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Abstract

A fitness landscape is a theoretical concept in population genetics where a fitness value,
which measures the reproductive success of an organism and is represented by a real
number, is assigned to each genotype. Content of this thesis is the analytical and
numerical study of stochastic models for fitness landscapes. The focus is on the landscape
ruggedness and its influence on evolutionary dynamics. One proxy for the ruggedness
is the number of local maxima, i.e., genotypes from which every mutation leads to
lowered fitness. Another way to quantify ruggedness is the study of accessible paths, i.e.,
successions of mutations that increase the fitness monotonically. The question whether
accessible paths exist can be interpreted as a kind of percolation problem. One model
for evolutionary dynamics that will be used is the adaptive walk. In this model type,
populations are treated as single entities that move through the space of genotypes
according to certain probabilistic rules. They are closely related to both ruggedness
measures as they follow accessible paths and terminate at local maxima. Furthermore,
the individual-based Wright-Fisher model is used to study recombination of genotypes,
interactions between individuals and the influence of the underlying fitness landscape on
these mechanisms.

Kurzzusammenfassung

Fitnesslandschaften sind ein theoretisches Konzept der Populationsgenetik bei dem
jedem Genotypen eine reelle Zahl zugeordnet wird welche den reproduktiven Erfolg,
die Fitness, des entsprechenden Organismus repräsentiert. Inhalt dieser Arbeit
ist die analytische und numerische Untersuchung von stochastischen Modellen für
Fitnesslandschaften. Das Hauptaugenmerk ist auf die Rauigkeit der Landschaften
gerichtet und welche Auswirkungen diese auf evolutionäre Prozesse hat. Rauigkeit wird
hauptsächlich auf zwei verschiedene Arten gemessen, nämlich durch die Anzahl lokaler
Maxima, d.h. Genotypen von denen jede einzelne Mutation die Fitness verringert, und
durch das Vorhandensein von zugänglichen Pfaden, d.h. Abfolgen von Mutationen
bei denen die Fitness monoton erhöht wird. Letzteres kann auch als eine Art von
Perkolationsproblem aufgefasst werden. Evolutionäre Prozesse werden zunächst durch
sogenannte Adaptive Walks modelliert. In dieser Art von Modell wird eine Population als
einzelnes Objekt betrachtet, das sich nach bestimmten stochastischen Regeln durch den
Raum der Genotypen bewegt. Adaptive Walks folgen zugänglichen Pfaden und enden
auf einem lokalen Maximum. Damit eng mit diesen Konzepten verbunden. Desweiteren
wird das individuenbasierte Wright-Fisher Modell in dieser Arbeit verwendet um die
Rekombination von Genotypen, Wechselwirkungen zwischen Individuen und den Einfluss
der zugrunde liegenden Fitnesslandschaft auf diese Mechanismen zu untersuchen.
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1. Introduction

Treating interdisciplinary problems is common practice in statistical physics. It is often
the case that models and methods that were developed in this field in order to describe,
for instance, interacting particles can also be applied to systems of interacting animals,
persons, cars, companies, and so on. The corresponding branches of science related to
these examples are biology, sociology, traffic engineering and economics, respectively.
In this thesis, evolutionary biology will be studied from a physicist’s perspective. This
means that evolutionary processes, as described below, will be represented by idealized
mathematical models. Many concepts that arise from this treatment are closely related
to systems of interacting spins, but there are also many similarities to computer science.
This chapter explains these relationships between the different fields and introduces the
concepts that will be used in this thesis.

1.1. Evolution in a Nutshell

Evolution is the change of lifeforms over generations. The basic ideas of the modern
theory of evolution go back to the mid-19th century and Charles Darwin’s famous book
On the Origin of Species [1]. Changes of an organism manifest in modified observable
traits, the phenotype. Today it is known that these changes can be actually ascribed
to modifications of the organism’s blueprint, the genotype. The genetic information is
physically stored in Deoxyribonucleic acid (DNA) molecules that have a very complex
structure. Simply speaking, the actual information corresponds to a certain arrangement
of monomers, the nucleobases. Since there are four different types of nucleobases
(cytosine, guanine, adenine, and thymine), an arrangement can also be represented by
a sequence consisting of four possible letters (e.g., C, G, A, and T, corresponding to the
initial letters of the nucleobases). When organisms reproduce, the genotype is inherited
by the offspring. However, the offspring’s DNA sequence might differ slightly from that
of its parent if mutations occur. They are caused, for instance, by replication errors of
the DNA molecule. Therefore, also the offspring’s phenotype might be modified, which
in turn can cause that it becomes worse or better adapted to its environment compared
to the parent.

If a mutation in the offspring is beneficial, the organism will be more likely to survive
and leaves on average more offspring with the mutated genotype to the next generation.
This reproductive success is measured by the fitness. In the long run, individuals with
high fitness will outnumber individuals with lower fitness, a process known as natural
selection. Thus the structure of the whole population will change on timescales of several
generations such that its overall fitness increases over time. This can lead to fixation of
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a genotype, i.e., only one genotype remains in the population while individuals carrying
different genotypes go extinct.

Apart from mutation and selection, also other mechanisms play a role in evolution.
For instance, random fluctuations of the environment or the population affect the
offspring production and hence the whole process. Another important example is the
recombination of genotypes which provides a way to alter them independent of the
occurrence of mutations.

1.2. Basic Concepts

1.2.1. Space of Genotypes and the Hypercube

In the description above, genotypes correspond to DNA sequences consisting of letters
from the set {C,G,A,T}. In general, sequences can also be made of letters from different
sets that are denoted as alphabets. Different systems can be modeled with different
alphabets, e.g., proteins have an alphabet of 20 letters corresponding to different amino
acids. Throughout this thesis, genotypes will be represented by binary sequences of fixed
length L consisting of “letters” from the alphabet A = {0, 1}, i.e., the set of genotypes
is given by AL and consists of 2L sequences. The position of a letter in the sequence is
called locus. A common biological interpretation is to denote the presence or absence of
a certain mutation by one and zero, respectively. The loci correspond then to different
possible mutations. In the same manner, genes that can occur as two different alleles or
in two different states can be distinguished. A mutation at a certain locus corresponds
to the change of a zero to a one or vice versa.

As a distance measure between two elements σ and τ of {0, 1}L, it is convenient to
use the Hamming distance

d(σ, τ) = L−
L∑
i=1

δσi,τi , (1.1)

where δi,j is the Kronecker delta. This is nothing but the number of loci at which σ
and τ differ. Therefore, it is obvious that the Hamming distance is not restricted to
the choice A = {0, 1} as a reasonable metric. However, with this particular alphabet
choice, an element σ ∈ {0, 1}L can be interpreted as a point of RL that is located on
a corner of the L-dimensional unit cube as shown in figure 1.1(a). For this reason, the
undirected graph HL

2 , where vertices correspond to sequences and edges correspond to
two sequences at Hamming distance 1, is called hypercube graph or simply hypercube.
Basic properties of this type of graph will be explained in section 2.1. Note that the
graph topology does not depend on the particular choice of letters but only on their
number. The generalization HL

a to alphabets of arbitrary size a = |A| is called Hamming
graph.
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(a) L = 3 (b) L = 6

Figure 1.1. Examples of hypercube graphs. Figure (a) is arranged in a way that demonstrates
the cube structure. The graph in figure (b) can be arranged to a cube as well when embedded
into 6-dimensional space, which is not obvious though.

1.2.2. Fitness Landscapes

Fitness is a measure for the reproductive success of an individual. It quantifies the
individual’s contribution to the gene pool of a population in succeeding generations.
Therefore, fitness can be identified with the average number of offspring it leaves to the
next generation. Independent of the interpretation, the fitness will be represented by a
real number. Assuming that the genotype contains all information about the fitness of an
individual, at least with respect to a given environment, there is a mapping w : HL

2 → R
from the space of genotypes to the fitness which is called a fitness landscape [2–4].
Even though there exist some empirical fitness landscapes for small values of L [3], the
mechanism in which the genotype is translated into a fitness value is highly complex
and far from being understood. For this reasons, models for fitness landscapes usually
use random variables. Different variants that will be used in this thesis are defined in
section 2.2.

Epistasis and Ruggedness

Landscapes on countrysides look very different in terms of ruggedness, e.g., they can be
very plain, have gentle hills or be completely jagged. Ruggedness is usually associated
with an increased number of mountain peaks. Hiking through such a landscapes often
requires to go up- and downhill alternatingly. As the name suggest, fitness landscape can
be thought of as a high-dimensional but discrete analogue by interpreting the fitness as
a height profile. Mountain peaks correspond to local maxima, i.e., genotypes from which
every single mutation leads to lower fitness. In the same way it is exhausting for a hiker
to walk through a rugged landscape, it is difficult for a population to evolve in a rugged
fitness landscape. Properties of fitness landscapes in terms of the local maxima and the
existence of fitness-monotonic paths will be discussed in chapter 2 and 3, respectively.
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Related to ruggedness is the concept of epistasis [5]. It means that the effect of a
mutation at a certain locus is influenced by the state of other loci, the genetic background.
In the absence of epistasis, a mutation at a certain locus will lower or increase the fitness
by an amount that is independent of the state of other loci. Such a landscape is called
additive, since the total fitness is simply the sum of the contributions from each locus.
One distinguishes between different types of epistasis: Magnitude epistasis denotes the
situation where only the strength of a mutational effect on the fitness is dependent
on other loci, but not whether mutations are generally beneficial or deleterious. Sign
epistasis [6], on the other hand, means that also the algebraic sign of a mutational
effect varies, i.e., beneficial mutations can turn into deleterious ones (or vice versa)
if mutations at different loci occur beforehand. High ruggedness is associated with a
frequent occurrence of sign epistasis. Reciprocal sign epistasis [7] between two loci i and
j means that they influence each other sign epistatically, i.e., j has an sign epistatic
effect on i and vice versa.

Landscapes Outside Biology

The concept of a fitness landscape can also be found in fields different from biology. A
more general terminology is value landscape, a mapping C → R from the configuration
space C of a system to the real numbers. The configuration space does not need to be a
Hamming space, but it should include the notion of a neighborhood to justify the term
“landscape”.

This applies, for instance, to most physical systems where the energy plays the role
of the (negative) fitness. In analogy to biological populations that are driven into states
with high fitness, physical systems evolve into states with low energy. Metastable states
correspond to local minima of the energy landscape. The analogy can be taken even
further for systems of interacting spins [8]. If there are L spins with two possible
orientations −1 and +1, the configuration space C = {−1,+1}L is isomorphic to the
hypercube, where spin flips correspond to mutations.

Value landscapes also play an important role in computer science and optimization.
On the NK landscape, a model for fitness landscapes that is also going to be used in this
thesis, it is in general an NP-complete problem to determine whether the maximal fitness
among all genotypes is below a given threshold [9]. For that reason, it is commonly used
as a benchmark for optimization algorithms. Another famous example is the traveling
salesman problem, where the task is to find the shortest possible route that visits each
city on a given list of n cities. The configuration space is then given by the set of
permutations of cities while the (negative) fitness corresponds to the length of the route
defined by a permutation [10, 11]. Similar to the situation on the NK landscape, it is
an NP-hard problem to solve the traveling salesman problem [12] and hence there exist
no efficient algorithm to find the global minimum of the corresponding landscape.
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1.2.3. Evolutionary Dynamics

Evolutionary dynamics determines how the frequency of genotypes within a population
changes over time. Models used to simulate evolutionary dynamics are often defined
as stochastic processes. Since also the underlying fitness landscapes are modeled with
random numbers, the outcome of a realization of the system is influenced by two different
types of stochasticity. Certain questions can only be answered in terms of probabilities
and averages.

In this thesis, two types of models for evolutionary dynamics are studied. They are
both rather simple, yet they show interesting and non-trivial behavior. One type, a
version of the Wright-Fisher model [13, 14], is individual based. Simply put, individuals
produce offspring according to their fitness and mutations occur during this reproduction
process with some probability, i.e., it corresponds basically to the scenario described in
section 1.1. The dynamics will also be extended by the recombination of genotypes as
well as with the competition between individuals. A detailed description of the model
and its extensions will be given in chapter 5. The other type of dynamics, adaptive walks,
is even simpler and arises in certain limits of the more general Wright-Fisher dynamics.
Here one does not distinguish between individuals. Populations are rather treated as
single objects that “walk” over the fitness landscape according to certain probabilistic
rules. They will be studied in chapter 4.

Note that evolutionary dynamics plays also a role outside biology. For optimization
problems, like the above mentioned traveling salesman problem, it is not feasible to
search the whole configuration space. These and similar problems can be treated by
so-called genetic algorithms [15] that mimic the behavior of a population evolving on
the respective landscape. One can find particularly fit states with this method, which
may suffice for practical applications, but in general one does not find the fittest state
in large systems.

1.3. Structure of this Thesis

Chapter 2 begins with the recalling of basic properties of hypercube graphs and the
definition of fitness landscapes models that are used in this thesis. Properties of these
models will be discussed as well in this chapter with two different approaches. Firstly, a
discrete analogue of Fourier analysis yields information about epistatic interactions on
the landscape. Secondly, the study of local maxima serves as a direct proxy for landscape
ruggedness. In particular, it will be studied how the scheme of epistatic interactions,
which can be explicitly defined in the NK model, affects the number of maxima.

In chapter 3, accessibility percolation will be studied, a type of percolation problem
that addresses paths to the global maximum such that the fitness is in ascending order
along the paths. These accessible paths are favored to be taken by a population due to
natural selection. In contrast to local maxima, which are local features of the landscape,
accessible paths cross the whole landscape and are therefore global features.

Adaptive walks will be studied in chapter 4. Here it will be shown how the landscape
properties influence the dynamics on it. For specific landscape models, a large class of
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adaptive walks can be studied solely analytically. More sophisticated models require
numerical simulations. Similar to the above-mentioned local maxima, the influence of
epistatic interactions on the behavior of adaptive walks will be studied as well.

When the attention will be turned to the Wright-Fisher dynamics in chapter 5,
results are almost entirely obtained by numerical simulations. The focus will be on
two extensions of the basic dynamics, namely recombination and disruptive selection. In
both cases, the underlying fitness landscape has crucial influence on the dynamics. In
particular, the question of whether these mechanisms are advantageous for a population
depends strongly on the landscape ruggedness.

A precise explanation of models and methods will be given in the beginning of each
chapter. Apart from that, rather standard notation will be used throughout this thesis,
but in order to avoid confusion and ambiguities it will also be explained in appendix A.1
on page 107.



2. Fitness Landscape Models and their
Properties

2.1. Hypercubes

The hypercube graph, independently of a fitness landscape on top of it, has already
interesting properties. Some of them will be recalled in the following.

• Since every vertex corresponds to a binary sequence of length L, there are 2L vertices
in total. Each of them has a degree of L and hence there is a total of L · 2L−1 edges
in the graph.

• The number of sequences at distance d to a reference sequences σ is given by
(
L
d

)
.

• The hypercube is a bipartite graph, i.e., the vertices can be divided into two disjoint
sets such that there are no edges within a set. For instance, the sequences can be
allocated according to whether they contain an odd or even number of ones.

• The hypercube is a Hamiltonian graph, i.e., there exist cycles in the graph that
visit each vertex exactly once [16]. A famous example of such a cycle is the Gray
code [16, 17].

• A path through the hypercube that contains n vertices can be represented by the
starting vertex and a string of length n−1 consisting of numbers in {1, 2, . . . , L}. The
number at the i-th position corresponds to the locus which is flipped from 0 to 1 or
vice versa in the i-th step. For instance, the path

(0, 0, 0)→ (0, 1, 0)→ (0, 1, 1)→ (1, 1, 1)→ (1, 1, 0)

can be represented by the string 2313. The path is self-avoiding if and only if there
is no substring that contains all occurring numbers an even number of times.

• Between two vertices σ and τ at distance d = d(σ, τ) there are d! shortest paths that
correspond to the number of possible successions in which the differing loci of σ and
τ can be flipped.

• The number of shortest paths between two sequences with d(σ, τ) that share exactly
k − 1 interior vertices (i.e., vertices different from σ and τ) is equal to the number
T (d, k) of permutations with k components [18], a number that appeared in the
mathematical literature before, independently of the hypercube context [19, 20].
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Though no formula exist for T (d, k) in simple closed form, it was proven in [18]
that

d!

(
1−O

(
1

d

))
≤ T (d, 1) ≤ d! , (2.1)

which means that most of the paths do not share any interior vertices for large d.

• The total number of self-avoiding paths (that are not required to be shortest) between
two sequences σ and τ is not known exactly. However, the question was mainly
addressed to antipodal vertices, i.e., to the case d(σ, τ) = L. The corresponding
number aL was computed by simple enumeration of all paths up to L = 5 [21]. As aL
grows very rapidly, this is not possible anymore for L > 5. In [22] it was found that
aL grows double-exponentially, or more precisely, that

lim
L→∞

log(log aL)

L
= log 2 . (2.2)

2.2. Random Models for Fitness Landscapes

2.2.1. House-of-Cards Model

The House-of-Cards (HoC) model [23, 24] is in some sense the simplest version of
a random fitness landscape model. For each genotype σ, the fitness w(σ) is a
random number drawn independently from a continuous probability distribution. If
the landscape is interpreted as an energy landscape, the HoC model is the analogue of
Derrida’s random energy model [25, 26].

2.2.2. Rough-Mount-Fuji Model

The Rough-Mount-Fuji (RMF) model [27, 28] is a simple extension to the HoC model in
the version used here. It introduces a global gradient to the landscape, i.e., the fitness
is given by

w(σ) = η(σ) + s d(σ, σ̃) , (2.3)

where η is a HoC landscape, σ̃ is some reference sequence and s is a constant. Given
that s > 0, the fitness increases on average the further away σ is from σ̃. The strength
of the increase is controlled by the slope parameter s. The term η(σ) will be referred to
as the random part of the fitness, the second term as the additive part.

2.2.3. NK Model

Basic idea of this model is that total fitness associated with a genotype is made up of
several contributions, where each contribution depends only on 1 ≤ K ≤ L loci of the
genotype [29]. Fitness is given by

w(σ) =
L∑
i=1

ηi
(
σbi,1 , . . . , σbi,K

)
, (2.4)
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Figure 2.1. Illustration of the classic interaction patterns for L = 9 and K = 3. A filled square
in row i and column j means that Vi contains j.

where for each i and each τ ∈ {0, 1}K the contribution ηi(τ) is a random number
independently drawn from some continuous distribution. In other words, the ηi are
independent HoC landscapes of size K. The matrix bi,j determines the interactions
between different loci, often referred to as the genetic neighborhood. The order of the
arguments of ηi does not affect landscape properties and hence the interaction scheme
can be defined equivalently as sets

Vi = {bi,1, bi,2, . . . , bi,K} . (2.5)

There are almost no constraints on these sets apart from their number being equal to L
and that |Vi| = K as well as i ∈ Vi for all i. The last condition ensures that each locus
occurs in at least one set, but there is actually no mathematical or biological reason to
assume that the number of contributions is equal to L or that each contribution depends
on the same number K of loci. Note that in the literature the parameter K is often
defined in a way that the random functions ηi depend on K + 1 rather than K loci.
Furthermore, the genotype length is often denoted by N rather than L (and hence the
name “NK model” with regard to the parameters N and K).

Interaction Patterns

As mentioned above, there are lots of degrees of freedom concerning the interaction
sets Vi. The most common choices in the literature, which will also be used in this
thesis, are the following (see figure 2.1 for an illustration):

Adjacent. Tupels of K adjacent loci interact with each other, i.e., the interaction sets
are given by

Vi = {i, i+ 1, . . . , i+K − 1} , (2.6)

where the elements have to be read modulo L.
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Block. The sequence is divided into L/K blocks, where each locus interacts with all
other loci within the same block, but not with loci from other blocks. Interaction
sets are given by

Vi =

{
K

(⌈
i

K

⌉
− 1

)
+ 1,K

(⌈
i

K

⌉
− 1

)
+ 2, . . . ,K

(⌈
i

K

⌉
− 1

)
+K

}
, (2.7)

where dxe is the ceiling function. The sequence length L has to be an integer multiple
of K.

Random. The set Vi contains i as well as K − 1 randomly chosen elements
from {1, . . . , i− 1, i+ 1, . . . , L}.

Depending on the property under consideration, the interaction scheme has more or
less influence on the landscape. There are also certain characteristics, like the Fourier
spectrum (see section 2.3), that are completely independent of the particular choice of
the scheme. Other properties, e.g. the number of local maxima, are highly susceptible
to this choice as will be shown later.

2.3. Fourier Decomposition

2.3.1. Expansion in Eigenfunctions of the Graph Laplacian

Any function w : HL
2 → R can be decomposed into eigenfunctions of the graph La-

placian ∆ of the hypercube [30–32]. This transformation can be thought of as a discrete
analogue of a Fourier transformation. The graph Laplacian reads ∆ = A− L12L where
1n is the n× n identity matrix and

Aσ,τ =

{
1 if d(σ, τ) = 1 ,

0 otherwise ,
(2.8)

is the adjacency matrix of the hypercube. Treating ∆ as an operator, its effect on a
function w is given by

∆w(σ) =
∑
τ∈HL2

Aσ,τw(τ)− Lw(σ) =
∑
τ∈Uσ

w(τ)− Lw(σ) , (2.9)

where Uσ =
{
τ ∈ HL

2 | d(σ, τ) = 1
}

is the set of neighbors of σ. The eigenfunctions of ∆,
also known as Walsh functions, are given by

φI(σ) = 2−L/2 · (−1)
∑
i∈I σi , (2.10)

where the set I = {i1, . . . , ip} of indices is a subset of {1, . . . , L}. The corresponding
eigenvalues λp = −2p do only depend on p and hence they have a rather large degeneracy
of
(
L
p

)
. With the inner product defined by

〈φ, ψ〉 =
∑
σ∈HL2

φ(σ)ψ(σ) , (2.11)
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the Walsh functions form an orthonormal basis such that a function w can be expressed
as a linear combination

w(σ) =
L∑
p=0

∑
i1<···<ip

ai1,...,ip φ{i1,...,ip}(σ) . (2.12)

This transformation is sometimes also called Walsh transformation [33, 34]. If the
genotypes are represented by sequences from s ∈ {−1,+1}L rather than σ ∈ {0, 1}L,
which corresponds to a transformation s = 2σ−1, the Walsh functions take a particularly
simple form proportional to products si1 · · · sip . Strings consisting of −1 and +1 can be
naturally interpreted as configurations of one-dimensional spin systems. Therefore, the
Fourier transformation (2.12) has the same form as the energy of a superposition of
diluted p-spin glasses [25, 35]:

w(s) = w0 +
L∑
i=1

hi si +
L∑
p=2

∑
i1<···<ip

Ji1...ip si1 · · · sip , (2.13)

where hi is a random “magnetic field” and Ji1...ip are random “coupling constants”.

2.3.2. Amplitude Spectrum

The importance of the Fourier transformation is based on the exposure of interactions
between loci. A coefficient ai1...ip for p > 1 is only non-zero, if all loci i1, . . . , ip interact
epistatically with each other. Its absolute value tells how strong the interaction is. On
the other hand, the first-order coefficients ai tell how strong the non-epistatic influence
of locus i is, i.e., how strong the average effect of a mutation at locus i is, independent
of the state of other genes.

The spectrum Bp is a way to quantify the influence of certain orders p of interactions.
Among other similar definitions, it can be defined as

Bp =

∑
i1<···<ip

〈
|ai1,...,ip |2

〉
2L Cov(w) +

∑L
q=1

∑
i1<···<iq

〈
|ai1,...,ip |2

〉 , p ∈ {1, . . . , L} , (2.14)

where 〈. . .〉 means averaging over realizations of the landscape and

Cov(w) = 4−L
∑

σ,τ∈HL2

[〈
w(σ)w(τ)

〉
−
〈
w(σ)

〉〈
w(τ)

〉]
(2.15)

is the mean covariance of the fitness. The amplitude spectrum Bp is also related to the
autocorrelation function Rd via a linear transformation [30].

In the NK model, there are only epistatic interactions between loci i1, . . . , ip if they are
all contained in at least one interaction set Vj . Since these sets contain only K elements,
it is obvious that ai1...ip = 0 for p > K and hence the sum over p in equations (2.12)
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and (2.13) terminates at p = K. By definition, this implies that Bp = 0 for p > K. In
fact, the spectrum can be computed explicitly [32] and is given by

B(NK)
p = 2−K

(
K

p

)
, (2.16)

independent of the underlying interaction scheme of the NK landscapes. The spectrum
of the HoC model is obtained from (2.16) by setting K = L. One finds for the RMF
model that

B(RMF)
p =

Ns2 δp,1 + 4 Var(η) 2−N
(
L
p

)
Ns2 + 4 Var(η)

, (2.17)

where Var(η) is the variance of the random component of the landscape. This spectrum
corresponds to a superposition of a HoC and an additive landscape.

2.3.3. The Rank

The rank R was introduced in [36] to study interaction patterns of NK landscapes.
Among other equivalent definitions, it can be defined as the number of non-zero
coefficients in the Fourier expansion (2.12). Therefore, it is not applicable to HoC or
RMF landscapes, since the random term of the fitness causes that all coefficients are
non-zero which leads to R = 2L.

For NK landscapes, however, it will turn out to be very useful for the quantification of
interaction schemes since the rank, unlike the spectrum, is strongly influenced by them.
For the actual calculation of the rank, it is convenient to use the equivalent definition

R = |V| =

∣∣∣∣∣
L⋃
i=1

P(Vi)

∣∣∣∣∣ , (2.18)

where P(S) and |S| denote power set and counting measure, respectively, of a set S.
The set V =

⋃
i P(Vi) contains all sets of indices of non-zero coefficients in the Fourier

expansion.
The maximal rank of a classic NK landscapes with fixed L and K is reached when

the overlap between interaction sets is as small as possible. Each interaction set Vi can
contribute at most

(
K
m

)
subsets of size m to the union V. Since the empty set and the L

unit sets are always contained in V, an upper limit for the rank is given by

Rmax = 1 + L+ L

K∑
m=2

(
K

m

)
= 1 + L (2K −K) . (2.19)

This is a sharp bound and hence one can construct interaction schemes that reach this
rank. However, not all values of L and K allow for such patterns with R = Rmax. It
can be shown that such a scheme exists if an (L,K)-packing design, an object known
in combinatorial design theory, exists [36]. The actual rank for the different standard
interaction patterns was computed in [37] and will be presented in the following.
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Rank of Block Interactions

It is particularly easy to calculate the rank for blockwise interactions, because two
contributions P(Vi) and P(Vj) to equation (2.18) are always either equal or disjoint apart
from the empty set. The number of disjoint contributions is equal to the number L/K of
blocks and each contribution contains 2K elements. Taking into account that the empty
set is only counted once, the rank is given by

Rblock =
L

K

(
2K − 1

)
+ 1 . (2.20)

Rank of Adjacent Interactions

In the adjacent case, the interaction set Vi contains the integers from i to i+K − 1, but
all elements are taken modulo L. Therefore, one can interpret the elements as particle
positions on a one-dimensional lattice of length L with periodic boundary conditions.
By definition, the particles are strung together and form a cluster of size K. Therefore,
a set S is contained in V if and only if all particle positions in S can be found in an
interval of size K, or equivalently, if there is a gap of size L − K or larger. The rank
is nothing but the number of sets contained in V and thus it is equal to the number of
ways one can put an arbitrary amount of indistinguishable particles on a periodic lattice
such that a gap of size L−K emerges.

