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Abstract I 

Abstract 

In comparison with other remote sensing methods terrestrial laser scanning (TLS) is quite 

a young discipline, but the trustworthiness of the laser-based distance measurements offers 

great potential for accurate surveying. TLS allows non-experts, outside the traditional 

surveying disciplines, to rapidly acquire 3D data of high density. Generally, this acquisition of 

accurate geoinformation is increasingly desired in various fields, however this study focuses 

on the application of TLS for crop monitoring in an agricultural context. 

The increasing cost and efficiency pressure on agriculture induced the emergence of 

site-specific crop management, which requires a comprehensive knowledge about the plant 

development. An important parameter to evaluate this development or rather the actual plant 

status is the amount of plant biomass, which is however directly only determinable with 

destructive sampling. With the aim of avoiding destructive measurements, interest is 

increasingly directed towards non-contact remote sensing surveys. Nowadays, different 

approaches address biomass estimations based on other parameters, such as vegetation 

indices (VIs) from spectral data or plant height. A main benefit of all remote sensing 

approaches is that plant parameters are obtained without disturbing the plant growth by the 

taking of measurements. Since the plants are not taken it is in an economic and ecologic way 

feasible to perform several measurements across a field and across the growing season. 

Hence, the change of spatial and temporal patterns can be monitored. 

This study applies TLS for objectively measuring and monitoring plant height as estimator 

for biomass at field scale. Although the application of the here introduced approach is 

generally conceivable for a variety of crops, the focus of this study was narrowed to cereals as 

most important group of crops regarding world nutrition. Three examples of this group were 

chosen, namely paddy rice, maize, and barley. 

In the course of this work, 35 TLS field campaigns were carried out at three sites over four 

growing seasons to achieve a comprehensive data set. In each campaign a 3D point cloud, 

covering the surface of the field, was obtained and interpolated to a crop surface model (CSM) 

in the post-processing. A CSM represents the crop canopy in a very high spatial resolution on 

a specific date. By subtracting a digital terrain model (DTM) of the bare ground from each 

CSM, plant heights were calculated pixel-wise. Extensive manual measurements aligned well 

with the TLS data and demonstrated the main benefit of CSMs: the highly detailed acquisition 

of the entire crop surface.  

In a further step, the plant height data were used to estimate biomass with empirically 

developed biomass regression models (BRMs). Validation analyses against destructive 

measurements were carried out to confirm the results. Moreover, the spatial and temporal 

transferability of crop-specific BRMs was shown with the multi-site and multi-annual studies. 

In one of the case studies, the estimations from plant height and six VIs were compared and 

the benefit of fusing both parameters was investigated. The analyses were based on the 

TLS-derived CSMs and spectral data measured with a field spectrometer. From these results 

the important role of plant height as a robust estimator was shown in contrast to a varying 

performance of BRMs based on the VIs. A major benefit through the fusion of both parameters 

in multivariate BRMs could not be concluded in this study. Nevertheless, further research 



  

 

Abstract II 

should address this fusion, with regard to the capability of VIs to assess information about the 

vegetation cover (plant density, leaf area index) or biochemical and biophysical parameters 

(nitrogen, chlorophyll, and water content). 

In summary, a major advantage of the presented approach is the possibility to rapidly and 

easily receive 3D data of plant height at field scale, which is a robust estimator for crop 

biomass. Moreover, the high resolution of the TLS-derived CSMs enables detailed and spatially 

resolved estimations of biomass. Even though several issues have to be solved before practical 

applications in conventional agriculture are possible, approaches based on laser scanning offer 

great potential for crop monitoring.   



  

 

Zusammenfassung III 

Zusammenfassung 

Im Vergleich zu anderen Methoden der Fernerkundung ist Terrestrisches Laser Scanning 

(TLS) noch eine recht junge Disziplin, jedoch bietet die Zuverlässigkeit der laserbasierten 

Abstandsmessungen großes Potenzial für genaue Vermessungen. Außerhalb der 

traditionellen Vermessungsdisziplinen können somit auch Nicht-Experten 3D Daten mit hoher 

Messdichte zügig erfassen. Die Erfassung genauer Geoinformationen wird zwar generell in 

verschiedenen Anwendungsbereichen immer wichtiger, die hier präsentierte Studie richtet 

sich allerdings speziell auf die Anwendung von TLS zum Monitoring von Feldfrüchten im 

agrarwissenschaftlichen Bereich.  

Der steigende Kosten- und Effizienzdruck in der Landwirtschaft hat zur Entwicklung der 

standortspezifischen Ackerbewirtschaftung geführt, welche ein umfassendes Wissen über die 

Pflanzenentwicklung erfordert. Ein wichtiger Parameter, um diese Entwicklung oder genauer 

gesagt den aktuellen Zustand der Pflanzen zu beurteilen ist die Biomasse, welche direkt nur 

durch destruktive Probenahme bestimmbar ist. Mit dem Ziel solche destruktiven Messungen 

zu vermeiden, nimmt das Interesse an berührungslosen Erfassungen mittels Fernerkundung 

zu. Heutzutage beschäftigen sich verschiedene Ansätze mit der Schätzung von Biomasse auf 

Grundlage anderer Parameter, wie z.B. Vegetationsindizes (VIs) basierend auf Spektraldaten 

oder Pflanzenhöhe. Ein großer Vorteil aller Fernerkundungsverfahren ist, dass Parameter 

erfasst werden, ohne die Pflanzen durch die Durchführung der Messungen zu stören. Da die 

Pflanzen bei den Messungen nicht entnommen werden ist es darüber hinaus aus 

ökonomischer und ökologischer Sicht möglich mehrere Messungen über ein Feld und über die 

Vegetationsperiode verteilt durchzuführen. Dadurch kann die Veränderung räumlicher und 

zeitlicher Muster beobachtet werden. 

Diese Studie verwendet TLS zum objektiven Messen und Beobachten von Pflanzenhöhen 

als Schätzgröße für Biomasse auf Feldskala. Die Anwendung des hier vorgestellten Ansatzes 

ist zwar generell für eine Vielzahl von Feldfrüchten vorstellbar, der Fokus dieser Studie richtet 

sich jedoch auf Getreide, da diese hinsichtlich der Welternährung die größte Rolle spielen. 

Drei Beispiele wurden dabei ausgewählt, namentlich Paddyreis, Mais und Gerste.  

Im Rahmen dieser Arbeit wurden verteilt über fünf Standorte und vier Vegetationsperioden 

insgesamt 35 TLS Feldkampagnen durchgeführt um einen umfangreichen Datensatz zu 

erhalten. In jeder Kampagne wurde eine 3D Punktwolke zur Erfassung der Oberfläche des 

Feldes aufgenommen und in der Nachbearbeitung zu einem Oberflächenmodell der 

Pflanzendecke (crop surface model, CSM) interpoliert. Ein CSM stellt somit die Pflanzendecke 

in sehr hoher räumlicher Auflösung zu einem bestimmten Zeitpunkt dar. Durch die Subtraktion 

eines digitalen Geländemodelles (digital terrain model, DTM) des blanken Bodens vom CSM 

wurden die Pflanzenhöhen pixelweise berechnet. Umfangreiche manuelle Messungen 

bestätigten die TLS Daten und zeigten einen der großen Vorteile der CSMs: die sehr detaillierte 

Erfassung der gesamten Pflanzendecke. 

In einem weiteren Schritt wurden die Pflanzenhöhen verwendet, um die Biomasse mit 

empirisch entwickelten Biomasse-Regressionsmodellen (biomass regression models, BRMs) 

zu schätzen. Diese Werte wurden zur Prüfung der Ergebnisse gegen destruktive Messungen 

validiert. Darüber hinaus wurde die räumliche und zeitliche Übertragbarkeit der für die 



  

 

Zusammenfassung IV 

jeweilige Feldfrucht spezifischen BRMs anhand von Studien über verschiedene Standorte und 

mehrere Jahre gezeigt. In einem der Fallbeispiele wurden die Schätzungen auf Grundlage der 

Pflanzenhöhe mit den Schätzungen basierend auf sechs VIs verglichen und der Mehrwert 

durch eine Kombination beider Parameter untersucht. Die Analysen beruhten dabei auf den 

aus den TLS Daten abgeleiteten CSMs und Spektraldaten, die mit einem Feldspektrometer 

erfasst wurden. Die Ergebnisse unterstreichen die große Bedeutung der Pflanzenhöhe als 

robuste Schätzgröße für Biomasse, während die aus den VIs abgeleiteten BRMs sehr 

unterschiedliche Ergebnisse lieferten. Ein wesentlicher Vorteil aus der Kombination beider 

Parameter in multivarianten BRMs konnte in dieser Studie nicht festgestellt werden. Dennoch 

sollten Ansätze weiter untersucht werden, in denen die Parameter kombiniert werden, da aus 

VIs Informationen über die Vegetationsdecke (Pflanzendichte, Blattflächenindex) oder über 

biochemische und biophysikalische Parameter (Stickstoff-, Chlorophyll- und Wassergehalt) 

abgeleitet werden können. 

Zusammengefasst ist einer der größeren Vorteile des vorgestellten Ansatzes die 

Möglichkeit, schnell und einfach 3D Daten der Pflanzenhöhe auf Feldskala zu erfassen, welche 

eine robuste Schätzgröße für Biomasse sind. Darüber hinaus ermöglicht die hohe Auflösung 

der durch TLS gewonnenen CSMs eine detaillierte und räumlich aufgelöste Schätzung der 

Biomasse. Vor der praktischen Anwendung in der konventionellen Landwirtschaft müssen 

zwar noch einige Probleme gelöst werden, dennoch bieten auf Laser Scanning beruhende 

Ansätze großes Potential für das Monitoring des Pflanzenwachstums. 
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Introduction 1 

1 Introduction 

1.1 Preface 

The rapidly growing world population and the related demand for food security causes 

challenges for agri-food researchers (Marsden and Morley, 2014). According to the figures of 

the Food and Agriculture Organization of the United Nations (FAO) the total cereal production 

increased from ~2.0 to ~2.8 billion tons over the last 20 years (FAO, 2014). In the same period, 

the worldwide harvested area for cereals stayed almost constant at ~700 million hectares, 

which underlines the pressure on the efficiency of land use. Moreover, the FAO indicates that 

within this 20 years the world population rose from ~5.5 billion to ~7.1 billion people, with a 

supposed rise up to ~8.6 billion within the next 20 years. By the middle of this century already 

~10 billion world citizens are expected. This growing population demands a secure food 

supply, which in turn increases the pressure on the conventional agricultural sector and 

requires an improvement of management methods (Liaghat and Balasundram, 2010). 

Fortunately, an increasing recognition of the interaction between production and 

consumption and between food security and sustainability is observable in large sections of 

the population (Marsden and Morley, 2014). Since the 1990’s technical management methods 

and practices which aim at improving the food production emerged and can be summarized 

under the term precision agriculture (Mulla, 2012). One of the first definitions for precision 

agriculture came from the US House of Representatives and stated it as “an integrated 

information- and production-based farming system that is designed to increase long-term, site 

specific and whole farm production efficiencies, productivity, and profitability while 

minimizing unintended impacts on wildlife and the environment” (US House of 

Representatives, 1997). Considering the topic of this thesis, this definition should be narrowed 

to the term site-specific crop management to differentiate from animal industries or forestry 

(Whelan and Taylor, 2013). Related approaches address the improvement of farming practices 

to better suit soil and crop requirements. However, both terms precision agriculture and site-

specific crop management are often used synonymously.  

Based on these definitions two main aspects in this research field can be derived (Whelan 

and Taylor, 2013). First, from an economic point of view, improving the productivity of crops, 

which means the harvested yield, is obviously most important. Second, from an ecological 

point of view, exhausting or polluting soil, groundwater, and the entire environment through 

intensive field management needs to be minimized or, even better, avoided. 

Generally, a number of natural and human-induced processes are relevant for site-specific 

crop management and moreover they can show spatial and temporal variations (Oliver, 2013). 

These changes across time involve differences between the growing seasons, but also within 

one season. Beside quite stable factors, such as the physical landscape, climate, and biological 

lifecycle of crops, the efficiency of an agricultural production depends on varying weather 

conditions and field management practices for example (Atzberger, 2013). Hence, the 

required frequency of measurements to observe temporal variations depends strongly on the 

concrete issue. In contrast to these factors which are generally quite uniform across regions, 

spatial variabilities can be detected between adjacent fields and moreover within one field. 
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Possible sources are fertilizer residues in the ground, varying water availability, or generally 

small-scale heterogeneities of soil properties. The importance of detecting in-field variations 

for site-specific crop management can be demonstrated by the example of Whelan and 

Taylor (2013), shown in Figure 1-1. The average yield and amount of variation are equal in 

both fields, but the patterns differ. It is obvious that for an acquisition of patterns such as in 

the right field (B), measuring systems with a high in-field resolution are required. 

Today, sensor-based approaches are already findable for some applications assignable to 

precision agriculture. Such technologies can support plant protection and site-specific seeding 

(Auernhammer, 2001) or the detection of foliar diseases (Lee et al., 2010). With the aim of 

enhancing the yield, precision agriculture is frequently associated with site-specific 

fertilization (Auernhammer, 2001). Xu et al. (2014), for example, showed that appropriate 

fertilizer recommendations can increase the grain yield and moreover reduce the nutrient loss 

and environmental pollution. In this context, biomass estimations are of major interest, since 

studies show that crop yield is correlated to biomass (Boukerrou and Rasmusson, 1990; 

Fischer, 1993). This correlation can be quantified by the harvest index, expressing the yield 

versus total dry biomass (Price and Munns, 2010). Hence, accurately determining biomass can 

help to forecast yield. 

Beyond the yield-correlated amount of biomass at the end of the growing season, the 

in-season status of the plants is more important. One reason therefore is that adequate 

conditions during early growing stages could preserve the yield against challenges of later 

stages, caused by drought stress for example (Bidinger et al., 1977). An essential prerequisite 

for optimizing plant conditions through adequate field management is to acquire the current 

state of the crop and monitor changes. A benchmark for quantifying the plant status in-season 

is the nitrogen nutrition index (NNI), showing the ratio between actual and critical nitrogen (N) 

content (Lemaire et al., 2008). Since this critical value corresponds to the actual crop biomass, 

a precise determining of biomass is desirable. 

A major difficulty for all biomass-related indices is that a non-destructive determination of 

biomass is not possible. This is why several approaches focus on its estimations based on other 

parameters. Remote sensing methods were therefore increasingly applied over the last 

several decades (Mulla, 2012). Casanova et al. (1998), for example, measured the reflectance 

on rice plants across the growing season with a hand-held radiometer and attained very good 

Figure 1-1. Patterns of spatial variability. The average yield 
(2.5 t/ha) and the amount of variation (50% = 1 t/ha; 50% = 
4 t/ha) are the same in (A) and (B), but the patterns differ 
(Whelan and Taylor, 2013). 

(A) (B) 
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results for the estimation of biomass at field scale; 97 % of the variance in biomass could be 

explained by their model. On a far greater observation scale, satellite-based remote sensing 

enables to capture entire regions in a short time. As shown by Claverie et al. (2012), remote 

sensing data with a high spatial and temporal resolution, in this case Formosat-2 images, can 

be used to estimate biomass. Through the daily revisit time of the satellite, the authors 

obtained a comprehensive data set and well estimated biomass, with a relative error of 28 %. 

However, a main issue for all approaches based on optical satellites is the dependence on 

cloud-free conditions. In their first observation year Claverie et al. (2012) obtained only 

27 almost cloud-free images from a total number of 51. Active satellite-based remote sensing 

systems, such as synthetic aperture radar (SAR) sensors, are used to overcome this problem 

(Koppe et al., 2012; Zhang et al., 2014). Nevertheless, referring to the variability of processes 

which influence site-specific crop management, the temporal resolution reachable with 

a satellite-based system always depends on the satellite revisit time, which limits the flexibility 

of the approach. Regarding the spatial resolution, only recently systems have been developed 

which allow surveys with a high in-field resolution. One example is WorldView-3 with a pixel 

size of ~0.3 m (DigitalGlobe, 2014). Between these approaches, which regarded very different 

observation levels, numerous studies on crop monitoring with different remote sensing 

sensors are findable across almost all scales.  

It can be summarized, that in the field of precision agriculture or rather site-specific crop 

management, a growing demand arises for approaches on monitoring plant parameters with 

a spatial in-field resolution. Parameters usable for reliable biomass estimations are thereby of 

major importance. In general, the required temporal and spatial resolution is very 

case-specific, but timely flexible systems which allow a high spatial resolution are desirable, 

since the influencing environmental factors are variable in time and space (Atzberger, 2013). 

Moreover, they should be as robust as possible against poor weather conditions and ideally 

almost independent from external factors, such as solar radiation.  

1.2 Research issue and study aim 

The request for the reliable determination of biomass motivates the overall aim of this 

study: developing a robust method for the non-destructive estimation of crop biomass at field 

scale. Looking at the literature, biomass-related parameters, such as plant height, leaf area 

index (LAI), or crop density are assumed to be suitable estimators. Having regard to ground- or 

vehicle-based measurements, plant parameters like crop density, LAI, or directly biomass are 

widely estimated with vegetation indices (VIs) from spectral data (Casanova et al., 1998; 

Clevers et al., 2008; Gnyp et al., 2014b; Montes et al., 2011; Thenkabail et al., 2000). Therein, 

the reflectance is often measured with passive sensors, having disadvantages like the 

dependency on solar radiation and the influence through atmospheric conditions. Since these 

factors are variable in space and time, a site-specific spectral calibration is required 

(Adamchuk et al., 2004), which has to be frequently repeated during the measurements 

(Psomas et al., 2011). This makes surveys quite laborious.  
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In contrast, an active system like terrestrial laser scanning (TLS) operates with 

a self-generated signal, making the measurements independent from an external light source 

(Briese, 2010). In addition, the system is flexible for the application in the field as the scanner 

can be established on a tripod or small vehicle. The result of a TLS survey is a very dense 

3D point cloud, representing the spatial distribution of reflection points in the area of interest 

(AOI), but measured with one wavelength. This makes a derivation of VIs impossible but 

enables to easily capture the entire field. Consequently, the question is how to derive plant 

parameter information from the TLS data? 

In this work, the 3D point cloud from each TLS campaign is interpolated to a crop surface 

model (CSM). CSMs were introduced by Hoffmeister et al. (2010) to represent the entire crop 

canopy with a very high spatial resolution at a specific date. At each site multi-temporal CSMs 

are established based on several campaigns. By subtracting a digital terrain model (DTM) of 

the bare ground from each CSM, plant heights are calculated pixel-wise and stored as raster 

data sets. These measurements of plant height are then used for estimating biomass. First 

promising results for the estimation of aboveground biomass were already attained in 

a feasibility study for sugar beet by Hoffmeister (2014), but regarding world nutrition sugar 

beet plays a minor role. The most important group of crops are cereals due to their high 

proportion of carbohydrates (FAO, 1994). In view of the worldwide harvested area the five 

most important cereals are wheat, maize, paddy rice, barley, and rye, which cover already 

more than 85 % of the total area. Cereals might be further grouped in three categories by their 

general appearance and cultivation methods. Except for maize, which is clearly distinguishable 

through the larger plant height and paddy rice, which is grown on flooded fields, the remaining 

wheat, barley, and rye share main characteristics like plant heights of ~1 m and the cultivation 

on regular arable land. 

A comprehensive investigation of this novel approach in terms of its usability for 

monitoring cereals at field scale is targeted in this study. Hence, the main aims are (I) to 

demonstrate the usability of TLS-derived point clouds for establishing CSMs, (II) to obtain plant 

height, and (III) to estimate cereal biomass from these plant height data. In four case studies 

biomass regression models (BRMs) are therefore empirically developed with three cereals as 

examples, namely paddy rice, maize, and barley. According to the above stated subdivision, 

all three categories of cereals are covered by these examples. In addition to the bivariate 

BRMs, a comparison with estimations based on VIs is performed and first steps towards 

a fusion of both parameters are carried out by establishing multivariate BRMs. The working 

process can be divided into the following steps: 

I. Execution of field surveys at three sites with different platforms over four years. 

II. Construction of CSMs from each TLS-derived point clouds. 

III. Calculation of plant height. 

IV. Estimation of biomass based on plant height. 

V. Comparison of plant height and VIs as individual estimators and fused in 

multivariate BRMs for the barley case study. 

VI. Validation of plant height and estimated biomass against comparative data. 
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Generally, any remote sensing approach can be evaluated by its reachable spatial and 

temporal resolution (Campbell and Wynne, 2011). Thereby is the detection of spatial patterns 

limited by the size of the areas which can be separately recorded by the sensor. The 

repeatability in time strongly depends on the flexibility of the platform. According to these 

criteria the presented ground-based TLS approach shows promising potential for the 

acquisition of plant height at field scale. Consequently, the same high spatial resolution can 

be assumed for spatially resolved biomass estimations across the entire field. The major 

innovative aspects are in particular the possibility to capture entire fields, the very high spatial 

resolution, and the flexible usage. Moreover, the survey dates can be quite easily adapted to 

capture particular steps of the plant development or measurements can be postponed due to 

poor weather. 

1.3 Outline 

This chapter 1 should have given a first impression of how important crop monitoring is, in 

particular the acquisition of biomass-related parameters for site-specific crop management. 

Within the framework of this study, a comprehensive data set was achieved, allowing to 

evaluate the potential of TLS-derived 3D data of plant height for estimating biomass at field 

scale. In the following chapter 2 fundamental basics therefore are given, including a summary 

about remote sensing, with particular attention on applications in agriculture and a general 

introduction into TLS. After that, the regarded cereals are briefly portrayed and the general 

crop development across the growing season is addressed. Then, existing approaches for crop 

monitoring are presented and the methodology requisite for the case studies is introduced. 

This involves the construction of CSMs and the development of BRMs. In this context, the 

attainable scales and dimensions are regarded. Finally, the three case study sites are placed 

in a geographical context. 

The chapters 3 to 6 contain the research papers, presenting the results of the case studies. 

They are sorted along the overall workflow (Figure 1-2). Although, the major steps like the 

post-processing of the point clouds, the calculation of plant height, and the estimation of 

biomass are addressed in all papers, they are broadly assigned to the workflow according to 

their main focuses. First of all, the general concept of obtaining plant height from 

multi-temporal TLS-derived CSMs is examined in Tilly et al. (2014a; chapter 3) based on 

surveys on two paddy rice fields of one growing season. Moreover, the potential of 

CSM-derived plant height for estimating biomass is investigated. Then, in conjunction with 

these data sets, the measurements of two paddy rice fields from the subsequent growing 

season are analyzed in Tilly et al. (2015b; chapter 4). The main focus of this study lies on the 

spatial and temporal transferability of the BRMs. Concerning the data acquisition, the results 

of measurements on a larger field are shown for a maize field in Tilly et al. (2014b; chapter 5). 

Furthermore, the applicability of a cherry picker as platform is investigated based on several 

campaigns in one growing season. In Tilly et al. (2015a; chapter 6) the performances of plant 

height and VIs as individual estimators are compared and first attempts of improving the BRMs 

through fusing both parameters are carried out. A barley field experiment was therefore 

monitored with TLS and with a field spectrometer over three growing seasons. 
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Based on the results of these case studies chapter 7 gives an overall discussion. In this, 

firstly some issues related to the field measurements are regarded. Then the reliability and 

utility of the CSM-derived 3D data of plant height is evaluated and the validity of the biomass 

estimations is assessed. This also includes an evaluation of the fusion with spectral data. 

Afterwards, future prospects for laser scanning approaches in agriculture are outlined. Finally, 

Chapter 8 gives a concluding assessment of the applied methods and achieved results. 

Figure 1-2. Overall workflow and allocation of research papers in the chapters 3 to 6 according to 
their main focuses. 
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2 Basics 

2.1 Remote sensing  

One of the earliest approaches commonly assigned to remote sensing is the use of balloons 

for aerial photography in the late 19th century (Lillesand et al., 2004). Enabled through the 

development of airplanes, the interpretation of aerial photos increased in importance during 

the world wars (Jensen, 2007). In the late 1950s civilian applications of aerial photography 

arose as a source of cartographic information (Campbell and Wynne, 2011). From these 

approaches, the common aspect in definitions of remote sensing can be concluded: 

sensor-based data acquisition to derive information about an object with a certain distance 

between sensor and object (Lillesand et al., 2004). Since no clear definition exists how great 

this distance is, a variety of sensors and platforms, from ground-based over low- and 

high-altitude airborne to spaceborne systems are currently included under the rubric of 

remote sensing. The former ones are sometimes referred to as proximal (remote) sensing. 

Moreover, remote sensing might not be regarded as an own science, rather it is a tool or 

technology which is applied in a multitude of scientific disciplines (Löffler, 1985). In this 

respect - contemporaneously with the development of new sensors from a technical 

perspective - the application of remote sensing has reached more and more fields of human 

activity. Only looking at remote sensing of the natural environment, applications range already 

from the acquisition of data regarding vegetation and water to the assessment of soils, 

minerals, or geomorphological structures (Jensen, 2007). Extending the application fields to 

urban areas, further issues are, for example, the detection of city structures, like roads and 

buildings, detailed monitoring of production facilities, or human-induced changes of the 

natural environment, such as forest or agricultural land. With regard to the extent of this 

thesis, the focus of this chapter is narrowed to remote sensing in agricultural applications with 

different sensors and a more detailed introduction into TLS.  

2.1.1 Application in agriculture 

Remote sensing methods are widely used in agriculture, as they allow non-contact surveys 

and thus prevent disturbing the plants by the taking of measurements (Liaghat and 

Balasundram, 2010). Applied sensors and platforms range across almost all scales, from 

hand-held and tractor-based sensors to air- and spaceborne systems in micro-level to regional 

and global surveys, respectively (Allan, 1990). As for any application of remote sensing, major 

factors for choosing a system are the targeted spatial and temporal resolution. Mulla (2012) 

prognosticates that, compared to current approaches, future site-specific crop management 

will claim for greater spatial and temporal resolutions. Atzberger (2013) summarized the 

current research focuses of such approaches to five main topics: (I) crop yield and biomass, 

(II) crop nutrient and water stress, (III) infestations of weeds, (IV) insects and plant diseases, 

and (V) soil properties.  

According to this subdivision, the presented study belongs to the first topic and hence the 

following remarks are limited to applications dealing with crop biomass. Figure 2-1 lists several 

remote sensing sensors and platforms, usable for biomass estimations. The selection is based 

on recent exemplary studies of the last five years and cannot claim to completeness, rather it 
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should give a general view across methods at different observation scales. It has to be noted 

that an acquisition at an entire global scale is not very useful for agricultural applications. 

This selection of studies demonstrates the general interest in the use of remote sensing 

methods for estimating biomass. Thereby advantages and disadvantages can be assumed for 

each system, considering factors like the spatial resolution, the possible temporal frequency 

of measurements, or the dependency on external sources. In this study, TLS was chosen as 

Figure 2-1. Selection of remote sensing methods for the estimation of crop biomass across scales. 
Content of the studies is summarized to sensor and regarded crop or grassland. 
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system which allows measurements at field scale in a high spatial resolution. In addition, the 

ground-based active sensor is fairly flexible and independently usable. 

2.1.2 Terrestrial laser scanning 

Out of the variety of remote sensing sensors TLS is quite a young discipline. It is assignable 

to the proximal sensing methods with a short sensor range, compared to satellite-based 

systems for example. However, in the beginning laser-based measurements were applied with 

greater distances between sensor and object (Jensen, 2007). The origin of laser-based 

distance measurements can be dated back to the development of the first optical laser in 

1960. Since the 1970s light detection and ranging (LiDAR) systems based on aircrafts, also 

known as airborne laser scanning (ALS), were used for elevation mapping 

(Lillesand et al., 2004). In these early stages such measurements were primarily used in 

traditional engineering surveying, but caused by technical refinements and the development 

of weather-resistant systems during the late 20th century, laser scanning aroused the interest 

of environmental scientists (Large and Heritage, 2009). In several cases the application of 

a plane was however not flexible enough or too expensive and the spatial resolution of ALS 

was not sufficient. The resulting demand for ground-based systems led to the evolution of TLS.  

Only in the late 1990s the first TLS systems have been introduced, but the development of 

new sensors rapidly increased and their usage is now extended over a wide range of research 

areas (Large and Heritage, 2009). Applications of TLS range across various fields, such as 

geomorphology (Schaefer and Inkpen, 2010), geology (Buckley et al., 2008), forestry studies 

(van Leeuwen et al., 2011), archeology (Lambers et al., 2007), or urban mapping 

(Kukko et al., 2012). With the main advantage of easily capturing data in a high rate and 

density, TLS offers opportunities for non-experts, outside traditional surveying disciplines, to 

acquire 3D spatial information. Nevertheless, a basic understanding of the measuring principle 

is necessary. This can be exemplified by two simpler versions of laser-based measuring 

devices, namely laser ranging and laser profiling systems.  

The basic principle of so called time-of-flight measurements can be explained with the laser 

ranger (Petrie and Toth, 2008). Emitted by the ranger, the laser radiation is used to accurately 

measure the travel time, or time-of-flight, between transmitting a signal and its return to the 

receiver after reflection on any point of an object, also referred to as reflection point (ranging 

in Figure 2-2). From this time-of-flight, the slant distance or range (R) between the ranger and 

the reflection point is calculated as half of the entire path, with the speed of light is known to 

be ~0.3 m/ns: 

𝑅 =
(𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 ∙ 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡)

2
 

In environmental science, rather than locating individual reflection points, capturing 

2D profiles is desired for detecting terrain features. Similar as ranging systems, laser profiling 

devices measure the ranges (R) of several reflection points in equidistant steps along a line, 

but in addition the vertical angles (V) between R and the horizontal are observed (profiling in 

Figure 2-2). The profile is then determined through calculating each horizontal distance (D) 

and difference in height (H) between the sensor and the reflection points: 

𝐷 = 𝑅 cos 𝑉                             ∆𝐻 = 𝑅 sin 𝑉 
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Through adding a scanning mechanism to the system, such as a rotating mirror or a prism, 

a laser scanner is attained, which can measure the vertical dimension of a profile along 

a topographic features in a high detail (Petrie and Toth, 2008). Due to the static position of 

the terrestrial laser scanner, an additional motion is necessary to attain a horizontal 

resolution. Usually, a movable component, containing the scanning mechanism is rotated by 

an engine around the vertical axis, which allows to measure a series of parallel profiles 

(scanning in Figure 2-2). The result of one measurement is then a cluster of reflection points, 

known as point cloud, containing the x, y, and z coordinates of each point.  

In the short history of TLS, the measuring rate of reflection points has rapidly increased 

with the development of new systems. While the first launched sensor Leica Cyrax 2400 was 

capable of measuring only 100 point/sec, the sensors used in the case studies of this thesis 

measure 100 to 1,000 times more points/sec. Table 2-1 gives an overview about selected 

systems, whereby the selection is limited to time-of-flight scanners, since only such systems 

were used in this study. Beyond that, phase scanning systems should be mentioned as 

available alternatives, which achieve higher measuring rates and a better accuracy, but can 

only measure in shorter ranges (Beraldin et al., 2010). Their measuring principle differs slightly 

from time-of-flight scanners. Phase scanners emit the laser beam at alternating frequencies 

and measure the phase difference between the emitted and reflected signal. 

Table 2-1. Chronological selection of TLS systems with maximal measuring 
rate (Large and Heritage, 2009; Riegl LMS GmbH, 2015a, 2013). 

Launch year Sensor Maximal measuring rate 

1998 Leica Cyrax 2400 100 points/sec 
2001 Leica Cyrax 2500 1,000 points/sec 
2007 Riegl LMS-Z420i a 11,000 points/sec 
2007 Leica ScanStation 2 50,000 points/sec 
2010 Riegl VZ-1000 a 122,000 points/sec 
2014 Riegl VZ-2000 400,000 points/sec 

a Sensors used for the case studies. 

Figure 2-2. Principle of time-of-flight measurements with laser ranging, 
profiling, and scanning systems. 
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2.2 Crops 

In the framework of this study, time-of-flight scanners are used to monitor crop height 

across the growing season. According to the definition of the FAO, crops are agricultural 

products, coming directly from the field without any real processing, except cleaning 

(FAO, 2011). They might be further subdivided into cereals, pulses, roots and tubers, sugar 

crops, oil-bearing crops, fiber crops, vegetables, tobacco, fodder crops, fruits and berries, nuts, 

spices and aromatic herbs, and other crops (coffee, cacao, tea, and hops). In addition, it can 

be distinguished between temporary crops, being sown and harvested during the same 

growing season (sometimes more than once per year), and permanent crops, which have not 

to be replanted after each annual harvest.  

