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Abstract

In this work we apply the quasiclassical formalism, an established tool in the context of
superconducting heterostructures, to topological insulators and superconductors in one and
two dimensions, with focus on the former. We derive topological invariants in terms of
the quasiclassical Green’s function in the regions terminating the disordered one-dimensional
wire geometries, and demonstrate the existence of edge modes in the corresponding topo-
logically non-trivial phases. A generalisation to two-dimensional geometries is established by
the concepts of compactification and dimensional reduction. The second part of this work
is devoted to Majorana fermions in disordered topological quantum wires. We apply the
quasiclassical approach developed in the first part of this work to a setup used in recent
experiments, where the evidence for Majorana edge modes is drawn from zero-bias peaks in
tunnelling experiments. Analytically we derive a formalism that lays the foundation for an
efficient numerical method to calculate physical observables. Studying in particular the av-
eraged local density of states, we show that effects arising from disorder may overshadow an
unambiguous detection of Majorana edge modes in tunnelling experiments. In the last part
of this work we briefly discuss ongoing research on how disorder effects in one-dimensional
quantum wires may actually lead to the formation of local topological domains and may
stabilise these domains. Based on the numerical method introduced in the second part, we
present results that point towards formation of such local domains.





Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit der quasiklassischen Beschreibung – eine bewährte Me-
thodik in der Analyse supraleitender Heterostrukturen – von topologischen Isolatoren und
Supraleitern in einer und zwei Dimensionen mit dem Fokus auf eindimensionale Systeme.
Wir geben topologische Invarianten in Abhängigkeit der quasiklassischen Greenschen Funk-
tion der Endpunkte des ungeordneten Drahtes. Ferner wird die Existenz von Randmoden in
den korrespondierenden topologisch nichttrivialen Phasen bewiesen. Eine Verallgemeinerung
für zweidimensionale Geometrien gelingt wird mittels Dimensionsreduktion. Der zweite Teil
dieser Arbeit ist Majoranafermionen in ungeordneten topologischen Quantendrähten gewid-
met. Wir wenden den im ersten Kapitel erarbeiteten Formalismus auf ein System an, welches
kürzlich experimentell realisiert wurde. In entsprechendem Experiment wurde die Existenz von
Majoranafermionen anhand von Leitfähigkeitsspitzen in Tunnelexperimenten nachgewiesen.
Wir leiten eine analytische Theorie her, die Grundlage für eine effiziente numerische Berech-
nung von physikalischen Observablen darstellt. Insbesondere berechnen wir die gemittelte,
lokale Zustandsdichte und zeigen, dass Unordnungseffekte die eindeutige Identifizierung von
Majoranafermionen in Tunnelexperimenten erschweren können. Im letzten Teil dieser Arbeit
diskutieren wir kurz die Resultate einer noch andauernden Untersuchung der Formation lo-
kaler topologischer Domänen in Quantendrähten, hervorgerufen durch Unordnung. Auch die
mögliche unordnungsbedingte Stabilisierung dieser Domänen wird diskutiert und mit dem
numerischen Verfahren, das im zweiten Teil dieser Arbeit präsentiert wird, untersucht.
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—You know I always wanted to
pretend I was an architect.

George Costanza

Introduction

Topological order in condensed matter physics presents a new kind of order for characterising
phases of matter. Such phases are described by a global quantity independent of details of
the system and are therefore not described within Landaus symmetry-breaking theory. Orig-
inating from a ground-breaking work by Thouless et al. [1] in 1982 explaining the integer
quantum Hall effect, topological order has become a very important concept of modern
condensed matter theory. The study of insulators with topological order, called topological
insulators, is a particularly interesting and very active field of research, [2, 3]. An immediate
consequence of the topological order in an insulating system is the presence of gapless edge
modes. So while the system is an insulator, i.e. there exists an energy gap that separates the
valence band from the conduction band, the surface (or edge) of this insulator shows metallic
behaviour. The fact that these effects are of topological origin, and as such are insensitive to
local perturbations, ensures their stability. Topological insulators are classified by a topolog-
ical index which distinguishes insulating phases that are not equivalent, i.e. which cannot be
continuously deformed into one another without destroying its defining property, namely the
bulk gap. The existence of topological insulators in a given dimension depends on the sym-
metries present. They are grouped by symmetries according to the Altland-Zirnbauer (AZ)
classification, [4]. It turns out that in each dimension, in five of the ten AZ symmetry classes,
topological insulators or superconductors can exist, [3, 5]. For a long time, the presence of
time-reversal symmetry in a system was believed to prohibit the possibility to construct a
topological insulator. And it was only in 2005 when Kane and Mele, [6, 7] showed that a
new type of topological phase can be achieved in the presence of time-reversal symmetry. In
two dimensions, this new phase is characterised by helical pairs of edge modes propagating
on the boundary of the system. Known as the quantum spin Hall effect, this effect was ex-
perimentally observed in 2007, [8]. The concept of topological order was naturally extended
to superconductors, described by Bogoliubov-de Gennes Hamiltonians, [9]. This extension is
based on the fact that the quasi-particle spectrum is gapped by the superconducting pairing.
Boundary modes in topological superconductors are Majorana particles, i.e. particles that
are their own anti-particles, [10]. These quasi-particles are bound to zero-energy and due to
their highly non-local nature, are among the most promising candidates for topological quan-
tum computing, [11]. Very recent experiments claimed the observation of such Majorana
fermions in spin-orbit coupled quantum wires in proximity to an s-wave superconductor and
subjected to a magnetic field, [12, 13]. These quantum wires are predicted to host Majorana
fermions localised at their ends, [14, 15]. Understanding these wires is critical in identifying
Majorana fermions and will be a central topic of this thesis.
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Contents

In chapter one and three, we review the basic concepts topological insulator and super-
conductors as well as the emergence of Majorana fermions in condensed matter systems. In
the second chapter we investigate topological insulators in one and two dimensions from a
quasiclassical point of view. The quasiclassical technique is a well-established tool in the de-
scription of mesoscopic superconductivity, [16–18]. By identifying the relevant information
needed to describe the phenomena under investigation, and a subsequent removal of the
complementary information, the quasiclassical approach drastically simplifies the involved
transport equations. With the characteristic length scales of a superconductor exceeding the
Fermi wavelength, the quasiclassical approach confines the Green’s functions to a regime
close to the Fermi points by integrating out higher energies. The quasiclassical approach
used in this work relies on the fact that close to a topological phase transition, topological
insulators and superconductors can be described by a Dirac Hamiltonian which is linear in
momentum. We consider disordered one-dimensional quantum wires connected to two topo-
logical insulators or superconductors. We present topological invariants for all five symmetry
classes in one dimension and determine the number of zero-energy modes localised at the
boundary between two topologically distinct phases. It turns out that these invariants solely
depend on the quasiclassical Green’s functions at the ends of the quantum wire. In addition,
we present the formal solution of the disordered quantum wire, which can be calculated using
an efficient numerical method introduced in chapter two. Utilising this approach in chapter
four, we show that effects of disorder can lead to signatures which show striking similarities
to the ones observed in experiments. We therefore substantiate the scepticism towards the
alleged observation of Majorana fermions in the experiments mentioned earlier, [19–21]. Fi-
nally, we provide preliminary results on a numerical study regarding the possible formation
of topological domain walls due to disorder fluctuations. We consider a one-dimensional
quantum wire at criticality and by using the numerical method derived earlier, we investigate
the influence of disorder fluctuations on the low-energy properties. In particular, the possible
emergence of zero-energy modes, represented by a singularity in the quasi-particle density of
states at zero-energy, is explored. These are predicted to form at the boundary between two
distinct localised phases.
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Part I

Quasiclassical approach to topological insulators and
superconductors





1
Topological insulators and superconductors

Topological insulators and superconductors were recently identified as a very important sub-
ject of interest among various branches of condensed matter theory. The point of origin,
however, is nowadays considered to be the discovery of the topological origin of the quantised
Hall conductance of the quantum Hall effect, already described back in 1982 [1]. In topo-
logical insulators and superconductors there exists an intimate correspondence between their
insulating bulk and exciting effects at the boundary. Indeed, this correspondence is rooted
in the topology of the system which ensures a very robust nature of the boundary effects.
In particular, metallic modes in one dimension that completely evade Anderson localisation
exist on the boundary of certain two-dimensional systems.
In this chapter we review the classification of these systems. The classification is based

on the identification of equivalent Hamiltonians that can continuously be deformed into one
another without destroying the insulating bulk properties, and is a function of dimensionality
of the system as well as symmetries present. Famous examples for different types of topo-
logical insulators and superconductors, their non-trivial topology as well as their boundary
modes are discussed.

1.1 Definition

We start with a rather generic definition of topological insulators or superconductors [3]: A
topological insulator or superconductor is a gapped phase of non-interacting fermion sys-
tems1 which exhibits boundary modes. These boundary modes are gapless and they are
topologically protected, i.e. arbitrary perturbations of the Hamiltonian that do not close the
1Although this restriction can be softened a bit.
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Chapter 1 Topological insulators and superconductors

bulk gap also do not qualitatively affect these states. However, these perturbations must
not render the generic symmetries of the Hamiltonian. A topological insulator or supercon-
ductor possesses different phases which are characterised (labelled) by a number, a so-called
topological invariant. The nature of this invariant (and therefore their associated phases)
depends on the dimensionality and symmetries of the system. It turns out that the invariant
either gives an integer or a binary Z2 quantity. As the name implies, these invariants can
only change if the phase is changed which in return can only happen if the bulk gap is closed.
The latter can be understood by a very intuitive argument: Consider two insulators at-

tached to each other, we ignore the trivial case in which both are trivial insulators or topolog-
ical insulators with the same value of the invariant. The remaining two cases will always be
separated by a boundary. This boundary however will host gapless boundary modes, which
implies a gap closure. Hence one cannot interpolate between both systems without closing
the band gap at the boundary. By the same token, systems with the same invariant are
topologically equivalent and can be deformed smoothly into one another without closing the
gap.
Simply put, a classification of topological insulators and superconductors has been es-

tablished by determining the classes of topological insulators and superconductors that can
continuously be transformed into one another without closing the gap, and are thus described
by the same quantity/invariant.
A frequently used example for such a topological invariant in mathematics is the Euler

characteristic. In the simplest case of a closed orientable surface this invariant is a linear
function of the number of holes, the genus, within this surface. The Gauss-Bonnet theorem
then ensures that smooth deformations (not changing the number of holes) of the surface
will leave this characteristic unchanged [22]. An analogy to this theorem will be given later.

1.2 Symmetry classes - The ten fold way

For non-interacting disordered fermion systems there exist a classification due to Altland and
Zirnbauer [4, 23]. The classification is based on the presence or absence of three generic
symmetries: time-reversal symmetry (T ), charge-conjugation (or particle-hole) symmetry
(C) and a third, chiral (or sublattice) symmetry (S). The Hamiltonians under consideration
are not translationally invariant and the symmetries are represented by anti-unitary operators
which commute with the Hamiltonian of the system.2
Let H be the N -dimensional first quantised Hamiltonian of our quantum system, repre-

sented by a matrix of dimension N × N . For both, time-reversal and charge-conjugation
symmetry the anti-unitary operators can be represented as a product of a unitary operator
(UT or UC , respectively) and an anti-unitary operator. The latter is frequently chosen as

2Note that translational invariant symmetries, i.e. unitary symmetries that commute with the Hamiltonian
have to be excluded. If such a unitary symmetry is present, the Hamiltonian is always block-diagonalisable
(reducible). For the classification one thus only considers irreducible representations of the Hamiltonians.
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1.2 Symmetry classes - The ten fold way

complex conjugation operator K, i.e. T = K · UT and equivalently for C.
The system is time-reversal invariant if H commutes with the time reversal symmetry

operator, i.e.

U †TH
TUT = H. (1.1)

By the same token, a system is charge-conjugation invariant if

U †CH
TUC = −H. (1.2)

In addition to the two symmetry operations above, the product of both symmetry op-
erations S = T · C gives rise to a third symmetry. A system possesses chiral symmetry
if

U †SHUS = −H, (1.3)

i.e. if H anti-commutes with the unitary matrix US = UT · U∗C . Note that although the
product of both symmetries is a unitary operation, the fact that H and US anti-commute
spoils the triviality of this symmetry (its reducibility). However, for two distinct time-reversal
(charge-conjugation) operators Ti=1,2 (Ci=1,2), the subsequent application of two symmetry
operations will be a unitary operation that commutes with H, and hence will be discarded.
The products U∗U , for U = UC or UT , are at this point not further specified, however

they both obviously commute with H. Since we excluded unitary symmetries that commute
with H, we are dealing with an irreducible representation of the latter, hence Schur’s lemma
ensures that the product U∗U of two unitary matrices is the identity up to a sign,

U∗U = ±1. (1.4)

By simply counting the possible combinations we conclude that there are ten different
classes (all possible combinations of T and C will lead to nine classes, however in the
absence of both, S can still be present filling the missing spot). The ten symmetry classes
are comprised in table 1.1, where the 0 entries indicate the absence of a symmetry and ±1
entries refer to the sign in eq. (1.4).
Having identified the ten possible symmetry configurations the question regarding the

exhaustion of this scheme was answered by the authors of refs. [4, 23]. We will address
this question together with some physical remarks by further inspecting table 1.1. The first
column labels the symmetry classes in a way that will be explained later. One immediately
recognises the original Wigner and Dyson classes A, AI and AII for random matrices. These
classes are naturally extended by inducing the chiral symmetry and are therefore called chiral
classes, AIII, BDI and CII. The remaining four symmetry classes (D, C, DIII, and CI) are found
to be realised in disordered superconducting systems described by Bogoliubov-de Gennes
Hamiltonians [4].

7



Chapter 1 Topological insulators and superconductors

Label T C S Hamiltonian G/H
A 0 0 0 U(N) U(2n)/U(n)× U(n)
AI +1 0 0 U(N)/O(N) Sp(2n)/Sp(n)× Sp(n)
AII -1 0 0 U(2N)/Sp(2N) O(2n)/O(n)×O(n)
AIII 0 0 1 U(N +M)/U(N)× U(M) U(n)
BDI +1 +1 1 O(N +M)/O(N)×O(M) U(2n)/Sp(2n)
CII -1 -1 1 Sp(N +M)/Sp(N)× Sp(M) U(2n)/O(2n)
D 0 +1 0 SO(2N) O(2n)/U(n)
C 0 -1 0 Sp(2N) Sp(2n)/U(n)
DIII -1 +1 1 SO(2N)/U(N) O(2n)
CI +1 -1 1 Sp(2N)/U(N) Sp(2n)

Table 1.1: Altland-Zirnbauer classification of random matrix ensembles. Symmetry classes
are labelled due to Cartan (first column). The presence or absence of time-reversal
(T), charge-conjugation (C) and sublattice symmetry (S) are indicated by ±1 and
0, respectively. The fourth column lists the symmetric space of exp(iH), while
the fifth column shows the target spaces of the non-linear-sigma-model (see text
for explanation). Table taken from [4].

The fourth and fifth column in table 1.1 is related to the completeness of this list of
classes. We consider the first quantised Hamiltonian H to be represented as an N × N
matrix and construct the object X = iH, as well as exp{X}. Formally the former object is
an element of an algebra, while the latter is an element of a corresponding coset space [4].
Physically, the latter object can be interpreted as the quantum mechanical time-evolution
operator exp{iHt}. For each class, the symmetries impose restrictions on the structure of
H (and thus the full algebra is restricted to a sub-algebra thereof) and consequently on the
time-evolution operator and its coset space. These coset spaces are summarised in the fourth
column of the table.
A few simple examples should clarify this point. Consider class A, i.e. since no symmetries

are present, H is simply a hermitian matrix. Consequently X is skew-hermitian, i.e. X† =
−X. Since X and X† trivially commute with each other, it follows that exp{X} exp{X}† =
id. Hence exp{x} is an element of the Lie group U(N). It is obvious that upon further
restricting our system, the Hamiltonians have to be restricted to subsets. In fact for class
AI, the Hamiltonian can be represented as a real symmetric matrix, i.e. H = HT. The coset
space turns out to be given by the quotient U(N)/O(N). To this end, one realises that
each hermitian matrix can be decomposed into a real symmetric and skew-symmetric part,
H = Hs + iHa. If we construct the likewise skew-symmetric Xa = iHa, it follows that
exp{X} exp{X}T = id and hence exp{X} ∈ O(N). The coset space of real symmetric
matrices is thus the coset space U(N)/O(N), as indicated in table 1.1. The remaining
entries of the classification table are constructed accordingly.

8



1.3 Classification table of topological Insulators

Label /d 0 1 2 3 4 5 6 7 8
A Z 0 Z 0 Z 0 Z 0 Z
AIII 0 Z 0 Z 0 Z 0 Z 0
AI Z 0 0 0 2Z 0 Z2 Z2 Z
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2
D Z2 Z2 Z 0 0 0 2Z 0 Z2
DIII 0 Z2 Z2 Z 0 0 0 2Z 0
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z
CII 0 2Z 0 Z2 Z2 Z 0 0 0
C 0 0 2Z 0 Z2 Z2 Z 0 0
CI 0 0 0 2Z 0 Z2 Z2 Z 0

Table 1.2: Classification of topological insulators and superconductors. Symmetry classes are
again labelled by the Cartan labels and rearranged. Depending on the dimension
d, a trivial insulator or superconductor exists (Z or Z2) or not (0). The non-
zero entries indicate that the topological phases present are characterised by a Z2
invariant or an integer (Z). Table can be found in [3].

The completeness of this table was established by realising that the entries in the fourth
column agree with a set of mathematical objects, called symmetric spaces. Details are
not of interest at this point and beyond the scope of this text, however it was shown by
Cartan in 1926 [24] that this set includes only ten symmetric spaces. This proves that the
classification is exhausted and explains (within this framework) the notation used in the first
column of table 1.1. The fifth column is related to the physics of Anderson localisation
at long wavelength, which can described by a non-linear-sigma-model. The target space of
these systems, again turn out to be given by the ten symmetric spaces.

1.3 Classification table of topological Insulators

Table 1.2 shows the classification table of topological insulators and superconductors. The
classification is based on the ten symmetry classes of random Hamiltonians presented in the
previous section. The entries Z, Z2 and 0 indicate whether in the corresponding symmetry
class, for a given dimension d, the existing phases are characterized by an integer, a binary
quantity or are absent at all, respectively. How the corresponding invariants are constructed
in details depends on the specific model chosen. The symmetry classes in table 1.2 are
re-organised in a way to reveal its periodicity. The classification shows a regular pattern
composed of a sequence of (2Z, 0,Z2,Z2,Z), that is periodic (modulo 8) in the dimen-
sionality. This so-called Bott periodicity [25] is closely related to the reappearance of the
symmetric spaces and its mathematical origin goes beyond the scope of this work.
Before elaborating on the specific realisations for the different entries of this table, we

9



Chapter 1 Topological insulators and superconductors

will briefly discuss the structure behind it and comment on the genesis of it. Due to the
formal nature of this discussion, readers desperately longing for a concrete physical model
may unhesitatingly skip the remainder of this section.

Classification schemes

The classification table 1.2 has been derived by various means [3, 5, 26]. All classifica-
tion schemes are related to the symmetric spaces discussed earlier and have an underlying
mathematical framework:

Absence of Anderson localisation at the boundary - NLσM classification

In the definition of a topological insulator or superconductor given at the beginning of this
chapter, a basic ingredient was the existence of gapless edge modes at the boundary of
the system. Being of topological origin, these states are protected against disorder and
other backscattering effects. This obtrudes the interpretation of the (d − 1)-dimensional
boundary of a d-dimensional topological insulator or superconductor, as a metal that evades
Anderson localisation. In ref. [26] it was studied what topological terms can be added to
the non-linear-sigma-model (NLσM), describing Anderson localisation on the boundary of
a topological insulator, which evades this phenomenon. It turns out, that only two types
of terms can be added: a Wess-Zumino-Witten or a Z2-term. This result is determined by
the homotopy groups of the target space (again represented by the ten symmetric spaces
and presented in the fifth column in table 1.1). The homotopy groups are either πd = Z or
πd−1 = Z2, respectively. A classification of topological insulators and superconductors thus
breaks down to the well known table of homotopy groups for the symmetric spaces.

Projectors - Grassmanian classification

Given a topological insulator the ground state is given by the filled bands below the Fermi
energy in the Brillouin zone. With the eigenstates of the Hamiltonian above and below the
Fermi energy well separated by the bulk gap, it is common to flatten the bands on both
sides of the gap [3, 27]. As long as the bulk gap is not closed, the Hamiltonian can always
be continuously deformed into one with unique eigenvalues +1 and −1, above and below
the gap respectively. This deformed Hamiltonian is usually called flattened or simplified
Hamiltonian. Note that the eigenstates are not changed and since it can be shown that
topological properties do not depend on the energies of the occupied bands but only on the
eigenstates, the flattened Hamiltonian allows for simplified calculations. The procedure of
flattening is illustrated in fig. 1.1.
The flattened Hamiltonian in momentum space is defined as

Q(k) = 1− 2P (k),
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1.3 Classification table of topological Insulators

E(k)

EF

+1

-1

Figure 1.1: Flattening of a generic band insulator. The bands Ea(k) (grey curves) are con-
tinuously deformed to E± = ±1 (red curves) without closing the band gap.

where P (k) =
∑
a |u−a (k)〉〈u−a (k)| is the spectral projector onto the filled bands, and

{|u−a (k)〉} denotes the set of filled Bloch wave functions with (occupied) band index a.
We denote by n the number of bands below the gap, i.e. with energy Ea(k) = −1 and by m
the number of bands above the gap with energies Ea(k) = +1. With no symmetries present,
the flattened Hamiltonian Q(k) is a map from the Brillouin zone to the set of eigenvectors,
i.e. U(n + m). However, there exists an intrinsic gauge symmetry due to the possibility of
relabelling the n filled and m empty states. Thus Q(k) is a map from the Brillouin zone to
U(n+m)/(U(n)× U(m)) =: Gm,m+n(C), the complex Grassmannian. For a classification
of topological insulators and superconductors, two ground states of different classes should
not be able to be deformed into one another without closing the gap. Thus, it is again
the homotopy group of the target spaces of the flattened Hamiltonian Q(k) that is used to
identify the phases.
Considering class A, i.e. no symmetries present, we have already seen that the target space

of Q(k) is Gm,m+n(C). To find out whether or not the symmetry class in a given dimension
is topologically trivial, we rely on well known results on homotopy groups. In the present
case it turns out that π2(Gn,n+m(C)) = Z while π3(Gn,n+m(C)) = {id}, i.e. while in two
dimensions there exist Z topological phases in one dimension higher none exists.
In the presence of symmetries, the space of projectors will be further restricted. In case

of a present chiral symmetry (such as in class AIII) the projector can always be brought into
block off-diagonal form

Q(k) =
(

q
q†

)
.

Since Q2 = 1, it follows that q has to be unitary, q ∈ U(m). The homotopy groups of U(m)
are πd∈2N(U(m)) = {id} and πd∈2N+1(U(m)) = Z, i.e. trivial in even and non-trivial in odd
dimensions.

11



Chapter 1 Topological insulators and superconductors

Subsequently, a complete classification table based on the homotopy groups of the space
of projectors can be constructed, which of course is equivalent to tab. 1.2. The reappearance
of the ten symmetric spaces is revealed by considering the projectors in a zero-dimensional
momentum space, or at invariant points of the Brillouin zone related by time-reversal or
charge-conjugation symmetry. In this case, the spaces of projectors again turn out to be
exactly the ten symmetric spaces discussed earlier. On passing we note that an equiva-
lent classification was achieved using Clifford algebras and K-theory, revealing the spaces of
projectors as the classifying spaces used in K-Theory [5].
The above discussion shows that the nature of the insulator is fully encoded in the pro-

jectors Q(k). As a map from the Brillouin zone to some Grassmannian it assigns to each
momentum vector k a transformation to the eigenstates. Understanding this transformation
implies understanding the topology of the insulator. If this transformation can continuously
be transformed to a trivial transformation3, the insulator is trivial. On the other hand, if the
transformation is not homotopic to the identity, the insulator is topologically non-trivial.

1.4 Chern number and the integer quantum Hall effect

Let us continue by introducing a well known model and thereby shine some light on the formal
discussion of the previous subsections. We have learned that there exists a classification table
which tells us the symmetry class (and dimension) necessary to find topological insulator or
superconductor. We were also told by which type of quantity the topological phases are
labelled. How this labelling, i.e. the construction of the topological invariant, is done in
detail will be explained next using the example of the integer quantum Hall effect (IQHE).
Indeed the IQHE is now considered to be one of the first theoretical emergences of a

topological insulator. In a seminal work [1], Thouless et al., showed that the transverse
Hall conductivity σxy is quantised. Moreover, the authors realised that the origin of this
quantisation was routed in the topology of the bulk of the system. For the IQHE, electrons
are confined to a two dimensional plane and subject to a strong magnetic field, thus neither
time-reversal nor particle-hole symmetry are present. According to table 1.1 the system is
a member of class A, and table 1.2 reveals that in two dimensions the phases are indeed
quantised (Z). It turns out that the quantisation of the Hall conductance is described
by the (first) Chern number C1. The Chern number is a topological invariant, hence two
Hamiltonians that cannot be continuously deformed into one another without closing the
gap, cannot give the same value of the invariant. More precisely, the Hall conductivity is
given by

σxy = C1 e
2/h.

Before we construct the first Chern number explicitly, we should pause and embrace this
3Notice that we used {id} as the set that contains only the identity element and hence the transformation
was trivial.
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1.4 Chern number and the integer quantum Hall effect

seemingly innocent result. The Hall conductance can straightforwardly be calculated by
means of linear response theory and is a real, measurable quantity [28]. The result above
is purely geometrical and hence this quantisation is robust. Thereby, the non-trivial ge-
ometry of the topological insulator ensures the robustness of an experimentally measurable
quantity, a canonical scheme of topological insulators usually referred to as bulk-boundary
correspondence.
We now aim to construct the integer invariant and offer two common interpretations

of the result. The quantisation of circulating electrons lead to quantised Landau levels
En = ~ωc(n + 1

2), with cyclotron frequency ωc. Although it is not possible for the states
to be labelled with their momentum, a band structure can be constructed by choosing a
proper unit cell. This allows for the application of Bloch’s theorem and the labelling of the
states with a two-dimensional crystal momentum. The energy levels are then given by the
Landau levels, En(k) = En. A bulk energy gap is present if, say N of these Landau level
are filled while the remaining ones are empty, the band structure is thus equivalent to one
of an insulator.
Given the band structure, a flattened Hamiltonian Q(k) is easily defined. The effective

Hilbert space is Hk ∼= C2N if N denotes the total number of Bloch wavefunctions, and the
Brillouin zone is a two-dimensional torus T2. However, since we are interested in the flattened
Hamiltonian, we can choose N = 2 for simplicity with one occupied and one empty band.
We have already learned that Q(k) assigns to each (quasi-)momentum k an eigenvector
|u−(k)〉 and that these states posses a U(1) gauge-freedom, as they are only defined up to a
quantum mechanical phase. A state is thus represented by an equivalence class [|u−(k)〉] :=
{g|u−(k)〉 : g ∈ U(1)}. The collection of all Hk constitutes a mathematical object called
vector bundle4 over the base space T2, denoted by P (T2, U(1)). The group g acting on the
states is called structure group, and acts by left multiplication. The bundle comes with a
projection π (see fig. 1.2) whose inverse image maps from the torus to the fibres [|u−(k)〉].
Notice that the structure group and the fibres are both (isomorphic to) U(1), and hence the
vector bundle is called a principle bundle.
Pictorially speaking, a bundle is called trivial if it can globally be written as a direct product

of its base space (in our case T2) and the fibre. The word globally is very important at this
point. A non-trivial bundle although locally a direct product space, cannot be written as one
globally.
On this bundle the Berry connection [29]5,

a(k) = aµ(k)dkµ := i〈u−(k)|du−(k)〉 = −i〈du−(k)|u−(k)〉,

can be constructed, where the exterior derivative is defined as d = (∂kµ)dkµ. Note that

4More precisely a principal bundle [22].
5Sloppily speaking, a connection is a unique decomposition of the bundles tangent space into a horizontal
and vertical subspace, that allows for directional derivatives of vector fields. Physically, the corresponding
form can be thought of as a vector potential.
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Chapter 1 Topological insulators and superconductors

k
g

Figure 1.2: Principal bundle over the Brillouin torus T2. The structure group g acts by left
multiplication on elements |u−(k)〉 of the fibre ' π−1(k). The projection π maps
from the fibre onto the base space given by the torus T2.

the Chern number does not depend on the specifically chosen connection. Given the Berry
connection a, the Berry curvature is defined as6

F = da = Fµνdkµ ∧ dkν := i〈du−(k)| ∧ |du−(k)〉. (1.5)

At this point we recall the previously mentioned Gauss-Bonnet theorem which connected the
integral of the (Gaussian) curvature over a closed surface to an integer (in units of π), which
in return was related to the holes in the manifold. The natural generalisation of this theorem
identifies the first Chern number

C1 = 1
2π

∫
BZ=T2

F, (1.6)

with an integer. As two manifolds of different genus cannot be continuously deformed into
one another without punching or closing a hole, a difference in the Chern number indicates
that two systems are topologically distinct and only through closing the band gap can they
be transformed into one another.
Two geometrical interpretations of the above statement can be illustrated by conveniently

choosing the simplest model of a two-band insulator. The Hamiltonian we consider is given
by

H(k) =
3∑
i=1

hi(k)σi, (1.7)

where the hi(k) are real, periodic functions and σi=1,2,3 are the Pauli matrices representing
the (pseudo)-spin degree of freedom. In the above model we ignore trivial contributions

6If a is interpreted as a vector potential, F would analogously be interpreted as a magnetic field.
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1.4 Chern number and the integer quantum Hall effect

proportional to σ0 = 1 since they merely lead to a shift in energy. We again denote the
eigenstates of the upper and lower band by |u±(k)〉 and the energies of both bands are
given by ε± = ±

√∑
i h

2
i ≡ ±|h|. The band gap does not close as long as |h| 6= 0.