For K < (L + 1)/2, there can be only one gap of the required size such that it
is straightforward to enumerate all valid particle configurations. One has exactly L
possibilities to choose the first occupied site after the gap. Then the K − 1 subsequent
sites can be either occupied or empty, giving a factor of 2K−1 to each position of the
first occupied site. Finally, the configuration without any particles has to be included
as well. This leads to

Radj = 1 + L 2K−1 , if K < (L+ 1)/2 . (2.21)

If K is too large, there may be several gaps. In this case, the factor 2K−1 also
includes configurations with another gap of the required size. As a consequence, these
configurations are counted more than once by the enumeration procedure described
above and equation (2.21) overestimates the actual rank.

Rank of Random Interactions

By definition, the actual rank for random interaction is a stochastic quantity. Its mean
value will be calculated in the following. Let S be an arbitrary subset of {1, . . . , L} with
|S| = m and pm the probability that S is contained in V. Unit sets as well as the empty
set are always contained and hence p0 = p1 = 1. For m > 1 one finds

pm = P[S ∈ V] = P[∃ i : S ⊂ Vi]
= P[∃ i ∈ S : S ⊂ Vi] + P[∃ i /∈ S : S ⊂ Vi]
=
[
1− (1− qm)m

]
+
[
1− (1− q′m)L−m

]
, (2.22)
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where

qm =

(
K−1
m−1

)(
L−1
m−1

) =
(K − 1)! (L−m)!

(L− 1)! (K −m)!

and

q′m =

(
K−1
m

)(
L−1
m

) = qm
K −m
L−m

are the probabilities that S ⊂ Vi, conditioned on i ∈ S and i /∈ S, respectively. When
K is sufficiently smaller than L, the probabilities qm and q′m are very small and one can
use the approximation (1− x)n ≈ 1− nx in equation (2.22) that yields

pm ≈ mqm + (L−m) q′m = K qm =
K! (L−m)!

(L− 1)! (K −m)!
. (2.23)

Finally, the mean rank is obtained by summing over all possible sets which reads

E[Rrnd] =
∑

S⊂{1,...,L}
P[S ∈ V] = 1 + L+

K∑
m=2

(
L

K

)
pm

≈ 1 + L+
K∑
m=2

(
L

K

)
K! (L−m)!

(L− 1)! (K −m)!

= 1 + L(2K −K) = Rmax . (2.24)

Since the average rank is close to the upper limit, it is safe to assume that the fluctuations
around E[Rrnd] are very small.

2.4. Local Maxima

Local maxima of a fitness landscape are those sequences that only have neighbors with
lower fitness. They play an important role for evolutionary dynamics, because individuals
whose genotype is a local maximum cannot improve their fitness by a single mutation
which makes it hard to escape from them. The total number or density of local maxima
is an important measure for the ruggedness of the landscape. Furthermore, it is also
important to know how the maxima are distributed over the landscape as their positions
are correlated. For example, it is by definition not possible that two neighboring
genotypes are both maxima, but apart from that they tend to form clusters in most
models.

2.4.1. HoC Model

In this model, the independence of fitness values facilitates the study of local maxima
by a large amount. A sequence σ being fitter than all of its L neighbors is equivalent
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to w(σ) being the largest of L + 1 i.i.d. random variables. Since each random variable
has the same chance to be the largest, the probability Pmax that a genotype is a local
maximum is independent of the underlying fitness distribution and given by

Pmax =
1

L+ 1
. (2.25)

Multiplying Pmax with the total number of genotypes gives the expected number of local
maxima

E[Nmax] =
2L

L+ 1
. (2.26)

The fitness h of a local maximum can be obtained due to the fact that it is the largest
of L+ 1 random variables as well. Its cumulative distribution function (CDF) reads

Fmax(x) = F (x)L+1 , (2.27)

where F is the overall fitness distribution function. In contrast to Nmax, the average
height E[h] of local maxima and even the scaling with L depends on the distribution.
One can, however, always scale the fitness values to the uniform distribution which yields

E[F (h)] = 1− 1

L+ 2
. (2.28)

Moreover, one can compute the probability Pmax,2 that two sequences σ and τ with
d(σ, τ) = 2 are both local maxima. They do not have an independent chance to be local
maxima as their neighborhoods share two common vertices. The number of genotypes
involved in this situation is 2L and hence both σ and τ have a probability of 1/2L to be
the largest of them. Given that, for instance, σ has the largest fitness, the probability
that τ is larger than its neighbors is still 1/(L+ 1) and hence

Pmax,2 = 2 · 1

2L
· 1

L+ 1
=

1

L (L+ 1)
> P 2

max , (2.29)

where the factor 2 is due to the interchangeable roles of σ and τ . The result implies that
there is a weak enhancement in probability to find local maxima at distance 2 to other
maxima, even though fitness values are uncorrelated. For d(σ, τ) > 2, however, σ and
τ have an independent chance to be local maxima since they do not share any common
neighbors.

2.4.2. RMF Model

In contrast to the other models, the RMF model is not isotropic in the sense that
the probability Pmax for a sequence σ depends on its distance d(σ, σ̃) to the reference
sequence. Suppose d(σ, σ̃) = d, then the fitness w(σ) has according to equation (2.3) the
cumulative distribution function F (x− s d), where F is the CDF of the random part of
the fitness. Furthermore, σ has d neighbors that are located closer to σ̃ (downhill) and



22 Fitness Landscape Models and their Properties

L−d neighbors that are farther away (uphill). Obviously, all down- and uphill neighbor
must have smaller fitness than w(σ) if σ is a local maxima. The probability for this
is given by F [w(σ)− s (d− 1)]d · F [w(σ)− s (d+ 1)]L−d. Integrating over σ’s possible
fitness values yields

Pmax(d) =

∫ ∞
−∞

f(x)F (x+ s)d F (x− s)L−d dx . (2.30)

Since F (x+ s) > F (x− s), one can see immediately that Pmax(d) increases with d. The
corresponding probability for a randomly chosen genotype is accordingly given by

Pmax = 2−L
L∑
d=0

(
L

d

)
Pmax(d) = 2−L

∫ ∞
−∞

f(x) [F (x+ s) + F (x− s)]L dx . (2.31)

Equations (2.30) and (2.31) cannot be expressed in simple closed form for arbitrary
distributions of the random part, but it was shown in [38] that the leading order behavior
of Pmax is given by

Pmax =
1

L+ 1
− s2 L (L− 1)

2

∫ ∞
−∞

f(x)3F (x)L−2 dx+O
(
s4
)
. (2.32)

Furthermore, a couple of special cases were presented in [38] where Pmax(d) or Pmax can
be computed asymptotically exact. An interesting example is the Weibull distribution

F (x) =
[
1− e−xν

]
θ(x) , (2.33)

where θ(x) is the Heaviside function. It was shown that the asymptotic behavior is given
by

Pmax ∼


1/L for ν < 1 ,

es
[
(1−e−2s)

L+1−(1−e−s)L+1
]

2L (L+1)
+

1−(1−e−s cosh s)
(L+1) cosh s for ν = 1 ,

1
L exp

[
−ν s (logL)1−1/ν

]
for ν > 1 .

(2.34)

The result for ν < 1 corresponds to the HoC model, which means that the fitness
values are dominated by the random part if its distribution decays more slowly than
exponentially and L is large. On the contrary, for ν ≥ 1 the slope s has also for L→∞
a notable effect.

2.4.3. NK Model

Obtaining results on the number of maxima in the NK model is a challenging task.
Obviously, for a sequence to be a local maximum, each mutation must result in lower
fitness which makes things complicated due to the change of several contributions at
once. Nevertheless, one can write down the corresponding probability and the expected
height of a local maximum, at least formally.



Section 2.4 – Local Maxima 23

Suppose an NK landscape with interaction sets Vi, a sequence σ with fitness

w(σ) =
L∑
i=1

xi ,

where xi = ηi
(
σbi,1 , . . . , σbi,K

)
are the contributions to the total fitness and let f be the

probability density function (PDF) of the contributions, i.e., the distribution of the total
fitness is given by the L-fold convolution of f . When a mutation at the i-th locus occurs,
the set of indices of affected contributions is given by

Ui =
{
j ∈ {1, . . . , L} | i ∈ Vj

}
, (2.35)

i.e., all contributions xj with j ∈ Ui will be altered to a new value x′j . If σ is a local
maximum, the sum over the new values has to be smaller than the sum over the old
values. Assuming that the xi are fixed, the probability for this can be written as

P

∑
j∈Ui

x′j <
∑
j∈Ui

xj

 = F̃|Ui|
(∑

j∈Ui
xj

)
, (2.36)

where F̃n is the cumulative distribution function corresponding to the probability density
defined by the convolution

f̃1(x) = f(x) , f̃n+1(x) =

∫ ∞
−∞

dz f(z) f̃n(x− z) , (2.37)

i.e., f̃n is the PDF of
∑

j∈Ui x
′
j for |Ui| = n. Note that mutations at different loci yield

different sets of new contributions and hence, as long as the vector x = (x1, . . . , xL)
of old contributions is fixed, the probabilities in equation (2.36) are independent for
different i. Therefore, the actual probability that σ is a local maximum is obtained by
taking the product over all i and integrating over all values of x. This reads

Pmax =

∫
RL

dLx

L∏
i=1

[
f(xi) F̃|Ui|

(∑
j∈Ui

xj

)]
. (2.38)

Note that a similar expression, which was restricted to Gaussian random numbers, was
derived in [36].

The integrand of equation (2.38) is the joint probability of being a local maximum and
probability density of the contributions. Using the definition of conditional probabilities,
the expected fitness h of a sequence, given that it is a maximum, reads

E[h] =
1

Pmax

∫
RL

dLx

(
L∑
k=1

xk

)
L∏
i=1

[
f(xi) F̃|Ui|

(∑
j∈Ui

xj

)]
. (2.39)

In most cases, however, neither equation (2.38) nor (2.39) can be expressed in simple
closed form. It is even worse for random interactions since Pmax and E[h] depend on
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the precise realization of the interaction scheme. If the interaction scheme is chosen
randomly, Pmax will be a random variable as well. One might also want to perform
the average over realizations of the Ui, but this is obviously a difficult task. In the
following Pmax denotes nevertheless this average rather than the actual variable if not
stated otherwise, i.e., it is defined as the probability that a randomly chosen genotype is
a local maximum in a landscape with a randomly chosen interaction pattern. The same
applies to E[h].

Block Interactions

In the block model, in contrast to other interaction schemes, it is straightforward to
compute the mean number of maxima [39, 40] and even the probability to have two
maxima at certain distances [37]. A sequence σ is a local maximum if and only if each of
the sub-landscapes induced by the block structure has a maximum at the corresponding
sub-sequence. There are L/K blocks, each block’s sub-landscape is a HoC landscape of
size K, and hence

Pmax =

(
1

K + 1

) L
K

. (2.40)

Given that σ is a maximum, the probability that a second sequence τ at distance
d(σ, τ) = 2 is also a maximum depends on two things: Firstly, both loci in which σ and
τ differ have to be within the same block, otherwise the condition that each block has to
be a maximum by itself cannot be fulfilled. If τ is randomly chosen among the second-
nearest neighbors of σ, the probability for this is (K − 1)/(L − 1). Secondly, the two
alterations of the sequence have to lead to another maximum of the sub-landscape in the
corresponding block. This happens with probability 1/K according to equation (2.29).
Combining both considerations, the probability that two randomly chosen sequences at
distance 2 are both maxima is given by

Pmax,2 =
K − 1

K (L− 1)
Pmax , (2.41)

which is very large compared to P 2
max.

In principle, one can extend this method to sequences at arbitrary distance d. It is
required that there are either no or at least two differing loci in each block. In case d = 3,
all differing loci have to be in the same block and hence the calculation is completely
analogous to the previous one. It yields

Pmax,3 =
(K − 1) (K − 2)

(K + 1) (L− 1) (L− 2)
Pmax =

K (K − 2)

(K + 1) (L− 2)
Pmax,2 . (2.42)

For d > 3, a laborious case analysis is required since the differing loci can be distributed
over the blocks in various ways.
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Distribution K λK E[h]/L Ref.

Gamma(2, 1) 2 0.56457. . . 2.88039. . . [43]
Exp(1) 2 0.56268. . . 1.61651. . . [43]
Exp(1) 3 0.61140. . . 1.86367. . . [43]
Negative Exp(1) 2 0.57695. . . −0.48097. . . [41]
Gamma(1/2, 1) 2 0.56062. . . 0.92242 . . . [37], this thesis

Table 1. Exactly known values for the asymptotics of the mean number and height of
local maxima in the NK model with adjacent interactions. The constant λK is defined in
equation (2.43).

General Phenomenology

Many quantities on the NK landscape with adjacent or random interactions behave
qualitatively like the model with block interactions. It is known for adjacent interactions
that the number of maxima grows exponentially with sequence length L, or more
precisely that

lim
L→∞

logPmax

L
= log λK , (2.43)

with 1/2 < λK < 1 being a constant [41] depending in general on the underlying
distribution of fitness contributions. Obviously, the block model shows the same
asymptotic behavior and one has λK = (K + 1)−1/K according to equation (2.40),
independent of the underlying fitness distribution. Apart from that, a few values of
λK for adjacent interactions and small values of K = 2 or K = 3 are known exactly.
For the mean height of a local maximum it was found that it decreases proportional
to
√

log(K)/K for large K in case of Gaussian fitness contributions [42], which was
conjectured to be also true for other distributions with finite variance [41]. However,
exact results are as rare as for Pmax. Cases where λK and the asymptotics of E[h] are
known exactly are listed in table 1. One example, where they can be computed explicitly
from equations (2.38) and (2.39), will be shown in the next section.

In the following, Pmax and E[h] will be studied mostly with the numerical integration
of (2.38) and (2.39). The algorithm used for the integration can be briefly explained
as Monte-Carlo integration with importance sampling. A detailed description can be
found in appendix A.2.2. It should be noted, however, that it works much better with
the formula for Pmax than for E[h], i.e., the algorithm needs substantially more sampling
points for the computation of E[h] than for Pmax in order to reach the same precision.
This is enhanced by the fact that changes of Pmax due to changes of the landscape
parameters are usually much larger than the fluctuations of the algorithm, which is not
always the case for E[h]. For that reason, E[h] will be shown with error bars while the
error of Pmax is always much smaller than symbol sizes in all figures shown here. Of
course, the results for E[h] can be improved with more computation time and/or a better
algorithm, but this is left for future work.

The numerical integration suggests that equation (2.43) is also valid for random
interactions, as shown in figure 2.2(a). Furthermore, both figures 2.2(a) and (b)
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Figure 2.2. Study of Pmax and E[h] on the NK landscape for fixed K = 8 (panel (a) and (c))
and fixed L = 128 (panel (b) and (d)), respectively. Symbols are defined in panel (a) and
correspond to the numerical evaluation of equation (2.38) using standard normal distributed
fitness contributions. Random interactions are averaged over 100 realizations.

show that Pmax is smallest for random interactions while it is largest for block
interactions. Adjacent interactions are roughly halfway in between. Because Pmax decays
exponentially with different base λK , the relative difference between interaction patterns
grows exponentially with L. For that matter, the choice of interactions has a huge impact
on the number of maxima, despite contrary statements in the literature [42]. However,
Pmax is still much more influenced by the parameter K than by the type of interactions.
Numerically obtained values for the mean height E[h] are shown in figure 2.2(c) and (d).
Although errors due to the integration algorithm are quite large, one can observe that
the order of heights with respect to different interaction schemes is the opposite of the
order for Pmax. This means that random and adjacent interactions have less maxima
than the block model, but their maxima have larger average fitness.

The special feature of random interactions was already mentioned briefly: One can
treat Pmax and E[h] either as the average over realizations of interaction schemes or
as a random variable that takes different values depending on the realization. If the
latter is assumed, one may ask how large the fluctuations are. The answer is partially
given in figure 2.3(a) in terms of the standard deviation of Pmax. As one can see, the
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Figure 2.3. (a) Standard deviation ∆Pmax of Pmax with random interactions for fixed L = 128
and varying K. Lines are for visual guidance. (b) Dependence of Pmax and E[h] on the rank
R for fixed L = 128 and K = 8. Interaction schemes with certain rank are created with help
of the algorithm described in appendix A.2.1. Each point corresponds to the average over 100
realizations. Lines are linear regressions.

fluctuations decline when K is of the same order as L, but they are quite significant
when K is small. Interestingly, they are maximal for a value slightly above K = 2,
resulting in non-monotonic behavior. Note, however, that the fluctuations are still very
small compared to the difference between the averaged Pmax for random interactions
and Pmax for adjacent interactions. It would be nice to study the fluctuations of E[h] as
well, but they are hard to obtain since fluctuations caused by the integration algorithm
are much larger than fluctuations due to the interaction scheme in that case.

Obviously, there are significant differences between the three classic interaction
schemes in terms of Pmax and E[h]. What about interaction schemes that are not classic?
At this point it turns out that the rank R is a powerful tool for the quantification
of arbitrary schemes [36, 37]. The dependence of Pmax and E[h] on R for fixed L
and K is shown in figure 2.3(b). Although two schemes with the same rank might
still have different properties, there is a rather clear correlation between these quantities
and R. The (averaged) probability Pmax decays roughly exponentially with R while
E[h] increases linearly. When R is increased, the landscape properties seem to change
smoothly from block model to the random model.

Exactly Solvable Example of Adjacent Interactions

In the following, the example of a Gamma distribution with shape parameter 1/2, K = 2,
and adjacent interactions will be presented. The result for Pmax was previously obtained
in [37]. A gamma distribution with shape parameter 1/2 has a PDF given by

f(x) =

{
exp(−x)√

πx
x > 0 ,

0 otherwise.
(2.44)
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Its self-convolution corresponds to an exponential distribution, i.e.,

F̃2(x) = 1− exp(x) . (2.45)

By introducing the auxiliary function

Z(ϑ) =
1√
πL

∫
RL+

dLx
L∏
i=1

[
exp(−ϑxi)√

xi

(
1− e−xi−xi+1

)]
, (2.46)

one can write Pmax and E[h] according to equations (2.38) and (2.39) as

Pmax = Z(1) and E[h] = − 1

Z(1)

dZ(ϑ)

dϑ

∣∣∣∣
ϑ=1

, (2.47)

respectively. To evaluate Z(ϑ), the second factor in brackets can be expanded as

L∏
i=1

(
1− e−xi−xi+1

)
=

∑
s∈{0,1}L

(
L∏
i=1

(−1)sie−xi(si−1+si)

)
(2.48)

such that equation (2.46) becomes

Z(ϑ) =
1√
πL

∫
RL+

dLx

{∑
s

L∏
i=1

(−1)si exp[−xi(si−1 + si + ϑ)]
√
xi

}

=
1√
πL

∑
s

L∏
i=1

{
(−1)si

∫ ∞
0

dx
exp[−x(si−1 + si + ϑ)]√

x

}

=
∑
s

L∏
i=1

(−1)si√
si−1 + si + ϑ

=
∑
s

L∏
i=1

Tsisi+1(ϑ)

= Tr
(
T (ϑ)L

)
= λ+(ϑ)L + λ−(ϑ)L (2.49)

with the “transfer matrix”

T (ϑ) =

(
1√
ϑ
− 1√

1+ϑ
1√
1+ϑ

− 1√
2+ϑ

)
(2.50)

and its eigenvalues

λ±(ϑ) =
1

2
√
ϑ
− 1

2
√
ϑ+ 2

±

√
2ϑ3/2

√
ϑ+ 2− 2ϑ2 − 4ϑ+ 2

√
ϑ (ϑ+ 2) + 2

2
√
ϑ (ϑ+ 1) (ϑ+ 2)

. (2.51)

This and equation (2.47) yields the result for Pmax and E[h]. For large L, the behavior
of Pmax is governed by the larger eigenvalue and hence the constant from equation (2.43)
is given by

λ2 = λ+(1) =
1

6

[
3−
√

3 +

√
6
(√

3− 1
)]
≈ 0.5606 . (2.52)
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The expected height reads

E[h] =
L
[
b−aL− + b+a

L
+

]
12
√

11
√

3− 19
[
aL− + aL+

] , (2.53)

where

a± = ±

√
1± 2

√
3
√

3− 5

and

b± =

√
124
√

3− 209± 2

√
7139
√

3− 12365 .

As expected, the height is asymptotically linear in L with a slope given by

lim
L→∞

E[h]

L
=

b+

12
√

11
√

3− 19
≈ 0.9224 . (2.54)

It should be mentioned for comparison that the fitness of a randomly chosen sequence
is given by E[h] = L/2.





3. Accessibility Percolation

A path
σ1 → σ2 → . . .→ σn

through a fitness landscape is called accessible if the fitness is monotonously increasing
along the path [6, 28, 44], i.e., if

w
(
σ1
)
< w

(
σ2
)
< . . . < w(σn) .

The importance of these paths is that they can be taken easily by a population since
every single step is facilitated by selection. Following a non-accessible path requires the
crossing of a fitness valley at some point. This might happen but is usually much more
difficult than following an accessible path.

Obviously, the existence of accessibility paths depends on the choice of the start and
endpoint. Usually one defines the global maximum σmax as the goal and its antipodal
genotype σmax as starting point. The quantity of interest is the number X of accessible
paths between these genotypes, especially the first moment E[X] and the probability
P[X > 0] that there is at least one for the limit L→∞. If needed, additional information
(e.g., the dimensionality L) will be attached to X as an index (e.g., XL).

Accessibility of a landscape is generally associated with its ruggedness. In a smooth
landscape with only one maximum σmax (e. g., the RMF model with s→∞ or the NK
model with K = 1) all shortest paths starting from an arbitrary genotype to σmax are
accessible. Rugged landscapes, on the other hand, have far less or even no accessible
paths. Local maxima, which are another indicator for ruggedness, act as a barrier for
accessibility since accessible paths must not contain local maxima by definition (except
the final genotype). Therefore, Nmax and X are usually negatively correlated.

The study of accessible paths can be interpreted as a certain kind of bond percolation
problem (and hence the phrase accessibility percolation) on a directed graph. This
becomes obvious by replacing all undirected edges of the underlying graph by directed
ones pointing towards the genotype with larger fitness. An accessible path in this picture
is just a normal path through a directed graph respecting the orientation of edges. The
important point is that the orientation is based on the gradient of a globally defined
fitness function w(σ) rather than being a local property. Therefore, a randomly chosen
edge has a probability of 1/2 to point in either direction, but the orientations of several
adjacent edges are correlated.

Moreover, there are also many similarities to first passage site percolation [45, 46].
In this type of percolation, a passage time is assigned to each vertex and the question
is whether paths between two vertices σ and τ exist such that the total passage time
of all vertices along the path (without counting σ and τ) is below some threshold. It
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can be shown for fitness uniformly distributed on [0, 1] that the probability to find an
accessible path from some genotype σ with w(σ) = α to the global maximum σmax is
equal to the probability that there is a path from σ to σmax with total passage time
smaller than 1 − α when the fitness is interpreted as passage time [46]. This result for
the percolation probability holds true for arbitrary graphs, but the distribution of the
number of paths will differ in general.

It will turn out that the HoC model on the hypercube is in some sense a critical
model for accessibility percolation. The probability P[X > 0] tends to 0 for L → ∞ if
only shortest paths are allowed, but slight changes that increase the accessibility will
raise the limiting probability to a positive value. This happens, for instance, when also
non-shortest paths are allowed or the initial fitness w(σmax) has a sufficiently small
value. In the latter case, P[X > 0] will even converge to 1. Furthermore, many results
suggest that a tree is a good approximation for the hypercube if its parameters are scaled
properly. Concerning this scaling, one can observe similar critical behavior: If a regular
tree (also known as n-ary tree, n-tree or Cayley tree) is scaled in a way that the total
number of paths is slightly larger than the corresponding number for a hypercube, the
percolation probability will tend to 1 while it tends to 0 if the number is slightly smaller.

3.1. HoC Model on Trees

Due to their very clear and simple structure, tree graphs are convenient for the study
of percolation problems in general and accessibility percolation in particular. Although
trees and hypercube graphs might seem to be very different, the local structure of very
large hypercubes can be approximated by trees quite well if their shape is chosen properly.
In the following, the focus will be on n-trees that can be defined recursively as follows
(see also figure 3.1(a) for an example): In the first generation L = 1, an n-tree is a
star-like graph consisting of a vertex, called root and denoted by 0̂ in the following, that
is connected to n other vertices which are called leaves. Subsequent tree generations
L + 1 are obtained by connecting each leaf from the L-th generation to n new child
vertices that become the leaves in this generation. The generation L of the tree will
be called height, the number n of children per vertex will be called branching number.
There are nL leaves in the tree, each of them corresponds uniquely to a path consisting of
L+1 vertices from the root to the leaf. This means that such a path has the same length
as a path in the L-dimensional hypercube between antipodal vertices. XL will denote
the number of accessible paths from the root to the leaf in the context of trees. The
branching number n will be scaled later to make the tree mimic a hypercube structure.