The most important group of crops are cereals, as they contribute the most to world 

nutrition. In general, cereals are annual plants of the gramineous family, characterized by 

carbohydrate as main nutrient element (FAO, 1994). According to the statistics of the FAO, 

the five largest cereals alone (wheat, maize, paddy rice, barley, and rye) make up more than 

85 % of the total harvested area for cereals (Figure 2-3). Based on their general appearance 

and growing characteristics three categories of cereals might be classified. Most cereals like 

wheat, barley, and rye reach plant heights of ~1 m and are grown on regular arable land. 

Exceptions from this are maize due to the larger plant height and paddy rice due to its 

cultivation on flooded fields. All herein regarded examples (paddy rice, maize, and barley) are 

cereals and corresponding to this subdivision, they cover all subcategories and are thus 

regarded as suitable representatives for cereals. However, the broader term crop is preferred 

in the further course of the work as the presented concept of monitoring is transferable to 

other groups. Brief characterizations of paddy rice, maize, and barley are given in the following 

sections, listed in the order of their appearance in the chapters 3 to 6. Afterwards some 

general characteristics of crop growth and development are given as a basis for the concept 

of crop monitoring.  

Wheat
31%

Maize
25%

Paddy rice
23%

Barley
7%

Rye
1%

Other
13%

Worldwide harvested area for cereal
Mean 2011 - 2013

Absolute values (ha)

Wheat 220,000,000
Maize 180,000,000
Paddy rice 160,000,000
Barley 50,000,000
Rye 5,000,000
Other 95,000,000
Total 710,000,000

Figure 2-3. Worldwide harvested area for the five main cereals. 
Values according to FAO (2014). 
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2.2.1 Paddy rice 

Cultivated rice (Oriyza) is the staple food for two thirds of the world population and the 

leading food crop in developing countries (Juliano, 2004). It is a cereal grain grass (family 

Poaceae) and although it is an annual species, it may grow more than once per year under 

reasonable environmental conditions. This quality of growth is influenced by factors like 

temperature, day length, nutrition, planting density, and humidity (Nemoto et al., 1995). Even 

though rice was originally a plant of wetlands, some species are cultivated on dry land or in 

water. It is common practice to flood the paddy rice fields for irrigation and simplifying weed 

control. The term paddy is the anglicized form of the Malayan word padi, meaning ‘of rice 

straw’ (Arendt and Zannini, 2013). Today, the term paddy rice is used for both the 

water-covered fields and the harvested product.  

Historically, the most ancient archaeological findings of rice cultivation were found in the 

Yangzi delta in China, dating back to 5,000 BC (Arendt and Zannini, 2013). Although with 

almost 30 %, meaning about 200 Mio tons per year, China still accounts for the largest part of 

the world rice production, the cultivation of rice is nowadays widely distributed around the 

world. It is grown in more than 100 countries between 53° N and 40° S and from sea level to 

altitudes of up to 3,000 m, covering in total about one quarter of the worldwide harvested 

area for cereals (Figure 2-3). Assumable about ~100,000 rice varieties exist, of which only 

a small number is cultivated (Juliano, 2004). 

The appearance of the rice plants is marked by round and hollow stems with flat sessile 

leaf blades and a terminal panicle (Arendt and Zannini, 2013). Several stems are grouped to 

hills with fibrous roots at the bottom. Each stem is enveloped by leaf sheath, which 

continuously merge into the leaf blade. The height of the majority of the rice varieties ranges 

between 1 and 2 m at their final growth.  

2.2.2 Maize 

Cultivated maize (Zea mays L.), also known as corn, is along with wheat and rice one of the 

most extensively cultivated cereals (Arendt and Zannini, 2013). It is an important source for 

a wide range of applications, such as human diet, feeding animals, or production of fuel and 

fibers. For a long time different theories on the origin of maize existed (Lee, 2004). The widely 

shared assumption today is that it was domesticated at least 6,700 BC in the highlands of 

Mexico. Nowadays, cultivated areas are spread worldwide, horizontally between 50° N and 

40° S and vertically from the Caribbean islands to 3,400 m above sea level in the Andean 

mountains. About one quarter of the worldwide harvested area for cereals in more than 

160 countries is cultivated with maize (Figure 2-3).  

Like paddy rice, maize is a cereal grain grass of the family Poaceae, sharing characteristics 

such as conspicuous nodes in the stem and a single leaf at each node, with leaves alternately 

arranged (Lee, 2004). On the contrary, final plant heights are much larger; typically maize 

plants reach heights of 2.0 - 3.5 m. Plant height and yield are obviously influenced by 

environmental factors, irrigation, and fertilization.  

2.2.3 Barley 

Cultivated barley (Hordeum vulgare L.) is one of the most versatile cereal crops (Arendt and 

Zannini, 2013). It has been one of the most important cereals in ancient times, as it can be 
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grown under a large range of environmental conditions. Archaeological findings allow to infer 

that barley was grown in the Near East and North Africa around 8,000 and 6,000 BC, 

respectively. During the course of time, it was more and more replaced through the increasing 

use of wheat, rice, and maize. Nowadays, considering the worldwide harvested area for 

cereals barley only ranks fourth (Figure 2-3), but an increasing use is predicted for the future, 

because unique benefits to human health are assumed (Edney, 2010). The highest prices for 

barley are achievable when used for malting and brewing, which also supports the promising 

future for barley, as the worldwide beer consumption is likely to further increase. However, 

since malting has high quality requirements, today the majority of the produced barley is used 

to feed animals, where lower quality is sufficient. 

Barley is a cereal grain grass of the family Poaceae, which is however distinguishable from 

other species of this family, like wheat, through the ears with long awns, although some 

awnless types also exist (Kling et al., 2004). Typically plants reach heights of about 1 m. In 

modern varieties the plant height was reduced and straw strength was increased to enhance 

the resistance against lodging. 

2.2.4 Growth and development 

From a general botanic point of view, the changes in plants across the growing season have 

to be divided in a qualitative and quantitative part (Price and Munns, 2010). While, qualitative 

changes are related to a plant development, involving changing plants appearance or function, 

quantitative changes reflect the growth, meaning a rising plant size, linked to an increasing 

biomass. Obviously, the development and growth cycles interact to a high degree and are 

furthermore influenced by environmental conditions. In the following, the term growth always 

implies the associated development of the plants, otherwise it is mentioned separately. 

The entire biological lifecycle of any plant can be divided into a reproductive phase, starting 

with the germination process, and a vegetative phase, marked by plant growth and 

development such as organ formation. This passes into the reproductive phase for the next 

generation (Price and Munns, 2010). The growth process of cereals can be broadly 

summarized to the tillering process after the germination, followed by the stem extension and 

heading, and finally the ripening as start of the new reproductive phase (Larcher, 2003). An 

illustration of these stages by Large (1954) is shown in Figure 2-4. The stages are based on the 

Feekes scale, which was developed by Willem Feekes in a pioneering approach of defining 

growth stages (Feekes, 1941).  

 Nowadays, various scales exist for describing crop growth across the growing season 

through the declaration of stages. These scales slightly differ in the definition of each stage 

and its allocation to either the vegetative or reproductive phase. From this variety, the BBCH 

scale is used in all case studies of this thesis. The acronym BBCH is derived from the funding 

organizations: Biologische Bundesanstalt (German Federal Biological Research Centre for 

Agriculture and Forestry), Bundessortenamt (German Federal Office of Plant Varieties), and 

Chemical industry. A main benefit of this scale is the fine subdivision of each growth stage in 

further so called developmental steps. The scale is classified by a two-digit number of which 

the first decodes the principal growth stage and the second subdivides into the developmental 

steps. As shown in Table 2-2, the scale starts with the early reproductive phase, the 
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germination, and ends with the senescence, the withering of the plants but start for the 

reproductive phase of the next generation. It should be mentioned that the vegetative phase 

is most important for the development of crops and appropriate field management can mainly 

influence the plant growth during these stages. The application of N fertilizer on barley, for 

example, should be completed prior to BBCH stage 3 (Munzert and Frahm, 2005). Hence, this 

phase is mainly in the focus of crop management. 
 

 

Table 2-2. Principal growth stages of the BBCH scale and criteria for their subdivision in developmental 
steps, modified from Meier (2001). 

 Principal growth stage a Code b Subdivision of developmental steps based on: 

reproductive 
phase 

0 Germination 00 - 09 Steps of germination and sprouting 

vegetative 
phase 

1 Leaf development 10 - 19 Number of true leaves, leaf pairs, or whorls unfolded 

2 Tillering 21 - 29 Number of side shoots and tillers 

3 Stem elongation 31 - 39 Number of detectable nodes and stem length  

4 Booting 40 - 49 Percentage of reached harvestable vegetative plant parts 

5 
Inflorescence 
emergence, heading 

51 - 59 Amount of inflorescence emerged 

6 Flowering, anthesis 60 - 69 Percentage of flowers open 

7 Development of fruit 71 - 79 Percentage of fruits have reached final size 

start for 
reproductive 
phase of next 
generation 

8 Ripening 81 - 89 Steps of ripening or fruit coloration 

9 Senescence 91 - 99 Steps of leaf-falling, withering till harvested product 

a first number of code; b entire code to subdivide developmental steps 

Figure 2-4. Growth stages of cereals based on the Feekes scale (Large, 1954). 
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2.3 Crop monitoring 

The plant height of the herein investigated crops is monitored across each respective 

growing season. Generally, monitoring means to observe the progress of something over 

a period of time but without any information about how this is done. Hence, crop monitoring 

can be interpreted as observing plant development during its growth. This is nowadays often 

associated with sensor-based measurements as part of site-specific field management. 

However, referring to the non-consideration of the applied method, crop monitoring has 

a longer history in agriculture than the remote sensing approaches. This evolution and 

chronological development is shortly addressed in the next section, followed by an 

introduction of the approach presented in this study and some aspects about scales and 

dimensions. 

2.3.1 Evolution and existing studies 

During the pre-industrial times, farmers have cultivated small fields. Since they needed to 

have a detailed knowledge about their fields or rather the plant development, some kind of 

human-based crop monitoring was already necessary. However, they had no possibilities to 

quantify variabilities so far (Whelan and Taylor, 2013). The industrial revolution induced then 

a mechanization of conventional agriculture during the second half of the 20th century. As a 

consequence, management practices have widely been applied, in which fields were 

considered as being uniform over large scales. This allowed the deployment of machines but 

reduced the flexibility to adapt the field management. A contrary development can be stated 

for the end of the 20th and beginning of the 21st century. Enabled through further technical 

refinements, a trend towards site-specific management practices was and is still observable. 

Nowadays, various approaches address site-specific crop monitoring and management. In 

particular non-contact surveys, enabled through remote sensing sensors, are in the focus of 

research (Atzberger, 2013). With regard to the aim of this study, the focus of this section is 

held on monitoring biomass and plant height with ground- or vehicle-based approaches. 

Due to its strong link to yield, biomass is an important plant parameter and approaches as 

to its estimation and monitoring are widely researched. In early approaches rising plate 

meters were applied for biomass estimations on grassland (Michell and Large, 1983). A pole 

is placed perpendicular to the ground, surrounded by a plate which falls down on the grass 

cover. Through measuring the height, biomass is determined, which depends on the turf 

density and grass species. Since this method is not well suited for determining biomass of 

cereals and measurements in larger spatial extents, other non-destructive estimation 

methods are necessary.  

Widespread remote sensing methods for biomass estimations exist and range across 

almost all scales (Figure 2-1). Commonly, measurements of the reflected radiation from plants 

are used to calculate VIs, which allow the estimation of plant parameters such as plant height, 

LAI, water content or biomass (Casanova et al., 1998; Clevers et al., 2008; Guyot et al., 1992; 

Haboudane et al., 2004). An extensive study on different crops and their characteristics across 

several growth stages was conducted by Thenkabail et al. (2000). They complained about 

weaknesses of the widely used normalized difference vegetation index (NDVI) and suggested 

that other combinations of spectral bands are better suited to obtain biophysical 
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characteristics. Several other studies focused on this establishment of more suitable VIs, such 

as the four-band VI GnyLi, which was empirically developed for estimating biomass 

(Gnyp et al., 2014a). In that study, winter wheat fields were monitored with both field 

spectrometer and satellite images to develop a VI which can be used for multiscale biomass 

estimations. The reliability of the GnyLi was demonstrated with an averaged R2 values across 

all scales of 0.78, on the contrary the NDVI reached only an R2 values of 0.24.  

Despite estimations based on VIs, plant height can be used to estimate biomass. However, 

unlike VIs, it is not very widely investigated so far. At the field scale, plant height can be 

measured by different ground-based sensors. Montes et al. (2011) showed the usability of 

height measurements with a light curtain for estimating maize biomass and reached R2 values 

of up to 0.91. With R2 values between 0.73 - 0.76 the usability of an ultrasonic sensor for 

measuring sward height as biomass estimator was demonstrated by Reddersen et al. (2014). 

Continuous monitoring of rice growth with a radar sensor was performed by Kim et al. (2013) 

and good correlations to plant height (0.88) were achieved. The potential of laser scanning 

systems was shown by Ehlert et al. (2010) with strong relation between height and crop 

biomass density of wheat (R2 > 0.90). Moreover, plant heights are measured manually with 

a ruler or measuring tape, as shown, for example, by Marshall and Thenkabail (2015). They 

used such manual measurements for improving biomass estimations from spectral 

measurements. Compared to estimations on spectral data alone, up to 29 % more variance 

could be explained by the combined models. In contrast to the discrete measurements of 

ultrasonic sensors or manual measurements, continuous measurements capture the entire 

crop surface in the considered range, achievable from a TLS-derived point cloud for example. 

TLS sensors are also known to reach up to sub-centimeter accuracies (Large and Heritage, 

2009) and thus they should be regarded as promising systems for exact crop monitoring. 

2.3.2 Crop surface model 

In this study, 3D point clouds of multi-temporal TLS surveys are used to monitor the crop 

height across the growing season. Details of the acquisition process and the individual steps 

of the post-processing are given in the research papers for each case study. Nevertheless, the 

general methodology as common concept is presented briefly in the following.  

The final point cloud of each campaign is interpolated to a crop surface model (CSMs), 

representing the crop surface with a very high spatial resolution at a specific date 

(Hoffmeister et al., 2010). Previously, the point clouds are filtered with a scheme for selecting 

maximum points to detect the crop canopy. Thereby one value remains for each 1 cm by 1 cm 

cell. By capturing several CSMs across the growing season and an additional digital terrain 

model (DTM), representing the bare ground of the field at the beginning of the growing 

season, spatially resolved plant height data are calculated and temporal changes can be 

monitored (Figure 2-5). For example, the plant height values for the first campaign date (t1) 

are calculated by subtracting the DTM from CSM1. The plant growth, in this context meaning 

an increase in plant height, is obtained by calculating the difference between the CSMs of two 

campaigns, e.g. CSM2 - CSM1. This results in raster data sets with pixel-wise stored plant height 

or growth. 
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2.3.3 Biomass regression model 

In the further course of this study, plant height is used to estimate crop biomass. During 

tillering and in particular during stem extension and elongation (BBCH stages 2 & 3, Table 2-2), 

increasing biomass is mainly related to increasing plant height (Figure 2-4). In the case studies 

(Chapter 3 to 6) biomass regression models (BRMs) are empirically developed to express this 

relation between TLS-derived plant height and destructively taken biomass for the examples 

of paddy rice, maize, and barley. In the paddy rice and maize case studies only dry biomass is 

regarded since this value is important for calculating biomass-related indices, such as the 

harvest index and the NNI. Additionally, the relation to fresh biomass is investigated in the 

comprehensive barley case study as this parameter is frequently used in crop growth models. 

Prior to the establishment of the BRMs, the pixel-wise stored plant height and the biomass 

values are averaged across equal spatial extents to allow the derivation of model equations.  

In a first attempt, increasing plant height and biomass are both expected as being linear 

during the key vegetative phase. Hence, the simplest approach to express the relation 

between these parameters is also a linear BRM, according to equation [1], Table 2-3. However, 

during the later stages, in particular after heading (BBCH stage 5, Table 2-2), further increasing 

biomass values can be expected due to the development of ears while the plant height stays 

almost constant (Figure 2-4). Consequently non-linear functions might suit better to the trend 

between the two parameters across the entire growing season. This is also confirmed in other 

studies, suggesting that biomass across the season is best estimated with exponential models 

(Aasen et al., 2014; Thenkabail et al., 2000). Therefore, exponential BRMs are established 

according to equation [2], Table 2-3. For the exponential BRMs, the biomass values are natural 

log-transformed, which simplifies the calculation (equation [3]). 

Linear BRMs are established in all case studies as comparable basis. Since the main focus 

of the first research paper (Chapter 3) lies on the general construction and usability of CSMs, 

exponential models are not considered yet. Exponential models are also excluded from the 

maize case study (Chapter 5), since the application of a different platform for measuring the 

larger maize plants and the larger fields is mainly addressed. The results of linear and 

exponential BRMs are shown for paddy rice and barley in chapter 4 and 6, respectively. In the 

Figure 2-5. Concept of multi-temporal crop surface models. Single plants modified from Large (1954). 
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latter chapter, the benefit of fusing plant height with each of six VIs is investigated based on 

linear (equation [4]) and exponential (equation [5] and [6]) multivariate BRMs (Table 2-3).  

Table 2-3. Equations of the biomass regression models. 

Linear BRMs 

Bivariate 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 𝑚 ∙ 𝑝𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑏 [1] 

Multivariate 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 𝑚 ∙ 𝑝𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑛 ∙ 𝑉𝐼 + 𝑏 [4] 

 with 𝑚 and 𝑛 as slopes and 𝑏 as intercept.  

Exponential BRMs 

Bivariate 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 𝑏0 ∙ 𝑒𝑏1 ∙ 𝑝𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 [2] 

 𝑙𝑛(𝐵𝑖𝑜𝑚𝑎𝑠𝑠) = 𝑙𝑛(𝑏0) + 𝑏1  ∙  𝑝𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 [3] 

Multivariate 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 𝑏0 ∙ 𝑒𝑏1∙ 𝑝𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡+ 𝑏2∙ 𝑉𝐼 [5] 

 𝑙𝑛(𝐵𝑖𝑜𝑚𝑎𝑠𝑠) =  𝑙𝑛(𝑏0) + 𝑏1 ∙ 𝑝𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑏2 ∙ 𝑉𝐼 [6] 

 with 𝑏0 - 𝑏2 as factors and 𝑒 as base of the natural logarithm. 
 

2.3.4 Scales and dimensions 

For any field survey, a general consideration should be given to the regarded scales and 

dimensions. As shown in Figure 2-1, remote sensing methods for the estimation of crop 

biomass range across various scales. For site-specific crop management a high in-field spatial 

resolution is required. The presented TLS approach for measuring plant height aims at the 

application at field scale, but prior to this, a sufficient knowledge about the development of 

plant height and biomass across the growing season is necessary. Therefore, two field 

experiments were monitored, in which several cultivars of one crop were cultivated with 

different fertilizer treatment in small-scale plots. This execution of experiments at plot level is 

common practice in crop science, for example, to investigate the performance of newly 

developed varieties (Kling et al., 2004).  

Apart from this, the expected difference between the plots are useful for the monitoring 

approach to capture different plant conditions at one growing stage. Firstly, a paddy rice 

experiment was investigated in two growing seasons, where each plot was 10 m by 7 m in size 

(Chapters 3 and 4). Secondly, a spring barley experiment was surveyed in three growing 

seasons, where each plot was 7 m by 3 m in size (Chapter 6). The measurements on the paddy 

rice fields were supplemented by campaigns on two farmer’s conventionally managed fields, 

having a total extent of 500 m by 300 m and 100 m by 80 m. Moreover, a maize field, which 

was 160 m by 60 m in size was monitored to examine the applicability of the approach at field 

scale (Chapter 5). The overall intent was to establish BRMs based on comprehensive 

measurements at plot level and use the models for estimations at field scale.  

Furthermore, the dimension of the acquired data has to be regarded. The result of a TLS 

survey is a 3D point cloud, which is commonly used to generate a DTM (Briese, 2010). In these 

point clouds more than one height value (z) can be obtained for each 2D location (x, y). Since 

the representation of a DTM is typically limited to 2.5D, the point clouds need to be converted 

to data sets where one z value is stored for each 2D location. This involves a loss of 

information, which however cannot be avoided when using raster data sets. In the here 

presented crop monitoring approach, it is very likely that several z values with the same 

x, y coordinates are attained due to the almost vertical plants. Through interpolating the CSMs 
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from the filtered point clouds, raster data sets with a resolution of 1 cm are generated to store 

the highest z value per 2D location. As the plant height is then calculated based on the CSMs, 

the true dimension of these data sets is also 2.5D. However, the term 3D data of plant height 

is used in the further course of the work, referring to the point cloud as origin and since the 

term 2.5D is frequently unknown. Previous to the establishment of the BRMs, the pixel-wise 

stored plant heights are averaged across equal spatial extents, resulting in 1D data. In these 

data sets one value of plant height is stored per spatial unit for which the x, y coordinates are 

not considered, such as one field experiment plot. This was necessary to attain a common 

dimension with the biomass values, which are recorded for these spatial units. 

2.4 Study sites  

 Crop monitoring with TLS was carried out at three sites during the growing seasons of 2011 

to 2014, resulting in a total number of 35 field campaigns. The study site locations are marked 

in Figure 2-6. From a geographical point of view, all sites belong to the same ecozone, the 

temperate midlatitudes, ranging on the west sides of the continents from 40° - 60° and at the 

east sides from 35° - 50° (Schultz, 2005), but they differ in their location at the west and east 

sides of Eurasia. On the east site, paddy rice fields at three sites around the city of Jiansanjiang, 

Heilongjiang Province were surveyed in China. In Germany, on the west site, fields at two sites 

were investigated, both located in the federal state of North Rhine-Westphalia. Firstly, a maize 

field in the village Selhausen, about 40 km west of Cologne and secondly, a barley field in the 

village Klein-Altendorf, about 20 km southwest of Bonn, were investigated. According to the 

Köppen-Geiger climate classification the sites in China and Germany are assigned to the 

temperate climates Cwb and Cfb, respectively (Peel et al., 2007). Hence, they show the same 

temperature range across the year (hottest month > 10 °C and coldest month < 18 °C) with 

Figure 2-6. Overview map of all study sites: Jiansanjiang (right); Selhausen and Klein-Altendorf (left). 
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warm summers, but they differ in the characteristic of the winter season. Cwb climates are 

characterized by dry winters with the precipitation of the driest winter month being lower 

than 10 % of the precipitation of the wettest summer month. In contrast, no dry season is 

ascertainable for Cfb climates. In the following all sites are briefly portrayed.  

2.4.1 Jiansanjiang, China 

The city of Jiansanjiang is located in the province Heilongjiang, Northeast China. The 

topography of the province is flat and low in altitude, complemented by a few mountain 

ranges. In the northeasternmost part the Sanjiang Plain is situated, an alluvial plain, mainly 

deposited by the rivers Heilong, Songhua, and Wusuli. Through the land reclamation since 

1950 the low-lying former wetlands are now well suited for agricultural production and the 

area has become an important basis for agricultural products in China (Gao and Liu, 2011). 

Underlying soil types of the marshlands as original land cover of the Sanjiang Plain were peat 

marsh soil, humus marsh soil, mire soil, and meadow marsh soil, but the reclamation induced 

a soil development. The four main soil types, making up 95 % of the area, are now meadow 

soil, lessive, swamp soil, and black soil (Liu et al., 2013; Wang et al., 2006). 

The climate is marked by the East Asian summer monsoon, resulting in cold and dry winters, 

but warm and humid summers (Ding and Chan, 2005). The average annual temperature is 

about 1.4 - 4.3 °C, but an average maximum of 21 - 22 °C is reached in July. Moreover, about 

70 % of the annual precipitation of 500 - 650 mm occurs between July and September. 

Resulting from the climatic conditions, the growing season lasts about 120 - 140 days (Wang 

and Yang, 2001; Wang et al., 2006). According to the records of the local weather station of 

Jiansanjiang the annual mean temperature is 3.6 °C with an average yearly precipitation of 

about 490 mm (Gnyp, 2014); the climate diagram for Jiansanjiang is shown in Figure 2-7 (A). 

In Jiansanjiang the Keyansuo experiment station is located, where field management 

approaches for irrigated rice cultivation are carried out. In each growing season of 2011 and 

2012 the same field experiment was investigated at this station. In addition, one nearby 

farmer’s conventionally managed field was monitored each year. Descriptions of the three 

sites and the field experiment are given in the research papers (Section 3.2.1 and 4.2.1). 

2.4.2 Selhausen, Germany 

Selhausen is a small village in the district of Düren, about 40 km west of Cologne. The area 

is part of the lower Rhine basin with a flat or slightly undulated surface, characterized by small 

valleys of the rivers Rur and Ellbach. The investigated field is situated on the upper terrace of 

the Rhine/Meuse river system, which consists of Pleistocene sand and gravel sediments 

(Rudolph et al., 2015). All soils in the area are developed in Quaternary sediments and 

Cambisols, Luvisols, Planosols, and Stagnosols are the main soil types.  

The long-term records of the weather station at the nearby Research Centre Jülich are used 

to regard the climatic conditions. They show an average annual temperature of 10.0 °C with 

an average yearly precipitation of about 700 mm (Research Centre Jülich, 2015); the climate 

diagram for Jülich is shown in Figure 2-7 (B).  

At this site a farmer’s conventionally managed maize field was monitored across the 

growing season of 2013. Therefore six TLS campaigns were carried out. More details are given 

in the research paper (section 5.2.1). 
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2.4.3 Klein-Altendorf, Germany 

The village Klein-Altendorf lies about 20 km southwest of Bonn. Since the area belongs to 

the main terrace of the southern part of the lower Rhine basin, the ground is almost flat and 

the clayey silt luvisol is well suited for crop cultivation (Uni Bonn, 2010a). On these nutritious 

soils in the Rhenish area typically crops like sugar beet, wheat, and barley are cultivated. 

The region lies in the warm temperate climate zone, with the mesoclimatic conditions 

being influenced by the sheltered location of the lower Rhine basin (Uni Bonn, 2010b). Records 

of the weather station in Klein-Altendorf show an average annual temperature of 9.3 °C and 

a long-term average yearly precipitation of about 600 mm; Figure 2-7 (C) shows the climate 

diagram for Klein-Altendorf. The growing season comprises about 165 - 170 days. 

A field experiment campus, belonging to the Faculty of Agriculture, University of Bonn, is 

hosted in Klein-Altendorf. Across the growing seasons of 2012 to 2014 a field experiment with 

different cultivars of spring barley was monitored with several TLS campaigns each year. More 

details about the experiment are provides in the research paper (section 6.2.1).  

Figure 2-7. Climate diagram for (A) Jiansanjiang, (B) Jülich, and (C) Klein-Altendorf (long-term average), 
modified from Gnyp (2014), Research Centre Jülich (2015), Uni Bonn (2010b), respectively. 

(B) 

(A) 

(C) 
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Abstract. Appropriate field management requires methods of measuring plant height with 

high precision, accuracy, and resolution. Studies show that terrestrial laser scanning (TLS) is 

suitable for capturing small objects like crops. In this contribution, the results of 

multi-temporal TLS surveys for monitoring plant height on paddy rice fields in China are 

presented. Three campaigns were carried out on a field experiment and on a farmer's 

conventionally managed field. The high density of measurement points allows to establish 

crop surface models (CSMs) with a resolution of 1 cm, which can be used for deriving plant 

heights. For both sites, strong correlations (each R2 = 0.91) between TLS-derived and manually 

measured plant heights confirm the accuracy of the scan data. A biomass regression model 

was established based on the correlation between plant height and biomass samples from the 

field experiment (R2 = 0.86). The transferability to the farmer's field was supported with 

a strong correlation between simulated and measured values (R2 = 0.90). Independent 

biomass measurements were used for validating the temporal transferability. The study 

demonstrates the advantages of TLS for deriving plant height, which can be used for modeling 

biomass. Consequently, laser scanning methods are a promising tool for precision agriculture. 

Nontechnical Research Summary. In general, efficiency of crop production is influenced by 

adequate field management during the growing period. This requires appropriate technical 

equipment, but even more, knowledge about the nutrient content of plants during cultivation 

is necessary. Key factors for management decisions are nitrogen content and biomass. 

Determination of the desired plant parameters and accurate estimation of the actual crop 

status are in the focus of research. While several non-destructive methods are introduced for 

monitoring nitrogen status in standing crops, the matter of determining biomass 

non-destructively is still not solved. Consequently, other plant parameters, like the plant 

height, are used for biomass estimations. The results of this study show that terrestrial laser 

scanning can be used for measuring plant height accurate and within-field resolution. 

Measurements on a field experiment were used for establishing a regression model for the 
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determination of biomass. The transferability to a larger scale and the temporal transferability 

were supported with independent measurements on a farmer's conventionally managed field. 

The developed methods can support the monitoring of paddy rice fields during the growing 

period for getting detailed spatially and temporally resolved information. Hence, the field 

management can be optimized for conserving natural and financial resources. 

Keywords: terrestrial laser scanning; plant height; growth; biomass; rice; precision 

agriculture; crop monitoring; field level 

3.1 Introduction  

The cultivation of rice is increasingly important in consequence of its role as a staple food, 

in particular for the rapidly growing Asian population. In 2011, about 90 % of the estimated 

world rice production, about 650 million tons, was produced in Asia (FAO, 2014). Due to 

a further growing population with a constant or even decreasing cultivation area, a field 

management aiming at high production and sustainability of natural resources is required. 

Main goal is to close the gap between potential and current yield in developed and developing 

countries (van Wart et al., 2013). Therefore, in the context of precision agriculture, accurate 

crop monitoring should be based on remote and proximal sensing for improving the relation 

between inputs and outputs (Mulla, 2012).  

Rice grain yield for example, is positively correlated to biomass and nitrogen (N) 

translocation efficiency (Ntanos and Koutroubas, 2002). However, the over-fertilization with 

N by farmers is a major problem for soil and groundwater. Hence, ways for enhancing the field 

management are necessary. Overviews about the actual situation and recent trends in China 

are given by Miao et al. (2011) and Roelcke et al. (2004).  

Considering that the biomass production of crops can be described as a function of 

N content, an optimal fertilization requires the knowledge about the suitable N content of the 

plants as well as methods of determining the actual N content and the biomass (Devienne-

Barret et al., 2000; Lemaire et al., 2005; Mistele and Schmidhalter, 2008). A widely used 

indicator for quantifying the actual status is the nitrogen nutrition index (NNI), as the ratio 

between measured and critical N content (Elia and Conversa, 2012; Greenwood et al., 1991; 

Lemaire et al., 2008). The critical N content is determined by the N dilution curve, which 

represents the relation between N concentration and biomass.  

In order to estimate the values for the calculation of the NNI, the use of non-destructive 

remote sensing technologies is in the focus of research. Several studies exist using 

a chlorophyll meter (Huang et al., 2008; Peng et al., 1996), a hand-held spectro-radiometer 

(Stroppiana et al., 2009; Yi et al., 2007; Yu et al., 2013), or an airborne hyperspectral sensor 

(Ryu et al., 2011) for determining the N content of rice plants. Moreover, various approaches 

are presented for assessing the actual biomass. Spaceborne data is commonly used due to the 

usually wide areal extent of paddy rice fields (Koppe et al., 2012; Lopez-Sanchez et al., 2011; 

Ribbes and Le Toan, 1999). In addition, satellite remote sensing images enable the estimation 

of rice yield based on the calculation of vegetation indices (Li et al., 2011; Yang et al., 2011).  

A higher spatial and temporal resolution is required for estimating the biomass more 

precisely and with within-field variability. Few works on the virtual modeling of rice plants in 
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a high resolution exist (Ding et al., 2011; Watanabe et al., 2005), but the complex plant 

structure and growing process cause uncertainties about the transferability to the field. Thus, 

in-situ measurements for biomass estimation are useful. In an early approach, the biomass of 

rice was predicted from reflectance data, measured with a hand-held radiometer 

(Casanova et al., 1998). Similar results are reported in Gnyp et al. (2013) and 

Aasen et al. (2014). In Yao et al. (2012), the authors used an active hand-held optical 

reflectance sensor for monitoring the rice canopy during the growing period and developed a 

precise N management strategy. Furthermore, the authors in Confalonieri et al. (2011) 

emphasized that rice plant height is a key factor for predicting yield potential and established 

a model for estimating the plant height increase, but methods for accurate in-situ 

determination are rare.  

Besides hyperspectral and optical sensors, the technology of light detection and ranging 

(LiDAR) became increasingly important in a wide range of research fields, including the 

acquisition of vegetation parameters. Advantages of airborne and ground-based LiDAR 

remote sensing for ecosystem studies are highlighted in van Leeuwen et al. (2011) and 

Lefsky et al. (2002). Tremendous research is conducted in forestry applications (Henning and 

Radtke, 2006; Hosoi and Omasa, 2006; Hyyppä et al., 2008; Lovell et al., 2011; 

Omasa et al., 2007; Van der Zande et al., 2006). The main benefits are the fast and accurate 

data capturing, the high point density data, and therefore the highly realistic representation.  