As usual, we concentrate on the lower filled band |u−(k)〉. ĥ = h/|h| then defines a
map from the Brillouin torus to the sphere S2 and the filled eigenstates take the polar-
representation7 |u〉 = (− sin Θ/2, exp[iφ] cos Θ/2)T. Let H(k) be given such that at k = 0,
ĥ is pointing at the north pole8 (Θ = 0) the eigenvector |u〉 is not well-defined because of
the arbitrary phase exp[iφ]. However, if the vector stays in the southern hemisphere US of
S2, the eigenvector |uS〉 = |u〉 is well-defined. A well-defined eigenvector on the northern
hemisphere UN is easily constructed, |uN 〉 = exp[−iφ]|uS〉. A natural question to ask is
what happens at the equator, i.e. the non-vanishing intersection which surges the northern
hemisphere, ∂UN = UN

⋂
US ' S1? At the transition we can define a transition function

g : ∂UN → U(1) (notice the reappearance of the structure group U(1)) that defines the
phase change by g = exp[iφ]. The topology of the bundle can thus be described by the
behaviour of the transition function g. If ĥ does not cover the whole sphere, the eigenvector
of the corresponding hemisphere can be globally defined and the transition function is trivial
g ' idS2 . If, however, ĥ ends up covering the whole sphere, the transition function cannot
be transformed to the identity and the topology of the bundle is non-trivial. In the latter
case it is not possible to construct a global eigenvector on the whole sphere [30]. Indeed it
is straightforward to see that the Chern number (1.6) is given by

C1 = 1
2πi

∫
∂ĥ−1(UN )

d log(ĥ?g), (1.8)

i.e. the winding number of the transition function g. Since the construction of a global
eigenvector is only possible if g is homotopic to the identity, the Chern number is vanishing
C1 = 0. In contrast, a non-vanishing Chern number C1 6= 0 indicates a non-trivial transition
function g and an obstruction to define a global eigenvector. For the explicit two-band model,
the first Chern number can straightforwardly computed by explicitly evaluating eqs. (1.5) and
(1.6), and is given by9

C1 = 1
4π

∫
T2
h|h|−3 ·

(
∂kxh× ∂kyh

)
dkx ∧ dky. (1.9)

Consider a closed loop in the Brillouin zone, under the map ĥ : T2 → S2 this loop will
describe a closed surface S in the hx, hy plane and since the system is gapped, a winding
7We drop the superscript since we only consider the lower filled band.
8Notice that multiplication by the inverse exp[−iφ] would merely shift this singularity to the south pole at

Θ = π.
9We went with a very sloppy yet common notation εijkhidhj ∧ dhk = 2h · (∂xh× ∂yh)dkx ∧ dky, i.e. we
introduced an artificial cross-product in two dimensions. The latter representation is commonly used in
literature ignorant of exterior calculus [31].
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Chapter 1 Topological insulators and superconductors

number around the origin can be associated to it. The Chern number is exactly this winding
number defined in eqs. (1.8) and (1.9). If we project the sphere down to R3 \ {0}, this
winding number counts the number of times the closed surface S wraps around the origin.
In case of a trivial system, S does not contain the origin and the winding is thus trivial
C1 = 0, which corresponds to the previously discussed scenario in which ĥ does not explore
the whole sphere but stays in one hemisphere. Whereas in the case of a non-vanishing
winding number C1 6= 0, the map explorers the whole sphere (with a non-trivial transition).
Figure 1.3 illustrates the map ĥ and corresponding surface on S2. In a more physical

interpretation eq. (1.6) defines a flux through the Brillouin zone. The source of this flux is
revealed by eq. (1.9), since h|h|−3 defines the field of a point-like magnetic monopole at the
origin h = 0. Placed within the torus the flux is non-vanishing, while a monopole outside of
the torus contributes to no total flux.

S

Figure 1.3: Map from the Brillouin torus to the Bloch sphere S2. A closed loop on T2 is
mapped to a surface S on S2.

1.5 Dirac Hamiltonians

We return to the generic two-level Hamiltonian

H(k) = ĥ · σ =
3∑
i=1

ĥi(k)σi, (1.10)

where we defined the three-dimensional vectors ĥ = (ĥ1, ĥ2, ĥ3) and σ = (σ1, σ2, σ3)T. The
vector ĥ again defines a map from the Brillouin zone (the torus T2) to the sphere S2, as it
was discussed in the previous section.
Possible time-reversal symmetry restricts the choice of ĥi depending on the nature of σ.

If the Pauli matrices constitute a basis for a system with pseudo-spin (T 2 = +1), it follows
trivially that ĥ1 and ĥ3 have to be even functions in k, whereas ĥ2 has to be odd. According
to eq. (1.9), the Chern number has to vanish. For a system with real spin degrees of freedom
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1.6 Haldane model

(T 2 = −1), in order to preserve time-reversal symmetry all ĥi have to odd functions in k.
Consequently the system has to be gapless.
In the vicinity of a point of gap closure (such as at time-reversal invariant momenta),

the Hamiltonian (1.10) can be linearised leading to a two-dimensional Dirac Hamiltonian.
These points are frequently referred to as Dirac points. The generic form of a massive Dirac
Hamiltonian is achieved10 by replacing ĥi=1,2 → k1,2 and ĥ3 → m in eq. (1.10),

H(k) =
2∑
i=1

kiσi +mσ3. (1.11)

The dispersion E(k) = ±
√
k2 +m2 exhibits a gap of 2|m|. For the massive Dirac Hamilto-

nian the Chern number of the filled band is given by

C1 = 1
2π

∫
T 2

m

2
(
m2 + k2

)−3/2
dk = sgnm/2.

Surprisingly the Chern number and thus the Hall conductance turns out to be a half integer,
which contradicts our statements earlier. Indeed we cheated in stating that the Chern number
always has to be an integer and indeed the linear dispersion of the Dirac Hamiltonian serves
as a perfect counter example. The reason behind this is rooted in the fact that the dispersion
stays linear in the limit |k| → ∞ and the integration manifold is non-compact and effectively
halved, leading to the half-integer result [3]. The integer result is always true on a lattice,
for a continuum model, however, a regularisation of the mass, which annihilates the linear
dispersion in the large k limit, is necessary. Although the full Chern number can only be
obtained by integrating over the full Brillouin zone, an integer change in the invariant is still
present within the Dirac description. A sign change in the mass of the Dirac Hamiltonian thus
indicates a transition, which necessarily involves a closing of the gap. Figure 1.4 illustrates
the dispersion around the Dirac points and the change of the Chern number as a function
of mass. Dirac Hamiltonians with linear dispersion will cross our paths again in the second
part of this work, where the linearisation is used to formulate a quasiclassical description of
topological insulators and superconductors.

1.6 Haldane model

Haldane [32] demonstrated that a non-trivial two-band insulator with a quantised Hall con-
ductance can be realised in a honeycomb lattice with two inequivalent sub-lattices in the
absence of an external magnetic field. In order to break the time-reversal symmetry the
model requires a local magnetic flux that only affects second neighbour hopping amplitudes,
10In order to avoid confusion, we linearise the two level Hamiltonian around a momentum, say q, close to the

Dirac point. By setting both ~ and the Fermi velocity vF to unity and redefining q → k we end up with
eq. (1.11).
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Chapter 1 Topological insulators and superconductors

C=1

Figure 1.4: Schematic dispersion for topological insulators with different Chern numbers (in-
dicated by red curve). At the Dirac point, the gap closes in a linear manner and
the Chern number signalises an integer jump ∆C.

with a vanishing net flux per unit cell. The system possesses two Dirac points around which
the linearised Hamiltonian is given by eq. (1.11), and the mass terms at this two points are
m = M ± t sinφ, where ±M are the on-site energies of the sub-lattices, t is the hopping
amplitude and φ the Aharnov-Bohm phase (induced by the local flux [32]). Modulating the
two parameters M and φ the phase diagram of the Haldane model (fig. 1.5) can be con-
structed. One recognises two phases (|M | < t sinφ) corresponding to a positive and negative
Chern number (coloured areas) and a third trivial phase (|M | > t sinφ) corresponding to a
vanishing Chern number. The gap vanishes at the Dirac points but a finite gap evolves as a
function of both parameters, separating all three phases. The transition lines (|M | = t sinφ)
separating these phases indicate the parameter values for which the system is no longer an
insulator.

M/t

C1 = +1 C1= -1

C1 = 0

C1 = 0
+1

-1

Figure 1.5: Phase diagram for the Haldane model. The system is in the trivial phase (C1 = 0)
for |M/t| > sinφ and in the non-trival (C1 = ±1) for |M/t| < sinφ. The lines
|M/t| = sinφ indicate phase transitions at which the bulk gap closes.

18



1.7 Edge states

1.7 Edge states

By definition, a topological insulator hosts metallic surface states at its boundary. On several
occasions we have seen, that a gap closing has to occur on the boundary between two
insulators with different values of the topological invariants. For Dirac Hamiltonians we now
illustrate that one can indeed prove the existence of such states by simple arguments. To this
end, we consider an interface between two topological insulators described by a massive Dirac
Hamiltonian (such as the Haldane model). On the left-hand side the insulator is supposed
to be trivial (C1 = 0) while on the right-hand side it is non-trivial (C1 = 1). As we have
seen, such a change in the Chern number can only be achieved by a sign change of the mass
across the interface, as illustrated in fig. 1.6. In order to describe the edge state sitting at
the interface where the mass vanishes, one solves the corresponding Schrödinger equation in
real space for the massive Dirac Hamiltonian. A detailed derivation is done in [2] leading to
the normalised solution

Ψ(x, y) ∝ exp[ikxx] exp[−
y∫

0

m(y′)dy′](1, 1)T, (1.12)

where the mass changes sign along the y-axis and vanishes at y = 0. The eigenenergy (in
units of ~ = vF = 1 and for EF = 0) is given by E(kx) = kx. Thus eq. (1.12) describes
a chiral (moving only in one direction) state, that transversely crosses the interface (in x-
direction) with a positive Fermi velocity. In fig. 1.7 this single state connecting the valence
and conduction band is illustrated.

C1=0 C2=+1

+1

-1

y=0

Figure 1.6: Schematic illustration of an interface between a trivial insulator (left) and a non-
trivial one (right). The sign of the mass term in the Dirac Hamiltonian changes
(black lines) from −1 to +1 at the interface (y = 0). The red curve represents
the wave function of the localised zero energy mode at the interface. Details are
explained in the text.
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Chapter 1 Topological insulators and superconductors

We have yet encountered another example of the bulk boundary correspondence. Of
course, the procedure above is not tied to Dirac Hamiltonians and the idealised band structure
in fig. 1.7 might become more complicated. The Fermi energy could in general intersect with
the connecting band several times. In case of an edge state, it will always cross it an odd
number of times and for each intersection the direction of the Fermi velocity needs to be
taken into account. As a consequence, the weighted sum of all intersections will always equal
the change in Chern numbers across the interface at which the transition happens.

0
k

E

EF

0
k

E

EF

Figure 1.7: Chiral edge state crossing the Fermi energy. Left: The edge state crosses the
Fermi energy once with positive group velocity. Right: The band of the chiral
edge state crosses the Fermi energy three times. Twice with positive and once
with negative group velocity. The direction of the velocity is indicated by arrows.

1.8 Z2-topological insulators

The above arguments lead to a vanishing Chern number in the presence of time-reversal
symmetry. It was shown by Kane and Mele [6, 7], that for a system with half integer spin,
spin-orbit interactions open a possibility for a topologically non-trivial system with unbroken
time-reversal symmetry. Although the Chern number is always trivial, the phases can be
classified by a topological Z2 invariant. The authors considered graphene described by a
Haldane model but replaced the local magnetic flux by spin-orbit interactions. The physical
phase distinguished by the Z2-invariant is called the quantum spin Hall effect (QSHE). Note
that these results were independently derived by Zhang et al. [33, 34]. Where the QSHE was
predicted in HgTe quantum wells, which was experimental confirmed shortly thereafter [8].
The presence of time-reversal symmetry relates a Bloch states at k to the one at −k

and thus the time-reversal operator defines an anti-unitary map from the fibre at k to the
fibre at −k. And indeed, the valence bundle turns out to be always trivial considering the
Chern number and the constraints imposed on the eigenstates reveal the non-triviality of the
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1.8 Z2-topological insulators

system [30].
Due to Kramer’s theorem all eigenstates of the Hamiltonian are at least two-fold de-

generate. Spin-orbit coupling splits this degeneracy except for isolated points called time-
reversal-invariant moments (TRIM). These points are located at the boundary of the effective
Brillouin zones11. The binary nature of the classification can be understood from a very sim-
ple picture: Since the eigenstates are degenerate at the TRIM, depending on the system,
a band connecting the valence and conductance band may intersect with the Fermi energy
even or odd times. The former case is trivial since the system can be continuously deformed
(imagine lifting the band above the Fermi energy) and the intersection can be removed,
leaving the dispersion with no band connecting the valence and conductance band. In case
of an odd number of intersections this is not possible and the system is non-trivial, exhibiting
an edge mode. Recall that in the case of a Chern insulator the weighted number of times the
connecting band intersects with the Fermi energy, defined the change in the Chern number.
In case of the QSHE, the number of Kramers pairs of the edge mode that intersects with the
Fermi energy defines the change in a Z2 invariant. Before we consider the nature of these
edge modes, we elaborate a bit more on the construction of the invariant. Similar to the
discussion for Chern insulators, the obstruction to construct a basis on the whole Brillouin
zone, where the eigenstates are related by the time-reversal operator, proves to be impossible
in the non-trivial case. Details can be found in ref. [30]. There are several ways to define a
Z2 invariant [7, 35], one that will be of interest at a later stage was introduced by Fu and
Kane [35]. The sewing matrix is defined as

w(k) = 〈um(k)|Tun(−k)〉,

where |u(k)〉 again denote the occupied Bloch functions and T the anti-unitary time-reversal
operator with T 2 = −1. w measures the overlap or orthogonality of the Bloch states
with their time-reversal partners. It is unitary and furthermore at the TRIM, w is skew-
symmetric wT = −w. A skew-symmetric matrix allows for the definition of a Pfaffian,
Pf(w) = (detw)2. Thus for each TRIM ka we can define the binary quantity

δa = Pf(w(ka)) det(w(ka))−
1
2 = ±1,

and if the Bloch states are chosen continuously, the Z2 invariant is defined as

(−1)ν =
∏
a

δa, (1.13)

where the product runs over all TRIM (of which there are four in two dimensions).
The edge states of the QSHE can be derived in the same fashion as for the IQHE. The

simplest model necessarily involves four levels (two levels with different spin). The Hamilto-

11Since time-reversal symmetry is present it is sufficient to only consider half of the Brillouin zone.
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Chapter 1 Topological insulators and superconductors

nian (1.7) thus has to be represented in a four-dimensional basis and is given by

H(k) =
5∑
i=1

hi(k)Γi +
∑
i>j

hij(k)Γij ,

where the gamma matrices Γi=1,...,5 obey the Clifford algebra12 [Γi,Γj ]+ = 2δij and Γij =
−2i[Γi,Γj ]−. Symmetry constraints opposed to the system restrict the gamma matrices
further.
Considering the model introduced by Kane and Mele, a linearisation around one of the

TRIM, as it was done in the discussion on Dirac Hamiltonians for Chern insulators, leads to
the minimal representation

H(k) ' k1Γ5 − k2Γ2 +mΓ1,

where we again assume that the sign of the massm changes along a coordinate y and vanishes
at the interface between two different insulators at y = 0. The specific representation of the
gamma matrices are of no importance at this point and will be discussed later; it is sufficient
to understand that they live in the tensor space of spins and the degrees of freedom of the
two-level system13. However, it is easy to see that the Hamiltonian can be block diagonalised
with each block referring two one of the two spin species, H = diag(H↑, H↓) and thus the
Schrödinger equations decouples within the spins. These Schrödinger equations are then
straightforwardly solved in real space [30], yielding

Ψ↑/↓(x, y) ∝ exp[∓ikxx] exp[−
y∫

0

m(y′)dy′]ê↑/↓,

where ê↑ = (0, 1, 0, 0)T and ê↓ = (σ1 ⊗ 1)ê↑. Thus the boundary hosts helical edge states,
one state with spin-up moves to the right and the spin-reversed partner moves to the left
with the same velocity. These helical edge states are illustrated in fig. 1.8 and the parities
of these helical edge states are represented by the Z2 invariant eq. (1.13).

1.9 Stability of edge states

The robustness of metallic edge states, present due to the bulk boundary correspondence, is
protected due to their topological origin. Chiral and helical edge states have been identified
at the boundary of a Chern and Z2 topological insulator, respectively. Chiral edge modes
only travel in one direction and simply put, there is just no possibility for backscattering
as long as the sample width is larger than the decay length of the edge mode [36]. For
12Throughout this work we denote (anti-)commutators by [A,B]ξ = A ◦B + (ξ)B ◦A.
13Therefore they are in general a tensor product of two Pauli matrices.
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Figure 1.8: Helical edge states of the QSHE. A pair of electrons moving in opposite directions
with opposite spin cross the Fermi energy.

the helical edge states in the QSHE the robustness is due to destructive interference of the
backscattering paths. Imagine an electron with spin σ travelling along the edge of the QSH
insulator. We assume that there is only one pair of edge states. If the electron is reflected
by disorder compatible with the symmetry class (i.e. non-magnetic disorder), it has to flip
its spin (since it is helical). The two possible paths (illustrated in fig. 1.9) the electron
can take during that scatter process will rotate the spin by an angle of ±π, depending on
which direction it takes, resulting in a total difference of 2π between both paths. Thus for
half-integer spin, both paths will interfere destructively14. Therefore the presence of time-
reversal symmetry protects the edge states by annihilating the possibility of backscattering.
On a final note we see that the parity of helical states at one edge indeed relates to the
Z2 invariant eq. (1.13), as an even number of pairs would always give rise to the possibility
for the electron to change the channel when scattering at an impurity. The latter would
annihilate the destructive interference and lead to localisation effects.

1.10 Topological superconductors

Throughout the text (although at times impertinently concealed for the sake of simplicity)
the terms topological insulators and superconductors were bound to each other, without
paying any special attention to the latter type of systems. We devote more attention to
topological superconductors in the second part of this work, however we shall not leave this
introduction without revealing the origin of the term ’topological superconductor’. Although
superconductors (Class D, C, DIII, CI), described by a quasi-particle Bogoliubov-de Gennes
Hamiltonian, have no bulk gap like insulators, the quasi-particle spectrum is gapped by the
14Recall that the wave function for a half-integer spin particle changes the sign upon a full rotation of the

spin.
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Chapter 1 Topological insulators and superconductors

Figure 1.9: Possible trajectories for backscattering of an electron at a non-magnetic impu-
rity (red cross): Clockwise rotation (solid line) and counter-clockwise rotation
(dashed). Due to TRS the spin has to reverse in both case (indicated by arrows
at the bottom), the total phase change leads to a destructive interference of both
paths, and thus TRS protects edge-modes from disorder.

superconducting order parameter ∆ due to the intrinsic particle-hole symmetry. Thus, a
similar classification of Bogoliubov-de Gennes Hamiltonians, that can not be continuously
deformed into one another without closing this gap, is desired. It turns out, that boundary
modes of spinless fermions in one dimension in superconducting systems represent a very
elusive type of particles called Majorana fermions, discussed in the second part of this work.

1.11 Completion of the table and dimensional reduction

Having reviewed the construction of Z- and Z2-topological invariants for the IQHE and
the QSHE, we close this section with a comment on the completion of table 1.2 from an
invariants point of view15. In a seminal work by Qi et al. [27] it was shown that Z2- topo-
logical, time-reversal invariant insulators (breaking chiral symmetry) can be derived from
higher dimensional Z-topological insulators using a technique called dimensional reduction.
Topological invariants were then derived from an effective field theory describing the topo-
logical insulator. Ryu et al. [3] later constructed representatives of topological insulators (in
terms of Dirac Hamiltonians) for all classes in arbitrary dimensions. Again using dimensional
reduction, the authors extended the earlier work [27] to complete the scheme shown in ta-
ble 1.2. The concept of dimensional reduction and topological field theory will be discussed
in the second chapter. Due to the possibility for more complex structures like knots on two
dimensional surfaces, topological insulators in three dimensions are described by a different
mechanism. Since this work is mainly considering one- and at times two-dimensional sys-
tems, three-dimensional topological insulators exceed the scope of this work (for references

15Not a point that is invariant.
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see [2, 26, 27, 36–40]).
In passing we note that classifications of topological insulators and superconductors in the

presence of additional spatial symmetries such as reflection and mirror symmetries have been
discussed in [41, 42].
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2
Topological invariants in terms of
quasiclassical Green’s functions

It is not overstating the case to say that the BCS-theory of superconductivity developed in
the late 1950s and early 1960s [44–49], is one of the most effective and established theories of
modern condensed matter physics. However, being a mean field theory, even in the absence
of disorder sophisticated problems involving for example strong magnetic fields, or temper-
atures far away from the critical temperature TC , prove difficult (or impossible) to solve.
The same is true for heterostructures of superconductor and normal metals. A theory which
allows for a significant simplification of the transport equations involved, is the quasiclassical
theory [16, 17]. Since the late 1960s1 the quasiclassical theory has become an established
technique in mesoscopic (non-equilibrium) superconductivity [51–54] as well as in the theory
of quantum transport [55–59]. It combines the classical description of quasi-particles with
the quantum description of the internal degrees of freedom. While internal structures such
as spin and particle-hole symmetry are described quantum mechanically, the quasi-particles
propagate along classical trajectories. One reason for its success is the fact that the relevant
spatial scale (coherence length) characterising most common superconductors, proportional
to the inverse of the BCS gap, exceeds the Fermi wavelength and thereby justify a quasi-
classical approximation (in which the Green’s functions vary slowly on the scale of the Fermi
wavelength).
An extension of the quasiclassical technique to the topological superconductors systems

seems natural. However, before we present the quasiclassical approach to this novel systems,
we briefly review the quasiclassical technique in conventional normal metal - superconductor
1Note that for normal metals, the scheme involved was already discussed in 1964 by Prange and
Kadanoff [50].
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Chapter 2 Topological invariants in terms of quasiclassical Green’s functions

heterostructres. We restrict ourselves to the bare presentation of the necessary equations
and refer to one of the numerous reviews [18, 60–62] for further reading.

2.1 Quasiclassical Green’s functions

We start from the well-known Gor’kov Green’s function in the Nambu representation Ψ =
(ψ↑, ψ̄↓)T, Ψ̄ = (ψ̄↑, ψ↓), where ψ(x) annihilates a fermion at space-time x and ψ̄ creates a
fermion at the same position,

G = −i〈T (Ψ(x)⊗ Ψ̄(x′))〉 =
(
G(x, x′) F (x, x′)
F̄ (x, x′) Ḡ(x, x′)

)
.

Here 〈. . .〉 denotes the quantum average and T represents the time-ordering operator. In
this representation G and Ḡ represent the particle and hole Green’s functions, respectively,
while F = −i〈T ψ↑ψ↓〉 is the pair amplitude or anomalous Green’s function2. The Gor’kov
equations are then given by [18]

(G−1
0 + i∆σ2δ(x1 − x′1)− Σ)(x1, x

′
1)
∗
⊗ G(x′1, x2) = δ(x1 − x′1), (2.1)

where we assumed that the pairing potential is real. The product
∗
⊗ includes a convolution

over coordinates, Σ denotes the impurity self-energy and the free Green’s function is defined
as

G−1
0 (x, x′) = δ(x− x′)(σ3∂t −H(x)),

with the single-particle Hamiltonian H.
For superconductor - normal metal heterostructures the Gor’kov equation turns out to be

very cumbersome and a detailed microscopic description is often not needed. A more efficient
description can be achieved by a prior identification of the information encoded in the system,
which are actually relevant for the phenomena under investigation. To this end, we notice
that the Green’s function in the Gor’kov equation contains fast oscillating contributions (on
the scale of the Fermi wavelength λF ), representing redundant information. The reason being
that the relevant length scales in a superconductor ξ = vF /∆ and ξT = vf/2πT exceed
the Fermi wavelength. In superconducting systems, relevant contributions are produced
by quasi-particles confined around the Fermi energy where the Green’s function is sharply
peaked. A separation of the Green’s function into slowly and fast (redundant) oscillating parts
is therefore desirable. The latter are associated with oscillations of the Green’s function as a
function of the relative coordinate ρ = x− x′, while the former are produced by oscillations
in the centre of mass coordinate 2r = x+ x′. The reduction to relevant information within
2In case of an s-wave superconductor the anomalous Green’s function is related to the pairing potential by

∆(x) = −λF (x, x), where λ < 0 is an interaction constant.
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2.1 Quasiclassical Green’s functions

the quasiclassical approximation [16, 17] can thus be achieved by averaging out the relative
coordinate ρ.
The calculations are conveniently performed using the Wigner-transformation. The con-

volution in the Gor’kov equations can be expressed using a gradient (Moyal) expansion

(A
∗
⊗ B)(p, r, ε) = e

i
2 (∂Ar ∂Bp −∂Ap ∂Br )A(p, r, ε)B(p, r, ε).

Given that we are not interested in fast oscillations, the upper product is expanded up to
linear order. Starting from the combined Gor’kov equation

(G−1
0 − Σ)

∗
⊗ G−G

∗
⊗ ((G−1

0 )† − Σ) = 0,

and neglecting terms of the order (p−pF )∂r and higher orders of (p−pF ) (due to proximity
of p to pF and the slow dependence of G on r), we arrive at

ivF∂rG+ [εσ3 + iσ2∆− Σ, G]− = 0. (2.2)

Note the enhanced simplicity of this equation compared to the Gor’kov equation (2.1).
The fact that equation (2.2) does not depend on the distance to the Fermi momentum
ξ(p) = p2/2m − µ ' vF (p − pF ), ensures that it is valid for the quasiclassical Green’s
function

g(r, pF , ε) ≡
i

π

∫
dξ(p)G(ξ, pF , r, ε).

Thus the quasiclassical Gor’kov equation, called Eilenberger equation, reads

ivF∂rg + [εσ3 + iσ2∆− Σ, g]− = 0. (2.3)

Note that we used Σ for both the self-energy and the quasiclassical approximated self-energy.
We restricted our discussion to stationary problems. The Eilenberger eq. (2.3) however is
not sufficient to uniquely determine g, since g2 provides an additional solution to eq. (2.3).
It turns out that g2 = c1. The constant c can be derived from the solution of the isotropic
Gor’kov equation deep within the superconductor, resulting in the non-linear constraint or
normalisation condition

g2 = 1.

As a closing remark we note that, in case of one-dimensional geometry (a wire), r is simply
given by the coordinate along the wire and ξ(p) can take the two values ±1 depending on
the direction of the moving fermion.
Interfaces between different materials (such as between superconductors and normal met-

als) lead to discontinuities in g at the transition. At the level of the quasiclassical approxima-
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Chapter 2 Topological invariants in terms of quasiclassical Green’s functions

tion, effects of interfaces (or potential barriers) are not taken into account, since information
on length scales of the order of the Fermi wavelength are integrated out. Rapid changes of
the Green’s function at interfaces (or potential barriers) in principle prohibit a quasiclassi-
cal approximation. As it turns out, the effect of an interface can be incorporated into the
quasiclassical description by effective boundary conditions on g. Such boundary conditions
for arbitrary interfaces where first derived by Zaitsev [55] and extensions to other transport
problems and circuit theory can be found in ref. [56–59].

2.2 Eilenberger function

Throughout this work we consider disordered quantum wires connected to two clean topo-
logical insulators or superconductors, to which refer as terminals. The prototypical setup is
illustrated in fig. 2.1. The detailed nature of the terminals depends on the specific model un-
der inspection and both terminals can in principle be in different topological phases. We will
show that the topological invariants constructed within this framework, depend solely on the
topological phases of the associated terminal Eilenberger functions (or quasiclassical Green’s
functions), i.e. deep within the terminal. These topological invariants relate to the number
of edge states at the boundary between topologically inequivalent terminals. In many cases,
one of the terminals can be understood as the trivial vacuum and thus the topological phase
of the system is entirely determined by phase of the remaining terminal. In section 4.3 we
consider a model in which one terminal is given by a trivial tunnel barrier. It can be shown
that the implementation of the latter, within the symmetry class of the system, is compatible
with a generic set of boundary conditions imposed on the Eilenberger functions.
In the vicinity of a quantum phase transition separating the topological and trivial insulating

phase, the minimal low-energy model is given by a gapped Dirac Hamiltonian (c.f. sec. 1.5).
Descriptions and classifications of topological insulators based on this low-energy Dirac mod-
els have proven to be very effective [3]. In one-dimensional systems the Hamiltonian becomes
linear in momentum, facilitating a formulation of (exact) quasiclassical equations of motion
and the construction of the Eilenberger function for the Dirac model (c.f. our discussion
in section 2.1). The quasiclassical approximation, discussed in the previous section, thus
effectively results in a linearisation of the Hamiltonian. Therefore we confine our discus-
sion to Dirac Hamiltonians and consider the low-energy linearised Hamiltonian H of a one-
dimensional quantum wire,

H = −ivΓ∂x + m̂. (2.4)

Here Γ denotes a single Dirac matrix satisfying Γ = Γ†, Γ2 = 1, v denotes the velocity
and m̂ is the mass matrix. We refer to the first term on the right-hand side in eq. (2.4)
as kinetic part. The Hamiltonian H generally acts on a position depended spinor ψ(x) =
(ψR, ψL)T belonging to the direct product space of possible spin, particle-hole as well as
further subspaces comprising additional quantum numbers like chirality, channels and bands.
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2.2 Eilenberger function

Figure 2.1: Top: Prototypical setup of a disordered (indicated by the red crosses) quantum
wire connected to two terminals, with terminal isotropic Eilenberger functions
Q± (see text for definition). At the interface between the scattering region and
the terminal, the interface Eilenberger functions are denoted by QL/R. In the
terminals the Eilenberger function Q is assumed to rapidly converge to Q±. Bot-
tom: The profile of the local gap, here denoted by the formal position dependent
norm ‖m̂‖ of the mass term, induced by the system parameters is shown (black
curve). The scattering region is defined as the region where the scattering rate
(indicated by the red curve) is comparable to the local gap. Within the terminals
the mass saturates to a constant value.

In the process of linearising the original lattice Hamiltonian around some reference Fermi
momentum kF , the introduction of chiral fermions leads to presence of a chiral index (R/L
moving fermions, see e.g. [63]). The fermion spinor field is thus represented as a superposition
ψα(x) = ψαR(x)eikF x + ψαL(x)e−ikF x, where α denotes the set of the remaining quantum
indices. A detailed example of such a linearisation will be given in sec. 4.2.3. We begin with
defining the matrix (two-point) Green’s function

gR/A(x, x′; ε) ≡ vGR/A(x, x′; ε)Γ, (2.5)

whereGR/A(x, x′; ε) ≡ 〈x|(ε±i0+−H)−1|x′〉 denote the conventional retarded and advanced
Green’s functions, respectively. The advantage of this auxiliary construction will become clear
momentarily. The evolution operator (or Liouvillian) is defined according to

Lε ≡ −
i

v
Γ(ε̂− m̂), (2.6)

where ε̂ denotes the diagonal energy matrix. The Green’s function g then evolves according
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Chapter 2 Topological invariants in terms of quasiclassical Green’s functions

to the two mutually adjoint differential equations

∂xg(x, x′; ε) + Lεg(x, x′; ε) = −iδ(x− x′),
∂x′g(x, x′; ε)− g(x, x′; ε)Lε = iδ(x− x′). (2.7)

From the above expression it can be seen that g is discontinuous at x = x′. This discontinuity,
is removed in the continuous (one-point) Green’s function

Qε(x) ≡ lim
x′→x

[
2ig(x, x′; ε)− sgn(x− x′)

]
, (2.8)

which is called Eilenberger function and which will be our main object of interest. The latter
is normalised to unity, Qε(x)2 = 1. By adding up both equations of motions (2.7), the
evolution of Q is described by the following equation of motion

∂xQε(x) + [Lε,Qε(x)]− = 0, (2.9)

which is called as Eilenberger equation, analogous to eq. (2.3).

