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1 Introduction

Credit risk is a major concern of financial institutions and their risk management.

To the institutes, it is essential to identify and measure this risk in order to make

economically reasonable credit decisions and to calculate regulatory capital. For

the determination of credit risk of financial assets, banking regulation provides

three essential components. These are the probability of default (PD), the loss

given default (LGD), and the exposure at default (EAD). Moreover, two different

approaches are provided to incorporate these components. Article 107 (1) of the

capital requirement regulation (CRR) states that financial institutions shall apply

either the Standardised Approach or the Internal Ratings Based Approach (IRBA)

to calculate their regulatory capital requirements for credit risk. Depending on the

chosen approach, these components can or must be determined for regulatory and

economic purposes. With the IRBA, the Basel Committee on Banking Supervision

(2003) intends to increase the sensitivity of risk factors to the risk of the assets of

the applying institutions. A risk-adequate approach, such as IRBA, should ideally

reduce the regulatory capital of these institutes. Consequently, capital could be

released that is tied-up in backing financial assets.

So far, researchers studied the PD extensively and established sophisticated

measurements, such as the value-at-risk. Implementations are available abun-

dantly, e. g., CreditPortfolioView, CreditMetricsTM, and CreditRisk+. Front-

czak and Rostek (2015) assume that the EAD is predictable to a large extent by

means of amortization schedules. Hence, only for LGD robust estimation proce-

dures are scarce.
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In the following, we will consider LGD in more detail. LGD is that share of

the outstanding claim of a defaulted contract that could not have been recovered.

Several studies refer to its counterpart the recovery rate, which is 1− LGD.

Accurate estimates of potential losses are essential to allocate economic and

regulatory capital and to price credit risk of financial instruments. Moreover,

Gürtler and Hibbeln (2013) argue that accurately estimating the LGD should re-

sult in competitive advantages to the applying institution. Against this theoretical

and practical background, this thesis contributes to the growing research area of

LGD estimation. Particularly, it introduces new approaches and puts these into

the context of the existing literature. Furthermore, several findings in related

research can be confirmed empirically or put into perspective.

Recent studies on the estimation of LGD are mainly based on defaulted loans

and bonds, such as Yao et al. (2015), Leow et al. (2014), Jankowitsch et al.

(2014), Khieu et al. (2011), and Calabrese and Zenga (2010). Only little evidence

exists on the LGD of leases apart from Hartmann-Wendels and Honal (2010),

De Laurentis and Riani (2005), and Schmit and Stuyck (2002). However, there is

at least one major peculiarity of leases when comparing their recovery risk to that

of loans, which may reduce the LGD significantly. Eisfeldt and Rampini (2009)

argue that for the legal owner of the leased asset, i. e. the lessor, its reposition is

easier than foreclosure on the collateral for a secured loan. Moreover, the lessor

may retain any value from disposing of the asset, even if the recoveries exceed the

outstanding claim. Thus, the asset of a lease contract is a native collateral, which

lessors are experts in disposing off. In fact, examining defaulted lease contracts

from major European financial institutions, Schmit and Stuyck (2002) find that

defaulted leases on vehicles and real estate on average exhibit lower LGDs than

loans and bonds. Theoretically, this finding is plausible. However, there might be

exceptions to this rule.
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Calculation of LGD is a rather technical issue. There are two acknowledged

methods to determine the LGD of financial instruments. One of which is the

concept of market LGDs. The market LGD is calculated as one minus the ratio

of the trading price of the asset some time after default to the trading price at the

time of default. However, market LGDs are only available for bonds and loans

issued by large firms. Moreover, Khieu et al. (2011) find evidence, that market

LGDs are biased and inefficient estimates of the realized LGD. The second concept

is the workout LGD. Workout LGDs are calculated as one minus the ratio of the

discounted cash flows after default to the EAD.

The distribution of workout LGDs is often reported to be bimodal, e. g. by Li

et al. (2014), Qi and Zhao (2011), and Hartmann-Wendels and Honal (2010). The

distribution of a parameter is considered bimodal if it exhibits two local maxima.

Particularly for the LGD of leases these maxima are located around zero and one.

This shape is rather unusual because there is no single probability function com-

ing close to bimodal distributions. The unusual shape raises the question whether

standard econometric methods, such as ordinary least squares (OLS) linear re-

gression, are appropriate for the estimation task. This thesis presents empirical

evidence that complex approaches, such as regression trees and multi-step models,

have a significant advantage over standard methods, given a sufficiently large data

and information base. Furthermore, we find that economic consideration can be

a key driver of estimation improvements.

All approaches developed in this work incorporate workout LGDs and several

additional requirements of the CRR and its predecessor Basel II. In particular,

we consider workout costs and the update of LGD estimates in case of default,

which prior literature mostly neglects.

This thesis consists of three essays on the estimation of the risk parameter LGD.

The first essay (Hartmann-Wendels, Miller, and Töws, 2014, Loss given default
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for leasing: Parametric and nonparametric estimations) fills a gap in LGD re-

lated literature by focusing on elementary differences of the examined estimation

approaches. Three major German leasing companies provided a total of 14,322

defaulted leasing contracts. Based on this data, we compare parametric, semi-

parametric and nonparametric estimation methods. We use the historical average

and the parametric OLS regression as benchmark and compare the semipara-

metric finite mixture model (FMM) to the nonparametric model tree M5'. We

evaluate the performance of the used methods in an in-sample and out-of-sample

validation.

The most elementary estimation method is a look-up table, which either bases

on historical averages or expert opinions (see Gupton and Stein (2005)). Directly

following is OLS, which is also easy to implement. Therefore, OLS dominates the

used methods for estimating the LGD in recent literature. Most empirical studies

find the LGD to have a bimodal or even multimodal shape. Given this finding,

OLS may lead to inefficient estimates by estimating the conditional expectation

of the LGD. Whereas it is econometrically reasonable to approximate the LGD

distribution by a mixture of a finite number of standard distributions, e. g. normal

distributions. Implementing FMM, we develop a multi-step model to cluster the

data into distinct clusters first. The data then is classified to the found clusters

employing different classification algorithms. Finally, we calibrate OLS models to

the contracts of each cluster. Thereby, we allow for different influencing factors

within these clusters. The last category of studied approaches is tree algorithms.

These methods produce decision trees using if-then conditions to divide the data

subsequently in order to reduce its inhomogeneity. The determined final subsam-

ples then are averaged in terms of their LGD. Alternatively, regression models

are built within these subsamples.

Our results show that a model’s in-sample performance is a poor indicator

of its out-of-sample estimation capability. We find that FMM is quite capable
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of reproducing the unusual shape of the LGD distribution in-sample as well as

out-of-sample. Moreover, when measuring the models performance in terms of the

deviation of estimated from realized LGDs, FMM produces very low in-sample er-

rors. However, out-of-sample the error increases significantly and exceeds that of

OLS in most cases. While OLS is mostly outperformed in-sample, the model tree

produces robust in-sample and out-of-sample estimations exhibiting the lowest

level of out-of-sample estimation errors. Furthermore, we find that the improve-

ment of the model tree increases with an increasing dataset. Also, all models’

performance level is highly dependent on the peculiarities of the underlying data.

In order to account for a company’s idiosyncratic characteristics, it is reasonable

to consider the datasets separately.

The second essay (Töws, 2014, The impact of debtor recovery on loss given

default) addresses the economic consideration of the workout process of defaulted

contracts. It founds on the lessor’s retainment of legal title to the leased asset and,

consequently, his easy access to it in case of default. Dependent on the lessor’s

workout strategy, defaulted contracts may develop in two distinct ways. Either

the default reason can be dissolved and the debtor recovers or the contract must

be written off. This work uses the essential information of the contract’s default

end to study its influence on the LGD. We observe the recovery or write-off of

42,575 defaulted leasing contracts of three German leasing companies. In the

data, we find that recovered contracts exhibit significantly lower LGD levels than

contracts that were written off. According to the significant influence, we provide

evidence that employing the default end in an LGD estimation approach is highly

beneficial to the estimation accuracy.

Reminding ourselves that regression trees performed well in estimating LGD in

the first essay, we compare the forecasting performance of three tree algorithms.

These are J4.8, random forest (RF), and C5.0. Developing a two-step approach

for estimating LGD, we first divide the data according to the contracts’ default
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end in a classification. On each of the two classes, a regression model is calibrated

in the second step, and every contract is assigned exactly two LGD estimations

from both of the regression models. The final LGD estimation then is the linear

combination of the estimated LGDs weighted with their respective classification

probability.

Compared to direct estimation with OLS, we find our approach to improve the

estimation accuracy of LGD. When we consider the coefficient of determination,

the improvement is significant for each of the three datasets. The study indicates

the benefits of establishing the lessor’s expertise in assessing a defaulted contract’s

continuation worthiness. If successfully implemented, the resulting workout pro-

cess should produce lower LGDs than before and thereby strengthen the lenders

competitiveness.

The third essay (Miller and Töws, 2015, Loss given default-adjusted workout

processes for leases) contributes to the LGD estimation literature considering

unique features of leasing contracts. Based on a dataset of 1,493 defaulted leasing

contracts, we economically account for leasing peculiarities and develop a partic-

ularly suited approach to estimate the contracts’ LGD. To the best of our knowl-

edge, we are the first to separate the LGD into two distinct parts. We ground this

separation on the economic consideration that cash flows of the workout process

of defaulted leasing contracts, in general, are coming from two distinct sources.

The first part includes all asset-related cash flows, such as the asset’s liquidation

value and incurred liquidation costs. The second part comprises the remaining

cash flows, such as overdue payments and collection costs.

In the course of the study, we find ALGD to be a theoretical upper bound to

the LGD, given that the MLGD does not exceed a value of one. Assuming this is

the case, an ALGD less than one directly indicates the overall LGD being below

a value of one. As soon as ALGD reaches a value of zero, the disposal revenues
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cover EAD in full. In any case, if MLGD exceeds a value of one, the lessor should

restrict the workout process to the asset’s disposal. Under such circumstances,

the collection of overdue payments is economically inefficient and causes monetary

losses to the lessor.

Constructing a multi-step LGD estimation approach, we essentially compare

the performance of two different methods: OLS regression and RF. The first

step estimates the respective shares of the LGD. These are the asset-related

LGD (ALGD) and the miscellaneous LGD (MLGD). Including these factors, we

perform a classification of the data in the second step. We estimate whether a

contract’s ALGD exceeds its LGD. Similar to the approach of the second essay, we

calibrate regression models for each class in step three. The final LGD estimation

is the weighted linear combination of the estimated LGDs and the contract’s

classification probability.

Including the estimated ALGD and MLGD into the estimation approach in-

creases the estimation accuracy. Most importantly, the relative performance im-

provement is independent of the method applied. It rather arises from the eco-

nomic approach, which targets the specifics of leasing contracts. We find that the

estimated values of ALGD and MLGD are sturdy indicators for the success or

failure of the workout process. Thus, the lessor can benefit from the consideration

of both these forecasts for his actions concerning the workout process.





2 Loss given default for leasing:
Parametric and nonparametric
estimations

The loss given default (LGD) and its counterpart, the recovery rate, which equals

one minus the LGD, are key variables in determining the credit risk of a financial

asset. Despite their importance, only a few studies focus on the theoretical and

empirical issues related to the estimation of recovery rates.

Accurate estimates of potential losses are essential to efficiently allocate regu-

latory and economic capital and to price the credit risk of financial instruments.

Proper management of recovery risk is even more important for lessors than for

banks because leases have a comparative advantage over bank loans with respect

to the lessor’s ability to benefit from higher recovery rates in the event of default.

In their empirical cross-country analysis, Schmit and Stuyck (2002) note that the

average recovery rate for defaulted automotive and real estate leasing contracts is

slightly higher than the recovery rates for senior secured loans in most countries

and much higher than the recovery rates for bonds. Moreover, the recovery time

for defaulted lease contracts is shorter than that for bank loans. Because the

lessor retains legal title to the leased asset, repossession of a leased asset is easier

than foreclosure on the collateral for a secured loan. Moreover, the lessor can

retain any recovered value in excess of the exposure at default. Repossessing used

assets and maximizing their return through disposal in secondary markets are

aspects of normal leasing business and are not restricted to defaulted contracts.

Therefore, lessors have a good understanding of the secondary markets and of the
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assets themselves. Because the lessor’s claims are effectively protected by legal

ownership, the high recoverability of the leased asset may compensate for the poor

creditworthiness of a lessee. Lasfer and Levis (1998) find empirical evidence for

the hypothesis that lower-rated and cash-constrained firms have a greater propen-

sity to become lessees. To leverage their potential lower credit risk, lessors must

be able to accurately estimate the recovery rates of defaulted contracts.

This paper compares the in-sample and out-of-sample accuracies of parametric

and nonparametric methods for estimating the LGD of defaulted leasing contracts.

Employing a large dataset of 14,322 defaulted leasing contracts from three major

German lessors, we find in-sample accuracy to be a poor predictor of out-of-sample

accuracy. Methods such as the hybrid finite mixture models (FMMs), which at-

tempt to reproduce the LGD distribution, perform well for in-sample estimation

but yield poor results out-of-sample. Nonparametric models, by contrast, are ro-

bust in the sense that they deliver fairly accurate estimations in-sample, and they

perform best out-of-sample. This result is important because out-of-sample esti-

mation has rarely been performed in other studies – with the notable exceptions of

Han and Jang (2013) and Qi and Zhao (2011) – although out-of-sample accuracy

is critical for proper risk management and is required for regulatory purposes.

Analyzing estimation accuracy separately for each lessor, our results suggest

that the number of observations within a dataset has an impact on the relative

performance of the estimation methods. Whereas sophisticated nonparametric

estimation techniques yield, by far, the best results for large datasets, simple OLS

regression performs fairly well for smaller datasets.

Finally, we find that estimation accuracy critically depends on the available

set of information. We estimate the LGD at two different points in time, at the

execution of the contract and at the point of contractual default. This procedure

is of particular importance for leasing contracts because the loan-to-asset value

changes during the course of a leasing contract. Furthermore, the Basel II accord
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requires financial institutions using the advanced internal ratings based approach

(IRBA) to update their LGD estimates for defaulted exposure. To the best of our

knowledge, an analysis of this type of update has been neglected in the literature

thus far.

2.1 Literature review

There are two major challenges in estimating recovery rates for leases with respect

to defaulted bank loans or bonds. First, estimates of LGD on loans or bonds take

for granted that the recovery rate is bounded within the interval [0, 1], which

assumes that the bank cannot recover more than the outstanding amount (even

under the most favorable circumstances) and that the lender cannot lose more than

the outstanding amount (even under the least favorable circumstances). Although

the assumption of an upper boundary is justified for bank loans, it does not apply

to leasing contracts. As the legal owner of the leased asset, the lessor may retain

any value recovered by redeploying the leased asset, even if the recoveries exceed

the outstanding claim. In fact, there is some empirical evidence that recovery rates

greater than 100% are by no means rare. For example, Schmit and Stuyck (2002)

report that up to 59% of all defaulted contracts in their sample have a recovery

rate that exceeds 100%. Using a different dataset, Laurent and Schmit (2005)

find that recovery rates are greater than 100% in 45% of all defaulted contracts.

The lower boundary of the recovery rate rests on the implicit assumption of a

costless workout procedure. In fact, most empirical studies neglect workout costs

(presumably) because of data limitations. Only Grippa et al. (2005) account for

workout costs in their study of Italian bank loans and find that workout costs

average 2.3% of total operating expenses. The Basel II accord, however, requires

that workout costs are included in the LGD calculation. Thus, when workout costs

are incorporated, there is no reason to assume that workout recovery rates must

be non-negative. The second challenge in estimating recovery rates is the bimodal
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nature of the density function, with high densities near 0 and 1. This property of

workout recovery rates is well documented in almost all empirical studies, whether

of bank loans or leasing contracts (e. g., Laurent and Schmit (2005)).

Because of the specific nature of the recovery rate density function, standard

econometric techniques, such as OLS regression, do not yield unbiased estimates.

Renault and Scaillet (2004) apply a beta kernel estimator technique to estimate

the recovery rate density of defaulted bonds, but they find that it is difficult to

model its bimodality. Calabrese and Zenga (2010) extend this approach by con-

sidering the recovery rate as a mixed random variable obtained as a mixture of a

Bernoulli random variable and a continuous random variable on the unit interval

and then apply this new approach to a large dataset of defaulted Italian loans.

Qi and Zhao (2011) compare fractional response regression to other parametric

and nonparametric modeling methods. They conclude that nonparametric meth-

ods – such as regression trees (RTs) and neural networks – perform better than

parametric methods when overfitting is properly controlled for. A similar result

is obtained by Bastos (2010), who compares the estimation accuracy of fractional

response to RTs and neural networks.

Despite the growing interest in the modeling of recovery rates, little empirical

evidence is available on this topic. Several studies (e. g., Altman and Ramayanam

(2007), Friedman and Sandow (2005), and Frye (2005)) rely on the concept of

market recoveries, which are calculated as the ratio of the price for which a de-

faulted asset is traded some time after default to the price of that asset at the time

of default. Market recoveries are only available for bonds and loans issued by large

firms. Workout recoveries are used by Khieu et al. (2011), Dermine and Neto de

Carvalho (2005), and Friedman and Sandow (2005). However, Khieu et al. (2011)

find evidence that the post-default price of a loan is not a rational estimate of

actual recovery realization, i. e., it is biased and/or inefficient. According to Frye

(2005), many analysts prefer the discounted value of all cash flows as a more re-
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liable measurement of defaulted assets because: (1) cash flows ultimately become

known with certainty, whereas the market price is derived from an uncertain fore-

cast of future cash flows; (2) the market for defaulted assets might be illiquid; (3)

the market price might be depressed; and (4) the asset holder might not account

for the asset on a market-value basis.

Schmit et al. (2003) analyze a dataset consisting of 40,000 leasing contracts,

of which 140 are defaulted. Using bootstrap techniques, they conclude that the

credit risk of a leasing portfolio is rather low because of its high recovery rates.

Similar studies are conducted by Laurent and Schmit (2005) and Schmit (2004).

Schmit and Stuyck (2002) find considerable variation in the recovery rates of

37,000 defaulted leasing contracts of 12 leasing companies in six countries. Aver-

age recovery rates depend on the type of the leased asset, country, and contract

age. De Laurentis and Riani (2005) find empirical evidence that leasing recov-

ery rates are inversely correlated with the level of exposure at default. However,

recovery rates increase with the original asset value, contract age, and existence

of additional bank guarantees. Applying OLS regressions to forecast LGDs in

that study leads to rather poor results: the unit interval is divided into three

equal intervals, and only 31–67% of all contracts are correctly assigned in-sample.

With a finer partition of five intervals, the portion of correctly assigned contracts

decreases even further. These results clearly indicate that more appropriate esti-

mation techniques are needed to accurately estimate recovery rates.

Our study differs from the LGD literature in several crucial aspects. First, we

calculate workout LGDs and consider workout costs. Second, we perform out-

of-sample testing at contract execution and default, which meets the Basel II

requirements for LGD validation. Third, by separately analyzing the datasets of

three lessors, we gain insight into the robustness of the estimation techniques.
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Company # Contracts # Lessees
A 9,735 5,811
B 2,995 2,344
C 1,592 964

Table 2.1: Numbers of contracts and lessees in the datasets of companies A–C in de-
scending order of the number of contracts.

2.2 Dataset

This study uses datasets provided by three German leasing companies, which

shall be referred to herein as companies A, B, and C. All three companies use a

default definition consistent with the Basel II framework. According to Table 2.1,

the dataset from lessor A contains 9,735 leasing contracts with 5,811 different

customers and default dates between 2002 and 2010. The dataset from lessor B

contains 2,995 leasing contracts with 2,344 different lessees who defaulted between

1994 and 2009, with the majority of defaults occurring between 2001 and 2008.

The dataset for leasing company C consists of 1,592 leasing contracts with 864

different lessees who defaulted between 2002 and 2009.

For the defaulted contracts, we calculate the LGD as one minus the recovery

rate. The recovery rate is the ratio of the present value of cash inflows after

default to the exposure at default (EAD). For leasing contracts, the cash flows

consist of the revenues obtained by redeploying the leased asset and other collat-

eral combined with other returns and less workout expenses. The cash flows are

discounted to the time of default using the term related refinancing interest rate.1

The EAD is the sum of the present value of the outstanding minimum lease pay-

ments, compounded default lease payments, and the present residual value. All

values refer to the time of default. A contract is classified as defaulted when at

least one of the triggering events set out in the Basel II framework has occurred.

1Only a few studies (such as Gibilaro and Mattarocci (2007)) address risk-adjusted discounting.
We use the term related refinancing interest rate to discount cash flows at the time of default,
independently of the time span of the workout and the risk of each type of cash flow.



2.2 Dataset 15

Before the data was collected, all three companies agreed to use identical defi-

nitions for all the elements that are entered into the LGD calculation, and for all

details of the leasing contract, lessee, and leased asset. Thus, for every contract,

we have detailed information about the type and date of payments that the lessor

received after the default event. Moreover, we incorporate expenses arising during

the workout into the LGD calculation, to meet Basel II requirements. Workout

costs are rarely considered in empirical studies.

The workouts have been completed for all the observed contracts. Gürtler and

Hibbeln (2013) recommend restricting the observation period of recovery cash

flows to avoid the under-representation of long workout processes, which might

result in an underestimation of LGDs. Because we do not see a similar problem

in our data, we do not truncate our observations based on that effect.

All three companies also provide a great deal of information about factors that

might influence the LGD, which we divide into four categories:

1. contract information;

2. customer information;

3. object information; and

4. additional information at default.

Contract information is elementary information about the contract, such as its

type, e. g., whether it was a full payment lease, partial amortization, or hire-

purchase; its duration; its calculated residual value or prepayment rents; and in-

formation about collateralization and/or purchase options. Customer information

mainly identifies retail and non-retail customers. The category object information

consists of basic information about the object of the lease, including its type, ini-

tial value, and supplementary information, such as the asset depreciation range.

Whereas all the information in the first three groups is available from the moment

the contract is concluded, the last category consists of information that only be-
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Company Mean Std P5 P25 Median P75 P95
A 0.52 0.40 −0.11 0.19 0.52 0.88 1.05
B 0.35 0.42 −0.18 0.00 0.25 0.72 1.01
C 0.39 0.42 −0.23 0.03 0.32 0.77 1.03

Table 2.2: Loss given default (LGD) density information for companies A–C. Std is the
standard deviation and P5–P95 are the respective percentiles.

comes available after the contract has defaulted, such as the exposure at default

and the contract age at default.

