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Abstract

We study cells in generalised Bott-Samelson varieties for types A,, and C,,. These
cells are parametrised by certain galleries in the affine building. In type C,, we define
a set of readable galleries - we show that the closure in the affine Grassmannian of the
image of the cell associated to a gallery in this set is an MV cycle. This then defines a
map from the set of readable galleries to the set of MV cycles, which we show to be a
morphism of crystals. In type A,, we show that the existing map between all galleries
and MV cycles is a crystal morphism. This builds on results of Gaussent-Littelmann,
Baumann-Gaussent, and Gaussent-Nguyen-Littelmann. In the last chapter we prove
for some cases a conjecture of Naito-Sagaki on the branching of representations from
sl(2n,C) to sp(2n,C).

Kurzusammenfassung

In dieser Arbeit untersuchen wir Zellen in verallgemeinerten Bott-Samelson Va-
rietaten in Typ A,, und C,,. Diese Zellen werden von bestimmten Galerien im affinem
Gebaude parametrisiert. Fiir den Typ C,, definieren wir eine Menge von lesbaren
Galerien - wir zeigen, dass der Abschluss des Bildes einer Zelle assoziiert zu eine
Galerie aus diese Menge einen MV Zykel in der affiner Grassmanschen bildet. Auf
diese Weise bekommen wir eine Abbildung von der Menge der lesbaren Galerien
in die Menge der MV Zykel und beweisen, dass diese Abbildung ein Morphsiums
von Kristallen ist. Im Typ A, zeigen wir, dass die bereits bekannte Abbildung
von allen Galerien in die MV Zykel auch ein Kristallmorphismus ist. Dies baut
auf Resultate von Gaussent-Littelmann, Baumann-Gaussent und Gaussent-Nguyen-
Littelmann auf. Im letzten Kapitel beweisen wir in gewissen Spezialfallen eine Ver-
mutung von Naito-Sagaki iiber das Zerlegungsverhalten von Einschrénkungen von
s[(2n, C)-Darstellungen auf sp(2n, C).
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Introduction

Summary and main results

There is a beautiful description of Bott-Samelson resolutions of singularities of
Schubert varieties as sets of galleries of a certain fixed type in the associated dual
building, originally introduced by Contou-Carrere in [3] for buildings of spherical
type, and generalised to buildings of affine type by Gaussent-Littelmann in [6].
Generalised Schubert varieties are parametrised by dominant weights, and the type
associated to a Bott-Samelson resolution corresponds to a piecewise linear path in
the weight lattice contained in the fundamental alcove. There is a natural action of
root operators on the set of galleries given by Littelmann, originally for paths, in
[20]. The induced crystal structure gives rise to the concept of plactic equivalence.
Two galleries are plactic equivalent if and only if there is a crystal isomorphism
between the connected components in which they lie that maps one of them to the
other. The plactic monoid ([21]) is defined to be the set of equivalence classes with
multiplication given by concatenation.

For classical groups of types A,, B, and C,, a type in the above sense corre-
sponds to the shape of a key - a class of combinatorial objects that generalise Young
tableaux in the sense that their shape is not necessarily the shape of a partition. For
type C,, Lecouvey has described the corresponding ‘symplectic plactic monoid” in
an explicit way ([18]). In this case we call galleries ‘symplectic keys,” and we define a
certain subset of these, which we call readable keys, and which are discussed below.
This is relevant to this thesis in the following setting.

Let G be a complex reductive group and T ¢ B ¢ G a choice of maximal torus
T and Borel subgroup B of G containing it. Let A be a dominant integral coweight
with respect to this choice, and let X, c G be the corresponding generalised Schubert
variety contained in the affine Grassmannian G associated to G. Let GV be the group

that is Langlands dual to G. Given a type ¢ denote by %; 5 X, the Bott-Samelson
resolution of this type. There is a one-to-one correspondence between T-fixed points
in ¥; and galleries of type ¢. There is an induced C*-action on the variety ¥; with
the same fixed points as the T-action, which allows one to consider a Biatynicki-
Birula cell C,, for any gallery 7 of type i. The following theorem is the main result
that we show in this thesis.

THEOREM A. ([29], cf. Proposition 3.10, Proposition 3.24, Theorem 3.26 in
Chapter 3) Let G¥ = Sp(2n,C), and let v and v be two plactic equivalent readable
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keys of types i, and i, respectively. Then m; (C,) = m (C,) as sets in the affine
Grassmannian G.

By results of Gaussent-Littelmann ([6]) this implies that the image closure 7(C,)
is always a Mirkovié¢-Vilonen cycle as long as v is a readable key. The set of Mirkovi¢-
Vilonen cycles introduced by Mirkovié and Vilonen in [22] has been given a crystal
structure by Braverman and Gaitsgory in [2]. Using results obtained by Baumann
and Gaussent in [1] one deduces that the map established by the above theorem is
in fact compatible with this crystal structure.

THEOREM B. (cf. Theorem 3.26) Given a readable gallery v, the image closure
7m(C,) is a Mirkovi¢-Vilonen cycle. Moreover, the map defined by v ~ 7(C,) from
the set of readable galleries to the set of all Mirkovié-Vilonen cycles is a surjective
morphism of crystals.

For GY = SL(n,C) the fact that word reading is a crystal morphism for all keys
together with results obtained by Gaussent-Littelmann-Nguyen in [8] enables one
to prove the following result.

THEOREM C. ([30], cf. Theorem 2.21) The map from the set of all keys to the
set of Mirkovié-Vilonen cycles established in [8] is a surjective morphism of crystals
for G¥ = SL(n,C).

We also compute the fibers of this map in terms of the Littelmann path model (in
both cases). See the next section of this introduction for a more detailed description
of this.

The last chapter of this thesis is almost independent from the first three. Chapter
4 should be seen as the beginning of a new project. Let us switch to Lie algebras here,
and consider the complex semi-simple Lie algebra g = s[(2n,C). The automorphism
of the Dynkin diagram

1 n-1 n n+1 2n-1

that sends node ¢ to node 2n — ¢ induces an automorphism of g which has as fixed
point set a Lie sub algebra @ isomorphic to sp(2n,C). If h c g is the Cartan
subalgebra of diagonal matrices, then h=hngis a Cartan sub algebra of §. Given
a path m we may define a new path res(7) which may or may not be dominant for
8. In this Chapter we show the following conjecture by Naito-Sagaki [23], for n = 2
and for A = ajw; + asws + asws and arbitrary n. To do so we use combinatorics of
Littlewood-Richardson and Sundaram symplectic tableaux.

CONJECTURE. Let A be a dominant integral weight and L(\) the associated
irreducible representation of sl(n,C). Let domres(\) be the set of restricted paths
res(7) where 7 is the path that corresponds to a semi-standard Young tableau of
shape ), which stay dominant for 8. Then

s L)) = @ Lius).

dedomres(\)
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THEOREM D. The above conjecture is true for n = 2 and for \ = a;wy +asws+asws
and arbitrary n.

Motivational background

The reader is perhaps familiar with some highest weight theory - given a complex
connected semi-simple algebraic group G, once a choice of a maximal torus T c G
is made (for example if G = SL(n,C) then a possible choice for T is the set of all
diagonal matrices in G), then any irreducible representation L can be decomposed
as a direct sum

L=@L, (1)

of spaces L, on which the torus T acts by a character x : T — C*. The choice of
a Borel subgroup T c B ¢ G (for example, upper diagonal matrices in GL(n,C))
determines a choice of positive roots &+ (recall that roots arise as the characters when
considering the adjoint representation). This choice of positive roots determines a
partial order on this set of characters (they are also known as weights) that is defined
by

A2 = A-—pu= Zaaa
aedt
for a, € Zso and for characters A, p € X := Hom(T,C*). With respect to this partial
order, there is always one weight (cf. (1)) that is the largest, or the highest. This
weight determines the irreducible representation up to isomorphism. The represen-
tation L is then denoted by L(\), where A indicates the highest weight.

To L(\) is associated the crystal graph B(\), which is a “combinatorial model”
of L(A) in the following sense:

e The vertices of B(\) correspond to basis vectors for an associated repre-
sentation [,(\) of the quantum group U,(g), where g is the Lie algebra of

G.
e The (coloured) arrows mimic the action of the Chevalley generators e,, and
fa, of g (these are tagged by simple roots A = {ay, -, a} c P+ ie {1, k}).
Sometimes a particular construction of this crystal leads to a better understanding
of certain aspects of the representation L(A). The first chapters of this thesis are

part of a project whose aim is to study the relationship between two constructions
of this crystal for the groups SL(n,C) and SP(2n,C).

One is the Littelmann path model, which is purely combinatorial. To construct
B(A), one first considers a path 7 : [0,1] - X ®; R with image contained in the
dominant Weyl chamber (usually called dominant), with starting point 7(0) = 0 the
origin and endpoint 7(1) = A the highest weight. This may be any such path, but in
this thesis we will only consider paths whose image is contained in the one-skeleton
of the associated affine Coxeter complex, which has all of its faces contained in

11



FIGURE 1. A path 7 for G = SL(3,C). The one-skeleton is denoted
by grey dotted lines.

X ®z R. Recall that this affine Coxeter complex is associated to affine Weyl group
Weff that is generated by the affine reflections s,v , (which act on the space X®zR)
with respect to the hyperplanes

Ham) = (zeX @z R (v,0") =1},

for coroots a € ®V, and where (-, —) is the natural pairing between X and the
cocharacter lattice XV, which contains the set of coroots ®V. The simplices, or faces,
of this complex are intersections of the form

F — m Hean

oV
(a,n)edcn 7 (@)

where e, € {&,+, -},

Hzrav,n) - {SL’ eXozR: (U7av) 2
HZaV,n) - {$ eXezR: <U7av> <

H(Qav,n) = H(O‘v»")'

}, and

The one-skeleton is the union of all one dimensional faces.

To construct the crystal B(\) one needs to apply the root operators f,, successively.
These are defined via certain folding operations on paths, which are obtained by con-
sidering certain positive or negative crossings, with respect to the upper or lower
half spaces Havvn). See Chapter 1, Section 2 for a formal definition of a crystal and

for the definition of the root operators. The vertices of B(\) are given by the paths
fa;,*+fa;, ™ and the coloured arrows join two paths which can be obtained from each
other by applying a root operator.

fou
*—e
ud faiﬂ'l
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The resulting crystal is always isomorphic to B(\) provided the original path 7 is
dominant [20].

Using his model, Littelmann was able to prove formulas for the decomposition into
irreducible summands of the tensor product L(\) ® L(v) of two irreducible repre-
sentations L(A) and L(v) as well as of the restriction of L(\) to a Levi subgroup of
G, both in terms of paths [20], [19] .

Let O = C[[t]] and £ = C((¢)). The other construction of B()\) that is rel-
evant to this thesis is given by a certain set of Mirkovié-Vilonen (or MV) cycles,
which arise in the context of the Geometric Satake equivalence [22], an equivalence
of monoidal categories between the category Pervg(o)(G) of G(O)-equivariant per-
verse sheaves on the affine Grassmannian G = G(K)/G(O) associated to G, and
rep(GY), the category of finite-dimensional representations of GV, the Langlands
dual of G. Here G(R) denotes the R-points of G for some C-algebra R. Recall that
reductive groups are determined by their root data - if (X, XV, ®,®V) is the root
datum associated to G, then GV is defined by the dual root datum (XV,X, ®V, ®).
The coweight lattice XV can be identified with the quotient T(K)/T(O) (for exam-
ple, C*(K)/C*(O) = Z), which is embedded into G. The affine Grassmannian is a
projective ind-variety, which means that it is the direct limit of projective varieties,
where all the maps are closed immersions [15].

The G(O)-orbits in G are parametrised by A € XV»*, just as are the irreducible
representations of GV. Each orbit G(O)A is finite-dimensional of dimension (p,2A),
where p is the half sum of all positive roots. Its closure

X, = G(O)A

is a projective algebraic variety. The equivariant intersection cohomology complexes
IC* over X, are the simple objects in the semi-simple category Pervg0y(G). The
equivalence is defined by the hypercohomology functor H* : Pervg(o)(G) - Modc,
which assigns to IC* a space which is then identified with L(A). The grading is
defined by considering the Iwasawa decomposition

Gg= U UK
veXV
of G into U(K)-orbits (U is the unipotent radical of B - for example, if B is the
set of all upper-triangular matrices in GL(n,C), then U consists of upper-triangular
matrices with 1’s on the diagonal) which are parametrised by the whole lattice XV.
The intersection

U(K)pn G(O)A (2)

is non-empty if p € X, which means that it is Weyl group conjugate to a dominant
coweight n < A ([22], Theorem 3.2). The geometric Satake equivalence implies that
the number of irreducible components of the closure

13



U(K)n G(O)A

is dim(L(\),) ([22], Corollary 7.4). Let Z(\), be the set consisting of these irre-
ducible components, and let

2N =UzW)
HEX
This set was endowed with the structure of a crystal in [2], using a certain decompo-
sition with respect to a parabolic subgroup, which relates the aforementioned orbits
in G with the orbits for a smaller affine Grassmannian associated to a Levi subgroup
of G (see Section 3.2 of [2]).

There is a connection between these two constructions given by the affine building
Jff associated to G. The building [24] J// is a polysimplicial complex, which in
particular means that it is a union of Coxeter complexes, called apartments, each
of which is isomorphic to the Coxeter complex associated to the affine Weyl group
Welf. Paths 7 :[0,1] > XY ®z R contained in the one-skeleton are interpreted as
combinatorial one-skeleton galleries, which are sequences of vertices and edges in
the standard apartment of Je'f. For simplicity, we call them simply “galleries”.
The explicit connection is given by a Bott-Samelson type desingularization

¥y — Xy,

of the generalised Schubert variety X, which depends on a weight decomposition A
of A - this determines a combinatorial gallery! For example, for n > 3, the decom-
position

)\=w1+2w2=w2+w1+w2

(where w; denotes the i —th fundamental coweight) defines the gallery ~, defined by
the following sequence of vertices (see Chapter 1, Section 1.3)

(0, wa, wy + wa, wy + 2wo).

The group G(K) acts on the affine building J%/f - we may consider the stabiliser
Py of a face F. For this example the Bott-Samelson variety X, is defined, as a set,
by the following quotient

ZA = PO X ng X Pw1+w2/P[o,w2] X P[wg,w1+w2] X P[w1+w2,w1+2w2]

where (see Definition 1.4 for a general definition of X))

(Po, p1,12) - (90, 1, 92) = (qoPo, Py @1p1, D1 G2p2)-

The reason that X, is a projective algebraic variety is that G(O) has the structure
of a pro-algebraic group. In this case this means in particular that the G(O)-orbits
in J7/ are also finite-dimensional. There is a C*-action on X, that is induced by

14



left multiplication by T on the first coordinate. With respect to this action, com-
binatorial galleries of a certain type (see Definition 1.4) are identified with C*-fixed
points in 3, (see Chapter 1, Section 1.4). Thus, to each such gallery ¢ corresponds
a Bialynicki-Birula cell

C(;:{pGZA:%in&t-p=5}

of dimension

dim(Cs) < {p, A + u5),

where 5 is the last vertex of §. The project began in [6] for galleries of alcoves, (and
subsequently in [7] for one-skeleton galleries) where Gaussent-Littelmann showed

that if the cell Cs has maximal dimension (p, A + ps) then 7(Cs) is an MV cycle
Z(AN)us € Z(A). This assignment was then shown to be a crystal isomorphism [1]
by Baumann-Gaussent. The galleries § whose cell Cs has maximal dimension are
called LS galleries, which is short for “Lakshmibai Seshadri” galleries. These were
the first galleries to be considered (interpreted as paths) in [17] and [19] . In this
thesis we will work with more combinatorial definitions of LS galleries (cf. Chapters
1-3).

Main results in Chapters 1-3
What if the gallery ¢ is not LS?

In [8] Gaussent-Nguyen-Littelmann solved this problem for G¥ = SL(n,C), using
their previous results and the combinatorics of Young tableaux. They showed that

in this case m(Cs) is an MV cycle for any combinatorial gallery 6. In Chapter 2,
Theorem 2.21 we extend this theorem and show that for GV = SL(n, C), the map

- @ 2

AeXVit

0 71'(05)

(we denote the set of all combinatorial galleries by I') is a surjective morphism of
crystals, which restricts to an isomorphism on each connected component of I' (cf.
Theorem C). We also compute its fibres in terms of the Littelmann path model -
the number of connected components in the pre-image of Z(\) is the number of
dominant combinatorial galleries in I" with endpoint the coweight .

In general (see Definition 1.4), the Bott-Samelson variety . s 5 G is defined for
any combinatorial gallery v of the same type as a combinatorial gallery v/ con-
tained in the fundamental alcove (cf. Lemma 1.3). In Chapter 3 we consider
GY = SP(2n,C). Here there exist combinatorial galleries § for which the closure
m(Cs) is not an MV cycle - see Chapter 3, Section 5. We define, however, a subset
'R c T of readable galleries - let § € 'R be a readable gallery, and let 6+ be the

15



highest weight vertex of the crystal component that ¢ lies in. Then we show (cf.
Theorem B, Theorem 3.26) that 7(Cs) is an MV cycle in Z(us+) and that

™ — @ Z(us+)

Jel'R
0~ 1(Cs)

is a surjective morphism of crystals. As in the case of SL(n,C), we compute its
fibers in terms of the Littelmann path model.

Methods. As was briefly mentioned in the last section, in [8], Gaussent-Nguyen-
Littelmann use the combinatorics of Young tableaux; they relate them to the affine
Grassmannian using the well-known Chevalley relations (see Chapter 1, (4)). We
build on their methods for GV = SL(n,C), and for G¥ = SP(2n,C) which are very
similar in spirit. Two galleries v and § are equivalent if they lie in the same place of
the connected crystal they belong to. For example, all dominant galleries with the
same endpoint are equivalent. Further, any gallery is equivalent to an LS gallery.
The method is then to show that if two readable galleries v and ¢ are equivalent,
then

7(C,) = (Cs).

This is where combinatorics of tableaux and words come into play. The main point
is to view galleries or paths as tableaux, or more generally keys or readable keys, for
GV =SL(n,C) and GY = SP(n,C), respectively. To see how, see Chapter 2, Section
2.2 and Chapter 3, Section 1.3. To each key or readable key ¢ is associated a word
w(d), which is also regarded as a gallery in a natural way. Equivalence of these word
galleries is expressed very precisely in these cases via the plactic monoid

P =Wl ~

and the symplectic plactic monoid

Pe, =We, [ ~

which are quotients on the word monoids on the alphabets A, = {1,--,;n} and
C,={1,+,n,n,-, 1}, by the relations given in Definitions 2.6 and 3.18, respectively.
These monoids are formed exactly by the equivalence classes of all keys / readable
keys in the sense that any word in these alphabets is in the same equivalence class
as the word of an LS key.

The technique is to use the results by Gaussent-Littelmann and Baumann-Gaussent
and to follow the following steps, which are carried out in Chapter 2 and Chapter
3, in order to show Theorem 2.21 and Theorem 3.26:

(1) Show that 7(Cs) = 7'(Cys))-
(2) Show that if v and § are equivalent, then w(7y) and w(J) are in the same
conjugacy class in their corresponding plactic/ symplectic plactic monoid.

16



(3) Show that if two words w; and wy are in the same conjugacy class, then

7T(Cwl) = 7T/(Cw2)-

Organization

This thesis is organised in five chapters.

In Chapter 1, preliminary information on the affine Grassmannian and the
affine building is provided, with some examples and some proofs. In Chapter 2
we treat the case GY = SL(n,C) and its combinatorics. In Chapter 3 we do the
same for G¥ = SP(2n,C) - this is the longest chapter of this thesis, as the proofs in
Section 4 are quite involved. In Chapter 4 we introduce the Naito-Sagaki conjecture
together with the proof for the cases we have already mentioned, and in Chapter
5 (the appendix) we provide a technical result that we need in Chapter 3, and we
fix a small mistake from [8].
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CHAPTER 1

Buildings and the affine Grassmannian

1. Preliminaries

Let G be the complex connected reductive algebraic group associated to a root
datum (X, XV, ®,dV). We denote its Langlands dual by GY - it is the complex
connected reductive algebraic group with root datum (XV, X, ®v, ®). Let T c G be
a maximal torus of G with character group X = Hom(T,C*) and cocharacter group
XY = Hom(C*, T). We identify the Weyl group W with the quotient Ng(T)/T, where
Ng(T) is the normaliser of T in G, and will make abuse of notation by denoting a
representative in Ng(T) of an element w € W in the Weyl group by the same symbol
that we use to denote the element itself. We fix a choice of positive roots &+ c ®
(this determines a set ®V:* of positive coroots), and denote the dominance order on
X and XV determined by this choice by ‘<’. Namely:

A— € ZOF if \eXand peX
A—peZ®V+ if Ae XV and pe XV,

Let A = {a;}icq1,.ny © ©* be the set of simple roots of ®*. Then the set AV =
{Oéiv}ie{L.-.,n} of all coroots of elements of A forms a basis of the root system ®V. Let
(-, —) be the non-degenerate pairing between X and XV, and denote half the sum of
positive roots (respectively coroots) by p (respectively by pV). If A =¥ canaq is a
sum of positive roots (respectively A = 3 veavnaaY) then (X, pV) = ¥ cana (respec-
tively (p> )‘> = ZaVeAVna)'

Let B c¢ G be the Borel subgroup of G containing T that is determined by the
choice of positive roots ®*, and let U c B be its unipotent radical. The group U is
generated by the elements U, (b) for be C and « € &*, where for each root «, U, is
the one-parameter group that it determines. For each cocharacter A € XV and each
non-zero complex number a € C* we denote by a* its image \(a) € T.

