover, C.elegans lipids were used in an 

equivalent daf-12 reporter system as a control for the approach. 

 

Figure 7.1.1 depicts an overview of the experimental approach, which indicates 

the different steps of the ligand screen experiment. It shows that lipids from flies 

were extracted and fractionated and that each fraction has been tested in 

Drosophila S2 cells expressing the reporter system for DHR96 activity. 

Fractions with an activating effect can then be used to identify the ligand with 

further fractionation steps and mass spectrum analysis (MS). Furthermore, 

candidate ligands including CITCO, phenobarbital, tebufonzide, glucose, and 

dafrachronic acids were tested in a similar manner.     

 

Due to the similarities between DHR96 and DAF-12, we started a collaboration 

with Dan Magner of the Antebi laboratory, where we aimed to gain an insight 

into how the activity of these nuclear receptors are regulated and affect ageing. 

The focus of the proposed project is therefore to identify the hormone(s) 

controlling DHR96 function. 

 
 



  Chapter 7 

 135 

 
 
Figure 7.1.1 Ligand sensor screen. The ligand sensor system (left) together with lipid extract 
fractions from flies (right) and candidate ligands (not shown) were tested for activation in S2 
cells. A silica column was used to fractionate lipid extracts through their polarity. All fractions 
were dissolved in DMSO and tested at 1:1000 dilution for activation in S2 cells.  
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7.2 Materials and methods 
 

7.2.1 Fly extraction and fractionation 
For the first approach of the ligand sensor screen, adult and larvae white 

Dahomey+ (wDah+) Drosophila from multiple stages of the life cycle and both 

genders were collected (adult and non-adult samples). We have used a mixed 

selection of flies to have all possible sterols contained in the extracts, as lipid 

composition differs during development and between genders. 

For the second approach, female flies were exposed to DDT (275mg/L in 1x 

SYA) food for 4 hours, or to holidic medium (a chemical defined medium) with a 

low cholesterol concentration, recipe see supplement S.7.1) for 2-5 days. Flies 

from the first and second approaches were snap-frozen on liquid nitrogen and 

then stored at -80°C. Frozen flies were homogenized in ice-cold PBS 

(Phosphate buffered saline, Invitrogen) using a homogenizer (IKA T10basic). 

Lipids from fly homogenate were extracted with 2:1 chloroform/methanol 

(BLIGH and DYER, 1959) and the resulting organic phase was dried with 

nitrogen, which transfers the methanol of the extract into the gas phase, and an 

evaporator was used to completely dry the sample.  

Dan Magner collected lipid extracts from worms of varying ages and genders, 

and in addition a pig liver using the above extraction technique. Using a silica 

coloumn lipid extracts were fractionated through their polarity. Initial fractions 

possess high polarity, whereas subsequent fractions have decreased polarity.  

 

7.2.2 Gas chromatography/Tandem mass spectrometry (GC/MS/MS) 
analysis 
Fractions were subjected to GC/MS/MS analysis to identify fraction(s) that 

contains dafachronic acid. This serves as an essential control, on the one hand 

to verify that lipid extraction worked, and on the other hand, to verify that worm 

fractions (especially those containing dafachronic acid, as the known ligand) 

gives DAF-12 activation when applied to the ligand sensor screen. 

Analysis was performed with a 7000A Triple Quadrupole GC/MC instrument 

(Agilent Technologies) that provides an ESO source and a HP-5MS column. 
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Purified dafachronic acid was used as an internal control and samples were 

derivatized with diazomethane. The instrument was adjusted in a multiple 

reaction monitoring (MRM) mode and transition for dafachronic acid (m/z 220 à 

250) was used.  

 

7.2.3 Ligand sensor system  
Fractions and candidate sterols were tested in a reporter assay for activity. This 

ligand sensor system, which was developed for different Drosophila nuclear 

receptors and tested on embryo flies (Palanker, 2006), was used in cell culture 

experiments to identify candidate ligand(s) for DHR96. The system includes two 

essential constructs: (I) The Ligand-Binding-Domain (LBD) of dhr96 (624bp-

2463bp) (see cloning) was fused to the DNA-Binding-Domain of gal4. (2) 

5xUAS-firefly luciferase was used as a reporter gene to monitor nuclear 

receptor activity. Ligand(s) binding to the LBD of DHR96 leads to the activation 

of GAL4 via a conformational change, resulting in an interaction of GAL4 with 

the UAS-promoter and an induction of renilla luciferase expression (see Figure 

7.2.1). 

 

 
Figure 7.2.1 Schematic representation of the ligand sensor system. S2 cells were 
transfected with Gal4DBD-dhr96LBD together with the luciferase reporter construct. In the 
presence of the DHR96 ligand(s) the Gal4DBD-DHR96LBD fusion protein should be able to 
bind with the Gal4 UAS response element.  As a result the expression of the reporter gene 
luciferase is induced. 
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7.2.4 Cloning of constructs  
The following constructs were generated for the screen: The LBD-domain of the 

three different nuclear receptors, dhr96, daf-12 and nhr8, which were identified 

via alignments between NHR genes (Antebi et al., 2000),  were amplified by 

PCR, fused in frame to the Gal4-DNA-Binding Domain, and cloned into a 

pAc5.1/V5-His B vector (Invitrogen) to generate the constructs Gal4DBD-

dhr96LBD, ligand-insensitive Gal4DBD-dhr96LBDmut, Gal4DBD-daf12LBD, 

and Gal4DBD-nhr8LBD. Individual primers and restriction sites are listed in 

supplement S.2.1. For cloning experiments the In Fusion HD Kit (Clontech) was 

used according to the manufacturer’s instructions.  

pUAS-firefly luciferase (adgene) has already been tested in insect cell lines 

(Antebi et al., 2000) and was therefore used as the reporter gene of the ligand 

sensor system. An additional reporter vector was necessary as a transfection 

control and for normalization, which was co-transfected in all samples. 

Normalization is essential for transfection in multiple-wells as transfection 

efficiency of cells differs between wells. To avoid this confounding factor, RLU 

values of firefly luciferase were normalised to RLU values of the normalisation 

vector. Gfp, ß-galactosidase or renilla luciferase can be used for normalisation; 

and as renilla is well established for reporter assays, three different renilla 

vectors were used in S2 cells: pRL-null (Promega), pSV40-renilla (Promega), 

pact-renilla (Prof. Hoch laboratory). Only pact-renilla worked efficiently in S2 

cells, and was therefore selected for following experiments.  

 

7.2.5 Transfection of S2 cells 
Schneider Drosophila S2 cells were grown at 25 °C in Schneider’s Drosophila 

medium (Gibco) supplemented with 10% heat-inactivated FCS and antibiotics 

(100 µg/mL streptomycin and 60 µg/ mL penicillin, Roche). 