2.2.1 Symmetries

Possible symmetries present constrain the Hamiltonian H as it was discussed in section 1.2.
We now study the symmetry constraints on g, L and finally on Q in succession to the
constraints on H. We begin with charge-conjugation symmetry eq. (1.2), where the basis-
dependent unitary matrix UC obeys UCU∗C = ±1. For the Dirac matrix Γ it follows that

UCΓTU †C = Γ.

Similarly, the advanced and retarded Green’s functions inherit charge-conjugation from H,
since

(GA(x′, x;−ε))T = 〈x′|
(
(−ε− i0+ −H)−1

)T
|x〉

= 〈x′| − U †C(ε+ i0+ −H)−1UC |x〉

= −U †CG
R(x, x′; ε)UC .

Hence we find that for g, charge conjugation symmetry translates to

gR(x, x′; ε) = −uCgA(x′, x;−ε)Tu†C , (2.10)

where we defined the unitary matrix uC ≡ ΓUC , which obeys uCu∗C = ±1.
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2.2 Eilenberger function

Accordingly, the evolution operator and the Eilenberger function obey

Lε = −uCLT
−εu
†
C , Qε = −uCQT

−εu
†
C . (2.11)

The symmetry constraints on L and Q in the presence of time-reversal symmetry (1.1) and
sublattice symmetry (1.3) can be derived in the same fashion, leading to

uTLT
ε u
†
T = −Lε, uTQT

ε u
†
T = −Qε, Lε = USL−εU †S , Qε = USQ−εU †S ,

where we defined uT ≡ ΓUT, with uTu
∗
T = ±1 and USU

∗
S = 1. Notice how charge-

conjugation opposed to time-reversal symmetry only relates operators with opposite energies
with each other, a fact that will be important at a later stage.

2.2.2 Boundary Green’s functions and the clean limit

Let us return to the setup illustrated in fig. 2.1. Internal microscopic parameters of the
wire are encoded in the mass matrix m̂(x). These parameters vary randomly in space and
saturate to some non-random constant values far within the terminals3. We denote these
isotropic limits by m̂±, for the right and left terminal, respectively. Disorder compatible
with the symmetries of the wire can then be introduced by splitting the mass m̂(x) into a
non-random (external) parameter contribution m̂0(x), together with a Gaussian distributed
random matrix δm̂(x) which is only restricted by the present symmetries, i.e. m̂(x) =
m̂0(x) + δm̂(x). In the lower part of fig. 2.1 a profile of the mass matrix is illustrated. The
width of the region between the two interfaces at xL/R, is set by regime where the scattering
rate is comparable to the local gap (given by an abstract position-dependent norm ‖m̂(x)‖),
i.e. 1

τ ' ‖m̂(x)‖. Saturation in the terminals is achieved if 1
τ < ‖m̂(x)‖ and disorder effects

can be neglected. We can therefore safely assume that the terminals are disorder-free4. We
denote the asymptotic Eilenberger functions in the terminals, corresponding to the saturated
masses m̂±, by5

Qε(x→ ±∞) ≡ Q±.

As we will see later, these isotropic limits encode all informations necessary to determine the
topological invariants.
Since in this isotropic limit the Eilenberger function is stationary, the Eilenberger eq. (2.9)

reduces to the isotropic Eilenberger equation

[Qε,Lε]− = 0,

3For example, in case of a proximity coupled superconductor, the proximity induced order parameter in the
wire saturates to a constant value on the scale of the coherence length.

4Note that the theory becomes analytically correct in the x→∞ limit.
5Note that we omit the energy subscript whenever possible to simplify the notation.
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together with the non-linear constraint Q2
ε = 1.

In order to solve these equations, we assume the disorder-free evolution operator Lε to be
diagonalised as

Lε = T λ̂T−1, (2.12)

where T is a transformation matrix and the matrix λ̂ comprises the eigenvalue structure.
Due to the Dirac nature of our Hamiltonian the eigenvalue matrix takes the form

λ̂ = diag(λ+, λ−)⊗ Σ, (2.13)

where we λ± are eigenvalues (or diagonal matrices of eigenvalues) with positive real parts.
The matrix Σ, appearing in the upper expression, is diagonal and incorporates the sign
structure and has a vanishing trace tr Σ = 0. Details of the transformation matrix T are not
of interest at this point and it can be calculated for the individual case. According to the
definition (2.8), the isotropic Eilenberger equation is then solved by matrices of the form

Qε = TΛT−1, (2.14)

where the matrix Λ = diag(±1, . . . ,±1) is a diagonal matrix containing only unit-modular
entries. The order in which this entries are distributed is determined by the sign of the
infinitesimal offset ε → ε ± i0+ introduced in the retarded/advanced Green’s functions. In
order to derive the explicit form of the matrix Λ in eq. (2.14), we consider the momentum
representation of the equations of motion, eq. (2.7). The Green’s function is translational
invariant g(x, x′; ε) = g(x− x′; ε) and its Fourier transform satisfies

(iLε − p) g(p; ε) = 1.

In the diagonalised representation (2.12) yields

g(p; ε) = −T
[
p− iλ̂

]−1
T−1.

Since the real parts of the eigenvalues Re (λ±) > 0 are positive, one can calculate the inverse
Fourier transformation for the retarded Green’s function,

g(x, x′; ε) = T

(∫ dp
2π
[
p− iλ̂

]−1
eipx

)
T−1

= − i2T
(
Σ⊗ 1 + sgn(x− x′)

)
e−λ̂|x−x

′|T−1.

Note that for x 6= x′, the kernel of the upper expression is exponentially decaying, since we
defined the eigenvalues λ± to be of positive real part. By the same token, we could have
chosen a different diagonalisation of L with negative real parts, resulting in a sign change

34



2.2 Eilenberger function

in the upper integral. With the definition (2.8) it follows that the sign structure of Λ is
fully determined by Σ, or put differently, by the sign of the infinitesimal offset ε→ ε± i0+.
In order to establish a relation between Σ and Γ, we note that from the definition (2.6),
it follows that for high energies (ε → ∞) the evolution operator is approximately given by
−iΓ. In the same limit, T is close to identity T ' 1 and Q is almost Λ. If, for simplicity,
we assume that Γ is diagonal, we see that Γ ' Σ. Of course, if Γ is not diagonal such a
simple identification is not possible and more work is necessary to determine the correct sign
structure of Λ. This analysis also allows for a very straightforward scheme to construct Λ
and therefore Q: Once L is given in a suitable basis and its eigenvalues are calculated and
properly ordered, the proper sign structure of Λ can be calculated directly from the sign of
the real part of each eigenvalue of L. A scheme that will be put to use in later calculations.

2.2.3 Transfer matrix

We now turn to the formal solution of the Eilenberger equation for the disordered system. It
goes without saying that the solution of the Eilenberger equation in the presence of disorder
is a formal construction, in the sense that it depends on the particular realisation of disorder.
Given an observable that functionally depends on Q, one needs to average over different
realisations in order to be able to draw meaningful results.
As we discussed earlier, the terminals can safely be considered to be disorder-free and

the asymptotic values of the terminal Eilenberger functions are Q+ and Q−, constructed
according to scheme outlined the previous section. Note that Q+ and Q− may in general
describe different topological phases. We denote the length of the intermediate region (in
which the disorder is comparable to the local gap) by lx and assume that the mass term,
comprising the dependence on the system specific parameters, varies in space in a region
|x| < lx/2. By the same token, saturation of the system parameters is achieved at |x| � lx/2.
The Q-matrices at the interfaces between the terminal regions and the disordered region are
denoted by

QR = Q(xR), QL = Q(xL), (2.15)

where we defined xL = −xR = lx/2. Assuming that the number of modes present in the
quantum wire is sufficiently large (i.e. that the characteristic energy length, lε, exceeds the
longitude of the wire, lx � lε, while its latitude is small in comparison ly � lx), we are in
a position to define a transfer matrix6 M that formally connects both interface Eilenberger
functions,

QR = M(xR, xL)QLM−1(xR, xL).

The transfer matrix given at an energy ε is a function of two positions and functionally
6In a way this defines our notion of one-dimensional systems.
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depends on the disorder configuration. The interface Q-matrices can then be related to the
terminal Q-functions Q±. In order to do so, we notice that the transfer matrix M at given
energy ε can formally be derived from the Eilenberger eq. (2.9) for two arbitrary positions x
and x′,

Mε(x, x′) = Px exp

− x′∫
x

Lε(y)dy

 = Px exp

 i
v

x′∫
x

Γ (ε̂− m̂(y)) dy

 , (2.16)

where Px denotes the path-ordering operator and we made use of definition Lε = − i
vΓ(ε̂−

m̂). The relation between the terminal and interface Q-matrices then reads

Q± = M(x, xR/L)QR/LM−1(x, xR/L), (2.17)

in the limit x→ ±∞.
Since the transfer matrix Mε is based on Lε, we can formulate symmetry constraints

for the transfer matrix Mε. Independent of the present symmetries, Mε obeys the flux
conservation [64]

M †εΓMε = Γ. (2.18)

To illustrate this property we consider a disordered system which is placed between two
semi-infinite leads of finite width, assumed to be perfectly conducting. We impose hard-wall
boundary conditions at the transverse surface7 and therefore the energy of the transverse
part of the energy of the wave functions is quantised. The 2N × 2N -dimensional transfer
matrix M in this scenario (where N relates to the quantised transverse momentum and the
factor two accounts for the chirality of the waves) is given by

M(ι, o)T = (o′, ι′)T,

where ι and o denote the left moving wave vectors, whereas the primed vectors refer to
the right moving ones. Recall that M relates flux amplitudes of the left-hands side to
the ones on the right-hand side, whereas scattering matrices usually relate incoming to
outgoing fluxes. Flux conservation translates to a hyperbolic norm of the vector (ι, o)T,
|ι|2 − |o|2 = −|ι′|2 + |o′|2 and M preserving this norm is thus a pseudo-unitary matrix, i.e.
M ∈ U(N,N). In this case the flux conservation can be represented8 by Γ = σ3 ⊗ 1N .
In addition, the non-unitary symmetries T , C and S put the following restrictions on M

uCM
T
−εu
†
C = M−1

ε , uTM
T
ε u
†
T = M−1

ε , uSM−εu
†
S = Mε. (2.19)

7However, details of the boundary conditions are of no importance to the theory.
8Formally eq. (2.18) defines a pseudo-unitary matrix, U(p, q) := {U ∈ C ⊗ C|U†ηU = η} where η is
invertible and Hermitian.
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A summary of the symmetry relations for all relevant operators can be found in table 2.1
below.

symmetry Dirac matrix Q-matrix transfer matrix
particle-hole (C) UCΓTU †C = Γ uCQ

T
−εu
†
C = −Qε uCM

T
−εu
†
C = M−1

ε

time-reversal (T) UTΓTU †T = −Γ uTQ
T
ε u
†
T = −Qε uTM

T
ε u
†
T = M−1

ε

sublattice (S) [US ,Γ]+ = 0 USQ−εU
†
S = Qε USM−εU

†
S = Mε

Table 2.1: Symmetries of the Dirac (Γ), Eilenberger (Q) and the transfer (M) matrices.
We defined the matrices ui = ΓUi with i = {C,T}. They satisfy the relations
uiu
∗
i = ±1 and UiU

∗
i = ±1 with both ui and Ui being unitary. Note that

if all three symmetries are present, the additional relations UC = USUT and
uC = USuT hold.

2.2.4 Boundary conditions

The transfer matrix relation eq. (2.17) shows that the terminal Q-functions and the interface
Q-functions in general do not coincide. In this section we will show, that the physical
requirement of a non-divergent Q-function allows the representation of eq. (2.17) in terms
of a set of algebraic relations. From this relations we are able to draw conclusions on the pole
structure of Q, which in return is used in the construction of the topological invariants at
a later stage. In addition, the algebraic relations lay the foundation for a numerical method
used to compute the disordered Eilenberger function and to calculate physical observables.
The numerical method is extensively discussed in section 4.4.
The transfer matrixMε is an element of the pseudo-unitary group U(N,N), which is non-

compact. Let w ∈ u(N,N) be an element of the Lie algebra u(N,N) of the pseudo-unitary
Lie group U(N,N). w is of the form

w =
(
a b
c d

)
,

where a+ a∗ = 0, d+ d∗ = 0 and b = c∗. Let w be explicitly given by,

w =
(

0 b
b∗ 0

)
.

The elements of W ∈ U(N,N) will then be of the form

W = ewx '
(

cosh(bx) sinh(bx)
sinh(bx) cosh(bx)

)
.
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Chapter 2 Topological invariants in terms of quasiclassical Green’s functions

Consequently, the action of W on a generic matrix in the limit x → ∞, will possibly
lead to divergent contributions (proportional to ebx) as well as to convergent contributions
(proportional to e−bx). However, the physical quasiclassical Green’s functions should be non-
divergent and we will see in a moment how this requirement can be translated to an algebraic
condition on QR/L and Q±. To this end, we will closely follow the technique introduced in
ref. [58]. Let us limit our discussion to the right-hand side of the setup shown in fig. 2.1 and
drop the energy subscript for clarity. We assume that x, x′ ≥ xR, i.e. we are to the right of
the right terminal. The quasiclassical Green’s function g(x, x′) at this point reads

g(xR + 0+, xR) = −(i/2)(QR + 1), g(xR, xR + 0+) = −(i/2)(QR − 1),

which is an immediate consequence of the definition (2.8). Since we are in the terminal,
the evolution operator Lε

∣∣
x>xR

is by definition constant in space, which allows for a direct
solution of the equations of motion for the quasiclassical Green’s function eq. (2.7),

g(x, xR) = e−L(x−xR)g(xR + 0+, xR), g(xR, x) = g(xR, xR + 0+)eL(x−xR).

Combined with the upper expression, we find

g(x, xR) = −(i/2)e−L(x−xR)(QR + 1), g(xR, x) = −(i/2)(QR − 1)eL(x−xR).

In order to discuss the asymptotics of this expressions, we switch to the basis in which L is
diagonal (cf. eq. (2.12)) and denote the rotated Green’s function and Eilenberger function
by ḡ = T−1gT and Q̄R = T−1QRT , respectively. The solutions for the equations of motion
in this basis are thus given by

ḡ(x, xR) = −(i/2)e−λ̂(x−xR)(Q̄R + 1), (2.20)

ḡ(xR, x) = −(i/2)(Q̄R − 1)eλ̂(x−xR), (2.21)

where the matrix λ̂ was defined in eq. (2.13) as the diagonal part of Lε. Owing to the
positivity of Re (λ±) in the limit x → ∞, all positive entries (recall the sign structure in λ̂
was encoded in Σ) of λ̂ will lead to convergent contributions in eq. (2.20), while all negative
entries will lead to divergent terms (vice versa for eq. (2.21)). Without loss of generality we
fix the sign structure in λ̂ to be 1 ⊗ σ3

9, i.e. λ̂ = diag(λ+,−λ+, λ−,−λ−). With the help
of the projectors Σ± ≡ 1

2(1⊗ (1± σ3)), we notice that

e−λ̂x = Σ+e
−λ̂xΣ+ + Σ−e−λ̂xΣ−.

In the limit x→∞, the first term on the right-hand side of the above expression is conver-
gent, while the second term diverges. We thus conclude that the requirement of convergence

9All possible quantum indices are left implicit.
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2.2 Eilenberger function

of ḡ,

ḡ(x, xR) = −(i/2)
(
Σ+e

−λ̂(x−xR)Σ+ + Σ−e−λ̂(x−xR)Σ−
)

(Q̄R + 1),

ḡ(xR, x) = −(i/2)(Q̄R − 1)
(
Σ+e

λ̂(x−xR)Σ+ + Σ−eλ̂(x−xR)Σ−
)
,

is equivalent to the condition

(1− Λ)(Q̄R + 1) = 0,
(Q̄R + 1)(1 + Λ) = 0. (2.22)

The left terminal can be treated in the same fashion. Using that the Eilenberger function in
the right/left terminal was given by TΛT−1 = Q±, we arrive at

(1±QL/R)(1∓Q∓) = 0,
(1±Q∓)(1∓QL/R) = 0.

In order to obtain a closed expression for QR/L in terms of Q± and the transfer matrix M ,
we multiply the above equation (2.22) from the left side by M and from the right by M−1,
resulting in

M(1 +Q−)(1−QL)M−1 = 1 +MQ−M−1 −MQLM−1 −MQ−QLM−1

= 1−MQ−M−1QR +MQ−M−1 −QR,

where we made use of the eq. (2.15). Combining this with eq. (2.22) we arrive at

2 · 1−MQ−M−1QR +MQ−M−1 −Q+ −Q+QR = 0.

The final expressions are then given by

QR = 1 + 2
Q+ +MQ−M−1 (1−Q+),

QL = 1+ (1−Q−) 2
Q− +MQ+M−1 , (2.23)

where we dropped the explicit space dependence, i.e. M = M(xR, xL).
We have thus shown, that the requirement for the non-divergence of the quasiclassical

Green’s function is equivalent to the set of algebraic relations (2.23). In two final steps
the Eilenberger function Q(x) in the scattering region is obtained by using eqs. (2.23) to
construct QR/L and a subsequent application of M(x, xR/L) to QR/L.
At this point we would like to stress the importance of eqs. (2.23). These relations lay the

foundation for an efficient numerical analysis that will be used in chapters 4.4. Within this
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Chapter 2 Topological invariants in terms of quasiclassical Green’s functions

method, the transfer matrix is obtained as a numerical solution of a system of linear first-
order differential equations (2.7). The terminal Eilenberger functions Q± are analytically
calculated using the scheme outlined in the previous section and the full Eilenberger function
for the scattering region is then obtained using eqs. (2.23).

2.3 Topological invariants

In this section, we derive the topological invariants for all five non-trivial symmetry classes in
one dimension within the quasiclassical approach. It turns out, that these invariants, which
give the number of localised zero-energy states in the system, only depend on the terminal
Eilenberger functions Q±. Details of the transfer matrix Mε, which describes the disorder
scattering within the wire, turn out to be of no importance. The transfer matrix may affect
the spatial profiles of the corresponding zero-energy wave functions, but it does not influence
the number of states present. After deriving the invariants we consider a few examples. An
extensive example of class D is given in chapter 4. A proof relating the number of zero-energy
boundary states to the topological invariants can be found in appendix A.
In order to increase the readability of the following sections, we have summarised the

invariants in table 2.2. This allows the reader to temporarily skip the formal derivation of
the latter and to return after digesting the less formal examples introduced in section 2.4.
Each invariant in tab. 2.2 is presented in a basis in which the symmetries take a particularly
simple form. Details will be explained in the actual derivation and we canonically denote the
Eilenberger functions in this basis by Q̃. The subscripts ± as usual refer to the right and
left terminal. In case of the Z2 classes D and DIII, Q̃ turns out to be a skew-symmetric
matrix and the invariants in this classes can be defined using Pfaffians. Due to the chiral and
particle-hole symmetry the Q̃-matrix splits into two off-diagonal blocks which is indicated
by the additional index in Q̃i,±. For the classes characterised by an integer invariant, the
Q-matrix decomposes into a block-diagonal structure, which are also labelled by an index i.
The invariants in this cases are given in terms of traces of the sub-blocks of Q. Note that
the full trace of Q necessarily vanishes.

2.3.1 Superconducting classes D and DIII

We start with the Z2-topological superconductors. Our goal is to find a Z2-topological
quantum number which determines the number of zero-energy edge modes present in the
system. In case of the superconducting classes, topological edge modes are called Majorana
modes and a detailed discussion can be found in the second part of this work. In case of a
trivial system, the subgap Andreev bound states will be symmetrically distributed (in energy)
around the middle of the gap, due to the BdG structure of the Hamiltonian (see section 3.2.2
for a detailed discussion). These subgap states come in pairs and their distance is determined
by the profile of the pairing amplitude in space (the BCS barrier). Since a Majorana mode is
an eigenstate of the charge-conjugation operator, it has zero energy and therefore is lacking
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Class T C S top. phase top. numberM
D 0 +1 0 Z2 Pf(Q̃+) Pf(Q̃−)
DIII -1 +1 1 Z2 Pf(Q̃1,+)/Pf(Q̃1,−)
BDI +1 +1 1 Z 1

2(tr(Qi,+)− tr(Qi,−))
AIII 0 0 1 Z 1

2(tr(Qi,+)− tr(Qi,−))
CII -1 -1 1 Z 1

4(tr(Qi,+)− tr(Qi,−))

Table 2.2: Table of topological invariantsM for all five non-trivial classes in one dimension.
The matrices Q̃ are chosen in a convenient basis, in which the symmetry relations
simplify and Q̃ becomes skew-symmetric. The subscript ± refers to the saturated
Q-functions in the right and left terminals. The additional index i refers to one of
the two blocks appearing in the chiral representation. Derivations of the results
are discussed in sec. 2.3.1 and 2.3.2.

a partner state (of opposite energy) in the spectrum. Due to the particle-hole symmetry, it
is thus impossible to remove it from zero energy and it is topologically protected.

Class D

According to the boundary conditions given in eq. (2.23), the pole structure of Q is solely
determined by the denominator10

D(ε) := Q+(ε) +M(ε)Q−(ε)M−1(ε). (2.24)

The energies Ej of the spectrum of Andreev bound states will be given by the solutions of
the secular equation detD(Ej) = 0. A Majorana state will manifest itself through a zero-
energy solution E0 = 0 of this equation. In anticipation of a Pfaffian invariant, we define
the auxiliary Q-function

Q̃±(ε) ≡ Q±(ε)uC ,

and D̃(ε) ≡ D(ε)uC . First we recall that in the subgap interval one cannot distinguish
between advanced and retarded Green’s functions, i.e. (GA/R)† = GA/R. As a consequence
Q̃±(ε) will be skew-hermitian Q̃†±(ε) = −Q̃±(ε). Owing to the particle-hole symmetry
relations (2.11), the auxiliary matrix Q̃ obeys

Q̃±(ε) = −Q̃T
±(−ε),

10In order to reduce the number of subscripts, we temporarily promoted Qε to Q(ε) and D(ε) likewise.
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Chapter 2 Topological invariants in terms of quasiclassical Green’s functions

which at zero energy becomes a skew-symmetric Q̃T
±(0) = −Q̃±(0) and real Q̃∗±(0) =

Q̃±(0) matrix11. Due to the flux conservation (2.18) and particle-hole symmetry (2.19), the
denominator D̃ obeys a similar relation

D̃(ε)T = −D̃(−ε),

which signalises that the pole structure is symmetric around ε = 0 and thus Andreev bound
states appear in pairs of opposite energies ±Ej . Like Q̃, D̃ becomes skew-symmetric and
real at zero-energy

D̃(0) = −D̃(0), D̃∗(0) = D̃(0).

The skew-symmetry implies the existence of a Pfaffian and thus the existence of Majorana
fermions (zero-energy solutions of the secular equation detD = 0) is reduced to the solution
of the following equation

det D̃ = [Pf(D̃)]2 = [Pf(Q̃+ +MQ̃−MT)]2 = 0, (2.25)

where we dropped the zero-energy argument for brevity and made use of eq. (2.19). It is not
the solution of this equation we are actually interested in, but the number of zero-energy
solutions. As we will see in a moment, this number can be derived from eq. (2.25). Note
however, that the matrix Q± is not skew-symmetric and hence we cannot define a Pfaffian
for it.
We now address the question whether or not zero-energy solutions are present. To this

end, we denote the dimension of D̃ by dD × dD. It follows that due to its skew-symmetry,
the determinant scales as

det(D̃) = det(−D̃T) = det((−1)D̃) = (−1)dD det D̃.

Since the latter expression leads to det D̃ = 0 if dD ∈ 2N + 1 is odd, the rank of D̃ has
to be even. If the rank is even however, the rank-nullity theorem ensures that the nullity
(the dimension of the kernel) of D̃ is even. We denote the nullity by 2N and try to relate
the parity of N to the Eilenberger function. Since the object Q̃M ≡ MQ̃−MT satisfies all
defining properties of Q−, we introduce the matrix12 F ≡ Q̃−1

M Q̃+ and the secular equation
becomes det(1 + F ) = 0. The task of finding N can then be reformulated into finding
half of the degree of degeneracy (if any) of the eigenvalue zn = −1 of the matrix F , in the
secular equation

det(z + F ) = 0.

11Both matrices, UC as well as uC are symmetric.
12We will however, frequently write Q̃−1

− instead of Q̃−1
M .
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Let us, for simplicity choose a basis in which charge-conjugation symmetry is represented by
the identity, UC = 1 and uC = Γ. We refer to this basis as Majorana representation and
at zero energy, Q̃± is a real skew-symmetric matrix of unit determinant det Q̃± = 1. Since
Q2
± = 1 it follows that

Q̃± = ΓQ̃−1
± Γ. (2.26)

We denote the dimension of the Q̃±-matrices by 4M×4M , taking into account the particle-
hole, spin and channel subspace as well as further subspaces. From eq. (2.26) it follows that

FTΓF = Γ. (2.27)

Assuming that the eigenvalues (±1) of Γ come in pairs, one can rotate F̃ = UFU † to
an orthogonal matrix F̃ F̃T = 1. Since the unitary transformation U is generally complex,
eq. (2.27) defines F to be an element of the complex orthogonal group O(4M,C). Different
from orthogonal matrices, the eigenvalues of pseudo-orthogonal matrices are either (±1) or
come in pairs (λ, λ−1), with λ ∈ C which are not necessarily unimodular13.

Being a real skew-symmetric matrix, Q̃± can be factorised as

Q̃± = R±

2M⊕
k=1

(ix±k σ2)RT
± = R±N±(Σy)N±RT

±,

where N± :=
⊕2M
k=1(x±k )

1
2 ⊗ 1, Σy = 1⊗ σy, R± ∈ O(R, 4M) is a real orthogonal matrix,

x±k > 0 and {±ix±k } is the set of imaginary eigenvalues of Q̃±.14 Now, since for the
Eilenberger function det Q̃± = 1 and R± ∈ O(R, 4M), it follows that the determinant of
N± is given by

detN± =
2M∏
k=1

x±k = 1,

and hence

Pf(Q̃±) = detR±.

13Note that eq. (2.27) together with the properties of Γ, defines F to be a pseudo-orthogonal matrix.
Eigenvalues of pseudo-orthogonal matrices have precisely the same properties discussed in the text.

14Note that in general the decomposition could include zero blocks, but since det Q̃ = 1 these are excluded.
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We return to our object of interest, the secular determinant, which is given by

det(z + Q̃−1
− Q̃+) = det(Q̃−1

− ) det(zQ̃−1
− + Q̃+)

= det(z + ΣyRΣyR
T) = det(iΣyz + iRΣyR

T)

=
(
Pf(iΣyz + iRΣyR

T)
)2

=: p2(z),

where we defined the non-orthogonal matrix R := N−1
− RT

−R+N+ and p(z) denotes the
characteristic polynomial. The last expression implies that the eigenvalues zn of the matrix
F are double degenerate, hence

p(z) = Pf(iΣyz + iRΣyR
T) =

2M∏
n=1

(z + zn). (2.28)

Let us assume that in the product (2.28), the positive eigenvalues (+1) are present N+
times while the negative (−1) appear N− times. Recall that the remaining 2M −N−−N+
eigenvalues come in pairs (λ, λ−1), thus the sum of N+ and N− has to be even and both
N± have to be of the same parity. Therefore, the characteristic polynomial reads

p(z) = (z + 1)N+(z − 1)N−
M− 1

2 (N+−N−)∏
k=1

(z + λk)(z + λ−1
k ).

Setting z = 0 we conclude that

p(0) = (−1)N− = Pf(iRΣyR
T) = det(R+R−).

Taking the transfer matrix M into account, we conclude that the parity of N = N− can be
express as

(−1)N = Pf Q̃+ Pf(MQ̃−MT) = detM Pf Q̃− Pf Q̃+.

We recall that at zero energy particle-hole symmetry implies a unimodular determinant for
the transfer matrix M , i.e. detM = ±1. In addition the transfer matrix M(x, x′) is by
construction a continuous function of x and x′, such that for a fixed initial value M(x =
x′) = 1 the determinant has to be fixed to detM = +1. Hence the parity of N is solely
defined by properties of the terminals, it is given by

M = (−1)N = Pf Q̃− Pf Q̃+.

Which is frequently called Majorana number and it shall cross our path again in chapter
four.
In appendix A we prove that M distinguishes the state of the quantum wire with a
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Majorana particle (M = +1) and the state without one (M = −1).

Class DIII

Class DIII shares with class D the presence of particle-hole symmetry, but in addition time-
reversal symmetry and chiral symmetry are present. The latter are represented by Ui with
UiU

∗
i = +1 for i = T, S, respectively. Therefore the general statements and constructions

for class D are still valid. Due to the chiral symmetry, the Hamiltonian (2.4) can be brought
to a block off-diagonal form15

H =
(

D̃

D̃T

)
= v

(
γ

γ†

)
p̂+

(
m

m†

)
, (2.29)

where p̂ ≡ −i∂x and D̃T = −D̃. In this chiral basis, where US = σ3, the Dirac matrix
becomes

Γ =
(

γ
γ†

)
,

where the entries γ are unitary, symmetric matrices, i.e.

γγ† = 1, γT = γ, γγ∗ = 1.

The evolution operator is given by

Lε =
(
iγm† −iεγ
−iεγ† iγ†m

)
,

which shows that at zero energy in the gapped phase, the Q-matrix becomes block-
diagonal16, i.e.

Q =
2⊕
i=1
Qi,

where both blocks obey the non-linear constraint Q2
i = 1. Each sub-block will inherit

symmetry constraints from the parentQ-matrix. Particle-hole symmetry leads to the relations

QT
1 = −γ∗Q1γ, QT

2 = −γQ2γ
∗,

15In section 2.4 we explicitly demonstrate such a block off-diagonalisation.
16We omit the terminal subscript ± for clarity.
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while the fact that in the gapped region no distinction between retarded and advanced
components is possible, relates the blocks with each other

Q† = −ΓQΓ, Q†1 = −γQ2γ
∗, Q†2 = −γ∗Q1γ.

In combining both properties, one realises that both blocks are mutually conjugated Q∗1 =
Q2. The auxiliary matrix Q̃± = Q±Γ in this representation is block off-diagonal

Q̃± =
(

Q̃1,±
Q̃2,±

)
,

with skew-symmetric blocks

Q̃1 ≡ Q1γ, Q̃T
1 = −Q̃1;

Q̃2 ≡ Q1γ
∗, Q̃T

2 = −Q̃2,

which are mutually conjugated Q̃∗1 = Q̃2.
By the same token, flux conservation and the symmetry constraints of class DIII ensure

that the general form of the transfer matrix M at zero energy is given by

M = diag(M1,M
∗
1 ),

with γMT
1 γ
∗ = M−1

1 .
The construction of the Z2-invariant for class DIII is in close proximity to the previous

construction in class D. However, we point out that the blocks Q̃i=1,2 have non-unity deter-
minants, det Q̃1 = (detQ2)∗ = det γ. Starting point is again the secular equation at zero
energy

detD1 = det(Q̃1,+ +M1Q̃1,−M
T
1 ) = 0,

and we denote by 2N the number of solutions thereof. Following the lines of the previous
proof for class D, we define the matrix17 F1 = Q̃−1

1,−Q̃1,+ and analyse the secular determinant

g(z) = det(z + F1).

