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Tag der letzten mündlichen Prüfung: Dienstag, 19. Januar 2016





Contents

Page

1. Introduction 1
1.1. Overview on the PBW filtration 2
1.2. Hilbert–Poincaré polynomials 5
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ABSTRACT

In this thesis we study the Poincaré–Birkhoff–Witt (PBW) filtration on
simple finite-dimensional modules of simple complex finite-dimensional Lie
algebras. This filtration is induced by the standard degree filtration on the
universal enveloping algebra.

For modules of certain rectangular highest weights we provide a new de-
scription of the associated PBW-graded module in terms of generators and
relations. We also construct a new basis parametrized by the lattice points
of a normal polytope. If the Lie algebra is of type B3 we construct new
bases of PBW-graded modules associated to simple modules of arbitrary
highest weight. As an application we find that these modules are favourable
modules, implying interesting geometric properties for the degenerate flag
varieties. As a side product we state sufficient conditions on convex lattice
0,1-polytopes to be normal.

We study the Hilbert–Poincaré polynomials for the associated PBW-
graded modules of simple modules. The computation of their degree can
be reduced to modules of fundamental highest weight. We provide these
degrees explicitly.

We extend the framework of the PBW filtration to quantum groups and
provide case independent constructions, such as giving a filtration on the
negative part of the quantum group, such that the associated graded algebra
becomes a q-commutative polynomial algebra. By taking the classical limit
we obtain, in some cases new, monomial bases and monomial ideals of the
associated graded modules.



ZUSAMMENFASSUNG

In dieser Arbeit studieren wir die Poincaré–Birkhoff–Witt (PBW) Filtrierung
auf einfachen endlich-dimensionalen Moduln einfacher endlich-dimensionaler
komplexer Lie-Algebren. Diese Filtrierung ist durch die standard Gradfil-
trierung auf der universell einhüllenden Algebra induziert.

Für bestimmte Höchstgewichtsmoduln geben wir eine neue Beschreibung
in Erzeuger und Relationen des assoziierten PBW-graduierten Moduls an.
Wir konstruieren ebenfalls eine, durch Gitterpunkte eines Polytopes parame-
trisierte, Basis an. Für die Lie-Algebra vom Typ B3 konstruieren wir Basen
von PBW-graduierten Moduln assoziiert zu einfachen Moduln von beliebigem
höchsten Gewicht. Eine Anwendung unser Ergebnisse ist, dass diese Moduln
favorisiert sind, was wiederum interessante geometrische Eigenschaften der
assoziierten degenerierten Fahenvarietäten zur Folge hat. Als Nebenprodukt
geben wir hinreichende Bedingungen für konvexe 0,1-Gitterpolytope an, die
die Normalität solcher Polytope implizieren.

Wir studieren die Hilbert–Poincaré Polynome der assoziierten PBW-gra-
duierten Moduln einfacher Moduln. Die Berechnung deren Grade kann auf
Moduln fundamentaler Gewichte reduziert werden. Wir geben diese Grade
explizit an.

Wir erweitern die Theorie der PBW Filtrierung auf Quantengruppen und
geben vom Typ unabhängige Konstruktionen an, wie zum Beispiel eine
Filtrierung des negativen Teil der Quantengruppe, sodass die assoziierte
graduierte Algebra eine q-kommutative Polynomalgebra wird. In dem wir
den klassischen Limes betrachten, erhalten wir, in manchen Fällen neue,
monomiale Basen und monomiale Ideale des assoziierten graduierten Moduls.



1. Introduction

In the late 19th century S. Lie introduced Lie algebras as an algebraic
tool to study Lie groups. The tangent space at the identity element of a
Lie group is naturally endowed with the structure of a Lie algebra. The
simple finite-dimensional complex Lie algebras were studied and classified
at the end of the 19th century independently by É. Cartan and W. Killing.
During the first half of the 20th century, H. Weyl developed fundamental
ideas on the representation theory of these simple Lie algebras. Since then
various important applications in mathematics and mathematical physics
were found so that the theory of simple Lie algebras and their representations
evolved to a classical branch of mathematics.

We fix g to be a simple finite-dimensional complex Lie algebra and G
to be the simple, simply connected algebraic group such that Lie G = g.
The works of H. Poincaré in 1900, G. Birkhoff and E. Witt in 1937, also
independently, led to the famous PBW theorem which provides monomial
bases of the universal enveloping algebra U(g).

We denote by V (λ) the simple finite-dimensional module of g with dom-
inant integral weight λ ∈ P+.

In 1950, I.M. Gelfand and M.L. Tsetlin provided bases of the highest
weight representations for the general linear Lie algebra in [GT50]. This
can be used to provide a monomial basis of V (λ) in the case of g being the
special linear Lie algebra. This basis is parametrized by the lattice points
of the so called Gelfand–Tsetlin (GT) polytope, denoted by GT(λ) ⊂ RN≥0,
where N is the cardinality of the set of positive roots R+ of g. In the other
classical types of simple Lie algebras, a basis of V (λ) is parametrized by the
lattice points of the generalized Gelfand–Tsetlin polytope (see [BZ89]).

In 1967, V. G. Kac and R.V. Moody introduced independently Kac–
Moody algebras. All simple finite-dimensional Lie algebras are Kac–Moody
algebras and the theory of infinite-dimensional Lie algebras was established.

The notion of a quantum group appeared first independently in the works
of V.G. Drinfeld and M. Jimbo in 1985, using it to construct solutions to the
Yang–Baxter equation. Quantum groups are deformations of the universal
enveloping algebras of symmetrizable Kac–Moody algebras as Hopf algebras.
Powerful tools to study the representations of quantum groups are provided
by the theory of crystal bases and canonical bases developed by M. Kashi-
wara and G. Lusztig independently (see [Kas90],[Kas91],[Lus90a],[Lus90b]).
A different approach is given by the path model introduced by P. Littelmann
(see [Lit94],[Lit95]). It turned out that Kashiwara’s crystal graph and Lit-
tlemann’s graph, defined by the path model, coincide (see [Jos95],[Kas96]).

Using this graph Littelmann introduced the string polytope in [Lit98].
Such a polytope parametrizes a basis of the highest weight representation
V (λ), for an arbitrary simple Lie algebra g, by its lattice points. It is de-
noted by Qw0

(λ) since it depends on λ and on a reduced expression w0 of
the longest element w0 in the Weyl group W of g. The reduced expression
determines the cone and the weight determines how to cut the cone by hy-
perplanes to obtain a polytope. The (generalized) Gelfand–Tsetlin polytope
can be recovered as a string polytope for a certain reduced expression. In
this case the string polytope is normal which fails to be true in general. Note
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that the cone is also described in [BZ01] and studied for example in [BZ93]
and [AB04].

1.1. Overview on the PBW filtration. We fix a Cartan subalgebra h ⊂ g
and consider a triangular decomposition g = n+⊕ h ⊕ n−. We fix a highest
weight vector vλ ∈ V (λ)λ and obtain the description V (λ) = U(n−)vλ. By
setting the degree of each non-zero element in n− ↪→ U(n−) to 1, we obtain
a N-filtration of U(n−), for k ∈ N we define

U(n−)k = span{x1x2 . . . xl | xi ∈ n−, l ≤ k},
in particular U(n−)0 = C1 and for s ≤ t we have U(n−)s ⊆ U(n−)t. The
PBW theorem implies that the associated graded algebra is the symmetric
algebra: grU(n−) ∼= S(n−). This increasing filtration induces a N-filtration
on V (λ), for k ∈ N we define

V (λ)k = U(n−)kvλ,

for example V (λ)0 = Cvλ. It is called the PBW filtration and has been in-
troduced in [FFJMT]. The associated graded space is N-graded and defined
by

V (λ)a =
⊕

s≥ 0

V (λ)s/V (λ)s−1,

where V (λ)−1 = {0}. We will refer to V (λ)a as the PBW-graded mod-
ule. Since V (λ) is finite-dimensional so is V (λ)a. We fix root vectors
eβ ∈ n+β , fβ ∈ n−−β for β ∈ R+ and simple roots ∆ = {α1, α2, . . . , αn} ⊂ R+,

where n is the rank of g. We denote by n−,a the vector space n− endowed
with the trivial Lie bracket and b = n+ ⊕ h. We consider the vector space
ga := b ⊕ n−,a and define a Lie bracket [·, ·]a on ga as follows: for b and
n−,a it is defined by their Lie brackets, for eα ∈ n+, fβ ∈ n−,a we define

[eα, fβ]a =

{
[eα, fβ], if β − α ∈ R+

0, else,

and for h ∈ h we have [h, fβ]a = [h, fβ]. Note that ga is a degeneration of g
(see [Fei12]) and in fact a Lie algebra. It turns out that V (λ)a is a ga-module,
n−,a is acting with operators of degree 1 and b is acting with operators of
degree 0. This implies that V (λ)a is in general not simple as a ga-module,
since ⊕s≥1V (λ)s/V (λ)s−1 is a proper submodule if dimV (λ)a > 1.

We have U(n−,a) = S(n−) = C[fβ | β ∈ R+] and obtain a cyclic S(n−)-
module structure on V (λ)a with generator vaλ: V (λ)a = S(n−)vaλ. Let I(λ)
be the annihilating ideal, i.e. the kernel of the surjective S(n−)-module map
S(n−)� S(n−)vaλ, then we have

V (λ)a = S(n−)vaλ
∼= S(n−)/I(λ).

In 2011, E. Feigin, G. Fourier and P. Littelmann in [FFL11a], [FFL11b]
(and in [FFL13a] over the integers) were the first to give a monomial ba-
sis of V (λ)a and generators of I(λ) in the case of the special linear and
the symplectic Lie algebra respectively for arbitrary λ ∈ P+. This basis is
parametrized by the lattice points of the so called Feigin–Fourier–Littelmann
(FFL) polytope denoted by FFL(λ) ⊂ RN≥0. The basis in type A was con-

jectured by E. Vinberg (see [Vin05]). Note that the FFL polytopes and
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the (generalized) GT polytopes are normal polytopes. Monomial bases were
also found in type G2 (see [Gor15a]) using a different approach.

Since the results in type An and Cn were known, the framework of the PBW
filtration earned a lot of attraction and much progress has been achieved in
different branches of representation theory.

In [ABS11] the authors obtain with purely combinatorial methods an ex-
plicit bijection between the lattice points of marked chain polytopes and
marked order polytopes (see [Sta86]). This implies in particular a bijection
between the lattice points FFLN(λ) = FFL(λ) ∩ NN of the marked chain
polytope FFL(λ) and GTN(λ), the lattice points of the marked order poly-
tope (generalized) GT(λ). In [Fou16] it is shown that marked order poly-
topes and marked chain polytopes are not unimodularly equivalent in general
and especially the FFL and (generalized) GT polytopes are not unimodu-
larly equivalent in general. Other combinatorial representation theoretical
works related to the framework of PBW filtration are [Fou15], where a con-
nection between PBW-graded modules and fusion products is provided, and
[K13a], [K13b], where the PBW-graded modules are used to describe models
of certain Kirillov–Reshetikhin crystals. In [CF15] and [FM15] the study of
the characters of PBW-graded modules has been initiated and motivated
the first paper of this thesis.

In the geometric branch of the framework of the PBW filtration, the
degenerate flag variety has been studied in a series of papers. Let B,N− ⊂ G
be the algebraic groups associated to the Lie algebras b and n−, B is a Borel
and N− the maximal unipotent subgroup opposite to the Borel. Then there
exists a commutative unipotent group with Lie algebra n−,a, denoted by
N−,a ⊂ Ga = N−,a oB, acting on V (λ)a. We emphasize that Ga is the Lie
group of ga. The flag variety and the degenerate flag variety respectively
are defined by

F(λ) = N−.Cvλ ⊆ P(V (λ)), Fa(λ) = N−,a.Cvaλ ⊆ P(V (λ)a),

where F(λ) ∼= G/Pλ for some parabolic subgroup Pλ ⊂ G stabilizing Cvλ. In
[Fei12] the degenerate flag variety has been introduced. An explicit realiza-
tion, in terms of linear algebra, inside a product of Grassmannians has been
provided in [Fei11] for type A and in [FFiL14] for type C and other important
results have been achieved. For example in loc. cit. for type C and in [FFi13]
for type A it is shown that the degenerate flag varieties are normal and
Cohen–Macaulay by constructing explicit desingularizations. Other impor-
tant works on this subject are provided by [Hag14] and [CIFR12] [CIFR13].
In the latter two papers the authors study the degenerate flag varieties in
type A by realizing them as quiver Grassmannians.

A beautiful result is obtained in [CIL15], where it is shown that the de-
generate flag varieties in type A and C are isomorphic to certain Schubert
varieties. The authors use the explicit realization in terms of linear algebra
mentioned above. This result also holds in any characteristic (see [CILL]),
where the authors use different arguments. They realize the PBW-graded
modules as Demazure modules for a Lie algebra of the same type and dou-
bled rank.

We want to recall the definition of a favourable module, note that it can
be defined more generally. We choose an ordered basis {fβ1 , fβ2 , . . . , fβN }
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of n− and an induced homogeneous lexicographical total order ≺ on the
monomials in U(n−). We assign to each multi-exponent t ∈ NN a vector

f tvλ = f t1β1f
t2
β2
. . . f tNβN vλ ∈ V (λ)

and define for s ∈ NN : Fs = span{fqvλ | fq � f s} and F−s = span{fqvλ |
fq ≺ f s}. We have F−s ⊂ Fs and for p ≺ s we have Fp ⊂ Fs. Note that this
defines an increasing NN-filtration on V (λ) which refines the PBW filtration,
since it respects the degree of the monomials. The associated graded space
is NN-graded:

V (λ)t =
⊕

s∈NN
Fs/F

−
s .

It turns out that V (λ)t is a cyclic S(n−)-module with generator vtλ and
the annihilating ideal is monomial. Following Vinberg we denote the set
of essential multi-exponents by es(V (λ)) = {s ∈ NN | f svtλ 6= 0 in V (λ)t}.
Denote the Cartan component in the m-fold tensor product of V (λ) by

V (λ)�m = U(n−)(vλ ⊗ · · · ⊗ vλ) ⊂ V (λ)⊗m.

A module V (λ) is called favourable if

• there exists a normal polytope P (λ) ⊂ RN≥0 such that its lattice

points PN(λ) parametrize a basis of V (λ)a and es(V (λ)) = PN(λ),
• the dimension of the Cartan component V (λ)�m ⊂ V (λ)⊗m equals
|mPN(λ)|, where mPN(λ) is the m-fold Minkowski sum of PN(λ).

Since V (λ)t is a U(n−,a)-module, we define the following projective variety

Ft(λ) = N−,a.Cvλ ⊆ P(V (λ)t).
In [FFL13b] the notion of a favourable module is introduced and many

interesting properties are stated: if V (λ) is favourable, we obtain a mono-
mial basis of V (λ)�m, (V (λ)�m)a and (V (λ)�m)t parametrized by the lattice
points of the m-fold Minkowski sum of the associated polytope. Further the
authors show many interesting properties for the associated projective va-
rieties. The varieties F(λ), Fa(λ) and Ft(λ) are projectively normal and
arithmetically Cohen–Macaulay. There exists a flat degeneration of F(λ)
into Fa(λ), and for both there exists a flat degeneration into Ft(λ). The
variety Ft(λ) is the toric variety defined by the normal polytope P (λ). The
polytope itself is the Newton–Okounkov body (see [KK12], [HK13]) for the
varieties F(λ),Fa(λ) and Ft(λ) .

Summarizing: the modules investigated in [FFL11a], [FFL11b], [FFL13a],
[Gor15a] and in the second and third paper are favourable. More classes of
examples of favourable modules are certain Demazure modules in the sln-
case provided in [Fou14] and [BF]. Recently it was shown that all V (λ), λ ∈
P+ are favourable in type D4 (see [Gor15b]).

This thesis consists of four parts, two published papers, one paper under
revision and one preprint which will be submitted soon:

1. The degree of the Hilbert–Poincaré polynomial of PBW-graded mod-
ules. In collaboration with Lara Bossinger, Christian Desczyk and
Ghislain Fourier. Comptes Rendus Mathematique, 352 (12): 959 -
963 (2014).
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2. PBW filtration: Feigin–Fourier–Littelmann modules via Hasse di-
agrams. In collaboration with Christian Desczyk. Journal of Lie
theory, 25 (3): 815 - 856 (2015).

3. The PBW filtration and convex polytopes in type B. In collaboration
with Deniz Kus. Submitted to Transformation Groups.

4. Degree cones and monomial bases of Lie algebras and quantum groups.
In collaboration with Xin Fang and Ghislain Fourier. Preprint.

1.2. Hilbert–Poincaré polynomials. In the first paper we study the PBW-
graded modules V (λ)a for arbitrary λ ∈ P+ by studying their Hilbert–
Poincaré series. This series is defined by

pλ(q) =

∞∑

s=0

(dimV (λ)s/V (λ)s−1)qs.

Since V (λ) is finite-dimensional, this is in fact a polynomial in q. We com-
pute the maximal k ∈ N such that V (λ)k/V (λ)k−1 is non-zero, often referred
to as the PBW-degree.

Recall that w0 denotes the longest element in the Weyl group of g. Every
element of V (λ) can be described by acting with U(n+) on the lowest weight
vector vw0(λ), and U(n+)V (λ)k ⊂ V (λ)k. This implies that vw0(λ) is an el-
ement of V (λ)k, for the maximal k ∈ N such that V (λ)k/V (λ)k−1 6= {0}.
Therefore, it suffices to study the one-dimensional weight space V (λ)w0(λ) =
Cvw0(λ) in order to compute the PBW-degree. We provide the PBW-degree
for PBW-graded modules of simple modules for arbitrary simple Lie alge-
bras. It suffices to compute the degree of pλ(q) in the cases where λ is a
fundamental weight ωi ∈ P+, 1 ≤ i ≤ n. This reduction is provided by
[CF15].

Main Theorem 1. (with L. Bossinger, C. Desczyk, G. Fourier) The degree
of pωi(q) is equal to the label of the i-th node in the following diagrams:

An
1 2 3 3 2 1

Bn >
2 2 4 4 6

2d n-1
2 e

d n
2e

Cn <
1 2 n-2 n-1 n

Dn
2 2 4 4 6

2d n-2
2 e

d n-1
2 e

d n-1
2 e

E6
2 4

6

4 2

2

E7
2 6

8

7 4 3

5

E8
4 8

14

11 8 6 2

8

F4 >
2 6 4 2

G2 <
2 2

1.3. PBW filtration and monomial bases in other types. In the sec-
ond and third paper we provide a new monomial basis of V (λ)a parametrized
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by the lattice points of a normal polytope and provide generators of the an-
nihilating ideal I(λ) in many other types. The polytope is defined by certain
paths in the Hasse diagram associated to the partial order on R+. We refer
to these paths as Dyck paths in analogy with the An case.

In the second paper our approach is slightly different to the cases of type
A and C. Instead of fixing the Lie algebra we fix the type of the highest
weight to be a multiple of a fundamental weight, i.e. λ = mωi,m ∈ N, 1 ≤
i ≤ n. Our main tool is the Hasse diagram and we describe a general
procedure which only depends on this diagram. So we reduce the problem
of finding a basis of V (λ)a and describing generators of the ideal I(λ) to the
combinatorics of a (directed) graph.

Let θ be the highest root of g, θ∨ the corresponding coroot. We consider
multiples of fundamental weights ωi ∈ P+ such that 〈ωi, θ∨〉 = 1. In the case
of g = sp2n we have 〈ωi, θ∨〉 = 1 for all 1 ≤ i ≤ n, but in these cases, except
for ω1 we do not find a suitable polytope. Nevertheless, as stated before the
lattice points of the FFL polytope in type Cn parametrize a basis of V (λ)a

for arbitrary λ ∈ P+. Note that the list below includes all minuscule and
co-minuscule fundamental weights for arbitrary simple Lie algebras.

Main Theorem 2. (with C. Desczyk) Assume g and ωi appear in the ta-
ble below: (i) There exists an explicit normal polytope P(mωi) such that its
lattice points PN(mωi) = P (λ) ∩ NN parametrize a basis of V (mωi)

a.

(ii) The ideal I(mωi) is generated by U(n+) ◦ span{f 〈mωi,β
∨〉+1

β | β ∈ R+},
where V (mωi)

a ∼= S(n−)/I(mωi).

Type of g weight ω Type of g weight ω

An ωk, 1 ≤ k ≤ n E6 ω1, ω6

Bn ω1, ωn E7 ω7

Cn ω1 F4 ω4

Dn ω1, ωn−1, ωn G2 ω1

In the third paper we investigate the special odd orthogonal Lie algebra
and find similar results as above for multiples of the adjoint representation
and for some other interesting cases. In order to describe the polytopes we
introduce the notion of a double Dyck path, which is the union of two usual
Dyck paths with a certain extra condition. In the case of the Lie algebra
so7 we find a polytope, whose lattice points parametrize a basis of V (λ)a for
arbitrary dominant integral weights λ ∈ P+. We also state in the appendix
generators of the annihilating ideal I(λ) of the PBW-graded module in the
case of G2.

Main Theorem 3. (with Kus) (i) If g is of type Bn and λ = mω2 or
λ = 2mω3,m ∈ N, then there exists an explicit normal polytope P (λ) such
that its lattice points PN(λ) parametrize a basis of V (λ)a.

(ii) The ideal I(λ) is generated by U(n+) ◦ span{f 〈λ,β
∨〉+1

β | β ∈ R+}, where

V (λ)a ∼= S(n−)/I(λ).
(iii) If g is of type B3 and λ ∈ P+, then there exists an explicit normal
polytope P (λ) such that its lattice points PN(λ) parametrize a basis of V (λ)a.
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Further for λ, µ ∈ P+ we have PN(λ) +PN(µ) = PN(λ+µ). Here + denotes
the Minkowski sum on the left-hand side.

The normality in the second paper follows from a general result about
0, 1-polytopes, where we adapt the idea of the proof of the Minkowski sum
property of the FFL polytopes in the An case. In the third paper we prove
the Minkowski sum property by direct computations. As stated above, the
modules in Theorem 2 and in Theorem 3 are favourable.

A natural question is whether in type An and λ = mωi ∈ P+ the FFL
basis of V (λ)a described by the lattice points of the polytope FFL(λ) and
the basis of V (λ)a described by PN(λ) in the second paper are the same. We
consider the fundamental weight ωi and assume 2 ≤ i ≤ n − 1 and n ≥ 3.
We have

fαi−1+αi+αi+1fαiv
a
ωi 6= 0 and fαi−1+αifαi+αi+1v

a
ωi 6= 0 in V (ωi)

a.

We have dimV (ωi)ωi−αi−1−2αi−αi+1 = 1. This implies to obtain a basis
of V (ωi)

a we need to pick exactly one of those elements. The first is an
element of the FFL basis, the second is an element of the basis described in
the second paper. In this sense the FFL basis, and the basis described in
the second paper are in general two different bases of V (λ)a.

Nevertheless, the describing polytopes FFL(λ) and P (λ) (in type An) are
unimodularly equivalent and hence the projective toric varieties defined by
the normal polytopes are isomorphic. In contrast, in general they are not
isomorphic to the toric varieties constructed in [AB04] corresponding to
Gelfand–Tsetlin polytopes (see also [GL97] and [KM05]), since the FFL and
GT polytopes are not unimodularly equivalent in general as stated above.

Note that the example above also shows that I(λ) is not a monomial ideal
in general, since for some non-zero constant c ∈ C we have:

cfαi−1+αi+αi+1fαi − fαi−1+αifαi+αi+1 ∈ I(ωi).

1.4. PBW-type filtration and quantum degree cones. Recently in
[FFR15] the authors extended the framework of the PBW filtration to quan-
tum groups of type An. They provide a degree on the quantum PBW root
vectors arising from the Hall algebra of quiver representations, and define a
N-filtration F on the negative part of the quantum group Uq(n

−) such that
associated graded algebra becomes a q-commutative polynomial algebra:

grFUq(n−) ∼= Sq(n
−).

This fails already in small examples, if one simply attaches to each quantum
PBW root vector the degree 1, as in the definition (see Subsection 1.1) of the
PBW filtration for simple Lie algebras. Denote by Vq(λ) the simple finite-
dimensional module (of type 1) of Uq(g) of highest weight λ ∈ P+. The
associated graded Sq(n

−)-module is denoted by V Fq (λ) with annihilating

ideal IFq (λ) ⊂ Sq(n
−). As an important application the authors obtain a

monomial basis of V Fq (λ) parametrized by the lattice points of the polytope

FFL(λ) and the ideal IFq (λ) is monomial. By taking the classical limit
q → 1 they obtain a N-filtration on V (λ) such that the annihilating Ideal
IF (λ) ⊂ S(n−) of the associated graded module V F (λ) is a monomial ideal.
As stated before this is not true in the classic setup of the PBW filtration.
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In the fourth paper we study the negative part of the quantum group
associated to a arbitrary simple Lie algebra with a different approach. We
define a set Dqw0

⊂ RN+ depending on the Lie algebra g and on a reduced
expression w0, where each lattice point in this set induces a N-filtration on
Uq(n

−) such that the associated graded algebra becomes a q-commutative
polynomial algebra. Since it is closed under summation and non-zero scalar
multiplication we call Dqw0

the quantum degree cone. We show that Dqw0
is

not empty for arbitrary simple Lie algebras and arbitrary reduced expres-
sion.

We fix a simple Lie algebra g, the quantum group Uq(g) associated to g
with generic parameter q and a reduced expression w0 of the longest Weyl
group element w0 ∈W . The reduced expression induces a convex total order
β1 < β2 < · · · < βN on the positive roots of g, i.e for all βi, βj , βk ∈ R+:

βi + βj = βk =⇒ i < k < j or j < k < i.

The PBW basis theorem for quantum groups (see [Lus10]) provides a C(q)-
basis of Uq(n

−), namely

{F c = F c1β1F
c2
β2
· · ·F cNβN | c = (c1, c2, . . . , cN ) ∈ NN}.

The commutation relations between these quantum PBW root vectors is
given by the Levendorskĭı–Soibelmann (L–S) formula ([LS91]) for any i < j,

FβjFβi − q−(βi,βj)FβiFβj =
∑

ni+1,··· ,nj−1≥0
p(ni+1, . . . , nj−1)F

ni+1

βi+1
· · ·Fnj−1

βj−1
, (1)

where p(ni+1, . . . , nj−1) ∈ C[q±1]. We denote

Mi,j = {Fni+1

βi+1
F
ni+2

βi+2
. . . F

nj−1

βj−1
| ni+1βi+1+ni+2βi+2+· · ·+nj−1βj−1 = βi+βj},

then for weight reasons, the sum in the right-hand side of the L–S formula
is supported in Mi,j . We define the quantum degree cone Dqw0

by:

Dqw0
= {d ∈ RN≥0 | i < j: di + dj >

j−1∑

k=i+1

nkdk if p(ni+1, . . . , nj−1) 6= 0 in (1)}.

Main Theorem 4. (with X. Fang, G. Fourier) (i) For any reduced expres-
sion w0 of w0, the set Dqw0

is non-empty.
(ii) Let g be a simple Lie algebra of rank n ≥ 3. Then

⋂

w0∈R(w0)

Dqw0
= ∅,

where R(w0) = {w0 | w0 reduced expression of w0}.
Note if g is of rank n ≤ 2 there are two reduced expression of w0 and both

induce the same cone. We describe the cone explicitly.
Since Dqw0

is not empty we can choose a d ∈ Dqw0
and define a filtration

on Uq(n
−), for k ∈ N we define

Fd
k = span{F t ∈ Uq(n−) | t1d1 + t2d2 + · · ·+ tNdN ≤ k}.

The L–S formula ensures that this defines a filtration on Uq(n
−) and that the

associated graded algebra grdUq(n
−) is a q-commutative polynomial algebra



9

isomorphic to Sq(n
−). We obtain a filtration on Vq(λ) by setting

Fd
k Vq(λ) = Fd

k vλ,

where vλ is a cyclic generator of Vq(λ). The associated graded module

is denoted by V d
q (λ) and is a cyclic Sq(n

−)-module with cyclic generator

denoted by vd
λ : V d

q (λ) = Sq(n
−)vd

λ . The annihilating ideal is denoted by

Idq (λ).
By taking the classical limit q → 1 we obtain several applications. For

example we describe new monomial ideals and monomial bases of V d(λ), λ ∈
P+ with the known polytopes in the cases An, B3, D4, G2 and conjecturally in
Cn. We also state whether the lattice points of these polytopes parametrize
a monomial basis for V d

q (λ).
Acknowledgments. First of all, I would like to thank my supervisor

Peter Littelmann for his guidance, his support and for the opportunity to
write this thesis. Special thanks go to Ghislain Fourier for uncountable
discussions, good advices and hints. Special thanks also go to Christian
Desczyk and Deniz Kus, not only for intensive collaboration, but also for
becoming good friends. Many thanks to my other co-authors Lara Bossinger
and Xin Fang for giving me very good remarks on my thesis. I would like
to thank the whole working group in Cologne, my family and my friends
for always supporting me. I would like to thank Anne Schilling and the
University of California, Davis for their hospitality during my stay there in
the beginning of 2015. I would like to thank Evgeny Feigin for answering a
lot of questions via e-mail. Last but not least, I would like to thank Annette
Wellhausen and Matt O’Dell for grammar corrections and my girlfriend Julia
Beer for having my back.

I was funded by the DFG priority program SPP 1388 ’Representation
Theory’.



TEODOR BACKHAUS AND LARA BOSSINGER AND CHRISTIAN DESCZYK AND
GHISLAIN FOURIER

Abstract. In this note, we study the Hilbert-Poincaré polynomials for the
associated PBW-graded modules of simple modules for a simple complex Lie
algebra. The computation of their degree can be reduced to modules of fun-
damental highest weight. We provide these degrees explicitly.

Nous étudions les polynômes de Hilbert-Poincaré pour les modules PBW-
gradués associés aux modules simples d’une algèbre de Lie simple complexe.
Le calcul de leur degré peut être restreint aux modules de plus haut poids
fondamental. Nous donnons une formule explicite pour ces degrés.

1. Introduction

Let g be a simple complex finite-dimensional Lie algebra with triangular de-
composition g = n+ ⊕ h ⊕ n−. Then the PBW filtration on U(n−) is given as
U(n−)s := span{xi1 · · · xil | xij ∈ n−, l ≤ s}. The associated graded algebra is

isomorphic to S(n−). Let V (λ) be a simple finite-dimensional module of highest
weight λ and vλ a highest weight vector. Then we have an induced filtration on
V (λ) = U(n−)vλ, denoted V (λ)s := U(n−)svλ. The associated graded module
V (λ)a is a S(n−)-module generated by vλ.
These modules have been studied in a series of papers. Monomial bases of the
graded modules and the annihilating ideals have been provided for the sln, spn
[FFL11a, FFL11b, FFL13b], for cominuscule weights and their multiples in other
types [BD14], for certain Demazure modules in the sln-case in [Fou14b, BF14].
In type G2 there is a monomial basis provided by [Gor11].
The degenerations of the corresponding flag varieties have been studied in [Fei12,
FFL13a, CIL14, CILL14]. Further, it turned out ([Fou14a]), that these PBW
degenerations have an interesting connection to fusion product for current alge-
bras. The study of the characters of PBW-graded modules has been initiated in
[CF13, FM14].
In the present paper we will compute the maximal degree of PBW-graded mod-
ules in full generality (for all simple complex Lie algebras), where there have been
partial answers in the above series of paper for certain cases.
We denote the Hilbert-Poincaré series of the PBW-graded module, often referred
to as the q-dimension of the module, by

pλ(q) =
∞∑

s=0

(dimV (λ)s/V (λ)s−1) qs.

Since V (λ) is finite-dimensional, this is obviously a polynomial in q. In this note
we want to study further properties of this polynomial. We see immediately that
the constant term of pλ(q) is always 1 and the linear term is equal to

dim(n−)− dim Ker
(
n− −→ End(V (λ))

)
.

2. The degree of the Hilbert–Poincaré polynomial of
PBW-graded modules
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Our main goal is to compute the degree of pλ(q) and the first step is the following
reduction [CF13, Theorem 5.3 ii)]:

Theorem. Let λ1, . . . , λs ∈ P+ and set λ = λ1 + . . .+ λs. Then

deg pλ(q) = deg pλ1(q) + . . .+ deg pλs(q).

It remains to compute the degree of pλ(q) where λ is a fundamental weight. We
have done this for all fundamental weights of simple complex finite-dimensional
Lie algebras:

Theorem 1. The degree of pωi(q) is equal to the label of the i-th node in the
following diagrams:

An
1 2 3 3 2 1

Bn >
2 2 4 4 6

2d n-1
2 e

d n
2 e

Cn <
1 2 n-2 n-1 n

Dn
2 2 4 4 6

2d n-2
2 e

d n-1
2 e

d n-1
2 e

E6
2 4

6

4 2

2

E7
2 6

8

7 4 3

5

E8
4 8

14

11 8 6 2

8

F4 >
2 6 4 2

G2 <
2 2

The paper is organized as follows: In Section 2 we introduce definitions and basic
notations, in Section 3 we prove Theorem 1.

Acknowledgements
T.B. was funded by the DFG-priority program 1388 Representation Theory, grant
”LI 990/10-1”, G.F. was partially funded the grant ”FO 867/1-1”, L.B. and C.D.
were partially funded within the framework of this program. The main work of
this article has been conducted during a workshop organized at the University of
Glasgow, and all authors would like to thank the Glasgow Mathematical Journal
Trust Fund, the Edinburgh Mathematical Journal and especially the University
of Glasgow for this opportunity.

Mathematisches Institut, Universität zu Köln, Germany (T.B., L.B., C.D.)
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2. Preliminaries

Let g be a simple Lie algebra of rank n. We fix a Cartan subalgebra h and a
triangular decomposition g = n+⊕h⊕n−. The set of roots (resp. positive roots)
of g is denoted R (resp. R+), θ denotes the highest root. Let αi, ωi i = 1, ..., n
be the simple roots and the fundamental weights. Let W be the Weyl group
associated to the simple roots and w0 ∈ W the longest element. For α ∈ R+

we fix a sl2 triple {eα, fα, hα = [eα, fα]}. The integral weights and the dominant
integral weights are denoted P and P+.
Let {x1, x2, ...} be an ordered basis of g, then U(g) denotes the universal envelop-
ing algebra of g with PBW basis {xi1 · · · xim | m ∈ Z≥0, i1 ≤ i2 ≤ ... ≤ im}.
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2.1. Modules. For λ ∈ P+ we consider the irreducible g-Module V (λ) with
highest weight λ. Then V (λ) admits a decomposition into h-weight spaces,
V (λ) =

⊕
τ∈P V (λ)τ with V (λ)λ and V (λ)w0(λ), the highest and lowest weight

spaces, being one dimensional. Let vλ denote the highest weight vector, vw0(λ)

denote the lowest weight vector satisfying

eαvλ = 0, ∀α ∈ R+ ; fαvw0(λ) = 0, ∀α ∈ R+.

We have U(n−).vλ ∼= V (λ) ∼= U(n+).vw0(λ).
The comultiplication (x 7→ x ⊗ 1 + 1 ⊗ x) provides a g-module structure on
V (λ) ⊗ V (µ). This module decomposes into irreducible components, where the
Cartan component generated by the highest weight vector vλ ⊗ vµ is isomorphic
to V (λ+ µ).

2.2. PBW-filtration. The Hilbert-Poincaré series of the PBW-graded module
V (λ)a :=

⊕
s≥0 V (λ)s/V (λ)s−1 is the polynomial

pλ(q) =
∑

s≥0
dim(V (λ)s/V (λ)s−1)qs

= 1 + dim(V (λ)1/V (λ)0)q + dim(V (λ)2/V (λ)1)q
2 + ...

and we define the PBW-degree of V (λ) to be deg(pλ(q)).

It is easy to see that n+.(U(n−)s.vλ) ⊆ U(n−)s.vλ ∀ s ≥ 0 (see also [FFL11a])
and hence U(n+).V (λ)s ⊆ V (λ)s. Let sλ be minimal such that vw0(λ) ∈ V (λ)sλ .

Then V (λ) = U(n+).vw0(λ) ⊆ V (λ)sλ and

Corollary. sλ = deg(pλ(q)) and

V (λ) = V (λ)sλ .

2.3. Graded weight spaces. The PBW filtration is compatible with the de-
composition into h-weight spaces:

dimV (λ)τ =
∑

s≥0
dim (V (λ)s/V (λ)s−1) ∩ V (λ)τ .

So we can define for every weight τ the Hilbert-Poincaré polynomial:

pλ,τ (q) =
∑

s≥0
dim (V (λ)s/V (λ)s−1)τ q

s and then pλ(q) =
∑

τ∈P
pλ,τ (q).

A natural question is, if we can extend our results to these polynomials? If the
weight space V (λ)τ is one-dimensional, then pλ,τ (q) is a power of q. For τ = λ

this is constant 1, for τ = w0(λ), the lowest weight, this is qdeg pλ(q) as we have
seen in Corollary 2.2. A first approach to study these polynomials can be found
in [CF13].

2.4. Graded Kostant partition function. For the readers convienience we
recall here the graded Kostant partition function (see [Kos59]), which counts the
number of decompositions of a fixed weight into a sum of positive roots, and how
it is related to our study. We consider the power series and its expansion:

∏

α>0

1

(1− qeα)
,
∑

ν∈P
Pν(q)eν .

We have immediately charS(n−) =
∑

ν∈P Pν(q)e−ν .
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Remark. For a polynomial p(q) =
∑n

i=0 aiq
i, we denote mindeg p(q) the minimal

j such that aj 6= 0. Then we have obviously

(2.1) mindeg pλ,ν(q) ≥ mindegPλ−ν(q).

We will use this inequality for the very special case ν = w0(λ) in the proof of
Theorem 1.
We see from Theorem 1 that this inequality is a proper inequality for certain
cases in exceptional type as well as BnDn (this has been noticed also in [CF13]).

3. Proof of Theorem 1

In this section we will provide a proof of Theorem 1. For a fixed 1 ≤ i ≤ rank g,
we will give a monomial u ∈ U(n−) of the predicted degree mapping the highest
weight vector vωi to the lowest weight vector vw0(ωi). We then show that there is
no monomial of smaller degree satisfying this.
To write down these monomials explicitly, let us denote θXn the highest root of
a Lie algebra of type Xn. We set further (using the indexing from [Hum72]):

• In the An-case, Yn−2 the type of the Lie algebra generated by the simple
roots {α2, . . . , αn−1}.
• In the Bn, Dn-case, Yn−k the type of the Lie algebra generated by the

simple roots {αk+1, . . . , αn}.
• In the exceptional and symplectic cases, θXn = ckωk for some k, Yn−1 the

type of the Lie algebra generated by the simple roots {α1, . . . , αn}\{αk}.
Let u ∈ U(n−) be one of the monomials in Figure 1. It can be seen easily from

Figure 1 that u = f
a∨i
θXn

u1, where a∨i = wi(hθXn ) and u1 is the monomial in Figure

1 corresponding to the restriction of ωi to the Lie subalgebra of type Yn−`. If we
denote n−1 the lower part in the triangular decomposition of the Lie subalgebra
of type Yn−`, then u1 ∈ U(n−1 ).