The following identities hold in G (See §6 in [26]):
(1) For any Ae XV, a e C*,beC,a € D,
U, (D) = Uy (al*Mb)a (3)

(2) (Chevalley’s commutator formula) Given linearly independent roots , 3 € ®
and integers i and j such that ia + jf3, there exist non-zero numbers c;’;
such that, for all a,b € C:

Ua(0)'Us(a) " Ua(d)Us(a) = [T Uiarjs(cils(-a)'d?) (4)

i,j€Z>0
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where the product is taken in some fixed order. The cij 5’5 are integers
depending on «, 8, and on the chosen order in the product.

1.1. Affine Grassmannians. Let O = C[[¢]] denote the ring of complex formal
power series and let IC = C((¢)) denote its field of fractions; it is the field of complex
Laurent power series. For any C-algebra R, denote by G(R) the set of R-valued
points. The set

g =G(K)/G(0)

is called the affine Grassmannian associated to G. We will denote the class in
G of an element g € G(K) by [g]. A coweight A\ : C* - T c G determines a point
t* € G(K) and hence a class [t*] € G. This map is injective, and we may therefore
consider XV as a subset of G.

G(O)-orbits in G are determined by the Cartan decomposition:

G= || GO)[t].

AeX Vo
Each G(O)-orbit has the structure of an algebraic variety induced from the pro-

group structure of G(QO) (this is built in to the definition of a pro-group - see
Definitions 4.4.1 in [15]) and it is known that for A e XV:*:

GO = ] GO)"]
peXVot us A
We call the closure G(O)[t*] a generalised Schubert variety and we denote it
by X,. This variety is usually singular. In Section 1.4 of this chapter we will review
certain resolutions of singularities of it.

The U(K)-orbits are given by the Iwasawa decomposition:

G= ] U]

AeXV

These orbits are ind-varieties, and their closures can be described as follows (see
[22], Proposition 3.1 a.):

U] = JUr)[#]

759
for any A € X.

1.2. MV Cycles and Crystals. Let A € XV and p € XY be a dominant
integral coweight and any coweight, respectively. Then by Theorem 3.2 a in [22],
the intersection

U()[#] n G(O)[t"]
is non-empty if and only if p < A; in that case its closure is pure dimensional of
dimension (p, A + ) and has the same number of irreducible components as the di-
mension of the p-weight space L(\),, of the irreducible representation L(A) of GV of
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highest weight A (this is Corollary 7.4 in [22]). Note that this makes sense because
XY may be identified with the character group of a maximal torus of GV. Explicitly,
XV 2 Hom(TV,C*), where TV is the Langlands dual of T, which is a maximal torus
of GV (see Section 7 in [22]).

We denote the set of all irreducible components of a given topological space Y
by Irr(Y). Consider the sets
Z(N), =Irr(U(K)[t#] n G(O)[t*]) and
zZ(N) = 20N,

peXv

The elements of these sets are called MV cycles. In [2], Section 3.3, Braverman and
Gaitsgory have endowed the set Z(\) with a crystal structure and have shown the
existence of an isomorphism of crystals B(A) = Z (). We will not use the definition

of this crystal structure, but we denote by ﬁ (respectively &;) the corresponding root
operators for i € {1,---,n}, where n is the rank of the root system .

1.3. Galleries in the Affine Building. Let 7%/ be the affine building asso-
ciated to G and K. It is a union of simplicial complexes called apartments, each of
which is isomorphic to the Coxeter complex of the same type as the extended Dynkin
diagram associated to G. See Chapters 9 and 10 in [24] for detailed information on
affine buildings. The affine Grassmannian G can be G(K)-equivariantly embedded
into the building J//, which also carries a G(K)-action. Denote by ®*f the set of
real affine roots associated to ®; we identify it with the set

P = d x Z.
Let A = XV ®zR. For each (a,n) € ®* consider the associated hyperplane

Hion) ={zeA:(a,z)=n}

and the positive, respectively negative half spaces

Hi, = {reA:{a,z) 2 n}
Hi, = {reA:{a,z) <n}.

Denote by We// the affine Weyl group generated by all the affine reflections s,
with respect to the affine hyperplanes H, ). We have an embedding W — Wa/f
given by s, = S(4,0)- The dominant Weyl chamber is the set

Cr={reA:{a,z) >0 VaeA}

and the fundamental alcove is in turn

Al ={zeC":{a,r) <1Vaed'}.

There is a unique apartment in the affine building [J%/f that contains the image
of the set of coweights XV ¢ G under the embedding G = J%ff. This apartment
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is isomorphic to the affine Coxeter complex associated to Wae//; its faces are given
by all possible intersections of the hyperplanes H, ) and their associated (closed)
positive and negative half-spaces Hfmn). It is called the standard apartment in
the affine building J*f/. The action of W/ on the affine building J%/f coincides,
when restricted to the standard apartment, with the one induced by the natural
action of Weff on A; the fundamental alcove is a fundamental domain for the latter.

To each real affine root (v, n) € ®¢/7 is attached the one-parameter additive root
subgroup U,y of G(K) defined by b = U,(bt") for be C. Let A e XV and be C.
Then identity (3) implies that:

Uty (0)[t1] = [Ua(0t")81] = [ Ua (bt *M)], ()

and
[tAU4 (bt *M)] = [¢*] if and only if U, (bt" (M) € G(0),

or, equivalently, (o, A\) < n. Hence, the root subgroup U, stabilises the point
[t*"] € G = T/ if and only if \ € H(‘a n)" For each face F in the standard apartment,
denote by Pp,Up and W&/ its stabilizer in G(K), U(K) and Wa/f respectively.
These subgroups are generated by the torus T and the root subgroups U, ) such
that F c H(‘a ) the root subgroups U, ) ¢ P such that a € ®*, and those affine

reflections s(q ) € We// such that F c H, ), respectively. See [6], Section 3.3, Ex-
ample 3, and Proposition 5.1 (ii) in [1].

EXAMPLE 1.1. Let GY = SP(4,C), then ®* = {ay, s, a1 + a9, a1 + 20 }. In the

picture below the shaded region is the upper halfspace Hzfaz 0)° Let F be the face in

the standard apartment that joins the vertices —(ay + ap) and —ay.

The subgroup Py is generated by the root subgroups associated to the following real
roots
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(ar,n) n>-1
(ag,n) n>1
(a1 +ag,n) n>-1
(a1 +2a9,m) n >0
(—aq,n) n>2
(—ag,m) n >0
(-(a1+az),n)n>1
(=(a1 +2ag,n)) n>1

The stabiliser Uy is generated by the root subgroups associated to those previously
stated roots («,n) such that « € ®* is a positive root, and

ngf = {3(a1+a2,—1)7 1}

A gallery is a sequence of faces in the affine building J*f/

Y= (V0:07E07V17"'7Ek>vk+1) (6)
such that:

1. For each i € {1,---,k}, V; cE; o V,.

2. Each face labelled V; has dimension zero (is a vertex) and each face labelled
E; has dimension one (is an edge). In particular, each face in the sequence
v is contained in the one-skeleton of the standard apartment.

3. The last vertex Vi, is a special vertex: its stabiliser in the affine Weyl
group Wef/ is isomorphic to the finite Weyl group W associated to G.

Denote all the set of all galleries in the affine building by 3. If in addition each face in
the sequence belongs to the standard apartment, then v is called a combinatorial
gallery. We will denote the set of all combinatorial galleries in the affine building
by I'. In this case, the third condition is equivalent to requiring the last vertex Vi,
to be a coweight. From now on, if 7 is a combinatorial gallery we will denote the
coweight corresponding to its final vertex by g, in order to distinguish it from the
vertex.

REMARK 1.2. The galleries we defined above are actually called one-skeleton
galleries in the literature [7]. The word ‘gallery’ was originally used to describe
a more general class of face sequences but since we only work with one-skeleton
galleries in this paper, we have chosen to leave the word ‘one-skeleton’ out.

1.4. Bott-Samelson varieties. Let v be a combinatorial gallery (notation as
above). The following lemma can be obtained from Lemma 4.8 and Definition 4.6
in [7], but we provide a proof nevertheless.

LEMMA 1.3. For each j € {1, k} there exist elements w, € W?/’;f and a unique
combinatorial gallery Z
ryf = (ngE(J;JV{J"'7V]J:+1)
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with each one of its faces is contained in the fundamental alcove such that
wo-w, B = E,..

PROOF. By induction on j. Let wy € Wg/;  be an element in W/ such that
wy'Ey is contained in the fundamental alcove. Define Eg = wy'Eg. Now let j < k; for
i€{0,-,j—1} let w;, E{ , and sz be the Weyl group elements, respectively the faces
of the fundamental alcove such that (Vg =0, Eg ,V{ L E{_l,\/f ) is a combinatorial
gallery and such that w0~~-wiElf = E;. Define w; to be the unique element in Wf/’;f
such that

w;lw;_ll---wglEj = E{
is contained in the fundamental alcove. This completes the proof by induction. [J

If two galleries have the same associated gallery we say that the two galleries
have the same type. We will denote the set of all the combinatorial galleries that
have the same type as a given combinatorial gallery v by I'(y). The map

Wl Wil - T () (7)
(w07"'7wk) g (v()awOEOaw0v17w0w1E17“'7wO"'kak+1) (8)

induces a bijection between I'(y) and the set [];_, W‘\’,f f /ng 7 This implies that
the set I'(7y) it is in particular finite. For a proof see Lemma 4.8 in [7].

DEFINITION 1.4. The Bott-Samelson variety of type v/ is the quotient of
G(0O) x PV{ X oee X PV],:
by the following left action of Py x -+ x Ppr:
0 k

(Po, P1, k) - (Gos -+ qk) = (qoPo, P @11, s D1 QhP) -
We will denote it by ..

The pro-group structure of the groups Py s, Ps assures that 3r is in fact a smooth

vl
variety. To each point (go,--, gr) € G(O) x Py x -+ x Py,r one can associate a gallery
1 k

(V8. 90ES, 90V, 01 VL, gor--0k Vi, )-

This induces a well defined injective map 7 : Xy < X; we call the elements in the
image i(X,s) galleries of type /. With respect to this identification, T-fixed
points in X, ; are in natural bijection with the set I'(7/) of combinatorial galleries
of type /.

Let w € A be a fundamental coweight. We consider the following combinatorial
gallery, which starts at 0 and ends at w. Let V{,---, V¥ be the vertices in the standard
apartment that lie on the open line segment joining 0 and w, numbered such that
V¢, lies on the open line segment joining V¥ and w. We denote by E¢ denote the

face contained in A that contains the vertices V¥ and V¥,,. The gallery

_ _ VW Fw VJw RFw w VW _
’yw_(O_VO7 0> V1,155 k7vk+1_w)
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is called a fundamental gallery. Galleries of the same type as a fundamental
gallery ~,, will be called galleries of fundamental type w.

Now let A € XV* be a dominant integral coweight and v, a gallery with endpoint
the coweight A and such that it is a concatenation of fundamental galleries, where
concatenation of two combinatorial galleries v, * 75 is defined by translating the
second one to the endpoint of the first one. Then the map

B, = Xa (9)
(90, 9r] = go---gr [t ]

is a resolution of singularities of the generalised Schubert variety X,.

REMARK 1.5. That the above map is in fact a resolution of singularities is due to
the fact that a gallery such as the one considered is minimal (see [7], Section 5 and
Section 4.3, Proposition 3). This resembles the condition for usual Bott-Samelson
varieties associated to a reduced expression: see [6], Section 9, Proposition 7.

REMARK 1.6. The map (9) makes sense for any combinatorial gallery ~ : in this
generality one has a map X =G, g0, g [t"]

S —G (10)
[907 T g?"] g 90"'gr[tu”’f]

REMARK 1.7. Note that it follows from the definitions that if v, v are two galleries
of the same type as 9, respectively n, then v * v is of the same type as d 7. Actually,

if v =p %k, then T(y) = {6 % * 6, :6; € T'(y:) }.

1.5. Cells and positive crossings. Let 7., : J¢ - A be the retraction at
infinity (see Definition 8 in [6]). It extends to a map r.s : X.,; - I'(y/). The
cell Cy = r;}(é) (for § € T'(y/)) is explicitly described in [6] and [7] by Gaussent-
Littelmann and in [1] by Baumann-Gaussent. In this subsection we recollect their
results - we will need them later. Their results are formulated in terms of galleries
of the same type as a gallery 7, that is a concatenation of fundamental galleries; we
formulate them for any combinatorial gallery. The proofs remain the same but we
provide them nevertheless for the comfort of the reader.

First consider the subgroup U(K) of G(K). It is generated by the elements U, )(a)
for av € &t a positive root, a € C, and n € Z. Let V c E be a vertex and an edge
(respectively) in the standard apartment, the vertex contained in the edge. Consider
the subset of affine roots

iy gy ={(a,n)e P e Ve Hipp), Ei ¢ Hi,mt

and let Uy gy denote the subgroup of U(K) generated by U,y (a) for all (a,n) €
QDZV,E) and a € C. The following proposition will be very useful in Chapters 2 and 3.
It is stated and proven as Proposition 5.1 (ii) in [1].
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PROPOSITION 1.8. Let V c E be a vertex and an edge in the standard apartment
as above. Then Uy gy is a set of representatives for the right cosets of Ug in Uy.

Furthermore for any total order on the set ®2V7E), the map

10yl ¥

(ap)pear, ,, = [1 Us(as)

ng)zv,E)

is a bijection. The product on the right hand side is taken in the chosen order.

Now let v be a combinatorial gallery with notation as in (6). For each i € {1,---, k},
let U] = Uy, 1) For later use we fix the notation @] := &y, o .

ExXAMPLE 1.9. Let G¥ = SP(4,C) as in Example 1.1 and consider the funda-
mental gallery ,,,. Then Ug“l is generated by the root subgroups associated to the
real roots (ay,0), (aq + a9,0), (a1 + 2a2,0). If ¢ is the gallery with one edge and
endpoint ay, then Uj is generated by the groups associated to the roots (s, 0) and
(Ozl + 20&2, 0)

Har 0)H (a1 +a0,00H (01 4202,0)

Now write § = (Vo, Eq, -, E, Viy1) € T'(77) in terms of Definition 1.4 and Lemma
1.3 as 0 = [dg,, Ok ]. This means that 0; € sz;f and (50---(5jE§ = E;. A beautiful

exposition of the following description of the cell Cs can be found in [7].
THEOREM 1.10. Let 0 € I'(y/) as above. The map
U= U) x UG x - x UG 2> 5.
(ug, -+ ur) = [uodo, 0y w1801, ++, (So++-O_1) " updo*+0 ]
is injective and has image Cs.

PROOF. Let
U = ‘U'V0 X UVk/UEO X UEk

where

(bOa ) bk‘) : (UO7 T Uk-) = (vob07 balvlbla Ty bgllvk’bk‘)

The map

(va Y Uk) = [Ulv " Uk]
defines a bijection ¢ : U - {J. Indeed, by Proposition 4.17 (2) in [7], U? is a set of
representatives for right cosets of U, in Uy,, and hence for [ag, -, a;] € U there is
a unique (vo,--,vx) € U® such that (for some b; € Ug,) voby = ag,v;b; = bj_1a;, ie.
o((vo, -+, vx)) = [ao, -+, ar]. We use this bijection and consider instead the map

&:ongb—l :[[Aj—>2,yf,
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Fix [vg,-+,vx] € . The map & is well defined because (8o-0;-1) " v;(8o-+0;) € Py
and if b; € Ug, then (dg--6;)7b;(do---0;) € Uys. Since by Proposition 1 in [6] the
fibers of r., are U(K)-orbits, an element p = fpo, -, pr] € X7 belongs to Cs if and
only if there exist elements wug, -+, uy, € U(K) such that
po---ijf = u;E; and (11)
w1V =u; V. (12)
Define
Uy = vp and u; = vo*+-v;.

Then conditions (11) and (12) above hold for

pj = (800;-1) " w;(do--05).
Hence the image of the map is contained in the cell Cy. For the other inclusion, define
v; = uj! u; (see Proposition 4.19 in [7]). To show injectivity assume $([vo, -+, vx]) =
&([vh, -+, v]). Then there exist elements b; € Ug; such that vgv; = vg--vjb;, and

this implies injectivity.

The following corollary can be found in [8] as Corollary 3 for GY = SL(n,C).
Note that in particular it implies that um(Cs) = 7(Cy) for all u € Uy,.

COROLLARY 1.11. The following equality holds.
7(Cs) = Ug---Ui[t‘“‘] = Uy, Uy, [t"]
PrRoOOF. By Theorem 1.10 the image of the map
Uy, x = x Uy, = 5.y
(g, u,) = [uody, 0g u1dg0y, -+, g0, 2 1y Og+ -6, ]

is the cell Cs. The corollary follows since
00"+ 0jflys = Hhs- O

2. Crystal structure on combinatorial galleries, the Littelmann path
model, and Lakshmibai Seshadri galleries

Let A € X*V be a dominant integral coweight and let L()\) be the corresponding
simple module of G¥. To L(\) is associated a certain graph B()\) that is its “com-
binatorial model”. It is a connected highest weight crystal, which means that there
exists by € B(A) such that e,,by =0 for all 7 € {1,--,n —1}. The crystal B(\) also
has the characterising property that

dim(L(\),) = #{b € B(\) : wt(b) = pu}.

See below for the definitions. After recalling the notion of a crystal we review the
crystal structure on the set of all combinatorial galleries T'.
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2.1. Crystals. A crystal is a set B together with maps
€a;s fo, :B > BuU{0}(the root operators),
wt:B - XY( forie{l,---,n})

such that for every b,0' e B and i € {1,---,;n—1},b" =e,,(b) if and only if b = f,,(V'),
and, in this case, setting

€(0") = max{n: e} (b) #+ 0}

and
¢i(0") = max{n: f; (") # 0}

for any b € B, the following properties are satisfied.

(1) wt(V') = wt(b) + o

(2) ¢(b) = €i(b) + {as, wt(b))
A crystal is in particular a graph, which we may decompose into the disjoint union
of its connected components. Each element b € B lies in a unique connected compo-
nent which we will denote by Conn(b). A crystal morphism is a map F:B — B’
between the underlying sets of two crystals B and B’ such that wt(F (b)) = wt(b) and

such that it commutes with the action of the root operators. A crystal morphism is
an isomorphism if it is bijective.

2.2. Crystal structure on combinatorial galleries.

DEFINITION 1.12. For each i € {1,---,n} and each simple root «;, we recall the
definition of the root operators f,, and e,, on the set of combinatorial galleries I" and
endow the set of combinatorial galleries with a crystal structure. We follow Section
6 in [6] and Section 1 in [2]. We refer the reader to [12] for a detailed account of
the theory of crystals.

Let v = (Vo,Eq, V1, Eq, -+, Ex, Vii1) be a combinatorial gallery. Define wt(y) =
. Let mq, = m € Z be minimal such that V, € H,, m) for r € {1,-- k +1}. Note
that m <0.

Definition of f,;: Suppose (;, t1,) > m+1. Let j be maximal such that V; € H(q, m)
and let j <r <k +1 be minimal such that V, € Hiy, n1). Let

E; ifi<y
Ef=1S@,m(E:) ifj<i<r
t_ag(Ei) ifi>r
and define
Joi(7) = (Vo, Eg, VI, E - EL Vi),
If (v, pty) <m+1, then f,,(y) =0.

Definition of e,,: Suppose that m < -1. Let r be minimal such that the vertex
V, € Hio,m) and let 0 < j <r maximal such that V; € Hiy, m+1). Let
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E, if i<
Ef =1 s@imeny(By)  if j<i<r
tay (Es) ifi>r
and define
ea,(7) = (Vo, B, VI, Ef - Ef Vi)
If m =0 then e,, () :=0.