Several crops were already investigated with ground-based LiDAR approaches for various 

purposes, for example measuring height of perennial grass (Zhang and Grift, 2012) or biomass 

of grapevine (Keightley and Bawden, 2010), oilseed rape, winter rye, winter wheat, and 

grassland (Ehlert et al., 2009, 2008). Furthermore, estimating crop density (Hosoi and 

Omasa, 2009; Saeys et al., 2009), nitrogen status (Eitel et al., 2011), and leaf area index 

(Gebbers et al., 2011) of wheat, or detecting spatial and temporal changes of different sugar 

beet cultivars (Hoffmeister et al., 2012) are evaluated. Single plant detection is possible based 

on analysis of the measured intensity values (Hoffmeister et al., 2012; Höfle, 2014). In Hosoi 

and Omasa (2012), the authors examined the use of a portable scanner in combination with 

a mirror for assessing the vertical plant area density in a rice canopy and achieved good 

results. They used the density values for estimating the dry weight of plant organs (ears, 

leaves, and stems). As stated in Lumme et al. (2008), terrestrial laser scanning (TLS) is 

a promising method for estimating the biomass of small grain cereals like barley, oat, and 

wheat. 

In this study, multi-temporal crop surface models (CSMs) were established for determining 

the plant height from TLS measurements on paddy rice fields at different growing stages. 

CSMs are introduced in Hoffmeister et al. (2010) for deriving spatial crop growth patterns on 

field level. Manual measurements were performed for validating the TLS measurements. In 

addition, the CSMs are used for estimating the actual crop biomass. Therefore, a regression 

model based on the findings from a field experiment was established. The model was used for 

estimating the biomass of rice plants on a farmer's field on the base of multi-temporal CSMs.  

The presented research is part of the activities of the International Center for 

Agro-Informatics and Sustainable Development (ICASD). It was founded in 2009 as an open, 
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international, and multidisciplinary cooperative research center. ICASD founding members are 

the Department of Plant Nutrition of the China Agricultural University in Beijing and the 

Institute of Geography at the University of Cologne, Germany (www.ICASD.org). 

3.2 Materials and methods 

3.2.1 Study area 

The surveys were conducted in the area of the city of Jiansanjiang (N 47°15'21", 

E 132°37'43") in Heilongjiang Province in the far northeast of China (Figure 3-1). The province 

with a continental monsoon climate is an important basis for agricultural products in China 

(Gao and Liu, 2011). Situated in the east of Heilongjiang, the Sanjiang Plain covers almost 

100,000 km², which is about ¼ of the provinces' total area. Cold and dry winters and short but 

warm, humid summers are characteristic for the middle temperate and humid climate of the 

Sanjiang Plain, which is marked by the East Asian summer monsoon (Ding and Chan, 2005; 

Domrös and Gongbing, 1988). The field campaigns were carried out at two sites: (1) A field 

experiment at the Keyansuo experiment station (Figure 3-1) where various treatments for the 

cultivation of rice were applied and (2) a farmer's field (Figure 3-1) with a conventional 

management. 

3.2.1.1 Field experiment 

At the Keyansuo experiment station, various field management approaches for irrigated 

rice cultivation were investigated in small-scale fields. The focus of the field experiment 

examined in this contribution was on different N fertilizer treatments. Differences in plant 

height and biomass were expected, related to the amount of N input. For the presented 

monitoring approach, this variation is useful for capturing different plant conditions at one 

growing stage. 

Figure 3-1. Location of the study sites in China (modified from 
Gnyp et al. (2013). 
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One half of the field experiment with a spatial extent of 60 m by 63 m was cultivated with 

the rice variety Kongyu 131, the other half with Longjing 21. The plants sprout in 

a greenhouse, were transplanted between the 17th and 20th of May, and harvested on the 

20th of September 2011. Nine different treatments were repeated thrice for both rice 

varieties. Thus, the area was divided into 54 plots, each about 10 m by 7 m in size. As shown 

in Table 3-1, the treatments differ in the amount of applied N fertilizer during the growing 

period. The amount of fertilizer was predefined for five treatments, whereas the amount for 

treatment six to nine was adjusted based on in-season N content analysis. The content was 

approximated based on spectral reflectance measurements, performed with GreenSeekerTM 

(Ntech Industries, USA) and Crop CircleTM (Holland Scientific, USA) and the actual biomass, 

which was measured destructively several times within the vegetation period. A detailed 

description of the experiment design is given in Cao et al. (2013). 

Table 3-1. Fertilizer application scheme for both study sites. 

Treatment Base N 
(kg/ha) 

Topdressing 1 
(kg/ha) 

Topdressing 2 
(kg/ha) 

Topdressing 3 
(kg/ha) 

Total N 
(kg/ha) 

Field experiment 
Date 06.05.11 30.05.11 09.-21.07.11 29.07.11  
1 0 0 0 0 0 
2 28 14 19.6 8.4 70 
3 40 20 28 12 100 
4 52 26 36.4 15.6 130 
5 64 32 44.8 19.2 160 
6 - 8 40 20 N/Aa N/Aa N/Ab 
9 40 + 55 SCUc 0 N/Aa 0 N/Ab 
Farmer's field 
Date 14.-16.04.11 29.05.11 09.06.11 08.07.11  
 40 12 18 30 100 
a Amount based on N content analysis; b Resulting from the calculated amount; c Sulphur-coated urea (slow 
release fertilizer) 

3.2.1.2 Farmer's field 

The aim of investigating a farmer's conventionally managed field was to provide an 

independent validation data set and check the transferability of the findings from the field 

experiment described above. For this purpose, a farmer's field with similar growing pattern 

but a considerably larger spatial extent of 300 m by 500 m was chosen. The plants also sprout 

in a greenhouse, were transplanted on the 17th and 18th of May, and harvested between the 

25th of September and 10th of October 2011. Unfortunately, it was not possible to find any 

field with one of the rice varieties investigated at the Keyansuo experiment station, where the 

farmer would have allowed to enter the rice paddies and to take destructive samplings several 

times within the growing season. The field was cultivated with the rice variety Kenjiandao 6. 

The dates of fertilization differ from the field experiment (Table 3-1). 

3.2.2 TLS measurements 

The chosen survey period of late June to July captures the key vegetative stage of the rice 

plants, when the stem elongation process takes place. Remarkable differences in plant 

development occur due to the increase of tillers and plant height during this stage. For the 

monitoring approach, three campaigns were carried out on both fields, which were each time 

conducted on two consecutive days. The campaign dates are given in Table 3-2. 
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Table 3-2. Dates of the scan campaigns and corresponding phenological stages. 

Date Field Variety BBCH-scalea 

21.06.11 Experiment Kongyu 131  13 

 Longjing 21 13 

22.06.11 Farmer's Kenjiandao 6 13 

04.07.11 Experiment Kongyu 131  13 - 15; 22 - 23 

 Longjing 21 13 - 15; 22 - 23 

05.07.11 Farmer's Kenjiandao 6 13;21 

18.07.11 Experiment Kongyu 131  19; 29; 32 

 Longjing 21 19; 29; 32 

19.07.11 Farmer's Kenjiandao 6 19; 29; 34 
a multiple values due to several samples 

For all field campaigns the terrestrial laser scanner Riegl VZ-1000 (Riegl LMS GmbH, 2013), 

provided by Five Star Electronic Technologies, located in Beijing, was used. The scanner 

operates with the time-of-flight technique, where the time between transmitting and 

receiving a pulsed laser signal is measured. The time is used for calculating the distance 

between sensor and target. Parallel scan lines are achieved with a rotating multi-facet polygon 

mirror and the rotation of the scanners head itself, which implies a wide field of view, up to 

100° in vertical and 360° in horizontal direction. The infrared laser beam has a high precision 

of 5 mm and an accuracy of 8 mm. Apart from a measurement rate of up to 122,000 

points/sec, long range distance measurements of up to 1,400 m are possible. In addition, the 

system is capable of an online full-waveform analysis and according echo digitization. 

Additionally, a digital camera, Nikon D700, was mounted on the laser scanner. From the 

recorded RGB photos the point clouds gained from the laser scanner can be colorized, 

resulting in 3D RGB point clouds and the corresponding surfaces can be textured. The camera 

was connected via USB interface to the scanner for adjusting the camera settings and ensuring 

an accurate alignment between the devices. During the acquisition, the whole system was 

remotely controlled with the RiSCAN Pro Software on a notebook, linked via a LAN connection.  

During the campaigns at the field experiment, the scanner was fixed on a tripod which 

raised the sensor up to 1.5 m above ground. Where possible, a small trailer behind a tractor 

was used for achieving a greater height of about 3 m (Figure 3-2). The study area was scanned 

from nine scan positions for capturing all fields of the Keyansuo experiment station and 

minimizing shadowing effects. Although the data from all positions was used for the analysis, 

four of them were of major importance, as they were located closely to the investigated 

Figure 3-2. Overview of the investigated field experiment from scan position six (Figure 3-3). On the 
right side the scanner with the tripod mounted on the small trailer can be seen (taken: 04.07.11). 
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N field experiment. Two positions were accomplished without the trailer at the north edge 

and two positions with the trailer at the south edge of the field. The whole setting is shown 

in Figure 3-3. 

On the farmer's field (Figure 3-4) the scanner was also mounted on the tripod. Accordingly, 

the sensor height was about 1.5 m above ground. Due to a limited access on the small dikes 

between the plots, it was impossible to use a trailer or to reach any lifted position. The field 

was scanned from seven scan positions. For this study, the whole field is divided in the overall 

field and two intensively investigated units (W and E in Figure 3-4). In order to get a high 

Figure 3-3. Experimental design and scan positions 
of the field experiment. Number in the plot 
represents: rice variety (1 = Kongyu 131; 2 = 
Longjing 21); treatment (1 - 9 in Table 3-1); 
repetition (1 - 3). 

Figure 3-4. Experimental design and scan positions 
of the farmer's field. 
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resolution for the latter ones, four scan positions were placed at their corners. Twelve thin, 

long bamboo sticks per unit were stuck in the ground, placed in an equally spaced grid, which 

can be detected in the point clouds and located in the field to ensure the spatial linkage to 

other plant parameter measurements. An additional grid with 28 measurement points 

represented by bamboo sticks was placed in the overall field. 

Common tie points in all scans of each site are required to enable the merging of all scan 

positions in the post-processing. Therefore, high-reflective cylinders, which can be easily 

detected by the laser scanner, were fixed on ranging poles built upon the dikes between the 

fields (Hoffmeister et al., 2010). The reflectors had to be detected from all scan positions for 

computing the spatial relation between all positions of the scanner and the cylinders. In the 

first TLS campaigns, the position of each pole was marked in the fields. All scans of each date 

from a respective field can be merged together by re-establishing the ranging poles for the 

other campaigns. 

3.2.3 Manual measurements 

During the whole vegetation period, manual measurements were performed at both sites 

for monitoring the development of the rice plants. The phenological stage of the plants and 

more precisely, the steps in the plant development are defined here by the BBCH scale 

(Meier, 2001). The abbreviation BBCH was derived from Biologische Bundesanstalt (German 

Federal Biological Research Centre for Agriculture and Forestry), Bundessortenamt (German 

Federal Office of Plant Varieties), and Chemical industry, who funded the development of the 

scale. For both sites, the BBCH-values at the campaign dates are given in Table 3-2. The similar 

values confirm the comparable phenological development of the rice plants on the field 

experiment and the farmer's field.  

Corresponding to each TLS campaign, plant heights were manually measured. On the field 

experiment, eight to ten hills per plot were regarded. Each hill consists of four to six rice plants 

(Cao et al., 2013). In both intensively investigated units of the farmer's field, the heights of 

four hills around each bamboo stick were measured. 

As mentioned above, destructive biomass sampling was performed several times during 

the vegetation period at the field experiment. Samples were taken from both varieties for the 

respective three repetitions of treatment one to five (n = 30). Due to the small plot size, it was 

not feasible to take additional samples corresponding to the TLS campaigns. As the dates of 

sampling differ from the TLS campaign dates, the biomass values were linear interpolated.  

On the farmer's field, the four hills around each bamboo stick in the two intensively 

investigated units were destructively taken after the TLS measurements for measuring the 

biomass (n = 24). After each campaign, the grid of bamboo sticks was moved for having an 

undisturbed area around the bamboo sticks for the following campaign. Furthermore, in the 

overall field destructive samplings were taken around the mentioned 28 bamboo sticks on the 

26th of June, as an additional independent validation data set (Figure 3-4). For all samplings, 

the cleaned above ground biomass was dried in a compartment dryer and weighed after 

dehydrating. The average dry biomass per m² was calculated, considering the number of hills 

per m², which was counted in the field corresponding to each sampling. 
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3.2.4 TLS data processing 

The general workflow for the post-processing of the TLS data is shown in Figure 3-5. It 

consists of the (1) registration and merging of all point clouds, (2) filtering and extraction of 

the area of interest (AOI), (3) spatial, and (4) statistical analyses, considering the manual 

measurements. 

The first steps (1 and 2) were carried out directly in Riegl's software RiSCAN Pro, which was 

already used for the data acquisition. First of all, the scans from the respective three 

campaigns were imported into one RiSCAN Pro project. The registration of the scan positions 

was executed with an indirect registration method, based on the above mentioned 

high-reflective cylinders acting as tie points. With an automatic algorithm, corresponding tie 

points between the scan positions can be found. After the registration, the datasets still 

showed alignment errors, due to non-optimal reflector positioning, imprecise re-establishing 

of the ranging poles, or instabilities during the measurements. A further adjustment was 

applied to minimize these errors. RiSCAN Pro offers the Multi Station Adjustment, which is 

based on the iterative closest point (ICP) algorithm (Besl and McKay, 1992). The position and 

orientation of each scan position were modified in multiple iterations for getting the best 

fitting result for all of them. 

The point clouds still contained noise, caused by reflections on water in the field or on small 

particles in the air. Thus, a further filtering based on the reflectance, measured for each point 

during the data acquisition, was performed. Points under a certain reflectance value, regarded 

as noise, were removed. As the reflectance value depends on the distance from the sensor to 

the field as well as other factors, the critical value was slightly different for each scan. 

Subsequently, all point clouds of each respective date were merged to one dataset and the 

AOI was manually extracted. For an easier orientation and the distinction between field and 

dikes, the point clouds were previously colorized from the recorded pictures. The AOI was 

further separated for each date and plot to have a common spatial base. A filtering scheme 

Figure 3-5. General overview of the workflow for 
the post-processing of the TLS data. 
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was used for selecting the maximum points and determining the crop surface. Finally, those 

filtered point clouds were exported as ASCII files for spatial and statistical analyses. 

3.2.5 Spatial analysis 

ArcGIS Desktop 10 by Esri was used for constructing the crop surface models (CSMs) and 

following spatial analyses. The exported ASCII files were converted to vector point data and 

interpolated with the inverse distance weighting (IDW) algorithm for receiving a raster, 

representing a digital surface model (DSM) with a consistent spatial resolution of 1 cm. IDW 

is a deterministic, exact interpolation method and retains a measured value at its sample 

location (Johnston et al., 2001). Hence, the method is suitable for preserving the accuracy of 

measurements with a high density, like the TLS point clouds. 

A common reference surface is required for the calculation of the plant heights. Usually 

a high-accurate digital elevation model (DEM) is used; achievable from scanning the AOI 

without any vegetation (Hoffmeister et al., 2010). Since it was not possible to obtain such data 

in this study, another method was applied: the lowest parts in the point clouds from the first 

date, accordingly containing the least dense vegetation, were manually selected for 

interpolating a DEM surface representing the real ground. As it can be seen in Figure 3-6, the 

rice plants were small enough for clearly identifying points on the ground and the water height 

in the irrigated field was less than 4 cm at this stage. Hence, enough ground points at the 

edges and around the hills remained for interpolating a DEM. 

Finally, the CSMs, introduced in (Hoffmeister et al., 2010) for plant growth monitoring at 

field level, were established for each date. The application of CSMs is presented in 

Hoffmeister et al. (2013). A CSM represents the crop surface with high spatial resolution at 

one campaign date, gained from the merged and filtered point cloud. As shown in Figure 3-7 

(Bendig et al., 2013), CSMs are used for determining the actual plant height for a given growing 

stage. Therefore, the DEM from the first acquisition date, representing the ground, is 

subtracted from the CSM, representing the crop surface. The result is the plant height above 

ground with the same spatial resolution as the CSMs, which is visualized in maps of plant 

height. By subtracting a CSM of an earlier date from a CSM of a later date, the plant growth 

Figure 3-6. Corner of the field experiment, showing 
the least dense vegetation (taken: 21.06.11). 
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between the dates can be spatially measured, e.g. CSM_2 minus CSM_1 in Figure 3-7. The 

spatial patterns of the plant growth are visualized in maps of plant growth. In the following, 

plant growth is always defined as the spatio-temporal difference in height. 

3.2.6 Statistical analysis 

The statistical analyses were performed in Microsoft Excel 2010. For a better visualization, 

diagrams were plotted in OriginPro 8.5 by OriginLab. The plant height values, calculated 

pixel-wise for the CSMs, were averaged for each plot of the field experiment and each circular 

buffer area with a radius of 1 m around the bamboo sticks for the farmer's field, respectively. 

The plots of the field experiment were previously clipped with an inner buffer of 60 cm for 

preventing border effects. Additionally, the manually measured heights were averaged for 

each plot (n = 54) or area around the bamboo sticks (n = 24). These values were compared 

with the mean plant heights derived from the CSMs of the same respective spatial feature for 

evaluating and validating the laser scanning results. 

3.2.7 Biomass regression model 

As mentioned before, the problem of the non-destructive estimation of crop biomass on 

field level is not solved yet, while indirect approaches successfully used plant height as 

predictor. In order to investigate the correlation between plant height and biomass of rice 

plants, a regression model was derived from the results of the field experiment. The 

transferability of the model to the farmer's conventionally managed field was validated by 

comparing the simulated and measured biomass. As mentioned, different rice varieties were 

cultivated on both test sites. The two rice varieties from the field experiment were combined 

in the regression model to ensure an adequate number of measured values (n = 90) and attain 

a reasonable mean value for the transfer to the farmer's field. The combination of the 

different treatments covers the influence of the varying amount of used fertilizer. Previously, 

three test models were established for testing the general concept. For each test model the 

regression equation from two repetitions of the field experiment were used for simulating the 

biomass of the third repetition. 

Figure 3-7. General concept of crop surface models (CSMs) (Bendig et al., 2013). 
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The workflow can be structured in five steps: 

VII. Generation of the test models, considering only the field experiment 

VIII. Evaluation of the correlation between all CSM-derived plant height and destructive 

biomass sampling for the field experiment and derivation of the regression model 

IX. Application of the regression model for simulating the biomass on the farmer's field 

based on the CSM-derived plant height 

X. Evaluation of the simulated and destructively measured biomass of the farmer's 

field  

XI. Validation of the regression model using the additional independent measurements 

of biomass of the overall farmer's field 

3.3 Results 

3.3.1 Spatial analysis 

After the described data processing of the captured TLS point clouds, the CSMs for each 

date and both sites were generated and the plant heights were calculated pixel-wise. Thus, 

the following spatial and temporal patterns and variations within one CSM and between 

different CSMs can be obtained. As an example, Figure 3-8 shows twelve maps of plant height 

Figure 3-8. CSM-derived maps of plant height for four selected plots of the field experiment (left: 
Kongyu 131; right: Longjing 21, marked in Figure 3-3). 
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derived from the CSMs. For all three TLS campaign dates, the maps of two repetitions of the 

same fertilizer treatment for Kongyu 131 (plot 162 and 163) and Longjing 21 (plot 261 and 

262) are shown. All field experiment plots and the whole farmer's field are represented in the 

way it is shown in Figure 3-8. 

The linear structure of the rice plant rows within the plots is detectable at the first 

campaign but disappears later due to plant development. Regarding the field experiment, 

slight differences between the rice varieties can be identified. The latter difference is captured 

by examining the mean plant height per plot, which shows higher values for Longjing 21. The 

averaged difference between the varieties increases over time (4 cm, 5 cm, and 10 cm). In 

addition, the plant growth is observable, which is determined as height difference between 

consecutive CSMs and visualized as maps of plant growth. In Figure 3-9 maps of Kongyu 131 

(plot 133) and Longjing 21 (plot 232) for both time intervals are shown as an example. In both 

intervals, the growth patterns are almost homogeneous within the plots for both varieties. 

According to the increasing height difference between the varieties over time, the growth 

values are higher for Longjing 21. 

The mean plant heights calculated from the CSMs were validated against the averaged 

manually measured plant heights for each plot or area around the bamboo sticks for verifying 

the results. Figure 3-10 shows the difference between these values for the first campaign on 

the field experiment. The variance is quite small. About 40 % of the plots show a difference of 

less than 2 cm, further 45 % differ by 2 to 5 cm, and just 15 % show a higher error, reaching 

Figure 3-9. Maps of plant growth for two selected 
plots of the field experiment, derived from the 
difference between two consecutive CSMs (left: 
Kongyu 131; right: Longjing 21, marked in Figure 3-3). 
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the maximum at about 10 cm. The mean difference between all CSM-derived and manually 

measured plant heights is about 3 cm for the plots of the field experiment and about 9 cm for 

the buffer areas around the bamboo sticks of the intensively investigated units of the farmer's 

field, each with a standard deviation of about 5 cm. 

3.3.2 Statistical analysis 

The CSM-derived and the manually measured plant heights, averaged for each plot or 

buffer area, were used for executing correlation and regression analyses. Common statistical 

values are shown in Table 3-3. For each campaign and both sites the mean heights are quite 

similar. The differences between the mean CSM-derived and manually measured plant heights 

are about 3 cm for the field experiment and 9 cm for the farmer's field. The standard deviation 

within each campaign is about 5 cm for both sites. All minimum values are lower for the 

CSM-derived mean plant heights, whereas the maximum values are more similar. All values 

and the resulting regression lines for both fields are shown in Figure 3-11. The correlation 

coefficients are very high for each field (both R2 = 0.91).  

Table 3-3. Mean CSM-derived and manually measured plant heights for both fields. 

Date  Plant height from CSM (cm) Measured plant height (cm) 
 n  s min max  s min max 

Field experiment  
21.06.11 54 24.84 3.63 17.90 32.99 24.37 2.06 19.13 28.88 
04.07.11 54 34.62 4.36 24.59 42.71 37.94 2.42 32.38 44.13 
18.07.11 54 55.38 7.22 44.28 70.30 63.56 4.25 53.10 70.70 

Farmer's field 
22.06.11 24 20.80 4.82 13.39 31.44 29.18 2.87 23.25 37.00 
05.07.11 24 34.09 4.52 27.13 44.60 40.62 1.93 38.25 43.75 
19.07.11 24 59.49 4.87 51.79 72.58 71.64 2.63 67.50 76.50 

Figure 3-10. Difference between the averaged 
manually measured plant heights and the CSM-
derived mean plant heights for each plot for the 
first campaign of the field experiment. 
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3.3.3 Biomass regression model 

As mentioned before, for destructive biomass sampling on the field experiment only 

treatments one to five were considered, with the main different levels of N fertilization. 

Hence, the number of samples and accordingly the averaged plant height values, differ from 

the comparison of the height measurement methods (Table 3-3). In the intensively 

investigated units of the farmer's field biomass was taken around all bamboo sticks. For each 

campaign the mean value, standard deviation, minimum, and maximum were calculated for 

the plant height and dry biomass (Table 3-4). The mean plant heights of each campaign are 

similar for the field experiment and the farmer's field, with a difference of less than 5 cm. In 

contrast, the averaged dry biomass values of the field experiment are 20 to 30 % lower than 

the values of the farmer's field at the second and third campaign. 

Table 3-4. Mean CSM-derived plant heights and biomass values. 

Date  Plant height from CSM (cm) Dry biomass (g/m²)a 
  n  s min max  s min max 

Field experiment 
21.06.11 30 24.93 2.85 20.59 30.33 59.51 18.86 24.04 100.70 
04.07.11 30 33.80 3.74 27.25 40.75 131.72 30.03 66.71 199.41 
18.07.11 30 56.69 5.49 44.91 63.03 422.27 80.90 274.74 599.53 

Farmer's field 
22.06.11 24 20.80 4.82 13.39 31.44 57.58 13.02 25.64 80.01 
05.07.11 24 34.09 4.52 27.13 44.60 217.43 29.44 146.54 278.12 
19.07.11 24 59.49 4.87 51.79 72.58 589.71 73.01 482.33 723.32 

a values for the field experiment are interpolated 

 

  

Figure 3-11. Regression of the mean CSM-derived and 
manually measured plant heights for the field experiment 
(n = 162) and the intensively investigated units on the 
farmer's field (n = 72). 
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The general concept of the biomass regression model was validated with three test models. 

Therefore, the regression equation achieved from two repetitions of the field experiment was 

used for calculating the biomass of the respective third repetition. The mean deviations of the 

simulated values from the actual measured values are 3 %, 16 %, and 19 %. 

Considering now both fields, the relation between mean plant height and dry biomass is 

visualized in a scatterplot (Figure 3-12). The lower biomass values of the field experiment are 

also visible, but the linear correlation is similar for both sites. The regression equation from 

the field experiment (y = 11.06x - 224.18) was used for deriving the biomass regression model. 

Following, the biomass on the intensively investigated units of the farmer's field was 

estimated with the model, based on the CSM-derived plant heights. Figure 3-13 shows the 

simulated biomass, with once the standard deviation calculated for each campaign, and the 

actual measured values. The reliability of the established model is supported by the strong 

correlation between simulated and measured values (R2 = 0.90). The mean difference 

between the values is 90 g/m² (about ¼ of the mean measured dry biomass), with a standard 

deviation of 80 g/m².  

The regression model was validated and the transferability to any point in time within the 

observation period was checked with the biomass measurements on the overall farmer's field. 

As the increase in plant height over time is almost linear in the observation period, a linear 

function achieved from all CSM-derived plant height values was used for interpolating the 

plant heights for the 26th of June. The theoretical biomass was estimated with the regression 

model and compared to the measured values. Table 3-5 gives the basic statistics for the 

simulated and measured biomass values. The mean difference between both values is 15 g/m² 

(about 20 % of the mean measured dry biomass), with a standard deviation of 36 g/m². 

Figure 3-12. Regression of the mean CSM-derived plant height 
and dry biomass for the field experiment (n = 90) and the 
intensively investigated units on the farmer's field (n = 72). 
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Table 3-5 Biomass values for the overall farmer's field. 

   Dry biomass (g/m²) 
  n  s min max 

Simulated values 28 64.25 30.51 16.04 128.68 
Measured values 28 79.32 15.91 50.02 113.23 
Difference between 
related samples 

28 15.07 36.36 0.50 84.88 

3.4 Discussion 

Generally, the data acquisition with the laser scanner in the field worked very well. The 

lightweight build-up of the Riegl VZ-1000 is quite helpful. Nevertheless, problems occur from 

noise in the point clouds, due to wind, rain, insects, or small particles in the air, reflections on 

water, and other effects. These issues for TLS applications in agriculture are also reported in 

Ehlert et al. (2009) and Lumme et al. (2008). The time-of-flight scanner, used in this study, 

reduces the noise already by the high measuring speed. Further improvements are possible 

with the software filter options in RiSCAN Pro. Earlier studies with a comparable setup 

(Hoffmeister et al., 2010) already showed the usability of this method, but further 

improvement is still desirable. Approaches for automatic corrections of internal errors focus 

on systematic error models and self-calibration methods (Lichti, 2010). 

Further possibilities are the investigation of intensity values, which can be used for 

establishing a filtering scheme of separating laser returns on canopy from ground returns 

(Guarnieri et al., 2009) or for detecting single plants (Hoffmeister et al., 2012; Höfle, 2014), as 

already stated. In addition, the application of full-waveform analysis for identifying vegetation 

in point clouds is commonly known from ALS (Hyyppä et al., 2008; Wagner et al., 2008). New 

TLS systems are also capable for retrieving the full-waveform of the reflected signal and their 

role for detection of vegetation gets increasingly important (Elseberg et al., 2011; 

Guarnieri et al., 2012). 

Figure 3-13. Theoretical biomass simulated with regression 
model and the measured values for the intensively 
investigated units on the farmer's field (each: n = 72). 
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A major advantage of the terrestrial laser scanner is the easily achievable and fast data 

acquisition of a whole field. Besides that, a higher spatial resolution and higher point density 

than achievable with airborne laser scanning (ALS) (McKinion et al., 2010) is reachable, which 

enables an accurate differentiation between the plots and allows the identification of small 

objects, like the bamboo sticks used on the farmer's field. Nevertheless, the approach leaves 

room for improvement, for example enhancing the evenness of the point cloud distribution. 

Recent developments in mobile laser scanning (MLS) brought up promising solutions 

(Kukko et al., 2012a). In general, MLS comprises all measurement systems with 

two-dimensional profiling scanners, attached to a moving ground vehicle for achieving an 

areal coverage. This method was already used in several studies for crop monitoring and 

detection purposes (Andújar et al., 2013; Ehlert et al., 2008; Gebbers et al., 2011; 

Kukko et al., 2012a). For the limited access on the small dikes of the paddy rice fields, the new 

Akhka MLS system (Kukko et al., 2012b), where the laser scanner is attached to a backpack, 

has promising potential. 

In the literature (Ehlert and Heisig, 2013) the problem of overestimating the height of 

reflection points depending on the scanning angles is examined. In this study, the point clouds 

of all scan positions from one campaign date were merged for achieving an evenly distributed 

coverage of the field and a scheme for filtering the maximum points was used for detecting 

the crop surface. However, referring to Ehlert and Heisig (2013), the influence of the scanning 

angles has to be taken into account for further studies, in particular for MLS systems. 

One source of error for validating the CSM measurements with the manual measurements, 

are the height variances within the observed spatial unit. Considering the manual 

measurements such within-field variations are already detectable. As mentioned, on the field 

experiment the heights of eight to ten hills per plot were measured. The mean standard 

deviations within those measurements are already 4 cm, 4.5 cm, and 5.5 cm for the respective 

three campaigns. Regarding the CSM-derived plant heights, many more measuring points 

exist, with one height value for each pixel. Hence, the whole area of the plot is captured, 

including lower parts. With respect to those within-field variations and differences between 

the measuring techniques the mean difference of 3 cm between averaged CSM-derived and 

manually measured plant heights is reasonable (Table 3-3). Considering Figure 3-10 the few 

samples (15 %) with differences between 5 and 10 cm can probably be related to these 

uncertainties and variations. Moreover, for the first campaign a difference between the rice 

varieties on the field experiment might be detectable. While for Kongyu 131 mostly the 

manually measured plant heights are higher than the CSM-derived values (positive 

difference), contrasting patterns, resulting in negative differences, are observable for 

Longjing 21. However, those tendencies are not observable for the other campaigns.  

Regarding the farmer's field similar patterns are clearly visible. In the intensively 

investigated units only the heights of four hills around each bamboo stick were manually 

measured, which assumably leads to the lower standard deviation (3 cm, 2.5 cm, and 4 cm for 

the three campaigns). However, the difference between the averaged manual measurements 

and CSM-derived plant heights is larger (9 cm), as the manual measurements covered only 

small parts of the area, mostly representing the highest parts of the crop surface. In contrast, 



  

 

Multitemporal crop surface models: accurate plant height measurement and biomass estimation 

with terrestrial laser scanning in paddy rice 40 

the scanner captures the whole area, including lower parts, resulting in a high number of 

measuring points. Thus, the mean values of the pixel-wise stored CSM-derived plant heights 

per circular buffer area are lower, which explains the overall lower minimum values for the 

CSM-derived plant heights (Table 3-3).  

In summary, the manual measurements with strong correlations to the averaged 

CSM-derived values validate the accuracy of the TLS results. Due to the very different numbers 

of samplings per plot, only averaged values can be compared. As mentioned, the heights of 

less than ten hills per each spatial unit were manually measured. In contrast, the resolution of 

1 cm of the CSMs results in a huge number of measuring points for each spatial unit (about 

500,000 points for each plot and 30,000 point for each buffer area on the field experiment 

and farmer's field, respectively). Through this high resolution also smaller hills and lower parts 

of the plants are captured, which decreases the minimum values and increases the standard 

deviation (Table 3-3). Nevertheless, the comparable mean values of the measurement 

methods, with deviations of 2 to 15 % for the field experiment and 15 to 30 % for the farmer's 

field, lead to regressions with high correlation coefficients (Figure 3-11). The much higher 

spatial resolution and the acquisition of the whole area are the main benefits of the TLS 

approach and required for accurate crop monitoring in the context of precision agriculture. 