Fitness landscape models of HoC (and RMF) type are straightforward to generalize
for the usage on a tree: The analogue of the HoC model is to assign independent random
numbers w(σ) to each vertex σ drawn from an arbitrary continuous distribution. Since
the destination vertex is usually assumed to be the global optimum on the hypercube,
it will be assumed analogously that the root is the global minimum of the tree. Note
that this assumption is made to emphasize the similarity between trees and hypercubes
and without loss of generality due to the recursive structure of trees (see next section).
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3.1.1. Recurrence Relation for the Percolation Probability

It should be obvious from the definition of the tree that it has a recursive structure, i.e.,
each vertex σ adjacent to the root 0̂ of a tree T (0̂) with height L can be interpreted as
the root of a sub-tree T (σ) of height L − 1. The original tree T (0̂) is accessible if and
only if there is at least one vertex σ adjacent to 0̂ such that w(0̂) < w(σ) and T (σ) is
an accessible sub-tree. Let

QL(x) = P
[
XL = 0 | w(0̂) = x

]
be the probability that there are no accessible paths in a tree, given that the root has
fitness x. Then QL(x) obeys the recurrence relation

QL+1(x) =

[
FL(x) +

∫ ∞
x

fL(y)QL(y) dy

]n
(3.1)

with Q1(x) = F0(x)n. Fd(x) is the cumulative distribution function of w(σ) for vertices σ
that are at distance d to the closest leaf and fd(x) is the corresponding probability
distribution. Note that the explicit d-dependence can be omitted in the HoC case, but
is needed for the RMF model that will be studied later. The probability of having at
least one accessible path in a tree of height L is then given by

P[XL > 0] = 1−
∫ ∞
−∞

fL(x)QL(x) dx = 1−
[

lim
x→−∞

QL+1(x)

] 1
n

(3.2)

if the fitness w(0̂) of the root is drawn randomly and by

P[XL > 0] = 1− lim
x→−∞

QL(x) (3.3)

in case the root’s fitness is the global minimum, which is assumed for the HoC model.
Unfortunately, there is no expression for QL(x) in simple closed form, but the integral
in equation (3.1) can be approximated numerically in order to gain supplementary
information to the analytical study.

3.1.2. First and Second Moment of XL for the HoC Model

It will be useful in the following to define indicator variables for each path by

θi =

{
1 if the i-th path is accessible,

0 otherwise.
(3.4)

In the HoC model, the fitness distribution does not have an influence on the accessibility.
Therefore, a uniform distribution on [0, 1] will be assumed in the following for simplicity.
A path from the root to a leaf consists of L + 1 vertices. Taking into account that
the root is assumed to be the global minimum, there are L! possible permutations of
the remaining fitness values. All of them have equal probability to occur but only one
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(a) Example tree

x

k

L−kL−k

(b) Two paths with T-junction

Figure 3.1. (a) Example of a regular tree with height L = 4 and branching number n = 3. The
root is the vertex in the center. (b) Two paths through a tree that share k+ 1 common vertices.

corresponds to an accessible path. Therefore, the probability that θi = 1 is given by
1/L! and hence E[θmi ] = 1/L! for any m > 0. For the first two moment of XL, this yields

E[XL] = E

 nL∑
i=1

θi

 =
nL∑
i=1

E[θi] =
nL

L!
(3.5)

and

E
[
X2
L

]
=

nL∑
i=1

nL∑
j=1

E[θiθj ] = E[XL] + 2
nL∑
i=1

nL∑
j=i+1

E[θiθj ] . (3.6)

The correlator E[θiθj ] is nothing but the probability that both paths i and j are accessible
which, in turn, depends only on the number of vertices both paths share. Suppose a
pair of paths as shown in figure 3.1(b), i.e., the vertex σ where both paths separate has
fitness w(σ) = x and is the (k+1)-th vertex in the path. Then both paths are accessible
if and only if all vertices closer to the root than σ have a fitness smaller than x, all
vertices that are further away have a fitness larger than x and the fitness along each
of the three sub-paths separated by σ has to be in ascending order. Combining these
conditions and integrating over x, the probability pk that both paths are accessible is
given by

pk =

∫ 1

0

xk−1

(k − 1)!

(
(1− x)L−k

(L− k)!

)2

=

(
2L− 2k

L− k

)
1

(2L− k)!
. (3.7)
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In order to evaluate the sum in equation (3.6) one needs to know the number mk of such
pairs of paths, too. The number of (ordered) pairs with k + 1 common vertices can be
counted as follows: Two paths in a tree correspond uniquely to two leaves. The first leaf
can be chosen arbitrarily among all nL leaves. To reach the second leaf, one follows the
first path for k + 1 vertices, then there are n− 1 possible new vertices and finally there
are L− k − 1 additional branching points with n possible vertices each. In total, there
are

mk = (n− 1)n2L−k−1

pairs of paths with k + 1 common vertices. With this, equation (3.6) can finally be
written as

E
[
X2
L

]
= E[XL] +

L−1∑
k=0

pkmk = E[XL] + n2L (n− 1)

n

L−1∑
k=0

(
2L− 2k

L− k

)
n−k

(2L− k)!

= E[XL] + nL
(n− 1)

n

L∑
k=1

(
2k

k

)
nk

(L+ k)!
. (3.8)

3.1.3. Probability of having Accessible Paths

Here and in following sections, the probability P[XL] will be estimated by inequalities
based on the first and second moment. Let Z be a non-negative random variable with
finite second moment. According to Markov’s inequality, the first moment E[Z] is an
upper limit for the probability P[Z > 0]. Since E[XL] = nL/L!→ 0 for L→∞ and any
fixed n ∈ N, the probability for having at least one accessible path vanishes in the limit
of an infinite tree. A lower limit of P[Z > 0] follows from the Cauchy-Schwarz inequality
since

E[Z]2 = E
[
Z I[Z>0]

]2 ≤ E
[
Z2
]
E
[
I2

[Z>0]

]
= E

[
Z2
]
P[Z > 0] (3.9)

and hence

P[Z > 0] ≥ E[Z]2

E[Z2]
, (3.10)

where I[A] is the indicator variable of the event A. Using this inequality, it will be shown
in the following that P[XL > 0] is asymptotically equivalent to the mean value E[XL] if
n is kept constant (see also figure 3.2). The following bounds on Stirling’s formula

√
2π NN+1/2e−N ≤ N ! ≤ e NN+1/2e−N (3.11)
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applied to equation (3.8) yield

E
[
X2
L

]
≤ E[XL] + E[XL]2 + nL

L−1∑
k=1

(
2k

k

)
nk

(L+ k)!

≤ E[XL] + E[XL]2 + nL
L−1∑
k=1

22k−1ek+L+1nk

π3/2
√
k(k + L)k+L+ 1

2

≤ E[XL] + E[XL]2 +
nL√

2π LL+1/2e−L

L−1∑
k=1

(
4en

L

)k
≤ E[XL]2 + E[XL]

[
1 +

(
4en

L

)
1−

(
4en
L

)L−1

1−
(

4en
L

) ]
≤ E[XL]2 + E[XL]

(
1 +

c n

L

)
(3.12)

for some positive constant c and sufficiently large L. Using the first moment and
equation (3.10) as upper and lower bound, respectively, results in

E[XL] ≥ P[XL > 0] ≥ E[XL]

1 + E[XL] + c n
L

(3.13)

and hence

P[XL > 0] ∼ E[XL] , (3.14)

where the tilde means that both quantities are asymptotically equivalent, i.e.,
limL→∞ P[XL > 0]/E[XL] = 1.

3.1.4. Scaling of the Branching Number

Treating the branching number as a function of the height, i.e., n = n(L), leads to
interesting consequences. To begin with, Stirling’s approximation applied to the mean
value of XL yields

E[XL] =
n(L)L

L!
∼ (e n(L)/L)L√

2πL
. (3.15)

This means that for L → ∞ and n/L → α, there are on average infinitely many paths
if α > e−1 and no paths if α < e−1. In the latter case, also the probability P[XL > 0]
goes to zero since E[XL] serves as an upper limit. In case n/L→ 0, also the previously
obtained equation (3.12) and in turn equations (3.13) and (3.14) hold true, i.e., the
probability to have accessible path is still asymptotically equivalent to the mean of XL

that goes to zero. As mentioned before, the scaling is intended to mimic the hypercube.
Demanding that the total number of paths through tree and hypercube are equal yields

nL
!

= L! ⇒ n =
L
√
L! ∼ L

e
· (2πL)1/2L ∼ L

e
, (3.16)



Section 3.1 – HoC Model on Trees 37

10−4

10−3

10−2

10−1

1

1 10 100 1000

P
(X

L
>

0
)

L

n =
2

n =
8

n =
32

n =
128

Figure 3.2. Probability P[XL > 0] of having at least one accessible path in a regular
tree. Symbols correspond to the numerical solution of equation (3.3), lines correspond to the
asymptotic value E[XL] = nL/L!.

which corresponds asymptotically to the threshold where E[XL] jumps from zero to
infinity.

The case where n = αL and α > e−1 will be considered in the following. Combining
equations (3.8) and (3.10) yields

P[XL > 0] ≥ E[XL]2

E
[
X2
L

] ≥ 1

1/E[XL] + 1 + S(L)
, (3.17)

where

S(L) =
L!2

nL

L−1∑
k=1

(
2k

k

)
nk

(L+ k)!
. (3.18)

Following [47], the function S(L) can be estimated recursively which reads

S(L+ 1) =
(L+ 1)!2

nL+1

L∑
k=1

(
2k

k

)
nk

(L+ k + 1)!

≤ (L+ 1)2

n (2L+ 1)
+

(L+ 1)2

n (L+ 2)
S(L) ≤ 1 + S(L)

α
. (3.19)

With this, one can show by induction that S(L) < 1/(α − 1) for α > 1 and hence
limL→∞ P[XL > 0] > 0 according to (3.17). Unfortunately, this methods fails for
α ∈ (e−1, 1].
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An improvement of the lower bound was accomplished in [48]. The strategy is to
introduce paths that are accessible and fulfill additionally the condition that the i-th
vertex σi after the root has fitness of at least w(σi) > ε+ (1− ε)(i− 1)/L. If the number
of these paths is denoted by XL,ε and α > e−1, it can be shown via inequality (3.10)
that P[XL,ε] > c/L3, where c is some positive constant. Then one can argue that the
number of paths contributing to XL,ε up to the fourth level is at least of order L4

which compensates for the 1/L3 decay obtained from the moment analysis such that
P[XL,ε > 0]→ 1 as L→∞. Since XL,ε < XL, this also proves the phase transition

lim
L→∞

P[XL > 0] =

{
0 if α < e−1 ,

1 if α > e−1 .
(3.20)

The complete proof is presented in appendix A.3.

3.1.5. Further Results

Concerning the distribution of XL, it was shown that for n = L and the root having
fitness w(0̂) = α/L, the rescaled variable L!XL/L

L converges in law to an exponential
distribution with mean value exp(−α) [49]. Higher orders of the critical scaling of the
branching number n were obtained in [50]. For n = eL− β log(L), the threshold where
limL→∞ P[XL > 0] jumps from 0 to 1 is at β = 3/2.

Also other types of spherically symmetric trees were studied, i.e., trees with a
branching number n = n(d) depending on the distance d to the root. The case
n(d) = dα (d+1)e, i.e., a tree whose branching number increases with distance to the root
was studied in [51]. Results are that the percolation probability P[XL > 0] converges
to zero for α ≤ 1 and limL→∞ P[XL > 0] > 0 for α > 1. The case n(d) = L − d, i.e.,
a diminishing tree, where each leaf σ has fitness w(σ) = 1, was studied in [52]. It was
found that for a root fitness of w(0̂) = α/L, the variable XL/L converges in law to
an exponential distribution with mean value exp(−α), like in the case described above.
Moreover, if w(0̂) is chosen at random, one has P[XL > 0] ∼ log(L)/L, which reflects
the behavior on the hypercube.

3.2. HoC Model on the Directed Hypercubes

In this section, the objects of interest are accessible paths to the global maximum σmax

of a directed hypercube that start from the antipodal sequence σmax. The adjective
“directed” refers to the fact that only shortest paths are considered, i.e., all edges are
directed towards σmax. Without loss of generality, the sequence σmax = 1̂ = (1, . . . , 1)
denotes the global fitness maximum and hence 0̂ = (0, . . . , 0) is the starting sequence
of all paths under consideration. Like before, the fitness distribution does not influence
the results on the HoC landscape and hence it is assumed that all fitness values are
uniformly distributed on [0, 1], except of w(1̂) = 1. Later on, it will be useful to constrain
the starting vertex to have a specific fitness value w(0̂) = α. This model is known as
the α-constrained HoC model [18] (or short: α-CHoC). A version where α = 0 was
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previously studied in [28, 53]. Analogously to the notation for the tree, let XL and XL,α

be the number of accessible paths in the standard HoC and α-CHoC model, respectively.
The main result, which was obtained by Hegarty and Martinsson [18], is

lim
L→∞

P[XL,α > 0] =

{
0 if α = (logL+ εL)/L ,

1 if α = (logL− εL)/L ,
(3.21)

for any sequence εL →∞ with 0 < εL < logL. As a corollary it follows that

P[XL > 0] ∼ logL

L
. (3.22)

The proof is again based on the moments of XL and will be somewhat similar to the
computation of the corresponding quantities for the tree.

3.2.1. First Moment and Upper Limits for Accessible Paths

Consider the standard HoC model. There are L! shortest path from 0̂ to 1̂. Each of
them has a probability of 1/L! to be accessible and hence E[XL] = 1. Unlike for the
tree, the mean is obviously not a useful upper bound for the probability P[XL > 0] to
have at least one accessible path. However, by conditioning the fitness of the starting
sequence, the bound can be improved. If w(0̂) > α, all subsequent fitness values have
to be larger than α as well. Therefore, the probability that a randomly chosen path is
accessible, conditioned on w(0̂) > α, is given by (1− α)L−1/L! and hence

P[XL > 0] = P
[
XL > 0 ∧ w(0̂) < α

]
+ P

[
XL > 0 ∧ w(0̂) > α

]
≤ P

[
w(0̂) < α

]
+ E

[
XL | w(0̂) > α

]
P
[
w(0̂) > α

]
= α+ (1− α)L . (3.23)

Since α is arbitrary, one may chose the value

α = 1−
(

1

L

) 1
L−1

= 1− exp

(
− logL

L− 1

)
=

logL

L
+O

((
logL

L

)2
)

(3.24)

which minimizes the right-hand side of equation (3.23). Then the upper limit becomes

P[XL > 0] ≤ 1−
(

1

L

) 1
L−1

+

(
1

L

) L
L−1

=
logL

L
+O

(
1

L

)
. (3.25)

The fact that this is a sharp bound and hence equation (3.22) holds true will follow as
a corollary from the study of the α-CHoC model which, in turn, is based on the study
of the moments of XL,α.

Consider the α-CHoC case in the following, i.e., it is assumed that w(0̂) = α. The
probability that a specific path is accessible is given by (1 − α)L−1/(L − 1)! and hence
the mean value of XL,α is given by

E[XL,α] = L (1− α)L−1 . (3.26)
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For α = (logL+ εL)/L with 0 < εL < logL and εL →∞ one has

E[XL,α] = L

(
1− logL+ εL

L

)L−1

≤ Le−(logL+εL) = e−εL L→∞−−−−→ 0 . (3.27)

This already proves the first half of equation (3.21). Conversely, if α = (logL − εL)/L
one has

E[XL,α] = L

(
1− logL− εL

L

)L−1

≥ L
[(

1− logL

L

)
·
(

1 +
εL
L

)]L−1

≥ L
[(

1−
ε2L
L2

)]L−1

≥ L
[(

1− 1

L

)]L−1
L→∞−−−−→∞ . (3.28)

For the proof that also P[XL,α > 0]→ 1 in this case, the second moment will be needed
as well.

3.2.2. Second Moment and Lower Limits for Accessible Paths

In order to study the lower limit for P[XL,α > 0], let α = (logL− εL)/L in the following
such that E[XL,α] → ∞. The calculation of the second moment follows the same
procedure as before: Let θi be the indicator variable that the i-th path is accessible,
then

E
[
X2
L,α

]
=
∑
i,j

E[θiθj ] . (3.29)

Like on the tree, E[θiθj ] is nothing but the probability that both paths i and j are
accessible. But unlike on the tree, the probability does not only depend on the number
of common vertices, since the paths might diverge and converge several times until the
final vertex 1̂ is reached (see figure 3.3 for an example). Suppose path i and j have k−1
common interior vertices, i.e., 2L − k − 1 vertices in total (aside from 0̂ and 1̂). The
fitness of each vertices is a random number and hence there are (2L − k − 1)! different
possibilities to order the fitness ranks among these vertices. How many possibilities lead
to the accessibility of both paths? The smallest numbers have to be put in the beginning
before i and j diverge for the first time, while the largest numbers have to be put after the
last time both paths merge. Only in between is some freedom to distribute the fitness
values. Suppose all 2L − 2k separated vertices are consecutive along the paths, i.e.,
the paths diverge and merge exactly once. Then one can put any subset of size L − k
of random numbers to path i and the remaining ones on path j which gives

(
2L−2k
L−k

)
possibilities. For paths that diverge and merge several times, there are less possibilities.
Taking into account that all fitness values must additionally be larger than α, an upper
limit for E[θiθj ] is given by

E[θiθj ] ≤
(

2L− 2k

L− k

)
(1− α)2L−k−1

(2L− k − 1)!
(3.30)
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0

1

Figure 3.3. Example of a pair of paths through an L = 12 hypercube with 5 common interior
vertices (white circles) and 6 separated vertices (grey circles) for each path.

with equality if path i and j diverge and merge exactly once. Not surprisingly, this is
the same as equation (3.7) apart from the constraint w(0̂) = α.

In order to evaluate the sum (3.29), one also needs to know the number of pairs of
paths that share k − 1 interior vertices. As mentioned in section 2.1, this number is
given by L! ·T (L, k) where T (L, k) is the number of permutations with k components of
integer numbers from 1 to L. This yields

E
[
X2
L,α

]
≤

L∑
k=1

L! · T (L, k) ·
(

2L− 2k

L− k

)
(1− α)2L−k−1

(2L− k − 1)!
. (3.31)

Hegarty and Martinsson provided several useful formulas for T (L, k) [18]. In the
following, one will need the following two inequalities: For 0 < δ < 1 there is a constant
Cδ such that

T (L, k) ≤ Cδ k (L− k + 1)! (3.32)

for 0 < k ≤ (1− δ)L and there is a constant c such that

T (L, k) ≤ c (L− k + 1) ·
(

3L− 2k

5

)k
(3.33)

for all 0 < k ≤ L. Note that the inequalities (3.32) and (3.33) are more useful for small
and large k, respectively. This is why the sum (3.29) will be split into two parts which
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reads

E
[
X2
L,α

]
≤

(1−δ)L∑
k=1

L! · T (L, k) ·
(

2L− 2k

L− k

)
(1− α)2L−k−1

(2L− k − 1)!︸ ︷︷ ︸
=S1

+
δL∑
k=0

L! · T (L,L− k) ·
(

2k

k

)
(1− α)L+k−1

(L+ k − 1)!︸ ︷︷ ︸
=S2

. (3.34)

Both parts S1 and S2 will be bounded from above in the following. Applying
inequality (3.32), Stirling’s formula and the fact that k < (1− δ)L to S1 yields(

2L− 2k

L− k

)
L! · T (L, k)

(2L− k − 1)!
≤
(

2L− 2k

L− k

)
Cδ L! k (L− k + 1)!

(2L− k − 1)!

≤ e3Cδ
2π3/2

√
L (2L− k) k (L− k + 1)

LL 4L−k (L− k)L−k

(2L− k)2L−k

≤ e3Cδ√
2π3

L2 k
LL 4L−k (L− k)L−k

(2L− k)2L−k = C ′δ L
2 k 2−k

(
L− k
L

)L−k(2L− k
2L

)k−2L

≤ C ′δ L2 k 2−k
(

2L− k
2L

)2L−2k(2L− k
2L

)k−2L

= C ′δ L
2 k 2−k

(
2L

2L− k

)k
≤ C ′δ L2 k 2−k

(
2L

2L− (1− δ)L

)k
= C ′δ

L2 k

(1 + δ)k
,

where C ′δ = e3Cδ/
√

2π3. This leads to

S1 ≤ C ′δL2 (1− α)2L−1

(1−δ)L∑
k=1

k

[(1 + δ) (1− α)]k
. (3.35)

Now keep in mind that α = αL is a sequence converging to zero such that
(1 + δ) (1− α) > (1 + δ/2) for sufficiently large L. Then

S1 ≤ C ′δL2 (1− α)2L−1
∞∑
k=1

k(
1 + δ

2

)k
= C ′δL

2 (1− α)2L−1 4 + 2δ

δ2
= C̃δ L

2 (1− α)2L−1

= C̃δ (1− α)E[XL,α]2 , (3.36)

where the constants involving δ are absorbed into C̃δ in the last steps.
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Consider the second part of (3.34) in the following. Using inequality (3.33) leads to

S2 =
δL∑
k=0

L! · T (L,L− k) ·
(

2k

k

)
(1− α)L+k−1

(L+ k − 1)!

≤ c
δL∑
k=0

(k + 1)

(
L+ 2k

5

)k (2k

k

)
L!

(L+ k − 1)!
(1− α)L+k−1

≤ c(1− α)L−1
δL∑
k=0

k + 1

Lk−1

(
L+ 2k

5

)k
4k

= cL(1− α)L−1
δL∑
k=0

(k + 1)

(
4L+ 8k

5L

)k

≤ cL(1− α)L−1
δL∑
k=0

(k + 1)

(
4 + 8δ

5

)k
.

Assuming δ < 1/8, the sum converges for L→∞ to yet another constant cδ and hence

S2 ≤ cδL(1− α)L−1 = cδ E[XL,α] . (3.37)

Now it is time to combine the estimates for S1 and S2 to get a first bound on the
probability to have accessible paths via inequality (3.10):

P[XL,α > 0] ≥
E[XL,α]2

E
[
X2
L,α

] ≥ E[XL,α]2

C̃δ (1− α)E[XL,α]2 + cδ E[XL,α]
. (3.38)

As shown before, E[XL,α]→∞ for the choice of α used here which yields

lim
L→∞

P[XL,α > 0] ≥ 1

C̃δ
, (3.39)

i.e., the probability to have accessible paths converges to a positive constant. This
estimate could in principle be improved to a constant that is at least 1/4 [18], but in the
next section it will be shown that any positive constant is sufficient to raise the limit
to 1.

3.2.3. Improving the Lower Bound on P[XL,α > 0]

Let 0̂i and 1̂i denote the sequence consisting only of zeroes and ones, respectively, except
for the i-th locus, i.e., d(0̂i, 0̂) = d(1̂i, 1̂) = 1. The first goal is to find four distinct
integers i1, i2, j1 and j2 such that

α < w(0̂i1), w(0̂i2) ≤ α+
εL
3L

and w(1̂j1), w(1̂j2) ≥ 1− εL
3L

. (3.40)

Consider the probability qL to find these numbers. The number of vertices with fitness
in [α, α + εL/3L] can be interpreted as the sum of L Bernoulli distributed random
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Figure 3.4. Construction to improve the lower bound of P[XL,α > 0]. See the text for more
details.

variables that take the value 1 with probability εL/3L. Given that i1 and i2 are already
determined, the number of possible vertices with fitness larger than 1 − εL/3L is the
sum of L − 2 Bernoulli random variables with the same probability. A version of the
Chernoff bound [54] states that

P
[
Z <

E[Z]

2

]
≤ exp

(
−E[Z]

8

)
, (3.41)

where Z is the sum of Bernoulli distributed random variables. This inequality applied
to qL yields

qL > 1− exp

(
−εL

24
− (L− 2) · εL

24L

)
. (3.42)

Once those vertices that fulfill (3.40) are found, one can estimate the probabilities to
find accessible paths from 0̂i1 to 1̂j1 or from 0̂i2 to 1̂j2 . Note that by construction any
of these accessible paths can be connected to 0̂ and 1̂ as well. In order to find a path
from 0̂ik to 1̂jk , all loci but ik and jk are relevant, i.e., the underlying structure is a
hypercube Hk of dimension L− 2 (see figure 3.4) and hence

P
[
Accessible path from 0̂i1 to 1̂j1

]
= P[XL−2,α̃ > 0] , (3.43)

where α̃ = α + 2εL/3L = (logL − εL/3)/L. The same applies for i2 and j2, but since
the hypercube H1 overlaps with H2, the probabilities are not independent. However, an
accessible path in H2 is not contained in H1 if the j1-th locus is flipped before the i1-th
locus, that is with probability 1/2, and hence

P
[
Accessible path not contained in H1 from 0̂i2 to 1̂j2

]
≥

P[XL−2,α̃ > 0]

2
. (3.44)

Since an accessible path in either H1 or H2 \H1 leads to an accessible path from 0̂ to
1̂, the probability for the latter is bounded by

P[XL,α > 0] ≥ qL
[
1− (1− P[XL−2,α̃ > 0])

(
1−

P[XL−2,α̃ > 0]

2

)]
. (3.45)
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It follows from equation (3.39) that

lim
L→∞

P[XL,α > 0] ≥ 1−
(

1− 1

C̃δ

)(
1− 1

2C̃δ

)
. (3.46)

This procedure can be repeated multiple times. In each step, the limiting constant An
is replaced by another constant

An+1 = 1− (1−An)(1−An/2) (3.47)

with A0 = 1/C̃δ. The fixed points of this recurrence relation are given by 0 and 1.
Furthermore, the resulting sequence is monotonically increasing as long as 0 < A0 < 1.
Therefore, An → 1 for n→∞ and as a consequence

lim
L→∞

P[XL,α > 0] = 1 .

Now one can finally show the result (3.22). Let α = (logL − εL)/L with εL → ∞ and
εL/ logL→ 0. Then

P[XL > 0]
L

logL
≥ P

[
XL > 0 | w(0̂) < α

]
P
[
w(0̂) < α

] L

logL

≥ P[XL,α > 0]
Lα

logL
= P[XL,α > 0]

(
1− εL

logL

)
L→∞−−−−→ 1 , (3.48)

i.e., the lower limit for the asymptotic behavior is given by logL/L. Together with
equation (3.25), the said result follows.

3.2.4. Further Results

If w(0̂) = α = x/L with x fixed, XL,α/L converges in law to exp(−x) times the product
of two independent random variables that are distributed according to a standard
exponential distribution [52].