REMARK 1.13. It follows from the definitions that the maps e,,, f,, and wt
define a crystal structure on I'. Note as well that if v is a combinatorial gallery then
fa, () and e,, () are combinatorial galleries of the same type (as long as they are
not zero). We say that the root operators are type preserving. See also [6], Lemma
6.

2.3. The Littelmann path model and Lakshmibai Seshadri galleries.
Readable galleries. Let v be a combinatorial gallery that has each one of its faces
contained in the fundamental chamber. We call such galleries dominant. We will
denote the set of all dominant combinatorial galleries by I'¥°™ respectively '™ ()
the set of all dominant galleries of the same type as a given gallery . By succesively
applying the root operators to 7 one produces a crystal P(v). It is known as the
Littelmann path model of the representation L(A) of GY (by considering galleries
as piecewise linear paths in XV ®; R - see 2.3.2); it is isomorphic to the connected
crystal B(sy) (Theorem 7.1 in [20]). We say that a combinatorial gallery ~ is a
Littelmann gallery if there exist indices 71,4, such that e,, ---eq, (7) =" is
a dominant gallery. If ji.+ = ps+ and eq, €a,, (v) = Vi oy, Ca, (0) = d* for two
Littelmann galleries v and 6 we say that they are equivalent.

2.3.1. LS galleries. Let X\ = w;, + -+ +w;,,, € X¥'* be a dominant coweight and
YA = Ve, * 0 * Yy, the concatenation of the fundamental galleries Voo, in the cho-

sen order of the indices i;. ( Note that this is less general than the situation in
the preceding paragraph.) The set P(7,) defined above is the set of combinato-
rial LS galleries (short for Lakshmibai Seshadri galleries) of same type as 7,; we
will denote it by I'S(,). Littelmann galleries generalise LS galleries enormously.
In particular, all LS galleries are ‘Littelmann’ - see [20], Section 4. Moreover, the
set T'5(~,) is stable under the root operators and crystal isomorphic to B(A). It
was proven by Gaussent-Littelmann in [6] that the resolution in (9) induces a bi-
jection T'™S(vy) = Z(\) which was shown to be a crystal isomorphism in [1] by
Baumann-Gaussent. See Definition 18 in [6] for a geometric definition of LS gal-
leries, and Definition 23 in [6] for an equivalent combinatorial characterisation that
for one skeleton galleries agrees with the original definition by Lakshmibai, Musili,
and Seshadri (see for example [16]) in the context of standard monomial theory.
In Chapters 2 and 3 we recall a combinatorial characterisation of LS galleries of
fundamental type in the cases G¥ = SL(n,C) and G = SP(2n, C) respectively. We
therefore omit the more general original definition of LS galleries.

29



2.3.2. Relationship between galleries and paths. Galleries can be considered as
paths 7 :[0,1] - XV ®z R in the following way. For each fundamental coweight w
there is an associated path

7, :[0,1] > XV @z R
t > tw.
In this way fundamental galleries ,, are considered as paths 7,. Given two paths

71,79 : [0,1] > XY ®z R their concatenation my * 7o is defined as

1 o) = m(2t) ifo<t<1/2
PR T () s m(2t-1)  if1/2<t< 1.

More generally, a combinatorial gallery

Y= (VOaE()aVlaEly"'7Ek7Vk+1)

is considered as the path

Ty =V, % * VW

where

Yo - [0, 1] - XV ®ZR
th(Vo),

and for 0 <7<k +1:

w,; :[0,1] > XV @z R
t— t(VZ - Vz‘_l),
where the vertices V; are considered as points in the real space XV ®; R. We will
use paths explicitly in Chapter 4. in particular we will refer to dominant paths -
a path 7 :[0,1] - XV ®z R is dominant if its image 7([0,1]) is contained in the
dominant Weyl chamber. Note that if a combinatorial gallery 7 is dominant then
7 is dominant as well.

We finish this chapter with a question. Let v be any combinatorial gallery with
each one of its edges contained in the fundamental chamber. Then, as noted in
Remark 1.6, the map

Y
f
I:go7 “'791”] [ go...gr[t#"/]
is still defined.

QUESTION. Does this map induce a crystal isomorphism P(v) 2 Z(u.,)?
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This question is answered positively in [8] and Chapter 2 (which follows [30]) for
GV = SL(n,C), and in Chapter 3 (which follows [29]) for GV = SP(2n,C) and v a
readable gallery.

DEFINITION 1.14. A readable gallery is a concatenation of its parts: LS gal-
leries of fundamental type and galleries of the form (Vg, Eg, V1, Eq, Vy) (we call them
zero lumps) such that both edges Ey and E; are contained in the dominant cham-
ber and such that the endpoint V, = 0 is equal to zero. We denote the set of all
readable galleries by T'?, and if a combinatorial gallery v is fixed, by T'(7)® the set
of all readable galleries of same type as 7.

For G¥ = SL(n,C) all galleries are readable; this is due to the well known fact that
in this case fundamental coweights are all minuscule. In Chapter 2 we will therefore
work with the set of all galleries. In Chapter 3 we will describe readable galleries
explicitly for G¥ = SP(2n,C) and show that they are Littelmann galleries. They are
also more general than galleries of type «, for a gallery ~, that is a concatenation
of fundamental galleries - this means they belong to a larger class of galleries, but
not that they contain I'(7,).
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CHAPTER 2

Word reading is a crystal morphism

In this chapter we will consider G = SL(n,C). First, in Section 1 we recall
the combinatorics of keys and words in the alphabet A4,, = {1,---,n} and the plactic
monoid associated to SL(n,C). Then we will review how one may associate a gallery
to a given key and show that keys of a given shape are in one to one correspondence
with a set of galleries of the same type.

1. Keys, their words, and the plactic monoid

In this section we recall basic definitions of keys, their words, and the plactic
monoid associated to SL(n,C). One subtle thing to note in this section is the
restriction on the lengths of the columns of a key - we also define semistandard
Young tableaux taking this restriction into account. The ‘usual’ plactic monoid
that is usually considered is associated to the representation theory of GL(n,C)
and is defined by the Knuth relations; keys are usually concatenations of columns
of length at most n. We include an extra relation, and consider concatenations of
columns of length at most n — 1. That said, this section is purely combinatorial.

1.1. Keys and their words. A shape is a finite sequence of positive integers
d=(dy, -, dp1) such that dy, <n—-1for all s€ {1,--- k+1}. An arrangement of boxes
of shape d is an arrangement of r columns of boxes such that column s (read from
right to left) has ds boxes.

EXAMPLE 2.1.

| [ |

An arrangement of boxes of shape (1,1,2,1).

A key of shape d is a filling of an arrangement of boxes of the given shape with
letters from the ordered alphabet A, = {1,---;n:1 < - < n} such that entries are
strictly increasing along each column of boxes. We will denote the set of keys of
shape d by I'(d), and the set of all keys by T.

EXAMPLE 2.2.

[3][1]5]2]

A key of shape (1,1,2,1).

REMARK 2.3. The reason for restricting the length of the columns of a shape
is that for SL(n,C) there are only n — 1 fundamental coweights. This will be clear
after the next section.
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Let W, denote the word monoid on A,,. To a word w = a;---a;, is associated the
key %, = . The word of a key £ of shape (m),m € Z>Y is the word in
W, that corresponds to reading the entries of # from top to bottom and writing
them down from left to right. The word of an arbitrary key .7, which we denote by
w(.7), is the concatenation of the words of each of its columns read from right to
left.

EXAMPLE 2.4. The keys ¢ = and J = E ; JE both have
word 25123 = w(.7) = w(X).

1.2. The plactic monoid. We say that a key of shape d = (dy,---,dgs+1) is a
semi-standard Young tableau if d; < - < di,1 and if the entries are weakly

increasing from left to right in rows. We will denote the set of all semi-standard
Young tableaux of shape d by I'(d)SSYT,

ExXAMPLE 2.5. The gallery

1]2]2]

is a semi-standard Young tableau. Note that both keys considered in Example 2.4
are not.

DEFINITION 2.6. The plactic monoid is the quotient P,, =W,/ ~ of W,, by the
ideal ~ generated by the following relations.

a. Forx<y<z,yxz=yz .

b. Forz<y<z,xzy=xy 2.

c. 1 - n=¢g, where @ denotes the trivial word.
If two words have equal classes in the plactic monoid, we say they are plactic
equivalent. If two words have equal classes in the quotient W,/ ~k by the ideal
~x generated by relations a. and b. above, they are usually said to be Knuth
equivalent.

Theorem 2.7 below is generally well known (originally Theorem 6 in [14]) and
similar to Theorem 1 in [8], but (as already mentioned previously) there is an extra
restriction on the length of the longest column of the keys that we consider.

THEOREM 2.7. Given any key .7 there exists a unique semi-standard Young
tableau Jsg such that w(.7") is plactic equivalent to w(Jss).

PROOF. Let 7 be a key and let w be a representative of minimal length of
the class in P, of its word w(.7). Let Jss be the semistandard Young tableau
obtained by applying Robinson-Schensted-Knuth insertion (see for example [25],
second definition in Part I) to w read from right to left (the reason for this is that
we want to keep the word reading convention of [8]). Now we use a result of C.
Schensted (Theorem 2 in [25], the general version from Part II): the number of
rows (or the length of the longest column) of ~gs equals the length of the longest
decreasing subsequence of w (read from right to left!). Since w is a minimal length
representative, we claim that it cannot have an decreasing subsequence of length n.
Indeed, for any ¢ < n, the relations a. and b. above imply that for j <,1---¢5 and
j1---i are plactic equivalent. The claim from the previous sentence then follows by
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induction. Hence, by Schensted’s result, Zsg¢ has columns of length at most n - 1.
By Theorem 6 in [14], Jsg is the unique semistandard Young tableau such that
its word w(Jss) is Knuth equivalent to w, which is plactic equivalent to w(.7) by
definition. O

]11
2

ExAMPLE 2.8. For n = 3, the galleries

J1l2]1]and|[1]2]1]3]2]1]are

11‘
T

all equivalent to the semi-standard Young tableau

2. The gallery associated to a key

2.1. Weights, coweights, and notation. In this section we recall some basic
facts and establish some notation. First consider the group GL(n,C) of invertible
n x n matrices, and in it the maximal torus Tgr(n,C) of diagonal matrices. Then
maximal tori for SL(n,C) = [GL(n,C),GL(n,C)] and PSL(n,C) = GL(n,C)/C*1d
are given by

TSL(TL, (C) = TGL(TL7 (C) n SL(TL, C)
and
TPSL(”; (C) = can(TGL(n, C))
respectively, where
can: GL(n,C) - PSL(n,C)

is the canonical map.

Consider R® with inner product (-, -) and orthonormal basis {e1,---,&,}. We
make the following identifications:

X =X(Tpgr(n,C))) = Hom(Tpgr(n,C),C*) 2 Hom(C*, Tsr(n,C))
= X"(Tsr(n,C))) = {are1 + -+ + anep i a; € Zy Y a; = 0} = Z& = ZPY,
i=1
XY =XY(Tpsr(n,C))) = Hom(C*, Tpsr.(n, C)) = Hom(Tgy(n,C),C*)

_ X(Tsp(n,C)) = @Za/éei).

where ® and ®V are the sets of roots and coroots, respectively. The inner product
(-, —) restricts to the pairing between X and XV. In particular the root data

(X(Ts(n,C))), X" (Tsi(n, C))), 2, 2Y)
associated to (SL(n,C), TsL(n,C))) is dual to that
(X(Tes(n,C))), X" (Tesr(n, C))), 2, @)
of (PSL(n,C), Tps(n,C))). We choose the set of simple roots
A={a;j=¢;-ey1:1<1<n},

which in this case coincides with the corresponding set of simple coroots o = a; € AV.
We write ®* and ®V:* for the corresponding sets of positive roots and coroots,
respectively. The corresponding i-th fundamental coweight is w; = €1 + -+ + &;, for
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i€ {l,~sn—1}. The dominant Weyl chamber is identified with the intersection
maieA Hai,O- AISO7

Azx{weR": (w,e;++e,)=0} 2R"/R(e1 +--+e,).

We will use the following notation, especially in Chapter 4: P, , = XV, P, =

n-1
n-1
XY+ = @Zwi, and Vy,_, =XV @z R = A (This last notation is introduced to distin-

=1
guish between type A,_; and type C,,, the last of which is dealt with in Chapter
3).

2.2. The gallery associated to a key. Let .7 = Cg,; ---C; be a key with
columns C;, each one of which is made up of entries 1 <1} <---I[" <n Define

V7 =0,V{ = Zelj,Ef ={tV;:t€[0,1]}, and, recursively
=1

Vil = V7 2,
j=1
Bl = V) + (V7 = V) st e [0,1]}

The points Vf are in fact vertices of the standard apartment A because («, Vf ) €
Z is an integer for every root e € ®. The line segments Ef are edges in the standard

apartment because there are no hyperplanes that intersect E;? transversally and
because they are contained in every hyperplane that contains both vertices Vf and
V7. The gallery

J+1°
v7 = (Vi Vida)
is the gallery associated to the key 7.

EXAMPLE 2.9. Let n = 3. In the picture below (the shaded region is the dominant
1
2

and J# = , respectively. Note that the gallery v5 is dominant while Jg}

not.

Weyl chamber), we see the galleries 75 and v, associated to the keys 7 = ’ !

14
V2
.//‘ :-: p “6
” ‘// 61 p V2
LN ii S
N E
52.' £ \.v_ S
e e B
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2.3. Type and shape. The following proposition is a generalisation of Propo-
sition 4.12 in [7]. The proof in this case is the same, but we provide it anyway for
the comfort of the reader.

PROPOSITION 2.10. The map that asigns the gallery 74 to the key .7 induces
a bijection

1:1
D(d) <= T(Yag, * 7 * Yy, )
T =g

for all shapes d = (dy,--,dps1). If dy < -+ < dgy1 The set of galleries associated to
semi-standard Young tableaux of shape d coincides with the set of LS galleries of
the same type as 7y, *---* Vooay.,, -

Proor. By Remark 1.7 it is enough to show the statement in Proposition 2.10
for d = (d) for some d < n—1. In that case I'(d) consists of columns of length d
with entries 1 <3 <--- < l; <n. On the other hand, the set I'(,,) consists of
galleries of the form v = (0,Eq, V1), where Eq = {tV; : t € [0,1]} and V; = w(wy) =
w(er +--+€q) = 1)+ + Ew(a) for some element w e S, =W = ngf. Since there
is a bijection

{w(1), - w(d) :weS,} e {1<l < <lg<n:leZP)

the statement follows. For the statement about LS galleries, see Proposition 18 in
[7].
O

2.4. Crystal structure on the set of keys. The previous identification al-
lows one to describe in this case the crystal structure on galleries using only the
set of keys. The definition we provide here is a straightforward generalization of
the crystal operators on Young tableaux given in [12] and is the translation of the
crystal operators on galleries as defined in Chapter 1.

Let 7 be a key of shape d = {dy,---,d,}. Define
Wt(y) = Z Eiy

iew(T)

where the word w(.7) is regarded as a set with possible repetitions. In Example
2.9, wt(T) = 2e1 + e and wt(H) = &1 + &9+ e3 = 0. The action of the root operator
fa, (respectively e,,) on .7 is defined as follows.

a. Tag the columns of 7 with a sign o € {+,—, @} (the resulting sequence of
tags is sometimes called the i-signature of 7). If both ¢ and i+ 1 appear in
the given column or if they do not appear in the column, then the column
is tagged with a (@). If only ¢ appears, it is tagged with a (+), and if only
i+ 1 appears, with a (-).

b. Ignore the (@)-tagged columns to produce a sub-key, and then ignore all
pairs of consecutive columns tagged (- +), and get another sub-gallery.
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Continue this process, recursively obtaining sub-keys, until a final sub-key
is produced with tags of the form

(+)°(=)"
To apply the operator f,, (respectively e,,), modify the column correspond-
ing to the right most (+) (respectively left most (-)) in the final sub-key

tags, and replace the entry ¢ with i + 1 (respectively i + 1 with ). If s =0
(resp. r=0), then f,,(7) =0 (resp e,,(7) =0).

PRoOPOSITION 2.11. The previous definition is compatible with the crystal struc-
ture on galleries. Explicitly, for all i <n -1, v;, (7) = fa,(77); Vea,(7) = €a;(V7);
and wt(vz) = wt(7).

PRrOOF. The proof follows directly from the definitions. U
EXAMPLE 2.12. Let n > 5. To apply the crystal operator f,, to

:]3 1 5\2\7

T

one obtains that the corresponding taggings of the columns read from left to right
are — + @+. The first sub-key obtained is

[3[1]2]

which is tagged by — + +. The next sub-key is then , hence

far(T) =
We also obtain that f,, () =0.

)

[3]1 5\3\.

3. Words and the Littelmann path model

3.1. Words. The following proposition is very important for our purposes. It
is well known for semistandard Young tableaux (see for example [12], Section 5.3).
Let d = (dy,--,d,) be a shape, l; = 7.1 d; the number of boxes in the arrangement
of boxes of shape d and [4 = (1,---,1).
—
lg—times

ProproOsITION 2.13. The map
I'(d) — I'(la)

is a crystal morphism.

PRrOOF. First note that since the weight of a key only depends on the entries
of its boxes, wt(.7) = wt(H(2)). If two single column keys .77, 7 are labelled by
(+) and (-) respectively, then the word associated to their concatenation o * v
is in turn labelled by (- +). If the key 7 is not labelled, then JZ, () is labelled
either by (- +) or by @. It is therefore enough to show that for any i € {1,---,n -1}
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and any key 7 of shape (m), fo,(Hw(7)) = Fu(sa,(7))- This is shown in [12], Sec-
tion 5.3, Proposition 5.1. We give a proof nevertheless, for the comfort of the reader.

Let 7 be a column key of shape (m) with entries 1 < a; < =+ < a,, < n and
1€ {1,---,n—1}. If 7 is labelled by (@) or by (—) then fai('%/w(y)) = %(fai(y)) =0.
If 7 is labelled by (+), then, for some k € {1,---,7}, a = i and since the column
is labelled by only a (+),ars1 > ar + 1. Hence, f,.(7) is obtained from 7 by
replacing ¢ = a; by 7 + 1, with no need of reordering the entries, and therefore

foi (Ko 7)) = K (7)) O

EXAMPLE 2.14. A connected crystal of keys of shape (2,1) and the crystal
formed by its word-readings, regarded as galleries, in the case n = 3. Both crystals
are isomorphic to the crystal B(w; +ws) associated to the simple module L(w; +w>)

for SL(3,C).

aE

RN AN
E

\%

3.2. The Littelmann path model. Proposition 2.13 allows an enhanced ver-
sion of Theorem 7.1 in [20] which we state in Theorem 2.16 (it is well-known but
the author has not found an explicit reference). To prove it we need the following
lemma which characterizes dominant galleries as highest weight vertices.

LEMMA 2.15. A key 7 € I' is dominant if and only if e,,(7) = 0 for all i €
{1,--,n—-1}.
PROOF. Let .7 €T be a key. First notice the following two things.

1. Since entries are strictly increasing in columns, the key 7 is dominant if
and only if J7,(7) is dominant.

2. For a word w € W,, the condition e,,(#,) = 0 for all i € {1,---.n -1}
means that to the right of each 7 + 1 in 7, is at least one ¢ which has not
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been cancelled out in the tagging and subword-producing process. This is
equivalent to #,, being dominant.

Now assume that e,,(:7) = 0 for all i € {1,---,n}. By Proposition 2.13 this is
equivalent to eq;(#,(7)) = 0 for all i € {1,---,n}, which by 2. above is equivalent
to () being dominant, which is in turn equivalent to .7~ being dominant by 1.

above.
O

THEOREM 2.16 (The type A path model). The connected components of I" are
all of the form Conn(§) 2 B(wt(d)) for a dominant gallery .

PROOF. By Theorem 7.1 in [20] it is enough to show that for every gallery v there
is a dominant gallery ¢ € Conn(v) that belongs to the same connected component
as v. To see this consider a key .7 € I'(d) of shape d. Its word, seen as the gallery
Hw(7), lies in the crystal I'(lg). As is explained in Section 13 of [21], this is the
crystal Bys associated to the representation M := L(w;)®w(7)) where [(w(.7)) is
the length of the word w(.7"). The representation M is semisimple, hence 7, 7y lies
in a connected component Conn(7,(7)) = B()) isomorphic to the crystal associated
to a simple module L(A) of highest weight A € X*, with highest vertex by € I'(lq).
Proposition 2.13 implies that Conn(.7") = Conn(.#,,(7)) - hence there exists a key
& € I'(d) such that J,») = by. In particular, since JZ,(») is a highest weight
vertex, by Lemma 2.15 it is dominant, hence by 1. in the proof of Lemma 2.15, so
is Z. O

3.3. Equivalence of galleries and plactic equivalence.

LEMMA 2.17. Two galleries 72 and v, are equivalent if and only if the words
w(7) and w(") are plactic equivalent.