However, the precision of the CSMs can hardly be validated with the manual measurements. 

Other studies show that TLS measurements are supposed to be precise (Höfle, 2014; Keightley 

and Bawden, 2010; Lumme et al., 2008). The high accuracy and precision of the Riegl VZ-1000 

is validated with performance test by the manufacturer (Riegl LMS GmbH, 2013). Moreover, 

the TLS approach immensely reduces the human error factor, which cannot be neglected for 

the manual measurements. 

Although the TLS data acquisition worked well, some uncertainties remain. Due to the field 

management and construction, it was not possible to obtain a DEM from the AOI without any 

vegetation and water. Thus, the DEM had to be estimated from the point clouds of the 

respective first campaigns, containing already small plants. The low water height in the field 

of about 4 cm and the remaining ground at the edges and around the hills enabled this 

approach. Nevertheless, the high correlation coefficients and small differences between the 

CSM-derived and the manually measured plant heights justify this assumption.  

For paddy rice fields, border effects have to be regarded, resulting in differences between 

internal and external rice plants in a plot (Wang et al., 2013). The executed application of 

a buffer, to cut off the outmost rows, is suitable for avoiding border effects. However, 

uncertainties still remain, for example about the appropriate size. The compiled CSMs show 

the applicability of the presented method of calculating crop heights in rice fields with a high 

spatial resolution (up to 1 cm, Figure 3-8) and accuracy. In contrast, spaceborne data, which 

is commonly used for rice field mapping reaches a spatial resolution not higher than 1 m 

(Koppe et al., 2012; Lopez-Sanchez et al., 2011; Ribbes and Le Toan, 1999). The results 

demonstrate the potential of TLS for accurate in-situ measurement on paddy rice fields, which 

could also be a validation for spaceborne remote sensing data. Furthermore, the 

transferability of virtual modeled rice plants to field level can be validated (Ding et al., 2011; 

Watanabe et al., 2005). 
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Reconsidering the model presented in Confalonieri et al. (2011), the CSM-derived plant 

heights can be used for predicting yield potential for rice. In this context, the mentioned 

influence of border effects is a general problem for estimating rice yield (Wang et al., 2013). 

The very high resolution of the TLS-derived CSMs might be useful for quantifying this effect 

and estimate differences between internal and external rows.  

The strong correlation between plant height and biomass (R2 = 0.86) enabled the derivation 

of the regression model for estimating the actual biomass of rice plants. Strong correlations 

between plant height and biomass were also reported in Ehlert et al. (2009) for different 

crops. The transferability of the established model to a larger-scale farmer's field was 

demonstrated. Differences between the theoretical biomass, simulated with the regression 

model and the actual measured values can be related to the mentioned differences between 

the investigated fields. The BBCH-values (Table 3-2) show that all varieties were almost in the 

same phenological stage, but differences in plant height and biomass are measurable. The 

biomass values of the field experiment are up to a third smaller than the values of the farmer's 

field (Table 3-4). Hence, the simulated values differ from the measured values with a mean 

difference of about 25 % of the mean measured dry biomass. Regarding the general concept 

of the biomass regression model, better simulations were possible with the established test 

models, where only the rice varieties on the field experiment were used. As mentioned, the 

mean differences between the simulated and measured values are 3 %, 16 %, and 19 %. 

Further investigations are required, regarding the differences and whether they are caused by 

the different rice varieties or fertilizer treatments. Other influencing factors might be different 

soil conditions or lower human impact and larger plot size on the farmer's field. In (Hosoi and 

Omasa, 2012), the authors achieved good results for estimating biomass of rice plants based 

on the vertical plant area density, measured with a portable scanner in combination with 

a mirror. However, the setup might be less practical for the application on larger-scale fields. 

The estimated biomass values may be used for improving NNI calculations and 

N management strategies (Yao et al., 2012), as the actual biomass is a key factor for the 

evaluation of the field status and management decisions. Hence, the claimed improvement of 

the relation between input and output (Mulla, 2012) can be realized to reduce 

over-fertilization and shrink the gap between potential and current yield.  

Accurate captured rice fields can also be used for modeling purposes. In 

My Phung et al. (2013), a model is presented for rating damages from rice field rats and 

corresponding yield losses. The extent of damages was assumed, based on the experiences of 

the involved farmers. Damages can also be caused by other sources like storms, rain, or plant 

diseases. Measurements with TLS could be more accurate for predicting the damaged 

biomass. Furthermore, crop simulation models can be used for estimating the potential and 

current yield (van Wart et al., 2013). Therefore, the CSM-derived height and estimated 

biomass values can be used as model input or validation data. 

For the presented approach, the improvement of the temporal interpolation method for 

the plant height values to any point in time is desirable. In this study, the CSM-derived mean 

plant heights were interpolated. Better results might be reached with a pixel-wise raster 
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interpolation and subsequent averaging of the interpolated pixel values for estimating the 

mean plant height for a given day in the investigation period. 

3.5 Conclusion  

The presented method of producing multi-temporal CSMs based on TLS measurements is 

applicable for non-destructive capturing and monitoring of rice growth. The very high spatial 

resolution and accuracy of the point clouds are the most outstanding features of TLS. 

Regarding the varying performance of plant growth on the field experiment, further studies 

might focus on the different rice varieties and fertilizer treatments. Therefore, similar data 

sets of the same field experiment of consecutive years should be considered.  

The Riegl VZ-1000 is comparatively expensive. However, for this study a TLS system, known 

for high precision and accuracy, was required to avoid system-based errors. Recent 

developments brought up cost-effective system, like the Velodyne HDL-64E LiDAR sensor 

(Velodyne, 2014). Such systems should be regarded for realizing the practical implementation 

and application for farmers. Further, more cost-effective approaches are conceivable with 

MLS systems like the ibeo ALASCA XT (Ehlert and Heisig, 2013). 

In the context of precision agriculture, biomass is a key factor for management decisions. 

As mentioned, to this day, it is impossible to directly measure actual crop biomass 

non-destructively. Hence, remote and proximal sensing measurements for estimating actual 

values in-season are required. The results show the strong correlation between plant height 

and biomass (R2 = 0.86; R2 = 0.90) for the analyzed time of the growing period. The 

transferability of the established biomass regression model based on plant height 

measurements from a small-scale field experiment to a larger-scale farmer's conventionally 

managed field was supported. Differences between the two sites, e.g. rice varieties, plot size, 

and fertilizer treatment lead to differences between the simulated and measured values, but 

the strong correlation (R2 = 0.90) demonstrates the coherence of the results. Furthermore, 

the independent biomass dataset from the overall field was used for validating the temporal 

transferability. In further studies, the transferability to other farmers' conventionally managed 

fields has to be checked. The accuracy of the simulated biomass shows the suitability of the 

established model and reveals the presented method as a promising approach for the 

non-destructive in-season estimation of biomass within-field resolution in paddy rice. 
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Abstract: It is known that plant height is a suitable parameter for estimating crop biomass. 

The aim of this study was to confirm the validity of spatial plant height data, which is derived 

from terrestrial laser scanning (TLS), as a non-destructive estimator for biomass of paddy rice 

on the field scale. Beyond that, the spatial and temporal transferability of established biomass 

regression models were investigated to prove the robustness of the method and evaluate the 

suitability of linear and exponential functions. In each growing season of two years, three 

campaigns were carried out on a field experiment and on a farmer’s conventionally managed 

field. Crop surface models (CSMs) were generated from the TLS-derived point clouds for 

calculating plant height with a very high spatial resolution of 1 cm. High coefficients of 

determination between CSM-derived and manually measured plant heights (R2: 0.72 to 0.91) 

confirm the applicability of the approach. Yearly averaged differences between the 

measurements were ~7% and ~9%. Biomass regression models were established from the 

field experiment data sets, based on strong coefficients of determination between plant 

height and dry biomass (R2: 0.66 to 0.86 and 0.65 to 0.84 for linear and exponential models, 

respectively). The spatial and temporal transferability of the models to the farmer’s 

conventionally managed fields is supported by strong coefficients of determination between 

estimated and measured values (R2: 0.60 to 0.90 and 0.56 to 0.85 for linear and exponential 

models, respectively). Hence, the suitability of TLS-derived spatial plant height as 

a non-destructive estimator for biomass of paddy rice on the field scale was verified and the 

transferability demonstrated. 

Keywords: terrestrial laser scanning; plant height; biomass; rice; precision agriculture; 

field level 

4.1 Introduction 

Solutions to ensure the world’s food security are required due to the growing world 

population. Focusing on the supply with staple food, the cultivation of rice is essential. This is 
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in particular for the Asian world important, where 2011 and 2012 about 90% of the estimated 

world rice production was cultivated, each year about 650 million tons (FAO, 2014). 

Miao et al. (2011) reviewed long-term experiments on sustainable field management and 

highlighted the required increase in cereal production to ensure food security in China. The 

authors emphasized the combination of traditional practices and modern sensor-based 

management approaches for addressing this challenge. 

In this context, precision agriculture (PA) rises in importance, which focuses on spatial and 

temporal variabilities of natural conditions and an adequate dealing with resources 

(Oliver, 2013). PA-improved management methods support farmers in closing the gap 

between potential and current yield (van Wart et al., 2013). Based on analyses of long-term 

field experiments, Roelcke et al. (2004) concluded that there is a great need for on-farm 

experiments. Therefore accurate crop monitoring based on remote and proximal sensing has 

become increasingly important within PA in recent years (Marshall and Thenkabail, 2015; 

Mulla, 2012). A widely used indicator for quantifying the actual status of plants is the nitrogen 

nutrition index (NNI) (Elia and Conversa, 2012; Greenwood et al., 1991; Lemaire et al., 2008). 

The index shows the ratio between measured and critical N content. The latter is determined 

by the crop-specific N dilution curve, showing the relation between N concentration and 

biomass. Consequently, the accurate and non-destructive determination of biomass is 

a precondition for calculating the NNI. 

For rice, it has been shown that grain yield is positively correlated to biomass and nitrogen 

(N) translocation efficiency (Ntanos and Koutroubas, 2002), but over-fertilization affects the 

nutrient balance in soil and groundwater. Consequently, the NNI should be used for optimizing 

rice production with PA-improved management methods. Therefore, non-invasive 

approaches for biomass estimation are of key importance as rice paddies should be entered 

with machinery as little as possible during the growing season. Satellite remote sensing images 

serve for estimating the actual biomass and yield of large paddy rice fields 

(Koppe et al., 2012b; Li et al., 2011; Lopez-Sanchez et al., 2011; Ribbes and Le Toan, 1999; 

Yang et al., 2011). However, for monitoring within-field variability and more accurately 

estimating biomass, a higher spatial resolution is required. The potential of ground-based 

plant parameter measurements as input for biomass estimation models was recently 

demonstrated for rice, maize, cotton, and alfalfa (Marshall and Thenkabail, 2015). However, 

therein, plant height was manually measured, which is prone to selection bias. 

A ground-based multi-sensor approach showed good results for predicting biomass of 

grassland (Reddersen et al., 2014). For biomass estimation of paddy rice, in-situ approaches 

with hand-held sensors for measuring canopy reflectance provided good results 

(Aasen et al., 2014; Casanova et al., 1998; Gnyp et al., 2013). Moreover, 

Confalonieri et al. (2011) emphasized rice plant height as a key factor for predicting yield 

potential and developed a model for estimating plant height increase, but accurate in-situ 

measurements of plant height on field level are rare. Although virtual geometric models of 

single rice plants in a high resolution exist (Ding et al., 2011; Watanabe et al., 2005), 

uncertainties remain about the transferability to the field, due to varying patterns of plant 

growth. Hence, accurate methods for determining plant height on field level are desirable. 
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Light detection and ranging (LiDAR) sensors have been increasingly used in vegetational 

studies since the 1980s (Lee et al., 2010). In-situ studies confirmed the potential of 

ground-based LiDAR methods, also known as terrestrial laser scanning (TLS), for the 

assessment of plant parameters in agricultural applications. Previous studies focused on the 

acquisition of plant height (Zhang and Grift, 2012), post-harvest growth (Koenig et al., 2015), 

leaf area index (Gebbers et al., 2011), crop density (Hosoi and Omasa, 2009; Saeys et al., 2009), 

nitrogen status (Eitel et al., 2011), or the detection of individual plants 

(Hoffmeister et al., 2012; Höfle, 2014). Moreover, the potential of TLS for estimating the 

biomass of small grain cereals was emphasized Ehlert et al. (2009, 2008), Hämmerle and 

Höfle (2014), and Lumme et al. (2008). Regarding the accuracy, Lumme et al. (2008) found 

that estimated heights of cereal plants correlated with tape measurements. The high precision 

for mapping of maize plants was shown by Höfle (2014). Little research has been done so far 

on TLS in-situ measurements of paddy rice. Hosoi and Omasa (2012) examined vertical plant 

area density as an estimator for biomass, achieved with a portable scanner in combination 

with a mirror. Besides, biomass estimations based on TLS-derived spatial plant height was 

evaluated for some of the fields considered in the presented study (Tilly et al., 2014, 2013) 

But as stated above, multi-annual on-farm experiments are necessary for achieving a 

comprehensive understanding of plant growth and developing objective sensor-based 

measuring methods and models for biomass estimations (Miao et al., 2011; 

Roelcke et al., 2004). 

Based on the promising results of the single year analyses (Tilly et al., 2014, 2013), this 

study focused on (I) the robustness of the method, (II) the spatial and temporal transferability 

of the models, and (III) a model improvement. For the latter, in addition to partially existing 

linear models, exponential models were established, as a better suitability of these models is 

denoted in other studies of biomass estimations over different growth stages 

(Aasen et al., 2014; Hansen and Schjoerring, 2003; Thenkabail et al., 2000). In two consecutive 

growing seasons, rice fields were monitored during the pre-anthesis period. Based on the data 

sets of a field experiment, estimation models for biomass were established and then applied 

on a farmer’s conventionally managed fields. 

4.2 Data and methods 

4.2.1 Study area 

Heilongjiang Province in the northeast of China is an important region for agricultural 

production (Gao and Liu, 2011). Almost 25% of the total area is covered by the Sanjiang Plain 

(~120,000 km2). The regional climate with cold and dry winters and short but warm, humid 

summers is marked by the East Asian summer monsoon (Ding and Chan, 2005; Domrös and 

Gongbing, 1988). Three field sites around the city of Jiansanjiang (N 47°15′21′′ E 132°37′43′′) 

were considered in this study. 

At the Keyansuo experimental station (Jiansanjiang, Heilongjiang Province, China) the same 

field experiment was monitored in 2011 and 2012 (Figure 4-1). For the experiment, nine 

N fertilizer treatments were repeated three times for the rice varieties Kongyu 131 and 

Longjing 21. Hence, the field with a spatial extent of 60 m by 63 m consisted of 54 plots, each 
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about 10 m by 7 m in size. A detailed description of the experimental set-up is given by 

Cao et al. (2013). Related to the amount of N input, variations in plant height and biomass 

were expected. These differences were useful for the TLS monitoring approach to capture 

varying patterns of plant growth at one growing stage. 

In addition, one farmer’s conventionally managed field was investigated each year 

(hereafter referred to as farmer’s field). The aim was to provide independent validation data 

sets for checking the spatial and temporal transferability of the findings from the field 

experiment data. For the following, they are termed village 69 (year 2011) and village 36 

(year 2012). In both years, it was not possible to find a field with one of the field experiment 

rice varieties, where destructive sampling was possible several times during the growing 

season. In village 69 the variety Kenjiandao 6 was cultivated, in village 36 the variety 

Longjing 31. Moreover, in village 36 management units with very heterogeneous 

development were chosen, including parts without any plants (Figure 4-2). On each field two 

Figure 4-1. Design of the field experiment and scan 
positions. Three-digit number in the plot represents 
rice variety (1 = Kongyu 131; 2 = Longjing 21); 
treatment (1 to 9); and repetition (1 to 3). Modified 
from Tilly et al. (2014). 

Figure 4-2. One management unit with very heterogeneous 
plant growth in village 36. 
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management units were investigated. In village 69 and village 36 each unit was about 60 m by 

40 m and 50 m by 70 m in size, respectively. 

4.2.2 Field measurements 

On each site, three TLS campaigns were carried out in June and July of the respective year 

to capture the key vegetative stages of the rice plants. During this pre-anthesis period, 

differences in plant development occur mainly due to the increase of tillers and plant height. 

This period is important for fertilizer management decisions. In both years, the campaigns on 

the field experiment and the farmer’s field were carried out on two consecutive days to reach 

a best possible comparison regarding the plant development. For quantifying the phenological 

stages of plants and steps in plant development the BBCH scale was used 

(Lancashire et al., 1991; Meier, 2001). The abbreviation BBCH is derived from the funding 

organizations: Biologische Bundesanstalt (German Federal Biological Research Centre for 

Agriculture and Forestry), Bundessortenamt (German Federal Office of Plant Varieties), and 

Chemical industry. The campaign dates and BBCH-values for all sites are given in Table 4-1. 

Table 4-1. Dates of the terrestrial laser scanning (TLS) campaigns and corresponding 
phenological stages. 

Date/  
BBCH scale a 

2011 2012 
Field experiment Village 69 Field experiment Village 36 

1. Campaign 21 June 2011/  
13 

22 June 2011/  
13 

1 July 2012/  
37 

30 June 2012/  
37 

2. Campaign 4 July 2011/  
13 - 15; 22 - 23 

5 July 2011/  
13; 21 

9 July 2012/  
42 

8 July 2012/  
37; 39 

3. Campaign 18 July 2011/  
19; 29; 32 

19 July 2011/  
19; 29; 34 

17 July 2012/  
50 

16 July 2012/  
19; 29; 34 

a Multiple values due to several samples. 

Terrestrial laser scanners operating with the time-of-flight technique were used for all 

campaigns. The relative positions of survey points are calculated from the distances, as well 

as the horizontal and vertical angles between sensor and targets. For this, the time between 

transmitting and receiving a pulsed laser signal and its angles are measured. In 2011 and 2012, 

the Riegl VZ-1000 and Riegl LMS-Z420i, respectively, were provided by the company Five Star 

Electronic Technologies (Beijing, China) (Riegl LMS GmbH, 2013, 2010). Both devices operate 

with a near-infrared laser beam and have a beam divergence of 0.3 mrad (VZ-1000) and 

0.25 mrad (LMS-Z420i). The angular resolution was set to 0.04 deg. All scans were conducted 

from the dikes between the paddies to avoid entering them, resulting in an oblique 

perspective. More detailed descriptions are given in Tilly et al. (2014). 

The setup for the campaigns on the field experiment was similar in both years. Each time, 

nine scan positions were established for covering all fields of the Keyansuo experimental 

station and minimizing shadowing effects. For this analysis, the scans from all positions were 

used, but four positions were of major importance, as they were located close to the 

investigated field experiment. Following, the largest number of points was acquired from 

these positions. Point clouds from other positions were used to avoid gaps in the final point 

cover due to information signs close to the field. As shown in Figure 4-1, two positions 

respectively were set up at the north and south edges. At each position the scanner was 

mounted on a tripod which raised the sensor up to 1.5 m above ground. Additionally, a small 
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tractor-trailer system was used for the positions at the south edge of the field for achieving 

a greater height of about 3 m. The narrow dikes along the other edges made it impossible to 

reach those positions with the tractor-trailer system. 

Due to a limited access on the dikes between the management units of both farmer’s fields, 

it was also impossible to use a trailer. Hence, the sensor height of the scanner on the tripod 

was about 1.5 m above ground. In village 69 the scan positions were established close to the 

four corners of the management units (Figure 4-3). As the investigated units in village 36 were 

located at the edge of the whole field, this set-up was slightly changed. Two positions in the 

north were established on a small hill close to the field for reaching a higher position and an 

additional position was placed at the center of the edge (scan position 5 in Figure 4-3). Further 

two positions were set up close to the south corners. In both fields, twelve thin, long bamboo 

sticks per management unit were stuck in the ground. These bamboo sticks can be easily 

detected in the TLS point clouds and located in the field to ensure the spatial linkage to other 

plant parameter measurements. 

Furthermore, ranging poles with high-reflective cylinders (Hoffmeister et al., 2010) were 

built upon the dikes between the fields, homogeneously distributed around the field. These 

can be detected by the laser scanner and act as tie points for merging the scan data in 

post-processing. In the first campaigns, the position of each pole was marked in the fields. By 

re-establishing the ranging poles at exactly the same position for the following campaigns, all 

scans of one site can be merged. In the data sets from 2011, alignment errors occurred due to 

imprecise re-establishing of the ranging poles or where an exact marking of the positions was 

difficult, particularly on the farmer’s fields. These errors could be rectified with software 

options but caused time-consuming post-processing. In 2012, additional tie points were used 

to avoid this. As shown in Figure 4-4 for village 36, five small, round reflectors were 

permanently attached to trees close to the fields and remained there during the observation 

period. A homogeneous distribution around the field was not possible, as no other stationary 

objects were available. 

Figure 4-3. Scan positions and bamboo stick positions on the farmer’s fields. 
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At all sites, manual measurements of plant height and biomass were performed during the 

whole vegetation period. Corresponding to each TLS campaign on the field experiment, the 

heights of eight to ten and four hills per plot were measured in 2011 and 2012, respectively. 

Each hill consisted of four to six rice plants. 

Regarding the measurement of biomass, differences between the sites and years must be 

pointed out. As part of the field experiment, destructive sampling was performed several 

times during the vegetation period. Samples were taken from both varieties, but only from 

the three repetitions of five treatments (n = 30). The dates of sampling differed from the TLS 

campaign dates in 2011, but due to the small plot size, it was not feasible to take additional 

samples. Thus, the biomass values were linearly interpolated. In 2012, the measurements 

could be carried out on the same day. 

On the farmer’s fields, four hills around each bamboo stick were destructively taken after 

the TLS measurements (each n = 24). For the following campaign, the bamboo sticks were 

moved in a defined direction to the center of four other hills. In each management unit of 

village 36, one bamboo stick was placed in the part without any plant and left at its position 

for all campaigns (no. 12 in Figure 4-3). 

The cleaned above ground biomass was weighed after drying. All samples were oven dried 

at 105 °C for 30 min and dried to constant weight at 75 °C. The dry biomass per m2 was 

calculated, considering the specific number of hills per m2. 

4.2.3 Post-processing of the TLS data 

The post-processing of the scan data was similar for all sites. A detailed description is given 

for the data sets from 2011 in Tilly et al. (2014). Riegl’s software RiSCAN Pro, also applied for 

the data acquisition, was used for the first steps of the data handling. The scans from all 

campaigns were imported into one RiSCAN Pro project file for each site. Following, 

a co-registration of all scan positions was carried out, based on the reflectors acting as tie 

points. As mentioned above, the data sets of 2011 showed alignment errors, due to 

non-optimal positioning or imprecise re-establishing of the ranging poles. The iterative closest 

point (ICP) algorithm (Besl and McKay, 1992), implemented in RiSCAN Pro as Multi Station 

Adjustment, was used to modify the position and orientation of each scan position in multiple 

iterations for getting the best fitting result. For the campaigns in 2012, additional small 

reflectors were permanently established. By first registering one scan position of each 

Figure 4-4. Small, round reflectors were permanently attached to trees in village 36. 
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campaign based on these permanent tie points and aligning all other positions to these, an 

accurate alignment was possible. After optimizing the alignment with the ICP algorithm the 

error, measured as standard deviation between the used point-pairs, was 0.06 m and 0.01 m 

on average for both sites of 2011 and 2012, respectively. 

Following, the point clouds were merged to one data set per campaign and the area of 

interest (AOI) was manually extracted. Clearly identifiable noise in the point clouds far below 

and above the field, caused by reflections on water in the field or on small particles in the air, 

was previously removed. The crop surface was then determined from the point clouds with 

a filtering scheme for selecting maximum points. A common reference surface is required for 

the calculation of plant heights. Therefore, the AOI is usually scanned without any vegetation. 

As it was not possible to obtain such data on the rice fields, the lowest parts in the point clouds 

from the first campaigns were selected. At this stage, the rice plants were small enough for 

clearly identifying points at the bottom of the hills, as shown in Tilly et al. (2014). The point 

clouds of the field experiment data sets were subdivided plot-wise to attain a common spatial 

base. Each management unit of the farmer’s fields was regarded as one data set. All data sets 

were exported as ASCII files, which contained the XYZ coordinates of each point for spatial and 

statistical analyses. 

4.2.4 Calculation of plant height and visualization as maps of plant height 

For the spatial analyses, crop surface models (CSMs) were constructed from the TLS-derived 

point clouds. CSMs were introduced by (Hoffmeister et al., 2010) for an objective and 

non-invasive deriving of spatial crop height and crop growth patterns. A CSM represents the 

crop surface at a specific date with a high spatial resolution. Therefore, the exported point 

clouds were interpolated to raster data sets with a consistent spatial resolution of 1 cm with 

the inverse distance weighting (IDW) algorithm in ArcGIS Desktop 10 (Esri, Redlands, CA, USA). 

IDW is suitable for preserving the accuracy of measurements with a high density, as it is 

a deterministic, exact interpolation and retains a measured value at its location 

(Johnston et al., 2001). Likewise, a digital terrain model (DTM) was generated from the 

manually selected ground points as common reference surface. Next, the DTM was subtracted 

from the CSM for calculating the plant heights. In the same way, plant growth between two 

dates can be spatially measured by calculating the difference between two CSMs. Herein, 

growth is defined as spatio-temporal difference in height. Finally, maps of plant height were 

created for visualizing the pixel-wise calculated values. 

For the following analyses, one plant height value per campaign for comparable spatial units 

was necessary. Therefore, the CSM-derived plant heights were averaged plot-wise for the field 

experiment (n = 54). Previously, each plot was clipped with an inner buffer of 60 cm for 

preventing border effects. As the manual measurements were used for validating the laser 

scanning results, these plant height values were also averaged plot-wise (n = 54). Around each 

bamboo stick on the farmer’s fields, a circular buffer with a radius of 1 m was generated to 

attain a common spatial base, for which the CSM-derived plant heights were averaged 

(each n = 24). 
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4.2.5 Estimation of biomass 

The field experiment analyses were taken to express the correlation between plant height 

and dry above ground biomass (hereafter referred to as biomass) in a biomass regression 

model (BRM). Since only the above ground plant height is determinable from the TLS data, 

statements about the subsurface cannot be done. As mentioned above, other studies showed 

that exponential models performed better for biomass estimations over different growth 

stages. For establishing exponential models in addition to the linear ones, the biomass values 

were natural log-transformed. The models were used for estimating the biomass on the 

farmer’s fields based on the TLS-derived spatial plant height data. Previously, linear and 

exponential biomass regression models (BRMs) were established, only regarding the field 

experiment for checking the general concept and evaluating differences between the results 

for 2011 and 2012 (hereinafter referred to as trial BRMs). Afterwards, the transferability of 

the model to the farmer’s fields was evaluated. The workflow can be structured as following: 

I. Examination of concept with trial BRMs: Each linear and exponential model was 

derived from the measurements of two field experiment repetitions from one year. 

The biomass of the remaining third repetition was estimated and validated against 

the destructive measurements. 

II. Generation of BRM: Overall six models were established based on the 

measurements of all field experiment repetitions, separately for each year and as 

a combination of both years, each as linear and exponential model. 

III. Application of the BRMs: Each model was used for estimating the biomass at all 

campaign dates on both farmer’s fields based on the CSM-derived plant height of 

the buffer areas around the bamboo sticks. 

IV. Validation of the BRMs: By comparing estimated and destructively measured 

biomass values the general validity, robustness, and suitability of the linear and 

exponential BRMs were evaluated. 

The accuracy of each BRM was evaluated based on the coefficient of determination, index 

of agreement and root mean square error, calculated for each estimated value in comparison 

with the destructively measured biomass. The coefficient of determination (R2) is widely used 

as measure of the dependence between two variables, but often unrelated to the size of the 

difference between them. For validating models, Willmott’s index of agreement (d) shows to 

which degree a measured value can be estimated (Willmott and Wicks, 1980; Willmott, 1981). 

The index ranges between 0 and 1, from total disagreement to entire agreement. In addition, 

the root mean square error (RMSE) indicates how well the estimated values fit to the 

measured values (Hair et al., 2010). 

4.3 Results 

4.3.1 Maps of CSM-derived plant height 

The TLS-derived CSMs and the DTM were used to calculate plant height pixel-wise for all 

plots of the field experiment and each management unit of both farmer’s fields. The resulting 

raster data sets have a high resolution of 1 cm. Maps of plant height were created for 

visualizing spatial and temporal patterns and variations. In Figure 4-5, maps of plant height 
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are shown for two field experiment plots for all campaigns of both years. The respective first 

repetition of two fertilizer treatments for the rice variety Kongyu 131 are selected as an 

example, whereby the plot numbers, 111 and 151, refer to the lower and higher amount of 

applied N fertilizer, respectively. In particular in the maps of plot 111, the linear structure of 

the rice plant rows is detectable in both years. In 2012, Plot 151 shows a discernible pattern 

with higher plant height values in the north corner, which is visible in all campaigns. Moreover, 

differences in plant height occur between the different fertilizer treatments. The mean plant 

heights are higher for plots with a higher amount of applied N fertilizer, with a difference 

ranging from ~7 cm to ~13 cm and ~4 cm to ~16 cm for 2011 and 2012, respectively. 

4.3.2 Analysis of plant height data 

Regarding the field experiment, averaged CSM-derived and manually measured plant 

heights were used for validating the accuracy of the scan data (Table 4-2). The mean heights 

are quite similar for both years, with an average difference of ~7% and ~9% for 2011 and 2012, 

respectively. The standard deviation within each campaign increases over time. All values and 

the resulting regression lines are shown in Figure 4-6. The coefficients of determination are 

high for 2011 and 2012 with R2 = 0.91 and R2 = 0.72, respectively. 

Figure 4-5. Crop surface model (CSM)-derived maps of plant height for two field 
experiment plots of both years, given with mean plant height per plot. 
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Table 4-2. Mean crop surface model (CSM)-derived and manually measured plant heights of the field 

experiment (n: number of samples; : mean value; SD: standard deviation; min: minimum; 
max: maximum). 

Date Plant height from CSM (cm) Measured plant height (cm) Difference 
 n  SD min max  SD min max % 

21 June 11 54 24.84 3.63 17.90 32.99 24.37 2.06 19.13 28.88 1.89 
04 July 11 54 34.62 4.36 24.59 42.71 37.94 2.42 32.38 44.13 9.59 
18 July 11 54 55.38 7.22 44.28 70.30 63.56 4.25 53.10 70.70 14.77 
01 July 12 54 44.72 3.08 37.80 53.25 40.85 4.87 31.00 49.50 8.64 
09 July 12 54 57.09 3.61 48.87 64.64 46.84 4.30 37.50 56.50 17.95 
17 July 12 54 67.04 5.25 54.62 76.46 65.84 5.38 53.00 75.50 1.78 

4.3.3 Analysis of estimated biomass 

Following the set-up of the field experiment, only five treatments were considered for the 

destructive biomass sampling (n = 30). Thus, the number of samples and averaged plant height 

values differ from the comparison shown in Table 4-2. On both farmer’s fields, biomass was 

taken around all bamboo sticks (each n = 24). Mean value, standard deviation, minimum, and 

maximum were calculated for the plant height and dry biomass of all campaigns on each site 

(Table 4-3). The analysis of the mean plant heights can be summarized to: (I) the differences 

between the field experiment 2011 and village 69 are less than ~5 cm, (II) the data sets from 

the field experiment 2012 and village 36 show considerably larger differences with ~25 cm, 

(III) the difference between the data sets of the field experiment lies between ~10 cm and 

~20 cm, (IV) comparing the farmer’s fields, the difference increases over the growing season 

from ~2 cm to ~20 cm, and (V) the standard deviations within each campaign are almost 

similar and below ~5 cm, despite the results from village 36 with values between ~6 cm and 

~8 cm. 

Regarding the biomass measurements, comparative statements have to be limited, due to 

the interpolated values for the field experiment 2011. Nevertheless, the results can be 

Figure 4-6. Regression of the mean CSM-derived 
and manually measured plant heights of the field 
experiment of both years (each n = 162). 
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summed up as following: (I) all mean values are considerable higher for 2012, (II) the 

difference between the values of the field experiment 2011 and village 69 increases over time 

from less than 5% for the first campaign to ~40% and ~30% for the second and third campaign, 

respectively, (III) the difference between the values of the field experiment 2012 and village 36 

is constantly less than 5% during the whole observation period, and (IV) the standard deviation 

is much higher for all measurements in 2012, ranging from ~75 g/m2 to ~145 g/m2, in contrast 

to ~15 g/m2 to ~80 g/m2 for the measurements in 2011. 