The day before transfection, S2 cells were split and seeded in 96-wells plates 

(polystyrene black plate, costar) at a density of 1x106 cells/ml and a volume of 

100µl per well. S2 cells were transfected using Effectene Transfection Reagent 

(Quiagen) with a total DNA amount of 0,18µg per well, containing 30ng pact-

Renilla, 75ng pAc5.1-Gal4DBD-TF-LBD (TF for Transcription factor), 75ng 

pUAS-luciferase and, for diverse controls 75ng pAc5.1/V5-His B as a fill vector. 
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After 2 days of incubation at 24 °C to allow DNA uptake and optimal protein 

expression, cells were treated with each Drosophila lipid extract fraction or 

candidate ligands. Luminescence was measured after a 16 hours incubation 

time (see 7.2.7).  

 

7.2.6 Sterol and fraction supplementation 
All dried fractions were dissolved in DMSO, which is a good solubilisation 

reagent for organic compounds (Balakin et al., 2004). They were used in a 

1:1000 dilution for the ligand sensor screen in S2 cells. This dilution activated 

DAF-12 in preliminary experiments in Human Embryonic Kidney 293 cells 

(HEK-293) using C. elegans lipid extracts (Dan Magner, unpublished data). 

Commercial available drugs, listed in table 7.2.1, were used at different solvents 

and concentrations (from 50nM until 100mM), depending on the drug.  

 

Table 7.2.1 Sterols used. Sterols were dissolved in the recommended solvents. Most of them 
have been shown to activate dhr96 orthologs (CAR, VDR, DAF-12), other closely related 
nuclear receptors (LXR), or nuclear receptor with possible cross talk (ecdysone receptor). 
 
 

7.2.7 Luciferase assay 
For measurement of firefly and renilla luciferase, the Dual Glo Luciferase Kit 

(Promega) was used according to the manufacturer’s instructions. Activity was 

measured in the form of luminescence by the infinite M200 plate reader (Tecan) 

for the screen using drugs, and by the BMG microplate plate reader (Omega) 

for the screen, using lipid extracts from fly, pig and worm. Firefly luciferase 

values were normalised to renilla luciferase activity, and in both cases their 

luminescence is reported as Relative light units (RLU), calculated as ([light 

Sterol Solution Source Positive 
activation 

CITCO DMSO Sigma CAR 

Phenobarbital Methanol Sigma CAR, VDR 

Tebufonzide Ethanol Sigma (Ecdysone) 

Glucose Water Roth LXR 

Dafrachronic acid DMSO Antebi laboratory DAF-12 
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units/OD 420] x reaction time in minutes). Results are reported as the means of 
three independent experiments, each assayed in triplicate. All quantitative data 

are reported as the mean ± SEM (standard error of mean). P-values were 

determined by Student’s t-test. 

 

 

 

 

 

 

 

 

 

 
 



  Chapter 7 

 141 

7.3 Results 

7.3.1 Ligand sensor screen 

7.3.1.1 Dafachronic acid activated DAF-12 but not DHR96 in S2 cells  
The Gal4DBD-daf12LBD fusion construct was generated as a positive control 

for the ligand sensor screen, to test if their purified ligand, dafachronic acid 

(DA), induces activation of DAF-12 fusion protein in an S2 cell culture system. 

In figure 7.3.1, it is shown that treatment with the DAF-12 ligand led to a 

significant induction of GAL4DBD-DAF12LBD reporter gene transcription in a 

dose dependent manner (4-fold at 100 and 200nM DA, 10-fold at 500nM DA). 

Thus the gal4DBD-Tf-LBD system works in S2 cells. Moreover, no activation of 

luciferase transcription was observed for DHR96. 

 

 
Figure 7.3.1 Reporter assay with dafachronic acid (DA) in S2 cells. In the presence of 
dafachronic acid, GAL4DBD-DAF12LBD fusion protein was able to interact with the Gal4 UAS 
response element.  As a result the expression of the reporter gene luciferase (RLU) was 
induced. In contrast, dafachronic acid did not affect activity of GAL4DBD-DHR96LBD. 
 

7.3.1.2 Ligand sensor screen with various drugs  
The drug CITCO, which activates the DHR96-GFP-reporter system in 

Drosophila embryos (Palanker, 2006), failed to induce expression of firefly 

luciferase in S2 cells at the concentrations of 1, 10 and 100µM (figure 7.3.2 A). 

Remarkably, DMSO (Dimethyl Sulfoxide) alone affected DAF-12 activity 

(significant induction of 2-3 fold) and also possibly stimulated DHR96 to a lesser 

extent (not significant, approximately 1,5 fold).  

***
***

***
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Phenobarbital, tebufonizide, or glucose did not activate DHR96 or DAF-12 

fusion proteins at any tested concentrations (figure 7.3.2 B, tebufonizide and 

glucose see supplement S.7.2). At a dose of 500µM, phenobarbital (PB) 

treatment caused a significant activation of GAL4DBD-DHR96LBD, when 

compared to the GAL4DBD control at 500µM PB treatment, or to the 

GAL4DBD-DHR96LBD methanol control (p-value *<0.05, Student’s t-test). The 

activation amounted about ∼20%. However, this increase was not significant 

when compared to the Gal4DBD control on methanol. 

 

 
Figure 7.3.2 Effect of (A) CITCO and (B) Phenobarbital on GAL4DBD-DHR96LBD and 
GAL4DBD-Daf-12LBD activity in transiently transfected S2 cells. Gal4DBD-dhr96LBD or 
Gal4dbd-Daf-12LBD fusion constructs and the pAct-luciferase reporter were over-expressed in 
S2 cells. After 2 days to allow expression, cells were treated by (A) CITCO and (B) 
phenobarbital (PB) at various concentrations. Activity in form of luminescence (RLU) was 
measured 16h after treatment. RLU values were normalised to the values of the control pAct-
renilla. (A) DMSO had an effect on the reporter system. No activation was detected for CITCO. 
(B) A significant increase of luminescence was observed in cells treated with PB at a 
concentration of 500µM. No significant changes were observed using 0.5 and 5µM PB.  
 

The experiment was repeated with higher doses of phenobarbital as the 500µM 

treatment gave a significant increase. Interestingly, concentrations of 2mM PB 

significantly induced luciferase transcription when compared to all controls 

(figure 7.3.3) (p-value ***<0.001, Student’s t-test). The activation amounted 3.5 

fold when compared to the Gal4DBD control at 2mM PB concentration. 

However, longer treatment or higher concentrations of PB induced cell lethality 

and no significant luciferase transcription (data not shown). The experiment at 

2mM was performed once and has to be repeated. 

A B

*

CITCO Phenobarbital
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Figure 7.3.3 2mM Phenobarbital treatment induced DHR96 ligand sensor system in S2 
cells. Activity of Gal4DBD-DHR96LBD was significantly induced by 2mM phenobarbital 
treatment (p-value ***<0.001, Student’s t-test). 

 

7.3.2 Ligand sensor screen with wild type Drosophila, C. elegans 
and pig liver lipid extracts  

7.3.2.1 GS/MS/MS analysis of lipid fractions 
GS/MS/MS analysis of lipid extract fractions identified C. elegans fraction 58 as 

containing dafachronic acid (DA) (figure 7.3.4), thus the lipid extraction worked. 

However, it does not indicate that all lipids were successfully extracted and 

solubilized, as sterols differ in their properties. No DA was detected in pig liver 

or in Drosophila.  