PROOF. Let 75 and v be two such galleries, and assume that the words w(7")
and w(.£") are plactic equivalent. Then by Main Theorem C b. in [21] this is
equivalent to v,,(7) ~ Yw(x). Proposition 2.13 implies that word reading induces iso-
morphisms of crystals Conn(v) = w(Conn(v)),v = 7, for any gallery v, where
w(Conn(r)) is the crystal of all words of elements in Conn(r). This concludes the
proof. O

REMARK 2.18. Lemma 2.17 implies that our definition of equivalence of galleries
coincides with Definition 5 in [8] (after adding the relation 1---n = g).

REMARK 2.19. The crystal structure we have defined coincides with the usual
crystal structure on the set of semi-standard Young tableaux (see [9], section 7.4).

4. Galleries and MV cycles
To each shape d = (dy,---,d,) we assign the dominant integral coweight \; =
W, + -+ wg, € XV*. By Proposition 2.10, to each shape d we may denote (for

this section!) the corresponding Bott-Samelson variety ¥, NN X4+ Also, for each
Z €T, we denote its shape by d(.7). The following theorem is the combination
of Theorem 2 in [6] and Section 6 in [7] for part a., and Theorem 25 in [1] for part b..
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THEOREM 2.20. Let d = (dy,--+,d,.) be a shape such that d; < --- < d, and consider
the desingularization g : 2g - X,

a. If § e T'(d)%SYT is a semi-standard Young tableau, the closure m4(Cs) is an

MV cycle in Z(Az). This induces a bijection I'(d)55YT Rt Z(Ma)-
b. The bijection ¢4 is a morphism of crystals.

Let d be a shape. For A € XV, let

ng = #{y e T(d)*™ : Ay = A}
and let
X ={ eX":n)#0}.
Here I'(d)4°™ is the set of all dominant galleries of shape d. Fix A = Ajwi+-+\,_1wp 1
and Z € Z(\), for some p < X. By Theorem 2.20 there exists a unique semi-standard
Young tableau 7%, € T'(A)3SYT of shape A = (d},-,dj ), where ky = YA and
d? =4 for A\ji_1 < J <\, A\g =0, such that ‘PA(%),‘Z) =7.

THEOREM 2.21. a. The map

r(d) = @ Z(\)

,\exé’+
T — 7@(079)

is a well-defined surjective morphism of crystals.

b. If C is a connected component of I'(d), the restriction ¢g4|c is an isomor-
phism onto its image.

c. The number of connected components C of I'(d) such that ¢4(C) = Z(\)
(for A e X" is equal to n).

d. The fibre ¢;'(Z) is given by

0g (2)={T eT(d): pa(T) =2} ={T eT(d) : w(T) ~w(T,)}.
We consider the direct sum @ )\EX;‘J'Z (A) in the category of crystals, regarding the
sets Z(\) as abstract crystals.

PROOF. Let d be a shape and 7 € I'(d) as in the statement of the Theorem.
By Lemma 2.7 there exists a unique semi-standard Young tableau Jsg such that
w(TJ) ~w(Tss). By Theorem 5.1 b. (Theorem 2 b. in [8] up to a small correction,
see the Appendix) and Lemma 2.17,

Ta(C7) = Ty 755) (C7s5)- (13)

Now let r be a root operator. By definition of equivalence of galleries, Lemma
2.17 vy (7) ~ Vr(7ss)- Note also that d(r(7)) = d and d(r(Tss)) = d(Tss). Lemma
2 and Theorem 5.1 b. again imply

Vr(F) ) = Md(sss) (C%(yss) )
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Theorem 2.20 b. says that

Wd(%?ss)(c%n(ﬂss)) = 7'\4(7@(7955)(67955 ),

and since (13) implies ¥(74(C7)) = ¥(74(755)(Cgs)), the proof of part a. of Theo-
rem 3.26 is complete.

Parts b., c., and d. are a direct consequence of Theorem 2.16: Indeed, since
the action of the root operators does not affect the shape of a key, Theorem 2.16
implies that the set I'(d) is a disjoint union I'(d) = Ll ger(gydom Conn(2). The above
argument and Theorem 2.20 imply that ¢4(Conn(2)) = Z(wt(L2)) for 2 e I'(d)dom
and that ¢g is a crystal isomorphism onto its image when restricted to Conn(2). O
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CHAPTER 3

The symplectic plactic monoid and MYV cycles

In this Chapter we study the case GY = SP(2n,C).

1. Symplectic keys, words, and the symplectic plactic monoid

1.1. Symplectic keys and words. A symplectic shape
C_Z = (d17 ) korl)

is a sequence of natural numbers d; < n. This defines an arrangement of boxes just
as in Chapter 2. Consider the ordered alphabet

Co={1<2<-<n-l<n<n<- <1}

A symplectic key of shape d is a filling of an arrangement of boxes of symplectic
shape d with letters of the alphabet C,, in such a way that the entries are strictly
increasing along each column.

ExAMPLE 3.1. A symplectic key, for n > 5, of symplectic shape (1,3,2,1).

]Tl
5

3]

’w\w V)

We denote the word monoid on C,, by W, . To a word w = wy---wy, in W, , just as in
Chapter 2, we associate a symplectic key #,, that consists of only one row of length
k, and with the boxes filled in from right to left with the letters of w read in turn

from left to right. For example, the word 12 corresponds to the key . Denote
the set of all keys associated to words by I'(wor).

1.2. Weights and coweights. Consider R" with canonical basis {e1,---,&,}
and standard inner product (-,-) (in particular (e;,e;) = d;;). From now on we
consider the root datum (X, ®, XV, ®V) that is defined by:

o = {:l:&i, E; £ 5j}i,j€{l,~~~,n}
2a0
()
X:={veR":(v,a") e Z}
XY ={veR": (a,v) e Z}.
Indeed the sets X and XV are free abelian groups which form a root datum together

with the pairing (-, —) between them and the subsets  c X and ®¥ c XV. We choose
a basis A c ® given by

oY = {a¥ :=

A={a;:=¢;—cp;ap=cp:1€{l,- n-1}},
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hence the set
AV =A{a) =¢;—ep1,00, =2, 1€ {1, ,n-1}}

is a basis for ®¥. Then XV has a Z-basis given by {w;}icf1,...n}, where

wi=€1+-+eg; 1< <n.
Then G = SO(2n +1,C) and G” = Sp(2n,C). Since here we will be focusing on the
representation theory of Sp(2n,C), we will fix the notation P, = XV = _E?)Zwi, Pf =
XVv* and V¢, = XY ®z R We will use this notation in Chapter 4 (cf.). o

1.3. Symplectic keys associated to readable galleries. The aim of this
section is to assign a symplectic key to every readable gallery.

1.4. Readable blocks. For a subset X ¢ C,,, we denote the corresponding sub-
set of barred elements by X := {7 : z € X}, where, for i unbarred, i = 1.

DEFINITION 3.2. Let .7 be a symplectic key. We call .7 an LS block if the
arrangement of boxes associated to its type consists of only one box or if there exist
positive integers k, 7, s such that 2k + r + s <n, and disjoint sets of positive integers

A={a;:1<i<ra;<-<a,}
B={b:1<i<sb < <by}
Z={z:1<i<kz <<z}
T={t;:1<i<kty < <tg}

such that .7 consists of two columns: the rightmost one (respectively the leftmost
one) is the column with entries the ordered elements of the set {T,Z, A, B} (respec-
tively {Z, T,A,B}), and such that the elements of T are uniquely characterised by
the properties

ty=max{teC,:t<z,t¢ZUAUB} (14)
tj—l = max{t € Cn 1t < min(zj_l,tj),t ¢ ZUAuU B} for j <k. (15)

We say that .7 is a zero block if there exists a non-zero integer k such that
7 consists of two columns, both of k boxes; the right-most one is filled in with the
ordered letters 1 < --- < k and the left-most one, with k < --- < 1. A symplectic key
is called a readable block if it is either an LS block or a zero block. A readable
key is a concatenation of readable blocks. Now assume that d = (dy, -+, dg,1) is such
that dy <--- < dgy1. A symplectic key of shape d is called an LS symplectic key if
the entries are weakly increasing in rows and if it is a concatenation of LS blocks.
We denote the set of LS symplectic keys of shape d as T'(d)"S.

L2 is an LS block, with

211

ExAMPLE 3.3. The symplectic key

A=B=g,7Z=1{2},T={1).

—
=l ol
=1 Nl

—

The symplectic key is not an LS block. The symplectic key is a zero

block.
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REMARK 3.4. A pair of columns that form an LS block is sometimes called
a pair of admissible columns. The original definition of admissible columns was
given by DeConcini in [4], using a slightly diferent convention than Kashiwara and
Nakayima’s (which is the one we use here). The map, given by Lecouvey, that
translates the two can be found in [18] at the end of Section 2.2.

To a readable block .7 we assign a gallery v as follows. If .7 consists of only one
box filled in with the letter [ € C,,, then we define V{, V{ =g, E = {tV{ t € [0,1]},
and

Y7 = {V037E(L)qvvi?}
If not, then its columns are filled with the letters ij < - < I} and I# < - < [2
respectively. We then define

1
T _
Vi = 5(51% +otep)
\/'27 =ep+-tepteptotep
1 d 1 d
E{ =line segment joining V; and V5.

and
V7 = (V()?aEO?7V1y7E1?)

EXAMPLE 3.5. Let n =2 and v = (Vo,Eo,Vl,El,VQ) where Vo = O,Vl = %(81 +
€9),Vy = &1 + €9 and the edges are the line segments joining the vertices in order.
Below is a picture of v and of its associated key K,.

Vo = (V07E07V17E1,V2); v4

To a readable key we associate the concatenation of the galleries of each of the
readable blocks that it is a concatenation of (from right to left). Given a symplectic
shape d, we will denote the set of all readable keys of shape d by T'(d)®. (This set
may be empty.) Let d be a shape such that I'(d)® # 0. Then it must have the form

Ql = (C_illa"'>c_ilm)

where d = 1;,1; for [; > 2 and d% = 1 if [, = 1. For instance, in Example 3.3, all
symplectic keys have shape (2,2). To such a shape d we associate the dominant
coweight

Agzwll +et Wy,

For example, to the shape (2,2) is associated the coweight w,. The following propo-
sition follows from Lemma 2 in [7].
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PROPOSITION 3.6. The map
UrR(d) =5 T®
d

T =7

is well defined and is a bijection. Moreover, if d; < --- < dg,1 then this map induces
a bijection

1:1
FLS(C_l) N FLS(’leI KoK ’ywzm)'

REMARK 3.7. Zero lumps are not necessarily of fundamental type: this follows
from Lemma 2 in [7] for a zero lump with & uneven in the above description. This
is why readable galleries are not necessarily of the same type as a concatenation
of fundamental galleries. This also means that there can be two readable keys of
the same shape but such that their associated galleries are not of the same type!
1)1
For example, take n > 3. Then the key .7 =|2 |2 |is LS and v is of fundamental
3(3

1
2 | is a zero block. Its associated gallery, v, , is not of
3
fundamental type. For this reason we cannot write £, for a Bott-Samelson variety
as we were able to do in Chapter 2.

type Yus- The key 2 =

QI NI =1

2. The word of a readable gallery

The word of a block #Z = C,C,. (C; is the left column; C, the right) is obtained
by reading first the unbarred entries in C, and then the barred entries in C;. We
denote it by w(Z#) € W, . For an LS block this is the word of the associated single
admissible column defined by Kashiwara and Nakashima - see [18], Example 2.2.6.

DEFINITION 3.8. Let 74 be a readable gallery associated to the key %", which
we may write as a concatenation of blocks

H = By SBy.
The word of v, (or of J#) is w(A)---w(H1). We denote it by w(y.x) (or w(X)).

EXAMPLE 3.9. Let

112
B = 5%2:7

|
=l

and

%;%%:1%%

211

Then w(%,) = 22,w(%,) =1, and w(#") = 122.

We have the following result about words of readable galleries, which we prove
in Section 4. We will use it in Section 3.26. It is in this sense that such galleries are
called readable.
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PRrROPOSITION 3.10. Let v and v be combinatorial galleries and " be a readable
key. Then

T(Coaryopryrw) = T (Crn )

2.1. Word galleries. Just as in Chapter 2, we associate a (readable!) gallery

Yw of the same type as 7, * -+ * 7, toa word w € We, of length m - it is the gallery

[ —
m times

v, associated to the readable key J7,,. We denote the set of word galleries in this
case by I'yy, . Below we recall the crystal structure on the set We, as described
by Kashiwara and Nakashima in [13], Proposition 2.1.1. The set of words W,
just like the set W, is in one-to-one correspondence with the set of vertices of the
crystal of the representation ®;cz=0 V&, where V,, is the natural representation L(w;)
and hence inherits its crystal structure. Proposition 3.12 says that this structure is
compatible with the crystal structure defined on galleries in Chapter 1.

DEFINITION 3.11. Let w € C,, be a word and ¢ € {1,---;n}. To apply the root
operators e,, and f,, to w one first assigns to w a word consisting of letters in the
alphabet {+, -, @}. The word will be obtained from w by replacing every occurence
of i or i+ 1 by (+), every occurence of i + 1 or 7 by (-) and all other letters by @.
This word s(w), just as the one in Chapter 2, is sometimes called the i-signature of
w. Erase all symbols @ and then all subwords of the form +-. Repeat this process
until the i-signature s(w) of w has been reduced to a word of the form

s(w)" = (=)"(+)".
To apply fa, (respectively e,,) to w, change the letter whose tag corresponds to

the rightmost (-) (respectively to the leftmost (+)) from i+ 1 to i and from i to
i+ 1 (repectively from i to i+ 1 and from i+ 1 to 7).

PROPOSITION 3.12. The crystal structure on words from Definition 3.11 coin-
cides with the one induced from Definition 1.12.

For a proof, see Section 13 of [21]. It also follows directly from the definitions.

2.2. Word Reading is a Crystal Morphism. This subsection is the ‘sym-
plectic’ version of Proposition 2.13 in Chapter 2. Since the root operators are type
preserving (see 1.12), the set of words W, is naturally endowed with a crystal
structure. The following proposition will be useful in Section 3.26. This result was
shown for LS blocks by Kashiwara and Nakashima in [13], Proposition 4.3.2. They
show that word reading induces an isomorphism of crystals from B(wy) onto the
subcrystal of ez, B(w)® generated by the tensor product [k |®--®[ 1] We show
that for readable galleries the proof is reduced to this case.

ProprosITION 3.13. The map
MR Ty,
Yo = Yw(x)
is a crystal morphism.
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PROOF. Let v be a readable gallery and let
Yo = (VOL%,E?,V{Z,ET@,VQ%)
be one of its parts, associated to the readable block %; we write

Hw(B) 1 Kw(B) K (8)
Vo Eo oo V. .

Yy Vor+s

’Y)ﬁ/w(@) = (

If

w(%) = gi-+-gshy--hy

Hoi) _

; J €z, Where z; = g; for 1 <i<sand xg, = hy

for g; and h; unbarred, then V
for 1 <i<r. Let

h(5) = {a, VY)

W) = (o V).
Then there exist di < 5,5 <dy < s+ r such that

h(0) for0<j<d;

h'(j)=<h(1) ford; <j<dy
h(2) fordy<j<r+s+1

From this we conclude that it is enough to consider readable blocks. As mentioned
previously, this was shown in [13] for LS blocks. Hence let .Z be a zero lump; it
has word w(%) = 1---kk---1 and let a; be a simple root. Then, since the galleries
associated to .Z and w(.%¢) are both dominant, f,,(-%) = €4,(Z) = fo,(W(Z)) =

e, (w(Z)) =0. O
EXAMPLE 3.14. Let n =2 and % be the readable block ; ? . Then w(%) = 22.
To calculate f,, (%), note that m,, = -1, j = 1, r = 2, hence f,, (%) = ; ; :

Similarly, fa, (0(#)) = 2T = w(f1(#)).
2.3. Readable galleries are Littelmann galleries. We begin with a lemma.

LEMMA 3.15. Let 7 be a readable gallery. Then v is dominant if and only if
Yw(xy 18 dominant.

PROOF. Since the entries in the columns symplectic keys are strictly increasing,
it follows from the definition of word reading that if v is a dominant readable gallery
then w(7y) is also dominant. Now let v be a non-dominant readable gallery. Then
there is a readable block # = C,C,. such that v =n; * v4 * ny with n; dominant and
n1 * ¥ not dominant. This block can’t be a zero lump (they are dominant) - so it
must be LS. Let A, B, Z, T be the sets described in Definition 3.2. The entries of C,
are the letters in AuUZUBUT and the entries of C; are the letters in AuTUBUZ.

Now, iy, 4+, may be dominant or not. If it is, then, since M sy wrgg) = Mty g the
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word gallery 7y, «y4) 18 not dominant, and this implies that 7, » is not dominant
either. Now assume that
Hnyxyg = M + Zga - Zgb
aeA beB

s dominant, but that the gallery 7; *y4 is not. The last three vertices of this gallery
are

Vl 1= My € C+ (16)
Vi=pn + 5 (Zea DIFEDICEDIHE ACh (17)
acA z€Z beB teT
Vit = g, + Y ca— 2 ep € CF. (18)
acA beB

Let d; < -+ < d,,; be the ordered elements of AuZ and let f; < -+ < fo be the
ordered elements of BuZ. We have

w(B) = dy-dysp fornf1-
We claim that the weight

r+k

o+ st = Uy + D Eat D Esy

acA z€7Z

which is the endpoint of 1 * 74,..q4,,, and therefore a vertex of 7 * v,.%), is not
dominant. To see this, assume otherwise:

[ + Y Ea+ P €, €CY.

acA z€Z,

Since the dominant Weyl chamber C* is convex, this means that the line segment

that joins p,, and p,, + Y e, + Y €, is contained in C*, in particular the point
aeA z€Z

Zsa +>e,)eCt

acA z€Z,

belongs to the dominant Weyl chamber. The dominant Weyl chamber has, in this
case, the following description in the coordinates ey, -+, &,:

= {szfi ipi € Ryo & pr 2 2 p}
i=1

Write

n
m = Z%’gi

We will now show that g, +3( Z Eat Y, — Y ep— &) € Ct. This would contradict
z€Z beB teT

our assumption and therefore complete the proof.
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For every i € {1,---,7}, we have t; < z; < j for every j € {1,-,n} such that t; < j.
Since piy, + 5( Y e, + Y e.) € C*, we know therefore that
aeA z€Z

1
QJ q i 2 Qtz

which implies, since ¢, € Z, that

< +1< 1
QJ—in 2—Qt,- 2

Now let b€ B, and let j € {1,---,n} such that b < j. Since (cf. (18)),

[ + Y Ea— Y €p € CF,

acA beB
if j € (Zu'T)e, then this implies
1
q5 < qp— 5

If j € ZuT then, as before, by the definition of an LS block we may assume that
7 =teT. But this means ¢ < ¢, therefore ¢; — % <qp— % All of these arguments

imply

1
o+ 5 (Deat Do = Feu- T €O,

acA zeZ, beB teT

which contradicts (17).
U

As in Chapter 2 we have the following lemma.

LEMMA 3.16. A readable gallery v is dominant if and only if e, (v) = 0 for all
ie{l,---,n}.

PROOF. Notice that for a word w € We, and «; a simple root, e,,(%#,,) = 0 means
that to the right of each i+1 in J#,, there is at least one 7 which has not been cancelled
out in the tagging and subword extraction process described in Definition 3.11. This
is equivalent to the gallery +, being dominant. Lemma 3.15 and Proposition 3.13
imply the desired result. U

PROPOSITION 3.17. Every readable gallery is a Littelmann gallery.

PROOF. Let V,, be the vector representation of SP,,(C). Then the crystal of
words W, is isomorphic to the crystal associated to T(V,) = @z, V&, see for
example Section 2.1 in [18]. Now let v be any readable gallery. Then there exist
indices i1, -+, 4, such that eq, --€q, (Vw(y)) is a highest weight vertex, hence dominant,
by Lemma 3.16. Since word reading is a morphism of crystals by Proposition 3.13,
Tw(eay, oy, (1)) = Coiy "€y (Yw(y))- It follows from Lemma 3.15 that e,, —eq, (7) is

O

dominant.