3.3. HoC Model on the Undirected Hypercube

Again, it is assumed that the global maximum is located at 1̂ while the starting sequence
of all paths under consideration is 0̂. These paths do not need to be shortest on the
undirected hypercube, i.e., “backsteps” are allowed. Furthermore, it is assumed that
w(0̂) = α, like in the case of the directed hypercube. The number of paths will be
denoted by Xα, where the explicit L-dependence is omitted as it will not be needed.
In case w(0̂) is random, the number of paths is simply denoted by X. Obviously, an
accessible path through the directed hypercube will also be a valid path through the

undirected hypercube and hence X
(ud)
α > X

(d)
L,α, where the superscript “ud” and “d” is

meant as an abbreviation for undirected and directed, respectively. Therefore, results
on lower limits for the directed case are inherited by the undirected hypercube.
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Since the study of accessible paths on the undirected hypercube is much more
complicated, only the result for the first moment E[Xα], which was obtained by
Berestycki et al. [22], will be presented here. It states that

lim
L→∞

E[Xα]1/L = sinh(1− α) , (3.49)

which already implies for α > α∗ = 1− sinh−1(1) that

lim
L→∞

P[Xα > 0] = 0 . (3.50)

This result was later completed independently by Martinsson [46] and Li [55] to

lim
L→∞

P[Xα > 0] =

{
0 for α > α∗ ,

1 for α < α∗ ,
(3.51)

and hence

lim
L→∞

P[X > 0] = α∗ ≈ 0.1186 (3.52)

for unconstrained fitness of 0̂.
For the proof of (3.49) one needs estimates of the number aL,p of paths that include

p backsteps. Each backstep must be compensated by an additional step in the direction
of 1̂ and hence such a path consists of L+ 1 + 2p vertices. Due to the constraints on 0̂
and 1̂, the first moment can be written as

E[Xα] =
∞∑
p=0

aL,p (1− α)L+2p−1

(L+ 2p− 1)!
. (3.53)

Note that aL,p = 0 for sufficiently large p as the length of a self-avoiding path cannot
exceed the total number 2L of vertices on the hypercube. The idea is now to find upper
and lower bounds for aL,p that maintain the correct asymptotic behavior of E[Xα].

3.3.1. Upper bound for aL,p

A rather simple upper bound arises by neglecting the constraint that the paths is self-
avoiding. Let BL,p be the number of those paths, i.e., arbitrary paths that connect 0̂ to
1̂ and contain L+ 1 + 2p vertices. By definition, BL,p is larger than aL,p.

The ansatz to evaluate this number is a recurrence relation. Assume a path through
the L-dimensional hypercube that contains L + 1 + 2p − 2q vertices, i.e., a path that
contributes to BL,p−q. If an (L + 1)-th locus is added and flipped at 2q + 1 arbitrary
positions along the path, a valid path containing L+ 2 + 2p vertices emerges, i.e., a path
that contributes to BL+1,p. Any valid path can be constructed in that way for some
integer q ∈ [0, p] and hence

BL+1,p =

p∑
q=0

(
L+ 1 + 2p

2q + 1

)
BL,p−q , (3.54)
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with B1,p = 1. This relation can now be applied to the generating function

GL(z) =

∞∑
p=0

BL,p
(L+ 2p)!

zL+2p , (3.55)

which reads

GL+1(z) =
∞∑
p=0

BL+1,p

(L+ 2p+ 1)!
zL+2p+1

=
∞∑
p=0

p∑
q=0

(
L+ 1 + 2p

2q + 1

)
BL,p−q

(L+ 2p+ 1)!
zL+2p+1

=
∞∑
q=0

∞∑
p=q

BL,p−q
(2q + 1)! [L+ 2(p− q)]!

zL+2(p−q) z2q+1

=
∞∑
q=0

z2q+1

(2q + 1)!

∞∑
p=0

BL,p
(L+ 2p)!

zL+2p = sinh(z)GL(z) . (3.56)

Since G1(z) = sinh(z), the solution of this recurrence relation is given by

GL(z) = sinh(z)L . (3.57)

Finally, according to equation (3.53) and (3.55), the first moment can be bounded from
above by

E[Xα] ≤
∞∑
p=0

BL,p (1− α)L+2p−1

(L+ 2p− 1)!
=

dGL(z)

dz

∣∣∣∣
z=1−α

= L sinh(1− α)L cotanh(1− α) . (3.58)

and hence

lim
L→∞

E[Xα]1/L ≤ sinh(1− α) . (3.59)

3.3.2. Lower bound for aL,p

As a lower bound one can use the subset of paths that contribute to aL,p and stay
valid self-avoiding paths through the (L− 1)-dimensional hypercube if the L-th locus is
removed. Let bL,p be the number of these paths. For instance, the path 13121 is a valid
path contributing to a3,1 but not to b3,1, because if 3 is removed, the path 1121 is not
self-avoiding anymore.

Similar to BL,p, one can estimate bL,p recursively. Suppose a path through the L-
dimensional hypercube contributing to bL,p−q. If an (L + 1)-th locus is added that is
flipped 2q + 1 times, a valid path contributing to bL+1,p emerges if and only if the locus
(L+ 1) is not flipped consecutively. In other words, from the (L+ 1 + 2p) times that a
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locus is flipped along the path, one can chose 2q + 1 times where the (L+ 1)-th locus is
flipped without flipping it two times in a row. This gives

(
L+1+2p−2q

2q+1

)
possibilities and

hence the analogue to equation (3.54) reads

bL+1,p =

p∑
q=0

(
L+ 1 + 2(p− q)

2q + 1

)
bL,p−q , (3.60)

where b1,p = δp,0. Since(
L+ 1 + 2(p− q)

2q + 1

)
=

(
L+ 1 + 2p

2q + 1

) 2q−1∏
r=0

[
1− 2q + 1

L+ 1 + 2p− r

]

≤
(
L+ 1 + 2p

2q + 1

)[
1− 2q + 1

L+ 2

]2q

for q < p, one can define b̃L,p which obeys the simpler recurrence relation

b̃L+1,p =

p∑
q=0

(
L+ 1 + 2p

2q + 1

)[
1− 2q + 1

L+ 2

]2q

b̃L,p−q (3.61)

and fulfills that

b̃L,p ≤ bL,p ≤ aL,p . (3.62)

The recurrence relation for b̃L,p is again handed on to its generating function

gL(z) =
∞∑
p=0

b̃L,p
(L+ 2p)!

zL+2p . (3.63)

This yields

gL+1(z) =
∞∑
p=0

b̃L+1,p

(L+ 2p+ 1)!
zL+2p+1

=
∞∑
p=0

p∑
q=0

(
L+ 1 + 2p

2q + 1

)[
1− 2q + 1

L+ 2

]2q b̃L,p−q
(L+ 2p+ 1)!

zL+2p+1

=

∞∑
q=0

[
1− 2q + 1

L+ 2

]2q z2q+1

(2q + 1)!

∞∑
p=q

b̃L,p−q
[L+ 2(p− q)]!

zL+2(p−q)

= sinhL+1(z) gL(z) , (3.64)

where

sinhk(z) =
∞∑
q=0

[
1− 2q + 1

k + 1

]2q z2q+1

(2q + 1)!
. (3.65)
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In analogy to ordinary hyperbolic functions, one may also define

coshk(z) =
d sinhk(z)

dz
=
∞∑
q=0

[
1− 2q + 1

k + 1

]2q z2q

(2q)!
. (3.66)

Since g1(z) = sinh1(z), the solution of equation (3.64) is given by

gL(z) =

L∏
k=1

sinhk(z) . (3.67)

Again, one is interested in the derivative which yields

E[Xα] ≥ dgL(z)

dz

∣∣∣∣
z=1−α

= gL(1− α)
L∑
k=1

coshk(1− α)

sinhk(1− α)
. (3.68)

One still needs to compute the L→∞ behavior of the right-hand side of that inequality.
By definition, the pseudo hyperbolic functions are bounded by z ≤ sinhk(z) ≤ sinh(z)
and 1 ≤ coshk(z) ≤ cosh(z), respectively, and hence

L
1

sinh z
≤

L∑
k=1

coshk(z)

sinhk(z)
≤ L cosh(z)

z
,

which in turn implies according to the squeeze theorem that

lim
L→∞

(
L∑
k=1

coshk(z)

sinhk(z)

)1/L

= 1 .

Furthermore, it follows from dominated convergence that

lim
k→∞

sinhk(z) = sinh(z) ,

and hence also the geometric Cesàro mean converges, i.e.,

gL(z)1/L =

[
L∏
k=1

sinhk(z)

]1/L

L→∞−−−−→ sinh(z) . (3.69)

According to equation (3.68) this yields

lim
L→∞

E[Xα]1/L ≥ sinh(1− α) , (3.70)

which implies together with equation (3.59) the result (3.49).
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3.3.3. Further Results

On the undirected hypercube one can also ask what happens when the global optimum is
not located at 1̂ but at some arbitrary sequence σmax. If only shortest paths are allowed,
this would be basically the same problem, but on a hypercube with lowered dimension
L′ = d(0̂, σmax). In the undirected case here, however, this is a non-trivial problem.

Let Xα,y be the number of accessible paths from 0̂ to σmax, given that w(0̂) = α and
d(0̂, σmax)/L = y. It was shown in [22] that

lim
L→∞

E[Xα,y]
1/L = sinh(1− α)y cosh(1− α)1−y , (3.71)

which reduces for y = 1 nicely to the case where σmax = 1̂. Concerning the actual
percolation probability, it was proven in [46, 55] that

lim
L→∞

P[Xα,y > 0] =

{
0 for α > α∗ ,

1 for α < α∗ ,
(3.72)

where α∗ is the unique positive solution of

sinh(1− α)y cosh(1− α)1−y = 1 (3.73)

with respect to α. The case where σmax is chosen at random corresponds to y = 1/2 [46].

3.4. RMF Model

As will be shown in this section, accessibility percolation on RMF landscapes is similar
to ordinary site percolation which makes it actually simpler to study than on HoC
landscapes.

3.4.1. Ordering Probability

To begin with, consider the probability Porder that a given path of length L parallel to
the mean fitness gradient is accessible. To detach this problem from the full problem,
define Ỹk = Yk + ks for 1 ≤ k ≤ L, where the Yk are i.i.d. random variables drawn from
a distribution with cumulative distribution function F . The slope s > 0 has the same
meaning as for the RMF model. In the literature, this model is known as the linear drift
model [56] and was introduced in the context of record statistics. The relevant quantity
for accessibility is the ordering probability

Porder = P
[
Ỹ1 < Ỹ2 < · · · < ỸL

]
. (3.74)

It can be written formally as

Porder =

∫ ∞
−∞

dyL f(yL)

∫ yL+s

−∞
dyL−1 f(yL−1) · · ·

∫ y2+s

−∞
dy1 f(y1) , (3.75)
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but only be expressed in closed form for few special cases. It was shown in [57] for a
Gumbel distribution, i.e., F (x) = exp[− exp(−x)], that

Porder(L) = a(s)L b(L, s) , (3.76)

where

a(s) = 1− e−s and b(L, s) =

L∏
k=1

[1− exp(−sk)]−1 .

Note that b(L, s) converges to a positive constant b∞(s) for L → ∞ and hence the
ordering probability decays asymptotically exponential. For general distributions, one
can easily find an exponentially decaying lower limit. If all the random parts Yi are in
the same interval of length s, the Ỹi will be ordered due to the drift term. Therefore,

Porder ≥
(

max
x

∫ x+s

x
f(y) dy

)L
. (3.77)

The similarity to ordinary site percolation arises from the fact that there the probability
for a path to be open also decays exponentially as qL if sites are independently open
with probability q.

3.4.2. RMF Model on Regular Trees

The RMF model can be simply defined on trees with the root 0̂ playing the role of the
reference sequence on the hypercube, i.e., for an arbitrary node σ, w(σ) is distributed
according to the PDF f(x− d(σ, 0̂)s). It will be assumed in the following that f is the
PDF of a Gumbel distribution such that equation (3.76) is applicable. Note that b(L, s)
is monotonically increasing in L and hence

1 ≤ b(L, s) ≤ b∞(s) . (3.78)

The first moment of the number of accessible paths X can then be estimated by

E[X] = nL Porder(L+ 1) ≤ [na(s)]La(s) b∞(s) . (3.79)

Depending on whether n < a(s) or n > a(s), the limiting value of the first
moment is given by zero or infinity, respectively, and hence there is a threshold
scrit = log(n)− log(n− 1) where this transition happens. For s < scrit, the probability
of having accessible paths vanishes since

P[X > 0] ≤ E[X] ≤ [na(s)]La(s) b∞(s)
L→∞−−−−→ 0. (3.80)

Now let s > scrit. In order to apply inequality (3.10), one needs to estimate the second
moment of X. A simple upper bound arises from the fact that if two paths with k + 1
common vertices are accessible, the fitness of the common vertices have to be ordered
as well as the fitness along the two subpaths consisting of L − k separated vertices.
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Figure 3.5. Probability P[X > 0] to have accessible paths on an n = 4 tree in dependence on
the slope s of the RMF model with Gumbel distributed random part. The critical slope is given
by scrit = log(4/3). Symbols correspond to the numerical evaluation of equation (3.2), lines are
for visual guidance.

Therefore, the probability pk that both paths are accessible can be bounded from above
by

pk ≤ Porder(k + 1)Porder(L− k)2 (3.81)

and hence, analogously to equation (3.8),

E
[
X2
]

=
nL∑
i=1

nL∑
j=1

E[θi θk] =
L∑
k=0

pkmk ≤
L∑
k=0

a(s)2L−k+1b∞(s)3n2L−k

=
b∞(s)3 a(s) [a(s)n]L

[
(a(s)n)L+1 − 1

]
a(s)n− 1

. (3.82)

Applying inequality (3.10) finally yields

P[X > 0] ≥ E[X]2

E[X2]
≥ [na(s)]2La(s)2 [a(s)n− 1]

b∞(s)3 a(s) [a(s)n]L[(a(s)n)L+1 − 1]

L→∞−−−−→ a(s)n− 1

b∞(s)3 n
> 0 . (3.83)

Combined with equation (3.80), there is a transition at scrit where

lim
L→∞

P[X > 0]

{
= 0 for s < scrit ,

> 0 for s > scrit .
(3.84)

This result can also be obtained numerically by the evaluation of equation (3.2) as shown
in figure 3.5.
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Technically, this method works also for arbitrary distributions, i.e., there is a
percolation threshold defined implicitly by a(scrit) = n−1, as long as the ordering
probability can be written like in equation (3.76) with b(L, s) that is bounded for L→∞,
even though I am not aware of any other examples. Nevertheless, as can be seen from
equation (3.77), one can always find a sufficiently large value of s such that

a(s) ≥ max
x

∫ x+s

x
f(y) dy > n−1

and in turn limL→∞ P[X > 0] > 0. Furthermore, for s = 0 one has obviously
P[X > 0]→ 0 and hence there is always a percolation threshold scrit ≥ 0.

3.4.3. RMF Model on Hypercubes

In this section, the strategy of Hegarty and Martinsson in [18] will be used again in
order to show that there is always an accessible path on the RMF landscape for L→∞
and s > 0. In fact, this does also hold true if s = sL is a sequence with sL → 0 as
long as LsL → ∞. The ansatz is to show first that there is always a path through the
hypercube in case of ordinary site percolation which can then be extended to accessibility
percolation on the RMF landscape. In the following, it will be assumed without loss
of generality that the reference sequence of the RMF model is given by the all-zero
sequence, i.e., σ̃ = 0̂. Like before, accessible paths are required to connect 0̂ with 1̂, but
now the latter sequence is not necessarily the global maximum.

Consider ordinary site percolation for now. As already discussed, this type of
percolation means that vertices of the hypercube are independently removed with
probability (1 − q). A path is called open if all vertices along the paths are present.
Let Zq be the number of open paths from 0̂ to 1̂, given that both 0̂ and 1̂ are present.
The expected value of Zq is given by

E[Zq] = L! qL−1 , (3.85)

which goes to infinity for any q > 0. In order to compute the second moment, let ζi be
the indicator variable that the i-th path is open. Obviously, a given path is open with
probability qL−1, a pair of paths that shares k−1 interior vertices is open if all 2L−k−1
vertices are present, i.e., with probability q2L−k−1. In analogy to equation (3.34) one
gets

E
[
Z2
q

]
=

2L∑
i=1

2L∑
j=1

E[ζiζj ] = E[Zq] + L!
L∑
k=1

T (L, k) q2L−k−1

= E[Zq] + E[Zq]
2

T (L, 1)

L!
+

(1−δ)L∑
k=2

T (L, k)

L! qk−1︸ ︷︷ ︸
S1

+

δL∑
k=0

T (L,L− k)

L! qL−k−1︸ ︷︷ ︸
S2

 . (3.86)
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As can be seen from equation (2.1), the ratio T (L, 1)/L! converges to 1. S1 can be
estimated with equation (3.32) and Stirling’s formula that yields

S1 =

(1−δ)L∑
k=2

T (L, k)

L! qk−1
≤ Cδ

(1−δ)L∑
k=2

k (L− k + 1)!

L! qk−1

≤ Cδ√
2π

(1−δ)L∑
k=2

k ek (L− k + 1)L−k+3/2

LL+1/2 qk−1

≤ Cδ√
2π

∞∑
k=2

k

(
e

q L

)k−1

=
Cδ√
2π

[(
1− e

q L

)−2

− 1

]
L→∞−−−−→ 0 . (3.87)

For the second part S2, equation (3.33) will be used which results in

S2 =
1

E[Zq]

δL∑
k=0

T (L,L− k)qk ≤ c

E[Zq]

δL∑
k=0

(k + 1)

(
q
L+ 2k

5

)k

≤ c

E[Zq]

δL∑
k=0

[(1 + 2δ) q L]k =
c

E[Zq]

[(1 + 2δ) q L]δL+1 − 1

[(1 + 2δ) q L]− 1

L→∞−−−−→ 0 . (3.88)

Finally, one can use equation (3.10) again to obtain

P[Zq > 0] ≥ E[Zq]
2

E
[
Z2
q

] ≥ ( 1

E[Zq]
+
T (L, 1)

L!
+ S1 + S2

)−1
L→∞−−−−→ 1 . (3.89)

Note that this result is also valid for q → 0 as long as q L→∞, since S1, S2 and 1/E[Zq]
also converge to zero in that case.

Now consider the RMF landscape. The accessibility percolation problem will be
mapped onto the ordinary site percolation problem. Let w̃(σ) = w(σ)− s d(σ, 0̂) be the
random part of fitness. Furthermore, w̃(0̂) and w̃(1̂) are assumed to be fixed, but may
be arbitrary. In case w̃(0̂)− w̃(1̂) < s, define each vertex σ as open for which

w̃(σ) ∈ Js =

[
w̃(0̂) + w̃(1̂)

2
− s/2, w̃(0̂) + w̃(1̂)

2
+ s/2

]
. (3.90)

If there is an open path, there will be also an accessible path since the random parts of
all fitness values lie in the same interval of size s and a slope of s will “lift” the random
variables such that they are ordered. Therefore,

P[X > 0] ≥ P[Zq > 0]
L→∞−−−−→ 1 , (3.91)

with

q = P[w̃(σ) ∈ Js] . (3.92)
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In case ∆w̃ = w̃(0̂)− w̃(1̂) > s, one needs to bridge the gap between w(0̂) and w(1̂). To
do so, define a vertex σ with d(σ, 0̂) = d as open if

w̃(σ) ∈ Js(d) =

[
w̃(1̂) +

d− 1

L
∆w̃, w̃(1̂) +

d− 1

L
∆w̃ +

s

2

]
(3.93)

for 1 ≤ d ≤ L − 1. As long as s/2 > ∆w/L, which is ensured for sL → ∞, this family
of intervals will cover the whole interval [w̃(1̂), w̃(0̂)]. If so, an open path will also be
accessible since by construction of Js(d) it follows from w̃(σ) ∈ Js(d) and w̃(τ) ∈ Js(d+1)
that w̃(τ) + s > w̃(σ). Similar to the previous case, one has now

P[X > 0] ≥ P[s/2 > ∆w/L]P[Zq > 0]
L→∞−−−−→ 1 , (3.94)

where

q = min
d

P[w̃(σ) ∈ Js(d)] . (3.95)

This implies that accessibility paths can be found for all w̃(0̂) and w̃(1̂) as L → ∞.
Furthermore, q defined in equations (3.92) and (3.95) will become proportional to s for
s → 0 since it is given by the integral over a (probability density) function in a small
interval of size s and s/2, respectively. Therefore, s → 0 and sL → ∞ implies also
q L→∞ which in turn implies P[X > 0] ≥ P[Zq > 0]→ 1 in that case.

3.5. NK Model

3.5.1. Block Model

Like in case of local maxima, the easiest analytical access to accessible paths through the
NK landscape is for blockwise interactions as results that were already obtained for the
HoC model can be used again. Given that 1̂ is the global maximum, every single block
must have its maximal fitness value at that point, too. An accessible path from 0̂ to 1̂
exists if and only if there is an accessible path through each sublandscape defined by the
blocks. As already mentioned, the blocks are independent and hence the probability to
have an accessible path through the block model is given by

P[XL,K > 0] = P[XK > 0]
L
K ≈

(
logK

K

) L
K

, (3.96)

where XL,K is the number of paths through the full NK landscape and XK is the number
of paths in a HoC landscape of size K. According to equation (3.22), the approximation
is asymptotically exact for K →∞.

Paths through the block model have a unique property: Suppose you have found an
accessible path in the full landscape. This corresponds to the flipping of loci from 0 to
1 in a specific order and each flip takes place in a certain block. Any other order will
also lead to a valid accessible path as long as the order within each block remains the
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same. For instance, assume the path 1234 is accessible in a block model with L = 4 and
K = 2. Then the paths 1324, 1342, 3124, 3142 and 3412 are accessible as well since
locus 1 is flipped before locus 2 in the first block and locus 3 is flipped before locus 4 in
the second block. Thus the resulting subpaths through the blocks are all equivalent. In
general, one can construct L!/K!L/K paths from each set of valid subpaths and hence

XL,K =
L!

K!L/K

L/K∏
i=1

X
(i)
K , (3.97)

where X
(i)
K is the number of accessible paths through the i-th block. Since the X

(i)
K are

independent and E
[
X

(i)
K

]
= 1 for all i, one immediately finds

E[XL,K ] =
L!

K!L/K
. (3.98)

In the same manner, also higher moments or even the full distribution can be
calculated [40] from equation (3.97). The interesting thing about the distribution is
that the number of paths is always an integer multiple of its mean value E[XL,K ] which
diverges for L→∞ while the probability P[XL,K > 0] decays exponentially.

3.5.2. Adjacent and Random Interactions

For a long time, results on the accessibility of σmax were only obtained numerically [28,
40, 58] which restricts the genome length L to rather small values. As shown in figure 3.6,
the behavior of P[X > 0] seems qualitatively different for the three interaction types. For
K = 2, this quantity still decreases monotonically with L and all interaction schemes
look similar, but notable differences arise for K ≥ 3. In case of K = 3, only block and
adjacent interactions lead to a decreasing accessibility, but P[X > 0] seems to be roughly
constant for random interactions. If K is increased further, the decline of adjacent
interactions vanishes and random interactions even allow for increasing accessibility
with L. Generally, the accessibility increases if one switches from block to adjacent
and then to random interactions, which is consistent with the finding from section 2.4
that the number Nmax of local maxima decreases in the same manner. Note, however,
that these results on accessibility are only valid for small values of L and K. The order
of P[X > 0] with respect to the interaction scheme remains presumably the same for
large L. Nevertheless, these schemes have one thing in common: The accessibility goes
to zero for L → ∞. The reason is similar to that for the inaccessibility in the block
model, namely that the genotype can be divided into regions that have an independent
chance to be inaccessible. For L → ∞, the number of those regions grows indefinitely
and hence the probability that at least one region is inaccessible goes to one.

In case of adjacent interactions, this phenomenon is still relatively simple to explain.
Based on the idea in [59], suppose a sub-landscape of size 2 that emerges if one keeps all
loci but i and i+ 1 constant. By construction of the interaction sets, Vi+1−K contains i,
Vi+1 contains i+ 1 and Vj contains both loci for i+ 1−K < j < i+ 1. A locus that is
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Figure 3.6. Numerically obtained probabilities P[X > 0] to have accessible paths in an NK
landscape for various values of K. Different symbols correspond to different interaction patterns
and are defined in the K = 4 panel. Lines are for visual guidance.

not contained in any of these sets does not affect the two-locus sub-landscape, or to put
it the other way round, a locus l influences the sub-landscape if and only if

l ∈ {i−K + 1, i−K + 2, . . . , i− 1, i+ 2, i+ 3, . . . , i+K} .

The set contains 2K − 2 elements, i.e., the sub-landscape plus all loci that influence it
are 2K loci in total. Thus one can construct up to bL/2Kc of them without overlapping.
If the sub-landscape consisting of i and i+1 has a local maximum at (i, i+1) = (0, 0) for
all configurations of loci influencing it, the whole landscape will be inaccessible as well
since neither the i-th nor the (i+ 1)-th locus can be flipped from 0 to 1. The probability
Psub for this to happen might be small but is non-zero and independent of L which yields

P[X > 0] < (1− Psub)bL/2Kc L→∞−−−−→ 0 . (3.99)

The situation for random interactions is unfortunately much more complicated. One
can still divide the genotype into independent regions: Each interaction set has roughly
a probability of 2K/L to contain at least either of the two loci of a pair (i, j) and hence
on average there are 2K sets involved, each of which contains K loci. Therefore, the
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number of loci involved in a sub-landscape of size two is expected to be of order K2

and hence the expected number of independent regions is of order L/K2, which also
diverges linearly. The problem is that the probability Psub depends on the numbers of
interaction sets that contain i, j and both, respectively. That a set contains both loci is
given by the probability K (K − 1)/(L − 1) while the probability that it only contains
one of the loci is 2K (L − K)/(L − 1). The latter is substantially larger for L � K
and the resulting sub-landscape will have a much bigger additive part that reduces the
number of maxima. For this reason, Psub is L-dependent and goes to zero for L → ∞
which necessitates for a more careful analysis.

A rigorous proof for the inaccessibility of the NK model with random interactions
was given in [59] that also includes a more general class of interaction schemes. The
proof is based on the occurrence of global reciprocal sign epistasis, i.e., reciprocal sign
epistasis between two loci i and j for all genetic backgrounds. If such a motif exists
in the landscape, accessible paths cannot exist between antipodal sequences due to the
impossibility to flip both i and j, independent of the global optimums position. The
probability that no pair of loci has this property was shown to decay exponentially and
hence also P[X > 0] converges to zero at least exponentially.

It is still an open question how the percolation probability behaves if K is scaled
with L as L → ∞. If the ratio L/Kα is kept constant for some α > 0, the number
of independent regions, which is the actual cause of the inaccessibility, will grow more
slowly and the size of the regions will become larger. Therefore, the arguments given
above do not work anymore. Additionally, the NK landscape is still less rugged compared
to a HoC landscape in terms of local maxima. This might be a hint that there exist a
scaling K = K(L) such that P[X > 0]→ 1 for adjacent and random interactions.



