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It is by logic that we prove,

but by intuition that we discover.

To know how to criticize is good,

to know how to create is better.

H. Poincaré





Abstract

Understanding the dynamics of microbiological swimmers is a key element on the

way to discovering biological mechanisms, to develop new sophisticated bio-mimetic

technologies, e.g., artificial microswimmers, and to design novel microfluidic devices,

e.g., for diagnosis applications. In this work, we focus on the dynamics of micro-

swimmers with a slender flexible body, for which the spermatozoon is one of the best

biological representatives.

The overarching theme of our investigation is the relation between elasticity and

dynamics of semiflexible filaments, their hydrodynamic interactions and active moti-

on.

We first study the dynamics of one, two and three sedimenting filaments in a

viscous fluid. The dynamics of a settling filament is simpler than that of the beating

flagellum because it is dominated only by the passive elastic restoring force. It allows

a fundamental understanding of the dynamics generated by the competition of elastic

and hydrodynamic forces. At the same time, the settling dynamics is of technological

importance as it may suggest, e.g., new purification techniques. We find that the

settling plane of an isolated semi-flexible filament is not always stable. When the

external field is strong enough, the system encounters two (subsequent) dynamical

transitions that break the planarity and chirality of the filament shape. New sta-

tionary settling shapes are found that correspond to drift and helical trajectories.

Investigations with more filaments show that the settling dynamics may be much

more rich than expected already at fields generated by modern centrifuges.

Sperm cells are composed of a mostly spherical head and a whip-like appendage

called flagellum. The flagellum has an oscillatory movement that sustains a traveling

wave from the head to the tail. The motion of the flagellum provides the thrust

needed to propel the spermatozoon and generates a complex flow field. As an essential
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step toward understanding the hydrodynamic cooperation between spermatozoa, we

analyze high-speed experimental recording of pinned human sperm (in collaboration

with researchers at the research center CAESAR, Bonn) and develop a minimal

model of realistic beating. We infer the flagellum internal forces and, in the future,

the generated flow field. It turns out that the model needs not to be complex and

not to explicitly account for the observed left-right asymmetries in the rotational

motion around the pinning point. The simulation closely reproduces the flagellum

tracks recorded by high-speed video-microscopy, and the appropriate parameters are,

thus, estimated directly from the experimental recordings. This is a new approach

to extract also forces from the observed data in addition to the kinematics, as done

by other established techniques.

The inspection of high-speed recording of human spermatozoa also leads us to

suggest a novel mechanism to control the swimming direction of spermatozoa via

higher harmonic components of the beating frequency. The proposed mechanisms

explain the usual circular trajectories by a shape anisotropy, a curved flagellum or a

bent midpiece. Although it may look puzzling at first that higher beating frequency

break a spatial symmetry, we show that a simple model can explain the observed

behavior and match simulations with experiments.

The beating pattern is not due to a predefined sinusoidal pacemaker, as used in

the previous model. Instead, it is believed that the molecular motors distributed

along the flagellum reach a self-organized state that generates the required force-

pattern. Different models have been proposed to explain how the beating pattern

is generated by a feedback system between molecular forces and flagellum shapes;

however, explicit simulations lead to unexpected buckling instabilities. Thus, we

present a simple mathematical (and later computational) model that is not bounded

to a specific biomechanical hypothesis on the traits of the molecular motors. The

resulting model highlights the difference between different feedback responses that

couple the axoneme shape to the molecular motors forces. Among the possible

models, we choose the model with the smoothest and the most regular behavior as

we expect that, because of the variability of the biological environment and of the

resilience of spermatozoa in the most disparate conditions, any representative model
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of active beating should not display ill-defined behaviors. The model is applied

to the fascinating and contemporary investigation of the active response of the

beating pattern to controlled perturbations. By numerical integration of the model,

we quantify how the beating pattern (amplitude, frequency and wave vector) is

affected by the medium viscosity and we show that it is possible to entrain the

beating frequency to an external periodic force as generated in experimental setup

or by other, surrounding, spermatozoa. This top-down approach provides a simple

reference model that allows both investigation of small scale details and investigation

of large cooperative assemblies of swimmers.
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Kurzzusammenfassung

Das Verständnis der Dynamik von mikrobiologischen Schwimmen ist ein Schlüsselelement

auf dem Weg zur Entdeckung von biologischen Mechanismen, zur Entwicklung neuer

anspruchsvoller biomimetischer Technologien, z.B. künstlicher Mikroschwimmer, und

zur Entwicklung neuartiger mikrofluidischer Systeme, z.B. für Diagnoseanwendungen.

Im Fokus der vorliegenden Doktorarbeit steht die Dynamik von Mikroschwimmern

mit filament-artiger Form und hoher Flexbilität, für die Spermien einer der besten

biologischen Vertreter sind.

Das übergreifende Thema der Arbeit ist das Wechselspiel von Elastizität und

Dynamik von semiflexiblen Filamenten, deren hydrodynamische Wechselwirkungen

und ihrer aktiven Bewegung.

Wir untersuchen zuerst die Dynamik von einem, zwei und drei sedimentierenden

Filamenten in einer viskosen Flüssigkeit. Die Sedimentationsdynamik eines passi-

ven Filaments ist einfacher als die eines schlagenden Flagellums, weil sie nur durch

die passive elastische Rückstellkraft bestimmt wird. Dies ermöglicht ein grundlegen-

des Verständnis der durch die Konkurrenz von elastischen und hydrodynamischen

Kräften erzeugten Dynamik. Gleichzeitig hat die Sedimentationsdynamik technolo-

gische Bedeutung, z.B. für neue Reinigungsmethoden kolloidaler Suspensionen. Wir

zeigen, dass die Deformationsebene eines isolierten flexiblen Filaments nicht immer

stabil ist. Wenn das äußere Feld stark genug ist, ereignen sich zwei aufeinander

folgende dynamische Übergänge, die die Planarität und die Chiralität der Filament-

Deformation betreffen. Dies führt zu neuen stationären Sedimentationsformen, die

Drift- und Spiraltrajektorien entsprechen. Die Untersuchung von mehreren Filamen-

ten zeigt, dass die Sedimentationsdynamik vielfältiger ist. Die hierfür notwendigen

Beschleunigungen können von modernen Zentrifugen problemlos erzeugt werden.

Spermien bestehen aus einem kugelförmigen Kopf und einem peitschen-ähnlichen
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Schwanz, der als Flagellum oder Geißel bezeichnet wird. Das Flagellum macht ei-

ner oszillierenden wellenförmigen Bewegung, die sich vom Kopf zum Schwanzende

hin fortpflanzt. Die Bewegung des Flagellums liefert den Schub, welcher erforder-

lich ist um das Spermium voran zu treiben und erzeugt außerdem ein komplexes

Strömungsfeld. Als einen wesentlicher Schritt zum Verständnis der hydrodynamischen

Kooperation zwischen Spermatozoen analysieren wir experimentelle Hochgeschwin-

digkeitsaufnahmen von Kopf fixierter menschlicher Spermien (in Zusammenarbeit

mit Forschern vom Forschungszentrum CAESAR, Bonn) und entwickeln ein mini-

males Modell für realistische Schlagmuster des Flagellums. Daraus ergeben sich die

internen Kräfte, und in Zukunft das erzeugte Strömungsfeld. Es stellt sich heraus,

dass das Modell nicht allzu komplex sein muss und die beobachteten Links-Rechts-

Asymmetrien in der Drehbewegung um den Fixierungspunkt nicht explizit modelliert

werden müssen. Die Simulation reproduziert die Bewengung des Flagellums, die durch

Hochgeschwindigkeits-Video-Mikroskopie erfasst wurde; geeignete Modell-Parameter

können somit direkt aus den experimentellen Aufnahmen abgeschätzt werden. Dies

ist ein neues Konzept, um zusätzlich zur Kinematik, die mit anderen etablierten

Techniken beschrieben werden kann, auch Kräfte aus den beobachteten Daten zu

extrahieren.

Die Untersuchung der Hochgeschwindigkeitsaufnahmen menschlicher Spermato-

zoen führt ebenfalls zur Entdeckung eines neuen Mechanismus, wie Spermien die

Schwimmrichtung durch höhere harmonische Komponenten der Schlagfrequenz steu-

ern können. Die bisher vorgeschlagenen Mechanismen erklären die beobachteten

Kreisbahnen durch eine Formanisotropie, entweder durch ein gekrümmtes Flagellum

oder durch ein gebogenes Mittelstück. Obwohl es auf den ersten Blick rätselhaft

erscheint, dass auch höhere Harmonische der Schlagfrequenz die räumliche Symme-

trie brechen können, erklärt ein einfaches Modell das beobachtete Verhalten; eine

quantitative Auswertung zeigt, dass die Simulationen mit den Experimenten sehr

gut übereinstimmen.

Das Schlagmuster wird in diesem Fall nicht durch einen vordefinierten sinusförmigen

Schrittmacher erzeugt, wie er im vorherigen Modell verwendet wurde. Stattdessen

wird angenommen, dass die entlang der Geißel verteilten molekularen Motoren selbst-
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organisiert das erforderliche Kraftmuster erzeugen. Verschiedene Modelle wurden vor-

geschlagen, um zu erklären, wie das Schlagmuster durch ein Rückkopplungssystem

zwischen aktiven molekularen Kräften und der Form und Elastizität des Flagellums

erzeugt wird; explizite Simulationen solcher Modelle führen jedoch zu unerwarteten

Knickinstabilitäten. Daher stellen wir ein einfaches mathematisches Modell-Schema

vor, das keine spezifischen biomechanischen Hypothesen über die Merkmale der mo-

lekularen Motoren beinhaltet. Die resultierenden Modelle betonen den Unterschied

zwischen den verschiedenen Rückkopplungsmechanismen, durch die die Form des Axo-

nems mit den Kräften der molekularen Motoren gekoppelt wird. Unter den möglichen

Modellen wählen wir das mit dem glattesten und regelmässigsten Verhalten aus. Auf-

grund der Variabilität der biologischen Umgebung und der Widerstandsfähigkeit von

Spermien unter verschiedensten Bedingungen sollte ein repräsentative Modell des

aktiven Flagellenschlags kein irreguläres Verhaltensmuster aufweisen. Das Modell

wird dann zur Untersuchung der aktiven Regulation des Schlagmusters auf äußere

Störungen angewendet. Durch numerische Integration des Modells quantifizieren wir,

wie das Schlagmuster (Amplitude, Frequenz und Wellenvektor) durch die Viskosität

des Mediums beeinflusst wird und zeigen, dass es möglich ist, die Schlagfrequenz mit

einem externen periodischen Kräften zu synchronisieren, wie sie in Experimenten

z.B. durch andere umgebende Spermien erzeugt werden können. Dieser Top-down-

Ansatz liefert ein einfache Referenzmodell, das sowohl zur Untersuchung von Details

des Schlagmusters einzelner Spermien als auch zur Untersuchung des kollektiven

Verhaltens großer Schwärme von Mikroschwimmern geeignet ist.
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Definitions

In this thesis, we discuss of biological arguments that do not belong to the background

of most physicists. To clarify some common sources of confusion (at least, common

for the author), we summarize in this list some of the most frequent terms that do

not belong to the vocabulary of classical physics. The definitions are intentionally

simplified with respect to what can be found in technical publications:

Axoneme Biomechanical structure formed of 9 double-microtubules arranged in a

cylindrical conformation, some times surrounding a pair of simple microtubules.

This structure forms the core of eukaryote flagella and cilia

Cilium (Plural: Cilia) Whip-like appendages of eukaryote cells, shorter than sper-

matozoa, whose periodic movement has two moments: a fast stroke and a slow

recovery motion.

Eukaryote Any organism whose nucleus is membrane-bounded. Example: Parame-

cium

Flagellum (Plural: Flagella) Whip-like appendage developed by certain prokaryote

and eukaryote cells as sensory systems and motility mechanism. Bacterial

flagella are helical filaments connected to a motor at the base. Eukaryotic

flagella have a complex internal arrangements of microtubules and the shape

is defined by internally modulated forces.

Motor proteins/Molecular motor “Motor proteins are enzymes that convert the

chemical energy derived from the hydrolysis of ATP into mechanical work used

to drive cell motility.”[1] There are different molecular motors depending on

the function, on the walking substrate and, even, on the walking direction.
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The motors found between microtubules in the axoneme are called (Axonemal)

dyneins (see Fig. 1.4).

Prokaryote Organism made of a single cell whose nucleus is not membrane-bound

and lacks of mitochondria and other membrane-bound organelles. Example: E.

Coli

Sperm Mature male reproductive cell or the male gamete.

Spermatium A non-motile sperm cell.

Spermatozoon (Plural: Spermatozoa) A uniflagellar motile sperm cell.
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1. Introduction

We, living and adapting the world to our needs, are integrated and surrounded by

a multitude of life forms. Zoology, biology and, recently, microbiology show us how

diverse forms of life developed, pushed by evolutionary forces. It is common belief

that most of the life forms be tailored to fill a particular niche, balancing their use

or re-use of nutrients and “free energy”, all together belonging to a network where

everyone is needed.

Microorganisms are important waste recyclers that re-insert carbon and other

heavier elements that cannot be synthesized by biological processes in the food

chain. Their presence inside our body in a positive symbiotic interaction (digestion)

or as pathogenic sources determines our daily life. The sheer importance in the

ecological systems is widely recognized [2]. Acquaintance with the biological and

physical aspects is vital to the understanding of our impact on such systems, to

their exploitation [3], and to the development of micro-robots [4] and innovative

bio-mimetic technology.

Here we focus on a tiny portion of the biophysics panorama: microswimmers;

whose foundative studies trace back to the works of Gray and Hancock [5] and of

Berg [6]. For microorganisms bigger than ≈ 1µm active directed swimming can be an

advantage over simple diffusion [2]. Among the different microorganisms that actively

move, we will focus on those that mostly live in a fluid environment, that developed

a flagellum (a whip-like appendage), and that are eukaryote. Fig. 1.1(inner circle)

shows an overview of the big variety of organisms that swim thanks to the movement

of one or many flagella. Flagella are flexible organelles that elegantly generate the

thrust with a non-reciprocal periodic motion (Fig 1.3). At these scales, indeed, a

simple periodic paddling would not generate thrust because the equation of motion

of the fluid is time-reversible and does not distinguish fast or slow strokes [7–9].
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1. Introduction

Figure 1.1.: A general overview of microorganisms with flagella and related organisms. From
Ref. [10].
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Figure 1.2.: Illustration of a mammalian sperm (adapted from Ref. [14]). a) Regions of the
sperm flagellum and approximate lengths. b) Cross-section of the midpiece. The
microtubule doublets and associated fibers are numbered with the usual convention.
c) and d) Cross section of the principal and end pieces.

Among the flagellated eukariote microorganisms, sperm cells have a particular

role, being the male gamete that is actively responsible for the ovum fertilization

and, ultimately, for the organism reproduction. Sperm cells come in a variety of

different shapes: some have many flagella [11], some heads are spatulate-shaped,

other falciform-shaped [12], and length and size too, vary quite considerably from

species to species. Indeed, one may think that spermatozoa are a mammals’ affair,

but that is not the case. We are surrounded by these small cells as they are produced

and released also by trees [11], insects [13] and molluscs [5]. This highlights how the

sperm cells, although very diverse from species to species, are a remarkable piece of

biology, adapted to very diverse and adverse environments, while still retaining their

fundamental functions.

Sperm cells are not like other regular microorganisms: they do not divide nor

feed or hunt; they behave more like “single-use machines”1: their life-program being

simplified into “find the ovum” then “fertilize it”. From some points of view, they

may seem simpler than proper organisms which need, e.g., to feed or to live in colonies,

nonetheless there are still many questions to answer about their delicate taxis and

1Thanks to Prof. B. Kaupp for this mind-opening definition.
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1. Introduction

Figure 1.3.: Left: Stroboscopic picture of a spermatozoon (sea urchin) swimming from right to
left. The bright ellipse is the head, the line is the flagellum. Image from Ref. [16].
Right: High-density structures developed by sea urchin spermatozoa. The vortexes
are formed by ∼ 10 cells. Image from Ref. [17].

steering mechanisms, and the ultimate influence on sperm motility and the ovum

fertilization [14, 15].

In the following we consider only the case of spermatozoa: a uniflagellated sperm

cell, produced by, e.g., humans, bulls and sea urchins and for this reason we employ

the words sperm and sperm cells with the same meaning of spermatozoa.

The stroboscopic picture of a swimming sea urchin sperm (Fig. 1.3(left)) shows that

the swimming thrust is a consequence of the bending wave that propagates downward

the flagellum ( ≈ 30− 80µm in length and ≈ 1− 2µm in size, ≈ 10− 60Hz [2, 14]).

The flagellum pushes the cell body or head ( ≈ 5µm) containing the highly packed

DNA and some cytoplasm. The connection between cell body and flagellum differs

from species to species. In the case of sea urchin the connection resembles a free joint,

while in the human spermatozoon the flagellum is stiffly connected to the body. The

portion of flagellum that is nearer to the body is said midpiece [12]: in the human

spermatozoon, it is surrounded by mitochondria, it is then thicker and does not bend

as much as the remaining length (Fig. 1.2).

The single isolated spermatozoon does not trustfully represent the swimming

conditions as sperm cells are often released in bulks. The ensuing cooperative behavior

is a very fascinating aspect of sperm motility, and a manifestation of self-organization

in nature. Theoretical and numerical investigations showed that hydrodynamics and

steric interaction lead to the formation of clusters [18, 19], similarly to other models
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of self-propelled rods and spheres [20]. It is possible to describe the collective behavior

also with Vicsek-like models, that means reducing each organism into few stereotyped,

effective degrees of freedom. In this case the self-organization is formulated as a

critical phenomenon [21]. Steric and mechanical interaction, and effective behavior

are just the first guesses to describe the fascinating interactions due to the bigger

number of (relevant) degrees of freedom of the real biological ensemble. Some species,

indeed, developed ad-hoc features: e.g. the sperm cells of wood mouse, A. Sylvaticus,

have a hook used to anchor cells in trains of cells belonging to the same male

mate. Probably thanks to the hydrodynamic interaction between cells belonging to

the same cluster, they travel at higher velocities than the isolated sperm and, it is

believed, it strengthens the chances than one of the sperms of the cluster fertilizes

the ovum [22, 23].

In Fig. 1.3 another example of cooperation is shown: when sea urchin spermatozoa

(S. Droebachiensis and S. Purpuratus) swim at high density (≈ 2500 cells/mm2)

the cells self-organize in vortexes on a hexagonal lattice [17]. The relevance of the

observation is clear when the attention is shifted from models with few “effective”

degrees of freedom [21], to the actual physical and biological mechanisms of pattern

formation. Depending on the context, pattern formation mechanisms may involve

different processes: from the diffusion of chemical species [24–26] to advection fluxes,

and (at least in ecology) non-local terms due to, e.g., roots spreading [27]. In Ref. [17]

it is proposed, for the first time, that the underlying mechanism forming the vortexes

be the hydrodynamic interaction between the organisms, that couples to the flagellar

dynamics thanks to some yet-unknown mechanisms.

Let’s inspect the single flagellum more carefully, then, to understand how this mech-

anism may work. At the flagellum core we find the axoneme (Fig. 1.4), ≈ 0.2−0.5µm

in diameter [1, 14], surrounded by a soft “skin” of proteins. The axoneme provides

the biomechanical stability to the, otherwise soft, surrounding proteins and hosts the

molecular motors [14]. The axoneme comprises 9 microtubule-doublets around a pair

of central microtubules [28] and dynein arms on the outer filaments that generate

shear forces between the filaments, ultimately generating the bending moments [29–

31]. The axoneme is not unique of spermatozoa as it is a highly preserved structure,

5
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M
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Outer-arm

dynein

Figure 1.4.: Left: Longitudinal section of two microtubules show the position and packing
of the dyneins. The stalks (simple arrow) are separated by ≈ 24nm. Image from
Ref. [1], Right: Illustration and cross-section of the 9+2 morphology of the axoneme
(Chlamydomonas, ×218.000). The short arrow indicate the beak-like protrusion of
the dynein arms. Images from Refs. [34, 36]

found also in cilia [32] and in the trypomastigote [33, 34]. Curiously, cilia are believed

to form metachronal waves as consequence of hydrodynamic interaction [35], even

though there are some peculiar differences with the spermatozoa.

The axoneme is the common biomechanical structure between cilia and sperma-

tozoa. Since it plays a nodal role for the beating, it may be responsible for the

self-organized swimming as well. The axoneme allows the generation of bending

torques throughout the flagellum. It was soon realized, indeed, that since the beat-

ing amplitude does not decrease at one side despite the strong dissipation of the

surrounding fluid, energy must be provided all along the flagellum length [29, 37].

The mechanism generating the beat pattern drawns a lot of attention since the early

works in Ref. [38]. It is well accepted that the bending forces are due to sliding

forces generated between adjacent microtubules by the dynein arms (Fig. 1.4) [37–

39]. Because of the very fast beating frequency and wave velocity (≈ 1mm/s), it is

not possible to describe the wave as the effect of a biochemical signal. It is instead

proposed that the beating pattern itself is due to a self-organization of molecular

motors. Fig. 1.3 can then be seen as a self-organized motion of self-organized beating

patterns!! From this point of view, the problem of active beating and self-organized

swimming is a unique system to investigate physics models of interacting organisms

whose behavior is not predefined but the result of the dynamics of internal degrees

of freedom and external forces.