 
Figure 7.3.4 GS/MS/MS analysis of fraction from C. elegans, D. melanogaster, S. crofa 
(Dan Magner). Fractions were prepared by trimethylsilyldiazomethane derivitization and 
analyses were performed by GC-MS-MS on a 15 m HP5-ms column for dafachronic acid 
(retention time of Δ7-dafachronic acid is reported at 7:43). Analysed peaks were chosen based 
on the co-migration of DA. Fraction 58 (marked in red) is identified to contain the dafachronic 
acids in worms. 

***



Chapter 7   

 144 

7.3.2.2 Analysis of wild type Drosophila, C. elegans and pig liver whole 
lipid extracts  
Whole lipid extract of each organism was tested for activation using the S2 cell 

system (figure 7.3.5). No notable induction using whole lipid extracts (1:1000) 

was observed for any extract. Only the DA control (1mM) showed a three-fold 

induction for DAF-12 when compared to the GAL4DBD-DAF12LBD DMSO 

control, which was lower than seen in previous experiments due to the high 

concentration of the dafachronic acid (figure 7.3.1, 10-fold induction with 500µM 

DA). Notably, no activation for DAF-12 was observed by using C. elegans 

whole lipid extract although dafachronic acid was identified in fraction 58 and 

was thus present in the whole lipid extract. 

 

 
Figure 7.3.5 Reporter Assay with whole lipid extracts of C. elegans, D. melanogaster, S. 
scrofa. Whole lipid extracts were used in a 1:1000 dilution for the reporter assay. DMSO was 
included as the control. Only the purified dafachronic acids showed an approximately three-fold 
activation on DAF-12.   
  

7.3.2.3 Ligand sensor screen with wild type Drosophila, C. elegans and pig 
liver lipid fractions 
Dhr96, ligand-insensitive dhr96, daf-12 and nhr-8 Gal4DBD fusion constructs 

were tested in HEK-293 and in S2 cells using lipid fractions from Drosophila, 

worm and pig liver. Results are summarized in figure 7.3.6 and supplement 

S.7.3. 

**
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Figure 7.3.6 A depicts the screen results for DAF-12 using C. elegans and 

Drosophila lipid extracts, in which fold changes of fractions were normalised 

over the control vector Gal4DBD. In contrast to the whole lipid extracts, fraction 

58 of worm extract significantly activated the DAF-12 reporter system (figure 

7.3.6 A1). There was no obvious DAF-12 activation notable around these 

fraction numbers (shown not to contain DA) in screen results of Drosophila 

fractions (figure 7.3.6 A2). 

Results for the ligand screen of DHR96 using Drosophila lipid extract fractions 

were normalised to the Gal4DBD controls  (figure 7.3.6 B1) and additionally to 

ligand-insensitive DHR96 (figure 7.3.6 B3). Results revealed certain fractions 

showing increased or decreased luminescence compared to average 

luminescence.  To determine candidate fractions, statistics were defined that 

accept fractions as candidates where luminescence was above or below a 

statistically specified value. Fractions with fold change values greater than 2 

standard deviations from the mean of all fractions after log transformation were 

selected. Log transformation is required, as a 2-fold increase and a 2-fold 

decrease are represented by 2 and 0.5 respectively, but just taking an average 

and SD without log-transformation gives more weight to the 2-fold increase. 

Using these settings, about 64 from 330 fractions from Drosophila and C. 

elegans significantly increased or decreased reporter activity, and were 

therefore selected for a repeat reporter assay (see supplement S.7.4). Results 

from the equivalent screen in HEK-293 cells were included in this data set (Dan 

Magner). The HEK-293 system seemed to be more sensitive than the S2 cell 

system, as the control induction of DAF-12 activation was much higher than in 

S2 cells. Overlapping candidate fractions between S2 and HEK-293 cells have 

been designated as high priority candidates (see supplement S.7.4).  

When normalised to a control vector, the strongest candidate for an activator of 

the ligand-insensitive DHR96 is Drosophila fraction 26 (figure 7.3.6 B2), for an 

activator of the wild type it is the non-polar Drosophila fraction 174 (figure 7.3.6 

B1). Normalising wild type DHR96 to ligand-insensitive DHR96 reporter system 

identified, in addition, Drosophila fraction 64 and C. elegans fractions 113-116, 

146 and 147 as strong candidates (figure 7.3.6 B3).  
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Figure 7.3.6 Ligand sensor screen for dhr96 and daf-12 in S2 cells by using fractions 
from lipid extracts of C. elegans or D. melanogaster (A1) Activation of GAL4DBD-DAF12 
was observed for C. elegans lipid fraction 58, which contained dafachronic acid. In Drosophila 
lipid fractions, no DA was detected around these fraction numbers and (A2) also no notable 
activation was observed around these fractions. (B1-3) Activity of (B1) GAL4DBD-DHR96LBD 
and (B2) ligand-insensitive GAL4BD-DHR96LBD was tested using Drosophila lipid fractions and 
mathematical statistics were defined to determine candidates. (B3) In addition, GAL4DBD-
DHR96LBD was normalised over ligand-insensitive GAL4DBD-DHR96LBD. Strongest 
candidates were marked by a small red circle.  
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Candidates listed in these data sets (see supplement S.7.4) were repeated in a 

second screen. Unfortunately, fraction responses were variable and not 

consistent with the first screen and therefore no conclusions could be drawn 

from this. A third screen with only the strongest candidates and with fractions 

around these candidates is planned.  

 

7.3.3 Ligand sensor screen with lipid extracts from wild type 
Drosophila females exposed to DDT and a low cholesterol diet 
As screen results using wild type flies did not give any positive results so far, 

the suggestion arose that the ligand might not be synthesised in normal wild 

type flies. Thus, a second approach was performed, in which lipid fractions from 

female Drosophila treated with DDT or exposed to low cholesterol diet were 

tested. DDT was chosen as dhr96 and dhr96-lbd over-expressing flies were 

resistant to DDT, suggesting that DDT might activate a DHR96 response in wild 

type flies. Low cholesterol was selected, as expression of DHR96 downstream 

targets was modulated under this condition (Supplement S.6.1). 

 

Whole fly lipid extracts from females treated with DDT or exposed to a low 

cholesterol diet were fractionated into 20 DDT (D1-D20) and 19 low cholesterol 

(C1-C19) lipid fractions and tested in the ligand sensor system.  

In a first screen the same settings were used as in previous experiments 

(1:1000 dilution of fractions, 16h incubation). RLU values (firefly/renilla) 

resulting from GAL4DBD-DHR96LBD reporter system were normalised over 

RLU values (firefly/renilla) of the GAL4DBD control in the resulting data sets. As 

shown in figure 7.3.7 A, fractions C12-C19 revealed induced luciferase 

expression for DHR96. Remarkably, these fractions also showed a high toxicity 

in the form of cell death (observation using a microscope). The screen was 

repeated with an incubation time of 12 hours, rand gave similar data (7.3.7 B). 