4. Adaptive Walks

An adaptive walk (AW) is an idealized and rather simple evolutionary process. Instead
of treating a population as a set of individuals, it is treated as a single entity that moves
through the fitness landscape. Formally, adaptive walks are Markov processes. The state
of the system is fully determined by the genotype σ carried by the population and its
dynamics by the transition probability p(σ → τ) to “walk” to a new genotype τ . This
probability is zero if d(σ, τ) 6= 1 or if w(τ) < w(σ) and thus adaptive walks terminate
when a local maximum σmax is reached. Therefore, paths taken by an adaptive walker are
accessible in the same sense as defined in chapter 3. The main quantities of interest will
be the walk length `, i.e., the number of steps that were taken until the walk terminates,
and the walk height h = w(σmax), i.e., the fitness of the final genotype that the walker
has reached.

The Strong Selection and Weak Mutation Regime

Despite their simplicity, adaptive walks arise as the limiting behavior in the so-called
strong selection and weak mutation (SSWM) regime of more general and realistic
dynamics like the Wright-Fisher dynamics [60–63]. Strong selection means that
N |∆w| � 1, where ∆w is the fitness advantage of a mutant. It causes that a mutant
with ∆w > 0 has a chance to fixate rapidly while mutants with ∆w < 0 will die out
quickly. Obviously, ∆w = w(σ) − w(τ) is in general different for any two genotypes σ
and τ in a high-dimensional fitness landscape and can only be partially controlled via the
fitness distribution, but N can nevertheless be arbitrarily large. Weak mutation means
that Nµ� 1, i.e., mutations are rare such that the timescale between the emergence of
two mutants is much smaller then the typical fixation time. The occurrence of a double
mutation in a single individual as well as the presence of multiple mutants at once are
then very unlikely.

The dynamics in the SSWM limit looks like the following: The whole population
is monomorphic and carries the genotype σ until a mutant carrying genotype τ with
d(σ, τ) = 1 arises. If w(τ) < w(σ), the mutant and its offspring will die out in the long
run. If w(τ) > w(σ), the genotype τ has a finite probability to fixate, but might vanish
as well. This can happen multiple times before a fixation event occurs, but fixation
will happen eventually as long as σ is not a local maximum. Since fixation means that
the whole population carries the new genotype τ , this process starts from anew. In an
adaptive walk, all of these things that may happen between fixation events are simplified
into one single adaptive step defined by the transition probability p(σ → τ).
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Types of Adaptive Walks

Depending on the details of how the SSWM limit is obtained, there are different types
of adaptive walks regarding the transition probabilities p(σ → τ). The most common
types are defined in the following. Note that they all have in common that p(σ → τ) = 0
if either w(τ) < w(σ) or d(σ, τ) 6= 1. For the sake of simplicity, this will not be stated
explicitly in the formulas for the transition probabilities. Furthermore, it is useful to
define

U+
σ = {τ ∈ Uσ | w(τ) > w(σ)} ,

which is the set of fitter neighbors of σ.

Random Adaptive Walk. If one assumes that the first mutant with fitness advantage
will fixate, all fitter genotypes have an equal chance to become prevalent. This leads
to the random AW [24, 64–66] with transition probability

p(σ → τ) =
1

|U+
σ |

. (4.1)

Natural Adaptive Walk. The most realistic version, as the name suggests, is the
natural adaptive walk. It is assumed that mutants fixate with probability depending
on their fitness advantage according to Kimura’s formula [67, 68]. This leads to the
transition probability

p(σ → τ) =
w(τ)− w(σ)∑

σ′∈U+
σ
w(σ′)− w(σ)

. (4.2)

Note that, in contrast to the other walk types defined here, the dynamics is influenced
by the underlying fitness distribution.

Greedy Adaptive Walk. The greedy walk corresponds to a situation where fixation
is only possible for the fittest genotype of the neighborhood, i.e., the transition
probability is given by

p(σ → τ) =

{
1 if τ = max(U+

σ ),

0 else.
(4.3)

This walk type can also be found as gradient walk in the literature [42, 69, 70]. In
contrast to the random and natural AW, the greedy AW is deterministic on a given
realization of the fitness landscape.

Reluctant Adaptive Walk. Basically the opposite of the greedy walk. In each step,
the walker goes to the genotype with lowest available fitness that is still larger than
the current one. Accordingly, the transition probability is given by

p(σ → τ) =

{
1 if τ = min(U+

σ ),

0 else.
(4.4)
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Like the greedy walk, the reluctant dynamics is deterministic. Note that this walk
type does not seem to have a biological interpretation and is therefore rarely used in
the biological literature, but it occurs sometimes in the context of spin glasses and
optimization [71–74]. It should be thought of as a tool to analyze the structure of
fitness landscapes rather than a realistic approximation to the actual dynamics of a
population.

It is also worth mentioning, that all of these walk types can be defined by the transition
probability

p(σ → τ) =
[w(τ)− w(σ)]g∑

σ′∈U+
σ

[w(σ′)− w(σ)]g
, (4.5)

where the “greed” g ∈ R is a parameter. For g → ∞, the greedy walk is obtained, the
natural walk for g = 1, the random AW for g = 0 and the reluctant walk for g → −∞.

4.1. Tree Approximation on the HoC Landscape

During each step of an adaptive walk, the walker “chooses” the next genotype from
the L neighbors of its current genotype. It might happen that certain genotypes occur
several times during the walk, but this becomes very unlikely for large L. Therefore, it is
justified to approximate the walk on a tree. This means for practical purposes that the
state of the walker is simply determined by its current fitness rather than its genotype.
In each step, L new random numbers are drawn which represent the fitness values of
neighboring genotypes. One of these numbers is then chosen according to the transition
probability of the respective walk type.

Rather than having transition probabilities p(σ → τ) between genotypes one needs
the transition matrix γ(y → x) between fitness values, i.e., the probability density to
have fitness x in the next step given that the current fitness is y. Since a step is only
possible if the state with fitness y is not a local maximum, integrating over x must yield∫ ∞

y
γ(y → x) dx = 1− F (y)L , (4.6)

where F is the cumulative fitness distribution function, i.e., the right-hand side is the
probability that there is at least one allowed step.

Define P`(x) as the joint probability (density) that the walk has fitness x in the
`-th step and that the walk lasts at least ` steps. Then one can make use of the tree
structure to construct a recurrence relation for P`(x): An adaptive walk has fitness x in
the (`+ 1)-th step if it had some fitness y < x in the `-th step and then transitioned
to x, i.e.,

P`+1(x) =

∫ x

−∞
P`(y) γ(y → x) dy , (4.7)
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where P0(x) = f(x) is the probability density of fitness values. This ansatz was
first introduced by Flyvbjerg and Lautrup who used it to study the random adaptive
walk [66].

If the solution of (4.7) is known, one can extract the quantities of interest from it. For
instance, the marginal probability P` that the walk lasts at least ` steps can be obtained
via

P`+1 =

∫ ∞
−∞

P`+1(x) dx =

∫ ∞
−∞

dx

∫ x

−∞
dy P`(y) γ(y → x)

=

∫ ∞
−∞

dy P`(y)

∫ ∞
y

dx γ(y → x) =

∫ ∞
−∞

P`(y)
(
1− F (y)L

)
dy ,

where equation (4.6) was used in the last step. The probability Q` that the walks lasts
exactly ` steps is accordingly given by

Q` = P` − P`+1 =

∫ ∞
−∞

dy P`(y)F (y)L dy , (4.8)

and thus the expected walk length reads

E[`] =

∞∑
`=0

`Q` =

∞∑
`=0

` (P` − P`+1) =

∞∑
`=1

P` . (4.9)

Furthermore, the integrand of (4.8)

Q`(x) = P`(x)F (x)L (4.10)

is the joint probability (density) to have fitness x in the `-th step and that the walk lasts
exactly ` steps (conflated from the probabilities that the walk lasts at least ` steps and
that the state with fitness x is a local maximum). The marginal probability density of
the final fitness h is then given by

Q(x) =

∞∑
`=0

Q`(x) . (4.11)

If the overall fitness distribution is uniform on [0, 1], it will turn out that the limit

lim
L→∞

Q(1− x′/L)

L
= R(x′) (4.12)

leads to a non-degenerated function R which is independent of L. This becomes useful
for calculating the mean value of the final fitness. With the substitution x = 1 − x′/L
one finds

E[h] =

∫ 1

0
xQ(x) dx =

1

L

∫ L

0

(
1− x′

L

)
Q

(
1− x′

L

)
dx′

= 1− 1

L2

∫ L

0
x′Q

(
1− x′

L

)
dx′ (4.13)
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and hence

L (1− E[h]) =

∫ L

0
x′
Q(1− x′/L)

L
dx′ L→∞−−−−→

∫ ∞
0

x′R(x′) dx′ . (4.14)

The leading order behavior of E[h] is therefore given by E[h] = 1−α/L, where α is given
by the right-hand side of equation (4.14).

Unless otherwise stated, it is assumed in this section that fitness values are distributed
uniformly on [0, 1]. This happens without loss of generality for greedy, random and
reluctant AWs, since only the order of random variables matters and not their actual
value. Therefore, the walk length distribution Q` is independent of the overall fitness
distribution while the height distribution Q(x) can be obtained for the general case
by a rather simple transformation of the uniform case. The latter will be discussed
later in some more detail. For natural adaptive walks, however, the underlying fitness
distribution affects the actual dynamics. In the following, the distribution and mean
value of walk length ` and height h for greedy, random and reluctant adaptive walks
will be derived. A summary of the results can be found in table 2 on page 70 (see also
figures 4.1 and 4.2). For the sake of completeness, known results for the natural adaptive
walk will also be presented briefly.

4.1.1. Greedy Walks

For greedy walks, the transition matrix γ(y → x) is simply the probability density of
the largest of L random variables, but restricted to the region where x > y. This leads
to

γ(y → x) = LxL−1 . (4.15)

The recurrence relation becomes

P`+1(x) = L

∫ x

0
P`(y)xL−1 dy , (4.16)

which has the solution

P`(x) =

(
LxL

)`∏`−1
k=1(kL+ 1)

. (4.17)

The walk length distribution is accordingly given by

Q` =

∫ 1

0
P`(x)xL dx =

L`

[(`+ 1)L+ 1]
∏`−1
k=1(kL+ 1)

. (4.18)

Using that L/(kL+ 1) ≈ 1/k for large L yields

Q` ≈
`

(`+ 1)!
, (4.19)
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i.e., the L-dependence vanishes for large L. Note that this result can also be obtained
without solving the recurrence relation, as shown in [70]: If the walker takes a path
σ0 → σ1 → . . .→ σ`, the genotype σi+1 has by definition of the greedy walk the largest
fitness of the neighborhood of σi. Neglecting that the initial genotype might be a local
maximum, a walker takes at least ` steps if the largest fitness of the first ` neighborhoods
is in ascending order, i.e., P` ≈ 1/`! due to their independence. Equation (4.19) is then
obtained via Q` = P`−P`−1. The fact that Q` is independent of L implies also that the
mean walk length

E[`] =
∞∑
`=0

`Q` =
∞∑
`=1

P` ≈
∞∑
`=1

1

`!
= e− 1 = 1.7182 . . . (4.20)

converges to a constant.

It follows from equation (4.11) that the walk height distribution is given by

Q(x) =
∞∑
`=0

L` x(`+1)L∏`−1
k=1(kL+ 1)

. (4.21)

In order to evaluate the sum, one could use the approximation L/(kL + 1) ≈ 1/k
again that leads to Q(x) ≈ xL + Lx2L exp(xL). Unfortunately, this expression is not
normalized. However, a quite similar but normalized expression arises if one uses the fact
that an adaptive walker terminates at the largest of all random variables it encounters
during the walk. If the walk lasts ` steps, the final fitness is the largest of about L(`+1)
random variables which has probability density L(` + 1)xL(`+1)−1. Averaging over `
according to equation (4.19) yields

Q(x) ≈
∞∑
`=0

L ` (`+ 1)xL(`+1)−1

(`+ 1)!
= Lx2L−1 ex

L
. (4.22)

The limiting function R(x′) reads

R(x′) = lim
L→∞

Q(1− x′/L)

L
= e−2x′ ee

−x′
. (4.23)

It follows with equation (4.14) that

E[h] ≈ 1−
αgreed

L
, (4.24)

where

αgreed =

∫ ∞
0

x′ e−2x′ ee
−x′

dx′ = 0.4003 . . . . (4.25)

A slightly different derivation for this constant can be found in [37].
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4.1.2. Random Adaptive Walks

The transition matrix γ(y → x) for random AWs is the probability density of a uniform
random variable on [y, 1] times the probability that a genotype with fitness y is not a
local maximum. This leads to

γ(y → x) =
1− yL

1− y
(4.26)

and

P`+1(x) =

∫ x

0

1− yL

1− y
P`(y) dy . (4.27)

Following Flyvbjerg and Lautrup [66], one can define

H(y) =
L∑
k=1

yk

k
, (4.28)

which has the nice property that

dH =

(
L∑
k=1

yk−1

)
dy =

1− yL

1− y
dy . (4.29)

It will also be needed that

H
(

1− x

L

)
= logL+ γE − Ein(x) +O

(
1

L

)
, (4.30)

where γE = 0.5772 . . . is the Euler-Mascheroni constant and

Ein(x) =

∫ x

0

1− e−t

t
dx , (4.31)

which in turn has the property that∫ ∞
0

e−x−Ein(x) dx = e−γE . (4.32)

Equation (4.27) written in terms of H reads

P`+1(H) =

∫ H

0
P`(H

′) dH ′ (4.33)

and has the rather trivial solution P`(H) = H`/`! or, in terms of x,

P`(x) =
1

`!

(
L∑
k=1

xk

k

)`
=

1

`!
H(x)` . (4.34)
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The walk length distribution reads then

Q` =
1

`!

∫ 1

0
xLH(x)` dx . (4.35)

This expression is a bit hard to evaluate directly, but its generating function

Q̂(λ) =
∞∑
`=0

λ`Q` =

∫ 1

0
xL eλH(x) dx (4.36)

is very useful. With the substitution y = 1 − x/L and equation (4.30), one can
approximate the function by

Q̂(λ) =
1

L

∫ L

0

(
1− y

L

)L
eλEin(1−y/L) dy

≈ 1

L

∫ ∞
0

e−y+λ(logL+γE−Ein(y)) dy

= Lλ−1

∫ ∞
0

e−y+λ[γE−Ein(y)] dy . (4.37)

The leading order of the length distribution turns out to be a Poisson distribution with
parameter logL:

Q` =
1

`!

d`Q̂(λ)

dλ`

∣∣∣∣
λ=0

≈ 1

L `!

∫ ∞
0

[logL+ γE − Ein(y)]`e−y dy

=
1

L `!

{
(logL)` +O

[
(logL)`−1

]}
. (4.38)

The next order correction to the first moment of the actual distribution, which is just
an additive shift, can be computed as well. Equation (4.32) yields

E[`] =
∞∑
`=0

`Q` =
dQ̂(λ)

dλ

∣∣∣∣
λ=1

≈
∫ ∞

0
[logL+ γE − Ein(y)]e−y+γE−Ein(y) dy

= logL+

∫ ∞
0

[γE − Ein(y)]e−y+γE−Ein(y) dy = logL+ c , (4.39)

where c ≈ 0.0991. A similar result was obtained in [65] which states that

E[`] ≈ log(L) + c+ log(1− x0) + 1 , (4.40)

where x0 is the fitness of the initial genotype. Equation (4.39) can be obtained
from (4.40) by averaging over x0. Note also that for x0 = 0, the first step will lead
to a random fitness that is uniformly distributed on [0, 1] and hence the average walk
will be one step longer than a walk that started with uniformly distributed fitness in the
first place.
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Now consider the height distribution. According to equation (4.11) it is given by

Q(x) = xL
∞∑
`=0

P`(x) = xLeH(x) . (4.41)

Using equation (4.30), the limiting function R(x′) can be computed and reads

R(x′) = lim
L→∞

Q(1− x′/L)

L
= e−x

′+γE−Ein(y) . (4.42)

With this, the mean height can be approximated by

E[h] ≈ 1− αrnd

L
, (4.43)

where

αrnd =

∫ ∞
0

y e−y+γE−Ein(y) dy = 0.6243 . . . . (4.44)

Note that this result was also obtained in [65] with a similar ansatz.

4.1.3. Reluctant Walks

For reluctant walks, γ(y → x) is the probability density of the smallest of L random
variables that are larger than y. The number k of random variables that are larger than
y is binomial distributed. Given that k random variables are larger than y, the density
γk(y → x) of the smallest of them is given by

γk(y → x) =
k

1− y

(
1− x− y

1− y

)k−1

, (4.45)

which yields

γ(y → x) =
L∑
k=1

(
L

k

)
(1− y)k yL−kγk(y → x)

=

L∑
k=1

(
L

k

)
k (1− x)k−1 yL−k

= L (1− x+ y)L−1 . (4.46)

The recurrence relation (4.7) becomes

P`+1(x) = L

∫ x

0
P`(y)(1− x+ y)L−1 dy . (4.47)

Reluctant walks, in contrast to the other walk types, are very sensitive to the initial
fitness. It will turn out useful to condition the starting fitness to be x0 = 1 − x′0/L,
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i.e., P0(x) = δ(x − x0) and P`(x) = 0 for x < x0. Furthermore, let x = 1 − x′/L and
y = 1 − y′/L with 0 ≤ x′, y′, x′0 ≤ L and P̃`(x

′) = P`(1 − x′/L). Then, equation (4.47)
can be written in terms of P̃`(x

′) as

P̃`+1(x′) =

∫ x′0

x′
P̃`(y

′)
(

1− y′ − x′

L

)L−1

dy′ . (4.48)

For large L, one can approximate the second factor of the integrand by an exponential
function, which reads

P̃`+1(x′) ≈
∫ x′0

x′
P̃`(y

′) ex
′−y′ dy′ . (4.49)

It is straightforward to check that

P̃`(x
′) =

(x′0 − x′)`−1

(`− 1)!
ex
′−x′0 I[0,x′0](x

′) (4.50)

solves the recurrence relation (4.49).
Applying the same transformation and approximation to equation (4.10) yields

Q̃`(x
′) = P̃`(x

′) e−x
′

=

 e−x
′
0 (x′0−x′)`−1

(`−1)! I[0,x′0](x
′) , if ` > 0,

δ(x′ − x′0) e−x
′
, if ` = 0.

(4.51)

Unfortunately, the case study in (4.51) is needed to ensure the normalization of the
height distribution. The walk length distribution is then given by

Q` =

∫ x′0

0
Q̃`(y

′) dy′ =
∫ x′0

0

e−x
′
0(x′0 − x′)`−1

(`− 1)!
dy′ =

e−x
′
0 (x′0)`

`!
, (4.52)

i.e., the number of steps is Poisson distributed with parameter x′0 = L(1 − x0). If the
initial fitness is chosen randomly from [0, 1], the mean walk length is obviously given
by E[`] = L/2. The corresponding length distribution can be obtained by integrating
over x′0 which leads to

Q`,rnd =
1

L

∫ L

0
Q̃` dx′0 =

1

L

(
1− Γ(`+ 1, L)

`!

)
, (4.53)

where Γ(a, b) =
∫∞
b ta−1e−t dt is the incomplete Gamma function.

The density of the (transformed) height is given by

Q̃(x′) =
∞∑
`=0

Q̃`(x
′) = Q0(x′) +

∞∑
`=1

Q̃`(x
′)

= δ(x′ − x′0)e−x
′
+ I[0,x′0](x

′)
∞∑
`=1

e−x
′
0 (x′0)`

`!

= e−x
′
[
I[0,x′0](x

′) + δ(x′ − x′0)
]

(4.54)
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and the transformation from x′ back to x yields

Q(x) = e−L(1−x)
[
L · I[x0,1](x) + δ(x− x0)

]
. (4.55)

Finally, the limiting function R(x′) is simply given by

R(x′) = lim
L→∞

Q(1− x′/L)

L
= e−x

′
(4.56)

which leads with equation (4.14) to

E[h] ≈ 1− 1

L

∫ ∞
0

x′ e−x
′
dx′ = 1− 1

L
, (4.57)

i.e., αreluc = 1. Interestingly, this corresponds to the fitness of a randomly chosen local
maximum.

4.1.4. Approximations for Non-Uniform Fitness Distributions

As already mentioned, the choice of the fitness distribution has no influence on the
dynamics (with natural AWs being an exception). The length distribution Q` is therefore
completely independent of the choice, but obviously the height distribution changes.
Let Q(x) denote the probability density of the height in the uniform case and Q∗(x)
the density for the general case where the overall fitness is distributed according to
a cumulative distribution function F (x) with corresponding density f(x). Then the
transformation from Q to Q∗ reads

Q∗(x) = f(x)Q[F (x)] . (4.58)

In some cases one might be only interested in the mean value E[h] which is given by

E[h] =

∫ ∞
−∞

xQ∗(x) dx =

∫ 1

0
F−1(x)Q(x) dx . (4.59)

Since it is a bit cumbersome to evaluate this integral, it would be nice to have the
scaling behavior in a form as simple as equation (4.14). This depends especially on
the tail of the underlying fitness distribution F since the height distribution Q(x) has
most of its weight for x close to one. It is known from extreme value theory [75] that
the tail behavior of a distribution can be nicely represented by the generalized Pareto
distribution (GPD) with CDF

Fκ(x) =

{
1− (1 + κx)−1/κ for κ 6= 0,

1− e−x for κ = 0.
(4.60)

The support is R+ for κ ≥ 0 and [0,−1/κ] for κ < 0. Depending on the value of κ, the
distributions can be member of either of the three universality classes of extreme value
theory: For κ > 0, the tail decays as a power law corresponding to the Fréchet class,
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Quantity Greedy AW Random AW Reluctant AW

Q`
`

(`+ 1)!

(logL)`

L `!

1

L

(
1− Γ(`+ 1, L)

`!

)
Q(x) Lex

L
x2L−1 xLeH(x) Le−L(1−x)

E[`] e− 1 logL+ 0.1 L/2

L(1− E[h]) αgreed = 0.4002 . . . αrnd = 0.6243 . . . αreluc = 1

Table 2. Approximations of adaptive walk properties on the HoC model with U(0, 1) distributed
fitness and random initial condition. The derivation of all quantities can be found in the text.
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Figure 4.1. Walk length distribution for (a) greedy, (b) random and (c) reluctant adaptive
walks on an L = 256 HoC landscape with randomly chosen initial fitness. Symbols correspond
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for κ = 0 it decays exponentially corresponding to the Gumbel class and for κ < 0 it is
bounded which corresponds to the Weibull class. However, only the case where κ < 1
is considered, because otherwise the GDP and accordingly the height distribution have
an infinite mean value. In order to evaluate the right-hand side of (4.59), one needs the
quantile function which is given by

F−1
κ (x) =

{
(1−x)−κ−1

κ for κ 6= 0,

− log(1− x) for κ = 0.
(4.61)

One finds for κ 6= 0 and κ < 1 that

E[h] =

∫ 1

0
F−1
κ (x)Q(x) dx =

1

κL

∫ L

0

[( y
L

)−κ
− 1

]
Q
(

1− y

L

)
dy

≈ 1

κ

∫ ∞
0

[( y
L

)−κ
− 1

]
R(y) dy =

1

κ
(Lκβ(κ)− 1) , (4.62)

where

β(κ) =

∫ ∞
0

y−κR(y) dy .

Analogously, for κ = 0 one finds

E[h] =
1

L

∫ L

0
log

(
L

y

)
Q
(

1− y

L

)
dy ≈

∫ ∞
0

log

(
L

y

)
R(y) dy = logL− β(0) (4.63)

where

β(0) =

∫ ∞
0

log(y)R(y) dy .

Unfortunately, the coefficient β(κ) can only be evaluated in simple closed form in case
of reluctant AWs for which R(x) = exp(−x). This yields

β(κ) =

{
Γ(1− κ) for κ 6= 0,

γE for κ = 0 .

Now a rather loose but more general approximation for the mean of h will be
considered. A similar derivation can be found in [37]. Note that one can write the
right-hand side of (4.63) for κ = 0 and reluctant AWs as

logL− γE = F−1
0

(
1− αreluc · exp(−γE)

L

)
.

This might seem a bit odd, especially since αreluc = 1, but it turns out numerically that

E[h] ≈ F−1

(
1− α exp(−γE)

L

)
, (4.64)
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Figure 4.3. Relative error of the approximation happrox of the mean height given by
equation (4.64). The “correct” value hnum is obtained from the numerical integration of
equation (4.59) . Red squares correspond to greedy walks, green circles to random walks and
blue triangles to reluctant walks. The minima in the right panel are due to a sign change
of happrox − hnum.

where α = limL→∞ L(1 − E[h]), is also a good approximation for walk types other
than reluctant and even for other distributions in the Gumbel class with distribution
function F . In particular, this applies to Gaussian distributions that will be used in
section 4.3. It is not necessarily expected that (4.64) gives the correct asymptotic
behavior (except for reluctant walks on an exponentially distributed landscape), but
as figure 4.3 shows, the relative error is smaller than 1% for sufficiently large values of L.

4.1.5. Natural Adaptive Walks

Up to now, the natural adaptive walk does not fit quite well in the previous scheme
as neither Q` nor Q(x) are known exactly for general distributions. This is because
the dynamics is significantly influenced by the choice of the fitness distribution and the
recursion equation (4.7) becomes difficult to solve if the transition probabilities for that
walk type are inserted. Nevertheless, some results for the generalized Pareto distribution
were obtained [76, 77].

In order to formulate the recursion, one can replace the sum in the denominator of
equation (4.2) by an integral for κ < 1 [78] such that

γ(y → x) =
(x− y) f(x)∫∞

y (z − y) f(z) dz

[
1− F (y)L

]
, (4.65)

where f and F are probability density and cumulative distribution function of the fitness.
The second factor takes explicitly into account that a step is only possible if the genotype
with fitness y is not a local optimum. Equation (4.7) was studied in [77] with this
transition matrix, where the first three central moments of the length distribution Q`
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have been carried out to leading order in L. They read

E[`] =
1− κ
2− κ

logL ,

E
[
(`− E[`])2

]
=

(1− κ) (2− 2κ+ κ2)

(2− κ)3
logL ,

E
[
(`− E[`])3

]
=

(1− κ) (4− 8κ+ 6κ2 − 2κ3 + κ4)

(2− κ)5
logL .

Like for random adaptive walks, the expected walk length increases logarithmically
with L, but with a κ-dependent prefactor that decreases with increasing κ. For
κ → −∞, the prefactor converges to 1 while it vanishes for κ → 1 and hence the
walk length behavior interpolates between the random and greedy case with respect to
the fitness distribution’s tail behavior. Intuitively, this happens because the transition
probabilities (4.2) are dominated by the largest fitness in case of a heavy tailed
distribution and hence resemble greedy behavior. If, on the other hand, the distribution
is very narrow, all transition probabilities would usually have similar values such that a
random neighbor is chosen in each step.