Let u = f b1θ1 f
b2
θ2
. . . f brθr . Note that all fθj commute and it is easy to see that

θj(hθj+p) = 0, ∀p ≥ 0 (since θj is a sum of fundamental weights, which are all
orthogonal to the simple roots of the Lie algebra with highest root θj+p) and
bj = ωi(hθj ).
The Weyl group W acts on V (ωi) and if v is an extremal weight vector of weight
µ, then w.v is a nonzero extremal weight vector of weight w(µ). Further if w = sα

(reflection at a root α) and µ(hα) ≥ 0, then w.v = c∗fµ(hα)α .v for some c∗ ∈ C∗.
Now consider w = sθr . . . sθ1 , where sθj is the reflection at the root θj . Then we
have w.vωi = vw0(ωi) = u.vωi 6= 0 in V (ωi). So we obtain an upper estimate for
the degree.
In general the degree of u is bigger than the minimal degree coming from Kostant’s
graded partition function (2.1). For An, Cn the degrees coincide and hence we
are done in these cases.
We will prove Theorem 1 for the remaining cases Xn by induction on the rank of
the Lie algebra. So we want to prove that if p ∈ U(n−) with p.vωi = vw0(ωi) then
deg(p) ≥ deg(u), where u is from Figure 1.
Consider the induction start, e.g. ωi = θXn , then the minimal degree is obviously

2. The maximal non-vanishing power of fθXn is certainly a∨i and f
a∨i
θXn

.vωi is

the highest weight vector of a simple module of fundamental weight for the Lie
algebra Yn−l defined as above. By induction we know that if q ∈ U(n−1 ) with

q.(f
a∨i
θXn

.vωi) = vw0(ωi) then deg(q) ≥ deg(u1).
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Xn ωi = θXn f2θXn
An ωi fθAnfθAn−2

· · · fθAn+2−2min{i,n−i}
Cn ωi fθCnfθCn−1

· · · fθCn+1−i
Bn ω2i f2θBn

f2θBn−2
· · · f2θBn+2−2i

Bn ω2i+1 f2θBn
f2θBn−2

· · · f2θBn−2i
fα2i+1

Bn n even, ωn fθBnfθBn−2
· · · fθB2

Bn n odd, ωn fθBnfθBn−2
· · · fθB2

fαn
Dn ω2i f2θDn

f2θDn−2
· · · f2θDn+2−2i

Dn ω2i+1 f2θDn
f2θDn−2

· · · fθDn−2i
fα2i+1

Dn n even, ωi, i = n− 1, n fθDnfθDn−2
· · · fθD4

fαi
Dn n odd, ωi, i = n− 1, n fθDnfθDn−2

· · · fθD5
fθA4

E6 ω1, ω6 fθE6
fθA5

E6 ω3, ω5 f2θE6
fθA5

fθA3

E6 ω4 f3θE6
fθA5

fθA3
fα4

E7 ω2 f2θE7
fθD6

fθD4
fα2

E7 ω3 f3θE7
fθD6

fθD4
fα3

E7 ω4 f4θE7
f2θD6

f2θD4

E7 ω5 f3θE7
f2θD6

fθD4
fα5

E7 ω6 f2θE7
f2θD6

E7 ω7 fθE7
fθD6

fα7

E8 ω1 f2θE8
f2θE7

E8 ω2 f3θE8
f2θE7

fθD6
fθD4

fα2

E8 ω3 f4θE8
f3θE7

fθD6
fθD4

fα3

E8 ω4 f6θE8
f4θE7

f2θD6
f2θD4

E8 ω5 f5θE8
f3θE7

f2θD6
fθD4

fα5

E8 ω6 f4θE8
f2θE7

f2θD6

E8 ω7 f3θE8
fθE7

fθD6
fα7

F4 ω2 f3θF4
fθC3

fθA2
fα2

F4 ω3 f2θF4
fθC3

fθC2

F4 ω4 fθF4fθC3

G2 ω1 fθG2
fα1

Figure 1.

First we suppose f
a∨i
θXn

.vωi is a factor of p, so p = f
a∨i
θXn

p′ and then by weight

considerations p′ ∈ U(n−1 ). Then p′.(f
a∨i
θXn

.vωi) = vw0(ωi) (the lowest weight vector

in V (ωi) as well as in the simple submodule). Therefore deg(p′) ≥ deg(u1) which
implies deg(p) ≥ deg(u).

Suppose now the maximal power of fθXn in p is f
a∨i −k
θXn

, k ≥ 0 and deg(p) < deg(u).

Let Xn be of type Bn, Dn or exceptional, then θXn = ωj and we denote

R+
s = {α ∈ R+ |wj(hα) = s},
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Then R+
2 = {θXn} and if β ∈ R+

1 then θXn − β ∈ R+
1 . By weight reasons

p = f
a∨i −k
θXn

fβ1 · · · fβ2kp1 for some β1, . . . , β2k ∈ R+
1 and some polynomial p1 in

root vectors of roots in R+
0 . We have to show that p.vωi = 0 ∈ V (ωi)

a and we
will use induction on k for that: The induction start is k = 0. The induction step
is for k ≥ 1:

0 = p1f
a∨i +k
θXn

.vωi = (eθXn−β1) · · · (eθXn−β2k)p1f
a∨i +k
θXn

.vωi

= cf
a∨i −k
θXn

fβ1 · · · fβ2kp1.vωi +
∑k

`>0 f
a∨i −k+`
θXn

q`.vωi

for some c ∈ C∗, q` ∈ U(n−). For 0 ≤ ` < k all the summands are equals to
zero by induction (on k). For ` = k, we recall our assumption deg(p) < deg(u)

and so deg(qk) < deg(u1) which implies fa
∨
i qk.vωi = 0. So we can conclude

f
a∨i −k
θXn

fβ1 · · · fβ2kp1.vωi = 0.
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TEODOR BACKHAUS AND CHRISTIAN DESCZYK

Abstract. We study the PBW filtration on the irreducible highest weight
representations of simple complex finite-dimensional Lie algebras. This filtra-
tion is induced by the standard degree filtration on the universal enveloping
algebra. For certain rectangular weights we provide a new description of the
associated graded module in terms of generators and relations. We also con-
struct a basis parametrized by the integer points of a normal polytope. The
main tool we use is the Hasse diagram defined via the standard partial order
on the positive roots. As an application we conclude that all representations
considered in this paper are Feigin-Fourier-Littelmann modules.

Introduction

We recall briefly the construction of the PBW filtration. We consider a sim-
ple complex finite-dimensional Lie algebra g and a triangular decomposition
g = n+ ⊕ h⊕ n−. We denote by V (λ) the irreducible finite-dimensional module of
highest weight λ and by vλ a highest weight vector, then we have V (λ) = U(n−)vλ.
The degree filtration U(n−)s on the universal enveloping algebra U(n−) over n−

is defined by:
U(n−)s = span{x1 · · ·xl | xi ∈ n−, l ≤ s}.

This filtration induces the PBW filtration on V (λ), where the s-th filtration
component is given by V (λ)s = U(n−)svλ. The associated graded space V (λ)a,
with respect to the PBW filtration, is a S(n−)-module generated by vλ, where
S(n−) is the symmetric algebra over n−. Then we have for I(λ) ⊆ S(n−) the
annihilator of the generating element:

V (λ)a = S(n−)vλ ∼= S(n−)/I(λ).

There are some natural questions (see also [FFoL11a]):

• Is it possible to describe V (λ)a explicitly as a S(n−)-module, i.e. is it
possible to describe the generators of the ideal I(λ)?
• Is it possible to find an explicit combinatorial description of a monomial

basis of V (λ)a?

We will call such a basis a Feigin-Fourier-Littelmann or just FFL basis and V (λ)a

a FFL module, if the bases of V (mλ)a, m ∈ Z≥0 are parametrized by the integer
points of a normal polytope P (m).
For both questions there is a positive answer in the cases of sln and sp2n for
arbitrary dominant integral weights (see [FFoL11a] and [FFoL11b]). Further the
second question is positively answered for G2 (see [Gor11]). In this paper we focus
on certain rectangular weights and prove the following theorem:

3. PBW filtration: Feigin–Fourier–Littelmann modules
via Hasse diagrams



PBW FILTRATION: FFL MODULES VIA HASSE DIAGRAMS 19

Main Theorem. Let g be a simple complex finite-dimensional Lie algebra and
λ = mωi, m ∈ Z≥0 be a rectangular weight, where g and ωi appear in the same
row of Table 1. Further let V (λ)a ∼= S(n−)/I(λ). Then there is a positive answer
for both questions above, in particular:

• I(λ) = S(n−)
(
U(n+) ◦ span{f 〈λ,β

∨〉+1
β | β ∈ ∆+}

)
.

• V (λ)a is a FFL module.

Here we denote with ∆+ the set of positive roots of g.

Type of g weight ω Type of g weight ω

An ωk, 1 ≤ k ≤ n E6 ω1, ω6

Bn ω1, ωn E7 ω7

Cn ω1 F4 ω4

Dn ω1, ωn−1, ωn G2 ω1

Table 1. Solved cases

Remark 1. The Theorem above implies the existence of a normal polytope P (mωi)
such that the integer points S(mωi) parametrize a basis of V (mωi). This poly-
tope is the m-th Minkowski sum of the polytope P (ωi) corresponding to V (ωi).
In general this is not true for different fundamental weights, because the num-
ber of integer points in the Minkowski sum is too small. For example in the
case of g = sl5, we have |(P (ω1) + P (w2) + P (ω3) + P (ω4)) ∩ ZN≥0| = 1023 and

dimV (ω1 + ω2 + ω3 + ω4) = 1024.

Remark 2. The bases obtained in [FFoL11a], which were conjectured by Vinberg
(see [V05]) and obtained in [FFoL11b] are different from our bases. This is due to
a different choice of the total order on the monomials in S(n−). As a consequence
the induced normal polytopes are also different. Nevertheless in the cases (An, ωk)
the corresponding projective toric varieties are isomorphic. In contrast, these are
in general not isomorphic to the toric varieties corresponding to Gelfand-Tsetlin
polytopes investigated in [GL97] and [KM05].

We explain briefly the methods used in our paper. Our main tool is the Hasse
diagram of g given by the standard partial order on the positive roots of g. We
associate to this directed graph a normal polytope P (λ) = P (mωi) ⊂ RN≥0 via the
directed paths. If the Hasse diagram satisfies certain properties, the set of integer
points S(λ) = P (λ) ∩ ZN≥0 parametrizes a FFL basis of V (λ)a. So we reduce the
questions above to the combinatorics of the Hasse diagram and provide a general
procedure which uses the structure of the Hasse diagram. As an important ap-
plication we show that the modules V (mωi),m ∈ Z≥0 are FFL modules, where
ωi appears in Table 1.
Except for the cases listed in Table 1 it is much more involved to obtain a poly-
tope which parametrizes a FFL basis. Even in the cases (Bn, ω1), (F4, ω4) and
(G2, ω1) we have to change the Hasse diagram slightly, to be able to apply our
procedure.
The property of being a FFL module implies some nice consequences. For exam-
ple the corresponding degenerate flag varieties are normal and Cohen-Macaulay.
Further there is an explicit representation theoretical description of the corre-
sponding homogeneous coordinate rings. Another important property is the inter-
pretation of the describing polytopes as Newton-Okounkov bodies (see [FFoL13]
and for more details on Newton-Okounkov bodies see [KK12] and [HK13]).
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In the recent years it turned out that the PBW theory has a lot of connections to
many areas of representation theory. For example to the geometric representa-
tion theory: Schubert varieties ([CIL14], [CLaL14]) and degenerate flag varieties
([FFiL11], [Fei11], [Fei12], [CIFR12] and [Hag13]). Further there are connections
to combinatorial representation theory for example to Schur functions ([Fou14]),
combinatorics of crystal basis ([Kus13a], [Kus13b]) and Macdonald polynomials
([CF13], [FM14]). A purely combinatorial research on the FFL polytopes can
be found in [ABS11]. A general formular for the maximal degree of V (λ)a for
arbitrary dominant integral weights λ is provided in [BBDF14].

Our paper is organized as follows:
In Section 1 we introduce the constructions and tools we use. Furthermore we
state our Main Theorems and provide the connection to FFL modules. In Section
2 we prove that all polytopes considered in this paper are normal. Sections
3, 4 and 5 are devoted to the proof of our Main Theorems. In Section 4 we
calculate explicitly FFL bases of V (ω) for all cases listed in Table 1. Finally
in the Appendix we give some explicit examples of Hasse diagrams and normal
polytopes.

1. PBW Filtration

1.1. Definitions. Let g be a simple complex finite-dimensional Lie algebra and
let g = n+ ⊕ h⊕ n− be a triangular decomposition.
For a dominant integral weight λ we denote by V (λ) the irreducible g-module
with highest weight λ. We fix a highest weight vector vλ ∈ V (λ). Then we have
V (λ) = U(n−)vλ. The degree filtration U(n−)s on U(n−) is defined by:

(1.1) U(n−)s = span{x1 · · ·xl | xi ∈ n−, l ≤ s}.
In particular, U(n−)0 = C1. So we have an increasing chain of subspaces:
U(n−)0 ⊆ U(n−)1 ⊆ U(n−)2 ⊆ . . . . The filtration (1.1) induces a filtration on
V (λ): V (λ)s = U(n−)svλ, the PBW filtration.
We consider the associated graded space V (λ)a of V (λ) defined by:

(1.2) V (λ)a =
⊕

s∈Z≥0

V (λ)s/V (λ)s−1, V (λ)−1 = {0}.

Let ∆+ ⊂ h∗ be the set of positive roots of g and Φ+ = {α1 . . . , αn} ⊂ ∆+ the
subset of simple roots, where n ∈ N is the rank of the Lie algebra g. Further we

denote by fβ ∈ n− the root vector corresponding to β ∈ ∆+. Let 〈λ, β∨〉 = 2(λ,β)
(β,β) ,

where β∨ = 2β
(β,β) is the coroot of β and (·, ·) is the Killing form. We define

n−λ := span{fβ | 〈λ, β∨〉 ≥ 1} ⊂ n−.

Throughout this paper we focus on certain rectangular weights λ = mωi, m ∈ Z≥0

(see Table 1).
Let β =

∑n
j=1 njαj , nj ∈ Z≥0 be a positive root with ni ≥ 1. Then we have

for the coroot β∨ =
∑n

j=1 n
∨
j α
∨
j : n∨i ≥ 1. Conversely starting with a coroot

β∨, with n∨i ≥ 1 we have for the corresponding positive root β: ni ≥ 1. Hence,
independent of the choice of m ≥ 1:

n−ωi = n−mωi ⊂ n−
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is the Lie subalgebra spanned by those root vectors fβ, where αi is a summand
of β.
From the PBW-Theorem we get U(n−λ )a = S(n−λ ) = C[fβ | 〈λ, β∨〉 ≥ 1], where

S(n−λ ) is the symmetric algebra over n−λ .

Remark 1.1.1. (i) We have V (λ) = U(n−λ )vλ. The action of U(n−λ ) on V (λ)

induces the structure of a S(n−λ )-module on V (λ)a and

(1.3) V (λ)a = S(n−)vλ = S(n−λ )vλ.

(ii) The action of U(n+) on V (λ) induces the structure of a U(n+)-module on
V (λ)a. Note for eα ∈ n+ ↪→ U(n+), fβ ∈ n−λ ↪→ S(n−λ ), [eα, fβ] is not in general

an element of S(n−λ ), but for fν ∈ S(n−) \S(n−λ ) we have fνvλ = 0. That follows
from the well known description (see [Hum72]) of V (λ):

(1.4) V (λ) = U(n−)/〈f 〈λ,β
∨〉+1

β | β ∈ ∆+〉.

Equation (1.3) shows that V (λ)a is a cyclic S(n−λ )-module and hence there is an

ideal Iλ ⊆ S(n−λ ) such that V (λ)a ' S(n−λ )/Iλ, where Iλ is the annihilating ideal
of vλ. We have therefore the following projections:

S(n−)→ S(n−)/
〈
fβ | 〈λ, β∨〉 = 0

〉
= S(n−λ )→ S(n−λ )/Iλ.

Hence, although we work with n−λ , we actually consider n−-modules. So our aims
in this paper are

• To describe V (λ)a as a S(n−λ )-module, i. e. describe explicitly generators
of the ideal Iλ.
• To find a basis of V (λ)a parametrized by integer points of a normal poly-

tope P (λ) (see (1.10)).

To achieve these goals we have to introduce further terminology. We denote the
set of positive roots associated to n−λ by

(1.5) ∆λ
+ = {β ∈ ∆+| 〈λ, β∨〉 ≥ 1} =: {β1, . . . , βN} ⊆ ∆+, |∆λ

+| = N ∈ Z≥0.

Example 1.1.2. We write (r1, r2, . . . , rn) for the sum:
∑n

k=1 rkαk. Let g be of
type A4 and λ = ω3, the third fundamental weight. Then we have:

∆ω3
+ = {β1 = (1, 1, 1, 1), β2 = (0, 1, 1, 1), β3 = (1, 1, 1, 0),

β4 = (0, 0, 1, 1), β5 = (0, 1, 1, 0), β6 = (0, 0, 1, 0)} ⊂ ∆+.

We choose a total order ≺ on ∆λ
+:

(1.6) β1 ≺ β2 ≺ · · · ≺ βN−1 ≺ βN .
We assume that this order satisfies the following conditions:

(i) Let ≥ be the standard partial order on the positive roots, then

βi > βj ⇒ βi ≺ βj .
(ii) Let βi = (r1, . . . , rn), βj = (t1, . . . , tn) and we define the height as the

sum over these entries: ht(βi) =
∑n

i=1 ri,ht(βj) =
∑n

i=1 ti. Then

ht(βi) > ht(βj)⇒ βi ≺ βj .
(iii) If βi and βj are not comparable in the sense of (i) and (ii), then

βi ≺ βj ⇔ βi is greater than βj lexicographically, i.e. there exists 1 ≤
k ≤ n, such that rk > tk and ri = ti for 1 ≤ i < k.
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Remark 1.1.3. The explicit order of the roots depends on the Lie algebra and
the chosen weight, see Section 4. But in all cases considered in this paper we
have β1 = θ, the highest root of g and βN is the simple root αi.

In order to make our equations more readable we write for 1 ≤ i ≤ N : fi = fβi
and si = sβi . We associate to the multi-exponent s = (si)

N
i=1 ∈ ZN≥0 the element

(1.7) f s =
N∏

i=1

fsii ∈ S(n−λ ),

and define the degree of f svλ 6= 0 in V (λ)a by deg(f svλ) = deg(f s) =
∑N

i=1 si,
or deg(f svλ) = 0 if f svλ = 0. We extend ≺ to the homogeneous lexicographical
total order on the monomials of S(n−λ ) (resp. multi-exponents).

Let s, t ∈ ZN≥0 be two multi-exponents. We say f s � f t or s � t if

• deg(f s) > deg(f t) or
• deg(f s) = deg(f t) and ∃ 1 ≤ k ≤ N : (sk > tk) ∧ ∀ k < j ≤ N : (sj = tj).

For example: f1
1 f

2
2 f

0
3 ≺ f2

1 f
0
2 f

1
3 ≺ f1

1 f
0
2 f

2
3 .

Remark 1.1.4. Because the action of n+ on V (λ) is induced by the adjoint
action, we know that V (λ)s, s ∈ Z≥0 is stable under the action of n+: for e ∈ n+

and x1 · · ·xsvλ ∈ V (λ)s we have

e.x1 · · ·xsvλ =
s∑

i= 1

x1 · · ·xi−1[e, xi]xi+1 · · ·xsvλ ∈ V (λ)s.

Hence V (λ)s is a U(n+)-module. So for f tvλ in V (λ)a =
⊕

s≥0 V (λ)s/V (λ)s−1

we have deg(uf tvλ) ∈ {0, deg(f tvλ)} for all u ∈ U(n+).

The next Lemma is devoted to give a better understanding of the module V (λ)a,
but we will not need it to prove our main statements.

Lemma 1.1.5. Let fm ∈ S(n−) with fmvλ 6= 0 in V (λ)a and weight wt(fm) =
λ− w0(λ), where w0 is the longest element in the Weyl group of g and w0(λ) is
the lowest weight of V (λ). Then

deg(fn) ≤ deg(fm), ∀fnvλ 6= 0 ∈ V (λ)a.

Proof. Let vw0(λ) be a lowest weight vector such that:

V (λ) = U(n+)vw0(λ).

Hence we can interpret V (λ) as a lowest weight module. The lowest weight ω0(λ)
is in the Weyl group orbit of λ, thus dimV (λ)w0(λ) = 1 = dimV (λ)λ. So there is
a minimal s ∈ Z≥0 such that: V (λ)w0(λ) ⊆ V (λ)s. Further there exists a scalar
c ∈ C with fmvλ = cvw0(λ).
For an arbitrary element fnvλ 6= 0 ∈ V (λ)a we fix the order of the factors
to obtain fnvλ ∈ V (λ). Then there exists an element x ∈ U(n+) such that:
fnvλ = x(fmvλ). This implies with Remark 1.1.4: deg(fn) ≤ deg(fm). �
Associated to the set n−λ we define a directed graph H(n−λ )g := (∆λ

+, E). The set

of vertices is given by ∆λ
+ and the set of edges E is constructed as follows:

∀ 1 ≤ i, j ≤ N : (βi
k−→ βj) ∈ E ⇔ ∃ αk ∈ Φ+ : βi − βj = αk.

We call this directed graph Hasse diagram of g associated to λ. For our further
considerations H(n−λ )g is the most important tool.
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Example 1.1.6. The Hasse diagram H(n−ω3
)sl5 is given by:

β1

β2 β3

β4 β5

β6

β1
β1 = (1, 1, 1, 1)

β2 = (0, 1, 1, 1)

β3 = (1, 1, 1, 0)

β4 = (0, 0, 1, 1)

β5 = (0, 1, 1, 0)

β6 = (0, 0, 1, 0)

1 4

2 14

4 2

We define an ordered sequence of roots in ∆λ
+: (βi1 , . . . , βir) with βij ≺ βij+1 to

be a directed path from βi1 to βir .

Remark 1.1.7. For our purposes we want to allow the trivial path (∅) and any
ordered subsequence of a directed path to be a directed path again. So in Example
1.1.6 (β1, β2, β4, β6) and (β1, β2, β6) are two possible directed paths.

In general it is possible that two edges in H(n−λ )g, one ending in a root β and
one starting in β, have the same label:

γ
k−→ β

k−→ δ.

We call this construction a k-chain (of length 2).

Associated to H(n−λ )g we construct two subsets Dλ, Dλ ⊂ P(∆λ
+) of the power

set of ∆λ
+: For p ∈ P(∆λ

+) we define

(1.8) p ∈ Dλ :⇔ p = {βi1 , . . . , βir},
for a directed path (βi1 , . . . , βir) in H(n−λ )g. So from now on by (1.8) we interpret

p ∈ Dλ as a directed path in H(n−λ )g.

Remark 1.1.8. Let βi, βj ∈ ∆λ
+ be arbitrary. Then there exist a p ∈ Dλ with

βi, βj ∈ p if and only if βi − βj or βj − βi is a non-negative linear combination
of simple roots.

Remark 1.1.9. A staircase walk from (0,0) to (n,n) beyond the diagonal in
a n × n-lattice is a called Dyck path. In the general An-case ([FFoL11a]) the
constructed directed paths are Dyck paths in this sense. To be consistent with
their notation we call our directed paths Dλ also Dyck paths.

Further we define the set of co-chains by

(1.9) Dλ := {p ∈ P(∆λ
+) | |p ∩ p| ≤ 1, ∀ p ∈ Dλ}.

If necessary we use an additional index D
type of g
λ , to distinguish which type of

g we consider. We want to consider the integral points of a polytope which is
connected to Dλ in a very natural way. Fix λ = mωi, with m ∈ Z≥0. Let

(1.10) P (mωi) = {x ∈ RN≥0 |
∑

βj ∈p
xj ≤ m, ∀ p ∈ Dωi},

be the associated polytope to Dωi . Denote by S(mωi) the integer points in
P (mωi): S(mωi) = P (mωi) ∩ ZN≥0. We define the map

supp1 : S(ωi)→ P(∆ωi
+ ), supp1(s) = {βj | sj > 0}.
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For s ∈ S(ωi) we have with (1.9) immediately supp1(s) ∈ Dωi . Conversely every
p ∈ Dωi has a non-empty pre-image. With s ∈ {0, 1}N we conclude that supp1

is injective and that we have the immediate proposition:

Proposition 1.1.10. The map supp1 : S(ωi)→ Dωi is a bijection. �
Hence in Section 4 it is sufficient to determine the co-chains in H(n−ωi)g to find
the elements in S(ωi). Now we are able to formulate our main statements.

1.2. Main statements. Let g be a simple complex finite-dimensional Lie algebra
and λ = mωi be a rectangular weight, with 〈ωi, θ∨〉 = 1 and m ∈ Z≥0, where
θ is the highest root of g. Further we assume that H(n−ωi)g has no k-chains of
length 2. In the following table we list up all cases where these assumptions are
satisfied. Additionally in the cases (Bn, ω1), (F4, ω4) and (G2, ω1), we can rewrite
H(n−ωi)g in a diagram without k-chains of length 2:

Type of g weight ωi Type of g weight ωi

An ωk, 1 ≤ k ≤ n E6 ω1, ω6

Bn ω1, ωn E7 ω7

Cn ω1 F4 ω4

Dn ω1, ωn−1, ωn G2 ω1

Table 2. Solved cases

Let I(mωi) ⊂ S(n−) be the ideal such that V (mωi)
a = S(n−)/I(mωi).

Theorem A.

I(mωi) = S(n−)
(
U(n+) ◦ span{f 〈mωi,β

∨〉+1
β | β ∈ ∆+}

)
.

Proof. This statement follows by Theorem 5.1.4. �
Theorem B. Bmωi = {f svmωi | s ∈ S(mωi)} is a FFL basis of V (mωi)

a.

Proof. In Section 2 we show that the polytope P (mωi) is normal. By Theorem
3.1.4 we conclude that Bmωi is a spanning set for V (mωi)

a. After fixing the order
of the factors, with Theorem 5.1.2 we have a FFL basis of V (mωi). Because this
basis is monomial and V (mωi) ∼= V (mωi)

a as vector spaces, we conclude that
Bmωi is a FFL basis of V (mωi)

a. �

1.3. Applications. To state an important consequence of Theorem A and The-
orem B we give the definitions of essential monomials due to Vinberg (see [V05],
[Gor11]) and Feigin-Fourier-Littelmann (FFL) modules due to [FFoL13]. Let
λ be a dominant integral weight. Recall that we have a homogeneous lexico-
graphical total order ≺ on the set of multi-exponents induced by the order on
∆λ

+:

β1 ≺ β2 ≺ · · · ≺ βN .
In the following we fix a ordering on the factors in a vector

(1.11) fpvλ = fpNN f
pN−1

N−1 . . . fp11 vλ.

Definition 1.3.1. (i) We call a multi-exponent p ∈ ZN≥0 essential if

fpvλ /∈ span{fqvλ | q ≺ p}.
(ii) Define es(V (λ)) ⊂ ZN≥0 to be the set of essential multi-exponents.
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By [FFoL13, Section 1] {fpvλ | p ∈ es(V (λ))} is a basis of V (λ)a and of V (λ).

Let M = U(n−)vM and M
′

= U(n−)vM ′ be two cyclic modules. Then we denote

with M �M ′
:= U(n−)(vM ⊗ vM ′ ) ⊂ M ⊗M ′

the Cartan component and we
write M�n := M � · · · �M (n-times).

Definition 1.3.2. We call a cyclic module M a FFL module if:

(i) There exists a normal polytope P (M) such that es(M) = S(M), where
S(M) is the set of lattice points in P (M).

(ii) ∀n ∈ N : dimM�n = |nS(M)|, where nS(M) is the n-fold Minkowski
sum of S(M).

Corollary 1.3.3. For the cases of Table 2 V (mωi) is a FFL module.

Proof. Proposition 2.3.1 shows that P (mωi) is a normal polytope. By Theorem
B a basis of V (mωi) is given by Bmωi , hence with Lemma 5.1.1 we have S(mωi) =
es(V (mωi)).
Let n ∈ N be arbitrary, then dimV (mωi)

�n = dimV (nmωi). Again by Theorem
B we have dimV (nmωi)) = |S(nmωi))|. Because P (nmωi)) is a normal polytope
and therefore satisfies the Minkowski sum property, we conclude |S(nmωi))| =
|nS(mωi))|. �
Remark 1.3.4. We note that in [FFoL13] the FFL modules are called favourable
modules.

2. Normal polytopes

Our goal in this section is to show, that the polytopes defined in (1.10) are normal.
A convex lattice polytope P ⊂ RK ,K ∈ Z≥0, i.e. P is the convex hull of finitely
many integer points, is called normal, if the set of integer points in the m-th
dilation mP is the m-fold Minkowski sum of the integer points in P .
To achieve our goal we will prove the normality condition for a larger class of
polytopes in a more abstract setting than in Section 1.

2.1. General setting. Let ∆ = {z1, z2, . . . , zK} be a finite, non-empty set with
a total order: z1 � z2 � · · · � zK . We extend � to the (non-homogeneous)
lexicographic order on P(∆), the power set of ∆. Let D = {p1, . . . ,pt} ⊂ P(∆)
be an arbitrary subset.

Remark 2.1.1. (i) To illustrate this non-homogeneous lexicographical order we
give for K ≥ 3 an example:

{z1, z2} � {z1} � {z2, z3}
(ii) Let p = {zi1 , . . . , zir} ∈ P(∆) be an arbitrary set. We always assume without
loss of generality (wlog): zi1 � · · · � zir .
We can associate a collection of polytopes to D in a natural way:

(2.1) P (m) = {x ∈ RK≥0 |
∑

zj ∈p
xj ≤ m, ∀p ∈ D}, m ∈ Z≥0.

To work with these polytope, in particular with the elements in D, we define the
following.
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Definition 2.1.2.

(1) For p ∈ P(∆) define pmin = min
�
{z ∈ p} and pmax analogously.

(2) Let p,q ∈ P(∆), p = {zi1 , . . . , zir}, q = {zj1 , . . . , zjs} with pmin = qmax.
Then we define the concatenation of p and q by

p ∪ q = {zi1 , zi2 . . . , zir =zj1 , zj2 , . . . , zjs} ∈ P(∆).

2.2. Normality condition.

Definition 2.2.1. Assume D ⊂ P(∆) has the following properties:

(1) Subsets of elements in D are again in D:

∀A ⊂ p ∈ D : A ∈ D.

(2) Every z ∈ ∆ lies at least in one element of D:⋃
p∈D

p = ∆

(3) The concatenation of two elements in D, if possible, lies again in D:

∀p,q ∈ D with pmin = qmax: p ∪ q ∈ D.

Then we call D ⊂ P(∆) a set of Dyck paths.

We define for m ∈ Z≥0, suppm : S(m)→ P(∆), by

t = (tz)z∈∆ 7→ suppm(t) = {z ∈ ∆ | tz > 0}.
Note that the map suppm is in general not injective. Furthermore we have
supp1(S(1)) ⊆ suppm(S(m)), because of S(1) ⊆ S(m) and suppm|S(1) = supp1.

Remark 2.2.2. Let D ⊂ P(∆) be a set of Dyck paths, then P (m) defined in
(2.1) is a bounded convex polytope for all m ∈ Z≥0.
By the definition of P (m) and the second property of D, which guarantees that
each z ∈ ∆ lies in at least one Dyck path, we have tz ∈ {0, 1}, ∀z ∈ ∆, for t ∈
S(1). Hence supp1 is an injective map and we get an induced (non-homogeneous)
total order on S(1).

Now we want to give a characterization of the image of supp1.

Remark 2.2.3. Let D ⊂ P(∆) be a set of Dyck paths, then

(2.2) supp1(S(1)) = {A ∈ P(∆) | |A ∩ p| ≤ 1, ∀p ∈ D} =: Γ.

”⊆”: Assume there is an element t ∈ S(1) with supp1(t) = A ∈ P(∆) and
|A∩p| > 1 for some p ∈ D. Then we have

∑
z∈A∩p tz > 1, since tz > 0, ∀z ∈ A.

And so we have:
∑

z∈p tz > 1. But this is a contradiction to the assumption

t ∈ S(1).

”⊇”: Let B ∈ Γ be arbitrary. Associated to B we define qB ∈ ZK≥0 by qBz = 1

if z ∈ B and qBz = 0 else. By the definition of Γ we have for every Dyck path
p ∈ D:

∑
z∈p q

B
z ≤ 1. Hence qB ∈ S(1) with supp1(qB) = B.

Let s ∈ S(m),m ∈ Z≥0, s 6= 0 be an arbitrary non-zero element. Consider
suppm(s) ∈ P(∆), we have P(suppm(s)) ⊆ P(∆). Let

(2.3) ∇ = (supp1(S(1)) ∩ P(suppm(s)) ⊆ P(∆).

Note that ∇ is a total ordered, non-empty set, because S(1) contains all unit
vectors and s 6= 0 by assumption. So there is a unique maximal element (with
respect to �), denoted by Ms ∈ ∇.



PBW FILTRATION: FFL MODULES VIA HASSE DIAGRAMS 27

Lemma 2.2.4. Let D be a set of Dyck paths, s ∈ S(m) non-zero and µ ∈ Ms.
Then we have sν = 0 for all ν ∈ ∆ such that (ν � µ and ∃q ∈ D : ν, µ ∈ q).

Proof. We assume the contrary. That means there exists ν ∈ ∆ with ν � µ,
sν 6= 0 and a Dyck path p ∈ D such that ν, µ ∈ p. Define

V := {τ ∈Ms | ∃q ∈ D : ν, τ ∈ q, ν � τ} ⊂Ms

and M ′s := ({ν}∪Ms)\V. By assumption we have µ ∈ V and so |V | ≥ 1. Further
we have M ′s ∈ P(suppm(s)) and we want to show that M ′s ∈ supp1(S(1)).
We assume that this is not the case. So there exists some b ∈ D such that
|M ′s ∩ b| > 1. By the definition of V this can only happen, if there exists a
α ∈ Ms with α � ν and α, ν ∈ b. The following picture is intended to give a
better understanding of the foregoing situation.

ν ..

τ1

.

.

τ2.α

µ , τ1, τ2 ∈ V.
b

p

We can assume wlog that bmin = ν and pmax = ν, because subsets of Dyck
paths are again Dyck paths. So the concatenation b ∪ p ∈ D is defined and we
have α, ν ∈ b ∪ p. But then, because of α, ν ∈ Ms: |Ms ∩ b| > 1, which is a
contradiction to Ms ∈ supp1(S(1)).
So for all q ∈ D we have |M ′s ∩ q| ≤ 1. By that and with M ′s ∈ P(∆) we
conclude M ′s ∈ supp1(S(1)). Therefore M ′s ∈ ∇ and by construction, because �
is a lexicographic order, M ′s � Ms, which is a contradiction to the maximality
of Ms. So the assumption on the existence of ν was wrong, which proves the
Lemma. �

Proposition 2.2.5. Let D ⊂ P(∆) be a set of Dyck paths, then we have for the
integer points S(m) of the polytopes P (m) associated to D:

(2.4) S(m− 1) + S(1) = S(m), ∀m ∈ Z≥1,

where the left-hand side (lhs) of (2.4) is the Minkowski sum of S(m−1) and S(1).

Proof. Let m ≥ 1. From the definition of P (m) and of the Minkowski sum follows
S(m− 1) + S(1) ⊂ S(m). So it is sufficient to show that

(2.5) S(m− 1) + S(1) ⊃ S(m)

holds. For that let s = (sz)z∈∆ ∈ S(m) \ S(m− 1) be an arbitrary element. We
show that there exists an integer point t1 ∈ S(1)\{0} such that: s−t1 ∈ S(m−1).
We define for Ms defined as in (2.3):

(2.6) t1 := supp−1
1 (Ms) ∈ S(1) \ {0}.

This element is unique because of the injectivity of supp1. Now we consider the
integer point s− t1. We know that there are no negative entries, because sz = 0
implies for all A ∈ ∇ : z /∈ A and so t1z = 0. Hence s − t1 ∈ S(m) and so the
second step is to show that s− t1 lies already in S(m− 1).
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To achieve that we assume contrary s− t1 ∈ S(m) \ S(m− 1), i.e. that there is
a Dyck path p ∈ D such that:

∑

z∈p
(sz − t1z) = m.

Since s ∈ S(m) we have:

(2.7) m =
∑

z ∈p
(sz − t1z) =

∑

z ∈p
sz

︸ ︷︷ ︸
≤m

−
∑

z ∈p
t1z

︸ ︷︷ ︸
≥ 0

⇒
∑

z ∈p
sz = m and

∑

z ∈p
t1z = 0.

We want to construct another Dyck path p ∈ D such that
∑

z∈p sz > m.
Let β ∈ ∆ be maximal with the property β ∈ p ∧ sβ > 0. In particular, since∑

z∈p(sz − t1z) = m we have p ∩Ms = ∅ and so β /∈Ms. We define

p′ = p \ {γ ∈ p | γ � β},
which is an element of D since subsets of Dyck paths are again Dyck paths. By
construction we have ∑

z ∈p′
sz = m =

∑

z ∈p
sz.

There are two possibilities to extend the path p′ with a further Dyck path p′′ ∈ D:

(i) p′′min = β or (ii) p′′max = pmin.

To obtain a path p = p′′ ∪ p′ (respectively p = p′ ∪ p′′) with
∑

z∈p sz > m, the

extension p′′ has to satisfy the following condition: p′′ ∩Ms 6= ∅.
Assume we are in the case (ii). Then there exists τ ∈ p′′ ∩Ms with sτ > 0.
Further we have sβ > 0 and τ, β ∈ p′ ∪ p′′ = p ∈ D. By construction we have
β ≺ τ and so Lemma 2.2.4 implies that sβ = 0. This is a contradiction to sβ > 0.

So we want to show the existence of a path p′′ ∈ D with condition (i) and
p′′ ∩Ms 6= ∅. We assume contrary there is no such Dyck path p′′:

(2.8) ∀q ∈ D with qmin = β : q ∩Ms = ∅.
Under this assumption and by using Lemma 2.2.4 we will show:

(2.9) ∀q ∈ D with β ∈ q : q ∩Ms = ∅.
Assume (2.9) is not true, so there is some β 6= τ ∈ q ∩Ms for q ∈ D with β ∈ q.
Then we have two cases.
Let τ � β, then τ and β lie in q. Now the path from τ to β is again a Dyck path.
But this is a contradiction to Assumption (2.8).
Let β � τ , by τ ∈ q ∩Ms we have t1τ 6= 0. Then Lemma 2.2.4 implies sβ = 0,
which is a contradiction to the choice of β.
Therefore (2.9) holds. Recall the properties of Ms. We have

Ms = supp1(t1) ∈ P(∆) with |Ms ∩ q| ≤ 1, ∀q ∈ D.
Now considerM ′s := Ms∪{β} ∈ P(suppm(s)).We will show thatM ′s ∈ supp1(S(1)).
For q ∈ D with β ∈ q we have |M ′s ∩ q| = 1 by (2.9).
For q ∈ D with β /∈ q we have |M ′s ∩ q| ≤ 1 by |Ms ∩ q| ≤ 1.
We conclude M ′s ∈ supp1(S(1)) and so

M ′s ∈ ∇ = supp1(S(1)) ∩ P(suppm(s)).
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But with M ′s �Ms we get a contradiction to the maximality of Ms.
So Assumption (2.8) was wrong and there exists

p′′ ∈ D with p′′min = β : p′′ ∩Ms 6= ∅.
We recall that β /∈Ms and therefore p̃ 6= {β}. Define the concatenation of p′′ and
p′ in β as p := p′′ ∪ p′ ∈ D which is indeed defined because p′′min = β = p′max.
From Definition 2.2.1(3) we know that p is a Dyck path. Now by construction
we conclude ∑

z ∈p
sz =

∑

z ∈p′′
sz

︸ ︷︷ ︸
> 0

+
∑

sz
z ∈p′︸ ︷︷ ︸
=m

> m.

But this is a contradiction to the choice of s ∈ S(m) and the assumption∑
z∈p(sz−t1z) = m was wrong. We conclude s−t1 ∈ S(m−1) and with t1 ∈ S(1)

we have s ∈ S(m− 1) + S(1). Finally we get S(m) ⊂ S(m− 1) + S(1). �

2.3. Consequences. We recall the construction of the Hasse diagram and the
Dyck paths from Section 1 and show that we can apply Proposition 2.2.5 to this
setup. Let λ = mωi as before and we set ∆ = ∆ωi

+ , D = Dωi . Then we have for
the associated polytopes:

P (m) = P (mωi).