The matrix F1 inherits symmetry constraints from Q̃ and Γ and it is easy to see that

FT
1 γF1 = γ.

17We redefine the terminal Eilenberger function according to Q̃1,− →M1Q̃1,−M
T
1 but keep the notation for

the sake of clarity.
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Since γ was symmetric, F1 is similar to a complex orthogonal matrix18. Thus the eigenvalues
zn are either equal to (±1) or they again come in pairs (λ, λ−1), with λ ∈ C being a complex
number. In order to construct the topological invariant, we note that

g(z) = det(z + Q̃−1
1,−Q̃1,+) = det(zQ̃1,− + Q̃1,+)/ det(Q̃1,−) = p2(z),

where the characteristic polynomial p(z) is given by (recall the sub-blocks are again skew-
symmetric)

p(z) ≡ Pf(zQ̃1,− + Q̃1,+)/Pf(Q̃1,−) =
2M∏
n=1

(z + zn).

We observe that all eigenvalues of F1 are double degenerate. The degree of degeneracy N ,
which equals the number of zero eigenvalues of the operator D1, is even. Thus, following
the arguments of our discussion on class D, we conclude that the parity of N/2 is given by

(−1)N/2 = p(0) = Pf(Q̃1,+)/Pf(Q̃1,−).

Taking into account that det Q̃1,± = det γ, the above expression indeed takes the values
±1. We will see later that N presents the total number of localised zero-energy states (with
Kramer’s degeneracy taken into account). The Z2-invariant for class DIII is thus given by

M = (−1)N/2 = Pf(Q̃1,+)/Pf(Q̃1,−).

2.3.2 Classes with Z-topological quantum numbers

We now turn to the three remaining Z-topological classes BDI, CII and AIII. Since all three
symmetry classes are chiral, we work in the chiral basis (US = σ3) where the generic Dirac
Hamiltonian (1.11) becomes block off-diagonal,

H =
(

h
h†

)
. (2.30)

Class BDI

Class BDI shares the same symmetries as class DIII apart from the fact that UT is now
symmetric19. We choose a representation in which time-reversal symmetry is represented by
the identity, the blocks h in eq. (2.30) become real matrices and the Dirac matrix Γ in the

18Or put differently, F is a pseudo-orthogonal matrix.
19Recall ui=C,T ∈ U(N) with uiu∗i = ±1 and hence ui is either symmetric (+1) or skew-symmetric (−1).
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kinetic part of H has to be purely imaginary. We therefore set

Γ =
(

iγT

−iγT

)
,

with γ real, and the normalisation Γ2 = 1 ensures that γ is a real orthogonal matrix.
Accordingly, the Eilenberger Q-function is then constructed as usual and decomposed into
two real sub-blocks Q = ⊕2

i=1Qi, where both blocks are symmetry related,

Q†1 = −γQ2γ
†, Q† = −ΓQΓ. (2.31)

Note that there is no need to introduce the auxiliary Eilenberger function Q̃, since we do
not rely on skew-symmetry here.
The Z invariant in class BDI is then given by

M = 1
2 (trQi,+ − trQi,−) .

To prove that the number of zero energy states (of each sub-block) is given byM we again
consider the secular equation20 detDi = det(Qi,− + Qi,+) = 0. Each sub-block Qi,± can
be diagonalised as

Qi,± = Ti,±Λi,±(Ti,±)−1,

where the signature matrices are given by

Λi,± =
(
1M−n±

−1n±

)
,

with M being the dimension of the sub-block and n± is the number of negative eigenvalues
of Λi,±. With Ti := (Ti,−)−1Ti,+ we may rewrite the secular equation as follows

det(1 + Λi,−TiΛi,+T−1
i ) = 0.

The matrices Ti are composed by rectangular matrices, the size of each matrix is given
according to (

(M − n−)× (M − n+) (M − n−)× n+
n− × (M − n+) n− × n+

)
.

20We again introduce the object QM which has the same defining properties as Qi. Desisting from the
introduction of a new notation and using the properties of the determinant in eq. (2.25), we arrive at this
expression.
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The secular matrix Di therefore takes the form

Ti + Λi,−TiΛi,+ = 2
(
t(M−n−)×(M−n+)

tn−×n+

)
,

where td denotes a rectangular block matrix of dimension d. Again, thanks to the rank-nullity
theorem, there are at least N ≡ |n− + n+| independent solutions of the secular equation
and thus we conclude

M = 1
2(trQi,+ − trQi,+) = 1

2(tr Λi,+ − tr Λi,−) = 1
2 (M − 2n+ − (M − 2n−)) = ±N .

Classes AIII and CII

In case of class CII, the blocks h in eq. (2.30) are not real but satisfy the constraint

h = τ2h
∗τ2,

where τi=1,2,3 are Pauli matrices acting in spin-space now. The same is true for the entries
of the Dirac matrix

γ = τ2γ
∗τ2.

Apart from this, the relations (2.31) still hold. Taking the time-reversal symmetry (T 2 = −1)
into account, one finds21

Q∗i = τ2Qiτ2.

Time-reversal symmetry does not play any role in the upper derivation of the topological
invariant, neither does charge-conjugation symmetry. The derivation is therefore applicable
for all chiral classes leading to the same invariant as discussed above. There is however, an
additional factor 1

2 appearing in class CII, since all zero-energy states come in pairs (they
are two-fold degenerate) due to Kramer’s theorem (recall T 2 = −1). Thus including this
additional factor, the invariant counts the number of Kramers pairs.
This completes the construction of the topological invariants in terms of the terminal

Eilenberger Q-functions. The technical proof identifying the number of zero-energy bound
states with the topological invariants, is evacuated to the appendix A.

21Note that in general on finds Q∗ = UTQUT, which in the case of BDI (in which we can choose UT = 1)
leads to real blocks.
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2.4 Examples

We now present some well-deserved examples, in particular one example for a Z-topological
insulator of class DIII and one for a Z2-topological insulator of class AIII (or BDI). For class D
we refer to the second part of this work as we devote an entire chapter to Majorana quantum
wires of class D. In addition, an example of class BDI (as a single-channel reduction of class
D multi-channel wires) can be found in the same chapter.

2.4.1 Class DIII: dx2−y2-wave superconductor with Rashba spin-orbit coupling

Before we turn to concrete model, let us first make a few general remarks. Earlier we have
argued that in class DIII, due to its chiral nature, the Hamiltonian can be brought to a block
off-diagonal form with skew-symmetric blocks and that the Eilenberger function Q becomes
block diagonal. Consider the spinors Ψ = (ψ↑, ψ↓, ψ̄↑, ψ̄↓)T and Ψ̄ = (ψ̄↑, ψ̄↓, ψ↑, ψ↓) in
the direct product space of particle-hole and spin space (additional structure is again left
implicit). The most general Bogolioubov-de Gennes Hamiltonian describing the wire is given
by

H = 1
2

∫
Ψ̄(x)HΨ(x) dx = 1

2

∫
Ψ̄(x)

(
ĥ ∆̂

∆̂∗ −ĥT

)
Ψ(x) dx, (2.32)

where the order parameter is skew-symmetric, ∆̂T = −∆̂. For readability we use σi and τi
for Pauli matrices acting in particle-hole space and spin space, respectively, i.e σi = σph

i , τi =
σsp
i . In this representation time-reversal, particle-hole and chiral symmetry are represented

by UT = 1 ⊗ τ2, UC = σ1 ⊗ 1 and US = σ1 ⊗ τ2, respectively. Note that UiU∗i = +1
and UTU

∗
T = −1 for i = C, S, defining the symmetry class DIII. The matrices ĥ and ∆̂ in

eq. (2.32) obey the symmetry constraints τ2ĥ
Tτ2 = ĥ and τ∆̂∗τ2 = ∆̂. To illustrate the

block off-diagonalisation of H, we introduce a unitary transformation V which acts on the
spinors Ψ′ = VΨ. The rotated Hamiltonian is then given by H ′ = V HV †, and the symme-
tries in this basis take the form U ′S = V USV

†, while U ′i = V ∗UiV
† for i = C,T. We fix the

unitary transformation V = 1√
2 (1⊗ τ2 + σ2 ⊗ τ3). Using the hermiticity of V , it follows

that the bilinear form Ψ̄HΨ transforms as Ψ̄HΨ = Ψ̄′HΨ′, and the symmetry matrices take
the particularly simple form, U ′S = σ3, U ′C = σ1 and U ′T = σ2. The Hamiltonian H ′ thus
decomposes into the block off-diagonal form

H ′ =
(

D
D†

)
, (2.33)

withDT = −D, whereD = −τ1(ihτ3−∆τ1) andD† = τ3(ihτ1−∆τ3). Taking an additional
chiral (R/L) structure22 in the spinors into account, the symmetry matrices UT and UC act
22Due to the linearisation around the Fermi momenta.
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k

E

0

0

Figure 2.2: Spectrum of dx2−y2-wave superconductor with Rashba spin-orbit coupling for
different values of µ. µ > α (grey solid curve), µ < α (light grey dashed curve)
and µ = α (red solid curve). Spectrum derived from eq. 2.4.1.

in the chiral space, UT/C ⊗ c1, where ci = σRLi are the Pauli matrices acting in this chiral
space. The blocks in the rotated Hamiltonian (2.33) are then related by c1D

Tc1 = −D.
The skew-symmetry of the blocks is restored by defining

H̃ =
(
c1

1

)
H ′
(
c1

1

)
≡
(

D̃

D̃†

)
.

With this additional chiral structure the unitary transformation V ′ becomes

V ′ =
(
c1

1

)
V = 1√

2

(
τ1 ⊗ c1 −iτ3 ⊗ c1
iτ3 ⊗ 1 τ1 ⊗ 1

)
ph

,

and with redefined spinors23, Φ ≡ V ′Ψ the Hamiltonian reads

H = 1
2

∫
Φ̄(x) H̃ Φ(x) dx,

which is indeed block off-diagonal with skew-symmetric blocks.
We now consider a one-dimensional dx2−y2-wave superconductor with Rashba spin-orbit

coupling. In ref. [65] it was shown that such a system in strictly one dimension hosts a
Majorana Kramers doublet at each end of the topological superconductor. Such a doublet is
a pair of Majorana end states that is protected by time-reversal symmetry. Upon introducing
an external magnetic field, the system is driven into class D removing the doublet and leaving
the system with a single Majorana end state at each end of the wire (cf. chapter 4.1). In

23Note that Φ̄ = ΦT · (σ1 ⊗ c1).
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momentum space, the Hamiltonian is given by eq. (2.29) with

hk = −2t cos(k)− µ+ α sin(k)τ2, ∆k = iτ2∆ cos(k),

where t is the hopping amplitude, ∆ is the superconducting pairing amplitude and α denotes
the Rashba spin-orbit strength [65]. The spectrum is illustrated in fig. 2.2 for different values
µ. The system is in the topologically non-trivial phase provided that |α| > |µ|, and due to
Kramers degeneracy each state is double degenerate. For the block Dk we find

Dk = (2t cos(k) + µ− i∆ cos(k))τ2 + α sin(k),

which satisfies DT
−k = −Dk. Assuming that t � max{µ, α,∆}, one can linearise the

Hamiltonian around the two Fermi momenta k± = ±π/2 (see fig. 2.2) and with k± =
±π/2 + p one obtains two chiral copies of D,

DR
p = (−(v − i∆)p+ µ)τ2 + α, DL

p = ((v − i∆)p+ µ)τ2 − α,

where we set v = 2t. The blocks are related via (DR
p )T = −DL

−p and hence, the operator

D̃p =
(

DL
p

DR
p

)

is skew-symmetric. Note that the Pfaffian24 Pf D̃p=0 = µ2 − α2, indicating the two distinct
phases discussed earlier.

To construct the terminal Eilenberger function we note that

γ = ∆ + iv√
∆2 + v2

(c2 ⊗ τ2).

The evolution operator for the clean case is easily constructed and is given by

Lε =
(

L1 −iεγ
−iεγ† L2

)
,

where

L1,2 = ∆± iv√
∆2 + v2

(µc3 ∓ ατ2).

TheQ-matrix is as usual constructed by considering the sign of the real part of the eigenvalues

24The Pfaffian is well defined since D̃p=0 is skew-symmetric matrix.
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of25 Lε=0,

Λ =
{
c3, µ > α

−σ3 ⊗ τ2, µ < α.

Finally the block matrices Q̃1,2 are given by

Q̃1,2 = ∆± iv√
∆2 + v2

{
−ic1 ⊗ τ2, µ > α

±c2, µ < α
,

and their Pfaffians (in units of ( ∆±iv√
∆2+v2 )2) are given by

Pf Q̃1,2 =
{
−1, µ > α

+1, µ < α.

Replacing the left terminal in our setup (fig. 2.1) with the trivial vacuum, we find that
M = Pf Q̃i,+/Pf Q̃i,− = Pf Q̃i,− = ±1, as desired.

2.4.2 Class AIII/BDI: Su-Schrieffer-Heeger model

For class AIII we consider the Su-Schrieffer-Heeger (SSH) model of a conducting poly-
acetylene [66]. The model describes spinless fermions on a one-dimensional lattice with
alternating hopping amplitudes, and is illustrated in fig. 2.3. Due to the alternating hopping
amplitudes the chain exhibits an energy gap separating the highest occupied state and the
lowest unoccupied state of the bulk, therefore describing a band insulator. The Hamiltonian
is given by

H = ψ†kh(k)ψk,

where ψ†k = (c†A,k, c
†
B,k) and c†i,k creates a fermion at site i with momentum k. If we denote

the hopping amplitudes for sites A and B by t1 and t2, respectively, we find

h(k) = (t1 − t2 cos(k))σx + t2 sin(k)σy. (2.34)

The model exhibits two limits in which it becomes particularly simple, in which the system
is fully dimerised. To this end consider the hopping t2 to be zero, i.e. there is no inter-cell
hopping. In this case the chain breaks apart into a series of cells (dimers). The Hamiltonian
in this case reads h(k) = σx (we choose t1 = 1 for simplicity). In the opposite limit, the
inter-cell hopping is kept finite (t2 = 1) but the intra-cell hopping vanishes, t1 = 0. The

25Note that we skip trivial products with the identity, i.e. c3 = σ0 ⊗ c3 ⊗ τ0, whenever possible.
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Figure 2.3: Left: Band structure of the poly acetylene chain for t1/t2 = 1 (red curve) and
t1/t2 = 2/3 (grey curve). Right: Poly acetylene chain and the corresponding
SSH model. A unit cell consists of two atoms A and B and is indicated by
a dashed rectangle. Inter-cell hopping (red) and intra-cell hopping (grey) are
present.

Hamiltonian in this limiting case reads

H(k) = σx cos(k) + σy sin(k).

At the chains edges the cells break apart into two monomers, of which one is coupled to the
neighbouring cell. Since the system is chiral, the corresponding eigenstates of the uncoupled
monomers have energy zero and the bulk gap is closed. Note that these edges might not
necessarily be the real end of the full chain, but could be local distortions such as disorder.
Figure 2.3 shows the band structure of the SSH model for different ratios of t1/t2. We are
now in a position to linearise the Hamiltonian (2.34) around p = k − π and find

h(p) ' (t1 − t2)σx − t2σyp.

After identifying Γ = −σy, v = t2 and m̂ = (t1 − t2)σx, the evolution operator reads

Lε = − i

t2
(ε̂− (t1 − t2)σx)σy.

The Eilenberger function is as usual constructed using the sign-structure of the real part of
the eigenvalues λ± of Lε=0,

λ± = ± ((t1 − t2)/t2) ,

and it trivially follows that Q is given by

Q = ησz,
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B AA AA AA AAB B B B

B AA AA AA AAB B B B

Figure 2.4: Two limiting cases of the SSH model. Top: Pure intra-cell hopping corresponds
to the trivial case. Bottom: Pure inter-cell hopping corresponds to the non-trivial
case. In the latter case, each edge contains a singe zero-energy eigenstate (red
boundary).

where η = sgn [Re ((t1 − t2)/t2)]. If we take two terminals with equivalent η (η+ = η−), the
system exhibits no boundary states. If however, the phases of the terminals are inequivalent
(η+ 6= η−), a distortion in the chain is present at which a boundary mode is present. The
topological invariant is then given by

M = 1
2(trQ1,+ − trQ1,−) = 1

2(η+ − η−) = δη+,η− .

Note that in the case of t1 = t2 one recovers the usual tight-binding problem (signalising
a gap closure). We also note that for real hopping amplitudes ti = 1 + (−1)i+1α ∈ R the
system belongs to class BDI.

2.5 Two-dimensional topological insulators and superconductors

With the one-dimensional case checked, it is natural to consider a possible extension to
two dimensions. It turns out, that the construction of the quasiclassical Q-function can be
extended to two dimensions. The latter is possible, if the second coordinate in subjected to
periodic boundary conditions, allowing for a mixed (coordinate and momentum) representa-
tion of Q. By representing the (non-)linear response kernel, appearing as a coefficient in a
Chern-Simons effective action, in terms of Q-matrices the generalisation to two dimensions
is completed. In case of Z2-topological insulators this procedure involves a dimensional re-
duction from a three- or four-dimensional parent system. Before we plunge into the details of
this extension, we shortly comment on the concept of dimensional reduction within context
of topological insulators and superconductors.

2.5.1 Dimensional reduction

In a seminal work by Zhang et. al. [27] the concept of dimensional reductions (or Kaluza-
Klein compactification [67]) was introduced within the context of time-reversal invariant
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topological insulators. In a later work Ludwig et al. extended this method to the remaining
symmetry classes, [3]. In ref. [27], the reduction was based on a topological field theoretical
description [68]. We review the basic ideas behind the technique, and highlight the important
aspects and restrict ourselves to the discussion of Dirac Hamiltonians.
The general strategy can be summarised as follows: Given an even-dimensional topological

insulator characterised by an integer26, and ignoring the complex cases A and AIII (since they
are either trivial or Z-topological insulators), can we construct from it a topological invariant
in lower dimensions, i.e. by reducing the dimension of our parent system? Table 1.2 shows a
reappearing pattern Z→ Z2 → Z2 if one reduces the symmetries from d→ d− 1→ d− 2.
A Z2 classification in the first (d − 1) or second descendants (d − 2) is possible, provided
the parent in d-dimensions was classified by an integer and was either particle-hole or time-
reversal symmetric. Obviously there are two mechanisms to be explained here, the first
one is the procedure of dimensional reduction and the second one is the construction of
Z2-classifications in the descendants.
We begin with the reduction scheme. Consider a d-dimensional topological insulator

(d does not necessarily need to be even now) described by a Hamiltonian Hd(k), where
k = (k1, k2, . . . , kd) is the momentum vector in d dimensions. In a Dirac representation the
latter is given by

Hd(k) =
d∑
i=1

kiΓi +mΓ0,

where the (d+ 1)-dimensional Dirac Γ-matrices satisfy the usual Clifford algebra [Γi,Γj ]+ =
δij1. Note that if we would (in a very naive manner) simply replace the mass term m by an
additional momentum kd+1, we could end up with a gapless Hamiltonian Hd+1(k), which
would be (d + 1) dimensional. Let us minimally couple Hd(k) to a U(1) gauge field a, i.e.
Hd(k)→ Hd(k+a). For the dimensional reduction we apply a Kaluza-Klein compactification
to Hd(k), to this end we single out the d-th spatial direction and compactify it to a circle
S1. The system becomes periodic in one direction, while open in the remaining directions. It
turns out that kd is quantised27 and is a good quantum number. The quantisation is of the
form kd = 2πNd/r where r is the radius of S1 and Nd ∈ Z. By sending the radius r → 0,
the energies of levels with non-vanishing Nd become very large. For Nd = 0 however, the
energies remain unchanged. This induces a separation of energy scales which allows us to
keep only Nd = 0 modes. The minimally coupled Hamiltonian Hd(k + a) then reads

Hd(k + a) =
d∑
i=1

(ki + ai)Γi +mΓ0.

26Following ref. [27] we only consider non-chiral systems for concreteness, i.e. classes AI, D, AII and C.
27There are some subtleties involved in this process, which are discussed in ref. [27] and [37].
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Upon the identification of (kd + ad) ≡ Θ (remember the d-direction was compactified and
a controllable parameter) the Hamiltonian reduces to a (d̄ = d − 1)-dimensional Dirac
Hamiltonian

Hd̄(k̄,Θ) =
d̄∑
i=1

kiΓi + ΘΓd +mΓ0,

where k̄ = (k1, . . . , kd−1). Note that we also removed the field components (ai=1,...,d̄ ≡ 0) for
clarity. In a way, the procedure consists of three steps: couple the Hamiltonian to an external
U(1) gauge field, compactify one direction and replace the corresponding momentum by a
parameter. This procedure can of course be iterated, leading to Hd−2((k1, . . . , kd−2),Θ, φ).

(a) (b)

Figure 2.5: Feyman diagrams leading to the Chern-Simons actions in (2 + 1) dimensions (a)
and (4 + 1) dimensions (b). The external legs correspond to the gauge fields.

The coupling to an external gauge field indicates that a field theoretical description and
a (non)-linear response has to be considered. To this end, we recall that the quantum Hall
conductivity tensor can be derived as the linear dc response to an external field a(q) coupled
to the (2 + 1)-dimensional band insulator28 [1, 27],

σij = lim
ω→0

i

ω
Qij(ω + iδ),

Qij(iνm) = 1
Ωβ

∑
k,n

tr (Ji(k)G(k, ωn + νm)Jj(k)G(k, ωn)) . (2.35)

In the upper expression Ω is the area of the system, Ji(k) = ∂kih(k) is the dc current (in
i = x, y directions) and G(k, ωn) = (iωn − h(k))−1 is the single-particle Green’s function.
We are only interested in the non-trivial transverse conductance σH = σxy, which is of course
(see sec. 1.4), up to a physical constant (e2/h), given by the first Chern number [1]. The

28We now explicitly keep the additional time dimension.
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non-vanishing Hall conductance leads to the Hall response,

jµ = C1
2π ε

µντ∂νaτ ,

where µ, ν, τ = 0, 1, 2 are the time and space indices. The response can be derived from the
topological Chern-Simons field theory [68]

Seff = σH
2

∫
a ∧ da = σH

2

∫
d2xdtaµεµντ∂νaτ , (2.36)

via

jµ = ∂Seff

δaµ
. (2.37)

In two dimensions, the coefficient C1 can be calculated by the Feynman loop integral shown
in fig. 2.5a.
Let us now consider (4 + 1) dimensions, the effective Chern-Simons action is given by

Seff = C2
24π2

∫
d4xdtεµνρστaµ∂νaρ∂σaτ ,

with the space-time indices µ, ν, ρ, σ, τ = 0, 1, . . . , 4, [27]. The coefficient C2, the sec-
ond Chern number, has to be calculated from the nonlinear-response29 one-loop Feynman
diagram, shown in fig. 2.5b (see caption for details). The integral yields

C2 = −π
2

15
1

(2π)5 ε
µνρστ

∫
d4qdω tr

∏
i=µ,ν,ρ,σ,τ

(
G∂qiG

−1
)

(2.38)

where qµ = (ω, k1, k2, k3, k4) and again G denotes the single-particle Green’s function.
We recall that C1 represented the winding number of a map ĥ from the 2-torus (the

Brillouin zone) to the 2-sphere. Analogously, C2 represents the winding number of the
map from the 4-torus to the 4-sphere. We see that the Hall response, as well as the
Hall conductivity (two and four dimensional), can be derived from an effective action, via
eq. (2.37). The coefficient (the d

2 -nd Chern number if d is even) can be calculated by a
(non)linear-response Feynman diagram. A generalisation to higher even dimensions can be
achieved [37].
Now consider a (4+1)-dimensional insulator coupled to a U(1) gauge field a. We know that

the Hamiltonian, if the fourth coordinate is compactified, and the corresponding momentum
k4+a4 is identified with an adiabatic parameter Θ, which takes values from 0 to 2π, is reduced
to a (3 + 1)-dimensional Hamiltonian. For this lower dimensional version, the effective field
29Note that for dimensions d > 2, nonlinear terms in the derivation of Seff have to be taken into account,

resulting in a nonlinear response.
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theory can be constructed in the same fashion as for (4+1) dimensions. However, due to the
replacement of one momentum by the control parameter Θ, the coefficient C2 now depends
on Θ, as the integration over k4 → Θ in the corresponding Feynman integral (fig. 2.5b) is
not performed. If we denote this coefficient by c3(Θ) the following sum rule relates it to the
full Chern number (assuming that the Hamiltonian stays gapped),

2π∫
0

c3(Θ)dΘ = C2, (2.39)

and is frequently called Chern character. The explicit form of c3(Θ) is given by eq. (2.38)
without the integral over k4. The Chern number C2 represents a winding number, corre-
spondingly c3 is sometimes related to the magneto-electric polarisation or axion background
field [36, 69] P3(Θ), by c3(Θ) = ∂ΘP3(Θ). The effective (3 + 1)-dimensional action can
then be expressed as [36]

S3D = 1
4π

∫
d3xdtP3(x, t)εµνρτ∂µaν∂ρaτ .

The polarisation is proportional to the flux, φ =
∮

dx4a4(x, t, x4), induced by the field com-
ponent a4 through the compactified direction x4. Before we construct the Z2-invariant in
(3 + 1) dimensions, let us stress that a further reduction to (2 + 1) dimensions works com-
pletely analogously. One compactifies a second direction and then replaces the corresponding
coupled momentum by a parameter (k3 + a3) ≡ φ. In the two-dimensional effective field
theory the coefficient c3(Θ) will be replaced by the Chern character c4(Θ, φ), whose explicit
form is again given by eq. (2.38) without the integrals over k3 and k4. The Chern character
integrates to the second Chern number,

∫
dΘdφc4 = C2.

To construct a Z2-classification for time-reversal invariant systems in (3 + 1) dimensions,
we consider its parent (4 + 1)-dimensional time-reversal invariant Hamiltonian H4(k). Given
two Hamiltonians H1

3 (k) and H2
3 (k), one can define a homotopy30 h4(k,Θ) between these

Hamiltonians31,

h4(k, 0) = H1
3 (k), h4(k, π) = H2

3 (k),

which is assumed to be gapped for any Θ. Equally important is the fact that we impose that
h4(k,Θ) is time-reversal symmetric. Since it is periodic in Θ, we can define the second Chern
number C2(h4(k,Θ)) of h4. For any two homotopies h1

4(k,Θ) and h2
4(k,Θ), the resulting

30Apart from the fact that such an interpolation is not always trivial to find, there is again a slight subtlety in
proving the existence of such an interpolation. However, we do not care about such details at this point
and refer to ref. [27] for a more detailed discussion.

31We denote Hamiltonians here by a capital H with the subscript indicating its (spatial) dimension. Homo-
topies are denoted by a lower case h, where the subscripts indicates the (spatial) dimension after replacing
the free parameter by an additional coordinate, e.g. h4(k,Θ→ k4)→ H4(k).
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Chern numbers C2(hi4(k,Θ)) in general differ. However, it turns out (see e.g. ref. [36, 37]
for proofs), that time-reversal symmetry confines the difference between two such Chern
numbers to be even. Consequently, one defines the relative Chern parity (−1)C2(h4(k,Θ)) for
two (3+1)-dimensional Hamiltonians H i=1,2

3 (k). We choose H2
3 (k) to be the trivial vacuum

Hamiltonian. If the Hamiltonian H1
3 (k) can continuously be transformed to the vacuum, it

follows that the corresponding relative Chern parity is (−1)C2(h4(k,Θ)) = +1. If however, such
a deformation is not possible without turning gapless, the latter yields (−1)C2(h4(k,Θ)) = −1.
In this way, a Z2-classification is constructed in (3 + 1)-dimensions32.
A Z2-classification in the further reduced (2 + 1)-dimensional systems, is constructed in

the same way, since the relative Chern parity in (3 + 1) dimensions is independent on the
choice of interpolation. Consider a homotopy h3(k,Θ) such that

h3(k, 0) = H1
2 (k), h3(k, π) = H2

2 (k),

for two (2 + 1)-dimensional Hamiltonians. Following the arguments from above, we can
define a Z2 invariant for h3(k,Θ). A second time-reversal invariant homotopy h4(k,Θ, φ)
can be constructed, such that

h4(k,Θ, 0) = h1
3(k,Θ), h4(k,Θ, π) = h2

3(k,Θ)

and

h3(k, 0, φ) = H1
2 (k), h3(k, π, φ) = H2

2 (k),

where h1
3 and h2

3 are two different interpolations. For h4(k,Θ, φ) one is in a position to define
the second Chern number C2(h4(k,Θ, φ)) and accordingly a parity (−1)C2(h4(k,Θ,φ)). It can
be proven, that the latter is always positive and that the parity for the (2 + 1)-dimensional
system is nothing but the relative Chern parity for h3(k, θ).
Note that the above strategy is not tied to the dimensional sequence (4 + 1)→ (3 + 1)→

(2 + 1), nor is it tied to time-reversal symmetry. In fact for the symmetry classes under
inspection, the construction for the sequence (2 + 1)→ (1 + 1)→ (0 + 1), is based on the
same arguments as above but with particle-hole symmetry instead of time-reversal symmetry.
As an example, we consider class D in (2 + 1) dimensions with a Dirac Hamiltonian given

by eq. (1.10). Due to the particle-hole symmetry (represented by σ1) the gapped Hamiltonian
is given by H(k) = mσ3. The requirement of an insulator leaves us with two choices, m > 0
or m < 0. Now consider two Hamiltonians H1(k) and H2(k) with two masses m1 and m2,
respectively. The interpolation H(k,Θ) between these two Hamiltonians will define a map
ĥ(k,Θ) from the torus to the sphere. We fix m1 > 0 and the vector ĥ(k, 0) will point to
the north-pole. If m2 has the same sign as m1, the vector will evolve under ĥ(k,Θ) and

32Equivalently, using eq. (2.39) one finds that P3 = 0 indicates a topologically trivial system, while for P3 = 1
2

the system is non-trivial.
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eventually end up at the north-pole. If on the other hand, the signs differ, the vector will
end up at the south-pole. This two inequivalent trajectories can be used to define a Z2 (cf.
our discussion in section 3.2.2).

x

y

Figure 2.6: Schematic construction of the two-dimensional Q matrix. While the x coordinate
is open, periodic boundary conditions are imposed on y. The system parameters,
encoded in the mass term m̂, are changing only as a function of x.

2.5.2 Topological invariants in two dimensions

For the Chern insulators (class A, D and C) in two dimensions, the coefficient in the Chern-
Simons action (2.36) is given by the Chern number. Our strategy is based on a representation
of these coefficients in terms of the quasiclassical Eilenberger functions. We will focus on
class A, since the technique can straightforwardly applied to the remaining two Z-topological
classes.
We consider the two-dimensional massive Dirac Hamiltonian of class A,

H = −iv(∂xσx + ∂yσy) +mσz.