Models of active beating are then required to distinguish the effect of pure mechan-
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ical forces, from active ones. Developments in the ability to manipulate and interact

with the single cell [40–42], allow investigating whether cooperative behaviors can

be understood as the result of mechanical forces (e.g. hydrodynamics or steric inter-

action), of behavioral or signaling responses, or of others yet-unknown mechanisms.

In the latest works two main approaches have been proposed to model the beating

pattern in terms of either molecular-motor traits [43–45] or mechanical properties

of the filament bundle [46, 47]. But, at the moment of writing, no active model has

been used to investigate the response to external perturbations.

The overarching theme of our investigation is the relation between elasticity and

dynamics of semiflexible filaments, their hydrodynamic interactions and active motion.

Bearing in mind that we do not want to discuss how an idealized system reproduces

the observed behaviors, but rather how a realistic system really works, we approach

the investigation from different sides in the spirit of Divide et Impera.

In this thesis we initially present some original results about the hydrodynamic in-

teraction of one, two and three sedimenting filaments. The dynamics of sedimentation

is simpler than that of the beating, and allows developing some basic understanding

on the relation between elasticity and hydrodynamic forces and on the quantification

of filament shapes.

As we want to understand the hydrodynamic cooperation between spermatozoa,

we focus on the design of a simulation model that closely reproduces the dynamics

of a pinned (human) spermatozoa near a surface, and so the driving forces and

the generated flow field. Inspection of high-speed recording of human spermatozoa

led us to a new exciting observation: a novel mechanism to control the swimming

direction of spermatozoa via higher harmonic components of the beating frequency.

At the same time we are left with a new minimalistic model of “realistic” beating of

human spermatozoon, driven by predefined forces. Appropriate parameters are, thus,

estimated directly from the experimental recordings, without micro-manipulation

techniques [48].

Finally, to go beyond the predefined-forces model, we present a novel approach to

model the self-organized beating pattern. The idea is to develop a simple mesocopic

model: simple enough to be implemented in more complex simulations with full
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1. Introduction

hydrodynamics and simple enough to allow theoretical investigations on the biome-

chanical structure of the axoneme. With the keen idea to start simple and generic,

we have been inspired by the models of non-linear chemistry and reaction-diffusion

equations [24]. The resulting framework represents an alternative approach not (yet)

bounded to a specific biomechanical model of molecular motors, it highlights the dif-

ference between some of the proposed models, and it allows a systematic theoretical

investigation of the axonemal response to controlled perturbations2.

As always in physics, we understand a physical process via our models and theories,

their underlying assumptions and limitations. In the next chapter we recall some

background concepts widely used throughout this thesis:

1. Hydrodynamics at low-Reynolds number and of immersed slender objects,

2. Dynamics for semi-flexible inextensible filaments,

3. Dynamics of elastic filaments interacting with fluid,

4. Dynamics of a model axoneme.

2Private communication with experimental groups in TU Delft and DAMTP highlighted a similar
interest, and some (very) early results with Chlamydomonas look promising.
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2. Filaments, Elasticity, and

Hydrodynamics

2.1. Hydrodynamics

Since we are interested in microswimmers, we are naturally concerned also of the

movement of bodies in a fluid. Any movement of the immersed body propagates to

elements of volume of the fluid, whose resistance itself allows the swimmer to move.

We present in this section some theoretical approaches to understand and model the

equations of motion of both the fluid and the swimmer, with particular regard to

slender bodies.

Navier-Stokes equation

An incompressible fluid can be described by the velocity field u, the constant density

ρ and the energy kBT . The dynamics of an element of fluid in position r subject to a

pressure field p and external force field f is determined by the energy and momentum

conservation equation complemented with the incompressibility constrain:

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ η∇2u+ fext (2.1)

∇ · u = 0

The first equation is the Navier-Stokes equation.

On the left-hand side of the Navier-Stokes equation the material derivative de-

scribes the acceleration and convective transport of the element of mass. Note that

the convective term is the only non-linear term. On the right-hand side the term

9



2. Filaments, Elasticity, and Hydrodynamics

η∇2u describes the momentum exchange between layers of fluid with different veloc-

ities. The coupling term η is the (dynamic) viscosity: a phenomenological property

of the fluid that cannot be deduced by the conservation laws. Given appropriate

boundary conditions and external forces Eq. (2.1) can, in principle, be solved. They

pose, however, an incredible problem that has not found a general solution yet.

Low-Reynolds number and Scallop theorem

In nature we find organisms that move in different fluids, like air or water, and at

different velocity and length scales like sea whales, birds, spermatozoa, and bacteria.

We can imagine assigning a characteristic length scale L and velocity scale v0 at each

creature and to rescale the Navier-Stokes equation accordingly; obtaining

Re

(

∂u′

∂t′
+ u′ · ∇′u′

)

= −∇′p+ η′∇′2u′ + f ′ext (2.2)

where prime indicates the new dimensionless quantities.

The quantity Re = ρv0L/η is the Reynolds number: its value spans few orders

of magnitude from the 10−5 of bacteria to the 104 of medium-size fishes [8]. Its

importance resides on the fact that it defines the relative importance between the

inertial forces of the fluid and the viscous forces. At high Reynolds number the motion

of a body transfers momentum to the surrounding fluid, that is then convected, and

slowly dissipated. On the contrary, at low Reynolds numbers there is no transport

of momentum nor an inertial (delay) time between the application of the forces and

the fluid response. There may be several characteristic length and velocity scales in

a given system and corresponding different Reynolds number. This is not an issue as

long as the Reynolds number is not confused as an absolute property of the system

but, rather, of the observables of interest. For example: if one is interested on the

dynamics of the single sperm cell, an appropriate choice of length and velocity can

be the body length and velocity; on the contrary, if the details of fluid field near

the flagellum are of interest, probably the beating amplitude and frequency provide

more insight.

In this work we focus on the dynamics of the full body of spermatozoa, whose

10



2.1. Hydrodynamics

Reynolds number is typically small and the left-hand side of Eq. (2.2) can be neglected.

The remaining equation is called Stokes equation; it is a linear equation, with no

explicit time derivative:

∇p− η∇2u = fext . (2.3)

Thus, the mathematical formulation of the fluid past a microorganism poses a

simpler problem than that for larger creatures; however, giving away the linearity

and the inertial forces affects quite a lot the physics with some counter-intuitive

effects [7].

First: In this Aristotelian world all forces are instantaneously balanced [10, 49]:

when a microswimmer’s flagellum or cilia halts, the body velocity vanishes in nanosec-

onds because all the momentum transfered to the fluid has been (almost) instanta-

neously dissipated.

Second: Eq. (2.3) is symmetric under time inversion because the time derivative

is gone. This signifies the velocity u and pressure p fields follow instantaneously the

external force fext(t) that the swimmer imposes on the fluid. As consequence, the

dynamics for fext(−t) will be exactly the reverted dynamics. From the perspective of

a microswimmer, this really complicates life. Most of the propulsion mechanisms in

nature employ a cyclic motion, e.g. walking, flying, fish swimming are all based on

the same cyclic pattern of movements repeated over and over. The same approach

applied by a simple microswimmer with 1 d.o.f. would not work: the forces generated

in the first half cycle would balance the forces in the second half cycle. At the best, the

creature would oscillate, with no net center-of-mass displacement [50]. This is called

the “Scallop theorem” [7]. Microswimmers must have a time-irreversible propulsion

and a mechanism that involves more than one degree of freedom. From a theoretical

point-of-view the simpler of such model-swimmers can be realized with two degrees

of freedom [51]. Real microswimmers, however, developed refined and sophisticated

mechanisms. For the microswimmers we are concerned with, we highlight that ciliated

cells and sperm cells flagella actively bend their shape, and in doing so they develop

periodic patterns that break the left-right or top-bottom symmetry, thus generating

the propulsive force.
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2. Filaments, Elasticity, and Hydrodynamics

Isotropic Drag Anisotropic Drag

Figure 2.1.: Illustration of the resistive force theory applied to a rod composed of beads. The
rod moves in the direction of the gray arrows. If the drag is isotropic (left) then
the viscous drag (red arrows) is parallel to the velocity. An anisotropic drag (right)
develops a drag force (green arrows) that is not parallel to the direction of the
velocity but more oriented in the normal direction.

2.2. Swimming with a semi-flexible filament

How does the motion of an extended slender body generates the forces to self-propel

in a viscous fluid? We present some theoretical concepts proposed to describe the

interaction between moving slender objects in a fluid beginning with a phenomeno-

logical description in the first subsection, to continue then with a more theoretical

description in the following.

Resistive-force theory

Let’s consider a stiff rod of length L dragged by a force f in a viscous fluid. It moves

faster when pulled along its longitudinal direction rather than when dragged along its

normal direction. We can say that the friction coefficients depend on the direction the

body is moving with respect to some body-axes; in the particular case of a straight

rod two directions are defined (Fig. 2.1):

u⊥ = ξ−1
⊥ f⊥ Perpendicular,

u‖ = ξ−1
‖ f‖ Parallel . (2.4)
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2.2. Swimming with a semi-flexible filament

x

h(x,t)

t=0 t=_
2
T

+ =

Figure 2.2.: Illustration of resistive-force theory applied to a beating flagellum with period T .
At the beginning (t = 0) a part of the flagellum is moving upwards (black arrow).
The flagellum is locally approximated by a rod, whose drag force (blue line) is not
directed along the direction of the velocity, but it has a bigger component normal
to the flagellum. A force along the x̂ direction (red arrow) is so generated. After
half a period the flagellum comes back, but because it is moving with wave-like
motion, its local orientation is inverted too, and so are the forces. Nonetheless, the
force component parallel x̂ (red line) still points in the same direction and sums up
to the previous one.

One of consequences of the anysotropic drag is that the drag-force is not parallel

to the velocity, but it is more intense along the normal direction to the rod (Fig. 2.1).

This simple observation allows explaining how the periodic motion of the sperma-

tozoon generates a net thrust: let us assume that the motion of a small segment

of the flagellum (Fig. 2.2) is, essentially, along the y direction. In the absence of

anisotropic drag the force in the first half period is f1 = ξu1ŷ, equal an opposite to

the force generated in the second half a period f2 = ξu2ŷ = −ξu1ŷ (Fig. 2.2, black

arrows), where ξ is the drag coefficient and u1,2 is the velocity of the small segment.

The anisotropic drag, instead, projects part of the resistance force along the positive

x̂ direction; thus the forces generated in the two half periods have the same net

contribution along the swimming direction (Fig. 2.2, red arrows).

Gray and Hancock [5] showed and verified experimentally that the swimming

velocity is indeed due to the imbalance between perpendicular and parallel drag of

the flagellum (Fig. 2.2):

u = −1

2

(

ξ⊥
ξ‖

− 1

)

A2ωk

(

1

1 + h a k/2π

)

, (2.5)

where the flagellum is described by a single traveling wave y(t, s) = A sin(kx− ωt)
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2. Filaments, Elasticity, and Hydrodynamics

propagating from negative to positive x, hξ‖ is the head drag coefficient and a the

characteristic size of the head. This equation highlights few important aspects:

1. a traveling wave propagating along a slender filament can cause a net force

on the microswimmer and the velocity is proportional to the drag anisotropy

ξ⊥/ξ‖ − 1.

2. the force pushes in the opposite direction with respect to the wave velocity.

The sum of the forces on the fluid and on the body being, indeed, zero.

This is a very intuitive conclusion and calculations based on anisotropic drag,

said “resistive-force theory”, have been successful also in describing the motion of

other swimmers, e.g. E. Coli [10]. One way to measure experimentally the drag

coefficients is by fitting Eq. (2.5) to the swimming velocity: for bull sperm it yields

ξ‖ = 0.69± 0.62 fNsµm−2 and ξ⊥/ξ‖ = 1.81± 0.07 [52].

Thus, we have seen that a rod has two main drag coefficients and this can explain

the mechanism of swimming for slender bodies. Usually, however, the coefficients

ξ⊥ and ξ‖ are not known for arbitrary shapes and it is natural to wonder how to

estimate theoretically the perpendicular and parallel drag in complicate, possibly

not-constant, shapes. In the most general case, every slender shape that moves in a

fluid exerts forces the fluid itself and the effective drag-coefficient will be due to the

continuously changing contributions of the distant parts of the body. In general then,

it is not possible to define a “perpendicular” or “parallel” direction only. This make

the problem very complicate but from a theoretical point of view, it is desirable to

“squeeze” the non-local hydrodynamic interaction to a description in terms of local

drag-coefficients. The treatment of these questions, specialized to slender objects, is

the subject of the “Slender-body theory” [10, 49, 53, 54].
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2.2. Swimming with a semi-flexible filament

Stokeslets and Slender-Body Theory

The motion of a viscous fluid past a swimming microorganism of shape S(t) obeys

the momentum-balance equation [8]:

∇p− η∇2u = 0

∇ · u = 0 . (2.6)

Usually, swimmers are impenetrable to the fluid flow, hence Eq. (2.6) is complemented

with the boundary condition that the flow adheres to the surface S(t) and has the

same velocity. Despite the innocent aspect of Eq. (2.6), this problem can be solved

only in few lucky cases. We need an alternative approach to understand the propulsion

of extended objects.

A more convenient way is to tackle the problem from the opposite point of view:

a swimmer applies forces on the fluid, whose velocity and pressure fields p and u

are given by the Stokes equation. By linearity, the flow generated by any complex

distribution of forces can be written as a sum of “fundamental flows” generated by

point forces along the moving surface [8, 10].

The fundamental solution of Stokes equation (Eq. (2.3)) with external force given

by fδ(r) and boundary condition given by zero velocity at | r |= ∞ is called

“stokeslet”. The pressure and velocity fields read:

p(r) =∇ ·
[

− f

4πr

]

(2.7)

u(r) =H(r) f , u(|r| = ∞) = 0

=
1

8µπr

(

1 + êêT
)

f (2.8)

where r =| r | is the distance from the point-force, ê = r/r and H(r) is the Oseen

tensor. Eq. (2.8) shows that the velocity field is made of a component parallel to f ,

equivalent to the velocity generated by a sphere of radius r moving with the same

velocity, and a radial component given by the dyadic product that modifies the first

one with a second-order surface-harmonic [10].
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2. Filaments, Elasticity, and Hydrodynamics

We can finally write the flow field generated by a distribution of forces as super-

imposition of stokeslets with force densities fδ(r(s)) along a curve whose centerline

is parametrized by the curvilinear coordinate s as [8, 10]:

u(s) =
f

4πµ
+

∫

r(s)−r(s′)>δ
ds′ H(r(s), r(s′))f(r(s′)) (2.9)

where the cut-off δ ≈ 1
2

√
ea ∼ 1.36a accounts for the finite radius a of the distribution.

The general solution of Eq. (2.9) is not known, but it is readily computed for the

simple case of a rod parallel to the x̂ axis, with radius a and length L ≫ a. Each

point along the filament experiences a drag force that depends its distance from the

middle point:

u‖(x) =
f‖

8πµ

(

1 + log
4x(L− x)

a2
, 0, 0

)

u⊥(x) =
f⊥

8πµ

(

0,−2 + 2 log
4x(L− x)

a2
, 0

)

, (2.10)

as long as x is far from the filament ends (in 0 and L). The drag coefficients are

finally found integrating along the rod to obtain

ξrod‖ =
4πµL

log(L/a) + α

ξrod⊥ =
2πµL

log(L/a) + β
. (2.11)

Note that:

1. The constants α and β depend on the boundary conditions and the aspect-ratio.

To first order, however, they are constants: α = 0.84, β = −0.20 [1, 50, 55]

2. Eq. (2.10) shows a logarithmic dependence on the distances from the cylinder

ends. Phenomenologically, this means that the drag increases towards the ends

and it is minimum at the midpoint

3. When L/a ≫ 1, the ratio between the perpendicular and parallel velocity is

almost two
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2.2. Swimming with a semi-flexible filament

Instantaneous Flow Field Average Flow Field

Figure 2.3.: Instantaneous and average flow field generated by a filament moving with assigned
curvature C(s, t) = C0 sin(ωt+ qs). Given the size and velocity of each point, the
flow field is obtained from Eq. (2.9). The black points represent the filaments, the
red arrows are the instantaneous local velocities and the blue lines are the stream
lines.

4. In the limit of infinitely long filament, the terminal velocity diverges. This is

a well know paradox. However, in practical cases one always deals with finite

lengths and the problem has no relevance.

This method shows that we can, at least formally, reproduce the hydrodynamics

features of extend slender object by discretizing them as spherical beads of radius a.

Concluding remarks on swimming slender bodies

Thus, we have seen that the simplification introduced by imposing a force on the

fluid instead of boundary conditions allows rewriting the flow generated by a moving

slender body in the simpler form of Eq. (2.9), and that using Slender-body theory

and the fundamental solutions of the Stokes equation it is possible to estimate the

resistive-force drag-ratios of a thin rod. For more complex objects the solution of

Eq. (2.9) becomes prohibitively complicated, even more so if we consider the time-

changing shape of, for example, a beating flagellum or cilium. In Fig. 2.3 we visualize

the computed flow-field generated by a wave-like filament.

To overcome the difficulties introduced when applying Eq. (2.9) to biological cases,

one may be tempted to approximate the curved shape as a series of short rods. This

has the advantage of removing any non-local term, by precomputing them in the

anisotropic drag. In this way, however, the choice of the rod-length determines also

the cut-off length for the hydrodynamic interaction; the value of the rod length and
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2. Filaments, Elasticity, and Hydrodynamics

Figure 2.4.: Lateral view of cilia tips. Note the microtubule-doublets that form the axoneme.
Arrows indicate the probable ending points. From Ref. [28].

radius should not be regarded anymore as geometrical quantities, but as effective

parameters that require to be fine tuned in order to reproduce the experimental data.

Interestingly, it turns out that to match the experimental data, the value of L should

be replaced by the wavelength of the beating flagellum (see Ref. [5, 10, 54] for further

details). A different approach is to neglect completely the Slender-body theory and

to fit the swimming velocity against the drag coefficients as done in Ref. [52].

In more complex geometries, as well as in the case of interacting sperm, it is not

correct to precompute the long-range terms. It is in this case that simulations really

show all their power [18].

In the previous discussion of hydrodynamics at low Reynolds number and slender

bodies we implicitly assumed that the shape of the body is given. This may be the

case for some systems, but it is not the most general one. In general, bodies are

not infinitely stiff and when fluid flow exerts some forces on them, their reaction

can include a deviation from the expected shape. Before discussing this problem,

we present in the next section some theoretical models and observations on flexible

slender-bodies.
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2.3. Semi-flexible filaments

2.3. Semi-flexible filaments

Polymers are ubiquitous in microbiological context: the most famous examples being

DNA and proteins [56]. Recently [57], interest has grown on another class of polymer

assemblies: actin, intermediate filaments, and microtubules; they are called semi-

flexible filaments to highlight that the bending energy is enough to out-compete the

entropic forces. Their relevant role in cellular mechanics is well accepted [1, 57, 58]:

on the contrary to the previous class of soft-polymers, this new class has a striking

structural difference: they can sustain loads and exert forces. Their contribution on

the formation of cellular cytoskeleton is well known, and recent investigations are

highlighting their contribution to the formation many other structures, e.g. lamel-

lipodia and podosomes [59, 60]. Often these biomechanical structures are not formed

by a single filament alone, but by many filaments aligned in cross-connected bundles

with improved stability and higher buckling threshold [57, 61].

The axoneme, clearly, belong to the category of bundles of filaments (Fig. 2.4). In

this thesis we assumed that the bundles are weakly cross linked: this means that

the effective bending rigidity is simply the sum of stiffnesses of individual filaments.

In the opposite case of cross-linked bundles the effective bending rigidity depends

on the deformation [62]. In theoretical physics the standard model of a continuous

semi-flexible polymer is the Worm-like chain [56]. In the remaining of this section

we briefly present its equilibrium and dynamical traits.

When the position r(s) of the filament is parametrized by the curvilinear coordi-

nate s along the filament centerline, the potential energy is readily written as the sum

of two contributions: a term that penalizes the bending, and a term that penalizes

the stretching [63]:

G = Gbending +Gstretching

=
κ

2

∫

ds
[

(

∂2sr
)2 −

(

∂2sr · t̂
)2
]

+

+
σ

2

∫

ds [| ∂sr | −1]2 , (2.12)

where t̂ = ∂sr/ | ∂sr | is the unit tangent vector, κ is the bending modulus, and σ is
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flexible rodsemiflexible

lp << L lp>>Llp~L

Figure 2.5.: Illustration of classification of polymers in terms of their persistence length at
equilibrium. (Left:) The polymer is said flexible and usually modeled as a Rouse
chain and thermal energy dominates the conformations. (Right:) The polymer
is stiff, thermal energy is not enough to strongly affect the polymer conformation.
(Middle:) The polymer is said semi-flexible: the thermal energy and bending rigidity
compete. The conformations are mostly straight, but deviations are visible.

the “stretching” modulus.