For ∆λ
+ = {β1, . . . , βN} we chose in Section 1 the order β1 ≺ · · · ≺ βN . To apply

Proposition 2.2.5 we can use the same order on the positive roots and extend
this order to the (non-homogeneous) lexicographical order on P(∆ωi

+ ) as before.
We want to show that the Dyck paths defined in Section 1 are Dyck paths in the
sense of Definition 2.2.1.
(1) Every p′ ⊂ p ∈ Dωi is again a Dyck path: We saw that any ordered subset
of a directed path in H(n−ωi)g is again a Dyck path.
(2) For each β ∈ ∆ωi

+ there is at least one p ∈ Dωi such that β ∈ p: The set of
vertices in H(n−ωi)g is exactly ∆ωi

+ . By construction we allow paths of cardinality
one, so for example the path (β) contains β.
(3) Let p,p′ ∈ Dωi be two Dyck paths, such that pmin = p′max. Then there are
directed paths W,W ′ in H(n−ωi)g realizing p and p′ such that the end point of
W is equal to the starting point of W ′. We consider the directed path, which we
obtain by the concatenation of the directed paths W and W ′. This directed path
realizes p ∪ p′. Hence p ∪ p′ lies in Dωi .
With Proposition 2.2.5 we get immediately for S(mωi) = P (mωi)∩ZN≥0,m ∈ Z≥0 :

Proposition 2.3.1. S(mωi) = S((m− 1)ωi) + S(ωi),m ∈ Z≥1. �

Finally we conclude that the polytopes constructed in (1.10) are normal convex
lattice polytopes.

3. Spanning Property

Let g be a simple complex finite-dimensional Lie algebra, λ = mω be a rectangular
dominant integral weight such that 〈ω, θ∨〉 = 1, where θ is the highest root in
∆+ and m ∈ Z≥0. In this section we show that Bλ = {f svλ | s ∈ S(λ)} is a
spanning set for V (λ)a. Recall that we have

V (λ)a ∼= S(n−λ )/Iλ,
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where Iλ is the annihilating ideal of vλ. We know that f
〈λ,α∨〉+1
α vλ is zero in V (λ)

(see (1.4)). Hence f
〈λ,α∨〉+1
α vλ = 0 in V (λ)a. By the action of U(n+) on V (λ)a we

obtain further relations. We will see that these relations are enough to rewrite
every element as a linear combination of f svλ, s ∈ S(λ).
In our proof it is essential to have a Hasse diagram H(n−λ )g without k-chains. A
Dyck path is defined as before to be the set of roots corresponding to a directed
path in H(n−λ )g.
Let ◦ be the action of U(n+) on S(g) induced by the adjoint action of n+ on
g. Via the isomorphism S(n−) ∼= S(g)/S(g)(S+(n+⊕ h)) we obtain an action on
S(n−), where S+(n+⊕ h) ⊂ S(n+⊕ h) is the augmentation ideal. By

S(n−λ ) ∼= S(n−)/S(n−)(span{fβ | β ∈ ∆+ \∆λ
+})

we get an action on S(n−λ ). We denote this action again by ◦. Since the action
of U(n+) on V (λ)a is induced by the action of U(n+) on V (λ) (which is again
induced by the adjoint action), we obtain that for all e ∈ U(n+), f ∈ S(n−λ )

(3.1) e(fvλ) = (e ◦ f)vλ,

holds. Therefore we can restrict our further discussion on the U(n+)-module
S(n−λ ). Equation (3.1) and U(n+)(fvλ) = U(n+)(0) = {0} for all f ∈ Iλ imply
that Iλ is stable under ◦. Furthermore, by Remark 1.1.4 the total degree of a
monomial in S(n−λ )/Iλ is invariant or it is zero under ◦. We denote as before

∆λ
+ = {β1, . . . , βN} and use the same total order ≺ on the multi-exponents (resp.

monomials) as defined in Section 1, which is induced by β1 ≺ β2 ≺ · · · ≺ βN .

We define differential operators; for α, β ∈ ∆+ let

∂αfβ :=

{
fβ−α, ifβ − α ∈ ∆λ

+

0, else.

The operators satisfy

∂αfβ = cα,β[eα, fβ],

for constants cα,β ∈ C. So instead of using ◦ we can work with these differential
operators. We point out that we need the differential operators for arbitrary
roots in ∆+.

Remark 3.1.1. Here we want to illustrate the problem which occurs if we allow

k-chains in our Hasse diagram. Let γ ≺ β ≺ δ the roots of a k-chain γ
k−→ β

k−→ δ
and consider for ` ≥ 2:

(3.2) ∂2
kf

`
γ = ∂k(`f

1
βf

`−1
γ ) = c0`f

1
δ f

0
βf

`−1
γ︸ ︷︷ ︸

maximal monomial

+ c1`(`− 1)f2
βf

`−2
γ ,

with c0 = cγ,αkcβ,αk and c1 = c2
γ,αk

where cγ,αk , cβ,αk are the structure constants
corresponding to [eαk , fβ] and [eαk , fγ ] respectively. So it is more involved to find
a relation which contains β and δ.

The next Lemma describes the action of the differential operators and gives an
explicit characterization of the maximal monomial of ∂νf

s for certain ν ∈ ∆+

and s ∈ ZN≥0.

Lemma 3.1.2. Assume H(n−λ )g has no k-chains.
(i) Let p = {βi1 , . . . , βir} ∈ Dλ with βi1 ≺ · · · ≺ βir and ν ∈ ∆+. Further let
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βik , k ≤ r be maximal such that ∂νfβik 6= 0. Let s ∈ ZN≥0 be a multi-exponent

supported on p, i.e. sβ = 0 for β /∈ p. Then the maximal monomial in ∂ lνf
s =

∂ lν(fs1i1 . . . f
sr
ir

), l ≤ sk, is given by

f s1i1 . . . f
sk−1

ik−1
(f lik−νf

sk−l
ik

)f
sk+1

ik+1
. . . fsrir .

(ii) Let
∑

u∈ZN≥0
cuf

u ∈ S(n−) and ν ∈ ∆+. Let h = max
≺
{u | ∂νfu 6= 0, cu 6= 0}.

Further let βk = max
≺
{β | fβ is a factor of fu, ∂νfβ 6= 0, cu 6= 0} and assume

hβk > 0. Then for l ≤ hβk the maximal monomial in

∂ lν
∑

u∈ZN≥0

cuf
u =

∑

u∈ZN≥0

cu∂
l
νf

u

appears in ∂ lνf
h.

Proof. (i) Assume we have two roots βi, βj ∈ ∆λ
+ with βi ≺ βj and βi − ν and

βj − ν are again roots in ∆λ
+. For βil − ν /∈ ∆λ

+ we have ∂νfβil = 0, so we do

not need to consider such roots βil ∈ ∆λ
+. So in order to prove (i), because our

monomial order is lexicographic, it is sufficient to show that

(3.3) βi ≺ βj ⇒ βi − ν ≺ βj − ν.
If βi > βj with respect to the standard partial order we have βi− ν > βj − ν and

therefore βi − ν ≺ βj − ν, by the choice of the total order (1.6) on ∆λ
+.

If the roots are not comparable with respect to the standard partial order, the
second step is to compare the heights of the roots. So if ht(βi) > ht(βj) then
ht(βi − ν) > ht(βj − ν) and again βi − ν ≺ βj − ν.
If ht(βi) = ht(βj), we have to consider βi = (s1, . . . , sn) and βj = (t1, . . . , tn) in
terms of the fixed basis of the simple roots (see Remark 1.1.3). Then there is a
1 ≤ k ≤ n, such that sk > tk and si = ti for all 1 ≤ i < k. Let ν = (u1, . . . , un),
then βi − ν = (s1 − u1, . . . , sn − un) is lexicographically greater than βj − ν =
(t1 − u1, . . . , tn − un). Thus βi − ν ≺ βj − ν and (3.3) holds.

(ii) We only have to consider the multi-exponents s ∈ ZN≥0 such that ∂νf
s 6= 0.

Now let t be the maximal multi-exponent with this property and let l ≤ tβk .

Then we have ∂ lνf
t 6= 0 and by (i) the maximal monomial appearing in ∂ lνf

t is

(3.4) f lβk−νf
tβk− l
βk

∏

β∈∆λ
+,β 6=βk

β 6=βk−ν

f
tβ
β .

The observation (3.3) tells us that fβk−ν = max{fβ−ν | ∂νfβ 6= 0, sβ > 0}. So by
the choice of t and because our order is lexicographic, the element (3.4) is the
maximal monomial in

∑
s∈ZN≥0

cs∂
l
νf

s. �

Proposition 3.1.3. Assume H(n−λ )g has no k-chains and let p ∈ Dλ be a Dyck

path, s ∈ ZN≥0 be a multi-exponent supported on p. Suppose further 〈λ, θ∨〉 = m

and
∑
α∈p

sα > m. Then there exist constants ct ∈ C, t ∈ ZN≥0 such that:

(3.5) f s +
∑

t≺ s

ctf
t ∈ Iλ.
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We follow an idea of [FFoL11a, FFoL11b] who showed a similar statement in the
cases sln and spn for arbitrary dominant integral weights.

Proof. Let p = {τ0, τ1, . . . , τr} ∈ Dλ be an arbitrary Dyck path. By construction
we have for 1 ≤ i ≤ r: τi−1 ≺ τi. Because

∑r
i=0 sτi > m we have

fsτ0 + · · ·+ sτr
θ

∈ Iλ.

By the construction of the Hasse diagram there is a Dyck path p′ ∈ Dλ with
p ⊂ p′, such that there is no path p′′ with p′ ( p′′. Hence we can assume wlog

p = {τ0 = θ, τ1, . . . , τr−1, τr = βN}.

Let ν1, . . . , νr ∈ ∆+, with νi 6= νi+1 be the labels at the edges of p. We consider

f
sτ0 + · · ·+ sτr
θ

∈ Iλ. Because Iλ is stable under ◦, we have for arbitrary x1, . . . , xl ∈
∆+ and f t ∈ Iλ:

∂x1 . . . ∂xlf
t ∈ Iλ.

We define

(3.6) A := ∂
sτr
νr

. . . ∂
sτ2 + · · ·+ sτr
ν2

∂
sτ1 + · · ·+ sτr
ν1

f
sτ0 + · · ·+ sτr
θ

∈ Iλ.

Claim: There exist constants cs 6= 0, ct ∈ C, t ∈ ZN≥0 with t ≺ s, such that:

(3.7) A = csf
s +

∑

t≺ s

ctf
t ∈ Iλ

If the claim holds the Proposition is proven.

Proof of the claim. Now we need the explicit description of the Dyck paths
given by the Hasse diagram. Above we defined ν1 to be the label at the edge

θ
ν1−→ τ1 in H(n−λ )g. Because we assumed that H(n−λ )g has no ν1-chains of length

2, there is no edge labeled by ν1 starting in the vertex θ − ν1 = τ1. That means
∂
ν1
f
θ−ν1

= 0. Therefore we obtain

∂
sτ1 + · · ·+ sτr
ν1

f
sτ0 + · · ·+ sτr
θ

= a0 f
sτ0
θ
f
sτ1 + · · ·+ sτr
θ−ν1

∈ Iλ

for some constant a0 ∈ C \ {0}. Now ν2 is the label at the edge between the
vertices τ1 and τ2. Again there is no ν2-chain in H(n−λ )g, so ∂ν2fθ−ν1−ν2 = 0 and

∂ν2fθ−ν2 = 0, so we have for k = min {sτ0 , sτ2 + · · ·+ sτr}, bq ∈ C \ {0}:

(3.8)

∂
sτ2 + · · ·+ sτr
ν2

a0f
sτ0
θ
f
sτ1 + · · ·+ sτr
θ−ν1

=

b0 f
sτ0
θ
f
sτ1
θ−ν1

f
sτ2 + · · ·+ sτr
θ−ν1−ν2

+

k∑

q= 1

bqf
sτ0− q
θ

f
sτ1 + q

θ−ν1
f
sτ2 + · · ·+ sτr−q
θ−ν1−ν2

f
q

θ−ν2
.

For our purposes, we do not need to pay attention to the scalars unless they are
zero. We also notice that the terms of the sum are only non-zero, if θ− ν2 ∈ ∆λ

+.

The first part of Lemma 3.1.2 implies, that the monomial f
sτ0
θ
f
sτ1
θ−ν1

f
sτ2+ . . . +sτr
θ−ν1−ν2

is the largest (with respect to ≺) in (3.8), because θ ≺ θ − ν1 ≺ θ − ν1 − ν2.
By construction ∂νi+1fθ−ν1−ν2−···−νi 6= 0, because θ−ν1−ν2−· · ·−νi−νi+1 is an

element of ∆λ
+, for i < r. So the second statement of Lemma 3.1.2 implies that
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the largest element is obtained by acting in each step on the largest root vector.
To be more precise, we consider the following equations:

∂
sτr
νr

. . . ∂
sτ2 + · · ·+ sτr
ν2

∂
sτ1 + · · ·+ sτr
ν1

f
sτ0 + · · ·+ sτr
θ

=

a0 ∂
sτr
νr

. . . ∂
sτ2 + · · ·+ sτr
ν2

f
sτ0
θ
f
sτ1 + · · ·+ sτr
θ−ν1

=

b0 ∂
sτr
νr

. . . ∂
sτ3 + · · ·+ sτr
ν3

f
sτ0
θ
f
sτ1
θ−ν1

f
sτ2 + · · ·+ sτr
θ−ν1−ν2

+
∑

smaller monomials =
.
.
.

b′0 f
sτ0
θ
f
sτ1
θ−ν1

f
sτ2
θ−ν1−ν2

. . . f
sτr
θ−ν1−ν2−···−νr

+
∑

smaller monomials ∈ Iλ.

for some b′0 ∈ C \ {0}. But the last term is exactly what we wanted to obtain, so
for constants ct ∈ C, cs ∈ C \ {0} we have by assumption that sα = 0 if α /∈ p:

∂
sτr
νr

. . . ∂
sτ2 + · · ·+ sτr
ν2

∂
sτ1 + · · ·+ sτr
ν1

f
sτ0 + · · ·+ sτr
θ

=

csf
sτ0
θ
f
sτ1
τ1
f
sτ2
τ2

. . . f
sτr
τr

+
∑

t≺ s

ctf
t =

csf
s +

∑

t≺ s

ctf
t ∈ Iλ.

�

Theorem 3.1.4. The set {f svλ | s ∈ S(λ)} spans the module V (λ)a.

Proof. Let m ∈ Z≥0 and t ∈ ZN≥0 with t /∈ S(λ). That means there exists a Dyck

path p ∈ Dλ such that
∑
β ∈p

tβ > m. Define a new multi-exponent t′ by

t′β :=

{
tβ, ifβ ∈ p,

0, else.

Because of
∑
β ∈p

t′β =
∑
β ∈p

tβ > m we can apply Proposition 3.1.3 to t′ and get

f t
′

=
∑

s′≺ t′
cs′f

s′ ∈ S(n−λ )/Iλ,

for some cs′ ∈ C. Because the order of the factors of f t ∈ S(n−λ ) is arbitrary and
since we have a monomial order, we get

(3.9) f t = f t
′∏

β /∈p
f
tβ
β =

∑

s≺ t

csf
s ∈ S(n−λ )/Iλ,

where cs = cs′ and f s = f s
′∏

β /∈p f
sβ
β . Equation (3.9) shows that we can express

an arbitrary multi-exponent as a sum of strictly smaller multi-exponents. We
repeat this procedure until all multi-exponents in the sum lie in S(λ). There are
only finitely many multi-exponents of a fixed degree and the degree is invariant
or zero under the action ◦. So after a finite number of steps, we can express t in
terms of r ∈ S(λ) for some cr ∈ C:

f t =
∑

r∈S(λ)

crf
r ∈ S(n−λ )/Iλ.

�
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Corollary 3.1.5. Fix for every s ∈ S(λ) an arbitrary ordering of the factors fβ
in the product

∏
β > 0 f

sβ
β ∈ S(n−λ ). Let f s =

∏
β > 0 f

sβ
β ∈ U(n−) be the ordered

product. Then the elements f svω, s ∈ S(λ) span the module V (λ).

Proof. Let f tvλ ∈ V (λ) with t ∈ ZN≥ arbitrary. We consider f tvλ as an element

in V (λ)a. By Theorem 3.1.4 we get

f tvλ =
∑

s∈S(λ)

csf
svλ in V (λ)a.

The ordering of the factors in a product in S(n−λ ) is irrelevant, so we can adjust the
ordering of the factors to the fixed ordering and get an induced linear combination:

f tvλ =
∑

s∈S(λ)

csf
svλ in V (λ).

�

4. FFL Basis of V (ω)

Throughout this section we refer to the definitions in Subsection 1.1. In this
section we calculate explicit FFL bases of the highest weight modules V (ω),
where ω occurs in Table 2. We will do this by giving characterizations of the
co-chains p ∈ Dω (see (1.9)) and using the one-to-one correspondence between
Dω and S(ω) (see Proposition 1.1.10).
The results of this section, i.e. Bω = {f svω | s ∈ S(ω)} is a FFL basis of V (ω),
provide the start of an inductive procedure in the proof of Theorem 5.1.2. With
Proposition 2.2.5 we will be able to give an explicit basis of V (mω), m ∈ Z≥0,
parametrized by the m-th Minkowski sum of S(ω).

4.1. Type An. Let g be a simple Lie algebra of type An with n ≥ 1 and the
associated Dynkin diagram

An
1 2 3 4 n

The highest root is of the form θ =
∑n

i=1 αi. Since a Lie algebra g of type An is
simply laced we have θ∨ =

∑n
i=1 α

∨
i and so 〈ω, θ∨〉 = 1⇔ ω ∈ {ωk | 1 ≤ k ≤ n}.

The positive roots of g are described by: ∆+ = {αi,j =
∑j

l=i αl | 1 ≤ i ≤ j ≤ n}.
So for the roots corresponding to n−ωk we have:

(4.1) ∆ωk
+ = {αi,j ∈ ∆+| 1 ≤ i ≤ k ≤ j ≤ n} ⊂ ∆+.

Before we define the total order on ∆ωk
+ , we define a total order on ∆+:

β1 = α1,n,

β2 = α2,n, β3 = α1,n−1,

β4 = α3,n, β5 = α2,n−1, β6 = α1,n−2,

· · · ,
βn(n−1)/2+1 = αn, βn(n−1)/2+2 = αn−1, · · · , βn(n+1)/2 = α1.

Now we delete every root βi ∈ ∆+ \ ∆ωk
+ and relabel the remaining roots. For

an example of this procedure see Appendix, Figure 2 and Example 1.1.6. In the
following it is more convenient to use the description αi,j instead of βk. First we

give a characterization of the co-chains p ∈ Dωk ⊂ P(∆ωk
+ ).
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Proposition 4.1.1. Let be p = {αi1,j1 , . . . , αis,js} ∈ P(∆ωk
+ ) arbitrary, then:

(4.2) p ∈ Dωk ⇔ ∀αil,jl , αim,jm ∈ p, il ≤ im : il < im ≤ k ≤ jl < jm.

Further we have: p ∈ Dωk ⇒ s ≤ min{k, n+ 1− k}.
Proof. First we prove (4.2): “⇐”: Let p = {αi1,j1 , . . . , αis,js} ∈ P(∆ωk

+ ) be an el-
ement with the properties of the right-hand side (rhs) of (4.2). Let αil,jl , αim,jm ∈
p, with il < im. Consider now:

αil,jl − αim,jm =

jl∑

r=il

αr −
jm∑

r=im

αr =

im−1∑

r=il

αr −
jm∑

r=jl+1

αr.

Since jl < jm holds, Remark 1.1.8 implies that there is no Dyck path q ∈ Dωk
such that αim,jm and αil,jl are contained in q.

“⇒”: Let be p ∈ Dωk and αil,jl , αim,jm ∈ p with αil,jl 6= αim,jm . Further we have
il ≤ jl, im ≤ jm. Assume wlog im = jm, then αim,jm = αk and il < jl. Hence

αil,jl − αk =
k−1∑

r=il

αr +

jl∑

r=k+1

αr,

which is a contradiction to p ∈ Dωk by Remark 1.1.8. So il < jl, im < jm and we
assume wlog il ≤ im.

1. Step: il = im =: y. Set x = min{jl, jm} and x = max{jl, jm}:

αy,x − αy,x =
x∑

r=y

αr −
x∑

r=y

αr =
x∑

r=x+1

αr.

Again this contradicts to p ∈ Dωk . Hence we have: il < im.

2. Step: (il < im) ∧ (jl = jm =: x):

αil,x − αim,x =

x∑

r=il

αr −
x∑

r=im

αr =

im−1∑

r=il

αr.

We conclude: jl 6= jm.

3. Step: (il < im < jm) ∧ (il < jl). So there are three possible cases:

(a) il < jl < im < jm, (b) il < im < jl < jm and (c) il < im < jm < jl.

The case (a) can not occur because k ≤ jl < im ≤ k is a contradiction. So let us
assume αil,jl , αim,jm satisfy the case (c), then we have:

αil,jl − αim,jm =

jl∑

r=il

αr −
jm∑

r=im

αr =

im−1∑

r=il

αr +

jl∑

r=jm

αr.

Finally we conclude that for two arbitrary roots αil,jl , αim,jm ∈ p ∈ Dωk with
il ≤ im we have: il < im < jl < jm.

It remains to show that the cardinality s of p is bounded by min{k, n+ 1− k}:
1. Case: min{k, n + 1 − k} = k. Let αir,jr ∈ p be an arbitrary root in p.
Then we know from (4.1) 1 ≤ ir ≤ k. But we also know that for any two roots
αil,jl , αim,jm ∈ p we have il 6= im. So there are at most k different roots in p.
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2. Case: min{k, n+ 1− k} = n+ 1− k. For two roots αil,jl , αim,jm ∈ p we have
jl 6= jm and k ≤ jl, jm ≤ n. So the number of different roots in p is bounded by
n+ 1− k.

Finally we conclude: |p| = s ≤ min{k, n+ 1− k}. �
Remark 4.1.2. Let p = {αi1,j1 , . . . , αis,js} ∈ Dωk then (4.2) implies

i1 < i2 < · · · < is ≤ k ≤ j1 < j2 < · · · < js.

Assume wlog k = j1 = j2, then there is Dyck path containing αi1,j1 and αi2,j2,
because αi1,j1 − αi2,j2 = αi1,i2−1 ∈ ∆+.

Because of Corollary 3.1.5 we know that the elements {f svωk | s ∈ S(ωk)} span

V (ωk) and by Proposition 1.1.10 there is a bijection between S(ωk) and Dωk . We
want to show that these elements are linear independent. To achieve that we will
show that |Dωk | = dimV (ωk). To be more explicit:

Proposition 4.1.3. For all 1 ≤ k ≤ n we have: |Dωk | = dimV (ωk) =
(
n+1
k

)
.

Proof. Let V (ω1) be the vector representation with basis {e1, e2, . . . , en+1}. Then∧kV (ω1) is a U(g)-representation with vωk = e1 ∧ e2 ∧ · · · ∧ ek:
(4.3) fαi1,j1vωk = e1 ∧ · · · ∧ ei1−1 ∧ ej1+1 ∧ ei1+1 ∧ · · · ∧ ek,
and we have

∧kV (ω1) ∼= V (ωk). We define fpvωk := fαi1,j1fαi2,j2 . . . fαim,jmvωk
for p = {αi1,j1 , αi2,j2 , . . . , αim,jm} ∈ Dωk and claim that the set {fpvωk | p ∈ Dωk}
is linear independent in

∧kV (ω1). If the claim holds we have |Dωk | ≤ dimV (ωk)

and with Corollary 3.1.5 we conclude that |Dωk | = dimV (ωk) =
(
n+1
k

)
.

Proof of the claim. Assume we have p1 = {αi1,j1 , αi2,j2 , . . . , αim,jm} and p2 =

{αs1,t1 , αs2,t2 , . . . , αs`,t`} in Dωk with linear dependent images under the action
(4.3), i. e. fp1

vωk = ±fp2
vωk . Then we have m = `, {j1, . . . , jm} = {t1, . . . , t`}

and we can assume wlog: m = k = `. Hence: fp1
vωk = ej1 ∧ · · · ∧ ejm = ±fp2

vωk ,
with Remark 4.1.2 we conclude p1 = p2. �
Example 4.1.4. The non-redundant inequalities of the polytope P (mω3) in the
case g = sl5 are:

P (mω3) =





x ∈ R6
≥0 |

x1 + x2 + x4 + x6 ≤ m
x1 + x2 + x5 + x6 ≤ m
x1 + x3 + x5 + x6 ≤ m




.

Example 1.1.6 shows the corresponding Hasse diagram H(n−ω3
)sl5.

Proposition 4.1.3 implies immediately for 1 ≤ k ≤ n:

Proposition 4.1.5. The vectors f svωk , s ∈ S(ωk) are a FFL basis of V (ωk). �
4.2. Type Bn. Let g be a simple Lie algebra of type Bn, n ≥ 2 with associated
Dynkin diagram

Bn >
1 2 n-2 n-1 n

The highest root for a Lie algebra of type Bn is of the form θ = α1 + 2
∑n

i=2 αi.

So we have θ∨ = α∨1 + 2
∑n−1

i=2 α
∨
i + α∨n and 〈ω, θ∨〉 = 1⇔ ω ∈ {ω1, ωn}.

First we consider the case ω = ω1. We want to consider the case B2, w1 sepa-
rately. Because there are not enough roots, this case does not fit in our general
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description of Bn, w1. We claim that the following polytope parametrizes a FFL
basis of V (mω1),m ∈ Z≥0:

P (mω1) =

{
x ∈ R3

≥0 |
x2 + x1 ≤ m
x2 + x3 ≤ m

}
.

We fix β1 = (2, 1), β2 = (1, 1), β3 = (1, 0) and the order β2 ≺ β1 ≺ β3. Then with
Proposition 2.2.5 it is immediate that this polytope is normal. The following
actions of the differential operators imply the spanning property in the sense of
Section 3 Proposition 3.1.3.

∂s1α2
fs1+s2

1 = c0f
s1
1 f s22 + smaller terms ∈ Iλ

∂s2+2s3
α1

fs2+s3
1 = c1f

s2
2 fs33 + smaller terms ∈ Iλ, ci ∈ C \ {0}.

We conclude that {f svω1 | s ∈ S(mω1)} = {vω1 , f1vω1 , f2vω1 , f3vω1 , f1f3vω1 , } is
a spanning set of V (ω1).

Now we consider the case n ≥ 3. If we construct H(n−ω1
)g as in Section 1 we get

a n-chain of length 2. Therefore we choose a new order on the roots and change
our Hasse diagram slightly to obtain a diagram without k-chains of length 2. We
illustrate this procedure for g of type B3. Then the roots ∆ω1

+ are given by

β1 = (1, 2, 2) β2 = (1, 1, 2) β3 = (1, 1, 1) β4 = (1, 1, 0) β5 = (1, 0, 0)

We choose a new order

β1 ≺ β2 ≺ β4 ≺ β5 ≺ β3,

and change the Hasse diagram

β1 β2 β3 β4 β5  β1 β3

β2

β4

β5.
2 3 23 011

012
2

2
012

First we check, if the new diagram has no k-chains. The first edge is labeled
by α2 + α3 = 011 and we have β3 − (α2 + α3) = β5. If we have a monomial

fk11 fk23 ∈ S(n−ω1
), k1, k2 ≥ 1 and we act by ∂α2+α3 we get:

c0f
k1−1
1 fk2+1

3 + c1f
k1
1 fk2−1

3 f5, ci ∈ C.

By the change of order β3 is larger than β5 and so fk1−1
1 fk2+1

3 � fk11 fk2−1
3 f5.

Therefore we can neglect the edge between β3 and β5.
Now we consider ∂k3α2

fk11 fk23 . Because of ∂α2f3, ∂α2f2 = 0 we get fk1−k31 fk23 fk32 ,
for k3 ≤ k1. So instead of drawing an edge directly from β1 to β2, we can draw
an edge, labeled by 2, from β3 to β2. Similar, because of β1 − α2 − 2α3 = β4, we
can draw an edge labeled by 012 from β3 to β4. The other edges do not cause
any problems.
The second step is to show that the paths in the new diagram, define the actions
by differential operators and the corresponding maximal elements like in Section
3 Proposition 3.1.3. By the choice of order we get the following equalities:

∂s5α2+2α3
∂s22 ∂

s3
α2+α3

fs1+s3+s2+s5
1 = c0f

s1
1 fs33 fs22 fs55 + smaller terms ∈ Iλ

∂s5α2
∂s4α2+2α3

∂s3α2+α3
fs1+s3+s4+s5

1 = c1f
s1
1 fs33 fs44 fs55 + smaller terms ∈ Iλ,
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with ci ∈ C \ {0}. In the general case, for arbitrary n > 3, we have N = 2n− 1.
Let r := dN/2e, then ∆ω1

+ is given by:

β1 = (1, 2, 2, . . . , 2) β2 = (1, 1, 2, . . . , 2, 2) . . . βr−1 = (1, 1, . . . , 1, 2)
βr = (1, 1, 1, . . . , 1) βr+1 = (1, 1, 1, . . . , 1, 0) . . . βN = (1, 0, . . . , 0, 0)

Then the only n-chain has the following form βr−1
n−→ βr

n−→ βr+1 We change
the order from β1 ≺ β2 ≺ · · · ≺ βN to

(4.4) β1 ≺ β2 ≺ · · · ≺ βr−1 ≺ βr+2 � · · · � βN−1 � βr+1 ≺ βN ≺ βr.
The modifications of the diagram are similar to them in the case of B3, so the
Hasse diagram for a Lie algebra of type Bn has the following shape

β1 β3 β4 ... βr βr+1 βr+2 ... βN−2

β2

βN−1

βN .
0110...0 4 5 n 001...12 n-1 n-2 4

2

012...2

012...2

2

Associated to the diagrams we get the following polytope for m ∈ Z≥0:

(4.5) P (mω1) =

{
x ∈ RN≥0 |

x1 + x2 + · · ·+ xN−2 + xN ≤ m
x1 + x3 + · · ·+ xN−1 + xN ≤ m

}
.

By Section 3, Corollary 3.1.5 the elements

vω1 , f1vω1 , f2vω1 , . . . , fNvω1 , f2fN−1vω1

span V (ω) and with [Car05, p. 276] we have dimV (ω1) = 2n+ 1.

Proposition 4.2.1. The vectors f svω1 , s ∈ S(ω1) are a FFL basis of V (ω1). �

Proof. The previous observations imply that {f svω1 , s ∈ S(ω1)} is a basis of
V (ω1). So it remains to show that P (ω1) is a normal polytope.
Because we changed the Hasse diagram we have to change the order of the roots
to apply Section 2. One possible new order is given by:

β1 ≺ β3 ≺ β4 ≺ · · · ≺ βN−2 ≺ β2 ≺ βN−1 ≺ βN .

Using this order we see immediately that P (ω1) is a normal polytope. �

Now we consider the case ω = ωn. In the following it will be again convenient to
describe the roots and fundamental weights of Bn in terms of an orthogonal basis:

(4.6) ∆ωn
+ = {εi,j = εi + εj | 1 ≤ i < j ≤ n} ∪ {εk | 1 ≤ k ≤ n}.

The total order on ∆ωn
+ is obtained by considering the Hasse diagram. We begin

with β1 = θ on the top and then labeling from left to right with increasing label
on each level of the Hasse diagram, which correspond to the height of the roots
in ∆ωn

+ . For a concrete example see Figure 3 in the Appendix. The correspond-
ing polytope is defined as usual, see Table 3 for an example. The elements of

∆ωn
+ correspond to εi,j =

∑j−1
r=i αr + 2

∑n
r=j αr and εk =

∑n
r=k αr. The highest

weight of V (ωn) has the description ωn = 1
2

∑n
r=1 εr. Further the lowest weight

is −ωn = −1
2

∑n
r=1 εr. With this observation, the fact that ωn is minuscule and
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(4.6) we see that

(4.7) BV (ωn) =

{
fαvωn | α =

1

2

n∑

r=1

lrεr, lr ∈ {−1, 1}, ∀1 ≤ r ≤ n
}
⊂ V (ωn)

is a basis. We note that |BV (ωn)| = 2n = dimV (ωn).

Remark 4.2.2. For an arbitrary element p ∈ D
Bn
ωn we have at most one root

of the form εk ∈ p, because if there are εk1 , εk2 ∈ p (wlog k1 < k2) we have:

εk1 − εk2 =
∑k2−1

r=k1
αr. So with Remark 1.1.8 we know that there is a Dyck path

p ∈ Dωn with εk1 , εk2 ∈ p. This observation implies that the elements p ∈ DBn
ωn

have two possible forms:

(4.8) (B1) p = {εk, εi2,j2 , . . . , εir,jr} or (B2) p = {εi1,j1 , . . . , εit,jt}.

So we can characterize the elements p ∈ DBn
ωn as follows.

Proposition 4.2.3. For p ∈ P(∆ωn
+ ) arbitrary we have:

(4.9) p ∈ DBn
ωn ⇔

{
p is of the form (B1), with (a) and (b),

p is of the form (B2), with (b).

In addition: p ∈ DBn
ωn ⇒

{
s ≤ dn2 e, p is of the form (B1),

s ≤ bn2 c, p is of the form (B2),

with s = |p|. The properties (a) and (b) are defined by

(a) ∀ 1 ≤ l ≤ s : k < il < jl,
(b) ∀αil,jl , αim,jm ∈ p, il ≤ im : il < im < jm < jl.

Proof. First we prove (4.9): “⇐”: Let p = {εk, εi2,j2 , . . . , εis,js} be an element of
form (B1) with the properties (a) and (b). Assume there are two roots x, y ∈ p
such that there exists a Dyck path q ∈ Dωn containing them.

1. Case: x = εk and y = εim,jm , for 1 ≤ m ≤ s. Then we have

εim,jm − εk =

jm−1∑

r=im

αr + 2

n∑

r=jm

αr −
n∑

r=k

αr = −
im−1∑

r=k

αr +

n∑

r=jm

αr.

Hence there is no Dyck path q ∈ Dωn such that x and y are contained in q. This
is a contradiction to the assumption.

2. Case: x = εim,jm and y = εil,jl , wlog il < im. Then we have

εil,jl − εim,jm =

jl−1∑

r=il

αr + 2
n∑

r=jl

αr −
jm−1∑

r=im

αr − 2
n∑

r=jm

αr =

im−1∑

r=il

αr −
jl−1∑

r=jm

αr.

This is a contradiction to our assumption and hence: p ∈ DBn
ωn .

Let p be of form (B2) with property (b), and assume there are two roots x, y ∈ p
such that there exists a Dyck path q ∈ Dωn containing them. Like in the second

case of our previous consideration the assumption is false and therefore: p ∈ DBn
ωn .
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“⇒”: Let p ∈ D
Bn
ωn . Then we know from Remark 4.2.2 that p is of the form

(B1) or (B2). Let p = {εk, εi1,j1 , . . . , εis,js} be of form (B1), with il < jl for all
1 ≤ l ≤ s.
1. Step: Assume ∃ 1 ≤ m ≤ s : k > im. Then we have:

εim,jm − εk =

jm−1∑

r=im

αr + 2
n∑

r=jm

αr −
n∑

r=k

αr =
k−1∑

r=im

αr +
n∑

r=jm

αr.

So by Remark 1.1.8 this contradicts p ∈ DBn
ωn . Hence: k < im for all 1 ≤ m ≤ s.

Let εil,jl , εim,jm ∈ p be two roots with εil,jl 6= εim,jm . We assume wlog il ≤ im.

2. Step: Assume il = im =: y. Set x = min{jl, jm} and x̄ = max{jl, jm}:

εy,x − εy,x̄ =
x−1∑

r=y

αr + 2
n∑

r=x

αr −
x̄−1∑

r=y

αr − 2
n∑

r=x̄

αr =
x̄∑

r=x

αr.

Again by Remark 1.1.8 this contradicts p ∈ DBn
ωn and we have: il < im.

3. Step: Let il < im and assume jl = jm =: x, we consider:

εil,x − εim,x =
x∑

r=il

αr + 2
n∑

r=x

αr −
x∑

r=im

αr − 2
n∑

r=x

αr =

im−1∑

r=il

αr.

This contradicts p ∈ DBn
ωn by Remark 1.1.8, so: jl 6= jm.

4. Step: (il < im < jm) ∧ (il < jl). So there are three possible cases:

(a) il < jl < im < jm, (b) il < im < jl < jm and (c) il < im < jm < jl.

Let us assume εil,jl and εim,jm have the property of case (a):

εil,jl−εim,jm =

jl−1∑

r=il

αr+2

n∑

r=jl

αr−
jm−1∑

r=im

αr−2

n∑

r=jm

αr =

jm−1∑

r=il

αr+2

im−1∑

r=jl

αr+

jm−1∑

r=im

αr.

This contradicts p ∈ DBn
ωn by Remark 1.1.8. We assume now that εil,jl and εim,jm

have the property of case (b):

εil,jl − εim,jm =

jl−1∑

r=il

αr + 2

n∑

r=jl

αr −
jm−1∑

r=im

αr − 2

n∑

r=jm

αr =

im−1∑

r=il

αr +

jm−1∑

r=jl

αr.

Again by Remark 1.1.8 this contradicts p ∈ DBn
ωn . Finally we conclude that two

roots εil,jl , εim,jm ∈ p, with il ≤ il, satisfy (c): il < im < jm < jl. To prove this

statement for a p ∈ DBn
ωn of form (B2) we only have to restrict our consideration

to the second, third and fourth step.

It remains to show that the cardinality s of p is bounded by dn2 e respectively
bn2 c. Again we consider the two possible cases:

1. Case: p = {εk, εi2,j2 , . . . , εis,js} is of the form (B1) and we assume |p| = s >
dn2 e. Then we know from our previous consideration that after reordering the
roots in p we have a strictly increasing chain of integers:

(4.10) Cp : k < i2 < i3 · · · < is < js < js−1 < · · · < j3 < j2.
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So there are 2s− 1 different integers, where each of these correspond to a εi for
1 ≤ i ≤ n. By assumption we know 2s − 1 ≥ 2(dn2 e + 1) − 1 ≥ n + 1, but there
are only n different elements in {εr | 1 ≤ r ≤ n}. So this is a contradiction and
hence: |p| = s ≤ dn2 e.
2. Case: p = {εi1,j1 , . . . , εis,js} is of the form (B2) and we assume |p| = s > bn2 c.
As in the first case we have a strictly increasing chain of integers:

(4.11) Cp : i1 < i2 · · · < is < js < js−1 < · · · < j2 < j1.

So we have 2s different integers corresponding to at most n different elements in
{εr | 1 ≤ r ≤ n}, but by assumption we have 2s ≥ 2(bn2 c+ 1) ≥ n+ 1. Again we
have a contradiction and therefore: |p| = s ≤ bn2 c. �

Because of Corollary 3.1.5 we know that the elements {f svωn | s ∈ S(ωn)} span

V (ωn) and by Proposition 1.1.10 there is a bijection between S(ωn) and D
Bn
ωn .

We want to show that these elements are linear independent. To achieve that we

will show that |DBn
ωn | = dimV (ωn). To be more explicit:

Proposition 4.2.4. |DBn
ωn | = dimV (ωn) = 2n.

Proof. We know from (4.9) that for an arbitrary element p ∈ DBn
ωn the number

of roots s in p is bounded by dn2 e respective by bn2 c. So the number of integers
occurring in Cp (see (4.10) and (4.11)) is also bounded:

(4.12) |Cp| =
{

2s− 1 ≤ 2dn2 e − 1 ≤ n, p is of the form (B1),

2s ≤ 2bn2 c ≤ n, p is of the form (B2).

In order to simplify our notation, we define l := |Cp|, so we have for an arbitrary

p ∈ DBn
ωn : 0 ≤ l ≤ n. Further we define the subsets D

Bn
ωn(l) ⊂ DBn

ωn :

(4.13) D
Bn
ωn(l) := {p ∈ DBn

ωn | |Cp| = l}, ∀ 0 ≤ l ≤ n.

So the elements in D
Bn
ωn(l) are parametrized by l totally ordered integers ui in

{r | 1 ≤ r ≤ n}, ∀ 1 ≤ i ≤ l. Hence we conclude: |DBn
ωn(l)| ≤

(
n
l

)
, ∀ 1 ≤ l ≤ n

and so

(4.14) |DBn
ωn | = |

n⋃

l=1

D
Bn
ωn(l)| =

n∑

l=0

|DBn
ωn(l)| ≤

n∑

l=0

(
n

l

)
= 2n.