In order to construct the two-dimensional Eilenberger function, we assume periodic boundary
conditions in the y-direction. The system parameters are however assumed to vary in x-
direction only. This assumption is justified in a thin cylindrical geometry. In fig. 2.6 we
illustrate the procedure. Due to the periodic boundary conditions, the four-point Green’s
function G(x, x′, y − y′, ε) depends only on the difference of y − y′, and we can define the
two-dimensional Eilenberger function in a mixed representation

Qε(x, ky) = lim
x→x′

2i
[
vG(x, x′, ky; ε)σx − sgn(x− x′)

]
. (2.40)

In class A, the transverse Hall conductance can be derived as the linear response of the
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system to an external field a. The current kernel is given by the one-loop Feynman integral
fig. 2.5a. Note that the Kubo formula (2.35) depends on the full Green’s function and due
to the current operators taken at different spatial points, a direct substitution of the latter
by Q is not possible. However, using that the evolution of G is determined by a set of linear
differential equations similar to eq. (2.7), the Green’s function can be reconstructed from Q
using

G(x, x′, ky; ε) = − i

2v
[
Qε(x, ky)σx + σx sgn(x− x′)

]
e−L|x−x

′|. (2.41)

Since the Hamiltonian is linear, the current operators are given by Ji = vσi and the Hall
conductance reads

σxy = lim
ω→0

i

2πωΩ tr
∫

dxdkydx′
∑
n

(
v2σxGεn−ωn/2(x, ky)σyGεn(−x,−ky)

)
.

With the identification (2.41) we see, that the above integral in general contains four
terms. However, terms that are odd functions in x and terms which are proportional
to σz, will not contribute due to the integration and the trace, respectively. Defining33
Q± ≡ Qεn±ωn/2(±x,±ky) and L± correspondingly, we find

σxy = try
−i

8πΩω

∫
dxdx′

(
σxQ+e

−L+|x−x′|σxσyQ−e−L−|x−x
′|σx

)
,

where the trace try now contains the frequency limit, the integration over ky as well as the
energy summation. As usual we choose L to be diagonalised as L± = T± diag(λ1

±, λ
2
±) ⊗

σzT
−1
± . Since the real parts of the eigenvalues λ1,2

± are again chosen to be real, it follows
that

σxy = lim
ω→0

1
2πω

∫
dkydx̄

∑
n,α,β

∞∫
0

(
e−λ

α
+x̄PαβNβα

)

= lim
ω→0

1
2πω

∫
dky

∑
n,α,β

(
1

λα+ + λβ−
PαβNβα

)
,

where we introduced the relative coordinate x̄ ≡ x−x′ and the matrices P ≡ T−1
+ σzQ−T−,

N = T−1
− Q+T+. The indices α, β = 1, 2 refer to the particle-hole structure of the eigenval-

33Note that subscript refers to the energy arguments not to the terminals.
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ues, and in case of Dirac Hamiltonians34 we arrive at the following expression

σxy = lim
ω→0

1
2πω

∫
dky

∑
n

1
λ+ + λ−

trP ·N.

In appendix B we show that the remaining trace in the above expression leads to the final
result,

σxy = 1
(4π)2

∫
dεdky tr(∂kyQ)Q(∂εQ). (2.42)

Equation (2.42) gives the Hall conductance in terms of the quasiclassical Eilenberger function
defined in eq. (2.40). We can readily give the evolution operator and the Q-matrix

Lε = −iσxε+ iv∂yσz +mσy,

Qε = −vσzky +mσy − iσxε√
v2k2

y +m2 − ε2
.

The Hall conductance is then given by

σxy = −2m lim
ω→0

1
2πω

∫
dky

∑
n

ω
λ−1

+ λ−1
−

λ+ + λ−
= m

∫
dky

∫
dελ−3.

With eigenvalue λ =
√
m2 + k2

yv
2 − ε2, we find (in units e = ~ = 1)

σxy = 1
4π

m

|m|
.

Note that in the final result an additional factor 1
2 appears due to the Dirac description.

We took into account that in the limit of zero temperature, a Wick rotation leads to the
replacement of ε→ iε. The responses of class D and C can be calculated in the fashion.

Classes DIII and AII however, are Z2-topological insulators and thus the Chern number
vanishes. We use class AII to demonstrate that the Chern character in (2 + 1) dimensions
can be derived from the (4 + 1)-dimensional Chern-Simons action, expressed in terms of the
Eilenberger Q-function. A Z2-invariant (the Chern parity) can then be constructed following
the analysis presented in the previous section.

34For Dirac Hamiltonians the indices α, β are actually redundant since the eigenvalues come in pairs (±1),
their presence in the upper expression is thus merely for the sake of completeness.
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The four-dimensional Dirac Hamiltonian is given by

H = −iv
4∑
i=1

Γi∂i + Γ0m̂,

where we have chosen a representation in which Γ0 = σ3, Γi=1,2,3 = σ1 ⊗ σi and Γ4 = σ2.
It follows that H = U †THTUT with UT = σ0 ⊗ σ2 and UTU

∗
T = −1, which confirms the

systems membership in class AII.
We will closely follow the lines of ref. [27] (as outlined in the previous section) and make

use of the dimensional reduction to construct the Chern character in (2 + 1) dimensions. To
this end, we note that the very construction of our higher-dimensional Q-matrix facilitates
the procedure of compactification. We minimally couple the Hamiltonian to an external field
a and replace the momentum operators k3 → k3 + a3 ≡ Θ and k4 → k4 + a4 ≡ Φ, by
two controllable parameters Θ and Φ, respectively. The object c2 describes the non-linear
response given by eq. (2.38) without the integrals over k3 and k4. In analogy to the Kubo
formula, we therefore consider the object

c2
2π = lim

q2,ω3→0

Gx2
q2ω3

, (2.43)

where Gµ2 is given by the Feynman diagram in fig. 2.7. Gµ2 is obtained from a three point
current correlation function

Gµ2 = 1
(2π)2

∫
dkydεdx tr

(
G(x1 − x3, ky, ε)JµAG(x2 − x1, ky − q2 − q3, ε− ω2 − ω3)JΘ

×G(x3 − x2, ky + q2 + q1, ε− ω3)JΦ
)
, (2.44)

where Jµa = ∂H/∂aµ = Γµ and the Green’s function is defined as in eq. (2.41) with σx
replaced by Γ1.
Similar to the (2 + 1)-dimensional case, only one contribution in eq. (2.44) survives the

integral and trace. Following the same steps as in (2 + 1) dimensions, setting x1 = 0,
q1 = −(q2 + q3) (and ω1 accordingly) after some algebra we arrive at

Gx2 ∼
∫

dεdky

( ∑3
i=1 λi

(λ1 + λ2)(λ1 + λ3)(λ2 + λ3)λ1λ2λ3)

)
tr(P ·N · V ), (2.45)

where we defined the matrices

P ≡ T−1
3 Γ1Γ4Qε(ky)T1,

N ≡ T−1
1 Qε−ω2−ω3(ky − q2 − q3)T2,

V ≡ T−1
2 Γ1Γ3Qε−ω3T3,
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1

2

3

Figure 2.7: Feynman diagram of a three-point current correlation function, leading to the
Chern-Simons action in (4 + 1) dimensions.

and the constant c is determined later. Here the index i = 1, 2, 3 refers to the Green’s
functions (and corresponding operators Q and L) G(x1 − x3, ky, ε), G(x2 − x1, ky − q2 −
q3, ε− ω2 − ω3) and G(x3 − x2, ky + q2 + q1, ε− ω3), respectively. The trace tr(P ·N · V )
is calculated in appendix B and the final expression reads

c2(Θ,Φ) = 3
32π

∫
dkydε tr(∂ΦQ)Q(∂ωQ)(∂ΘQ)(∂kyQ). (2.46)

We have thus shown that the Chern character can be expressed in terms of the quasiclassical
Eilenberger functions. Note that opposed to the Chern number this object still depends on
two parameters Φ and Θ. It is easily checked that tr(P ·N · V ) ∝ (λ1λ2λ3)−1, and conse-
quently the second Chern number is then obtained by integrating over the both parameters,

C2 = 1
2π

∫
dΦdΘc2(Θ,Φ) = 3

8π2

∫
dkydεdΦdΘm

λ5

= 3
8π2

∫
dkydεdΦdΘ m

√
m2 + Θ2 + Φ2 + ε2 +m25 = 1

2
m

|m|
.

As we have already discussed in the previous section, Gx2 can be used to construct a Z2-
invariant in (2 + 1)-dimensions. In class DIII this invariant can be derived starting from a
(3 + 1)-dimensional Hamiltonian and reducing it to (2 + 1)-dimensions, leads to a similar
expression of the form Gx1 ∼

∫
dkydε tr(∂ΦQ)Q(∂ωQ)(∂kyQ), which integrates to C2. After

an analytic continuation of the energy, the quasiclassical Q-function becomes an element of
the Grassmannian U(2)/U(1)×U(1) ' S2 in (2 + 1) dimensions and O(4)/O(2)×O(2) in
(4 + 1) dimension, respectively. Following our discussion in sec. 1.3, we find that σxy and
C2 represent the winding number of a map from the two- or four-sphere to a Grassmannian.
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This concludes our extension of the quasiclassical approach to two-dimensional topological
insulators.

2.6 Summary

We provided a quasiclassical approach to one- and two-dimensional topological insulators
and superconductors. Modelling the one-dimensional systems by a disordered quantum wire
connected to two topological insulator (or superconductor) terminals, we provided topological
invariants for all five non-trivial symmetry classes. It turned out, that the transfer matrices
incorporating electron scattering at disorder in the scattering region, play no role in the
construction of these invariants. The latter solely depend on the Eilenberger functions of
the terminals. These Eilenberger functions can be analytically constructed in the clean
limit for isotropic system parameters. The topological invariants give the number of edge
modes present. A detailed proof of this relation is given in appendix B. In two-dimensional
systems, we were able to show that a Q-matrix can be constructed in a mixed Wigner-like
representation, by imposing periodic boundary conditions on one coordinate. It was then
proven that the Chern-Simons characters appearing in the corresponding topological field
theory of the topological insulator (or superconductor) can be expressed in terms of the
two-dimensional Eilenberger function. Which in return can be used to construct invariants
in two dimensions.
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Part II

Majorana Fermions in disordered quantum wires





3
Topological superconductors and Majorana

fermions in condensed matter systems

Topological superconductors provide the possibility to create a very elusive kind of particles
at their edges, the so-called Majorana particles. These topological excitations constitute
their own anti-particles and are interesting for both fundamental aspects as well as practical
reasons. Thanks to their unconventional exchange statistics and topological protection, they
have become one of the most promising candidates for quantum computing. Although orig-
inating from a very simple tight-binding model, these states have proven to be very hard to
realise experimentally. In this section, we review the role of Majorana particles in condensed
matter physics. We discuss the nature of these elusive particles and their theoretical predic-
tion in spinless p-wave superconductors due to Kitaev [9]. Superconductor-semiconductor
sandwich geometries, in particular one-dimensional quantum wires, are discussed both from
a theoretical as well as experimental point of view. We show how Majorana particles emerge
in these systems and what difficulties experimentalists face. In anticipation of the next chap-
ter, we restrict our discussion to (quasi) one-dimensional systems and closely follow the lines
of [70, 71].

3.1 Topological superconductors

Topological superconductors are the natural extensions of topological insulators to supercon-
ducting systems. On a mean-field level, superconductors are described by a Bogoliubov-de
Gennes (BdG) Hamiltonian. The fermionic quasi-particle spectrum of the BdG-Hamiltonian
shows a superconducting energy gap, set by the pairing potential ∆. Superconducting sys-
tems come with an intrinsic particle-hole symmetry which relates states at opposite energies.
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Chapter 3 Topological superconductors and Majorana fermions in condensed matter systems

Possible end states of a one-dimensional superconductor are represented by a conjugated
pair of states within the gap, with energies ±ε. Formally the creation, c†ε and annihilation
operators cε for a quasi-particle state are related by c†ε = c−ε. The latter property allows to
draw an interesting analogy to the concept of bulk-boundary correspondence introduced in
the first part of this work. Figure 3.1 shows the spectrum of end states in a one-dimensional
topological superconductor for spinless fermions. For finite energy, these states are symmet-
rically distributed. These end states are topologically trivial and not protected by topology
since they can simply be removed by absorbing them into the bulk of states with ε > |∆|,
without closing the superconducting gap. For zero-energy, where the particles localise at vor-
tices or edges, the quasi-particle operator becomes hermitian c†0 = c0. Since the state lacks
a partner, it cannot be absorbed and thus the state is topologically protected by particle-hole
symmetry. As a consequence, these states are immune to local perturbations that do not
close the energy gap and can only be removed by a topological quantum phase transition
(which in return is characterised by a gap closing). The presence or absence of such a
zero-energy state defines a topological Z2 invariant. Edge-states with hermitian creation op-
erators, called Majorana modes, and their possible realisations in one-dimensional systems,
will be the main object of interest for the remainder of this work. Although we focus on
one-dimensional systems henceforth, the analogy between topological superconductors and
insulators can be illustrated considering the IQHE and QSHE introduced in chapter 1. We
recall that the IQHE arose in systems of class A with no symmetries present, while the
QSHE was present in class AII with unbroken time-reversal symmetry (T 2 = −1). The
former was classified by an integer invariant while the latter was a Z2 topological insulator.
Class D can be constructed from class A by introducing an unbroken particle-hole symmetry
(C2 = +1), and indeed topological insulators in class D in two dimensions are also classified
by an integer invariant. The chiral edge modes in class A have their counterparts, chiral
Majorana edge modes, in class D. The latter can be found at edges of spinless px + ipy
superconductors [72]. The superconducting counterpart of class AII is class DIII (C2 = −1),
which is a Z2-topological superconductor in two dimensions. The time-reversal symmetry
protected edge modes are counter-propagating helical Majorana modes. Further analogies
are discussed in [73]. We now focus on one-dimensional topological superconductors hosting
Majorana states at their ends.

3.2 Majorana Fermions in condensed matter systems

In recent years the notion of Majorana particles saw a huge uprising in the condensed matter
community. Originated from a work in high-energy physics by Ettore Majorana [10] in 1937,
the presence of particles being their own anti-particles was predicted. Majorana realised a
representation in which the generally complex Dirac equation, describing a relativistic spin-1

2
fermion, possesses a real solution. This solution describes fermions that are eigenstates to the
charge-conjugation operator and therefore are their own anti-articles. While such a property
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o

Figure 3.1: Edge states spectrum of one-dimensional topological insulator. Shaded blue re-
gions indicate bulk of states. Left: In the trivial phase two states of opposite
energy (dark grey lines) are present. Both can be absorbed and removed from
the gap (indicated by light grey lines) . Right: In the non-trivial phase there is a
single unpaired state (red). This state cannot be removed and the corresponding
quasi-particle operator is hermitian.

is nothing special for bosons, it is for fermions. Majorana even went so far to claim that
neutrinos belong to this illustrious kind of particles, a claim that has yet to be clarified. While
the high-energy community still cherishes a hope that Majorana particles can be discovered
in their experiments, condensed matter physicists started their own journey for these exotic
states [69–72, 74]. The motivation is twofold: Firstly, and this also holds for the high-energy
colleges, Majorana particles by themselves are interesting from a fundamental point of view.
Secondly, Majorana particles are tailor-made for quantum computational applications.
In addition to the obvious discrepancy in energies/temperatures, Majorana particles in

high-energy physics describe fundamental particles, which is different in condensed matter
systems1. It is obvious that excitations like electrons or holes cannot represent Majorana
fermions since they carry a charge, and are therefore described by two physically distinct
operators. So if c†σ is the creation operator for an electron with spin σ and cσ for a hole with
spin σ, the operators are distinct and therefore not their own anti-particles. Only non-trivial
excitations, such as composites/superpositions can (if at all) be responsible for the presence
of Majorana particles in condensed matter systems. It stands to reason that superconduct-
ing systems are tailor-made candidates, since the underlying excitations are superpositions of
electron and hole excitations. However, the common s-wave superconductors do not answer
the purpose since the appearing quasi-particle operators are of the form d = u1c

†
↑+u2c↓, [70].

Due to the spin, this state is physically distinct from its conjugate d† = u∗2c
†
↓ + u∗1c↑. In

fact, the spin prevents hermiticity for the quasi-particle operator as charge does for the elec-
1We point out that Majorana fermions in high-energy physics, opposite to their condensed matter quasi-
particle representatives, can be massive and spinfull and obey usual Fermi statistics.
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trons. One therefore has to consider non-trivial excitations, e.g. spinless superconductors. In
such systems, the spin components are equivalent and allow for the construction of creation
operators γ = uc†σ + u∗cσ, which are hermitian (i.e. γ = γ†) or equivalently, their own
anti-particle. Due to the Pauli principle, the order parameter ∆(k) ∝ 〈cσ(k)c†σ(−k)〉 has to
be an odd function in momentum. The latter is often called odd parity pairing and can be
found in p-wave superconductors in one dimension and in p+ ip superconductors in two di-
mensions [75]. Realisations of such excitations are expected to occur in the ν = 5

2 fractional
quantum Hall state, and p-wave superconductivity. Although predicted for the ground state
of Sr2RuO4 [76, 77], p-wave superconductivity [78] has yet to be discovered experimentally.
However, as we will see later, due to the topological nature of Majorana fermions, experi-
mentally more accessible models were proposed, sharing the topological properties without
relying on the presence of p-wave superconducting materials. Before we discuss the details
of Majorana fermions in p-wave superconductors, we shall comment on their possible use in
quantum information theory2.

3.2.1 Non-abelian statistics and quantum computing

One of main reasons for the great interests in Majorana fermions in condensed matter physics,
is their possible application to quantum computing [11]. The latter is related to the exchange
statistics of these particles and although we abandon the idea of giving any fruitful insight
into the topic of quantum computing, we will elaborate a bit on the statistics. By construc-
tion, Majorana particles are their own anti-particles and therefore described by an hermitian
creation (annihilation) operator γ = γ†. However, we cannot assign an occupation num-
ber to it since a real fermionic state f is constructed by a pair of Majorana states γ1,2,
i.e. f = 1

2(γ1 + iγ2). This construction suggests the interpretation of γ1 as the real and γ2
as the imaginary part of a fermion f . Such a construction sounds rather academic, since due
to the overlap of both states, a discrimination between the two Majorana states is impossible.
Nevertheless, the construction above allows for superpositions of two spatially separated Ma-
jorana states and as a consequence, f is a highly non-local object. Since local perturbations
can only affect one of the two Majorana fermions, these non-local objects are protected from
almost all types of decoherence. This property by itself makes it very interesting for quantum
computation applications but would be useless without a proper way to manipulate states,
i.e. to perform quantum gate operations. This is where the non-abelian exchange statistics of
Majorana states come to play. Exchange statistics characterise the effect of exchanging two
indistinguishable particles. Upon such an exchange, fermions and bosons acquire a factor
+1 or −1, respectively, while for abelian anyons the wave functions pick up a phase factor
eiθ (which interpolates between +1 and −1). For non-abelian anyons however, the story
is more-interesting in that the states can be fundamentally different quantum states after
exchanging/braiding them. One may now naively argue that in one dimension, exchange
2A claim that has been exploited by the community to attract the attention of various referees and editors.
Shamefully, we do not bother to resist and jump on the bandwagon ourselves.

72



3.2 Majorana Fermions in condensed matter systems

statistics of particles are not relevant since there is no way for the particles to avoid each
other. But in arranging one-dimensional superconductors in networks, one is in a position
to exchange Majorana states bound to the ends of the latter, again leading to non-abelian
statistics. It is thus evident that even if possible Majorana fermion suspects are experi-
mentally identified, probing this non-trivial behaviour will winnow truth from falsehood. A
possibility to probe non-abelian statistics is therefore much desired and is an active field of
research. We refer to ref. [79, 80] for further reading.

3.2.2 Majorana states in spinless p-wave superconductors

The simplest model of a one-dimensional spinless p-wave superconductor hosting Majorana
states was introduced by Kitaev [9]. The tight-binding Hamiltonian introduced, describes
spinless fermions hopping on a chain with N -sites, exposed to long-range-ordered p-wave
superconductivity. If we denote the annihilation operator by cx and the associated number
operator by nx = c†xcx, the Hamiltonian reads

H = −µ
∑
x

nx −
1
2
∑
x

(
tc†xcx+1 + ∆eiφcxcx+1 + h.c.

)
, (3.1)

where the chemical potential µ, the nearest-neighbour hopping t and the pairing amplitude
∆ are considered to be homogeneous (note that we introduced a superconducting phase
φ). Kitaev showed that upon splitting each fermion into a pair of Majorana fermions, the
system exhibits two phases, of which one hosts two unpaired Majorana fermions at the end
of the chain. Before we turn to a Majorana fermion description and investigate the edges of
the chain, it is illusive to understand the two different phases by investigating the bulk first.
To this end we impose periodic boundary conditions on the system. The momentum-space
representation of eq. (3.1) reads

H =
∑
k

E(k)c̃†k c̃k,

where the sum runs over the whole Brillouin zone, and c̃k = ukck + vkc
†
−k. The precise form

of the eigenstates uk and vk are of no interest at this point, contrary to the bulk energies

E(k) =
√

(−t cos k − µ)2 + (∆ sin k)2.

One recognises the opening of a gap in the spectrum due to the pairing amplitude. The
odd pairing amplitude ∆k = ∆ sin(k) of a p-wave superconductor and the Pauli principle
ensure that the system has to be gapless at isolated points. Indeed for k = 0 and k = ±π
we see that these isolated points3 are reached at µ = ±t. It is therefore evident, that one
3Since the Pauli principle excludes Cooper pairs at isolated points, they can be added to the Hamiltonian
with energy zero, which would correspond to a gap closure in the bulk energy.
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has to distinguish between the cases µ < −t and |µ| < t (since particle-hole symmetry
is present). Note however, that at this point it is by no means clear whether these
regimes actually describe different phases. The argument for the latter is of topological
nature and will be discussed later. Nevertheless, one easily recognises that both regimes
behave physically different. For |µ| < t, there exists a filled band that is gapped because
of the p-wave nature of the system, whereas the case of µ < −t is homotopic to the
vacuum4 and can therefore be considered as trivial. This rather basic arguments hint
at the presence of two distinct phases, for a more quantitative discussion we refer to ref. [72].

Let us return to the discussion of Majorana states and relax our periodic boundary con-
ditions. In fact, at least for the phase µ < −t, which we identified to be trivial, it is clear
that the results should be invariant as we expect no Majorana states at the boundaries. The
idea of Kitaev [9] was to represent each spinless fermion in the chain, described by eq. (3.1),
by a superposition of two Majorana fermions γx,i=1,2. Formally each fermion operator cx is
decomposed into its real and imaginary part. The Majorana operators are then given by

γx,1 = c†x + cx,

γx,2 = i(c†x − cx), (3.2)

where the index i = 1, 2 now labels the two Majorana states that form the fermion at site
x. Note that for simplicity we set the superconducting phase to φ = 0. These operators are
indeed hermitian γx,i = γ†x,i and obey the fermion anti-commutation relations, [γx,i, γy,j ]+ =
2δijδxy. The representation of H in terms of the Majorana fermions is straightforward, yet
in order to understand the manifestations of Majorana states and the distinction between
the two phases, we only consider two special cases of parameter configurations in which the
discussion becomes particularly simple.
By choosing µ < 0 and ∆ = t = 0 we define a state within what we identified to be the

trivial phase. The Hamiltonian in this case is given by

H = −µ2

N∑
x=1

(1 + iγx,2γx,1),

and contains only couplings between Majorana states γx,2 and γx,1 at the same site of
the chain. Despite the fact that this is merely a rewriting of the Hamiltonian for periodic
boundary conditions, we recognise two things: First, the ground state is unique and is given
by the vacuum as discussed earlier. Second, adding a fermion to the chain comes with the
energy cost of |µ| and thus the system exhibits a gap. An illustration of the setup is shown
in the upper part of fig. 3.2. As a second limiting case, we choose µ = 0 and t = ∆ 6= 0

4Consider the limit µ→ −∞.
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...

...

Figure 3.2: Two phases of the Kitaev model. Boxes symbolise fermions while the circles
indicate Majorana fermions that constitute the latter. Top: In the trivial phase
µ < −t all Majorana partners are paired (indicated by the double lines) within
the fermions at the same site and no free Majorana particle is present. Bottom:
In the non-trivial phase |µ| < t, the pairing is between Majorana partners at
different sites, leaving two unpaired (red) Majoranas at the end of the chain.

arbitrary, which puts the chain in the non-trivial phase and leads to the Hamiltonian

H = −i t2

N−1∑
x=1

γx,2γx+1,1.

We illustrated the situation in lower part of fig. 3.2 and, opposite to the previous discussion,
we see that the coupling is introduced between Majorana states of adjacent sites. For
convenience one introduces the corresponding fermion operator dx = 1

2(γx+1,1 + iγx,2) and
the Hamiltonian in this basis reads

H = t
N−1∑
x=1

(
d†xdx −

1
2

)
.

Which clearly signalises the presence of a gap. The crucial difference lies in the ground state
of this representation, which is now two-fold degenerate. Since both end points of the chain,
γ1,1 and γN,2, are missing from the Hamiltonian, they can form a fermion f = 1

2(γ1,1+iγN,2),
which can be added with zero-energy cost. The system therefore hosts zero-energy Majorana
states localised at the end of the chain. The end of the chain is connected to the vacuum,
which as we have discussed earlier, is a limiting case of the µ < −t phase. One thus
concludes, that these edge states appear at the border of the trivial and non-trivial phase.
The origin of this effect is of topological nature since one is not able to smoothly interpolate
between both phases without closing the gap. And since it is topological, it is clear that the
results above are not tied to the chosen parameters. As long as changing the parameters
does not change the phase the system is in, the results remain valid.
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The Kitaev model is a member of class D since only particle-hole symmetry is present5, and
a Z2-topological insulator in one dimension. We note that the standard BdG Hamiltonian for
the Kitaev chain is given by H = 1

2
∑
k Ψ†kHkΨk, where the sum again runs over the whole

Brillouin zone, Hk = E(k)σ3 + ∆kσ2 and Ψk,Ψ†k denote the Nambu-spinors. However, to
keep the story more general, we can assume that Hk represents the general two-level system
in eq. (1.10). Since σ1H

T
k σ1 = −H−k, particle-hole symmetry is represented by UC = σ1.

Thus all components but i = 3 have to be odd functions in k, i.e. hi=1,2(−k) = −hi=1,2(k)
while h3(−k) = h3(k), where we again ignored the innocent shift in energy proportional
to h0. Similar to our discussion of time-reversal symmetry in the context of topological
insulators, it follows that due to the particle-hole symmetry we can focus on the (effective)
Brillouin zone, i.e. k ∈ [0, π]. In addition, we define the map ĥ = h/|h| from the Brillouin
zone to the sphere S2. Particle-hole symmetry requires that the vector ĥ at the boundaries
k̄ of the effective Brillouin zone, is given by

ĥ(k̄) = ĥ3(k̄)e3,

where k̄ = 0, π. The coefficients ĥ3(k̄) are determined by the sign of the kinetic energy6
(relative to EF ) in the Hamiltonian. It is easy to see that in the trivial phase of the Kitaev
model, both signs are equal and ĥ(0) = ĥ(π) is the north pole in S2. Whereas in the non-
trivial phase, ĥ(0) = −ĥ(π) and the vectors is either pointing towards the north or south
pole. The product of both functions defines a natural Z2 invariant

ν = ĥ3(0)ĥ3(π).

Tracking the image of ĥ on S2 will result in a curve that starts and ends at the north pole
(trivial phase) or starts at the north and ends at the south pole (non-trivial), as illustrated in
fig. 3.3. Thus ν = ±1 corresponds to two inequivalent trajectories. From the construction
above it is evident that ĥ(k) is ill-defined when the bulk gap closes and a sign change in ν
appears. The latter corresponds to the obstruction to connect the non-trivial phase to the
trivial vacuum in the Kitaev model.

3.2.3 Splitting of edge states

Earlier we have chosen two explicit sets of parameters corresponding to two distinct phases
of the Kitaev model. However, since the appearance of the phases is of topological origin we
are of course not fixed to this setting. As long as the parameters are chosen in a way that the
chain is in one of the two phases, everything said above is still valid. When deviating from
the limit µ = 0 6= t = ∆, the distribution of the Majorana modes decays exponentially within
5Indeed there is an artificial time-reversal symmetry present which however does not alter the class D
membership, as we discuss later.

6The kinetic term is proportional to E(k)σ3.
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3.3 Majorana fermions in real (one-dimensional) life — Quantum wires

Figure 3.3: Trajectory of the map ĥ on the sphere. Left: In the trivial case with ν = +1,
the vector starts and ends at the north pole. Right: In the non-trivial case, the
map explores the sphere from the north to the south pole, thus ν = −1. Image
inspired by ref. [71].

the bulk. Thus, if the chain L is not long enough, the two modes talk to each other as their
wave functions overlap. As a result, there will be an exponential splitting of the Majorana
modes which happens on the scale of e−L/ξ, where ξ is the coherence length. Therefore, in
order to avoid such entanglement the wire has to be sufficiently long, L� ξ.

3.3 Majorana fermions in real (one-dimensional) life — Quantum wires

Experimental realisation of p-wave superconductors remains an open problem. Besides the
justified scepticism towards an actual realisation of p-wave superconductors, one might be
sceptical about their applicability to real world topological quantum computing. Stable
realisations are most likely lacking sufficient superconducting correlations of long-range order,
necessary for effectively spinless systems. Furthermore, strong correlations lead to possible
problems regarding the controllability. However, despite this rather devastating jeremiad
against the realisation of p-wave superconductors, the possible experimental realisation of
Majorana fermions is saved by - who else but - topology. Since the occurrence of Majorana
particles in odd parity pairing systems is a universal feature, an experimentally more accessible
system of the same symmetry class will host the latter without the need for an actual
p-wave superconductor. Among the first to realise this were Fu and Kane [75, 81] who
considered a thin semiconducting film sandwiched between a magnetic insulator and an s-
wave superconductor. Such a two-dimensional system hosts Majorana fermions at vortices
and while the actual realisation of these systems proved to be very challenging, the direction
towards sandwiched hybrid systems, given by the authors was hugely useful and paved the
way for a plethora of proposals (see ref. [71] and [82] and references within). Experimentally,
the most promising candidates for the realisation of Majorana fermions are one-dimensional
quantum wires. In two seminal works [14, 15], the realisation of Majorana fermions at the
ends of one-dimensional (semiconductor) wires with sufficient spin-orbit coupling proximity
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Chapter 3 Topological superconductors and Majorana fermions in condensed matter systems

coupled to a conventional s-wave superconductor together with an external magnetic field,
was suggested. We now review the emergence of Majorana particles in such quantum wires
following ref. [14, 15]7.
The setup is illustrated in fig. 3.4, with the quantum wire put on top of the superconductor.