The interpretation of the potential energy is simple: the second integral vanishes

when the tangent vector has velocity 1, hence when there is not stretching, the

first integral vanishes when there is no bending. Note that the second contribution

to the bending energy is due to the parametrization of the filament (see Ref. [63]

for a detailed explanation). Biological filaments are essentially inextensible. With a

parametrization that embeds this constrain there is no need for the corresponding

energy terms. Such parameterization, in 2D, is given by the curvature C(s):

r(s) = r0 +

∫ s

0
ds′

(

cosψ(s′)

sinψ(s′)

)

(2.13)

where ψ(s) =
∫ s
0 ds′C(s′) is the angle between the curve and the x̂ axis. It is easily

verified that, since | ∂sr |= 1 and ∂2sr = C · n̂, the potential energy simplifies to:

Gψ =
κ

2

∫

ds
(

∂2sr
)2
. (2.14)
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2.3. Semi-flexible filaments

The bending modulus can be related to the material property and geometry as:

κ = EI ∝ Ea4, [Energy× Length] (2.15)

where E is the Young’s modulus, I the area moment of inertia and a the filament

radius. The moment of inertia is π
4a

4 for a cylindrical section, for other sections it

has different prefactors but, as long as a≪ C−1, it is always proportional to a4.

When the filament is in equilibrium with a thermal bath, the ratio between the

bending modulus κ and the thermal bath energy1 kBT defines the persistence length

lp = κ/kBT . Intuitively, the persistence length is the length over which the polymer

appears straight despite the fluctuations (Fig. 2.5):

〈̂t(s) · t̂(0)〉 ∼ e−|s|/lp . (2.16)

Note that the intuitive (and geometrical) interpretation has a very precise meaning

only at equilibrium and for polymers whose relaxed state is straight [56]. Given the

definition of the persistence length, the gyration radius reads [1]:

〈R ·R〉 = 〈
∫ L

0
ds t ·

∫ L

0
ds t〉 = 2l2p

(

e−L/lp − 1 + L/lp

)

. (2.17)

We move now to the introduction of basic concepts to model the dynamical behavior

of semi-flexible filaments. From Eq. (2.14) we derive the equations of motion of an

inextensible filament in a viscous fluid via the least-work principle [63, 64]:

∂tr =
(

ξ−1
⊥ n̂n̂T + ξ−1

‖ t̂t̂T
)

· δGψ
δr

= ξ−1
⊥ n̂ ∂4sr · n̂+ ξ−1

‖ t̂ ∂4sr · t̂ , (2.18)

where δGψ/δr is the functional derivative of the potential Gψ with respect to the fila-

ment configurations r. Eq. (2.18) has to be complemented with boundary conditions

1
kBT = 4.1 pN nm at 24o C.
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that, for free ends read

∂2sr |s=0,L= ∂3sr |s=0,L= 0 . (2.19)

Note that Eq. (2.18) is not linear because n̂ and t̂ themselves depend on the

configuration r. An approximated equation in terms of small deviations from the

rest state provide very useful insight. It is, in principle, possible to expand either the

tangent angle or the displacement from the rest line. Let begin with the tangent angle

ψ = ψ0 + ǫψ1 + ǫ2ψ2 + o(ǫ3), where ǫ is a small positive parameter. Small tangent

angles correspond to an almost straight configuration, hence ψ0 = 0. Substituting

Eq. (2.13) in Eq. (2.18), using the fact ∂t(∂sr) = ∂tψn̂ and collecting by equal orders

in ǫ, we obtain (for the first two orders):

0 = 0+ ǫ2
[

ξ−1
⊥

(

ψ1∂
3
sψ1

)

+ ξ−1
‖

(

−3∂sψ1∂
3
sψ1 − 3(∂3sψ1)

2
)

]

−κ−1∂tψ = ǫξ−1
⊥ ∂4sψ1+ ǫ2 ξ−1

⊥ ∂4sψ2 .

(2.20)

Expanding the configuration in small normal deviations h = (r − r0) · n̂ [57,

64](Fig. 2.2):

r = r0 +

∫ x

0
ds

(

cosψ(s)

sinψ(s)

)

≈
ψ→0

r0 +

(

x

h(x)

)

=

= r0 +

(

x

ǫh1(x) + ǫ2h2(x) + . . .

)

. (2.21)

and inserting Eq. (2.21) in Eq. (2.18), yields:

∂t

(

x0

h

)

= −κ





ǫ2
(

ξ−1
⊥ − ξ−1

‖

)

∂4sh1∂sh1

ǫξ−1
⊥ ∂4sh1+ ǫ2 ξ−1

⊥ ∂4sh2



 (2.22)

Equations 2.20 and 2.22 highlight some important aspects of the dynamics of an

elastic body in a viscous fluid:

• To first order in the deviation from the straight line, the bending energy and
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2.3. Semi-flexible filaments

the perpendicular drag are the only terms that determine the dynamics,

• The inextensibility is a second order correction (see second line of Eq. (2.20)),

• Net forces along the swimming direction are generated by the second (and

higher) order terms (Eq. (2.22)).

It is very instructive to spend some time on the linear dynamics, valid for “small”

deviation from the rest configuration (see also Ref. [65] for further comments.) As

shown by Eq. (2.22), the dynamics of small deviations is determined by the bending

energy and perpendicular drag only and Eq. (2.18) reduces to the much simpler:

ξ⊥∂th = κ∂4sh . (2.23)

Despite the seemingly limited range of validity, this equation is at the basis of the

experimental measurement of the persistence length of biological filaments [57, 66].

Equilibrium measurements are based on the fluctuations-spectrum; indeed, a filament

in equilibrium in contact with a thermal bath (ie. this means that Eq. (2.23) is

complemented with white noise that satisfies the FDT theorem) fluctuates with

power-spectrum:

〈hq(t)hq(0)〉 =
2

κ

kBT

L

1

q4
e−ω(q)t (2.24)

where q = 2πn/L is the wave vector of the Fourier modes and ω(q) = κq4/ξ⊥. This

approximation is valid when the end effects can be neglected (e.g. for fluctuations

with short wavelength).

On the contrary to equilibrium measurements, it is possible to measure the per-

sistence length by observing the response to controlled perturbations (see Ref. [66]

for the details). In this case it is more convenient to introduce the proper normal

modes of Eq. (2.23) in dimensionless units by measuring space in units of the filament

length s = Lα from the filament middle point and time in units of the relaxation

time t = τ ξ⊥L
4

κ . We obtain:

∂τh(τ, α) = ∂4sh(τ, α). (2.25)
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Figure 2.6.: Odd (left) and even (right) modes of the biharmonic operator with free boundary
conditions at the sides.

Separation of variables is our best tools to construct a solution:

h(α, τ) =
∑

n

χn(τ)φn(α) ,

where φh are the eigenfunctions of the biharmonic operator ∂4s for −1/2 < α < 1/2:

φn(α) = an cos(qnα) + bn sin(qnα)

+ cn cosh(qnα) + dn sinh(qnα) , (2.26)

with the eigenvalues qn and factors an, bn, cn, dn that depend on the boundary

conditions [66–68]. In the case of free ends, if the origin of the arclength is in the

middles of the filament, the parity of the modes becomes evident:

φn(α) =

(

cosh(ζnα)

cosh(ζn/2)
+

cos(ζnα)

cos(ζn/2)

)

, n even

φn(α) =

(

sinh(ζnα)

sinh(ζn/2)
+

sin(ζnα)

sin(ζn/2)

)

, n odd , (2.27)

where ζn = (n− 1/2)/π and τn =
(

π(n−1/2)
L

)4
. We plot the first 4 modes in Fig. 2.6.

Note that the Fourier modes are not a normal mode decomposition of Eq. (2.25).

This means that, on the contrary of the normal modes given in Eq. (2.27), each Fourier

mode will not display a single relaxation time. Nonetheless, the correct normal modes
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2.4. Coupling Hydrodynamics and Elasticity

can be approximated by the Fourier ones when the wavelength is small compared to

the filament length or the problem allows discarding the dynamics at the filament

ends [69].

2.4. Coupling Hydrodynamics and Elasticity

We introduce here some theoretical background on the motion of a slender deformable

filaments inside a viscous fluid. We have seen in Eq. (2.10) that the viscous drag is

not evenly distributed along a filament, being stronger at the edges than at the center.

Classical slender body theory assumes the rod to be infinitely stiff and not deformable,

hence the effective drag coefficients are obtained averaging the drag forces along the

filament (Eq. (2.11)). This hypothesis is no longer valid when the body can deform,

as it is in the case of semi-flexible filaments: the filament bends to comply to the

uneven distribution of drag forces. The example of the elastic filament is a particular

case of a more general behavior of deformable objects moving relative to a fluid (e.g.

in Ref. [70] the sedimentation of a red blood cell was studied): the viscous drag that

develops on the body’s surface is not, in general, evenly distributed, hence objects

deform to comply to the force; at the same time the new body shape generates

new drag forces the body has to comply to; until a equilibrium configuration that

balances drag forces and body forces is reached.

The dynamics of the position of a segment of the filament at position r(α, τ) is

determined by [67]:

∂τr(α, τ) =

∫ 1/2

−1/2
dα′ 1

γ
Iδ(r− r’)

[

D(α′)r’+ f ’
]

+

∫ 1/2

−1/2
dα′ H(r, r’)

[

D(α′)r’+ f ’
]

(2.28)

where f is the external force density, γ = 3πη is the friction per unit length, D is the

biharmonic operator D = −∂4α that accounts for the bending energy, and H(r, r’)

is the Oseen tensor [67, 71]. Eq. (2.28) has been written to enhance the similarity

between its terms, but it can be split into its elementary contributions. Let us begin

by noticing that each integral is the sum of two contributions: a term proportional
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2. Filaments, Elasticity, and Hydrodynamics

to the external field f , that is equivalent to Eq. (2.9), and a term proportional to

the bending rigidity ∂4αr. Each term, in turn, can be seen as a contribution of a local

term (first line) and a non-local term (second line).

Comparing Eq. (2.18) and Eq. (2.28) we recognize that the r.h.s. of the first line

describes the elastic and external forces acting directly on position r. The second

line couples the local dynamics with the fluid flow generated in points far from r.

The tensor H(r, r’) is the Oseen tensor:

H(r, r’) =
Θ(| R | −b)
8πη‖R‖3

[

IR2 +RRT
]

(2.29)

where Θ(x) is the Heaviside function, b is the filament radius and R = r− r’. With

this formulation, the cutoff length is implemented directly in the definition of the

tensor.

Decomposing the position r on the modes of the biharmonic operator as done for

Eq. (2.25) the equation of motion for the modes is

∂τχn =
∑

l

(Hnl + δnl)

[

−χl
γ

τl
+ fl

]

(2.30)

where Dφl = −1/τlφl and Hnl is the interaction matrix:

Hnl =

∫ 1/2

−1/2
dαdα′ φ0(α)H(r, r′)φl(α

′) .

In the absence of hydrodynamic interactions, the modes do not mix and each mode

relaxes with a unique relaxation time τn. Eq. (2.30) shows that the hydrodynamic

matrix Hnl mixes the modes and their relaxation times. When the external force

f is uniform (as is the case of gravity), the force couples only to the zero-th mode

because fl 6=0 = 0 – the coupling between higher modes and the external force is due

to the hydrodynamic matrix. Since the 0− th mode is the center of mass position, in

the absence of long-range hydrodynamics, the filament simply translates along the

gravitational field and the other modes relax with their unaltered characteristic time.

In presence of hydrodynamics, instead, the filament bends upward [72] because the
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Figure 2.7.: Sketch of the 2D axoneme. The sliding filaments (red) are like two rails, at fixed
distance r. The molecular motors are attached at one side, and pull the opposite
filament towards the + sign. The base (yellow) hinders the sliding, and connects
the filaments to the sperm body.

hydrodynamic matrix couples the external uniform field to the higher modes that

are, thus, excited.

2.5. Active Axonemes

The 9+2 structure of the axoneme hosts dynein motors between adjacent double-

microtubules (Fig. 1.4, Fig. 2.4, and Fig. 2.7). Since the beating amplitude does not

decrease, energy has to be provided throughout the flagellum length [37, 73]. It was

soon realized that the sliding forces generated between the microtubules can indeed

bend the filament and generate a traveling wave [37–39].

The question is, then, about the feedback mechanism between the filaments and

the molecular motors. In the very first model a simple curvature-feedback between

the viscous and elastic torques, and the active torques is proposed to model the

beating pattern of sea urchin (see Refs. [30, 31, 37–39, 74, 75]). In the most recent

developments the attention is turned to the actual mechanics that may generate the
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2. Filaments, Elasticity, and Hydrodynamics

traveling wave: proposed mechanism are the linear response function of molecular

motors to the sliding velocity [44] or the interdoublets separation due to the bend-

ing [46]. In both cases, the underlying idea is to map the cylindrical arrangement

of the axoneme to two planar and parallel filaments with shear forces in between

(Fig. 2.7).

In Ref. [64] it is assumed that the free energy of two sliding semi-flexible filaments

is

G =

∫ L

0
ds
κ

2
C2 + f∆+

Λ

2
(∂sr)

2 (2.31)

where κ is the bundle bending rigidity, ∆ =
∫ s
0 ds

′aC(s)+∆(0) is the relative sliding

between the facing filament, f are the internal stresses, and λ is a Lagrange multiplier

to constrain the filament length. The equation of motion of the filaments is, after

Fourier transformation of time,

iωξ⊥h̃+ κ∂4s h̃− σ∂2s h̃ = r∂sf̃ (2.32)

where σ is the tangent stress at the first order in h and vanishes for clamped or

fixed head and free tail, and for freely swimming sperm. The shear forces f̃ are not

known but it is argued that, near the Hopf bifurcation between relaxation dynam-

ics and oscillatory dynamics, the details are not relevant and the shear force can

be written as a linear relation between force and sliding f̃ = χ∆̃ where χ is the

linear response-function of a (symmetric) two-state brownian-ratchet-like model of

molecular motors [44, App. C] [76]:

χ = K + iλω − ρΩk
iω/α+ ω2/α2

1 + ω2/α2
(2.33)

and ∆ ≈ r(∂sh− ∂sh |0). The equation of motion is then:

iωξ⊥h̃+ κ∂4s h̃− σ∂2s h̃ = r2χ∂2sh (2.34)

and linear stability analysis shows that active traveling waves are, indeed, stable

28



2.5. Active Axonemes

solutions. The parameter Ω describes the concentration of ATP, or of Ca2+ when

Calcium determines the motors activity, and α is a characteristic ATP cycling rate.

The proposed model does not suit the needs of complex bead-spring simulations,

hence in chapter 6 we discuss a computational model based on the force-velocity

equation obtained in Ref. [76] for two-state molecular motors model, and present an

alternative model not bounded to a specific biomechanical hypothesis.
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3. Models and Methods

3.1. Molecular dynamics simulations

We simulate filaments, like Actin or microtubules, and bundles, like the spermatozoon

flagellum, as Worm-Like Chains. A filament of length L is composed of N+1 beads at

distance b = L/N . The proper shape, elasticity and stiffness are modeled as internal

forces between the beads. Every bead follows the law of classical mechanics:

dri
dt

= vi

dvi
dt

= fi/m for i ∈ [0, 1, . . . , N ] (3.1)

where {ri,vi} is the system configuration, m is the bead mass and fi = fi({ri,vi} , t)
are the forces acting on the i -th bead.

In the following works we can identify two different classes of non-conservative

forces: dissipative forces and active forces. The active forces may have different origins,

in our case they are the torques that bend the filament to mimic the spermatozoon

active beating. These forces can be seen also as energy sources. The dissipative forces

originate from the interaction between the body and the fluid, and drain energy away

from the system.

We investigate systems that are, essentially, inertialess: dvi/dt ≃ 0. Numerically,

however, it is more convenient to integrate Eq. (3.1) (with inertia then), selecting

a mass and viscous drag such that the inertial relaxation time-scale be the fastest

time-scale involved: we choose γ/m ≈ 102, where γ is a representative value of the

viscous damping.

Once the forces (next subsection) and the integration scheme (following subsection)

are specified, the equations of motion can be integrated.
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3. Models and Methods

3.1.1. Forces

To simulate an actively beating filament, four types of forces are present between

the beads:

Bond forces Filaments are made of a constant fixed number of beads N , at distance

b. The distance is constrained by a harmonic potential:

Ubond =
kb
2

N−1
∑

i

(| ri+i − ri | −b)2 . (3.2)

Bending forces adds stiffness to the chain of beads by constraining the angle θi

between two consecutive bonds Ri = ri+1 − ri:

Ubending =
κ

2b3

N−2
∑

i=0

(Ri+1 −Ri)
2 . (3.3)

The forces on each monomer are computed via the usual variational principle:

−Fi =
δUbending

δri
= (3.4)

=
κ

2

δ

δri

i+2
∑

j=i−2

(Rj+1 −Rj)
2 . (3.5)

In the second line we highlighted that the force on each bead comes from 5

contributions, indeed [77]:

Fi =















ri±2 − 4ri±1 + 6ri for 2 < i < N − 3

ri±2 − 2ri±1 + ri for i = 0 and i = N − 1

ri±2 − 2ri∓1 − 4ri±1 + 5ri for i = 1 and i = N − 2

. (3.6)

Bending torques mimick the internal forces/torques generated (e.g. by molecular mo-

tors) throughout the filament. In 2D simulations we can simulate the bending

torque with a torque dipole between the nearest bonds of each bead (Fig. 3.1).

Torque dipoles apply no net torques nor net forces, coherently with the real

ones.
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3.1. Molecular dynamics simulations
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Figure 3.1.: Illustration of the implementation of the torque dipole.

Hydrodynamic interaction The hydrodynamic interaction can be modeled in differ-

ent ways. In most cases, we are not interested in the computationally expensive

direct integration of the Navier-Stokes equation and simplified approaches can

be used. In previous works MPC[78] was used to reproduce the hydrodynamics

at long scales and arbitrary boundary conditions [18, 79]. However, with the

idea in mind to understand the minimum system, we use resistive force theory

and slender body theory. The theoretical details are presented in the previous

chapter, here we focus on the implementation:

Resistive-force theory Of the two techniques, this is the most straightforward.

The force on each bead depends on the local tangent and normal directions:

fi = −
(

ξ⊥n̂in̂
T
i + ξ‖t̂it̂

T
i

)

vi (3.7)

At each bead the local tangent vector is t̂i = ri+1,i−1/|ri+1,i−1| where
ri+1,i−1 = ri+1−ri−1, the normal n̂ direction is the tangent vector rotated

by π/2 CCW. At the filament end, the tangent is approximated by the

bond direction.

The ratio between the two drag coefficients depends on the physical sys-

tem(e.g. filament radius or wavelength). For spermatozoa we used the

value measure in measured in Ref. [52] for swimming bull sperm near a

substrate: ξ⊥/ξ‖ = 1.81 and ξ‖ = 0.69 fNµm−2s.

Oseen tensor is implemented computing the background flow field ui in the

position of bead i generated by all the other beads. The flow field is then
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3. Models and Methods

used to compute the effective drag force. The implementation is very

similar to Eq. (2.8)[80]:

FH
i (t) =− γ0 (vi − ui)

= −γ0



vi +
3

4

a

γ0

∑

j 6=i

[

1 + r̂ijr̂
T
ij

] FC
j

rij



 (3.8)

where γ0 = 6πηa is the drag coefficient of a bead with radius a. The radius

of the beads determines the aspect ratio of the filament. We used a = b/2,

called Shish-Kebap model, fixing the aspect ratio to 1/(N − 1). Finally,

note that the cutoff distance ( δ in Eq. (2.9)) is determined by the bond

length (here δ = b).

3.2. Data Analysis

The theoretical investigation of microswimmers is bounded by our quantitative knowl-

edge of the different observables. In the last 50 years of research we have seen a

growing amount of detailed studies from the pioneeristic works of Gray and Hanckok

[5] till the latest manipulations by Pelle and Brokaw [48] and Friedrich and Jülicher

[52].

Here we present some tools that we used to dissect the experimental recordings

of a pinned spermatozoon. The problem can be stated as follows: “How do we

characterize and quantify the evolving shape of an organism?” The problem is far

from being restricted to the community of micro-swimmers. In general, the best

experimental data of micro-organisms/cells is made of a high-resolution and high-

framerate recording and we want to extract automatically, as much quantitative

information as possible, and classify it in a meaning-full way. The original data being,

essentially, just a collection of pixels.

In particular, we show how we adapted a technique used to study the behavior C.

Elegans [81] called “Principal modes decomposition”, or “Whitening transformation”

depending on the scientific community of origin.

The protocol we applied for the flagellum can be summarized as follows:
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Figure 3.2.: The different passages involved in the analyses of the raw experimental data. From
left to right, and top to bottom: From the tracked position of the flagellum ri(t)
we compute the curvature (a), the curvature is cut to the last common point
and filtered with a Gaussian kernel of width σ = (1/500 s, 0.9µm) (b), the raw
curvature is decomposed into the normal modes (e) and the importance of the
modes is compared with respect to the modes of the filtered data (c), plot of the
“phase plot” of the amplitude of the first two modes (d), and of the new curvature
reconstructed from the first three normal modes only (f).

1. The flagellum is tracked by N(t) points by our collaborators. The number of

points and the expected initial position of the flagellum change from frame to

frame, but for all experiments the tracking initial point is at about 7µm from

the pinning point and tracks the following ≈ 30µm down the flagellum.