Descriptive statistics

The LGD is clearly not restricted to the interval [0, 1]. As presented in Table 2.2

and Figure 2.1, negative LGDs are not only theoretically possible but also occur

frequently in the leasing business. Hartmann-Wendels and Honal (2010) argue

that such cases mainly occur if a defaulted contract with a rather low EAD yields

a high recovery from the sale of the asset. Because we incorporate the workout

expenses, LGDs greater than one are also feasible. Thus, we do not bound LGDs

within the [0, 1] interval, as is common for bank loans and as is done by Bastos

(2010), by Calabrese and Zenga (2010), and by Loterman et al. (2012).

An LGD of 45%, as specified in the standard credit risk approach, is consider-

ably higher than the median LGDs observed for companies B and C. In general,

we emphasize that the shape of the LGD distribution varies significantly among

these three companies. As presented in Figure 2.1, only the LGD distribution of

company C exhibits the frequently mentioned bimodal shape, whereas those of

companies A and B feature three maxima. These differences continue to prevail

when we account for differences in the leasing portfolio. Thus, we trace these vari-

ations back to differences in workout policies. Because the requirements for the

pooling of LGD data, set out in section 456 of the Basel II accord, are clearly vio-
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Figure 2.1: Density of the realized loss given default (LGD) by company. The realized
LGD concentrates on the interval [−0.5, 1.5]. The figures describe a loss severity of
−50% on the left end, which indicates that 150% of the exposure at default (EAD) was
recovered. On the right end, the loss severity is 150%, indicating a loss of 150% of the
EAD. Consequently, a realized LGD of 0 or 1 indicates the following: in case of 0, full
coverage of the EAD (included workout costs); or, in case of 1, total loss of the EAD.

lated, we construct individual estimation models to account for institution-specific

characteristics and differences in LGD profiles among the companies.

Previous studies on the LGD of defaulted leasing contracts consistently show

that the LGD distribution depends largely on the underlying asset type. We cat-

egorize the contracts according to the underlying asset using five classes: vehicles,

machinery, information and communications technology (ICT), equipment, and

other. Table 2.3 summarizes the key statistical figures of the distributions for

each company. We can unambiguously rank the three companies with respect to

their mean LGD. Company B achieves the lowest average LGD for all asset types,

company C is second best, and company A bears the highest losses. Contracts in

ICT have the highest average LGD. Examining the median of ICT, we find that

companies A, B, and C retrieve only 4%, 16%, and 13% of the EAD, respectively,

in half of the cases. The key statistical figures for equipment and other assets are
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Asset type Company # Contracts Mean Std Median

Vehicles
A 4,578 0.44 0.35 0.45
B 1,111 0.26 0.31 0.27
C 599 0.28 0.37 0.21

Machinery
A 4,140 0.55 0.43 0.61
B 779 0.06 0.27 0.00
C 646 0.39 0.42 0.32

ICT
A 606 0.77 0.38 0.96
B 1,062 0.64 0.43 0.84
C 201 0.72 0.38 0.87

Equipment
A 353 0.61 0.44 0.74
B 26 0.26 0.44 0.09
C 26 0.38 0.41 0.15

Other
A 58 0.56 0.43 0.54
B 17 0.39 0.44 0.26
C 120 0.46 0.43 0.45

Table 2.3: Loss given default (LGD) density information by asset type for companies
A–C. For each asset type, # Contracts is the number of contracts containing this
type of asset, Mean is its mean, Std is its standard deviation, and Median is its
median. ICT is information and communications technology. The displayed asset
types vary in the numbers of their contracts and even further in the characteristics
of their realized LGD.

seemingly less meaningful because of the small sample sizes for these classes, but

the trends are consistent across all three companies.

Figure 2.2 presents the LGD distributions for vehicles, machinery, and ICT for

each company. The shape of the LGD distributions differs tremendously with

respect to the different asset types. Whereas for ICT, the LGD density in Fig-

ure 2.2c is right-skewed toward high LGDs with only weak bimodality throughout

all of the companies, the density of machinery runs partly the opposite direction.

For machinery, in Figure 2.2b, we see a higher concentration around 0, but for

company A, larger LGDs again outweigh this effect. The LGD for contracts with

vehicles varies greatly from company to company. We observe a strong multi-

modality for all of the companies with an additional peak at approximately 0.5,

and most of the density lies in the lower LGD range.
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Figure 2.2: Densities of realized loss given default (LGD) by company for the three
major asset types: vehicles, machinery, and information and communications technology
(ICT). Depending on the asset type, the realized LGD density appears in completely
different shapes. For machinery (Figure b), even the difference between companies is
enormous.

2.3 Methods

This section describes the various approaches that we use to estimate the LGD

and its density. According to section 448 of the Basel II regulations, institutes

are required to base their estimations on a history of defaults and to consider all

relevant data, information, and methods. Furthermore, a bank using the advanced

IRBA must be able to break down its experience with respect to the probability

of default (PD), LGD, and the IRBA conversion factor. This breakdown is to be

based on the factors that are identified as drivers of the respective risk parameters.

The basic method used to identify these drivers is to partition the data ac-

cording to a certain attribute (e. g., the type of object). Differences in the means

of the partitions are then captured by setting the inducing factor as the driver.

The average value is then the (naive) estimator of the LGD for the corresponding

subclass. As Gupton and Stein (2005) note, this traditional look-up table ap-

proach is static and backward-looking, even if considerable variation is observed

in the LGD distributions for different types of objects. An alternative method of

verifying the impact of potential factors and developing an estimation model is to

conduct a regression analysis. Linear regressions always estimate the (conditional)

expectation of the target variable, but this average is not a reasonable parameter
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under mixed distributions, so it is not an adequate approach from a statistical

perspective. However, regression analyses for LGD estimation are successfully

implemented by Bellotti and Crook (2012) and by Zhang and Thomas (2012).

Table 2.2 reports the median LGDs as 52%, 25%, and 32% for companies A,

B, and C, respectively. Considering the LGD distribution in Figure 2.1, its het-

erogeneity suggests that the overall portfolio is composed of several subclasses,

which are less heterogeneous in terms of the LGD. This implies that each sub-

class has its own characteristic LGD distribution. We use FMMs to reveal these

unknown classes (cluster analysis), to fit a reasonable model to the data and to

classify the observations into these classes. Furthermore, we apply two different

regression/model tree algorithms to the data. These tree-based models also have

the basic function of dividing the portfolio into homogeneous partitions; by con-

trast to the FMMs, however, the number of subclasses is endogenously determined

rather than exogenously specified.

At the end of this section, we present an overview of how to select the ex-

planatory variables for tree-based methods. We also describe our methodology

for out-of-sample testing.

2.3.1 Finite mixture models and classification

Modeling the probability density of realized LGDs as a mixed distribution allows

us to use different potential LGD drivers for different clusters and to capture

differences in the effects of these drivers on the LGD in various subclasses. We

adapt an approach originally proposed by Elbracht (2011). FMMs are described

by Frühwirth-Schnatter (2006).

The approach consists of three steps: (1) cluster the total dataset into finite

classes by finite mixture distributions using all available information; (2) classify

the dataset into the resulting classes using only the information available at the
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execution or default of the contract by the k-nearest neighbors (kNN) or the

classification tree algorithm J4.8; and (3) perform OLS regressions for each class.

Step (1) can be adjusted between the two extremes of nonparametric and para-

metric modeling, thus providing a flexible method of data adaptation. We use

normal distributions to construct the mixing distributions. We estimate unknown

model parameters using the expectation maximization algorithm, which also pro-

vides a probabilistic classification of the observations. The accuracy of classifica-

tion step (2) can be measured for in-sample testing. However, in out-of-sample

testing, the goal is to classify observations that do not belong to any class initially

– because these objects are not part of the training sample used to form classes –

into exactly one of the given classes.

We compare two different approaches to classifying contracts into previously

established classes. The nonparametric kNN approach assigns an observation to

the class with the majority of its k nearest neighbors, whereas the distance between

observations is determined as the Euclidean distance. This approach is described

by Hastie et al. (2009). We also apply the tree algorithm J4.8 for classification.

The J4.8 algorithm generates pruned C4.5 revision 8 decision trees, as illustrated

by Witten et al. (2011) and originally implemented by Quinlan (1993). The

decision tree is constructed by dividing the sample according to certain threshold

values. The optimal split in terms of maximized gain ratio is performed until

additional splits yield no further improvement, or a minimum of instances per

subset is reached. Every partition results in a node. To prevent overfitting, we

prune back the fully developed tree to a certain level. According to Quinlan

(1993), these deleted nodes shall not contribute to the classification accuracy of

unseen cases.
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2.3.2 Regression and model trees

RTs are classified as nonparametric and nonlinear methods. Similar to other

regression methods, they can be applied to analyze the underlying dataset and

to predict the (numeric) dependent variable. An essential difference between RTs

and parametric methods, such as linear or logistic regressions, is that ex-ante no

assumption is made concerning the distribution of the underlying data, and no

functional relationship is specified.

These characteristics are particularly beneficial in case of LGD estimation be-

cause it is typically not possible to describe the distribution of the LGD suitably

with a single distribution, such as the normal distribution. In addition, the dis-

tribution of the LGD varies significantly according to the underlying data. Thus,

as described in Section 2.2, the LGD distributions of the three companies studied

here are all multimodal, although there are appreciable differences between com-

panies, such as the number of maxima. In particular, more types of distributions

are observed for bank loans (for an overview, see Dermine and Neto de Carvalho

(2005)).

The basic idea of regression and model trees is to partition the entire dataset

into homogeneous subsets by a sequence of splits, which creates a tree consisting

of logical if-then conditions. Starting with the root node of the tree that contains

all instances of the underlying data, each leaf covers only a fraction of the data.

In an RT, the prediction of the dependent variable is given by a constant for

all instances belonging to a leaf, typically defined as the average value of these

instances. Model trees are an extension of RTs in the sense that the target vari-

able of instances belonging to a leaf is estimated by a linear regression model.

Therefore, model trees are hybrid estimation methods combining RTs and linear

regression. Model trees are clearly applicable for LGD estimation because RTs

are successfully used in previous studies such as Bastos (2010) and Qi and Zhao

(2011). Linear regression models are also applied to analyze and predict LGDs,
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and these models may deliver comparable or better results than those of more

complex models, as shown by Bellotti and Crook (2012) and Zhang and Thomas

(2012).

For our LGD estimation, we apply the M5' model tree algorithm and the cor-

responding RT algorithm that is introduced by Wang and Witten (1997) and

described by Witten et al. (2011). This algorithm is a reconstruction of Quinlan’s

M5 algorithm that was published in 1992. In the case of the M5' algorithm, the

underlying dataset is divided step by step, each time using the binary split based

on the explanatory variables with the greatest expected reduction in the stan-

dard deviation. The constructed tree is subsequently pruned back to obtain an

appropriately sized tree to control overfitting, which can influence out-of-sample

performance negatively.

The resulting tree essentially depends on the explanatory variables used, par-

ticularly with respect to the M5' model tree algorithm; selecting appropriate vari-

ables is a complex issue because of ex-ante relevance and effectiveness not always

being known. In the first step, we consider the potential application of a large

number of parameters. However, it might be preferable to include only a fraction

of the available variables, which we account for in the second step.

There are various algorithmic approaches for variable selection; two frequently

applicable greedy algorithms are forward selection and backward elimination. Bel-

lotti and Crook (2012) use forward selection for their LGD estimations of retail

credit cards with OLS regression. However, forward selection has a significant

disadvantage neglecting variable interactions.

Instead of forward selection, we employ backward elimination, initiating all

available variables and step by step eliminating the variables without which the

best value in terms of the respective fit criterion is achieved. This procedure

continues until a stop condition is reached, or all the variables are eliminated.
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A typical fit criterion for regression models is the F-score. However, the Akaike

information criterion (AIC) and Bayesian information criterion (BIC) are used for

forecasting, both of which are based on the log-likelihood function.

Analogous to the approximation of the AIC used by Bellotti and Crook (2012),

the BIC can be approximated by

BIC = n · ln(MSE) + p · ln(n), (2.1)

where n denotes the number of observations, p is the number of input variables,

and MSE is the mean squared error of the observations.

We use the BIC, which penalizes the complexity of the model more than the

AIC. This complexity is measured by the number of input variables. In addition

to the number of explanatory variables, regression and model trees offer another

complexity feature: the number of leaves in the computed tree. This aspect is

among those included by Gray and Fan (2008) when designing the TARGET RT

algorithm. The more leaves that are present in the computed tree, the greater

the risk is that a contract will be misclassified, which negatively influences the

estimation.

We find that the number of leaves is determined not only by the pruning proce-

dure but also by the input variables. Thus, we modify the BIC and penalize the

size of the computed tree

BIC∗ = n · ln(MSE) + p · ln(n) + |T | · ln(n), (2.2)

where |T | denotes the number of leaves of the computed tree.

For BIC∗, lower values are preferred. As with our data, MSE ∈ (0, 1), n � p

and n � |T | holds; thus, we have BIC∗ < 0. We set the stop condition for

our backward elimination such that a variable in the i-th iteration can only be
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eliminated if the BIC∗ value increased by an absolute value of at least one, which

implies that the following constraint must be fulfilled

BIC∗
i−1 − BIC∗

i ≥ 1. (2.3)

2.3.3 Out-of-sample testing

We calibrate our models on randomly divided training sets of 75% and validate

their performance on the remaining 25% of the total dataset. Division and cali-

bration are repeated 25 times. The final results are averaged. Our out-of-sample

validation combines the advantages of k-fold cross-validation and the approach of

splitting the dataset into training and test sets, and is particularly suitable for

large datasets.

Bastos (2010) and Qi and Zhao (2011) employ k-fold cross-validation – using

k = 10 – to evaluate the out-of-sample performance of their models. This method

relies on partitioning the dataset randomly into k equal-sized subsets. While the

model is calibrated on k−1 subsets, the models predictive performance is validated

on the remaining subset. This procedure is performed k times, with each of the

k subsets used exactly once for validation. Therefore each observation contained

in the total dataset is used exactly once for validation. By contrast, we draw

the 25 divisions in training and test data randomly. With a small k in the k-fold

cross-validation there are fewer performance estimates, but the size of the subsets,

and therefore the amount of the total dataset which is used for each validation, is

larger. As k increases, the number of performance estimates increases, however,

the size of the validation subset decreases rapidly. Given larger datasets, the data

can be split into some training and test sets. Here, the validation is restricted to

the unseen cases of the test set. Gürtler and Hibbeln (2013) randomly shuffle and

divide their data as 70% training and 30% validation. Consequently, our out-of-
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sample validation combines the advantages of these two approaches. In particular

we make use of large test sets and still generate multiple estimations.

2.4 Results

We present both in-sample and out-of-sample results in terms of LGD estimation

– using different error measurements – and compare the results. These error

parameters reflect the performance of our methods. Naturally, a low parameter

outcome is preferable. We calculate the mean absolute error (MAE) and root

mean squared error (RMSE) for each applied method according to the following

definitions

MAE = 1
n

n∑
i=1
|LGDi − LGD∗

i |, (2.4)

RMSE =
√√√√ 1
n

n∑
i=1

(LGDi − LGD∗
i )2, (2.5)

where LGD denotes the realized LGD, LGD∗ is the predicted LGD, and n is the

number of observations.

In addition to these measurements we calculate the Theil inequality coefficient

(TIC), presented by Theil (1967)

TIC =
1
n

n∑
i=1

(LGDi − LGD∗
i )2√

1
n

n∑
i=1

LGD2
i +

√
1
n

n∑
i=1

(LGD∗
i )2
. (2.6)

TIC sets the mean squared error relative to the sum of the average quadratic

realized and estimated LGD and thereby accounts for both the model’s goodness

of fit and robustness. The factor is bound to [0, 1] with TIC = 0 being the perfect

estimator. Theil finds that a useful forecast can be made up to TIC ≈ 0.15.
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For a better interpretation of the results, we also show the results of the his-

torical average and two simple OLS regression models as benchmarks. We use

identical explanatory variables for OLS regression as for the M5' algorithm and

RT before applying the variable selection procedure. Similar to M5' and RT, we

further apply a backward elimination to the OLS regression according to the BIC

criterion in Equation (2.1).

We estimate the LGD at two different points in time: once at the execution

of the contract and once at the time of default. Typically, more information is

available at default, which should theoretically yield better predictions.

The in-sample and out-of-sample results are evaluated by calculating the Janus

quotient introduced by Gadd and Wold (1964)

Janus =

√√√√√√√
1
n

n∑
i=1

(LGDi − LGD∗
i,Oos)2

1
m

m∑
i=1

(LGDi − LGD∗
i,Is)2

, (2.7)

with the in-sample estimation LGD∗
Is in the denominator and the out-of-sample

estimation LGD∗
Oos in the numerator. Janus = 1 for equally large prediction

errors for both estimations. A value close to 1 indicates a stable model and data

structure.

At the end of the chapter, we also provide quality features of the identified finite

mixture distributions and the error rates of classification for robustness reasons,

and we interpret these results.

2.4.1 In-sample results

Beginning with the in-sample outcomes presented in Table 2.4, our models largely

produce better estimations with the additional information available at default.

Our results clearly show the superiority of the FMMs for in-sample testing. The

MAE, RMSE, and TIC of the FMM3NN are mostly far from their counterparts
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Company A Company B Company C
Method Lv. MAE RMSE TIC Lv. MAE RMSE TIC Lv. MAE RMSE TIC
Hist. avg. 0.3418 0.4018 0.1381 0.3646 0.4205 0.1988 0.3662 0.4195 0.1822
At execution
OLS 0.3240 0.3868 0.1268 0.2706 0.3451 0.1235 0.3282 0.3889 0.1519
OLSBIC 0.3246 0.3874 0.1272 0.2719 0.3471 0.1251 0.3307 0.3909 0.1537
FMM3NN 0.2806 0.3713 0.1099 0.2209 0.3354 0.1044 0.2571 0.3601 0.1176
FMMJ4.8 0.2919 0.3916 0.1043 0.2589 0.3911 0.1192 0.3028 0.3914 0.1255
M5' 13 0.3142 0.3786 0.1209 1 0.2711 0.3459 0.1241 2 0.3272 0.3874 0.1504
M5'BIC∗ 17 0.3132 0.3774 0.1201 9 0.2640 0.3388 0.1185 9 0.3148 0.3751 0.1400
RT 34 0.3183 0.3817 0.1231 7 0.2726 0.3464 0.1248 9 0.3279 0.3871 0.1510
RTBIC∗ 26 0.3197 0.3829 0.1240 11 0.2687 0.3423 0.1217 7 0.3314 0.3898 0.1531

At default
OLS 0.3114 0.3761 0.1191 0.2692 0.3435 0.1211 0.3238 0.3858 0.1490
OLSBIC 0.3123 0.3768 0.1195 0.2709 0.3451 0.1234 0.3238 0.3858 0.1527
FMM3NN 0.2550 0.3468 0.0955 0.2148 0.3280 0.1001 0.2432 0.3437 0.1091
FMMJ4.8 0.2588 0.3594 0.0900 0.2408 0.3693 0.1056 0.2835 0.3723 0.1190
M5' 6 0.3014 0.3680 0.1134 2 0.2650 0.3399 0.1193 1 0.3274 0.3883 0.1513
M5'BIC∗ 12 0.2997 0.3666 0.1126 12 0.2539 0.3277 0.1101 3 0.3244 0.3858 0.1490
RT 49 0.3032 0.3689 0.1143 25 0.2642 0.3373 0.1181 13 0.3247 0.3844 0.1487
RTBIC∗ 39 0.3046 0.3699 0.1150 10 0.2674 0.3422 0.1215 7 0.3294 0.3886 0.1523

Table 2.4: In-sample estimation errors at the execution and default of contracts by
company. The best results are underlined for each company and type of error. Hist. avg.
is the historical average loss given default (LGD) used as estimation of the LGD. OLS
represents the ordinary least squares regression, and FMM is the finite mixture model
in combination with 3-nearest neighbors (3NN), or J4.8. OLS is also performed with
the variable selection BIC algorithm and the M5' algorithm and the RT are performed
with the variable selection BIC∗ algorithm. Lv. defines the number of leaves on the tree.
MAE is the mean absolute error defined in Equation (2.4) and RMSE is the root mean
squared error defined in Equation (2.5). TIC is the Theil inequality coefficient defined
in Equation (2.6). For MAE, RMSE, and TIC, lower outcomes are preferable.

of the other models and even farther from the historical averages. The OLS

regressions are outperformed in all cases.

Upon closer inspection, we note a large gap between the MAE and RMSE of

the FMMs of approximately 10 percentage points, which is thus much larger than

for the OLS regressions and tree-based models. We discuss this effect in more

detail in Section 2.4.3. Our findings are consistent with Elbracht (2011) and with

the discrepancy between MAE and RMSE noted by Loterman et al. (2012).

Proceeding with the tree-based models, we determine that by application of the

variable selection procedures, M5'BIC∗ strictly outperforms all RT models and the
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OLS regressions, except for company C at default. However, the variable selection

is beneficial because, without it, the algorithm partly divides the contracts into

only one or two classes, leading to estimation errors close to those of the OLS

regression models. Furthermore, by applying the variable selection, we observe

that more underlying contracts tend to be associated with more classes. Compared

to the FMMs, the M5' models yield significantly higher MAEs, but they are

somewhat competitive in terms of the RMSE.

The RTs tend to divide the contracts into significantly more classes than the

M5' models. Nonetheless, the results are predominantly worse than those for

the M5' models. The RTs, with all available explanatory variables RT and in

combination with variable selection RTBIC∗ , outperform the OLS regressions for

most companies. As expected, we notice that punishing the number of classes in

RTBIC∗ results in a model with fewer classes and thereby reduces the prediction

quality. Unlike the M5' algorithm, the RT can reduce its error only by increasing

the number of classes. Likewise, OLS regression performs better when using all

available variables.

The TIC of all considered models remains well below its values of the historical

average and mainly less than the value of OLS. Additionally, all of the values are

within the range of the suggested threshold value of TIC ≈ 0.15 or less, which

confirms that the methods used are worth being considered for estimating LGDs.