Table 4-3. Mean CSM-derived plant heights and destructively measured biomass values of all sites 

(n: number of samples; : mean value; SD: standard deviation; min: minimum; max: maximum). 

Site/  Plant height from CSM (cm) Biomass (g/m2) a 
Date n  SD min max  SD min max 

Field experiment         
21.06.11 30 24.93 2.85 20.59 30.33 59.51 18.86 24.04 100.70 
04.07.11 30 33.80 3.74 27.25 40.75 131.72 30.03 66.71 199.41 
18.07.11 30 56.69 5.49 44.91 63.03 422.27 80.90 274.74 599.53 
01.07.12 30 43.81 2.95 37.80 48.14 231.42 74.48 104.47 421.35 
09.07.12 30 56.08 3.73 46.66 62.28 449.92 105.62 225.40 673.79 
17.07.12 30 66.63 5.05 54.62 75.24 636.10 127.87 372.06 946.15 

Village 69         
22.06.11 24 20.80 4.82 13.39 31.44 57.58 13.02 25.64 80.01 
05.07.11 24 34.09 4.52 27.13 44.60 217.43 29.44 146.54 278.12 
19.07.11 24 59.49 4.87 51.79 72.58 589.71 73.01 482.33 723.32 

Village 36         
30.06.12 24 18.13 7.59 1.96 45.00 251.67 91.46 123.00 479.88 
08.07.12 24 30.23 6.22 19.25 41.73 469.93 104.00 171.90 639.00 
16.07.12 24 40.36 8.28 21.54 52.82 717.61 143.73 399.36 966.42 

a values for the field experiment 2011 are linearly interpolated from other dates. 

The regression equations from the field experiment data were used to establish linear and 

exponential BRMs. Previously, the general concept was examined with trial BRMs, each 

achieved from two field experiment repetitions of one year, validated against the third 

repetition. Table 4-4 shows the equations of the linear and exponential trial BRMs with the 

estimated and measured biomass values. In both years over- and underestimations occur, 

depending on the repetition combination and linear or exponential model. However, for the 

linear models the mean deviations of the estimated values from the actual measured values 

are small for 2011, less than 19% and very small for 2012, less than 1%. On the contrary, for 

2011 the coefficients of determination (R2) as well as the indices of agreement (d) between 

estimated and measured biomass values are higher and the root mean square error (RMSE) is 

lower. Similar R2 and d values were achieved with the exponential models. Due to the 

log-transferred biomass values, the RMSE values cannot be directly compared. However, 

whereas the differences between estimated and measured values are much lower for 2011 

(below 5%), they are slightly higher for 2012 (up to ~2.5%). 
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Table 4-4. Trial biomass regression models (BRMs) and validation of estimated against measured 
biomass (R2: coefficient of determination; d: index of agreement; RMSE: root mean square error). 

Year/ 
Trial BRMs a Estimated 

repetition 

Mean biomass (g/m2) Difference 
(%) 

R2 d RMSE 
Repetition estimated measured 

Li
n

ea
r 

2011         
1 & 2 y = 11.06x − 211.23 3 249.79 210.61 −18.60 0.92 0.96 61.54 
1 & 3 y = 11.12x − 237.97 2 174.05 208.32 16.45 0.81 0.93 79.90 
2 & 3 y = 11.15x − 229.41 1 189.38 194.56 2.66 0.88 0.97 52.90 

2012         
1 & 2 y = 14.33x − 379.96 3 427.12 426.06 −0.25 0.72 0.91 93.27 
1 & 3 y = 14.87x − 413.65 2 404.44 402.35 −0.52 0.55 0.85 125.13 
2 & 3 y = 14.36x − 379.12 1 413.28 417.20  0.94 0.71 0.91 92.77 

Ex
p

o
n

en
ti

al
 b

 

2011         
1 & 2 y = 0.06x + 2.76 3 4.99 5.22 4.58 0.88 0.95 0.38 
1 & 3 y = 0.06x + 2.64 2 5.01 4.83 −3.64 0.80 0.93 0.41 
2 & 3 y = 0.06x + 2.80 1 4.91 5.05 2.91 0.91 0.97 0.30 

2012         
1 & 2 y = 0.04x + 3.79 3 5.95 5.96 0.22 0.68 0.89 0.28 
1 & 3 y = 0.04x + 3.82 2 5.88 6.02 2.44 0.58 0.82 0.36 
2 & 3 y = 0.04x + 3.67 1 5.94 5.88 −1.03 0.72 0.91 0.25 

a x = plant height (cm); y = biomass (g/m2); b biomass values are natural log-transformed. 

The final linear and exponential BRMs were established from the field experiment data sets 

for each year separately and for both years combined (Table 4-5). All values and the resulting 

regression lines are plotted in Figure 4-7 for the linear and exponential models, the 

corresponding equations are given in Table 4-5. Strong coefficients of determination for all data 

sets prove the dependency of biomass on plant height during the regarded pre-anthesis 

period. Comparable results were achieved for linear (2011: R2 = 0.86; 2012: R2 = 0.66; 

combination: R2 = 0.81) and exponential models (2011: R2 = 0.84; 2012: R2 = 0.65; 

combination: R2 = 0.84). Each model was used for estimating the biomass of the buffer areas 

around the bamboo sticks on both farmer’s fields based on the CSM-derived plant height. The 

reliability of the estimated values was validated against the measured biomass values. In 

Table 4-5 the mean differences are given, averaged for each campaign and over all campaigns 

on each farmer’s field. Further, the coefficient of determination (R2), index of agreement (d), 

and root mean square error (RMSE) are given for each BRM. Generally, the estimations for 

village 69 are better overall, verifiable through smaller percentage deviations, higher R2 and d 

as well as lower RMSE values for linear and exponential models. The differences between 

linear and exponential models for each site are small with slightly better R2 values for the 

linear BRMs. Within each site, the three models yielded almost similar results. Regarding the 

BRMs of the single years, the linear function showed slightly lower percentage deviations with 

the data set from 2011, whereas the exponential with the one from 2012. For the combined 

data set, the linear model functioned slightly better than both single year BRMs, whereas with 

the exponential models it performed weaker. 
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Table 4-5. Biomass regression models (BRMs), derived from field experiment and validation of 
estimated against measured biomass for the farmer’s fields (R2: coefficient of determination; d: index 
of agreement; RMSE: root mean square error). 

 
Site/ 

BRM a 

Mean difference R2 d RMSE 
 per campaign (g/m2) all campaigns    
 Data set 1. 2. 3. (g/m2) %    

Li
n

ea
r 

Village 69          
2011 y = 11.06x − 224.18 51.69 64.56 110.79 90.73 31.48 0.90 0.92 119.70 
2012 y = 14.51x − 390.58 146.33 113.35 115.10 125.59 43.57 0.90 0.91 146.90 
combination y = 12.37x − 273.19 73.47 68.95 98.30 89.83 31.16 0.90 0.93 115.22 

Village 36          
2011 y = 11.06x − 224.18 254.34 320.62 380.60 336.87 74.48 0.60 0.53 377.04 
2012 y = 14.51x − 390.58 281.90 382.73 425.57 375.82 83.09 0.60 0.51 429.33 
combination y = 12.37x − 273.19 175.02 330.06 383.54 312.30 69.04 0.60 0.53 383.62 

Ex
p

o
n

en
ti

al
 b

 

Village 69          
2011 y = 0.06x + 2.74 0.04 0.59 0.32 0.23 4.35 0.85 0.95 0.46 
2012 y = 0.04x + 3.76 −0.58 0.25 0.24 −0.03 −0.65 0.85 0.92 0.45 
combination y = 0.05x + 2.95 0.07 0.72 0.58 0.41 7.81 0.85 0.91 0.56 

Village 36          
2011 y = 0.06x + 2.74 1.58 1.52 1.42 1.47 24.31 0.56 0.44 1.47 
2012 y = 0.04x + 3.76 0.65 1.12 1.13 0.97 15.97 0.56 0.51 1.06 
combination y = 0.05x + 2.95 1.38 1.62 1.58 1.51 24.92 0.56 0.42 1.51 

a x = plant height (cm); y = biomass (g/m2); b biomass values are natural log-transformed. 

  

 

4.4 Discussion 

Overall, the acquisition with both laser scanners worked very well. The reliability of the 

devices was shown in earlier studies (Hoffmeister et al., 2010; Tilly et al., 2014, 2013). Due to 

the lightweight build-up and higher measurement rate the Riegl VZ-1000 is preferable to the 

Riegl LMS-Z420i, but was not available in 2012. As mentioned, alignment errors in the data 

sets from 2011 caused time-consuming post-processing. The positioning of additional 

reflectors was helpful for aligning the data sets from 2012 and led to better results, reflected 

Figure 4-7. Linear (left) and exponential (right) regression between mean CSM-derived plant height and 
dry biomass for the field experiment of both years (each n = 90); regression equations are given in 
Table 4-5. Biomass values for the exponential regression are natural log-transformed. 
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by the lower error after the whole alignment process. A further source of error in TLS 

measurements is noise in the point cloud, caused by reflections on rain, insects, or other small 

particles in the air. Due to the small size of the measured crops and uneven surfaces, this issue 

has to be regarded in particular for applications in agriculture, as also reported from other 

studies (Ehlert et al., 2009; Lumme et al., 2008). The measuring speed of the used 

time-of-flight scanners reduced the noise already and filter options in RiSCAN Pro simplified 

its removal, but further developments are desirable. In this context, intensity values should 

be investigated for establishing filtering schemes. So far, they are used for separating laser 

returns on canopy from ground returns (Guarnieri et al., 2012) or for detecting single plants 

(Hoffmeister et al., 2012; Höfle, 2014). 

Regarding the practical implementation, this approach indicates advantages towards 

similar studies. Good results were achieved for estimating biomass of rice plants based on the 

vertical plant area density, measured with a portable scanner in combination with a mirror 

(Hosoi and Omasa, 2012). However, for the application on larger-scale fields their setup might 

be less practical. Through the non-invasive TLS acquisition from the edges of the field, 

undisturbed plant growth can be ensured and the scan positions with the tractor-trailer system 

profited from the greater height. As the linear structure of the rice plant rows is observable, 

a more precise acquisition of the crop surface can be assumed. Thus, lightweight scanners are 

desirable, which can easier be brought to a lifted position. Moreover, cost-effective systems 

like the Velodyne HDL-64E LiDAR sensor (Velodyne, 2014) and mobile laser scanning systems 

like the ibeo ALASCA XT (Jaakkola et al., 2010) should be considered for realizing practical 

applications of the presented approach for farmers. 

Further, the oblique perspective of the scanner must be taken into account, which is 

unavoidable from a ground-based system without entering the field. Studies indicate that the 

height of reflection points might be overestimated through the influence of the scanning angle 

(Ehlert and Heisig, 2013). As the measured signal is influenced by the scanning geometry and 

beam divergence (Höfle, 2014; Kaasalainen et al., 2011), a radiometric calibration is supported 

for stationary TLS by other studies (Kaasalainen et al., 2011; Koenig et al., 2015). In this study, 

the merged and cleaned point clouds were filtered with a scheme for selecting maximum 

points. Hence, the crop surface was determined from an evenly distributed coverage of the 

field and overestimations should be precluded. 

Manual measurements of plant height were conducted for validating the TLS data. 

However, therein differences between the measurement methods must be denoted. Whereas 

with less than ten hills per field experiment plot, only a small and mostly the highest part of 

the entire crop surface was considered for the manual measurements, the scanner captures 

the whole plot, including the lower parts. Hence, only plot-wise averaged values could be 

compared but the high R2 values up to 0.91 between both measurements confirmed the 

accuracy of the TLS data. However, the approach of using the 90th percentile (Hämmerle and 

Höfle, 2014) instead of the maximum values for the CSM-based plant height calculation should 

be considered for achieving values which are more robust against low scanning resolutions. 

Generally, the precision of the TLS-derived CSMs is difficult to determine by the manual 

measurements due to these differences. The good performance of TLS measurements for 
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agricultural applications is presumed from other studies (Höfle, 2014; Lumme et al., 2008) and 

performance tests by the manufacturer validate the high accuracy and precision of the Riegl 

scanners (Riegl LMS GmbH, 2013, 2010). Nevertheless, a main advantage is the objective 

assessment of plant height by CSMs, which avoids the selection bias of manual measurements. 

The non-invasive acquisition of the whole area in a high spatial resolution is one of the main 

benefits of the presented approach. In the context of PA, this is required for accurate crop 

monitoring (Mulla, 2012). 

Considering the upscaling of known plant information, the transferability of the virtually 

modeled geometry of single rice plants to field level might be evaluated with the high 

resolution CSMs (Ding et al., 2011; Watanabe et al., 2005). Referring to the model of predicting 

yield potential for rice (Confalonieri et al., 2011), the CSM-derived plant heights can be used 

as input data. Border effects cause problems in estimating rice yield, due to differences 

between internal and external rice plants in a plot (Wang et al., 2013). In this study, an inner 

buffer was used to avoid border effects. For further studies, the high resolution of the 

TLS-derived CSMs might be useful for determining the differences between internal and 

external rows. 

The pixel-wise calculated plant heights were visualized in maps of plant height for 

discovering spatial or temporal patterns and variations. As shown in Figure 4-5 the high 

resolution of 1 cm allowed an exact representation. In contrast, rice field mapping based on 

spaceborne data has not been carried out with resolutions finer than 1 m so far 

(Koppe et al., 2012; Lopez-Sanchez et al., 2011; Ribbes and Le Toan, 1999). However, new 

satellites like the WorldView-3 (DigitalGlobe, 2014), providing a panchromatic resolution of 

~0.3 m, should enable a more detailed acquisition. The high resolution is one of the major 

advantages of TLS data and enables the usability as in-situ validation for spaceborne data. 

Although, the spatial extent of air- or spaceborne methods cannot be reached with 

ground-based methods and the data acquisition effort is high, they are more flexible for the 

application in the field. Consequently, the presented approach may offer a tool for 

comparative analyses between TLS and airborne laser scanning (ALS). As shown by 

Bendig et al. (2015) good results were achieved for the creation of CSMs from unmanned 

aerial vehicle (UAV)-based imaging for barley (R2 up to 0.82 between CSM-derived and 

manually measured plant heights). Furthermore, promising results for the assessment of trees 

have already been achieved with UAV-based laser scanning systems (Jaakkola et al., 2010; 

Wallace et al., 2014). However, the influence of the oblique and nadir scanning perspectives 

of ground- and airborne measurements, respectively, have been less investigated so far. 

A comparative study on TLS and common plane-based ALS showed that the scanning angle 

and possible resolution influences the results (Luscombe et al., 2014). Therefore, multiple 

sensors and acquisition levels should be combined for comprehensive analyses. 

For confirming the general validity of spatial plant height data as a non-destructive 

estimator for biomass of paddy rice and proving the robustness as well as the spatial and 

temporal transferability of all established models, destructive biomass sampling was 

performed on all sites, revealing differences between the fields (Table 4-3). Basic differences 
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were a lower human impact and larger size of the management units on the farmer’s fields as 

well as the presence of different rice varieties and fertilizer treatments on all sites. 

The three repetitions of each fertilizer treatment on the field experiment were useful to 

set up trial BRMs for proving the general concept (Table 4-4). High coefficients of 

determination and indices of agreement between the estimated and measured biomass 

values for each repetition of both years support linear and exponential models with 

comparable results. Nevertheless, further research is necessary for defining the differences 

between rice varieties and the influence of varying fertilizer treatments. 

In addition to the final BRMs of each year, a model based on the combined data set of both 

years was established, each as a linear and an exponential model. The transferability of the 

BRMs from the small-scale field experiment for estimating biomass on larger scale farmer's 

fields was shown (Table 4-5). Besides the transferability of existing models, a model 

improvement through the combined data set and through additional exponential models was 

investigated. As shown in Figure 4-7 for the data sets of the field experiment, the dependency 

of biomass on plant height can be described by linear and exponential regressions with similar 

high coefficients of determination. However, herein, only the pre-anthesis period was 

regarded. After anthesis, increasing biomass is mostly related to the development of grains 

while plant height remains almost constant. Thus, further studies are necessary for 

investigating the performance of linear and exponential BRMs for the estimation of rice 

biomass during the later stages. 

The results of the linear and exponential models are almost similar for each site, with 

overall better values for village 69. As stated above the linear and exponential BRM yielded 

better results with the data sets from 2011 and 2012, respectively. A possible explanation 

might be the slightly different captured growth stages or the interpolated biomass values for 

2011. Moreover, analyses are necessary, concerning the influence of different rice varieties, 

fertilizer treatments, or soil conditions. Additionally, the lower human impact on the farmer's 

fields might influence the plant development. For village 36 the heterogeneous plant 

development in the management units has to be stated as a source for the differences 

between estimated and measured values. The varying performance of the combined model 

might be caused by these differences. Of most importance might be the fact that the relation 

between plant height and biomass in the two regarded periods seems to be best represented 

by different models. Overall, the results support the applicability of BRMs for biomass 

estimations based on TLS-derived spatial plant height data and substantiate the potential of 

ground-based plant parameter measurements as input for biomass estimation models 

(Marshall and Thenkabail, 2015; Reddersen et al., 2014). 

4.5 Conclusions 

The applicability and high suitability of terrestrial laser scanning for monitoring plant height 

of paddy rice based on multi-temporal CSMs were confirmed. An outstanding feature is the 

objective assessment of the whole field in a very high spatial resolution. Moreover, as the 

scans are non-invasively acquired from the field edges, entering the rice paddies is avoided. 

By investigating a repeated field experiment and two farmer’s conventionally managed fields 

in two years, varying patterns of plant development and growth were covered. 
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For PA, monitoring of plant parameters for adjusting site-specific fertilization is a major 

topic. Strong coefficients of determination between plant height and biomass show the 

applicability of spatial plant height data as a non-destructive estimator for biomass of rice 

plants. Based on the promising results of single year analyses (Tilly et al., 2014, 2013), in this 

contribution, the annual transferability of the BRMs and the applicability on different fields 

were regarded. Moreover, a model improvement through exponential models was examined. 

During the regarded pre-anthesis period, the linear and exponential models performed 

equally well. Further studies are necessary regarding a presumed differing performance 

during the later stages. However, the spatial and temporal transferability of the BRMs to 

a larger scale is supported by estimations of biomass on farmer’s fields based on TLS-derived 

CSMs. High coefficients of determination and indices of agreement between estimated and 

measured values demonstrate the coherence of the results and prove the robustness of the 

method. Regarding the accuracy of the estimation, best results were achieved with different 

models, depending on the used data. Overall, higher R2 values were achieved with the linear 

models, whereas the exponential models yielded smaller percentage deviations. 

To summarize, the novelty in this contribution is the comparative analysis of linear and 

exponential models based on objectively assessed plant height as a reliable estimator for the 

biomass of paddy rice over different growing seasons and different fields. Further long-term 

experiments and comprehensive monitoring approaches are required for investigating the 

performance of linear and exponential models for the pre-anthesis and for later growing 

stages. 

In the future, combined approaches involving plant height and spectral measurements 

should be developed for accurately determining the actual biomass and N content of plants. 

Following, spatially resolved NNI calculations could be executed for improving N management 

strategies (Yao et al., 2012). Thereby, over-fertilization could be reduced while keeping or 

enhancing the yield. 
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Abstract: Over the last decades, the role of remote sensing gained in importance for 

monitoring applications in precision agriculture. A key factor for assessing the development 

of crops during the growing period is the actual biomass. As non-destructive methods of 

directly measuring biomass do not exist, parameters like plant height are considered as 

estimators. In this contribution, first results of multi-temporal surveys on a maize field with 

a terrestrial laser scanner are shown. The achieved point clouds are interpolated to generate 

crop surface models (CSM) that represent the top canopy. These CSMs are used for visualizing 

the spatial distribution of plant height differences within the field and calculating plant height 

above ground with a high resolution of 1 cm. In addition, manual measurements of plant 

height were carried out corresponding to each TLS campaign to verify the results. The high 

coefficient of determination (R2 = 0.93) between both measurement methods shows the 

applicability of the presented approach. The established regression model between 

CSM-derived plant height and destructively measured biomass shows a varying performance 

depending on the considered time frame during the growing period. This study shows that TLS 

is a suitable and promising method for measuring plant height of maize. Moreover, it shows 

the potential of plant height as a non-destructive estimator for biomass in the early growing 

period. However, challenges are the non-linear development of plant height and biomass over 

the whole growing period. 

Keywords: TLS; multi-temporal; agriculture; crop; change detection; monitoring 

5.1 Introduction 

A major topic in the field of precision agriculture (PA) is the enhancement of crop 

management due to the constant or even decreasing cultivation area but concurrently 

growing world population (Oliver, 2013). Therefore an accurate determination of the crop 

status during the growing period is required. In the last decades, remote and proximal sensing 

methods are widely used for crop monitoring. Depending on the investigated parameters and 
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desired resolution various sensors and methods are applied. An overview is given in 

Mulla (2012).  

Studies focusing on maize plants have a particular challenge in common. In contrast to 

other crops, tall maize plants with heights of about 3 m complicate ground-based nadir 

measurements. As demonstrated by Claverie et al. (2012), spectral satellite data has promising 

potential for large-scale crop monitoring and biomass estimation. However, ground-based 

observations are conducted to achieve a high resolution and thus enable the detection of in-

field variability. Studies show the potential of passive hyperspectral hand-held sensors for 

biomass estimations (Osborne et al., 2002; Teal et al., 2006). Perbandt et al. (2010) compared 

nadir and off-nadir hyperspectral measurements and detected a significant influence of sensor 

height and measuring angle.  

A major disadvantage of passive sensors is the dependency on solar radiation. By contrast, 

studies show that terrestrial laser scanning (TLS), as an active system, can be applied for 

agricultural purposes. Investigated plant parameters are plant height (Zhang and Grift, 2012), 

biomass (Ehlert et al., 2009, 2008; Keightley and Bawden, 2010), crop density (Hosoi and 

Omasa, 2012, 2009; Saeys et al., 2009), and leaf area index (Gebbers et al., 2011). As 

mentioned the large height of maize plants causes difficulties for ground-based system. Solely, 

Höfle (2014) used the measured intensity values from TLS for detecting single plants of maize. 

In this contribution, the first results of multi-temporal surveys on a maize field with a TLS 

system are shown. The scanner was mounted on a cherry picker to reach a high position above 

the canopy. The TLS-derived point clouds are interpolated to generate crop surface models 

(CSM) that represent the top canopy. The concept of CSMs for determining plant height and 

estimating biomass was tested for sugar beet (Hoffmeister et al., 2013, 2010), barley 

(Tilly et al., 2014a) and paddy rice (Tilly et al., 2014b). 

5.2 Methods 

5.2.1 Data acquisition 

In the growing period 2013, surveys were carried out on a maize field in Selhausen, about 

40 km away from Cologne, Germany (N 50°52’5”, E 6°27’11”). The field with a spatial extent 

of about 60 m by 160 m was chosen, due to heterogeneous soil conditions and thereby 

expected differences in plant development within the field. Six field campaigns were carried 

out between the 22nd of May and 24th of September 2013 for monitoring plant height. Thus, 

almost the whole growing period of maize is covered. For an accurate acquisition of the 

ground surface the first campaign was scheduled after sowing, before the plants are visible 

above ground. For all campaigns, the terrestrial laser scanner Riegl LMS-Z420i was used, which 

applies the time-of-flight method (Riegl LMS GmbH, 2010) (Figure 5-1 a). From the known 

position of the scanner, the position of targets is calculated by measuring the distance through 

the time shift between transmitting and receiving a pulsed signal and the respective direction. 

The laser beam is generated in the bottom of the device with a measurement rate of up to 

11,000 points/sec. Parallel scan lines are achieved with a rotating multi-facet polygon mirror 

and the rotation of the scanners head. Thereby a wide field of view can be achieved, up to 80° 

in vertical and 360° in horizontal direction. Furthermore, a digital camera, Nikon D200, was 
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mounted on the laser scanner. From the recorded RGB-images, the point clouds recorded by 

the scanner can be colorized and the corresponding surfaces can be textured.  

The scanner was mounted on a cherry picker to achieve a high position above the canopy 

(Figure 5-1 a). The height of the sensor was about 8 m above ground. All positions of the 

scanner were measured with the highly accurate RTK-DGPS system Topcon HiPer Pro (Topcon 

Positioning Systems, 2006). The relative accuracy of this system is ~1 cm. Additional reference 

targets are required to enable a direct georeferencing in the post-processing. Therefore, 

highly reflective cylinders arranged on ranging poles were used, which can be easily detected 

by the laser scanner and their coordinates were measured with the RTK-DGPS system 

(Figure 5-1 b). In each campaign, the field was scanned from its four corners for achieving 

a uniform spatial resolution and lower shadowing effects. For all scans a resolution of 0.7 cm 

at a distance of 10 m was used. 

With exception of the first campaign, manual measurements of plant height and biomass 

were carried out, corresponding to the TLS measurements. Therefore twelve sample points, 

well distributed in the field, were marked in the first campaign and their positions were 

measured with the RTK-DGPS system. Hence, the manual and TLS measurements can be 

accurately linked. In each campaign, the heights of five plants per sample point were 

measured. In the last four campaigns, destructive sampling of biomass was performed. 

Figure 5-1. a) TLS system (marked with arrow) 
mounted on a cherry picker; b) highly reflective 
cylinders arranged on ranging pole. 
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Around each sample point, five plants were taken after the TLS and manual height 

measurements. 

5.2.2 Data processing 

The workflow for the post-processing can be divided in three main steps: (I) the registration 

and merging of all point clouds; (II) the extraction of the area of interest (AOI), both executed 

in Riegl's software RiSCAN Pro; (III) spatial analyses, conducted in ArcGIS Desktop 10 by Esri; 

and (IV) statistical analyses, calculated with Microsoft Excel 2013 and diagrams plotted in 

OriginPro 8.5 by OriginLab. 

At first, the scan data from all campaigns and the GPS-derived coordinates were imported 

into one RiSCAN Pro project file. Based on the positions of the scanner and the reflectors, 

a direct georeferencing method was used for the registration of the scan positions. However, 

small alignment errors occur between the point clouds of one campaign and between 

different campaigns. Thus, a further adjustment was applied. RiSCAN Pro offers the Multi 

Station Adjustment, where the position and orientation of each scan position are modified in 

multiple iterations to get the best fitting result for all of them. The calculations are based on 

the iterative closest point (ICP) algorithm (Besl and McKay, 1992). 

Following, all point clouds of one date were merged to one data set and the AOI was 

manually extracted. Moreover, points regarded as noise were removed, caused by reflections 

on insects or other small particles in the air. The crop surface was then determined from the 

data sets with a filtering scheme for selecting maximum points. Similar, for the data set of the 

first campaign a filtering scheme for selecting minimum points was used to extract ground 

points. Finally, the data sets were exported for the following analyses. 

In ArcGIS Desktop 10, the exported point cloud data sets were interpolated with the inverse 

distance weighting (IDW) algorithm. For retaining the accuracy of measurements with a high 

density, this exact, deterministic algorithm is well suitable as measured values are retained at 

their sample location (Johnston et al., 2001). The result are raster data sets with a consistent 

spatial resolution of 1 cm, introduced by (Hoffmeister et al., 2010) as crop surface models 

(CSMs). For each date, the CSM represents the crop surface of the whole field in a high 

resolution. Hence, in-field variability can be spatially measured. A digital elevation model 

(DEM) is interpolated from the ground points of the first campaign as a common reference 

surface for the calculation of plant heights. By subtracting the DEM from a CSM, the actual 

plant height is calculated with the same spatial resolution. Likewise, by calculating the 

difference between two CSMs the plant growth can be spatially measured for the respective 

period of time. Herein, growth is defined as a temporal difference in height. 

Furthermore, statistical analyses were performed, taking account of the manual 

measurements. For validating the TLS results, a common spatial base was required. Therefore, 

a circular buffer with a radius of 1 m was generated around each sample point, where the 

CSM-derived plant heights were averaged (n = 12). The manually measured plant heights and 

destructively taken biomass were also averaged for each sample point. Consequently, 

correlation and regression analyses were carried out to investigate the accuracy of the TLS 

results and examining the usability of plant height as predictor for biomass of maize. 
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5.3 Results 

5.3.1 Spatial analysis 

The TLS-derived point clouds were interpolated to generate a CSM of the whole maize field 

for each campaign. By subtracting the DEM from each CSM, the plant heights are calculated 

pixel-wise for the whole field and visualized as map of plant height for each campaign. Thus, 

spatial differences in plant height and their temporal development can be detected. As an 

example, Figure 5-2 shows the maps of plant height for the whole field on the last campaign 

date and for the buffer area around sample point 5 on each date. Regarding the whole field, 

spatial patterns are observable. It has to be mentioned that the whole field was clipped with 

an inner buffer of 1 m for avoiding border effects. However, in particular in the corners such 

influences cannot be completely excluded and the south edge of the field seems to be more 

affected. Nevertheless, spatial patterns are noticeable. Lower plant height values are 

detectable (I) in a stripe of ~20 m at the west edge, (II) in an almost circular area with 

a diameter of ~15 m eastward of sample point 7, and (III) in a small area at the south edge 

between the sample points 10 and 11. Regarding the detailed view of the buffer area around 

sample point 5, the plant height increase between the campaigns is clearly detectable for the 

first half of the observation period. However, as also supported by the mean values, the plant 

height is almost constant from late July to the end of the observation period in late September. 

Figure 5-2. CSM-derived maps of plant height for the whole maize field on the last 
campaign date (top) and for the buffer area around sample point 5 on each date 
(bottom). 
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The spatial distribution of plant height differences between the campaigns is measured by 

subtracting the CSM of an earlier date from the CSM of a later date and visualized in maps of 

plant growth. In Figure 5-3, maps of plant growth are shown for two time periods. At the top, 

the plant growth between the 3rd and 31st of July and at the bottom between the 31st of July 

and the 24th of September are shown. Thereby the above stated results are supported. On the 

on the hand, for the earlier period, the same spatial patterns with areas of lower plant growth 

are detectable at the west edge, in the almost circular area in the middle, and in the small 

area at the south edge. On the other hand, the temporal development, stated for the buffer 

area around sample point 5 is also observable. The main increase occurred in July with a mean 

plant growth of about 2 m for the whole field, whereas afterwards the plant heights are almost 

constant with a mean growth of 0.08 m for the whole field until the end of September. 

5.3.2 Statistical analysis 

Besides the visualization of spatial patterns, the quantification of plant height differences 

and the correlation between plant height and biomass was an object of this study. The 

analyses are based on the averaged values, measured in the buffer areas around the sample 

points. Table 5-1 gives the mean value ( ), standard deviation (s), minimum (min), and 

Figure 5-3. CSM-derived maps of plant growth for the whole maize field (at the top 
between 3rd and 31st of July; at the bottom between the 31st of July and the 24h of 
September). 
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maximum (max) for the CSM-derived and manually measured plant heights, as well as for the 

destructively taken biomass. Regarding the plant height, the results of both measuring 

methods are similar. The differences can be summarized as: (I) except of the first campaign, 

the CSM-derived values are always a little higher, (II) the standard deviations are very similar, 

(III) in conformity with the mean values, the minimum and maximum values are mainly a bit 

lower for the CSM-derived values. As already stated for the maps of plant growth, the main 

increase occurred in July. Afterwards the plant heights are almost constant.  

Table 5-1. CSM-derived and manually measured plant heights as well as destructively taken biomass, 
based on the averaged values for the buffer areas (each date n = 12). 

Date 

Plant height from CSM 

 (m) 

Manually measured plant 

height (m) 

Dry biomass  

(g/sample point) 

 s min max  s min max  s min max 

06.06.13 0.07 0.02 0.05 0.14 0.04 0.01 0.03 0.05 N/Aa N/Aa N/Aa N/Aa 
03.07.13 0.60 0.10 0.38 0.72 0.82 0.11 0.60 0.96 13.08 4.05 5.90 18.40 
31.07.13 2.56 0.32 1.99 2.84 2.68 0.32 2.10 2.98 783.00 243.79 475.95 1153.00 
29.08.13 2.63 0.35 2.01 2.99 2.78 0.37 2.08 3.19 843.85 200.09 513.50 1188.80 
24.09.13 2.59 0.35 1.96 2.97 2.71 0.38 1.94 3.15 1059.68 300.97 524.60 1435.90 

a No biomass sampling performed 

Regarding the biomass, no comparative statements can be done. Nonetheless, it is 

noteworthy that in contrast to the almost constant plant height in the second half of the 

observation period, the biomass still increases. However, the main increase occurred in the 

first half, between the 3rd and 31st of July where the amount increased about 60 times. It has 

to be mentioned, that the values for the samples of the 31st of July are a little too high. Due 

to technical problems, some plants were not completely dry while weighing. Consequently 

the plants were heavier owing to the remaining water. As the problem could not be fixed and 

the amount of water could not be determined afterwards, the values were used for the 

analyses. Otherwise the time frame between the previous and following campaign would have 

been too long. 