4.2. Adaptive Walks on the RMF Landscape

Like HoC landscapes, the RMF landscape can be approximated well on a tree in order
to get a recurrence relation similar to that in (4.7), but it is hard to solve for arbitrary
distributions. In general, the adaptive walk behavior is governed by the underlying
distribution of the random part of the landscape, even in case of walk types that are not
affected by the fitness distribution on the HoC landscape.

4.2.1. Greedy Adaptive Walks

The case of greedy adaptive walks with Gumbel distributed random part was studied
in [79] (see also [80] for further studies). It was assumed that the reference sequence σ̃
is the initial genotype of the walk, i.e., the potentially least fit genotype. Similar to
the approach by Orr [70] for greedy walks on the HoC landscape, one can estimate P`
by the fact that a walk lasts at least ` steps if the largest fitness among the first `
neighborhoods that the walker “sees” are ordered. Due to the properties of the Gumbel
distribution, the probability for this can be obtained from the ordering probability given
by equation (3.76). Interestingly, the result can also be expressed similarly to the one
for the HoC model by using the so-called q-analogue [81]. A q-number [n]q is defined as

[n]q =
1− qn

1− q
. (4.66)
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Many other functions can then be redefined using these numbers instead of integers in
their definition. For instance, the q-factorial reads

[n]q! =
n∏
k=1

[k]q . (4.67)

It was argued before that P` = 1/`! for greedy walks on the HoC landscape. Analogously,
the probability P` that a greedy walks lasts at least ` on the RMF landscape is given by
the reciprocal q-factorial

P` =
1

[`]exp(−s)!
=
∏̀
k=1

1

[k]exp(−s)
. (4.68)

With this, the mean walk length is given by

E[`] = expexp(−s)(1)− 1 , (4.69)

where

expq(x) =
∞∑
k=0

xk

[k]q!

is the q-analogue of the exponential function in nice analogy to equation (4.20). This
also reveals that the walk length is still bounded for L → ∞, which means that even
though accessible paths to the global optimum exist with probability 1 according to
equation (3.89), a greedy adaptive walker will not take these paths.

4.2.2. Random Adaptive Walks

In case of random adaptive walks, the counterpart to equation (4.27) reads

P`+1(x) =

∫ x+s

−∞

1− F (y − s)L−`

1− F (y − s)
f(x)P`(y) dy , (4.70)

which was studied for a standard exponential distribution in [82]. Again, the walker
starts from the reference sequence σ̃. The main result is that there is a phase transition
of the mean walk length with respect to s. More precisely, one has

E[`] ∝


log(L)/(1− s) , for s < 1,

log(L)2 , for s = 1,

O(L) , for s > 1.

(4.71)

This confirms the intuition that the behavior on an RMF landscape changes when the
fluctuations are of the same order as the slope s. Moreover, if the distributions tail
decays more slowly than exponentially, the walk length is linear in L, while for tails
decaying faster than exponentially, the walk length grows logarithmically with L. Note
that this coincides nicely with the change of the behavior of local maxima according to
equation (2.34).
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4.3. Adaptive Walks on the NK Landscape

4.3.1. Block Interactions

As shown before in section 2.4.3 and 3.5.1, a blockwise interaction pattern facilitates
analytical studies since many quantities can be derived from known results of the HoC
model. Adaptive walks proceed independently within each block as pointed out in [39]
for random adaptive walks. In fact, this is also the case for a rather general family
of adaptive walks, namely if the transition probabilities are only a function of fitness
differences.

In that case, the transition probabilities can be written as

p(σ → τ) =
ξ[w(τ)− w(σ)]∑

σ′∈U+
σ
ξ[w(σ′)− w(σ)]

, (4.72)

where ξ : R+ → R+ is an arbitrary function and hence, according to equation (4.5), all
previously defined walk types can be obtained for suitable choices of ξ. In order to show
that the whole AW can be treated as a set of walks through HoC landscapes, some special
notation related to the switching between the whole landscape and the sub-landscapes
defined by the different blocks is needed. For σ ∈ HL

2 , let σ(b) be the subsequence of
length K corresponding to the b-th block and wb

(
σ(b)

)
the fitness landscape of that

block, i.e.,

w(σ) =

L/K∑
b=1

wb

(
σ(b)

)
.

Furthermore, let b(σ, τ) be the block in which a mutation has to occur to step from
σ to τ (or vice versa), B(σ) the random variable that takes the value of the block in
which an adaptive step from σ takes place and U+

b (σ) the set of neighbors of σ that can
be reached by a beneficial mutation in the b-th block. Then the probability p(σ → τ | b)
for an adaptive step, conditioned on taking place in the b-th block with b = b(σ, τ), is
given by

p(σ → τ | b) =
p(σ → τ)

P[B(σ) = b]
= p(σ → τ)

∑
σ′∈U+

σ
p(σ → σ′)∑

σ′∈U+
b (σ) p(σ → σ′)

=
ξ[w(τ)− w(σ)]∑

σ′∈U+
σ
ξ[w(σ′)− w(σ)]

∑
σ′∈U+

σ
ξ[w(σ′)− w(σ)]∑

σ′∈U+
b (σ) ξ[w(σ′)− w(σ)]

=
ξ[w(τ)− w(σ)]∑

σ′∈U+
b (σ) ξ[w(σ′)− w(σ)]

=
ξ
[
wb
(
τ (b)
)
− wb

(
σ(b)

)]∑
σ′∈U+

b (σ) ξ
[
wb
(
σ′(b)

)
− wb

(
σ(b)

)] = p̃
(
σ(b) → τ (b)

)
. (4.73)

Note that the last line has the same form as (4.72), but depends solely on the
corresponding block. In other words, it is the probability p̃(σ̃ → τ̃) that an adaptive
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step from σ̃ = σ(b) to τ̃ = τ (b) would have in this HoC sub-landscape of size K. In the
following it is convenient to define p̃(σ̃ → σ̃) = 1 such that the probability for a whole
path can be written as

P[σ0 → σ1 → . . .→ σ`] =
∏̀
i=1

p(σi−1 → σi)

=

L/K∏
b=1

[∏̀
i=1

p̃
(
σ

(b)
i−1 → σ

(b)
i

)]
︸ ︷︷ ︸

Ppaths

·

[∏̀
i=1

P[B(σi−1) = b(σi−1, σi)]

]
︸ ︷︷ ︸

Porder

. (4.74)

The first expression, Ppaths, is nothing but the probability that a a certain path is taken
through a HoC landscape of size K. Porder is the probability that the blocks in which
mutations occur have a certain order. However, this order has no influence on the walk
length ` or height h. They are both additive in the sense that

` =

L/K∑
b=1

`b and h =

L/K∑
b=1

hb , (4.75)

where `b and hb are length and height, respectively, of the adaptive walk through the
b-th sub-landscape. As the AWs through the sub-landscapes behave as ordinary AWs
through a K-dimensional HoC landscape, also `b and hb have the same distribution.
Accordingly, the distribution of ` and h is the L/K-fold convolution of length and
height distribution, respectively, of a K-dimensional HoC landscape. As an example,
the length distribution of the random adaptive walk is approximately given by a Poisson
distribution with mean L/K · logK. It is noteworthy that this mean value already
appeared in [42], but as an approximation for adjacent and random interaction patterns
and not as an asymptotically exact expression for block interactions like in [39].

Rather than studying the full distribution, the focus will be on the mean value of
length and height in the following. Obviously, equation (4.75) implies

E[`] =
L

K
E[`HoC(K)] . (4.76)

The values for E[`HoC(K)] can be taken from table 2. An interesting observation at this
point is that E[`] ≈ L/2 for reluctant walks, independent of K. Nevertheless, remember
that the expression given in the table are only valid asymptotically for large values of K
due to the fact that they were obtained for a tree and that further approximations
were made. Therefore, if the actual values of (4.76) are needed, small-K corrections
to E[`HoC(K)] will be included that are proportional to K−1 and K−2 with coefficients
obtained from a least square fit of simulation data.

With the same argument and equation (4.64) one finds

E[h] =
L

K
E[hHoC(K)] ≈ L

K
F−1

b

(
1− α exp(−γE)

K

)
, (4.77)
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where α is the coefficient depending on the walk type and Fb is the distribution function
of fitness within a block. As the fitness contributions are standard normal distributed
throughout this section, the fitness of a block is normal distributed with variance K, i.e.,

F−1
b (x) =

√
2K erf−1(2x− 1) , (4.78)

where erf−1 is the inverse error function. The comparison of equations (4.76) and (4.77)
with simulation data can be found in figure 4.5.

4.3.2. General Phenomenology

As shown in chapter 2 and 3, most quantities of the NK model can be tuned by the
parameter K and, in a more subtle way, by the choice of the interaction pattern.
Therefore, it is a nice way to study the influence of landscape properties on the dynamics.

Simulations reveal that both mean length and height increase asymptotically linear
with sequence length L if K is kept constant. This behavior is not very surprising:
Increasing L also increases the number of contributions to the fitness which in turn is
proportional to the final fitness h. With regard to walk length `, linear behavior follows
directly from equations (4.76) for block interaction, i.e., the number of independent
blocks grows linearly with L. Other interactions schemes do not have this block structure
in a strict sense, but when L is sufficiently larger than K, epistatic interactions are short
ranged and hence one can still find different areas of the genotype sequence that are
largely independent, similar to the argument given in section 3.5. The number of these
areas also grows linearly and hence the linear behavior of E[`]. How good this argument
is can be seen from the y-intercepts b of linear regressions of the form aL + b (see
figure 4.4). If there is a strictly linear dependence between E[`] and L, b would be zero.
This is only the case for block interactions, but in most other cases, b is of the same order
of magnitude as the slope a, i.e., rather small. A notable exception is the combination
of reluctant walks and random interaction. The slope is already very large (a ≈ 4.9 in
the example shown here), but the absolute value of the y-intercept (b ≈ −208 in the
example) is even many times larger, implying that a linear approximation fails if L is of
the same order as K.

Intuitively it is clear that an adaptive walk is longer when the fitness landscape
is less rugged, which is mostly confirmed here: In agreement with other measures of
ruggedness that were shown before, adaptive walk lengths increase with increasing rank
of the interaction scheme. For most cases, the intuition is also true if the ruggedness is
controlled by the landscape parameter K rather than the interaction scheme, as shown in
the left-hand side of figure 4.5. Reluctant walks are again an exception. Like mentioned
before, the mean length is always L/2 for block interactions and is hence independent
of K. For other interaction types, the K-dependence is even non-monotonic for fixed L.
Especially the graph for random interactions shows a rather sharp maximum with a
height that is several times larger than the system size. Reluctant walks show by far the
highest susceptibility to different interaction patterns in terms of length.

With regard to the walk heights shown in figure 4.5(d)-(f), the same order as for
lengths occurs: The largest fitness is reached with random interactions, the second
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type”. Lines correspond to linear regression of E[`] and E[h], respectively. The curvature of
E[`]/L and E[h]/L is due to a non-zero y-intercept of the regression.

largest fitness with adjacent and the smallest with block interactions in accordance with
figure 2.2(c). The dependence of E[h] on K, however, is non-monotonic with a maximum
located at rather small values of K. This is in contrast to figure 2.2(d) where it is shown
that the height of typical maxima decreases monotonically with K. The maximum
might be due to a tradeoff between a decreased fitness of maxima and an increase of
their number which might enhance the ability to find particularly fit ones. Like for the
length, reluctant walks are more susceptible to the interaction scheme. Even though the
difference might seem rather small, it has a big impact on the question which walk type
reaches the highest fitness. This will be shown in the next section.

4.3.3. On the Relation between Adaptive Walks and Local Maxima

For the behavior of adaptive walks it is crucial how local maxima are distributed over
the landscape and which shape they have. As a first order approximation, one can relate
the walk length simply to the total number Nmax or density Pmax of maxima. In order
to obtain a length scale λmax related to the mean distance between local maxima, note
that 1/Pmax is a “volume” associated with each maximum. One can then define λmax

implicitly by

1

Pmax
=

λmax∑
d=0

(
L

d

)
, (4.79)

where the right-hand side is the number of genotypes that have distance d ≤ λmax to
a given genotype, i.e., it is the volume of a ball with radius λmax. Its logarithm is
approximately given by λmax · logL and hence λmax ≈ − log(Pmax)/ log(L). As shown
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Figure 4.5. Walk length and height for three adaptive walk types and interaction schemes on
an NK landscape with fixed L = 256. Symbols correspond to numerical results and are defined
in panel (a), dashed lines are for visual guidance and solid lines are the results for the block
model given by equations (4.76) and (4.77).

in figure 4.6(a), the mean length of greedy walks is proportional to λmax. Such a simple
relation suggests that a greedy walker goes relatively straight to one of the nearest
maxima. Conversely, since the other walk types do not show a linear behavior, their
paths are more complicated and not only influenced by the maxima density but also by
more subtle properties of the landscape.

This can also be seen by a more careful examination of walk heights. It was shown
before that there are quantitative differences in adaptive walk heights on landscapes
with different interaction patterns, but there are also qualitative differences. On the
HoC landscape, the height increases with the greed of the walk type, i.e., greedy walks
reach higher fitness than random AWs which in turn reach higher fitness than reluctant
walks. According to equation (4.77), this behavior is inherited by the NK model with
blockwise interactions. However, for random interactions and suitable values of K, the
order is completely reversed. Reluctant walks become the most successful ones in terms of
fitness, as can be seen in figure 4.7(a). This phenomenon was already observed before for
similar landscape models in the context of, for instance, spin glasses [71] and complexity
theory [74]. The effect is very counter-intuitive since it means that the highest fitness
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might be reached eventually if the walker always goes to the smallest possible fitness. Its
impact on applications like optimization are probably rather small though, because the
computation time of a reluctant walk is very high due to its enormous length compared to
greedy walks. Therefore, if one is really interested in finding a particularly fit maximum,
it would be still more efficient to perform several greedy walks rather than one reluctant
walk.

A nice description of how the effect is influenced by the interaction pattern can be
made in terms of the rank. The dependence of h on R for the different walk types is shown
in figure 4.7(b). As one can see, the dependence is almost linear. While the y-intercept
increases with greed of the walk type, the slope decreases. Therefore, depending on the
parameters L and K, there might be a point of intersection between the curves that
marks the rank where random and reluctant walks, respectively, become more successful
in reaching large fitness.

Why the success of adaptive walks depends on the fitness landscape in this way is
still an open question. As a first hint one might ask how it looks like in the proximity
of the genotype where the adaptive walk terminates. In the following, the quantity
of interest is the (average) number Nsur of local maxima at distance d = 2 to that
genotype, which is shown in figure 4.8. If local maxima were uncorrelated and unbiasedly
found by adaptive walks, Nsur would be equal to Pmax times the number L(L− 1)/2 of
genotypes at distance d = 2, but neither of these conditions is fulfilled as shown before.
For blockwise interactions, Nsur can be calculated from equation (2.41) for a randomly
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chosen maximum and is given by

Nblock
sur =

L(L− 1)

2

Pmax,2

Pmax
=
L (K − 1)

2K
. (4.80)

As can be seen in figure 4.8(a), Nsur is slightly smaller for maxima that are found by an
adaptive walk in this case. For other interaction patterns, this quantity is not known for
unbiased maxima, but maxima found in adaptive walks have much less other maxima
nearby compared to the block model. This is not surprising since these interaction
patterns produce also less maxima than the block pattern in total. Therefore, one
should relate Nsur to the total number of maxima, which is increased in the block model
by a factor of

(
P block

max /Pmax

)
. If Nsur is divided by this value as in figure 4.8(b), it reveals

that the clustering of maxima is actually smaller for block interactions and sufficiently
small values of K. Unfortunately, one can not tell whether this is generic for local
maxima in the NK model or only for those found by adaptive walks. The fact that Nsur

is hardly influenced by the walk type might be a hint that also typical maxima show
this phenomenon to some extent.



5. Recombination and Disruptive Selection

5.1. Wright Fisher Model

5.1.1. Classical Wright-Fisher Model

The Wright-Fisher model is an individual based model for population dynamics with
discrete, non-overlapping generations. In each generation, all individuals are replaced
by their offspring where the mean number of offspring corresponds to the fitness, i.e.,
the i-th individual with fitness wi will have offspring drawn from some distribution with
mean value wi, e.g, a Poisson distribution. Let mi(t) denote the number of offspring that
the i-th individual in generation t will leave to the next generation. Then in generation
t + 1 there will be Mt+1 =

∑
imi(t) individuals. Assuming that the mi are Poisson

distributed, also Mt+1 will be Poisson distributed with

P[Mt+1 = N |Mt = M ] =
(Mw̄t)

N

N !
e−Mw̄t , (5.1)

where

w̄t =
1

Mt

Mt∑
i=1

wi(t) (5.2)

is the average fitness in generation t. Since individuals will produce offspring
independently, the joint distribution for the individual offspring is given by the product

P[m1(t) = n1, . . . ,mM (t) = nM |Mt = N ] =
N∏
i=1

wnii
ni!

e−wi = e−Nw̄t
N∏
i=1

wnii
ni!

. (5.3)

The actual Wright-Fisher model [13, 14] now arises from the claim that the population
size is constantly N , i.e., the population’s distribution in the next generation is given by

P[m1(t) = n1, . . . ,mN (t) = nN |Mt = Mt+1 = N ]

=
P[m1(t) = n1, . . . ,mN (t) = nN |Mt = N ]

P[Mt+1 = N |Mt = N ]

=
N !∏N
i=1 ni!

N∏
j=1

(
wi
Nw̄t

)ni
, (5.4)

if
∑

i ni = N and zero otherwise. This is a multinomial distribution with probabilities
wi/Nw̄t. Therefore, a common interpretation of the dynamics is that individuals in
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Time

Figure 5.1. Illustration of the original Wright-Fisher dynamics with N = 5 individuals over
6 generations. Colors indicate the ancestor from the first generation. Each arrow goes from a
parent to its child.

generation t+1 randomly “choose” their parent to be the i-th individual from generation
t with probability wi/Nw̄t. An illustration of this process can be found in figure 5.1.

In this form, the model does not include any notion of genotype space or mutations,
but they can be easily included by assigning a genotype σ to each individual. The
individual’s fitness wi is then given by the fitness w(σ) of its genotype. A child will
carry the same genotype as its parent, unless a mutation occurs with some probability µ.
The variation of the standard Wright-Fisher model including these mechanisms, which
is used in this thesis, will be explained in the next section.

5.1.2. Wright-Fisher Model on the Hypercube

As mentioned above, a version of the Wright-Fisher model will be used which resembles
the original dynamics but is not equivalent. The reason for this is simply to speed up the
computation of the simulations. On the hypercube, it is more convenient to formulate
the model in terms of occupation numbers of genotypes rather than individuals. This is
because individuals carrying the same genotype are identical, at least within the frame of
the Wright-Fisher dynamics. Let Nσ be the number of individuals carrying genotype σ
and

w̄ =
1

N

∑
σ

w(σ)Nσ (5.5)

the fitness averaged over the population. The dynamics is then composed of single
steps that alter the occupation numbers. Mutation and selection are actually stochastic
processes, but their corresponding steps are treated deterministically here. Note that
this leads to non-integer values of the occupation numbers Nσ, but the effect is negligible
for large N . Stochasticity is included afterwards by an explicit random sampling step.
The definition of each step is given in the following.

Mutation. A fraction µ of all individuals mutate. All mutants are evenly distributed
to genotypes that are neighbors of their parents genotype. In formulas:
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Nσ → (1− µ)Nσ +
µ

L

∑
τ∈Uσ

Nτ .

Selection. The number of individuals carrying a certain genotype is updated according
to the relative fitness of that genotype, i.e.,

Nσ →
w(σ)

w̄
Nσ .

Random Sampling. All occupation numbers Nσ are replaced by a random number
drawn from a Poisson distribution with parameter Nσ:

Nσ → Poi(Nσ) .

Actually, one should use a multinomial distribution in order to resemble equa-
tion (5.4). However, performing the sampling independently for each genotype saves
a lot of computation time when L is large [83].

Normalization. Since this way of random sampling does not guarantee the total
number of individuals to be equal to N , one has to perform the normalization
explicitly:

Nσ →
N∑
τ Nτ

Nσ .

Note that one can easily include further mechanisms as additional steps or alter existing
ones due to the modular structure of this model. In section 5.2, an additional step
“Recombination”, will be added to this dynamics. In section 5.3, the selection step will
be altered in order to allow for competition between individuals.

5.1.3. Observables and General Behavior

The most natural quantity to measure the success of a population as a whole is the
fitness w̄ averaged over the population as defined in equation (5.5). It will be presented
in the following mostly as a time series, i.e., in dependence on the generation.

Another useful quantity will be the diversity defined as

D = exp

[
−
∑
σ

nσ log(nσ)

]
, (5.6)

where nσ = Nσ/N is the fraction of the population carrying genotype σ. As one can
see, it is the exponential of the population’s entropy inspired by the following intuition:
Suppose there exist n different genotypes and all of them are carried by the same amount
of individuals, i.e., nσ = 1/n. In this case, D is just the number of occupied genotypes.
However, the population is usually not uniformly distributed which will cause a decrease
of the diversity. This is intentional since it causes that D is close to 1 if only one genotype
is macroscopically occupied, even though it is surrounded by several mutants. In some
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Figure 5.2. Example of time series for mean fitness w̄ (solid lines) and diversity D (dashed
lines) of a population with N = 105 and Nµ = 1. The underlying fitness landscape is a standard
exponentially distributed HoC landscape in panel (a) and a RMF landscape with slope s = 1
and standard exponentially distributed noise term in panel (b). Initially, the whole population
is located at the reference sequence σ̃, which corresponds to a randomly chosen genotype in the
HoC case and to a poorly adapted state in the RMF case.

sense, the diversity can be thought of as the effective number of occupied genotypes
without the need of defining a threshold at which a genotype is considered as occupied.

Examples for time series of w̄ and D are shown in figure 5.2 for populations evolving
on a HoC and on a RMF landscape. They are supposed to reflect the typical behavior.
As one can see, the mean fitness increases monotonically but stepwise. Each step
corresponds to the population moving to a new genotype with larger fitness. As described
earlier, this moving process begins with the rise of a mutant carrying the new genotype.
Since it has larger fitness than the prevalent genotype, there is a positive fixation
probability. Note that fixation is not meant in a strict sense here, it rather refers to states
where the population is highly concentrated on a genotype. Since the fixation process
happens gradually, there are a few generations where the old and new genotype are both
macroscopically occupied, which appears as a peak in the diversity D. Obviously, this
adaptation process happens faster on the less rugged RMF landscape than on the HoC
landscape. Note that, even if Nµ is of order 1, the time between two fixation events
is still much larger than the fixation time. The diversity is very close to 1 between
these events and hence the population can still be thought of as a single entity traveling
through the genotype space, i.e., similar to an adaptive walk. An important difference
to adaptive walks is that the dynamics does not end when the population gets trapped,
i.e., when it fixates on a local maximum. This delays the adaptation process by quite a
lot, but the population can escape eventually.



Section 5.2 – Recombination 87

5.2. Recombination

5.2.1. Advantages and Disadvantages of Recombination

Recombination is the creation of novel genetic information of an individual, the child,
from the genetic information of parental individuals. Findings in paleontology suggest
that recombination exists as early as one billion years ago [84] and currently it is prevalent
in nature, at least among higher organisms, indicating an advantage under various
circumstances. This advantage, however, is far from being obvious [85–88]. Sexual
reproduction in particular seems grossly inefficient since all individuals of a population
need about the same amount of resources while only females give birth to offspring, an
issue known as the two-fold cost of sex [89, 90]. But even when this effect and other
implications arising from two sexes are ignored, there are still disadvantageous effects
of recombination. A well-known example is the recombination load [91, 92], i.e., the
issue that reshuffling a genotype can result in the disruption of beneficial combinations
of genes.

Nevertheless, there are also lots of positive effects proposed in the literature. The
Weismann effect [93, 94], for instance, refers to the fact that the amount of genetic
variability is increased by recombination. This facilitates the search for particularly fit
genotypes but can also be disadvantageous when an optimal genotype was already found.
Probably the most noted advantage is Muller’s ratchet [95–97] which states that asexual
populations accumulate deleterious mutations almost irreversibly since they can only be
purged if a back-mutation occurs, which is very unlikely for large L. Recombination,
on the other hand, gets rid of those mutations easily. Conversely, if two different
beneficial mutations arise in two different individuals of an asexual population, they
will compete for fixation. At best, this delays the emergence of an individual carrying
both mutations while recombination obviously facilitates it, a scenario known as the
Fisher-Muller or Hill-Robertson effect [13, 96, 98, 99]. However, note that both Muller’s
ratchet and the Hill-Robertson effect have limited validity on a sign-epistatic landscape
since the effect of mutations depends on the genetic background. Deleterious mutations
can turn into beneficial ones when another mutation occurs and the combination of
two beneficial mutations can be deleterious. Epistasis and local maxima in particular
obstruct adaptation of sexual populations. A theoretical study on a double-peaked two-
locus landscape showed that high rates of recombination inhibit substantially the escape
from the smaller maximum to the larger one, even though the process is accelerated
slightly for small recombination rates [100]. This trapping at local maxima will turn out
to be an important factor on multidimensional landscapes.

Another important concept is the Red Queen hypothesis [101]. It states that
organisms need to adapt constantly to an ever-changing environment. The advantage of
recombination is due to a faster response to environmental changes rather than the ability
to find particularly fit states eventually. The name of this concept is derived from Lewis
Carroll’s famous book Through the Looking-Glass [102] where the Red Queen explains
to Alice that “it takes all the running you can do, to keep in the same place.”
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5.2.2. Wright-Fisher Dynamics with Recombination

How the new genotype is composed of parts from the parents genotype can generally
be very complex, but here only a simple variant, the uniform crossover, will be studied:
Each locus is either taken from the first or the second parent with equal probability. In
the optimized Wright-Fisher model that will be used, the whole population is replaced
by new individuals whose genotype is the recombination of two randomly chosen parents.
This additional step is included right after the normalization step. The focus will be
on the comparison of non-recombining and recombining populations, also referred to
as asexual and sexual populations, respectively, in the text. Despite this naming, the
setting corresponds to mere genetic recombination and not to actual sexual reproduction
since distinct genders of individuals and consequences thereof, e.g., mating, will not be
considered.

The underlying fitness landscape will be the RMF landscape with a random part
drawn from an exponential distribution. The distribution’s mean value λ will be the
main parameter to control the landscape ruggedness. Unless otherwise stated, all
individuals carry initially the reference genotype σ̃ of the RMF model, i.e., the scenario
correspond to a situation where the population is poorly adapted in the beginning.
Simulation results will be mostly presented as averaged time series of the fitness difference
∆w = 〈wrec〉 − 〈wnorec〉 between sexual and asexual populations. An advantage of
recombination corresponds to ∆w > 0. The angle brackets 〈w〉 denote here and in
the following the average of w̄ over realizations, i.e., it includes two averages: One over
the population and one over realizations.