DEFINITION 3.18. The symplectic plactic monoid P¢, is the quotient of the
word monoid We, by the ideal generated by the following relations
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(R1) For z # 7
yrz=yzx forx<y<z
rzy=zaxy forz<y<z
R2) For 1<z <nmand x <y <z:
( y
yr-loex-l=yaxzx
r-lx-ly=zxzy
(R3)
a1-Qyp 2 z 65“‘61 = a1y BS"'B].

for a;,b; € {1,---,;n},1 € {1,---,; max{s,r}}, such that a; < < a,,by < - < by,
and such that the left hand side of the above expression is not the word of
an LS block.

If two words wy,ws € W, are representatives of the same class in We, we say they
are symplectic plactic equivalent.

EXAMPLE 3.19.

1221~ 11~ @
112 ~ 121

REMARK 3.20. Relations (R1) are the Knuth relations in type A, while relation
(R3) may be understood as the general relation which specialises to 11 2 @. Note
that the gallery ~, associated to w = 11 is a zero lump. This definition of the
symplectic plactic monoid is the same as Definition 3.1.1 in [18] except for relation
(R3). The equivalence between the relation (R3) above and the one in [18] is given
in the Appendix.

The following Theorem is due to Lecouvey and it is proven in [18].

THEOREM 3.21. T'wo words wy,wy € W, are symplectic plactic equivalent if and
only if their associated galleries 7, and 7,, are equivalent.

Theorem 3.21 implies the following Proposition (cf. Theorem 2.16 and Lemma 2.17
in Chapter 2).

PRrROPOSITION 3.22. T'wo readable galleries v and v are equivalent if and only if
the words w(~) and w(v) are symplectic plactic equivalent.

The following theorem is originally due to Kashiwara and Nakashima (see [13]).
For this particular formulation, see Proposition 3.1.2 in [18].

THEOREM 3.23. For each word w in W, there exists a unique symplectic LS
key .7 such that w ~ w(.7).

PROPOSITION 3.24. Let v and v be combinatorial galleries and let w; € We, be
two plactic equivalent words. Then

W(C'Y*'le *V) = W(C’Y*'ng *V)
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3. Readable Galleries and MV cyles

As in the previous chapter, we have the following result (which holds in higher
generality) by Gaussent-Littelmann (a. is an instance of Theorem C in [6]) and
Baumann-Gaussent (b. is an instance of Theorem 5.8 in [1]).

THEOREM 3.25. Let d = (dy,-,d,) be a symplectic shape such that T'(d)"S # @
and consider the desingularization 7 : %5 - X,,.

a. If § € T'(d)™ is a symplectic LS key, the closure 7(Cjy) is an MV cycle in
Z(Ag). This induces a bijection I'(d)™S SN Z(\a)-
b. The bijection ¢4 is an isomorphism of crystals.

Given a readable gallery v and a dominant coweight \ € XV:*, let

n)y = #{y el nl(y)) 1y, = A},
and let

XY = {AeX“ 0, £ 0},

THEOREM 3.26. Let ¢ € I'(7/)® be a readable gallery, and (¥.s,m) the corre-
sponding Bott-Samelson variety together with its map 7 to the affine Grassmannian
asin (1.6). Let * be the dominant readable gallery that is the highest weight vertex
in Conn(d). Then

a. m(Cy) is an MV cycle in Z(ps+) -
b. The map

e f
r(yH" = @ Z(us)
del'(v/)R

0~ 7T(C§)

is a surjective morphism of crystals. The direct sum on the right-hand side
is a direct sum of abstract crystals.

c. If C is a connected component of I'(7/)R, then ¢|c is an isomorphism onto
its image.

d. The number of connected components C of I'®(y/) such that ¢.;(C) = Z(X)
is equal to nfy‘f.

e. Given an MV cycle Z € Z(\),,, the fibre gofy}(Z) is given by

w i (Z)={0 e (V) 1 0s (0) = 2} = {0 e TR (V) sy ~ v}
where 7}’)2 is the unique LS key which exists by Theorem 3.25.

PROOF. Let 0 be a readable gallery. Then by Theorem 3.23 there exists a
(unique) LS key v such that 6 ~ v. By Proposition 3.22, the words w(d) and
w(v) are plactic equivalent. Propositions 3.24 and 3.10 together with Theorem 3.21
then imply that

m(Cs) =7(Cy),
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which, by Theorem 3.25 implies that 7(Cy) is an MV cycle in Z(j5+),,. Proposition
3.10, Proposition 3.24, Theorem 3.25, Theorem 3.21, and Proposition 3.17, the rest
of the proof of a., b., and c. is identical to the proof of Theorem 2.21. Points d. and
e. follow from Theorem 7.1 in [20], which asserts that if v is a dominant gallery,
then Conn(~y) is isomorphic to the crystal B(u,), and from Proposition 3.17.

U

4. Counting Positive Crossings

In this section we provide proofs of Propositions 3.10 and 3.24. We begin with
analysing the tail of a gallery in 4.1. We show Proposition 3.27: it will be an impor-
tant tool in our proofs. In 4.2 we calculate an example in which it can be seen how
to apply it. Then in 4.3 we prove Proposition 3.10 and in 4.4 we prove Proposition
3.24. We also wish to establish some notation that we will use throughout. Recall
our convention ¢; := —¢; for [ € C,, unbarred. We will write, for {,s,d,m € Cn,c?; dm
)

for the constant ¢z, . +c,, in Chevalley’s commutator formula (4), and ¢7, ¢,

for clslj cqtems cé’lﬁgs@ , respectively.
4.1. Truncated Images and Tails. Let 7 be a combinatorial gallery with
notation as in (6) with endpoint the coweight 1, and let r <k +1 such that V, is a

special vertex; we denote it by u, € XV. By Corollary 1.11 we know that the image
7(C,) is stable under Uy.

PrOPOSITION 3.27. The r-truncated image of v
Ty = U0, (1)
uTzr =Tz
PrOOF. By (5), we know that t#~Uyt=# = U, . On the other hand, we may also

consider the r-truncated gallery

72T = (V67 Eé]? T v;c—r+1)7
which is the combinatorial gallery obtained from the sequence

(vr7 Er7 Vr+17 ) Ek; Vk+1)

is U, -stable, i.e. for any ue U, ,

by translating it to the origin. Since V, is a special vertex, we also have t“T[UZZTt‘W =
UJ,,. This gallery has endpoint i, — g, and is in turn a T-fixed point of a Bott-

1+7°
Samelson variety (X,7’). Let w e U, and w’ =t=#rutt € Uy. Then:

WT2 = aUUY,, - U [t
=t/ UY -U) [t ]

(by Corollary 1.11) = t“Tngr--UZi[t“V—W] =Tz

For later use let us fix the notation

T’<YT = UVO”.UVT—l;
one may then write

m(C,) = Tfy’"T?y’".
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REMARK 3.28. This Proposition is proven for SL,(C) in [8], Proposition 3. The
proof we have provided is exactly the same, except for the restriction of only being
able to truncate at special vertices.

4.2. Example. Let n =2. Consider the symplectic keys

%:111‘

212

]212
2

Ty =

[l

and their words

w(A) =112
w( ) = 222.
Note that
Vw1 * Ywa ~ Yws * Vo

since both 7, * Y., and 7,, * Y., are contained in the fundamental chamber and
have the same endpoint w; + wo; one checks that

Jou fao for (Y * %JQ) = Yo

and

falfazfa1(7w2 *le) =V

Therefore v, ~ 7. Lemma 3.15 and Proposition 3.13 then imply that ~y,(x) ~
Yw(#s) (or it can also be checked directly using relation R2 in Theorem 3.21 with
y =x =2). Now consider combinatorial galleries v and v. The galleries v * v, * v
and 7y * 74, * v are T-fixed points in the Bott-Samelson varieties (3. ., ) £y
respectively (3., )@H,)f,ﬂ',). The galleries 7,(#) and v,(%) that correspond to
their words are T-fixed points in

144
(E('y*'ywl *Ywp ¥ Ywy AR ™ )

We show that

W(C'Y*’th/l *V) = T”(C'Y'y*w(fl)*y) = W,(CFY*'YM)(JKQ)*V)'

We use the same notation as in (6) for . Since for any combinatorial gallery

n, (a,n) e 77 if and only if (a,n - (a,p,)) € O}, we may assume that v = @.
Since v, Vs, Yw(r) and V() have the same endpoint e,, this also implies that
T%Yitﬁ*l’ - T%@w = Tii(%)w = T%/i(xm”' By Proposition 1.8, for a’,V',c/,d" € C

W(C"/xlw) = U(Elﬁl) (a,)U(€1+€2,*1) (b,)U(Ez,O) (C,)U(€1+€2,0) (d,)T'QVXI *U*

By Chevalley’s commutator formula (4) and applying Proposition 3.27 to U, _., _1)(e) €
U€27
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W//(va(xl)w) =
Uter,-1) (@)U 4e0, -1y (0) U, —cs, —1)(€)U(52,o)(C)U(gl+52,0)(d)Tiin)w
= U -1y(a+ 015 2( €)e)U(e;1e5,-1) (b + 015 2( €)c*)U(3.0) () U ey 409,00 () U s, 1)(€)T7,{ ‘v
=U,,-y(a+ 01572(—€)C)U(51+s2,—1)(b + 015,2(—6)0 V(.00 (U ey 22,0) (D) T3,
c7(Coyar)
for a,b,c,d,e € C. Choosing a=a’,b=0",c=c',d=d',e=0, we have
W(CV%) c F,,(va(xl)).
,)- Similarly, for {a”,b",c",d",e"} c C,

. . o
Hence in this case 7(C,,,, ) =7"(Cy, 4,

T (Crrity ) = Uen,0) (@)U ey 12,0) (0 ) U ey —,-1) (€7 U e,0) (€ VU (e 4ep 09 (A7) TS »yw(x)w:
2

Uge, - 1)(01 (=€) VU ey ey 1)(01 2(=e")" "YUy 0y (@ + VU (e sep 0y (B +d")TZD -

CW(C’Y.Xl*u)'

Hence the open subset of 7(C

W,,(va(y@w)'

4.3. Proof of Proposition 3.10. We want to show that if v and v are combinatorial
galleries and % is a readable block,

vore) given by a # 0,0 # 0,¢ # 0,d # 0 is contained in

T(Crayopev) = W'(CV*%(%)*V)'

PrRoOOF. We assume 7 = @; we may do so by the argument given at the beginning of
Example 4.2. Let 2 be an LS block and let A = {ay, -+, a,},B={b1,-bs},Z ={z1,", 2 }
and T = {t1,--,tx} be the subsets of {1,---,;n} from Definition 3.2 that determine % .
We will use the notation di < -+ < d,4; to denote the ordered elements of Z U A, and
f1 <+ < fsir the ordered elements of BuZ. We also write

y A (V07E03V17E1;V2)-
The proof is divided into Lemmas 3.29 and 3.30 below.
LEMMA 3.29. Let v be a combinatorial gallery and % be a readable block. Then
Tr’(CA,w(%)H,) cm(Cyyv)-

We first need the following claim.

Cramm 1.
/ C U Pm ]P)///T>2k+r+s
m( 'vw(;gf)*V)C OF frws 7 1 T Yw()*V
where
Pi'= Tl Utz (k) I1 Uter-cr0)(kp) T1 Utermsyy (Kip) for be B (19)
1¢ZUAUBUT; teT<b aeA<b
I<b
P= Tl Ugee.ny(kiz) [T Ugere. 1y (kiz) 11 Uepe.1y(kz) for z€ 2 (20)
1¢ZUAUBUT; teT<z beB<#
I<z
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PrROOF OF CLAIM 1. The points of 7'(C,, .« ) are of the form

>2k+r+s
]P)dl”']Pdr-;.k]P)ka_,_S“.PflT’yw(;;—*V (21)
where
Pg=Uy0)(92) [1 Ueyeer0)@a) 1 Utewrery@a) 1 Ugeurenny(oa)  (22)
d<i<n l¢(ZUA)<d le(ZUA)<d
:P%v
PB = SB H U(sl—sb,O)(glI;) H U(Et—ﬁb»o)(gtg) H U(EE_Ebal)(gai)) (23)
1¢ZUAUBUT; teT<b aeA<b
I<b
S5= I Utcy-e0)(95) [T Ueozp1) (925) € Uo (24)
b’eB<b z€Z<b
]P)g = Jg H U(El_az7_1)(gl2) H U(gt—gz7—1)(gt2) H U(Eb—EZ,—l)(gbZ) (25)
1¢ZUAUBUT; teT<z beB<*
I<z
=pw
JE = H U(Eafszgo)(gag) H U(EZ/*EZ,O)(QZ’E) € UO (26)
acA<z zleZ<>

for de AUZ, z € Z, and b e B. All the terms in J; commute with P? for 2’ € Z>* and

with P2 for b € B>*. All the terms in S; commute with P2 for b’ € B>*. For 2/ > b
it commutes with all terms of P% except for the term U, ., _1)(gsz). However,
commuting S; with this term (using Chevalley’s commutator formula 4) produces
terms U ., 0y(*) and U, -, 1)(*). Out of these terms, U _. , 0)(*) commutes
with P for 2’ € Z>* and with }P);i)” for b € B>#, and U, ., -1)(*) is a term of the
form of those appearing in P¥. Therefore (and since the the terms that appear in
]P’%” and P¥ are the same as Pg and P} respectively) concludes the proof of Claim 1.

O

CrAIM 2. There is a dense subset of IP’%: IP’;;'I' T?ﬁ’:;;’fu that is contained in the subset
c+ S w

>2k+r+s

PrePy - Pr g, Yuw() v T(Crpwv)

where

PT,B = H U(sl—st,O) (Ulf) H U(sﬁz—:b,O) (UlB) € UVO

1¢ZUAUBUT, 1¢ZUAUBUT,
teTl<t beB,l<b
Pys= I1 Uci-200(vt) T] Ueu-ey1)(vap) € Uv,
beB; aeA<b
teT<b
]P)J’,E = H U(Et*e;,*l)(vtz) H U(Eb*ffz,*l)(vbg) € UVl’
teT<# beB<z

for v;; € C,be B and z € Z. (It is indeed a subset by Corollary 1.11.)
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Note that T22k+r+s - T22 and that

TYw(A)*V RE i
u= H U(el—et,O) (vig) € U,ua,{%,-
1¢ZUAUBUT,
teTl<t

We have the following equalities

L _m>2k+r+s  _
PrePy f, Pf,fs SN
//
]P - Py wew:
4
P} P T 2

where, for z € Z and b € B:

]P)g = H U(&z—eb,O) (gll_)) H U(€t—5b70) (fté) H U(Ea—eb,l)(gal_)) c.f (19)

1¢ZUAUBUT; teT<b acA<b
I<b
Py = H U(:—:z—&,—l)(&i) H U(z—:t—szrl)(&f) H U(Eb—ez,—l)(&’f) c.f (20)
[¢ZUAUBUT;, teT<z beB<*
I<z
Ep=vp+ ) ¢ ttb( VE) Vg
I<t<b,
teT
1,1 1,1
§iz=piz + Z Clé'7zlg(_pl2’)vz’2 + Z Cll—;’bz(—fu’))vbz
z'eZ I<b<z,
beB
= > cltt —vj7)vgz (for z € Z)
I<t<z,
teT
§tz = Uiz
bz = Uz
&5 = Vgp-

To prove Claim 2 we must set open conditions on the parameters k;; such that the system
of equations defined by v;; = &; has a solution in the variables v;;. Setting vz := k> and
Upz = kpz this is reduced to setting conditions on the k;; so that the following system can
be solved:

1,1
ki = v + Z Cl,gﬁ;(—vli)kté (27)
I<t<b,teT
klZ =Pz — Z lb b (Ulb + Z Clt b vlf)ktl_))kbi (28)
I<b<z,beB
teT
1,1
piz = Z Clt—”tg(—vz{)ktz- (29)
I<t<z,t

Lines (27) and (28) above define a linear system of as many equations as variables: the
variables are {vj}ieauBuT:best U {ViE fieauBUZUT > > there is one equation for each b, [ ¢
AUBUT;beB for each Iz, ¢ AUBUT;z e Z”, and note that by definition of an LS
block the sets {Iz,] ¢ AUBUT;z e Z'} and {lf,s ¢ AUBUT;b e B>} have the same
cardinality (¢; is the maximal element of the set {l ¢ AUBUT, s <t;41,5< z}). Therefore
the system has a solution as long as the matrix of coefficients has non-zero determinant,
which imposes open conditions on the k] ;5. Hence Claim 2 is proven. Now, to finish the
proof of Lemma 3.29, note that if the k] ;8 satlsfy the open conditions established by Claim
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2, then

1 111 >2k+r+5s
P e P Ty o € ™(Coav),

and therefore Proposition 3.27 implies that

1 111 >2k+r+s
UoPY P2 € 1(Co ),

which implies Lemma 3.29. Now we show the second contention towards Proposition 3.10.

LEMMA 3.30. Let v be a combinatorial gallery and . be an LS block. Then

T(Crpnv) € Tr,(c"/w(;a/)*l’)
Recall that

_ A Y2
T(Crpnn) =Ug? U TS L,

Notice that UJ*™ c Uy and that all generators of U]* ™ also belong to Uy except for
those of the form U,,_ < —1)(vez) or Uggppe, 1y (vir) for t,t" € T,z € 77!, and vz, vy € C.

Hence, since, again, T22,,, T;m(“;f)*fy all elements of w(C, ,,+,) belong to
>2k+r+s
UO H U(st—sz,—l)(vtf H U(5t+5t'7—1)(vtt/)TWw(%)*V'
teT t,t’eT
zeZ>t

Now consider

>2k+r+s
H U(sz+et1,0)(kzt’) H U(st—ez,—l)(ktE)Tyw(x)*u
t'eT,zeZ teT,zeZ>t

which is a subset of W’(Cyw(x)*y) (by Proposition 3.27) because
H U(sz+st,0)(kzt) € Up and

teT,zeZ
>2k ’
Hr U(Et—az,—l)(kﬁ)T'yw(;;—fu cm (C'Yw(%)*l’)'
te
zeZ>t
We have
>2k
H U(€z+€t/,0) (kzt’) H U(eﬁsz,fl) (ktE)T'yw(Z;rfy =
t'eT,zeZ teT,zeZ>t
>2k+r+s
tEITU(eﬁst,,fl) (ftt’)tEle!Z>tU(€t*Ez,*l) (ktz)tlepzer(sz+st,,0) (ke ) T3, e
t+t/ ’
>2k
H U(€t+€tl,*1) (&tt’) H U(etfsz,fl) (ktZ)T'yw(Z;cSz/
t,t’eT teT,zeZ>t
t+t/
where

S = Z czt 'z ( kzt)kt’ + Z Czt’ tz( kzt’)ktz

zeZ>t! zeZ>t

(30)

(34)

The equality between (31) and (32) is due to Chevalley’s commutator formula (4) and the
equality between (32) and (33) is obtained by using Proposition 3.27 and U(._,.,, 0)(k.t') €

U Now fix an element in (30). Setting k;z = vyz defines the linear equations

Ky ®

v = Czt z(Thz)vps + > Czt’ tz( ke Jorz

ze7>t! zeZ>t
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in the variables k,;, for z € Z and t € T. There are more variables than equations: for each
equation indexed by a non ordered pair (#;,t;) there are the variables v.;, and v, for
z >t and 2’ >t (which always exist by definition of an LS block); hence the system has
solutions as long as the matrix of coefficients has non-zero determinants. This imposes an
open condition on the parameters v;z. Hence for such vz, vy, kiz = v4z, and solutions k;j,
for the latter equations we have

[ Uree. -1y () T1 U(6t+6t/,—1)(vtt')szyi]:;;fy =

teT t,t'eT
zeZ>t

>2k+r+s ! .
H U(az+£t1,0)(kzt') H U(at_5z7_l)(k:t2)T"/w(x)*l/ cm (C’Yw(gg)*VL
t'eT, te'l,
z€Z zeZ>t

Proposition 3.27 then implies

2
Uo [T Uermer 1y (vez) TT U,y (i) T35, 00 € T (Crpy gy )5
teT t,t'eT
zeZ>t

this completes the proof of Lemma 3.30 and hence of Proposition 3.10.
O

Now let #” be a zero lump. This means there exists k > 1 such that the right (r(ispec—
tively left) column of %" has as entries the integers 1 < - <k (respectively k <--- < 1); its
word is therefore w(¢") = 1---kk---1. This means, in particular, that the truncated images

Tii’?%)w =T2? ,, are stabilised by Uy, by Proposition 3.27. We have
! _ T w(x)*Y Yw () ¥V m>2k
T (C'Yw(as/)*l/) - UO "'UQk—l va(;«)*V

by Theorem 1.10. Clearly all the subgroups [Ul%“”(‘mW cUgfor1<l<k For0<j<k-1,
Zf;.x)w are all of the form U ., -, .y for I <k—j. In particular the

gallery Vieoko Tj =T has crossed the hyperplanes H .

the generators of U
—ep_;,m) OnCe positively at m =0 and
once negatively at m = 1, which means that ng_; =0, U, ¢, n,_;)(a) = U, ,_, 0)(a) €

Uy, for all a € C. Hence

! = O | w22k
™ (wa(x)w) =T U2k—1 T'yww«)w
_ m>2k
T T Yw() R
_m>2
- TV%*V'

In

W(C'y;gw) — U’gw *VU'lY% *Z/TZQ

’Y.% *V
we have U] ™ = {Id} and UJ* ™ c Uy, therefore

T(Coron) = T30 = T
since iy, = Pyt
4.4. Proof of Proposition 3.24.
Proor orF PROPOSITION 3.24. Let v be a combinatorial gallery.
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Relation R1. For z + 7:
a)yxz=yzx for z<y<z
byrzy=zaxy for z<y<z

LEMMA 3.31. Let wi =yrxzand wy =y zx, wg=x 2y, and wy = z x y for z # Z.
Then

a)W(C'ywl sv) = W(C'wa*V)
b)”(cvwg ) = W(C'yww)

PROOF. For the proof we recall the notation e; = —¢, and 7 =4 for any ¢ € {1,---,n}.
Also note that Ti’u . all coincide for i € {1,2,3,4}; we will denote them by T*. We divide
the proof of Lemma 3.31 in three cases.