For validating the CSM-derived heights, regression analyses were carried out with the 

results of both measuring methods. Figure 5-4 shows the related values of all campaigns 

(n = 60) and the resulting regression line with a very high coefficient of determination 

(R2 = 0.93). 

Moreover, regression analyses were carried out for investigating the dependence of the 

actual biomass from plant height. Figure 5-5 shows the related values only for the last four 

campaigns, as no destructive sampling was performed on the 6th of June (n = 48). The 

regression lines and coefficients of determination were calculated for different periods. First, 

for the data set of the whole observation time, second and third, without the values of first or 

last campaign, respectively. As mentioned, the main increase took place between the first and 

second destructive biomass measurements. These clusters are visible in the scatterplot. 

A small cluster of values with plant heights between 0.5 and 1 m and a low degree of scattering 

in the biomass values and a larger cluster of values with plant heights between 2 and 3 m and 

a high degree of scattering in the biomass values. Following, the high coefficients of 

determination for the periods including the first destructive sampling (R2 = 0.70 and R2 = 0.80), 

have to be regarded as spurious correlations. Regarding the period excluding the first 
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measurements, any correlation is detectable (R2 = 0.03). The uncertain values from the 31st of 

July have to be taken in to account. 

5.4 Discussion 

The data acquisition with the laser scanner worked very well. As mentioned, the presented 

approach of generating CSMs was successfully applied with low growing crops like sugar beet 

(Hoffmeister et al., 2013, 2010), barley (Tilly et al., 2014a) and paddy rice (Tilly et al., 2014b). 

The height of tall maize plants is a challenge for ground-based measurements. In the study 

presented in this paper, the laser scanner was mounted on a cherry picker. Following, the 

sensor height of about 8 m above ground was helpful for reaching a position above the 

canopy. Obviously, this setup can hardly be implemented for realizing practical applications 

for farmers. However, as this was the first approach of determining maize plant height with 

TLS-derived CSMs, the preconditions ought to be comparable to earlier studies, like the 

relative height of the sensor above the canopy. Further studies are required regarding other 

platforms and acquisition methods.  

An issue of TLS measurements with fixed scan positions at the edges of a field, is the radial 

measuring view of the scanner. Closer to the edges, the viewing perspective is steeper and 

allows a deeper penetration of the vegetation. Thus, also lower parts of the plants are 

captured. This influence of the scanning angles is also stated by Ehlert and Heisig (2013). 

However they detected overestimations in the height of reflection points. For the generation 

of the CSMs in this study, point clouds were merged from all positions of one campaign and 

a filtering scheme for selecting maximum points was used for determining the crop surface. 

Hence, it was determined from an evenly distributed coverage of the field with a mean point 

density of 11,000 points per m². Nonetheless, further studies are required for analyzing the 

influence of the scanning angle.  

Reconsidering alternative platforms for practical applications, ways of avoiding effects due 

to the radial measuring view should also be regarded. Promising systems are brought up 

Figure 5-4. Regression of the mean CSM-derived 
and manually measured plant heights (n = 60). 

Figure 5-5. Regression of the mean CSM-derived 
plant height and the dry biomass (n = 48). 
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through recent developments in mobile laser scanning (MLS). Those systems apply 

a two-dimensional profiling scanners based on a moving ground vehicle for achieving an areal 

coverage. Conceivable MLS approaches are presented by Ehlert and Heisig (2013) and 

Kukko et al. (2012). 

The high resolution and acquisition of the whole field, achievable with the TLS system, allow 

to calculate the plant heights pixel-wise and visualize them as maps of plant height for several 

steps in the growing period. Thus, spatial and temporal patterns and variations can be 

detected, as shown in Figure 5-2. Moreover, the plant growth between two campaigns can be 

calculated and visualized as maps of plant growth, as shown in Figure 5-3. 

The very high coefficients of determination (R2 = 0.93) and low differences between the 

mean CSM-derived and manually measured plant heights show the usability of the presented 

approach for determining maize plant height. Regarding the differences between the mean 

values (Table 5-1), the differences between the measuring methods are on source of error. 

Whereas the scanner captured the whole field, including lower parts of the canopy, only five 

plants per sample point were considered for the manual measurements, which represent the 

highest parts of the canopy. Thus, the manual measurements can solely be regarded as an 

indicator for the accuracy of the CSM-derived heights. Due to the high resolution of the scan 

data a more precise acquisition of the field can be assumed. However, as visible in Figure 5-4 

there is a data gap between heights of 1 m to 2 m. Due to technical problems, the 

measurements of one campaign in the middle of July could not be used for the analyses. 

Consequently, this period, with the main increase in plant height is not well covered with data. 

Further monitoring studies in the following years are necessary to fill this gap. 

Furthermore, additional studies are required to enhance the knowledge about the 

correlation between plant height and biomass. Due to the unusable data set from the middle 

of July and the technical problems with drying some plants at the 31st of July, several 

uncertainties remain. As the main increase in plant height and biomass occurred in this period, 

more measurements are necessary for establishing a reliable regression model. Nevertheless, 

the results suggest a linear regression between plant height and biomass for the first half of 

the growing period. Furthermore, it has to be evaluated whether an exponential function can 

better model the increase of biomass while almost constant plant heights in the later growing 

period occur.  

5.5 Conclusion and outlook 

In summary, the main benefits of the TLS approach are the easily acquisition of a large area 

and the high resolution of the resulting data. In addition, applying the cherry picker to reach 

a high position above the canopy turns out to be useful in particular for large plants, like maize. 

Nevertheless, further research is required regarding the differences between CSM-derived 

and manually measured plant heights. Moreover, as also mentioned, further field studies are 

necessary to achieve more data for the period of main increase in plant height and biomass 

for investigating the applicability of plant height as an estimator for the actual biomass of 

maize. Challenges therein are the height differences within one CSM, in particular in the early 

stages, before the canopy closure and the non-linear development of plant height and 

biomass over the whole growing period. 
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Abstract: Plant biomass is an important parameter for crop management and yield estimation. 

However, since biomass cannot be determined non-destructively, other plant parameters are 

used for estimations. In this study, plant height and hyperspectral data were used for barley 

biomass estimations with bivariate and multivariate models. During three consecutive 

growing seasons a terrestrial laser scanner was used to establish crop surface models for 

a pixel-wise calculation of plant height and manual measurements of plant height confirmed 

the results (R2 up to 0.98). Hyperspectral reflectance measurements were conducted with 

a field spectrometer and used for calculating six vegetation indices (VIs), which have been 

found to be related to biomass and LAI: GnyLi, NDVI, NRI, RDVI, REIP, and RGBVI. Furthermore, 

biomass samples were destructively taken on almost the same dates. Linear and exponential 

biomass regression models (BRMs) were established for evaluating plant height and VIs as 

estimators of fresh and dry biomass. Each BRM was established for the whole observed period 

and pre-anthesis, which is important for management decisions. Bivariate BRMs supported 

plant height as a strong estimator (R2 up to 0.85), whereas BRMs based on individual VIs 

showed varying performances (R2: 0.07 - 0.87). Fused approaches, where plant height and one 

VI were used for establishing multivariate BRMs, yielded improvements in some cases (R2 up 

to 0.89). Overall, this study reveals the potential of remotely sensed plant parameters for 

estimations of barley biomass. Moreover, it is a first step towards the fusion of 3D spatial and 

spectral measurements for improving non-destructive biomass estimations. 

Keywords: terrestrial laser scanning; spectrometer; plant height; hyperspectral vegetation 

indices; biomass; precision agriculture; plot level; multi-temporal 

6.1 Introduction 

Over the past several decades remote sensing has increased in importance for precision 

agriculture (Atzberger, 2013; Liaghat and Balasundram, 2010; Mulla, 2012). Since the world 

population is expected to increase by more than one third until 2050 a main goal is shrinking 

the gap between potential and current yield (UNFPA, 2010; van Wart et al., 2013). Field 

management strategies in precision agriculture that aim to maximize yield must involve 

a reasonable use of natural resources and have to take spatial and temporal variabilities into 

account (Oliver, 2013), as agricultural production is influenced by the physical landscape, 
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climatic variables, and agricultural management practices (Atzberger, 2013). Studies reveal 

that grain yield is correlated with total biomass (Boukerrou and Rasmusson, 1990; Fischer, 

1993). A quantitative measure is the harvest index, which expresses yield vs. total biomass 

(Price and Munns, 2010). Moreover, adequate crop condition in early growing stages could 

buffer the yield against environmental stresses, such as droughts, during later stages 

(Bidinger et al., 1977). In-season, the nitrogen nutrition index, the ratio between actual and 

critical nitrogen (N) content, is widely used as a measure of the plant status 

(Greenwood et al., 1991). The critical value is defined by a crop-specific N dilution curve, 

showing the relation between N concentration and biomass. Hence, an exact in-season 

acquisition of biomass is important in precision agriculture.  

Since plant biomass cannot be determined non-destructively, other plant parameters are 

used as estimators. Therefore, remote sensing measurements enable an objective and 

accurate acquisition in a high temporal frequency (Atzberger, 2013). A review of remote 

sensing methods for assessing biomass is given by Ahamed et al. (2011). At the field level, 

ground-based methods are commonly used to achieve sufficiently high resolutions and over 

the last several decades, several studies investigated the relationship between spectral 

reflectance measurements and crop characteristics. For extracting information, various 

vegetation indices (VIs) were developed from the reflectance in determined wavelengths. Two 

band VIs like the normalized difference vegetation index (NDVI) were traditionally used with 

multispectral broad band systems to estimate biomass or biomass-related parameters, like 

LAI. Such VIs have been adapted to narrow band hyperspectral data and other band 

combinations (Aasen et al., 2014; Marshall and Thenkabail, 2015; Thenkabail et al., 2013, 

2000). Additionally, other VIs with more than two bands, such as the GnyLi, have been 

developed for the same purpose (Gnyp et al., 2014b).  

Moreover, active sensors based on light detection and ranging (LiDAR) have been 

increasingly used in vegetation studies since the 1980s (Lee et al., 2010). Indeed, a main 

benefit of LiDAR is the very high resolution, which enables the acquisition of complex canopies 

(Danson et al., 2009). In agricultural applications, for example, ground-based LiDAR methods, 

also known as terrestrial laser scanning (TLS), reveal potential for assessing plant height 

(Zhang and Grift, 2012), leaf area index (Gebbers et al., 2011), crop density (Hosoi and 

Omasa, 2012, 2009; Saeys et al., 2009), or post-harvest growth (Koenig et al., 2015). 

Furthermore, the potential for estimating biomass with TLS is supported through studies on 

small grain cereals (Ehlert et al., 2009, 2008; Lumme et al., 2008), sagebrush 

(Olsoy et al., 2014), and paddy rice (Tilly et al., 2015, 2014b). The 3D architecture of single 

plants was modeled under laboratory conditions (Paulus et al., 2014a, 2014b), however the 

transferability of those laboratory results to field conditions has not yet been shown.  

Generally, the accuracy of estimations is a major issue, with the accuracy being limited 

when calculations are based on one estimator. Whilst biomass estimations based on VIs are 

affected by saturation effects (Blackburn, 1998; Reddersen et al., 2014; 

Thenkabail et al., 2000), plant height may reach limitations when differences in plant height 

are low. Consequently, the fusion of multiple parameters should be examined to enhance 

estimations. So far, studies on the fusion of spectral and non-spectral information have been 
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applied for characterization of forest ecosystems (Torabzadeh et al., 2014) and modeling of 

corn yield (Geipel et al., 2014). As both studies applied airborne methods, the spatial 

resolution was low. A ground-based multi-sensor approach for predicting biomass of grassland 

based on measurements of plant height, leaf area index (LAI), and spectral reflectance showed 

that combining multiple sensors can improve the estimation (Reddersen et al., 2014). 

However, in that study, spectral data were not well suited. Recently, the potential of the 

combined use of spectral and non-spectral ground-based measurements for estimating 

biomass was demonstrated for rice, maize, cotton, and alfalfa (Marshall and 

Thenkabail, 2015). 

The overall aim of this study was to compare the potential of plant height (PH), VIs, and 

a fusion of PH and VIs for estimations of above ground fresh and dry barley biomass. More 

specifically, this study compares the potential of 3D spatial and spectral information for 

different time frames during the growing season and investigates if a fusion of both can 

improve the estimation. Therefore, a spring barley experiment was monitored during three 

growing seasons in various campaigns with a TLS system and a field spectrometer. PH was 

derived from the TLS data and VIs from the hyperspectral data. Four major working tasks were 

carried out: (I) conduct extensive multi-annual field measurements during the growing 

seasons, (II) derive bivariate biomass regression models (BRMs) from 3D spatial and spectral 

measurements for biomass estimations, (III) fuse the 3D spatial and spectral data in 

multivariate BRMs to estimate biomass based on this extensive data set, and (IV) evaluate the 

robustness of the BRMs with a cross-validation.  

6.2 Methods 

6.2.1 Field measurements 

In three growing seasons (2012, 2013, and 2014), field experiments were carried out at the 

Campus Klein-Altendorf (50°37′51″N, E 6°59′32″) belonging to the Faculty of Agriculture at the 

University of Bonn, Germany. Due to crop rotation, the locations of the fields were slightly 

different between the years. However, soil and climatic conditions were similar with the 

surface of the soil being flat with a clayey silt luvisol and well suited for crop cultivation (Uni 

Bonn, 2010a). According to the campus’ own weather records, the long-term average yearly 

precipitation was about 600 mm with a daily average temperature of 9.3 °C (Uni Bonn, 2010b).  

Each year, the field consisted of 36 small-scale plots (3 × 7 m) where different cultivars of 

barley were cultivated with two levels of N fertilization. For half of the plots, a farmer’s 

common rate of 80 kg/ha N fertilizer was applied, for the other half a reduced rate of 40 kg/ha. 

In 2012 and 2013 each fertilization scheme was carried out once for 18 cultivars of spring 

barley (Barke, Wiebke, Beatrix, Eunova, Djamila, Streif, Ursa, Victoriana, Sissy, Perun, Apex, 

Isaria, Trumpf, Pflugs Intensiv, Heils Franken, Ackermanns Bavaria, Mauritia and Sebastian). In 

2014, the set-up for the experiment was changed in that each fertilization scheme was 

repeated three times for six selected cultivars (Barke, Beatrix, Eunova, Trumpf, Mauritia and 

Sebastian). The experiments were carried out within the interdisciplinary research network 

CROP.SENSe.net (www.cropsense.uni-bonn.de). The research focus of this project was 
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non-destructive sensor-based methods for detecting crop status such as nutrients, stress, and 

quality. 

In this study, 3D spatial measurements from a TLS system, spectral measurements from 

a field spectrometer, and manual reference measurements were used. Due to the weather 

conditions the time of seeding changed and therefore so did the start of the growing season. 

The seeding dates were 21 March 2012, 9 April 2013, and 13 March 2014. In Table 6-1, all 

dates of TLS and spectrometer campaigns are listed as day after seeding (DAS) and a universal 

scale, known as the BBCH scale, was used to describe phenological stages and steps in the 

plant development, encoded in a decimal code (Lancashire et al., 1991; Meier, 2001). 

Table 6-1. Dates of the terrestrial laser scanning (TLS) and spectrometer (S) campaigns listed as day 
after seeding (DAS). Averaged codes for the developmental steps are given for the dates of manual 
plant parameter measurements (BBCH). For some dates BBCH codes were not determined (N/A). 
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15       TLS   45            75 TLS         

16         46            76         
17         47            77         

18         48            78   TLS/ S 57   

19         49     TLS/S 30    79         

20     TLS/ S N/A     50 TLS/ S           80             

21         51          81         

22         52          82       S   

23         53          83   N/A         

24         54   30     S   84 S       TLS 56 

25         55             85           
26         56         TLS 31 86 TLS         

27         57            87         
28         58 TLS          88         

29         59          89         
30             60             90             

31         61          91   S 68   
32         62          92   TLS     

33         63          93         

34   TLS     64   TLS/S 41    94         

35   S 18   65          95         

36         66          96         74 
37         67          97       TLS/S   

38         68          98         
39         69          99         

40             70 S 49     TLS/S 49 100             

41       TLS/ S 29 71            101         

42         72            102         

43   N/A       73            103         

44             74             104     TLS/ S 81     

                     

The acronym BBCH is derived from the funding organizations: Biologische Bundesanstalt 

(German Federal Biological Research Centre for Agriculture and Forestry), Bundessortenamt 

(German Federal Office of Plant Varieties), and Chemical industry. The first number of the 

two-digit code represents the principal growth stage (Table 6-2) and the second subdivides 

further in short developmental steps. Through determining the BBCH codes during the 

growing seasons, the annual comparability was ensured. For each plot, the BBCH 
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developmental step was determined as a mean of three plants. In Table 6-1, BBCH codes are 

given for the dates where plant parameters were manually measured. The codes are averaged 

per campaign, as the values were almost similar for all cultivars. Although the plant 

development varied among the years it can be seen that the BBCH codes indicate 

a comparable development. 

Table 6-2. Principal growth stages of the BBCH scale. 

Principal 
Growth Stagea Stage Description 

Time Frames Regarded for 
Biomass Estimation 

0 Germination     
1 Leaf development     

2 Tillering  
Pre-
anthesis 

 

Whole 
observed 
period 

3 Stem elongation   
4 Booting   
5 Inflorescence emergence, heading   

6 Flowering, anthesis    
7 Development of fruit    

8 Ripening     
9 Senescence     

a first number of the two-digit code. 

As reference measurements, the heights of ten plants were measured for each plot and 

averaged in the post-processing. Moreover, in a defined sampling area of each plot, the above 

ground biomass of a 0.2 × 0.2 m area was destructively taken each time. The sampling area 

was neglected for the remote sensing measurements. In the laboratory, plants were cleaned 

and fresh weights were measured. After drying the samples for 120 h at 70 °C, dry biomass 

was weighted and extrapolated across the plot (g/m²).  

Furthermore, a digital terrain model (DTM) is required as a common reference surface for 

calculating plant height from the TLS data. In 2014, the bare ground of the field was scanned 

after seeding but before any vegetation was visible (Table 6-1: DAS 15). For technical reasons, 

it was not possible to acquire such data in 2012 and 2013, however, the ground was 

identifiable in the point cloud of the first campaigns due to the low and less dense vegetation. 

6.2.1.1 Terrestrial laser scanning 

The TLS configuration and setup was almost equal in all years. Thus for each campaign, the 

time-of-flight scanner Riegl LMS-Z420i was used (Figure 6-1 A) (Riegl LMS GmbH, 2010). The 

sensor operates with a near-infrared laser beam, has a beam divergence of 0.25 mrad, and 

a measurement rate of up to 11,000 points/sec. In addition its field of view is up to 80° in the 

vertical and 360° in the horizontal direction and this study used resolutions between 0.034° 

and 0.046°. The digital camera Nikon D200 was mounted on the laser scanner and the TLS 

point clouds were colorized from the images captured. Furthermore the sensor should be as 

high as possible above ground, resulting in a steep angle between scanner and investigated 

area enabling the best possible coverage of the crop surface and a homogenous penetration 

of the vegetation. Accordingly the scanner was mounted on the hydraulic platform of 

a tractor, raising the sensor to approximately 4 m above ground (Figure 6-1 B). In order to 

lower shadowing effects and to attain an almost uniform spatial coverage, the field was 

scanned from its four corners. The coordinates of all scan positions and an additional target 

were required for the georeferencing and co-registration of the positions in the post-
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processing. Highly reflective cylinders arranged on ranging poles were used as targets 

(Figure 6-1 C). These reflective cylinders can be easily detected by the scanner meaning their 

exact position in relation to the scan position can be measured (Hoffmeister et al., 2010). The 

coordinates of the scan positions and ranging poles were measured with the highly accurate 

RTK-DGPS system Topcon HiPer Pro (Topcon Positioning Systems, 2006). By establishing an 

own reference station each year, the precise merging of all data sets per year was ensured 

with the relative accuracy of this system being approximately 1 cm. 

6.2.1.2 Field spectrometer measurements 

The ASD FieldSpec3 was used for measuring the reflectance several times during the 

growing seasons (all dates are listed in Table 6-1 above). This spectrometer measures the 

incoming light from 350 to 2500 nm with a sampling interval of 1.4 nm in the VNIR 

(350 - 1000 nm) and 2 nm in the SWIR (1001 - 2500 nm). These measurements are resampled 

to spectra with 1 nm resolution by the manufacturer’s software. At each position, ten 

measurements were taken and instantly averaged by the software, from 1 m above the 

canopy with a pistol grip, which was mounted on a cantilever to avoid shadows obscuring the 

sampling area. Additionally, a water level was used to ensure nadir view and no fore optic was 

used, resulting in a field of view of 25° and thus, a footprint area on the canopy with a radius 

of approximately 22 cm was achieved. Before the measurements, the spectrometer warmed 

up for at least 30 min and every 10 min or after illumination change, the spectrometer was 

optimized and calibrated with a spectralon calibration panel (polytetrafluoroethylene 

reference panel). Six positions were measured within each plot and for each position, the 

detector offset was corrected (Aasen et al., 2014). Then the six spectra were averaged, 

resulting in one spectrum per field plot, which was used in the further analysis.  

Figure 6-1. Instrumental set-up: (A) terrestrial laser scanner Riegl LMS-Z420i; (B) 
tractor with hydraulic platform; (C) ranging pole with reflective cylinder. 
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6.2.2 Post-processing 

6.2.2.1 TLS data 

In the scanner software RiSCAN Pro, the DGPS data and the scans of all campaigns were 

imported into one project file per year. Based on the coordinates of the scan positions and 

reflectors, a direct georeferencing method was applied for the registration of all scan 

positions. However, a further adjustment was required due to small alignment errors between 

the point clouds. Based on the iterative closest point (ICP) algorithm (Besl and McKay, 1992), 

the Multi Station Adjustment in RiSCAN Pro allows the position and orientation of each scan 

position to be modified in multiple iterations and thus the best fitting result for all of them to 

be acquired. After optimizing the alignment with the ICP algorithm, the error, measured as 

standard deviation between used point-pairs, was 0.04 m on average for each campaign. 

The point clouds were then merged to one dataset per campaign, and the area of interest 

was extracted. As reflections on insects or small particles in the air produced noise those 

points were manually removed. In addition a filtering scheme for selecting maximum points 

was used for determining the crop surface and in the same way, a filtering scheme for 

selecting minimum points was applied to extract ground points from the data sets of each first 

campaign. Finally, the data sets with XYZ coordinates of each point were exported. 

The spatial analyses and visualization of the data were carried out in Esri ArcGIS Desktop 

10.2.1. All point clouds were interpolated using the inverse distance weighting (IDW) 

algorithm, resulting in a raster with a consistent spatial resolution of 1 cm. IDW is an exact, 

deterministic algorithm that retains measured values at their sample location. The accuracy 

of measurements with a high density is maintained as all values are kept at their discrete 

location and not moved to fit the interpolation better (Johnston et al., 2001). As introduced 

by Hoffmeister et al. (2010), the created raster data sets are referred to as crop surface models 

(CSMs). Similarly, a digital terrain model (DTM) was generated from the ground points and by 

subtracting the DTM from a CSM, plant heights were calculated pixel-wise. Moreover, by 

calculating the difference between two CSMs, plant growth was spatially measured. 

Hereinafter, growth is defined as temporal difference in height (for a detailed description of 

the CSMs creation and the calculation of plant heights see Tilly et al. (2014b)). The raster data 

sets with pixel-wise stored plant heights and growth were visualized as maps of plant height 

and growth, respectively. Then the plant heights were averaged plot-wise, allowing a common 

spatial base with the other measurements to be attained. It should be noted that previously, 

each plot was clipped with an inner buffer of 0.5 m to prevent border effects. 

6.2.2.2 Spectral data 

For this study, established VIs were used to extract information from the hyperspectral 

data, measured with the field spectrometer. From the widespread of known hyper- and 

multispectral VIs for deriving different vegetation properties, six VIs were selected from the 

literature which have been found to be related to biomass and LAI. The selection was based 

on two criteria: Firstly, to make this study comparable to other studies VIs were selected which 

have been widely used in literature. Secondly, VIs with different spectral domains were used 

to examine if this would influence the prediction power of the fused models.  
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The NDVI was originally created for broad band satellite remote sensing (Rouse et al., 1974) 

and has been widely used in the literature. It has been adapted to hyperspectral narrow bands 

and was specified for sensors such as GreenSeekerTM and Crop CircleTM (Gnyp et al., 2014b). 

Several articles reported relationships between the NDVI and biomass or LAI. However, NDVI 

has been shown to saturate in cases of dense and multi-layered canopy 

(Thenkabail et al., 2000) and to have a non-linear relationship with biophysical parameters 

such as green LAI (Haboudane et al., 2004).  

On this basis, Roujean and Breon (1995) developed the renormalized difference vegetation 

index (RDVI) for estimating the fraction of photosynthetically active radiation absorbed by 

vegetation, independent of a priori knowledge of the vegetation cover (Roujean and 

Breon, 1995). The RDVI showed strong relationships to LAI for different crops below an LAI 

of 5 (Broge and Leblanc, 2001; Haboudane et al., 2004). In dense crop canopies with an LAI 

above five, RDVI tended to overestimate the LAI (Haboudane et al., 2004). Simulations with 

the radiative transfer models PROSPECT and SAIL indicated that the RDVI is less affected by 

canopy structure, biochemistry, and soil background when estimating the LAI (Broge and 

Leblanc, 2001).  

The red edge inflection point (REIP) was introduced by Guyot and Baret (1988). The REIP 

characterizes the inflection in the spectral red edge by calculating the wavelength with 

maximum slope. A variation of the inflection is mainly related to leaf chlorophyll content, leaf 

area index, and leaf inclination angle. Furthermore, soil reflectance and sun position have 

a limited effect (Guyot et al., 1992).  

GnyLi is a four-band VI for estimating biomass in the NIR and SWIR domain 

(Gnyp et al., 2014b). This VI was developed for winter wheat and showed good performance 

on different scales from plot to regional level and across several growth stages 

(Gnyp et al., 2014b). The GnyLi considers the two reflectance maxima and minima between 

800 and 1300 nm. While the high reflectance is caused by the plants intercellular structure, 

the absorption at the minima is caused by cellulose, starch lignin, and water. These 

components contribute substantially to dry and fresh biomass and combining the two 

products helps to avoid saturation problems—this is a major advantage of this VI.  

Similar to the GnyLi, the normalized reflectance index (NRI) was also developed for 

estimating biomass in winter wheat. The NRI was empirically developed by combining the 

shape of the NDVI and the best two band combination for biomass estimation with 

EO-1 Hyperion satellite data (Koppe et al., 2010).  

The red green blue vegetation index (RGBVI) was developed for estimating biomass based 

on bands available in a standard digital camera (Bendig et al., 2015). In this study, the RGB 

data was simulated from hyperspectral data where green, red, and blue values were 

calculated as the mean of the reflectance from 530 to 560 nm, 645 to 765 nm, and 465 to 

495 nm, respectively. Thus, in contrast to other studies (Bareth et al., 2015; Bendig et al., 2015; 

Geipel et al., 2014), the RGBVI was derived from radiometrically and spectrally calibrated data.  

The six VIs used in this study can be categorized by the wavelength domains that are used 

in their formula. The NDVI, RDVI, and REIP use wavelengths in the visible and near-infrared 

domain (VISNIR VIs), the GnyLi and NRI use wavelengths in the near-infrared domain (NIR VIs), 
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while the RGBVI uses wavelengths in the visible domain (VIS VI). The formulas of the VIs used 

in this study are given in Table 6-3 (Bendig et al., 2015; Gnyp et al., 2014a; Guyot and 

Baret, 1988; Koppe et al., 2010; Roujean and Breon, 1995; Rouse et al., 1974). 

Table 6-3. Vegetation indices used in this study. 

Wave-
length 
Domains 

Vegetation 
Index 

Formula References 

NIR 
GnyLi (𝑅900 × 𝑅1050 − 𝑅955 × 𝑅1220) (𝑅900 × 𝑅1050 + 𝑅955 × 𝑅1220⁄ ) 

(Gnyp et 
al., 2014a) 

NRI (𝑅874 − 𝑅1225)/(𝑅874 + 𝑅1225) 
(Koppe et 
al., 2010) 

VISNIR 

NDVI (𝑅798 − 𝑅670) (𝑅798 + 𝑅670)⁄  
(Rouse et 
al., 1974) 

RDVI (𝑅798 − 𝑅670) (√𝑅798 + 𝑅670)⁄  

(Roujean 
and Breon, 
1995) 

REIP 
700 + 40 ∗

(
𝑅670 + 𝑅780

2
) − 𝑅700

𝑅740 − 𝑅700
 

(Guyot and 
Baret, 
1988) 

VIS RGBVI (𝑅𝑔𝑟𝑒𝑒𝑛
2 − 𝑅𝑏𝑙𝑢𝑒 × 𝑅𝑟𝑒𝑑) (𝑅𝑔𝑟𝑒𝑒𝑛

2 + 𝑅𝑏𝑙𝑢𝑒 × 𝑅𝑟𝑒𝑑)⁄  
(Bendig et 
al., 2015) 

    

6.2.3 Biomass regression models 

The main aim of this study was to establish biomass regression models (BRMs) and 

compare the potential of PH, VIs, and a fusion of PH and VIs for estimating barley biomass. 

The workflow for the BRM calibration and validation and the distinction of considered cases 

are shown in Figure 6-2. All calculations were performed in the R software environment 

(R Development Core Team, 2015). The measurements from 2012 were excluded because the 

spectral data set was inconsistent, since due to unsuitable weather, no spectral data or only 

data for less than half of the plots could be acquired corresponding to the second and fourth 

TLS campaign, respectively (Table 6-1). Furthermore, as mentioned above, the number of 

cultivars was reduced in 2014 so as a result only these six cultivars were used from the 2013 

data set to ensure comparability.  

The reduced data set was split into four subsets to obtain independent values for 

calibration and validation. The first subset contained the plot-wise averaged measurements 

of plant height, calculated VIs and destructively taken biomass from 2013 (n = 48). Each other 

subset contained the same measurements of one repetition from 2014 (each n = 60). Thus, 

each subset contained the measurements of each cultivar from one plot with low and one 

with high N fertilizer level for the given campaign dates. A cross-validation was performed 

using these data sets: For each run, one subset was excluded from the BRM calibration and 

used for validating the resulting BRM. 

First, bivariate BRMs for fresh and dry biomass were developed based on the CSM-derived 

PH or one of the six VIs. Linear and exponential BRMs were established since no trend 

regarding their usability for biomass estimations based on PH was clearly identifiable in earlier 

studies (Tilly et al., 2015). However, the biomass accumulation during the vegetative phase is 

exponential and other studies have shown that it is best estimated with exponential models 
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(Aasen et al., 2014; Thenkabail et al., 2000). For the exponential BRMs, the fresh and dry 

biomass values were natural log-transformed. Each BRM was calculated for two time frames, 

the whole observed period from tillering (BBCH stage 2) till the end of fruit development 

(BBCH stage 7) and the pre-anthesis period (till BBCH stage 6) (Table 6-2). 

The latter period is important as, for example, adequate crop conditions could buffer the 

grain yield against later environmental stress (Bidinger et al., 1977). Thus, campaign numbers 

3 to 6 and 2 to 6 were considered for 2013 and 2014, respectively, whereas each final 

campaign was excluded for the pre-anthesis BRMs. Considering the four possible subset 

combinations, overall 224 bivariate BRMs were established. Second, multivariate BRMs were 

established based on PH fused with each VI. Since they were also established as linear and 

exponential BRMs for fresh and dry biomass for both time frames, the four possible subset 

combinations led to 192 multivariate BRMs in total. 

The calibration was evaluated by calculating the coefficient of determination (R2) for PH or 

VI vs. measured biomass and the standard error of the estimate (SEE) (Hair et al., 2010). For 

the validation, besides the R2 (estimated vs. measured biomass), the root mean square error 

(RMSE), and Willmott’s index of agreement (d) (Willmott and Wicks, 1980; Willmott, 1981) 

were determined. For each case, the results from the four runs were averaged. Finally, the 

robustness of the BRMs was evaluated by calculating the ratio between the R2 values of BRM 

calibration and validation. 