2. We map the shape of the flagellum to its curvature. In this way we remove

the informations about the position and orientation in the lab-frame. The

curvature C(i, t) at point 1 ≤ i ≤ N − 1 is computed as [82]:

C(i, t) = 4
∆

abc
(3.9)
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Where a =| a |, b =| b |, c =| c |, ∆ = 1
2 | a× b |, and

a =

(

xi−1 − xi

yi−1 − yi

)

, b =

(

xi+1 − xi

yi+1 − yi

)

, c =

(

xi+1 − xi−1

yi+1 − yi−1

)

.

In Fig. 3.2(a) we plotted the result of this operation. Observe that the cur-

vature is very noisy and, as explained in the previous point, the number of

points changes from frame to frame. In general it is possible select the region

of arclength that is always tracked. In Fig. 3.2(b) we the curvature is also

smoothed to compare the effect of a simple Gaussian filter to the results given

by our protocol (panel f).

Of course, different ways to quantify a shape allow addressing different questions.

For example: in the case of slender bodies, the curvature contains all the

information about the organism shape, but its position and orientation in the

space are lost, hence we should no infer informations about the motion of the

body’s center of mass. An alternative choice is the tangent angle, as in Ref. [81].

3. The auto-correlation matrix of the curvature is computed as

M(s, s′) = 〈C(s, t)C(s′, t)〉t ,

with eigenvalues σi and eigenvectors êi. The number of eigenvalues and eigen-

vectors is finite and discrete because the arclength s is discretized.

4. The eigenvalues σi are positive, because M(s, s′) is a correlation matrix and

provide a measure of the amount of information encoded in the corresponding

eigenvector. The eigenvectors are then sorted accordingly to their eigenvalue

from bigger to smaller. In Fig, 3.2(c) we plotted the relative contribution of each

mode σ̂i = σi/
∑

j σj (see notes for an explanation of the difference between

the two lines).

5. The interpretation of the physical meaning of the empirical modes is not trivial.

Comparing of the relative contributions of each mode in the case of raw or
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filtered curvature (pane c), we understand that higher modes can be seen as

high frequency Fourier modes.

6. We expect/hope that the biological behavior is described by few modes. Inter-

preting high n modes as, essentially, high frequency mode, we find that the first

3 eigenvalues (Fig. 3.2(e)) describe more than 95% of the (biological) signal

(panel c).

This is the case for most of the experiments that we analyzed (Fig. 3.4).

7. The eigenmodes are orthogonal and the input data can projected on them to

obtain the amplitude of the i-th modes χi(t) of each mode at time t: χi(t) =
∫

ds êi(s)C(s, t). This decomposition is similar, in spirit, to the method of the

“separation of variables” used to solve certain PDEs.

8. In the case of periodic motion, there is a couple of equally important modes

ê1,2(s) whose amplitudes are periodic in time with the frequency of the motion

and in phase quadrature. If the modes êi(s) themselves represent a sinusoidal-

like function, the resulting superimposition represents a traveling wave. The

plot of χ1(t) vs χ2(t) is called “phase plot”(Fig. 3.2(d)) and recalls the standard

phase-reduction approach [83, 84].

We exploit this feature to measure the time-dependent frequency of the sper-

matozoon ω(t) with the resolution of one period using a Poincaré map[85].

9. From the first three modes and amplitudes we compute a filtered curvature

that contains only the three chosen spatial modes, filtering away the irrelevant

information (Fig. 3.2(f)): Cnew(s, t) =
∑3

i χi(t)êi(s).

With this protocol we obtain then:

• Normal modes (Fig. 3.4(b and c))

• Frequency from Poincaré map (Fig. 3.2(d))

• Clear power spectrum (Fig. 3.3)
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Figure 3.3.: Power spectrum of the curvature at ∼ 25µm of the flagellum of a beating sperm
imaged at 500 fps. The three lines corresponds to the case of raw curvature, the the
smoothed curvature with Gaussian kernel of variance 1/500s and 0.9µm and, to
them curvature computed from the first three normal modes. Observe that the peak
of the second harmonic is much more clearly identified from the power-spectrum
of the reconstructed curvature than of the smoothed data.

Note that the Gaussian filter applied to the curvature spreads the curvature from

the tip to the base (as expected), but our protocol allows avoiding this artifact.

In Fig. 3.3 we show that this technique allows enhancing the relevant beating

frequencies: comparing the power spectrum of the original raw curvature, the power

spectrum of the filtered one and the power spectrum of the reconstructed we see that

the red-line has a clearer second and third harmonic peaks than the green or blue

ones.

3.2.1. Discussion

The technique we presented seems the ideal to decompose and analyze time series

of moving micro-organisms. However, there are few side effects that must be kept in

mind to avoid confusion.

Some observations stem from the physics behind the technique, and some from

the biological context of application:
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Figure 3.4.: Top: The two panels show the plot of σ̂i in the case of raw and smoothed curvature
(red and blue, respectively) and for normal cells and cells excited after the release
of caged progesterone (left and right, respectively). Observe that the plots have
a rather small variance: especially the blue lines show that in all the analyzed
experiments three modes account for about 95% of the signal. Bottom: Plot of the
first two eigenmodes êi(s) for all experiments rescaled by the wavelength. Observe
that, within the current precision, all sperms have, essentially, the same eigenmodes.

Phase between modes Because the flagellar beating is periodic the first two eigen-

modes are, approximately, equally important. This means that the curvature

can be approximated by the sum of two standing waves in phase quadrature:

C(s, t) ≈ χ1ê1(s) exp(iωt+ iψ)+χ2ê2(s) exp(iωt+ iπ/2+ iψ). The value of the

phase ψ is arbitrary, and the protocol does not specifies it. This means that

the ouput from different datasets may look different, even when the only real

difference is the phase ψ. In Fig. 3.4(bottom), the phase is fitted to maximize

the similarity to a reference mode, in this way we removed the degeneration.

In practice then, we know that three modes are enough to recover the important
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Figure 3.5.: Phase plot of the first two modes before and after the release of caged progesterone
(top and bottom, respectively). The origin of each “cycle” is translated by 2 at
every dataset, and the corresponding origin is indicated by the red dot. Note that,
while many spermatozoa have a clear “limit cycle” around the origin associated to
the beating modes, this is not the case for all of them.

part of the spatial structure of the input data, while the higher modes account

only for finer spatial frequencies.

Behavior The correlation matrix M(s, s′) = 〈C(s, t)C(s′, t)〉t averages over the time

window of the experiment as alternative to the ensemble average. The problem

is that the system we are investigating is not ergodic.

The length of this window must be chosen appropriately: over long time-

windows we should expect that the organism changes its behavior, while on short

time-scales we observe the body conformations needed to move. In Ref. [81] a

detailed account on the application of the technique to both behavioral and

conformational studies is found.

3.3. Spectrogram

In many applications the Fourier transform alone is not enough to identify the

important components of a signal. Sound analysis is one case in which the frequency
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changes during time. The beating frequency, too, is not constant [86]1: there are

oscillations or fluctuations around a mean value, or drifts due to random noise,

biological/chemical origin or other, still unknown, reasons.

In previous studies [87], the phase plot is used to determine the time dependent

frequency from the phase velocity. This is not the recommended way [85] nor it

is suitable to our data as many sperm cells have not a clear phase plot (Fig. 3.5).

In particular, there is not always a clear limit cycle for the entire duration of the

experiment.

One method to compute the time dependent frequency is the so-called “spec-

trogram”, that is intuitively simple: the power-spectrum is computed on a sliding

window of size W . The time window W determines the FFT resolution ( the wider

W the better) and the spectrogram time resolution (the shorter W the better). An

example can be seen in Fig. 5.8 with W = 20 periods.

3.4. Filament Modes

In chapter 4 we study the sedimentation of one, two and three filaments sedimenting

in a viscous fluid. To characterize the numerically obtained filament conformations

the shapes are projected on the normal modes φn to obtain the amplitude vector

χn(t) =

∫ L/2

−L/2
ds r(s, t)φn(s). (3.10)

Each component of the vector χn indicate the importance of the mode in Cartesian

directions. For example, the mode amplitude χ2,z of the 2nd mode, see Fig. 2.6,

measures how much the filament is bent along the ẑ direction into a V -like shape

and corresponds to the dominant term when a single filament sediments in a weak

external field.

Note that the mode amplitudes are not invariant under transformations of the

reference system. For rotating filaments, for example, we measure the out-of-plane

1The frequency variance in a single Chlamydomonas is about 2 Hz, as we measure for human
spermatozoa (Fig. 5.5).
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bending χ2,⊥ in the reference system of the filament as

χ2,y + iχ2,x = χ2,⊥ exp(iωt),

which also defines a rotation frequency ω in the “lab” reference system.
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4. Conformations, hydrodynamic

interactions, and instabilities of

sedimenting semi-flexible filaments

In this chapter we present novel results on the sedimentation of semi-flexible fila-

ments [88]. The methods are described chapter 3.

4.1. Introduction

Semi-flexible filaments are fundamental constituents of micro-biological systems,

where microtubules and actin filaments serve as scaffolds for cellular structures

and as routes to sustain and guide cellular transport systems [1]. Microtubules are

also the main structural elements of cilia and sperm flagella, where their relative

displacement and deformation due to motor proteins gives rise to the flagellar beat

and hydrodynamic propulsion [44, 64]. Microtubules and flagella can be seen as elastic

filaments interacting with their own flow field. The ability to visualize, assemble, and

manipulate biological and artificial semi-flexible polymers [66, 89–91] poses new

fundamental questions on the dynamics of filaments when elastic and hydrodynamic

forces compete.

The dragging of stiff rods through a viscous fluid has been studied in detail [92].

A single rod does not reorient, but falls with its initial orientation. A more complex

dynamical behavior can be expected and is indeed observed for semi-flexible fila-

ments when the curvature or stretching elasticity competes with the hydrodynamic

interactions [93–95]. Single dragged semi-flexible filaments bend into a shallow V

shape to balance the higher drag at both ends [72] and their end-to-end vector aligns
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4. Sedimenting Filaments

perpendicularly to the external field [95]. For strong drag, higher modes have been

found to be excited after turning on the field; this generatesW -shapes initially, which

then relax back into horseshoe-like U shapes [72]. Here, the dynamics seems to be

constrained to the plane initially defined by the direction of the external field and

the filament itself. However, these investigations address the problem from a deter-

ministic point of view, and little attention has been paid to the dynamic stability of

the resulting shapes. In all cases, the dragged and deformed semi-flexible filament

initially defines the settling plane, but the stability of the filament’s planar shape

has not been investigated as function of the external field or the relative position of

possible neighboring filaments.

Here, we focus on the full three-dimensional shape of one, two, and three semi-

flexible filaments sedimenting in a homogeneous external field. We incorporate the

hydrodynamics into the equations of motion for the filament shape via the Oseen

tensor, valid in the limit of zero Reynolds number. As a result of our numerical

and analytical analysis, we find that the deformations confined to a plane become

unstable with respect to normal perturbations at a threshold value B∗
1 of the strength

B of the external field, which is smaller than the threshold B∗
2 where initial, transient

W shapes become excited, see Fig. 4.1. Thus, with increasing strength of the external

field, two instabilities and transitions to new sedimentation modes are predicted. The

first transition is from a stable planar U -shape with little bending to a stationary

horseshoe-like U -shape with out-of-plane bending. The second transition at stronger

fields excites a metastable W shape, also with out-of-plane bending, which then

“relaxes” into a non-stationary asymmetric U -shape. As result, there exist two families

of shapes, where the elastic forces are balanced by a conformation-dependent drag.

We consider next the interaction between two filaments in an external field. Indeed,

while the dynamics of an isolated filament is an indispensable knowledge needed to

understand the case of n > 1 interacting filaments, many situations are characterized

by elastic slender objects interacting via the generated flow field: cilia [35, 91], sperm

[17, 23], and E. Coli bundles [6, 96] are probably the most relevant from a biological

point of view.

It is known that the sedimentation behavior of colloids can be quite complex.
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Figure 4.1.: Snapshots from simulations of single filaments dragged by the external homogeneous
field B = mgL2/κ, where L is the filament length, g the external field, and κ
the bending stiffness. Left: For weak field (B < B∗

1) the filament bends into
a V -shape (in dots), dominated by the χ2,z mode. Center: As the field strength
increases, higher modes with an out-of-plane component are excited, and the filament
drifts sideways. Right: For even stronger fields (B > B∗

2) further symmetries are
spontaneously broken, and the filament rotates following a helical trajectory.
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4. Sedimenting Filaments

The interaction of sedimenting particles has been studied in considerable detail for

spherical colloids [97, 98]. Two particles sediment together, but don’t follow the

direction of the external field, and move instead under an angle with respect to it.

For more particles, many different dynamical behaviors can be found, in particular

periodic motions where particles “dance” around each other [98].

For dragged semi-flexible filaments, the dynamical behavior is even more com-

plex [94]. In particular, we show that two filaments (Fig. 4.1) attract each other,

repel each other, or spin around the field depending on the intensity of the external

field.

We focus here on the stability of the sedimentation plane for different field intensi-

ties and on the origin of the relative velocity. In particular, we want to see whether

the velocity difference is due to different shapes or to the broken up-down symmetry.

For even more filaments, the dynamics become unsteady at much weaker external

field strength than expected from the two-filaments case.

4.2. Results

4.2.1. Deformation and Dynamics of Single Filament

The filament is initially oriented along the x axis of the reference frame. After a

certain time, the dragged filament reaches a stationary shape and velocity. Examples

of conformational sequences for various field strengths are displayed in Fig. 4.1. We

characterize the shapes via Eq. (3.10) in terms of the mode amplitudes. In Fig. 4.2, the

most important stationary amplitudes are presented. Below a critical field B∗
1 ≃ 1200,

the filament shape is governed by planar modes (green and black lines), where χ2,z

dominates and, thus, the characteristic V -shape appears.

In simulations restricted to a two-dimensional plane, or in three-dimensional sim-

ulations without noise [72], the filament dynamics is localized in the xz plane and

filaments bend into a planar W -shape for fields B > B∗
2 ≈ 1800. In contrast, in

our three-dimensional simulations with weak noise, we find that the planer filament

conformations are metastable for B∗
1 < B < B∗

2 , and also modes along the y axis are

excited. We characterize the out-of-plane filament shape and dynamics by the mode
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Figure 4.2.: Stationary mode amplitudes of a single semi-flexible filament as function of the
external field B. The shaded areas indicate the 66% confidence interval. When
B < B∗

1 , only planar modes are excited, and the filament stays in the plane defined
by its initial orientation and the orientation of the applied field, here the xz plane.
For B > B∗

1 , an out-of-plane mode χ2,⊥ is excited. For B > B∗
2 , the out-of-plane

component χ2,⊥, the bending component χ2,z saturates, and the amplitude χ4,z

becomes important (visualized in Fig. 4.1). In black crosses indicate the maximum
value of χ4,z before it decays. The resulting shape is asymmetric and spirals around
the z axis with frequency ω/ω2 (light-blue symbols), with ω2 the frequency of the
second mode (Eq. (4.1)).
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4. Sedimenting Filaments

amplitude χ2,⊥(t), where

χ2,⊥(t) = χ2,x(t) + iχ2,y(t) = |χ2,⊥|eiωt. (4.1)

In the stationary state, an U shaped and deck-chair-like conformation is assumed

with out-of-plane bending (Fig. 4.1). The filament orientation is fixed and χ2,⊥ = χ2,y

(blue line in Fig. 4.2). Since its shape is asymmetric, the filament drifts sideways

while settling in the external field.

When B & B∗
2 , the mode χ4,z becomes important at early times, leading to a

temporary W shape (Fig. 4.2). The trajectory for B ≃ 3000, displayed in Fig. 4.1,

shows the initial W , which later turns into an asymmetric U shape, in which one

arm is longer than the other. The appearing shape is stable; however, because of its

asymmetry, the mode amplitude χ1,z is non-zero and the filament rotates around

the z axis with frequency ω, see Fig. 4.2 (light-blue line), which we determined via

Eq. (4.1).

In contrast, in the deterministic dynamics of previous studies [72], the W shape

was found to decay only into the stable and symmetric planar horseshoe shape.

4.2.2. Conformations and Dynamics of Two Interacting Filaments

Relative Velocity of two Filaments

For an analytical description of interacting filament, we adopt a continuum model.

The equation of motion of the point rν(s, t) (−L/2 ≤ s ≤ L/2) along the contour of

filament ν is given by [67]

∂tr
ν(s, t) =

∑

µ

∫ L/2

−L/2
ds′H(rν(s)− rµ(s′))fµ(s′), (4.2)

where fµ is the external force density and the index ν indicates the various filaments.

As before, the hydrodynamic tensor H(rν(s) − rµ(s′)) comprises the Oseen tensor

and the local friction. The force density f comprises bond, bending, and gravitational
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4.2. Results

forces. In the limit of a rather stiff filament, it can be written as

fν(s) = lpkBT

(

1

l2p

∂2

∂s2
− ∂4

∂s4

)

rν(s) + fνG(s), (4.3)

with the persistence length lp [68, 99]. In the following, we will neglect the bond

term, i.e., the term with the second derivative and focus on bending stiffness only.

As described in Sect. 2.3, the expansion

rν(s, t) =

∞
∑

n=0

χ
ν
n(t)φn(s) (4.4)

in terms of the eigenfunctions φn of the biharmonic operator leads to the equations

of motion for the mode amplitudes

∂tχ
ν
n =

∑

µ

∞
∑

l=0

H
νµ
nl

[

− γ

τl
χ
µ
l (t) + f

µ
lG

]

. (4.5)

The matrix representation of the hydrodynamic tensor is

H
νµ
nl =

∫ L/2

−L/2
dsds′ φn(s)H(rν(s), rµ(s′))φl(s

′). (4.6)

We derive now an equation for the relative velocity between the centers of mass

of two filaments. We restrict our analysis to the case of small bending amplitudes,

that is equivalent to consider small external fields, and filaments of identical shape.

Since
∫ L/2
−L/2 φn(s)ds =

√
Lδn,0 for the exact eigenfunctions, the difference in the

center-of-mass velocity ∆vcm = v1
cm − v2

cm of two isolated filaments is given by

∆vcm =
1

L

∫ L/2

−L/2
ds ∂t

[

r1(s, t)− r2(s, t)
]

=
1√
L
∂t
[

χ
1
0(t)− χ

2
0(t)
]

. (4.7)
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Substitution of Eq. (4.5) yields

√
L∆vcm =

∑

n

H11
0n

[

− γ

τn
χ
1
n + f1nG

]

−
∑

n

H22
0n

[

− γ

τn
χ
2
n + f2nG

]

+
∑

n

H12
0n

[

− γ

τn
χ
2
n + f2nG

]

−
∑

n

H21
0n

[

− γ

τn
χ
1
n + f1nG

]

.

The first two terms on the right-hand side account for self-interactions of the indi-

vidual filaments, the other two terms of the hydrodynamic interactions between the

filaments.

We simplify our considerations by assuming identical shapes of the filaments, i.e.,

we set χ1
n = χ

2
n := χn. Moreover, for the constant external force the relation applies

fνnG = fν0Gδ0n independent of the particular filament. Hence, its contribution vanishes,

which yields

∆vcm =
1√
L

∞
∑

n=1

(

H21
0n −H12

0n

) γ

τn
χn. (4.8)

We are primarily interested in the distance dependence of the relative center-of-mass

velocity. Hence, we additionally neglect the dyadic term in the hydrodynamic tensor

(2.29). Moreover, the local friction term vanishes in Eq. (4.8), and the hydrodynamic

tensor can be written as

H
νµ
0n =

1

8πη

∫ L/2

−L/2

φn(s)φ0(s
′)

|rν(s)− rµ(s′)|dsds
′. (4.9)

Using the eigenfunction expansion Eq. (4.4), we obtain

rν(s)− rµ(s′) =∆rνµcm +

∞
∑

n=1

χn

(

φn(s)− φn(s
′)
)

= ∆rνµcm +Ξ(s, s′). (4.10)
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With this definition, we obtain for ∆H12
0n = H21

0n −H12
0n

∆H12
0n =

1

8πη

∫ L/2

−L/2
dsds′φn(s)φ0(s

′) (4.11)

×
[

1

|∆r21cm −Ξ(s, s′)| −
1

|∆r21cm +Ξ(s, s′)|

]

.

In the limit d = |∆r21cm| ≫ |Ξ(s, s′)|, Taylor expansion yields

∆H12
0n =

1

4πη

∫ L/2

−L/2
dsds′φn(s)

Ξ(s, s′) ·∆r21cm
d3

φ0(s
′), (4.12)

and hence,

∆vcm =
1

4πη
√
L

1

d2
(4.13)

×
∞
∑

n=1

γ

τn
χn

∫ L/2

−L/2
dsds′φn(s)

Ξ(s, s′) ·∆r21cm
d

φ0(s
′).

Substituting x = s/L and setting γ = 3πη [67], yields

∆vcm =
3

4

L2

d2
(4.14)

×
∞
∑

n=1

1

τn

χn√
L

∫ 1/2

−1/2
dxdx′φn(x)

Ξ(x, x′) ·∆r21cm
d

φ0(x
′).

Thus, the relative velocity decreases quadratically with the distance between the

filaments. There is evidently no velocity difference when ∆r21cm is perpendicular to

Ξ(s, s′). In particular, there is no force between two specifically aligned rods as long

as their director χ1 is perpendicular to ∆r21cm.