2.4.2 Out-of-sample results

Most of the studies in this field report in-sample findings but not out-of-sample

results, although the latter are crucial for proper risk management and are required

for regulatory purposes. Certainly, our out-of-sample findings, summarized in

Table 2.5, differ significantly from the in-sample results. Accordingly, to evaluate

the method’s efficiency and robustness, out-of-sample testing is essential because

in-sample results can be misleading.
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Company A Company B Company C
Method MAE RMSE TIC MAE RMSE TIC MAE RMSE TIC
Hist. avg. 0.3437 0.4022 0.1383 0.3657 0.4221 0.1999 0.3679 0.4200 0.1828
At execution
OLS 0.3257 0.3891 0.1282 0.2722 0.3469 0.1246 0.3348 0.3959 0.1576
OLSBIC 0.3262 0.3893 0.1285 0.2734 0.3479 0.1256 0.3369 0.3962 0.1583
FMM3NN 0.3539 0.4479 0.1600 0.2917 0.4178 0.1621 0.3593 0.4755 0.2056
FMMJ4.8 0.3424 0.4422 0.1544 0.2749 0.4004 0.1453 0.3313 0.4193 0.1720
M5' 0.3235 0.3879 0.1271 0.2723 0.3475 0.1250 0.3365 0.3957 0.1576
M5'BIC∗ 0.3215 0.3873 0.1264 0.2711 0.3467 0.1242 0.3384 0.4004 0.1607
RT 0.3245 0.3890 0.1280 0.2751 0.3490 0.1266 0.3386 0.3961 0.1587
RTBIC∗ 0.3243 0.3888 0.1278 0.2746 0.3480 0.1259 0.3386 0.3961 0.1595

At default
OLS 0.3132 0.3786 0.1206 0.2702 0.3447 0.1229 0.3319 0.3949 0.1560
OLSBIC 0.3143 0.3790 0.1209 0.2730 0.3494 0.1260 0.3334 0.3945 0.1565
FMM3NN 0.3204 0.4214 0.1410 0.2832 0.4085 0.1549 0.3345 0.4504 0.1870
FMMJ4.8 0.2958 0.3988 0.1253 0.2741 0.3996 0.1464 0.3297 0.4260 0.1732
M5' 0.3100 0.3767 0.1191 0.2678 0.3433 0.1220 0.3332 0.3951 0.1565
M5'BIC∗ 0.3069 0.3757 0.1178 0.2659 0.3428 0.1206 0.3341 0.3977 0.1579
RT 0.3136 0.3804 0.1216 0.2710 0.3462 0.1244 0.3370 0.3958 0.1583
RTBIC∗ 0.3142 0.3811 0.1220 0.2727 0.3474 0.1252 0.3384 0.3979 0.1598

Table 2.5: Out-of-sample estimation errors at the execution and default of contracts by
company. The best results are underlined for each company and type of error. Hist. avg.
is the historical average loss given default (LGD) used as estimation of the LGD. OLS
represents the ordinary least squares regression, and FMM is the finite mixture model
in combination with 3-nearest neighbors (3NN), or J4.8. OLS is also performed with
the variable selection BIC algorithm and the M5' algorithm and the RT are performed
with the variable selection BIC∗ algorithm. MAE is the mean absolute error defined
in Equation (2.4) and RMSE is the root mean squared error defined in Equation (2.5).
TIC is the Theil inequality coefficient defined in Equation (2.6). For MAE, RMSE, and
TIC, lower outcomes are preferable.

Our findings indicate that, in general, M5'BIC∗ generates the best out-of-sample

results, although the performance seems to depend on the size of the underlying

dataset. Consistent with the in-sample results, we observe predominately more

accurate estimations using the additional information available at default.

Concerning the FMMs, we first note that the in-sample favorable FMM3NN is

now outperformed by all of the other models and also partly by the historical

averages. This outcome is unexpected because the in-sample results are good

and sturdy. The FMMJ4.8 generates isolated good MAE values but the RMSE
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and TIC values are worse than their counterparts from the tree-based models and

OLS regressions. As we did in-sample, we continue to note a large gap between

the MAE and RMSE for both FMMs; furthermore, the TIC values exceed the

suggested value of 0.15 by several times.

Our results clearly demonstrate that by application of the variable selection

procedure, the model tree M5'BIC∗ is the best choice for companies A and B. For

these two companies, applying the variable selection procedure to the model tree

algorithm is beneficial without exception. Whereas both model tree methods out-

perform the RT models, M5'BIC∗ also generates consistently better MAE, RMSE,

and TIC values than both OLS regressions. For company C, we obtain a slightly

different picture. Considering the performance measures in total, the OLS regres-

sion – particularly using all available explanatory variables – is favorable now. At

the very least, at execution, the M5' algorithm generates equally good or even

slightly better RMSE and TIC values as the OLS regressions. However, the re-

sults of the M5'BIC∗ and both RT models are worse for company C. Consistent

with the in-sample results, we find that the variable selection procedure almost

throughout worsens the results of the OLS regression and RT for all companies.

The out-of-sample results suggest to some extend a link between the numbers of

observations and the relative performances of the estimation methods considered.

Containing the LGD data from three different companies, our dataset provides us

with a particularly good opportunity to analyze this relationship in greater detail.

Bearing in mind the ranking of the dataset sizes, company A delivered the largest

number of observations (9,735), followed by company B (2,995) and company C

(1,592).

First of all, we note that the TIC exceeds the suggested value of 0.15 for all

of the methods in the case of company C. For companies A and B, TIC values

remain well below 0.15, at least with respect to the tree-based models and the

OLS regressions. This finding indicates that the prediction accuracy in general
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becomes weaker if the underlying dataset contains fewer observations. Further-

more, we note that the performances of the model trees relative to the regression

model OLS improve with an increasing dataset size. At default of the contracts,

M5' performs 0.51% worse than OLS for company C concerning the MAE. But,

for company B, M5' performs 0.89% better than OLS and the improvement in-

creases to 1.02% for company A. Analogously, this tendency applies to the RMSE.

At execution of the contract the relative performance improves with an increas-

ing sample size only regarding the MAE. Actually, for M5'BIC∗ , the estimation

accuracy relative to OLS improves throughout monotonically with an increasing

sample size. Moreover, the link between the performance relative to OLS and the

number of observations included in the underlying dataset is even more distinctive

for M5'BIC∗ . At default M5'BIC∗ performs 0.66% worse than OLS for company C

concerning the MAE, but 1.59% (2.01%) better than OLS for company B (A).

With respect to the RT models we cannot establish an unambiguous link be-

tween the performances relative to OLS and the sample size. Compared with OLS,

the performances of RT and RTBIC∗ improve with an increasing dataset size only

with regard to the MAE. Whereas, regarding the RMSE the results of RT dete-

riorate relative to OLS with an increasing dataset size at default of the contract

and RTBIC∗ obtains the relatively worst outcomes at execution and default of the

contract on the dataset of company B. Also concerning the FMMs and OLSBIC

we could not identify a link between the performances relative to OLS and the

number of observations contained in the underlying dataset. Both FMMs and

OLSBIC obtain relative to OLS the worst results almost throughout for company

B.

We further compare the results for each of the random divisions of the respective

dataset used for out-of-sample testing. The findings support the link between the

performances of M5' and particularly M5'BIC∗ relative to OLS and the sample size.

For company C, M5'BIC∗ yields better results than OLS on only about 5 partitions.
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With an increasing sample size, M5'BIC∗ performs better than OLS significantly

more often, to be precise, for company B on at least 60% of the divisions and for

company A on more than 90%. Actually, at execution of the contract, M5'BIC∗

yields throughout better MAE values than OLS for company A.

Although there might be several factors influencing the estimation accuracy of

the models, such as idiosyncratic firm characteristics, we find the sample size to be

of particular importance. We apply an additional test to confirm the link between

estimation accuracy and sample size. Pooling the three datasets generates a large

sample that contains 14,322 contracts (100%). We randomly draw 7,161 contracts

(50%) out of the large sample to generate a medium sized sample. For a small

sample, we randomly draw 1,432 contracts (10%) out of the large sample. We

repeat these random drawings ten times, leaving us with a total of 21 datasets.

Again, for out-of-sample testing we split the datasets randomly into 75% training

sample and 25% test sample. This step is also done ten times. We showed before,

that the M5'BIC∗ seems to be particularly sensible to small sample sizes. Also,

bearing in mind that M5'BIC∗ and the regression model OLS perform best for

companies A and B, respectively for company C, we focus on testing the impact

of sample size for these two models. All results are averaged with respect to the

sample size.

We see in Table 2.6 that both methods perform better on larger datasets. Unlike

OLS regression, the estimation accuracy of M5'BIC∗ increases almost monotoni-

cally with increasing sample size. In particular, the degree of accuracy improve-

ment is clearly higher for the M5'BIC∗ . The M5'BIC∗ performs consistently better

than OLS regression. The improvement of M5'BIC∗ over OLS regression increases

with increasing sample size. At default of the contract M5'BIC∗ performs 1.5% bet-

ter than OLS regression on small datasets concerning the MAE. The improvement

increases to 5.7% and 7.4% on medium sized and large datasets. With regard to
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100% (large) 50% (medium) 10% (small)
Method MAE RMSE MAE RMSE MAE RMSE
At execution
OLS 0.3327 0.3977 0.3311 0.3943 0.3359 0.4012
M5'BIC∗ 0.3186 0.3877 0.3194 0.3869 0.3323 0.4002

At default
OLS 0.3316 0.3964 0.3285 0.3943 0.3334 0.4001
M5'BIC∗ 0.3069 0.3783 0.3098 0.3814 0.3285 0.3998

Table 2.6: Out-of-sample estimation errors at the execution and default of contracts by
sample size. The sample sizes are 100% (large), 50% (medium), and 10% (small) of
all contracts. OLS is the ordinary least squares regression without variable selection
and M5'BIC∗ is the M5' algorithm with the variable selection BIC∗ algorithm. MAE is
the mean absolute error defined in Equation (2.4) and RMSE is the root mean squared
error defined in Equation (2.5). For MAE and RMSE lower outcomes are preferable.

the RMSE the improvement over OLS regression is 0.1% (2.8%, 4.6%) for small

(medium, large) datasets.

Furthermore, we compare the results of M5'BIC∗ and OLS regression for each

of the 210 randomly drawn subsamples. We find that M5'BIC∗ outperforms OLS

regression in all drawings on large and medium sized datasets, whereas OLS re-

gression achieves better results on small samples in 28% of the drawings concerning

the MAE and in over 40% concerning the RMSE.

We conclude that the M5'BIC∗ should be based on an adequately large dataset

to process the information more efficiently than the OLS regression. Moreover,

the performed test confirms the link between prediction accuracy and sample size.

Considering that the dataset of company C contains the fewest observations, and

the M5'BIC∗ improves with additional observations, we conclude that the M5'BIC∗

in general is the best choice for out-of-sample predictions.

At first glance, the differences between the values of the accuracy measurements

of the sophisticated estimation methods compared to OLS regression without

variable selection seem to be negligible in most cases and are consistent with the

results of Zhang and Thomas (2012). This finding raises the question as to whether
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Company A Company B Company C
Method Exec. Dflt Exec. Dflt Exec. Dflt
Hist. avg. 1.0011 1.0011 1.0037 1.0037 1.0013 1.0013
OLS 1.0059 1.0066 1.0052 1.0035 1.0180 1.0236
OLSBIC 1.0049 1.0058 1.0023 1.0125 1.0136 1.0226
FMM3NN 1.2062 1.2151 1.2456 1.2453 1.3202 1.3105
FMMJ4.8 1.1291 1.1095 1.0238 1.0818 1.0713 1.1442
M5' 1.0246 1.0236 1.0046 1.0100 1.0214 1.0175
M5'BIC∗ 1.0262 1.0248 1.0233 1.0461 1.0674 1.0308
RT 1.0191 1.0312 1.0075 1.0264 1.0232 1.0297
RTBIC∗ 1.0154 1.0303 1.0167 1.0152 1.0162 1.0239

Table 2.7: Janus quotient for in-sample and out-of-sample estimations of loss given
default (LGD) for each method and company at execution (Exec.) and default (Dflt)
of contracts. The quotient is calculated according to Equation (2.7) and is constant for
the historical average. A Janus quotient greater than 1 indicates that the error for the
out-of-sample estimation is greater than the error for the in-sample estimation. OLS
represents the ordinary least squares regression, FMM is the finite mixture model in
combination with 3-nearest neighbors (3NN), or J4.8. OLS is also performed with the
variable selection BIC algorithm and the M5' algorithm and the RT are performed with
the variable selection BIC∗ algorithm.

it is worth the effort to implement more demanding estimation methods. For a

more illustrative interpretation of our results, we use the average aggregated EAD

of our test sample, which is e 133,671,554 (e 34,762,061) for company A (B) to

estimate the total loss for the test sample. Using the M5'BIC∗ yields an estimation

that is in expectation up to e 220,000 more accurate than the OLS regression for

company B and for company A, the estimation is even up to e 1,340,000 more

accurate. Thus, improvements of an even few percentage points matter in terms

of the parameter outcomes.

Our results indicate that in-sample results are an insufficient indicator of a

method’s out-of-sample performance. In particular, for the in-sample outper-

forming FMM3NN, the results are obviously misleading because the out-of-sample

predictions are worst. Hence, we study the stability of our models using the Janus

quotient, as shown in Table 2.7. According to the Janus quotient, we can partition
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our methods into stable and unstable methods. A Janus quotient close to 1 indi-

cates a stable model and data structure, which holds for the tree-based models,

the OLS regressions, and the historical averages mainly with quotients less than

1.05. Exclusively taking into account the stable models, we observe more or less

the same order concerning the estimation accuracy in-sample and out-of-sample.

In particular, the M5'BIC∗ performs in-sample conspicuously better than the other

stable methods for companies A and B. This finding remains valid for the out-

of-sample results without exception, only the advantage is smaller. As expected,

for the FMMs, a Janus quotient that is mainly considerably greater than 1 indi-

cates that these models are unstable. For the FMM3NN, the quotient consistently

exceeds 1.20. Hence, if out-of-sample testing is impossible, e. g. due to an insuf-

ficiently large dataset, the in-sample results can be used as a prime indicator of

the out-of-sample performance for stable methods, but this relationship obviously

does not apply for unstable methods.

2.4.3 Validation and interpretation

To analyze the models’ performances in detail and to elaborate on the several

steps of FMMs, we present some key figures of our methods in this section.

FMMs produce accurate in-sample results by aiming to reproduce the distribu-

tion density. This relationship is true for both of our FMMs and is independent of

the choice of the classification method in step (2). Figure 2.3a displays the realized

and estimated LGDs for company B. Whereas OLS regression is not capable of

properly accounting for the multimodality of the realized LGD distribution, the

FMM’s estimation is a good approximation. However, such density representa-

tions could be misleading because they are not capable of showing the deviation

of an estimate from its realized value. This effect becomes particularly clear when

we consider the out-of-sample results of the FMMs. For misclassified observations
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LGD
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(a) In-sample LGD density.

–.5 0 .5 1 1.5
LGD

Realized LGD OLS FMM3NN

(b) Out-of-sample LGD density.

Figure 2.3: Densities of realized loss given default (LGD), LGD estimated by ordinary
least squares (OLS) regression without variable selection, and LGD estimated by finite
mixture combined with 3-nearest neighbors (FMM3NN) for company B. The in-sample
approximation of the realized LGD distribution by FMM is already good (Figure a)
and it even improves in the out-of-sample estimation (Figure b). OLS regression, by
contrast, is visibly only slightly changing and is not necessarily improving from in-sample
to out-of-sample estimation.

during either the clustering or classification process, the RMSE increases rapidly,

while the approximation of the density remains accurate (Figure 2.3b).

The effect can also be observed regarding the scatter plots in Figure 2.4. For

both OLS regression and FMM, the in-sample estimation of LGD is rather concen-

trated around the diagonal in Figures 2.4a and 2.4b. Out-of-sample, we notice for

OLS regression in Figure 2.4c that the LGD estimates are thinned out uniformly,

which leaves most of its density close to the diagonal. The FMM, by contrast,

retains a relatively large amount of its estimates that are far from the diagonal,

thus far from the realized value of the LGD. These large deviations consequently

result in a larger RMSE. The MAE remains at an acceptable level because most

of the density stays on the diagonal.

We analyze the quality of FMMs by examining the density of the a posteriori

probability of belonging to a certain class, as proposed by Grün and Leisch (2007).

The classification becomes more unambiguous as the probability approaches one,

which indicates the quality of the adaptation.
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(a) In-sample: realized LGD versus es-
timated LGD by OLS regression.

–.
5

0
.5

1
1.

5
E

st
im

at
ed

 L
G

D

–.5 0 .5 1 1.5
Realized LGD

(b) In-sample: realized LGD versus es-
timated LGD by FMM3NN.
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(c) Out-of-sample: realized LGD versus
estimated LGD by OLS regression.
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(d) Out-of-sample: realized LGD versus
estimated LGD by FMM3NN.

Figure 2.4: In-sample and out-of-sample: realized loss given default (LGD) versus es-
timated LGD by ordinary least squares (OLS) regression without variable selection
(Figures a and c) and finite mixture combined with 3-nearest neighbors (FMM3NN)
(Figures b and d) for company B. Each figure has a simple diagonal line to illustrate
the deviation.

For mixing distributions with two clusters, the average in-sample probability

that observations are classified into a particular class is at least 88%, whereas the

median is close to one. Poorer performance is observed with three clusters because

of the larger overlap caused by additional clusters, resulting in lower classification

probabilities. However, three-quarters of all observations are classified during the

clustering process in step (1), with a minimum probability of 58%.

Validating the classification methods is even more important than validating

the clustering in step (1) of the procedure. Although clustering works well for

all of the companies, classifying the observations with the information available
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Company A Company B Company C
Method Exec. Dflt Exec. Dflt Exec. Dflt
3NN 0.2176 0.1925 0.2018 0.1834 0.1943 0.1808
J4.8 0.3740 0.3371 0.3693 0.3085 0.2833 0.2634

Table 2.8: In-sample classification errors for the 3-nearest neighbors (3NN) and J4.8
methods at execution (Exec.) and default (Dflt) of the contracts. Given the clustering of
the finite mixture model in step (1) (see Section 2.3.1), a contract is classified incorrectly
if the classification algorithm (3NN or J4.8) in step (2) assigns this contract to a different
cluster. The classification error is then the relative number of falsely assigned contracts.

at the contract execution and default is critical. By reviewing the classification

errors of our classification methods, we analyze the performance of these meth-

ods. Thus, we can assess the percentage of incorrectly assigned observations.

This process only works in-sample because, for unseen cases the true class is un-

known. Table 2.8 demonstrates an improvement when we compare classification

errors at the execution and default of the contract for both methods. The 3NN

approach clearly results in a more accurate classification, which is attributable

to the 2-clustered mixing distribution. J4.8 distinguishes among three clusters.

These clusters naturally overlap to a significant extent, which results in higher

classification errors. The errors are in line with the MAE and RMSE in Table 2.4.

The number of mixing distributions is an exogenous parameter. Our model

with three mixing normal distributions constantly produces the smallest AIC and

BIC. However, the lower classification error in step (2) might suggest a model

with two mixing normal distributions. In terms of MAE and RMSE, neither the

parameters, such as the AIC and BIC of the mixing models, nor the in-sample

classification error is a consistently good performance indicator for the composed

method. Our results in Section 2.4.2 show that the in-sample classification error

and out-of-sample MAE and RMSE do not behave proportionally. By contrast,

AIC and BIC work well with the out-of-sample results of the FMMJ4.8.

Overall, the large difference between the MAE and RMSE arises from the entire

procedure of FMMs, which are focused on accurately mapping the LGD density.
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Out-of-sample in particular, the classification is problematic, which becomes obvi-

ous in Figure 2.4d, as a large number of estimations is far from the realized value.

Therefore, reproduction results in comparatively robust MAEs, but the RMSE

rises quadratically and penalizes these outliers.

Reproducing the LGD distribution to yield accurate estimations is proposed

by Hlawatsch and Ostrowski (2011). Qi and Zhao (2011), however, conclude

that mapping the density is only of minor importance for precisely predicting the

LGD. Using transformation regressions under different parameters, they cannot

establish a link between the ability to map the density properly and the estimation

accuracy, neither in-sample nor out-of-sample. To some extent the results of the

FMMs support this conclusion. Nonetheless, there is a significant difference. For

instance, the FMM3NN generates accurate predictions in-sample and only performs

worse out-of-sample. This finding suggests that the FMM3NN adapts well to the

training data by reproducing the density, but it also indicates that overfitting

might be a severe problem.

With regard to out-of-sample predictions, a high level of adaptation to the

underlying training data is only reasonable if the training and test data are ex-

ceedingly homogeneous. Given inhomogeneous datasets, a good adaptation to

the training data basically involves potential overfitting. This relationship is also

supported by the results of the model trees. The dataset of company C contains

notably fewer observations than those of companies A and B. Moreover, the TIC

for company C exceeds the suggested value of 0.15 out-of-sample for all of the

methods. Thus, it can reasonably be concluded that the training and test data

are comparatively inhomogeneous. M5'BIC∗ performs strictly better than M5' for

all three companies in-sample; in other words, the M5'BIC∗ attains a superior

adjustment to the underlying dataset. Out-of-sample, however, M5'BIC∗ yields

better results only for companies A and B whereas M5' is beneficial for company
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C. Hence, given inhomogeneous training and test data, the superior adaptation

to the training data is not transferred into sturdy out-of-sample predictions.

For the FMMs, the classification is obviously of prime importance, and out-

of-sample in particular, it is problematic. However, classification is also relevant

for the tree-based models because the observations are also partitioned into dif-

ferent classes. Certainly, by contrast to the FMMs, the tree-based models use

more classes.2 This increased number of classes indicates that in case of the M5'

models, the different classes considerably overlap with one another. For the RTs,

the classes are spread over the entire observation interval. In-sample, the number

of misclassified contracts is manageable for both the tree-based models and the

FMMs. As a result, the latter method mainly yields accurate in-sample estima-

tions (Figure 2.4b), whereas the predictions of the tree-based models, particularly

in terms of the MAE, are not as accurate. Naturally, it is more difficult to clas-

sify unseen observations correctly. This fact also holds for the tree-based models,

although the out-of-sample predictions are significantly better than those of the

FMMs. However, based on the tree model’s class structure, a misclassified con-

tract tends to be placed into an adjacent class; thus, the resulting error remains

low. By contrast, the classes of the FMMs are largely disjointed; thus, the error

for a misclassified observation tends to be more significant.