The scenario might seem a bit restrictive, but several variations were tested and
indicate that qualitative results are quite robust [103]. For instance, the NK model,
with K playing the role of a ruggedness parameter, may also serve as landscape.
With regard to the dynamics, variants including an infinite population size or direct
competition between recombining and non-recombining individuals show qualitatively
the same behavior as well.

5.2.3. When is Recombination Beneficial?

To begin with, the averaged time series of of the mean fitness 〈w〉 of both sexual and
asexual population are shown in figure 5.3(a). As expected, 〈w〉 increases with increasing
time and ruggedness parameter λ. The differences ∆w between recombining and non-
recombining populations can be best seen in figure 5.3(b). The typical shape of ∆w
includes a minimum after a few generations which is followed by an ascent leading to a
maximum and finally a decline. A close look at the curve for λ = 3 reveals that there is
also a second minimum and maximum, even though it is less pronounced. As one can
see, the answer to the question whether recombination is advantageous or not depends
on the time when it is asked. At very small and large times, recombination seems to
be always the worse option, but in between there might be a time window where ∆w is
positive. However, even if a maximum of ∆w exists, it might have a value below zero,
as in the curve for λ = 3. Generally, the advantage of recombination, whether measured
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Figure 5.3. (a) Fitness time series of recombining (solid lines) and non-recombining (dashed
lines) populations. (b) Time series of fitness difference ∆w. (c) Diversity time series of
recombining (solid lines) and non-recombining (dashed lines) populations. (d) Time series of
diversity difference ∆D between recombining and non-recombining populations. In all panels,
different colors correspond to different noise strengths λ and are defined in panel (b). The other
parameters are given by L = 16, s = 1, N = 1000, and Nµ = 2.

by its duration or its maximal fitness advantage, appears to decreases with increasing
ruggedness of the landscape.

At the same time, sexual and asexual populations have very different behavior with
regard to their diversity D. As shown in figure 5.3(c) and (d), sexual populations have
substantially larger diversity than asexual ones, at least in the beginning. This is caused
by the fact that the initial genotype is a poorly adapted state and hence almost all
mutations will lead to fitter states. These mutants will co-exist until the fittest of them
will be selected. Since the fitness values are more similar if the noise term controlled by λ
is weaker, selection is weaker as well and hence the diversity increases with decreasing λ.
This happens for both recombining and non-recombining populations, but during the
phase of many co-existing mutants, recombination will produce lots of offspring with
novel genotypes. In other words, recombination amplifies the already existing diversity
in the initial phase of the dynamics, in accordance with the Weismann effect. After some
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Figure 5.4. Time series of fitness difference ∆w for a landscape with (a) λ = 1 and (b) λ = 2.
Different colors correspond to different values of µ and are defined in panel (b). The other
parameters are given by L = 16, s = 1, and N = 1000.

time, 〈D〉 levels off for both population types to a value slightly above 1 which indicates
that they become quasi-monomorphic.

Different values of Nµ control the supply of mutants. As recombination needs
a sufficient amount of mutants to be effective, one might guess that the effect of
recombination is intensified if Nµ gets larger. This is mostly true, but note that it
does not necessarily mean that recombination becomes more advantageous since it has
several downsides, too. If the landscape is too rugged, increasing Nµ is disadvantageous
for sexual populations, while it is advantageous on less rugged landscapes. This can be
seen from the comparison of figures 5.4(a) and (b). The influence of ruggedness on the
success of recombination will be discussed in the next section in more detail.

5.2.4. Temporal Pattern of ∆w and Dynamic Regimes

For the study of the temporal pattern of ∆w, one should go back for a moment
to the individual fitness curves 〈wr〉 and 〈wnr〉 for recombining and non-recombining
populations, respectively, that are shown in figure 5.3(a). While the slope of 〈wr〉 is
larger than 〈wnr〉 for intermediate times, it is smaller in the very beginning and the
end. This divides the temporal pattern roughly in three regimes: In the initial and
final regime, 〈wnr〉 grows faster than 〈wr〉, in the intermediate regime it is the other way
round.

The reason why 〈wnr〉 grows faster than 〈wr〉 in the initial regime can be ascribed
mainly to the Weismann effect, i.e., the diversity D of recombining populations is so
large that also many sites on the landscape are populated that are not particularly fit.
Even though ∆w is negative in this regime, it can actually be seen as an prospective
advantage since the fittest individual among both populations belongs to the recombining
population with high probability, but beside many less fit individuals. However, the
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adaptation of a population as a whole is mostly driven by the fittest individual and
therefore fitness gain will be even accelerated once the diversity is reduced when less fit
mutants become extinct.

Diversity reduction also marks the transition to the intermediate phase. This dynamic
regime is characterized by smaller diversity and comparatively fast adaptation, indicating
that fitter genotypes get populated sequentially. Given that Nµ is sufficiently large such
that there is a steadily supply of new mutants, one can ascribe the fact that 〈wr〉 grows
faster than 〈wnr〉 in this phase largely to the Hill-Robertson effect. It is particularly
effective on an RMF landscape due to its inherent fitness gradient. If two mutants are
recombined that are both located one step uphill with respect to the most populated
state, the child individual will be located two steps uphill with a certain probability.
Such events accelerate the adaptation process substantially. Of course, recombination
can also produce individuals that are located downhill or have lower fitness due to the
noise term, but they will be purged quickly by selection.

Eventually, this sequential dynamics ends when the population reaches a local
maximum. Further adaptation can then only happen if a fitness valley is crossed. As
mentioned earlier, it was found on a two-locus landscape that escaping from local maxima
is very difficult for recombining populations [100]. In order to address the question of
whether this is relevant on a high-dimensional landscape, escape and trapping events
will be counted in the following. The population is regarded as trapped if 70% of all
individuals are located on the same local maximum. An escape event is registered if
this fraction drops below 50% for a formerly trapped population. The fraction pesc of
populations that escaped from the first maximum they get trapped on before the 2500-th
generation, which is the last generation in figures 5.3 and 5.4, is shown in figure 5.5(a).
As expected, pesc decreases with increasing λ and decreasing mutation rate µ since local
maxima become more peaked and a larger amount of mutants is produced to pull the
population from the maximum, respectively. More importantly, the number of escape
events drops substantially to a tiny fraction if recombination is active. To some extent,
trapping is delayed for sexual populations due to their larger diversity as can be seen in
figure 5.5(b), but the effect is much weaker than the inability to escape.

If at all possible, recombining populations build up their advantage in the
intermediate regime. The more rugged a landscape is, the more difficult is it to escape
from maxima, the earlier populations get trapped and, in turn, the shorter is the time
of the intermediate regime. Asexual populations can continue adapting after trapping,
even if they are slowed down quite a lot, but appreciable dynamics of recombining
populations basically stops in most realizations as soon as a local maximum is reached.
As a consequence, recombination is more advantageous if the landscape is less rugged.
With these finding, one can also explain the different response to an increase of the
mutation rate in figure 5.4. On the less rugged landscape (λ = 1), an increased supply
of mutants simply amplifies the advantage that recombining populations can build up
in the intermediate regime. They get also trapped earlier such that ∆w is lower in the
long run and also the time of the advantage is shorter, but the peak of the advantage
increases. On the rugged landscape with λ = 2, populations get trapped earlier in the
simulation, in particular before recombining populations can build up the advantage.
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Figure 5.5. (a) Fraction pesc of populations that escaped from the first maximum they get
trapped on. Open symbols correspond to asexual, filled symbols to sexual populations. Different
colors and symbol shapes are to distinguish different mutation rates. (b) Mean time Ttrap at which
populations get trapped on a local maximum for the first time. Symbols and colors have the same
meaning as in panel (a). In both panels, the parameters are L = 16, s = 1, and N = 1000. Lines
are for visual guidance, solid ones for recombining, dashed ones for non-recombining populations.

The latter does not change much if µ is increased, but trapping occurs even earlier.
Asexual populations, on the other hand, benefit much more from an increase of Nµ and
hence ∆w decreases at almost all times.

5.2.5. Mechanisms to Prolong the Advantage of Recombination

As it was shown, there is a transitory advantage of sex on landscapes with sufficiently
small ruggedness, but there are several ways to enhance this advantage further. One
hurdle for recombination is that the models used here drive the population to an
almost monomorphic state. As will be discussed later in section 5.3, the version of
the Wright-Fisher model that is used here does not allow for stable coexistence of sub-
populations carrying different genotypes. Therefore, recombination acts mostly on pairs
of individuals that have a rather short genetic distance. Disruptive selection [104], a
mechanism that enables or even expedites the parallel existence of distant populated
genotypes, could benefit recombining populations quite a lot. It is not only that
recombination of distant genotypes renders the exploration of large parts of the genotype
space possible, a population that is spread out is also prevented from trapping on local
maxima to some extent.

Another option to enhance the success of recombination would be to introduce
recombination schemes that take the genetic structure into account. Take for instance
the NK model with blockwise interaction: Epistasis only exists within the fixed blocks.
If recombination works in a way that preserves the blocks, the mechanism that causes
strong trapping would not work since the landscape is then additive with respect to
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Figure 5.6. Time series of fitness difference ∆w for a landscape with (a) λ = 1 and (b) λ = 2.
Different colors correspond to different dimensionality L and are defined in panel (a). Other
parameters are N = 2000, Nµ = 4, and s = 1.

recombination. More on the relation between genetic structure and recombination can
be found in [105].

Also an increase of the genome size L can strengthen the success of recombination.
So far, only a rather short sequence length of L = 16 was studied. The influence of L on
∆w can be found in figure 5.6. Increasing L increases the distance that the population
can travel through the genotype space before it gets trapped on a local maximum.
Therefore, one should expect a prolonged duration of the intermediate regime, but the
duration and adaptation speed of the other dynamic regimes are affected as well. This
results in a complicated dependence on the genome size, similar to the previously shown
alteration of the mutation rate µ. On a landscape with small ruggedness, as it is shown
in panel (a), the behavior is still quite simple as an increased dimensionality seems to
alter the duration and effect of the dynamic regimes evenly such that the curves of ∆w
stay qualitatively the same. As a consequence, one can clearly see that the advantage
of recombination increases with increasing L. For the more rugged landscape shown
in panel (b), the situation is much more complicated. The shape of ∆w changes in a
way that a second maximum arises while the first one vanishes when L is increased.
Interestingly, this results in a non-monotonic behavior of ∆w’s maximal value, i.e., an
advantageous time window of recombination can be found for L = 16 and L = 64 but
not for L = 32.

Finally, there is also a way to maintain the advantage of recombination indefinitely:
Fitness seascapes, which will be discussed in the next section in more detail.

5.2.6. Stationary Advantage on Fitness Seascapes

As shown, recombining populations lose the evolutionary race against non-recombining
populations on rugged fitness landscapes in the long run. There might be an
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Figure 5.7. (a) Time series of ∆w on a seascape with hard reset. Parameters are L = 16,
s = 1, λ = 0.75, N = 2000, and Nµ = 5. (b) Symbols show the stationary value of panel
(a), averaged from generation 104 to 2 · 104, in dependence on the mean time 1/pc between two
resets. For comparison, the red solid line shows the time series of ∆w for a population starting
on a randomly chosen genotype of an ordinary landscape with the same parameters. The inset
shows the stationary advantage on a seascape with soft reset. Green dotted lines are for visual
guidance.

advantageous period for recombination, that can even be prolonged by the mechanism
described above, but the advantage is mostly transitory. However, note that in many
scenarios considered here, the advantage lasts up to a few thousand generations. In
such a long time, the circumstances under which the population evolves might change
as a result of, for instance, a changing environment or a population traveling through a
spatially inhomogeneous world.

This scenario can be modeled via a fitness seascape, i.e., a time-dependent fitness
landscape. To keep things simple, the seascape used here will be modeled as an
ordinary landscape with fitness values that are changed in irregular intervals. More
precisely, changes will happen after each generation of the Wright-Fisher dynamics with
probability pc. Then the random component η(σ) of all fitness values will be drawn anew
and the reference sequence σ̃ will be set to another position of the hypercube. With
regard to the latter, two versions will be distinguished: The new reference sequence is
chosen randomly either from the neighbors of the old sequence (soft reset) or from all
genotypes (hard reset). Time series of ∆w on a seascape with hard reset are shown in
figure 5.7(a).

On a seascape, local maxima only exist temporarily. Since they are almost the only
thing that prevents recombination from being superior, one can observe an advantage of
sex even in the long run for suitable choices of pc. After each reset, the population
will start an adaptation process from anew, resulting in a stationary value of the
fitness after some time for both sexual and asexual population and, in turn, also
for the fitness difference ∆w. The stationary value ∆ws of the latter is shown in



Section 5.3 – Frequency-Dependent and Disruptive Selection 95

figure 5.7(b) in dependence on the mean time 1/pc between two resets of the landscape.
As expected, ∆ws is positive for both soft and hard reset and a rather large variety of
values for pc. Also not surprising is the fact that the dependence is non-monotic. For
large pc, the population’s fitness is dominated by fluctuations of the landscape rather
than its adaptational success and hence recombination does not make a big difference.
Nevertheless, in case of the soft reset, even the extreme case pc = 1 shows a significant
advantage. If, on the other hand, pc is too small, the lifetime of local maxima becomes
larger than the escape time of asexual populations and hence they will have the same
advantage as on a static landscape.

The largest advantage arises when the time 1/pc is of the same order as the time
tmax of the maximum on a static landscape with initial conditions corresponding to the
situation right after a reset. While these conditions are hard to find for the soft reset,
they are simply a population starting from a randomly chosen genotype in case of the
hard reset. As one can see in 5.7(b), the stationary advantage on a time-dependent
landscape behaves similar to the time-dependent advantage on a stationary landscape.

5.3. Frequency-Dependent and Disruptive Selection

In this section the Wright-Fisher model will be altered slightly such that explicit
competition between individuals is included. One way to model this is to define an
effective, frequency-dependent fitness

we(σ) = w(σ) [1− β nσ] , (5.7)

where β ∈ [0, 1] is a parameter that controls the strength of interactions. Obviously,
the effective fitness of σ becomes smaller the more individuals carry that genotype.
The interpretation is that genetically identical individuals fight for exactly the same
resources which may lead to a shortage. Interactions are zero-ranged by that definition,
i.e., individuals carrying a genotype τ with d(σ, τ) = 1 do not have influence on the
effective fitness of individuals carrying genotype σ and vice versa. This might not be
very realistic, but it is straightforward to extend the definition of the effective fitness
by also including further afar genotypes with an influence that decays with genetic
distance. However, no qualitative differences to longer-ranged interactions were found
for the scenarios considered here. For the sake of simplicity, zero-ranged interactions
will be kept. In the following, consequences of the frequency-dependent selection will be
outlined.

5.3.1. Coexistence

The Wright-Fisher model in the form described in section 5.1.2 does not allow for stable
coexistence of sub-populations at different genotypes. Suppose two genotypes σ and
τ are occupied by a fraction nσ = n and nτ = 1 − n of individuals, respectively. If
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mutations and random fluctuations are neglected, the population evolves according to

n(t+ 1) = n(t)
w(σ)

w̄
=

n(t)w(σ)

n(t)w(σ) + [1− n(t)]w(τ)
. (5.8)

This equation has only two fixed points, n∗0 = 0 and n∗1 = 1, that correspond to
monomorphic populations. If w(σ) > w(τ), the fixed point n∗1 is stable while n∗0 is
unstable. For w(σ) < w(τ), it is the other way round.

With frequency-dependent selection, the equation reads

n(t+ 1) = n(t)
we(σ)

w̄e
= g(n(t)) , (5.9)

where

g(n) =
nw(σ) [1− β n]

nw(σ) [1− β n] + (1− n)w(τ) [1− β (1− n)]
. (5.10)

One has still the monomorphic fixed points n∗0 = 0 and n∗1 = 1 with this equation, but
an additional fixed point

n∗2 =
w(σ)− w(τ) (1− β)

β [w(σ) + w(τ)]
(5.11)

arises that corresponds to coexistence of individuals carrying σ and τ . As expected,
one has n∗2 = 1/2 in the neutral case w(σ) = w(τ). Concerning their stability, only
one of the three fixed points is stable while the others are unstable: n∗0 is stable if
w(σ) < w(τ) (1− β), n∗1 is stable if w(σ) > w(τ)/(1− β), and n∗2 is stable if

w(τ) (1− β) < w(σ) < w(τ)/(1− β).

Note that the region where n∗2 is unstable corresponds to unphysical values n∗2 /∈ [0, 1].
Put simply, coexistence is possible if the fitness differs by less than a factor of (1 − β).
The overall fixed point structure is illustrated in figure 5.8.

5.3.2. Behavior on High-Dimensional Landscapes

As shown above, competition largely prevents the population to evolve into a
monomorphic state. This means in particular that also trapping at local maxima
becomes unlikely since it is only possible if the fitness of a maximum is more than
1/(1−β) times larger than that of its surrounding genotypes. Therefore, one can expect
that the adaptation process is generally accelerated and that the effect becomes stronger
with increased interaction strength β.

On the other hand, competition also has disadvantages for the population. For
instance, if a particularly fit genotype σ is found, a smaller fraction of the population
will carry it because otherwise its effective fitness we(σ) will drop. More importantly,
the relevant measure for the success of populations is the mean effective fitness w̄e rather
than the native fitness w̄. By definition, the effective fitness decreases with interaction
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strength β. A priori it is therefore not clear whether this kind of interactions between
individuals leads to an advantage.

Like in case of recombination, the advantage or disadvantage depends on the
underlying fitness landscape. As shown in figure 5.9(a) and (c), increasing β leads to a
disadvantage on the HoC landscape while it is advantageous on the RMF landscape.
Though this is qualitatively the same behavior as it was observed for recombining
populations, the explanation is very different. In both landscape types, the population
adapts faster if interactions become stronger, which can be seen from increased native
fitness 〈w〉. However, since adaptation happens generally very slowly on the HoC
landscape, the advantage due to faster adaptation can not compensate for the cost
inherent in strong competition. On the RMF landscape, the speed of adaptation is
generally much faster if the population is not trapped on local optima, which is largely
prevented by frequency-dependent selection with large β. The further the population
gets away from the reference sequence, the larger the fitness becomes on average and
hence the ability of strongly competing populations to travel through the landscape faster
enhances its advantage by a larger amount than on the HoC landscape. Adaptation is
only curbed by the fact that the number of mutations leading uphill decreases with
increasing distance traveled. However, this is an effect that vanishes presumably for
very large L.

The behavior on the different landscape types is also quite different with respect to
the diversity D. It is not surprising that strong interactions increase the diversity in all
cases as shown in figure 5.9(b) and (d). But the diversity converges quickly to a constant
value on the HoC landscape, while it seems to grow indefinitely on the RMF landscape.
There are at least two explanations for this phenomenon. Either the population moves
through the fitness landscape as a bulk with increasing size or the population decomposes
into sub-populations that travel more or less independently through the landscape. The
answer will be given in the next section where the L → ∞ limit is studied. Due to the
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Figure 5.9. Averaged time series of mean effective fitness 〈we〉 (solid lines), mean native
fitness 〈w〉 (dotted lines), and diversity D. Different colors correspond to different interaction
strengths β as defined in panel (c). Fitness is assigned according to the RMF model with standard
exponentially distributed random part and slope s = 0 in (a) and (b) and s = 1 in (c) and (d).
Other parameters are L = 64, N = 105, and Nµ = 1.

finite sequence length L here, the growth of diversity on the RMF landscape will stop
eventually when the global optimum is reached.

5.3.3. Infinite Genome Limit

Another variant of the Wright-Fisher dynamics described above is supposed to resemble
its behavior for the limit L→∞. In this limit, each mutation produces a new genotype
since the probability that an already existing genotype is recreated vanishes and hence
the hypercube structure is lost. In order to see how mutations are handled, suppose
a monomorphic population that carries the genotype σ. In the previous version of the
model, the mutation step creates L new genotypes with Nµ/L individuals each, which is
a small number for large L. If the selection term is neglected, random sampling will keep
(at least) one individual on each genotype with probability 1 − exp(−Nµ/L) ≈ Nµ/L.
Hence the number of new genotypes is the sum of L Bernoulli random variables with
success probability Nµ/L, which converges to a Poisson distribution for L → ∞.
Therefore, the mutation step in that limit will be replaced by the mere creation of
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Figure 5.10. Phylogenetic trees obtained from the Wright-Fisher model in the infinite genome
limit at generation 5000. Each blue dot represents a genotype that was carried by an individual
which was alive in the final generation. Red dots represent genotypes with individuals that have
produced offspring but became extinct before the end of the simulation. Arrows connect ancestors
to descendants. Note that the horizontal alignment of the dots is solely determined by the
genotypic relationship and not by the time when the corresponding individuals existed. Fitness
is assigned according to the RMF model with s = 1 and standard exponentially distributed
random part. The population parameters are N = 105 and Nµ = 2.

new genotypes that are carried by single individuals. The number of these genotypes is
drawn from said Poisson distribution with parameter Nµ. Other steps of the dynamics
remain the same. The fitness values are assigned analogously to the RMF model, i.e.,
by a random part plus a term proportional to the number of mutations, with s being
the constant of proportionality.

In this scenario, the adaption process is not influenced by a changing geometry of the
underlying landscape. Furthermore, each genotype has an unique ancestral genotype
such that the genealogical relationships can always be represented by trees. Examples
of such trees are shown in figure 5.10. As one can see, their structure is considerably
influenced by the interaction strength β. For β = 0, i.e., without interactions, the
resulting trees are almost linear with very few and short ramifications. If β is increased,
the trees grow in both height and width. Since all trees correspond to the 5000th
Wright-Fisher generation, the difference in height is simply due to a faster adaptation
process associated with stronger interactions. More importantly, the number of branches
increases as well and one finds for strong interactions of β = 0.6 many coexisting
individuals that have a rather large genetic distance. This suggests that the populations
indeed splits into multiple sub-populations that adapt independently, at least on smaller
timescales. On longer timescales, however, one observes that only one of the parallel
branches survives and hence the most recent common ancestor of coexisting individuals
is genetically rather close compared to the total height of the tree. Furthermore, a
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consequence of the RMF model is that the mean fitness of the population will grow
indefinitely and hence living individuals are usually close to the leaves of the tree.



6. Discussion

6.1. Summary

In this thesis, mathematical models for high dimensional fitness landscapes and
evolutionary processes thereon were studied. Three landscape models were covered,
the House-of-Cards (HoC), Rough-Mount-Fuji (RMF), and NK model, which differ in
most quantities under consideration. The latter two have a parameter (denoted by s
and K, respectively, in this thesis) that allows for the interpolation between a smooth
landscape and the maximally rugged HoC landscape. Apart from that, NK models have
many additional degrees of freedom due to the choice of the epistatic interaction pattern
that affects the overall landscape topography in a rather subtle way. In comparison, the
HoC landscape does not have a particular high complexity, but it largely facilitates pure
analytical studies.

Chapter 2 and 3 addressed the ruggedness of fitness landscape with two main
approaches: Local maxima and accessible paths. This was done independent of any
notion of evolutionary dynamics, i.e., the results are largely applicable to general value
landscape as well and not only to fitness landscapes in the biological context. In
chapter 4, a rather simple evolutionary model, the adaptive walk, was introduced in order
to study how the landscape influences the dynamics. Finally, the more sophisticated
Wright-Fisher dynamics was studied in chapter 5. It revealed for two generic examples,
recombination and competition, that properties of the underlying fitness landscape are
crucial for certain question in evolutionary biology.

6.1.1. Local Maxima and Rank

A first direct proxy for the landscape ruggedness that was discussed is the number Nmax

of maxima. Closely related is the question which fitness h a typical maximum has. On
the HoC landscape, these questions are almost trivial to answer as the statistics of a
local maximum’s fitness are the same as for the largest of L+ 1 i.i.d. random variables.
Furthermore, one can show that local maxima tend slightly to form clusters. The
situation on the RMF landscape is already more complicated. In the general case, Nmax

can be written as a one-dimensional integral (equation (2.31)), which can be expressed
in simple closed form for a few distributions of the random part. If the distribution’s
tail is too heavy, the fitness is mostly influenced by fluctuations rather than the overall
fitness gradient. As a consequence, the leading order behavior of Nmax is the same as for
the HoC landscape, independent of the value of the gradient’s slope s. Another notable
feature of this landscape type is that the probability to find local maxima increases with
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distance to the reference sequence σ̃. Therefore, they are not evenly distributed over the
landscape but usually clustered in the proximity of the global maximum.

A general expression for Nmax in case of the NK model can be written as an
L-dimensional integral (equation (2.38)) that involves the k-fold convolution of a
distribution for arbitrary k. The same applies to the fitness h of a typical maximum.
Like for the RMF model, the expressions can be evaluated for a few special cases. An
important example is the block model, where the interaction scheme is chosen in a way
that genotypes are divided into independent blocks. Therefore, both Nmax and E[h] can
be computed simply from already known results of the HoC model. One can also obtain
these quantities analytically for adjacent interactions, certain distributions, and small
values of K. Random interactions still rely solely on numerical analysis. They reveal
that Nmax is smallest for random interactions and largest for block interactions in all
cases considered here. Adjacent interactions are generally somewhere in between. For
the mean fitness E[h] of maxima, this order is reversed. A helpful measure to quantify
arbitrary interaction schemes is the rank R, which is strongly correlated to most NK
landscape properties including Nmax and E[h]. Generally, the landscape becomes less
rugged if the rank is increased while keeping the landscape parameters L and K constant.

6.1.2. Accessible Paths

The study of accessible paths to the global maximum 1̂ from its antipodal sequence 0̂ is
more complex than local maxima as they have to cross the whole landscape by definition.
In contrast to local maxima, which can be studied on a rather small area of the landscape,
one has to take the global structure of the landscape into account in order to study
accessibility. For this reason, the most detailed results were obtained for the HoC model.

On this landscape, the probability for the accessibility of a given shortest path decays
as 1/L! and is therefore generally very small. This is partially compensated by the fact
that there are also L! shortest paths available such that the mean number of accessible
paths is given by E[X] = 1. Due to the hypercube structure, the fitness of the initial
genotype 0̂ has crucial influence on the probability P[X > 0] that there is at least one
accessible path since it is the only genotype that is contained in every possible path
(apart from the global optimum 1̂). This results in a phase transition with regard to the
initial fitness where limL→∞ P[X > 0] jumps from 0 to 1. On the directed hypercube,
where only shortest paths are allowed, the transitions happens around w(0̂) = log(L)/L.
In case of the undirected hypercube, where arbitrary paths are allowed, the transition
is at a constant value of w(0̂) ≈ 0.1186.