Weak Field - Relative Velocity

As shown in Sec. 4.2.1, the stationary shape of a single filament in weak fields

B < B∗
1 is of V -shape, which breaks the bottom-top symmetry. This is sufficient to

generate an effective attraction between sedimenting filaments with the same shape.

To characterize this interaction, we compute the relative velocity ∆v between the
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Figure 4.3.: Simulations of two filaments with the same imposed shape, kept constant during the
simulation (B = 195). The shapes are created with the given χ2,z. The filaments
lie in the same plane, parallel to the external field. The relative velocity ∆v scales as
d−2. The black lines correspond to the prediction of Eq. (4.16), save for a common
factor δ ≈ 1.03 × 10−6. The theory describes correctly the trend on d, and the
trend on χ2,z holds up to χ2,z = 8× 10−3.

centers of mass of two filaments of equal shape along the sedimentation direction.

The filaments remain localized in the xz plane and are separated by a distance d.

As shown in Fig. 4.3, the relative velocities exhibit a significant dependence on the

filament separation. We especially find that ∆v ∼ d−2 for distances larger than the

filament length.

For the considered filament geometry,

r1(s, t) = (χ1,x(t)φ1(s), 0, χ2,zφ2(s))
T (4.15)

and r2(s, t) = r1(s, t)+dez, the general expression for the velocity difference (Eq. 4.14)

yields

∆vcm ∼ χ2
2,z

L2

d2
(4.16)

in the limit d→ ∞. Evidently, the filaments attract each other due to the top-bottom

52



4.2. Results

asymmetry of their shapes. In the simulations, the filament shapes are determined

initially by imposing the amplitude χ2,z, which is then kept fixed. The simulation

results of Fig. 4.3 are in agreement with our theoretical prediction down to roughly

the filament length. The d−2 power law is indeed a universal scaling, unaffected by

the filaments shape and external field. The dependence of ∆v on χ2,z (Eq. (4.16)) is

also verified for very small bending.

Weak Field – Stability

We now relax the imposed shape constraint and consider collective effects for two

filaments, which are initially straight, oriented along the x axis and displaced along

the z axis by a distance d (cf. Fig. 4.4(a)). For easier comparison with Ref. [72, 94],

we employ the dimensionless number ∆ = (Aupper − Alower)/(L/2) to quantify the

bending asymmetry, where Aupper, lower is the total z extension of the upper/lower

filament. As indicated in Fig. 4.5, the filament curvature changes with time and

the upper filament is bent stronger than the lower one. Figures 4.5 (a),(b), show

the curvature asymmetries ∆ and the relative velocities for various external field

strengths. ∆ decreases with increasing distance d, indicating more similar shapes at

larger distances. Hydrodynamic interactions lead to an attraction of the two filaments

(vupper > vlower), in agreement with the imposed-shape approximation studies of the

last section. Indeed, the constant-shape approximation still gives the correct (L/d)2

power-law dependence for d/L≫ 1, while the magnitude of the deformation, χ
(eff)
2,z ,

has to be fitted. When the filaments approach each other, the generated flow field

depends on the details of their shapes that, in turn, depends on the external field,

hence we expect a non-universal behavior. Note that in contrast to Ref. [94], we find

that the upper filament bends more than the lower filament (see also Fig. 4.4).

The planar configuration of a filament is also stable with respect to filament

rotations around the field axis, see Fig. 4.4 (b). Filaments that are initially displaced

along the z axis (as in the previous case) and rotated with relative orientation angle

θ around the external field axis spin until the relative angle vanishes, as illustrated

by Fig. 4.5 (c). Also in this case, the upper filament drifts and rotates faster than

the lower one, see Fig. 4.5 (d). The relative velocity is essentially the same as in the
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Figure 4.4.: Snapshots of two-filament conformations for B = 195, in time intervals ∆t. (a)
Co-planar sedimentation. Note that the upper filament is more bent than the lower
filament, and dmin/L = 0.13. Axes to scale, z position translated. (b) The two
filaments approach each other after initialization in a rotated configuration. Both
filaments spin around the z axis, with the upper filament spinning faster (Fig. 4.5 (c-
d)).
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Figure 4.5.: a)-b) Bending asymmetry ∆ and relative velocity ∆v of two filaments as function
of the filaments distance for L/b = 30. The two filaments are in the same plane,
parallel to the external field and parallel to each other. Each color corresponds to
a different external field B, as indicated. The velocity v0 is the terminal velocity
given by the resistive force theory for a rod. When d/L ≫ 1, the relative velocity
scales as d−2. Note that filaments attract, i.e. time progresses from right to left.
c)-d) Rotation angle θ and relative velocity ∆v of two initially rotated filaments
around the field axis by θ = 18o. The relative velocity is essentially unaffected by
this change. Notably, the filaments spin toward each other decreasing the relative
angle.
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planar case.

Thus, two filaments sedimenting in weak fields relax toward a stable planar config-

uration one behind the other. The shape of the filaments is dominated by the second

mode, pointing downwards, as shown in Fig. 4.4. This mode dominates and it breaks

the mirror symmetry of the hydrodynamic interactions even for filaments of the same

shape. Note that, in contrast to the single filament case, the system does not reach

a stationary state velocity or shape, since the upper filament is always faster than

the lower filament until the filaments touch each other.

Strong Field

For strong fields, we consider two filaments, which are initially displaced by 6L along

the field direction. We measure the shape eigenvalues when the distance is 5L, in

the quasi-stationary regime, and find that the eigenvalues exhibit the same behavior

as those of a single filament. This means that for B > B∗
1 the dynamics of each

filament is dominated by the local flow field and not by the interactions with the

other filament. Indeed, we find no correlations between the orientations of the out-of-

plane components of the two filaments for B > B∗
1 : the two filaments can by chance

bend out-of-plane and drift in arbitrary directions.

When B > B∗
2 , the filaments undergo the same transitions as a single filament:

each of them reaches the same stationary shape and rotation velocity as an isolated

filament. We find no correlations between the rotation directions of the two filaments:

some filaments spin in the same direction, others in opposite directions, with no

preference. This highlights the relevance of hydrodynamic interactions between two

filaments for external fields weaker than B∗
1 . Stronger fields reduce the effects of

hydrodynamic interactions and the emergent behavior is the same as that of an

isolated filament.

4.2.3. Three Filaments

Given the complex dynamics of two interacting filaments, it is interesting to consider

also the collective behavior of several filaments. We find in simulations of systems

with more than two filaments an intriguing collective dynamic behavior even for very
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Figure 4.6.: Three semi-flexible filaments and trajectory of one bead (thick line), for the external
field B ≃ 60 ≪ B∗

1 . In this case, the filaments form a bundle, but the relative
positions change periodically. Inset: plot of χ2,z for the three filaments. Since they
have the same period and constant phase shift, this is the result of a cooperative
behavior.
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weak fields (B ≃ 60) and in the absence of noise.

We focus here on the case of three filaments, see Fig. 4.6. For most (randomly

chosen) initial configurations, the nearest two filaments form a bundle that settles

faster than the third filament that is then left behind. However, we find also some

initial configurations where all three filaments attract each other and form a bundle.

In this case, the relative positions are not stationary; instead, the filaments follow a

periodic trajectory, see Fig. 4.6 (inset). In the inset of Fig. 4.6, we show also that the

shapes of the three filaments are not stationary. The mode amplitude χ2,z of each

filament changes periodically, with a constant phase shift between them.

Our results for one and two filaments indicate that triggering of a time-periodic

bifurcation requires strong fields. However, the three-filaments results suggest that

systems with more filaments display a very complex dynamics even for weak fields

due to complex hydrodynamic interactions.

4.3. Discussion and Conclusions

We have investigated the dynamics and stability of semi-flexible filaments exposed

to an external homogeneous field and interacting only via hydrodynamic fluid fields.

Due to the competition between hydrodynamic interactions and bending stiffness,

the appearing dynamical behavior is richer than for entropy-dominated polymers or

interacting rods.

We have shown that, for weak fields B < B∗
1 , co-planar configurations of two

filaments are stable upon perturbations that rotate the shapes relative to each other

around the field axis. With simulations of fixed shape filaments, we have highlighted

that a V - or U -shape is sufficient to break the hydrodynamic symmetry at low

Reynolds numbers, leading to a relative velocity that scales with distance as (L/d)2.

Hence, the difference in drag coefficients between filaments is not necessary to explain

the faster settling velocity of the upper filament.

For external field strengths exceeding the critical value B∗
1 , the hydrodynamic

interactions bend the filament out of its principal plane. Simulations of a single bent

filament show that the hydrodynamic forces balance the elastic force, stabilizing
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the out-of-plane shape. The resulting trajectory is a drift in the direction of out-of-

plane bending, superimposed to the settling motion. This is a novel result, not to

be confused with the previously reported metastable W -state [72] that is excited

when B > B∗
2 . A careful analysis of the eigenmodes indicates that the decay of the

metastable state does not, in general, lead to the reported planar horseshoe shape,

but also excites an average rotation mode with respect to the field axis (χ1,z) and

our out-of-plane bending mode χ2,⊥. The filaments spin then around the field axis.

Finally, we have demonstrated that three filaments display an unexpected periodic

dynamics even at field strengths far weaker than B∗
1 . This is in contrast to the

dynamics of a pair of filaments that either displays a monotonic dynamics that

relaxes the attractive force (when B is weak) or a dynamics dominated by the

single-filament (when B > B∗
1).

The interesting external fields B are in the range 101 . B . 104. We can estimate

these parameters for biopolymers like actin or microtubules. Actin has a persistence

length of lp ≃ 17µm, an average length L ≃ 20µm, and the bending rigidity κ ≃
60×10−3pNµm2 [1]. The external gravitational field, corrected for buoyancy, is about

G ≈ 10−7 pN
µm , which implies Bgravity ≃ 10−2. Microtubules, on the other hand, are

stiffer, longer, and heavier with lp ∼ 1mm, L ∼ 100µm ≪ lp and G ≈ 10−6 pN
µm [57].

This yields the effective field strength Bgravity ≃ 10−1. An experimental test of our

predictions is therefore within reach of modern centrifuges with accelerations of about

103g.
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5. Flagellar Beat of Pinned Human

Sperm

The hydrodynamic interaction between spermatozoa is due to the flow generated by

the motion of their body, similarly to the interaction between semi-flexible filaments

studied in the previous chapter: the main difference, in this case, is that the flow

field is generated by the active beating pattern of the flagellum and not by the

passive relaxation of the filament to the external forces. Therefore, a quantitative

understanding of the beating pattern of spermatozoa is of primary relevance to

design models that reproduce the flow field and give some insight in the spermatozoa

coordination (cfg. also Refs [18, 19]).

Here we present the analysis of the experimental recording of pinned human sperm

(in collaboration with research center CAESAR, Bonn). The sperm cells, as most

microswimmers, are known to be attracted to surfaces. The experimental setup uses

this feature to fix the sperm cell within the microscope field-of-view. In the particular

experimental setup we are interested in, the spermatozoa get incidentally pinned as

it swims over a selected functionalized area. Movies at 500 fps record continuously

7 s to ≈ 3 minutes, corresponding to 102 to 5× 103 beating cycles, and the flagellum

is tracked. In the following the tracking mesh has a resolution of 0.9µm. In Fig. 5.1

we show one frame (inverted colors) which is overlaid with the (red) tracking and the

corresponding simulation (blue). The shaded lines correspond to past frames, and

the dashed lines to the average flagellum shape. The observation of the experimental

data alone gives information about the kinematics of the beating (as in Ref [52]) but

no informations about its dynamics.

Here, we intend to devise also a model that can reproduce the experimental beating

pattern by simulating the flagellum as a semiflexible filament and imposing an
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5. Flagellar Beat of Pinned Human Sperm

appropriate bending torque. To this end, we need to define a set of observables that

trustfully represent the beating pattern: we found that the best options are the

frequency ω and the first two normal modes of the curvature ê1 and ê2. The model

represents the spermatozoon body and flagellum as a semi-flexible filament, activated

by local bending torques, as described in the chapter 3. By carefully matching the

simulated and experimental geometry we propose that, despite the evident non-

linearities and asymmetries of the real beating (Fig. 5.1), the bending torques have

the simple, inviting, form of a traveling wave.

In the process of developing the model, we realized that all sperms in our dataset

rotate around their pinning point (Figs. 5.9 and 5.11). It is known that sperms swim

in circles, probably to enhance the chemotactic mechanism [100, 101], hence the

rotation itself is not a surprise. One proposed mechanism is that the rotation be

caused by the average curvature of the flagellum [52, 100] or a bent neck [102]. We

find that another, new, mechanism is possible. In the analysis of the power spectrum

of the beating frequency it is common to observe higher harmonic peaks. We show

analytically that higher harmonics contributions lead to a net torque around the

pinning point, that is compatible with the simulations driven by torques with two

harmonics and the experimental data. We highlight than that the average curvature

can by a byproduct of higher harmonics, and need not to be present in the driving

forces.

Our dataset comprises N = 38 human sperms from 3 donors, of these, N = 22

sperms from 2 donors where imaged before and after the release of caged progesterone

to study the effects of the hormone.

5.1. Quantitative description of sperm beating

In Fig. 5.2 we show a representative plot of the curvature, that is then processed

as explained in chapter 3. The curvature is invariant under Galilean transformation

of the reference system, hence it is perfectly suited to study the shape of an object,

independently from its orientation in space. Hence, we study the curvature as proxy

for the real shape.
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Figure 5.1.: Stroboscopic view of experimental tracking (red) and simulation with a semi-flexible
filament and anisotropic drag-force (blue) - time is represented by the fading lines.
The dashed lines represent the average shape in one period. The simulations match
the wavelength, frequency and principal modes of the experimental data. The local
bending torque is given by two traveling waves with frequencies ω0 and 2ω0 and
mean zero. The rotation around the pinning point and the average curvature emerge
naturally by this simple model (dashed line).
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Figure 5.2.: (left) Unprocessed curvature of a beating fleagellum measured from the tracking
points. The number of points is not constant, hence some lines are longer than
others. (right) The “reconstructed” curvature (see Methods) from three most
important normal modes of the beating pattern (accounting for ≈ 95% of the
signal), effectively filtering the noise and highlighting the biological features. In
transparency we show the data that is not possible to analyze with the proposed
protocol.

We find that the curvature envelope increases towards the end of the filament

(Fig. 5.3), with slope ρ = 0.0057 ± 0.0025µm−2 both for normal sperm cells and

after the release of the progesterone. The normal modes allow a direct inspection of

the beating shape. In Fig. 3.4 we show that three modes always contain ≈ 95% of

the signal whatever the beating parameters and experiment type (with or without

progesterone). In previous analysis a similar observation was done for C. Elegans

and allowed investigating behavioral changes due to external stimulii. In our case,

we are not (yet) interested in behavioral changes. However, we exploit the reduction

of the relevant conformational space to the first three modes to assume that the

biological behavior can be projected on the basis of the empirical mode. The same

plot (Fig. 3.4) shows that the first two modes (the ones connected to the periodic

beating) carry ≈ 80% of the signal. In Fig. 5.4 we show the first two eigenmodes for

both types of experiment (with and without progesterone). Surprisingly, rescaling the

arclength by the wavelength of each experiment we obtain a unique couple of modes

that is independent on the sperm cell and beating parameters (like, e.g.: frequency

or curvature amplitude). This is a new point of view on the kinematic of the sperm

beating that shows quantitatively the similarity of beating patterns of different cells.

As we discussed in methods, the curvature computed from the first three modes

64



5.1. Quantitative description of sperm beating

has a lower noise-to-signal ratio and we can compute the Fourier transform with good

precision even on short time-windows. This is important for the following analysis:

since the frequency changes over time it is not possible to measure a power spectrum

at once, but we need to perform the power spectrum on a sliding window. The

result is called “spectrogram” (Fig. 5.8). The standard deviation of the measured

frequency ω(t), then, does not indicate a measure error but the natural fluctuation

of the signal. In Fig. 5.5(left) we compare the beating frequency of each different

cell before and after the release of the progesterone. The scatter plot shows that,

in average, the beating frequency of the normal sperm is faster. We also see that

the standard deviation of the single (isolated) normal sperm is approximately 2Hz,

smaller than the standard deviation of the sample 5Hz. Th progesterone makes

the beating frequency more unstable, indeed the standard deviation of single cell is

approximately 4Hz, the double of the case without hormone, and comparable with

the sample std. dev. (≈ 6.5Hz). In the right panel we performed a similar analysis for

the wave velocity c = ω/k: we find that the wave velocity is about c = 1100±170µm/s.

The wave velocity is smaller after the release of progesterone, suggesting that as the

wave-velocity decreases, the wave-vector is not affected. A preliminary confirmation

can be seen in the plot of the eigenmodes (Fig. 5.4), that shows no appreciable

differences between the modes of cells with and without progesterone. As before for

the beating frequency, the standard deviation of the phase-velocity of a single normal

sperm cell (80µm/s) is smaller than the one of the sample (170µm/s).

From the frequency and wave velocity we compute the dispersion relation ω(k).

In principle we expect the frequency and wave-vector to be statistically independent.

However, the plot of the average frequency and wave-vector (Fig. 5.6) shows that

there may be a (linear) dispersion relation. At the moment of writing we cannot

measure the dispersion relation with the precision of each beating of each cell: what

Fig. 5.6 suggests a possible statistical relation detected from the population of sperms

in our sample.

We turn now our attention to the steering mechanism that is responsible for the

rotation around the pining point (Fig. 5.1). Because of its intrinsic importance and

the novelty of the main result, we present the work in a separate section. We will
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Figure 5.3.: Average envelope of the curvature for normal spermatozoa (left) and doped sper-
matozoa (right). The curvature increases linearly towards the end, with slope
ρ = 0.0057± 0.0025µm−2 for both cases.

then conclude the chapter with a brief discussion of the active and dissipated work.
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Figure 5.4.: (Top) Normal human sperm, (Bottom) Human sperm with progesterone. We
show here that the first two eigenmodes of human sperms are similar between all
experiments when the arclength is rescaled by the wavelength (λ). This suggests
that the qualitative differences observed in the raw-movies can be simplified to a
more general behavior.
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Figure 5.5.: (Left) Frequency distribution after the release of progesterone versus the frequency
before the release. In the central plot we plotted the average and standard deviation
of the frequency. Note that the frequency after the release of progesterone is smaller
than the frequency before. Observe that the standard deviations of the single cell is
≈ 2Hz (normal cell) and ≈ 4Hz (with progesterone). In both cases, the sample
standard deviation is ≈ 6Hz (side and top). (Right): Same analysis for the wave
velocity.

Figure 5.6.: Dispersion relation ω(k). In principle, each sperm cells should be free to choose
any frequency independently from its wave-vector. However, the correlation shown
in the plots indicates that there may be a (linear) dispersion relation. The dashed
lines correspond to phase velocities 0.750mm/s and 1.500mm/s, corresponding
approximately the lower and upper bound of the observed velocity in Fig. 5.5.
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5.2. Steering with Higher Harmonics

Analyzing the power-spectrum of the curvature we noticed that most sperms have a

pronounced component at twice the beating frequency (Fig. 5.7). At the same time

we realized that modeling the rotation velocity with a predefined curvature does not

reproduce some experimental observations. Here we discuss our findings on the role

of higher harmonic component as an effective steering mechanism. The manuscript

is in preparation (see Ref [103]).

Introduction

For a swimming microorganism, steering in response to environmental cues is as

important as propulsion, because only by a combination of the two a target can be

reached, thereby making the distinction between success and death. In particular,

this applies to spermatozoa; on their way to the ovum they sense the rheology and

the concentration gradients of the medium [101], and use the integrated information

to reach their target. The chemical-sensing mechanism is rather established [104]:

spermatozoa swim in circles, and the local density of signal determines if the trajectory

is more or less bent [100].

One proposed steering mechanism is by a curved body [52, 79].

Is this the only way to control the trajectory at low-Reynolds numbers?

With high-speed recording (500 to 1000 fps) of pinned human sperm cells we found

that the beating pattern is characterized by the higher frequencies, typically peaked

around integer ratios of the fundamental one (Fig. 3.3). Hence, we call them “the

higher harmonics of the sperm beating”. The immediate effect of these components

is that at each point of the flagellum the curvature is not symmetrically oscillating

like a sine wave, but has an asymmetric shape with a steeper side (Fig. 5.7(center)).

The spectrogram of the curvature allows measuring the different components of

the Fourier spectrum during the experiment: we found that the second harmonic is

almost always present and it strongly correlates with the rotation velocity around

the pinning point (Fig. 5.7(bottom)).

This observation raises many questions both on the physics of microswimmers and
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Figure 5.7.: Rotation around the pinning point from high-speed microscopy of the beating
pattern. Top: Trajectory of the flagellum of a human sperm. The sperm cell is
rotating around its head. Center: Curvature at 25µm from the initial tracking
point (compare also with Fig. 5.2). Bottom: Plot of the rotation velocity (thick
line) and of the second harmonic (think line) during the experiment. The central
plot corresponds to the time window represented by the two red lines.
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on the biology of spermatozoa. We address here the following three:

• Can a simple superposition of traveling waves with increasing harmonic fre-

quencies generate a force perpendicular to the flagellum?

• Is the rotation that we observe in the experimental data a consequence of the

higher components?

• How do sex-related hormones (e.g. progesterone) affect the beating spectrum

and rotation?