2.5 Conclusion

We use contracts of three leasing companies separately to evaluate various models

in-sample and out-of-sample at two different points in time. Our findings prove

that out-of-sample testing is essential for evaluating a model for LGD estimation.

In-sample results might be significantly misleading when estimating out-of-sample

LGDs, which are crucial for proper risk management and are required for regula-

tory purposes.
2The number of classes is chosen by the algorithm and is not defined ex-ante.
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FMMs account for the multimodality of the LGD density. Combined with the

classification algorithm 3NN, this method achieves the lowest in-sample MAE,

RMSE, and TIC values. In particular, it outperforms the historical average and

the OLS regressions, which were used as benchmarks. Along with the FMMs, the

model tree with variable selection M5'BIC∗ yields the best results for in-sample

estimation.

Out-of-sample, a clear trend can be observed that model trees and particularly

M5'BIC∗ generate the best results. Compared with OLS regression the performance

of M5'BIC∗ improves notably with an increasing dataset size. We confirm this

result by applying an additional test, in which we eliminate idiosyncratic features

by pooling the three datasets. Furthermore, for the company with the fewest

observations, the TIC values indicate that all applied methods have difficulties

predicting the LGD of unseen contracts accurately. As opposed to in-sample

results, FMMs now are outperformed even by the OLS regression; in particular,

FMM3NN performs worst.

The Janus quotient determines the stability of our models, dividing them into

stable and unstable methods. In particular, the in-sample results of unstable

methods, namely the FMMs, cannot be used as indicators for out-of-sample esti-

mation errors.



3 The impact of debtor recovery
on loss given default

The risk of a debtor’s default is one of the main risks financial institutions take.

Its extent and complexity require considerable expertise and resources in the risk

management. If this risk becomes effective, a workout process launches. Particu-

larly, this process intends to limit the financial damage to the institute. However,

defaulted debtors can recover. In such cases, the institute often suffers only small

losses or no loss at all.

The recovery of defaulted customers is an interesting event in the credit risk

management of financial assets. Financial contracts basically develop in one of two

ways after the default of the customer. Either any collateral is being liquidated,

the remaining amount is written off, and the contractual relationship comes to

an end or the customer recovers and the contract can continue properly. We find

that the development of the contract is particularly associated with the level of

its loss given default (LGD).

According to the capital requirement regulation (CRR) Article 178, the default

of a customer can be triggered by the following events: the lender considers that

the debtor is unlikely to pay his credit obligations to the lender in full, or the

debtor is past due more than 90 days on any material credit obligation to the

lender. A formally defaulted contract recovers if these triggered default reasons

no longer exist.

So far, few studies have put effort into accounting for recovered customers and

their impact on LGD. This circumstance may have several reasons: the lack of
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information about contracts’ recoveries; lenders either do not account for recovery;

lenders write-off defaulted contracts timely in the majority of cases; or lenders

principally do not consider continuation of such contracts. Indeed, at the time

of default it is not clear whether the write-off or recovery of a defaulted contract

leads to higher returns. Although, the LGD of recovered contracts on average is

lower compared to written off contracts, the influence of contracts’ recovery cannot

simply be generalized. In fact, recovery or write-off of a contract is an endogenous

event primarily reflecting the lender’s workout policy and other latent influences.

While writing off defaulted contracts requires competencies in asset disposal, a

rather different capability is needed when considering to continue the contract.

Lenders, who in principal consider the recovery of defaulted debtors, should be

able to evaluate the worthiness of continuing their contracts properly.

In the literature of LGD estimation, Han and Jang (2013) analyze the effects

of debt collection practices and find that foreclosure and seizure of credit loans

reduce the LGD on average while individual rehabilitation increases it. By ac-

counting for various actions during the workout process, they can improve the

estimation of LGD significantly. Carried out by the lessor, these practices and

other lessee specific circumstances may be aggregated in the single information

of the contract’s recovery or write-off. The outcome depends on how useful these

practices are to resolving the lessee’s default reason. A contract’s default outcome

can be determined as soon as its workout is completed or, in case of recovery, after

its conclusion.

Recently a number of studies set their focus on the estimation of LGD, which

is required in the advanced internal ratings based approach. An accurate esti-

mation of the LGD is important for the appropriate allocation of regulatory and

economic capital. We find that the accuracy of LGD estimation can be improved

by the distinction between recovered and written off contracts during the workout

process.
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Similar to the event of default considered in CRR Article 181 (1)(h), the re-

covery of the contract changes the contract’s current economic circumstances. In

this study, we confirm a significant effect of recovery on the LGD. Hence, when

forecasting the LGD, we account for a major event in the contractual relationship

between lender and debtor other than the default of the contract.

By now, a set of different approaches to estimate LGD has been applied in

the literature. Primarily, these focus on loans and bonds. Several studies try to

establish a direct link between the LGD and the available predictors, such as Han

and Jang (2013), Bastos (2013), and Altman and Kalotay (2014). Using Moody’s

Ultimate Recovery Database, Altman and Kalotay (2014) find that a mixture

of Gaussian distributions outperforms the chosen parametric and nonparametric

estimation methods. Employing the same database, Bastos (2013) presents a

bagging based algorithm, which combines a number of models to an ensemble

learner. Thereby, the estimation accuracy improves compared to the models’

single versions. Other authors, such as Loterman et al. (2012), use multi-step

models. In the first step Loterman et al. (2012) cluster the data by its LGD,

separating contracts at a threshold of zero by logistic regression (Logit). In the

second step, they estimate the LGD by linear regression and adjust these estimates

with an additional estimation of the residuals. Contracts with LGD equal to zero

are assigned an estimated LGD of zero.

Similar to Loterman et al. (2012) we compare a series of two-step models in

this study. The models’ purpose is to classify recovered and written off contracts

and to estimate the LGD for both classes separately. Therefore, we use several

advanced classification tree methods, among others Breiman’s random forest (RF)

and Quinlan’s C5.0. By classifying the contracts, we determine the lender’s work-

out policy measured in terms of recovery or write-off of the contracts. We find

that the distinction between recovered and written off contracts, as well as the

advanced techniques used in the study, increase the explanatory power of LGD
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variation significantly. The increase in LGD estimation precision should be partic-

ularly beneficial to the risk-adjusted calculation of contract prices and appropriate

allocation of capital. For both steps of the model, we discuss out-of-sample and

out-of-time results at the contracts’ execution and default. The unique dataset

comprises more than 42,000 contracts in total. The three datasets are inhomoge-

neous in terms of size, available information, leased assets, and distribution and

level of LGD. As indicated by Hartmann-Wendels et al. (2014), these features

should proof the robustness of our methods.

We find that recovered contracts on average have a low LGD. This finding

should be of particular interest to the lender, reducing his capital tied-up in back-

ing the contract. In addition, the accuracy of LGD estimates increases when

considering the different contracts’ default ends. Moreover, LGDs of recovered

and written off contracts have different drivers and contract characteristics. If

separated, we can better account for these characteristics. Finally, with an in-

creasing number of successfully recovered customers, the lender might be able to

improve his general customer satisfaction and consequently his reputation.

3.1 Dataset

This study uses a dataset provided by three major German leasing companies. It

contains 1,106 defaulted leasing contracts with 670 different lessees from company

D, 2,376 contracts with 1,294 lessees from company E, and 39,093 contracts with

23,748 lessees from company F. Table 3.1 displays that the contracts defaulted

between 1993 and 2010. The workout process of all contracts has been completed.

The datasets contain numerous information about the contract, customer, leased

asset, additional information at the default of the contract, and further informa-

tion after default. Information about the contract, customer, and asset provides a

detailed description of the observations that are already available at the execution

of the contract. At the default of the contract, additional information becomes
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Company # Contracts # Lessees Year of default
D 2,376 1,294 2002–2010
E 1,106 670 2000–2005
F 39,093 23,748 1993–2004

Table 3.1: Number of contracts and lessees in the datasets of companies D–F in de-
scending order of the most current default year.

available. In particular, this information includes the exposure at default (EAD)

and mostly the reason of default, which corresponds to the default trigger events

set out in the CRR framework. The category further information provides essen-

tial information about the contract during the workout process, such as cash flows

and the date of recovery.

Table 3.2 summarizes the described categories. Accordingly, company D pro-

vides the most comprehensive information about its contracts, assets, and lessees.

Company E holds detailed information about its assets and the contract specifics.

Finally, company F provides the asset type, its initial value, and the EAD.

The datasets differ not only in the time range of their contracts’ defaults, but in

particular in their leased assets and the quantity of information of each contract.

Company D’s contracts show no particular specification in single asset types. It

finances vehicles, machinery, information and communications technology (ICT),

and other equipment. Company E, however, exclusively leases passenger cars.

Company F provides contracts on passenger cars and ICT.

Employing the EAD and the further information, we calculate the LGD of each

contract. We discount all cash flows to the time of default using the term related

refinancing interest rate. The EAD is the sum of the present value of contractually

outstanding lease payments. The LGD then is the ratio of the discounted cash

flows to the EAD.

Over time, default and recovery of a single contract can occur multiple times.

The contract’s first default and recovery, if any, is assigned to the contract. Af-
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At execution At default At completion
Contract Asset Lessee Additional Further
TypeD,E,F TypeD,E,F TypeD EADD,E,F Overdue pay.D,F

Calc. interest rateD,E Purchase priceD,E,F IndustryD DateD,E,F Asset dis. pay.D,F

Assessment baseD,E Calc. residual valueD,E Internal ratingD ReasonD,E Coll. dis. pay.D,F

MaturityD,E Manufacture dateD Legal formD Remaining termD,E Workout costsD,F

Leasing rateD,E Useful lifeD Asset ageD,E Recovery dateD

Market interest rateD Depreciation rangeD Asset valueD Completion dateD

Conn. agreementsD Second handD Collateral valueD LGDE

CollateralD Car specificsE Add. car specificsE

Rent prepaymentD

Payment cycleD

Table 3.2: Categorized information contained in the datasets of companies D–F. Con-
tract, asset, and lessee information are available at the execution of the contract. Ad-
ditional information becomes available upon the default of the contract, and further
information becomes available at its completion. Type is the type of the contract,
asset, or lessee, e. g. full payment lease, car, or retail respectively. Calc. abbreviates
calculated, conn. abbreviates connecting, coll. abbreviates collateral, add. abbreviates
additional, dis. abbreviates disposal, and pay. abbreviates payments. The letters D–F
next to each information indicate whether this information is contained in the respective
dataset.

ter the completion of the workout process, the LGD can always be calculated

using the EAD and contract related incoming and outgoing cash flows. If the

contract recovers during the workout process, we use the EAD determined at its

first default. In this case, we can ultimately calculate the LGD after the contract’s

conclusion. This way, LGD can be determined for every defaulted contract, inde-

pendent of whether the workout process ended in its recovery or write-off. In the

case of company E, the LGD has been provided along with the dataset.

Table 3.3 provides a brief overview of the distribution parameters of LGD. For

each company, we see that more than one-third of all defaulted contracts recovered

during the workout process. These recovered contracts have a mean LGD, which

is substantially lower than that of written off contracts and even lower than 0 for

company D. That means the lessor regains more than the EAD. On average, this

gain amounts to a profit of e 4,225 per contract for company D.

There are several reasons for such low LGDs of recovered contracts. Hitting

only the first default trigger of Article 178 CRR, the lessee might recover without
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Status # Ctrcs Mean Std Min. P25 Median P75 Max.
Company D
Recovered 842 −0.08 0.45 −1.15 −0.31 −0.07 0.08 1.06
Written off 1,534 0.34 0.48 −1.36 0.00 0.28 0.74 1.50
Overall 2,376 0.19 0.51 −1.36 −0.09 0.08 0.57 1.50

Company E
Recovered 541 0.13 0.12 −0.45 0.07 0.13 0.19 0.65
Written off 565 0.23 0.14 −0.23 0.14 0.21 0.31 0.87
Overall 1,106 0.18 0.14 −0.45 0.10 0.17 0.25 0.87

Company F
Recovered 15,345 0.00 0.01 −0.49 0.00 0.00 0.00 0.00
Written off 23,748 0.44 0.41 −0.50 0.00 0.41 0.85 1.50
Overall 39,093 0.27 0.39 −0.50 0.00 0.00 0.57 1.50

Table 3.3: Loss given default (LGD) density information of recovered and written off
contracts for companies D–F. # Ctrcs is the number of contracts, Std is the standard
deviation, and P25 and P75 are the respective percentiles. Min. and Max. are the
minimum and maximum LGD values.

causing any financial damage. In case, payments are overdue more than 90 days,

recovery still might lead to small losses because outstanding payments are only

delayed rather than omitted. Likewise, arranging a new payment plan restricts

losses to manageable amounts.

Contrary to recovered contracts, defaulted and written off contracts have a

much higher mean LGD. They lose more than 23% of the EAD. Again, in case of

company D this loss amounts to e 17,584 per contract on average. Mainly, high

LGDs of written off contracts result from low cash inflows from overdue payments

and asset disposal. High costs of the asset’s disposal and payments collection

additionally increase the LGD.

We see in Table 3.3 that the range of LGD values considerably exceeds the unit

interval. In fact, for over 50% of the cases LGD is less than 0 or equal to 0. 71%

of these cases are contracts that recovered after default. Likewise, the LGD of

recovered contracts rarely exceeds 1. In contrast, written off contracts have LGDs

larger than 1 frequently.
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Section 272 of the Committee of European Banking Supervisors (2006) indicates

that defaulted positions may generate no loss, or even positive outcomes, i. e.,

negative LGDs. Hence, no loss might occur, if an exposure recovers with no

associated costs and no loss due to discount effects. Negative LGDs in loan and

leasing contracts are well known and have been observed by Laurent and Schmit

(2005) and Loterman et al. (2012). The latter argue that the reasons for negative

LGDs include paid penalties and gains in collateral sales. The authors further

state that workout costs can increase the LGD to more than 1 if considered.

Especially in leasing Hartmann-Wendels and Honal (2010) find that a negative

LGD results from a rather small EAD, which is smaller than the proceeds from

the asset’s sale.

With the last argument in mind, it is not intuitively clear how recovered con-

tracts can achieve a negative LGD because the asset cannot be liquidated. A

reasonable explanation might be that in case the defaulted lessee is granted an ex-

tended payment maturity by restructuring his payment plan, the lessor increases

his interest income while the EAD remains unchanged. The total income then

would exceed the EAD. Furthermore, only the contract’s first default and recov-

ery are captured in the data. Hence, any contract may have defaulted a second

time and the leased asset could have been sold afterward. In this case, again, the

argument of Hartmann-Wendels and Honal (2010) is applicable.

Figure 3.1 presents the densities of LGD for the whole dataset, for recovered,

and for written off contracts. The overall LGD, as well as the LGD of written

off contracts of companies D and F is bimodally shaped with high concentrations

around 0 and 1. However, in all cases the LGD of recovered contracts is rather

normally distributed around 0. In case of company D, it also has heavy tails with

peaks around −1 and 1. Company E’s LGD is most dense on the interval (0, 0.5).

Having only one peak, the LGD is rather normally distributed. The difference in

company E’s distribution arises from its specialized asset portfolio, which contains
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Figure 3.1: Density of loss given default (LGD) of the total dataset and recovered and
written off contracts of companies D–F. The LGD concentrates on the interval (−0.5, 1).
The figures describe a loss severity of −150% (−1.5) on the left end, which indicates
that 250% of the EAD is recovered. On the right end, the loss severity is 150% (1.5),
indicating a loss of 150% of the EAD. Consequently, a realized LGD of 0 or 1 indicates
the following: in case of 0, full coverage of the EAD; or, in case of 1, total loss of the
EAD.

passenger cars only. Extracting vehicles from the datasets of companies D and F

results in a similar distribution of LGD of these contracts. On the one hand, the

large overlap of recovered and written off LGDs of company E might be challenging

when it comes to classification. On the other hand, the multimodality found for

companies D and F might be challenging in terms of LGD estimation.

The distribution of LGD of company E in Figure 3.1b demonstrates that dif-

ferent assets yield different levels of LGD. This effect mostly depends on the

marketability of the assets and the disposal competence of the lessor. Therefore,

it would be reasonable if recovery or write-off of a defaulted contract depended on

the type of asset. Likewise, it is possible that macroeconomic factors influence the

rate of recovery or write-off. However, accounting for different asset types as well

as unemployment rate and gross domestic product, we find no empirical evidence

providing any of these connections.

Gürtler and Hibbeln (2013) argue that the recovery of loans is mainly liquidity-

based and not linked to the value of collateral. Unfortunately, we lack information

about the lessors financial situation. However, unlike bank loans, lessors retain

legal title to the leased asset. Hence, we attribute the recovery event mainly to

the lessor’s workout policy.
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For complementary analysis of the workout policy, we regard three additional

contract portfolios provided by distinct German leasing companies. These portfo-

lios are used for descriptive purposes only because all 35,476 defaulted contracts

have been written off. The mean LGDs range from 0.48 to 0.56 and, thus, exceed

those of companies D–F by far. This outcome shows that the workout policy of

exclusively writing off defaulted contracts has a strong influence on the level of

LGD.

3.2 Methods

Evidence on an optimal procedure to estimate LGD is yet scarce. Also, the factors

favoring or deteriorating the recovery of defaulted contracts in the existing liter-

ature often vary and are rarely considered in detail. However, in accordance with

Gürtler and Hibbeln (2013), we find that accounting for differences in recovered

and written off contracts is beneficial to the accuracy of LGD estimation.

To be able to distinguish between recovered and written off contracts and mea-

sure the accuracy improvement, the used estimation models consist of two steps.

We illustrate these in Figure 3.2: (1) classification into recovered and written off

contracts; and (2) estimation of LGD. Meeting the requirements of CRR Article

181 (1)(h), we perform both steps at two points in time: execution and default of

the contract. We validate the models’ performance by in-sample, out-of-sample,

and out-of-time testing. This procedure shall provide confidence in the accuracy

and robustness of the estimates, which is required by CRR Article 179 (1)(d).

Kaastra and Boyd (1996) claim that both out-of-sample and out-of-time test-

ing are particularly important to assess a model’s generalization ability, i. e., its

practical applicability. Furthermore, Hartmann-Wendels et al. (2014) find that

in-sample estimation accuracy is not a reliable indication of a model’s capability

to handle unseen cases.
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Step 1: Classification
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Step 2: Regression

Figure 3.2: Procedure of the two-step model. In step (1), the data of each company is
classified into recovered (RC) and written off (WO) contracts. This allocation is done by
the classification methods logistic regression (Logit), J4.8, C5.0, or random forest (RF).
In addition, the contracts’ class probability p is issued. In step (2) we train two RF
regression models separately, one on each subset of recovered and written off contracts.
The LGD then is estimated twice for each contract, once with the regression model
trained on recovered contracts and additionally with the regression model trained on
written off contracts. Using the class probability from step (1), we weight the estimated
LGDs in a linear combination to calculate the final LGD estimation LGD∗ according to
Equation (3.1).

We compare different models to forecast the LGD of defaulted contracts. For

classifying whether a contract will recover we use logistic regression (Logit), as

well as a series of tree-based classification models. These are J4.8, C5.0, and

random forest (RF).

The estimation model in step (2) incorporates the classification of contracts from

step (1) to train the model and estimate the LGD. In addition to the contract’s

class, we estimate the particular class probability of each contract in step (1).

This continuous variable contains more information about the estimated recovery

of a contract than the categorical class variable. In simple words, to estimate the

LGD, we use the variables available at the respective point in time (see Table 3.2)

enhanced with the prediction of recovery from step (1). This approach should be

beneficial to the accuracy of LGD estimation if the classification of the contracts

is successful.

3.2.1 Tree algorithms

In order to get an impression of the functionality of the used tree algorithms, we

provide a brief description. Additionally, we discuss parameter settings.
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J4.8 and boosted J4.8

J4.8 is a modification of the C4.5 algorithm implemented by Quinlan (1993).

Witten et al. (2011) describe the former in detail. The algorithm generates clas-

sification trees by partitioning the dataset to produce subsets with increased ho-

mogeneity. Every partitioning results in a node. At each node, only the split

with maximized gain ratio is performed until a minimum of instances per node

is reached, or the gain ratio does not reach a set minimum value. Such tree

structure, which shall not influence the classification accuracy, is pruned back to

prevent overfitting. This pruning is especially beneficial to the out-of-sample and

out-of-time estimation accuracy of the model.

To enhance the performance of J4.8, we use AdaBoost.M1, a boosting algorithm

introduced by Freund and Schapire (1996). The algorithm generates a sequence

of weak classifiers on an evolving training sample. In this sample, misclassified

cases are successively assigned a higher weight to increase their consideration in

subsequent classifications.

C5.0 and boosted C5.0

C5.0 is Quinlan’s latest version of the tree algorithm C. Until he released the

algorithm to the public in 2011, it was almost exclusively used for commercial

purposes but rarely in scientific research. In May 2013, Kuhn et al. (2013) im-

plemented C5.0 into the R project for statistical computing. The algorithm is

the successor of its previous version C4.5, which Quinlan (1993) describes in de-

tail. C5.0 inherits the basic function of classifier trees: repeated splitting of the

dataset. However, splitting criteria and calibration options have been revised or

added. One of many advantages over the previous version is boosting, which we

are using in this study. Kuhn and Johnson (2013) provide further information on

the C5.0 algorithm and its features.
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The native boosting algorithm is similar to AdaBoost.M1 by Freund and Scha-

pire (1996). However, it is suited to C5.0 classification trees. According to Kuhn

and Johnson (2013), it has some notable differences compared to its predecessor.

These are: C5.0 creates about equally sized trees with respect to the number of

terminal nodes; it combines the weak classifiers differently; and it has automatic

stop conditions for very effective and very ineffective models.

Random forest

Random forest is a tree algorithm introduced by Breiman (2001). It bases on the

idea of bootstrap aggregated predictions of many models and combines these in a

voting. Similar to the ensemble model of Bastos (2013) each tree is trained on a

random subsample of the data. Additionally, at each node of the tree a random

set of the available variables is drawn. The algorithm selects the best split among

these variables. A contract’s class then is determined by majority vote, counting

the frequency of assignments in the individual trees. In the case of regression

instead of classification, the terminal node’s average value is assigned to each

contract in the node. We use
√
m randomly chosen variables for classification and

m/3 variables for regression with RF, where m is the number of available variables.