Furthermore, most results suggest that the directed hypercube has generally a critical
topography in the sense that small changes have a notable effect on the percolation
probability. When the initial fitness is randomly chosen, the probability P[X > 0] tends
to 0. For the undirected hypercube, the limiting probability is already given by a positive
constant. If the analogous problem is studied on a tree, there is even a phase transition
with regard to the branching number n where P[X > 0] jumps again from 0 to 1. In
order to mimic the hypercube, the branching number should be scaled such that the
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total number of paths is asymptotically given by L!. This is the case for n = eL, which
is also the critical value where the said transition happens.

Another way of increasing the accessibility is to introduce a global fitness gradient as
it is the case in the RMF model. On the regular tree with fixed branching number n,
P[X > 0] shows a continuous phase transition with respect to s. On the hypercube, any
positive slope s of the gradient is sufficient to raise P[X > 0] to 1, even if s converges
to zero sufficiently slowly as L→∞. Conversely, the probability P[X > 0] goes to zero
in the NK model for any classic interaction pattern and fixed K > 1. This is somewhat
counter-intuitive as the ruggedness in terms of local maxima is still lower than for,
e.g., RMF landscapes with small s for which P[X > 0] → 1. However, numerically
obtained values show that P[X > 0] is correlated with the interaction rank R. As Nmax

is negatively correlated with R, both proxies for the ruggedness are consistent within the
class of NK landscapes. Note also that detailed results on X for blockwise interactions
can be obtained from results for the HoC model.

6.1.3. Adaptive Walks

During the study of adaptive walks, the quantities of interest were walk length ` and
the final fitness h. Once more, the distribution of both quantities can be obtained
analytically in case of the HoC landscape and adaptive walks of greedy, random and
reluctant type. Natural adaptive walks do not quite fit in the scheme as their behavior
depends on the fitness distribution, especially on its tail. However, the tail can be
represented by the generalized Pareto distribution for which the leading order of the
mean walk length is known analytically.

The intuition that walks last longer on less rugged landscape is mostly confirmed
by the corresponding study on RMF and NK landscape. As already mentioned, the
behavior of Nmax changes when the fluctuations of the random part of the RMF model
are of the same order as the slope s. This behavior is also inherited by random adaptive
walks since they behave like on a HoC landscape if the fluctuations are larger and like on
an additive landscape if the fluctuations are smaller. If the distribution of the random
part is exponential, there is a phase transition with respect to s where the walk length `
switches from logarithmic to linear behavior.

NK landscapes and their tunable interaction patterns also reveal effects of more
subtle changes of the landscape. It was shown that adaptive walks through a landscape
with blockwise interactions can be interpreted as a set of independent walks through
HoC landscapes. As a consequence, the walk statistics can be obtained once more from
HoC results. In the general case, the length of greedy walks is roughly proportional
to the mean distance between two maxima, but random and reluctant walks are also
affected by landscape properties that cannot be ascribed to the maxima density only.
Especially the combination of random interactions and reluctant walks shows peculiar
behavior. Their walk length depends non-monotonically on the ruggedness parameter K
and can be several times larger than the genome size L, i.e., each locus is flipped multiple
times before the walk terminates. More surprisingly, reluctant walks reach a higher
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average fitness than random and greedy walks for intermediate values of K and random
interactions, even though it is the other way round on most other landscape types.

6.1.4. Wright-Fisher Dynamics

The consequences of landscape ruggedness on the Wright-Fisher dynamics are very
complex. Generally, adaptation happens faster the smoother the underlying landscape
is, at least in the scenarios considered here. However, the details of the response to
different landscapes depends on the exact dynamics under consideration.

For dynamics that includes recombination, it was shown that it is superior to asexual
dynamics under certain circumstances. The problem that recombining populations have
is that they get trapped easily on local maxima where they cannot escape from. However,
before this happens, they can adapt faster than asexual ones. This results in a non-
monotonic temporal pattern of the fitness advantage that recombining populations have.
On very short and long timescales, recombination is almost always disadvantageous,
but there might be an advantageous time frame at intermediate times. Landscape
ruggedness now comes into play due to the fact that it determines how long it takes
to get trapped on a local maximum and how large the advantage is that recombining
populations build up. The less rugged a landscape is, the longer is this time window
and the bigger is the advantage. There are also several mechanism that prolong and
increase the advantage. On a time-dependent landscape, where local maxima exist only
temporarily, the advantage can be prolonged even indefinitely in accordance with the
Red-Queen hypothesis.

The situation is similar for the dynamics with competition, which was modeled via
frequency-dependent selection. In the scenarios considered here, competitions lead to
faster adapting populations, while they decrease the effective fitness. Whether the latter
can be compensated by fast adaptation depends again on the underlying landscape.
Probably the more interesting aspect of this model is its production of genetic diversity.
It was shown that the dynamics allows for the split of populations into independently
evolving sub-populations. This leads to complex phylogenetic trees for sufficiently large
genome sizes L.

6.2. Open Questions and Outlook

Many questions related to the HoC model are already answered. With regard to
local maxima, the asymptotic distribution of the number Nmax of local maxima is
known [64, 106] as well as the probability that two sequences at a certain distance
are both maxima. The same applies to the distribution of the number X of shortest
accessible path if scaled properly. A related question that arises frequently is what
happens when the requirement for accessibility is loosened [107, 108]. For instance,
one can allow for a certain number of steps along the path that lower the fitness, that
the accumulated fitness loss caused by these steps is below a certain threshold ε, or a
combination of both. Note that a version where the fitness is allowed to be lowered by
an amount smaller than ε in every step is equivalent to the RMF model with slope s = ε
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on the directed hypercube, but it makes a difference in the undirected case. Concerning
the RMF model on the directed hypercube, it was shown that it is always accessible if
s is constant or goes to 0 with L more slowly than 1/L, but apart from that it is not
known how s can be scaled with L such that a transition from high to low accessibility
becomes visible.

The concept of accessibility percolation can also be applied to graphs different from
hypercubes and trees. In fact, the HoC and RMF model together with the corresponding
notion of accessibility can be applied to any graph. A biologically relevant example are
Hamming graphs, i.e., the analog to hypercubes for an alphabet size larger than {0, 1}.
With this, one can also model DNA sequences consisting of 4 letters or protein landscapes
consisting of 20 letters. However, the problem has to be rephrased slightly since the
antipodal sequence of the global maximum (or any other sequence) is not defined
uniquely in that case. Another example outside biology is the graph where vertices
correspond to permutations which can be used, for instance, to treat the traveling
salesman problem [10, 11]. In the latter case, it would make sense to use the landscape
associated with that problem [11] rather than the HoC or RMF model.

Regarding the NK model and its interaction schemes, there are many open questions
related to the number of maxima, accessibility and adaptive walks. As mentioned above,
Nmax and E[h] are only known for a few special cases including blockwise and adjacent
interactions, but the latter only for small values of K = 2 or K = 3. The behavior of
adjacent or random interactions with arbitrary values of K is not known analytically, nor
how the distribution of fitness contributions affects landscape properties. This could be
examined with help of equation (2.38) in future work. Additionally, one can presumably
use the ansatz that led to this equation in order to derive an equation for the probability
that two sequences at a certain distance are both maxima. More importantly, there is
no analytical approach that explains how the interaction patterns affect the landscape.
As shown, most properties under consideration are correlated with the rank R that can
be computed analytically, but it has only a describing function rather than being able to
explain the behavior. Moreover, little is known about the number X of accessible paths
through the NK landscape. It can be shown that P[X > 0]→ 0 as L→∞ for fixed K,
but it is not known how the percolation probability behaves when K is scaled with L.
The same applies to the distribution of X, which can only be computed for blockwise
interactions. This interaction type is also the only one for which the length and height
of adaptive walks can be computed exactly. The walk behavior is influenced by rather
complicated features of the landscape that go beyond the sheer number of maxima. In
particular, an explanation is still lacking for the phenomenon that random and reluctant
walks can reach higher fitness than greedy walks under certain circumstances.

For the Wright-Fisher dynamics, there is such a vast number of possible scenarios that
not all of them can be listed here, especially with regard to recombination. One example
is the fact that the models used here are only suitable for haploid populations. The
consideration of diploid genotypes might have interesting consequences, e.g., equilibria
of a population in the deterministic limit do not coincide strictly with local maxima of
the landscape anymore [109]. Related to the study of adaptive walks in this thesis, a
careful examination of the Wright-Fisher dynamics on NK landscapes could assess how
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important the interaction pattern is for more complex dynamics. Moreover, the version
including frequency-dependent selection can be studied in much more detail to obtain,
e.g., statistics about the phylogenetic trees produced by this model. In order to make it
more realistic, one could also define a reasonable mapping from genotypes to phenotypes
such that that frequency-dependence acts only on the latter. As mentioned earlier, the
diversity creating part of competition is also a good way to improve the advantage of
recombination. Therefore, it is convenient to study the model where both recombination
and competition are combined.



A. Appendix

A.1. Notation and Definitions

A.1.1. Symbols and Functions

0̂, 1̂ The sequences consisting only of zeroes and ones, respectively, i.e.,
0̂ = (0, . . . , 0) and 1̂ = (1, . . . , 1).

E[V ] Expected value of the random variable V .

〈V 〉 The average of a quantity V . Used in a broader sense than E[V ]. The
exact meaning is explained at the corresponding passage in the text.

f1 ∼ f2 The functions or sequences f1 and f2 are asymptotically equivalent, i.e.,
limx→∞ f1(x)/f2(x) = 1.

f1 = O(f2) The function or sequence f2 grows at most as fast as f2, i.e.,
lim supx→∞ f1(x)/f2(x) <∞.

Γ(x) Gamma function defined by Γ(x) =
∫∞

0 yx−1e−y dy.

I[E] Indicator random variable of the event E, i.e., I[E] = 1 if E happens and
I[E] = 0 otherwise.

IS(x) Indicator function of the set S, i.e., IS(x) = 1 if x ∈ S and IS(x) = 0
otherwise.

log(x) The natural logarithm of x.

P[E] Probability of the event E.

θ(x) Heaviside function, i.e., θ(x) = 1 for x > 0 and θ(x) = 0 otherwise.

w(σ) Fitness of genotype σ.

Furthermore, a string of numbers in monospace font (e.g., 12345) encodes a path through
the hypercube as described in section 2.1.
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A.1.2. Variables and Parameters

h Fitness of a local maximum.

K Ruggedness parameter of the NK model.

` Number of steps during an adaptive walk.

L Number of loci / Dimension of the hypercube.

n Branching number of regular trees.

N Population size.

Nmax Mean number of local maxima.

µ Mutation rate.

Pmax Probability that a certain sequence is a local maxima.

R Rank of epistatic interactions.

s Slope of the fitness gradient of RMF landscapes.

X Number of accessible paths to the global maximum.

A.1.3. Abbreviations

AW Adaptive walk

CDF Cumulative distribution function

HoC House of Cards

i. i. d. Independent and identically distributed

PDF Probability density function

RMF Rough Mount Fuji

A.1.4. Probability Distributions

Let Z denote the random variable distributed according to the corresponding
distribution. If applicable, f denotes its PDF.

Bernoulli distribution Z = 1 with probability p and Z = 0 with probability 1− p.

Binomial distribution P[Z = k] =

(
M

k

)
pk (1−p)M−k for k ∈ {0, 1, . . . ,M}, where

M is a positive integer.



Section A.2 – Algorithms 109

Exponential distribution f(x) = 1/λ exp(−x/λ) θ(x), where λ is the mean value.
The standard exponential distribution corresponds to
λ = 1.

Gamma distribution f(x) =
xp−1e−

x
b

bpΓ(p)
θ(x), where p > 0 is the shape parameter

and b > 0 is the scale parameter.

Generalized Pareto distr. f(x) =


(κx+ 1)−(κ+1)/κ θ(x) for κ > 0,

(κx+ 1)−(κ+1)/κ I[0,−1/κ](x) for κ < 0,

e−x θ(x) for κ = 0.

Gumbel distribution f(x) = exp
[
−(x+ e−x)

]
.

Normal distribution f(x) =
1√

2π σ2
exp

[
−(x− µ)2

2σ2

]
. The standard normal

distribution corresponds to µ = 0 and σ = 1.

Poisson distribution P[Z = k] =
λk

k!
exp(−λ) for k ∈ N0, where λ is the mean

value.

Uniform distribution f(x) =
1

b− a
I[a,b](x).

A.2. Algorithms

A.2.1. Creation of Interaction Patterns with Arbitrary Rank

In order to create interaction schemes with arbitrary rank, the following algorithm is
used:

1. Set the interaction sets Vi to blockwise interactions.

2. Define a target rank raim.

3. Draw a random number i ∈ {1, . . . , L}, choose a random element j ∈ Vi with j 6= i
and replace it with a randomly chosen element j′ /∈ Vi.

4. If the current rank is closer to the target rank, accept the change of step 3, otherwise
undo it.

5. If the change is rejected 1000 times in a row, the algorithm will be aborted. Start
again at step 1.

6. If the relative distance to the target rank is smaller than 1%, accept it for further
study. Go to step 2.
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It is convenient to increase the target rank raim after each successfully created interaction
scheme such that the pattern changes smoothly from a block-like structure to a
disordered one until the algorithm gets aborted in step 5. The results are sufficient
in order to interpolate between low an high rank. Note, however, that the algorithm will
usually reach ranks of at most Rrnd rather than Rmax.

A.2.2. Numerical Computation of Pmax and E[h] for the NK Model

The probability Pmax that a randomly chosen genotype σ is a maximum is given by
equation (2.38). It is basically the L-dimensional integral of the integrand

g(x) =
L∏
i=1

[
f(xi) F̃|Ui|

(∑
j∈Ui

xj

)]
. (A.1)

The computation of the integral is based on Monte-Carlo integration or, more precisely,
on the importance sampling algorithm [110]. In general, an estimator for the integral is
given by

I =

∫
g(x) dLx ≈

n∑
i=1

g(xi)

p(xi)
= In , (A.2)

where p(x) is a probability density and x1, . . . ,xn are points randomly drawn from the
corresponding distribution. The error is given by

∆In =

√√√√ 1

n (n− 1)

n∑
i=1

(
g(xi)

p(xi)
− In

)2

. (A.3)

Of course, p should be chosen such that ∆In is as small as possible. This, in turn, is
achieved when p has a shape similar to g. For the integrand defined by equation (A.1),
a good choice is given by

p(x) =
L∏
i=1

f(xi − xmax
i ) , (A.4)

where xmax is the maximum of g. Then most sample points are in a region where
the integrand has most of its weight. Since g is usually a single peaked function, the
maximum can be found easily by a simple hill-climbing algorithm. The number n of
samples is adjusted during the process such that the relative error ∆In/In is below a
certain threshold. In all figure that involve Pmax shown in this thesis, the error is much
smaller than the symbol size.

This works analogously for E[h] by taking g to be the integrand of equation (2.39).
Note that the error is noticeably larger in that case, because the weight function p given
by equation (A.4) differs more from g.
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A.3. Proof of Equation (3.20)

A.3.1. Improving the Lower Bound on P[XL > 0]

Let n = αL with α > e−1 in the following. According to equation (3.15) and the
fact that E[XL] serves as an upper bound for P[XL > 0], it follows immediately that
P[XL > 0] → 0 for α < e−1. In order to show that P[XL > 0] → 1 for α > e−1 one
has to improve the lower bound. The strategy in [48] was to introduce paths that are
accessible and fulfill additionally the condition that the i-th vertex σi after the root has
fitness of at least w(σi) > ε+(1−ε)(i−1)/L. In the following, the set of those paths will
be denoted by Dε and their number by XL,ε = |Dε|. Obviously XL,ε < XL since they
have to fulfill an additional condition compared to ordinary accessible paths. Therefore,
according to (3.10)

P[XL > 0] ≥ P[XL,ε > 0] ≥
E[XL,ε]

2

E
[
X2
L,ε

] (A.5)

which will turn out to be a sharper lower limit for P[XL > 0] than E[XL]2/E
[
X2
L

]
.

To calculate the first moment, let Σ be an arbitrary path from the root to a leaf. For
ε = 0, the probability that Σ is contained in D0 can be written as

P[Σ ∈ D0] =

∫ 1

L−1
L

dxL

∫ xL−1

L−2
L

dxL−1 . . .

∫ x3

1
L

dx2

∫ x2

0
dx1 . (A.6)

This chain of integrals can be formulated equivalently as a recurrence relation

Ij(x) =

∫ x

j−1
L

Ij−1(y) dy (A.7)

with I0(x) = 1 and P[Σ ∈ D0] = IL(1). The solution of (A.7) reads

Ij(x) =
(Lx− n+ 1) · (Lx+ 1)n−1

j! · Ln
(A.8)

and hence

P[Σ ∈ D0] = IL(1) =
(L+ 1)L−1

L! · LL
≥ 1

L · L!
. (A.9)

The corresponding result for ε > 0 is straightforward to obtain, since uniform random
variables on [0, 1], conditioned on being larger than ε, are simply uniformly distributed
on [ε, 1]. This leads to

P[Σ ∈ Dε] = P[Σ ∈ Dε | ∀ i : w(σi) > ε] · P[∀ i : w(σi) > ε]

= P[Σ ∈ D0] · P[∀ i : w(σi) > ε] =
(1− ε)L

L · L!
(A.10)
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and with Stirling’s formula to

E[XL,ε] = nL P[Σ ∈ Dε] =
[n(1− ε)]L

L · L!
≥ zL

eL3/2
, (A.11)

where z = α (1− ε) e.
To obtain the second moment, the probability pk,ε that two paths sharing k + 1

vertices are both in Dε is needed. Like before, consider the case ε = 0 first which
can be generalized easily to ε > 0 afterwards. The calculation works similar to that
of equation (3.7), but now the fitness x of the last common vertex has to be at least
(k − 1)/L. Omitting the additional constraints on the other vertices yields for k > 1

pk,0 ≤
∫ 1

k−1
L

xk−1

(k − 1)!

(
(1− x)L−k

(L− k)!

)2

dx . (A.12)

Using Stirling’s formula and the fact that xk−1 (1 − x)2L−2k has its maximal value at
(k − 1)/(2L− k − 1) < (k − 1)/L leads to

pk,0 ≤
(
k−1
L

)k−1

(k − 1)!

([
1−

(
k−1
L

)]L−k
(L− k)!

)2

≤
( e
L

)2L−k−1
· [(1 + L− k)/(L− k)]2L−2k

(2π)
3
2

√
k − 1 (L− k)

≤ 1

(L− k)

( e
L

)2L−k−1
(A.13)

for k > 1 and

p1,0 ≤
1

(2L− 1) · (L− 1)!2
≤
( e
L

)2L
and p0,0 =

(
1

L · L!

)2

(A.14)

for k = 1 and k = 0, respectively. Like before, the case ε > 0 is obtained by
multiplying the result with the probability that all vertices are larger than ε, i.e.,
pk,ε = (1− ε)2L−kpk,0. The second moment is then at most

E
[
X2
L,ε

]
≤ E[XL,ε] +

L−1∑
k=0

mk pk,ε

≤ E[XL,ε] + E[XL,ε]
2 + z2L + αL

L−1∑
k=2

z2L−k−1

L− k
. (A.15)

Provided that z = α (1− ε) e > 1, which can always be fulfilled for sufficiently small ε if
α > e−1, there exist a constant c > 0 such that

c ·
√
zk ≥ k + 1 =

(
1− k

k + 1

)−1

≥
(

1− k

L

)−1

=
L

L− k
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for all 1 < k < L and hence

αL

L−1∑
k=2

z2L−k−1

L− k
≤ α z2L

L−1∑
k=2

L

zk(L− k)
≤ α c z2L

∞∑
k=2

1√
zk
. (A.16)

Thus the upper bound for E
[
X2
L,ε

]
can then be written as

E
[
X2
L,ε

]
≤ E[XL,ε] + E[XL,ε]

2 + c′ · z2L (A.17)

and combining this with equations (3.10) and (A.11) leads to

P[XL,ε > 0] ≥ 1

E[XL,ε]
−1 + 1 + c′ · eL3

≥ c̃

L3
(A.18)

for some positive constants c′ and c̃.

A.3.2. Raising the Lower Bound to One

Now that it is shown that P[XL,ε > 0] decays at most as 1/L3, the last step is to improve
this bound to something that converges to one. The idea is to compensate this decay
by showing that there are so many paths up to the fourth level of the tree with fitness
smaller than ε that at least one of them can be extended to the L-th level for L→∞. Let
X̃j,ε denote the number of paths that go from the root to the j-th level and fulfill that the
i-th vertex σ after the root has fitness w(σ) ∈ [(i− 1)/(4ε), i/(4ε)]. To begin with, X̃1,ε

can be interpreted as the sum of n independent Bernoulli distributed random variables,

each of them having probability ε/4 to be equal to 1 and hence E
[
X̃1,ε

]
= n ε/4. With

Chernoff’s bound (3.41) it follows that

P
[
X̃1,ε <

n ε

8

]
≤ exp

(
−nε

32

)
.

Now given that there are at least (nε/8)j paths to the j-th level, X̃j+1,ε is again the sum
of at least n · (nε/8)j Bernoulli random variables and hence

E
[
X̃j+1,ε | X̃j,ε > (nε/8)j

]
≥ n ·

(nε
8

)j
· ε

4
= 2
(n ε

8

)j+1

Applying the Chernoff bound again leads to

P
[
X̃j+1,ε < (nε/8)j+1 | X̃j,ε > (nε/8)j

]
≤ exp

[
1

4

(n ε
8

)j+1
]
. (A.19)

For the sake of a shorter notation, let Aj be the event that X̃j,ε < (nε/8)j . Then,

P[A4] = P[A4 | A3]P[A3] + P[A4 | ¬A3]P[¬A3] ≤ P[A4 | ¬A3] + P[A3]

≤ . . . ≤ P[A4 | ¬A3] + P[A3 | ¬A2] + P[A2 | ¬A1] + P[A1]

≤ 4 exp

(
− n · ε

4

16384

)
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and accordingly

P[XL,ε = 0] = P[XL,ε = 0 ∧A4] + P[XL,ε = 0 ∧ ¬A4]

≤ P[A4] + P
[
XL,ε = 0 | X̃4,ε > (nε)4/4096

]
. (A.20)

Given that there are (nε)4/4096 vertices at level four with fitness smaller than ε, each
of them may serve as the root of a sub-tree of height L − 4 from which a path in Dε

originates. Using inequality (A.18) finally yields

P[XL = 0] ≤ P[XL,ε = 0] ≤ P[A4] + P[XL−4,ε = 0](nε)
4/4096

≤ 4 exp

(
− n · ε

4

16384

)
+

(
1− c̃

(L− 4)3

)(nε)4/4096
L→∞−−−−→ 0 . (A.21)



Bibliography

[1] C. Darwin. On the origins of species by means of natural selection (John Murray,
London, 1859).

[2] S. Wright. The roles of mutation, inbreeding, crossbreeding, and selection in
evolution. In Proceedings of the Sixth International Congress on Genetics, vol. 1,
pp. 355–366 (1932).

[3] I. G. Szendro, M. F. Schenk, J. Franke, J. Krug and J. A. G. M.
de Visser. Quantitative analyses of empirical fitness landscapes. Journal of
Statistical Mechanics: Theory and Experiment , vol. 2013 p. P01005 (2013).

[4] J. A. G. M. de Visser and J. Krug. Empirical fitness landscapes and the
predictability of evolution. Nature Reviews Genetics, vol. 15 pp. 480–490 (2014).

[5] J. A. G. de Visser, T. F. Cooper and S. F. Elena. The causes of epistasis.
Proceedings of the Royal Society of London B: Biological Sciences, vol. 278 pp.
3617–3624 (2011).

[6] D. M. Weinreich, R. A. Watson, L. Chao and R. Harrison. Perspective:
sign epistasis and genetic constraint on evolutionary trajectories. Evolution, vol. 59
pp. 1165–1174 (2005).

[7] F. J. Poelwijk, D. J. Kiviet, D. M. Weinreich and S. J. Tans. Empirical
fitness landscapes reveal accessible evolutionary paths. Nature, vol. 445 pp. 383–
386 (2007).

[8] D. L. Stein. Spin Glasses and Biology (World Scientific, Singapore, 1992).

[9] E. D. Weinberger. NP completeness of Kauffman’s NK model, a tuneable
rugged fitness landscape (1996). Santa Fe Institute Working Paper 96-02-003,
http://www.santafe.edu/media/workingpapers/96-02-003.pdf.

[10] S. Kirkpatrick and G. Toulouse. Configuration space analysis of travelling
salesman problems. Journal de Physique, vol. 46 pp. 1277–1292 (1985).

[11] P. F. Stadler and W. Schnabl. The landscape of the traveling salesman
problem. Physics Letters A, vol. 161 pp. 337–344 (1992).

[12] R. Karp. Reducibility among Combinatorial Problems. In R. Miller,
J. Thatcher and J. Bohlinger (Editors), Complexity of Computer Compu-
tations, The IBM Research Symposia Series, pp. 85–103 (Springer US, 1972).



116 BIBLIOGRAPHY

[13] R. A. Fisher. The Genetical Theory of Natural Selection (Clarendon Press, 1930).

[14] S. Wright. Evolution in Mendelian populations. Genetics, vol. 16 p. 97 (1931).

[15] M. Mitchell. An introduction to genetic algorithms (MIT Press, 1998).

[16] E. N. Gilbert. Gray Codes and Paths on the n-Cube. Bell System Technical
Journal , vol. 37 pp. 815–826 (1958).

[17] F. Gray. Pulse code communication (1953). US Patent 2,632,058.

[18] P. Hegarty and A. Martinsson. On the existence of accessible paths in various
models of fitness landscapes. The Annals of Applied Probability , vol. 24 pp. 1375–
1395 (2014).

[19] L. Comtet. Advanced combinatorics: The art of finite and infinite expansions.
(D. Reidel Publishing Co., Dordrecht, 1974), enlarged edn.

[20] Number of Permutations of [1..n] with k Components. The On-Line Encyclopedia
of Integer Sequences. https://oeis.org/A059438 (retrieved July 21, 2015).

[21] Number of paths (without loops) in graph of n-dimensional hypercube starting at
point (0,0,0,...,0) and ending at (1,1,1,...,1). The On-Line Encyclopedia of Integer
Sequences. http://oeis.org/A059783 (retrieved July 21, 2015).
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