We also know from Corollary 3.1.5 that we have |DBn
ωn | ≥ dimV (ωn) =

(
n
l

)
= 2n.

Finally we conclude: |DBn
ωn | = 2n. �

Example 4.2.5. The polytope P (mω3) in the case g = so7 has the following
shape.

P (mω3) =

{
x ∈ R6

≥0 |
x1 + x2 + x3 + x5 + x6 ≤ m
x1 + x2 + x4 + x5 + x6 ≤ m

}
.

Proposition 4.2.4 implies immediately:

Proposition 4.2.6. The vectors f svωn , s ∈ S(ωn) are a FFL basis of V (ωn). �
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4.3. Type Cn. Let g be a simple Lie algebra of type Cn for n ≥ 3 with the
associated Dynkin diagram

Cn <
1 2 n-2 n-1 n

For all fundamental weights ωk we have 〈ωk, θ∨〉 = 1, where θ = (2, 2, . . . , 2, 1)
is the highest root and θ∨ = (1, 1, . . . , 1) the corresponding coroot. But only for
ω1 the associated Hasse diagram H(n−ω1

)g has no i-chains. In fact for 1 ≤ k ≤ n,
H(n−ωk)g has k − 1 different i-chains, with 1 ≤ i ≤ k − 1. The following example
explains, why we are not able to rewrite the diagram in these cases, with our
approach.
For all ωk with k 6= 1 we have the following 1-chain.

β1 β2 β3.
1 1

Here β1 = 2α1+· · ·+2αn−1+αn is the highest root, β2 = α1+2α2+· · ·+2αn−1+αn
and β3 = 2α2 + · · ·+ 2αn−1 + αn. Note that β1 − β3 = 2α1, which is not a root.
Further, because β1 is the highest root, there are no roots γ ∈ ∆+, ν ∈ ∆ωk

+ with
∂γfν = f3, except for ν = β2. Hence it is more involved to rewrite the diagram
into a diagram without k-chains such that there is a path connecting β1 and β3.
Nevertheless, in [FFoL11b] similar statements to Theorem A and Theorem B
were proven for arbitrary dominant integral weights.

Now we consider ω = ω1. Then we have 2n− 1 = N and ∆ω
+ is given by

β1 = (2, 2, . . . , 2, 1) β2 = (1, 2, . . . , 2, 1) . . . βn = (1, 1, . . . , 1, 1)
βn+1 = (1, 1, . . . , 1, 0) βn+2 = (1, . . . , 1, 0, 0) . . . βN = (1, 0, . . . , 0, 0)

The diagram H(n−ω )g has the following form.

β1 β2 β3 ... βn−1 βn βn+1 ... βN .
1 2 3 n-2 n-1 n n-1 2

There are no k-chains and the associated polytope is given by

P (mω) = {x ∈ RN≥0 | x1 + x2 + · · ·+ xN ≤ m}.
By Corollary 3.1.5 the elements vω, f1vω, f2vω, . . . , fNvω span V (ω) and with
[Car05, p295] we know dimV (ω) = 2n. From these observations we get immedi-
ately:

Proposition 4.3.1. The set Bω = {f svω | s ∈ S(ω)} is a FFL basis of V (ω). �

4.4. Type Dn. Let g be a simple Lie algebra of type Dn with associated Dynkin
diagram

Dn
1 2 n-3 n-2

n-1

n

The highest root in type Dn is of the form θ = α1 + 2
∑n−2

i=2 αi + αn−1 + αn.

Since g is simply-laced we have θ∨ = α∨1 + 2
∑n−2

i=2 α
∨
i + α∨n−1 + α∨n . Hence

〈ω, θ∨〉 = 1⇔ ω ∈ {ω1, ωn−1, ωn}.
First we consider the case ω = ω1. Then we have 2n − 2 = N and ∆ω1

+ has the
following form:

β1 =(1, 2, 2 . . . , 2, 1, 1) β2 =(1, 1, 2, . . . , 2, 1, 1) . . . βn−2 =(1, 1, 1 . . . , 1, 1, 1)
βn−1 =(1, 1, 1 . . . , 1, 0, 1) βn =(1, 1, 1, . . . , 1, 1, 0) . . . βN =(1, 0, 0 . . . , 0, 0, 0)
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The Hasse diagram has no k-chain. In addition in Dω1 there are only co-chains
of cardinality at most 1, except for one with cardinality 2.

β1 β2 β3 ... βn−2

βn−1

βn

βn+1 βn+2 ... βN .
2 3 4 n-2

n-1

n

n

n-1

n-2 n-3 2

Associated to this diagram we get the following polytope for m ∈ Z≥0:

P (mω) =

{
x ∈ RN≥0 |

x1 + · · ·+ xn−2 + xn−1 +xn+1 + · · ·+ xN ≤ m
x1 + · · ·+ xn−2 + xn +xn+1 + · · ·+ xN ≤ m

}
.

By Corollary 3.1.5 the elements Bω1 = {vω1 , f1vω1 , f2vω1 , . . . , fNvω1 , fn−1fnvω1}
span V (ω1) and with [Car05, p. 280] we have dimV (ω1) = 2n. From these
observations we get immediately.

Proposition 4.4.1. The vectors f svω1 , s ∈ S(ω1) are a FFL basis of V (ω1). �

For most of the proofs of the statements in the case ω = ωn−1, ωn we will refer
to the proofs of the corresponding statements for type Bn.

Now we consider the case ω = ωn−1. For further considerations it will be conve-
nient to describe the roots and fundamental weights of g in terms of an orthogonal
basis {εi | 1 ≤ i ≤ n}. Then ∆

ωn−1
+ is given by

(4.15) {εi,j = εi + εj | 1 ≤ i < j ≤ n− 1} ∪ {εk,n = εk − εn | 1 ≤ k ≤ n− 1}.
The total order on ∆

ωn−1
+ is defined like in the Bn, ωn-case (see Figure 3). The

elements of ∆
ωn−1
+ correspond to εi,j =

∑j−1
r=i αr + 2

∑n−2
r=j αr + αn−1 + αn and

εk,n =
∑n−1

r=k, αr. The highest weight of V (ωn−1) has the description ωn−1 =

1
2

(∑n−1
r=1 εr − εn

)
. Further the lowest weight is −ωn−1 = −1

2

(∑n−1
r=1 εr − εn

)
.

With this observation, the fact that ωn−1 is minuscule and (4.15) we see that

BV (ωn−1) =

{
fαvωn−1 | α =

1

2

n∑

r=1

lrεr, lr = ±1, ∀1 ≤ r ≤ n, 2 - #{lr | lr = −1}
}

is a basis of V (ωn−1). We note that |BV (ωn−1)| = 2n−1 = dimV (ωn−1).

Remark 4.4.2. Similar arguments as in Remark 4.2.2 show that the elements

p ∈ DDn
ωn−1

have two possible forms:

(4.16) (D1) p = {εk,n, εi2,j2 , . . . , εir,jr} or (D2) p = {εi1,j1 , . . . , εit,jt}.
We denote with 12-n : Z≥0 → {0, 1} (respective 12|n) the Indicator function
for the odd (respective even) integers, which is defined by 12-n(n) = 1 if 2 - n
(respective 12|n(n) = 1 if 2 | n) and 0 otherwise. So we can characterize the

elements p ∈ DDn
ωn−1

as follows

Proposition 4.4.3. For p ∈ P(∆
ωn−1
+ ) arbitrary we have:

(4.17) p ∈ DDn
ωn−1

⇔
{

p is of the form (D1), with (a) and (b),

p is of the form (D2), with (b).
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In addition: p ∈ DDn
ωn−1

⇒
{
s ≤ dn2 e − 12-n(n), p is of the form (D1),

s ≤ bn2 c − 12|n(n), p is of the form (D2),

with s = |p|. The properties (a) and (b) are defined by

(a) ∀ 1 ≤ l ≤ s : k < il < jl,
(b) ∀αil,jl , αim,jm ∈ p, il ≤ im : il < im < jm < jl.

Proof. To prove this statement we adapt the idea of Proposition 4.2.3. We use
exactly the same approach but we consider ∆

ωn−1
+ of type Dn.

To check that that the cardinality s of an arbitrary element p ∈ DDn
ωn−1

is bounded,

like we claim on the rhs of (4.17), we use only fundamental combinatorics, again
analogue to the idea of the proof of Proposition 4.2.3. �

Because of Corollary 3.1.5 we know that the elements {f svωn−1 | s ∈ S(ωn−1)}
span V (ωn−1) and by Proposition 1.1.10 there is a bijection between S(ωn−1) and

D
Dn
ωn−1

. We want to show that these elements are linear independent. To achieve

that we will show that |DDn
ωn−1
| = dimV (ωn−1). To be more explicit:

Proposition 4.4.4. |DDn
ωn−1
| = dimV (ωn−1) = 2n−1.

Proof. This is a direct consequence of Lemma 4.4.10 and Proposition 4.2.4. �

Proposition 4.4.4 implies immediately

Proposition 4.4.5. Bωn−1 = {f svωn−1 | s ∈ S(ωn−1)} is a basis for V (ωn−1). �

Finally we consider the case ω = ωn. For the proofs of the statements in this case
we refer to the proofs of the analogous statements in the previous case ω = ωn−1

and the Bn, ωn-case.
The set of roots ∆ωn

+ , where αn = εn−1 + εn is a summand, is given by:

(4.18) {εi,j = εi + εj | 1 ≤ i < j ≤ n− 1} ∪ {εk,n = εk + εn | 1 ≤ k ≤ n− 1}.
Again the total order on ∆ωn

+ is defined like in the Bn, ωn-case (see Figure 3),

where the elements of ∆ωn
+ correspond to εi,j =

∑j−1
r=i αr+2

∑n−2
r=j αr+αn−1 +αn

and εk,n =
∑n

r=k, r 6=n−1 αr. The highest weight of V (ωn) has the description

ωn = 1
2 (
∑n

r=1 εr). Further the lowest weight is −ωn = −1
2 (
∑n

r=1 εr). As before
we see that
(4.19)

BV (ωn) =

{
fαvωn | α =

1

2

n∑

r=1

lrεr, lr{−1, 1}, ∀1 ≤ r ≤ n, 2 | #{lr | lr = −1}
}

is a basis of V (ωn). We note that |Bωn | = 2n−1 = dimV (ωn).

Remark 4.4.6. Similar arguments as in Remark 4.2.2 show that the elements

p ∈ DDn
ωn have two possible forms:

(4.20) (D∗1) p = {εk,n, εi2,j2 , . . . , εis,js} and (D∗2) p = {εi1,j1 , . . . , εis,js}.

So we can characterize the elements p ∈ DDn
ωn as follows:
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Proposition 4.4.7. For p ∈ P(∆ωn
+ ) arbitrary we have:

(4.21) p ∈ DDn
ωn ⇔

{
p is of the form (D∗1), with (a) and (b),

p is of the form (D∗2), with (b).

In addition: p ∈ DDn
ωn ⇒

{
s ≤ dn2 e − 12-n(n), p is of the form (D∗1),

s ≤ bn2 c − 12|n(n), p is of the form (D∗2),

with s = |p|. The properties (a) and (b) are defined by

(a) ∀ 1 ≤ l ≤ s : k < il < jl,
(b) ∀αil,jl , αim,jm ∈ p, il ≤ im : il < im < jm < jl.

Proof. To prove this statement we refer to the proof of Proposition 4.4.3. �

Because of Corollary 3.1.5 we know that the elements of D
Dn
ωn span the highest

weight module V (ωn). But we still have to show that these elements are linear
independent. To achieve that we will show:

Proposition 4.4.8. |DDn
ωn | = dimV (ωn) = 2n−1.

Proof. This is a direct consequence of Lemma 4.4.10 and Proposition 4.2.4. �
Proposition 4.4.8 implies immediately

Proposition 4.4.9. The set Bωn = {f svωn | s ∈ S(ωn)} is a basis for V (ωn). �
The following Lemma gives us a very useful connection between the co-chains of
g of type Bn−1 and Dn:

Lemma 4.4.10. We have: |DDn
ωn−1
| = |DBn−1

ωn−1
| and |DDn

ωn | = |D
Bn−1
ωn−1
|.

Proof. We only use basic combinatorics to prove this statement. �
4.5. Type E6. Let g be a simple Lie algebra of type E6 with associated Dynkin
diagram

E6
1 3 4 5 6

2

We have 〈ω, θ∨〉 = 1 ⇔ ω = ω1, ω6 and first we fix ω to be ω6. The set is ∆ω6
+

given as follows:

β1 = (1, 2, 2, 3, 2, 1) β9 = (1, 1, 1, 1, 1, 1)
β2 = (1, 1, 2, 3, 2, 1) β10 = (0, 1, 1, 1, 1, 1)
β3 = (1, 1, 2, 2, 2, 1) β11 = (1, 0, 1, 1, 1, 1)
β4 = (1, 1, 1, 2, 2, 1) β12 = (0, 0, 1, 1, 1, 1)
β5 = (1, 1, 2, 2, 1, 1) β13 = (0, 1, 0, 1, 1, 1)
β6 = (0, 1, 1, 2, 2, 1) β14 = (0, 0, 0, 1, 1, 1)
β7 = (1, 1, 1, 2, 1, 1) β15 = (0, 0, 0, 0, 1, 1)
β8 = (0, 1, 1, 2, 1, 1) β16 = (0, 0, 0, 0, 0, 1)

The Hasse diagram H(n−ω6
)E6 has no k-chains and the maximal cardinality of a

co-chain of H(n−ω6
)E6 is two (see Appendix, Figure 4). The associated polytope is

given for m ∈ Z≥0 by:

P (mω6) = {x ∈ R16
≥0 |

∑

βj ∈p
xj ≤ m, ∀p ∈ Dω6},
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in particular see Appendix, Table 4 for the non-redundant inequalities.

Proposition 4.5.1. The set Bω6 = {f svω6 | s ∈ S(ω6)} is a FLL basis of V (ω6).

Proof. The co-chains of the Hasse diagram give us immediately:

Bω6 = {vω6 , f1vω6 , f2vω6 , . . . , f16vω6 , f4f5vω6 , f5f6vω6 , f6f7vω6 , f6f9vω6 ,

f8f9vω6 , f8f10vω6 , f8f11vω6 , f10f11vω6 , f11f13vω6 , f12f13vω6}.
Note that there are 27 elements in Bω6 . By Corollary 3.1.5, we get that Bω6 is a
spanning set of V (ω6). By [Car05, p. 303] we have dimV (ω6) = 27 and therefore
the claim holds. �
It is shown in Figure 4 that the Hasse diagrams H(n−ω1

)E6 and H(n−ω6
)E6 have a

very similar shape. So with same arguments as above we conclude:

Proposition 4.5.2. The vectors f svω1, s ∈ S(ω1) are a FLL basis of V (ω1).�
4.6. Type E7. Let g be the simple Lie algebra of type E7 with associated Dynkin
diagram

E7
1 3 4 5 6 7

2

In this case ω = ω7 is the only fundamental weight satisfying 〈ω, θ∨〉 = 1.

β1 = (2, 2, 3, 4, 3, 2, 1) β10 = (1, 1, 2, 3, 2, 1, 1) β19 = (1, 1, 1, 1, 1, 1, 1)
β2 = (1, 2, 3, 4, 3, 2, 1) β11 = (1, 1, 1, 2, 2, 2, 1) β20 = (0, 1, 1, 1, 1, 1, 1)
β3 = (1, 2, 2, 4, 3, 2, 1) β12 = (1, 1, 2, 2, 2, 1, 1) β21 = (1, 0, 1, 1, 1, 1, 1)
β4 = (1, 2, 2, 3, 3, 2, 1) β13 = (0, 1, 1, 2, 2, 2, 1) β22 = (0, 0, 1, 1, 1, 1, 1)
β5 = (1, 1, 2, 3, 3, 2, 1) β14 = (1, 1, 1, 2, 2, 1, 1) β23 = (0, 1, 0, 1, 1, 1, 1)
β6 = (1, 2, 2, 3, 2, 2, 1) β15 = (1, 1, 2, 2, 1, 1, 1) β24 = (0, 0, 0, 1, 1, 1, 1)
β7 = (1, 1, 2, 3, 2, 2, 1) β16 = (0, 1, 1, 2, 2, 1, 1) β25 = (0, 0, 0, 0, 1, 1, 1)
β8 = (1, 2, 2, 3, 2, 1, 1) β17 = (1, 1, 1, 2, 1, 1, 1) β26 = (0, 0, 0, 0, 0, 1, 1)
β9 = (1, 1, 2, 2, 2, 2, 1) β18 = (0, 1, 1, 2, 1, 1, 1) β27 = (0, 0, 0, 0, 0, 0, 1)

As in the E6-case the Hasse diagram has no k-chains. In addition there are only
co-chains of cardinality at most 2, except for one with cardinality 3 (see Appendix,
Figure 5). As before the polytope is defined by the paths in the Hasse diagram.
For m ∈ Z≥0 we have:

P (mω) = {x ∈ R27
≥0 |

∑

βj ∈p
xj ≤ m, ∀p ∈ Dω}.

Because the polytope is defined by 77 non-redundant inequalities we will not
state it explicitly.

Proposition 4.6.1. The set Bω = {f svω | s ∈ S(ω)} is a FFL basis of V (ω).

Proof. The co-chains of the Hasse diagram give us immediately:

Bω = {vω, f1vω, f2vω, . . . , f27vω, f5f6vω, f5f8vω, f7f8vω, f8f9vω,

f9f10vω, f8f11vω, f10f11vω, f11f12vω, f8f13vω, f10f13vω,

f12f13vω, f13f14vω, f11f15vω, f13f15vω, f14f15vω, f15f16vω,

f13f17vω, f16f17vω, f13f19vω, f16f19vω, f18f19vω, f13f21vω,

f16f21vω, f18f21vω, f20f21vω, f21f23vω, f22f23vω, f13f14f15vω}.
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Note that there are 56 elements in Bω. By Corollary 3.1.5, we get that this is a
spanning set of V (ω). By [Car05, p. 303] we have dimV (ω) = 56 and therefore
that Bω is a basis. �
4.7. Type F4. Let g be the simple Lie algebra of type F4 with associated Dynkin
diagram

F4 <
1 2 3 4

The highest root is of the form θ = 2α1 + 3α2 + 4α4 + 2α4. And we have
θ∨ = 2α∨1 + 3α∨2 + 2α∨3 + α∨4 . So 〈ω, θ∨〉 = 1 ⇔ ω = ω4, so we consider the case
ω = ω4. If we construct H(n−ω )F4 as in Section 1 we get a 3-chain of length 2, but
here we are able to solve this problem. Therefore we will change the order of the
roots such that we can draw a new diagram without any k-chains. As usual we
start with the set of roots ∆ω

+:

β1 = (2, 3, 4, 2) β6 = (1, 2, 3, 1) β11 = (0, 1, 2, 1)
β2 = (1, 3, 4, 2) β7 = (1, 1, 2, 2) β12 = (1, 1, 1, 1)
β3 = (1, 2, 4, 2) β8 = (1, 2, 2, 1) β13 = (0, 1, 1, 1)
β4 = (1, 2, 3, 2) β9 = (0, 1, 2, 2) β14 = (0, 0, 1, 1)
β5 = (1, 2, 2, 2) β10 = (1, 1, 2, 1) β15 = (0, 0, 0, 1)

Here we have βi � βj ⇔ i > j. With this order we are not able to find relations
derived from differential operators (see Section 3), which include the rootvector
f4 (see (3.2)). In order to find relations including f4 we adjust the order on the
roots in this case as follows:

β1 ≺ β2 ≺ β3 ≺ β5 ≺ β4 ≺ β6 ≺ β7 ≺ · · · ≺ β15.

So we just switched the positions of β4 and β5. Now we consider our Hasse
diagram constructed as in Section 1 and the diagram we obtain by changing the
order of the roots and by using differential operators corresponding to non-simple
roots, see Figure 1.
The idea of this adjustment is that we split up the 3-chain by using the non-
simple differential operators mentioned above. After this we still want to get as
many roots as possible on each path. To do so we use two non-simple differential
operators: ∂0110 = ∂α2+α3 and ∂0011 = ∂α3+α4 . In the adjusted diagram also
occurs a directed edge labeled by a from β2 to β5 and a second labeled by b from
β5 to β4. We cannot label the second edge with a differential operator, because
there is no element γ ∈ ∆+ satisfying: β5 − γ = β4. We will use the following
observation to explain the existence of these edges and labels. For a0, b0 ∈ C\{0}
we have:

∂n2+2n3
3 ∂n2+n3

2 ∂n1
1 fm+1

1 = ∂n2+2n3
3 (a0f

n2+n3
3 fn1−n2−n3

2 fm+1−n1
1 )

= b0f
n3
5 fn2

4 fn1−n2−n3
2 fm+1−n1

1 + smaller terms.

That means we can replace in the path consisting of β1, β2, β3 and β4 the root β3

by β5. Furthermore the differential operators ∂α2+α3 and ∂α3+α4 have no influence
on β5. That is the reason for the directed edge labeled by b from β5 to β4. The
reason for the edge between β2 and β5 is that we want to visualize the co-chain
which we construct at this point. We label this edge with a to prevent confusions
about the applied differential operators, where a corresponds to ∂n2+2n3

3 . We note
that the changed Hasse diagram gives us directly the inequalities of P (λ), but in
this case it does not describe in general the action of the differential operators.
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If we now follow our standard procedure with the adjusted Hasse diagram the
next step is to define the polytope associated to the set of Dyck paths Dω and
m ∈ Z≥0:

P (mω) = {x ∈ R15
≥0 |

∑

βj∈p
xj ≤ m, ∀p ∈ Dω}.

More explicitly: P (mω) is the set of all elements x ∈ R15
≥0 such that the 12

inequalities, which can be found in the Appendix, Figure 5, are satisfied.
The set Bω = {f svω | s ∈ S(ω)} ⊂ V (ω) is given by:

Bω ={vω, f1vω, f2vω, . . . , f15vω, f3f5vω, f4f6vω, f5f6vω, f6f7vω,

f7f8vω, f6f9vω, f8f9vω, f9f10vω, f9f12vω, f11f12vω}.

Proposition 4.7.1. The set Bω = {f svω | s ∈ S(ω)} is a FFL basis of V (ω).

Proof. By Corollary 3.1.5 we conclude that Bω spans the vector space V (ω). In
addition we know by [Car05, p. 303] that dimV (ω) = 26 = |Bω|. Hence the set
Bω is a basis. �

β1 β2 β3 β4

β5 β6

β7 β8

β9 β10

β11 β12

β13 β14 β15

 

β1 β2

β3 β5

β6 β4

β8 β7

β10 β9

β12 β11

β13 β14 β15

1 2 3

3 4

2 4 3

1 4 2

4 1 3

3 1

2 3

1

2 a

0011 3 b

3 0011 0110

2 4 1

3 1 4

1 3

2 3

Figure 1. H(n−ω )F4

4.8. Type G2. Let g be the simple Lie algebra of type G2 with associated Dynkin
diagram

G2 <
1 2

For the highest root θ = 3α1 + 2α2 we have θ∨ = α∨1 + 2α∨2 . So we consider
ω = ω1. In this case the Hasse diagram has one 1-chain. We will rewrite H(n−ω )G2
into a diagram without any k-chains. Consider the following order on ∆ω

+:

β1 ≺ β2 ≺ β4 ≺ β5 ≺ β3,

where

β1 = (3, 2) β2 = (3, 1) β3 = (2, 1) β4 = (1, 1) β5 = (1, 0)

So we obtain the following diagrams:
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β1 β2 β3 β4 β5  β1 β3

β2

β4

β5,
2 1 21 11

21
2

2
21

Very similar arguments as in the case of B3, ω1 show that we can apply the results
of section 3 to the rewritten diagram. We consider the polytope associated to the
new diagram for m ∈ Z≥0:

P (mω) =

{
x ∈ RN≥0 |

x1 + x2 + x3 + x5 ≤ m
x1 + x3 + x4 + x5 ≤ m

}
.

By Section 3 the elements vω, f1vω, f2vω, f3vω, f4vω, f5vω, f2f4vω span V (ω) and
with [Car05, p. 316] we know dimV (ω) = 7.

Proposition 4.8.1. The set Bω = {f svω | s ∈ S(ω)} is a FFL basis of V (ω). �

Proof. The previous observations imply that {f svω | s ∈ S(ω)} is a basis of V (ω).
It remains to show that P (ω) is a normal polytope.
Like in the case of (Bn, ω1) we have to change the order of the roots to apply
Section 2. One possible order is β1 ≺ β3 ≺ β4 ≺ β2 ≺ β5. Using this order we
conclude that P (ω) is a normal polytope. �

5. Linear Independence

We refer to the notation of Section 1, especially Subsection 1.3. Throughout the
Section we assume the vectors fpvλ ∈ V (λ) to be ordered as in (1.11) and we fix
λ = mω where ω appears in Table 2.
We want to investigate the connection between our polytope P (λ) and the essen-
tial multi-exponents. Via this connection and with the results from Section 3 we
want to prove that {f svλ | s ∈ S(λ)} provides a FFL basis of V (λ).
Note that one can define essential monomials like in Subsection 1.3 for an arbi-
trary total order on ∆λ

+. Hence for the following statements it is very important
that we kept in Subsection 1.3 the total order introduced in Subsection 1.1.

Lemma 5.1.1. If {f svλ | s ∈ S(λ)} is linear independent in V (λ), then

S(λ) = es(V (λ)).

Proof. Let s ∈ es(V (λ)) = {p ∈ ZN≥0 | fpvλ /∈ span{fqvλ | q ≺ p}} and assume

s /∈ S(λ). By Proposition 3.1.3 we can rewrite f s such that

f svλ =
∑

t≺ s

ctf
tvλ, ct ∈ C

and we get immediately a contradiction, so s ∈ S(λ).
Now let s ∈ S(λ) and s /∈ es(V (λ)). Then f svλ ∈ span{fqvλ | q ≺ s} and so

(5.1) f svλ =
∑

q≺ s

cqf
qvλ,

for some cq ∈ C. We rewrite each fqvλ in terms of basis elements f tvλ, t ∈ S(λ).
Because of the linear independence all prefactors are zero, meaning that s = 0.
But this is a contradiction to s /∈ esV (λ). �
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Theorem 5.1.2. The elements {f s(vλ−ω ⊗ vω) | s ∈ S(λ)} ⊂ V (λ− ω)� V (ω)
are linearly independent and Bλ = {f svλ | s ∈ S(λ)} is a FFL basis of V (λ).

Proof. We want to prove this statement by induction on m ∈ Z≥1. For m = 1 we
saw in Section 4 that Bω = {f svω | s ∈ S(ω)} is a basis for V (ω) in each type.
So let m ∈ Z≥2 be arbitrary and we assume that the claim holds for all m′ < m.
By induction the set Bλ−ω = {f svλ−ω | s ∈ S(λ− ω)} is a basis of V (λ− ω). So
we have by Lemma 5.1.1

(5.2) es(V (λ− ω) = S(λ− ω) and es(V (ω)) = S(ω).

But then with [FFoL13, Prop. 1.11]:

es(V (λ− ω) + es(V (ω)) ⊂ es(V (λ− ω)� V (ω))

and so we get the linearly independence of

{f s(vλ−ω ⊗ vω) | s ∈ es(V (λ− ω) + es(V (ω))} ⊂ V (λ− ω)� V (ω)

With the equalities in (5.2) and Section 2 where we proved S(λ−ω)+S(ω) = S(λ),
we conclude that the set

{f s(vλ−ω ⊗ vω) | s ∈ S(λ)} ⊂ V (λ− ω)� V (ω)

is linearly independent. So we get dimV (λ) ≥ |S(λ)| and with the spanning
property Corollary 3.1.5 we have |S(λ)| ≥ dimV (λ). Finally we get

|S(λ)| = dimV (λ)

and that Bλ is a FFL basis of V (λ) as claimed. �
Remark 5.1.3. The basis Bλ is a monomial basis, so we get an induced FFL
basis of V (λ)a.

Theorem 5.1.4. Let V (λ)a ∼= S(n−)/I(λ). Then the ideal I(λ) is generated by

U(n+) ◦ span{f 〈λ,β
∨〉+1

β | β ∈ ∆+}
as S(n−) ideal.
In particular we have that I(λ) = S(n−)(U(n+) ◦ span{fβ, fm+1

θ | β ∈ ∆+\∆λ
+}).

Proof. Let I be an Ideal generated by U(n+)◦span{f 〈λ,β
∨〉+1

β | β ∈ ∆+} as S(n−)

ideal. By Ivλ = {0} we have I ⊂ I(λ), so there is a canonical projection:

φ : S(n−)/I → S(n−)/I(λ) ∼= V (λ)a

Let f t = 0 in S(n−)/I(λ). Because we have a basis of V (λ)a we can rewrite f t

as follows:

(5.3) f t =
∑

s∈S(λ)

csf
s ∈ S(n−)/I(λ)

for some cs ∈ C. In the proof of Theorem 3.1.4 we already saw that the relations
obtained by I are sufficient to achieve (5.3). So 0 = f t =

∑
s∈S(λ)

csf
s ∈ S(n−)/I.

Therefore φ is injective.
In the proof of Proposition 3.1.3 we do not need powers fβ for β ∈ ∆λ

+ \ {θ}. �
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Appendix

In this section we want to present the Hasse diagrams H(n−ω6
)E6 and H(n−ω7

)E7
for a better understanding of our work. In addition to illustrate the ordering of
the roots for the classical types An, Bn and Dn we give in Figure 2 the complete
Hasse diagram of sl5 and in Figure 3 a concrete example of the Hasse diagram
in the Dn, ωn-case, for n = 5, 6. We remark that the shape of the Hasse diagram
H(n−ωn−1

)so2n and H(n−ωn)so2n is equal to the shape of H(n−ωn−1
)so2(n−1)+1

. So

Figure 3 shows also the shape of the Hasse diagrams H(n−ω4
)so10 , H(n−ω5

)so10 and
H(n−ω5

)so12 , H(n−ω6
)so12 . Furthermore we state the explicit polytopes for E6 (Table

4), F4 (Table 5) and for the special cases: B4, ω4 (D5, ω4) and D5 ω5 (Table 3).

β1

β2 β3

β4 β5 β6

β7 β8 β9 β10

1 4

2 4 1 3

3 4 2 3 1 2

Figure 2. Complete Hasse diagram of g = sl5.

β1

β2

β3 β4

β5 β6

β7 β8

β9

β10

β1

β2

β3 β4

β5 β6

β7 β8 β9

β10 β11

β12 β13

β14

β15

2

1 3

3 1 4

2 4 1

4 2

3

2

1 3

3 1 4

2 4 1 5

4 2 5 1

3 5 2

5 3

4

Figure 3. H(n−ω4
)so9 , H(n−ω5

)so11
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x1 + x2 + x3 + x5 + x7 + x9 + x10 ≤ m
x1 + x2 + x3 + x5 + x8 + x9 + x10 ≤ m
x1 + x2 + x4 + x5 + x7 + x9 + x10 ≤ m
x1 + x2 + x4 + x5 + x8 + x9 + x10 ≤ m
x1 + x2 + x4 + x6 + x8 + x9 + x10 ≤ m

Table 3. Polytope P (mω4) corresponding to g = so9 and
P (mω4), P (mω5) corresponding to g = so10.

β1 β2 β3

β4 β5

β6 β7

β8 β9

β10 β11

β12β13

β14β15β16

β1β2β3

β4 β5

β7 β6

β9 β8

β11 β10

β12β13

β14 β15 β16

2 4

3 5

1 35

5 41

4 21

23 1

32

45

24

3 5

5 63

4 36

2 6 4

56 2

25

4 3

Figure 4. H(n−ω6
)E6 and H(n−ω1

)E6

x1 + x2 + x3 + x4 + x6 + x8 + x10 + x13 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x6 + x8 + x10 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x7 + x8 + x10 + x13 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x7 + x8 + x10 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x7 + x9 + x10 + x13 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x7 + x9 + x10 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x7 + x9 + x11 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x5 + x7 + x8 + x10 + x13 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x5 + x7 + x8 + x10 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x5 + x7 + x9 + x10 + x13 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x5 + x7 + x9 + x10 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x5 + x7 + x9 + x11 + x12 + x14 + x15 + x16 ≤ m

Table 4. Polytope P (m) corresponding to E6



PBW FILTRATION: FFL MODULES VIA HASSE DIAGRAMS 53

β1 β2 β3 β4

β5 β6

β7 β8

β9 β10

β11 β12

β13 β14 β15

β16 β17

β18 β19

β20 β21

β22β23

β24β25β26β27

1 3 4

2 5

5 62

4 26

3 46

1 36 5

6 51 3

5 41

4 21

2 13

2 3

456

Figure 5. H(n−ω7
)E7

x1 + x2 + x3 + x4 + x8 + x10 + x11 + x13 + x14 + x15 ≤ m
x1 + x2 + x3 + x4 + x8 + x10 + x12 + x13 + x14 + x15 ≤ m
x1 + x2 + x3 + x4 + x7 + x9 + x11 + x13 + x14 + x15 ≤ m
x1 + x2 + x3 + x4 + x7 + x10 + x11 + x13 + x14 + x15 ≤ m
x1 + x2 + x3 + x4 + x7 + x10 + x12 + x13 + x14 + x15 ≤ m
x1 + x2 + x4 + x5 + x8 + x10 + x11 + x13 + x14 + x15 ≤ m
x1 + x2 + x4 + x5 + x8 + x10 + x12 + x13 + x14 + x15 ≤ m
x1 + x2 + x4 + x5 + x7 + x9 + x11 + x13 + x14 + x15 ≤ m
x1 + x2 + x4 + x5 + x7 + x10 + x11 + x13 + x14 + x15 ≤ m
x1 + x2 + x4 + x5 + x7 + x10 + x12 + x13 + x14 + x15 ≤ m
x1 + x2 + x3 + x6 + x8 + x10 + x11 + x13 + x14 + x15 ≤ m
x1 + x2 + x3 + x6 + x8 + x10 + x12 + x13 + x14 + x15 ≤ m

Table 5. Polytope P (mω4) corresponding to F4
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TEODOR BACKHAUS AND DENIZ KUS

Abstract. We study the PBW filtration on irreducible finite–dimensional representations for the
Lie algebra of type Bn. We prove in various cases, including all multiples of the adjoint representation
and all irreducible finite–dimensional representations for B3, that there exists a normal polytope
such that the lattice points of this polytope parametrize a basis of the corresponding associated
graded space. As a consequence we obtain several classes of examples for favourable modules and
graded combinatorial character formulas.

1. Introduction

Let g be a complex finite–dimensional simple Lie algebra with highest root θ. The PBW filtration
on finite–dimensional irreducible representations of g was studied in [13] and a description of the
associated graded space in terms of generators and relations has been given in type An and Cn (see
[13, 14]). As a beautiful consequence the authors obtained a new class of bases parametrized by
the lattice points of normal polytopes, which we call the FFL polytopes. A new class of bases for
type G2 is established in [16] by using different arguments.

It turned out that the PBW theory has a lot of connections to many areas of representation theory.
For example, in the branch of combinatorial representation theory the FFL polytopes can be used
to provide models for Kirillov–Reshetikhin crystals (see [19, 20]). Further, a purely combinatorial
research shows that there exists an explicit bijection between FFL polytopes and the well–known
(generalized) Gelfand–Tsetlin polytopes (see [1, Theorem 1.3]). Although Berenstein and Zelevin-
sky defined the Bn–analogue of Gelfand–Tsetlin polytopes in [4] it is much more complicated to
define the Bn–analogue of FFL polytopes (see [1, Section 4]). One of the motivations of the present
paper is to better understand (the difficulties of) the PBW filtration in this type.
In the branch of geometric representation theory the PBW filtration can be used to study flat
degenerations of generalized flag varieties. The degenerate flag variety of type An and Cn respec-
tively can be realized inside a product of Grassmanians (see [8, Theorem 2.5] and [11, Theorem
1.1]) and furthermore the degenerate flag variety is isomorphic to an appropriate Schubert variety
(see [17, Theorem 1.1]). Another powerful tool of studying these varieties are favourable modules,
where the properties of a favourable module are governed by the combinatorics of an associated
normal polytope (see for details [12] or Section 6). It has been proved in [12] that the degenerate
flag varieties associated to favourable modules have nice properties. For example, they are normal
and Cohen–Macaulay and, moreover, the underlying polytope can be interpreted as the Newton-
Okounkov body for the flag variety. In the same paper several classes of examples for favourable
modules of type An, Cn and G2 respectively are provided; more classes of examples were constructed
in [2, 5, 15].

Beyond these cases very little is known about the PBW filtration and whether there exists a normal
polytope parametrizing a PBW basis of the associated graded space. This paper is motivated by
proving the existence of such polytopes for several classes of representations of type Bn. Moreover,

T.B. was funded by the DFG Priority Program SPP 1388 Representation theory.
D.K. was partially supported by the SFB/TR 12-Symmetries and Universality in Mesoscopic Systems.

4. The PBW filtration and convex polytopes in type B
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we construct favourable modules (see Section 6) and use the results of [16] to describe the associated
graded space for type G2 in terms of generators and relations (see Section 7).

If n ≤ 3 we obtain similar results as in the aforementioned cases, namely we associate to any
dominant integral weight λ a normal polytope and prove that a basis of the associated graded
space can be parametrized by the lattice points of this polytope. In other words we observe that
the difficulties of the PBW theory show up if n ≥ 4. Our results are the following; see Section 5
for the precise definitions.

Theorem. Let g be the Lie algebra of type B3. There is a normal polytope P (λ) with the following
properties:

(1) The lattice points S(λ) parametrize a basis of V (λ) and grV (λ) respectively. In particular,

{Xs vλ | s ∈ S(λ)}
forms a basis of grV (λ).

(2) We have

S(λ) + S(µ) = S(λ+ µ).

(3) The character and graded q-character respectively is given by

chV (λ) =
∑

µ∈h∗
|S(λ)µ|eµ, chq grV (λ) =

∑

s∈S(λ)
eλ−wt(s)q

∑
sβ .

(4) We have an isomorphism of S(n−)–modules

grV (λ+ µ) ∼= S(n−)(vλ ⊗ vµ) ⊆ grV (λ)⊗ grV (µ).

(5) The module V (λ) is favourable.

As in the cases An, Cn and G2 point (2) of the above theorem implies that the building blocks
are S(ωi), 1 ≤ i ≤ n. In particular, in order to construct a basis for grV (λ) it will be enough
to construct the polytopes P (ωi) associated to fundamental weights. For type Bn and n ≥ 4 we
need a different approach. For example, for n = 4 we construct a polytope P (ω3) such that the
lattice points S(ω3) parametrize a basis of grV (ω3), but the Minkowski–sum S(ω3) + S(ω3) has
cardinatlity dimV (2ω3)−1. We observe that the building blocks in this case are S(ω3) and S(2ω3).
In particular, we construct polytopes P (ω3) and P (2ω3) such that a basis of grV (mω3) is given by

S(2ω3) + · · ·+ S(2ω3) + δ(m mod 2),1S(ω3),

where δr,s denotes Kronecker’s delta symbol. Our results are the following; we refer to Section 4
and Section 6 for the precise definition of the ingredients.

Theorem. Let g be the Lie algebra of type Bn and λ = mωi be a rectangular highest weight. There
is a convex polytope P (λ) such that: if 1 ≤ i ≤ 3 (n arbitrary) or 1 ≤ n ≤ 4 (i arbitrary) we have

(1) The lattice points S(λ) parametrize a basis of V (λ) and grV (λ) respectively. In particular,

{Xs vλ | s ∈ S(λ)}
forms a basis of grV (λ).

(2) We have grV (λ) ∼= S(n−)/Iλ, where

Iλ = S(n−)
(
U(n+) ◦ span

{
x
λ(β∨)+1
−β | β ∈ R+

})
.
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(3) The character and graded q-character respectively is given by

chV (λ) =
∑

µ∈h∗
|S(λ)µ|eµ, chq grV (λ) =

∑

s∈S(λ)
eλ−wt(s)q

∑
sβ .