Figure 6-2. Workflow for the calibration and validation of the biomass regression models and 
distinction of cases for each model. 
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6.3 Results 

6.3.1 Acquired plant parameters 

The TLS-derived point clouds were used to establish CSMs and spatially calculate plant 

height. Results of the pixel-wise calculation were visualized in maps of plant height for each 

plot. As an example for this, maps of four plots and corresponding mean heights are shown in 

Figure 6-3 for the barley cultivar Trumpf. In the first campaign of 2013, plants were too small 

to obtain reasonable results. Thus, maps are presented for the last six and five campaigns of 

Figure 6-3. Maps of four plots from the last six and five campaigns of 2013 and 2014, respectively. One 

plot of each N fertilizer level of the barley cultivar Trumpf is shown for each year (: Plot mean height). 
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2013 and 2014, respectively. One plot of each N fertilizer level is shown for both years. For the 

temporal development, an increase in plant height is observable until anthesis (BBCH stage 6) 

and afterwards, the development of ears begins and plant heights decrease due to the 

associated sinking of heads. Within all plots, the detailed representation of plant height is 

visible, which enables spatial differences in plant height to be detected. As a result, the exact 

calculation of mean heights can be assumed. A comparison of the plot-wise averaged values 

does not show that the fertilization rate directly influenced plant height. 

The plot-wise averaged plant heights were used for statistical analysis and a comparison 

with the manual measurements. The linear regressions between all mean CSM-derived and 

manual measured plant heights for each of the three years is illustrated below in Figure 6-4. 

High coefficients of determination (R2) confirm the TLS-derived results. The R2 across all years 

is 0.92, yearly separated values are also given in Figure 6-4. Moreover, a varying scattering 

between the years is indicated. The scattering is the lowest in the 2014 data set, which is 

presumably caused by the reduced number of cultivars in 2014 and associated with more 

similar plant heights. Table A 6-1 in the Appendix gives the mean, minimum, and maximum 

values of all plot-wise averaged values as well as the standard deviation per campaign of the 

CSM-derived and manual measured plant heights. Clearly observable lodging occurred in 

some plots between the second and third or fourth and fifth campaign in 2012 and 2013, 

respectively (for more details see Tilly et al. (2014a). Those plots were neglected for the 

analysis and thus reduced the number of samples for the affected campaigns. As already 

stated for the visualized plots (Figure 6-3), an increase in plant height is detectable during 

pre-anthesis and a slight decrease is detectable afterwards. In addition, the difference 

Figure 6-4. Regression of the mean CSM-derived and manual measured plant heights (2012: n = 131; 
2013: n = 196; 2014: n = 180). 
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between the mean values of both measurement methods is lower than 10% for almost all 

campaigns. 

The field spectrometer measurements were used for calculating the six VIs (GnyLi, NDVI, 

NRI, RDVI, REIP, and RGBVI). As the spectral measurements from 2012 were not usable for 

a linkage with the TLS data, only the data sets from 2013 to 2014 were used. Moreover, from 

the data set of 2013 only measurements of the cultivars selected in 2014 were considered and 

the data sets of plant height and biomass were accordingly adapted to ensure comparability. 

For each campaign, the values for both N fertilizer levels were averaged. Table 6-4 shows the 

statistics for the reduced data sets of the nine regarded campaigns. Additionally, the yearly 

mean biomass values were calculated for the pre-anthesis and whole observed period, as 

reference for the later evaluation of the biomass estimation. 

Table 6-4. Statistics for the plot-wise averaged CSM-derived plant heights and destructively taken 
biomass for the reduced data sets of 2013 and 2014 (n: number of samples; : mean value; min: 
minimum; max: maximum; SD: standard deviation). 

    CSM-derived plant height (m) Fresh biomass (g/m²) Dry biomass (g/m²) 

 n  min max SD  min max SD  min max SD 

2013             

3 12 0.22 0.01 0.39 0.13 1282.92 491.00 2172.50 473.20 168.31 52.00 272.00 56.59 

4 12 0.47 0.24 0.71 0.17 2891.54 1560.25 4465.50 806.12 415.31 205.00 725.00 146.02 

5 12 0.78 0.58 0.99 0.13 5070.42 2668.75 7730.00 1561.62 883.38 434.50 1429.25 328.93 

6 12 0.78 0.65 0.93 0.07 4631.73 2986.25 7655.75 1193.95 1258.88 886.75 1687.50 219.92 

 Mean pre-anthesis period 3081.63 1573.33 4789.33 946.98 489.00 230.50 808.75 177.18 

 Mean whole observed period 3469.15 1926.56 5505.94 1008.72 681.47 394.56 1028.44 187.86 

2014             

2 36 0.17 0.12 0.25 0.03 656.28 266.25 1116.50 202.07 89.01 33.00 155.25 27.66 

3 36 0.41 0.34 0.52 0.04 2227.08 1226.75 3236.50 531.72 289.83 165.75 417.75 66.03 

4 36 0.63 0.53 0.70 0.04 2825.48 1643.75 4162.00 603.19 465.49 276.62 706.65 97.89 

5 36 0.81 0.69 0.99 0.05 3185.13 2106.50 5433.25 687.74 777.23 486.35 1271.35 156.02 

6 36 0.78 0.66 0.99 0.05 3569.34 1994.75 6044.00 898.59 1166.38 652.60 1876.35 276.46 

 Mean pre-anthesis period  2223.49 1310.81 3487.06 506.18 405.39 240.43 637.75 86.90 

  Mean whole observed period 2492.66 1447.60 3998.45 584.66 557.59 322.86 885.47 124.81 

          

6.3.2 Biomass estimation 

The barley biomass was estimated by establishing 224 bivariate and 192 multivariate 

biomass regression models (BRMs) based on plant height (PH) and vegetation indices (VIs). 

Table 6-5 shows the statistical parameters for the BRM calibration. The table is vertically 

divided into bivariate or multivariate BRMs and the regarded time frames. Horizontally it 

distinguishes between dry or fresh biomass and linear or exponential BRMs. However, the 

results of the linear and exponential BRMs cannot be directly compared due to the 

log-transformation of biomass for the latter ones. Since the biomass accumulation during the 

vegetative phase is exponential and other studies have shown that it is best estimated with 

exponential BRMs (Aasen et al., 2014; Thenkabail et al., 2000) only the exponential BRMs are 

regarded in the following. For each model the coefficient of determination (R2) and the 

standard error of the estimate (SEE) are given as mean values of the four possible subset 

combinations. 
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Each established BRM was validated with the remaining fourth subsets. Table 6-6 shows 

the R2, root mean square error (RMSE), and Willmott’s index of agreement (d) for the model 

validation as mean values of the four subset combinations. The subdivision of the table is 

equivalent to that of Table 6-5. The results of the bivariate BRMs are regarded in the following 

subsection; the fusion of both plant parameters to multivariate BRMs is examined in the last 

subsection of this chapter. As the results of the calibration and validation show a similar 

tendency, only the values of the validation are stated. However, to evaluate the robustness of 

the BRMs, an overall comparison of differences between calibration and validation is given at 

the end of this chapter.  

Table 6-5. Statistics for the model calibration as mean values of the four subset combinations 
(R2: coefficient of determination; SEE: standard error of the estimate). 

  Bivariate BRMs Multivariate BRMs 

    Whole period Pre-anthesis  Whole period Pre-anthesis 

  Estimator R2 SEE 
a R2 SEE 

a Estimatorb R2 SEE 
a R2 SEE 

a 

D
ry

 b
io

m
as

s 

Li
n

e
ar

 

PH 0.65 10.03 0.76 5.73      

GnyLi 0.52 11.75 0.68 6.67 GnyLi 0.65 34.63 0.77 25.41 

NDVI 0.07 16.38 0.34 9.56 NDVI 0.69 21.49 0.76 20.73 

NRI 0.54 11.58 0.70 6.40 NRI 0.65 35.04 0.77 24.86 

RDVI 0.13 15.87 0.39 9.21 RDVI 0.69 19.18 0.76 21.40 

REIP 0.12 15.92 0.58 7.60 REIP 0.73 1933.86 0.76 258.29 

RGBVI 0.05 16.55 0.26 10.10 RGBVI 0.68 22.28 0.76 23.23 

Ex
p

o
n

e
n

ti
al

 

PH 0.84 0.37 0.84 0.34      

GnyLi 0.80 0.42 0.85 0.32 GnyLi 0.86 2.43 0.88 2.14 

NDVI 0.30 0.77 0.61 0.53 NDVI 0.85 2.84 0.88 3.99 

NRI 0.81 0.40 0.87 0.30 NRI 0.87 2.29 0.89 1.96 

RDVI 0.41 0.71 0.68 0.48 RDVI 0.85 2.52 0.88 2.84 

REIP 0.37 0.73 0.77 0.40 REIP 0.84 30.37 0.86 48.49 

RGBVI 0.23 0.81 0.48 0.60 RGBVI 0.85 2.51 0.87 2.73 

  Estimator R2 SEE 
a R2 SEE 

a Estimatorb R2 SEE 
a R2 SEE 

a 

Fr
e

sh
 b

io
m

as
s Li

n
e

ar
 

PH 0.59 901.99 0.60 843.32      

GnyLi 0.58 913.81 0.62 829.48 GnyLi 0.62 3295.30 0.64 2968.91 

NDVI 0.25 1222.39 0.42 1022.79 NDVI 0.60 4561.69 0.63 5008.60 

NRI 0.59 909.94 0.62 821.35 NRI 0.62 3056.34 0.64 2718.09 

RDVI 0.35 1143.49 0.50 945.26 RDVI 0.61 3813.94 0.64 3955.80 

REIP 0.30 1180.82 0.55 894.62 REIP 0.60 14599.87 0.63 59169.39 

RGBVI 0.22 1243.84 0.37 1066.53 RGBVI 0.61 4007.93 0.64 3881.46 

Ex
p

o
n

e
n

ti
al

 

PH 0.70 0.37 0.68 0.39 PH     

GnyLi 0.76 0.33 0.76 0.34 GnyLi 0.77 1.87 0.77 1.77 
NDVI 0.46 0.50 0.65 0.41 NDVI 0.77 3.74 0.79 4.30 
NRI 0.77 0.33 0.77 0.33 NRI 0.77 1.67 0.77 1.56 

RDVI 0.59 0.43 0.74 0.35 RDVI 0.79 2.69 0.82 2.89 
REIP 0.47 0.49 0.71 0.37 REIP 0.72 22.27 0.74 73.05 

RGBVI 0.38 0.53 0.55 0.47 RGBVI 0.77 2.58 0.78 2.68 
a The SEE for exponential models is calculated from natural log-transformed biomass values; b each fused with PH. 
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Table 6-6. Statistics for the model validation as mean values of the four subset combinations (R2: 
coefficient of determination; RMSE: root mean square error (g/m²); d: Willmott’s index of agreement). 

  Bivariate BRMs Multivariate BRMs 

     Whole period Pre-anthesis   Whole period Pre-anthesis 

  Estimator R2 RMSEa d R2 RMSEa d Estimatorb R2 RMSEa d R2 RMSEa d 

D
ry

 b
io

m
as

s 

Li
n

e
ar

 

PH 0.66 257.57 0.88 0.80 147.75 0.92        

GnyLi 0.54 299.67 0.81 0.72 173.31 0.88 GnyLi 0.65 262.19 0.88 0.79 148.20 0.92 

NDVI 0.07 412.70 0.33 0.38 244.47 0.64 NDVI 0.71 250.35 0.89 0.80 148.32 0.92 

NRI 0.55 295.41 0.82 0.74 166.41 0.89 NRI 0.66 261.77 0.88 0.80 147.67 0.92 

RDVI 0.13 400.36 0.44 0.41 233.53 0.71 RDVI 0.72 247.16 0.89 0.80 148.27 0.92 

REIP 0.15 404.95 0.46 0.68 197.50 0.83 REIP 0.73 228.46 0.91 0.80 147.88 0.92 

RGBVI 0.04 416.42 0.26 0.28 254.41 0.58 RGBVI 0.70 261.30 0.88 0.80 149.33 0.92 

Ex
p

o
n

e
n

ti
a

l 

PH 0.85 0.39 0.95 0.85 0.36 0.95        

GnyLi 0.80 0.42 0.94 0.86 0.33 0.95 GnyLi 0.87 0.36 0.96 0.89 0.31 0.96 

NDVI 0.29 0.77 0.63 0.59 0.54 0.81 NDVI 0.85 0.38 0.95 0.87 0.30 0.96 

NRI 0.81 0.40 0.94 0.87 0.31 0.96 NRI 0.87 0.36 0.96 0.89 0.29 0.96 

RDVI 0.40 0.71 0.73 0.66 0.48 0.87 RDVI 0.85 0.38 0.95 0.88 0.30 0.96 

REIP 0.40 0.75 0.72 0.82 0.43 0.90 REIP 0.85 0.39 0.95 0.89 0.34 0.95 

RGBVI 0.22 0.82 0.55 0.48 0.62 0.75 RGBVI 0.85 0.38 0.95 0.86 0.31 0.96   

Estimator R2 RMSEa d R2 RMSEa d Estimatorb R2 RMSEa d R2 RMSEa d 

Fr
e

sh
 b

io
m

as
s 

Li
n

e
ar

 

PH 0.67 963.45 0.84 0.70 892.55 0.85        

GnyLi 0.65 970.70 0.83 0.72 886.24 0.84 GnyLi 0.69 939.84 0.85 0.74 861.73 0.86 

NDVI 0.27 1254.02 0.58 0.51 1053.83 0.70 NDVI 0.67 952.58 0.84 0.73 862.84 0.85 

NRI 0.65 962.49 0.83 0.72 873.75 0.85 NRI 0.69 938.46 0.85 0.74 857.99 0.86 

RDVI 0.38 1175.32 0.67 0.59 964.42 0.77 RDVI 0.68 943.96 0.85 0.74 841.36 0.86 

REIP 0.41 1244.11 0.66 0.77 951.74 0.81 REIP 0.67 966.67 0.84 0.77 908.74 0.84 

RGBVI 0.21 1260.32 0.53 0.41 1066.26 0.67 RGBVI 0.66 948.90 0.85 0.71 852.97 0.86 

Ex
p

o
n

e
n

ti
a

l 

PH 0.73 0.40 0.89 0.71 0.42 0.88        

GnyLi 0.78 0.35 0.92 0.79 0.36 0.91 GnyLi 0.79 0.34 0.92 0.80 0.36 0.92 

NDVI 0.44 0.51 0.73 0.64 0.42 0.83 NDVI 0.78 0.34 0.92 0.79 0.34 0.92 

NRI 0.77 0.34 0.92 0.79 0.35 0.92 NRI 0.79 0.34 0.92 0.79 0.35 0.92 

RDVI 0.57 0.44 0.82 0.73 0.36 0.89 RDVI 0.80 0.33 0.93 0.83 0.31 0.93 

REIP 0.54 0.53 0.77 0.82 0.42 0.87 REIP 0.77 0.39 0.90 0.82 0.40 0.88 

RGBVI 0.36 0.54 0.68 0.53 0.47 0.78 RGBVI 0.76 0.34 0.92 0.76 0.34 0.92 
a The RMSE for exponential models is calculated from natural log-transformed biomass values; b each fused with PH. 

6.3.2.1 Bivariate models 

All cases show moderate to good results for bivariate BRMs based on PH. For each time 

frame, PH shows the same and similar relationship with dry and fresh biomass, respectively 

(Table 6-6). Scatterplots of measured vs. estimated biomass for selected examples are shown 

in the last subsection in comparison with multivariate BRMs. 

Most VIs lead to better results for pre-anthesis than for the whole observed period. For dry 

biomass, the RGBVI performs worst for both time frames (Table 6-6, top left quarter). The 

largest difference between the whole observed period and the pre-anthesis can be found for 

the NDVI (R2 = 0.29 vs. 0.59), while the NIR VIs as the GnyLi perform more consistently 

(R2 = 0.80 vs. 0.86). Both, the NRI and the GnyLi also reveal best results for pre-anthesis 

(R2 = 0.87, 0.86) and for the whole observed period (R2 = 0.81, 0.80). In pre-anthesis, the 

relative difference between the NIR VIs and VISNIR VIs is smaller. Figure 6-5 shows 

scatterplots of measured vs. estimated dry biomass of one validation dataset for selected VIs 

and as expected from the high R2 values, the estimated biomass from the GnyLi BRM 

corresponds well with the measured biomass (close to the 1:1 line). In pre-anthesis, the same 

applies the REIP whereas the NDVI and RGBVI saturate at about 185 g/m². For the whole 
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observed period, biomass estimated by the BRM of REIP, NDVI and RGBVI does not align well 

with what was measured. The scatterplots reveal that the dynamic range of the models does 

not cover the range of the measured biomass values.  

Better results are also obtained for pre-anthesis of fresh biomass than for the whole 

observed period, although the differences are smaller than for dry biomass. The NIR VIs 

perform most consistently for both periods and have the highest R2 values for the whole 

observed period. However, particularly for the whole observed period, the relative difference 

between the NIR VIs and the VIS and VISNIR VIs is smaller than for dry biomass and in 

pre-anthesis, the relative difference between the NIR VIs and other VIs is further reduced. 

Additionally, the REIP (R2 = 0.82) yields better results than the NIR VIs (each R2 = 0.79). Again, 

the RGBVI performs worst. Figure 6-6 shows scatterplots of measured vs. estimated fresh 

biomass of one validation dataset for selected VIs. As expected from the high R2 values, 

biomass estimated from the GnyLi BRM corresponds well with the measured values (close to 

the 1:1 line). In pre-anthesis, the same applies for the REIP, whereas the NDVI and RGBVI 

saturate at about 1,375 g/m². As for dry biomass, the BRMs based on the REIP and particularly 

the NDVI and RGBVI show a poor relationship between estimated and measured fresh 

biomass. Overall, most VISNIR VIs and the RGBVI yield better results for fresh biomass than 

Figure 6-5. Scatterplots of measured vs. estimated dry biomass for one 
validation data set for NDVI, RGBVI, REIP, and GnyLi (exponential model). Pre-
anthesis: crosses and solid green line; whole observed period: circles and 
dashed black line; 1:1 line: light grey. 
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for dry biomass. The NIR VIs perform best and most consistently (Table 6-6, bottom left 

quarter).  

6.3.2.2 Multivariate models 

For dry biomass, PH is the best individual estimator across the whole observed period 

(R2 = 0.85) and a slight improvement is only achieved when fused with one of the NIR VIs in 

a multivariate BRM (both R2 = 0.87). In pre-anthesis, PH and the NIR VIs perform similarly to 

the bivariate BRMs (R2 = 0.85, 0.86, 0.87) and when PH is fused with the NIR VIs or the REIP, 

the predictability slightly increases (R2 = 0.89).  

For fresh biomass across the whole observed period, PH (R2 = 0.73) yields comparable 

results to the NIR VIs (both R2 = 0.77) although the fusion of PH with NIR VIs slightly improves 

the estimation (both R2 = 0.79). Only the multivariate BRM from PH and RDVI is very slightly 

better (R2 = 0.80). In pre-anthesis, REIP, GnyLi, NRI, and RDVI explain up to 11% more variation 

(R2 = 0.82, 0.79, 0.79, 0.73) then PH (R2 = 0.71). When PH is fused with any VI, the 

predictability is improved compared to most individual estimators and even the RGBVI in 

combination with PH improves the estimation of dry and fresh biomass for pre-anthesis 

yielding an R2 of 0.71 and 0.76, respectively. In the fused analysis, the RGBVI performs only 

slightly weaker than the other VIs. Nevertheless, only the RDVI fused with PH slightly increases 

the predictability (R2 = 0.83) compared to the bivariate BRM based on the RDVI. 

Figure 6-6. Scatterplots of measured vs. estimated fresh biomass for one 
validation data set for NDVI, RGBVI, REIP, and GnyLi (exponential model). 
Pre-anthesis: crosses and solid green line; whole observed period: circles 
and dashed black line; 1:1 line: light grey. 
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Figure 6-7 shows the scatterplots of measured vs. estimated values of one validation dataset 

from the bivariate BRM of PH and the multivariate BRM of PH and GnyLi for dry biomass in 

pre-anthesis and fresh biomass across the whole observed period. The model fit is only slightly 

improved by fusing PH with the VI. 

The robustness of the models was evaluated by calculating the ratio between the R2 values 

of model calibration and validation for each BRM (Appendix Table A 6-2). Since the R2 of 

calibration was divided through the R2 of validation, values above 1 indicate better results 

from the calibration and below 1 indicate better results from the validation. Consequently, 

values close to 1 show a robust performance. For the bivariate BRMs, PH and almost all VIs 

are supported as robust estimators by ratios close to 1 for all cases. The weakest ratios are 

attained for the REIP, in particular for fresh biomass with linear BRMs (0.73, 0.71). For the 

multivariate BRMs, good ratios are found for all cases. Only the linear BRMs for fresh biomass 

show slightly weaker values for the pre-anthesis period. 

6.4 Discussion 

The overall aim of this study was to evaluate whether the fusion of PH and VIs can improve 

the predictability of dry and fresh barley biomass compared to each parameter as individual 

Figure 6-7. Scatterplot for one validation data set for the pre-anthesis 
(green) and for the whole observed period (black) of the bivariate BRM of 
PH (circles and solid regression line) and multivariate BRM of PH and GnyLi 
(crosses and dashed regression line) for dry biomass (top) and fresh 
biomass (bottom) (all exponential models); 1:1 line: light grey. 
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estimator. For this work, the use of TLS to derive PH was verified and bivariate BRMs based 

on PH or one of six VIs as well as multivariate BRMs based on the fusion of PH with each VI 

were established. Extensive fieldwork over three years supported the practical application of 

the presented methods for monitoring crop development on plot level. The same instruments 

were used for all measurements whereby variations through different sensors could be 

excluded. However, the design of the field experiment and the measurement program was 

slightly modified and optimized over the years. Hence, only a part of the acquired data was 

used for the final model generation in order to ensure the comparability between the data 

sets. In the following, first the retrieval of PH from TLS data is discussed before the different 

BRMs are examined.  

6.4.1 TLS-derived plant height 

The presented study verified the reliability of the laser scanner Riegl LMS-Z420i for 

capturing crop surfaces. In comparison with past studies (Hoffmeister et al., 2010; 

Tilly et al., 2015), the scanning angle to the field was optimized through the elevated position 

on the hydraulic platform. However, uncertainties still remain about the influence of the 

scanning angle and the fixed position of the scanner during the measurements. As maintained 

by Ehlert and Heisig (2013)—the scanning angle can cause overestimations in the height of 

reflection points and should be considered in the calculation of heights. In this study, the crop 

surface was determined from the merged and cleaned point clouds of four scan positions, 

filtered with a scheme for selecting maximum points. Overestimations should therefore be 

precluded. 

For the practical implementation of CSM-derived plant height measurements, further 

aspects have to be considered. Usually, the factors time and cost have a major influence on 

choosing a system. As shown by Hämmerle and Höfle (2014) the appropriate point density for 

generating a CSM varies depending on the application. In further studies, cost-efficient 

systems, such as the Velodyne HDL-64E (Velodyne, 2014), should be considered to investigate 

their potential for capturing crop surfaces in an adequate resolution. In the distant future, 

low-cost stationary systems might get permanently established for monitoring plant growth 

on field level. Moreover, recent developments have brought up new laser scanning platforms 

that might accelerate the field measurement process and optimize the scanning angle. First, 

ground-based mobile laser scanning (MLS) systems (Kukko et al., 2012) should be taken into 

account for increasing the homogeneous distribution in the point cloud and thus enhancing 

a uniform field coverage. Second, unmanned aerial vehicles (UAVs), such as the recently 

introduced Riegl RiCOPTER (Riegl LMS GmbH, 2015), should be examined as a potential 

platform of a lightweight airborne laser scanning (ALS) systems. Promising results have already 

been achieved for measuring tree heights (Jaakkola et al., 2010) or detecting pruning of 

individual stems (Wallace et al., 2014) with UAV-based laser scanning. However, as examined 

in a comparative study for TLS and common plane-based ALS, the scanning angle and possible 

resolution influence the results (Luscombe et al., 2014) and thus have also to be taken into 

account for studies on UAV-based scanning systems.  

In this study, TLS measurements were used to derive 3D information of points. As shown 

in other studies, captured intensity values could be used for qualitative analyses of the points, 
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such as detecting single plants (Hoffmeister et al., 2012; Höfle, 2014). Whilst such analyses 

were not an object of this study they should be considered for further investigations. 

Moreover, full-waveform analysis, commonly known from ALS, can simplify the distinction 

between laser returns on canopy and ground returns in TLS data (Elseberg et al., 2011; 

Pirotti et al., 2013). The scanner used in this study however is not capable of capturing the full 

waveform. 

The maps of plant height demonstrate the potential of the present approach for deriving 

plant height information on plot level in a very high resolution. The methodology of spatial 

plant height mapping can be scaled to field level, as long as the maximum range of the scanner 

is regarded and the point density is above the required minimum. As shown by Hämmerle and 

Höfle (2014), the coverage of the field and attained mean heights are influenced by the point 

density. The approach of pixel-wise calculating plant height from TLS-derived CSMs has 

already shown good results at the field level for monitoring a maize field, about 80 m by 160 m 

in size (Tilly et al., 2014c) and a sugar beet field, about 300 m by 500 m in size 

(Hoffmeister et al., 2010) captured from four and eight scan positions, respectively. Further 

studies are necessary for determining crop- or case-specific minimum values for the point 

density. In this context, the used sensor and its maximum range influence the required 

number of scan positions. 

Nevertheless, for this study, high coefficients of determination between averaged 

CSM-derived and manual measured plant heights validate the TLS measurements. For the 

absolute values, differences between the measurement methods have to be considered. 

Whereas for the manual measurement the heights of ten plants were averaged per plot, the 

CSM captured the entire crop surface. Consequently, differences in the mean heights 

occurred, which make precision analysis between TLS data and manual measurements 

infeasible. The precision of TLS measurements for agricultural applications is presumed from 

other studies (Höfle, 2014; Lumme et al., 2008). It is important to note that a key advantage 

of the TLS data is that while plants for the manual measurements are subjectively selected, 

CSMs enable an objective assessment of spatially continuous plant height.  

6.4.2 Biomass estimation from plant height 

Generally, PH performed well for the estimation of biomass in the pre-anthesis and the 

whole observed period. For dry biomass, PH was the best predictor for the whole observed 

period and similar good predictor as the best performing VIs for the pre-anthesis. However, 

PH performed far better for dry biomass than for fresh biomass, although these values are 

only distinguished by the water content of the sample. Thus, a possible explanation is the fact 

that the water content is not only influenced by the changing plant phenology across the 

growing season, but also by varying weather conditions. Moreover, during each day the 

available soil water and transpiration conditions vary. Hence, the amount of fresh biomass 

might vary more between the campaigns while the dry biomass is less influenced. Since PH is 

hardly affected by the water content of the plants, the varying water content in the fresh 

biomass adds noise to the BRM based on PH which results in lower R2 values. 
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6.4.3 Biomass estimation from vegetation indices 

All VIs in this study have previously shown a relationship with biomass and LAI. Since the 

VIs use different bands within the spectral range, they were subdivided into three categories 

VIS VIs (RGBVI), VISNIR VIs (NDVI, RDVI, REIP), and NIR VIs (NRI, GnyLi). The VIs showed varying 

performances for the estimation of dry and fresh biomass, also depending on the regarded 

time frame of the growing season. Generally, the VIs within a category showed a similar 

behavior.  

The saturation problem of the NDVI type VISNIR VIs was confirmed: Typically, crops reach 

100% canopy cover around mid-vegetative phase. However, most crops continue to 

accumulate biomass and LAI afterwards. At a LAI of about 2.5 - 3, the absorbed amount of red 

light reaches a peak while the NIR scattering by leaves continues to increase. Thus, the ratio 

of NDVI type VISNIR VIs will only show slight changes (Thenkabail et al., 2000). In this study, 

the sensitivity thresholds were about 185 g/m² and 1,375 g/m² for dry and fresh biomass, 

respectively. Additionally, after heading the canopy de-greens due to flowering and fruit 

development (after BBCH 5, Table 6-2) This leads to an increased reflectance in the red part 

of the spectrum and thus, decreases values of the VISNIR VIs, while the biomass does not 

decrease. Herein, this discrepancy resulted in an inadequate model parameterization for the 

BRMs of the VISNIR VIs and poorer results for the whole observed period than for 

pre-anthesis.  

A similar behavior was observable for the RGBVI. The inferior results might be explained by 

the fact that this VI does not take the reflectance in the NIR region into account, where most 

of the absorption features for biomass-related plant compounds are situated 

(Kumar et al., 2001). These results align well with the ones presented by Bendig et al. (2015), 

where low correlations were found for the RGBVI with biomass after booting stage (BBCH 4, 

Table 6-2). 

In pre-anthesis, relationships of the RGBVI with dry and fresh biomass were similar. These 

results suggest that the RGBVI is mostly related with vegetation cover and not directly with 

biomass. 

In contrast, NIRVIs, such as GnyLi and NRI, use bands only in the NIR and are thus not 

affected by the absorption in the red part of the spectrum, which could explain the overall 

more consistent and better performance of the NIR VIs, particularly after anthesis. A later 

saturation of these VIs aligns well with other studies (Gnyp et al., 2014a; Koppe et al., 2010). 

Similarly, the REIP did not show any saturation effects in the pre-anthesis and yielded very 

good results for dry and fresh biomass. These findings can be explained by the major influence 

of the NIR bands that are not normalized as they are in the NDVI type VIs. Thus, the REIP 

saturated later than the VISNIR and VIS VIs. Nevertheless, across the whole observed period, 

the performance of the REIP also decreased due to saturation. The importance of the NIR 

domain for biomass estimation aligns with other studies (Aasen et al., 2014; 

Gnyp et al., 2014a; Koppe et al., 2010; Marshall and Thenkabail, 2015) and should be further 

investigated. Similar to PH, the NIR VIs performed better for dry than for fresh biomass while 

the VISNIR VIs generally performed better with fresh biomass. This suggests that the VISNIR 
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VIs respond more to the canopy water content and the related reflectance change in the NIR 

shoulder rather than directly to the biomass.  

Overall, the results show that the NIR VIs perform best in the prediction of fresh and dry 

biomass. Moreover, the results indicate that the VIS and VISNIR VIs might not be directly 

related to biomass. However, no rigorous sensitivity analysis was carried out in this study but, 

as indicated by the results, such analyses should be carried out in the future. 

In general, hyperspectral field measurements have been shown to be useful in earlier 

studies to estimate biomass (Aasen et al., 2014; Gnyp et al., 2014b; Marshall and Thenkabail, 

2015; Thenkabail et al., 2013). However, VIs are prone to errors by illumination changes 

(Damm et al., 2015) and multiangular reflection effects (Burkart et al., 2015). So far, the 

influence of these effects on the estimation of plant parameters have not been 

comprehensively investigated and should be examined for evaluating the potential of VIs for 

plant parameter estimations. Moreover, ground-based spectrometer measurements are 

laborious and time-consuming. Automated platforms are under development in different 

fields of remote sensing to overcome this difficulty but they have not yet become standard. 

Kicherer et al. (2015) developed a robotic platform for phenotyping grapevine based on 

automatic image acquisition. Results of a mobile multi-sensor phenotyping platform for 

phenotyping of winter wheat are presented by Kipp et al. (2014). Moreover, hyperspectral 

UAV-based systems showed promise (Aasen et al., 2015; Bareth et al., 2015; 

Honkavaara et al., 2013; Quemada et al., 2014; Suomalainen et al., 2014). Unfortunately, the 

promising NIR domain is currently not well covered by UAV sensing systems.  

6.4.4 Biomass estimation with fused models 

Leaves make up a major part of the biomass, and VIs related to biomass are often also 

responsive to LAI (Thenkabail et al., 2002, 2000). Thus, it was assumed that the spectral 

information would complement the PH information by adding information about the canopy 

density and cover.  

As described above, PH and VIs showed varying performances in the estimation of fresh 

and dry biomass and for pre-anthesis or the whole observed period. For dry biomass in 

pre-anthesis, the NIR VIs performed slightly better than PH. Here, the fusion with all VIs 

improved the predictability, whereby the NIR and VISNIR VIs yielded the best results. This can 

be explained by the sensitivity of the VIs to the vegetation cover in early growth stages. For 

the whole observed period, PH clearly outperformed the VIs in the multivariate BRMs and only 

the fusion with the NIR VIs increased the predictability slightly compared to PH alone. For the 

VIS and VISNIR VIs, the above described saturation effects might have counteracted the 

positive effect of the vegetation cover estimation in the early growth stages. Additionally, for 

pre-anthesis and across the whole observed period, the multivariate BRMs performed 

similarly regardless which VI was used. This indicates that most of the prediction power can 

be accounted to PH. 

For fresh biomass across the whole observed period, the NIR VIs performed best, followed 

by PH. Although the VISNIR VIs did not perform well in the bivariate BRMs, they could improve 

the results when fused with PH. As described above, VISNIR VIs respond to the water content. 