5.2.1. Resistive-Force Theory

It is well known that a reciprocal motion does not generate a net propulsive force on

any microswimmer [7]. Spermatozoa solve this issue with a traveling wave from the

body to the tip: it breaks the front-back symmetry and provides the net thrust in the

forward direction (x̂ in the following). However, along the perpendicular direction

the wave-like motion is periodic and reversible: intuitively, we expect no net force

whatever the Fourier spectrum.

We can easily estimate the parallel (fx) and the perpendicular (fy) forces in the

“small amplitudes” approximation [5]. We recall that, in this approximation, the

flagellum lies along the x̂ direction. The ŷ direction defines the shape: in this case a

superposition of two traveling waves with amplitudes y0 and y1 respectively

y(s, t) = y0 sin(ks− ωt) + y1 sin(ks− 2ωt+ φ),

where k is the wave vector and s is the arclength. Note that the amplitude of the

second harmonic has to be smaller than y1 ≤ 0.3y0 to have a smooth sawtooth profile.

In the framework of resistive-force theory [49], the slender shape of the flagellum

experiences an anisotropic drag-force

f(s, t) = −ξ⊥v⊥ − ξ‖v‖ (5.1)

where v(t, s) is the velocity of the filament at arclength s at time t, and ξ⊥ and ξ‖

are the drag coefficients in the perpendicular and tangential directions. Inserting the
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shape y(s, t) in the force, the net-propulsive and perpendicular forces per period are

given by

fx(s) ≈ kω (ξ⊥ − ξ‖)
(

y20 + 2y21
)

(5.2)

fy(s) ≈ k2ω (ξ⊥ − ξ‖) y1y
2
0 cos(ks+ φ) . (5.3)

Undoubtedly, having higher harmonics allows to go faster (fx ∝ y20 + 2y21), but not

straight: the force perpendicular to the flagellum fy is, in general, not zero.

In experiments, we have access to the rotation velocity around the pinning point

that, by force balance, is due to the net torque around the pinning point T (s) ≈ sfy(s).

A straightforward integration gives:

Ω

ω
∝

2π/k→L
y1 sin(φ) . (5.4)

It is then clear that, while a single frequency cannot generate thrust perpendicular

to the flagellum, a simple linear superposition will. Hence, flagellum shapes defined by

the first and higher harmonics can be an effective mechanism to control the swimming

direction of slender micro-swimmers. We call y1 sinφ the “second harmonic intensity”.

5.2.2. Derivation of the Net Normal Force

We show here how to obtain Eq. (5.4) proceeding in two ways: we initially show how

to proceed in the case the shape of the flagellum can be described in terms of the

small deviations y(s, t), we then redo the calculations imposing a given curvature,

without restriction on the actual shape.

The intentions of this (sub)section is mainly pedagogical and is not essential to

the understanding of the remaining of the chapter: while the first approach is quite

simple, it is based on a a priori approximation that the shape has small amplitudes.

The second approach, instead, computes the final observables without approximations

on the shape until the very end, when the limit of small curvature is finally taken.

This allows comparing the two results gaining insight on the errors done by reasoning

along the lines of the first approach.
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Nearly Straight Filaments

We describe the flagellum as a filament between 0 and 1 along the x̂ axis. For small

bending, the x̂ direction can be confused with the arclength s ≈ x̂ and the shape of

the flagellum is given as a deviation from the straight line y(s, t):

y(s, t) = y0 sin(ωt− ks) + y1 sin(2ωt− ks+ φ) , (5.5)

where y0 is the amplitude of the dominant harmonic and y1 is the amplitude of the

second harmonic. The resistive force is :

f(s, t) = −γ‖(v · t̂)̂t− γ⊥(v · n̂)n̂ (5.6)

where the velocity v(s, t) of the element of filament in position s is:

v(s, t) =

(

0

∂ty(s, t)

)

(5.7)

and the tangent and normal vectors read

t(s, t) =
1

N

(

1

∂sy(s, t)

)

, and n(s, t) =
1

N

(

−∂sy(s, t),
1

)

(5.8)

with normalization 1/N2 = 1/(1 + (∂xy)
2) ≈ 1 − (∂xy)

2. Inserting Eqs. (5.7), and

(5.8) in Eq. (5.6) we obtain the instantaneous force density on the body:

fx(x, t) =− (ξ⊥ − ξ‖) ∂ty∂xy ,

fy(x, t) =− (ξ⊥ − ξ‖) ∂ty (∂xy)
2 . (5.9)

Substituting the filament shape y(s, t) and averaging over time we obtain the expres-

sion for Eqs. (5.2).

The forces in the ŷ direction is, in average, not null and can thus generate a net
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torque:

Ta =
ω

2π

∫ L

0
ds

∫ 2π
ω

0
dt s× fy(s, t) =

= (ξ⊥ − ξ‖)ω y1y
2
0 (kL sin(kL+ φ) + cos(kL+ φ)− cos(φ)) (5.10)

≈
λ→L

(ξ⊥ − ξ‖)2πω y
2
0y1 sin(φ) . (5.11)

Note that the torque is proportional to the higher harmonic component, thus if

y1 = 0 the torque would be 0 – besides the possible complications generated by

a non-trivial wavelength (Eq. (5.10)), the sign of the torque is essentially due to

the sign of y1 sin(φ) as we find in both the experimental data (Fig.5.10) and the

simulations (Fig.5.12).

The torque generated by the second harmonic Ta is balanced by the torque gener-

ated by the perpendicular viscous drag Tv. Here, we estimate the viscous torque as

the torque at one end of a straight rod rotating with angular velocity Ω:

Tv = −
∫ L

0
ds ξ⊥Ωs× s = −ξ⊥

3
ΩL3 . (5.12)

The sum of the two torques must be zero to satisfy momentum balance Tv+Ta = 0

and yields Eq. (5.4):

Ω

ω
∝y1 sin(φ) . (5.13)

Prescribed Curvature

Let’s consider a flagellum whose center-line s is described by the curvature C(s, t):

C(s, t) = C0 cos(ks− ωt) + C1 cos(ks− 2ωt+ φ) (5.14)

where C0, and C1 are the curvature-amplitudes of the two harmonics and 0 < φ < π

is the second-harmonic phase. The shape r(s, t) of the flagellum on the plane is given

by Eqs. 2.13.
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In the framework of resistive-force theory the force-density felt by the flagellum

can be rewritten as

f(s, t) = −ξ⊥
(

1+ ζ t̂t̂T
)

v , (5.15)

where v(t, s) is the velocity of the filament at arclength s at time t. Since the

trajectory of the flagellum is periodic, only the term proportional to ζ =
(

ξ‖/ξ⊥ − 1
)

can contribute to a net force and torque. Inserting Eq. (5.14) in Eq. (2.13) and

Eq. (5.15), we find the active torque to be:

Tq ∝C0→0 ζC1C
2
0λ

3

(

λ3

L3

)

f(λ/L, φ) + o(C4
0 ) (5.16)

where, for simplicity, we assumed the sperm head to be clamped (ψ0 = 0, ~r(0, t) = ~0).

The function f(λ/L, φ) is a periodic function of φ:

f(λ/L, φ) =2k2L2 sin(kL− φ) + 3 sin(kL− φ)

− 3kL cos(kL− φ) + 3 sin(φ)

∼
λ→L

(4π sin(φ)− 3 cos(φ)) (5.17)

where λ is the wavelength. We finally find:

Ω

ω
∝ C1(4π sin(φ)− 3 cos(φ)) . (5.18)

The contribution of higher harmonics contributes to higher orders in C0, but they

were not seen in the experimental data. Note that odd harmonics generate no net

torque.

Comparing Eq. (5.4) and Eq. (5.18) we see that the two approaches lead to the

same result in the limits of small amplitude (of course) with λ ≈ L, and φ ≈ π/2. For

us, this is enough because more precise quantitative comparisons to the experimental

data do not lead to more physical insights, and would simply be a theoretical exercise.
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Figure 5.8.: Spectrogram of the curvature at ∼ 25µm from the pinning point for one experiment
of human sperm (color code by power spectrum, normalized to the max. value).
The fundamental mode correspond to ω0 ≈ 20Hz (red and yellow), the higher
harmonics can be seen at 2ω0 and 3ω0. In the red window we marked a window of
particularly intense second harmonic. Inset: Rotation velocity. In the green window
we highlighted the same time window as in the main plot: the rotation velocity
increases when the second harmonic has the strongest activity.
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Figure 5.9.: The rotation velocity of a spermatozoon is not constant (thick blue line). In this
picture the contribution of second harmonic follows precisely the same dynamics of
the rotation velocity (Human sperm). The parameter R measures the correlation
between the two signals. The two plots show that the measure point does not
strongly affect the measure.

5.2.3. High-speed Microscopy of the Beat Pattern of Human Sperm

Now we want to compare the theoretical prediction (Eq. (5.4)) to the experimental

data that we presented in the previous section.

We measure the evolution of the second harmonic amplitude y1, and phase φ

from the spectrogram of the flagellum curvature. In Fig. 5.8 the spectrogram of

one experiment is plotted (note that only the amplitude component can be plotted):

the second and third harmonics are clearly visible. Observe that at periods with a

higher rotation velocity correspond periods with more intense y1, this is of course

not general, as the plot ignores the information of the phase. Per each experiment

we obtain two signals (as shown in Fig. 5.9): the second harmonic amplitude y1 cosφ

(thin line) and the rotation velocity Ω (thick line). During the experiment, the sperm

cells “decide” if and when to change rotation direction, this means that intensity and

sign of both signals are not constant. This natural behavior is exploited to define

the correlation coefficient R between the rotation velocity and the second harmonic

intensity:

R =
Et(XY )

√

Et(X2)Et(Y 2)
(5.19)
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Figure 5.10.: Each experiment is characterized by a correlation coefficient between the rotation
velocity Ω and the second harmonic intensity y1 cos(φeff). The histograms show
that both before and after the release of progesterone the second harmonic is
strongly correlated with the rotation velocity. The correlation does not change if
the measure is done at arclength 25µm (red) or 15µm (blue)

where X = Ω(t) and Y = y1(t) cosφeff(t), and Et(·) denotes the average value during
the experiment. On the contrary to the usual correlation coefficient, X and Y are

not centered around their mean values. This choice satisfies the physics intuition

that to a constant second harmonic corresponds a constant rotation velocity.

In Fig. 5.10 the histogram of the correlation coefficient shows that there is indeed

a strong correlation between the two signals. Cells with progesterone show a slight

better correlation, probably because the signal-to-noise ratio of the second harmonic

is stronger. We show in Fig 5.11 that, after the release of progesterone, all sperm

cells beat with slower frequency than in normal conditions (left panel) but rotate

faster around the pinning point (right panel). A direct measure of the second har-

monic contribution before and after the release (Fig. 5.11, right panel) highlights

that progesterone increases the intensity of the second harmonic, causing the faster
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Figure 5.11.: Beating frequency (left) and rotation frequency (center) before and after the
release of caged progesterone. Even if the beating frequency after the release of
progesterone is lower than before (left), the rotation frequency is bigger (red).
Right: second harmonic intensity with and without progesterone. The second
harmonic is more intense after the progesterone release, explaining why the cells
rotate faster even if the beating frequency is smaller. All: if a point is inside the
highlighted cones, its values after the stimuli is bigger than before the stimuli.

rotation velocity.

Note that we want to correlate the rotation velocity with the measured second

harmonic amplitude and phase via the linearized theory (Eq. (5.4)). However, the real

curvature has more features than the simplified one that we assumed in computing

Eq. (5.4): in particular, the expression for the torque becomes much more complex

if we allow the curvature envelope to be not constant and let the wave-vector to be

very different from the filament length. These simplifications influence the phase φ,

that is, then, corrected as φeff (t) = φ(t)+φcorrection. The correction is determined to

maximize the correlation but is expected to be a simple constant that incorporates

all the missing information: it is not obvious that such a constant gives also a good

overall correlation R because of the non-linear relation between Ω and φeff .

Fig. 5.10 and Fig. 5.11 show that our predictions are, in average, satisfied by the

experimental data: there is indeed a good correlation between the measured rotation

velocity and second harmonic intensity. A correlation does not imply a causal relation,

however. In the next subsection we show how we can reproduce the experimental

dynamic of individual experiments by simulating a beating sperm whose bending

forces have the measured higher harmonic component.
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5.2.4. Simulations of Human Sperm

We find that to reproduce the beating pattern in silico the sperm is modeled as

a simple semi-flexible filament characterized by a uniform bending stiffness κ. The

filament is bend a prescribed bending torques in the form of a traveling wave with

two harmonics (Fig. 6.4):

T (s, t) =bd ×A0 sin(ks− ω0t)+

bd ×A1 sin(ks− 2ω0t+ ψ) (5.20)

where bd is the beads distance. The portion of data that correspond to the passive

head and midpiece is modeled as a passive semi-flexible filament. The hydrodynamic

forces are modeled via anisotropic drag force (Eq. (5.1)). The filament is pinned at

one end.

Even if the curvature increases towards the end, there is not need to explicitly

model the driving forces in the same way: the asymmetry comes by itself.

Since the beating pattern is not constant and the frequency has a variance of 2Hz

(Fig. 5.8 and Fig. 5.5) the fit is done on windows of 10 to 100 periods that proved to

be stable and accurate enough. In each window we measure the frequency ω, length

L, phase ψ and pinning-point to flagellum distance, and fit the first two simulated

normal modes to the experimental ones to find the wave vector k, the stiffness κ and

the torques intensity A0. From the rotation velocity around the pinning point we

estimate A1.

Note that the eigenmodes describe only how the curvature changes along the

filament, and bring no information on the actual value of the curvature. For this

reason we multiply each mode by it maximum amplitude maxtχn(t) [ µm
−1]. The

estimated stiffness is in the range of 1nNµm−2, compatible with the stiffness of 10

double microtubules. The amplitude of the main driving torque A0 ≈ 0.5κ. The

current fitting protocol does not allow estimating appropriate errors, yet.

The results of the fit confirm that bending torques with higher harmonics can

indeed generate a torque around the pinning point. But this time, the full non-linear

solution highlights more features: an average curvature arises spontaneously and
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Figure 5.12.: (Left) Simulations of actuated semi-flexible filament with anisotropic drag-force.
The rotation velocity scales linearly with A1 and is modulated by the phase cos(ψ+
ψ0) - the actual value of ψ0 depends on all the other parameters. Simulation
parameters: κ ∼ 1nNµm2, A : 0.6κ, ω = 28Hz, tail L = 41µm, ξ⊥/ξ‖ = 1.81
and L/λ = 1.26. (Right) Same parameters of the adjacent plot. The wavelength
changes the rotation velocity when it is longer than the filament.

breaks the chirality of the spermatozoon. In the experimental data we observe a

similar average curvature (Fig. 5.1). A different visualization of the effect of the

second harmonic is shown in Fig. 5.14: each frame is rotated so that the midpiece is

parallel to the x axis. When A1 6= 0 the beating pattern is clearly asymmetric with

respect to the x axis.

The simulation allows investigating how the rotation velocity depends on parame-

ters around the experimentally meaningful values of the fit. In Fig. 5.12 we plotted

the rotation velocity Ω/ω vs the phase ψ and amplitude A1 of the higher harmonic

contribution; the other parameters (stiffness and frequency and A0) are the same of

the fit. The simulations confirm Eq. (5.4): the linear scaling with A1 holds also for

the biologically important case of “big” amplitudes and the rotation has the expected

periodic dependence on the input phase ψ. Figure 5.12 shows that when the wave-

length λ < L, the rotation velocity is essentially independent from the wavelength,

while longer wavelengths reduce the rotation velocity.
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Figure 5.13.: First two experimental eigenmodes (solid lines) and best-fitting eigenmodes
(dashed lines) for 6 experiments on 4 different cells. In red we marked the plots cor-
responding to experiments with progesterone. Note that the modes are multiplied
by their maximum intensity χ1,2 respectively. The estimated bending rigidities are
κ ≈ 1− 2nNµm2, and torque strength A ≈ 0.5κ.
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Figure 5.14.: Comparison between flagellar beats for different sperm numbers Sp =

L (ωξ⊥/κ)
1/4

and second harmonic amplitude A1. The shapes are plotted in
the reference system of the neck. Without second harmonic the trajectory of the
end-point of the flagellum follows an 8-figure. The second harmonic destroys the
symmetric 8-figure, and the beating pattern is essentially asymmetric, coherently
with the average curvature shown in Fig. 5.1.
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Discussion on the fit

Fitting the experimental data can be difficult and tricky at first. We report here

some notes and early (mostly failed) attempts. Note that we always work on one cell

at a time, and infer no information on the current fit from fits on other cells.

Flagellum length We want to make the most simple and less ad-hoc model possible.

However, if the initial determination of the geometry (e.g. length, pinning point

position, . . .) is inaccurate, a more complicate model is needed. This happened

to us initially, when working on very short datasets that never tracked the

flagellum up to its full length. The consequence was that we expected the

flagellum to be some 8µm shorter and needed to include a arclength-dependent

torque.

Neck length The sperm cell is not pinned at the flagellum base, but somewhere

in the head. We call neck the distance between the flagellum base and the

pinning point and it is modeled as a passive and straight part of semi-flexible

filament that represents part of the head and the midpiece. It shifts the active

bending torques by some 7µm from the pinning point. It is difficult to predict

theoretically how this distance affects the dynamics and at the same time to

have accurate data in this region. The choice to estimate a neck-length of about

7µm is more empirical and intuitive than due to quantitative estimates.

Curvature r.m.s. As said, we minimize the r.m.s. from the curvature’s eigenmodes.

This is only one of many choices. We also tried to optimize the curvature

itself or its variance. The first idea never worked properly because the fit finds

multiple minima and it is hard to scan all minima to find the infimum. The

second because the variance gives a statistical measure of the signal, and does

not filter out the noise, hence the fit always over-estimated the real curvature.

Parameters It is practically impossible to fit all the parameters at once (L, λ, A0,

κ, A1, and ψ). We decided to fit only the parameters that cannot be measured

directly.
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Initial values Initial value are critical for the success of the fit. Some values, like the

neck-distance or the length can be successfully estimated only from the longest

available track. Frequency, beating amplitude and wave-vector change quite

often, hence they should be measured for the time window that is going to be

fitted.

Normal modes The normal modes can be tricked by changes in the behavior. If

the behavior is not stationary (e.g.: there are intermittent phases of hyper-

activation and normal beating) the normal modes are best determined inde-

pendently in each phase.

Integration When thinking of fitting, one usually thinks of fitting a function to

some data. In our case, however, we fit a simulation. This means that the

simulation has to be fast and able to successfully integrate a big volume of the

parameters space, as the it is hard to forecast the path taken by the fitting

algorithm. In our case, this is done integrating with an adaptive time-step

algorithm (appendix A).

Fitting The fitting protocol is divided in two steps: a fist step estimates κ and A0 by

optimizing the first two normal modes. A second step estimates A1 and φ from

the rotation velocity. This approach was devised because the first two normal

modes are not heavily affected by the second harmonic, hence the second step

does not affects strongly the first one. We usually apply the steps iteratively

for a couple of loops.

5.2.5. Summary

Microorganisms need to control their swimming direction as response to endangering

situations, feeding or other reasons. It was long believed that spermatozoa control

their swimming direction via the average curvature. This is an intuitive mechanism

that probably plays a role as steering mechanism, but we have shown that it is

not the only one and the real cell may have plenty of other options to control its

motion in other ways. The mechanism that we found is less intuitive than a shape

anisotropy, but it is not a mere theoretical tool. We have shown that the predicted
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theoretical correlation between rotation velocity and second-harmonic intensity is

verified experimentally.

To strengthen the correlation to a causal relation between second harmonic and

rotation speed we developed a simple simulation of beating sperm that fits the

experimental data. This is, per se, a novel approach because previous analyses where

restricted only to the observable kinematic [52]. The dynamics of the beating can be

accurately reproduced once the correct parameters are given. We have shown that

driving the filament beating with two harmonics allows fitting not only the shape

of the beating, but also the rotation velocity. In the experimental data we measure

also an average curvature (Fig. 6.4). A priori, we do not know if it is due to an

explicit mechanism. However, the simulations that fit the beating shape and rotation

velocity show that although the torque has zero average value, an average curvature

is spontaneously generated by the higher-harmonics driving.

This observation enhances our confidence that the higher harmonic contribution

is indeed the cause of the rotation.

5.3. Dissipation and Work

Part of power generated by the molecular motors of a beating spermatozoon is

dissipated into the fluid and we estimated from the tracked flagellum, assuming that

the hydrodynamic interaction be described by the resistive-force theory

Dv(s) =
1

T

∫ T

0
dt f · v

=
1

T

∫ T

0
dt
(

−γ⊥v⊥n̂− γ‖v‖t̂
)

· v(s) , (5.21)

where T is the beating period and s is the arclength. In Fig. 5.15(top) we plot

Dv(s) computed by estimating v, n̂, and t̂ from the data. In our dataset the drag

coefficients may have different values, however now we are interested only in the

qualitative trend along the arclength. As we show in Fig. 5.15(bottom), the drag

ratio influences somehow the trend, that is linear for γ⊥/γ‖ = 1 but “less” linear

γ⊥/γ‖ = 1.81. Since we do not know the exact drag ratio for human spermatozoa,
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Figure 5.15.: (Top) Dissipated power density [fW/µm] for normal beating spermatozoa (left)
and doped spermatozoa (right). The drag ratio is γ‖/γ⊥ = 1.81. The red thick
line is the average interpolating line. (Bottom) Dissipated power compute for
isotropic drag ratio γ‖/γ⊥ = 1. Observe that both trend are, essentially, linear.

we conclude that, within the current resolution, the dissipation increases linearly

towards the flagellum end and we obtain:

Dv(s) = 0.023± 0.007s [fW/µm2] + 0.26± 0.1 [fW/µm] (5.22)

for both normal beating spermatozoa and doped spermatozoa.