Throughout the study, we train 2,000 trees, which is double the number proposed

by Hastie et al. (2009). In our case, growing a forest that is even larger than

2,000 trees increases the computational time noticeably. However, it improves the

model’s performance only marginally.

AdaBoost.M1, C5.0’s boosting, and RF, which uses bagging, pursue a similar

idea of voted decision finding. Therefore, they should be most comparable in con-

tract classification. Quinlan (1996) compares boosting with bagging and analyzes

the procedure and performance of both methods in detail.
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3.2.2 Regression model

After classifying the dataset into two distinctive classes, we calibrate two separate

models to estimate the LGD. Thereby we take into account the different LGD

distributions and contract characteristics of recovered and written off contracts.

The first model exclusively bases on recovered contracts, the second on written off

contracts. All contracts of the test sample then are assigned two LGD estimations.

We weight these estimations with the probability of recovery from the classification

in step (1) of the analysis

LGD∗ = pRC · LGD∗
RC + pWO · LGD∗

WO, (3.1)

where pRC is the estimated probability of recovery and pWO = 1− pRC is the esti-

mated probability of a write-off. LGD∗
RC is the LGD estimated by the regression

model based on recovered contracts and LGD∗
WO is the LGD estimated by the

model based on written off contracts.

Following the suggestion of Hartmann-Wendels et al. (2014) for multimodally

shaped response distributions, we fit a tree model to both recovered and written

off contracts, namely an RF regression model. In fact, this tree regression model

outperforms simple linear regression in step (2) of the method in all cases.

3.2.3 Model testing

Most empirical studies on LGD estimation provide in-sample results of their fitted

models. Recently numerous studies started to provide out-of-sample performance

results and LGD estimation errors, such as Bastos (2013) and Li et al. (2014).

Still few studies are testing out-of-time, such as Han and Jang (2013). Here a

sufficiently large dataset is crucial and requires several time periods to train and

test a model’s performance. Reasons for not testing the models out-of-sample or
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out-of-time might be insufficiently large datasets in order to establish an adequate

training and testing base or a data history that is too short.

In-sample the models are trained and tested on the full dataset. Certainly this

method accounts best for most realized contract specifics but might suffer from

an overfitting to the data and, thereby, distort the estimations for unseen cases.

For the out-of-sample testing, we use a method proposed by Hartmann-Wendels

et al. (2014). We partition the dataset randomly into 75% training set and 25%

test set. The random partitioning is repeated 25 times. Consequently, 25 models

are fitted with the training sets and validated on the test sets. Finally, the results

of the error measurements are averaged. Other methods for out-of-sample testing

are k-fold cross-validation (see Qi and Zhao (2011)) and a single partitioning of

the dataset (see Gürtler and Hibbeln (2013)).

The objective of out-of-time testing is to evaluate the model’s ability to fore-

cast the next period based on observations of prior periods. In their popular

LossCalcTM version 2 model Gupton and Stein (2005) use walk-forward testing to

assess the generalization ability of their model. While the original idea of walk-

forward testing is a sliding window that uses the last s periods to forecast the

next period, Gupton and Stein (2005) append their training set with each period.

Thereby, they produce an ever increasing window.

Our datasets cover periods of at least five consecutive years with defaulted

contracts between 1993 and 2010. We adopt the walk-forward approach used

by Gupton and Stein (2005) to determine an adequate model in the out-of-time

testing. Hence, we meet the requirement of CRR Article 181 (1)(j) for compa-

nies D and F, which demands a data observation period of seven years for LGD

estimates.
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3.3 Results

For the two steps of this study’s procedure, we use different error measurements.

Step (1) classifies the observed contracts into two classes: after default the con-

tract either recovers or is written off. Given that we already know the recovery

outcome because all considered contracts are completed, we can always verify the

correctness of the classification.

Correctly classified contracts are such, which recovered or were written off and

are estimated to recover or to be written off respectively. The probability of cor-

rectly classifying recovered contracts is the model’s sensitivity. The probability of

correctly classifying written off contracts is the model’s specificity. Consequently,

all other contracts are misclassified, such as contracts that were written off during

the workout process but were estimated to recover and vice versa. We calculate

the classification error as the ratio of misclassified contracts with all contracts.

To evaluate our results in step (2), the estimation of LGD, we find the coefficient

of determination R2 to be adequate for measuring the quality of LGD prediction.

The out-of-sample R2 statistic proposed by Campbell and Thompson (2008) and

used by Gürtler and Hibbeln (2013) for evaluating LGD estimation models, is

computed as

R2 = 1−

n∑
i=1

(
LGDi − LGD∗

i

)2

n∑
i=1

(
LGDi − LGDIs

)2 , (3.2)

where LGD denotes the realized LGD, LGD∗ is the predicted LGD, LGDIs is the

average in-sample LGD, and n is the number of contracts.

While a low classification error is preferable, the LGD prediction model’s de-

termination improves with higher values of the coefficient of determination R2.
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Company D Company E Company F
Method Is Oos Oot Is Oos Oot Is Oos Oot
At execution
Logit 0.2942 0.3224 0.4187 0.3671 0.3895 0.6039 0.3925 0.3905 0.4300
C5.0 0.1023 0.2561 0.4168 0.0940 0.2261 0.4380 0.3814 0.3805 0.4215
C5.0 Boosted 0.0758 0.2328 0.4056 0.0000 0.1668 0.4318 0.3815 0.3800 0.4202
J4.8 0.0791 0.2608 0.4314 0.0542 0.2145 0.4468 0.3790 0.3806 0.4199
J4.8 Boosted 0.0093 0.2305 0.4125 0.0054 0.1851 0.4341 0.3790 0.3806 0.4199
RF 0.0093 0.1900 0.3878 0.0000 0.1355 0.3877 0.3785 0.3797 0.4193

At default
Logit 0.2858 0.2975 0.3566 0.3092 0.3212 0.5824 0.3926 0.3905 0.4300
C5.0 0.0509 0.1823 0.3538 0.0497 0.1906 0.4253 0.3788 0.3788 0.4183
C5.0 Boosted 0.0051 0.1600 0.3281 0.0000 0.1682 0.4219 0.3791 0.3784 0.4213
J4.8 0.0539 0.1948 0.3083 0.0506 0.1929 0.4070 0.3744 0.3787 0.4163
J4.8 Boosted 0.0000 0.1604 0.3046 0.0000 0.1823 0.4055 0.3744 0.3787 0.4163
RF 0.0000 0.1341 0.2895 0.0000 0.1239 0.3848 0.3686 0.3778 0.4141

Table 3.4: Classification errors at execution and default of the contracts of companies
D–F. The listed methods classify the contracts into recovered and written off. The
error is calculated according to Section 3.3. We validate the estimates in-sample (Is),
out-of-sample (Oos), and out-of-time (Oot). Logit is the logistic regression. The tree
classifiers C5.0 and J4.8 are performed in single and boosted version. RF is the random
forest algorithm. In all cases, lower outcomes are preferable. We underline the best
results for each testing method, both points in time, and each company.

3.3.1 Recovery classification

In step (1) of the analysis, we predict a contracts recovery or write-off. In order to

classify the contracts into these two groups, we use Logit and the tree algorithms

J4.8, C5.0, and RF. The models’ classification errors are calculated according to

Section 3.3.

In Table 3.4 we find Logit to be strictly dominated by the other methods.

For companies D and E, this dominance becomes particularly obvious in the in-

sample testing. Here Logit produces an error that is about three times as large

as the error of any other method. Except for Logit, we notice that the in-sample

error is substantially lower than the out-of-sample error, which in turn is lower

than the out-of-time error. This ranking comes at no surprise because clearly

the in-sample model accounts for all realized contract information, but the out-

of-sample model classifies unseen cases. Moreover, out-of-time the impact and
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level of particular contract information may change considerably. This change

complicates classification even more.

The classification trees J4.8 and C5.0 perform similarly well while J4.8 is slightly

advantageous. Both boosted versions somewhat improve the error compared to

their single versions. The improvement of boosting J4.8 and C5.0 is most evident

in the in-sample classification. Here, it often reduces the classification error to

zero. We observe the same effect in the out-of-sample and out-of-time testing.

However, the level of improvement is lower than before.

RF is most successful in classifying the contracts. Despite the other tree meth-

ods, it builds rather small trees, using only a fraction of the available variables.

These variables are drawn randomly at each node of a tree. Therefore, various

variable interactions occur, which take into account even seemingly non-influential

variables. The model tree’s randomly changing training set reduces the risk of

overfitting the RF model to the data. Thereby, its generalization ability increases.

We find the classification accuracy of each method to rise significantly by adding

the additional variables available at the default of the contract. The performance

increase in out-of-time estimation on company D’s dataset is particularly striking.

The error reduces by up to 28% when adding this information. However, there

are a few exceptions to this rule, where a particular algorithm cannot enhance its

accuracy. Such is the case, if the additional variables have no explanatory power

in the respective model and, therefore, are not included. Still, the classification

accuracy of the models remains in order, demonstrating the superiority of RF over

the other models.

The LGD distribution of recovered and written off contracts of company E over-

lap largely. However, the classification error with respect to out-of-time estimation

is mostly only slightly above its counterparts of company D and F at contracts’

execution. While this small difference might be surprising, we see a much wider

gap between the out-of-time results of company D and E at the default of the
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contracts. Here, company E’s classification error can hardly improve because es-

sential information is missing, such as collateral and asset value at default. The

reason is that a specialized leasing company usually monitors and approximates

its asset’s fair value very precisely at any time during the lease. Moreover, it

can dispose of the asset at this or close to this price. The market for vehicles is

particularly liquid. Therefore, the disposal would also be completed shortly after

the default of the contract. Hence, to know the asset’s value at default is very

beneficial to the LGD forecast.

Company F’s classification results meet all former arguments, but the methods

produce a classification error on a higher level. The main reason for the increased

level of LGD is that company F provides a very small and, in this case, the small-

est set of information (see Table 3.2). This little information complicates the

distinction between the contracts. All methods struggle to fit an appropriate clas-

sification model because initially only a few contract characteristics are available.

These are the type of contract and asset as well as the asset’s purchase price. Fur-

thermore, at the default of the contract the only additional information is EAD.

However, EAD hardly improves the classification results because the majority of

contracts are still being misclassified.

3.3.2 Loss given default estimation

In Table 3.5 we compare our two-step models based on their explanatory power

of LGD variation according to Equation (3.2). The LGD estimation results are

in line with the classification accuracy in Table 3.4. In particular, RF mostly

outperforms the other models in all testing methods for companies D and E. It

also confirms the difficulties in handling company F’s dataset. As before, boosting

has a slight advantage over the single versions of J4.8 and C5.0.

Negative R2 values indicate that the model cannot explain the variation of the

LGD. The out-of-time models for companies D and E are particularly affected by
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Company D Company E Company F
Method Is Oos Oot Is Oos Oot Is Oos Oot
At execution
Direct OLS 0.1807 0.1045 −0.0445 0.1727 0.1166 −0.0487 0.0154 0.0153 0.0157
Direct RF 0.7672 0.2202 −0.0943 0.7127 0.1316 −0.0876 0.0154 0.0153 0.0157
Logit 0.2937 0.0524 −0.0742 0.4246 0.1420 −0.0760 0.1881 0.1821 0.1118
C5.0 0.7311 0.2284 −0.0791 0.6300 0.1743 −0.0721 0.2565 0.2484 0.1120
C5.0 Boosted 0.6311 0.1929 −0.0474 0.8023 0.2834 −0.0036 0.1489 0.1657 0.1119
J4.8 0.7677 0.2354 −0.0735 0.6004 0.2250 −0.0073 0.2584 0.2493 0.1120
J4.8 Boosted 0.8430 0.2282 −0.0721 0.7844 0.1950 −0.0641 0.2574 0.2483 0.1120
RF 0.8131 0.2939 −0.0575 0.8182 0.2938 0.0047 0.1334 0.1191 0.1120

At default
Direct OLS 0.2095 0.1251 −0.0500 0.2177 0.1794 0.0086 0.0154 0.0148 0.0151
Direct RF 0.8587 0.3180 0.0541 0.7718 0.2362 0.0369 0.0154 0.0148 0.0151
Logit 0.2281 0.0106 0.0455 0.4104 0.1729 0.0498 0.2007 0.1843 0.1116
C5.0 0.8419 0.3591 0.0476 0.8238 0.3111 0.0451 0.2757 0.2498 0.1117
C5.0 Boosted 0.8233 0.3466 0.0531 0.8217 0.3373 0.0486 0.1797 0.1394 0.1118
J4.8 0.8383 0.3633 0.0621 0.7687 0.2539 0.0479 0.2870 0.2501 0.1117
J4.8 Boosted 0.8871 0.3688 0.0666 0.8234 0.2527 0.0509 0.2779 0.2507 0.1117
RF 0.8808 0.4185 0.0732 0.8459 0.3570 0.0752 0.2014 0.1443 0.1119

Table 3.5: Coefficient of determination R2 of the one-step and two-step models for com-
panies D–F. The table lists the used classification methods (step (1)). Random forest
(RF) regression produces the estimation of LGD (step (2)) described in Section 3.2.2.
The listed coefficients are calculated according to Equation (3.2). We validate the es-
timates in-sample (Is), out-of-sample (Oos), and out-of-time (Oot). Direct OLS is the
direct ordinary least squares regression of the LGD, and direct RF is the direct regres-
sion of the LGD with RF. Both are one-step models. Logit is the logistic regression.
The tree classifiers C5.0 and J4.8 are performed in single and boosted version. In all
cases, higher outcomes are preferable. We underline the best results for each testing
method, both points in time, and each company.

such R2. This result demonstrates that the available information at the contract’s

execution is insufficient to adequately forecast LGD. Again, the estimation results

improve with the additional information at the default of the contracts.

Along with this study’s two-step models, we fit two estimation models as a

benchmark for LGD estimation: direct ordinary least squares (OLS) regression

and direct RF regression. In most cases and most importantly in the out-of-

sample and out-of-time estimation, we find that the two-step models exceed the

explanatory power of direct estimation.

The in-sample results are remarkably good throughout all methods. Particu-

larly the tree methods generate determination coefficients as high as 88%. The
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distinction between recovered and written off contracts seems negligible because

direct RF regression yields similarly high R2. Although R2 in general decreases

out-of-sample, the gap between R2 of the one-step and two-step model increases

significantly. This finding rewards the consideration of recovery and write-off of

the contracts. The coefficient of determination in the out-of-time estimation is

indeed negative in most cases at the execution of the contracts. However, account-

ing for the additional information at default, the two-step models can explain up

to 11% of the variation of LGD. Again, the difference in R2 between one-step and

two-step models is significant.

The reason for the large deviation between direct and multi-step estimation of

LGD is the control for the different default ends. Any regression missing this

information is biased because recovery is a key driver of LGD as we show in

Section 3.3.3. Concerning Table 3.3 it is clear that recovered and written off

contracts yield significantly different LGD values and distributions. Accounting

for this single information, the distributions in Figure 3.1 can already explain the

variation of the respective LGD to a large extent.

Due to the large set of available information in company D and E’s data, our

methods perform similarly well on both. Company F’s results can hardly compete

with those of companies D and E in the in-sample and out-of-sample estimation.

However, company F’s out-of-time R2 is surprisingly high. The out-of-time coef-

ficient of determination for company F is higher than most of its counterparts for

companies D and E. It is also positive throughout the methods at the execution

of the contracts. We attribute this effect to the very different datasets in terms

of contract numbers and LGD distribution. In particular, the LGD of company

F is very dense around 0 with 66% of the observations lying in the small interval

of (−0.3, 0.3) (see Figure 3.1c). This density facilitates the forecasting of LGD in

case of out-of-time estimation because here a less volatile response is particularly

beneficial to the estimation accuracy. In the case of companies D and E, the
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disadvantage in contract numbers can be compensated by additional significant

variables in the in-sample and out-of-sample estimation.

The results of the two-step model with Logit yield R2 values that are com-

parable to those of Gürtler and Hibbeln (2013). Since our Logit-R2 are only

average compared to other classification models used in this study, we see a large

opportunity for improvement by choosing advanced classification techniques.

Although R2 is about equal throughout all models for company F, we recog-

nize the large gap between the performances of one-step and two-step models.

This difference is a direct result of the consideration of recovered and written off

contracts. Still, RF is slightly superior in the out-of-time testing.

3.3.3 Validation and robustness

To validate our results of the classification, we use receiver operating characteristic

(ROC) curves. Similar to the classification error in Section 3.3, the ROC curve

displays the discriminatory capacity of the model. However, in contrast to the

classification error, ROC curves preserve the classification probability of the cases

without classifying according to a set threshold. Thereby, the models’ tradeoff

between sensitivity and specificity can be assessed. The models’ discriminatory

capacity then is measured as the area under the curve (AUC). For details on ROC

curves see Hastie et al. (2009).

Figure 3.3 displays the ROC curves of the RF models for company D at con-

tracts’ default. The in-sample ROC curve is optimal with AUC = 1 because the

classification error equals zero. Out-of-sample 5 out of 25 ROC curves of the re-

spective RF models are chosen randomly and plotted. The individual RF models

perform about equally good. They have an AUC of at least 0.9. The out-of-time

AUC in Figure 3.3c is slightly smaller but is still located in an acceptable range

of (0.7, 0.9). We may also see, that the classification accuracy increases with the

growing dataset, used for the model’s training.
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Figure 3.3: Receiver operating characteristic curves for random forest classification of
company D’s dataset at contracts’ default. Figure b displays 5 of 25 randomly chosen
models in the out-of-sample estimation. The transparency of the curves in the out-of-
time estimation of Figure c reduces with increasing size of the training set and number
of years (2002–2010).

The value of the models’ AUCs is remarkably high, when we consider the in-

sample, out-of-sample, and later (less transparent) out-of-time ROC curves. This

finding proofs that forecasting the contracts’ default outcome can be carried out

very successfully even out-of-time, given an adequately large data history.

We argue in Sections 3.3.1 and 3.3.2 that the small set of information provided

by company F is responsible for the models’ poor classification and estimation

performance. To proof this argument, we reduce the information sets of companies

D and E to that of company F. The remaining information then is: type of

contract; type of asset; asset purchase price; and EAD. As expected, for company

D and E our two-step models with the reduced set of information produce a

significant increase in classification error. The error rises to an average of 0.39

in out-of-sample and even 0.57 in out-of-time estimation at contracts’ default for

company D. That is an increase of 107% out-of-sample and 76% out-of-time

compared to the full information set. We find similar results for company E.

Here the classification error averages 0.39 and 0.40 respectively. Likewise, the

coefficient of determination decreases drastically for these models in in-sample

and out-of-sample estimation but less so in out-of-time estimation.

Still, there is a second influencing feature in company F’s dataset. It yields

the strong out-of-time results displayed in Table 3.5. In order to investigate this

outcome, we randomly reduce the dataset of company F to 25% and 10% of the
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observations. Then, we run the same two-step models as before. R2 in the in-

sample and out-of-sample estimation remains as good as with the total dataset.

However, we see a significant and nearly linear decrease in the out-of-time results.

Here two-step RF yields a coefficient of determination of 0.09 on 25% and 0.07 on

10% of the original dataset. Hence, R2 decreases by 20% and 37% respectively.

The original dataset of company F has about ten to twenty times the number of

observations per year compared to companies D and E. We conclude that this

advantage in size leads to robust R2 in the out-of-time estimation. It also reduces

the dependence on concrete estimation models. The in-sample and out-of-sample

R2 on company F’s dataset could be comparable to those of the other companies

if it provided additional information.

Furthermore, we measure the importance of recovery in the RF regression mod-

els of step (2) to emphasize the influence of realized, as well as estimated recovery.

According to Liaw and Wiener (2012), this importance is the total decrease in

node impurities from splitting on the variable, averaged over all trees. The node

impurity is measured by the Gini index.

Table 3.6 presents the five most important variables in the RF models of com-

pany D’s dataset, which originally use 53 variables. As indicated before and

serving as a benchmark, the realized recovery RC is most important in the LGD

estimation. In Section 3.3.1 RF predicts the recovery of defaulted contracts very

successfully in in-sample and out-of-sample testing. This outcome corresponds to

the importance of the in-sample and out-of-sample predicted recoveries RC∗. The

importance of the out-of-time predicted recovery is significantly lower than its

counterpart of the other testing methods. We attribute the reduction in impor-

tance to the less efficient out-of-time classification in step (1) of the analysis. This

inefficiency leads to false recovery assumptions and, thereby, reduces the intensity

of the link between LGD and out-of-time RC∗.
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Realized In-sample Out-of-sample Out-of-time
Var. INI Var. INI Var. INI Var. INI
RC 78.68 RC∗ 79.42 RC∗ 65.80 RC∗ 7.15
RAT 24.76 RAT 24.73 RAT 25.47 RAT 30.16
RCA 22.60 RCA 23.10 EAD 21.39 DRE 26.02
EAD 21.60 TTM 21.20 RCA 21.33 AVE 22.61
TTM 21.59 EAD 21.08 EDB 20.12 EAD 21.25

Table 3.6: Variable importance in random forest (RF) for company D’s contracts at
their default. The variables’ importance is calculated according to Liaw and Wiener
(2012). We truncate the results according to the five highest values including the realized
recovery (RC) or estimated recovery (RC∗) of the contracts. Var. is the variable name.
INI is the increased node impurity. RF estimates the recovery in-sample, out-of-sample,
and out-of-time. The remaining variables are: internal rating (RAT); relative contract
age at default (RCA); exposure at default (EAD); exposure at default per unit of the
assessment base (EDB); time to maturity at default (TTM); default reason (DRE); and
asset value per unit of the exposure at default (AVE).

Finally, to determine the optimal number of trees for the RF model, we calcu-

late the out-of-sample classification error for RF models with 1 to 10,000 trees.

Figure 3.4 shows that the classification error stabilizes toward larger forests and

the error reduces by almost 50% compared to a single tree forest. Hence, as a

precaution, we choose to train forests comprising 2,000 trees. These forests should

produce robust results on an adequate level of the classification error.