In a third screen, dilution was increased from 1:1000 to 1:10.000 and fractions 

which were induced in the previous screens, did not show obvious changes 

under these conditions (7.3.7 C).  DDT fractions did not show any obvious and 

consistent changes. 
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Figure 7.3.7 Ligand sensor screen for DHR96 in S2 cells with lipid fractions from female 
Drosophila flies treated with DDT or exposed to low cholesterol food type. (A1) 
GAL4DBD-DHR96LBD activity is induced in fraction C12-C19 (flies exposed to a low 
cholesterol diet) when dilutions of 1:1000 and an incubation time of 16 hours were used. These 
fractions showed high toxicity. (A2) A repeat screen with 12 hours incubation time of fractions 
on cells gave a similar phenotype, (A3) but using higher dilution revealed a decrease of toxicity 
and no obvious induction in fractions C12-C19. 
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7.4 Discussion  

7.4.1 Internal GAL4DBD-DAF12LBD control was affected by DMSO 
The use of Gal4DBD-Daf12LBD ensured a positive control for the ligand sensor 

system and for the lipid extraction. Treatment with purified dafachronic acid 

induced the activity of GAL4DBD-DAF12LBD and the control was therefore 

successful. Interestingly, DMSO itself induced transcription of luciferase for the 

GAL4DBD-DAF12LBD sensor system, whereas the other GAL4DBD-TF fusion 

proteins did not show a significant response. Indeed, DMSO is known to 

change gene expression of some specific cytochrome genes, so that activation 

may arise from components that are involved in the ligand production pathway. 

However, for DAF-12, this might appear unexpected, as no dafachronic acid 

was identified in the fractions tested in the GS/MS/MS analysis, suggesting that 

Drosophila might not synthesise this compound. Thus, it might be that a 

Drosophila lipid structure with similar DA, synthesized upon DMSO treatment, 

or a indirect regulation induced DAF-12 activity to a small extent. 

 

7.4.2 Phenobarbital induced GAL4DBD-DHR96LBD activity 
CITCO and phenobarbital were used as possible positive controls for the 

GAL4DBD-DHR96LBD sensor system. Although CITCO was shown to induce 

activity of DHR96-GFP-reporter system in Drosophila embryos (Palanker, 

2006), treatment of three different CITCO concentrations failed to induce 

activity of GAL4DBD-DHR96LBD in S2 cell culture. It might be that induction 

would require another dose of this drug. Another reason might be that CITCO 

can not induce GAL4DBD-DHR96LBD activity in a cell system as the regulation 

of the xenobiotic response between a cell system and an in-vivo system can 

differ (Baum and Cherbas, 2008).  

Experiments with the drug phenobarbital revealed that the concentration of 

ligand(s) might be a critical criterion for DHR96 activation in this assay. Too low 

or too high concentrations of phenobarbital failed to induce expression of the 

reporter gene. This is in agreement with studies showing that too low as well as 

too high concentrations of tested compounds can lead to different results 

(Thorne et al., 2010). However, 2mM phenobarbital treatment succeeded to 
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activate the DHR96 reporter system (figure 7.3.3). This finding would overlap 

with studies in which DHR96 is shown to regulate many genes, which are also 

induced by phenobarbital in Drosophila (King-Jones et al., 2006) and would 

suggest that PB modulates activity of DHR96. These results would also indicate 

that DHR96 could act as an activator, as it induced luciferase transcription. 

However, a repressive function might be also possible, as for some nuclear 

receptors both a repressive or activating response are observed (Aranda and 

Pascual, 2001).  

 

Interestingly, phenobarbital was primarily identified as a ligand for both 

mammalian dhr96 orthologs CAR and PXR, resulting in the induction of 

cytochrome genes (Moore et al., 2000). However, recent results uncovered that 

the effect of phenobarbital on CAR is mediated through an indirect mechanism, 

in which the epidermal growth factor receptor (EGFR) signalling is involved. The 

actual activation is induced by the dephosphorylation of CAR, which is caused 

by the inhibition of (EGFR) signalling (Mutoh et al., 2013).  

 

In case a DHR96 ligand would be identified, binding assays are required to test 

if a direct interaction causes activation, or whether indirect pathways are 

involved. According to this, it would be of major interest to test if activity of 

ligand-insensitive GAL4DBD-DHR96LBD is affected by phenobarbital 

treatment. This would provide a useful control if the mutation in the LBD domain 

is required for the transcriptional response. Moreover, posttranslational 

modifications, for example by phosphorylation, represent further regulatory tools 

and are not studied for DHR96 so far. 

 

7.4.3 Ligand screens using lipid fractions from Drosophila did not 
uncover the natural ligand  
Using fractions from wild type flies did not reveal an obvious ligand for DHR96. 

As shown for activation of DHR96 by PB, a critical aspect in this assay is to 

have the right concentration of agonists that induce activation. In whole worm 

lipid extract, the low concentration of DA is the likely reason that DAF-12 

activation is not induced upon treatment although dafachronic acid was present.  
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A strategy that was tried to enrich the possible ligand for DHR96 in flies was to 

use flies in which the probability was higher that DHR96 is active. As this 

transcription factor is involved in xenobiotic response and cholesterol 

metabolism (King-Jones et al., 2006), the second approach was focussed on 

females that were treated with DDT or exposed to a low cholesterol diet. 20 

fractions of each condition were used, as this number of fractions was sufficient 

to bring DA to an appropriate concentration for DA activation (Motola et al., 

2006). But the problem that arose in the performed experiments was that 

concentrated lipids were toxic seeming strongly in fractions C12-C19 (judget by 

cell membrane integrity). Interestingly, these toxic effects seemed to induce the 

reporter system of DHR96, and would suggest that DHR96 activity and possibly 

ligand synthesis might be regulated in response to toxicity as a cytoprotective 

mechanism. Moreover, DHR96 is suggested to interact with the hsp27 

response element in-vitro, which is in turn a target promoter region for EcR 

(Fisk and Thummel, 1995). Although over-expression of dhr96-lbd females did 

not show any changes in the transcript level of hsp26 and hsp27, it would be 

interesting to test whether stress conditions induce dhr96, and subsequently 

hsp26 and hsp27.  

 

The ligand sensor screen has to be optimized and adjusted to the DHR96 

reporter system. Although internal controls were successful, it represents a 

challenge to find the right conditions to identify the DHR96 ligand(s). The main 

problem is the treatment of the lipids. The choice of dilution, fraction numbers, 

solvent, and incubation time are critical points for this approach. Higher fraction 

numbers reduce toxic effects, concentrate present sterols, and would present a 

better approach. Although DMSO generally provides effective solubilisation of 

lipids, some lipids might require other detergents. Thus, a further step would be 

to solubilise the lipids in different solvents.  

In addition, ligands can enter target cells as a precursor or active ligand through 

the haemolymph to modulate nuclear receptor activity. The question for DHR96 

is if the ligand is produced in the target cell from cholesterol or if it is 

synthesized in endocrine tissues. The exchange of cholesterol, cholesterol 

derivates or other hormones is provided through the haemolymph. The use of 
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haemolymph for the reporter assay is therefore another tool to identify DHR96 

ligand(s).  

 

7.4.4 Does DHR96 repress target gene expression? 
Studies have characterized several transcription factors that exert inhibitory 

regulation via negative hormone response elements that allows NRs to bind 

and inhibit transcription (Bodenner et al., 1991; Carr and Wong, 1994). A main 

challenge is thus to figure out if DHR96 is a transcription factor which induces 

or inhibits the expression of target genes, or both. 