It is interesting that the total dissipated power is Dv ≈ 20fW ≈ 4fJ/stroke,

comparable to the work done by a single cilium in a carpet of cilia [105].

Since we have shown in the previous section that the dynamics of the pinned

spermatozoa can be fitted by simple active bending torques

T (s, t) = A0 sin(ωt− ks) +A1 sin(2ωt− ks+ φ) . (5.23)

We can estimate the (active) work done in the filament by the torques and compare
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it to the dissipated power as, in general, it needs not to follow the same linear trend

as the dissipated power Dv(s).

The power density is then written as:

Wa(s) =
1

T

∫ T

0
dt T (s, t+ τ)∂tC(s, t) (5.24)

where C(s, t) is the curvature and τ is a delay between the driving forces and their

actuation. Since the system is dissipative and the torques are doing positive work

on the system, the delay τ is expected to be small, but not necessarily zero.

After Fig. 5.3 and Fig. 5.2 we model the curvature as a traveling wave Cw(s, t)

modulated by an envelope Ce(s):

C(s, t) = Ce(s)Cw(s, t)

= Ce(s) (C0 cos(ωt− ks) + C1 cos(2ωt− qs+ φ)) (5.25)

The envelope function is linear (Fig. 5.3), as we are interested in comparing the trend,

we simplify its form to Ce(s) = λs+ 1.

Substituting the expressions for the curvature and the torques in Eq. (5.24), we

obtain a semi-quantitative description of the work done:

Wa(s) = π
(

C1A1 cos(2τω) + C0A0 cos(τω)
)

(λs+ 1) . (5.26)

We find that the power input increases towards the filament tip with the same

linear trend of the dissipated power Dv(s).

5.4. Concluding remarks

In summary, we have presented:

1. A quantitative description of the beating pattern of pinned human sperm,

2. A new steering mechanism.

The quantitative description of the tracked flagellum shows that, even if the beating
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patterns between different cells are qualitatively different, they do have the similar

eigenmodes (Fig. 5.24). This may allow, in the future, to classify the beating patterns

of different cells based on eigenmodes themselves . We showed that most of the

signal of the curvature can be decomposed on three eigenmodes that reproduce

approximately 95% of the original data. This allows filtering the fluctuations that

are not of biological origin, and to have a clear signal.

The beating frequency of a single cell is not constant and has a standard devia-

tion of approximately 2Hz, compatible with the standard deviation measured for

Chlamydomonas[86].

We have shown that the standard deviation of the beating frequency and phase

velocity of the single cell is smaller than the standard deviation of the population,

and that it is not zero. This means that we can think the frequency as a regular

Brownian quantity, fluctuating in a harmonic potential whose stiffness is defines the

standard deviation. This detail can be relevant when thinking to the ensemble from

which one has to sample from to simulate interacting spermatozoa.

We also suggest that the beating frequency and wave vector of human spermatozoa

be correlated by a dispersion relation. At the moment, we observed this effect at

sample level, and further investigation is required to sharpen the result and verify it

on each cell individually.

The higher harmonic components of the beating pattern lead to steering forces. We

have shown that the experimental data correlates accordingly to our simple model,

and that simulations strengthens the causal relation between higher harmonics and

rotation velocity. The simulations highlight also that a spontaneous curvature is

generated by the rotating cell even when the driving torque is symmetric and does

not model an average bending torque.

We would like to highlight that our numerical model of spermatozoon, built on

the principle “the simpler the better”, reproduces the dynamics of the human sperm

without fictitious or ad-hoc solutions. This may be not the case for the sperm cells of

other species, for example: the very different neck-compliance of sea urchin sperma-

tozoa requires a model with complex boundary conditions. Nonetheless, the current

model allows a quantitative investigation of the dynamics of single, and the future
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5. Flagellar Beat of Pinned Human Sperm

interacting, human sperm cells with approaches similar to the case of sedimenting

filaments or more complex simulations [18].

Concluding, note that even if the fitting protocol reproduces qualitative and quan-

titatively the observed eigenmodes, the resulting planar dynamic is still strongly

affected by the details of the relative position of the pinning point with respect to

the head, and the length of the neck. We think this is understandable as we are

fitting a subset of the information (the modes) to infer the full dynamics. In terms of

differential equation, when the geometry is not precise, we are effectively simulating

a system with boundary conditions that are different then the correct ones. Note

also that the current protocol discards the last ≈ 5µm of the tracked flagellum. This

is because tracking the flagellum tip is hard as the contrast goes does down. We

are currently working to improve our tracking and fitting protocols to be able to

systematically measure the dynamics at the flagellum tip and base.
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6. Autonomous Flagellar Beating

Autonomous beating means that the flagellum is not driven by a prescribed traveling

wave, but rather, the wave is due to the emergent dynamic of a self-organizing

mechanism. The emergent dynamics and self-organization are expected to be due

to the coupling between the molecular motors and the sliding filaments inside the

axoneme. The understanding of autonomous beating is a way to approach the difficult

task of describing a system that is, intrinsically, not in its equilibrium condition as

it swims in a viscous medium and in the competition to be the “first and only” one.

The flagellum burns ATP, in way is similar to steam engines that burn coal, and

the flux of energy generates forces that are dissipated by the internal and external

friction. The axoneme, however, is different from steam engines in the scales at which

the energy is transformed to work: instead of a great central energy factory, ATP

is hydrolyzed at very small scale by each single molecular motor, and the forces

generated at the same small scale, create the big coordinated motion described in

the previous analysis (chapter 5). We want to understand how the forces generated

at small scale can propagate upward to larger scales in a coordinated way. As it is

clear that the “out-of-equilibrium”-ness is the key to the answer, it is not, in itself,

a sufficient answer.

Here we discuss some early results obtained investigating models for autonomous

beating flagella. Our intention is not to discuss a point-like approximations, e.g. like

the rowers model for cilia [86, 106, 107], but rather to address the realistic case of an

active traveling wave due to sliding forces between parallel filaments of finite length

and with asymmetric boundary conditions.

This chapter is divided in two main parts: we initially show the failed results we

obtained by directly simulating the sliding model; then we show how we changed

approach and tackled the problem from a more generic and top-down point-of-view.
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6. Autonomous Flagellar Beating

Figure 6.1.: Simulation snapshots of two parallel filaments driven by the force-velocity relation in
Eq. (6.1). Each filament is modeled as a semi-flexible filament and the relative sliding
is hindered at the base (at the right side). We show that the simulation displays
an unexpected buckling instability. In particular near the base of the flagellum the
upper filament buckles, instead of releasing the energy by bending the bundle.

6.1. Early Failed Attempts

It is currently believed that the sliding mechanism that causes the bending can be

mapped on a system with two planar and parallel semi-flexible filaments as rails(see

section 2.5). In our first attempt we simulate1 directly two semi-flexible filaments,

parallel to each other with an adaptive triangulation that allows a smooth parallel

sliding and constrained perpendicular displacement (Fig. 6.1 and Fig. 6.2). The

stresses between the microtubules are modeled by effective the force-velocity relation

of a two-state Brownian-ratchet-like system coupled to an harmonic potential via a

common backbone [108]

f(v(s)) = γv(s)− γ3v(s)
3 , (6.1)

where v(s) is the relative velocity between the filaments at arclength s, and γ > 0

and γ3 > 0 characterize the energy input and the stall force of the molecular motors.

In Ref. [108], the backbone driven by Eq. (6.1) and coupled to a harmonic potential

undergoes a Hopf bifurcation and displays a (active) periodic motion. The intuitive

idea is that as the filaments are allowed to bend and are clamped at one side, the

system develops a traveling wave from the base. This, however, never happens in our

simulations.

We have seen, instead, that even for very flexible filaments the pushed microtubule

buckles near the base (Fig. 6.1), where the active stress is at its maximum. In Fig. 6.2

1The simulations shown in this section, are thermalized with MPC [102].
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6.1. Early Failed Attempts

we show that even in the case of stiffer filaments, the buckling instability appears

before the bending instability, and in all cases no traveling wave is generated in the

remaining part of the filament.

After an extensive scanning of the parameters we did not find a parameters set

that corresponds to traveling waves. The biggest issue being that there is no gen-

eral theoretical framework to understand and model mechanical dissipative systems

and wave-like self-organized states. Hence, we have no guidance nor intuition to

understand what is wrong with the current, bottom-up, approach.
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6. Autonomous Flagellar Beating

Figure 6.2.: Snapshots of the evolution of the buckling instability at the base (red to blue). The
upper filament is pushed towards the base (at the right side) on the contrary to
the lower filament that is pulled way. Because of the hindered sliding at the base,
the stress is not constant along the filament. In particular the stress accumulates
near the base where it is released as a buckling of the upper filament, instead as of
a bending of the bundle.
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6.2. Dynamic Ginzburg-Landau Approach

We can see the beating axoneme as the result of a unknown pattern-forming mech-

anism. We want to understand what possible class of models can reproduce the

observed beating pattern. To this end, we apply some concepts patter formation in

dissipative systems [24] to our mechano-chemical system: the axoneme. The main

difference being then mathematical only, as the generic non-equilibrium statistical

mechanics developed for chemical reactions is valid for general degrees of freedom,

too.

We simplify the problem and describe the flagellum as a single semi-flexible filament

driven by generic internal forces, with short-range hydrodynamics and only in the

limits of small amplitudes. While this approach is quite minimalistic compared to the

other works [44, 46, 75] (see section 2.5), we aim at understanding the key features

that more detailed and sophisticated models need to satisfy, with the ultimate target

to design simulations of interacting swimmers with full hydrodynamics similar to

the works of Refs. [18, 35, 79]. We then study the linear stability of the normal

modes, solve numerically for the non-linear terms and begin to address the dynamical

response to external perturbations.

Some traits of the model can be expected already from the basis of generic and

simple physical considerations. Since we are going to investigate the active periodic

motion of the filament in a dissipative fluid, we are interested in models that admit

limit cycles for all excited modes [24, 109]. From a thermo-dynamic point of view this

means that an energy flux will correspond to the solution. Microscopically, energy, e.g.

in the form of ATP molecules, is consumed by the motor proteins and dissipated by

both internal dissipation and the viscous forces of the fluid. From the mathematical

point of view the instability is due to the positiveness of the eigenvalues of some

modes. The model needs to be not linear to cap the growth of the unstable modes.

We distinguish the system in two components: the elastic filament and the active

forces. The equation of motion of a semi-flexible filament is discussed in section 2.3;

when we include the shear forces f(s, t) we obtain [44, 65]:

ξ⊥∂th = −κ∂4sh+ c̃t∂sf , (6.2)
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6. Autonomous Flagellar Beating

where c̃t is a control term that couples the internal shear forces with the filament.

The shear forces are defined by the differential equation:

∂tf =G(µ̃, f, {∂ns f}, h, {∂ns h}, {pi}) , (6.3)

where µ̃ plays the role of the critical parameter, pi are other parameters, and G is a

unknown function of h, f and their gradients. In principle G can have any functional

dependence on f and h, however it can depend only on derivatives of h because of

translational symmetry. Observing, also, that the wavelength of spermatozoa is long,

λ/L ∼ O(1), as first attempt, we expand G near the critical threshold µ̃c = 0, where

also the stationary amplitude of f and h is expected to be small. Since we are looking

for periodic solutions of h and f , we find an equation that strongly resembles the

Ginzburg-Landau model, or the normal form of the Hopf bifurcation [24, 110–112]:

∂tf =D̃∂2sf + µ̃f − ñlf
3 + F (h) (6.4)

where the parameter D̃ is an interface term and F (h) is the still-unknown control

mechanism that couples forces and filament.

Note that, a priori, we cannot justify the presence of the interface term D̃. It

models possible small-scale coordination between motors; proposed mechanisms are,

e.g., the sliding of the filaments [76], the effective internal hydrodynamic flow [113]

or the geometric clutch [47].

We expect that every biological mechanism that generates the sliding stresses

has a maximum output force or power: e.g., molecular motors are known to posses

a precise stall force [1, 114] and we see in Fig. 5.15 that the dissipated power is

roughly the same for all the experimental data we analyzed. The non-linear term

−nlf3 can be thought as a mathematical formulation of these limitations since it

limits the internal stresses to the maximum value f∗ =
√

µ/nl. This is a standard

approach that allows thinking in terms of Hopf normal form; in biological systems

other non-linear mechanisms may be involved, but there are no standard techniques

to study their effects and further investigations are needed gain some understanding.

Few mechanisms have been proposed as control mechanisms between filament
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conformation/dynamics and internal forces; here we focus on three of them:

Sliding control F (h) = ∂sh(s, t)

Sliding velocity control F (h) = ∂t∂sh(s, t)

Curvature control F (h) = p∂2sh

The polarization parameter p describes the intrinsic polarization of microtubules [1]

and enforces the correct symmetry of the equations of motion. Note that in the

literature the curvature-control feedback is usually associated to the model proposed

in Ref. [38], that is different from our as the curvature feeds back to the bending

torques, not to the sliding forces.

In the next section we perform a linear stability analysis for each of the three

models to understand which models describe traveling waves, in the subsequent

sections, instead, we study the numerical solution of Eq. (6.2) and Eq. (6.4), and

finally we study the dynamical response by perturbing the filament position with

external forces.

6.3. Linear theory

6.3.1. Eigenvalues and model selection

The equation of motion of a semi-flexible filament (Eq. (6.2)) is written in dimen-

sionless units when length is measured in units of the filament length x = sL and

time in units of the elastohydrodynamic time t = τ ξ⊥L
4

κ = τωc. With this choice, the

force unit is κ/L2 and the parameters are D = ξ⊥L
2

κ D̃, µ = ξ⊥L
4

κ µ̃ and ct =
ξ⊥L

5

κ2
pc̃t.

The linear terms allow deep investigation of each proposed model and to select

the more convenient. In the same spirit of Ref. [115], we rewrite the linear terms as

a linear operator L over the modes fq(s) and hq(s):

∂τ

(

fq

hq

)

= L

(

fq

hq

)

=

(

D∂2s + µ F

ct∂s −∂4s

)(

fq

hq

)

=

(

−Dq2 + µ Fq

ictq −q4

)(

fq

hq

)

.
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Figure 6.3.: Plot of the real and imaginary part of the eigenvalues ω+
q for curvature-control (left)

and sliding-velocity control (right). Same colors correspond to same parameters
D and ct - solid (dashed) lines correspond to the real (imaginary) part ωR (ωI).
(Left:) The green line corresponds to an increased interface coefficient D. In red
we decreased and inverted the control parameter ct to show that the frequency ωI

is a odd function: this means that the wave velocity for positive and negative q has
the same direction. Observe that only the modes |q| < q∗ are excited. (Right:) The
imaginary eigenvalue (dashed lines) is either zero for all values of the wave-vector,
or for a finite set when |q| < q1 (for some values of the parameters also when
|q| > q2). This represents an unwanted, non-periodic behavior.

Where the modes are chosen to simultaneously diagonalize all differential operators

in the matrix

fq(s) ≈ exp(iqs), hq(s) ≈ exp(iqs) (6.5)

with q ∈ R the wave-vector and s ∈ [0, 1]. This basis have not to be confused with

the eigenfunctions of the operator L itself. Eq. (6.2) and Eq. (6.4) are then reduced

to the much simpler eigenvalue problem ωq = Tq ± (T 2
q − 4Dq)

1/2, where Tq and Dq

are the operator trace and determinant respectively. We find convenient to rewrite

the eigenvalues as:

ωq = ωRq + iωIq

ωRq = Tq ± ρ cos θ

ωIq = ±ρ sin θ (6.6)
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Figure 6.4.: Plot of the beating pattern for D = 15 and ct = −30. The wave propagates from
left to right as consequence of the symmetry ωI(q) = −ωI(−q) and ct < 0. If
ct > 0 the wave would propagate from right to left, with small differences on the
overall shape, but very similar wavelength and frequency.

where ρeiθ =
√

T 2
q − 4Dq and the superscript R or I stand for real or imaginary

part. Depending on the feedback mechanism, the determinant Dq can be either real

or complex: in particular, the determinant is complex if F (h) contains only even

derivatives. When real, the eigenvalues behave as in regular harmonic oscillator: if

Dq is positive the imaginary part is null and the real part is given by the trace only.

The angle θ is 0 in the first case, and π/2 in the second. When Dq is complex, instead,

the square root has always both a real and an imaginary part, that translates to θ

being continuous in the interval −π/2 < θ < π/2.

When ct = 0 the dynamics is independent from the functional form of F (h), the

eigenvalues are either both negative (if µ < 0) or one negative for all wave-vectors

(Reω−
q ∼q→0 −2q4) and one positive for q < q∗ ≈

√

µ/D (Reω+
q ∼q→0 −q2D + µ).

This means that despite the term µf excites all modes, only the modes q < q∗ are

actually being excited.

To discriminate the fundamental features of each model, we study now only the

unstable solutions and set µ = p = 1 and ct 6= 0.

We find that, in the case of sliding-control and sliding-velocity control mecha-

nisms the determinant is real, hence ωq = Tq ± iωI(q): this describes the usual

superimposition of two waves, traveling with opposite wave velocities; a spontaneous

symmetry-breaking mechanism or the boundary conditions determine which direc-

tion prevails [110]. We also find that there are always eigenvalues with positive real
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Figure 6.5.: Plot of beating amplitude and frequency for different values the control parameters
D (left panel) and ct (right panel).

part but no imaginary component for small q whatever the choice of the parameters

ct and D (Fig. 6.3(right) for an example). In principle this is not a problem because

the modes cannot grow indefinitely as they are constrained by the non-linear term.

However, it is not a desirable feature of the model.

For the curvature-control mechanism, on the contrary, we find that the determinant

is complex and ω−
R(q) ≤ 0 for all wavelengths. The eigenvalue ω+

R(q) is positive

when |q| . q∗ (Fig. 6.3)(left). The phase is approximately θ ∼q→0 −ctq3, hence
the frequency ωI(q) = ρ sin θ is an odd function of both the wave-vector and the

parameter ct. This means that the phase velocity (vq = ωI(q)/q) of the modes +q

and −q is the same, hence the system can break the left-right symmetry just by

changing the sign of the control parameter ct (or of the polarization p). This is not

a spontaneously broken symmetry as the left-right direction is embedded directly in

the model by the microtubules’ polarization.

Note that, on the contrary of the well-known Complex Ginzburg-Landau equation[111],

there is no oscillatory motion associated to the q = 0 mode. Another important dif-

ference is that, because of the odd-derivative, the Fourier modes are not discrete

although the filament has finite length. This mimics the fact the experimental wave-

vectors seem not to be dependent on the axoneme length.
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6.4. Nonlinear model

We investigate further the curvature-control model as all positive eigenvalues also

have a non-trivial imaginary part, meaning that at each unstable mode corresponds

a limit cycle, whatever parameters set. Because of the non-linear term the solution

is not a mere superimposition of modes, but a mix of the excited modes [111]. We

integrate numerically [116] the model to verify if it reproduces a beating pattern.

Let us rewrite the equations of motion for µ = p = 1:

ξ⊥∂th =− κ∂4xh+ ct∂xf

γf∂tf =D∂2xf + f − nlf
3 + ∂2xh . (6.7)

To compare the results with our previous analyses (chapter 5), we impose pinned

boundary conditions:

h(s = 0) = ∂sh(s = 0) = ∂2sh(s = L) = ∂3sh(s = L) = 0

f(s = 0) = ∂sf(s = 0) = 0

where length, stiffness and viscous drag are L = 30, κ = 1, nl = 80 and ξ⊥ = γ = 1.

In Fig. 6.4 we plot 7 frames that show how the wave grows from left to right

with the same linear envelope measured for Human sperm (Fig. 5.3). In Fig. 6.5 we

plot the frequency ω and beating amplitude hmax versus D (left panel) and ct (right

panel). Since the displacement h is due to the derivative of f we expect that the

interface term D penalizes the beating amplitude, however this is not the case: the

amplitude is approximately constant (green line), the frequency decreases (red line),

instead.

The beating frequency, amplitude and the stroboscopic plot do not represent a

complete set of features. In particular, if ones target is to match a particular biological

systems the non-linear interaction between the modes leads to non-intuitive results:

we find that when ct < −40 the wave develops a steep propagation front, while

when D is small the down-stream side shows curly profiles but smoother fronts. This

means that a careful analysis is needed to map the current model to the experimental
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Figure 6.6.: Plot of the data reported in Ref. [117]. In the original work the trend is hard to judge
because the three data series are plotted in three separate plots in a semi-log plot.
Here the three series are plotted together in a log-log plot to show the qualitative
trend. The purple line corresponds to ω = η−0.35 + 35.

beating patterns analyzed in chapter 5.