(4) We have an isomorphism of S(n−)–modules for all ` ∈ Z+:

grV (λ+ εi`ωi) ∼= S(n−)(vλ ⊗ vεi`ωi) ⊆ grV (λ)⊗ grV (εi`ωi),

where εi = 1 if i ≤ 2 and εi = 2 else.
(5) For all k, ` ∈ Z+ we have

S((k + εi`)ωi) = S(kωi) + S(εi`ωi).

(6) The module V (εiλ) is favourable.

We can show in general that S(λ) parametrizes a generating set of grV (λ) and we conjecture that
the above theorem remains true for arbitrary rectangular weights (see Conjecture 4.3). We verified
the cases n ≤ 8 and m ≤ 9 with a computer program.

Our paper is organized as follows: In Section 2 we give the main notations. In Section 3 we
present the PBW filtration and establish the elementary results needed in the rest of the paper.
In Section 4 we introduce the notion of Dyck paths for the special odd orthogonal Lie algebra and
prove in various cases a presentation for the associated graded space. In Section 5 we associate
to any dominant integral weight for B3 a normal polytope parametrizing a basis of the associated
graded space. In Section 6 we give classes of examples for favourable modules.

2. Preliminaries

We denote the set of complex numbers by C and, respectively, the set of integers, non–negative
integers, and positive integers by Z, Z+, and N. Unless otherwise stated, all the vector spaces
considered in this paper are C-vector spaces and ⊗ stands for ⊗C.

2.1. We refer to [7, 18] for the general theory of Lie algebras. We denote by g a complex finite–
dimensional simple Lie algebra. We fix a Cartan subalgebra h of g and denote by R the set of roots
of g with respect to h. For α ∈ R we denote by α∨ its coroot. We fix ∆ = {α1, . . . , αn} a basis for
R; the corresponding sets of positive and negative roots are denoted as usual by R±. For 1 ≤ i ≤ n,
define ωi ∈ h∗ by ωi(α

∨
i ) = δi,j , for 1 ≤ j ≤ n, where δi,j is the Kronecker’s delta symbol. The

element ωi is the fundamental weight of g corresponding to the coroot α∨i . Let Q = ⊕ni=1Zαi be
the root lattice of R and Q+ = ⊕ni=1Z+αi be the respective Z+–cone. The weight lattice of R is
denoted by P and the cone of dominant weights is denoted by P+. Let Z[P ] be the integral group
ring of P with basis eµ, µ ∈ P . Let W be the Weyl group of g.

2.2. Given α ∈ R+ let g±α be the corresponding root space and fix a generator x±α ∈ g±α. We
define several subalgebras of g that will be needed later. Let b be the Borel subalgebra corresponding
to R+, and let n+ be its nilpotent radical,

b = h⊕ n+, n± =
⊕

α∈R+

g±α.

The Lie algebra g has a triangular decomposition

g = n− ⊕ h⊕ n+.

For a subset ∆− {αi1 , . . . , αis} of ∆ we denote by pi1,...,is the corresponding parabolic subalgebra
of g, i.e. the Lie algebra generated by b and all root spaces g−α, α ∈ ∆ − {αi1 , . . . , αis}. The



THE PBW FILTRATION AND CONVEX POLYTOPES IN TYPE B 59

maximal parabolic subalgebras correspond to subsets of the form ∆ − {αi}, 1 ≤ i ≤ n. The Lie
algebra g contains the parabolic subalgebra as a direct summand and therefore

g = pi1,...,is ⊕ n−i1,...,is .

We can split off pi1,...,is and consider the nilpotent vector space complement with root space de-
composition

n−i1,...,is =
⊕

α∈R+
i1,...,is

g−α.

For instance, if g is of type An we have R+ = {αr,s | 1 ≤ r ≤ s ≤ n} and R+
i = {αr,s ∈ R+ | r ≤ i ≤

s} where αr,s =
∑s

j=r αj . In the following we shall be interested in maximal parabolic subalgebras.

3. PBW filtration and graded spaces

We start by recalling some standard notation and results on the representation theory of g.

3.1. A g–module V is said to be a weight module if it is h–semisimple,

V =
⊕

µ∈h∗
V µ, V µ = {v ∈ V | hv = µ(h)v, h ∈ h}.

Set wtV = {µ ∈ h∗ : V µ 6= 0}. Given λ ∈ P+, let V (λ) be the irreducible finite–dimensional
g–module generated by an element vλ with defining relations:

n+vλ = 0, hvλ = λ(h)vλ, x
λ(α∨)+1
−α vλ = 0, (3.1)

for all h ∈ h and α ∈ R+. We have wtV (λ) ⊂ λ−Q+ and wtV (λ) is a W–invariant subset of h∗.
If dimV µ <∞ for all µ ∈ wtV , then we define chV : h∗ −→ Z+, by sending µ 7→ dimV µ. If wtV
is a finite set, then

chV =
∑

µ∈h∗
dimV µeµ ∈ Z[P ].

3.2. A Z+–filtration of a vector space V is a collection of subspaces F = {Vs}s∈Z+ , such that
Vs−1 ⊆ Vs for all s ≥ 1. We build the associated graded space with respect to the filtration F

grF V =
⊕

s∈Z+

Vs/Vs−1,where V−1 = 0.

In this paper we shall be interested in the PBW filtration of the irreducible module V (λ) which
we will explain now. Consider the increasing degree filtration on the universal enveloping algebra
U(n−):

U(n−)s = span{x1 · · ·xl | xj ∈ n−, l ≤ s},
for example, U(n−)0 = C. The induced increasing filtration V = {V (λ)s}s∈Z+ on V (λ) where
V (λ)s := U(n−)svλ is called the PBW filtration. With respect to the PBW filtration we build the
associated graded space grV V (λ) as above. To keep the notation as simple as possible, we will
write gr V (λ) to refer to grV V (λ). The graded q–character is defined as

chq grV (λ) =
∑

µ∈h∗

(∑

s≥0
(dimV (λ)µs /V (λ)µs−1)q

s
)
eµ, where grV (λ)µ =

⊕

s∈Z+

V (λ)µs /V (λ)µs−1.

The following is immediate:
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Lemma. The action of U(n−) on V (λ) induces a structure of a S(n−) module on grV (λ). Moreover,

grV (λ) = S(n−)vλ ∼= S(n−)/Iλ,

for some homogeneous Ideal Iλ. The action of U(n+) on V (λ) induces a structure of a U(n+)
module on grV (λ).

By the previous lemma, the representation grV (λ) is cyclic as a S(n−)–module. By the PBW
theorem and the defining relations (3.1) of V (λ) we obtain the following proposition.

Proposition. The set { ∏

β∈R+

x
mβ
−β vλ | mβ ∈ Z+,mβ ≤ λ(β∨)

}

is a (finite) spanning set of grV (λ).

For a multi–exponent s = (sβ)β∈R+ ∈ Z|R
+|

+

(
resp. s = (sβ)β∈R+

i
∈ Z|R

+
i |

+

)
we denote the corre-

sponding monomial
∏
β∈R+ x

sβ
−β
(
resp.

∏
β∈R+

i
x
sβ
−β
)

for simplicity by Xs ∈ S(n−).

In recent years it became a popular goal to determine the S(n−)–structure of the representations
grV (λ), i.e. to describe the ideals Iλ and furthermore to find a PBW basis for these graded
representations, favourably parametrized by the integral points of a suitable convex polytope. For
the finite–dimensional Lie algebras of type An, Cn and G2 various results are known which we will
discuss later (see [13, 14, 16]). The focus of this paper is on the Lie algebra of type Bn where many
technical difficulties show up.

3.3. Let D ⊆ P(R+) be a subset of the power set of R+. We attach to each element p ∈ D a
non–negative integer Mp(λ). We consider the following polytope

P (D, λ) =
{

s = (sβ)β∈R+ ∈ R|R
+|

+ | ∀p ∈ D :
∑

β∈p
sβ ≤Mp(λ)

}
. (3.2)

The integral points of the above polytope are denoted by S(D, λ). The proof of part (i) of the
following theorem for type An can be found in [13], for type Cn in [14] and for type G2 in [16]. Part
(ii) is only proved for type An and Cn, but a simple calculation shows that part (ii) for type G2
remains true (for a proof see Proposition 7.1 in the Appendix).

Theorem. There exists a set D ⊆ P(R+) and suitable non–negative integers Mp(λ) attached to
each element p ∈ D, such that the following holds:

(i) The lattice points S(D, λ) parametrize a basis of V (λ) and grV (λ) respectively. In partic-
ular,

{Xs vλ | s ∈ S(D, λ)}
forms a basis of grV (λ).

(ii) We have

Iλ = S(n−)
(
U(n+) ◦ span{xλ(β

∨)+1
−β | β ∈ R+}

)
.

We note that the order in the theorem above is important when treating the representation V (λ),
but we can choose for any s ∈ S(D, λ) an arbitrary order of factors x−β in the product Xs, such
that the set

{Xs vλ | s ∈ S(D, λ)}
forms a basis of V (λ).

Remark. The set D and non–negative integers Mp(λ) are explicitly described in these papers.
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Another interesting point is to understand the geometric aspects of the PBW filtration. In [9]
degenerated flag varieties have been introduced which are certain varieties in the projectivization
P(grV (λ)) of grV (λ). In type An (see [9, 10]) and type Cn (see [11]) it has been shown that the
degenerated flag varieties can be embedded into a product of Grassmanians and desingularizations
are constructed. Recently in [12] the notion of favourable modules has been introduced whose
properties are governed by the combinatorics of an associated polytope and it has been shown that
the corresponding degenerated flag varieties have nice properties, e.g. they are projectively normal
and arithmetically Cohen-Macaulay varieties (see also Section 7). Especially it has been proved that
V (λ) for types An, Cn and G2 are favourable (with respect to the polytope from Theorem 3.3), where
the proof of this fact uses the Minkowski sum property of these polytopes. Our aim is to obtain
similar results to Theorem 3.3 for type Bn for certain dominant integral weights and, motivated by
the corresponding nice geometry of favourable modules, to construct various favourable modules.

4. Dyck path, polytopes and PBW bases

The notion of Dyck paths is used in the papers [13, 14] in order to describe the set D from
Theorem 3.3 (and thus S(D, λ)), but appears earlier in the literature in a different context. In
this section we define two types of paths (type 1 and type 2), which we also call Dyck paths to
avoid deviating from the established terminology. The set of Dyck paths of type 1 is similar to the
definition given in [13, 14], while the type 2 Dyck paths are unions of type 1 Dyck paths with some
extra conditions and are called double Dyck paths.

4.1. To each finite partially ordered set (S,≤) we can associate a diagram, called the Hasse
diagram. The vertices are given by the elements in S and we draw a line segment from x to y
whenever y covers x, that is, whenever x < y and there is no z such that x < z < y. We consider
the partial order ≤ on R+ given by α ≤ β :⇔ β − α ∈ Q+. We shall be interested in the Hasse
diagram of (R+,≤) and (R+

i ,≤). Note that the Hasse diagram of R+
i is obtained from the Hasse

diagram of R+ by erasing all vertices α ∈ R+\R+
i .

Example. We find below the Hasse diagram of (R+,≤) for type An and Bn respectively. The
vertices of the Hasse diagram for (R+

3 ,≤) of type Bn are marked by unfilled circles. Recall that the
highest root is denoted by θ.

.....
.

..

.
..
.

..

.

...

θ ... θ

..

.

...

...

...

...

..

.
..
.

..

.
..
.

...

...

...

...

4.2. For the rest of this section we fix i ∈ {1, . . . , n} and let λ = mωi for some m ∈ Z+.
All roots of type Bn are of the form αp + · · · + αq for some 1 ≤ p ≤ q ≤ n or of the form
αp + · · · + α2n−q + 2α2n−q+1 + · · · + 2αn for some 1 ≤ p ≤ 2n − q < n. To keep the notation as
simple as possible we define

αp,q :=

{
αp + · · ·+ αq, if 1 ≤ p ≤ q ≤ n
αp + · · ·+ α2n−q + 2α2n−q+1 + · · ·+ 2αn, if 1 ≤ p ≤ 2n− q < n

Furthermore, we write R+
i (`) for R+

i \
(
R+
i ∩ {αp,q | q > `}

)
. We call a subset of positive roots

p = {β(1), . . . , β(k)}, k ≥ 1 a Dyck path of type 1 if and only if the following two conditions are
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satisfied
• β(1) = α1,i, β(k) = αi,2n−i−1 or β(1) = α1,i+1, β(k) = αi,2n−i
• if β(s) = αp,q, then β(s+ 1) = αp,q+1 or β(s+ 1) = αp+1,q.

(4.1)

The set of all type 1 Dyck path is denoted by Dtype 1 and Dtype 1
1 (resp. Dtype 1

2 ) denotes the subset
consisting of all type 1 Dyck paths starting at α1,i (resp. α1,i+1). Furthermore, we call a subset
of positive roots p = {β(1), . . . , β(k)}, k ≥ 1 a Dyck path of type 2 if and only if we can write
p = p1 ∪ p2

(
p1 = {β1(1), . . . , β1(k1)}, k1 ≥ 1,p2 = {β2(1), . . . , β2(k2)}, k2 ≥ 1

)
with the following

properties:

• β1(1) = α1,i, β2(1) = α2,i and β1(k1) = αj,2n−j , β2(k2) = αj+1,2n−j−1 for some 1 ≤ j < i

• p1 and p2 satisfy the second property of (4.1)

• p1 ∩ p2 = ∅
The first property means that the last root in p2 is the upper right neighbour of the last root
in p1 in the Hasse diagram of (R+

i ,≤). The set of all type 2 Dyck paths is denoted by Dtype 2.
Summarizing, a type 1 Dyck path is a path in the sense of [13] in a specific area of the Hasse
diagram of (R+

i ,≤) and a type 2 Dyck path can be written as a disjoint union of two single type 1
Dyck paths. For this reason, we call the elements in Dtype 2 double Dyck paths.

Definition. We call a subset p of positive roots a Dyck path if and only if p ∈ D := Dtype 1∪Dtype 2.

Note that Dtype 1 = ∅ if i = n and Dtype 2 = ∅ if i = 1 and Dtype 2 = {R+
2 } if i = 2. The

interpretation of Dyck paths in the Hasse diagram is very helpful. The left figure (resp. right
figure) shows the form of a type 1 (resp. type 2) Dyck path.

β(1)

β(k)

β(2)

β(3)
β(4)

β(5)
β(6)

β(7)

β(k−1)

β(k−2)

β(k−3)

β1(1)
β2(1) β2(2)

β2(3) β2(4)

β2(5)
β2(6)

β2(7)

β2(k2−1)β2(k2−2)

β2(k2−3)

β2(k2)

β1(2)
β1(3)

β1(4)

β1(5)

β1(6)

β1(k1−3)

β1(k1−2)

β1(k1−1) β1(k1)

Example. We list all Dyck paths for B4, i = 3. We have

Dtype 1 =
{
{α1,3, α2,3, α3,3, α3,4}, {α1,3, α2,3, α2,4, α3,4}, {α1,3, α1,4, α2,4, α3,4}, {α1,4, α2,4, α3,4, α3,5},

{α1,4, α2,4, α2,5, α3,5}, {α1,4, α1,5, α2,5, α3,5}
}
.
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Dtype 2 =
{
{α1,3, α2,3, α1,4, α2,4, α1,5, α2,5, α1,6, α2,6, α1,7}, {α1,3, α2,3, α1,4, α2,4, α1,5, α2,5, α1,6, α2,6, α3,5},
{α1,3, α2,3, α1,4, α2,4, α1,5, α3,4, α1,6, α2,6, α3,5}, {α1,3, α2,3, α1,4, α3,3, α1,5, α3,4, α1,6, α2,6, α3,5},
{α1,3, α2,3, α1,4, α3,3, α1,5, α3,4, α2,5, α2,6, α3,5}, {α1,3, α2,3, α1,4, α2,4, α1,5, α3,4, α2,5, α2,6, α3,5},

{α1,3, α2,3, α1,4, α2,4, α3,3, α3,4, α2,5, α2,6, α3,5}
}
.

The corresponding polytope is defined by

P (D,mωi) =
{

s = (sβ) ∈ R|R
+
i |

+ | ∀p ∈ D :
∑

β∈p
sβ ≤Mp(mωi)

}
, (4.2)

where we set

Mp(mωi) =

{
m if p ∈ Dtype 1

mωi(θ
∨) if p ∈ Dtype 2

We consider the polytope P (D,mωi) as a subset of R|R
+|

+ by requiring sβ = 0 for β ∈ R+\R+
i .

Remark. Note that the set D is a subset of P(R+
i ) and depends therefore on i (unlike as in the

An, Cn and G2 case). We do not expect that there exists a set D
′ ⊂ P(R+) such that the following

holds: for any dominant integral weight µ there exists non–negative integers Mp(µ) (p ∈ D
′
) such

that the integral points of the corresponding polytope (3.2) parametrize a basis of grV (µ). We
rather expect that there exists a polytope parametrizing a basis of the associated graded space
where the coefficients of the describing inequalities might be greater than 1. We will demonstrate
this in the B3 case (see Section 5).

4.3. For s ∈ S(D,mωi) let wt(s) :=
∑

β∈R+
i
sββ and

S(D,mωi)
µ = {s ∈ S(D,mωi) | mωi − wt(s) = µ}.

We make the following conjecture and prove various cases in this paper. We set εi = 1 if i ≤ 2 and
εi = 2 else.

Conjecture. Let g be the Lie algebra of type Bn and 1 ≤ i ≤ n.

(1) The lattice points S(D,mωi) parametrize a basis of V (mωi) and grV (mωi) respectively. In
particular,

{Xs vmωi | s ∈ S(D,mωi)}
forms a basis of grV (mωi).

(2) We have

Imωi = S(n−)
(
U(n+) ◦ span

{
x
ωi(θ

∨)m+1
−θ , xm+1

−α1,2n−i , x−β | β ∈ R
+\R+

i

})
.

(3) The character and graded q-character respectively is given by

chV (mωi) =
∑

µ∈h∗
|S(D,mωi)

µ|eµ

chq grV (mωi) =
∑

s∈S(D,mωi)
emωi−wt(s)q

∑
sβ .

(4) We have an isomorphism of S(n−)–modules for all ` ∈ Z+:

grV
(
(m+ εi`)ωi

) ∼= S(n−)(vmωi ⊗ vεi`ωi) ⊆ grV (mωi)⊗ grV (εi`ωi).

Lemma. The proof of Conjecture 4.3 can be reduced to the following three statements:
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(i) The set
{Xs | s ∈ S(D,mωi)}

generates the module S(n−)/Imωi .
(ii) We have

S(D, (m+ εi`)ωi) = S(D,mωi) + S(D, εi`ωi).

(iii) We have
dimV (`ωi) = |S(D, `ωi)| for ` ≤ εi.

Proof. Assume that part (1) of the conjecture holds. Part (3) of the conjecture follows immediately
from part (1). Since Imωivmωi = 0, we have a surjective map

S(n−)/Imωi −→ grV (mωi)

and hence part (2) of the conjecture follows with part (1) and (i). It has been shown in [14,
Proposition 3.7] (cf. also [12, Proposition 1.11]) that if {Xs vλ | s ∈ S(D, λ)} is a basis of grV (λ)
and {Xs vµ | s ∈ S(D, µ)} is a basis of grV (µ), then

{
Xs(vλ ⊗ vµ), s ∈ S(D, λ) + S(D, µ)

}
is a

linearly independent subset of grV (λ) ⊗ grV (µ) and therefore also a linearly independent subset
of V (λ)⊗ V (µ). Since we have a surjective map

S(n−)/I(m+εi`)ωi
∼= grV ((m+ εi`)ωi) −→ S(n−)(vmωi ⊗ vεi`ωi) ⊆ grV (mωi)⊗ grV (εi`ωi),

part (4) follows from part (1) and (ii). So it remains to prove that part (1) follows from (i)–(iii).
If m ≤ εi we are done with (iii), so let m > εi. By induction we can suppose that S(D, (m −
εi)ωi) parametrizes a basis of grV ((m − εi)ωi) and by (i) and (iii) that S(D, εiωi) parametrizes
a basis of grV (εiωi). Thus, together with (ii), we obtain similar as above that

{
Xs(v(m−εi)ωi ⊗

vεiωi), s ∈ S(D,mωi)
}

is a linearly independent subset of V ((m− εi)ωi)⊗V (εiωi). Since V (mωi) ∼=
U(n−)(v(m−εi)ωi ⊗ vεiωi) and dimV (mωi) = dim grV (mωi) part (1) follows. �

Therefore it will be enough to prove the above lemma. The first part of the lemma is proved in full
generality in Section 4.4 whereas the second part is proved only for several special cases (1 ≤ i ≤ 3
and n arbitrary or i arbitrary and 1 ≤ n ≤ 4) in Section 4.5. The proof of the third part for these
special cases is an easy calculation and will be omitted.

4.4. Proof of Lemma 4.3 (i). We choose a total order ≺ on R+:

αp,q ≺ αs,t :⇔ q < t or q = t and p > s.

Interpreted in the Hasse diagram this means that we order the roots from the bottom to the top
and from left to right. We extend this order to the induced homogeneous reverse lexicographic
order on the monomials in S(n−). We order the set of positive roots R+ = {β1, . . . , βN} with
respect to ≺:

βN ≺ βN−1 ≺ · · · ≺ β1.
The definition of the order ≺ implies the following. Let β` ≺ βp and ν ∈ R+, such that β`−ν ∈ R+

and βp − ν ∈ R+, then
β` − ν ≺ βp − ν.

We define differential operators for α ∈ R+ on S(n−) by:

∂αx−β :=

{
x−β+α, ifβ − α ∈ R+

0, else.

The operators satisfy
∂αx−β = cα,β[xα, x−β],

where cα,β ∈ C are some non–zero constants.
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Lemma. Let
∑

r∈ZN+ cr Xr ∈ S(n−) and ν ∈ R+. We set

t = max
{
r | ∂ν Xr 6= 0, cr 6= 0

}
.

Then the maximal monomial in
∑

r∈ZN+ cr∂ν Xr is a summand of ∂ν Xt.

Proof. We express ∂ν Xt as a sum of monomials and let Xt be the maximal element appearing in
this expression. From the definition of the differential operators it is clear that

tβ` =





tβ` , if ` 6= jt, β` 6= βjt − ν
tβ` − 1, if ` = jt

tβ` + 1, if β` = βjt − ν
, where βjt = max

1≤k≤N

{
βk | ∂νx−βk 6= 0, tβk 6= 0

}
.

With other words, Xt is a scalar multiple of
∏

6̀=jt
x
tβp
−β`x

tβjt
−1

−βjt
x−βjt+ν .

Moreover, let Xr be any monomial with cr 6= 0 and ∂ν Xr 6= 0. Similar as above we denote by Xr

the maximal element which appears as a summand of ∂ν Xr. In the rest of the proof we shall verify
that t � r. Since t � r this follows immediately if jt ≤ jr. So suppose that jt > jr and t ≺ r.
This is only possible if rβjr − 1 < tβjr and tβp = rβp for 1 ≤ p < jr. Therefore we can deduce from
t � r that rβjr = tβjr . It follows tβjr 6= 0, ∂νx−βjr 6= 0 and βjt ≺ βjr , which is a contradiction to
the choice of βjt . �

The proof of Lemma 4.3 (i) proceeds as follows. We use the above monomial order on S(n−) and
prove that any monomial Xs, s /∈ S(D,mωi) in S(n−)/Imωi can be written as a sum of monomials,
where each monomial appearing in this expression is less than Xs. We repeat this argument for
any summand Xt, t /∈ S(D,mωi) in this expression. After finitely many steps Xs can be written
as a sum of monomials Xt, t ∈ S(D,mωi) which is exactly the statement of the lemma. So let
Xs, s /∈ S(D,mωi) be a monomial in S(n−)/Imωi . Then there exists a Dyck path p such that∑

β sβ > Mp(mωi). We define another multi–exponent r = (rβ) by rβ = sβ if β ∈ p and rβ = 0
otherwise. Since we have a monomial order it will be enough to prove that Xr can be written as a
sum of smaller monomials. Hence the following proposition proves Lemma 4.3 (i).

Proposition. Let p ∈ D and s ∈ Z|R
+
i |

+ be a multi–exponent supported on p, i.e. sβ = 0 for β /∈ p.

Suppose
∑

β∈p sβ > Mp(mωi). Then there exists constants ct ∈ C, t ∈ Z|R
+
i |

+ such that

Xs +
∑

t≺ s

ct Xt ∈ Iλ.

Proof. First we assume that p = {β(1), . . . , β(k)} ∈ Dtype 1
2 . Note that the ideal Iλ is stable under

the action of the differential operators and x
sβ(1)+···+sβ(k)
−α1,2n−i ∈ Iλ. In the following we write simply

xp,q := x−αp,q and sp,q := sαp,q and rewrite the monomial x−β(1) · · ·x−β(k) as follows. We can choose
a sequence of integers

1 = p0 ≤ p1 < p2 < · · · < pr−1 < pr = i < i+ 1 = q0 < q1 < q2 < · · · < qr−1 ≤ qr = 2n− i
with 1 ≤ p` ≤ q` ≤ n or 1 ≤ p` ≤ 2n− q` < n for all 0 ≤ ` ≤ r such that

x−β(1) · · ·x−β(k) = x1,i+1 · · ·xp1,i+1xp1,i+2 · · ·xp1,q1xp1+1,q1 · · ·xp2,q1xp2,q1+1 · · ·xp2,q2 · · ·xpr,qr .
See the picture below for a better imagination:
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1,i+1 i,i+1

i,2n−i1,2n−i

p1,i+1

p1,q1

p2,q1

p2,q2

p3,q2

p3,q3

pr−1,qr−1

pr−1,qr−2

pr−2,qr−2

For 0 ≤ ` ≤ r we define sp` := sp`,q`−1+1 + · · · + sp`,q` + sp`+1,q` + · · · + sp`+1,q` and |s| := sβ(1) +
· · ·+ sβ(k). Then

∂
sp1

α1,p1−1
x
|s|
1,2n−i = x

|s|−sp1
1,2n−ix

sp1

p1,2n−i ∈ Iλ.

Since ∂α1,l
xt,2n−i = 0 for 1 < t ≤ l < i we conclude with p1 < p2 < · · · < pr:

∂
spr
α1,pr−1 · · · ∂

sp2
α1,p2−1∂

sp1
α1,p1−1x

|s|
1,2n−i = x

|s|−∑r
t=1 spt

1,2n−i x
sp1
p1,2n−ix

sp2
p2,2n−i · · ·x

spr
pr,2n−i ∈ Iλ.

Note that the operator ∂αi+1,2n−(i+1)
acts non–trivially on each xpj ,2n−i. The choice of the order

implies that the largest monomial in

∂
s1,i+1+···+sp1,i+1
αi+1,2n−(i+1)

x
|s|−∑r

t=1 spt
1,2n−i x

sp1
p1,2n−ix

sp2
p2,2n−i . . . x

spr
pr,2n−i (4.3)

is obtained by acting with ∂αi+1,2n−(i+1)
only on the the largest element x1,2n−i. So the largest

monomial in (4.3) with respect to ≺ is

x
s1,i+1+···+sp1,i+1

1,i+1 x
sp1
p1,2n−ix

sp2
p2,2n−i . . . x

spr
pr,2n−i. (4.4)

Each of the operators ∂αp1−1,p1−1 , . . . , ∂α2,2 , ∂α1,1 act trivially on each xpj ,2n−i. Since

∂
sp1,i+1
αp1−1,p1−1 . . . ∂

s3,i+1+···+sp1,i+1
α2,2 ∂

s2,i+1+···+sp1,i+1
α1,1 x

s1,i+1+···+sp1,i+1

1,i+1 = x
s1,i+1

1,i+1 . . . x
sp1,i+1

p1,i+1

we obtain by acting with these operators on (4.4) that

x
s1,i+1

1,i+1 . . . x
sp1,i+1

p1,i+1 x
sp1
p1,2n−ix

sp2
p2,2n−i . . . x

spr
pr,2n−i +

∑
smaller monomials ∈ Iλ. (4.5)

In the next step we act with the operators ∂αi+1,2n−q1 , ∂αi+1,2n−q1+1 , . . . , ∂αi+1,2n−(q0+1)
on xp1,2n−i

and obtain with Lemma 4.4:

∂
sp1−(sp1,q1−1+···+sp1,q0+1)
αi+1,2n−q1 ∂

sp1,q1−1
αi+1,2n−q1+1 . . . ∂

sp1,q0+1
αi+1,2n−(q0+1)

x
sp1
p1,2n−i (4.6)

= x
sp1−(sp1,q1−1+···+sp1,q0+1)
p1,q1 x

sp1,q1−1

p1,q1−1 · · ·x
sp1,q0+1

p1,q0+1 +
∑

smaller monomials

Since xp1,2n−i is the maximal element with respect to ≺ among the factors in the leading term of
(4.5) we get by combining Lemma 4.4 and (4.6)

x
s1,i+1

1,i+1 . . . x
sp1,i+1

p1,i+1 x

∑p2
`=p1

s`,q1
p1,q1 x

sp1,q1−1

p1,q1−1 . . . x
sp1,q0+1

p1,q0+1 x
sp2
p2,2n−i . . . x

spr
pr,2n−i +

∑
smaller monomials ∈ Iλ.

(4.7)

Now we act with the operators ∂αp2−1,p2−1 , . . . ∂αp1+1,p1+1 , ∂αp1,p1 :

∂
sp2,q1
αp2−1,p2−1 . . . ∂

sp1+2,q1+···+sp2,q1
αp1+1,p1+1 ∂

sp1+1,q1+sp1+2,q1+···+sp2,q1
αp1,p1

x
sp1,q1+sp1+1,q1+···+sp2,q1
p1,q1 =

x
sp1,q1
p1,q1 x

sp1+1,q1
p1+1,q1

. . . x
sp2,q1
p2,q1 .

(4.8)
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Since ∂αp2−1,p2−1 , . . . ∂αp1+1,p1+1 , ∂αp1,p1 act trivially on each xpj,2n−1 and xp1,q1 is the largest element

with respect to ≺ among the remaining factors in the leading term of (4.7) we get by combining
(4.7) and (4.8) that the following element is the sum of strictly smaller monomials in S(n−)/Iλ:

x
s1,i+1

1,i+1 . . . x
sp1,i+1

p1,i+1 x
sp1,q1
p1,q1 x

sp1,q1−1

p1,q1−1 x
sp1,q1−2

p1,q1−2 . . . x
sp1,q0+1

p1,q0+1 x
sp1+1,q1
p1+1,q1

. . . x
sp2,q1
p2,q1 x

sp2
p2,2n−i . . . x

spr
pr,2n−i

If we repeat the above steps with x
sp2
p2,2n−i . . . x

spr
pr,2n−i we can deduce the proposition for p ∈ Dtype 1

2 .

Now suppose that p ∈ Dtype 1
1 is of the form

p = {α1,i, α2,i . . . α`,i, α`,i+1, . . . , αr,i+1, αr,i+2, . . . αi,2n−i−1}.
We shall construct another Dyck path as follows. We set q = {α`,i+1, . . . , αr,i+1, αr,i+2, . . . αi,2n−i−1}.
Then it is easy to see that we can find an element q̃ ∈ P(R+

i ) such that the path q := q∪q̃ ∈ Dtype 1
2 .

We define a multi–exponent s(q) by

s(q)β = sβ, if β ∈ q, s(q)α1,i+1 = sα1,i + · · ·+ sα`,i , and else s(q)β = 0.

By our previous calculations we get

Xs(q) +
∑

t≺s(q)
ct Xt ∈ Iλ. (4.9)

Note that each operator ∂α1,1 , . . . , ∂α`−1,`−1
acts trivially on xβ for all β ∈ q and ∂αi+1,i+1 acts

trivially on xβ for all β ∈ q\{α`+1,i+1, . . . αr,i+1}. Since x1,i+1 � xj,i+1 for all ` + 1 ≤ j ≤ r the
maximal element when acting with ∂αi+1,i+1 on (4.9) is obtained by acting with ∂αi+1,i+1 on x1,i+1.
We have

∂
s1,i+···+s`,i
αi+1,i+1 Xs(q) + = x

s1,i+···+s`,i
1,i Xs(q) +

∑
smaller monomials ∈ Iλ, (4.10)

where s(q) is the multi–exponent defined by s(q)β = sβ if β ∈ q and s(q)β = 0 otherwise. In the

last step we act with ∂
s`,i
α`−1,`−1∂

s`−1,i+s`,i
α`−2,`−2 · · · ∂s2,i+···+s`,iα1,1 on (4.10) and get

Xs +
∑

t≺s
ct Xt ∈ Iλ.

Now we assume that p ∈ Dtype 2, which means that p can be written as a union p = p1 ∪ p2

with p1 = {β1(1), . . . , β1(k1)} and p2 = {β2(1), . . . , β2(k2)} such that β1(k1) = αj−1,2n−j+1 and
β2(k2) = αj,2n−j . We have

x
sβ1(1)+···+sβ1(k1)+sβ2(1)+···+sβ2(k2)
1,2n−1 ∈ Iλ. (4.11)

We will prove the statement of the proposition by upward induction on j ∈ {2, . . . , i}. If j = 2, we
have

p1 = {α1,i, α1,i+1, . . . , α1,2n−1} and p2 = {α2,i, α2,i+1, . . . , α2,2n−2}
and therefore by acting on (4.11) we get

∂
s2,i
α1,2n−i · · · ∂

s2,2n−3
α1,3 ∂

s2,2n−2
α1,2 ∂

s1,i
α2,2n−i · · · ∂

s1,2n−2
α2,3 ∂

s1,2n−2
α2,2 x

sβ1(1)+···+sβ1(k1)+sβ2(1)+···+sβ2(k2)
1,2n−1 =

= x
s1,2n−1

1,2n−1 · · ·x
s1,i+1

1,i+1 x
s1,i
1,i x

s2,2n−i−1

2,2n−2 · · ·xs2,i+1

2,i+1 x
s2,i
2,i +

∑
smaller monomials ∈ Iλ

and the induction begins. As before we rewrite the Dyck path as follows:

x−β1(1)x−β1(2) · · ·x−β1(k1) = x1,ix1,i+1 · · ·xb1,c1xb1+1,c1 · · ·xb2,c1xb2,c1+1 · · ·xb2,c2 . . . xbr,cr
x−β2(1)x−β2(2) · · ·x−β2(k2) = x2,ix3,i · · ·xp1,ixp1,i+1 · · ·xp1,q1xp1+1,q1 · · ·xp2,q1xp2,q1+1 · · ·xp2,q2 · · ·xpt,qt
where

1 = b0 = b1 < b2 < · · · < br−1 ≤ br = j − 1, i = c0 < c1 < c2 < · · · < cr−1 ≤ cr = 2n− j + 1,

2 = p0 ≤ p1 < p2 < · · · < pr−1 ≤ pt = j and i = q0 < q1 < q2 < · · · < qt−1 ≤ qt = 2n− j.
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For a pictorial illustration see the picture below:

1,i i,i

i,2n−i

1,2n−1

2,i p1,i

p1,q1

p2,q1

p2,q2

p3,q2

p3,q3

pt,qt−1
pt−1,qt−1

pt−1,qt−2

pt,qt = j,2n−j

b1,c1
b2,c1

b2,c2

b3,c2

b3,c3

br−2,cr−1

br−1,cr−1

br−1,cr br,cr = j−1,2n−j+1

We will construct another path p ∈ Dtype 2. We set

p̃1 = p\{αpt,qt−1 , αpt,qt−1+1, . . . , αpt,qt}.
Then it is easy to see that there exists a unique element p̃2 ∈ P(R+

i ) such that p = p̃1∪p̃2 ∈ Dtype 2

and the roots αj−2,2n−j+2, αj−1,2n−j+1 appear in p. We define a multi–exponent s(p) by

s(p)β = sβ, if β ∈ p̃1\{αbr−1,cr}, s(p)αbr−1,cr
= sbr−1,cr + spt,qt−1 + spt,qt−1+1 + · · ·+ spt,qt

and s(p)β = 0 otherwise. The induction hypothesis yields

Xs(p) +
∑

t≺s(p)
ct Xt ∈ Iλ. (4.12)

Now we want to act with suitable operators on (4.12) such that the leading term is the required

monomial Xs. Since xbr−1,cr is the maximal element in Xs(p) and ∂αbr−1,j
, . . . , ∂αbr−1,2n−qt−1

act non

trivially on xbr−1,cr we obtain the desired property

∂
spt,qt−1
αbr−1,2n−qt−1

· · · ∂spt,qtαbr−1,j
Xs(p) +

∑

t≺s(p)
ct∂

spt,qt−1
αbr−1,2n−qt−1

· · · ∂spt,qtαbr−1,j
Xt =

= Xs +
∑

smaller monomials ∈ Iλ.

�

4.5. Proof of Lemma 4.3 (ii) in various cases. In this section we shall prove various cases of
Lemma 4.3 (ii). Consider the partial order

αj,k ≤ αp,r ⇔ (j ≥ p ∧ k ≥ r)
and suppose we are given a multi–exponent s ∈ S(D,mωi). Let Rs = {β ∈ R+

i (2n − i) | sβ 6= 0}
and Ts the set of minimal elements in Rs with respect to ≤. We define a multi–exponent ts by
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tβ = 1, if β ∈ Ts and tβ = 0 otherwise and call it the multi–exponent associated to s. The following
lemma can be deduced from [13, Proposition 3.7].

Lemma. Let s ∈ S(D,mωi) such that sβ 6= 0 implies β ∈ R+
i (2n − i − 1)

(
resp. β ∈ (R+

i ∩
R+
i+1)(2n− i)

)
. Then we have

s− ts ∈ S(D, (m− 1)ωi).

For a multi–exponent t ∈ Z|R
+
i |

+ define

supp(t) = {β ∈ R+
i | tβ 6= 0},

and let

T(1) = {t ∈ Z|R
+
i |

+ | tβ ≤ 1,∀β ∈ R+
i }.

The following proposition proves Lemma 4.3 (ii) for 1 ≤ i ≤ 3, where the proof for i = 3 is very
technical and is given in the appendix (see Section 7.2).

Proposition. Let 1 ≤ i ≤ 3 and m ≥ εi. Then we have

S(D,mωi) = S(D, (m− εi)ωi) + S(D, εiωi).

Proof. The proof for i = 1 is straightforward since S(D,mω1) is determined by two inequalities.
Proof for i = 2: Suppose s ∈ S(D,mω2) and recall that Dtype 2 = {R+

2 }. We will construct a multi–
exponent t ∈ S(D, ω2) such that s − t ∈ S(D, (m − 1)ω2). We prove the statement by induction
on sθ and start with sθ = 0. In this case we note that

∑
β∈p(sβ − tβ) ≤ m − 1 for all p ∈ Dtype 1

implies already s−t ∈ S(D, (m−1)ω2). The proof proceeds by several case considerations. For the
readers convenience we illustrate each case by means of the Hasse diagram. We make the following
convention: a bold dot (resp. square) in the Hasse diagram indicates that the corresponding entry
of s is zero (resp. non–zero).

Case 1: In this case we suppose s2,2n−2 6= 0.

...

......

...

If s1,2 = s2,2 = 0 the statement follows from Lemma 4.5. So let t ∈ T(1) be the multi–exponent
with supp(t) = {α2,2n−2, αk,2}, where k = min{1 ≤ j ≤ 2 | sj,2 6= 0}. It is easy to see that
t ∈ S(D, ω2) and s− t ∈ S(D, (m− 1)ω2).

Case 2: In this case we suppose that s2,2n−2 = 0 and s1,2 6= 0.

...

......

...

If s1,2n−2 = 0 the statement follows as above from Lemma 4.5. So let t ∈ T(1) be the multi–
exponent with supp(t) = {α1,2, α1,2n−2}. It is straightforward to prove that t ∈ S(D, ω2) and
s− t ∈ S(D, (m− 1)ω2).

Case 3: In this case we suppose s1,2 = s2,2n−2 = 0. Again with Lemma 4.5 we can assume that
s2,2 6= 0 and s1,2n−2 6= 0.
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...

......

...