In a ligand sensor system, transcriptional repression might be difficult to 

analyse; the use of target genes in contrast would monitor DHR96 activity and 

repression in the form of up-regulation and down-regulation. An alternative 

approach would be to analyse changes in the expression level of direct target 

genes, once they are identified by ChIP sequencing, in response to treatment 

with diverse sterols. However, further controls would be necessary to ensure 

that expression changes are only due to DHR96 activity, as studies have 

suggested a crosstalk between DHR96 and ecdysone receptor target genes 

(Fisk and Thummel, 1995). 

 

Of the many hormone nuclear receptors in Drosophila, only two have been 

identified as having a ligand, whereas the others are defined as orphans. 

Uncovering ligands would give useful tools to understand the mechanism of 

nuclear receptors. For DHR96, the mechanism of activation is unclear, and 

studies of the ortholog CAR indicated that posttranslational modification might 

also be important for function. Thus, further studies are necessary to identify 

regulatory processes that might modulate DHR96 activity and to test which of 

them are required for longevity. 
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Chapter 8 Conclusion and future 
perspectives 
 

DHR96 is a hormone nuclear receptor that regulates diverse biological 

functions, including TAG metabolism, cholesterol homeostasis, and xenobiotic 

response (King-Jones et al., 2006; Sieber and Thummel, 2012). In cooperation 

with Janne Toivonen and Matt Piper, I identified roles of DHR96 in Drosophila 

lifespan, fecundity and immunity, and dissected a DHR96 xenobiotic function 

downstream of the IIS pathway. 

 

The DHR96 homolog DAF-12 in C. elegans regulates life history traits and 

ligand-insensitive daf-12 mutants are long-lived (Antebi et al., 2000; Fisher and 

Lithgow, 2006). According to a possible gain-of-function in a ligand-insensitive 

form, over-expression of wild type and ligand-insensitive dhr96 were used for 

the experimental approaches.   The induced expression of dhr96 and dhr96-lbd 

using a ubiquitous daughterless GS driver extended lifespan, enhanced stress 

response, and reduced fecundity for both dhr96 and dhr96-lbd over-expressing 

females. Moreover, induction levels and/or expression pattern were critical 

factors whether DHR96 had beneficial or non-beneficial consequences on 

lifespan and stress response. Dhr96 expression was more than two times 

higher when the tubulin GS driver was used to over-express dhr96-lbd. Higher 

induction levels correlated with reduced fecundity, and an increased sensitivity 

to bacterial infection. Thus, dhr96 over-expressing flies were long-lived, but 

effects in other traits diminished survival when dhr96 induction was too strong. 

This hypothesis also agrees with studies of the last chapter in which dhr96 

over-expressing flies showed sensitivity to infection with the pathogen Ecc15. 

The diminished innate immune response might occur due to the reduced 

expression of AMP genes, which was shown in qRT-PCR analysis to be the 

case for the AMP gene mtk. Interestingly, in spite of bacterial sensitivity, the 

immune-suppressive effects of dhr96-lbd over-expressing flies might be causal 

for enhanced longevity. Studies in Drosophila revealed that immunosuppressive 

effects induced by pharmacological treatment with the drug pyrrolidine 



Chapter 8   

 154 

dithiocarbamate that inhibit NF-κB signalling extends lifespan (Moskalev and 

Shaposhnikov, 2011).  

According to this, it is of major interest to investigate how dhr96-lbd over-

expression suppresses immunity and whether this effect causes the enhanced 

longevity effect. One possible approach to address this hypothesis is to over-

express dhr96-lbd in female flies treated with immunosuppressive drugs. 

 

One possible explanation for how dhr96-lbd over-expression might modulate 

immunity could be by hormonal regulation, which displays an important role 

also in lifespan regulation and reproduction (Toivonen and Partridge, 2009). 

Analysis of qRT-PCR revealed a down-regulation of magro in dhr96-lbd over-

expressing females. Magro encodes a lipase, and is involved in TAG and 

cholesterol metabolism (Sieber and Thummel, 2009). TAG and Cholesterol 

affect a broad range of biological functions, including energy metabolism and 

cell homeostasis. Furthermore, cholesterol affects sterol metabolism, cell 

signalling, cell membrane function, and is a precursor of steroid hormones 

(Tabas, 2002). As Drosophila is not able to produce cholesterol, the regulation 

of cholesterol homeostasis is a crucial issue (Hoog, 1936). Due to altered 

expression of magro, TAG and cholesterol levels might be altered upon dhr96-

lbd over-expression. Part of future experiment is therefore to test TAG and 

cholesterol levels in transgenic lines and their relevance to DHR96 phenotypes.  

The candidate Cytochrome Cyp18a1 was down-regulated in dhr96-lbd over-

expressing females. This Cytochrome protein is involved in sterol metabolism 

as it inactivates 20-Hydroxyecdysone, the ligand for ecdysone receptor (ER) 

(Baker et al., 2000; Guittard et al., 2011). Interestingly, ER signalling also 

affects Drosophila lifespan and immunity (Rus et al., 2013). Thus, there might 

be a cross talk between these hormone nuclear receptors via 20-

Hydroxyecdysone (20E). Epistatic analysis between ER and DHR96 would 

discover whether longevity and immunity phenotypes are affected by each 

other. Furthermore, the use of 20E on lifespan and immunity assays of dhr96 

null or dhr96 over-expressing flies might be additional steps to investigate 

interactions. 
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Dhr96 is a target gene of the transcription factor dFOXO (Alic et al., 2011), a 

key regulator of the IIS pathway. Reduced IIS signalling, resulting also in 

transcriptional activation of dFOXO, extends lifespan, reduces fecundity, 

increases stress response, and affects metabolism (Partridge et al., 2011). 

Thus, DHR96 and dFOXO modulates similar life history traits. Although dhr96 

expression was not affected in long-lived IIS mutants, it could be that 

expression was altered in specific tissues or at different time points, or that co-

factors are modulated in long-lived IIS mutants. Thus, dependency in lifespan 

and xenobiotic response between IIS-reduced flies and DHR96 phenotypes 

was tested. Longevity effects were independent from each other, whereas the 

increased xenobiotic response for DDT and phenobarbital of IIS-reduced flies 

was dependent on DHR96 function. Thus, DHR96 mediates some stress 

responses of IIS signalling. Cytochrome Cyp6g1 transcript levels were 

increased upon dhr96-lbd over-expression in the gut of females, which likely 

contributes to the increased DDT resistance of dhr96-lbd over-expressing flies. 

It might be of interest to test if this is the case also in the gut of long-lived IIS 

mutants. 

However, the enhanced longevity of DHR96 did not seem to be caused by 

improved detoxification in dhr96-lbd over-expressing flies. Although dhr96-lbd 

over-expressing male flies and tagged dhr96 over-expressing females revealed 

increased xenobiotic resistance, their lifespan were not affected. However, the 

induction of dhr96 transcript levels in these flies needs to be tested for a distinct 

conclusion.  