Case 1: x<y<z

CramMm 3. If z#gyand y 7 :
i W(wal ﬂ,) = UOU(sz—sy,—l)(vxﬂ)Tw
ii. W(nywg ) = UOU(sz—ay,—l)(ng)U(az—az,—l)(UxE)Tw
iii. W(C’ng*l’) = UQU(Ey_azy_l)(’Uyg)Tw
iv. W(C7w4ﬂ,) = UOU(Ez—sz,—l)(UIE)U(sy—Ez,—l)(UyZ)Tw'
PRrROOF OF CLAIM 3. We first remark that, regardless whether x,y, and z are barred

or unbarred, the roots €, —¢.,&, — €., and &, — ¢, are always positive. Now we recall the
notation from Theorem 1.10:

T(Coy, ) = Ug U U T
Assume that z #+ y and y # T.

i. We have U, ., _1)(vay) € [U?wlw for any v,y € C, hence
UOU(az—ay,—l)(Ulg)Tw S W(walw)-

Out of all generators of [Uzwlw for i € {0,1,2}, the only one that does not belong
to Up is of the form U . _1)(vay) € U™, and the ones from U)“'"” that
do not commute with it are those of the form U(ayﬁz,l)(a), but in that case
Chevalley’s commutator formula produces a term U(EIHZ,O)(Ci’;yz(—vzg)a) e Up.
This implies the other inclusion, together with Proposition 1.8, which allows us
to write down the generators of each Uzwl " in any order.

ii. The only generators of Uzwzw for i € {0,1,2} that do not belong to Uy are those
of the form U, _. _1)(vzg) € [U;wz’w and U, o, —1)(vzz) € U, " The equality
follows by Proposition 1.8, Theorem 1.10, and Proposition 3.27.

iii. All the generators of Ugw3 " and U¥w3 ™ belong to Up, and the only generators

of U;““ " that do not are U(e,.,-1)- Thus Claim 3 follows by Proposition 3.27
and Theorem 1.10.
iv. As in the previous cases, we have

Vewy *V 5 Yy ¥V Vwy *V

W(C'Y’wzuu) :UO ! Ul ! U2 ! Tw’
and Ug“"‘ " c Uy. All generators of Ulyw‘lw and respectively IU;“"‘W belong to Uy
except for Ur. .. _1)(a) € [U?w“*y and U, ., 1)(b) € Ugw“w, respectively, for
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{a,b} c C. To prove this part of Claim 3 we observe that Ui, _._ _1)(a) commutes
with all generators of Ugw‘*w except for Ur._,. 1y(d), with d € C. However,

commuting the latter two terms produces elements U(Eﬁ%o)(ci’z-{zy(—a)d) e Up.
Therefore

7r(C’}’w4 *l/) < UOU(SI—EZ,—l) (vmf)U(sy—sz,—l) (UyE)Twa

and the other inclusion is clear by Proposition 3.27 and the above discussion.
This finishes the proof of Claim 3.

g

Now we make use of Claim 3 to prove Lemma 3.31 in this case, assuming z # y and
y #+ Z. For both a) and b) Claim 3 immediately implies

7T(CWl wv) C W(waz «v) and
T(Cryyxv) € T(Crpy50)-

Next we will show

T(Cyyxv) ET(Cry 50)-

For this, let vyz € C and v,y € C with vz # 0. Then since U, ., o)(vyz) € Uy, nUg for
any vyz € C, Lemma 3.31 , Chevalley’s commutator formula, and Proposition 3.27 imply

T(Cryy#) 2 Ui, —c.,0)(0yz) U, -, —1) (Vag) TV =
Uepmeno1) (€505 (—052)05) e, ey o1) (Vag ) U ey e 0) (0y2) T =
U(Ezfézﬁl)(C;évg(_,Uyg)'vl‘?j)U(Ez*Eyﬁl)(U:Eg)Tw
Therefore
Ucp=ey-1) (V2g)Ue, . -1y (v22) T € 7(Cyy, 40)

1,1

yz,vg(_vyi)vx@ = vz has a solution in v,z. Hence

as long as vy # 0, since in that case ¢
Proposition 3.27 implies

UoU(e,-e,,-1) (V2g) Uep—c, 1) (v22) T € (Csy,, 50)-

Claim 3 (i. and ii.) then implies that a dense subset of 7(C,,,, +) is contained in 7(C.,,, ),
which implies Lemma 3.31 , a) in this case. To finish the proof of Lemma 3.31 b), let
vyy € C and vyz € C with vyz # 0. Then, just as for a)

W(vaS ) 2 U(az—ay,o)(Uwg)U(ay—az7—1)(in)Tw = (35)
U(e;c—sz,—l)(C;:’y‘l,yz(_Ux@)vyZ)U(sy—ez,—l)(ny)U(ex—sy,O)(Uyz)Tw = (36)
U(az—az,—l)(Cglg};l,yz(—Ua:y)vyz)U(ay—az,—l)(Uyz)Tw- (37)

Therefore the elements of the set

Ute,—e.,-1)(02)Ue, .1y (vy2) T
such that v,z # 0 are contained in (37). By Claim 3 (ili. and iv) and Proposition 3.27
there is a dense subset of
T(Cryy5) = UoU(e, -, -1) (V2z) U, - 1) (0yz) T
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that is contained in 7(C,,, ).

The cases z = § and y = T are missing so far. (Note that z # Z is not allowed. Also
note that and that if y = Z then = must be unbarred and if z = § then y must be unbarred.)

Case 1.1 z=y

a. We first show that

m(Cy, 50) ET(Cr i) (38)

All of the generators of Uzwlw belong to Ug except for U, ., _1)(vzg), for vz € C.
The generators of U?wlw are U, ., _1)(vig) for I # 2 and vy € C, and U, ., 0)(vgy) for
vz € C. This last term commutes with U, _. _1)(vzy). Therefore, by parallel arguments
to those given in the proof of Claim 3,

—€y,

7(Cryy ) = UoU(ey—e, -1) (Wag) [ TU (e)c, —1) (v15) T
I<y
l#x
All terms in the product U, ., _1)(vag) [TU(,—c, -1)(viz) are at the same time gen-
l<y

l#x
as well, therefore, by Proposition 3.27,

w2

erators of TU?

W(C%l wv) € W(CWW 1)

as wanted. Next we would like to show
77(0%2*”) c W(wal ) (39)

To do so we will make use of Proposition 3.10. Let

%_ X | x y‘
vy
and
%_]Xy-ly
y |y-1

Then we have wy =y x § = w(#1) and we =y § = w(#2). By Proposition 3.10 it then
suffices to show

T"(Cy,) €T (Crp, )-

First assume y—1 # x. Note that in this case UY%W is generated by terms U(Ey_l_%_l)(a)

with a € C, and all generators of Ug‘% " and Ug‘%"w belong to Ug. Out of these, the only

ones in Ug%w that do not commute with with U . _1)(a) are U, e, 0)(b) and

U(Ez_gy_ho)(d). Then for every element in 7T(Cw£,2 v ) there is a u € Uy such that it belongs
to

=/

UU(sy_l—sy,—l) (a) U(sz+sy,0) (b)U(EI—Ey_l,O) (d) ™ =

uu,U(sy_1 +eg,—1) (Cglj_lhj@y(_a)b)U(sz—sy,—l) (Cllj_llg’xﬁ(_a)d)U(ey_l—sy,—l) (a)Tw'
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Fix such u, a, b, and d such that abd # 0. Such elements form a dense subset of ﬂ"(C7%2*V).

We will show
U(ay 1+517_1)(Cy 1y, {L'y( a)b)U(al_ayv_l)( ( a)d)U(Ey—l_ayv_l)(a)Tw

€ 7(Copy x0)

y- lyacy 1

If this is true, then (39) is then implied by Proposition 3.27 applied to
UU(EI+€y,O) (b)U(sz—sy_hO) (d) e Up.

First note that for all {ayg,ay-15,ayy-1} € C, U, o, _1y(azy) and
U, 1-¢,,-1)(ay-1y) belong to U?‘%/l " and v = Ue,+e,-1,0) (ayy-1) € Ue, nUp stabilises the
truncated image T* as well as the whole image 7'(C, %1*1’)‘ Therefore all elements of

v U, —e,o1) (ag) U e, e, 1) (ay-15) 0T =
Ueyrey -1 (€ gyt (=029 ayy- 1)U e, e, 1) (025) U,y -2, -1 (@y-15) T

belong to W’(nyl*y) and since abd # 0 we may find a,3,ay-15, and a,,_1 such that

y lyfry 1(_ a)d,
(-a)b, and

Cbxg =

1,1
Cz@yy—l (_ax?)ayy—l y 1y Ty

ay-1y =
This concludes the proof if y # x —1. Now assume that y = z—1. In this case all generators
of UJ*2™ commute with U(e,1-¢,,-1)(ay-15), and therefore all elements in 7"(C.,,, )
belong to

UU(ey_l—ay,—l) (a)Tw

for some u € Uy and a € C - but U(Eyfl,sy,,l)(a) € [U;’Xlw, which implies (39) by applying
Proposition 3.27 to u € Up.

b. We now have

wy=xyy=w(A) and wy =y x y=w(HA,),

where
PARHILIE
V|V
and
,%/4— X | x ?‘
y|v

We want to show

7[.///(C’y)g:3 *1/) — 71.////((3’y)£,4 *1/)‘
First Ug%w and IU;Y%* are both contained in Uy. The generators of IUV‘%/?’ that do not

belong to Up are U(sy —1)(ay) U(sy+€l, 1)(6yl) and U(sy—es,—l)('yys) for {O‘y)ﬁyla’ng} cC

and [ <n,l +x,y <s<n. All of these are also generators of TUV‘A/“ , hence by Proposition

3.27 and Theorem 1.10 we have
7[',”(07%3 *V) c 7_(_/lll((jrng4 >(-V)‘
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The discussion above also implies that

T"(Cy sy v) = UoUe, 1) () HU(gy+sl, 1) By) TT Uepeu-1)(7s) T (40)
y<sn
l¢x

There is one more generator of U; not mentioned above, which is U 1., 1) (day)-

Since all generators of va“ ( which are U, .. 0y(d') € Ug for d’ € C) commute with
those of Ul , we have by Proposition 3.27:
ﬂ_l///(cryle*u) —
UoU(e,4e,,-1)(day)Uge,, —1)(ay)HU(5y+El, 1)(byl)UU(5y—55 _1)(eys)TY
l#m s>y

We now would like to show

W,,,,(Cwal ) C W”’(C7%3 ).

To do this we will see that for complex numbers a,, by, cys, and d,,, with a, # 0,

U(6x+€y7—1) (da:y)U(sy,—l) (ay)HU(6y+el, 1) (byl) HU(ey—es -1) (CyS)T (41)
s<n
l¢:c $>Y

€ 7" (Cp ev)- (42)

By (40) we conclude that for any complex numbers oy, By, vys, and d the following set is
contained in 7(C, . )

U_IU(aac—ay,l) (6)U(ay,—1) (ay)lljU(ay+al,—1) (Byl) UU(ay—as,—l) ('YyE)Tw =

l+x s>y
v UU(€1+ey,—1)(pmy)U(sy,—l)(ay)HU(€y+€l, By [TU (e —e0,-1) (y5) T
l#z i’j;
where
v =
U(EZ,O)(Czlzg,y(_(s)ay)HU(az+al,O)(C}p;y[(_(s)/gyl)HU(EE—ES,O)(Czlv;/},yg(_(s)’ny)
< %
Pzy = xyy( 5)04

and where the latter equality is obtained by applying Chevalley’s commutator formula
and Proposition 3.27 applied to U(EI_EyJ)((S), which stabilises the truncated image T™.
We will have shown our claim in (41) if we find complex numbers o, By, vys, and § such
that

Cony(—0)al =
Qy —ay
ﬂyl zbyh

which we may obtain since a, # 0. This concludes the proof in case z = ¥.
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Case 1.2 y = Z. This means that z is necessarily unbarred and therefore z = b for some
b<.

a. As before, we will use Proposition 3.10. We have

where
A =5TS
and
= b|b
First we show
T'(Cr ) € T(Crppr w)- (43)
To do this, we claim that
W’(Cvxl*u) = UOU(EI,—l)(ax) H U(sz+ss,—1)(axS)Tw- (44)
seCp+b
egptesedt

Indeed, U, _1)(az) and U .., _1)(azs) for s € C, and s # b are the generators of szlw

that do not belong to Uy, and Ug‘xlw is the identity, because €, —¢j is not a positive root.
Therefore (44) follows by Proposition 3.27. The aforementioned terms are also generators

(but not all!) of TU;‘%/Q " therefore (43) follows. Now we show

W,’(C’YXQ*V) S TFI(C’Yxl <v)- (45)
To do this, let us first analyse the image

" VY Ay ¥V y Y H ¥V e VA XV
1" (Copy o) = Uy 2 U2 0,727 T,

In this case Ug%*y c Ug and U?‘%W is the identity, because —(e, + &) is not a positive

root. The generators of U;XQ*V are Uiz, _1)(02), U(eve,,-1)(Qas) and U o, oy(up) for
s € Cp, such that s # b and complex numbers oy, as, and ayy. Therefore

T(Croyor) = UoUre, 1) (@) [T Uleprenm1)(Qas) Uepaey,-2) () T (46)
e
Let us fix complex numbers o, a;s, and ayyp, such that a, # 0. We will show that (cf.
(44))
U(sz,—l)(aw) H U(sz+ss,71)(O‘$S)U(ez+sb,—2) ()T € W,(ngl wv) (47)
it
To do this we will use Corollary 1.11, which says, in particular, that, if we write
v = (Vo,Eo, V1,E1, V2, E2, V3),
then
W'(Cw(l) 5 Uy, Uy, Uy, TY.
Therefore, since u := U,,_., 0)(a) € Uy, nUp for all a € C, and since U, _1)(a;) and
U(azﬁs,_l)(am), for s € C,, and s # b are the generators of UY‘%W c Uy, for any complex
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numbers azs and a, we have (using, again, Proposition 3.27 applied to u € Uy and v € Uy,

(V3 stabilises the truncated image T"; see below for a definition of v)):
7' (C, oy #v) 2

u_lU(sz,—l)(az) H U(£I+ES,71)(G$S)U’Tw =
s#b

extesedt
u U, pey -2y (2 (@D U, 21y (az) T Ue,ae,-1) (00T =
o
U(sx+5b,_2)(62’7;1)5(613;)5)U(5x,_1)(ax) [T Ulren-1)(azs)T?.
i

where
0= Uy (eha(-and) TT Ugeee, y(ehh,(asa)b) € Uy,
s£b
a$+:se<1>+

In order to show (47) it suffices to find complex numbers a, a,s, and b such that

2,1 2y _
Copz(@z)b = gy
Qg = Oy
Qps = Qgs,

and we may do this, since ay, # 0.

b. We will again use Proposition 3.10. We have
wy=2bZ=w(B)and wy=bx T =w(H),

where

X | x|x
PLILIE
3 b | b

and

x-1] x | b
Ay =]

X [x-1

By Proposition 3.10 it is enough to show

ﬂ.III(C’YL%/?) *V) _ 7T""(C71,4 *V).

(48)

We analyse both images 7"(C,,, ) and 7""(C,,, «v) separately and then show (48).

. . *V L 2 . . . . .
First , since [ngf* c Up and Uly% is the identity (this is because €, — ¢; is not a

positive root), we have

W,,,(C’yxs *1/) = UOHU(sl—aw,—l) (ali‘)U(eb—ex,—Q) (ab:E)Tw~

<z
l+b

(49)

Now, Ug‘%‘*w is generated by elements U, ., _1)(0z-12), for az-1, € C, and UY‘%“W
is generated by U, ., | _1)(ayz=7) for ayz—5 € C, by U, 0y(ayyzq) for [ <z -1 and
ay,=1 € C (this last element stabilises the truncated image T") , and by other elements of

Ug. Therefore
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7_(_////((})/9(4 >H/) (50)

= UOHU(al—ax_l,D)(O‘lﬁ)U(ab—am_h—l)(abﬁ)U(aw_1—az,—1)(ax—ly’c)Tw (51)
l<x
lib
=Uo [ Ureo1)(&2) U, s-c0-1)(Q12)Uey—c, —2) (&2) T, where (52)
I<x
l#b,l#+x—1

1,1
gbf - Cbﬁ,xfli(_abﬁam—li)
1,1
Stz = ¢ 12 (¥ Ta, 1)
and where the equality between (51) and (52) arises by using (4) and Proposition 3.27
applied to U, ; 0)(az77)U(e,—c, 1 ,-1)(q4z77) € Uy, . The sets displayed in (49) and
bl x ) A
(52) are equal as long as all the parameters are non-zero.

Case 2: x=y<z,2+ X

In this case we have wy =y y z and wy =y z y. We want to look at
T T e T
T(Crpyy ) = Uy 2 U2 U2 T

In this case all generators of Uzwlw and of [UZ"’Q ™ belong to Uy for i € {1,2,3}. Therefore
Proposition 3.27 implies in this case that

W(C'le *V) = UOTw = W(C'ng *V)7
which concludes the proof.

Case 3: x<y=2,2#+7T
For this case it will be convenient to use Proposition 3.10. Let

pPanE
LY ]
and
=22
LY ]

It is then enough to show (by Proposition 3.10) that

W’(Cvxl wv) = W’,(Cvgng )

since
wy =2 yy=w(H) and
we =y xy=w(A).

. . . ’YX *UV
However, this case is now the same as the previous one: all generators of U,”'  and
U;"

; Y belong to Uy, therefore, as before,

71"((]7%,1 w) =UgT" = 7r"(C%g2 iv)-
With this case we conclude the proof of Lemma 3.31. O
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Relation R2. For 1<z <nand x<y<Z:
a.yx—lax—-1=yx Z and
b.z-1lz-1ly=zZy.

LEMMA 3.32. Let

wy=yxr—-lz-1
W=y T T
w3=zx-1lawz-1y
Wye=T TY

for z # . Then

a)”(c’ywl*u) = W(C%@*l/)
b)Tr(C'Yw3 ) = TF(C%M*V)

PRrROOF. As usual, the proof is divided in some cases: we first consider the case where
y ¢ {x,Z} and then we analyse y = x and y = T separately.

Case 1 y ¢ {z,7}
a) We will use Proposition 3.10. Note that

w=yr-lz-1l=w Sl y)

and

x-1

w2:y:v:c=w(_ y‘.