Let t ∈ T(1) be the multi–exponent with supp(t) = {α2,2, α1,k}, where k = min{3 ≤ j ≤ 2n − 2 |
s1,j 6= 0} (see the unfilled squares below).

...

......

...

It follows t ∈ S(D, ω2). Suppose we are given a Dyck path p ∈ Dtype 1
1 with

∑
β∈p(sβ − tβ) = m,

which is only possible if tβ = 0 for all β ∈ p. It follows that p is of the form

p = {α1,2, . . . , α1,p, α2,p, . . . , α2,2n−3}, for some 3 ≤ p < k.

Since s1,r = 0 for all 2 ≤ r < k we get
∑

β∈p
sβ ≤ s2,3 + · · ·+ s2,2n−3 ≤ (s2,2 − 1) + s2,3 + · · ·+ s2,2n−3 ≤ m− 1,

which is a contradiction. Similarly, for p ∈ Dtype 1
2 we get

∑
β∈p(sβ − tβ) ≤ m − 1. Hence

s− t ∈ S(D, (m− 1)ω2) and the induction begins.

Assume that sθ 6= 0 and let s1 be the multi–exponent obtained from s by replacing sθ by sθ−1. By
induction there exists a multi–exponent t1 ∈ S(D, ω2) such that r1 := s1 − t1 ∈ S(D, (m− 1)ω2).
If
∑

β∈R+
2
t1β ≤ 1 we set t to be the multi–exponent obtained from t1 by replacing t1θ by t1θ + 1.

Then we get t ∈ S(D, ω2) and s − t = r1. Otherwise we set r to be the multi–exponent obtained
from r1 by replacing r1θ by r1θ + 1. Since

∑
β∈R+

2
t1β = 2, we get

∑
β∈R+

2
rβ ≤ 2m− 2 and therefore

s = r + t1, and s− t1 ∈ S(D, (m− 1)ω2).

�

In order to cover the remaining special cases, we shall prove Lemma 4.3 (ii) for n = i = 4. Let
s ∈ S(D,mω4). We will prove the Minkowski property by induction on s4,4+s1,7. If s4,4 = s1,7 = 0,
we consider two cases.

Case 1: In this case we suppose that s1,6, s2,5 and s3,4 are non–zero.

Then we define t ∈ S(D, 2ω4) to be the multi–exponent with t1,6 = t2,5 = t3,4 = 1 and 0 else. It is
immediate that the difference s− t ∈ S(D, (m− 2)ω4).

Case 2: In this case we suppose that one of the entries s1,6, s2,5 or s3,4 is zero. Then there is a
Dyck path p such that s is supported on p and the statement is immediate.

So suppose that either s4,4 6= 0 or s1,7 6= 0. The proof in both cases is similar, so that we can
assume s4,4 6= 0.
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We set s1 to be the multi–exponent obtained from s by replacing s4,4 by s4,4 − 1. By induction we
can find t1 ∈ S(D, 2ω4) such that s1 − t1 ∈ S(D, (m − 2)ω4). Now we define t to be the multi–
exponent obtained from t1 by replacing t4,4 by t4,4 + 1 if the resulting element stays in S(D, 2ω4)
and otherwise we set t = t1. In either case s− t ∈ S(D, (m− 2)ω4).

Remark.

(1) The set S(D,mωi) does not satisfy the usual Minkowski sum property in general, e.g. the
element (mβ) ∈ S(D, 2ω4) (n = 4) with mβ = 1 for β ∈ {α1,6, α2,5, α3,4} and else 0 is
not contained in S(D, ω4) + S(D, ω4). Another example is the element (mβ) ∈ S(D, 2ω3)
(n = 4) with mβ = 1 for β ∈ {α1,3, α1,4, α1,6, α2,5, α3,3} and else 0.

(2) The polytope P (D, εimωi) is defined by inequalities with integer coefficients and hence the
Minkowski property in Lemma 4.3 (ii) ensures that P (D, εimωi) is a normal polytope for
1 ≤ i ≤ 3 and n arbitrary or i arbitrary and 1 ≤ n ≤ 4. The proof is exactly the same as
in [12, Lemma 8.7].

Summarizing, we have proved Conjecture 4.3 for arbitrary n and 1 ≤ i ≤ 3 or arbitrary i and
1 ≤ n ≤ 4. Moreover the proof of the general case can be reduced to the proof of Lemma 4.3 (ii)
and Lemma 4.3 (iii).

5. Dyck path, polytopes and PBW bases for so7

If the Lie algebra is of type B3 we shall associate to any dominant integral weight λ a normal polytope
and prove that a basis of grV (λ) can be parametrized by the lattice points of this polytope. We
emphasize at this point that the polytopes we will define for B3 are quasi compatible with the
polytopes defined in Section 4.2; see Remark 5.1 for more details.

5.1. We use the following abbreviations:

β1 := α1,5, β2 := α1,4, β3 := α2,4, β4 := α1,3, β5 := α2,3, β6 := α1,2, β7 := α2,2, β8 := α3,3, β9 := α1,1.

β1
β2

β3

β4

β5

β8

β6

β7

β9

Let λ = m1ω1 + m2ω2 + m3ω3, si := sβi for 1 ≤ i ≤ 9 and set (a, b, c) := am1 + bm2 + cm3. We
denote by P (λ) ⊆ R9

+ the polytope determined by the following inequalities:

(1) s2 + s3 + s4 + s8 + s9 ≤ (1, 1, 1)
(2) s3 + s4 + s5 + s8 + s9 ≤ (1, 1, 1)
(3) s4 + s5 + s6 + s8 + s9 ≤ (1, 1, 1)
(4) s5 + s6 + s7 + s8 + s9 ≤ (1, 1, 1)
(5) s3 + s5 + s8 ≤ (0, 1, 1)
(6) s5 + s7 + s8 ≤ (0, 1, 1)
(7) s6 + s7 + s9 ≤ (1, 1, 0)

(8) s7 ≤ (0, 1, 0)
(9) s8 ≤ (0, 0, 1)

(10) s9 ≤ (1, 0, 0)
(11) s3 + s4 + s5 + s6 + s7 + s8 + s9 ≤ (1, 2, 1)
(12) s1 + s2 + s3 + s4 + s5 + s7 + s9 ≤ (1, 2, 1)
(13) s1 + s3 + s4 + s5 + s6 + s7 + s9 ≤ (1, 2, 1)
(14) s2 + s3 + s4 + s5 + s7 + s8 + s9 ≤ (1, 2, 1)
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(15) s1 + s2 + s3 + s4 + s5 + s6 + s7 + 2s9 ≤
(2, 2, 1)

(16) s2 + s3 + s4 + s5 + s6 + s7 + s8 + 2s9 ≤
(2, 2, 1)

(17) s1+s2+2(s3+s4+s5)+s6+s7+s8+2s9 ≤
(2, 3, 2)

(18) s2+2(s3+s4+s5)+s6+s7+2(s8+s9) ≤
(2, 3, 2)

(19) s3+s4+2s5+s6+s7+2s8+s9 ≤ (1, 2, 2)

As before we set S(λ) = P (λ) ∩ Z9
+.

Remark. Assume that λ = mωi for some 1 ≤ i ≤ 3. If i 6= 1, then the polytope P (D,mωi)
defined in Section 4.2 coincides with the polytope given by the inequalities (1) − (19). If i = 1
these polytopes slightly differ in the following sense: the polytope P (D,mω1) from Section 4.2 is
determined by the inequalities

(1) s1 + s2 + s4 + s6 ≤ m (2) s2 + s4 + s6 + s9 ≤ m

whereas the above polytope can be simplified and is determined by the inequalities

(1) s1 + s4 + s6 + s9 ≤ m (2) s1 + s2 + s4 + s9 ≤ m

5.2. For the rest of this section we prove the following theorem.

Theorem. Let g be of type B3.

(1) The lattice points S(λ) parametrize a basis of V (λ) and grV (λ) respectively. In particular,

{Xs vλ | s ∈ S(λ)}

forms a basis of grV (λ).
(2) The character and graded q-character respectively is given by

chV (λ) =
∑

µ∈h∗
|S(λ)µ|eµ

chq grV (λ) =
∑

s∈S(λ)
eλ−wt(s)q

∑
sβ .

(3) We have an isomorphism of S(n−)–modules

grV (λ+ µ) ∼= S(n−)(vλ ⊗ vµ) ⊆ grV (λ)⊗ grV (µ)

As in Section 4 we can deduce the above theorem from the following lemma.

Lemma.

(i) Let λ, µ ∈ P+. We have

S(λ+ µ) = S(λ) + S(µ)

(ii) For all λ ∈ P+:

dimV (λ) = |S(λ)|

The proof of Lemma 5.2 (i) is given in Section 5.3 and the proof of Lemma 5.2 (ii) can be found in
Section 5.4.
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5.3. Proof of Lemma 5.2 (i). For this part of the lemma it is enough to prove that S(λ) =
S(λ − ωj) + S(ωj) where j is the minimal integer such that λ(α∨j ) 6= 0. If j = 3, many of the
inequalities are redundant and the polytope can be simply described by the inequalities

s1 + s2 + s3 + s4 + s5 ≤ (0, 0, 1), s2 + s3 + s4 + s5 + s8 ≤ (0, 0, 1).

The proof of the lemma in that case is obvious. If j = 2, there are again redundant inequalities
and the polytope can simply described by the inequalities (1)− (4), (7), (9)− (10) and (15)− (16).
A straightforward calculation proves the proposition in that case. So let j = 1 and s = (si)1≤i≤9 ∈
S(λ). We will consider several cases.

Case 1: Assume that s9 6= 0 and let t = (ti)1≤i≤9 be the multi–exponent given by t9 = 1 and
tj = 0 otherwise. It follows immediately t ∈ S(ω1) and s− t ∈ S(λ− ω1).

Case 2: In this case we suppose that s9 = 0 and s2, s6 6= 0.

Case 2.1: If in addition s3 + s4 + s5 + s8 < (1, 1, 1) we let t = (ti)1≤i≤9 to be the multi–exponent
given by t2 = t6 = 1 and tj = 0 otherwise. It is easy to show that t ∈ S(ω1) and s− t ∈ S(λ−ω1),
since s− t /∈ S(λ− ω1) forces s3 + s4 + s5 + s8 = (1, 1, 1).

Case 2.2: Now we suppose that s3 + s4 + s5 + s8 = (1, 1, 1). Together with (5) we obtain
s4 ≥ m1 > 0. We let t = (ti)1≤i≤9 to be the multi–exponent with t4 = 1 and tj = 0 otherwise.
Suppose that s− t /∈ S(λ− ω1), which is only possible if (4), (7), (15) or (16) is violated. Assume
that (4) is violated, which means s5 + s6 + s7 + s8 = (1, 1, 1). We obtain

(s3 + s4 + s5 + s8) + (s5 + s6 + s7 + s8) = s3 + s4 + 2s5 + s6 + s7 + 2s8 = (2, 2, 2),

which is a contradiction to (19). Assume that (7) is violated, which means s6 + s7 = (1, 1, 0). We
get

(s3 + s4 + s5 + s8) + (s6 + s7) = (2, 2, 1),

which is a contradiction to (11). In the remaining two cases (inequality (15) and (16) respectively
is violated) we obtain similarly contradictions to (17) and (18) respectively.

Case 3: Assume that s2 = s9 = 0 and s6 6= 0. In this case many inequalities are redundant. In
particular, for a multi–exponent t with tj ≤ sj for 1 ≤ j ≤ 9 we have s− t ∈ S(λ− ω1) if and only
if s− t satisfies (2)− (11), (13) and (19). To be more precise,

s− t satisfies (2)⇒ s− t satisfies (1)

s− t satisfies (13)⇒ s− t satisfies (12), (15)

s− t satisfies (11)⇒ s− t satisfies (14), (16)

s− t satisfies (2) and (13)⇒ s− t satisfies (17)

s− t satisfies (2) and (11)⇒ s− t satisfies (18)

Case 3.1: If in addition s3 + s4 + s5 + s8 < (1, 1, 1) we let t = (ti)1≤i≤9 to be the multi–
exponent given by t6 = 1 and tj = 0 otherwise. It is straightforward to check that t ∈ S(ω1) and
s− t ∈ S(λ− ω1).

Case 3.2: If s3 + s4 + s5 + s8 = (1, 1, 1) we let t = (ti)1≤i≤9 to be the multi–exponent with t4 = 1
and tj = 0 otherwise. Note that s − t /∈ S(λ − ω1) is only possible if (4) or (7) is violated. If
(4) and (7) respectively is violated we get similarly as in Case 2.2 a contradiction to (19) and (11)
respectively.

Case 4: Assume that s6 = s9 = 0 and s2 6= 0. This case works similar to Case 3 and will be
omitted.
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Case 5: In this case we suppose s6 = s9 = s2 = 0 and simplify further the defining inequalities
of the polytope. As in Case 3, for a multi–exponent t with tj ≤ sj for 1 ≤ j ≤ 9 we have
s − t ∈ S(λ − ω1) if and only if s − t satisfies (2), (5), (6), (8) − (11), (13) and (19). To be more
precise,

s− t satisfies (2)⇒ s− t satisfies (3)

s− t satisfies (6)⇒ s− t satisfies (4)

s− t satisfies (8)⇒ s− t satisfies (7)

Case 5.1: We suppose that s4 6= 0 and let t = (ti)1≤i≤9 to be the multi–exponent given by t4 = 1
and tj = 0 otherwise. The desired property follows immediately.

Case 5.2: Let s4 = 0. Then again we can simplify the inequalities and obtain that s−t ∈ S(λ−ω1)
if and only if s− t satisfies (5), (6), (8)− (10), and (13). To be more precise,

s− t satisfies (5)⇒ s− t satisfies (2)

s− t satisfies (5) and (8)⇒ s− t satisfies (11)

s− t satisfies (5) and (8)⇒ s− t satisfies (19)

Case 5.2.1: If s1 = 0 we already have s ∈ S(λ−m1ω1). If s1 6= 0, let t = (ti)1≤i≤9 be the multi–
exponent with t1 = 1 and tj = 0 otherwise. It follows immediately t ∈ S(ω1) and s−t ∈ S(λ−ω1).

Remark. The polytope P (λ) is defined by inequalities with integer coefficients and hence the
Minkowski property in Lemma 5.2 (i) ensures that P (λ) is a normal polytope. The proof is exactly
the same as in [12, Lemma 8.7].

5.4. Proof of Lemma 5.2 (ii). We consider the convex lattice polytopes Pi := P (ωi) ⊆ R9
+ for

1 ≤ i ≤ 3. By [3, Problem 3, pg. 164] there exists a 3–variate polynomial E(T1, T2, T3) of total
degree ≤ 9 such that

E(m1,m2,m3) = |(m1P1 +m2P2 +m3P3) ∩ Z9
+|, for non–negative integers m1,m2,m3.

By Lemma 5.2 (i) we get

E(m1,m2,m3) = |S(λ)|, for non–negative integers m1,m2,m3

and by Weyl’s dimension formula, we know that there is another 3–variate polynomial W (T1, T2, T3)
of total degree ≤ 9 such that

W (m1,m2,m3) = dimV (λ).

The polynomial is given by

W (T1, T2, T3) =
1

720
(T1 + 1)(T2 + 1)(T2 + 1)(T1 + 2T2 + T3 + 4)(2T1 + 2T2 + T3 + 5)

(T1 + T2 + T3 + 3)(T1 + T2 + 2)(T2 + T3 + 2)(2T2 + T3 + 3).

Hence it will be enough to prove that both polynomials coincide. By using the code given in
Section 7.3, written in Java, we can deduce E(λ0, λ1, λ2) = W (λ0, λ1, λ2) for all (λ0, λ1, λ2) ∈ Z3

+

with λ0 + λ1 + λ2 ≤ 9. We claim that this fact already implies E(T1, T2, T3) = W (T1, T2, T3). Let
I = {(λ0, λ1, λ2) ∈ Z3

+ | λ0 + λ1 + λ2 ≤ 9} and write

E(T1, T2, T3) =
∑

(n,m,k)∈I
en,m,kT

n
1 T

m
2 T

k
3 , W (T1, T2, T3) =

∑

(n,m,k)∈I
wn,m,kT

n
1 T

m
2 T

k
3
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We obtain with our assumption that
∑

(n,m,k)∈I

(
en,m,k − wn,m,k

)
λn0λ

m
1 λ

k
2 = 0.

We can translate this into a system of linear equations where the underlying matrix is given by

(λµ00 λ
µ1
1 λ

µ2
2 )λ,µ∈I .

This matrix is invertible by [6, Theorem 1] and therefore the claim is proven.

6. Construction of favourable modules

In [12] the notion of favourable modules has been introduced and several classes of examples for
type An, Cn and G2 have been discussed. This section is dedicated to give further examples of
favourable modules in type Bn. Let us first recall the definition.

6.1. We fix an ordered basis {x1, . . . , xN} of n− and an induced homogeneous lexicographic order
< on the monomials in {x1, . . . , xN}. Let M be any finite–dimensional cyclic U(n−)–module with
cyclic vector vM and let

Xs vM = xs11 . . . xsNN vM ∈M,

where s ∈ ZN+ is a multi–exponent. The following definition is due to Vinberg.

Definition. A pair (M, s) is called essential if

Xs vM /∈ span{Xq vM | q < s}.

If the pair (M, s) is essential, then s is called an essential multi–exponent and Xs is called an
essential monomial in M . The set of all essential monomials are denoted by es(M) ⊆ ZN+ . We
introduce subspaces Fs(M)− ⊆ Fs(M) ⊆M :

Fs(M)− = span{Xq vM | q < s}, Fs(M) = span{Xq vM | q ≤ s}.
These subspaces define an increasing filtration on M and the associated graded space with respect
to this filtration is defined by

M t =
⊕

s∈ZN+

Fs(M)−/Fs(M).

Similar as in Section 3 we can define the PBW filtration on M and the associated graded space
grM with respect to the PBW filtration. The following proposition follows from the construction
of M t and grM (see also [12, Proposition.1.5]).

Proposition. The set {Xs | s ∈ es(M)} forms a basis of M t, grM and M .

6.2. We recall the definition of favourable modules.

Definition. We say that a finite–dimensional cyclic U(n−)–module M is favourable if there exists
an ordered basis x1, . . . , xN of n− and an induced homogeneous monomial order on the PBW basis
such that

• There exists a normal polytope P (M) ⊂ RN such that es(M) is exactly the set S(M) of
lattice points in P (M).
• ∀ k ∈ N : dim U(n−)(vM ⊗ · · · ⊗ vM︸ ︷︷ ︸

k

) = |S(M) + · · ·+ S(M)︸ ︷︷ ︸
k

|.
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Let N be a complex algebraic unipotent group such that n− is the corresponding Lie algebra.
Similarly on the group level, we have a commutative unipotent group grN with Lie algebra gr n−

acting on grM and M t. We associate to the action of the unipotent groups projective varieties,
which are called flag varieties in analogy to the classical highest weight orbits (see [12] for details)

F(M) = N.[vM ] ⊆ P(M), F(grM) = grN.[vM ] ⊆ P(grM), F(M t) = grN.[vM ] ⊂ P(M t).

The following theorem proved in [12] gives a motivation for constructing favourable modules by
showing that the flag varieties associated to favourable modules have nice properties.

Theorem. Let M be a favourable n−–module.

(1) F(M t) ⊆ P(M t) is a toric variety.
(2) There exists a flat degeneration of F(M) into F(grM), and for both there exists a flat

degeneration into F(M t).
(3) The projective flag varieties F(M) ⊆ P(M) and its abelianized versions F(grM) ⊆ P(grM)

and F(M t) ⊆ P(M t) are projectively normal and arithmetically Cohen–Macaulay varieties.
(4) The polytope P (M) is the Newton–Okounkov body for the flag variety and its abelianized

version, i.e. ∆(F(M)) = P (M) = ∆(F(grM)).

6.3. In [12, Section 8] the authors provided concrete classes of examples of favourable modules for
the types An, Cn and G2. The following theorem gives us classes of examples of favourable modules
in type Bn (including multiples of the adjoint representation).

Theorem. Let g be the Lie algebra of type Bn and λ be a dominant integral weight satisfying one
of the following

(1) n = 3 and λ is arbitrary
(2) n is arbitrary and λ = mω1 or λ = mω2

(3) n is arbitrary and λ = 2mω3 or n = 4 and λ = 2mω4

Then there exists an ordered basis on n− and an induced homogeneous monomial order on the
PBW basis such that V (λ) is a favourable n−–module.

Proof. We will show that V (λ) satisfies the properties from Definition 6.2. We consider the ap-
propriate polytopes from (4.2) and P (λ) from Section 5. These polytopes are normal by Re-
mark 4.5 and Remark 5.3 and therefore the natural candidates for showing the properties from
Definition 6.2. For simplicity we will denote these polytopes by P (λ) since it will be clear from the
context which polytope we mean. The second property follows immediately since on the one hand
U(n−)(vλ ⊗ · · · ⊗ vλ) ∼= V (kλ) and on the other hand the k–fold Minkowski sum parametrizes a
basis of V (kλ) by Theorem 5.2 (1), Lemma 5.2 (i), Conjecture 4.3 (1) (which is proved in theses
cases) and Lemma 4.3 (ii). Hence it remains to prove that es(V (λ)) (with respect to a fixed order)
is exactly the set S(λ). Let λ =

∑n
j=1mjajωj . By [12, Proposition 1.11] we know that

es(V (λ)) ⊇ es(V (a1ω1)) + · · ·+ es(V (a1ω1))︸ ︷︷ ︸
m1

+ · · ·+ es(V (anωn)) + · · ·+ es(V (anωn))︸ ︷︷ ︸
mn

, (6.1)

and hence it is enough to show that there exists an ordered basis on n− and an induced homogeneous
monomial order on a PBW basis such that es(V (ajωj)) = S(ajωj) for all j with mj 6= 0 (recall
from Proposition 6.1 that |es(V (λ))| = |S(λ)|). Suppose first that we are in case (2) or (3) (then
aj = 1 and ak = 0 for all k 6= j in case (2) and in case (3) we have a3 = 2 respectively a4 = 2 and
ak = 0 else). Then we choose the order given in Section 4.4 (we ordered the roots in the Hasse
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diagram from the bottom to the top and from left to right) and the induced homogeneous reverse
lexicographic order on a PBW basis. By our results we obtain for s /∈ S(ajωj) that

Xs vajωj ∈ span{Xq vajωj | q ≺ s}
and hence es(V (ajωj)) ⊆ S(ajωj). Since these sets have the same cardinality we are done. Suppose
now that we are in case (1) (aj = 1 for all j). Then we choose the following order on the positive
roots

β7 � β6 � β1 � β2 � β3 � β4 � β5 � β8 � β9.
Similar as in Section 4.4 we can prove for all s /∈ S(ωj) that

Xs vωj ∈ span{Xq vωj | q ≺ s},
which finishes the proof of the theorem. �

7. Appendix

In this section we want to complete the proof of Proposition 4.5 for i = 3. Moreover, we give a
proof of the second part of Theorem 3.3 for type G2.

7.1. We consider the Lie algebra of type G2 and the following order on the positive roots:

β1 := 3α1 + 2α2 � β2 := 3α1 + α2 � β3 := 2α1 + α2 � β4 := α1 + α2 � β5 := α2 � β6 := α1.

As before, we extend the above order to the induced homogeneous reverse lexicographic order on
the monomials in S(n−). The order is chosen in a way such that Lemma 4.4 can be applied. Let
λ = m1ω1 + m2ω2, si := sβi for 1 ≤ i ≤ 6 and set (a, b) := am1 + bm2. It has been proved in [16]
that the lattice points S(λ) of the following polytope P (λ) parametrize a basis of grV (λ):

(1) s6 ≤ (1, 0)
(2) s5 ≤ (0, 1)
(3) s2 + s3 + s6 ≤ (1, 1)
(4) s3 + s4 + s6 ≤ (1, 1)

(5) s4 + s5 + s6 ≤ (1, 1)
(6) s1 + s2 + s3 + s4 + s5 ≤ (1, 2)
(7) s2 + s3 + s4 + s5 + s6 ≤ (1, 2)

Proposition. We have grV (λ) ∼= S(n−)/Iλ, where

Iλ = S(n−)
(
U(n+) ◦ span{xλ(β

∨)+1
−β | β ∈ R+}

)
.

Proof. Since we have a surjective map

S(n−)/Iλ −→ grV (λ),

it will be enough to show by the result of [16] that the set {Xs vλ | s ∈ S(λ)} generates S(n−)/Iλ.
As in Section 4 we will simply show that any multi–exponent s violating on of the inequalities
(1) − (7) can be written as a sum of strictly smaller monomials. It means there exists constants
ct ∈ C such that

Xs +
∑

t≺s
ct Xt ∈ Iλ.

The proof for all inequalities is similar and therefore we provide the proof only when s violates (7).
So let s be a multi–exponent with s1 = 0 and s2 +s3 +s4 +s5 +s6 > (1, 2). We apply the operators
∂s4+s6β3

∂s5β2 on Xβ1 and obtain

∂s4+s6β3
∂s5β2 Xs2+s3+s4+s5+s6

β1
= cXs2+s3

β1
Xs4+s6
β4

Xs5
β5
∈ Iλ, for some non–zero constant c ∈ C.



78 TEODOR BACKHAUS AND DENIZ KUS

Further we apply with ∂s2β5∂
s3
β4

on Xs2+s3
β1

Xs4+s6
β4

Xs5
β5

and obtain with Lemma 4.4 that there exists

constants ct ∈ C such that

∂s2β5∂
s3
β4

Xs2+s3
β1

Xs4+s6
β4

Xs5
β5

= Xs2
β2

Xs3
β3

Xs4+s6
β4

Xs5
β5

+
∑

t≺s
ct Xt ∈ Iλ. (7.1)

Finally, we act with the operator ∂s6β5 on (7.1) and get once more with Lemma 4.4 the desired
property. �

7.2. Proof of Proposition 4.5 for i = 3: Recall that a bold dot (resp. square) in the Hasse
diagram indicates that the corresponding entry of s is zero (resp. non–zero). Let i = 3 and
s ∈ S(D,mω3). If s3,j = 0 for all 3 ≤ j ≤ 2n − 3 the statement of the proposition can be easily
deduced from the i = 2 case. So we can suppose for the rest of the proof that s3,j 6= 0 for some
3 ≤ j ≤ 2n − 3. In contrast to the i = 2 case we will construct a multi–exponent t ∈ S(D, pω3)
such that s − t ∈ S(D, (m − p)ω3) where p = 1 or p = 2. A similar induction argument as in the
i = 2 case shows that it is enough to prove the statement for all multi–exponents s with sθ = 0.
Since sθ = 0 it is sufficient to check the defining inequalities of the polytope for all p ∈ D\q, where
q is the unique type 2 Dyck path with θ ∈ q. In other words

∑

β∈p
(sβ − tβ) ≤Mp((m− p)ω3), ∀p ∈ D\q ⇒ s− t ∈ S(D, (m− p)ω3).

We consider several cases.

Case 1: In this case we suppose s3,2n−3 6= 0.

...

...

......

...

...

Let t ∈ T(1) be the multi–exponent with supp(t) = {α3,2n−3, αk,3}, where k = min{1 ≤ j ≤ 2 |
sj,3 6= 0}. If k exists, it is easy to see that t ∈ S(D, ω3) and s− t ∈ S(D, (m− 1)ω3). So suppose
that s1,3 = s2,3 = 0.

...

...

......

...

...

Now we consider two additional cases.

Case 1.1: First we assume that
∑2n−4

k=3 s3,k = m (sum over the unfilled circles and the unfilled
square), which forces s3,3 6= 0.

...

...

......

...

...

Then we define t ∈ T(1) to be the multi–exponent with supp(t) = {α3,2n−3, α3,3}. We shall prove
that s− t ∈ S(D, (m− 1)ω3). For any p ∈ Dtype 1 we obviously have

∑
β∈p(sβ − tβ) ≤ m− 1. So

let p = p1 ∪ p1 ∈ Dtype 2\q. If α3,3 ∈ p2, there is nothing to show. Otherwise we get that p2 is of
the form

p2 = {α2,3, α2,4 . . . α2,p, α3,p, α3,p+1, . . . α3,2n−3}, 3 < p ≤ 2n− 3
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and
∑

β∈p2

sβ ≤ m = s2,3 +

2n−4∑

k=3

s3,k.

It follows

∑

β∈p1

(sβ − tβ) +
∑

β∈p2

(sβ − tβ) ≤
∑

β∈p1

(sβ − tβ) + s2,3 +

2n−3∑

k=3

(s3,k − t3,k) ≤ 2(m− 1).

Case 1.2: It remains to consider the case
∑2n−4

k=3 s3,k ≤ m − 1. Since s1,3 = s2,3 = 0 it is enough
to construct a multi–exponent t ∈ S(D, ω3) such that

∑

β∈p
(sβ − tβ) ≤Mp((m− 1)ω3), ∀p ∈ Dtype 1

2 ∪Dtype 2. (7.2)

We define t ∈ T(1) to be the multi–exponent with supp(t) = {α3,2n−3} if s1,2n−2 = s2,2n−2 = 0
and otherwise supp(t) = {α3,2n−3, αk,2n−2}, where k = max{1 ≤ j ≤ 2 | sj,2n−2 6= 0}. In either
case t ∈ S(D, ω3) and if s1,2n−2 = s2,2n−2 = 0 or s2,2n−2 6= 0 it is easy to verify that (7.2) holds.

So suppose that s2,2n−2 = 0, s1,2n−2 6= 0 and let p ∈ Dtype 1
2 ∪Dtype 2.

...

...

......

...

...

If p ∈ Dtype 1
2 the statement follows from α3,2n−3 ∈ p. So let again p = p1 ∪ p2 ∈ Dtype 2\q. If

α1,2n−2 ∈ p1, we are done. Otherwise set

p1 = p1\{α1,3, α2,2n−2} ∪ {α3,2n−3}, p2 = p2\{α2,3} ∪ {a1,4}.

This yields p1,p2 ∈ Dtype 1
2 and therefore

∑

β∈p1

(sβ − tβ) +
∑

β∈p2

(sβ − tβ) ≤
∑

β∈p1

(sβ − tβ) +
∑

β∈p2

(sβ − tβ) ≤ (m− 1) + (m− 1).

This finishes Case 1; so from now on we can assume that s3,2n−3 = 0.

...

...

......

...

...

Hence we have simplified the situation to the following
∑

β∈p
(sβ−tβ) ≤Mp((m−p)ω3), ∀p ∈ Dtype 1

1 ∪D̃type 1
2 ∪Dtype 2\q ⇒ s−t ∈ S(D, (m−p)ω3), (7.3)

where D̃type 1
2 = {p ∈ Dtype 1

2 | α2,2n−3 ∈ p}. Let s
′

be the multi–exponent obtained from s by

setting all entries sβ with β ∈ R+
3 (2n− 4) to zero and ts

′
= (t

′
β) be the multi–exponent associated

to s
′
. By Lemma 4.5 we obtain for all p ∈ Dtype 1

1
∑

β∈p
(sβ − t

′
β) ≤ m− 1. (7.4)
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Recall that s3,j 6= 0 for some 3 ≤ j ≤ 2n − 3 and hence t
′
3,k 6= 0 for some 3 ≤ k ≤ 2n − 4. So we

consider the following cases which can appear.

Case 2: Suppose that
∑

β t
′
β = 3. In this case there exists 3 ≤ j3 < j2 < j1 ≤ 2n − 4 such that

t1,j1 = t2,j2 = t3,j3 = 1 (see the unfilled squares below).

...

...

......

...

...

Let p ∈ D̃type 1
2 of the following form

p = {α1,4, . . . , α1,p, α2,p, . . . , α2,2n−3, α3,2n−3}.
We suppose that j1 > p > j2, because otherwise there is nothing to show. This yields s2,p = · · · =
s2,2n−4 = 0 and hence

∑

β∈p
(sβ − t

′
β) ≤ (s1,4 − t

′
1,4) + · · ·+ (s1,2n−3 − t

′
1,2n−3) + (s2,2n−3 − t

′
2,2n−3) ≤ m− 1.

Similar arguments show
∑

β∈p
(sβ − t

′
β) ≤ 2(m− 1), for all p ∈ Dtype 2\q.

Hence (7.3) and (7.4) together imply

s− ts
′
∈ S(D, (m− 1)ω3).

Case 3: In this case we suppose
∑

β t
′
β = 1. The proof proceeds similarly to the proof of Case 2

and will be omitted.

Case 4: In this case we suppose that
∑

β t
′
β = 2.

Here we have again two cases, namely either there exists 3 ≤ j3 < j1 ≤ 2n − 4 such that t
′
1,j1

=

t
′
3,j3

= 1 or there exists 3 ≤ j3 < j2 ≤ 2n − 4 such that t
′
2,j2

= t
′
3,j3

= 1. The latter case works
similarly and will be omitted.

Case 4.1: Suppose there exists 3 ≤ j3 < j1 ≤ 2n− 4 such that t
′
1,j1

= t
′
3,j3

= 1.

...

...

......

...

...

This case can be divided again into two further cases. One case treats
∑2n−4

k=3 s1,k = m and the

other case
∑2n−4

k=3 s1,k ≤ m− 1. In the latter case we can construct a multi–exponent t ∈ S(D, ω3)
similarly as in Case 2 such that s− t ∈ S(D, (m− 1)ω3). The details will be omitted.

Case 4.1.1: We suppose that
∑2n−4

k=3 s1,k = m. If s2,2n−3 = 0, we set t ∈ T(1) to be the multi–
exponent with supp(t) = {α3,j3 , α1,j1}. Then the statement can be easily deduced. So suppose
from now on that s2,2n−3 6= 0. This forces also that s1,3 6= 0, because otherwise

2n−4∑

k=4

s1,k + s2,2n−3 = m+ s2,2n−3 > m.

...

...

......

...

...
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If in addition s1,2n−2 = 0, then we can define t ∈ T(1) to be the multi–exponent with supp(t) =
{α2,2n−3, α1,3} and the statement follows easily. So we can assume that s1,2n−2 is also non–zero.

...

...

......

...

...

This is the only case where there is no multi–exponent t ∈ S(D, ω3) such that s − t ∈ S(D, (m −
1)ω3). We shall define a multi–exponent t ∈ S(D, 2ω3) such that s − t ∈ S(D, (m − 2)ω3). Let
t be the multi–exponent with supp(t) = {α3,j3 , α1,j1 , α1,3, α1,2n−2, α2,2n−3}. Obviously we have

t ∈ S(D, 2ω3). If p ∈ Dtype 1
1 , then we can also deduce immediately

∑

β∈p
(sβ − tβ) ≤ m− 2.

So let p ∈ Dtype 1
2 . There is only something to prove if p is of the following form

p = {α1,4, . . . , α1,p, α2,p, . . . , α2,2n−3, α3,2n−3}, for some p ≤ j3.
Since

s1,3 + · · ·+ s1,p + s2,p + · · ·+ s2,j3 ≤ m− s3,j3 ≤ m− 1 <

2n−4∑

k=3

s1,k

we obtain by subtracting s1,3 on both sides

s1,4 + · · ·+ s1,p + s2,p + · · ·+ s2,j3 < s1,4 + · · ·+ s1,2n−4.

Therefore

∑

β∈p
(sβ − tβ) ≤

2n−3∑

k=4

(s1,k − t1,k) + (s2,2n−3 − t2,2n−3) =
2n−3∑

k=4

s1,k + s2,2n−3 − 2 ≤ m− 2.

Let p = p1 ∪ p2 ∈ Dtype 2 be a type 2 Dyck path. There is only something to show if p1 is of the
form

p1 = {α1,3, . . . , α1,p, α2,p, . . . , α2,2n−2}, for some where p ≤ j3.
We get similar as above

∑

β∈p
(sβ − tβ) ≤

2n−3∑

k=3

(s1,k− t1,k) + (s2,2n−3− t2,2n−3) + (s2,2n−2− t2,2n−2) +
∑

β∈p2

(sβ − tβ) ≤ 2(m− 2).

7.3. We used the program Eclipse and the following code:

public class B3{
static int dim = 0;
public static void main(String[] args){
int m1,m2,m3 = 0;
for(m1 = 0;m1 <= 9;m1++){
for(m2 = 0;m2 <= 9;m2++){
for(m3 = 0;m3 <= 9;m3++){
if(m1 +m2 +m3 <= 9){
int s1, s2, s3, s4, s5, s6, s7, s8, s9 = 0;
for(s9 = 0; s9 <= m1; s9++){
for(s8 = 0; s8 <= m3; s8++){
for(s7 = 0; s7 <= m2; s7++){
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for(s6 = 0; s6 <= m1 +m2; s6++){
for(s5 = 0; s5 <= 2*m2 +m3; s5++){
for(s4 = 0; s4 <= 2*m1 + 2*m2 +m3; s4++){
for(s3 = 0; s3 <= m2 +m3; s3++){
for(s2 = 0; s2 <= m1 +m2 +m3; s2++){
for(s1 = 0; s1 <= m1 +m2 +m2 +m3; s1++){

if(s2 + s3 + s4 + s8 + s9 <= m1 +m2 +m3){
if(s3 + s4 + s5 + s8 + s9 <= m1 +m2 +m3){
if(s4 + s5 + s6 + s8 + s9 <= m1 +m2 +m3){
if(s5 + s6 + s7 + s8 + s9 <= m1 +m2 +m3){

if(s3 + s5 + s8 <= m2 +m3){
if(s5 + s7 + s8 <= m2 +m3){
if(s6 + s7 + s9 <= m1 +m2){

if(s1 + s2 + s3 + s4 + s5 + s7 + s9 <= m1 + 2*m2 +m3){
if(s1 + s3 + s4 + s5 + s6 + s7 + s9 <= m1 + 2*m2 +m3){
if(s2 + s3 + s4 + s5 + s7 + s8 + s9 <= m1 + 2*m2 +m3){
if(s3 + s4 + s5 + s6 + s7 + s8 + s9 <= m1 + 2*m2 +m3){

if(s1 + s2 + s3 + s4 + s5 + s6 + s7 + 2*s9 <= 2*m1 + 2*m2 +m3){
if(s2 + s3 + s4 + s5 + s6 + s7 + s8 + 2*s9 <= 2*m1 + 2*m2 +m3){

if(s1 + s2 + 2*s3 + 2*s4 + 2*s5 + s6 + s7 + s8 + 2*s9 <= 2*m1 + 3*m2 + 2*m3){
if(s2 + 2*s3 + 2*s4 + 2*s5 + s6 + s7 + 2*s8 + 2*s9 <= 2*m1 + 3*m2 + 2*m3){
if(s3 + s4 + 2*s5 + s6 + s7 + 2*s8 + s9 <= m1 + 2*m2 + 2*m3){
dim++; }}}}}}}}}}}}}}}}}}}}}}}}}
System.out.println(” | S(” +m1 + ”w1 + ” +m2 + ”w2 + ” +m3 + ”w3) |= ” + dim);
dim = 0;}}}}}}
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TEODOR BACKHAUS, XIN FANG, GHISLAIN FOURIER

Abstract. We extend the framework of the PBW filtration to quantum groups and provide
case independent constructions, such as giving a filtration on the negative part of the quantum
group, such that the associated graded algebra becomes a q-commutative polynomial algebra.
By taking the classical limit we obtain, in some cases new, monomial bases and monomial
ideals of the associated graded modules.

1. General remarks

1.1. On the monomiality. The reason why we are interested in the monomiality of the
defining ideal: let I be a monomial ideal of the polynomial algebra C[x1, x2, . . . , xn] such
that the quotient M := C[x1, x2, . . . , xn]/I is a finite dimensional vector space. The following
property is important: M admits a unique monomial basis

B(M) := {xα := xα1
1 xα2

2 · · ·xαn
n | xα /∈ I}.

2. Lie algebras and the classical degree cone

2.1. Notations and basic properties. Let g be a simple Lie algebra of rank n over C. We
fix a Cartan decomposition g = n+ ⊕ h ⊕ n− and a set of simple roots Π = {α1, . . . , αn}
of g. The positive roots of g will be denoted by ∆+, whose cardinality will be denoted by
N . For α ∈ ∆+, we pick a root vector fα of weight −α. Let $i, i = 1, . . . , n be the
fundamental weights, P be the weight lattice and P+ =

∑n
i=1 N$i be the set of dominant

integral weights. For a dominant integral weight λ ∈ P+, let V (λ) be the finite dimensional
irreducible representation of g with highest weight λ and vλ a highest weight vector. Let
U(n−) be the universal enveloping algebra of n−.