The Rashba spin-orbit coupling [83] is assumed to be perpendicular to the wire and along the
axis of the superconductor. An external magnetic field B is introduced which is considered
to be perpendicular to both, the spin-orbit coupling and the wire. We fix the axes according
to fig. 3.4, i.e. the magnetic field B = −B(z)ez, the spin-orbit coupling α = αey and the
wire is lying along the x-axis. The s-wave superconductor induces a pairing amplitude ∆ in
the wire due to the proximity effect ([14, 84]).

SC
x

y
z

B

Figure 3.4: Model of a Rashba spin-orbit coupled, quantum wire in proximity to an s-wave
superconductor. A magnetic field B is applied perpendicular to the wire axis.
The spin-orbit coupling is perpendicular to the wire and lies along the supercon-
ductor axis. Majorana fermions are localised at the ends of the wire, decaying
exponentially into the wire if the latter is finite (the decay length is non-zero for
finite systems and it vanishes in the infinite limit).

Following the description in the previous paragraph, we can readily give the Bogoliubov-
de-Gennes (BdG) Hamiltonian

H = 1
2

∫
dxΨ†(x)

(
H0 iσy∆∗
−iσy∆ −HT

0

)
Ψ(x), (3.3)

where

H0 = −∂2
x/2m− µ(x) +B(z)σz − iασy∂x,

and the Pauli matrices σi act in the spin space. The spinors acting in the product space of

7Although both works differ in details the general strategy behind both proposals is equivalent.
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3.3 Majorana fermions in real (one-dimensional) life — Quantum wires

particle-hole and spin are defined by

Ψ(x) = (ψ↑, ψ↓, ψ†↑, ψ
†
↓)

T.

Before exploring the mechanism behind the emergence of Majorana fermions, we discuss the
symmetries of the system. H0 as well as (−τy ⊗ σy∆) is a symmetric matrix8, where the
τ -matrix acts in particle-hole space now. We can rewrite the Hamiltonian as

H = 1
2

∫
dxΨ†(x)(τz ⊗H0 −∆τy ⊗ σy) Ψ(x), (3.4)

with particle-hole symmetry represented by UC = τx. However, since H is symmetric, the
system possesses an ’artificial’ chiral symmetry represented by US = UC = τx and therefore
an ’artificial’ time-reversal symmetry. According to the classification given in table 1.1, in
case of a single channel the system would belong to class BDI. However, as we will see in
a moment, the spin-degree of freedom is effectively frozen out by spin-polarisation due to
the magnetic field (keep in mind that our goal is to construct an effectively spinless p-wave
superconducting phase). Therefore, a physical time-reversal symmetry is not present and
the system can be regarded as a member of class D. In the single-channel case, at most one
Majorana fermion per end can be present negating a distinction between class D and BDI,
both classified by a Z2-topological invariant. Note that the same arguments hold for the
Kitaev model introduced in section 3.2.2. As a direct consequence, the Majorana particles
at the end of the wire are invariant under the introduction of explicitly time-reversal breaking
terms in the Hamiltonian (3.3). One important consequence of the particle-hole symmetry
is that a Majorana fermion, represented by Ψi = Ψ†i , has to be tied to zero energy since for
each non-zero energy εi solution, there exists a solution of the BdG equation with energy
−εi. Thus, Majorana fermions, if present, have to be localised at zero-energy.
Let us return to the Hamiltonian (3.4). The effect of the spin-orbit coupling can be

illustrated at the single-particle spectrum in the case of vanishing magnetic field and pairing
amplitude, B = ∆ = 0. In this case, due to the spin-orbit coupling, the spectrum is given
by two intersecting parabolas,

E±(k) = k2
x/2m− µ±

√
B2 + (αkx)2,

one for each spin component, shifted from the origin (illustrated in fig. 3.5). Independent of
the value of µ, a spin-degeneracy is always present and an effective spin-less regime, as desired
for the p-wave superconductivity, is impossible to reach. Upon increasing the magnetic field
B 6= 0, this degeneracy is lifted as a gap opens at k = 0 (with each part of the spectrum
comprised by two spin components). If the chemical potential µ is placed within this gap, the
spectrum has no spin-degeneracy and an effective spinless regime can be achieved,9 illustrated
8We have chosen ∆ to be real.
9Note however, that the spin direction still depends on the momentum.
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Figure 3.5: Band structure of the quantum wire. Left: B = ∆ = 0. Spin-orbit coupling
splits two parabolas with different spin polarisation (red, grey). Middle: Small but
finite magnetic field B > 0 opens a gap at k = 0 allowing for an effective spinless
representation. Spin-polarisation does still depend on momentum, though. The
chemical potential (dotted) is placed inside the gap. The upper band (dashed)
can be projected out, provided B � ∆. Right: Superconducting gap ∆ > 0 is
present and the band structure is mirrored due to the BdG structure. Note that
the upper band has been projected out.

in fig. 3.5. As we will see later, the gap should be chosen sufficiently large (by increasing
B) to allow for disorder or thermal fluctuations in the chemical potential. With increasing
magnetic field, the alignment of each spin component within each band increases. Since
the latter aggravates the introduction of proximity-coupled superconductivity, the magnetic
field has to be chosen appropriately. For ∆� B, the upper unoccupied band can effectively
be projected out and the only partially polarised electrons in the lower band are effectively
p-wave paired (see fig. 3.5).
Assuming that the chemical potential is placed within the gap, it can be shown that

the system in this state can continuously be mapped onto the Kitaev model of p-wave
superconductors with |µ| < t, [11]. Thus, the system is in the topological non-trivial state.
From the inspection of the spectrum in presence of the superconductor at kx = 0,

E± = ±
√
B2 + ∆2 + µ2 ± 2

√
B2∆2 +B2µ2,

it can be seen that with increasing ∆, the gap decreases and closing is achieved at the
critical point BC =

√
∆2 + µ2. Upon further increase, the gap reopens with the wire in the

topologically trivial state and the effective spinless regime is lost. Thus, one concludes that
the quantum wire is in the topologically non-trivial phase if B > BC while it is trivial if B <
BC . Note however, that instead of modulating the magnetic field B or the order parameter
∆, it turns out that it is experimentally more convenient to change the chemical potential
µ, [15]. Assuming that B > ∆ the Majorana fermion is located at the interface between the
regions with µ2 < µ2

c and µ2 > µ2
c , with the critical chemical potential µc =

√
B2 −∆2.

As described in ref. [15], such a variation of the chemical potential can be achieved by gate
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3.3 Majorana fermions in real (one-dimensional) life — Quantum wires

electrodes under the wire.

3.3.1 Clash of parameters — Spin-orbit coupling vs. magnetic field

We leave our safety zone of a completely idealised system for a moment to attempt grasping
a few issues experimentalists face. Following the discussion above, it would be tempting to
chose a very large magnetic field to ensure the presence of a large topological regime and
to enlarge the gap at zero momentum. The latter is especially desired since it minimises
the susceptibility of the system to disorder fluctuations (or effects like temperature) in the
chemical potential. On the downside, a large magnetic field strongly polarises the spins
of the system which in return complicates the introduction of p-wave pairing and thus a
semiconductor with a large g-factor has to be chosen for the quantum wire [71]. As if
this would not be enough, the strength of the spin-orbit coupling proves to be a crucial
parameter. Consider a magnetic field large compared to the spin-orbit coupling, i.e. the
ratio of magnetic field B to the spin-orbit energy ESO = m

2 α
2 is large. In this case, due

to the strong polarisation of spins near the Fermi level, time-reversal symmetry is strongly
violated. As a consequence, the gap may be closed due to disorder fluctuations. If however,
the ratio B/ESO is small, spin-orbit coupling ensures a local time-reversal symmetry at the
Fermi level, which renders the system more stable against disorder [84, 85]. We conclude
by noting that finding the right balance of parameters; to provide a sufficiently large stable
topological regime to operate in, while protecting the system against disorder is a very
delicate manner. Promising candidates were found in InAs and InSb wires. Both materials
provide high g factors, a good susceptibility to proximity induced superconductivity as well
as long mean free paths [71]. Unfortunately, it turns out that due to the small energy scale
of ESO, these systems give experimentalists a hard fight to reach the topological phase and
disorder effects play an important role (a point we will discuss in length later).
Note that recently very promising proposals in cold atom experiments, free from disorder,

have been formulated [86–88]. Inspired by ref. [14, 15], an enormous amount of proposals
regarding the construction of Majorana fermions (in various systems and dimensions) in
experiments, have seen the light of day. An extensive list and discussion can be found in
ref. [71]. Among the suggestions, multi-channel quantum wires promised to be very well
suited for the actual realisation of Majorana fermions in one dimension. The latter can be
considered as the quasi-one-dimensional extension of the quantum wire systems discussed
earlier. It turns out, that multi-channel wires are more suitable to describe InAs and InSb
semiconducting wires used in experiments. The reason being that in these systems multiple
subbands are occupied and multi-channel wires do not require a complicated gating to the
lowest of these bands, but rather only rely on the presence of an odd number of partially
occupied bands (a requirement that is trivially fulfilled). A detailed theoretical discussion of
multi-channel wires can be found in section 4.2.
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Chapter 3 Topological superconductors and Majorana fermions in condensed matter systems

3.4 Experimental observation of Majorana fermions in tunnelling
experiments

Figure 3.6: A schematic representation (left) and the real experimental setup (right) used
in [12]. The quantum wire is in contact with a superconductor (S) and a normal
lead (N), separated by a tunnel barrier (green rectangle). The magnetic field
B is applied along the wire axis. Underlying gates are indicated by numbered
yellow rectangles. A possible Majorana fermion will localise at the contact point
of tunnel barrier and quantum wire. Picture taken from [12].

Several experimental groups reported the observation of Majorana fermions in spin-orbit
coupled semiconductor nano wires coupled to an s-wave superconductor [12, 13, 89, 90]. The
evidence was drawn from zero-bias conductance peaks in local conductance measurements.
In the most prominent experiment [12], on which we focus now, an InSb nano wire was
brought in contact with NbTiN (a superconductor) and an Au lead. The setup is illustrated
in fig. 3.6. As discussed earlier, InSb shows a high g-factor in addition to strong (Rashba)
spit-orbit coupling, with g ' 50 and α ' 0.2eVÅ [74], respectively. A bias voltage is
applied between the superconductor and the normal lead. By applying a negative voltage
to a narrow gate in the region between the superconductor and the metallic lead, a tunnel
barrier is created. At this tunnel barrier the Majorana fermion has to localise, if the system is
brought to the topological phase. The differential conductance dI/dV is then measured as
a function of the voltage for different values of the magnetic field. A zero-bias conductance
peak is expected if the magnetic field exceeds the critical field and the system is in the
topological phase. The experimental data are shown in fig. 3.7 and for a field exceeding
about 100mT a peak is present. Notice the splitting of the peak for large magnetic fields (a
point to which we return later).
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3.4 Experimental observation of Majorana fermions in tunnelling experiments

Figure 3.7: Magnetic field-dependent spectroscopy results. Top: The differential conduc-
tance dI/dV versus voltage V is shown for different magnetic fields B. The
green arrows indicate the induced gap. A zero-bias central peak is visible for a
range of field strengths before splitting. Bottom: Density plot of the differential
conductance versus voltage V and field B. The zero-bias central peak is marked
with a dashed ellipse and green dashed lines indicate the gap. For a field of
approx. 0.6T the peak splits (yellow dotted lines). Picture taken from [12].
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4
Quasiclassical theory of disordered

multi-channel Majorana quantum wires

In 2012 several experimental groups [12, 13, 89] reported the successful observation of Ma-
jorana fermions in spin-orbit and proximity coupled quantum wires [14, 15]. A zero-bias
spectral peak in the tunnelling conductance into the wire was provided as evidence for the
presence of a Majorana fermion. The claim was further substantiate by an investigation
regarding the field dependence of the peak. Shortly after the ostensible discovery, it was
pointed out by ref. [19] that for a multi-channel system, small amounts of disorder are suffi-
cient to lead to a signature in the averaged density of states, that is almost indistinguishable
from the Majorana peak observed in the experiments. This disorder induced spectral peak
mimics the Majorana peak in almost all relevant aspects and therefore leaves the presented
experimental results inconclusive. Its origin however, is solely due to strong midgap quan-
tum coherence. Loosely speaking, the absence of energy repulsion between Andreev levels
in symmetry class D may lead to clustering of Andreev bound states around zero-energy [4].
Given the limited resolution of tunnelling spectroscopy, this structure may superficially merge
into a single peak.
In this chapter we discuss disordered multi-channel Majorana quantum wires in the context

of the quasiclassical approximation introduced in chapter 2. We derive the Bogoliubov-de
Gennes Hamiltonian for the disorder multi-channel quantum wire and discuss its symme-
tries. Under the assumption that the spin-orbit energy exceeds the magnetic field and the
pairing amplitude, the quasiclassical approximation, i.e. the linearisation of the Hamiltonian,
is justified. The experimental setup is then mapped to the prototypical model discussed in
section 2.2, granting access to the results of chapter 2. We represent the Z2-topological
invariant in terms of the Eilenberger function of the terminal regions to which the quan-
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tum wire is connected. The latter indicates the presence or absence of Majorana fermions
localised at the ends of the wire, depending on the chosen parameters. In this regard, the
present chapter serves as an extended example for the application of the formalism to class
D.
Drawing on the relative simplicity of the Green’s functions within the quasiclassical ap-

proach, we present an effective numerical method to calculate the Eilenberger function for the
full disordered system. The averaged density of states at the tunnel barrier is then calculated.
The latter clearly signals the coexistence of two peaks, a topological Majorana fermion and a
’trivial’ disorder induced one. While the former is only present in the topological regime, the
latter is shown to appear in the trivial regime. Our results support the scepticism towards
the experimental evidence based on zero-bias conductance peaks, addressed in ref. [19].
In the final part of this chapter we present results of an ongoing study of disorder stabilised

topological excitations. Using the numerical method presented in this chapter, we investigate
systems at criticality and the influence of disorder fluctuations. Numerical results hint towards
the possible formation of stable topological excitations at local domains within the system,
induced by disorder.
Parts of the results discussed in this chapter can be found in ref. [91] and [92].

4.1 Class D spectral peak

In the experiments discussed in the previous chapter, evidence for the presence of Majorana
fermions in proximity coupled spin-orbit quantum wires was drawn from a zero-bias spectral
peak in the tunnelling conductance. Representing an irrefutable proof in an idealised system
(cf. section 3.2.2), the spectral peaks cogency is drastically reduced in a more realistic
situation, involving multiple channels and disorder. The tunnelling conductance is directly
related to the local density of states and the presence of a Majorana fermion should result
in a band centre anomaly in the latter.
The presence of even moderate amounts of disorder in a multi-channel quantum wire may

lead to the emergence of a second band centre anomaly, originating not from topology but
from strong midgap quantum interference [19]. This peak, called class D spectral peak, in
the averaged local density of states has striking similarities in all relevant features of the
Majorana peak. It is rigidly locked to zero energy, its width is of the order of the mean level
spacing and it relies on the same parametric conditions as those required for a Majorana
fermion (a point to be discussed in details later). However, contrary to the latter it requires
a moderate amount of disorder. The non-linear-sigma-model for a multi-channel variant of
the model used in ref. [15], was derived by Bagrets and Altland [19]. The resulting averaged
density of states (in rescaled energy units s) for the system [93] are given by

ν(s) = 1 + (−1)N sin(s)/s+ 1
2(1 + (−1)N+1)δ(s/2π),
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4.1 Class D spectral peak

where N denotes the number of channels present. Only in the non-trivial case of an odd
number of channels, the density of states shows a Majorana peak at zero energy, represented
by the delta distribution δ(s/2π). In this case the symmetry class is called B. For Neven, the
averaged density of states shows a broadened peak (∼ sin(s)/s), the aforementioned class
D spectral peak and the symmetry class in this case is D. Class D and B share the same
symmetries, time-reversal symmetry broken and intrinsic particle-hole symmetry present,
differ however by the number of levels. The formation of the anomaly in class D is solely
due to diffusion modes and has no topological origin. A schematic profile of the averaged
density of states is shown in fig. 4.1.

Figure 4.1: Averaged density of states 〈ν(ε)〉 for class D (orange) and class B (blue) obtained
from random matrix theory. In both cases a peak at zero energy is present. Class
B possesses a δ-peak bound to the band centre due to a Majorana fermion. The
broadened version of this peak is given by the dashed red curve. In class D the
spectral peak is due to clustering of energy states around zero energy.

Both density of states profiles, superficially look very alike. Since the spectral weight
of both is of the same order, a distinction of both structures is limited by a very fine
resolution (which is of the order of the mean level spacing δ). Consequently, the unambiguous
identification of Majorana fermions in tunnelling spectroscopy experiments with resolutions
limited to scales larger than the mean level spacing, may prove difficult.
Before turning to a more detailed description of disordered multi-channel quantum wires,

we demonstrate the deceptive nature of the class D anomaly, using a random matrix toy model
(see refs. [94–96] for reviews on random matrix theory). Figure 4.2b shows the spectrum of
a class D random matrix ensemble, where a system parameter r is varied. In the experiments
the latter would correspond to the magnetic field B for instance. Accidental level crossings
at zero energy are present. In fig. 4.2b the ensemble-averaged density of states is shown as a
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function of energy and system parameter r. It appears as if a peak localised at the band centre
(E = 0) is present for a large range of r before splitting. Qualitatively, these picture shows
striking similarity to the experimental observation in fig. 3.7. In the latter, the peak splits
into two Andreev bounds states for a magnetic field B exceeding 0.5T, and no satisfactory
explanation was provided by the authors. In the random matrix toy model of class D, no
Majorana state is present and the peak is merely superficial, as it can be seen from fig. 4.2a.
The appearance of the peak is due to the finite resolution, which fuses the close crossings and
splitting. A band with a series of crossings at zero energy that have a very narrow support,
renders the ensemble-averaged density of states of class D to be indistinguishable from a
non-trivial system. These simple arguments underline that a midgap spectral peak does not
serve as an unambiguous evidence for a Majorana fermion1. Figure 4.2a shows the same
plots for class C. Systems of class C are only constraint by particle-hole symmetry. However,
in class C spin-rotation symmetry is not violated (C2 = −1) and the class is trivial in one
dimension, hosting no Majorana fermions. Due to the particle-hole symmetry the levels with
energies ±ε repel each other in class C, whereas in class D this level-repulsion is absent at
the Fermi level and clustering is possible, [4]. As a consequence, the midgap spectral peak
in the latter case is turned into a midgap spectral dip in class C. As it is clearly visible in the
top panel of fig. 4.2a, no level crossing occurs.

4.2 Multi-channel quantum wire

We now turn to the detailed analysis of multi-channel Majorana quantum wires. We consider
the setup shown in the upper part of fig. 4.3, representing the experimental setup of ref. [12]
discussed in section 3.4. A semiconductor quantum wire subjected to strong spin-orbit
coupling is proximity coupled to an s-wave superconductor (S). Through a tunnel barrier
(T ) the wire is connected to a normal metal lead (N), to which a small excess voltage, V , is
applied and thus a tunnel current into the central region is induced. In order to extract the
density of states, the differential conductance dI/dV is measured relative2 to the chemical
potential µ. As mentioned earlier, an anomaly in the density of states at the band centre
(V = 0) is believed to correspond to the presence of a Majorana fermion localised at the
tunnel barrier. In the lower part of fig. 4.3, the profiles for the gate-induced potential V ,
the chemical potential µ, as well as the order parameter ∆ are presented. Andreev bound
states, which will be present in the scattering region, are indicated by dashed lines in this
figure. The latter prove to be crucial for the emergence of the class D spectral peak, as we
will see later.
1The attentive reader might have noticed, that we have already discussed a possible effect leading to the
splitting of the spectral peak for high magnetic fields in sec. 3.3.1. A high magnetic field might destroy
the possibility to introduce p-wave superconductivity in the quantum wire. For completeness we note that
in ref. [13] this issue was addressed and the aforementioned splitting was utilised to underline the findings
of a Majorana particle. At any rate, the results remain inconclusive.

2Note that we chose the units e = ~ = c = 1.
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Figure 4.2: Top left: Spectrum of a random matrix ensemble of class C, as a function of a

system parameter r. Over the whole range of r the lower bands repel each other.
Bottom left: The corresponding ensemble-averaged density of states profile, as a
function of energy and r. Clearly no central peak is visible. Top right: Spectrum
of a random matrix ensemble of class D. At zero-energy band crossings occur.
Bottom right: The corresponding ensemble-averaged density of states. A spectral
peaks are visible at the left and right end. The splitting of the right peak into
two peaks is visible.

4.2.1 Hamiltonian of the model

We consider a multi-band quantum wire, proximity coupled to an s-wave superconductor and
subject to Rashba spin-orbit coupling and a magnetic field. We assume that the wire lies
along the x-axis and is of length lx and of width lz. The magnetic field B is applied along
the wire axis and the spin-orbit coupling is along the z-axis, while the y-axis is perpendicular
to the superconductor surface. The BdG Hamiltonian H for the system in the xz-plane is a
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Figure 4.3: Top: Model of the quantum wire composed of a spin-orbit nano wire terminated
by a tunnel barrier (T) and a superconductor (S). A magnetic field B is applied
along the wire axis. Bottom: Profiles of the superconducting gap ∆(x), the
chemical potential µ(x) and the gate induced potential V (x). The dashed lines
illustrate Andreev bound states present in the scattering region of length L.
Picture taken from [91].

variant of eq. (3.3) and reads

H = 1
2

∫
Ψ̄(x, z)

(
Ĥ0 + Ĥ⊥SO + Ŵ iσspy ∆∗
−iσspy ∆ −ĤT

0 − (Ĥ⊥SO)T − ŴT

)
Ψ(x, z) dx dz, (4.1)

with

Ĥ0 = −(∂2
x + ∂2

z )
2m − µ(x) +B(x)σspx − iα(σspz ∂x). (4.2)

Here we have chosen the spinor Ψ to be arranged as Ψ = (ψ↑, ψ↓, ψ̄↑, ψ̄↓). The supercon-
ducting pairing amplitude ∆ = ∆(x) is induced by the proximity to the superconductor and
the magnetic field is given by3 B. The Rashba spin-orbit coupling with respect to both,
the transverse and the longitudinal momentum, is represented by the two terms −iα∂x,z,
where α is the coupling constant. For reasons that will become clear later, we combine the
transverse contributions in a separate Hamiltonian

Ĥ⊥SO = iασspx ∂z, (4.3)

3More exactly, B is related to the actual applied external field H via B = 1
2gµBH.
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where the Pauli matrices σsp act in spin space. Disorder is modelled by adding the random
Hamiltonian Ŵ , which is assumed to preserve the symmetries of H. Details of Ŵ will be
discussed later. We assume a quasi one-dimensional geometry, i.e. a thin wire with a width
that is small compared to its length (lz � lx) and therefore introduce quantisation along
the transverse direction. Since Ĥ0 is separable with respect to the coordinates x and z, we
can decompose the fields into

ψσ =
∑
nσ

Φσ
n(z)ψ(n)

σ (x),

and ψ̄σ. We denote the transverse wave functions by Φσ
n(z), with spin index σ =↑, ↓ and

band index n. The transverse wave functions for an ideal wave guide are given by Φσ
n(z) =√

2
lz

sin
(
nπ
lz
z
)
. Taking the band index (n) into account, the Hamiltonian (4.1) takes the

form

H = 1
2

∫
Ψ̄(n)

(
Ĥ

(n)
0 δnm + (Ĥ⊥SO)nm + Ŵnm iσspy ∆∗δnm

−iσspy ∆δnm −(Ĥ(n)
0 )Tδnm − (Ĥ⊥SO)mn − ŴT

mn

)
Ψ(m)dx,

where Ĥ(n)
0 is given by

Ĥ
(n)
0 = − ∂2

x

2m + µ(n)
z − µ(x) +B(x)σspx − iασspz ∂x. (4.4)

The chemical potential of the n-th band µ(n)
z can be calculated directly using the kinetic

term in z-direction, yielding

µ(n)
z = π2n2

(2ml2z) . (4.5)

Next we argue that the transverse spin-orbit coupling, Ĥ⊥SO, does not contribute in a disorder
dominated regime and will therefore be absorbed into the random Hamiltonian. To this end
we notice that the spin-orbit interaction can be directly integrated to

(H⊥SO)nm = 2iπαm
lz

σspx

lz∫
0

sin
(
nπz

lz

)
cos

(
mπz

lz

)
dz

= −2iα
lz

nm

n2 −m2 (1− (−1)n+m)σspx .

We assume a thin wire, i.e. lz . lSO = ~/(mα) with lSO being the spin-orbit length. Under this
assumption, the above expression is small compared to the kinetic part (4.5), i.e. (H⊥SO)nm �
µ

(n)
z . This assumption is indeed justified since the estimated wire length and spin-orbit length
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Chapter 4 Quasiclassical theory of disordered multi-channel Majorana quantum wires

in the experiments [12] are approximately given by lz ≈ 100nm and lSO ≈ 200nm, respectively.
Therefore the spin-orbit contribution can be treated perturbatively. In order to do so, we
diagonalise the high-energy part of the Hamiltonian, (µ(n)

z δnm + (H⊥SO)nm) with help of a
unitary transformation Û . Since the perturbation H⊥SO is very weak, Û is essentially the
identity and its generators X̂, i.e. Û = exp(iX̂) ' 1+ iX̂ are of order O(lZ/lSO). The latter
are calculated by perturbation theory and to first-order are given by

X̂nm '
i(H⊥SO)nm
µ

(n)
z − µ(m)

z

, for n 6= m,

X̂nn = 0.

To keep our notation simple, or at least to not exacerbate it, we absorb the unitary transfor-
mation Û into the definition of the spinor fields, i.e. Ψ→ ÛΨ and Ψ̄→ Ψ̄Û †, as well as into
the disorder potential Ŵ → ÛŴ Û †. Recalling the definition of the one-dimensional Hamil-
tonian Ĥ(n)

0 in (4.4), we notice that only the (longitudinal) spin-orbit term does not commute
with the generators X̂. The same holds for the superconductor contribution. To take these
contributions into account, we introduce small corrections to the Hamiltonian for both, the
spin-orbit coupling V := α[X̂, σspz ]−∂x and the pairing amplitude δ∆̂ := −∆[X̂, σspy ]−. The
approximate Hamiltonian then reads

H ' 1
2

∫
Ψ̄(n)

(
Ĥ

(n)
0 δnm + V̂nm + Ŵnm iσspy ∆δnm + (δ∆̂)nm
−iσspy ∆δnm + (δ∆̂)∗nm −(Ĥ(n)

0 )Tδnm − V̂ T
mn − ŴT

mn

)
Ψ(n)dx(4.6)

Given that we are interested in the low-energy physics, in a regime where the effects of
disorders are dominant, we can safely neglect the contributions of V̂ and δ∆̂ and therefore
omit both terms henceforth.

4.2.2 Topological band

For single-channel quantum wires we learned that the wire is in the topologically non-trivial
phase (i.e. it can formally be mapped to the non-trivial phase of a p-wave superconductor),
if the magnetic field B exceeds a certain critical field Bc. For the multi-band wire we
now assume that the chemical potential µ lies close to the bottom of the N -th band, i.e.
µ ' µ

(N)
z . Due to the absence of inter-band scattering, it is this band that determines

whether the system is topologically trivial or not, hence we refer to this specific band as
topological band. In analogy to our single-channel discussion, the critical field is then given
by

Bc =
√

∆2 + (µ− µ(N)
z )2.
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Lb La Ra Rb

z
(N)

Figure 4.4: One-dimensional chiral fermions (R/L) are introduced in the spin-orbit quantum
wire. The open and filled dots represent channels a and b, respectively. The
dispersion relation for the a-channel is affected by the magnetic field B only if
the chemical potential lies close to µ(N)

Z .

If we assume the following hierarchy of energy scales: µ(N)
z − µ(N−1)

z � ESO � ∆ ∼ B, it
follows that given the critical field Bc, all bands with n < N , are automatically in the trivial
phase, since B2 � ∆2 + (µ− µ(n<N)

z )2.

4.2.3 One-dimensional chiral fermions and quasiclassical approximation

We are interested in constructing a low-energy description of the system at energy scales
. ESO, and in order to draw on the techniques introduced in chapter 2, a Hamiltonian
linear in momentum is imperative. Following our discussion of the emergence of Majorana
fermions in quantum wires in section 3.3, we consider the eigenvalues of Ĥ(n)

0 (4.4). In the
limit of strong spin-orbit coupling, ESO � B, we recognise the reappearance of two shifted,
intersecting parabolas in the spectrum of Ĥ(n)

0 (cf. our discussion in 3.3). The two Fermi
momenta for each band are given by

kcn = ∓αm+
√

2m
(
µ

(N)
z − µ(n)

z + ESO

)
,

where we introduced the index c ∈ {a, b}. Aiming for a low-energy description, we introduce
a set of chiral, (R) right and (L) left moving fermions and represent the field operators ψ(n)

σ

in terms of a superposition of the latter ones, i.e.

ψ
(n)
↑ ' R

(n)
a↑ (x) exp(ikanx) + L

(n)
b↑ (x) exp(−ikbnx),

ψ
(n)
↓ ' L

(n)
a↓ (x) exp(−ikanx) +R

(n)
b↓ (x) exp(ikbnx).

The spectrum of the wire as well as the introduced chiral fermions are illustrated in figure 4.4.
A conducting channel is defined by modes of the same modulus of the Fermi momentum
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Chapter 4 Quasiclassical theory of disordered multi-channel Majorana quantum wires

and is indicated by open and filled dots, respectively. Since each channel carries either index
a or b, we henceforth refer to c as the channel index and it is the latter that defines the spin
direction of the chiral fermion. In channel a for instance, right moving (R) fermions have
spin up while the left moving (L) ones have spin down, for channel b it is reversed. Within
the N -th band, the a-channel has a vanishing Fermi momentum kaN = 0 and a magnetic
field would open a gap separating the two parabolas (indicated by the grey curves in fig. 4.4,
cf. discussion in section 3.3). However, for strong spin-orbit coupling solely the a-channel is
strongly effected by the magnetic field. As an immediate consequence, the phase of the wire
is exclusively determined by this channel, and following our procedure of name-giving, we
refer to this channel as topological channel and ignore the effects of the magnetic field on
all other channels. Note however, that the effect of the pairing amplitude, appearing in the
off-diagonal entries of the BdG-Hamiltonian, is far from being nugatory. The Hamiltonian
eq. (4.6) can then be linearised around the Fermi momenta. Oscillatory contributions, i.e.
terms with phases i(

∑
i=a,b±ki)x, can be omitted since due to the large spin-orbit energy,

the Fermi length λF ∼ max(1/ka, 1/kb) is much bigger than the typical lengths involved
(ξ ∼ ∆/v and lB ∼ B/α). The linearised Hamiltonian is conveniently represented in a basis
with the spinors arranged as follows (leaving the band index (n) implicit)

Ψ = (Ra↑, Rb↓, La↓, Lb↑, R̄a↑, R̄b↓, L̄a↓, L̄b↑)T, (4.7)

and the conjugated vector is given by Ψ̄ = (σphx Ψ)T. Notice that due to the particle-hole
symmetry, the introduction of two chiral fermions (R/L), two channels (a, b) and N bands,
the spinor now acts in the 8×N -dimensional product space. With the Fermi velocity (of the
n-th channel) vn =

√
2m(µ(N)

z − µ(n)
z + ESO)/m and the chemical potential defined relative

to µ(N)
z , Ĥ(n)

0 is linearised to4

Ĥ
(n)
0 = −iσRLz − µ+ (B/2)σRL0 ⊗ (σab0 + σabz )δNn.