 

Next to the link between longevity and immunity, another suggestion arose that 

reproductive signalling might be crucial for longevity of dhr96-lbd over-

expressing flies. Also here, hormonal regulation by Juvenile Hormones and 20E 

are required for reproduction function (Toivonen and Partridge, 2009).  

Fecundity is a cost-energetic process, which is ensured by fat reservoirs 

(Hansen et al., 2013). A reduced fecundity in dhr96-lbd over-expressing 

females might contribute from a shift of energy storage to processes involved in 

survival and somatic maintains. To test this hypothesis future plans include 

over-expression of dhr96-lbd in long-lived germ-line ablated flies and analysis of 

fat metabolism. Another approach includes the over-expression of tagged dhr96 
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over-expressing females. As they did not show an effect in longevity, it would 

be interesting to test their fecundity as well.  

 

In the last chapter, I tried in cooperation with Dan Magner und Shruti Chreti to 

identify the DHR96 ligand using a ligand sensor system in S2 cells. Testing 

fractions of Drosophila lipid extracts did not give any robust positive results. 

Treatment of fractions (dilution and solubilisation) represented a critical 

challenge and might be a possible reason for no positive activation of the ligand 

sensor system. The second screen using flies treated with DDT or exposed to a 

low cholesterol diet showed toxic effects, as fractionation was restricted to 20 

fractions, in contrast to the ca. 180 fractions in the first screen. Fractions that 

induced cell death also activated DHR96 ligand sensor activity. Thus, DHR96 

might represent a xenobiotic sensor that would agree with its function in the 

xenobiotic response. 

In addition, I could show that phenobarbital activated the DHR96 ligand sensor 

activity. The concentration of 2mM was very high compared to other used 

chemicals. The ligand sensor activation might therefore occur due to toxic 

effects. On the other hand, phenobarbital is shown to activate CAR via an 

indirect and ligand-independent regulation pathway. Interestingly, PB treatment 

induces CAR activity by dephosphorylation (Sueyoshi et al., 2008) as a result of 

PB inhibition of epidermal growth factor receptor (EGFR) signalling (Mutoh et 

al., 2013). As PB also induced DHR96 activity in the ligand sensor system, it is 

of major interest to investigate possible posttranslational modifications of 

DHR96.  

Interestingly, analysis of DHR96 using NetPhosk 2.0 server program (Blom et 

al, 1999) predicts several phosphorylation sites of DHR96 by PKC. Four sites, 

S26, T55, T91 and T641, have a score higher than 0.8, and might represent 

interesting candidates for phosphorylation sites that could modulate DHR96 

function. PKC is regulated by PDK1, a key kinase of the IIS cascade, and so 

this could represent a link to IIS. However, none of these sites are conserved in 

DHR96 orthologs. Analysis of posttranslational modifications of DHR96, using 

bioinformatics, or directly analysing protein modifications on DHR96 by mass 

spectrometry of immunoprecipitated protein, could uncover a mode of 

regulation.  
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One last future perspective is the study of the DHR96 orthologs CAR and PXR 

in mice. These hormone nuclear receptors are in main focus of drug screens 

with a high relevance in pharmacological use, indicating their importance in 

health and diseases (Gao and Xie, 2012; Halilbasic et al., 2013). Thus, many 

research are progressed on CAR and PXR function in mice, showing them to 

be key regulators in detoxification, energy metabolism and lipid homeostasis 

(Gao and Xie, 2012; Tolson and Wang, 2010), but no longevity studies were 

performed. A correlation for increased xenobiotic resistance was already shown 

for induced PXR activity (Xie et al., 2000a). Thus, it would be of major interest 

to test over-expression of CAR or PXR for longevity studies in mice. 
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Supplement 
S.1 Supplement Buffer and Solution 
S1.1 Squishing Buffer (pH 8.2), 1 L 

10 mM Tris Base  

1 mM  EDTA 

25 mM NaCl 

 

S1.2 Phosphate buffered saline (PBS) (pH 7,4), 1L 

137 mM NaCl 

2,7 mM  KCl 

10 mM Na2HPO4 

1,8 mM KHPO4 

 

S1.3 TBS Buffer (pH 7,6), 1L 

50 mM Tris Base 

150 mM NaCl 

 

S1.4 TBS-T (pH 7,6), 1L 

1 L TBS-T  

0,05% Tween 20 

 

S.1.4 TAE Buffer (pH 8,2) 

40 mM Tris acetate 

1 mM EDTA  

 

S.1.5 LB Broth, 1L 

10 g Tryptone 

10 g NaCl 

5 g Yeast extract 

Ingredients were dissolved in 1 liter distilled water, and autoclaved. 
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S.1.6 LB Agar  

0.75 g Agar 

5 g Tryptone 

5 g NaCl 

2.5 g Yeast extract 

Ingredients were dissolved in 1 liter distilled water, autoclaved, and cooled to 55 

°C. Appropriate antibodies (ampicillin, kanamycin) were added to the solution, 

and immediately dispensed into sterile petri dishes. 

 

S.1.7 Grape fruit plates  

Ingredients Volume 

Distilled water 1000 ml 

Agar 50 g 

Grape Juice 600 ml 

Extra water after boiling  100 ml 

Nipagin (10%) 42 ml 

  

Water, agar and grape juice were mixed and boiled. Extra water was added and 

solution was cooled down to 55°C. Nipagin was added, and grape fruit mix was 

dispensed into sterile petri dishes. 

 
S.2 Supplement Chapter 2 
S.2.1 Oligonucleotide primer list 

Name Sequence Application 

pAC-NotI-GAL4DBD 

 

cagcacagtggcggccgcatgaag

ctactgtcttctatcgaaca 

Cloning Gal4DBD-TF-

LBD in pAC5.1 vector 

pAc5B-EcoRI-

Gal4DBD 

cagtgtggtggaattcatgaagctact

gtcttctatcgaac 

Cloning Gal4DBD-TF-

LBD in pAC5.1 vector 

EcoRIGal4DBD 

 

gaattcatgaagctactgtcttctatcg

aac 

Cloning Gal4DBD-TF-

LBD in pAC5.1 vector 

Gal4DBDend-EcoRI-

HR96LBDFor 

Tgtatcgccggaattcggcgaggaa

agggatcacaaa 

Cloning Gal4DBD-

dhr96LBD in pAC5.1 

vector 
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DHR96end-NotI-

pAc5Brev 

tctagactcgagcggccgcctagtga

tttttcaaatcgaatatttcac 

Cloning Gal4DBD-

dhr96LBD in pAC5.1 

vector 

pACend-XbaI-NHR8 aaccgcgggccctctagatggttaat

aaatggttattcaaaagaac 

Cloning Gal4DBD-

nhr8LBD in pAC5.1 

vector 

pACend-XbaI-Daf12 

 

aaccgcgggccctctagatcaaattt

atattcattagttttgacaagatactgtt

gg 

Cloning Gal4DBD-

daf12LBD in pAC5.1 

vector 

pAc-Gal4controlfor-

NotI-Infus 

 