X
T |x-1

Hence by Proposition 3.10, to show Lemma 3.32 a) it is enough to show that

W,(C’Yxl ) = W’,(C’ng )

where

x-1| x |y x-1|y |y
— ‘ and 4] :‘
<-1 x-1[x-1

%:

|

First we check

T"(Co i) € T (Crppr w)-

7:%2 *V

Clearly Ug% e Up; the only generators of U, that do not belong to Ug are
those of the form U, ., _1)(a),a € C, and those in Ug‘%"w are U, -, -1)(b),

for b€ C. This means that every element in 7(C, . «) belongs to

UU(sz—ey,—l) (a)U(sz,l—sm,—l) (b)Tw

for some u € Ug. Both U, ., _1y(a) and U, ., _1)(b) belong to Ug,—c, ,, and
this implies the contention by Proposition 3.27 and Corollary 1.11. Now we want
to show

T (Crypyw0) €T (Co i)
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By Theorem 1.10, all elements of 7'(C,,, .,) belong to

wU (e, e, -2) 1) U,y -1) (Vo) [U ey —er-1) (Ve 1D [ [U ey -y e, -1) (02-16) T (53)

>z SFY
l+y

for u € Uy and v,_;; € C. This is because both [Ug‘%lw and U;Wl " are

contained in Ug. Fix such an element such that v,_1z # 0. We know that
*UV

Utey 1-e0-1) (Vz-12) € U;‘%" and that for any a,; € C,U(., ., 1)(asy) € Uc,;

this means that these elements stabilise both the truncated images Tii@w

and T?Y}%W. Hence the elements in
U(ezfl—sx,—l)(Ux—li)U(sx—ay,—l) (ngj)Tw = (54)

Uep—ey-1) (/ng)U(Ez—l_Eya_2) (Ciflaé,xg(_vx—li‘)@wﬂ)U(ézq—em—l) (Vg-12)T" (55)

all belong to 7”(C,,, .,); more precisely to U, ™" Tw ¢ T%ﬁ «v, hence by
Proposition 3.27, we may multiply by U, _, 1)(=vsy) on the left of line

(55) and the product still belongs to 7’(C, . ), hence

U(£m—1—5y7—2)(Ci’}li,xg(_Ul'*lf)axg)U(ax—l—Ezy—l)(U"B*IE)T"U c w//(ngZ*u)-

Now consider the product

u = U(€y+€z,1)(ayx)U(sz,O)(ax)HU(szfel,O)(aml_)HU(slﬂ-:s,O)(axs) € Uay N UO-
I>x

SFY
l+y

Proposition 3.27 then implies that
W(Cw@ wv) D
U_IU(Ex—l_Eyy_Q)(Ciflf,mg(_vm_lj)azg)U(Ex—l_sz,_]-)(Uz_lf)UT’w =
U(z—:m_1+sz,—1)(pm—lz)U(sx_l,—l)(px—l)U(sx_l—sy,—Q)(pz—ly)
HU(szflfsl,fl)(px—ll)HU(ez,lﬂes,fl)(px—ls)U(ez,lfsl,fl)(Ux—lir)Tw

I>x S#Y
l+y

1,2 (_ ) 2 L1 1,1 ( )
Pz-1z = Cx—li‘,x Uz-1z )y C:c—ly,ya:cx—li,xg Ug-1z ) AzgQyx

Pz-1j = Ci,’_llj7xj(—vx_1f)axjj * y,j € {l_ > JI} U {S 1Ep-1 T ESE (I)+}
1,1
Pz-1 = folf,x(_vmflf)ax
The system of equations defined by v,-1 = ps_1,V4-1; = pz—1; has indeed

solutions (the variables are a,, @y, a,7, and a,;) since v,_1 , # 0! This means
that for such solutions (cf. (53))

U(az,l—ay,—Q) (Uxflﬂ)U(EzJ,—l) (szl)HU(Ezfl—Sz,—l) (Uw—lf) HU(51—1+537_1) (Uﬁfls)Tw =

>z s#Y
l+y

U(€z—1+5x7_1) (px—lx)U(ezm—l) (px—l )U(Ez—l_eyy—Q) (px—ly)
HU(az_l—el,—l) (,Oxfll)HU(az_1+5s,—1) (prls)U(az_l—aw,—l) (U:E—li)Tw c W(C'y%/Q H/)

I>x Ss#Y
l+y
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and so by Proposition 3.27 we get that all elements in (53) belong to
7"(C, ., «). All such elements of 7/(C,,, «,) form a dense open subset.
This finishes the proof in this case.

Let
(%/_x—lx—lﬁ‘
57 Y|y
and
_‘y x-1] x
Hy = =

Then wy=z-12z-1y=w(A3) and wy =2 T y =w(H#;). Asin a), by
Proposition 3.10, it is enough to show

T(Coyar) = T(Co )

To show

7.(.////(07%4*”) c ,n.///(cng3 *V)7
note first that the only generator of [UZ‘%/“V that does not belong to Uy is
U, e 1y(a) e U™ for aeC.

Of U3, the only generators that do not commute with U, , .. 1)(a)
are U(c,+,,0)(0), with b € C. Then Chevalley’s commutator formula (4)
implies that all elements of 7(C,, .,) belong to the set

UoU e, rveyo1) (515, (D) U,y o1y (@) T (56)

Since both U(Ex—l*'ay,—l) (Czlv’fllzi,xy(_a)b) and U(Ew_1—5z7—]_)(a/) belong to UYXS*V,
the desired contention follows by Proposition 3.27. Now we show

m"(Cop,) €7"(Coyr)- (57)

The proof is similar to that of a), but there are some subtle differences. First

we look at the image 7/(C,,, .,). Out of all the generators of U™ | the
ﬂ/‘)ﬂ/g*y

only ones that do not belong to Uy belong to U, P Uey-1)(02), Ueyy—ey 1) (Va1

and U, 1e,-1)(Vp-1y) for I # o - 1,5 > x,s # y, and complex numbers
Vz-1,Vz-1s, and v,_y;. The group Ug"@*” has as generators (only) the terms
U(c,_1+¢,.0)(a), and these commute with all the latter terms. Therefore all
elements of 7’(C,,,. ..,) belong to

UU(Ex-L—l)(Ur) H U(E;c-1—€s,—1)(vx—18) H U(Ex-1+sz,—l)(vx—ll)Tw (58)
s>x—1 l#x-1
s#Y

for some u € Uy. Fix such a u, and assume v,_1; # 0 and v,_qy # 0.
Such elements as (58) form a dense open subset of 7"(C, . .,). Now,

Yo, ¥V
for all complex numbers a,a,,, and a,; we have U, _,_., _1)(a) € U™ 7,
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Ufeoie, 0)(@ay) € U7 and U, ., 0y (azy) € Ug, which stabilises the trun-
cated image Tiiﬁw. Therefore, setting ¢ = U, 1z, .0)(@ay)Uc,—c,.0)(0ay) €
Uy, all elements in

MU, y-ep -1y (@)CTY =

Ueyyrew1) (0o-12)Ugey ey o1) (02-19) Ugen 1y o1) (€3 10 25 (—0) 00 U e,y ey 21y (@) T =
Ueyrenm1)(00-12)U e,y ey 1) (001U, -1y (@)U e,y ey -1y (€1 (—0) a2g) T =
Ute,rten-1)(02-12)Ue, 142, ,-1) (02-19) U,y e, -1y (@) T

belong to 7(C, ,, ), where

1,1 1,1
Oz—1x = Cz—ly,zgjc:c—l;i',a:yaamy Uy

1,1
Oz-1y = Cx—li,xy(_a)axy7

and where the last equality holds because U(Em_l_%_l)(ci’_llmyxg(—a)axg) e U, and all

elements of the latter stabilise the truncated image T" by Proposition 3.27. Now let

C, = U(Exvo)(ax)HU(Ex_Es,O)(axg) H U(8x+€l,0)(a$l) € UEy n UO

s> l+x-1
S#Y l+y

for a,,a,s, and a,; complex numbers; by Proposition 3.27 this element stabilises the trun-
cated image T* and the image 7""/(C,,, .,). Therefore

W,’,,(C’YJQ) 5 (59)
C,_lU(Ez—HEzrl)(Qw—lx)U(ez_ﬁsy,fl)(Qm—ly)U(sz_lfsz,fl)(a)clTw = (60)
U(az,l,—l)(gx) H U(az,l—es,—l)(th—ls)U(az,l—em,—l)(a)U(ez,1+sx,—1)(Q,z—1x) (61)
s;ic;I
S*+x
H U(Ez—1+€lr1)(gw*”)Tw (62)
l¢{z-1,x}

where

1,1
Oz-1 = Cx—la;x(_a)ax
1,2 2
Q;?—ll‘ = Qﬂ?*lx + Cm_lx’:p(_a)al‘
1,1
Oz-11 = C$_1j7xl(_a)aml

Ox-15 = Cij,llj’xg(_a)aa:g-

We want to show that U | _1)(ve-1) TI 1U(Em_l_ES’_l)(v;,;_k,,)l HlU(Ex—l-FEz,—l)(vx—ll)Tw
S>Tr— +r—

SFY
is equal to the product in the last lines (61) and (62) above (cf. (58)), for some ay, Gz, azs.
This determines a system of equations
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VUp-1z = @

_ 11 1,1 i 1,2 (_ ) 2
V-1 = Cx—ly,rgcx—lf,myaaxyazy Cm—lm,x a)a,
1,1
Uz-1 = Cx—l:r:,x(_a)ax
1,1
VUz-15 = Cm—li,mE(_a)aifg

1,1
Vz-11 = Cac—la_c,xl (_a)a’ml

1,1
Uz-1y = folri,a:y(_a)al’y’
which can always be solved since v;_1, # 0 and v, -— # 0. This completes the proof of b)
in this case!

Case 2 y==x
a) As in Case 1, we will make use of Proposition 3.10. Let
’x-l X | X
L%/l - x-1|x-1
and ‘
x-1| x | x
Ko = X [x-1
Then

wy=zx-1z-1=w() and
we=x x T =w(A).

By Proposition 3.10 it is enough to show

T (Cry gy wv) = T (Cry i)

First we show

T"(Co i) € T (Crppr ) (63)

Since U;WQW is generated by elements of the form U, _. _9)(a),a € C and the
generators of Uz%*

of the form

" belong to Uy for i € {1,2}, all elements of T"(Cypywv) are

UU(az,l—ax,—Q) (a)Tw

for some u € Ug. Since U, ., _2y(a) € U;xlw, (63) follows by applying Propo-
sition 3.27 to w. To finish the proof in this case it remains to show

T (Cy gy o) €T (Cry i) (64)

VA ¥V

The generators of IU?XI " belong to Uy for i € {0,1}, and the generators of U,
that donot are Uo, | _1)(v2), U(e, 1—2,-1) (Vp17)s Uy +es,-1) (Va-1s), and U, o, 0y (ve-12),
forn>1>x,s¢{x,x-1}, and complex numbers vy, v, 17, Vs-1s, and vy_1z. There-

fore all elements of 7'(C,, +.) belong to

uUe, 1 —1) (V) U, e, -1y (Vo 1) U ey es,-1) (Vz-18) U, ey —2) (Vz-12) T,
Fix such v € Uy and vz, v,_17, Vz-1s, Vz-1z complex numbers such that v,_1z # 0.
We know that for any a e C, U, .. _oy(a)e Uy, w03 let

q= U(gmyl)(am)HU(gz_gs,l)(axE)HU(s_IH;‘Z,l)(azl) € U(ET) nUp
l+x

s>x
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for any complex numbers a,, a,3, a,;. Then by Proposition 3.27,
q_lU(az_1—aw,—2)(a)qu c W,,(C’yy@ *u)' (65)
As in the previous cases, we want to find a, a,, a;s, a, such that
tU(ep1,-1) (02)Ute, 1-e,-1) (V1) Uty yve,-1) (Va-15) Ue, s e, -2) (Va-12) T
equals (65), for some t € Uy. But
q_lU(ez_1fsm,f2) (a)qu =
t_lU(sx_l,—l)(Qz)U(sx_l—sl,—l)(Qx—lf)U(sw_1+€s,—l)(Qz—ls)U(sw_l—sz,—Q)(a)Tw
where

-1 1,2 2
t = U(5x+51—170)(folzi,:p)(_a)aw € UO

1,1
Oz = Cxlli‘,x(_a)a$
__ L1 _
Op-17 = Cx_m,x[(_a)a:cl

Ox-1s = Ciglj’xs(_a)a’IS'

The system

always has a solution since v,_1z # 0. This concludes the proof.
b) Let

x—lx—la‘
3 =
3 X X
and
J{,/ ’X x-1| x
R ETE
Then

wy=z—-1lx-1z=w(H) and wy =2 T = w(H#y).
By Proposition 3.10 it is enough to show
W’,I(C’ng x—z/) — ﬂ-"”(C’m{@ *u)-

To do this we will describe a common dense subset of 7''(C., .. ) and 7" (Cs ;. 4»).-

Consider first
1 Vo RV Yoy R Y R g
T (Cr o) = Uy U, U, .

We have Ug%’w c Uy and also U;% e Ug, since it is generated by the terms
U(e,_1+60,0)(d),d € C. These commute with all generators of UY%’ W, out of
which U, —1)(vz-1), U, +es,-1)(Vz-15), and Ue o 1y(v,_qp), (for s <n, s #
x—1,1 >z, and vz_1,v5-15 and v,_;; complex numbers) do not belong to Up.
Therefore 7'(C,,, ) coincides with

UoUtc, 1 -1)(a-1) TT Ute,orven1)(Wa-1s) T Uepoy—e-1) (0 ) T (66)
s<n x<l<n
s#x—1
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for complex numbers v;_1,v,-15 and v,_;;. Now we look at elements of

Yoy RV YAy RV YRy KV
7"(Coy ) = U U U, T

Yoy 1 2

Both Ug‘%/“ " and Ug%“* are contained in Uy, and UW‘%“ is generated by the
elements U .. _1)(d), which belong to U, and therefore stabilise the trun-
cated image T" by Proposition 3.27. Now, by Proposition 1.8, we may write any
element k of [va‘*w

k=Uw, 0 (k) [T Ueomer0)(kai) T1 Uepres,0)(Fas) € Uo

z<l<n s<ns+x

and k;s. Theorem 1.10 and Proposition 3.27

as

for some complex numbers k,, k

x>
imply that
77””(0’7;«4*1/) = UOU(ez,l—ax,—l)(d)kTw (67)
=UokUc, | -1)(00-1) U, y4er-1)(0e-12) [] Uesy-erm1)(0017) (68)
z<l<n
[T Utirven0)(02-19)Ue,_y—ep -1y () T (69)
S<NS*T
for ke Uy and d e C, where
Og-1= x lm x( d)k
Op-1z = Cx 1z, x( d)k2
Oa-11 = la: zl( d)k

Oz-1s = Cp 1x :cs( d) s
This set (67) is clearly contained in (66). Moreover, the system
VUg-1=0z-1

Ug-12 = Og-1z

Ug-15 = Og-1s

o and kyg as long as {vy 1, Vs 14, V4 17, Vz_15 ) € C*.
Proposition 3.27 then implies that a dense subset of 7(C,, .. »,,) is contained
in 7""(C,,, +v), which finishes the proof in this case.

has solutions for d, k., k_;

Case 3y=12
a) Let

NHE
% - x-1[x-1

and
x-1| x | X
K2 = X [x-1 ‘

Then

w=Zx-1lz-1=w( ) and wy =% = = = w(H#2)
By Proposition 3.10 it is enough to show
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(G ) = 77 (Cr g v0)

In this case we have [nglw =1= ngl W; Proposition 1.8 and Theorem 1.10
then say

L(CPE (70)
Ueyr-e0,0) (Va-12)Ue,_y 1) (V1) Ue, ey ,-2) (Va-12) (71)
[T Ueorer-1y(am11) TT Uepyves) (0am15) T (72)

x<l<n s<n

s#x—1

S*x

for complex numbers v, 14, Vp1, Vz—1z, Vp_1i, and v,_15. Fix such complex num-
* *
bers. Now we look at 7"/(C,,,). We have that Ug% " and Ug% " are both
contained in Ug, and the latter is generated by elements U _ _. o)(a),a €
VKo *¥V

C. Out of the generators of U, , the ones that do not belong to Uy are
Ule,,-1)(a2), U(c, 1e,,-1)(azs), and U ., _1y(a,p). Therefore, if

A= U(am,—l)(ax)U(az+aS,—1)(aa:s)U(az—al,—l)(axZ) € Ue,,

we conclude that

WI,(CVXQ*V) = (73)
U0AU(51,1—5;¢,0)(‘1)TM = (74)
UOU(az_l—az,O)(a)U(az_l,—l)(gmfl)U(az_1+az,—2)(gmflx) H U(az_l—ah—l)(gx—ll) H U(az_1+as)(£zfls)ATw =
x n s<n
<k s#x—1
S#T
(75)
UoUe,1,-1) (Ee-1) U, ven-2) (Eo12) T Ueoymerony(Eam1) [T Ugeyyien) (Gam16) T
x n s<n
<l s¥xr—1
s#T
(76)
where

o1 = Ci;:i;_m(_a;r)a
o1z = Ciiiflj(ai)a
§o17 = Ci}—;,m(—%i)a
€1 = Cap1z(—as)a
Therefore it follows directly that in fact
77"(07%2*1,) c W’(nyl*y).
Now, the system of equations
V1= &1
Vz-12 = &1
Vp17 = Ea1l

VUp-1s = éx—ls
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has solutions as long as {vy-1, Vg—12,V,_17; Va—1s} € C*. For such a set of solutions
we conclude

U(az_l,—l)(Uﬂf—l)U(al_1+az,—2)(Ufb—lw) H U(az_l—al,—l)(v:c—ll) H U(az_1+as)(vx—1s) =

z<l<n s<n
sxx—1
S*T

U(6z71,—1)(fw—l)U(Ezfﬁéx,—?)(fx—lfv) H U(Ez—l—ez,—l)(gz—ll) H U(51—1+6s)(€x—15)
z<l<n s<n
<l s+x—1
S*FXT

and therefore we conclude by Proposition 3.27 (applied to U, .. 0)(vz-12) in
(71)) that a dense subset of ©'(C,,, +) is contained in 7"(C,,, ) (cf. (71),

(76)).

b) Let
= x; x}-_(lﬁ\
and
Then

wy=z—-12-17%=w(A3)
wy =2 T T=w(H)

By Proposition 3.10 it is enough to show

ﬂ-”,(C’YJ{% ) - 7.(-IIII((j’Y‘}g4 )

First we claim
7_[_m/ ( C’}ﬁ)g‘l *u) c W"’(Cv% » ) )

This is easy. Note that the terms U, _,_., _1)(b),b € C generate both szﬁy

. . : *V . 5 *V
and are contained in Ui%’s . Also, the terms U(,,_._ o)y, which generate Ugm )

commute with U . _1)(b). Therefore

7T””(Cry)£,4) — UOU(sx_l—Ez,—l)(b)Tw c WI,’(C’)’Xg)’

where the last contention follows by Proposition 3.27. Now we will show

W,,,(C’YJ,/S *u) c 71.////(07%4 *1/)-

We claim that
7T"’(ny%3*l/) = (77)
UoUe, o) (0e-1) Uy ymep o1y (vam12) [ Ueayien-1) (vam1) T (78)

SEXEg+EL_1€PT

for complex numbers v,_1,v;_1z, and v;_15. Let us fix such complex numbers.
Let

D =U, 0)(az) [I  Ugpses,-1)(az1s) € Uo.
S+LEg+EL_1€PT

Then by the usual arguments (note that Uy stabilises both the image 7""'(C,,, )

: >2
and the truncated image T3 %W).

76



D~ U(Ez =21y (D)DTY € "(C,y, )
and
DU, e, 1)()DT" =
Ueo 1 -1)(P2-1)Uey g0y () TT Ueayres-1)(P2-16) Uepren1,-1) (Pea-1)

S#+rEgt+eL_1€PT

where
pr-1 =% Mo (0)ag
px—lx: o LM( b)a
Pa-1s = €15 s (~b)das.

As usual by requiring that v,_1,vz-1z,Vz-12, and pz-1s be non-zero we may find
suitable complex numbers b, a,, a,s such that

Uteo1,-1)(v2-1) U, ey -1) (Va-12) [T Urres-1)(ao1s) =

S*EXEs+EL_1€PT

DU, ,-e,-1)(b)DT™.

Therefore Proposition 3.27 (cf. (78)) implies that a dense open subset of 7(C. .. )
is contained in 7""'(Cs, +).