Let W be the Weyl group of g with generators s1, . . . , sn and w0 ∈ W be the longest
element. We denote R(w0) the set of all reduced decompositions of w0.

For any reduced decomposition w0 = si1 . . . siN ∈ R(w0) we associate a convex total order
on ∆+: for 1 ≤ t ≤ N , we denote βt = si1 . . . sit−1(αit), then ∆+ = {βt| t = 1, . . . , N} and
β1 < β2 < . . . < βN is the desired convex total order, i.e. if βi < βj and βi + βj ∈ ∆+, then

βi < βi + βj < βj .

It is proved in [P94] that the above association induces a bijection between R(w0) and the set
of all convex total orders on ∆+.

2.2. The classical degree cone.

Definition 1. We define the following set

D := {(dβ)β∈∆+ ∈ RN+ | if α+ β = γ for α, β, γ ∈ ∆+, then dα + dβ > dγ}.
84

5. Degree cones and monomial bases of Lie algebras and
quantum groups
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Since D satisfies for all x, y ∈ D, λ1, λ2 ∈ R+ \ {0}: λ1x + λ2y ∈ D we will call the set D
the classical degree cone.

We let S(D) := D∩NN denote the set of lattice points in D. For any d = (dβ)β∈∆+ ∈ S(D),

we define a filtration F d on U(n−) by:

F d
s := span{fβ1fβ2 · · · fβk ∈ U(n−) | β1, . . . , βk ∈ ∆+ such that dβ1 + dβ2 + · · ·+ dβk ≤ s}.

By the cyclicality, all irreducible representations V (λ) admit a filtration arising from F d:

F d
s V (λ) := F d

s .vλ.

The following lemma is immediate.

Lemma 1. For any d ∈ S(D), we have:

(1) F d := (F d
0 ⊂ F d

1 ⊂ · · · ⊂ F d
n ⊂ · · · ) defines a filtration on U(n−) whose associated

graded algebra is isomorphic to the symmetric algebra S(n−).
(2) Let V d(λ) be the graded module associated to the induced filtration. Then V d(λ) is a

cyclic S(n−)-module.

Let vdλ be a cyclic vector in V d(λ). By (2) of the lemma above, the S(n−)-module map

ϕ : S(n−)→ V d(λ), x 7→ x.vdλ

is surjective. We denote Id(λ) := kerϕ and call it the defining ideal of V d(λ).

2.3. The local and global monomial set.

Definition 2. The local monomial set Slm is defined by:

Slm := {d = (dβ)β∈∆+ ∈ S(D) | for any i = 1, 2, . . . , n, Id($i) is a monomial ideal}.
Definition 3. The global monomial set Sgm is defined by:

Sgm := {d = (dβ)β∈∆+ ∈ S(D) | for any λ ∈ P+, I
d(λ) is a monomial ideal}.

It is clear that Sgm ⊂ Slm.
The main goal of this paper is to study the following questions:

(1) whether the global monomial set Sgm is empty? That is to say, does there exist a
filtration on U(n−) arising from a degree d ∈ D such that for any finite-dimensional
irreducible representation, its defining ideal is monomial?

(2) if the answer to the above question is affirmative, is there a polytope such that its
lattice points parametrize this basis? That is to say, for any λ ∈ P+, we want to find
a polytope P (λ) such that

{favdλ =
n∏

i=1

faiβi v
d
λ | a ∈ PN(λ) := P (λ) ∩ NN}

is a monomial basis of V d(λ)?

Let d ∈ Slm and define PN($i) = {a ∈ NN | favd$i
6= 0 in V d($i)}, for 1 ≤ i ≤ n.

Theorem 1. For any λ = m1$1 +m2$2 + · · ·+mn$n ∈ P+, if #(m1PN($1) +m2PN($2) +
· · ·+mnPN($n)) = dimV (λ), then d ∈ Sgm.

Note + denotes the Minkowski sum and miPN($i) the mi-th Minkowski sum of PN($i).
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Proof. The assumption d ∈ Slm implies Id($i) is a monomial ideal and PN($i) parametrizes
a unique monomial basis of V d($i) for all 1 ≤ i ≤ n. This provides the induction start for an
induction on the height of λ ∈ P+, |λ| = ∑n

i=1mi, where λ =
∑n

i=1mi$i. Since the proof is
the same as in [FFR, Section 1.6] we just state the ideas, note that the steps are not trivial.

First we extend the partial order given by the degree deg fβi = di on ∆+ to a total order
on ∆+, for example by linearly ordering roots if the associated root vectors have the same
degree.

For notational reasons we state the ideas only for fundamental weights $i, $j . Using the
statement in [FFL3, Proposition 2.11] we obtain that for any $i, $j ∈ P+, the set

{fa(vd$i
⊗ vd$j

) | a ∈ PN($i) + PN($j)} ⊂ V d($i)⊗ V d($j)

is linear independent and hence in V ($i) ⊗ V ($j). By dimension arguments, using the
assumption |PN($i) +PN($j)| = dimV ($i+$j), we obtain a basis of the Cartan component
V ($i) � V ($j) = U(n−)(v$i ⊗ v$j ) ⊂ V ($i) ⊗ V ($j). Using this and induction we obtain

{favd$i+$j
| a ∈ PN($i) + PN($j)} is a monomial basis of V d($i + $j). The last step is to

show that the defining ideal of V d($i)� V d($j) = S(n−)(vd$i
⊗ vd$j

) is monomial and there

is a S(n−)-module isomorphism

V d($i)� V d($j)→ V d($i +$j).

By applying this to arbitrary weights we conclude d ∈ Sgm. �
This theorem is useful to prove that there exists d ∈ Sgm in the case of An and conjecturally

Cn such that the lattice points of the FFL polytopes (see [FFL1],[FFL2]) parametrize a mono-
mial basis of V d(λ). We get similar results in the cases of B3, the polytope is described in
[BK], and in type D4 and G2, the polytopes are described in [Gor2] and [Gor1] respectively.

3. Quantum groups and quantum degree cones

3.1. Quantum groups. In the following we state fundamental facts on quantum groups
following [FFR]. Let g be a simple Lie algebra of rank n with Cartan matrix C = (cij) ∈
Matn(Z). Let D = diag(d1, . . . , dn) ∈ Matn(Z) be a diagonal matrix symmetrizing C, thus
A = DC = (aij) ∈ Matn(Z) is the symmetrized Cartan matrix. Let Uq(g) be the corresponding

quantum group over C(q): as an algebra, it is generated by Ei, Fi and K±1
i for i = 1, . . . , n,

subject to the following relations: for i, j = 1, . . . , n,

KiK
−1
i = K−1

i Ki = 1, KiEjK
−1
i = q

cij
i Ej , KiFjK

−1
i = q

−cij
i Fj ,

EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

,

and for i 6= j,

1−cij∑

r=0

(−1)rE
(1−cij−r)
i EjE

(r)
i = 0,

1−cij∑

r=0

(−1)rF
(1−cij−r)
i FjF

(r)
i = 0,

where

qi = qdi , [n]q! =
n∏

i=1

qn − q−n
q − q−1

, E
(n)
i =

Eni
[n]qi !

and F
(n)
i =

Fni
[n]qi !

.

Let Uq(n
−) be the subalgebra of Uq(g) generated by Fi for i = 1, . . . , n. For λ ∈ P+, we

denote by Vq(λ) the irreducible representation of Uq(g) of highest weight λ and type 1 with
highest weight vector vλ.
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When q is specialized to 1, the quantum group Uq(g) admits U(g) as its classical limit. In
this limit, the representation Vq(λ) is specialized to V (λ).

3.2. PBW root vectors and commutation relations. Let Ti = T ′′i,1, i = 1, . . . , n be
Lusztig’s automorphisms:

Ti(Ei) = −FiKi, Ti(Fi) = −K−1
i Ei, Ti(Kj) = KjK

−cij
i ,

for i = 1, . . . , n, and for j 6= i,

Ti(Ej) =
∑

r+s=−cij
(−1)rq−ri E

(s)
i EjE

(r)
i , Ti(Fj) =

∑

r+s=−cij
(−1)rqriF

(r)
i FjF

(s)
i .

We refer to Chapter 37 in [Lus] for details. We fix a reduced decomposition w0 = si1si2 . . . siN ∈
R(w0) and let positive roots β1, β2, · · · , βN be as defined in Section 2.1. The quantum PBW
root vector Fβt associated to a positive root βt is defined by:

Fβt = Ti1Ti2 . . . Tit−1(Fit) ∈ Uq(n−).

The PBW theorem of quantum groups affirms that the set

{F c := F c1β1F
c2
β2
. . . F cNβN | c = (c1, . . . , cN ) ∈ NN}

forms a C(q)-basis of Uq(n
−) ([Lus, Corollary 40.2.2]).

The commutation relation between these quantum PBW root vectors is given by the fol-
lowing Levendorskĭı-Soibelman (L-S for short, see [LS91]) formula: for any i < j,

FβjFβi − q−(βi,βj)FβiFβj =
∑

ni+1,··· ,nj−1≥0

c(ni+1, · · · , nj−1)F
ni+1

βi+1
· · ·Fnj−1

βj−1
, (3.1)

where c(ni+1, · · · , nj−1) ∈ C[q±1]. We denote

Mi,j = {Fni+1

βi+1
F
ni+2

βi+2
· · ·Fnj−1

βj−1
| ni+1βi+1 + ni+2β2 + · · ·+ nj−1βj−1 = βi + βj},

then for weight reasons, the sum in the right-hand side of the L-S formula (3.1) is supported in
Mi,j . Denote by M q

i,j the set of monomials which actually appear with a non-zero coefficient

in the right-hand side of (3.1). It should be pointed out that the right-hand side in the L-S
formula largely depends on the chosen reduced decomposition. In general it is hard to know
which monomials appear in the right-hand side.

Let us have a closer look on how these formulas depend on the reduced decomposition. Let
w0, w′0 ∈ R(w0) be two reduced decompositions such that they are of form

w0 = wLspsqwR, w′0 = wLsqspwR

with 1 ≤ p 6= q ≤ n and spsq = sqsp. We define l = `(wL).
Let the convex total order on ∆+ induced by w0 (resp. w′0) be:

β1 < β2 < . . . < βN (resp. β′1 < β′2 < . . . < β′N ).

For s ≤ l, the L-S formula (3.1) reads:

FβsFβl+2
− q(βs,βl+2)Fβl+2

Fβs =
∑

ns+1,··· ,nl+1≥0

c(ns+1, · · · , nl+1)F
ns+1

βs+1
. . . F

nl+1

βl+1
. (3.2)

For t ≥ l + 3, the L-S formula (3.1) reads:

FβtFβl+1
− q−(βt,βl+1)Fβl+1

Fβt =
∑

nl+2,··· ,nt−1≥0

c(nl+2, · · · , nt−1)F
nl+2

βl+2
. . . F

nt−1

βt−1
. (3.3)

Lemma 2. In the formula (3.2), nl+1 = 0; in the formula (3.3), nl+2 = 0.
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Proof. We prove for example the first statement, the second one can be shown similarly.
First notice that for any i 6= l + 1, l + 2, βi = β′i, βl+1 = β′l+2, βl+2 = β′l+1. The

same argument can be applied to quantum PBW root vectors: let Fβ1 , Fβ2 , . . . , FβN (resp.
F ′β1 , F

′
β2
, . . . , F ′βN ) be the quantum PBW root vectors obtained from w0 (resp. w′0). Then for

any i 6= l + 1, l + 2, Fβi = F ′βi , Fβl+1
= F ′βl+2

, Fβl+2
= F ′βl+1

. For s ≤ l, we apply the L-S

formula to F ′βs and F ′βl+1
, it gives:

F ′βsF
′
βl+1
− q(β′s,β

′
l+1)F ′βl+1

F ′βs =
∑

ms+1,··· ,ml≥0

d(ms+1, · · · ,ml)F
′ms+1

βs+1
. . . F ′ml

βl
.

Compare it to (3.3) gives nl+1 = 0. �

3.3. Quantum degree cones.

Definition 4. For a reduced decomposition w0 ∈ R(w0), we define the quantum degree cone
Dqw0

associated to it by:

Dqw0
:= {(dβ) ∈ RN+ | for any i < j, dβi + dβj >

j−1∑

k=i+1

nkdβk if c(ni+1, · · · , nj−1) 6= 0 in (3.1)}.

Remark 1. As in the definition of the classical degree cone, the notion of quantum degree
cone is motivated by the fact that Dqw0

is closed under summation and non-zero scalar multi-
plication.

We denote the set

Dq :=
⋃

w0∈R(w0)

Dqw0
.

Theorem 2. For any w0 ∈ R(w0), the set Dqw0
is non-empty.

Proof. Let x = (x1, x2, . . . , xN ) be a N-tuple of variables, we shall describe an inductive
procedure how to construct an element of Dqw0

, i.e. how to set the values of xi, 1 ≤ i ≤ N ,
such that x ∈ Dqw0

. Denote dβi by di, 1 ≤ i ≤ n.
We set degFβi = 1 for all 1 ≤ i ≤ n and the first two steps are setting x1, x2 = 1, note that

M q
1,2 = ∅.
We consider the variable x3, M q

1,3 is not empty in general and we set

x3 = max{1, deg(m) | m ∈M q
1,3}.

Either M q
1,3 = ∅, then there is no inequality and we set x3 = 1 or there exists m = Fn2

β2
∈M q

1,3,

with n2β2 = β1 + β3, n2 ≥ 1 and we have exactly one inequality:

d1 + d3 > deg(m).

In this case we set x3 = deg(m), which is n2x2 = n2. Then the above inequality is satisfied:
x1 + x3 = 1 + deg(m) > deg(m). We set degFβ3 = x3.

Note up this point this choice is minimal regarding the sum x1 +x2 +x3 and lexicographical
minimal regarding the convex order under the assumption x1 = 1. This is not important for
the proof, but as a side effect we shall be interested in the latter minimality.

In the fourth step we consider all possible inequalities implying restrictions for x1, x2, x4:

d1 + d4 > deg(m), m ∈M q
1,4

d2 + d4 > deg(m), m ∈M q
2,4.

(3.4)
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Together with those in the step before these are all inequalities defining Dqw0
containing only

d1, d2, d3 and d4. We set

x4 = max{1, deg(m) | m ∈M q
1,4,m ∈M q

2,4}.
Since we have a finite number of monomials of the fixed weights β1 + β4 and β2 + β4 this
maximum exists and (3.4) is satisfied. We set degFβ4 = x4. We do not change degFβ1 , degFβ2
and degFβ3 in this step. This means, the inequalities from the steps before are still satisfied.
This implies that the new x satisfies all inequalities defining Dqw0

containing only d1, d2, d3

and d4.
In the k-th step we have the following inequalities:

dj + dk > deg(m), m ∈M q
j,k, for all 1 ≤ j ≤ k − 2. (3.5)

Again we have a finite number of inequalities and it is possible to set xk as the maximum of
the right-hand sides. Since we want to construct the lexicographic minimal solution satisfying
x1 = 1, regarding the order β1 < · · · < βN , we set

deg(m)′ := deg(m)− xj + 1, for m ∈M q
j,k,

for all 1 ≤ j ≤ k − 2 and set

xk = max{1, deg(m)′ | m ∈M q
j,k, 1 ≤ j ≤ k − 2}.

By construction x satisfies the inequalities in (3.5). We set degFβk = xk. Since x1, x2, . . . , xk−1

satisfy the inequalities of the k − 1 steps before and we only change degFβk in this step, the
choice of x1, . . . , xk satisfies all inequalities defining Dqw0

containing only d1, d2, . . . , dk. After
N steps we have constructed an element (x1, . . . , xN ) ∈ Dqw0

. �

From now on we fix a reduced decomposition w0 ∈ R(w0). Let d ∈ S(Dqw0
) = Dqw0

∩ NN .

For a monomial F t = F t1β1F
t2
β2
. . . F tNβN ∈ Uq(n

−), we define its d-degree degd by:

degd(F t) = t1dβ1 + t2dβ2 + . . .+ tNdβN .

Then we can define a filtration Fd
• = (Fd

0 ⊂ Fd
1 ⊂ . . . ⊂ Fd

n ⊂ . . .) on Uq(n
−) by:

Fd
k := span{F t ∈ Uq(n−) | degd(F t) ≤ k}.

Let Sq(n
−) be the algebra generated by x1, x2, · · · , xN , subject to the following relations: for

1 ≤ i < j ≤ N ,

xixj = q(βi,βj)xjxi.

The following proposition is clear from the L-S formula (3.1).

Proposition 1. (1) The filtration Fd
• endows Uq(n

−) with a filtered algebra structure.

(2) The associated graded algebra grdUq(n
−) is a q-commutative polynomial algebra iso-

morphic to Sq(n
−).

For λ ∈ P+, the above filtration on Uq(n
−) induces a filtration on Vq(λ) by letting

Fd
kVq(λ) := Fd

k .vλ.

We let V d
q (λ) denote the associated graded vector space: it is a cyclic Sq(n

−)-module. Let vd
λ

be a cyclic vector and Idq (λ) be the defining ideal defined as before.
When the quantum parameter q is specialized to 1, the L-S formula is specialized to:

fβifβj − fβjfβi =

{
cki,jfβk , if βi + βj = βk;

0, otherwise.

This proves the following lemma.
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Lemma 3. We have Dq ⊂ D.

Remark 2. Except for small rank cases g = sl2, sl3 (see Subsection 4.1.1), the inclusion in
Lemma 3 is strict. For example, the element 1 = (1, 1, · · · , 1) is in the classical degree cone
D, but for g 6= sl2, sl3, we can always find a reduced decomposition w0 such that 1 /∈ Dqw0

.
See for example [FFR, Section 2.4] and Subsections 4.1.2 for type C2 and 4.1.3 for type G2
respectively.

4. Examples and properties of quantum degree cones

4.1. Examples of rank 2.

4.1.1. A2. For the Lie algebra sl2 neither in the classical degree nor in the quantum degree
cone exist relations, since we have only one (quantum) PBW root vector f1 (resp. F1).

So let g = sl3 be the Lie algebra of type A2. The classical degree cone D is given by the
following inequalities: d = (d1, d12, d2) ∈ R3

+ where d12 correspond to the degree of f12.

d1 + d2 > d12.

Fix a reduced decomposition w0 = s1s2s1 of the longest element w0 in the Weyl group of g.
Let

F1, F12, F2

be the quantum PBW root vectors, their commutation relations are:

F1F2 = q−1F2F1 − q−1F12.

The quantum degree cone Dqw0
⊂ D is given by:

d1 + d2 > d12

and we obtain Dqw0
= D. The same construction with the reduced decomposition w1

0 = s2s1s2

shows that Dqw0
= Dq

w1
0
.

Remark 3. Here we would like to emphasize, whenever we compare cones, the α component
of any cone has to match the α component of each other cone.

4.1.2. C2. Let g = sp4 be the Lie algebra of type C2. The classical degree cone D is given by
the following inequalities: d = (d1, d112, d12, d2) ∈ R4

+ where d12 (resp. d112) correspond to
the degree of f12 (resp. f112):

d1 + d2 > d12, d1 + d12 > d112.

Fix a reduced decomposition w0 = s1s2s1s2 of the longest element w0 in the Weyl group of
g. Let

F1, F112, F12, F2

be the corresponding quantum PBW root vectors, their commutation relations are:

F1F112 = q2F112F1, F1F12 = F12F1 − (q + q−1)F112, F1F2 = q−2F2F1 − q−2F12,

F112F12 = q2F12F112, F112F2 = F2F112 + (1− q−2)F
(2)
12 , F12F2 = q2F2F12.

The quantum degree cone Dqw0
⊂ D is given by:

d1 + d2 > d12, d1 + d12 > d112, d12 + d112 > 2d12. (4.1)

The same construction with the reduced decomposition w1
0 = s2s1s2s1 shows that Dqw0

= Dq
w1

0
.
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4.1.3. G2. Let g be the Lie algebra of type G2. The classical degree cone D is given by the
following inequalities: d = (d1, d1112, d112, d11122, d12, d2) ∈ R6

+:

d1 + d2 > d12, d1 + d12 > d112, d1 + d112 > d1112,

d2 + d1112 > d11122, d112 + d12 > d11122.

For example (2, 1, 3, 1, 3, 2) ∈ D. We will use this special element later (see Subsection 5.4.3)
We fix a reduced decomposition w0 = s1s2s1s2s1s2 ∈ R(w0). Let

F1, F1112, F112, F11122, F12, F2

be the corresponding quantum PBW root vectors, their commutation relations are:

F1F1112 = q3F1112F1, F1F112 = qF112F1−(q3+q−1)F1112, F1F11122 = F11122F1+(q−q−3)F
(2)
112,

F1F12 = q−1F12F1 − (1 + q−2)F112, F1F2 = q−3F2F1 − F12, F1112F112 = q3F112F1112,

F1112F11122 = q3F11122F1112− (q3− q− q−1 + q−3)F
(3)
112, F1112F12 = F12F1112 + (q− q−3)F

(2)
112,

F1112F2 = q−3F2F1112 + (−q−3 − q−5)F112F12 + (q−2 + q−4 − q−7)F11122,

F112F11122 = q3F11122F112, F112F12 = qF12F112 − (q3 + q + q−1)F11122,

F112F2 = F2F112 + (q − q−3)F
(2)
12 , F11122F12 = q3F12F11122,

F11122F2 = q3F2F11122 − (q3 − q − q−1 + q−3)F
(3)
12 , F12F2 = q3F2F12.

The quantum degree cone Dqw0
⊂ D is given by:

d1, d1112, d112, d11122, d12, d2 > 0,

d1 + d112 > d1112, d1 + d11122 > 2d112, d1 + d12 > d112, d1 + d2 > d12,

d1112 + d11122 > 3d112, d1112 + d12 > 2d112, d1112 + d2 > d112 + d12,

d1112 + d2 > d11122, d112 + d12 > d11122, d112 + d2 > 2d12, d11122 + d2 > 3d12.

(4.2)

Again, these inequalities do not depend on the choice of the reduced decomposition.

4.1.4. From the examples above we obtain:

Proposition 2. Let g be of type A1, A2, C2, G2. For any w0 ∈ R(w0), we have Dq = Dqw0
.

4.2. Examples of rank 3.

4.2.1. C3. Let g be of type C3 and enote by Fi,j the quantum PBW root vector associated to
the root αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn−1 + αn for 1 ≤ i ≤ j < n = 3 and denote Fi,j the
quantum PBW root vector associated to the root αi + · · ·+ αj for 1 ≤ i ≤ j ≤ n = 3. We fix
the reduced decomposition

w0 = (s1s2s3s2s1)(s2s3s2)s3

of w0 ∈W . The quantum PBW root vectors are

F1,1, F1,2, F1,1, F1,3, F1,2, F2,2, F2,2, F2,3, F3,3.

These vectors generate Uq(n
−), the commutation relations determine the cone Dq

w0
as before.

The defining inequalities are the following, di corresponds to the degree of the i-th (from left
to right) quantum PBW root vector above:

d1 + d5 > d3, d1 + d5 > d2 + d4, d1 + d6 > d2, d1 + d7 > d5, d1 + d7 > d4 + d6,

d1 + d8 > d4, d2 + d4 > d3, d2 + d7 > d5 + d6, d2 + d7 > d4 + 2d6, d2 + d8 > d5,

d2 + d8 > d4 + d6, d2 + d9 > d4, d3 + d7 > 2d5, d3 + d7 > d4 + d5 + d6,

d3 + d7 > 2d4 + 2d6, d3 + d8 > d4 + d5, d3 + d8 > 2d4 + d6, d3 + d9 > 2d4,
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d4 + d6 > d5, d6 + d8 > d7, d6 + d9 > d8, d7 + d9 > 2d8.

There are four elements in Dq
w0

, which are minimal regarding the sum over all entries:

d1 = (2, 1, 1, 1, 1, 1, 4, 4, 5), d2 = (3, 2, 2, 1, 1, 1, 3, 3, 4),

d3 = (5, 4, 4, 1, 1, 1, 1, 1, 2), d4 = (4, 3, 3, 1, 1, 1, 2, 2, 3).

Since d1,d2,d3,d4 ∈ D we go back to the classical case. We consider the fundamental module
V ($2) and the weight τ = 2α1 + 3α2 + α3 whose weight space V ($2)$2−τ is of dimension 1.
We have to choose an element with minimal degree from the following set, where we neglect
the elements which have obviously a higher degree:

{f1,2f1,2, f1,1f2,2}.
For each of the above elements in Dq

w0
both monomials have the same degree, so we do not

obtain a monomial ideal Idi , 1 ≤ i ≤ 4.
By taking larger degrees d ∈ Dqw0

it is possible to obtain a unique monomial basis of

V d($2), where it is possible to obtain a basis with either of both monomials applied to vd$2
.

We conclude Dq
w0

* Slm, but Dq
w0
∩ Slm 6= ∅. We also see, different elements in Dq

w0
can

produce different monomial bases. This observation still holds, even if we consider elements
where the sum over the entries is the same.

4.3. Properties of quantum degree cones.

Theorem 3. Let g be a simple Lie algebra of rank n ≥ 3, then
⋂

w0∈R(w0)

Dqw0
= ∅.

Proof. Since we calculated the cases n ≤ 2 explicitly in the examples (see Subsection 4.1), we
only consider the case where n ≥ 3. We want to show that there are at least two reduced
decomposition w1

0, w
2
0 such that the associated cones have inequalities which contradict each

other.
First we want to show that we can reduce the statement to the case where n = 3. Since g is

a simple Lie algebra we find a Lie subalgebra g3 ⊂ g of type A3, B3 or C3 respectively, denoted
by X3. Depending on the type of the Lie subalgebra of g we choose a reduced decomposition
wX3

0 ∈ Wx3 of the longest Weyl group element in the Weyl group of g3. If we have more than
one choice, it does not matter which type we choose. Now we consider the longest Weyl group
element w0 ∈ W . We can always find a reduced decomposition w0 of w0 such that wX3

0 is a
subword of w0, i.e. let l := number of positive roots of g3:

w0 = wX3
0 sil+1

sil+2
. . . siN ,

where sik ∈ W is the reflection associated to the simple root αik . If we prove the statement
for Lie algebras of rank n = 3 we can extend the cones which have empty intersection. Hence
for a Lie algebra of arbitrary rank n ≥ 3 we find quantum degree cones, associated to certain
reduced decompositions, which do not intersect.

Let g be of type A3 and Uq(g) be the quantum group associated to g with generic parameter
q. We consider the reduced decompositions

w1
0 = s1s2s1s3s2s1, w2

0 = s1s3s2s3s1s2

of w0 the longest Weyl group element in WA3 . The quantum PBW root vectors associated to
the reduced decompositions are given by

F1,1, F1,2, F2,2, F1,3, F2,3, F3,3 and
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F1,1, F3,3, F1,3, F1,2, F2,3, F2,2

respectively. Here Fi,j denotes the quantum PBW root vector associated to the positive root
αi + αi+1 + · · · + αj for i ≤ j. We have the following commutation relations in Uq(n

−) (see
the L–S formula (3.1)):

(1) F1,2F2,3 = F2,3F1,2 + (q − q−1)F2,2F1,3 and

(2) F1,3F2,2 = F2,2F1,3 + (q − q−1)F1,2F2,3

respectively. Let degF1,2 = a1, degF2,3 = a2, degF1,3 = a3, degF2,2 = a4. Then we get the
following inequalities in Dq

w1
0

and Dq
w2

0
respectively:

(1)⇒ a1 + a2 > a3 + a4 and

(2)⇒ a3 + a4 > a1 + a2,

which implies Dq
w1

0
∩ Dq

w2
0

= ∅. The proof in the cases of B3 and C3 proceeds similar:

Let g be of type B3 and Uq(g) be the associated quantum group. We consider the reduced
decompositions

w1
0 = s1s2s1s3s2s1s3s2s3, w2

0 = s1s3s2s3s2s1s2s3s2

of w0 the longest Weyl group element in WB3 . The quantum PBW root vectors, denotes as
before, are

F1,1, F1,2, F2,2, F1,3, F1,2, F1,3, F2,3, F2,3, F3,3 and

F1,1, F3,3, F1,3, F1,3, F1,2, F1,2, F2,3, F2,3, F2,2

respectively. Here Fi,j denotes the quantum PBW root vector associated to the positive root
αi + · · · + αj−1 + 2αj + · · · + 2αn for 1 ≤ i < j ≤ n = 3 and denote Fi,j as before. We have
the following relations in Uq(n

−):

(1) F1,2F2,3 = F2,3F1,2 + (q2 − q−2)F2,2F1,3 and

(2) F1,3F2,2 = F2,2F1,3 + (q2 − q−2)F1,2F2,3

respectively. Let degF1,2 = b1, degF2,3 = b2, degF1,3 = b3,degF2,2 = b4. Then we get the
following inequalities:

(1)⇒ b1 + b2 > b3 + b4 and

(2)⇒ b3 + b4 > b1 + b2,

which implies Dq
w1

0
∩ Dq

w2
0

= ∅.
Finally let g be of type C3 and Uq(g) be the associated quantum group. We consider the

reduced decompositions

w1
0 = s1s2s3s2s1s2s3s2s3, w2

0 = s1s3s2s3s2s1s2s3s2

of w0 the longest Weyl group element in WC3 . The quantum PBW root vectors, denoted as in
4.2.1, are given by

F1,1, F1,2, F1,1, F1,3, F1,2, F2,2, F2,2, F2,3, F3,3 and

F1,1, F3,3, F1,3, F1,1, F1,2, F1,2, F2,3, F2,2, F2,2

respectively. Further we have the following relations:

(1) F1,2F2,3 = q−1F2,3F1,2 + (q2 − q−2)F1,3F2,2 + qF1,2 and

(2) F1,3F2,2 = q−1F2,2F1,3 + (q2 − q−2)F1,2F2,3 + qF1,2

respectively. Let degF1,2 = c1, degF2,3 = c2, degF1,3 = c3, degF2,2 = c4. Then we get the
following inequalities:

(1)⇒ c1 + c2 > c3 + c4 and



94 TEODOR BACKHAUS, XIN FANG, GHISLAIN FOURIER

(2)⇒ c3 + c4 > c1 + c2,

which implies Dq
w1

0
∩ Dq

w2
0

= ∅. �

The importance of the foregoing result is the following: if the intersection of all quantum
degree cones would be non-empty, elements in this intersection would be good candidates to
study the corresponding filtration on U(n−) and Uq(n

−) respectively. Since this intersection
is empty we need to find other conditions.

Two reflections sp and sq in W with p 6= q are said to be orthogonal if spsq = sqsp. Two
reduced decompositions w0, w′0 ∈ R(w0) are said to be related by orthogonal reflections if one
can be obtained from the other by using only orthogonal reflections.

The following proposition shows that most of the cones are the same.

Proposition 3. Let w0, w′0 ∈ R(w0) such that they are related by orthogonal reflections.
Then Dqw0

= Dq
w′0

.

Proof. By definition, it suffices to consider the case where

w0 = wLspsqwR, w′0 = wLsqspwR

with 1 ≤ p, q ≤ n such that spsq = sqsp. In this case, Lemma 2 can be applied to prove the
proposition. �

5. Local and global monomial sets

5.1. Local and global monomial set. We define the quantum local monomial set and the
quantum global monomial set as follows:

Sqlm := Slm ∩ Dq, Sqgm := Sgm ∩ Dq.
Proposition 4. For any w0 ∈ R(w0), we have Dqw0

∩ Slm 6= ∅. Hence Slm,Sqlm 6= ∅.
Proof. We need to find d ∈ Dqw0

such that for any s = 1, . . . , n, Id($s) is a monomial ideal.
Define mi := 〈ρ, β∨i 〉 for the fixed weight ρ =

∑n
i=1$i ∈ P+. In order to prove the statement

we can adapt the proof of Theorem 2. In this proof we construct a x ∈ Dqw0
∩NN . Note that

this x does not satisfy x1 < x2 < · · · < xN , since x1 = x2 = 1 and if M q
j,k is empty in the k-th

step for all 1 ≤ j ≤ k − 2, then xk = 1.
We change the procedure as follows: we set d1 = 1, d2 = 2 and degFβ1 = 1,degFβ2 = 2.

Note that m1 = 1, since β1 is a simple root. For 3 ≤ k ≤ N , in the k-th step we set

dk = 1 + max

{
k−1∑

i=1

mi degFβi , deg(m) | m ∈M q
j,k, 1 ≤ j ≤ k − 2

}
. (5.1)

We set degFβk = dk and the step is finished.
With the same arguments as in the proof of Theorem 2, d satisfies all inequalities of Dqw0

containing only d1, d2, . . . , dk. Since we keep track of the degrees, by setting degFβk = dk, the

possible choice of dk =
∑k−1

i=1 mi degFβi does not change this. After N steps we obtain that
d ∈ Dqw0

is a solution satisfying d1 < d2 < . . . < dN . We turn to the classical case, then we
have by the choice of d (see (5.1))

deg fm1
β1
fm2
β2
· · · fmk−1

βk−1
< deg fβk

for all 1 ≤ k ≤ N . Furthermore fm1
β1
fm2
β2
· · · fmk−1

βk−1
flvρ = 0 in V (ρ) for any 1 ≤ l ≤ k − 1 and

hence zero in V d(ρ). This implies, the choice of d ∈ D, in particular the degree on the root
vectors deg fβi = di, 1 ≤ i ≤ N induces a total order, namely the reverse lexicographical order,
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on the monomials in S(n−) which are non-zero applied to vdρ . Hence Id($s) is monomial for
any 1 ≤ s ≤ n. �

Remark 4. If Sgm 6= ∅, then there exists an N-filtration arising from d ∈ Sgm such that for

any λ ∈ P+, V d(λ) has a unique monomial basis.
If Sqgm 6= ∅, then there exists an N-filtration on Uq(n

−) with Sq(n
−) the associated graded

algebra arising from d ∈ Sqgm such that for any λ ∈ P+, V d
q (λ) has a unique monomial basis.

5.2. Global monomial sets: An, Cn. For type An we have the following positive roots: αi,j =
αi + αi+1 + · · · + αj , 1 ≤ i ≤ j ≤ n. In the case of Cn the positive roots are: αi,j =
αi + · · ·+ αj , 1 ≤ i ≤ j ≤ n and

αi,j = αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn−1 + αn, 1 ≤ i ≤ j ≤ n− 1.

For a dominant integral weight λ ∈ P+ we denote the FFL polytopes described in [FFL1] by
P An(λ) and in [FFL2] by P Cn(λ) respectively.

We turn first to the An case and define d by di,j = (j− i+1)(n−j+1) for 1 ≤ i ≤ j ≤ n the
degree attached to the root vector fi,j of the positive root αi,j . The results in [FFR, Theorem
A, Theorem C] imply the first two statements of the following theorem:

Theorem 4. (1) We have d ∈ Sgm.

(2) The set {favdλ | a ∈ P An
N (λ)} forms a monomial basis of V d(λ).

(3) Let w0 = (snsn−1 · · · s1)(sn · · · s2) · · · (snsn−1)sn, then d ∈ Dqw0
.

Proof. (3) The reduced decomposition w0 determines the following convex order on the positive
roots:

αn,n ≺ αn−1,n ≺ · · · ≺ α2,n ≺ α1,n ≺
αn−1,n−1 ≺ · · · ≺ α1,n−1 ≺

...

α2,2 ≺ α1,2 ≺
α1,1.

With root combinatorics we obtain that the defining inequalities of Dqw0
⊂ RN+ are the follow-

ing: x = (xp,q) ∈ RN+ : for all αk,i−1, αi,j ∈ ∆+ :

xk,i−1 + xi,j > xk,j (5.2)

and for all αi,j ∈ ∆+ such that there exist r, s ∈ N, r or s non-zero with αi+r,j , αi,j−s,
αi+r,j−s ∈ ∆+:

xi+r,j + xi,j−s > xi,j + xi+r,j−s. (5.3)

Let λ ∈ P+ such that fi+r,jv
d
λ , fi,j−sv

d
λ , fi,jv

d
λ , fi+r,j−sv

d
λ 6= 0, for example λ = ρ = $1 +

$2 + · · ·+$n. Since αi+r,j + αi,j−s = αi,j + αi+r,j−s and fi,jfi+r,j−svdλ 6= 0 in V d(λ), by the

description of P An
N (λ), we obtain that d satisfies the inequalities (5.3). A similar arguments

works for (5.2). �

Let us consider the Cn case. We define d ∈ D by: di,j = (2n − j)(j − i + 1) and di,j =

j(2n− i− j + 1).

Conjecture 1. (1) We have d ∈ Sgm. Moreover, d /∈ Dq.
(2) The set {favdλ | a ∈ P Cn

N (λ)} forms a monomial basis of V d(λ).



96 TEODOR BACKHAUS, XIN FANG, GHISLAIN FOURIER

5.3. Global monomial set: C2. Consider the quantum degree cone Dqw0
defined in (4.1).

We pick a solution such that the sum a1 + a2 + a3 + a4 takes its minimal value:

d = (d1, d112, d12, d2) = (1, 1, 1, 2).

Since d ∈ D, we go back to the classical case. Let f1, f112, f12, f2 denote the corresponding
PBW root vectors.

Lemma 4. We have d ∈ Slm, i.e., the defining ideals Id($1) and Id($2) are monomial.

Proof. For V ($1), the weight space of weight −$1 has dimension 1, so we need to choose a
monomial having minimal degree from the set {f112, f1f12, f

2
1 f2}. Since d1 + d12 > d112, we

should pick f112. The choice in all other weight spaces is obvious, so the defining ideal Id($1)
is monomial.

We turn to V ($2): the weight space of weight −2$1 +$2 is of dimension 1, for the same
reason we should choose the monomial f112 from the set {f112, f1f12}; the weight space −$2

has dimension 1, we need to choose a monomial of minimal degree from the set

{m1 = f2
12,m2 = f112f2,m3 = f1f12f2,m4 = f2

1 f
2
2 }.

By the inequalities in (4.1), we get: deg(m1) < deg(m2), deg(m2) < deg(m3) and deg(m3) <
deg(m4). This implies that the defining ideal Id($2) is monomial. �

We turn to the study whether d is in the global monomial set Sgm.
Consider the polytope SP4(m1,m2) ⊂ R4 defined by the following inequalities:

x1, x2, x3, x4 ≥ 0, x1 ≤ m1, x4 ≤ m2,

2x1 + x2 + 2x3 + 2x4 ≤ 2(m1 +m2),

x1 + x2 + x3 + 2x4 ≤ m1 + 2m2.

Let S(m1,m2) denote the lattice points in SP4(m1,m2).

Theorem 5. For any λ = m1$1 +m2$2 ∈ P+, the following statements hold:

(1) The set {fpvdλ | p ∈ S(m1,m2)} forms a monomial basis of V d(λ), hence a monomial
basis of V (λ).

(2) We have d ∈ Sgm, i.e., the defining ideal Id(λ) is monomial.

The rest of this paragraph will be devoted to prove this theorem.

Proposition 5 (Minkowski property). For any m1,m2,m
′
1,m

′
2 ∈ N,

S(m1,m2) + S(m′1,m
′
2) = S(m1 +m′1,m2 +m′2).

Proof. It suffices to prove

S(m1 − 1,m2) + S(1, 0) = S(m1,m2) and S(0,m2 − 1) + S(0, 1) = S(0,m2).