6.4.1. Internal and external viscous dissipation

The effect of viscosity on the beating frequency of spermatozoa of some invertebrates

(Ciona, Chaetopterus, and Lytechinus) has been investigated in Ref. [117] reporting

that the frequency has a power law dependence on the viscosity with exponent

≈ 0.35 (Fig. 6.6). Eq. (6.7) has two viscosity-like terms: ξ⊥ and γf and numerical

integration confirms that the frequency has the simple (expected) dependence (ξ⊥ +

γf )
−1 (Fig. 6.7(left)). At the same time, the beating amplitude decrease and the

beating pattern is strongly affected. In the current parameters’ regime the model

is more sensible to variations of the viscosity than the experimental system under

examination. It may be that the regime of our simulations, dominated by the “external

drag” ξ⊥ ≫ γf , does not represent the biological one. But, we can also advance the

hypothesis that the model is incomplete, and that in the real system the internal

dissipation dominates over the external one, making the system more robust against

certain types of perturbations.
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Figure 6.7.: Plots of the beating frequency and amplitude (Left panel) and of the first eigen-
mode (Right panel) for increased values of viscus drag ξ⊥. As the viscosity increases,
the active beating amplitude and frequency decrease faster than in the experiments.

We think to two sources of internal viscosity. The effective internal friction γf

models the time needed by the conformational changes of the motor proteins to take

place as consequence of ATP hydrolysis or of external forces. We can, in addition,

consider the effect of a viscous-elastic resistance between the sliding filaments (due,

e.g., to crosslinks): the equation for h becomes than ξ⊥∂th = −κ∂4xh + ct∂xf +

γ∂t∂
2
sh + k∂2sh, where the term ∂2sh is the curvature force induced by the shear

displacement [64]. When γ ≫ ξ⊥ the internal dissipation dominates and we rewrite

the equation in terms of the curvature z = ∂2sh only:

γ∂tz =κ∂
2
xz − ct∂xf − kz (6.8)

γf∂tf =D∂2xf + f − nlf
3 + z .

The corresponding eigenvalue problem has the same structure of the original model,

hence the same solutions are expected.

Concluding this note: we expect that the internal dissipation be one way that

the biological system has to tune the response of cilia and spermatozoa to external

perturbations as can be the change of rheological properties of the medium, although

at the moment this is just a speculative hypothesis and more experimental evidence

has to be provided.
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6.4.2. Dynamical behavior

In the past decades much attention was devoted to the beating pattern of spermato-

zoa, on their efficiency and hydrodynamics [10, 14, 32, 118], with some attention to

the feature that distinguish them the most from non-biological systems: the ability

to adapt and change behavior as response to external stimulii [40, 47, 117]. It is

observed that spermatozoa dynamically tune their beating frequency as they ap-

proach each other, Chlamydomonas, instead, seems to be less interested in this kind

of entrainment; in the latter case the behavior depends on many experimental factors

that are currently being addressed2.

Our model allows a systematic investigation along this direction. We choose to

study the response of the beating pattern to two types of perturbations: a fixed

harmonic tube and a periodic external force .

As reported in Ref. [117], we expect that many observables that characterize

the beating pattern be affected, namely the beating frequency, the wavelength, the

amplitude and the principal eigenmodes. To measure how the beating shape changes

in response to the external forces, we decompose the displacement in its normal

modes φn(x), as defined in the chapter 3. For unperturbed beating, we find that two

modes always contribute at, at least, 90% of the signal- We are doing an “effective”

numerical phase reduction of the problem, as introduced analytically in Ref. [84]. The

beating frequency is estimated from the Poincaré map of χ1(t) vs χ2(t) [85]. This

method is more robust than Fourier decomposition because we are not interested in

the different Fourier components but only on the period of the slowest mode.

Harmonic Tube

We constrain the beating displacement in a harmonic potential:

ξ⊥∂th =− κ∂4xh+ ct∂xf − kh (6.9)

∂tf =D∂2xf + f − nlf
3 + ∂2xh ,

2Private communication with groups in TU Delft and Cambridge.
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Figure 6.8.: Self-organized beating inside a “harmonic tube”. (Left panel): Plot of beating
frequency and amplitude versus confinement strength. Note that as k ≥ 0.1 the
filament does not show self-organized beating. (Right panel): The principal eigen-
mode for k < 0.1 shows that as the filament was squeezed by the harmonic potential,
it adapted its wavelength. In this plot, D = 15.

where k is the potential strength. We measure the force strength k in units of the

maximum internal force k∗ = ct
∂xfmax

hmax
, where the maximum is evaluated from the

unperturbed case (Fig. 6.4): k∗hmax is than an estimate of the maximum force exerted

by the internal forces. We find that, on the contrary to the case of prescribed internal

forces, both beating amplitude and wavelength are adapted to the confinement

(Fig. 6.8(right)). In Fig. 6.8(left) we plotted the variation of beating frequency and

amplitude (hmax/L) for different strengths k/k
∗. Frequency and amplitude decrease

as consequence of increasing work against the potential, until the movement ceases

for k/k∗ = k̃ ∼ 0.1. Note that k̃ is independent of D (Fig. 6.8(left)). Ideally, this

setup allows estimating the strength of the internal forces from the confinement,

providing an independent and complementary measure to the results of the fitting

protocol proposed in section 5.2.4.
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6. Autonomous Flagellar Beating
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Figure 6.9.: Plot of the frequency difference ∆ω = (Ω− ω)/ω0 when the system with natural
frequency ω0 is forced with the periodic force ǫ sin(Ωt) as the intensity ǫ and the
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6.5. Discussion

Periodic Forcing

In the second case the filament is forced by an external periodic force along the

direction normal to the filament:

ξ⊥∂th =− κ∂4xh+ ct∂xf + ǫ sin(Ωτ) (6.10)

∂tf =D∂2xf + f − nlf
3 + ∂2xh

where ǫ is the force strength and Ω its frequency. We measure the force in units of

ǫ = ct∂sfmax computed from the unperturbed system as done for k∗.

It is known that non-linear oscillators display entrainment when forced by a (weak)

external periodic force [83]. In Fig. 6.9 we show that this is indeed the case for our

“autonomous sperm”: we plotted the frequency difference (Ω − ω)/ω0 between the

forcing frequency and the beating frequency versus the force strength ǫ/ǫ∗ and the

forcing frequency Ω/ω0 (with ω0 the natural beating frequency of the unperturbed

system). The force strength is always small enough to avoid driving, chaotic behaviors

and loss of self-organized beating; in practice, we check that 90% of the shape of

every simulation is described by just two modes.

In Fig. 6.9 we recognize the well-known shape of the Arnold-Tongue and of the

entrainment plateau that surrounds Ω/ω0; it is curious to observe that entraining is

difficult at frequencies lower than the natural one. By increasing the parameter D

we observe that the synchronization plateau (the green cone) shrinks. We may think

than thatD defines an effective stiffness to entraining, that has nothing to do with the

bending stiffness κ. Unfortunately, further numerical investigations, without a solid

theoretical background would not help in understanding the role of the parameters,

and we postpone this investigation for future works.

6.5. Discussion

In the first part we showed that direct simulation of the 2D sliding model filament

displays two kind of unexpected behaviors:

1. lack of any wave-like pattern
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6. Autonomous Flagellar Beating

2. formation of buckling instability near the base.

Such a direct approach hindered our vision of the problem because of the many

technical details involved in the simulations; hence we turned to a simplified approach,

in which the bundle is described as an effective filament. The second problem is thus

circumvented by removing the degrees of freedom needed by the buckling instability.

The simplified approach allows a top-down development of a model for active

traveling waves in a one dimensional material. Linear stability analysis shows that

of three possible feedback mechanisms two, namely the sliding control and sliding-

velocity control, are less likely to be as they have unstable eigenvalues not connected

with oscillatory motion. Because of the variability of the biological environment and

of the resilience of spermatozoa in the most disparate conditions, we expect that

any representative model has no ill-defined behaviors. From this point of view, the

curvature-control mechanism seems more reliable, and numerical investigation allows

to asses that the traveling wave is smoothly controllable by the parameters D, ct

and p, and has a qualitative match to the observed shapes. In this model we break

the symmetry via the polarization parameter p, as the real microtubules polarize the

axoneme with respect to the traveling direction of motor proteins [1].

Focusing on the curvature control model, we begin to investigate how an active

material reacts to external perturbations. We have shown that, not only the beating

frequency is affected, but also the beating amplitude and wave-vector change in

response to external stimulii. It is of great interest now to test how the biological

systems behave under similar stresses, and to refine the proposed concepts until we

reach a quantitative agreement between data and model.

It is also of primary relevance to extend the model to a planar filament model than

can reproduce the experimental recording. We should not forget that the similarity

between the spermatozoa axoneme and cilia axoneme poses the question whether

this model can reproduce the cilia beating. This would be for sure an important step

towards the possibility to discuss experimental measures that are, at the moment,

not done on spermatozoa, such as the beating noise and synchronization/slip phases.
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7. Concluding Summary

The elasticity and dynamics of semiflexible filaments, their hydrodynamic interactions,

and their active motion, play a very important role in biological systems at the cellular

level, but also in technological applications such as polymer suspensions under flow

and the construction of micro-robots. A detailed understanding of such systems is,

therefore, essential.

We investigated the dynamics and stability of semi-flexible filaments exposed to an

external homogeneous field and interacting only via hydrodynamic fluid fields. Due

to the competition between hydrodynamic interactions and bending stiffness, the

appearing dynamical behavior is different than for entropy-dominated polymers or

interacting rods. We inspected the conformational changes projecting the simulated

shapes on the modes of the corresponding partial differential equation. With this

tool, we found two new dynamical transitions that excite non-planar shapes that lead

to drift and helical settling trajectories. Finally, we have demonstrated that three

filaments display an unexpected periodic dynamics even at field strengths far weaker

than expected by the analysis of the one and two filaments.

We presented, then, a way to decompose the beating shape of an isolated and

pinned human spermatozoon in a basis of three empirical eigenmodes computed

from the flagellum curvature. Not all eigenmodes are equally important. At each

eigenmode, a corresponding eigenvalue is associated to represent its importance.

The first two eigenmodes describe the periodic motion, their eigenvalues are very

similar. Although the beating pattern is different from cell to cell, the eigenmodes

are universal among our sample. The standard deviation of the beating frequency of

the single cell is shown to be comparable to the variance found for beating cilia of

a quite different microswimmers, green alga the Chlamydomonas. Surprisingly, the

data suggest that the wave vector and the beating frequency are not freely chosen
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7. Concluding Summary

by each cell; we find instead that there is a linear dispersion relation.

We developed a sperm model to quantitatively match the observed eigenmodes,

allowing insight into the internal beating dynamics. This is a novel approach, as

previous analyses where restricted only to the observable kinematics, unable to

infer the internal forces, without using micro-manipulation techniques. The model

represents the sperm as a semi-flexible filament activated by a traveling wave of

bending torques with constant amplitude. The simulated beating pattern matches the

empirical eigenmodes, without the need to explicitly model the left-right asymmetry

as the beating amplitude increases towards the flagellum tip.

We discovered a new steering mechanism based on a beating pattern with higher

harmonics. The theoretical prediction match with the experimental observations.

Simulations with bending torques given by the sum of two traveling wave reproduce

the observed beating pattern and rotation velocity. The model highlights also that,

although the bending torque has zero average value, the often observed average

curvature is spontaneously generated.

Finally, we presented a model in which the beating pattern develops as an active

response to the filament shape. Because of the variability of the biological environment

and of the resilience of spermatozoa in the most disparate conditions, we expect that

any representative model of active beating should have no ill-defined behaviors. We

analyzed different functional forms for the active forces, and showed that curvature-

control feedback mechanism seems more suited as each mode of the partial differential

equation with positive eigenvalue has also an imaginary eigenvalue, which implies

that the final shape is smooth and periodic.

In the previous study with given bending torques, the beating pattern parameters

are externally fixed and cannot adapt to a mechanical perturbation. The active model

instead show a a more natural and intuitive behavior. We highlighted that the model

forecasts a change in beating frequency, wavelength and amplitude as it is squeezed

by a harmonic potential. For the investigated parameters, the beating ceases when

the external potential becomes stronger than 10% the internal maximum forces. We

also showed that entrainment of the beat with an external periodic perturbation can

occur, and underlined that the entrainment-stiffness can be tuned by changing the
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internal driving parameters, while leaving the mechanical bending rigidity unaltered.
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8. Outlook

The three main topics of this thesis are linked by the common idea of understanding

and modeling the dynamics of slender filaments in a viscous fluid, like for the human

spermatozoon. The results of each topic are interesting by their own as they allow

deepening and widening our knowledge of that particular topic. But, all together, we

expect to merge the concepts and models into a joint framework which allows the

investigation of human spermatozoa and other microswimmers quantitatively.

Now, it possible to simulate the motion of a human sperm with realistic shapes

and forces. Matching quantitatively the generated forces and flow fields, we expect

to reproduce hydrodynamic interaction between swimmers and obstacles. Another

possible scenario is the study of swimming trajectories of interacting spermatozoa

and the influence on the chemotactic efficiency. At the same time, the intensity and

stability of the hydrodynamic attraction can be carefully assessed and compared to

experimental observations.

An important aspect of research in physics is the transfer of the developed tech-

niques and concepts to different contexts. We have developed a way to quantify and

analyze slender shapes, but our technique is not limited to sperm cells data. It is possi-

ble, in principle, to apply the same protocol to other swimmers, like Chlamydomonas,

or to extend the technique to bi-dimensional objects like cells. The classification of

cell-shapes via empirical cell-eigenmodes can improve, e.g., the current estimation

of anomalous cells as done to asses the presence of cancer cells1.

We proposed a model for a generic autonomous beating pattern. It is of great

interest now to test how the spermatozoa behave when perturbed with external

forces, e.g. generated by flows, and to refine the proposed concepts until we reach a

quantitative agreement between experiment and model. The same modeling concepts

1Suggested by Prof. R. Austin.
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8. Outlook

applied to cilia can deepen our understanding on cilia metachronal waves and, in

principle, to contribute to the studies of related diseases.

We conclude by highlighting the importance of further investigation to deepen our

understanding of autonomous beating models, as they represent a simple prototype

of an active nonlinear material that may lead to technological applications once we

are more acquainted with the underlying concepts. In particular, we would like to

stress two directions, the inclusion of noise, as at small sizes it is an important player,

and the effect of non-linear contributions on the system response.
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A. Adaptive time-step Velocity-Verlet

It is a standard approach of molecular dynamics to integrate the equation of motion

with Velocity-Verlet algorithm [119, 120]. It is simple, reversible and energy conserv-

ing [121].

To clarify how we changed the algorithm, let’s start by recalling the regular Velocity-

Verlet. The algorithm to update the configuration and velocity {xi ,vi} from time t

to time t+∆t is , essentially, made of four steps:

1. Half-step for the velocities: v(t+ 1/2∆t) = v(t) + 1
2m f(t)∆t

2. Full-step for the positions: x(t+∆t) = x(t) + v(t+ 1/2∆t)∆t

3. Update of the forces to f(t+∆t)

4. Second half-step for the velocities: v(t+∆t) = v(t+ 1/2∆t) + 1
2m f(t+∆t)∆t

Note that the algorithm to update the forces is not specified by the Velocity-Verlet

scheme. When the forces do not depend on the velocities (e.g. for bonds and bending

energies) there are no possible misunderstandings. On the contrary, when the forces

depend on velocity, like in the case of viscous forces, the protocol may be confusing

as the velocity is known at half-a-step before – the Oseen tensor adds another layer

of complexity because the background flow is generated by the conservative forces.

Here we report the scheme we used to update the forces (step 3 of Velocity-Verlet

algorithm):

1. Update the conservative forces:

fC(t) → fC(t+∆t)

2. Update the background flow field due to the new forces:

ui(t+∆t) ∝
∑N

i 6=j H(i, j)fCi (t+∆t)
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Figure A.1.: Illustration of the concept of adaptive time-stepping.

3. Update the dissipative forces:

fD(t+∆t) = −γ0 (v(t+ 1/2∆t)− u(t+∆t)).

This algorithm is stable as long as the time-step is short compared to the charac-

teristic time-scales of the dynamics. Selecting a good time-step is crucial to correctly

integrate the equation of motion while running at a reasonable speed. In our projects

it is not always possible to estimate manually the required time-step either because

the forces generated by the Oseen tensor are hard to estimate, or because the simu-

lation is embedded in a fitting routine that changes the parameters by few orders of

magnitude.

One way to solve this problem is by integrating at constant error, instead of

integrating at constant time-step.

We can think then to encapsulate the Velocity-Verlet inside an algorithm that

decides the appropriate time-discretization needed to update the system configuration

from time t to time t+∆t using as many steps δt ≤ ∆T as needed to satisfy a given

accuracy δ [122, 123] (Fig. A.1). This approach introduces two time partitions: the

one of the simulation ∆T and the one of the molecular dynamics δt. In different

context, a similar approach is used to couple molecular dynamics simulations with

MPC simulations [78]; the major difference being that the inner partition is not fixed

but computed on-the-fly (Fig. A.1).

The algorithm can be summarized as follows:

1. Compute the expected error: Err(t) = (∆tMD)
2maxi fα(t)

2. Compute the new proposed time-step as: δtp = max(δtmin, β
√

2δmaxi fα(t))
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3. Accept the shorter timestep if δtp ≤ γδt and Err > δ.

4. Perform the Velocity-Verlet algorithm with the given δt.

5. Update current time to t = t+ δt.

6. If Err < δ/2 accept a longer timestep δt = min(min(δtp, χδt), δmax).

7. If the next time step is too long (t > t0 +∆T ) then shorten the time-step to

finish at the correct time.

8. If t < t0 +∆T then go back to step 1 else exit.

The algorithm requires three constants. δ is the required precision. The constants

β < 1, and χ > 1 characterize the smoothness of the algorithm: the proposed timestep

is β times the required (nr. 2), and it is increased only when the proposed one is

bigger than χ times the current timestep (nr. 6). Overall, these two constants reduces

updated frequency of the timestep. The last two parameters δmax and δmin define

the maximum and minimum timesteps. In the following projects we always used

the following set of parameters: β = 0.9, χ = 5 and δ = 10−5. The maximum and

minimum timestep are chosen accordingly to the project.

Besides the very conservative and not aggressive implementation of our adaptive

integrator (the Euler error overestimates the actual error and the chances to update

the timestep are kept low by β and χ) this approach overcomes the classical bottle-

neck in computer simulations given by a poorly chosen time-step. When the forces

are small, the integration speeds up, on the contrary, the integrator automatically

decreases its stepping if there are transients with stiff forces, and returns to a longer

timestep when the transient is over.

We gain than in speed and precision, but we loose the time-reversibility and energy

conservation. In the context of the following chapters this is not a major issue because

we study systems that are naturally dissipative. However, if the energy conservation is

an important aspect of the simulation, for example in the case of a gas of hard-spheres,

then this algorithm may not be the best choice.
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Tracking of Sperm Swimming Fine Structure Provides Strong Test of Resistive

Force Theory. J. Exp. Biol., 213(8):1226–1234, 2010. doi: 10.1242/jeb.039800.

[53] J. B. Keller and S. I. Rubinow. Slender-body theory for slow viscous flow. J.

Fluid. Mech, 75(04):705–714, 1976.

[54] B. Rodenborn, C.-H. Chen, H. L. Swinney, B. Liu, and H. P. Zhang. PNAS

Plus: Propulsion of microorganisms by a helical flagellum. Proc. Nat. Acad.

Sci. USA, 110(5):E338–E347, 2013. doi: 10.1073/pnas.1219831110.

[55] M. M. Tirado, C. L. Mart́ınez, and J. G. de la Torre. Comparison of theories for

the translational and rotational diffusion coefficients of rod-like macromolecules.

Application to short DNA fragments. J. Chem. Phys, 81(4):2047–2052, 1984.

doi: 10.1063/1.447827.

[56] M. Doi. The Theory of Polymer Dynamics. Number 73 in The International

Series of Monographs on Physics. Oxford University Press, 1988.

[57] C. Broedersz and F. MacKintosh. Modeling semiflexible polymer networks.

Rev. Mod. Phys., 86(3):995–1036, 2014. doi: 10.1103/RevModPhys.86.995.
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[65] H. Gadêlha, E. A. Gaffney, D. J. Smith, and J. C. Kirkman-Brown. Nonlinear

instability in flagellar dynamics: a novel modulation mechanism in sperm migra-

tion? J. R. Soc. Interface, 7(53):1689–1697, 2010. doi: 10.1098/rsif.2010.0136.

[66] C. H. Wiggins, D. Riveline, A. Ott, and R. E. Goldstein. Trapping and wiggling:

Elastohydrodynamics of driven microfilaments. Biophys J, 74(2 Pt 1):1043–

1060, 1998.

[67] L. Harnau, R. G. Winkler, and P. Reineker. Dynamic structure factor of

semiflexible macromolecules in dilute solution. J. Chem. Phys, 104(16):6355–

6368, 1996. doi: 10.1063/1.471297.

[68] S. R. Aragon and R. Pecora. Dynamics of wormlike chains. Macromolecules,

18(10):1868–1875, 1985.

[69] K. Kroy and E. Frey. Dynamic scattering from solutions of semiflexible poly-

mers. Phys. Rev. E, 55(3):3092, 1997.
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die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der
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