Note that the Kronecker delta δNn takes into account that only the N -th channel is sensible
to the magnetic field. In representation (4.7) the full linearised Hamiltonian is given by

H = 1
2

∫
Ψ̄(n)(x)

(
Ĥ

(n)
0 δnm + Ŵnm i∆σRLy ⊗ σabz δnm

−i∆σRLy ⊗ σabz δnm −(Ĥ(n)
0 )Tδnm − ŴT

mn

)
ph

Ψ(m)(x)dx. (4.8)

4In the simplistic notation we use, trivial extensions of the operators are omitted whenever possible. There-
fore, a solitary Pauli matrix σi appearing in a higher-dimensional expression has to be understood as
σi ⊗ σd−2, where d is the dimension the dimension of the expression.
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4.2 Multi-channel quantum wire

Notice that the particle-hole symmetry of the first-quantised single particle Hamiltonian is
defined by

Ĥ = −U−1
c ĤTUc, (4.9)

i.e. Ĥ is pseudo-skew symmetric5 with Uc = σphz .

4.2.4 Majorana representation

The Hamiltonian (4.8) is already linear in momentum, but for the quasiclassical description, it
is more convenient if the symmetry eq. (4.9) is represented by a skew-symmetric Hamiltonian
matrix

ĤT = −Ĥ.

We begin with defining a set of eight Majorana fields, which combined to a spinor will later
replace our field operator Ψ,

ξRa = (Ra↑ + R̄a↑)/
√

2,
ξRb = (Rb↓ + R̄b↓)/

√
2,

ηRa = (Ra↑ − R̄a↑)/
√

2i,
ηRb = (Rb↓ − R̄b↓)/

√
2i.

The corresponding fields for the left moving fermions are constructed analogously with re-
versed spins. The similarity to the Majorana operators defined in eq. (3.2) is of course not
accidental and hence this representation is baptisedMajorana representation. After arranging
the Majorana fields into a spinor of dimension 8N

χ̃ = (ξRa , ξRb , ξLa , ξLb , ηRa , ηRb , ηLa , ηLb )T,

it relates to Ψ by a unitary transformation

χ̃ = UΨ, χ̃T = Ψ̄U †,

where

U = σab0 ⊗ σRL0 ⊗ 1√
2

(
1 1
i −i

)
ph

. (4.10)

5The kinetic part transposes as ∂T
x = −∂x.
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In a last step we combine Majorana fields of same chirality, i.e. ξC = (ξCa , ξCb )T and ηC =
(ηCa , ηCb )T with C = R/L, in order to rearrange them according to

χ = (ξR, ηL, ηR, ξL)T. (4.11)

The Hamiltonian (4.8) is then represented as follows

H =
N∑

n,m=1

1
2

∫
χT
n (x)H̃nm(x)χm(x)dx,

with

H̃nm(x) =
(

Ĥ
(n)
− δnm + iŴ−−nm iµσRLz ⊗ σab0 δnm + iŴ−+

nm

−iµσRLz ⊗ σab0 δnm + iŴ+−
nm Ĥ

(n)
+ δnm + iŴ++

nm

)
, (4.12)

where we defined

Ĥ
(n)
± = −ivnσRLz ⊗ σab0 ∂x − σRLy ⊗ ∆̂(n)

± ,

∆̂(n)
± = ∆σabz ± (B/2)(σab0 + σabz )δNm.

Provided that the disorder potentials are constructed in a way6 that Ŵ++ as well as Ŵ−−
are skew-symmetric, while the off-diagonal entries are related by (Ŵ+−)T = −Ŵ−+, the
particle-hole symmetry is represented by the skew-symmetry H̃T = −H̃.

4.2.5 Disorder potential

We now specify the statistics of the disorder potential Ŵ . Ŵ is chosen to be δ-correlated,
Gaussian distributed with a zero mean value 〈Ŵ (x)〉 and its explicit construction is given by

Ŵ−− =
(
ŵRR2 −ŵRL1
ŵLR1 ŵLL2

)
ab

, Ŵ−+ =
(
−ŵRR1 ŵRL2
ŵLR2 ŵLL1

)
ab

.

The random matrices ŴRL are constructed in terms of a real and imaginary part

ŴCC = ŵCC1 + iŵCC2 ,

6Keep in mind that we introduced the disorder Hamiltonian in a way that it respects the symmetries of the
system.
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for C ∈ {R,L} and ŵ1,2 being a symmetric and a skew-symmetric matrix, respectively. The
off-diagonal entries can then be constructed via the relations

Ŵ+− = −σabz Ŵ−+σabz , Ŵ++ = σabz Ŵ
−−σabz .

The variance of the disorder potential is

〈wijz (x)wi′j′z (x)〉 = γW
2 δ(x− x′)

(
δii′δjj′ + (−1)z+1δij′δji′

)
, (4.13)

where z = 1, 2 and i, j label states in the product space of band, channel and chirality.
Notice that by construction, these scattering matrices are breaking time-reversal and spin-
rotation symmetry and therefore explicitly include spin-flip scattering. The coefficient γW ,
which defines the strength of the disorder, is correlated to the scattering rate of the normal
conducting quantum wire by

1
τ

= 2γ2
W

N∑
n=1

1
vn
. (4.14)

4.3 Quasiclassical approach to multi-channel quantum wires

The Hamiltonian (4.12) is linear in momentum and we are in a position to treat the model
within quasiclassical framework introduced in chapter 2. In the latter we discussed that
the terminology quasiclassical approximation in quasi one-dimensional geometries, as the
ones discussed in this chapter, refers to the possibility to linearise the spectrum around the
chemical potential. Note that the latter was possible due to the presence of the magnetic
field in the coupling between left and right moving states for the topological channel (see
discussion around eq. (4.8)), provided that ESO � max{B,∆}. Once the model specific
representation of the involved operators (such as U and Γ) have been identified, the technique
can be applied straightforwardly. The familiar procedures thus include the calculation of the
Eilenberger functions in the clean limit and the subsequent construction of the full Eilenberger
function using transfer matrices. Following our strategy outlined in chapter 2, a topological
invariant can be constructed using the symmetry relations of the Eilenberger function. By
solving the full disordered Eilenberger equation numerically, a physical observable (the local
density of states) can be calculated.

4.3.1 Eilenberger equation and Eilenberger function

The kinetic part of the already linearised Hamiltonian (4.12) was given by Ĥ(n)
± δnm+σRLy ⊗

∆̂(n)
± , and thus if we comprise all remaining terms of the Hamiltonian in m̂, the Hamiltonian
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takes the form

H̃nm(x) = −ivnδnmσRLz ⊗ σab0 ∂x + m̂,

which resembles the Hamiltonian (2.4) with the identification

Γ = σRLz .

Notice that the Majorana basis was constructed in a way that, the particle-hole symmetry
is trivially represented by UC = 1 and, according to eq. (2.10), uc = σRL3 . The Green’s
function (2.5) takes the form

gR/Anm (x, x′; ε) =
√
vnG

R/A
nm (x, x′; ε)σRLz

√
vm,

where a band index is now present in G and the velocities v. The evolution operator follows
directly from the definition eq. (2.6)

Lε = −iσRLz
(
εv−1
n δnm +

√
vnvm

−1m̂nm

)
. (4.15)

We start with the definition (2.8) and solve the isotropic Eilenberger eq. (2.9) for constant
magnetic field and pairing amplitude, in an infinite clean wire. In this limit, the kinetic
part as well as m̂ are diagonal in channel-space and therefore all channels are completely
decoupled, allowing us to single out the topological channel (channel a with band n = N).
We concentrate on this particular channel, but the generalisation to the Eilenberger function
of the remaining channels is easily constructed by rescaling the velocities, setting B = 0 and
switching the overall sign of the pairing amplitude ∆→ −∆ for the b-channels (cf. eq. (4.8)).
If Qε(B,µ) is the corresponding reduced single-channel Eilenberger function (of dimension
4× 4), and Lε the reduced evolution operator, they have to commute [Qε, Lε]− = 0 and Qε
has to obey the non-linear constraint Q2

ε = 1. The reduced version of eq. (4.15) is given by

Lε = −i
(
εσRLz − i∆−σRLx −iµσRL0

iµσRL0 εσRLz − i∆+σ
RL
x

)
,

and its eigenvalues are straightforwardly calculated

λ± =
√
λ0 ± λ, (4.16)

where

λ0 = B2 + ∆2 − µ2 − ε2,

λ = 2
√

(B∆)2 − (∆2 − ε2)µ2.
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We introduce the eigenvalue matrix

λ̂ := diag(λ+, λ−)

and assume that Lε is diagonalised by a transformation T as follows

Lε = T (λ̂⊗ σRLz )T−1. (4.17)

We have chosen the diagonalisation such that the real part of the eigenvalues is positive.
For a detailed discussion we refer to chapter 2. This convention allows us to simply read off
the signature matrix Λ, which is used to construct the Eilenberger function Qε = TΛT−1.
Equation (4.17) thus tells us that Λ = σRLz = Γ, Qε satisfies the constraint Q2

ε = 1 and
solves the isotropic Eilenberger equation [Qε, Lε]− = 0.

Given the solution of the homogeneous Eilenberger equation, we are in the position to
define the topological invariant for the clean (terminal) system. To this end, we notice that
particle-hole symmetry is represented by

σRLz QT
−ε(x)σRLz = −Qε(x).

Consequently, at zero energy the object Q̃ε=0 = σRLz Qε=0 is skew-symmetric. Skew-
symmetry implies the existence of a Pfaffian and since7

detQ = det Λ = 1 = detσRLz det Λ = det Q̃,

the Pfaffian (being the square-root of the determinant) of Q̃ defines the desired Z2-invariant.
Now consider the eigenvalues (4.16) at zero energy. The kernel of Lε=0 is only non-trivial
if the magnetic field8 B reaches a critical field strength Bc =

√
∆2 + µ2. At this point, a

Pfaffian cannot be defined since Q̃ becomes singular, a fact to which we will return later.
However, for B 6= Bc we can construct the topological invariant

N = Pf(Q̃) = λ+λ−
∆2 + µ2 −B2 =

{
+1, B < Bc

−1, B > Bc.
(4.18)

N = +1 thus indicates the topological trivial phase, while N = −1 indicates a non-trivial
system. Hence, the topological phase of the terminal (Q̃±) is determined by eq. (4.18).

7Mind the gap in the sloppy notation, σRLz = σRLz ⊗ 12 and thus detσRLz = detσz2(det12)2 = +1
8It is important to mention that one could define an equivalent criteria for other system parameters, such
as the chemical potential µ as it is done later in the text.
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4.3.2 Density of states

The bulk density of states is defined in terms of the Eilenberger function Qε as

ν(ε) = 1
2πvRe TrσRLz Qε. (4.19)

Notice that the upper expression depends on the product of Γ · Qε rather than just on Qε,
which due to the invariance of trace would lead to homogeneous density of states. However,
since ν(ε) depends on the transformation matrices T , which are far from being trivial, we
would like to make use of the invariance of the trace, in order to derive an expression that
rather depends only on the evolution operator and its eigenvalues. To this end, we represent
the Eilenberger function as9

Qε =
∑
i=+,−

Lε/λiP
i, (4.20)

where the projectors on the space of eigenstates of Lε with eigenvalues ±λ± are denoted by
P±. The latter are explicitly given by

P± = 1
2T (12 ± σz)⊗ 12T

−1,

and indeed we see that

TQεT−1 = λ̂

2λ+
⊗ σRLz · (12 + σz)⊗ 12 + λ̂

2λ−
⊗ σRLz · (12 − σz)⊗ 12 = 12 ⊗ σRLz = Λ.

A T -independent representation of the projectors P± is achieved using that

L2
ε = T (λ̂⊗ σRLz )2T−1 = T

(
diag(λ2

+, λ
2
−)⊗ 1RL

)
T−1

= T diag(λ0 + λ, λ0 − λ)T−1 = Tλ014T
−1 + λP+ − λP−.

Hence the projectors are given by

P± = 1
2

(
14 ±

1
λ

(L2
ε − λ014)

)
,

and together with eq. (4.20) we arrive at a representation of Q that solely depends on Lε and
its eigenvalues. The clean density of states (4.19) can now be calculated straightforwardly.
Figure 4.5 illustrates the density of states profiles and spectra for different values of the

chemical potential µ. The very definition of ν(ε) shows that it is singular for vanishing

9In a way this step can be viewed as analogy to flattening of Hamiltonians described in section 1.3.
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Figure 4.5: Spectrum and DoS profiles of the clean nanowire for various values of the chemical
potential. The gap of the spectrum is open below the critical µc (a), is closed
in at the critical point (b), and reopens in again beyond the critical point (c).
For higher chemical potentials, the lower band develops two minima (d). Picture
taken from [91].

eigenvalues λ±(ε) = 0 and the position (in energy) of this singularities are

ε± = |B ±
√

∆2 + µ2|.

At B = Bc, the lower singularity ε− is located at zero-energy and the gap is closed.
In experiments, the chemical potential µ rather than the magnetic field B is used as tunable

parameter. Fixing the magnetic field and pairing amplitude and assuming that B > ∆, the
critical point at which the gap closes translates to

µc =
√
B2 −∆2.

Gap closing at µ = µc is shown in fig. 4.5b, the two distinct phases can then be identified
by µ < µc (fig. 4.5a) or µ > µc (fig. 4.5c). In the latter case the gap re-opens but with
the system belonging to a different topological phase. Upon further increasing the chemical
potential beyond

µ∗ =
√
B2 +B

√
B2 + 4∆2/

√
2,

the Fermi momentum ka of the topological channel deviates from zero, resulting in an
additional minimum in the spectrum and an additional van-Hove singularity in the density
of states at

ε0 = ∆
√

1−B2/µ2,

as can be seen in fig. 4.5d.
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4.3.3 Disordered case

Given the analytic solution for the clean system, we now solve the Eilenberger equation for
a finite disordered wire. It is obvious that the solution will depend on the specific disorder
realisation and a full analytic solution is out of hand. We will therefore make use of numerical
computations in order to obtain observables averaged over many different realisations. The
formal solution of the Eilenberger equation was already discussed in section 2.2.3 and we
will draw on this results. We model the system by the prototypical setup shown in fig. 2.1
with two superconductors constituting the terminals at the end of the wire. The disorder
scattering rate 1

τ ∼ Nγ2
W 〈 1

vn
〉 is chosen in a way, that it does not exceed the energy gap,

ε− or ε0 (depending on the value of µ) in the terminals, and we can therefore safely neglect
the disorder in the terminals10. The symmetries of the evolution operator L as well as the
transfer matrix M are given by eq. (2.18) and (2.19) with Γ = uC = σRLz . To connect
the prototypical setup (fig. 2.1) to the experimental realisation (fig. 4.3), we replace the left
superconducting terminal by a tunnel barrier and ignore effects like spin-flip scattering at
the barrier, as well as inter-channel scattering. A glance at fig. 4.4 reveals that the chiral
fermions at the tunnel barrier obey the following reflection conditions

Ra↑(xL) = exp(iφ)Lb↑(xL), Rb↓(xL) = exp(iφ)La↓(xL), (4.21)

provided that the barrier conductance is vanishing, gT � 1. In eq. (4.21) the reflected
fields acquire an energy-depended phase φ, which at this point is undetermined. In the
representation (4.7) these boundary conditions are equivalent to

(1−R)Ψ(xL) = 0, Ψ̄(xL)(1−R) = 0, (4.22)

where the reflection matrix in particle-hole space is defined as

R = diag(r, r∗)ph

with

r =
(

0 exp(iφ)σRLx
exp(−iφ)σRLx 0

)
.

Notice that the particle-hole symmetry in this representation ensures that Ψ̄ = (σphx Ψ)T

and RT = σphx Rσ
ph
x . In order to translate the boundary conditions for the fields Ψ and Ψ̄

to conditions on the Green’s functions g(x, x′; ε) and ultimately on Qε(x, x′), we recall the
definition of g(x, x′; ε), eq. (2.5). Together with the fact that [σRLz , r]+ = 0, it follows that

10Disorder due to the proximate superconductor can be ignored [85, 97].
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eq. (4.22) translates to

(1−R)(1−QL) = 0, (1 +QL)(1+R) = 0.

For R = −Q−, the upper expression resembles the boundary conditions eq. (2.22). The
matrix Q− has yet to be transformed into the Majorana representation, which is straight-
forwardly done by conjugating Q− with the matrix11 U · (1⊗ σRL+ + σx ⊗ σRL− )⊗ 1ab, with
U taken from eq. (4.10). In the Majorana representation the Eilenberger function for the
tunnel barrier Q−, thus reads

Q− = −(sin(φ)σphz + cos(φ)σphx )⊗ σRLx ⊗ σabx .

Normalisation is ensured since R2 = Q2
− = 1 and the boundary Eilenberger functions QL

and QR can be obtained using eqs. (2.23).

Majorana number

Prior to the disordered case the topological quantum number N for the clean case (the
terminal Eilenberger functions) was defined in eq. (4.18). For the tunnel barrier it follows12

Pf(σRLz Q−) = Pf(i(sin(φ)σphz + cos(φ)σphx )⊗ σRLy ⊗ σabx ) = +1,

and we conclude that the tunnel barrier is in the trivial phase. Q+ can be calculated following
the scheme outlined in section 4.3.1 and the Z2-invariant of the wire (cf. our analysis in
sec. 2.3.1) is given by

M = Pf(σRLz Q+) Pf(σRLz Q−), (4.23)

i.e. the product of the invariants N for both terminal Eilenberger functions. A proof that in
the case of M = −1, the system hosts edge modes at zero-energy, identified as Majorana
fermions, was given in sec. 2.3.1 and appendix A. The latter are localised in the disordered
regime between the two terminals and for obvious reasons the invariantM is referred to as
Majorana number [9].

4.3.4 Single-channel case

Before we proceed with the numerical computation of the Eilenberger function in class D,
we use this opportunity to add yet another example to our collection of examples discussed
in section 2.4. We construct the topological invariant for a system of class BDI. In case of
a single channel, the multi-channel quantum wire of class D can be considered as a member
11The second matrix in this product represents the rearrangement in eq. (4.11).
12Notice that ΓQ− opposite to Q− is a skew-symmetric matrix.
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Chapter 4 Quasiclassical theory of disordered multi-channel Majorana quantum wires

of class BDI. Consider the Hamiltonian (4.12) in the Majorana representation. The clean
single-channel version is given by

H̃(x) =
(

h−0 iµσRLz
−iµσRLz h+

0

)
,

where h±0 = −iv∂xσRLz − σRLy (∆ ± B). The Hamiltonian is skew-symmetric and anti-
commutes with US = 1 ⊗ σRLx (recall BDI is a chiral classes). In order to transform the
Hamiltonian into a block off-diagonal form, US is transformed to ÛS = σz ⊗ 1 by virtue of
the unitary transformation

R = 1√
2

(
1⊗

(
1 −i
1 i

))
·
(

Σ11 Σ21
Σ12 Σ22

)
,

where Σij is a 2 × 2-matrix with only one non-vanishing entry at the ij-component, e.g.

Σ12 =
(

0 1
0 0

)
and Σ22 =

(
0 0
0 1

)
. The transformed Hamiltonian in this basis is given by

Ĥ = R†H̃R = −µσy ⊗ σy + σx ⊗ (Bσz −∆1)− iv∂xσ2 ⊗ 1

and anti-commutes with ÛS . We immediately identify

Γ = σy ⊗ 1,
m̂ = −µσy ⊗ σy + σx ⊗ (Bσz −∆1).

The evolution operator at zero energy decomposes into block diagonal form

L0 = diag(L1
0,L2

0),

where the blocks are given by

L1
0 = σzB −∆1− iµσy

and L2
0 = −σzL1

0σz.

The eigenvalues of the blocks are easily computed

λi± = (−1)i+1∆∓
√
B2 − µ2,

where the index i = 1, 2 labels the blocks. Depending on whether the magnetic field B
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exceeds the critical field Bc ≡
√

∆2 + µ2 or not, the signature matrix reads

Λi =
{
−1⊗ σz, B > Bc

σz ⊗ 1, B < Bc.

Since the topological invariant in class BDI is given in terms of traces of Q, which is invariant
under similarity transformations, there is no need to calculate the explicit form of Q. The
topological invariant for class BDI is then given by

M = 1
2

(
tr Λi+ − tr Λi−

)
=
{

1, Λi− 6= Λi+
0, Λi− = Λi+,

as desired.

4.4 Numerical results and discussion

In this section we present the main results of this chapter. As an analytic solution of
the disordered Eilenberger equation is out of question, we rely on an efficient numerical
method to tackle the problem. The method used relies on the the fact that the disordered
Eilenberger function can be obtained from the Eilenberger functions deep within the terminals
(as solutions of the isotopic Eilenber equations), by evolving them using a transfer matrix. In
order to calculate the disordered Eilenberger function Q(x), we apply the following scheme
for a given disorder realisation:

i. Construct the terminal Eilenberger function as solutions of the isotopic Eilenberger eq.

ii. Compute the transfer matrix M by numerically solving the corresponding systems of
linear first-order differential equations.

iii. Compute the boundary (or interface) functions QR and QL by applying eq. (2.23).

iv. Compute Q(x) by applying the transfer matrix M(x, xR/L) to QR/L.

Given Q(x), we find the local density of states (LDoS) νL(ε) = (2πv)−1Re tr(σRLz Q(x =
xL)) at the left end of the wire, close to the tunnel barrier. The LDoS relates to the
differential conductance of the system (measured in real experiments) by

dI
dV = e2

16π~gT
+∞∫
−∞

∂εfF (ε− V )νL(ε)
ν

dε,

where gT is the tunnel conductance of the barrier, fF is the Fermi distribution, ν is the DoS
in the single chiral channel per unit length and the voltage V is applied to the left of the
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Chapter 4 Quasiclassical theory of disordered multi-channel Majorana quantum wires

normal lead (N in fig. 3.4). A possible Majorana peak in dI/dV at V = 0 should thus be
represented by a singularity in νL(ε = 0).

4.4.1 Numerical realisation of boundary conditions and disorder potential

The tunnel barrier to the left of the system discussed in section 4.3.3, was considered
to be in the limit of a high potential barrier, i.e. φ = π. The topological invariant NL

for the left terminal is NL = +1 and thus trivial. The topological phase of the right
terminal (superconductor) however, is set by the parameters B,∆ and µ. According to
eq. (4.23) the phase of the total system is then solely determined by the right supercon-
ducting terminal, i.e. it is non-trivial (NR = −1) if µ > µc and trivial (NR = +1) for µ < µc.

The δ-correlated random potential introduced as an expansion in terms of eigenfunctions

Ŵ (x) =
Nmax∑
k=1

√
2
lx

sin
(
πxk

lx
+ πk

2

)
Ŵk,

vanishing at the ends of the scattering region. The matrix elements (wijm=1,2)k of Ŵk were
taken from a Gaussian distribution with variance γW (cf. eq. (4.14)) and correlators as
described13in eq. (4.13). In practice a maximum of Nmax = 10 harmonics proved to be
sufficient.

4.4.2 Disorder averaged local density of states

The numerically calculated LDoS for the disordered wire is by nature a random quantity, hence
it exhibits mesoscopic fluctuations and a disordered averaged quantity is desired. Figure 4.6
shows such an averaged LDoS 〈νL(ε)〉 as a function of energy, averaged over approximatively
500 realisations of disorder configurations. The density of states were numerically calculated
following the procedure outlined above. The figure shows the averaged LDoS at the left
tunnel barrier for two sets of data, corresponding to both possible phases, i.e. Majorana
number M = ±1. The red solid curve corresponds to the topological non-trivial case, i.e.
a situation with a Majorana bound state, while the green dashed curve corresponds to the
trivial case without such a state. Remarkably, in both situations the density of states shows
a zero-energy peak.
To understand this results, we consider the normal region between the tunnel barrier and

the superconductor, to form an effective quantum dot hosting random quasi-particle subgap
energy states. These Andreev bound states of different transport channels will hybridise in
the presence of a moderate amount of disorder. Since only particle-hole symmetry is present,
the chaotic Andreev quantum dot belongs to either class B or D, depending on the parity of
13Note that eq. (4.13) is given in real space, hence the delta distribution δ(x− x′) needs to be replaced by

the Kronecker delta δkk′ .
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Figure 4.6: Disorder averaged local density of states (LDoS) at the left end of the spin-
orbit quantum wire illustrated in fig. 4.3 (in units ν = 1/2πv). The number of
occupied bands N = 2 corresponds to four transport channels. Parameters are:
(i) red solid line (M = −1), B = 2.66∆, µ = ∆ — topological phase; (ii) green
dashed line (M = +1), B = 0.25∆, µ = 0.5∆ — trivial phase. The wire length
is L = 4v/∆, dimensionless strength of disorder γ2

w/v = 0.16∆, which translates
into the mean free path l = 0.4L. Tunnelling rate Γ = 5 · 10−2∆. Velocities in
two bands were taken to be equivalent, v1 = v2 = v. The inset shows profiles of
the DoS resulting from random matrix theory. Picture taken from [91].

the total number of subgap levels (counted for both, quasi-particle and quasi-hole states).
Class B (an odd number of channels in our discussion in section 4.1) thus corresponds to
the topologically non-trivial phase, i.e. B > Bc for the topological channel.14 While for
B < Bc in the topological channel, the system belongs to symmetry class D. In random
matrix systems of class D the repulsion between quasi-particle and quasi-hole energy levels
is absent and energy states cluster around zero-energy, [4]. Consequently will the averaged
density of states develop a spectral peak which is rigidly tied to zero energy (fig. 4.1).
This spectral peak is clearly present in the results shown in fig. 4.6. As the magnetic field
B is varied, Andreev bound states emerge and abscond from the quasi-particle spectrum.
However, at the critical field Bc the two lowest Andreev levels (conjugated pairs) merge
into a single state, the Majorana bound state (compare fig. 3.1). Notice that this implies a
change in level parity from even to odd. The insets in fig. 4.6 illustrates the DoS profile for
class B and D (cf. fig 4.2) resulting from random matrix theory.
Figure 4.7 shows the three-dimensional averaged density of states profile of the wire. At

the left end (xL) the wire is connected to the tunnel barrier and the density of states signalises
14This identification follows from the fact, that we keep the number of channels fix and the topological

channel solely determines whether the entire system is trivial or not.
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Chapter 4 Quasiclassical theory of disordered multi-channel Majorana quantum wires

a peak in both cases, the trivial and the non-trivial one, respectively. In agreement with the
above discussion.
The numerical method used solves the Eilenberger equation for an energy that is shifted

into the complex plane, ε → ε + iη. The imaginary off-set η is due to the possibility for
states in the scattering region to escape to the states in the lead through the tunnel barrier.
The decay rate can be estimated as η ∼ gT δ, where δ ∼ πv

2NL is the mean level spacing in
the scattering region of length L. It is for this off-set, that the Majorana peak (M = −1) in
fig. 4.6 acquires a finite width ∼ η. For resolutions limited to the values of order of the mean
level spacing δ, both structures in fig 4.6 look almost indistinguishable and may therefore
hinder an unambiguous detection of a Majorana fermion by tunnel spectroscopy.

4.4.3 Sample-to-sample fluctuations

One of the most important features of random matrices is the repulsion of neighbouring
eigenvalues (for uncorrelated levels). It is this repulsion of levels that leads to the rigidity of
random matrix spectra. This rigidity manifests itself in weak sample to sample fluctuations15.
Figure 4.8 shows the comparison of the averaged LDoS to the typical LDoS, i.e. the average√
〈v2
L〉. The strength of mesoscopic fluctuations is determined by the standard deviation

δν(ε) = 〈(ν(ε)− 〈ν(ε)〉)2〉1/2,

and, as illustrated in fig. 4.8a, is relatively small, indicating the weakness of fluctuations.
Consequently we expect the sample specific LDoS to show the same anomaly as the averaged
quantity or put differently, the appearance of a disorder peak depends on the realisation.
Two realisations for the non-topological regime are shown in fig. 4.8b, no averages were

taken and no Majorana state is present. The figure shows two possible scenarios: In the
first (corresponding to the green dashed curve in fig. 4.8), the two lowest Andreev states
(±εmin) are clearly separated and no zero-energy peak is visible. In the second scenario,
these two states lie very close to the Fermi level and the energy difference does not exceed
the broadening η, i.e. εmin < η. In this case the DoS will show a single peak indistinguishable
from the anomaly due to the Majorana fermion.

4.4.4 Dependence on the magnetic field

In ref. [12] the dependence of the alleged Majorana peak on the magnetic field B was
investigated in order to underline its topological nature. To this end, it was argued that
the vanishing of the latter at zero-magnetic field as well as for a rotation of the field out
of the plane, would substantiate the claim. However, we will now see that relatively simple
arguments lead to the conclusion that such rotations of the magnetic field do not serve as
an unambiguous evidence towards the topological nature of the peak.
15More precise the variance of the number of eigenvalues in an interval grows logarithmically with its length.
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xL

xR

xL

xR

Figure 4.7: Averaged local density of states (averaged over approx. 100 samples) as a func-
tion of energy and coordinate for the system illustrated in fig. 4.3. The insets
show cuts through the plot at the interface to the left end. Top: Topologically
non-trivial. Bottom: Topologically trivial phase. Parameters as in fig. 4.6.