O

CrAmm 4. (R3) Let w € We, be a word and wy that is not the word of an LS block,
and such that it has the form wi = a1---a,2Zbs b1, and let wo = aq---a,.bs---b1 with aj <
eap <z >bs >+ >by. Then 7(C,, ) =7'(Cy,,.)-

ProOOF OF CrLAM 4. Let A = {ay,--,a,}. We have
m(Cry,) = Pay - Pa, P PPy PpT2I 542

Ywqw

where

P, U(az 0)(UZ)HU(€Z—51 0) (Uzl)HU(62+€l,0) (Uzl) H U(€z+6a 1)(Uzaz)

a;€A
Pz = H U(sai_5z70)(vai2)
aieA

and note that py, = py,, = X e, — X €p;- The terms that appear in P, all stabilise p,,,
i€l gels
and commute with ]P’b—j, while the terms in Pz all appear in P,, and commute with P,, for

[ > 1. This concludes the proof of the claim with the usual arguments. O

O

5. Non-examples for non-readable galleries

Let n =2 and X = €1 + €2, and (3,,,m) the corresponding Bott-Samelson as in (9). Let
~ be the gallery corresponding to the block

1
2

=] ol

Then points in 7(C,) are of the form
7



U(a1 +e2,-1) (b) [to]

for b e C, hence form an affine set of dimension 1. We claim that the set Z = 7(C,) cannot
be an MV cycle in Z(u) for any dominant coweight p. First note that for any u € U(K)
a necessary condition for ut to lie in the closure U(KC)t n G(O)t+ is that 0 < v, since it
would in particular imply that ut’ € U(K)t”. Also note that it is necesary for v < u in
order for the set Z(u), not to be empty. Any MV cycle in Z(u), has dimension (p, u+v),
and the only possibility for the latter to be equal to 1 (since p + v is a sum of positive
coroots) is for either =0 and v = o, or v =0 and p = ), for some 7 € I, and both options
are impossible: the first contradicts v < u, and the second contradicts the dominance of
u. Note that v is not a Littelmann gallery.
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CHAPTER 4

Some branching properties of tableaux under restriction:
The Naito-Sagaki conjecture

The automorphism of the type As,_1 Dyinkin diagram

1 n-1 n n4l1 2n-1

that sends node i to node 2n — ¢ for ¢ € [1,2n — 1] induces a Lie algebra automorphism
o : 5l(2n,C) - sl(2n,C). The fixed point set of o is a Lie algebra § isomorphic to
sp(2n,C). In this chapter we will present a conjecture by Naito and Sagaki [23] on the
decomposition into irreducible summands of res {(L(\)) of a simple module L(X) for the
Lie algebra g = s[(2n,C) using LS paths associated to semi-standard Young tableaux. We
prove it for n = 2 and for several other cases.

1. Notation

Let h c s1(2n,C) be the Cartan sub-algebra of diagonal matrices. We write s[(2n,C) =
(i, v, hi>ie{1,...,2n-1} where h; = Ej; = Ei414+1 and where z; and y; are the Chevalley gener-
ators corresponding to the simple root «; = €; —€;41. We identify h* with the vector space
V4,, , defined in Chapter 2.13 by identifying ¢; with the linear map h* — C defined by
diag(ay, -+, az,) — a;. The automorphism o is given by

o(x;) = Tan—i,
o(yi) = yan—i, and
o(hi) = han—i

The fixed point set § is generated as a Lie algebra by (&;, U;, ﬁi)i€{17...7n} (see Proposition
7.9 in [11]), where

oo T+ Xop—; ifie[0,n)u(n,2n-1]
t Tn ifi=n

i =

§, = JYi T Y- if i e[0,n) U (n,2n-1]
Yn ifi=n

. hi+he,, , ifie[0,n)u(n,2n-1]
" b if i =n.

N n
This Lie algebra is isomorphic to sp(2n,C) (see Proposition 7.9 in [11]) and h = @ h; =
i=1

hngcbhis a Cartan sub algebra. We identify Vi, with the real sub vector space of 6*
spanned by P¢, , and V4, , with the sub vector space of h* spanned by P4, ,.
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2. Restricted paths

The map

b* > b

v = lh
induces a map res’ : P4,, — Pc,. Given a path 7:[0,1] - V4, , we define a restricted
path res(7) by

res(m) : [0,1] - V¢,
t > res’(m(t)).

2.1. Restriction of paths that come from words. Let w = wq---wi € Wh, be a
word. Consider its associated key v,, and the corresponding path . We have

7T,yw = 7‘(‘}}/wk * e % 7‘(‘}}/’“}1 .

Note that for w; € Ay, the path 7, :[0,1] -V, , is given by ¢~ tg,,. Also, in general,
for paths 7y, -+, 7, we have

res(my * -+ * g ) = res(my) * -+ * res(my).
Set

g; =res(g;) for i e {1, 2n}.
Then, for i € {1,--,2n} and j € {1,---,n} we have
1 ifie{j,2n-j}
gi(hj)=1-1 ifie{j+1,2n-j+1}
0 otherwise.

Therefore &; = —€9,,_41, which means we can describe res(7,, ) in the following easy way:
First obtain from w a word res(w) in the alphabet C,, by replacing a letter w; in w with
2n —w; + 1 if n < w; < 2n. All other letters stay the same. Then

res(ﬂ-’yw) = 7T’Yres(w) :

EXAMPLE 4.1. Let n =2 and w = 121223341. Then res(w) = 121222211,

3. The Naito-Sagaki conjecture

Let A€ Pg4,, , be dominant and let L(\) be the associated simple module. Recall the
set T'(d,)5YT of semi-standard Young tableaux of shape d,. Let

domres()\) = {6 e I'(d,)%5YT : res(my, 4 ) is dominant }

be the subset of F(c_l/\)SSYT, elements of which are those semi-standard Young tableaux
whose words are dominant under restriction (considered as paths), and for v < A, let

domres(\,v) = {0 € domres(\) : wt(d) = v}.
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EXAMPLE 4.2. Let n =2 and A = wy +wsy. Then

domres(\) :{ ; ! ‘, i ! ‘}

domres(\, \) = { ; ! ‘}

domres(\,wy) = { i ! ‘}

To avoid confusion we will denote elements of P4, , by A and elements of Pc, by
\; in particular, the fundamental (co)weights in P4, _, will be denoted by {wy, -+, wan_1},
and the fundamental (co)weights in Po, by {@w;,--+,w,}. Also, for

A= aiwl + -+ apwy,

we write

A=a1W1 + -+ ApWn.

The following conjecture by Naito and Sagaki is stated in [23]. It is shown for (co)weights
of the form \ = aw; +wy, and \ = awy, a € Z°°.

CONJECTURE 4.3. [23] Let A € P} be dominant, and let L()\) be the associated
simple module for s[(2n,C). Then

res§(LAA) = @  L(wt(9))

dedomres(N)
THEOREM 4.4 ([23]). Conjecture 4.3 is true for A = aw; +wy, and A = awy, a € Z*°.

EXAMPLE 4.5. Let n =2 and A = wy +wo as in Example 4.2. Then

resg(L()\)) = L(L:Jl) ® L((:Jl +(212).

REMARK 4.6. Conjecture 4.3 is stated in [23] for L(\) a representation of gl(2n,C)
for A non-negative and dominant. However, the representation of gl(2n,C) induced by an
irreducible representation of s[(2n,C) has the same highest weight and restricts back to
itself. See §15.3 in [5].

4. Littlewood-Richardson tableaux and n-symplectic Sundaram tableaux:
branching

DEFINITION 4.7. Let A and v be two dominant (co)weights in P}, ~such that d, c d,
(this means that one shape is contained in the other when aligned with respect to their top
left corners. In Example 4.11 we see that d,, c d,). A tableau of skew shape \/v is a filling
of an arrangement of boxes T of shape )\ leaving the boxes that belong to v c A blank,
with the others having entries in the alphabet A, and such that the entries are strictly
increasing in the columns. The word w(T) of T is obtained just as for keys, reading from
right to left and from top to bottom, ignoring the blank boxes.

A shape d = (dy,-+,dy) is even if d; is an even number for all i € {1,---,k}. Also, for a
shape d define
I(d) =max{d;: 1<i<k}
to be the length of the longest column of the associated arrangement of boxes.
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DEFINITION 4.8. Let A e Py~ and let v,ne Py be (co)weights whose shapes d,
and L_in are contained in the shape d, of A, and such that dn is even. A Littlewood-
Richardson (n-symplectic Sundaram) tableau of skew shape \/v and weight d, is a
tableau of skew shape A\/v that is semi-standard, and has a dominant word of weight n
(and 2i + 1 does not appear strictly below row n + i for ¢ € {0,1, -, %l(c_ln)}) Here a word

w € Wy, is dominant if the gallery ~,, is dominant. We will denote them by LR(\/v,n)
(LRS(A/v,m)).

REMARK 4.9. Note that if /((A) < n (such (co)weights are called stable) then LRS(\/v,7n) =
LR(\ /v, 7).

REMARK 4.10. If A is stable and T is a Littlewood-Richardson tableau of skew shape
A/v then its entries belong to the set {1,---,n}. This is because if, say, k appears in row [,
of T, then, since the word of T is dominant, a k — 1 must appear either directly above k
in the same column, or in a column to the right, and since T is semi-standard, it appears
in at most row [ — 1.

1]1]
ExXAMPLE 4.11. The tableau L = 2 is a Littlewood-Richardson tableau of skew
2

shape \/v and weight 1 for A\ = w1 + we + w3,V = we, and 7 = 2wy and the tableau T =

is a Littlewood-Richardson tableau of skew shape X' /v’ and weight n’ for X' = ws, v’ = wo,
and 7’ = wy. Notice that L is 2-symplectic Sundaram while T is not.

DEFINITION 4.12. The Littlewood-Richardson coefficient is defined as the number
cl),‘m € 77° such that

L(v) @ L(n) = EBAC%L(A)
v<
where L()),L(v), and L(n) are all representations of s[(2n,C).

Theorem 4.13 below is known as the Littlewood-Richardson rule. It was first
stated in 1943 by Littlewood and Richardson

THEOREM 4.13. [10] The Littlewood-Richardson coefficients are obtained by counting
Littlewood-Richardson tableaux:
€ = ILROMw, ).

A

REMARK 4.14. Theorem 4.13 implies that ¢, = c) ,.

We will use the notation c’\n(S) = |LRS(A\/v,7n)|. The following theorem was proven by

Sundaram in Chapter IV of her PhD thesis [27]. See also Corollary 3.2 of [28]. For stable
(co)weights it was proven by Littlewood in and is known as the Littlewood branching rule.

THEOREM 4.15. [27] Let A e P},  be dominant. Then

s §LOY) = @ NuL()
(d, )<n

where

N)\,V = Z Cz)/\,n(S)'

11
gln eve
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5. Proof of the Naito-Sagaki conjecture for n =2 and A = aqw; + asws + agws.

As its title suggests, in this section we give a proof of Conjecture 4.3 in the cases n = 2
and A\ = ajwias + ws + agws, for all n. We will do so using Theorem 4.15 from Section 4.
The following construction should provide some insight. Given a tableau T € domres(\)
we will construct a (co)weight np with even shape d,.. To do this, first replace, in T, all
letters w > n by 2n—w + 1. The word of the resulting symplectic key, which we denote
by res(T), is res(w(T)). Now, in each column of res(T), replace an entry w by a blank
square if w appears in the same column as w. Count the number of blank squares in each
column, and order these numbers to obtain a shape

dUT = (n17”'7nk)a

where 11 < mg-+- < 1y, and 7; is the number of blank squares obtained in some column. The
2n-1

shape C—lnT automatically determines a dominant weight nt = ) a;w;, where a; = Y 7;.
i=1 ;=i

ExXAMPLE 4.16. Let n =2 and

1]1]

—
I
’OJ[\’)»—A

Then

res(T) =

1 1\
Cp=(2), and d, H

where the shape d, is obtained by replacing in res(T) by blank squares.

’l\)\l\'}»—t
o

LEMMA 4.17. Let T be as above. Then gt is even.

REMARK 4.18. Lemma 4.17 is only true for T a semi-standard Young tableau. Consider

for example n = 2 and the key .7 = . Thenres(.7) = is dominant, however,

the shape ns = (1, 1), which is not even.

PRrOOF. We will call a column standard if its entries are consecutive integers, starting
with 1. The proof is by induction on the number of right-most aligned consecutive standard
1]1]1]

columns in T, counted from right to left. For example: the tableau |2 | 2 has two right-
4
1 1] o 1
most aligned consecutive standard columns, the tableau | 2 | 4 has one, and T =| 2| 4
3

3
has none. Let D be the first column (counted from right to left) that is not standard.
Then there exists s > 0 such that the first s boxes of D are filled in with the numbers
i such that i < s, and its s + 1-th box is filled in with [ for some [ < n. Since res(T)
has a dominant word, it must even hold that [ < s. The same holds for the rest of the
entries in D, which are barred since entries are strictly increasing. The boxes in D with
barred entries together with the boxes in D that have as entries their non-barred versions
(they all exist, since the word of T is dominant) make up one of the columns of d,.
This column has an even number of boxes. Let us now ignore these entries. Let C be
the closest column to the left of D that is not fundamental. For the induction step, we
construct a new semi-standard Young tableau in which C is the first column to not be
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fundamental. Let L be the semi-standard Young tableau made up of the first right-most
aligned standard columns of T. Since the word of res(T) is dominant, we may use the
non-ignored entries in D to construct a new tableau L’ from L. We do this by adding one
of these boxes either at the end of L or at the end of a column, in such a way that the
resulting arrangement is still a semi-standard Young tableau with standard columns only.

11i]1]1]1] 1]r]a]1]
20222 20222
For example, if n=3 and T =|3|3|3 , then res(T) =|3[3]3 has a dominant
4|5 312
6 1
11 1]1]1]1]
word. Also, L =|2|2 =|2]2 , and the ignored boxes in D
3

are and . Define a new tableau res(T)’ by concatenating all the columns in res(T),
from left to right and up to D, with L'. It follows from the construction that res(T)’
has a dominant word and is semi-standard. In the previous example, this new tableau is

111 ]a]1]
2]2]2
res(T) =[3[3]3 . We may then apply the induction hypothesis. This concludes the
3
H
proof. O

LEMMA 4.19. If

A = aqwi + asws + agws

and v and 7 are dominant weights in P4,, , such that d, is even and both d, and d,
are contained in d,, then

A A
CVW(S) =Cphy

PROOF. Assume that T is a Littlewood-Richardson tableau of skew shape A/v and
weight 7 that is not Sundaram. This means that there is at least a “1” in the third row.
Since T is semi-standard, all the “1”’s in the third row must appear left-most and all next
to one another. But since gln is even, for each of these 1’s there must exist a “2” that
appears before it , in the word reading order. But this means, since the word is dominant,
that there must have appeared a 1 before this “2”. This contradicts the evenness of dn! O

THEOREM 4.20. The Naito-Sagaki conjecture is true for n = 2 and for any n if A =
a1Wi + agwy + asws.

Proor. Fix A and v as in Lemma 4.19 above. Then, for all  such that c_in is even,

ci"n(S) = c%‘w by Lemma 4.19 and Remark 4.14. The following Claim therefore proves the

theorem in this case.

CrLAIM 5. There is a bijection

domres(/\,y)g U LRW\/n,v)
dngd)J

n
dn eve
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Let T € domres(\,v), and set

b1 = # columns in T of the form | 2
2n

by = # columns in T of the form | 2

b3 = # columns in T of the form and

by = # columns in T of the form

T~
oolo»—thH?

If n =2 then by = by. It follows from semi-standardness and dominance of res(w(T)) that
these are the only possible columns aside from columns of the form and the single box

columns [ 1] Note that since res(w(T)) is dominant, the following condition holds
b1 <A1 - Ao (79)

Actually (79) is equivalent to the dominance of res(w(T)), once the b; are set. We assign
to T a Littlewood-Richardson tableau ¢(T) € LR(A/nT,v). By Lemma 4.17, nr is even.
Write

A= )\181 + )\252 + /\383.

Note that 1 has b = by + ba + bg columns, all of length 2. Fill in the first A\; — b right-most
boxes in the first row with a “1” | and the first Ao — b right-most boxes in the second
row with a “2”. If n # 2 fill in the first by rightmost entries of the third row with a “3”.
Then fill in the next rightmost by entries in the third row with a “2”, and the remaining
entries with a “1”. The resulting tableau ¢(T) is a Littlewood-Richardson tableau by

construction. Now we will show that any element in U LR(A/n,v) can be obtained
n<A;
7 even

in this way. Let n € Pg%_l have an even shape d, c d, (this means d, consists of size 2
columns) and let L e LR(\/n,v). Set

lh= #of 'sin L
lo= # of 2’sin L, and
b = # of columns of 7.

Note that this information determines L together with A. In view of the previous con-
struction, we would like to find non-negative integers by, bs, b3 and by such that

Iy =\ — by — by (80)
Iy = Ao — b — by (81)
b="b; +by+b3 (82)
bi= # of 3sin L (83)

Since L has a dominant word, we have
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Iy — ()\2 - b) <A1 — Ao, (84)

Substituting (81) and (82) in (84) we get precisely (79), so if we find solutions by, ba, b3,
the resulting tableau will automatically belong to domres(\,v).

CLAIM 6. The system determined by (80), (81), and (82), has integer solutions (pos-
sibly zero) by, be and b if and only if

b>M -1y (85)
b>Xo =1y (86)
M+ >b+1l+ 1. (87)

It follows from the definitions that these conditions are satisfied by all elements of

UJ LRW\/n,v).

dncd)\?

dn even
To conclude we give a proof of Claim 6.

Proor orF CLAIM 87. We only need to solve the system of equations determined by
(80), (81), and (82). From (80) and (82) we have

bi =M — 1 —bs (88)
bQZb—/\1+l1—/\1 (89)
Therefore by > 0 if and only (85) holds. Substituting (89) into (81) we get

b3=>\1+)\2—l1—l2—b (90)
Hence b3 > 0 if and only if (87) holds. Now substitute (90) into (88) and get

bi=ly-Xo+D, (91)
and hence b; > 0 if and only if (86) holds. This concludes the proof of Claim 6. O
O
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CHAPTER 5
Appendix

1. Appendix to Chapter 2

Here we state Theorem 2 in [8] with a small correction, which we prove. What is
missing in the formulation given in [8] is the relation 1.--n = @. The proof we provide
shows the failure of Theorem 5.1 without it.

THEOREM 5.1. Let v be a gallery of type d, and let vgg be the unique semistandard
Young tableau such that the words w(v) and w(vysg) are plactic equivalent. Let ¢ be
the shape of v55. Consider the Schubert varieties X, c Xy , and the desingularizations
WQ:EQ%X@ and ¢ : X > X)),

a. The closure m4(Cy) c X, is an MV cycle in Z(A.).
b. Let 7' be a second gallery of type d’. Then v ~ " if and only if 74(C,) = 74 (Cy).

PROOF OF THEOREM 5.1. The only thing missing in the proof in [8] is: Let v and §
be galleries, let b be the shape of v % §, and a be the shape of v * ..., * §. Then

Ta(Crinyxs) = Tp(Cuns)-

By Proposition 3 in [8], and by the argument given at the beginning of Example 4.2 it is
enough to assume that v and ¢ are both trivial. This means ¥, and X, are both just a

point (and Xy, = 1). Note that (a,m) € ®]*" means m = 0. We also have the relation

tAUa,m(h)t_)\ = Ua,m+()\,o¢)
(see (5)) for e X, € ® and n € Z. This means that

U ¢ SL,(0).

Therefore Theorem 1.10 implies

74(Coy.,) € SLa(O)[0] = [¢°] = 1.
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2. Appendix to Chapter 3

Here we show that relation (R3) in Theorem 3.21 is equivalent to relation Rg in [18],
Definition 3.1. For a word w € W, and m <n define N(w,m) = {z ew:z <mor m<z}|
Lecouvey’s relation Rg is: “Let w be a word that is not the word of an LS block and such
that each strict subword is. Let z be the lowest unbarred letter such that the pair (z,%)
occurs in w and N(w, z) = z+1. Then w = w’, where w’ is the subword obtained by erasing
the pair (z,%Z) in w.” The following Lemma is a translation between R3 and (R3).

LEMMA 5.2. Let w be a word thzﬁis_not the word of an LS block and such that each
strict subword is. Then w = a;---a,2Zbs--b1 for a;.b; unbarred and a; < ---a,, by < -+, bs.

PRrROOF. By Remark 2.2.2 in [18], w is the word of an LS block if and only if N(w, m) <
m for all m <n. Let w be as in the statement of Lemma 5.2. Then there exists in w a pair
(z,Z) such that N(w, z) > z. Let z be minimal with this property. In particular N(w, z) =
z+1 since if w” is the word obtained from w by erasing z, then z > N(w", z) = N(w, z) — 1.
We claim that z is the largest unbarred letter to appear in w. If there was a larger letter y
then N(w"’,2) = N(w, z) = z + 1 where w"’ denotes the word obtained from w by deleting
y. This is impossible since by assumption w’” is the word of an LS block. Likewise 7 is the
smallest unbarred letter to appear in w. The als and bls are then those from Definition
3.2 for the word obtained from w by deleting z,Z from it. g
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