3.4 Conclusion

The default of a debtor often entails monetary losses for the lender. The loss

amount may be reduced by prepayments, various collateral, or concerning lease

contracts by residual value, and reselling capability of the leased asset. However,

the realized loss after the debtor’s default may be affected by the lender’s and

the debtor’s actions during the workout process. Other circumstances may be

beyond their control. The actions taken lead to recovery, in case continuation of

defaulted contracts is considered in principal, or non-recovery of the debtor. The

latter would mean the contract’s write-off.
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Figure 3.4: Out-of-sample classification error for random forest classification of company
D’s recovered and written off contracts as a function of the forest’s size. The error is
calculated according to Section 3.3 with the available information at the contract’s
execution or default.

It should be in the lender’s best interest to keep the LGD of defaulted contracts

as low as possible for several reasons. A low LGD means a high return of the EAD

and thereby reduces the investment risk. Consequently, a lower risk premium

can be applied to customers or particular contracts with low LGD. Moreover,

contracts with low LGD require less equity to absorb unexpected losses.

In this study, we analyze the effect of recovery of defaulted contracts on the

LGD. We find recovery is that piece of information with the highest explanatory

power in LGD variation. Moreover, we confirm this finding by using datasets with

different levels of LGD. Our estimation results show that the two-step models’

improvement in explaining the variation of LGD is remarkably high compared to

direct OLS and RF regression. Overall, Logit is mostly outperformed, J4.8 and

C5.0 perform comparable, but seldom reach the accuracy of RF. Accounting for

the contract’s recovery causes the most difference in estimation accuracy. Other

factors also have an influence, particularly when testing out-of-sample and out-

of-time. These are information availability, number of observations, and LGD

distribution characteristics.

Analyzing three datasets of defaulted leasing contracts, we find that the lessor

benefits from the recovery of defaulted contracts in two ways. On the one hand,
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recovered contracts on average yield an LGD which is significantly lower than

the LGD of written off contracts, granting the lender all advantages of low LGDs

mentioned above. On the other hand accounting for the recovery of contracts is

particularly beneficial to the estimation accuracy when forecasting the LGD of

executed or defaulted contracts. This higher accuracy results in risk adequate

pricing of the lender’s services and consequently strengthens his competitiveness.

For companies, the key to successfully continue and recover defaulted contracts

is to identify those contracts that are worth being continued, primarily in terms of

reduced LGD. Therefore, developing expertise in evaluating the different default

outcome values is very advantageous to the lessor. This expertise would support

the lessor’s decision between write-off and continuation of a defaulted contract.

Our findings indicate that verifying the continuation worthiness of these contracts

may particularly improve their LGD.





4 Loss given default-adjusted
workout processes for leases

Credit risk modeling is an essential assignment of risk management in financial

institutes. One of the major drivers of credit risk is the loss given default (LGD).

The knowledge of potential losses is crucial for an efficient allocation of regulatory

and economic capital and also for credit risk pricing. According to Article 107 (1)

of the capital requirement regulation (CRR), financial institutions shall apply ei-

ther the Standardised Approach or the Internal Ratings Based Approach (IRBA),

in order to calculate their regulatory capital requirements for credit risk. When

implementing the advanced IRBA, it is mandatory to develop internal models for

estimating the probability of default (PD), exposure at default (EAD), and LGD.

One of the main objectives of the IRBA is to achieve risk-adjusted capital require-

ments (see Basel Committee on Banking Supervision (2003)). Accurate forecasts

of PD, EAD, and LGD may result in competitive advantages for the applying

financial institution, in general, such as Gürtler and Hibbeln (2013) indicate.

While the procedure of calculating the PD might be almost identical for loans

and leases, models for estimating the LGD should consider specific characteristics

of leasing contracts. In contrast to loans, the collateralization of a lease by its

leased asset is obligatory. Particularly, being the legal owner of the leased asset,

the lessor can retain any recovered value of the leased asset’s disposal. Thus,

contrary to loans, the lessor has legal access to this additional source of payments,

in case a contract defaults. Eisfeldt and Rampini (2009) argue that the main

benefit of leasing is that repossession of a leased asset is easier than foreclosure
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on the collateral of a secured loan. During the workout process of a defaulted

loan, the lender exclusively receives payments from the debtor and the liquidation

of collateral. These incomes also occur during the workout process of leases.

Consequently, considering the additional incomes from disposing of the leased

asset, the cash flows of the leasing workout process consist of two parts. Han and

Jang (2013), Töws (2014), and Frontczak and Rostek (2015) argue that the level of

LGD critically depends on the actions taken during the workout process. Hence,

the peculiarities of the workout process of leases should be taken into account

when estimating LGD.

Although, various advanced approaches for estimating LGD have been analyzed,

as yet, no single approach could be established, neither for loans nor leases. Nev-

ertheless, Bastos (2010), Hartmann-Wendels et al. (2014), and Yao et al. (2015)

find that complex models can generate robust and precise estimations. Moreover,

Qi and Zhao (2011) and Loterman et al. (2012) argue that the consideration of

nonlinear effects is important when estimating LGD. However, a prerequisite for

the good performance of such models, is a correspondingly large database, both

in terms of observations and associated information.

The results of Qi and Zhao (2011) and Hartmann-Wendels et al. (2014) indicate

that overfitting is a common concern of complex models, which may negatively

affect forecasting accuracy. Presumably due to the lack of data and issues with

controlling overfitting, so far, linear regression is the most frequently used method

for estimating LGD in the literature. Nevertheless, when regarding the peculiari-

ties of the LGD distribution, linear regression seems to be at least econometrically

inappropriate for the estimation task. Typically the workout LGD of loans and

leases is bimodally or even multimodally distributed (compare Laurent and Schmit

(2005), Zhang and Thomas (2012), Hartmann-Wendels et al. (2014), and Li et al.

(2014)). This unusual shape of the density supports the hypothesis that LGD

estimation requires the use of advanced methods. In order to produce accurate
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and comprehensible estimations, these methods should be able to approximate the

complex relationships between the available information and the LGD as precisely

as possible.

Against this theoretical and practical background, a number of different meth-

ods have been investigated in the literature. In particular, these studies examine

the models’ suitability and predictive accuracy to LGD estimation.

Several studies focus on reproducing the LGD’s density function in order to

extrapolate accurate estimations in this manner. For this purpose, Calabrese and

Zenga (2010) use a mixed random variable to model LGD on the unit interval.

They employ their concept to a large set of defaulted Italian loans. Altman and

Kalotay (2014) pursue a similar approach based on the mixture of Gaussian dis-

tributions. They report successful estimations using Moody’s Ultimate Recovery

Database (MURD). Hartmann-Wendels et al. (2014) also apply an approach based

on finite mixture models to estimate the LGD of leases. However, out-of-sample,

their approach performs poorly. The authors conclude that reproducing the LGD

density is only of secondary importance to the estimation accuracy.

Further studies examine the suitability of various parametric and nonparametric

methods for LGD estimation. Applying several regression techniques to the data

of six different banks, Loterman et al. (2012) conclude that nonlinear methods

perform better than linear methods. Qi and Zhao (2011) obtain a similar result.

They compare different parametric and nonparametric methods using MURD.

The authors argue that nonparametric methods can generate more accurate LGD

estimations due to their ability to model nonlinear relationships between the LGD

and continuous explanatory variables. In particular, they find regression trees to

be a suitable nonparametric method for estimating LGD. Bastos (2010) obtains a

similar outcome when he uses regression trees on Portuguese bank loans. Likewise,

Hartmann-Wendels et al. (2014) successfully apply model trees to estimate the

LGD of German leases.
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Recently, a couple of studies applied ensemble learning techniques to estimate

LGD. These are an extension of the analysis of single procedures. Bastos (2013)

improves the estimation accuracy significantly by using regression trees in an

ensemble approach on MURD. On a set of leases, Töws (2014) finds that random

forests achieve higher coefficients of determination than linear regression.

In addition to single-stage models, some studies implement two-stage models

to forecast LGD. Typically, these models split the observations ex-ante according

to a specific key feature. To predict the LGD of mortgage loans, Leow and Mues

(2012) first estimate the probability of mortgage accounts undergoing repossession.

Then, they subsequently calculate the loss in case of repossession using a certain

haircut value. The latter is the ratio of the forced sale price and the valuation of

the repossessed property. Concerning the LGD of leases, Töws (2014) successfully

introduces a two-stage approach. He distinguishes between recovered and written

off contracts and then estimates the respective LGD.

While several studies show that complex models can generate more accurate

LGD estimations than linear regression, some works demonstrate the practical

suitability of the latter. Zhang and Thomas (2012) apply linear regression and

survival analysis to a dataset of defaulted personal loans from the UK. They find

that linear regression generates the best LGD estimates in general and outperforms

more advanced estimation techniques. Bellotti and Crook (2012) obtain a similar

result when estimating the LGD of UK credit cards.

So far, all introduced studies have in common that they regard LGD as a holistic

measure of risk. Concerning the LGD of loans, such an approach is reasonable.

However, according to the specific characteristics of leasing contracts, the LGD of

leases typically consists of cash flows from two distinct sources. Thus, a holistic

approach to estimate the LGD of leases might be inappropriate.

Therefore, we present an entirely new approach to forecast leasing LGDs. In

our study, we consider the specific characteristic of leases and, consequently, we
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suggest an economically motivated separation of the LGD into an asset-related and

a miscellaneous share. Coming from different payment sources, both shares should

be driven by different factors. Particularly, the loan-to-value ratio should be most

important to the asset-related share, but of less importance to the miscellaneous

share.

In the course of this paper, we describe the development of a multi-step estima-

tion model, which is built upon the economic composition of the LGD of leasing

contracts. Estimating the asset-related and miscellaneous share, we derive an es-

timation of the overall LGD. Our easily traceable model results in a significant

advantage in terms of estimation accuracy.

Moreover, the estimated asset-related and miscellaneous LGD can be used to

support decisions concerning the accomplishment of the workout process. In fact,

the separation of LGD entails extensive practical implications for handling a de-

faulted contract’s workout process. The derived shares of LGD are indicators for

the success of both the asset’s disposal and the effort of collecting further pay-

ments. Consequently, we find that our inferred suggestions for the actions to be

taken by the lessor during the workout process lead to significant improvements

in the resulting LGD value of the respective contracts.

For our study, we use a real life dataset provided by a major German lessor.

The data features a high quality of details which is particularly important to our

approach. We compare the performance of our procedure to that of traditional

holistic methods for LGD estimation, e. g. carried out by ordinary least squares

(OLS) regression. In particular, to measure the accuracy and robustness of the

models, we use in-sample, out-of-sample, and out-of-time validation. Moreover,

considering the economical context and the obtained estimation errors, we dis-

cuss theoretical and practical advantages and disadvantages of each step of our

approach.
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4.1 Dataset

The dataset consists of 1,493 defaulted leasing contracts with 907 lessees from a

large German leasing company. The contracts were executed between 1996 and

2009. Their default occurred between 2002 and 2009. The default status of any

contract was determined by the default events outlined in Article 452 of Basel II.

These events correspond to Article 178 (1) of the CRR. The contracts default

after an average of 50% of their maturity. That is approximately 2.5 years after

the execution of the average contract. The mean workout lasts about 2 years. The

workout of all contracts has been completed. The last of which was completed in

2010. Further data has not been provided.

Our data is extremely valuable with respect to its high level of detail, particu-

larly regarding the workout process. Similar to Hartmann-Wendels et al. (2014), a

large amount of information is available. These are contract, leased asset, and cus-

tomer specific information as well as additional information about the contract’s

default and its workout process. The breakdown of cash inflows and outflows dur-

ing the workout process is of particular importance to the derivation and economic

interpretation of the approach we present in this study. The carefully documented

costs concerning the disposal of the leased asset and the collection of overdue pay-

ments, allow for the precise and economically sensible separation of asset-related

and miscellaneous revenues.

Before any separation or estimation of the LGD, we briefly discuss its calcula-

tion. The LGD is that portion of EAD that could not have been recovered in case

of a contract’s default. Its counterpart is the recovery rate (RR). The workout

RR is the ratio of the amount recovered and EAD, it is equivalent to 1 − LGD.

In line with Article 5 (2) CRR, we use the term related refinancing interest rate

to discount all incurred cash flows (CF) and workout costs (WC) to the time of

default. The EAD is the present value of the defaulted contract’s outstanding

exposure, calculated as the sum of outstanding payments at the time of default.
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The detailed breakdown of incoming and outgoing cash flows during each con-

tract’s workout enables us to determine LGD very precisely. Formally, we calculate

the LGD as

LGD = 1− CF−WC
EAD = 1− RR. (4.1)

Beyond the pure determination of LGD, we calculate component LGDs. The

asset-related LGD (ALGD) summarizes all asset-related payments, such as the

asset’s liquidation proceeds and incurred liquidation costs. We call the remaining

share of the LGD miscellaneous LGD (MLGD). The MLGD comprises revenues

from capital services, such as interest rates and customer payments, the costs of

collateral, such as recovery costs and maintenance costs, and proceeds of collateral,

other indirect costs, and other payments. Both component LGDs refer to the

overall EAD. However, they particularly differ in terms of the lessors influence

on the respective cash flows. While repossession of the leased asset, as well as its

disposal, is in the responsibility of the lessor completely, miscellaneous cash flows

depend on several factors outside his control. For instance, in case the defaulted

lessee goes through an insolvency proceeding, the insolvency estate is distributed

pro rata between all relevant creditors. Basically, the MLGD of a leasing contract

is the equivalent of a loan’s LGD.

We derive the two component LGDs from Equation (4.1) by identifying the asset

proceeds (AP) within the incoming cash flows and the related asset liquidation

costs (LC) within the workout costs. This splitting results in

LGD = 1− (CFM + AP)− (WCM + LC)
EAD

= 1− AP− LC
EAD − CFM −WCM

EAD (4.2)

= 1− ARR −MRR,

with CFM and WCM denoting the remaining miscellaneous incoming cash flows

and workout costs respectively.
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Subsequently, we derive the asset-related RR (ARR) and the miscellaneous RR

(MRR). As usual, we obtain the LGD as the counterpart of the RR

ALGD = 1− ARR, MLGD = 1−MRR. (4.3)

In terms of ALGD and MLGD, the LGD then is calculated as

LGD = ALGD + MLGD− 1. (4.4)

Descriptive statistics

In contrast to various studies, we do not restrict LGD to the unit interval, such as

Chalupka and Kopecsni (2009), Bastos (2010), and Zhang and Thomas (2012) do.

For leases, LGDs outside the unit interval are frequently observed. Hartmann-

Wendels and Honal (2010) argue that LGDs less than 0 may occur in cases where

the asset disposal covers more than the amount of EAD. Additionally, incorporat-

ing workout costs may cause the LGD to rise beyond 1. Table 4.1 provides a brief

overview of the LGDs’ distribution parameters. The overall LGD averages near

35%, and we observe an average ALGD of 69% and MLGD of 65%. The standard

deviation of ALGD is notably lower than that of MLGD and LGD. Minimum and

maximum of ALGD and MLGD are consequently higher than those of the LGD.

We find that the ratio of asset value at default to EAD is 54% on average.

Although, the lower quartile of ALGD is quite high, for more than 10% of the

contracts the asset value even exceeds EAD. For these contracts, ARR is higher

than 1. While the default value of the leased asset is not an explicit part of the

EAD, this value qualifies for incoming cash flow during the workout process in

case of asset disposal. Such as any other cash income, the disposed asset value

reduces the LGD. Moreover, in contrast to the liquidation of a loan’s collateral, as
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Share of LGD Mean Std Min. P25 Median P75 Max.
ALGD 0.69 0.41 −0.99 0.41 0.98 1.00 2.03
MLGD 0.65 0.51 −1.04 0.22 0.89 1.01 2.68
LGD 0.35 0.48 −1.36 0.00 0.30 0.76 1.50

Table 4.1: Distribution parameters of the loss given default (LGD). Std is the standard
deviation, Min. is the minimum, and Max. is the maximum LGD value. P25 and
P75 are the respective quartiles. ALGD is the asset-related LGD and MLGD is the
miscellaneous LGD. We derive both component LGDs from Equation (4.3).

the legal owner of the leased asset the lessor can keep any surpluses from disposing

of the leased asset even if the resulting ARR exceeds 1.

For a lessor’s internal risk management, determination of ALGD is useful. If

interpreted as a stand-alone parameter, ALGD is theoretically an upper limit to

the LGD. This is true if the MLGD does not exceed a value of 1, which implies the

success of the workout process. Therefore, depending on the amount of ALGD,

the lessor can determine whether the asset sales proceeds already cover the EAD

or if further workout actions should be taken to collect overdue payments.

Frontczak and Rostek (2015) argue that knowledge about the effect of disposal

efficiency and related costs on the LGD may affect a lender’s disposal policy.

Consequently, for the lessor it would be useful to know ex-ante if the MLGD will

exceed 1. In case it does, the lender loses more than the full amount of EAD.

Strictly speaking, MLGDs > 1 indicate that the incurred collection costs will

exceed the payments collected. In such cases, even if the asset sales proceeds cover

only a small portion of EAD, the workout should be restricted to the disposal of

the leased asset because collecting further payments is inefficient from an economic

standpoint.

Theoretically, it is also possible that the ALGD exceeds 1. Nevertheless, in our

data we find that asset sales proceeds exceed the incurred disposal costs in 99%

of all cases. This outcome could have been expected because leasing companies

are experts in disposing of their leased assets. Hence, the disposal is economically
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LGD

ALGD ≥ LGD ALGD < LGD

Figure 4.1: Densities of loss given default (LGD), after separating the contracts accord-
ing to their relationship of LGD to asset-related LGD (ALGD). The full amount of the
exposure at default (EAD) is recovered in case of 0. −1 defines an EAD recovery of
200% while an LGD value of 1 means the loss of 100% of the EAD.

reasonable in almost any case. Interestingly, for about 35% of the examined

contracts, the MLGD exceeds 1. This implies that the ALGD as an upper limit

of the LGD holds for only about 65% in practice. Nevertheless, as can be seen in

Figure 4.1, this upper limit is an important feature to distinguish the contracts.

More precisely, categorizing the contracts according to this upper limit leads to

LGD distributions that are disjointed to a large extent. The realized LGDs of the

contracts that satisfy ALGD ≥ LGD concentrate around 0 with a mean of 0.20.

In contrast, for contracts with ALGD exceeding the LGD, LGDs are particularly

located around 0.5 and 1 with a mean of 0.59.

Figure 4.2 visualizes the density of the calculated overall LGD of the underlying

dataset. In addition, ALGD and MLGD densities are plotted. Both overall LGD

and MLGD exhibit a pronounced bimodal shape, with concentrations around an

LGD level of 0 and 1. The LGD’s mean of 35% in Table 4.1 indicates that

the overall LGD is rather small in most cases. Its median of 30% confirms this

finding. ALGD and MLGD, however, have more density around 1. From the

perspective of a regular lender, a high ALGD is of less concern than a high MLGD.

Because the asset’s fair value is not included in the EAD, the cash inflow from
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Figure 4.2: Density of loss given default (LGD), asset-related LGD (ALGD), and mis-
cellaneous LGD (MLGD). The full amount of the exposure at default (EAD) is lost in
case of 1. −1 defines an EAD recovery of 200% while an LGD value of 2 means the loss
of 200% of the EAD.

the asset’s disposal has an unexpected reducing effect on the LGD. In contrast,

the cash inflows considered by MLGD are fully accounted for in the EAD. A high

MLGD reflects a poor outcome from the workout process. However, the ALGD

is important to lessors because revenues from disposing of the leased asset in case

of default are a substantial aspect of a lessor’s business model.

To be precise, the average revenue from disposal of the leased asset amounts to

e 15,322 per contract. The miscellaneous payments during the workout process

sum up to e 13,616 on average. This allocation of cash inflows emphasizes the

importance of both sources of revenues for a leasing company. It confirms that

the workout process of defaulted leases is quite different from that of loans. Con-

sequently, for leasing contracts it is essential to consider both ALGD and MLGD

when estimating the overall LGD. Moreover, the share of revenues from disposing

of the leased asset is indeed slightly higher on average than the remaining share.

However, in particular for less valuable assets, the traditional payments collection

during the workout process is substantial.
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LGD ALGD MLGD
Year Mean Std Mean Std Mean Std
2002 0.3723 0.5283 0.7386 0.4076 0.6337 0.5652
2003 0.2995 0.4597 0.6978 0.4360 0.6017 0.5344
2004 0.3068 0.4341 0.6637 0.4267 0.6431 0.5302
2005 0.3245 0.4516 0.6640 0.4505 0.6604 0.4603
2006 0.3218 0.4557 0.6506 0.4218 0.6712 0.4750
2007 0.3303 0.4225 0.6503 0.4221 0.6799 0.4555
2008 0.3413 0.4218 0.6167 0.3968 0.7247 0.4062
2009 0.3999 0.4179 0.6654 0.2914 0.7345 0.3826

Table 4.2: Distribution parameters of the loss given default (LGD) for each default
year. Std is the standard deviation. ALGD is the asset-related LGD and MLGD is the
miscellaneous LGD. We derive both LGDs from Equation (4.3).

In Table 4.1 we observe higher standard deviations of MLGD and LGD com-

pared to ALGD. Thus, the latter is less volatile, Miller (2015) notes similar.

Therefore, ALGD might be easier to estimate. In addition, Table 4.2 displays

the key figures of the realized LGD, ALGD, and MLGD values over the default

years of the observation period. At this level of aggregation, ALGD is still less

volatile than MLGD and LGD in a year by year comparison. Concerning LGD,

we observe rather small fluctuations during the period of 2003 to 2008. Only for

the years 2002 and 2009, the realized LGD is in comparison noticeably higher

on average. Particularly, the higher average LGD in 2009 might be a result of

the global financial crisis. Regarding ALGD, the means fluctuate around 65%.

However, we find it interesting that ALGD does not increase unusually in 2009.

This finding indicates that the fluctuations of ALGD are driven by each year’s

asset disposals but are not driven by the economy. Apparently, ALGD does not

increase during the financial crisis. We attribute this effect to the lessor’s excellent

knowledge of secondary markets. Obviously, there is a difference in the course of

MLGD. It also fluctuates only rarely between the years 2002 and 2007. However,

we observe a markedly but manageable increase in 2008 and 2009, which might

be a result of the financial crisis.
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The evolution of the three LGD ratios supports our hypothesis that ALGD

might be easier to estimate for the lessor than MLGD or LGD. However, we

find no empirical evidence, that the economy, e. g. accounting for gross domestic

product and unemployment rate, has an impact on ALGD. The economy might

influence MLGD and LGD slightly. Nevertheless, the potential effect seems to

be minor. Moreover, Miller (2015) shows that the LGD estimation at the default

of a lease benefits only slightly if at all, of considering the economic situation.