cagcacagtggcggccgcatgaag

ctactgtcttctatcg 

Cloning Gal4DBD-

empty in pAC5.1 vector 

Gal4DBDcontrolrev-

Xba-Pac 

aaccgcgggccctctagatcgatac

agtcaactgtctt 

Cloning Gal4DBD-

empty in pAC5.1 vector 

Ligandinsensitive 

R539C_antinense 

tggccattttgataaggcacttgatgg

ccaccgcc 

Site directed mutation 

primer 

Ligandinsensitive 

R539C 

ggcggtggccatcaagtgccttatca

aaatggcca 

Site directed mutation 

primer 

cDNA-NHR8 

 

aaccgcgggccctctagattattcaa

aagaacataattctcgtatcagagg 

Sequencing primer 

cDNA-Daf12 

 

aaccgcgggccctctagactatttgat

tttgaaaaattctcctggcag 

Sequencing primer 

 HR96 begin seq 

primer (inv/com) 

tcgagtgaccacagtgatgtcgca Inserted vector 

sequencing primer 

HR96 middle seq 

primer (inv+comp) 

agtgtcgtcgggcttaatgcgatc Dhr96 sequencing 

primer 

HR96 end seq primer ttgacgagaagtggcgcatgga Dhr96 sequencing 

primer 

Gal4 N-term gagtagtaacaaaggtcaa Sequencing primer 

(GAL4) 

Lucnrev ccttatgcagttgctctcc Sequencing primer 

(luciferase) 

AC5_primer acacaaagccgctccatcag sequencing primer 
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(pAc5.1) 

BGH_rev_primer tagaaggcacagtcgagg Sequencing primer 

T3-Promoter gcaattaaccctcactaaagg Sequencing primer 

ttt BglII-

ATG_HR96start 

Tttcgagatctatgtcgccgccgaag

aactg 

Cloning dhr96-FLAG  

ttt HR96end-FLAG-

Stop-NotI 

Tttgcggccgcctacttgtcatcgtcat

ccttgtaatcgtgatttttcaaatcgaat

atttcacgcag 

Cloning dhr96-FLAG 

InFus-

pUASattbHR96-

revNotI-FLAG 

taccctcgagccgcggccgcctactt

gtcatcgtcatccttgtaatcgtgattttt

caaatcgaatattt cacgcag 

Cloning dhr96-FLAG in 

pUAST-attb vector 

InFus-pUASTattb-

BglII-ForDHR96 

Ggaattcgttaacagatctatgtcgcc

gccgaagaactg 

Cloning dhr96-FLAG in 

pUAST-attb vector 

Sol 236 ttgccgctgacaattatgatcaag Dfoxo null genotyping 

Primer 

Sol 237 aaggtagtgcctatgatccag Dfoxo null genotyping 

Primer 

eGFP Rev cacgaactccagcaggaccatg Dhr96 null genotyping 

Primer 

eGFP For atgccacctacggcaagctga Dhr96 null genotyping 

Primer 

Exon 5 P2000 rev acactctccagatatcttcgcagaag Dhr96 null genotyping 

Primer 

Exon 4 Primer rev gtcacggaatgctgtaatcttcttgg Dhr96 null genotyping 

Primer 
Table .2.1 List of used oligonucleotide primers. 
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S.2.2 Taqman Probes used for qRT-PCR analysis 

 
Gene name Assay ID 

Ribosomal protein L32 Dm02151827_g1 

Hormone receptor-like in 96 Dm02151379_g1 

Cytochrome P450-18a1 Dm01813939_g1 

forkhead box, sub-group O Dm02140212_g1 

Thor Dm01842928_g1 

Cytochrome P450-18a1 Dm01813937_m1 

Ecdysone Receptor Dm01811601_m1 

Cyp6g1 Dm01819890_g1 

Mtk Dm01821460_s1 

Ecdysone Receptor Dm01811601_m1 

Zwischenferment Dm01813969_g1 

Defnsin Dm01818074_s1 

IlP5 Dm01798339_g1 

IlP3 Dm01801937_g1 

IlP2 Dm01822534_g1 

Npc1b Dm01799742_g1 

Npc2c Dm02138599_g1 

Magro Dm01807059_g1 

Zw Dm01813969_g1 

Cyp6g2 Dm01819891_g1 

Pgd Dm01841976_m1 

Cyp12a4 Dm02142149_g1 

S6K Dm01822188_g1 

Hsp27 Dm01822485_s1 

Keap-1 Dm02141390_g1 

alphaTub84 Dm02361072_s1 
Table S.2.2 List of used Taqman probes. 
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S.3 Supplement Chapter 3 
S.3.1 The six classes of daf-12 alleles shown by Antebi et al. (2000) 

(The figure is taken unmodified from Antebi et al. (2000)) 

Table S.3.1 Six classes of daf-12 alleles by Antebi et al. (2000). The table includes the 
location of the mutations and whether they show phenotypes.  
 

S.3.2 Dhr96, daf-12 and nhr8 alignment 

 
Table S.3.2 Protein alignment of dhr96, daf-12, and nhr-8. Ligand-insensitive daf-12 mutants 
carry a single mutation in the ligand-binding domain. The corresponding amino acid is 
conserved between dhr96, daf-12, and nhr-8 (grey box). 
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S.3.3 Lifespan of dhr96 and dhr96-lbd overexpressing flies using the tubulin-GS 

driver on 1xSYA food (experiment performed and graph provided by Janne 

Toivonen). 

 
Figure S.3.3 Lifespan of dhr96 and dhr96-lbd over-expressing females using the tubulin 
GS driver. (A) Over-expression of dhr96 had no effect on lifespan in female flies, whereas (B) 
dhr96-lbd over-expression extended lifespan.  
 

 

S.3.4 Western Blot analysis of dhr96-lbd over-expressing flies using the 

daughterless and tubulin GS driver. 

 
Figure S.3.4 Western Blot analysis. DHR96 protein of dhr96-lbd over-expressing flies was 
induced using two different driver lines (daughterless and tubulin GS driver). Induction was 
higher in tubulin GS-driven dhr96-lbd over-expressing flies compared to daughterless GS-driven 
dhr96-lbd over-expressing flies (polyclonal anti-DHR96 serum was provide by Janne Toivonen). 
 

 

S.3.5 Cloning of flag-dhr96-lbd into attP-flanked UAS-vector 

As expression levels differed between dhr96 and dhr96-lbd over-expressing 

females, and as ChIP sequencing was not possible using the DHR96 antibody 

(antibody provided by Janne Toivonnen, ChIP sequencing by Nazif Alic), new 
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transgenic dhr96 fly lines were generated. The pUAST-dhr96 and pUAST-

dhr96-lbd (provided by Janne Toivonen) were used as templates for the dhr96 

cloning procedure. The FLAG-tag was introduced in frame at the dhr96 C-

terminus, and by shifting the stop codon after the FLAG sequence. Primers 

used to introduce the FLAG-tag to the gene by PCR are listed in S.2.1. FLAG-

dhr96 and FLAG-dhr96lbd PCR products were cloned into the pUAST-attb 

vector via the NotI and BglII restriction sites using the InFusion cloning 

procedure. Positive sequenced constructs were injected into the second 

chromosome via the attp40 locus.  