First we consider what happens in the case of vanishing magnetic field. Without an applied
field the time-reversal symmetry is restored (the spinless regime is lost) and the wire migrates

109



Chapter 4 Quasiclassical theory of disordered multi-channel Majorana quantum wires

D
oS

 [ν
]

12,5

15

20

22,5

25

ε /Δ
−1 −0,5 0,5 1

ν

ε

D
oS

 [ν
]

0

5

10

15

20

25

30

35

ε /Δ
−1 −0,5 0 0,5 1

Figure 4.8: Left: The average LDoS (solid green line) and the square root of its second
(reducible) moment 〈ν2

L(ε)〉1/2 (dashed blue line) at the left end of the spin-orbit
quantum wire in the trivial phase (M = +1). System parameters are chosen as
in fig. 4.6. The inset shows profiles of the mean DoS and the square root of the
two level correlation function resulting from random matrix theory. Right: The
sample specific LDoS in the trivial phase without Majorana state (M = +1)
for two different disorder realisations. Tunnelling rate Γ = 0.05∆, other system
parameters are the same as in fig. 4.6. Curves demonstrate two typical scenarios:
(i) two conjugate Andreev bound states ±εmin lying close to Fermi energy and
having energy splitting ∼ Γ (dotted green line); (ii) particle and hole states have
merged into a single zero-energy peak of width Γ and can not be resolved by
tunnel spectroscopy (solid magenta line). For the chosen set of parameters the
mean level spacing δ = 0.2∆ and the gap in the S region ε− = 0.87∆. Thus one
has approximately Nlevels ' 8 random Andreev levels. Picture taken from [91].

to class DIII. The averaged density of states for class DIII is given by [93]

νDIII(ε) = π/2ε
(
J ′1(ε)J0(ε) + J2

1 (ε)
)
± π/2J1(ε)− (1− (−1)N )/2δ(ε/2π),

where the dimension of the Hamiltonian is 2N × 2N and Jn(ε) are the Bessel functions
of first kind. The minimal dimension of the Hamiltonian describing our quantum wire is
4× 4 and N turns out to be always even. Therefore the density of states (shown in fig. 4.9)
vanishes at zero energy and no peak structure will be present, neither spectral nor Majorana
peak.
The effect of rotating the magnetic field perpendicular to the wire, i.e. in z-direction, is

similar. Consider the Hamiltonian (4.2), rotating the magnetic field perpendicular to the wire
axis would result in the replacement of σspx by σspz . The spin-orbit contribution eq. (4.3) can
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Figure 4.9: Averaged density of states 〈ν〉 for class DIII as a function of energy with N ∈ 2N.
No zero-energy anomaly is present.

be neglected for a thin wire, lz � lSO and the BdG Hamiltonian H (4.1) is thus invariant
under rotations about the z-axis, i.e. [H, σphz ⊗ σspz ]− = 0. A subsequent reordering of the
spinor fields Ψ 7→ (ψ↑, ψ̄↓, ψ̄↑, ψ↓), decomposes the BdG Hamiltonian into two blocks (up to
a trivial term) of the form H# = −σz((

∑
i ∂

2
i )/2m+µ+iα∂x)+B+∆σx. The latter clearly

belong to class A (no symmetry restrictions). As a member of the classical Wigner-Dyson
classes, the density of states is flat showing no oscillations at all. And indeed, according to
table 1.2 the system is a trivial insulator in one dimension, hosting no Marihuana particles.
We thus conclude that a proof for the topological origin of a Majorana fermions depending

on the direction of the magnetic field, is not very reliable.

4.4.5 Mean free path and number of subgap states

The scattering rate is given by eq. (4.14) and since all quantities are expressed for uniform
band velocities (vn = v = 1) the mean free path is given by l = 1/2Nγ2

W . For our
numerical calculation a disorder strength γ2

W = 0.16∆ was chosen and accordingly the mean
free path l ' 0.4L is of the order of the length of the two-channel wire, L = 4v/∆. Thus
the system underlying the numerical data in fig. 4.6 is at the border between a ballistic
and localised regime16. However, despite being produced for a wire whose spectrum is
not entirely chaotic, the similarities between the DoS profiles shown in fig. 4.6 and the
averaged analytic DoS profiles from random matrix theory for class D and B shown in
fig. 4.1, are eminent. It seems that close to the left barrier, the subgap states do indeed form
an effective chaotic quantum dot as described earlier. As an additional cross-check we can
check the number of subgap Andreev levels that constitute the dot. To this end we recall
that the BCS gap ε− = |B−

√
∆2 + µ2| confines the subgap and thus inhabits approximately

Nsubgap ' 2ε−/δ Andreev levels, where the mean level spacing was given by δ ∼ πv
2NL . Now

consider fig. 4.8b, with the chosen parameters the mean level spacing is δ = 0.2∆ and the
BCS gap is ε− = 0.8∆, resulting in approximately Nsubgap ' 8 Andreev levels. The latter
16Notice that due to the relatively few number of channels, no true diffusive regime is present.
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are easily confirmed by simply counting the peaks in fig. 4.8b in the interval (−ε−,+ε−).
Note that for the plot with the broadening exceeding the minimal energy spacing (magenta
curve), the central peak has to be considered with a multiplicity of two.

4.5 Summary

In conclusion, we have studied disordered multi-channel Majorana wires using the quasiclassi-
cal approximation introduced in the second chapter of this work. The topological Z2 invariant
of class D was explicitly derived using the terminal Green’s functions. Since one of them is a
trivial tunnelling barrier, the invariant solely depends on the phase of the proximity coupled
superconductor terminal. The claimed experimental observation of Majorana fermions [12]
at the end of such wires was been questioned. Using an efficient numerical method, based
on the quasiclassical description, we proved that even small amounts of disorder (which are
unavoidable) in the quantum wires, will lead to a deceiving signature (called class D spectral
peak) in the spectrum, sharing key features with signatures of a Majorana fermion [91]. This
signature is due to clustering of energy states around zero energy and is present in the topo-
logically trivial regime. It is shown that this disorder induced spectral peak may aggravate
an unambiguous detection of the Majorana fermion by tunnelling spectroscopy techniques,
confirming the scepticism expressed in ref. [19]. In passing we note that similar conclusions
have been reached in ref. [20, 21]. The latter of both references bases its conclusion on
the weak anti-localisation effects, which however relies on the same physical mechanism, i.e.
strong midgap quantum coherence.
A detection scheme involving the investigation of topological properties of the Majorana

fermion, rather one that is purely based on spectral properties therefore remains highly
desirable [82, 84, 98].

4.6 Disorder induced domain walls in quantum wires at criticality

In this section, we present an ongoing study on quantum wires at criticality. The results we
present are preliminary and further investigations remain to be done. We discuss the influence
of disorder on a class D quantum wire at criticality and address the question, whether
disorder fluctuations lead to the emergence of local domain walls, separating large regions
of different topological phases. At the transition separating the two phases, edge modes are
expected to appear. Such disorder induced domain walls may hint towards the stabilisation
of topological phases within the system. Possible approaches on how to distinguish robust
topological excitations from local disorder-induced midgap sates, will be addressed as well.
Throughout this section we make use of the numerical method introduced in the previous
section. In ref. [99] the formation of such domain walls separating large regions in two
different phases was studied using a renormalisation group approach. The observed non-
universal contributions to certain low-energy properties indicated that such effects exist in
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one-dimensional disordered superconductors.
As a warm-up, we start with a disorder-free toy model of the class D setup, as illustrated in

fig. 2.1. We choose both terminals to be equivalent with constant system parameters B, ∆
and µ throughout the whole system. In the absence of disorder, an analytic solution for µ = 0
is at hand. To study the effects of disorder, we introduce domain walls by hand in the system.
Such domains are created by modulating the profile of one parameter, say ∆ = ∆(x), as
function of space. If these modulations locally change the phase of the system, e.g. changing
from ∆ < B to ∆ > B, we expect to find edge states at the boundaries. However, since the
wire is finite, the support of the domains is limited. For short distances between two domain
walls, the edge modes will be strongly hybridised, and split in energy (c.f. sec. 3.2.3). The
splitting decreases exponentially with wire length (or distance) as it is illustrated in fig. 4.10.
Figure 4.11 shows the local density of states as a function of energy, as well as space and the
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Figure 4.10: The splitting (in energy) of an edge mode is determined by the distance of
the two split peaks. The splitting decreases exponentially with the wire length.
Note that L denotes half of the wire length and the factor b > 0 is a fitting
parameter.

corresponding profile of parameters. For simplicity we only show the left half of the wire. As
expected, with increasing domain length (or decreasing distances) the states split in energy
and hybridise with the partner states in the second half of the wire (not shown in the plots).
The normalised spectral weight, i.e. the integral of energy and space of each peak is of
the order of unity. Figures 4.12 and 4.13 show the density of states for a parameter profile
which contains several domains of varying sizes. As in the previous discussion, the effects of
splitting and hybridisation are visible. We therefore expect that short topological domains,
introduced by disorder fluctuations, will not lead to (almost) zero-energy edge modes but to
widely separated (in energy) pairs. Let us now reintroduce a finite chemical potential and
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tune the system to criticality (µ = µc). In addition, we introduce disorder fluctuations in the
chemical potential. Upon removing all artificial domains, the system is again effectively open
since the system parameters are chosen to be homogeneous in the whole wire. Sufficient
disorder fluctuations can locally drive the system from criticality to class B. Now if due to
the disorder fluctuation the system becomes non-trivial over a sufficiently large region, there
should be Majorana end states well localised at zero-energy. To investigate the possible
emergence of such peaks, we study the evolution of a disorder configuration. To this end,
two disorder realisations w1 and w1 are coupled by a system parameter r, according to
w1 cos r +w2 sin r. For each r-step, the density of states as a function of space and energy
is then calculated using the method introduced in sec. 4.4. Upon changing r, a plethora
of peaks in the density of states will emerge and disappear, raising the natural question,
how a Majorana peak is distinguished from a disorder-induced midgap peak. Such a midgap
peak will be present, if two Andreev bound states are localised very close to zero energy and
the resolution exceeds their distance. Indeed, such effects can be observed very frequently
within the numerical simulations and these peaks can be excluded right away. In fig. 4.15
we illustrate the density of states landscape for a few consecutive steps. The fusion of peaks
is clearly visible. There are however, very rarely peaks that seemingly emerge around zero-
energy without any influence of surrounding peaks. These peaks are natural candidates for
possible Majorana states, they are however hard to observe. Fig. 4.16 shows a sequence in
which such a emergence without a visible fusion occurs. The task of identifying Majorana
bound states turns out to be very delicate. Since the topological excitations are expected to
be very robust, one possible criteria could be the stability of such peaks over a large range of
r. In fig. 4.14a two peaks located at the end of the wire are shown, which remain unchanged
over a large range of values of r. Figure 4.14b shows how the density of states evolves with
r at a fixed position, which is given by the right peak in fig. 4.14a. We note that over a
range from r ∼ 200 to r ∼ 300 these peaks (here only the right one is shown) are present
before vanishing without a trace of splitting (green oval). A similar very sharp peak returns
to this position for r ∼ 350 to r ∼ 450 (red oval). Since no obvious trace of a prior fusion of
close lying Andreev bound states is present, these peaks might be considered as promising
candidates for actual Majorana fermions. Note that there is an artefact at r ∼ 150 which
suggest a splitting of the peak. However, this artefact is very sharp and shows no traces of
close lying Andreev states either. We therefore believe, that this splitting (or fusion) is due
to the growth of the local domain(s). The latter reduces the splitting and two well localised
states appear. In fig. 4.17 we see the signatures of a splitting (or fusion if the direction
of r is reversed) of a peak into two close lying Andreev states (green ovals). Figure 4.18
illustrates however, that the traces of a splitting can be very hard to identify. Although a
sharp peak is visible at r ∼ 200, it seems to split very diffusively at r ∼ 280. An additional
cross-check that could be used to distinguish trivial and non-trivial peaks, is the investigation
of the spectral weight. If the total weight of such a peak in the wire is denoted by 2δ, each
Andreev state should contribute with δ. Consequently, the fused midgap state is expected to
be of the order of 2δ. A single Majorana particles, with its partner somewhere far within the
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system, contribution would be of order of δ. If a Majorana particle is split, each peak should
thus have a spectral weight of the order of δ/2. Although such calculations were performed
for several candidates of Majorana fermions and Andreev bound states, the results remain
inconclusive. The main reason being, that a clear identification of each peaks support, proves
to be non-trivial.
We therefore conclude, that given the preliminary results presented above, within the

numerical framework developed in sec. 4.4 it is possible to identify local domains of topolog-
ically distinct phases, stabilised by disorder fluctuations. The sharp nature of the observed
peaks and their robustness over large ranges of r, suggests that we indeed observe Majorana
bound states at the transition of such domains. The unambiguous identifications of the
latter remains an open problem for future research.
————————————————————–
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Figure 4.11: Density of states as a function of energy and position for the clean system (left).
The corresponding parameter profiles shown are to the right. The left picture
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Figure 4.12: Density of states as a function of energy and position for the clean system (left).
The corresponding parameter profiles shown are to the right. The left picture
shows only one half of the system since it is symmetric (indicated by the black
and grey profiles). 117
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Figure 4.13: Density of states as a function of energy and position for the clean system (left).
The corresponding parameter profiles shown are to the right. The left picture
shows only one half of the system since it is symmetric (indicated by the black
and grey profiles).118



4.6 Disorder induced domain walls in quantum wires at criticality

Figure 4.14: Top: Density of states as a function of energy and position in the wire. Two well
localised peaks at x ∼ 0 and x ∼ 70 are visible. Both peaks remain unchanged
for a large range of r values, before disappearing without splitting. Bottom:
The density of states at the position of the right peak, as a function of energy
and parameter r. The peak stays for a large range of r values (green oval).
The Y -shaped structure at r ∼ 150 indicates that if the length of the domains
(or their distance) is insufficiently long, splitting occurs. Notice the sharp peak
appearing without prior fusion at r ∼ 400 (red oval).
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r=120 r=140 r=145

r=180r=160r=150

r=210r=190
Figure 4.15: A sequence of the density of states as a function of energy and position in the

wire is shown. At x ∼ 30 two close lying Andreev peaks merge into a single
peak (at r = 145) which eventually splits up again at r = 190.
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4.6 Disorder induced domain walls in quantum wires at criticality

r=600 r=603 r=606

r=620r=610r=608

r=626r=624 r=628
Figure 4.16: A sequence of the density of states as a function of energy and position in

the wire is shown. At r ∼ 60 a zero-energy mode emerges from the spectrum
without prior fusion of peaks.
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Chapter 4 Quasiclassical theory of disordered multi-channel Majorana quantum wires

Figure 4.17: The density of states at a fixed selected point in the wire, as a function of
energy and parameter r. Top: At r ∼ 150 two peaks merge into a sharp peak
which splits up again at r ∼ 180 (green oval). Bottom: At r ∼ 50 a splitting
of a peak is clearly visible (green oval).
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4.6 Disorder induced domain walls in quantum wires at criticality

Figure 4.18: The density of states at a fixed selected point in the wire, as a function of
energy and parameter r. At r ∼ 250 a sharp peak is visible that very diffusively
splits at r ∼ 300.
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Part III

Appendices





A
Zero-energy bound states

We now derive the number of zero-energy bound states given by the topological invariants
derived in sec. 2.3. We focus on the chiral classes, since the proof for class D can be easily
derived from more general proof. The pole structure of the Eilenberger equation Q at zero-
energy is determined by the secular matrix (2.24) around zero. Since the spectrum of the
terminal Eilenberger functions Q± is gapped, we can safely neglect their energy dependence.
For the sake of simplicity we define D ≡ D(ε = 0). As it was proven in sec. 2.3.1, the degree
of degeneracy or nullity of the zero-energy secular matrix is always even (2N ). Recall that
for the chiral classes N was defined as the nullity of each chiral block. However, we will see
below that the actual number of zero-energy states is N rather than 2N . The physical zero-
energy modes that contribute to the singularity of the Q-matrix, span only half of the kernel
of D. We denote the left null space of D by ΩL

0 and consider a bra state 〈φ1| = (φ(1)
1 , φ

(2)
1 )

thereof, where the spinor structure refers to the chiral basis introduced earlier. By definition
〈φ|D = 0 and

〈φ1|Q+M = −〈φ1|MQ−.

Due to this property we can define an additional bra state 〈φ2| ≡ 〈φ1|Q+ which is also an
element of ΩL

0 . This follows from the fact that Q2
± = 1 and

〈φ2|D = 〈φ1|Q+
(
Q+ +Q+MQ−MT

)
= 〈φ1|

(
1 +Q+MQ−M−1

)
= 〈φ1|

(
1−MQ2

−M
−1
)

= 0.
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Appendix A Zero-energy bound states

More general, with the projectors

P± = 1
2(1±Q+),

satisfying P 2
± = 1 and P+P− = 0, any state 〈φ±| ≡ 〈φ1|P± belongs to Ω0

L. We denote the
two projected subspaces of the null spaces Ω0

L by Ω±L ≡ Ω0
LP±. As we will see later, the

projectors P± divide Ω0
L into two subspaces of equal dimensions, i.e. dim Ω+

L = dim Ω−L =
1
2 dim Ω0

L = N . Due to the properties of D, the auxiliary D̃ ≡ DΓ is anti-hermitian and
since Γ2 = 1, its left null space is identical to Ω0

L. Hence the right null space of D̃ is
related to the left one by conjugation, Ω0

R = (Ω0
L)†. If we define a full basis {〈Φj

±|} with
j = 1, . . . ,N in the projected subspaces Ω±L , these states are related to the corresponding
ket states by |Φj

±〉 = (〈Φj
±|)†, which in return can be used construct a full basis {|Φj

±〉} in
Ω0
R. The very construction of this basis vectors shows, that they are not orthogonal since

generally P−P †+ 6= 0, where P †± are the projectors acting on Ω0
R. One can however, introduce

a dual basis {〈ηj±|} in Ω0
R which is orthogonal, 〈Φj

σ|ησ′〉 = δjj
′

σσ′ . Using this dual basis the
projectors can be written as

Pσ =
N∑
j=1
|ηjσ〉〈Φj

σ|, P †σ =
N∑
j=1
|Φj
σ〉〈ηjσ|.

The representation in terms of projectors onto the two subspaces Ω± turns out to be very
convenient once the general pole structure of the Eilenberger function around zero is under-
stood. To this end, we rewrite the boundary equations (2.23) into

QR = 1 + 2D−1
ε (1−Q+),

QR = −1 + 2(1 +Q+)D−1
ε . (A.1)

Chiral symmetry restricts D̃ε as follows,

σ3D̃εσ3 = −D̃−ε, (A.2)

where σ3 operates in the chiral basis. At zero energy the matrix D is non-invertible due
to the presence of zero modes. At finite ε the pole structure of D̃ is therefore given by1
D̃−1
ε ∼ R/ε, with the energy dependent residue matrix R. The latter is represented in the

1Linear in ε the matrix D̃ε = ε

(
D̃11 D̃12
D̃21

1
ε
D̃22 + D̃22(1)

)
. In the limit ε → 0 its convergences is only

determined by D̃−1
11 which together with eq. (A.2) leads to the pole structure.
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dual basis,

R =
∑

jj′;σσ′
|Φj
σ〉Rσσ

′
jj′ 〈Φ

j′

σ′ |, Rσσ′jj′ = 〈ηjσ|R|η
j′

σ′〉.

We focus on the singular part of the matrix Q̃R, which according to eq. (A.1) is given by

ΓQ̃sing
R Γ = 2

ε
R(1−Q+) = 2

ε
(1−Q†+)R = 4

ε
RP− = 4

ε
P †−R,

and since P 2
− = 1, we find

Q̃sing
R = 4

ε
Γ|Φj

−〉R−−jj′ 〈Φ
j′

−|Γ = 4
ε

ΓP †−RP−Γ.

The final expression for the singular part of the propagator is one step away. The definition
of the quasi-classical Green’s function, eq. (2.5) and the Eilenberger function eq. (2.8) yield
that at zero energy and x = x′ = xR, the propagator is given by

G(xR, xR; ε) ∼ −2i
ε

R−−jj′ v̂
− 1

2 Γ†|Φj
−〉〈Φ

j′

−|Γv̂−
1
2 ,

where we introduced the (diagonal) velocity matrix v̂. The spectral decomposition of the
Green’s function decompose contains two terms, one representing the subgap Andreev levels
and a second one outside this gap

G(x, x′; ε) = Gsubgap +GBdG.

If we denote by |ψE(x)〉 the normalised eigenfunctions of the BdG Hamiltonian and by Eg
the gap in the spectrum of the wire, the latter term is given by

GBdG(x, x′; ε) =

 +∞∫
Eg

dE +
−Eg∫
−∞

dE

 |ψE(x)〉〈ψE(x′)|
ε− E

.

The contribution of the subgap Andreev levels is given by

Gsubgap(x, x′; ε) =
jmax∑

j=−jmax

|ψEj (x)〉〈ψEj (x′)|
ε− Ej

,
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Appendix A Zero-energy bound states

where we have used that due to charge-conjugation symmetry −Ej = E−j . Now if the
systems hosts a Majorana state, it has E0 = 0 and this state is represented by a term

|ψ0(x)〉〈ψ0(x′)|
ε

,

which is of course singular at zero energy. Comparison to the singular part thus leads to the
conclusion, that the amplitude of the Majorana particle at the point xR is given by

−2i
ε

R−−jj′ v̂
− 1

2u†C |Φ
j
−〉 = |ψ0(xR)〉.

Amplitudes at arbitrary position x are then obtained by applying the transfer matrix
M(x, xR) to the state |ψ0(xR)〉. We see that the space of physical zero-energy states
projected to the point xR, is given by the linear space spanned by the vectors Γ|Φj

−〉 with
j = 1, . . . ,N . Note that only states from the subspace Ω−R contribute, while Ω+

R does not
contribute at all.

We have yet to prove that the dim(Ω±R) = dim(Ω±L ) = N . Recall the prototypical setup
shown in the lower panel of fig. A.1. Two states |φL〉 and |φR〉 left and right of the scattering
region, are mapped onto each other by the transfer matrix M . The terminal configurations
Q± are the asymptotics of the position dependent Eilenberger function Q(x) at x → ±∞.
A zero energy state |φ〉 must satisfy H|φ〉 = 0, which according to our definition (2.6) takes
the form of a linear matrix differential equation

∂x|φ〉 = −Lε=0|φ〉. (A.3)

The general solution of this equation, |φ(x)〉 = M(x, x0)|φ(x0)〉, can be obtained using the
definition of the transfer matrix in eq. (2.16) and an arbitrary state |φ(x0)〉 at some spatial
point x0. If we define the conjugate state 〈φ̃| := 〈φ|Γ we find that it solves

∂x〈φ̃| = 〈φ̃|Lε=0.

Now let |φR/L〉 be the states right/left of the scattering region. Both states are related
via |φR〉 = M |φL〉. Using the flux conservation property of M -matrix (2.18) the above
equations is equivalent to

〈φ̃R| = 〈φ̃L|M−1. (A.4)

Within our model, the evolution operator Lε is position independent outside of the scattering
region. We denote by L± its value at ε = 0 in the right/left terminal, respectively. Let
Lσ=± be diagonalised according to eq. (2.12), with Σ = σ3, i.e the eigenvalues come in
pairs (−λjσ, λjσ) with positive real parts, where j denotes the joint channel index. Consider
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now the right terminal and denote by 〈χRj,±| the left eigenstates of L+, i.e.

〈χRj,±|L+ = ±λj+〈χRj,±|.

The rows of the diagonalising matrix T+ are given by the bras and hence by construction,

〈χRj,±|Q+ = ±〈χRj,±|. (A.5)

If a zero mode 〈φ̃| exists, its general form for x > xR is given by

〈φ̃(x)| =
∑
j

Cje
−λj+x〈χRj,−|+ C ′je

+λj+x〈χRj,+|, x > xR.

Since the physical state should decay at x → +∞, it follows that C ′j = 0 for all j (we had
chosen the real parts of the eigenvalues to be positive). The support of this expansion is
bounded by the scattering region, 〈φ̃R| ≡ 〈φ̃(xR)|. Using relation (A.5) it then follows that

〈φ̃R|Q+ = −〈φ̃R|, 〈φ̃L|Q− = +〈φ̃L|. (A.6)

By virtue of eq. (A.4), we conclude that these two relations are equivalent to the equation
discussed earlier

〈φ̃R|(MQ−M−1 +Q+) = 0. (A.7)

In other words, the state 〈φ̃R| belongs to the left kernel of the secular matrix D. More
precisely, 〈φ̃R| ∈ Ω−L , since eq. (A.6) leads to 〈φ̃R|P− = 〈φ̃R|. The linear differential
equation (A.3) contains bounded and unbounded solutions (illustrated as red and grey curves
in fig. A.1). The crucial observation now is that, if we were to consider the unbounded
solutions, similar arguments would lead to the same secular equation (A.7), however the
eigenstates would satisfy

〈φ̃R|Q+ = +〈φ̃R|, 〈φ̃L|Q− = −〈φ̃L|.

Therefore, in this case the state 〈φ̃R| would belong to the complementary subspace Ω+
L .

From the theory of linear differential operators it is known that the number of bounded and
unbounded eigenstates is equal. This fact suggests that dim(Ω+

L ) = dim(Ω−L ), as claimed.
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x

Q− Q+|φL〉 |φR〉M

xL xR

Figure A.1: Top: Schematic illustration of the formal unbound solutions (grey) and bound
solutions (red) of the eq. (A.3). Bottom: Schematic illustration of the quantum
wire, the scattering region is indicated as a grey square. The states |φL/R〉 at the
boundaries (xL/R) are related via the transfer matrix M . Within the terminals
the Q matrix converges to Q±.
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B
Chern characters in terms of the

Eilenberger functions Q

In this appendix we derive the Hall conductance and the Chern character c2 in terms of the
Eilenberger functions Q. We begin with the (2 + 1)-dimensional system, and consider a
Dirac Hamiltonian H =

∑
i σihi(k), where hx,y = kx,y and h3 = m. By virtue of the Kubo

formula the Hall conductance is given by

σxy ∝ lim
ω→0

ω−1
∫

dkydε
∑
α,β

(
1

λα+ + λβ−
PαβNβα

)
. (B.1)

Here the matrices P and N are related to the evolution operator by

P = T−1
+ ΓJyQ−T− = −iT−1

+ (∂kyL)Q−T−
N = T−1

− Q+T+,

where we used that L = −iΓ(ε−m̂), and Jy = ∂kyH. For the definitions of the subscripts we
refer to the main text. The crucial observation is that the eigenvalues always come in pairs
(±1) and the above indices α and β are redundant. The above expression then simplifies to

σxy ∝ lim
ω→0

ω−1
∫

dkydε
1

λ+ + λ−
trPN.
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Appendix B Chern characters in terms of the Eilenberger functions Q

Due to the limit in eq. (B.1), we expand the trace to first order in ω,

trPN
∣∣
ω=0 = −i trT−1

+ (∂kyL)Q · gT+

= −i tr ∂kyL
= tr ΓJy = 0,

where in the last equation we used that Γ and Jy anti-commute. In addition

trPN = −i tr
(
(∂kyL)Q−Q+

)
= −i tr

(
∂ky(λQε)(Q−Q+)

)
' −i tr

(
(∂ky(λQε))(Qε(∂εQ)− (∂εQ)Qε)

)
ω

= −2i tr
(
(∂ky(λQε))(Qε(∂εQ))

)
ω,

where we used that the fact that Q(∂εQ) + (∂εQ)Q = 0, as well as ∂ωQε−ω = −∂εQ. If
the derivative with respect to ky acts on the eigenvalues λ, the contribution is vanishing,

(∂kyλ) tr ∂εQω = 0,

since trQ = 0. We see that

trPN = −iλ tr(∂kyQ)Q(∂εQ)ω

and therefore conclude

σxy ∝
∫

dεdky tr(∂kyQ)Q(∂εQ).

We now turn to the (4 + 1)-dimensional case. With Γ · Jµ = −i(∂µL) for µ = Φ,Θ the
three matrices appearing in the trace in eq. (2.44) are given by

P = T−1
3 ΓJφQ1T1 = −iT−1

3 (∂φL)Q1T1,

N = T−1
1 Q2T2,

V = T−1
2 ΓJθQ3T3 = −iT−1

2 (∂θL)Q3T3.

For the definitions of the subscripts we again refer to the main text. Due to the pair structure
of the eigenvalues, we see that

trPNV = tr (ΓJφQ1Q2ΓJθQ3) = − tr ((∂φL)Q1Q2(∂θL)Q3) .

Since the limit eq. (2.43) involves q2 and ω3 we expand the trace in both variables. The
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zeroth order term then reads

trPNV
∣∣∣
q2 = q3 = 0
w2 = w3 = 0

= tr(∂φL)(∂θL)Q = − tr ΓΓφΓΓθ
L
λ

= λ−1 tr ΓφΓθL

= λ−1(−iε tr ΓφΓθΓ + i tr ΓφΓθΓm̂) = 0,

due to the properties of the trace and the Dirac matrices. We set ω2 = q3 = 0 which reduces
the container subscripts to

1 =̂ (k2, ε), 2 =̂ (k2, ε− ω), 3 =̂ (k2 − q2, ε− ω).

The term linear in q2 in the expansion of the trace also vanishes,

tr(∂φL)g1g2(∂θL)Q3 ' tr(∂φL)(∂θL)(∂q2L+ ∂q2λ
−1)q2

= tr ΓΓφΓΓθ(ik2ΓΓ2 + L × const.)q2 = 0.

So does the term linear in ω, since

tr(∂φL)Q1(∂ωQ2)(∂θL)Q3 = tr ΓΓφQ(∂ωL+ L × const.)ΓΓθQω
= − tr ΓΓφQ(iεΓ)ΓΓθQ+ tr ΓΓφQLΓΓθQω
= −iε tr ΓΓφQΓθQ+ λ tr ΓΓφΓΓθQω
= −iε tr ΓΓφQΓθQ− tr ΓφΓθLω.

The second term in the above expression has already been identified to be of vanishing trace.
If we expand the first term, terms of zeroth and first order in m̂, ΓθΓΓφ(m̂)n=0,1 vanish as
discussed earlier. The remaining quadratic part ΓΓφΓθm̂2 is proportional to ΓΓφΓθ, since
(m̂)2 ∝ 1, and vanishes as well. In second order we find

tr(∂φL)(∂θL)∂2
ky ,ω(L/λ) = tr(∂φL)(∂θL)

(
(∂kyL)∂ω(λ−1) + (∂kyλ−1)(∂ωL) + L(∂2

ω,kyλ
−1)
)

= − tr ΓφΓθ (ΓΓ2 × const.+ Γ× const.) ,

which, as we know by now, vanishes. For mixed derivatives there are three contributions

tr
[
λ2(∂φQ)Q(∂ωQ)(∂θQ)(∂kyQ) + λ(∂φQ)Q(∂ωQ)Q(∂kyQ)(∂θλ)
+ λQ(∂φλ)Q(∂ωQ)(∂θQ)(∂kyλ) + λQ(∂φλ)Q(∂ωQ)Q(∂θλ)(∂kyQ)

]
.

The second and third term in the above expression can be simplified, using that

Q∂εQ+ (∂εQ)Q = 0,
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Appendix B Chern characters in terms of the Eilenberger functions Q

leaving us with terms of the form

tr(∂iQ)(∂jQ)(∂hQ) = trQ(∂iQ)(∂jQ)(∂hQ)Q = − tr(∂iQ)(∂jQ)(∂hQ),

which obviously do not contribute. The last term in the above expression can be expanded
in L and expressed as

tr(a1(∂ωL)L(∂kyL) + L2(a2∂ωL+ a3∂kyL) + L3a4).

The term cubic in L vanishes since L squares to a constant, while the quadratic term leaves
us with the trace over the derivatives of L, which is vanishing as well. The remaining term
splits into tr(a1Γ + a2ΓδHΓy) which is vanishing as well. Leaving us with

tr
[
λ2(∂φQ)Q(∂ωQ)(∂θQ)(∂kyQ)

]
.

Due to the limit considered in eq. (2.43), it follows that λ1 = λ2 = λ3 and therefore, the
factor λ2 is cancelled by the pre-factor in eq. (2.45) and we are left with eq. (2.46).
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