Consequently, we do not include macroeconomic factors into our approach. In

fact, for the estimation of the LGD ratios we focus on contract related factors,

such as the type of the leased asset, of the customer, and the default reason.

4.2 Methods

Contrary to recent studies on LGD estimation, we do not focus on the comparison

of very complex or even black box methods, such as support vector machines or

neural networks. We rather develop an economically based and consistent tech-

nique for estimating LGDs. Instead of regarding LGD as a holistic measure of

risk, we separate the LGD into an asset-related and a miscellaneous share and,

hence, take into account the specific characteristics of leases. In order to pro-

vide evidence that the increase in estimation accuracy does not solely arise from

particularly suited methods but sophisticated economic consideration, we essen-

tially apply two distinct methods to our proposed multi-step approach. These are

OLS and as an advanced estimation method, the tree algorithm RF. Throughout

the study, we set the traditional direct estimation of LGD by OLS and RF as a

benchmark to compare the performance of our multi-step estimation model and

to measure the improvement.

As OLS is a common estimation method, we will only give a brief overview of

the RF model. The RF tree algorithm was constructed by Breiman (2001). It
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has many similarities to regular regression and classification trees. These trees

subsequently divide the initial dataset according to a series of if-then conditions.

At every node of the tree, the best split is performed according to an appropriate

split criterion, e. g., the greatest expected reduction in standard deviation. Each

contract terminates in one leave of the final tree. Each leave’s estimation value

then is the average value of the contracts of the respective leave. In case of

classification, the contracts’ realized class in each leave determines the leave’s

class estimation.

RF differs from regular regression trees in three important ways. First, instead

of building only one tree, a series of trees, thus, a forest is built. Second, each

tree is calibrated with a random sample of the dataset. Third, at each node the

available set of splitting variables is a random sample of all available variables.

The final estimation of a contract is the average of the single tree estimations.

For classification, the majority vote determines a contract’s class. We use the RF

standard parameters suggested by Breiman (2001). For classification, these are
√
m randomly chosen variables for each split and m/3 variables for regression out

of a total of m variables. The size of the forest is fixed to 1,000 trees, as proposed

by Hastie et al. (2009).

Beside the frequently used OLS, numerous studies have shown that tree-based

algorithms are particularly suited for estimating LGD. While Bastos (2010) and

Hartmann-Wendels et al. (2014) find that regression and model trees generate

robust and accurate LGD estimations, Töws (2014) reports similar outcomes for

RFs explicitly.

4.2.1 Direct estimation

To begin with, we take a look at direct estimation methods. Direct estimation is

easy to implement and, therefore, the most elementary and common method for

estimating LGD. In this study, direct estimation by OLS and RF serves as a useful



4.2 Methods 85

ALGD

MLGD

OLS
RF

RF class.
OLS

RFLGD

LGD*LGD*

ALGD*

MLGD*

LGD*
AL* = 0

LGD*
AL* = 1

AL* = 0

AL* = 1 1 – p

p

OLS
RF

Linear
comb.

Direct estimation LGD decomposition LGD classificaton

Variables

Variables Variables

Variables Variables Variables

(4.5)

(4.8)

Figure 4.3: Procedure of the developed models. Our approach consists of three con-
secutive parts. Direct estimation determines the loss given default (LGD∗) according
to Equation (4.5) using the variables available, both in an ordinary least squares (OLS)
and in a random forest (RF) regression model. In the LGD decomposition, we divide the
realized LGD into an asset-related LGD (ALGD) and a miscellaneous LGD (MLGD).
Then again, using the available variables, two OLS or RF models are calibrated to
estimate ALGD∗ and MLGD∗. Subsequently, the contracts of our dataset are classified
into two classes. An RF classification model uses the available variables including ALGD
and MLGD and their estimated values to perform the classification of Equation (4.7).
It aims to assign AL∗ = 0 correctly to contracts with an ALGD exceeding its LGD, and
AL∗ = 1 in case ALGD falls short of LGD. Based on these two disjoint datasets, we
calibrate an OLS or RF model on each to estimate the two LGD∗

AL∗ . Using the linear
combination of Equation (4.8), we calculate the final LGD estimation by weighting
LGD∗

AL∗ with their classification probabilities p and 1− p.

benchmark when we compare it to the respective multi-step model by measuring

the models’ performance improvements. The left-hand side of Figure 4.3 visualizes

a simplified direct estimation method. The method uses a set of variables to

produce estimations of the LGD.

Using OLS, we model the LGD dependent on the available and relevant variables

(VAR) in a linear combination

LGD = α +
m∑

i=1
βi · VARi + ε, (4.5)

with α the regression’s constant, βi the slope coefficient of variable i, ε the residual,

andm the number of included variables. For RF regression, we train a forest based

on the same information set, estimating the dependent variable directly.
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The advantage of direct estimation is the plain analysis of the influence of

the independent variables. In case of OLS, significance and slope of single in-

fluencing factors are rather easy to measure and have economic interpretations.

The importance measure of RF allows for similar conclusions. However, from

a methodological perspective, OLS comes with a major disadvantage. It only

models linear relationships between dependent and independent variables. This

way, many latent influences and changes of influences according to independent

variable values cannot be considered. Although, OLS has been successfully used

for estimating LGD, e. g. by Bellotti and Crook (2012) and Zhang and Thomas

(2012), theoretically, RF should be much more suited to the estimation task. The

latter can particularly consider nonlinear dependencies between the LGD and its

explanatory variables by generating homogeneous subsets of the data. Still, both

methods can only process the plain information available.

4.2.2 Loss given default decomposition

From an economic point of view, the LGD is a linear combination of cash flows

relative to EAD. With leasing contracts, this relationship plays a particularly

important role because, unlike with loans, the cash flows are typically issued

from very different sources. Observing the cash flows in detail, we attempt to

provide additional information to the estimation of LGD by breaking down the

LGD to ALGD and MLGD. Equations (4.2) and (4.3) provide the necessary

mathematical steps of this calculation. Figure 4.3 outlines the procedure of the

LGD decomposition. Similar to LGD, neither ALGD nor MLGD are available at

the time of contract’s default. Therefore, the idea is, instead of estimating LGD

directly, we estimate ALGD and MLGD and combine these parameters to a new

LGD estimation. Again, for estimating ALGD and MLGD, we apply OLS and

RF models. In principal, any other method can be utilized.
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From a mathematical and economic perspective, the separate estimation is rea-

sonable in three ways. First, obviously, asset-related cash flows depend on differ-

ent influencing factors than miscellaneous cash flows. For instance, we expect the

loan-to-value ratio to be a significant driver of ALGD but not of MLGD. Second,

according to the different density shapes outlined in Figure 4.2, the estimation of

the two LGDs might vary in its accuracy. In particular, the markedly lower stan-

dard deviation of ALGD compared to MLGD highlighted in Table 4.1, indicates

that the estimations of ALGD might be significantly more precise. Third, both

of these estimated components of the LGD provide decision support concerning

the actions that should be taken during the workout process in order to achieve

LGDs as low as possible. The last argument is particularly important from an

economic point of view.

The gain of information by estimating ALGD and MLGD may be used in dif-

ferent ways to enhance the accuracy of LGD estimation. Theoretically, the LGD

can be calculated reversely by using Equation (4.4)

LGD∗ = α · ALGD∗ + β ·MLGD∗ − ε, (4.6)

where ALGD∗ and MLGD∗ are the estimated ALGD and MLGD. α and β are

slope coefficients and ε is the constant. In the theoretical calculation, these three

parameters are set to 1. However, for practical usage it might be suitable to set up

an OLS regression to find the optimal values for these parameters. Nevertheless,

a large disadvantage of this procedure is, that the full estimation error of both

estimated ALGD and MLGD enters the estimated LGD. Consequently, we do not

pursue this approach any further.
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4.2.3 Loss given default classification

Instead of deriving an LGD estimation from ALGD∗ and MLGD∗, we use the

estimated values to classify the contracts into two classes. In Section 4.1, we show

that the ALGD is a theoretical upper boundary to the LGD. By generating a

dummy variable

AL =


0 if ALGD ≥ LGD

1 if ALGD < LGD,
(4.7)

we identify contracts, which realize an LGD exceeding their ALGD. According to

Figure 4.1 this categorization leads to a largely disjointed separation of the con-

tracts in terms of the LGD distributions. Moreover, the two resulting distributions

of the LGD feature less distinctive bimodal shapes than the LGD distribution of

all contracts, illustrated in Figure 4.2. Consequently, we expect that estimating

LGD separately in each class is easier than estimating LGD without this sepa-

ration. On this account, we calibrate an RF classification model with AL the

dependent variable to predict whether a contract’s LGD is expected to be below

or above its ALGD. This model uses the relevant and available information at

contract’s default. Expanding this information set, we additionally use ALGD

and MLGD determined according to Equation (4.3) to calibrate the classification

model. For predictive classification, we consequently use the respective estimates

of ALGD and MLGD from Section 4.2.2, such as is indicated by the right-hand

side of Figure 4.3.

Theoretically, it is possible to classify the contracts directly by only using the es-

timates of ALGD and MLGD. However, in this case, the estimation error of these

estimates would directly impact the classification accuracy negatively. Therefore,

we do not rely on these two ratios but rather calibrate a classification model using

a set of information.
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For each contract, we obtain the classification probability p of the respective

contract being in class 0, and its estimated class AL∗. Based on the contracts

of these two classes, we calibrate two separate LGD regression models. In the

estimation step, every contract receives exactly two LGD estimations, one from

each of the two models calibrated. Finally, we calculate the estimated LGD in a

linear combination

LGD∗ = p · LGD∗
AL∗=0 + (1− p) · LGD∗

AL∗=1, (4.8)

using the classification probability p to weight the single LGD estimates.

The additional classification step enriches the overall LGD estimation by in-

terpreting ALGD as an upper limit to the LGD. Economically, the classification

of a contract indicates, which actions the lessor should take during its workout

process. In particular, if the LGD is likely to exceed its ALGD, the lessor should

consider restricting the workout process to the disposal of the leased asset. Be-

cause, in this case, the miscellaneous workout costs are expected to exceed the

miscellaneous cash inflows. Considering that MLGD > 1 for about 35% of the

contracts of the studied lessor, the proper implementation of the workout process

such as we suggest, would lower its mean realized LGD by nearly 10% to 0.32.

This reduction of the LGD would lead to lower losses to the leasing company of

about e 2,250,000.

4.2.4 Validation techniques

In order to validate the estimation accuracy and to verify the robustness of our

models, we use three fundamentally different validation techniques outlined in

Figure 4.4. Beside common in-sample and out-of-sample validation, we also use

out-of-time validation. The last simulates an estimation scenario that is as close

to reality as possible. In the course of the study, we are estimating different
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100% trainingIn-sample 100% testing

Out-of-sample

1y training 1y testing

1y testing

1y testing

2y training

7y training

Out-of-time

75% training 25% testing

75% training 25% testing

...
...

1,000 times

Figure 4.4: Validation techniques. Each validation approach divides the total dataset
into x% training set to calibrate the estimation model, and (1−x)% validation set. Out-
of-sample, we divide the data randomly 1,000 times. In case of out-of-time validation,
the data is divided by the contracts’ year of default. The first model then is calibrated
on contracts that default in the first year and validated on contracts that default in the
following year.

parameters, such as LGD, ALGD, and MLGD. Furthermore, we perform a clas-

sification to predict whether the ALGD is greater or less than the LGD. Since

the following validation techniques apply to all of these parameters, we will use a

uniform synonym and call them dependent variable.

For the in-sample model calibration, all observations and available information

at the time of contracts’ default are used. The estimation of the dependent variable

then is carried out on the same data. Consequently, the estimation accuracy is

expected to be relatively high. On the one hand, this effect is based on the

particularly large dataset used for the model’s calibration. On the other hand,

when estimating the dependent variable, each combination of information that

occurs in the validation set is already known to the model. A problem, however,

is that a high in-sample estimation accuracy frequently results from the overfitting

of the model to the underlying data. In fact, in reality, most validation sets consist

of unknown observations and combinations of information.

Therefore, it is reasonable, and for the estimation of LGD, it is required by the

regulator, to calibrate the estimation model on a sample of the data. Article 179

(1)(d) CRR states that this sample shall be sufficient to provide the performing

institution with confidence in the accuracy and robustness of its estimates.
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For out-of-sample validation, these samples can be implemented by k-fold cross-

validation. While earlier studies on LGD estimation used this method frequently,

Kohavi (1995) employs different validation methods, such as cross-validation,

leave-one-out, and random subsampling. The last divides the data into training

and validation set and is run l times. In their recent study Hartmann-Wendels

et al. (2014) use random subsampling to validate their regression results. Divid-

ing the data into 75% training and 25% validation set, they repeat the procedure

25 times. Yao et al. (2015) perform a similar out-of-sample validation using 70%

and 30% randomly chosen observations as training and validation set respectively.

Their procedure is repeated 100 times.

We randomly draw subsamples of 75% for the training set without returning

the observations. The remaining 25% form the validation set. On each training

set, an estimation model is calibrated. Subsequently, we estimate the dependent

variable for the corresponding validation set. We perform this step 1,000 times

and average the resulting performance measures. The estimation error obtained

out-of-sample is usually greater than that of in-sample validation. However, the

error reflects a much more realistic allocation of the model’s predictive accuracy.

The final step in validating the predictive accuracy of estimation models is

out-of-time validation. In recent literature on LGD, models are rarely validated

out-of-time due to special requirements to the underlying data. In particular,

a comprehensive dataset and time information are necessary. For out-of-time

validation, Gupton and Stein (2005) propose a growing window, subsequently

using observations prior to a fixed year for the training set. The following year

serves as the validation set. Most recently Altman and Kalotay (2014) conduct

an out-of-sample, out-of-time simulation experiment. They calibrate a model on

observations prior to 2002 and randomly draw 100 observations from the period

between 2002 and 2011 for the validation set. This step is repeated 50,000 times.



92 4 Loss given default-adjusted workout processes for leases

2002 2003 2004 2005 2006 2007 2008 2009
# Contracts 575 191 116 116 144 122 127 102

Table 4.3: Year of default and frequency of contracts.

However, we are convinced, that an adequate and realistic out-of-time estima-

tion model should be built upon the available historical data and should forecast

the forthcoming period. Considering a period of several years for the validation

set, as proposed by Altman and Kalotay (2014), might dilute specific character-

istics of single years. Hence, the estimation model would produce out-of-time

results that might be too optimistic.

Employing the method of Gupton and Stein (2005), we divide our dataset ac-

cording to the contracts’ time of default. To calibrate a solid first model, built

upon a sufficiently large dataset, we use the contracts that defaulted in 2002.

Table 4.3 shows that a total of 575 contracts defaulted in the first year of the

observation period.3 The trained model then is validated on those 191 contracts,

which defaulted in the following year, in this case, 2003. Calibrating the next

model, we expand the training set by one year. Thereby the first two years are

used for the model’s calibration. Subsequently, further models are built by ex-

panding the training set. Validation is always performed on the contracts of the

year following the training period. Consequently, the final model is based on the

contracts that have defaulted between 2002 and 2008. This model’s predictive

accuracy is validated by contracts that defaulted in 2009. Finally, we weight the

outcomes of each year with the respective number of observations.

3The large amount of defaults in 2002 arises from an inaccuracy in the default date provided.
Some of these contracts may have defaulted before 2002 but were uniformly assigned to
this specific first default year. However, this inaccuracy has no impact on the out-of-time
validation.
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4.2.5 Performance measurements

In order to compare the results of our different estimation models, we use four per-

formance measurements. These are: mean absolute error (MAE); mean squared

error (MSE); normalized area under the regression error characteristic curve (NA-

REC); and Theil inequality coefficient (TIC). Each of these performance measure-

ments focuses on the evaluation of specific aspects of the estimation.

MAE and MSE are common measures to evaluate the performance of estima-

tion methods. With LGD and LGD∗ denoting the realized and estimated LGD

respectively and n being the number of observations, we calculate MAE and MSE

according to the following definition

MAE = 1
n

n∑
j=1
|LGDj − LGD∗

j |, (4.9)

MSE = 1
n

n∑
j=1

(
LGDj − LGD∗

j

)2
. (4.10)

MSE punishes larger deviations between predicted and realized values harder. In

general, a low parameter outcome is preferable for both measurements.

NAREC can be used to evaluate the performance of regression models in total.

This measure bases on the regression error characteristic (REC) curve developed

by Bi and Bennett (2003). For a regression model, the REC curve draws the error

tolerance δ against the models accuracy acc(δ). The latter computes as

acc(δ) =
#
{

LGD∗ : |LGD∗
j − LGDj| ≤ δ, j = 1, . . . , n

}
n

. (4.11)

It specifies the percentage of observations whose estimates do not exceed the

error tolerance. A higher outcome of NAREC implies more accurate estimations

produced by the estimation model in total.
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TIC is introduced by Theil (1967) and sets the mean squared error in relation

to the sum of the quadratic realized and estimated LGD. It aims to quantify the

goodness of fit and robustness of a model. We use

TIC =
1
n

n∑
i=1

(LGDi − LGD∗
i )2√

1
n

n∑
i=1

(LGD∗
i )2 +

√
1
n

n∑
i=1

LGD2
i

, (4.12)

to calculate the TIC. A low parameter outcome is preferable.

To measure the performance of classification methods, we use the classification

error (CE). It is the ratio of misclassified cases to all cases, which is the relative

frequency of misclassification. We calculate CE as

CE = 1
k

k∑
i=1

I(AL∗
i 6= ALi) = Misclassified cases

All classified cases , (4.13)

where ALi is the realized class of case i defined in Equation (4.7), AL∗ is the

estimated class, I is the indicator function, and k is the number of classified

cases.

4.3 Results

The performance results of our applied models for the three different validation

techniques are contained in Tables 4.4–4.6. Overall, the results of direct estimation

are as expected. The complex RF model produces accurate and robust estimates

in general. It outperforms OLS, particularly in-sample and also notably out-of-

sample. However, the out-of-time validation reveals problems of complex models

in predicting unseen data that are known to the literature (compare Hartmann-

Wendels et al. (2014) and Töws (2014)). Although RF yields stable out-of-time

results, OLS estimates are slightly more accurate. We attribute this outcome to
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the overfitting of the RF model to the calibration data. This model’s exceedingly

good in-sample errors indicate an overly close adaption to the training data.

On the one hand, from a methodological perspective our multi-step approach

entails an increased complexity by splitting the LGD into ALGD and MLGD.

On the other hand, this splitting founds on the economic consideration of leasing

specifics. The results point out that our multi-step approach indeed improves

the estimation accuracy compared to direct estimation of LGD. This outcome is

independent of whether the multi-step model bases on OLS or RF. Moreover, it is

particularly true for out-of-sample and out-of-time validation. Consequently, the

increase in model complexity does not lead to overfitting. In fact, all used valida-

tion techniques confirm the robustness and accuracy of the multi-step estimates.

The results of the different validation techniques emphasize that it is beneficial

to implement our multi-step approach instead of using direct estimation. How-

ever, it is challenging to decide whether the multi-step approach should be used

with OLS or RF. The latter is clearly favorable in-sample and out-of-sample. Nev-

ertheless, for practical usage it should be taken into account that the multi-step

approach with OLS generates the most accurate out-of-time estimates.

4.3.1 In-sample validation

The in-sample results that we present in Table 4.4 show that RF produces more

accurate estimates than OLS throughout the performance measurements. Inde-

pendent of whether the direct or the multi-step approach is used, the RF model

strictly outperforms both OLS models. In particular, the exceptionally low errors

in terms of MAE and MSE indicate a close adaption of RF to the training data.

In general, the multi-step approach is beneficial to both methods. We observe

a distinctive advantage of the multi-step model compared to direct estimation.

According to the additional information presented in Table 4.8, we attribute this

outcome to the almost perfect classification. Upon closer inspection, we further
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Method MAE MSE NAREC TIC
Direct estimation
OLS 0.3436 0.1821 0.6593 0.1835
RF 0.1484 0.0362 0.8325 0.0340

Multi-step estimation
OLS 0.2757 0.1184 0.7252 0.1159
RF 0.0671 0.0095 0.8849 0.0084

Table 4.4: In-sample loss given default (LGD) estimation results. The used methods
are ordinary least squares (OLS) and random forest (RF) regression. The determined
performance measurements are mean absolute error (MAE), mean squared error (MSE),
normalized regression error characteristic curve area (NAREC), and Theil inequality
coefficient (TIC). These are calculated according to Equations (4.9), (4.10), (4.11), and
(4.12) respectively. Comparing the direct to the multi-step estimation approach, we
underline the better results per method used.

note that the classification error of RF is half of that of OLS. Consequently, the

reduction in estimation error from the direct to the multi-step approach is even

larger for RF than for OLS.

Additionally, the estimation results of ALGD and MLGD, presented in Ta-

ble 4.7, show that estimating ALGD is easier than estimating MLGD. This con-

firms our expectations outlined in Section 4.1. Moreover, as we hypothesize in

Section 4.2.2, ALGD and MLGD are driven by different factors. Particularly,

asset related factors have a significant influence on ALGD, such as asset type

and initial value of the leased asset. Contrary, for MLGD mainly contract and

customer related factors are important. Again, we note a markedly higher esti-

mation accuracy for RF compared to OLS. Consequently, the advantage of RF

when forecasting ALGD and MLGD improves the classification accuracy.

4.3.2 Out-of-sample validation

The out-of-sample results that we report in Table 4.5 mostly confirm the findings

of the in-sample validation. However, the performance gaps between the models
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Method MAE MSE NAREC TIC
Direct estimation
OLS 0.3505 0.1894 0.6538 0.1907
RF 0.3272 0.1722 0.6768 0.1725

Multi-step estimation
OLS 0.3387 0.1777 0.6655 0.1782
RF 0.3233 0.1772 0.6813 0.1708

Table 4.5: Out-of-sample loss given default (LGD) estimation results. The used methods
are ordinary least squares (OLS) and random forest (RF) regression. The determined
performance measurements are mean absolute error (MAE), mean squared error (MSE),
normalized regression error characteristic curve area (NAREC), and Theil inequality
coefficient (TIC). These are calculated according to Equations (4.9), (4.10), (4.11), and
(4.12) respectively. Comparing the direct to the multi-step estimation approach, we
underline the better results per method used.

are now less pronounced. In particular, the benefit of RF turns out to be less

distinctive.