 

S.3.6 N-terminal tagged dhr96 and dhr96-lbd over-expressing flies 

Over-expression of N-terminal Flag-Strep-6xHis-dhr96 and Flag-Strep-6xHis-

dhr96lbd (Teresa Nicoli) females increased significantly resistance to DDT 

(P<0.001, Log Rank Test) (Figure S.3.5.1), but had no effect on lifespan (Figure 

S.3.5.2). The Tag may have interfered with DHR96 function. Induction levels 

were not tested and might represent another possible reason that over-

expression did not extend lifespan. 

 

 
Figure S.3.5.1 DDT Assay. Flag-Strep-6xHis-dhr96 and Flag-Strep-6xHis-dhr96lbd over-
expressing females show an significant increase in DDT resistance (P<0.001, Log Rank Test). 
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Figure S.3.5.2 Lifespan analysis of tagged dhr96 transgenic flies. Flag-Strep-6xHis-dhr96 
and Flag-Strep-6xHis-dhr96lbd over-expressing females did not extend lifespan in female flies. 
 

 

 

 

S.4 Supplement Chapter 4 
S.4.1 PCR of daughterless GS in a dfoxo null background 

 
Figure S.4.1.1 Leg PCR for genotyping purpose. Flies with the dfoxo null mutation produced 
a DNA fragment at a size of 350bp using Sol 236 and Sol 237 primers. 
 

25 positive flies (balanced over TM3Sb and tested by dfoxo null and dfoxo wild 

type primer) from each gender were crossed together. 
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S.4.2 Cox Proportional Hazards statistics of epistatic analysis between DHR96 

and IIS-reduced flies 

 

 
Table S.4.2 Cox Proportional Hazard (CHP) statistical analysis. P-values, standard errors 
(SE), and estimate were calculated for each epistasis assay using CHP survival analysis. 
 

S.4.3 DDT assay of dhr96-lbd overexpression in dfoxo null flies on 275 mg/L 

Over-expression of dhr96-lbd in a dfoxo null background did not increase 

xenobiotic resistance in females when experiment was conducted on DDT food 

with a concentration of 275mg/L. 

 

 
Figure S.4.3.1 DDT assay of dhr96-lbd over-expressing flies in a wild type and dfoxo null 
background using a DDT concentration of 275mg/L. Over-expression of dhr96-lbd in a wild 
type background significantly increased DDT resistance (P<0.001, Log Rank Test).  Resistance 
was not enhanced when dhr96-lbd was over-expressed in a dfoxo null background using a DDT 
concentration of 275mg/L. 
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S.4.4 Daf-2 alleles 

S.4.4.1 Table is taken unmodified from Gems et al (1998) and shows the two 

pleiotropic classes of daf-2 mutations. 

 
S.5 Supplement Chapter 5 
S.5.1 Quantitative RT-PCR analysis of dhr96-lbd over-expressing whole bodies 

 
Figure S.5.1.1 Transcript levels of candidate genes in whole bodies of dhr96-lbd over-
expressing flies. Expression levels of (A) dfoxo, (B) S6-kinase, (C) Hsp26, and (D) Hsp27 
were not significantly changed in whole bodies of dhr96-lbd over-expressing flies 
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S.5.2 Quantitative RT-PCR analysis of dissected ovaries from dhr96-lbd over-
expressing female flies 

 
Figure S.5.2.1 Transcript levels of candidate genes in ovaries of dhr96-lbd over-
expressing flies. Expression levels of (A) Hsp26 and (B) Hsp27 were not significantly changed 
in ovaries of dhr96-lbd over-expressing flies 
 
 
 
S.6 Supplement Chapter 6 
S.6.1 Quantitative RT-PCR analysis of magro and Cyp18a1 in white Dahomey 

Wolbachia plus flies (wild type strain) on a low cholesterol diet 

 
Figure S.6.1.1 Transcript levels of magro and Cyp18a1 in whole bodies of white Dahomey 
Wolbachia (+) wild type flies on a cholesterol diet. (A) Expression levels of magro are 
significantly increased (p-value **<0.01, Student’s t-test) and (B) expression levels of Cyp18a1 
significantly decreased (p-value *<0.05, Student’s t-test) when wild type flies are exposed to a 
low cholesterol diet.  
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S.7 Supplement Chapter 7 
S.7.1 Recipe for 200N YAA holidic medium with normal and low cholesterol 

concentrations   

Normal and low cholesterol holidic food was prepared as shown in table 

S.7.1.1. Detailed information is available in Piper et al. (2014). 

 
Table S.7.1.1 Holidic medium recipe with two different cholesterol concentrations.  
 

 

 

S.7.2 Ligand sensor screen with glucose and tebufonizide 

 
Figure S.7.2.1 Ligand sensor screen for DHR96. (A) Tebufonizide and (B) Glucose did not 
induce transcriptional activity of the DHR96 ligand sensor system in S2 cells. 
 

 

A B
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S.7.3 Screen results of ligand sensory system using wild type Drosophila, C. 

elegans and pig liver lipid fractions 

 
S.7.3.1 Reporter Assay using lipid extract fractions from C. elegans in S2 cells. Lipid 
fractions from worm were tested at a 1:1000 dilution in a reporter assay with (A) daf-12, (B) nhr-
8, (C) ligand-insensitive dhr96 and (D) wild type dhr96. The LBDs of these NRs were fused to 
the Gal4DBD, and pUAS-luciferase was used as a reporter gene. RLU values are normalised to 
a control vector. (A) Fraction 58, which contains the dafachronic acids, induces the activation of 
the Gal4DBD-DAF12LBD sensor. Strong candidate fractions were marked in a red circle. Gaps 
without any reported luminescence contain cells which died during the experimental process. 
This may be due to toxicity of lipids or sterols on cells.  
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S.7.3.2 Reporter assay using lipid extract fractions from Drosophila in S2 cells. Each lipid 
fraction from flies was tested at a 1:1000 dilution on a reporter assay with (A) ligand-insensitive 
dhr96, (B) dhr96, (C) daf-12 and (D) nhr-8. The same constructs were used as in the reporter 
assay using C. elegans lipid extracts. Luminescence values (RLU) are normalised to a control 
vector. (A) Although the LBD mutant should be ligand-insensitive, Fraction 26 shows a highly 
significant increase in luminescence, and counts therefore as a strong candidate fraction. (B) 
Strongest activation for DHR96 is shown by end fractions, which contain unpolar lipids.  
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S.7.3.3 Reporter assay using lipid extract fractions from Drosophila and C. elegans. Lipid 
fractions from (A) worms and (B) flies were tested in a 1:1000 dilution on a reporter assay with 
(A) ligand-insensitive dhr96 and (B) dhr96. RLU values of wild type tested dhr96 were 
normalised to ligand-insensitive dhr96. 
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S.7.4 High priority fraction candidates from the ligand sensor screen (S.7.3) 

 
S.7.4 Positive fractions from the first screen. Candidates were selected by statistical 
analysis from the first Ligand sensor screen using fractions of worm, fly, and pig lipid extracts. 
Fractions highlighted in red and green were classified as high priority candidates. 
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