Suppose m1 6= 0 and s = (a1, a2, a3, a4) ∈ S(m1,m2). If a1 6= 0, we set t1 = (a1 −
1, a2, a3, a4), t2 = (1, 0, 0, 0). Then clearly t2 ∈ S(1, 0) and since s ∈ S(m1,m2) we have

2a1 + a2 + 2a3 + 2a4 ≤ 2(m1 +m2)⇒ 2(a1 − 1) + a2 + 2a3 + 2a4 ≤ 2(m1 − 1 +m2)

a1 + a2 + a3 + 2a4 ≤ m1 + 2m2 ⇒ a1 − 1 + a2 + a3 + 2a4 ≤ (m1 − 1) + 2m2

and so t1 ∈ S(m1 − 1,m2). If a1 = 0, a3 6= the very similar argument, with t2 = (0, 0, 1, 0)
implies again t1 ∈ S(m1 − 1,m2).
We are left with a1 = 0, a3 = 0, a2 6= 0. But then the inequalities for s ∈ S(m1,m2) are
reduced to

a2 + 2a4 ≤ m1 + 2m2
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So we see that s = (0, a2 − 1, 0, a4) + (0, 1, 0, 0) gives a decomposition in (m1,m2) + S(1, 0).
The last case a1 = 0, a2 = 0, a3 = 0, a4 6= is now obvious.
Suppose now m1 = 0 and s = (a1, a2, a3, a4) ∈ S(0,m2), then a1 = 0 and the inequality
a2 +a3 +2a4 ≤ 2m2 is redundant. Suppose a3 6= 0, then we decompose s = (0, a2−1, a3, a4)+
(0, 1, 0, 0) and use that

a2 + 2a3 + 2a4 ≤ 2m2 ⇒ a2 + 2(a3 − 1) + 2a4 ≤ 2(m2 − 1).

Having a1 = 0, a3 = 0, a4 6= 0 can be dealt similarly. So we are left with 0 6= a2 ≤ 2m2, so we
decompose this in (0, a2 − 2, 0, 0) + (0, 2, 0, 0) if a2 > 2, else there is nothing to be shown.
This implies that any element in S(m1,m2) can be decomposed as the sum of elements in
S(m1 − k,m2 − `), S(k, `). �

From this proposition, {fpvdλ | p ∈ S(m1,m2)} forms a linearly independent set in V d(λ).
To show that it is a basis, we count the cardinality.

For any integers a, b ∈ N, we define a polytope P(a, b) ⊂ R2 by the following inequalities:

x ≥ 0, y ≥ 0, x+ 2y ≤ a, x+ y ≤ b.
Let N(a, b) denote the number of lattice points in P(a, b).

Lemma 5. The number of lattice points N(a, b) has the following expression:

(1) N(a, a) =

{
l(l + 1) if a = 2l − 1;
(l + 1)2 if a = 2l.

(2) N(a, b) =





N(a, a), if b ≥ a;
1
2(b+ 1)(b+ 2), if a ≥ 2b;

−l2 + 2lb− 1
2b

2 + 1
2b+ l + 1, if 2b > a > b and a = 2l;

−l2 + 2lb− 1
2b

2 + 3
2b+ 1, if 2b > a > b and a = 2l + 1.

Proof. It amounts to count the integral points in the closed region cutting by the lines x+2y =
a, x+ y = b and the two axes in R2 which depends on the position of the intersection of these
two lines. �

Proposition 6. The number of lattice points in SP4(m1,m2) is

1

6
(m1 + 1)(m2 + 1)(m1 +m2 + 2)(m1 + 2m2 + 3).

Proof. Let H be the intersection of hyperplanes x1 = α and x4 = β in R4 with coordinates
(x1, x2, x3, x4) where α, β ≥ 0. By definition,

H ∩ SP4(m1,m2) = P(2m1 + 2m2 − 2α− 2β,m1 + 2m2 − α− 2β).

Therefore by Lemma 5, the number of integral points in SP4(m1,m2) equals

m1∑

α=0

m2∑

β=0

N(2m1 + 2m2 − 2α− 2β,m1 + 2m2 − α− 2β). (5.4)

Since α ≤ m1 and β ≤ m2, it falls into the third case in Lemma 5 (2) and (5.4) reads
(l = m1 +m2 − α− β and b = m1 + 2m2 − α− 2β):

m1∑

α=0

m2∑

β=0

1

2
α2+2αβ+β2−(m1+2m2+

3

2
)α−2(m1+m2+1)β+(

1

2
m2

1+2m1m2+m2
2+

3

2
m1+2m2+1).

An easy summation provides the number in the statement. �
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By Weyl character formula, for λ = m1$1 +m2$2 ∈ P+,

dimV (λ) =
1

6
(m1 + 1)(m2 + 1)(m1 +m2 + 2)(m1 + 2m2 + 3).

This terminates the proof of the statement on the basis. The monomiality of Id(λ) holds
by Theorem 1.

Remark 5. Up to permuting the second and the third coordinates, the polytope SP4(m1,m2)
coincides with the one in Proposition 4.1 of [Kir1], which is unimodularly equivalent to the
Newton-Okounkov body of some valuation arising from inclusions of (translated) Schubert
varieties.

In the sp4 case, there are several other known polytopes parametrizing bases of a finite
dimensional irreducible representation V (λ). Let us denote:

(1) P1(λ) to be the chain polytope;
(2) P2(λ) to be the order polytope;
(3) P3(λ) to be the string polytope associated to the reduced decomposition w0 = s1s2s1s2;
(4) P4(λ) to be the string polytope associated to the reduced decomposition w0 = s2s1s2s1.

For λ = m1$1 +m2$2, the polytopes SP4(m1,m2), P1(λ), P2(λ), P3(λ) and P4(λ) have the
same number of lattice points. By using POLYMAKE, one can verify the following statements:

(1) The polytopes P1(λ), P2(λ) and P4(λ) are unimodularly equivalent. (The isomorphism
between P1(λ) and P2(λ) is proved in [Fou16]).

(2) The polytopes P3(λ) and SP2(m1,m2) are not unimodularly equivalent to any other
polytopes.

5.4. Global monomial sets: B3, D4, G2.

5.4.1. D4. Let g be of type D4. We consider the following reduced decomposition

w0 = s2s1s2s3s2s4s2s1s2s3s2s4

and the resulting quantum PBW root vectors, where Fabcd is the root vector associated to the
root aα1 + bα2 + cα3 + dα4 :

F0100, F1100, F1000, F1110, F0110, F1211, F1101, F1111, F0010, F0111, F0101, F0001

The quantum degree cone Dqw0
is defined by: (d1, d2, . . . , d12) ∈ R12

+

d1 + d3 > d2, d1 + d8 > d5 + d7, d1 + d8 > d6, d1 + d9 > d5, d1 + d12 > d11

d2 + d8 > d3 + d5 + d7, d2 + d8 > d3 + d6, d2 + d8 > d4 + d7, d2 + d9 > d3 + d5,

d2 + d9 > d4, d2 + d10 > d6, d2 + d12 > d3 + d11, d2 + d12 > d7

d3 + d5 > d4, d3 + d10 > d7 + d9, d3 + d10 > d8, d3 + d11 > d7

d4 + d10 > d5 + d7 + d9, d4 + d10 > d5 + d8, d4 + d10 > d6 + d9

d4 + d11 > d5 + d7, d4 + d11 > d6, d4 + d12 > d8

d5 + d7 > d6, d5 + d12 > d9 + d11, d5 + d12 > d10

d5 + d7 > d6, d5 + d12 > d9 + d11, d5 + d12 > d10

d6 + d12 > d7 + d9 + d11, d6 + d12 > d7 + d10, d6 + d12 > d8 + d11,

d7 + d9 > d8, d9 + d11 > d10.

Let d = (5, 5, 1, 2, 4, 1, 1, 2, 6, 10, 12, 20) ∈ N12, we obtain d ∈ Dqw0
. Since d ∈ D, we turn to

the classical case and denote by fi the PBW root vector corresponding to the i-th quantum
PBW root vector above (from left to right).
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Proposition 7. We have d ∈ Slm.

Proof. For V d($1) we choose f3f6 over f2f8 and over f4f7, since deg f3f6 = 2,deg f2f8 = 7
and deg f4f7 = 3. For all other weight spaces the choice is obvious since d ∈ D.

Similarly we choose f5f8 over f6f9 and f10f4 for V d($3) and f10f7 over f10f8 and f6f12 for
V d($4).

For V d($2) we have to consider more weight spaces. We illustrate the proof for the zero
weight space V d($2)$2−$2 of dimension 4. We need to choose the 4 minimal monomials,
regarding the degree, of the following set where we neglect the obviously larger monomials.

{m1 = f6, m2 = f2f10, m3 = f1f8, m4 = f4f11, m5 = f5f7}
We have degm1 = 5, degm2 = 15, degm3 = 7, degm4 = 14 and degm5 = 5}. Hence we pick
m1,m3,m4,m5.

The computation of the other weight spaces is straight forward. We obtain a unique mono-
mial basis for all V d($i), 1 ≤ i ≤ 4 and hence the monomiality of Id($i). �

Let P D4(λ) be the polytope defined in [Gor2, Section 3]. By comparing vectors we obtain

P D4
N ($i) = {s ∈ N12 | f svd$i

6= 0 in V d($i)}, i = 1, 2, 3, 4.

The polytope satisfies for all λ, µ ∈ P+ we have

P D4(λ) + P D4(µ) = P D4(λ+ µ) and P D4
N (λ) + P D4

N (µ) = P D4
N (λ+ µ)

and dimV (λ) = |P D4
N (λ)|. Hence with Theorem 1 we obtain the following theorem:

Theorem 6. (1) We have d ∈ Sgm. Moreover, d ∈ Dqw0
.

(2) The set {favdλ | a ∈ SD4(λ)} forms a monomial basis of V d(λ).

5.4.2. B3. Let g be of type B3 and denote by P B3(λ) the polytope defined in [BK, Section 5].
Here fi,j denotes the PBW root vector associated to the positive root αi + · · ·+αj−1 + 2αj +
· · ·+ 2αn for 1 ≤ i < j ≤ n = 3 and denote fi,j as usual. We consider the following degree on
the root vectors:

deg f1,1 = 4, deg f1,2 = 3, deg f2,2 = 3, deg f1,3 = 3, deg f1,2 = 1

deg f1,3 = 1, deg f2,3 = 4, deg f2,3 = 3, deg f3,3 = 2.

We set di to be the i-th degree above and define d = (d1, . . . , d9). The classical degree cone is
defined by: (d1,1, d1,2, d2,2, d1,3, d2,3, d3,3, d1,3, d2,3, d1,2) ∈ R9

+:

d1,1 + d2,2 > d1,2, d1,1 + d2,3 > d1,3, d1,1 + d2,3 > d1,3, d1,2 + d3,3 > d1,3,

d1,2 + d2,3 > d1,2, d2,2 + d3,3 > d2,3, d2,2 + d1,3 > d1,2,

d1,3 + d2,3 > d1,2, d1,3 + d3,3 > d1,3, d2,3 + d3,3 > d2,3.

We obtain d ∈ D. As before by computing each weight space in V d($i), i = 1, 2, 3 we obtain
d ∈ Slm. By comparing the induced unique basis with the basis obtain in loc. cit. we see

P B3
N ($i) = {s ∈ N9 | f svd$i

6= 0 in V d($i)}, i = 1, 2, 3.

For each λ, µ ∈ P+ we have

P B3(λ) + P B3(µ) = P B3(λ+ µ) and P B3
N (λ) + P B3

N (µ) = P B3
N (λ+ µ)

and dimV (λ) = |P B3
N (λ)|. Hence we get the first two statements of the following theorem:

Theorem 7. (1) We have d ∈ Sgm.

(2) The set {favdλ | a ∈ P B3
N (λ)} forms a monomial basis of V d(λ).



100 TEODOR BACKHAUS, XIN FANG, GHISLAIN FOURIER

(3) For all d ∈ D, such that (1) and (2) are satisfied, we have d /∈ Dq.
Proof. Let d ∈ D, such that (2) is satisfied. This implies that f1,2f1,3v

d
$2
6= 0 in V d($2). The

monomial f2
1,3 ∈ U(n−) has the same weight, so we know f2

1,3v
d
$2

= 0, since the corresponding
weight space is one-dimensional.
Assume w0 is a reduced decomposition of w0 such that d ∈ Dqw0

. The induced convex order
contains the roots βi = α1,2 and βj = α1,3 and βk = α1,3. We can assume wlog i < j.

Case 1: Assume i < k < j, for the quantum degree cone Dqw0
this would imply the following

inequality: d1,2 + d1,3 > 2d1,3. This implies, turning to the classical case, f2
1,3v

d
$2
6= 0, which

is a contradiction.
Case 2: Assume k < i < j, i.e the roots are distributed as follows

βk = α1,3, βi = α1,2, βj = α1,3, (βl = α3,3).

Consider the root βl = α3,3. Since α1,3 + α3,3 = α1,3 we have j < l by the convexity of the
order. On the opposite α1,2 + α3,3 = α1,3, implying α1,3 has to lie between α1,2 and α3,3

implying i < k. This is again a contradiction.
Case 3: Assume i < j < k, with similar arguments as in Case 2 we get a contradiction.

None of the cases is possible, implying d /∈ Dqw0
. �

5.4.3. G2. Let g be of type G2 and consider the following degree on the root vectors:

deg f1 = 2, deg f1112 = 1, deg f112 = 3, deg f11122 = 1, deg f12 = 3, deg f2 = 2.

We set di to be the i-th degree above and define d = (d1, . . . , d6). We already saw that
d ∈ D, see Subsection 4.1.3. Denote by P G2(λ) the polytope defined in [Gor1, Section 1]. With
similar arguments and calculations as before we obtain the first two statements of the following
theorem. The third statement follows from Subsection 5.6, where we examine the case of G2
explicitly. We show for all d ∈ Dqw0

there exist a unique monomial basis of V d($i), i = 1, 2
which does not coincide with the basis in the following theorem.

Theorem 8. (1) We have d ∈ Sgm.

(2) The set {favdλ | a ∈ P G2
N (λ)} forms a monomial basis of V d(λ).

(3) For all d ∈ D, such that (1) and (2) are satisfied, we have d /∈ Dq.
Remark 6. In general, it may hold that Sgm ∩ Dq = ∅, see Subsection 5.6 for an example.

5.5. Global monomial sets for rectangular weights: A− G. Throughout this subsection
we fix a Lie algebra g of type Xn and fundamental weight ωi of the following list (see [BD,
Introduction, Table 1]):

Type of g weight $ Type of g weight $i

An $k, 1 ≤ k ≤ n E6 $1, $6

Bn $1, $n E7 $7

Cn $1 F4 $4

Dn $1, $n−1, $n G2 $

The authors show that there is a normal polytope P Xn(m$i) such that {f sv$i | s ∈ P Xn
N (m$i)}

is a monomial basis of V (m$i). In particular P Xn
N (m$i) + P Xn

N (l$i) = P Xn
N ((m+ l)$i).

With similar arguments as in 5.4 we see in the cases of (Bn,$1) and (G2,$1) there exists
d ∈ D such that {f svdm$i

| s ∈ P Xn
N (m$i)} is a monomial basis of V d(m$i), and for all those

d ∈ D we have d /∈ Dqw0
. In (Cn,$1) there is nothing to show. We assume we are not in those

cases, then we get the following Theorem.
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Theorem 9. There exists a reduced expression w0 of w0 ∈ WXn and d ∈ Dqw0
such that

{f svd$i
| s ∈ P Xn

N (m$i)} is a monomial basis of V d(m$i) and the ideal Id(m$i) is monomial.

Proof. We denote by ∆i
+ = {ν1, ν2, . . . , νs} the set of positive roots which satisfy fνv$i 6= 0

in V ($i) and let νs = θ the highest root. Further we assume the roots are good ordered, i.e.
νi <st νj implies i < j where <st denotes the standard partial order on the positive roots. Note
this determines ν1 = αi. We want to show that we can extend the order ν1 < ν2 < · · · < νs
to a convex order on ∆+. Since ∆i

+ is good ordered there are no convexity relations between
these roots if the coefficient of αi in θ is 1. So we can extend it for (E6,$1), (E6,$6), (E7,$7),
(An,$k) and (Dn,$n−1), (Dn,$n) �
5.6. Local monomial sets: G2. Let g be of type G2. Recall that we computed the quantum
degree cone Dqw0

in (4.2). Let d ∈ Dqw0
be arbitrary. We have d ∈ D, so we turn to the

classical case and let f1, f1112, f112, f11122, f12, f2 be the corresponding PBW root vectors.

Lemma 6. The defining ideals Id($1) and Id($2) are monomial.

Proof. For V ($1), the weight space of weight −$1 has dimension 1, so as in Lemma 4 we
need to choose a monomial having minimal degree from the set {f11122f1, f1112f12, f

2
112}. In

the quantum group we have the relations

F1F11122 = F11122F1 + (q − q−3)F
(2)
112, F1112F12 = F12F1112 + (q − q−3)F

(2)
112 (5.5)

implying that we should pick f2
112. As before the choice in all other weight spaces is obvious,

so the defining ideal Id($1) is monomial.
We turn to V ($2): the weight space of weight 0 is of dimension 2, so we need to exclude the

monomial having the highest degree from the set {f1112f2, f112f12, f11122}. In the quantum
group we have the relation

F1112F2 = q−3F2F1112 + (−q−3 − q−5)F112F12 + (q−2 + q−4 − q−7)F11122,

implying the inequalities deg(f1112) + deg(f2) > deg(f11122) and deg(f1112) + deg(f2) >
deg(f112) + deg(f12), so we should exclude f1112f2.

All other weight spaces have dimension 1, we need to choose one monomial for each weight

space. For the weight space −3$1 +$2 we choose f
(3)
112 from the set {f1112f11122, f

(3)
112} since we

have d1112 +d11122 > 3d112. With similar arguments we choose for the weight space 3$1−2$2

the monomial f
(3)
12 from the set {f11122f2, f

(3)
12 }; for the weight space 2$1−$2 we choose f

(2)
12

above f112f2; for the weight space −2$1 +$2 we choose f
(2)
112 above f1112f12. The choice in all

other weight spaces is obvious. This implies that the defining ideal Id($2) is monomial. �
Remark 7. The Equation 5.5 implies that we pick f2

112 over f11122f1 in V d($1). The later
is the choice in [Gor1]. Since the choice is independent of d ∈ Dqw0

this finishes the proof of
Theorem 8 statement (3).

Let S($2) = {s ∈ N6 | f svdλ 6= 0}. We have by construction |S($2)| = dimV ($2) =
14. But, if we take the convex hull P = conv(S($2)), we obtain a polytope which satisfies
|P ∩ N6| = 16.

Therefore we consider the following polytopes. Define Gω1
2 (m1) ⊂ R6 by the inequalities:

x1, x2, x3, x4, x5, x6 ≥ 0, x1 ≤ m1, x2 ≤ 0,

2x1 + 2x2 + x3 + 2x4 + 2x5 ≤ 2m1.

Define Gω2
2 (m2) ⊂ R6 by the inequalities:

x1, x2, x3, x4, x5, x6 ≥ 0, x1 ≤ 0,
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2x2 + x3 + x4 + x5 + 2x6 ≤ 2m2.

Conjecture 2. For all λ = m1$1 +m2$2 ∈ P+ the number of lattice points in the Minkowski
sum

m1G
ω1
2 (1) +m2 (Gω2

2 (1) ∪ {3e3, 3e5})
coincides with dimV (m1ω1 +m2ω2).

Remark 8. Note that the proof of Lemma 6 does not depend on the choice of d ∈ Dqw0
. Fur-

ther we have Dq = Dqw0
(see Proposition 2). This implies the inclusion Dq ⊂ Slm. Depending

on whether the conjectures are true or not, we obtain Dq ⊂ Sgm or Sgm ∩Dq = ∅ respectively.
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6. Discussion

We refer to the notation of Section 1. In this section we want to discuss our
results and state the ideas of our proofs. We shall also show the difficulties
in the proofs and discuss possible generalizations.

6.1. Hilbert–Poincaré polynomials. In the first paper we state the de-
gree of the Hilbert–Poincaré polynomial pλ(q) for arbitrary λ ∈ P+. This
is done by investigating the lowest weight space V (λ)w0(λ) and determin-
ing the degree of the lowest weight vector vw0(λ). We already stated in the
introduction why this is sufficient in order to compute the PBW-degree.

The PBW filtration is compatible with the decomposition into h-weight
spaces:

dimV (λ)τ =
∑

s≥ 0

dim (V (λ)s/V (λ)s−1) ∩ V (λ)τ .

So we can define for every weight τ ∈ P the Hilbert–Poincaré polynomial:

pλ,τ (q) =
∑

s≥ 0

dim (V (λ)s/V (λ)s−1)τ q
s and then pλ(q) =

∑

τ ∈P
pλ,τ (q).

A natural question is, if we can extend our results to these polynomials. If
the weight space V (λ)τ is one-dimensional, then pλ,τ (q) is a power of q. To
compute this power one could use the same methods we used. We have to
find a suitable monomial u ∈ U(n−) such that the weight of (uvλ) equals τ
and have to show that there is no monomial with smaller degree satisfying
this. The action of U(n+) on V (λ)a is a useful tool to show that certain
elements are zero.

For τ = λ, since V (λ)λ = Cvλ = V (λ)0, we have pλ,λ(q) is constant 1.

For τ = w0(λ), the lowest weight, this is qdeg pλ(q). A first approach to study
these polynomials can be found in [CF15].

In this paper the reduction is provided, such that in Theorem 1 it suffices
to consider fundamental weights (see loc. cit. Theorem 5.3 ii):

Theorem. Let λ1, . . . , λs ∈ P+ and set λ = λ1 + . . .+ λs. Then

deg pλ(q) = deg pλ1(q) + . . .+ deg pλs(q).

Since λ ∈ P+ can be written in terms of fundamental weights λ = m1ω1+
m2ω2 + · · ·+mnωn it suffices to compute the PBW-degree of PBW-graded
modules of fundamental modules. In the second paper we provide an explicit
list in 2.3 of the monomials mapping the highest weight vector to the lowest
weight vector for all fundamental weights. Then we show that there is no
monomial of smaller degree satisfying this. Here we use mainly the action of
U(n+) on V (λ)a and weight combinatorics. For a fixed fundamental highest
weight ωi we write −w0(ωi)+ωi, which is the weight of a possible monomial
u ∈ U(n−) mapping vωi to vw0(ωi), as a sum of positive roots with a minimal
amount of summands. We obtain certainly a lower bound, which is in general
not the PBW-degree. This occurs in some exceptional types and also for
some cases in type Bn and Dn, this was also noticed in [CF15]. We did not
find a general rule whether the PBW-degree is given by this lower bound or
not.
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An upper estimate can be obtained as follows: recall that θ denotes the

highest root of g, then f
〈ωi,θ∨〉
θ vωi 6= 0 and the weight ωi − 〈ωi, θ∨〉θ is a

weight for a Lie subalgebra g1 ⊂ g, see Subsection 2.3 for the explicit list
of Lie subalgebras. Denote by θ1 the corresponding highest root. Then we

obtain f
〈ωi,θ∨1 〉
θ1

f
〈ωi,θ∨〉
θ vωi 6= 0. If we repeat this procedure we end up in the

lowest weight space V (ωi)w0(ωi). In some cases this upper bound gives the
PBW-degree. Again we did not find a general rule whether this is the case
or not.

6.2. Favourable modules via Hasse diagrams. First, we want to note
that the authors in [FFL13b] introduced the notion of a favourable module.
In the second paper we call these modules Feigin–Fourier–Littelmann (FFL
for short) modules. Since we denote these modules in the third paper again
as favourable modules, we shall stick to this notion.

We fix a Lie algebra g and consider the partial order ≤ on the positive
roots of g, given by α, β ∈ R+ : α ≤ β ⇔ β − α is a non-negative sum of
simple roots. We associate to this partially ordered set (R+,≤) a directed
labeled graph (R+, E), called the Hasse diagram. The vertices are given by
R+ and the set E is given as follows:

∀α, β ∈ R+ : (α
k→ β) ∈ E :⇔ ∃αk ∈ ∆ : α− β = αk,

recall that ∆ denotes the set of simple roots of g. We denote by D the set of
all directed paths, which we call Dyck paths, p = {βi1 , βi2 , . . . , βis} starting
in βi1 = θ the highest root of g and ending in a simple root βis = αj , 1 ≤
j ≤ n, such that there is a directed edge between βil and βil+1

, 1 ≤ l ≤ s−1.
We fix the type of the highest weight to be a multiple of a fundamental

weight, λ = mωi,m ∈ N, 1 ≤ i ≤ n = rank g and associate to the Hasse
diagram a polytope:

P (mωi) = {(sβ)β∈R+ ∈ RN≥0 |
∑

β ∈p
sβ ≤ m ∀p ∈ D, sβ ≤ 0 if fβvωi = 0}.

We show that this polytope is normal (see Subsection 3.2). The question
arises how this polytope is related to the module V (mωi). The condition
sβ ≤ 0 for all β ∈ R+ such that fβvωi = 0 shows one relationship. Meaning

that we only want to consider vectors in RN≥0, such that the corresponding
root vectors act non-zero on vωi . Another relationship is slightly more hid-
den. We assume that ωi satisfies 〈ωi, θ∨〉 = 1. Then we know fmθ vmωi 6= 0

and fm+1
θ vmωi = 0 in V (mωi) and the second observation also holds in

V (mωi)
a. This means the right-hand sides of the inequalities of P (mωi) are

related to certain relations in V (mωi), in particular to relations including
the root vector corresponding to the highest root.

If g and ωi appear in the table below, then we prove that the cardinality
of the lattice points PN(ωi) = P (ωi)∩NN is equal to the dimension of V (ωi).
We show this by constructing explicit basis of V (ωi) in the corresponding
cases, see Subsection 3.4. Outside these cases this equality does not hold
and hence our approach can not be generalized immediately to other cases.
A generalization can be found in the third paper, we explain this also later
in this section and in Subsection 6.3.
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Type of g weight ω Type of g weight ω

An ωk, 1 ≤ k ≤ n E6 ω1, ω6

Bn ω1, ωn E7 ω7

Cn ω1 F4 ω4

Dn ω1, ωn−1, ωn G2 ω1

The observation |PN(ωi)| = dimV (ωi) starts an inductive procedure. By
refining the partial order on R+ to a total order and choosing an induced
homogeneous lexicographical total order on the monomials in U(n−) we find
that PN(ωi) = es(V (ωi)). We use the following result (see [FFL13b, Prop.
2.11])

es(V (ωi)) + es(V (ωi)) ⊂ es(V (ωi)� V (ωi)),

where + denotes the Minkowski sum and V (ωi) � V (ωi) ⊂ V (ωi) ⊗ V (ωi)
denotes the Cartan component in the tensor product. Hence we obtain
|PN(2ωi)| ≤ dimV (2ωi). We show in general that the set

{f svamωi | s ∈ PN(mωi)} ⊂ V (mωi)
a

is a spanning set of V (mωi)
a. Hence we have for all m ∈ N the inequal-

ity dimV (mωi) = dimV (mωi)
a ≥ |PN(mωi)| and especially |PN(2ωi)| =

dimV (2ωi). By repeating these arguments we obtain a proof of the Main
Theorem 2. We obtain immediately that the module V (mωi) is a favourable
module. To prove the spanning property we use the action of U(n+) on
V (λ)a to obtain certain relations in V (λ)a, see Subsection 3.3. This also
implies the statement on the generators of I(λ). Here we adapt the ideas of
[FFL11a]. Note that our proof only depends on the Hasse diagram.

In the introduction in Subsection 1.3 we already compared the basis of
V (λ)a obtained in the second paper parametrized by PN(λ) with the basis
of V (λ)a parametrized by the lattice points of the FFL polytope in type
An, λ = mωi. We obtained that these bases are not the same. Another
difference is the Minkowski sum property of the polytope. Assume g is of
type A4, then the number of lattice points in P (ω1)+P (ω2)+P (ω3)+P (ω4)
is 1023, where the dimension of V (ω1 +ω2 +ω3 +ω4) is 1024. In comparison
the FFL polytopes satisfy in general for all λ, µ ∈ P+ :

FFLN(λ) + FFLN(µ) = FFLN(λ+ µ).

Note that if g is of type Cn and we consider ωi, 2 ≤ i ≤ n we also have
〈ωi, θ∨〉 = 1 but we do not have dimV (ωi) = PN(ωi). In the cases of G2, ω1,
F4, ω4 and Bn, ω1 this is also not the case. But we were able to slightly
rewrite the Hasse diagram to obtain a polytope with the desired properties.
See the appendix in 3 for some examples of Hasse diagrams. The problem
in these cases is the following: there is a root β ∈ R+ with fβv

a
ωi 6= 0 such

that β−αk, β−2αk ∈ R+ for some simple root αk 6= αi and for the action of
the root vectors we have fβ−αkv

a
ωi 6= 0, fβ−2αkv

a
ωi 6= 0. For a suitable ` ≥ 2

we have

e2αkf
`
βv

a
ωi = eαk(`f1β−αkf

`−1
βk

)vaωi =

c0`f
1
β−2αkf

0
β−αkf

`−1
β vaωi + c1`(`− 1)f2β−αkf

`−2
β vaωi in V (ωi)

a,
(2)
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with c0 = cβ−αk,αkcβ,αk and c1 = c2β−αk,αk where cβ−αk,αk , cβ,αk are the

structure constants corresponding to [eαk , fβ−αk ] and [eαk , fβ] respectively.
We emphasize that we obtain two elements by acting with eα. If we were
in the case of β − 2αk /∈ R+ we would get only one. This complicates the
search of an suitable polytope.

In the cases of G2, ω1, F4, ω4 and Bn, ω1 we were able to solve this problem
by rewriting the Hasse diagram into a new diagram where we use also non-
simple positive roots to label the directed edges. For example see Subsection
3.4 for the changes in the case of Bn, ω1. In the cases of Cn, ωk, k ≥ 2 we were
not able to find a suitable polytope, since k − 1 of such problems described
in (2) occur.

In the following we want to think about possible generalizations of our ideas.
One immediate idea of a generalization would be to define the same polytope
in other cases. As mentioned before, outside of the cases investigated in the
second paper, the lattice points in P (ωi) do not coincide with dimensions of
certain fundamental modules.

Another idea is to adapt the right-hand side of the inequalities in (6.2), for
example if g is of type E8 and we consider the weight ω8. Then 〈ω8, θ

∨〉 = 2,
and let

P (ω8) = {(sβ) ∈ RN≥0 |
∑

β ∈p
sβ ≤ 2 ∀p ∈ D, sβ ≤ 0 if fβvω8 = 0}

be the corresponding polytope. Then we have again |PN(ω8)| > dimV (ω8).
For all simple Lie algebras and fundamental weights ωi with 〈ωi, θ∨〉 = 2
this approach fails.

The next generalization of the polytope works in some cases, where the
normality is not given anymore by the results in Subsection 3.2. At first,
we consider more paths. Instead of requiring that a Dyck path starts at
the highest root and end in a simple root, we allow paths to start at arbi-
trary roots β. The right-hand sides of the corresponding inequalities will be
adapted by the value of 〈ωi, β∨〉. Secondly one should allow the coefficients
cβ (of sβ) in the describing inequalities to be greater than 1, see Subsection
4.5 in the case of B3. Also in [Gor15b] in the case of D4 this approach works.
Nevertheless, in these cases the interpretation of the inequalities as paths
is not stated and rather complicated. An approach would be to identify a
coefficient cβ > 1 of sβ in some inequality with a weighted loop 	cβ at the
vertex β in the Hasse diagram.

As mentioned the first approach of considering more paths leads us to the
case of Bn.

6.3. Monomial bases and PBW filtration in type B. In this section
we fix g to be of type Bn and λ = mωi,m ∈ N, 1 ≤ i ≤ n a multiple of a
fundamental weight. Apart from the results stated in Main Theorem 3 we
conjecture a basis of V (λ)a in the cases of λ = mωi, 4 ≤ i ≤ n. We shall
describe the polytope and the reason why we think this conjecture is true.
As before the polytope is described by paths in the Hasse diagram. We build
the Hasse diagram slightly different. The shape is the same but we do not
use directed arrows. The paths are certain subsets of P(R+), the power set
of R+, were we distinguish between type 1 and type 2 paths, we call them
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again Dyck paths. The Dyck paths of type 1 are similar to the Dyck paths
described in [FFL11a] in a certain area of the Hasse diagram of type Bn (see
Subsection 4.4, also for more details on the Dyck paths). A Dyck path of
type 2 is the disjoint union of two Dyck paths of type 1 with some extra
conditions. We consider the set of Dyck paths D = Dtype 1 ∪ Dtype 2 and
adjust the right-hand side of the corresponding inequalities, in particular we
define

P (mωi) =
{

(sβ) ∈ RN≥0 | ∀p ∈ D :
∑

β ∈p
sβ ≤Mp(mωi), sβ ≤ 0 if fβvωi = 0

}
,

where we set

Mp(mωi) =

{
m if p ∈ Dtype 1

m〈ωi, θ∨〉 if p ∈ Dtype 2.

We have proved the following facts on this polytope. The lattice points
PN(mωi) parametrize a spanning set of V (mωi)

a for all 1 ≤ i ≤ n. The
polytope is normal in the cases of mω1 and mω2 and we show with a similar
proof as sketched in Subsection 6.2 that PN(mωi) parametrizes a basis of
V (mωi)

a for i = 1 and i = 2. But, in general the polytope is not normal in
the cases of ωi, where 3 ≤ i ≤ n. For example, the polytope P (ω3) has a
rational vertex. Nevertheless we prove that PN(ω3) parametrizes a basis of
V (ω3)

a and also that PN(2ω3) parametrizes a basis of V (2ω3)
a. Furthermore

we show with much effort that P (2mω3) is a normal polytope. We construct
a basis of V (mω3)

a parametrized by PN(mω3), note that m is arbitrary and
not necessary a multiple of 2, by taking Minkowski sums of PN(ω3) and
PN(2ω3).

Based on this result we conjecture that PN(mωi) parametrizes a basis
of V (mωi)

a also in the cases where 4 ≤ i ≤ n. If the conjecture would
be true, we also could describe the generators of the ideal I(mωi), where
V (mωi)

a ∼= S(n−)/I(mωi).

6.4. Degree cones and monomial bases. We want to discuss a new poly-
tope conjecturally parametrizing a new monomial basis of V (λ) in the case of
sl5. We consider the following reduced expression w0 = s1s2s1s4s3s2s1s4s3s2.
The corresponding convex order is

α1,1 < α1,2 < α2,2 < α4,4 < α1,4 < α2,4 < α3,4 < α1,3 < α2,3 < α3,3,

where αi,j denotes the root αi + · · · + αj , 1 ≤ i ≤ j ≤ 4. Denote the

corresponding PBW root vectors by fi,j . Any d ∈ Dqw0
implies Id(ωi), 1 ≤

i ≤ 4 is monomial, since

deg f1,4 + deg f2,3 > deg f1,3 + deg f2,4,

deg f2,4 + deg f1,2 > deg f1,4 + deg f2,2,

deg f2,3 + deg f1,2 > deg f1,3 + deg f2,2,

deg f1,4 + deg f3,3 > deg f1,3 + deg f3,4,

deg f2,4 + deg f3,3 > deg f2,3 + deg f3,4.

The choice in all other weight spaces is obvious since Dqw0
⊂ D. Hence we

obtain a monomial basis of V d(ωi). The interesting point is the following:
the monomials in S(n−) describing the basis of V d(ω3) are the same as the



107

monomials describing the basis of V a(ω3) obtained in the second paper, in
particular these are

f1,3f2,4, f1,3f3,4, f2,3f3,4.

The monomials in S(n−) describing the basis of V d(ω2) are a mix of mono-
mials described by the FFL basis of V a(ω2) and monomials describing the
basis obtained in the second paper of V a(ω2), in particular these are

f1,3f2,4, f1,4f2,2, f1,3f2,2.

Let us consider the following polytope. We enumerate positive roots by

α1, α1,2, α2,2, α1,3, α2,3, α3,3, α1,4, α2,4, α3,4, α4,4.

Let P (a1, a2, a3, a4) be the polytope in R10 defined by the following inequal-
ities:

(1) x1, x2, . . . , x10 ≥ 0
(2) x1 ≤ a1
(3) x3 ≤ a2
(4) x6 ≤ a3
(5) x10 ≤ a4
(6) x1 + x2 + x3 ≤ a1 + a2
(7) x1 + x2 + x4 + x5 + x6 ≤ a1 + a2 + a3
(8) x1 + x2 + x4 + x5 + x6 + x7 + x10 ≤ a1 + a2 + a3 + a4
(9) 2x1+2x2+x3+x4+x5+2x6+x7+x8+x9+x10 ≤ 2a1+2a2+2a3+a4

(10) x1 + x2 + x6 + x7 + x8 + x9 + x10 ≤ a1 + a2 + a3 + a4
(11) 2x1 +2x2 +x3 +x4 +2x5 +2x6 +x7 +x8 +x10 ≤ 2a1 +2a2 +2a3 +a4
(12) x1 + x2 + x5 + x6 + x7 + x8 + x10 ≤ a1 + a2 + a3 + a4
(13) x1 + x2 + x3 + x5 + x6 + x8 + x10 ≤ a1 + a2 + a3 + a4
(14) x3 + x6 + x8 + x9 + x10 ≤ a2 + a3 + a4
(15) x3 + x5 + x6 ≤ a2 + a3
(16) 2x1+2x2+x3+x4+2x5+3x6+x7+x8+x9+x10 ≤ 2a1+2a2+3a3+a4
(17) x6 + x9 + x10 ≤ a3 + a4
(18) x1 + x2 + x3 + x5 + 2x6 + x8 + x9 + x10 ≤ a1 + a2 + 2a3 + a4
(19) x1 + x2 + x5 + 2x6 + x7 + x8 + x9 + x10 ≤ a1 + a2 + 2a3 + a4
(20) x1 + x2 + x3 + x4 + 2x5 + 2x6 + x7 + x8 + x10 ≤ a1 + 2a2 + 2a3 + a4
(21) x1 + x2 + x3 + x6 + x8 + x9 + x10 ≤ a1 + a2 + a3 + a4
(22) x1 + x2 + x4 + x5 + 2x6 + x7 + x9 + x10 ≤ a1 + a2 + 2a3 + a4
(23) x1 + x2 + x3 + x5 + x6 ≤ a1 + a2 + a3
(24) x3 + x5 + 2x6 + x8 + x9 + x10 ≤ a2 + 2a3 + a4
(25) x3 + x5 + x6 + x8 + x10 ≤ a2 + a3 + a4
(26) x1+x2+x3+x4+2x5+3x6+x7+x8+x9+x10 ≤ a1+2a2+3a3+a4
(27) x1 +x2 +x3 +x4 +x5 +2x6 +x7 +x8 +x9 +x10 ≤ a1 +2a2 +2a3 +a4

The polytope P (1, 1, 1, 1) has 36 facets, so it is isomorphic neither to the
FFL polytope of type A4, nor to any string polytope for A4.

Conjecture. The polytopes P (a1, a2, a3, a4) are normal and satisfy the Minkowski
property. Further let λ = a1ω1 + a2ω2 + a3ω3 + a4ω4 ∈ P+, we have
PN(a1, a2, a3, a4) parametrizes a monomial basis of V d(λ) and Id(λ) is a
monomial ideal.
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If the conjecture is true, a natural question is, if there are similar polytopes
for An, n ≥ 5, or do we obtain similar polytopes for n = 4 for a different
choice of monomials.

Other questions we are working on are: for example, what is special about
reduced expressions implying a normal polytope such that its lattice points
parametrize a certain basis? Do we have an interpretation of our results in
terms of the Hall algebra of quiver representations? How many quantum
degree cones exist for a fixed simple Lie algebra and how to classify them?
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[LS91] S. Levendorskĭı and Y. Soibelman. Algebras of functions on compact quantum
groups, Schubert cells and quantum tori. Comm. Math. Phys., 139(1):141–170,
1991.

[Lus90a] G. Lusztig. Canonical bases arising from quantized enveloping algebras. J.
Amer. Math. Soc., 3(2):447–498, 1990.

[Lus90b] G. Lusztig. Canonical bases arising from quantized enveloping algebras. II.
Progr. Theoret. Phys. Suppl., (102):175–201 (1991), 1990. Common trends in
mathematics and quantum field theories (Kyoto, 1990).

[Lus10] G. Lusztig. Introduction to quantum groups. Reprint of the 1994 edition. Mod-
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angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben
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hat; dass sie - abgesehen von unten angegebenen Teilpublikationen - noch
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