Considering the out-of-sample outcomes more closely, we again note that the

RF models strictly outperform both OLS models. Moreover, in line with the in-

sample results, we find that the multi-step approach is beneficial to both methods

out-of-sample. With OLS, the multi-step approach outperforms direct estimation

notably for all used performance measurements. With RF the multi-step approach

is also advantageous in terms of MAE, NAREC, and TIC, but not concerning

MSE.

Although, out-of-sample each multi-step approach has a notable advantage over

the respective direct estimation model, in absolute terms, this advantage is not

as significant as in-sample. The reason is that the classification error in Table 4.8

increases similarly for RF and OLS in the out-of-sample validation compared to in-

sample. Surprisingly, the classification error indeed increases slightly more for RF.

Consequently, in contrast to the in-sample results, out-of-sample the improvement

of using the multi-step approach is more distinctive for OLS than for RF.
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Typically, an increased classification error particularly affects the MSE. Com-

pared to MAE, NAREC, and TIC, the MSE penalizes large deviations of estimates

from their realized value stronger. Consequently, for the multi-step approach al-

ready few falsely classified observations might increase the MSE significantly. That

might be the case, even if the estimates are more accurate in general compared

to direct estimation. Interestingly, we observe this effect only for RF but not for

OLS. Apparently, OLS corrects for the bias of incorrectly classified contracts by

estimating conditional expectations.

Again, as in-sample, we note more accurate estimations of ALGD than of

MLGD. Moreover, Table 4.7 shows that RF once more produces lower errors than

OLS. However, in line with the estimation of the overall LGD, out-of-sample the

advantage of RF over OLS is less pronounced than in-sample.

4.3.3 Out-of-time validation

Our results of the most realistic scenario, the out-of-time validation, are presented

in Table 4.6. Concerning the multi-step approach, we find that the outcomes

confirm our in-sample and out-of-sample findings. However, the results differ

concerning the direct estimation models.

Considering these, we find RF not to be strictly advantageous anymore. We

rather observe better outcomes for OLS in terms of MAE, NAREC, and TIC.

We attribute this finding to the overly good adaptation of RF to the training

data, which becomes obvious when we regard the in-sample accuracy discussed in

Section 4.3.1. Therefore, RF seems to experience difficulties with validation sets

that differ significantly from the training sets. Related literature frequently ob-

serves relatively poor out-of-sample and particularly poor out-of-time estimates

of complex models with an excellent in-sample performance compared to OLS.

Hartmann-Wendels et al. (2014) address this phenomenon concerning finite mix-

ture models and Töws (2014) observes similar results in particular for RF.
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Method MAE MSE NAREC TIC
Direct estimation
OLS 0.3451 0.1876 0.6632 0.1959
RF 0.3457 0.1830 0.6605 0.2003

Multi-step estimation
OLS 0.3372 0.1778 0.6694 0.1897
RF 0.3412 0.1858 0.6611 0.1963

Table 4.6: Out-of-time loss given default (LGD) estimation results. The used methods
are ordinary least squares (OLS) and random forest (RF) regression. The determined
performance measurements are mean absolute error (MAE), mean squared error (MSE),
normalized regression error characteristic curve area (NAREC), and Theil inequality
coefficient (TIC). These are calculated according to Equations (4.9), (4.10), (4.11), and
(4.12) respectively. Comparing the direct to the multi-step estimation approach, we
underline the better results per method used.

A closer examination of the out-of-time outcomes shows that the multi-step ap-

proach still has a general advantage over direct estimation. Being most accurate

out-of-time, the multi-step approach with OLS clearly outperforms the respec-

tive direct estimation, independent of the regarded performance measurement.

However, the advantage of the OLS multi-step model over its direct estimation is

slightly smaller than out-of-sample. This result could have been expected because

classification is even more difficult out-of-time. The reason is that validation data

might differ significantly from training data. This effect is documented by the

somewhat increased classification error in Table 4.8.

Analyzing the outcomes of the multi-step approach and direct estimation with

RF, we observe many similarities to out-of-sample. As in the out-of-sample vali-

dation, the multi-step approach with RF outperforms the respective direct model

in terms of MAE, NAREC, and TIC. However, the multi-step approach produces

a higher MSE. With respect to the classification errors in Table 4.8, we attribute

the latter again to some few falsely classified observations. As mentioned before,

these false classifications result in a rather large deviation of predicted from real-

ized LGD. By improving the estimation accuracy using the multi-step approach,

RF achieves better MAE and MSE values than direct OLS. Nevertheless, when
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we compare the results of both multi-step models, OLS remains throughout ad-

vantageous. Moreover, in line with the out-of-sample findings, the benefit of using

the multi-step approach is again more distinctive for OLS than for RF.

The estimation of ALGD and MLGD conforms to our expectations. We still

note that ALGD estimation is easier and, therefore, more accurate than that of

MLGD. On closer inspection of Table 4.7, we see that RF again produces at least

slightly lower out-of-time errors than OLS in the MLGD estimation. However,

contrary to the in-sample and out-of-sample findings, OLS becomes somewhat

advantageous in the ALGD estimation. We attribute these comparatively inaccu-

rate estimates of RF to its general difficulties of forecasting future observations.

These results might also contribute to the fact that the advantage of the multi-step

approach over the direct model is smaller when we use RF instead of OLS.

4.3.4 Further estimation and classification

Calculating separate LGD ratios and classifying the contracts increases the com-

plexity of the estimation process from a methodological perspective. Recent stud-

ies show that an increased complexity might influence the estimation accuracy

negatively (compare e. g. Qi and Zhao (2011)). However, in previous sections we

show that our multi-step approach is clearly advantageous compared to direct

estimation. We attribute this to the fact that our approach bases on economic

considerations. Nevertheless, the accuracy of the final LGD estimation of our

multi-step approach crucially depends on the respective estimation and classifica-

tion accuracy in each step.

We first analyze the estimations of ALGD and MLGD, outlined in Table 4.7.

As expected, throughout all validation techniques and methods, we note that esti-

mating ALGD is easier than estimating MLGD. Moreover, comparing the results

of ALGD with those of direct LGD estimation, shown in Tables 4.4–4.6, we find

that the estimates of ALGD are significantly more accurate than those of LGD.



4.3 Results 101

In-sample Out-of-sample Out-of-time
Method MAE MSE MAE MSE MAE MSE
ALGD estimation
OLS 0.2884 0.1385 0.2945 0.1455 0.3097 0.1583
RF 0.1256 0.0298 0.2739 0.1385 0.3101 0.1588

MLGD estimation
OLS 0.3758 0.2227 0.3829 0.2310 0.3836 0.2211
RF 0.1629 0.0452 0.3557 0.2103 0.3780 0.2186

Table 4.7: Asset-related loss given default (ALGD) and miscellaneous LGD (MLGD)
estimation results. The realized ALGD and MLGD are calculated according to Equa-
tion (4.3). The used methods are ordinary least squares (OLS) and random forest (RF)
regression. The determined performance measurements are mean absolute error (MAE)
and mean squared error (MSE). These are calculated according to Equations (4.9) and
(4.10) respectively. The table summarizes the results of the three validation techniques:
in-sample, out-of-sample, and out-of-time.

Additionally, in particular in-sample and out-of-sample, the results of MLGD are

only slightly worse than their counterparts of the LGD. This little difference

seems to contribute to the advantage of our multi-step approach over direct esti-

mation. Conform to direct estimation, we further observe that RF outperforms

OLS both in-sample and out-of-sample regarding ALGD and MLGD. This effect

is particularly evident in-sample. Out-of-sample the advantage of RF over OLS

is less pronounced because the level of the estimation error significantly increases

for RF but remains stable for OLS. Consequently, RF benefits more from using

the multi-step approach in-sample than OLS, whereas out-of-sample the opposite

holds. Moreover, out-of-time, the mentioned difficulties of RF in forecasting un-

seen observations result in slightly more accurate MLGD estimations than OLS,

but worse ALGD predictions.

The second crucial aspect of generating accurate LGD estimations with our

multi-step approach is the classification. After we estimate ALGD and MLGD

with OLS or RF in the first step, classification is performed by random forest

classification. Because the estimates of ALGD and MLGD are used to classify the

contracts, we report the classification results labeled OLS and RF in Table 4.8.
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Method In-sample Out-of-sample Out-of-time
OLS 0.0248 0.2191 0.2484
RF 0.0100 0.2215 0.2364

Table 4.8: Classification results of classifying according to Equation (4.7). The classifica-
tion error is calculated according to Equation (4.13). We use random forest classification
in each case. The incorporated estimates of asset-related loss given default (ALGD) and
miscellaneous LGD (MLGD) from step one of our approach are estimated by ordinary
least squares (OLS) and random forest (RF) regression. The table summarizes the
results of the three validation techniques: in-sample, out-of-sample, and out-of-time.

We find that the classification error varies significantly according to the validation

technique. As expected, the classification is very precise in-sample but at about 20

times this rate out-of-sample and out-of-time. Nevertheless, classification remains

sufficiently accurate as the multi-step approach still yields more accurate LGD

predictions than direct estimation. However, the advantage is not as pronounced

as in-sample. In general, it should be noted that despite the advantage of our

multi-step approach over direct estimation, the concrete accuracy of the final LGD

estimation depends on the applied method. For instance, if OLS generates better

direct estimates than RF, its multi-step approach also produces more accurate

results than that of RF.

Classification accuracy is not only important from a methodological perspective

but also from an economic point of view. Based on the outcome of the classifica-

tion the lessor might decide to restrict the workout process to the disposal of the

leased asset. However, a false restriction results in waiving additional payment

collection during the workout process and affects the realized LGD negatively.

While classification is almost perfect in-sample, we see in Table 4.8 that out-of-

sample and out-of-time classification is less reliable. Here the classification error

is about 22% and 24% respectively. False classification typically arises from classi-

fication probabilities near 50% indicating that classification is ambiguous. These

are probably cases in which a lessor does not restrict the workout process to the

asset’s disposal, although our classification would suggest it. To address such am-
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Method In-sample Out-of-sample Out-of-time
OLS 0.0000 0.1336 0.1726
RF 0.0000 0.1745 0.2089

Table 4.9: Classification results of classifying according to Equation (4.7), considering
exclusively classification probabilities below 25% or above 75%. The classification error
is calculated according to Equation (4.13). We use random forest classification in each
case. The incorporated estimates of asset-related loss given default (ALGD) and mis-
cellaneous LGD (MLGD) from step one of our approach are estimated by ordinary least
squares (OLS) and random forest (RF) regression. The table summarizes the results of
the three validation techniques: in-sample, out-of-sample, and out-of-time.

biguous cases, we present the classification results for contracts with classification

probability below 25% or above 75% in Table 4.9. As expected, we note that

the classification error decreases consistently. In particular, regarding OLS we

note significantly lower classification errors of about 13% out-of-sample and 17%

out-of-time. Consequently, for these contracts the classification is clearly more

reliable and seems to be suited for practical use.

4.3.5 Interpretation

The previously discussed results clearly show the benefit of our multi-step ap-

proach compared to direct LGD estimation in terms of the used performance

measurements. While the chosen measurements are convenient for precise com-

parison of the models, the scatter plots in Figure 4.5 provide an additional visual

proof of our findings. In particular, the figures allow for a more detailed analy-

sis than the aggregated measures MAE, MSE, or NAREC. In these figures the

perfect estimation of LGD would be located on the diagonal through the plot’s

origin. We draw two diagonal lines to frame a 0.5-wide interval around the perfect

estimation. The interval contains all estimates that are close to the realized LGD.

These are displayed as solid points.

The scatter plots in Figure 4.5 refer to OLS, but the outcomes are similar con-

cerning RF. According to Figure 4.5a, in-sample direct estimation produces a
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Figure 4.5: Visual comparison of realized and estimated loss given default (LGD). Fig-
ures a–c display direct OLS estimations in the in-sample, out-of-sample, and out-of-time
validation respectively. Out-of-sample we randomly choose and display one run out of
1,000. Out-of-time we plot estimates and realizations of LGD of one year. Figures d–f
show the counterparts of the multi-step approach. The simple diagonal lines frame a
0.5-wide interval to highlight estimates close to their realized value. Additionally, these
points are solid, whereas points outside the interval and, thus, far from their realized
LGD are hollow.

large number of accurate estimates. Nevertheless, the multi-step estimation in

Figure 4.5d generates a larger number of accurate estimates on the whole range

of realized LGD values. In particular, due to a downward shift in estimation, it is

visibly better than direct estimation for realized LGDs smaller than 0. Concern-

ing the out-of-sample estimates in Figures 4.5b and 4.5e, we also note that the

multi-step approach is again more accurate than direct estimation. To be precise,

we observe a significantly higher concentration of estimates within the drawn in-

terval for the multi-step model compared to direct estimation. This observation

is particularly true for realized LGDs larger than about 0.3. Moreover, again the

multi-step estimates tend to converge toward their realized value in general. The

outcomes of the out-of-time validation in Figures 4.5c and 4.5f show a similar

picture to that of in-sample and out-of-sample. Compared to direct estimation

the predictions of the multi-step approach move closer to the diagonal lines from
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outside the interval. The increased number of estimates within the drawn interval

indicates notably precise predictions for realized LGDs larger than 0.5.

For all three validation techniques the scatter plots in Figure 4.5 confirm that

the estimates of the multi-step approach tend to converge toward their realized

value. Therefore, the results of our performance measurements should not be

affected by outliers. In fact, the plots reflect the advantage of our multi-step

approach over direct estimation.

Our results in Section 4.3 and the scatter plots in Figure 4.5 clearly show that

the proposed multi-step approach outperforms direct estimation of the LGD. To

evaluate the results in the context of related literature, we summarize the results

of several studies in Table 4.10. Yao et al. (2015) argue that it is hard to compare

empirical results when using different data and information sets. Nevertheless,

they compare absolute values of R2 from selected literature on LGD prediction

performance. Instead of using absolute values we propose to examine the improve-

ment of the estimation accuracy of a model compared to OLS. Almost all related

studies use the latter as benchmark. For comparison, we focus on MAE, MSE, and

root mean squared error (RMSE). More precisely, in Table 4.10 we present the

improvement of a study’s best model compared to OLS regarding the respective

performance measurement for out-of-sample and out-of-time validation.

Across the performance measurements, the authors primarily achieve improve-

ments in the range from 2% to 10%. One major exception is Bastos (2013) with

improvements around 25%. This exceeding improvement of the estimation accu-

racy might be attributed to specific characteristics of the used data. The most

frequently reported performance measurement in the literature is MAE. Out-of-

sample our multi-step approach clearly achieves the highest MAE improvement

of the considered studies except for Bastos (2013). Concerning MSE or RMSE

particularly Bastos (2010) reports a promising increase in estimation accuracy
4Bastos (2010) uses the historical average as benchmark. Hence, the value reported is the
performance increase of RT compared to the historical average.



106 4 Loss given default-adjusted workout processes for leases

Study Data Best technique ∆MAE ∆MSE ∆RMSE
Out-of-sample validation
Bastos (2010) SME loans RT 6.94

Loterman et al. (2012) Types of loans SVM & NN 5.0
Zhang and Thomas (2012) Personal loans OLS 3.7
Bastos (2013) Loans & bonds RT ensemble 28.0 25.0
Hartmann-Wendels et al. (2014) Leases Model tree 5.5 0.8
This study Leases MS approach 7.8 6.5

Out-of-time validation
Bastos (2010) SME loans RT 6.74

This study Leases MS approach 2.3 6.2

Table 4.10: Comparison of performance improvements in loss given default estimation
literature. The table reports the percentage improvement of a study’s best model com-
pared to direct ordinary least squares (OLS) regression. The error measurements are:
mean absolute error (MAE); mean squared error (MSE); and root MSE (RMSE). The
techniques are: regression tree (RT); support vector machine (SVM); and neural net-
work (NN); two-step (TS) approach; and multi-step (MS) approach.

using regression trees. However, instead of OLS he uses the historical average

as benchmark. This outcome should be treated with caution. According to the

results of Hartmann-Wendels et al. (2014), OLS performs at least 3% better than

the historical average in terms of RMSE. Yashkir and Yashkir (2013) find a sim-

ilar deviation. Therefore, comparing the regression tree results of Bastos (2013)

with OLS, the improvement probably would not exceed 4%. Consequently, our

multi-step approach obtains also competitive results in terms of MSE and RMSE.

Currently, several studies report out-of-sample errors, but out-of-time results

are scarce. Hence, concerning the latter, we can hardly evaluate our multi-step

approach. Nevertheless, when we consider the benchmark used by Bastos (2010),

our multi-step approach seems to generate good out-of-time results. Moreover,

we emphasize that our multi-step approach can indeed perform better than direct

OLS out-of-time. As our results of the direct estimation with RF indicate, it is

not common that complex models that perform well out-of-sample also produce

stable and accurate out-of-time estimates.



4.4 Conclusion 107

4.4 Conclusion

The development of an appropriate and dynamic model for estimating LGD re-

quires the consideration of mathematical aspects and economic factors. For de-

faulted leasing contracts, we argue that detailed consideration of the revenues

during the workout process is a key driver to improve LGD forecasting accuracy.

Instead of the traditional holistic consideration of LGD, we separate LGD into

an asset-related and a miscellaneous share. This separation is economically rea-

sonable because, typically, cash flows have different sources. To account for the

different revenues at the time of contracts’ default, we estimate an asset-related

LGD (ALGD) and a miscellaneous LGD (MLGD).

Leasing companies are experts in evaluating and disposing of their leased as-

sets. The estimation of the ALGD takes this expertise into account. Moreover,

together with the estimated MLGD it provides decision support for actions to

be taken during the workout process. We show that ALGD is theoretically an

upper boundary to the LGD. Likewise, the estimation of MLGD yields economic

value. Its value indicates whether the effort of collecting overdue payments during

the workout process will be rewarding or rather unprofitable considering incurred

workout costs. Consequently, we present a guideline to organize the workout pro-

cess, i. e., in case workout costs are expected to exceed collected payments, the

workout process should be restricted to the disposal of the leased asset.

This finding is particularly interesting because cash flows from the asset’s dis-

posal are positive in 99% of the cases, net of disposal costs. However, for 35%

of the contracts, the collection of miscellaneous payments turns out to generate

losses due to the incurred costs. We find that following our suggestion to restrict

the workout process to the asset’s disposal in certain cases would reduce the aver-

age LGD significantly. With our data, the reduction of the average LGD amounts

to 10% or e 2,250,000 in absolute losses.
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Based on the sophisticated economic separation of the LGD we introduce a

new multi-step LGD estimation approach. We apply our approach to a real-life

dataset of a German leasing company and perform in-sample, out-of-sample, and

out-of-time validation. While the approach supports the workout process, we

find that the separation of LGD is very beneficial to its estimation accuracy. We

apply OLS and RF regression to our approach. With both methods, we note a

significant increase in estimation accuracy compared to the benchmarking results

of the respective direct estimation. The proposed multi-step approach is more

complex than direct estimation. However, the increase in complexity does not lead

to overfitting, which is a common concern of advanced LGD estimation models.

Nonetheless, the interpretability of the variables’ influence might suffer slightly.

However, to put it in Bastos (2013) words, it is often the case that simplicity has

to be sacrificed in order to achieve a higher degree of precision.
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This dissertation investigates different approaches to estimate the loss given de-

fault (LGD) of financial assets. In the first study, we analyze fundamental differ-

ences in parametric, semiparametric, and nonparametric estimation techniques.

The second work focuses on the recovery of defaulted lease contracts and its im-

pact on LGD. The final essay introduces a new approach to step-wisely estimate

LGD.

The key difference of parametric and nonparametric methods is their assump-

tion about the distribution of the underlying data. While the latter do not assume

any distribution, parametric methods are always based on a specific probability

distribution, such as normal or beta distribution. Concerning the found bimodal-

ity of LGD density, using a parametric approach for LGD estimation is theoret-

ically implausible. Finite mixture models focus on reproducing the distribution

of LGD. However, this focus is rather inefficient out-of-sample. In contrast,

nonparametric regression and model trees are not concerned with distribution ap-

proximation. Despite the unusual shape of the LGD distribution, these methods

produce particularly robust estimates on a low level of error. In order to realize

this superiority, we find that nonparametric methods, such as model trees, require

a large data and information base. On small datasets, however, parametric linear

regression turns out to be partially advantageous.

In a follow-up study, we examine contracts that defaulted at one time during

contract term but recovered later. This development is possible if the initial
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default reason is resolved. The opportunity to recover depends to a large extent on

the lender’s workout policy. Indeed, there are lenders who liquidate the collateral

and write-off contracts immediately after their default. However, we find empirical

evidence that recovered contracts yield significantly lower LGDs. The reason is

that after recovery, these contracts continue properly. Delayed or potentially

deferred payments, as well as new payment plans, cause the lender only small

losses if any. Moreover, when predicting the LGD, we account for this special

event of defaulted contracts and its counterpart, the write-off. Consequently,

we can explain a significantly higher portion of LGD’s variance than without

this information. Also, estimation of LGD becomes more accurate. Regarding

these results, we conclude that lenders would benefit from developing expertise

in dissolving the default of their debtors. They at least might want to assess

these contract’s continuation worthiness precisely. In any case, we find that the

distinction between recovered and written off contracts leads to lower errors in

LGD prediction.

Finally, we break with the traditional holistic consideration of LGD. By sep-

arating it into disjointed components, we account for the two major cash flow

sources in the workout process of defaulted leases. These sources are asset pro-

ceeds net of the incurred disposal costs and incoming cash flows from the lessee

and collateral net of collecting costs. Moreover, by calculating the asset-related

LGD, we determine a theoretical upper limit to the LGD. When forecasted, this

boundary is an important decision-making factor concerning the actions the lessor

should take during the workout process. The developed multi-step approach esti-

mates the LGD components, accounts for the determined limit, and it uses these

factors to predict LGD. We find that this approach is beneficial to the estimation

accuracy, independent of the concrete estimation models. This result even holds

in the ultimate out-of-time validation.
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