Thus, they might have complement the PH information for the estimation of fresh biomass. 
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Still, only a slight improvement was achieved with the fused models compared to the NIR VIs 

alone and overall, the results of multivariate BRMs with different VIs differed only slightly.  

In pre-anthesis, only the NDVI and RGBVI performed poorer than PH while the REIP 

performed best for the fresh biomass. In combination with PH, the results of the NDVI and 

RDVI were improved the most, while the latter one also achieved the best results of all fused 

models. For the NIR VIs and REIP none or only very minor improvements were achieved and 

as for the whole observed period, the water was important because it influences the 

reflectance in the NIR. Additionally, the VIs correspond to vegetation cover in the early growth 

stages. Thus, in pre-anthesis already the VIs performed well and PH only rarely contributed to 

the prediction power. Only the RGBVI, NDVI, and RDVI might have carried complementary 

information to the PH.  

In this study, the NIR VIs showed the overall best performance of the VIs and seemed to 

carry similar information as PH. Overall, PH and NIR VIs showed the best potential for biomass 

estimation as individual and fused estimators. This aligns with a recent study by Marshall and 

Thenkabail (2015), in which they have shown the importance of PH and the NIR domain for 

fresh biomass estimations. The VISNIR VIs seemed to be influenced by the water content and 

their performance strongly depended on the regarded time frame of the growing season. 

Although, no comprehensive sensitivity analysis was carried out, these findings align well with 

other studies (Gnyp et al., 2014a, 2013). Further studies are needed to investigate the 

influence of the growing stage on the estimation, and whether estimators, which have been 

found as suitable in across growth stage estimations, are suitable for estimation at individual 

growth stages. Such in-season estimations are particularly important for applications in 

precision agriculture. Additionally, in this study VIs known for estimating biomass from 

hyperspectral data were used. Thus, the full potential of the fusion of 3D spatial and spectral 

data may not have been explored. Future studies should investigate whether other parts of 

the spectral range complement PH information better.  

Overall, this study demonstrated the strength of bivariate BRMs based on PH and NIR VIs 

for estimating biomass, with only slight improvements achievable through multivariate 

models. In contrast, the weak performances of the VIS and VISNIR VIs as individual estimators 

were compensated through the fusion with PH. However, statements have to be limited, since 

the models indicated that PH contributed the most to the prediction power. In this context, it 

has to be noted that neither linear nor exponential models reflected the relation between 

estimators and biomass perfectly and thus more complex functions have to be considered, 

which might take the benefits of VIs, like sensitivity to water content, better in to account. 

For practical applications the benefit of the fused models might be outweighed by the 

expenses to deploy two different systems. Referring to this, limitations through the attainable 

spatial and temporal resolution of each system have to be regarded. As already mentioned, 

TLS measurements can be scaled up to larger fields, as long as a sufficiently point density can 

be achieved, which has to be determined crop- and case-specific in further studies. Apart from 

that, laser scanning appeared as powerful tool for the non-destructive and objective 

assessment of spatially resolved plant height data. Statements about the accuracy of the 

measured plant heights are hardly possible due to the already mentioned different spatial 
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resolution of the plant height measurements, however the averaged difference of 0.05 m 

between TLS-derived and manual measured plant heights corroborate the results 

(Table A 6-1). A main benefit of the field spectrometer measurements is the high credibility of 

the acquired spectral data, based on a large number of former studies, however the 

dependence on solar radiation and the small numbers of measurements per regarded spatial 

area, herein per plot, are the main disadvantages. Consequently, systems are required which 

are capable to assess larger areas in less time with the same accuracy of the results. Ideally, 

spatial and spectral information should be acquired directly through one sensor. For example, 

recently developed sensing systems and techniques allow to create hyperspectral point clouds 

(Vauhkonen et al., 2013) and hyperspectral digital surface models (Aasen et al., 2015) with 

only one sensor and thus, derive 3D spatial and hyperspectral information at the same time. 

Thus, it can be expected that 3D hyperspectral information will become increasingly available 

and combined analysis approaches should be further developed. 

6.5 Conclusion and outlook 

Continuously conducting a field experiment with different barley cultivars and the related 

TLS, field spectrometer, and manual measurements enabled the acquisition of an extensive 

data set. High R2 values up to 0.89, between TLS-derived and manual measured plant heights 

verified the applicability of the presented approach for a pixel-wise calculation of plant height 

(PH) from high resolution crop surface models (CSMs). Six established vegetation indices (VIs) 

were used to extract information from the hyperspectral data. Based on PH and VIs, bivariate 

and multivariate biomass regression models (BRMs) were established, with varying 

performances. Whereas PH was supported as strong estimator in the bivariate models (R2 up 

to 0.85), VIs showed highly different results (R2: 0.07 - 0.87). The multivariate models yielded 

improvements in some cases (R2 up to 0.89), however in most cases PH had the greatest 

contribution to the prediction power. 

Different models appeared best suitable for dry or fresh biomass estimations, also 

depending on the regarded time frame of the growing season, but in all cases exponential 

models performed better than the linear ones: For dry biomass, the bivariate BRM with PH 

showed the best results for the whole observed period (R2 = 0.85), whereas for the 

pre-anthesis the REIP and the near-infrared (NIR) VIs GnyLi and NRI showed slightly better 

results than PH (R2 = 0.86, 0.87). Multivariate BRMs from PH and one VI slightly improved the 

R2 values compared to the bivariate BRMs in some cases. For fresh biomass, the bivariate 

BRMs of the NIR VIs showed the best results for the whole observed period (both R2 = 0.77). 

For pre-anthesis, the REIP (R2 = 0.82) showed slightly better results that the NIR VIs (both 

R2 = 0.79). The multivariate BRM could slightly improve the results in some cases. Additionally, 

it can be noted that also weakly performing VIs, such as the NDVI or RGBVI, improved the 

estimations slightly when fused with PH in the multivariate BRMs, both for fresh and dry 

biomass. These results suggest that specific models should be chosen for specific applications, 

and a fusion of PH and VIs does not always substantially improve the results. Additionally, 

when PH and VIs are fused, the choice of the VI does not seem critical in all cases. 
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Altogether, it should be noted that the presented results are a first step towards the fusion 

of remotely sensed 3D spatial and spectral data for a precise and non-destructive estimation 

of crop biomass. Other ways of data fusion may further increase the prediction power. Further 

studies are also necessary to investigate differences between the years, cultivars, and fertilizer 

treatments. Moreover, as already mentioned, in-season biomass estimations are important 

for precision agriculture. Therefore models should be established based on data sets from only 

one campaign to investigate the potential for timely monitoring and in-season estimations. 

Accurate and rapidly ascertainable estimations in a high spatial resolution during the growing 

season could support spatially resolved nitrogen nutrition index calculations. Thereby in-field 

variations can be considered for optimizing fertilizer application and shrinking the gap 

between potential and current yield. The fusion of 3D spatial and spectral data might improve 

such calculations as weaknesses and limitations of one estimator might be compensated 

through the other one. 

With regard to the application in the field, the usability of new platforms should be further 

investigated. UAV-based lightweight ALS systems reveal potential for vegetation mapping. 

Futhermore, new technologies like hyperspectral snapshot camera systems which enable the 

derivation of 3D spatial and hyperspectral information at the same time carry great potential 

for agricultural applications. Combined with estimation models based on structural and 

spectral and information, such approaches can become a powerful tool for applications in 

precision agriculture and biomass monitoring. 
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Appendix 

Table A 6-1. Statistics for the plot-wise averaged CSM-derived and manual measured plant heights 
(n: number of samples; : mean value; min: minimum; max: maximum; SD: standard deviation). 

        CSM-derived plant height (m) Manual measured plant height (m) 
 BBCH N level n  min max SD  min max SD 

2012           
1 N/A 40 18 0.15 0.06 0.22 0.04 0.20 0.15 0.25 0.03 

  80 18 0.18 0.14 0.24 0.03 0.20 0.15 0.26 0.03 
2 30 40 18 0.21 0.13 0.28 0.04 0.35 0.28 0.42 0.05 

  80 18 0.27 0.20 0.35 0.04 0.35 0.30 0.42 0.04 
3 49 40 16 0.58 0.47 0.72 0.08 0.63 0.52 0.80 0.09 

  80 15 0.64 0.48 0.80 0.11 0.66 0.54 0.79 0.08 
4 N/A 40 14 0.73 0.61 0.81 0.06 0.86 0.74 0.96 0.06 

  80 14 0.81 0.71 0.92 0.06 0.89 0.80 1.00 0.06 
2013           
2 18 40 18 0.21 0.05 0.37 0.09 0.19 0.14 0.25 0.03 

  80 18 0.11 -0.07 0.25 0.08 0.20 0.16 0.27 0.03 
3 30 40 18 0.33 0.15 0.51 0.11 0.29 0.19 0.56 0.09 

  80 18 0.25 0.01 0.40 0.11 0.28 0.17 0.45 0.08 
4 41 40 18 0.57 0.33 0.83 0.17 0.52 0.39 0.70 0.09 

  80 18 0.56 0.24 0.79 0.18 0.57 0.31 0.81 0.13 
5 57 40 16 0.84 0.64 1.11 0.13 0.77 0.66 0.95 0.07 

  80 16 0.79 0.58 1.04 0.12 0.81 0.54 0.94 0.11 
6 68 40 14 0.78 0.65 0.97 0.09 0.77 0.66 0.84 0.05 

  80 14 0.77 0.66 0.90 0.08 0.83 0.76 1.00 0.06 
7 81 40 14 0.75 0.62 0.96 0.10 0.72 0.65 0.82 0.06 

  80 14 0.72 0.62 0.83 0.07 0.79 0.67 0.89 0.07 
2014           
2 29 40 18 0.16 0.12 0.24 0.03 0.19 0.12 0.30 0.04 

  80 18 0.18 0.15 0.25 0.03 0.18 0.13 0.27 0.04 
3 31 40 18 0.41 0.36 0.51 0.04 0.38 0.31 0.52 0.05 

  80 18 0.42 0.34 0.52 0.05 0.36 0.27 0.45 0.05 
4 49 40 18 0.63 0.53 0.70 0.04 0.59 0.53 0.65 0.03 

  80 18 0.63 0.57 0.70 0.04 0.57 0.51 0.64 0.04 
5 56 40 18 0.80 0.69 0.87 0.04 0.78 0.68 0.85 0.04 

  80 18 0.81 0.75 0.93 0.04 0.78 0.72 0.89 0.04 
6 74 40 18 0.76 0.66 0.84 0.04 0.77 0.68 0.83 0.03 
    80 18 0.79 0.73 0.85 0.03 0.75 0.71 0.82 0.03 
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Table A 6-2. Ratio between model calibration and validation (R2
cal: coefficient of determination from 

calibration; R2
val: coefficient of determination from validation). 

   Bivariate BRMs Multivariate BRMs 

     Whole period Pre-anthesis   Whole period Pre-anthesis 

   Estimator R2
cal / R2

val R2
cal / R2

val Estimatora R2
cal / R2

val R2
cal / R2

val 

D
ry

 b
io

m
as

s 

Li
n

e
ar

 

PH 0.98 0.95    

GnyLi 0.96 0.94 GnyLi 1.00 0.97 

NDVI 1.00 0.89 NDVI 0.97 0.95 

NRI 0.98 0.95 NRI 0.98 0.96 

RDVI 1.00 0.95 RDVI 0.96 0.95 

REIP 0.80 0.85 REIP 1.00 0.95 

RGBVI 1.25 0.93 RGBVI 0.97 0.95 

Ex
p

o
n

e
n

ti
al

 

PH 0.99 0.99       

GnyLi 1.00 0.99 GnyLi 0.99 0.99 

NDVI 1.03 1.03 NDVI 1.00 1.01 

NRI 1.00 1.00 NRI 1.00 1.00 

RDVI 1.03 1.03 RDVI 1.00 1.00 

REIP 0.93 0.94 REIP 0.99 0.97 

RGBVI 1.05 1.00 RGBVI 1.00 1.01   

Estimator R2
cal / R2

val R2
cal / R2

val Estimatora R2
cal / R2

val R2
cal / R2

val 

Fr
e

sh
 b

io
m

as
s Li

n
e

ar
 

PH 0.88 0.86    
GnyLi 0.89 0.86 GnyLi 0.90 0.86 
NDVI 0.93 0.82 NDVI 0.90 0.86 
NRI 0.91 0.86 NRI 0.90 0.86 
RDVI 0.92 0.85 RDVI 0.90 0.86 
REIP 0.73 0.71 REIP 0.90 0.82 
RGBVI 1.05 0.90 RGBVI 0.92 0.90 

Ex
p

o
n

e
n

ti
al

 PH 0.96 0.96       
GnyLi 0.99 0.96 GnyLi 0.97 0.96 
NDVI 1.05 1.02 NDVI 0.99 1.00 
NRI 1.00 0.97 NRI 0.97 0.97 
RDVI 1.04 1.01 RDVI 0.99 0.99 
REIP 0.87 0.87 REIP 0.94 0.90 
RGBVI 1.06 1.04 RGBVI 1.01 1.03 
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7 Discussion 

The overall aim of this study was to establish a robust method for the non-destructive 

estimation of crop biomass at field scale. A literature review reveals that numerous ground- or 

vehicle-based studies address biomass estimations with VIs based on passive spectrometer 

measurements. In contrast, an active TLS system was applied in this study. Beside the 

independence of solar radiation, the possibility to capture the entire crop surface of a field is 

thereby a main advantage. However, since the scanner operates only with one wavelength an 

obtained 3D point cloud is unsuitable for the derivation of VIs. Hence, another way to achieve 

plant parameter information was required. This was solved by interpolating the point cloud to 

a CSM, which allowed, in combination with a DTM, the calculation of spatially resolved plant 

heights. Although plant height is known as suitable estimator for biomass it is not very widely 

investigated so far. A further benefit of TLS is that the frequency of measurements and thus 

the temporal resolution could be easily adapted since it is as ground-based active system quite 

flexible to use. Limitations are, for example, continuous rain or heavy wind. In all case studies 

the intended biweekly rhythm for the TLS campaigns during the key vegetative phase was 

almost reached. This allowed to establish multi-temporal CSMs and hence to monitor 

temporal and spatial changes in plant height. 

All case studies investigated cereals which are the most important group of crops regarding 

world nutrition. Moreover, examples of cereals were selected which cover different forms of 

the general appearance and growing characteristics. Paddy rice was chosen due to its 

cultivation on flooded fields, maize was used as example for large plant heights, and barley as 

representative for most of the other cereals, like wheat and rye. In order to ensure the 

comparability between the case studies, similar preconditions were intended. Common 

aspects were, for example, comparable sensor set-ups in the field, which included the use of 

similar TLS systems and the acquisition from the field edges with a certain sensor height above 

the canopy. In addition, the main post-processing steps were carried out in an equal manner. 

However, some differences between the sites must also be stated. This involves the different 

scales (plot or field) and platforms as well as the general environmental conditions.  

From the comprehensive case studies the suitability of this approach and the important 

role of plant height as robust estimator for biomass with crop-specific BRMs can be suggested. 

Nevertheless, strengths and limitations of both the acquisition in the field and the gained data 

were observed. Issues for discussion are, for example, the influence of the scanning geometry 

on the results, the usability of the comparative measurements due to the different measuring 

process and dimensions of the resulting data, or the validity of the BRMs. According to this, 

the following sections address four main topics: (I) the impact of the sensor set-up on the 

measurements, (II) the performance of the platforms in the field, (III) the results of the plant 

height measurements, and (IV) the estimations with the BRMs, also considering the fusion 

with VIs. Finally future prospects for laser scanning applications in agriculture are given. 

7.1 Sensor set-ups and scanning geometries 

From the total number of 35 field campaigns, the Riegl LMS-Z420i scanner was used for all 

measurements in Germany and those in Jiansanjiang in 2012; for the six campaigns in 
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Jiansanjiang in 2011 the newer Riegl VZ-1000 was available. Irrespective of some minor 

differences the acquisition with both systems worked well and main advantages of TLS are the 

independency from an external light source and that the system is quite robust against poor 

weather. Both systems operate with the time-of-flight measuring principle and enable the fast 

acquisition of large areas with high measuring rates (Table 2-1). The VZ-1000 has some 

advantages such as a longer range of 1,400 m (LMS-Z420i: 1,000 m), a lower weight of 9.8 kg 

(LMS-Z420i: 16 kg), and the scanner captures the full waveform of the laser signal (Riegl LMS 

GmbH, 2013, 2010). However according to the manufacturers' specification the accuracy of 

the LMS-Z420i is still sufficiently exact to 10 mm (VZ-1000: 8 mm).  

Apart from the different scanners, overall four platforms (Figure 7-1) were used which 

differ, inter alia, in the height of the sensor above ground and the transportability in the field; 

the latter aspect is addressed in the next section. The height of the sensor influences the 

scanning geometry and is thus likely to affect the measurements. At nearly all scan positions 

Figure 7-1. Platforms for TLS with the approximate sensor height: (A) Tripod (1.5 m); (B) Tractor-
trailer system (3 m); (C) Tractor with hydraulic platform (4 m); (D) Cherry picker (8 m).  
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in Jiansanjiang the scanner was mounted on a tripod, resulting in a sensor height of ~1.5 m 

above ground (A). Where possible, the tripod was established on a small trailer behind 

a tractor, increasing the sensor height up to ~3 m (B). At both sites in Germany vehicle-based 

platforms were available. For all campaigns at the Campus Klein-Altendorf, the scanner was 

attached to a hydraulic platform of a tractor, raising the sensor height up to ~4 m (C). Due to 

the higher plant height of the maize plants, observed in Selhausen, also a higher position of 

the sensor above the ground was necessary. Therefore, the scanner was attached to the 

basket of a cherry picker, whereby a sensor height of ~8 m above ground was reached (D). 

It should be noted that a larger sensor height reduces the inclination angle between the 

laser beam and the theoretical vertical axis, which alters the incidence angle of the laser beam 

on the crop surface. This and the oblique perspective of the scanner have an impact on the 

measurements. In Figure 7-2 the different theoretical laser paths depending on the sensor 

height are sketched for the used platforms; both tractor systems are summarized, since they 

have approximately equal heights. From the sketched paths it can be concluded that the 

steeper the angles, the deeper the vegetation may get penetrated. Consequently, beside the 

reflection points at the top of the canopy, obtained from all sensor heights, further points at 

lower plant layers are attained from larger heights. These values reduce the calculated mean 

plant height. Such angle-dependent effects on laser scanning data are also noted by Ehlert 

and Heisig (2013). They observed overestimations of the heights of reflection points, 

depending on the inclination and scanning angle, whereby the overestimations increased with 

increasing angles. Unfortunately, a general correction function could not be developed and 

the authors concluded that specific corrections are necessary for different sensors and crops. 

Furthermore, factors such as the density of the vegetation cover and the horizontal distance 

between sensor and position in the field are likely to influence the results. Since in none of 

Figure 7-2. Influence of the sensor height and the resulting inclination angle on the incidence angle. 
This affects which plant parts are ascertainable, which in turn influences the calculated mean plant 
height. Single plants modified from Large (1954). 
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the case studies measurements from different heights at the same position were carried out, 

a comprehensive comparison was not possible, and further research is desirable. 

Compared to other studies applying TLS for agriculture (Eitel et al., 2011; Hosoi and 

Omasa, 2012; Lumme et al., 2008), the presented approach shows major advantages. In these 

approaches in-field measurements were performed at plot level and have not been shown as 

being transferable to field level yet. In contrast, with the here presented approach the 

measurements are performed from the field edges which allows to capture the entire field 

and moreover the plant growth is kept undisturbed. Acquisitions from the edges are in 

particular useful for crops where an entering of the field is not possible, due to water in the 

field as in the case of paddy rice or if the plants are too large as in the case of maize. 

Nevertheless, issues caused by this measuring process with a static scanner and an oblique 

perspective have to be noted. Firstly, heterogeneous point densities and occlusion effects 

have to be considered for static TLS measurements (Höfle, 2014). Secondly, the point density 

decreases with increasing distance from the scanner and as shown by Hämmerle and 

Höfle (2014) the scanning resolution has an influence on the results. They used dense point 

clouds of a high-end TLS system, with a resolution of 5 mm at 10 m distance, to establish CSMs. 

By thinning the point clouds they simulated data sets with a lower resolution and showed that 

with 25 % of the number of points, the CSM coverage, meaning at least one point per cell, is 

still above 90 %. 

With regard to these aspects, in each campaign of the here presented case studies the field 

was scanned from at least four positions around the field. This set-up should help to 

compensate occlusion effects and to ensure an adequate number of reflection points for the 

entire field. A consistent selection of points for the CSM interpolation was intended by using 

a filtering scheme for selecting maximum points in the post-processing. Nevertheless, further 

research is necessary since, besides the scanning resolution, the crop variety and plant density 

have an influence on the results (Hämmerle and Höfle, 2014). This research should also 

address the definition of crop- and case-specific minimum point densities. 

Beside these geometric effects, the scanning range and the incidence angle influence the 

measured signal (Kaasalainen et al., 2011). Hence, a radiometric calibration is advisable for 

static TLS if a qualitative analysis of the reflected signal is intended (Kaasalainen et al., 2011; 

Koenig et al., 2015). The captured intensity values may be used to detect single plants for 

example (Hoffmeister et al., 2012; Höfle, 2014). Unfortunately, a radiometric correction was 

not available in this study which made a consideration of the intensity value not meaningful. 

Further research should address the benefit of including these values in the analyses, since 

this might simplify the distinction between reflections on plants and ground. 

7.2 Platforms 

Besides the influence on the measurements, all platforms differ regarding their 

performance in the field. Table 7-1 provides the discovered advantages and disadvantages of 

the used platform. Tripod-based setups are worthwhile if the scan position cannot be reached 

with vehicles, as shown for the dikes between the rice paddies (Section 3.2.2). However, 

steeper incidence angles are attained from larger heights, reachable with the vehicle-based 
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setups. In contrast to the easier transport of the scanner between the scan positions with the 

vehicles, the stability of the scanner during the measurements decreases.  

Table 7-1. Advantages and disadvantages of the platforms used for field surveys. 

Advantages Disadvantages 

Tripod 

 Flexible to be set up in the field 

 Almost each position, accessible by foot can be 
reached 

 Stable position during measurement 

 Laborious transport between scan positions 

 Low sensor height above ground 

Tractor-trailer system 

 Higher sensor height above ground than reachable 
with the tripod 

 Easy and rapid transport between scan positions 

 Slightly unstable establishment on trailer, in 
particular during changes between scan positions 

 Not every position can be reached, e.g. due to small 
dikes between rice paddies 

Tractor with hydraulic platform 

 Higher sensor height above ground than reachable 
with tripod 

 Very easy and rapid transport between scan 
positions 

 Slightly unstable platform, in particular during windy 
conditions 

 Assumable not every position can be reached, but 
other positions were not necessary in the case study  

Cherry picker 

 Much higher sensor height above ground than 
reachable with tripod or smaller vehicle-based 
platforms 

 Easy transport between scan positions 

 Unstable platform, in particular during windy 
conditions 

 Assumable not every position can be reached, but 
other positions were not necessary in the case study 

 Aligning of vehicle can be slightly time-consuming 
depending on the ground (e.g. asphalt vs. field path) 

    

The highest degree of instability was observable with the cherry picker, in particular during 

wind gusts. Although generally slight movements are captured and equalized by the scanner, 

stronger movements cause errors in the measurements. Figure 7-3 shows the calculated plant 

heights for the maize field in Selhausen on two campaign dates. For the early campaign a radial 

pattern of varying plant heights is visible around each corner as center point. As the scan 

positions were established close to the corners and none of these patterns were observable 

in the other campaigns, it must be assumed that these ones are caused by movements of the 

cherry picker basket during the scans and do not really show varying plant heights. In contrast, 

in the later campaign, a smooth crop surface was obtained, allowing plant height differences 

to be detected, as shown in section 5.3.1.  

Figure 7-3. Influence of platform movements during the scans on the calculated maize plant heights. 
Scans were acquired from the basket of the cherry picker, placed close to the corners of the field. 



  

 

Discussion 120 

In summary, each platform showed strengths and weaknesses in terms of their usability for 

crop monitoring approaches with TLS. The tractor with hydraulic platform might be the best 

compromise solution to enable an easy and rapid transport of the scanner between the scan 

positions, while maintaining a fairly stable platform in an adequate height above ground 

for crops with low plant heights such as barley. The cherry picker reveals potential for 

applications, where higher sensor heights above ground are required but improvements of 

the stability are necessary to ensure faultless measurements. Since such vehicle-based 

platforms might not be available at each location, other acquisition methods should be 

considered; the last section of this chapter provides some suggestions.  

7.3 Plant height measurements  

Based on the results of the case studies it can be assumed that TLS-derived point clouds 

are well suited for acquiring 3D data of plant height. Although Hoffmeister et al. (2010) 

showed that the general concept of CSMs is useful for obtaining 3D data of plant height from 

TLS-derived point clouds, no comparative measurements have been conducted to prove this. 

In contrast, manual measurements were carried out in all presented case studies to obtain 

comparative data sets. For this, several plants heights were measured with measuring tapes 

or rulers in each plot of the field experiments or at defined positions in the larger fields. Taking 

the measuring process and the resulting dimension of the acquired data into account, 

differences between the methods have to be regarded.  

Assuming that the sketched plants in Figure 7-4 represent the cross section through 

a common area, these differences are clearly visible. In the TLS data set almost the entire crop 

surface is captured in the 3D point cloud, which is interpolated to a CSM with a dimension of 

2.5D and a resolution of 1 cm in the post-processing. In contrast, only a few plants are 

manually measured and the values are recorded per spatial unit, without assessing the precise 

2D location. Hence, the CSM-derived values and the manual measurements have to be 

averaged for common spatial units, resulting in 1D data sets. Both measuring methods are 

suitable to capture the height of the largest plants, but the CSM also contains reflections on 

lower plants, which are mostly neglected in the manual measurements. As a result, the 

calculated mean heights are likely to differ, showing lower values for the CSM-derived values 

Figure 7-4. Plant heights ascertainable from the TLS-derived point clouds and 
the manual measurements. The measuring processes influence the calculated 
mean plant height. Single plants modified from Large (1954). 
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in most of the cases. Despite these clear differences, the manual measurements are 

worthwhile for validating whether the general tendency of the TLS measurements is correct.  

For this validation analysis the linear regression of the averaged CSM-derived vs. manually 

measured plant heights was established in each case study and the related coefficient of 

determination (R2) was used to quantify the relationship between both measurements. As 

a summary of the 35 campaigns, all averaged CSM-derived values are plotted against the 

manually measured plant heights in Figure 7-5. This includes 396, 60, and 508 values for paddy 

rice, maize, and barley, respectively. With regard to the higher values for the maize plant 

heights the values are plotted for all cereals (left) and only for paddy rice and barley (right). 

Both scatterplots clearly show the linear trend, supported by very high R2 values of 0.95 and 

0.89. As stated in Tilly et al. (2014b, Chapter 5), a high R2 value of 0.93 was also achieved for 

maize alone, but a data gap is observable (Figure 5-4) and the period of main increase in plant 

height was not well covered. Hence further studies are required to confirm these results. Both 

regression lines in Figure 7-5 show a slope of almost 1 with their intercepts close to the origin, 

meaning that they are close to the 1:1 line, which would reveal a perfect linear relationship 

between both variables. These slight displacements in the positive y-direction, confirm the 

higher values assumed for the manual measurements (Figure 7-4). However, regarding the 

scatterplot for paddy rice and barley (right) the regression line and the 1:1 line cross each 

other at a CSM-derived plant height of ~0.5 m. A possible explanation for this is that beyond 

this point such a dense vegetation cover might be assumed that fewer low plant layers are 

captured in the point cloud, which in turn increases the averaged CSM-derived plant height 

(Figure 7-2). 

In comparison to other studies applying ground-based measurements of plant height, the 

main benefits of the TLS approach are the objective detection and capturing of the entire crop 

surface. Recently, Marshall and Thenkabail (2015) used manual measurements of plant height 

to improve biomass estimations from spectral measurements. They showed that the 

Figure 7-5. Averaged CSM-derived vs. manually measured plant heights of all campaigns on paddy 
rice, maize, and barley (left) and of all except maize (right). 
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predictability of estimations from spectral data can be increased by additional non-spectral 

predictors and assigned plant height as most important one. However, as mentioned above, 

due to the laborious work, only a few plant heights can be manually measured and moreover 

such measurements are always prone to selection bias. Marshall and Thenkabail (2015) also 

complained about the difficult upscaling of manual measurements and proposed LiDAR 

approaches as promising remote sensing method to derive this metric. Other remote sensing 

methods, such as light curtains (Busemeyer et al., 2013; Montes et al., 2011) or ultrasonic 

sensor (Reddersen et al., 2014) can also be applied to avoid the selection bias, but they are 

limited to single measurements at discrete positions or across small areas. Thus they are not 

suitable for spatially resolved acquisitions of plant height at field scale.  

Overall, the comparative data sets were useful for a general validation of the TLS data, but 

due to the absence of precise 2D information for each manually measured height, analyzing 

the accuracy or precision of the CSMs was not meaningful. These metrics are however 

worthwhile to evaluate the maximum attainable resolution which is important for site-specific 

crop management, as shown in Figure 1-1. Consequently, other measuring methods or 

improved processes should be considered in further research. An acquisition of the 

x, y coordinates for each discrete value of manual measurements might be a first step. This 

might be done with DGPS measurements which are however quite laborious.  

Beyond that, the loss of information through the conversion of the TLS-derived 3D point 

clouds in 2.5D raster data sets should be considered. Typically a DTM is limited to this 

representation of one z value per x, y coordinate, but increasing interest is directed towards 

the direct analysis of point clouds. A promising approach therefore is the LAStools software 

suite which offers tools for the efficient post-processing of LiDAR data, primarily acquired with 

ALS (rapidlasso GmbH, 2015). The lascanopy tool, for example, can be used to derive common 

forestry metrics such as vegetation density or height, as shown in a study on the mapping of 

mangroves (Kamal et al., 2015). However, these developments are rather recent and such 

tools are less researched so far, in particular for TLS data. Consequently, they could not have 

been considered in this study, but further investigations are desirable. 

7.4 Biomass estimations 

A main incentive for determining plant height at field scale with TLS is the usability of plant 

height as non-destructive estimator for cereal or rather crop biomass. In all case studies the 

estimations were carried out based on the averaged 1D data sets of plant height and biomass, 

but the different spatial extents of the investigated areas still need to be considered. As stated 

in the beginning, the presented approach aims at the application at field scale. However, 

previously a sufficient knowledge about the development of both parameters across the 

growing season was required. For this purpose, two field experiments each with several plots 

of different crop cultivars and varying fertilizer treatments were monitored. The differences 

between the plots were worthwhile to capture several plant conditions at one growing stage 

and establish comprehensive BRMs according to the equations in Table 2-3. Moreover, the 

multi-annual surveys on these fields with similar preconditions allowed to investigate the 

temporal transferability of the BRMs. The paddy rice case studies were supplemented by 
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campaigns on two farmer’s conventionally managed fields. Thereby in addition to the 

temporal, the spatial transferability of the BRMs to the larger field scale was examined. The 

application of the approach at a large field was also addressed in the maize case study. 

Generally, it should be distinguished between the estimation of fresh and dry biomass. 

While fresh biomass is frequently used as an input parameter in crop growth models, 

the amount of dry biomass is important for the calculation of indices like the harvest index or 

the NNI. According to the case studies, this section mainly addresses dry biomass but some 

remarks on fresh biomass are given in conjunction with the discussion on the benefits through 

fusing plant height and VIs at the end of this section. According to the overall workflow the 

results of the field experiments are firstly regarded to examine whether the development of 

plant height and dry biomass across the growing season can be captured with the presented 

approach. Afterwards, the transferability to field scale is evaluated. 

The results of all case studies reveal the strong correlation between CSM-derived plant 

height and dry biomass. As an example in Table 7-2 the R2 values for the linear and exponential 

regressions between CSM-derived plant height and dry biomass are listed for both field 

experiments. For the barley data sets of 2013 and 2014 the values are given for the whole 

observed period and the pre-anthesis, as the main increase in plant height occurs during this 

key vegetative phase of the growing season (Table 2-2); in 2012 and on the paddy rice 

experiment only the pre-anthesis was surveyed. Linear and exponential regressions were 

established to investigate how well they express the relation between plant height and dry 

biomass across the growing season and to derive the equations for the BRMs (Table 2-3). 

A better fit of exponential regressions can be concluded from the values achieved on the 

barley experiment 2013 and 2014, in particular when the whole observed period is regarded. 

This aligns well with other studies, which suggest exponential models (Aasen et al., 2014; 

Thenkabail et al., 2000). In contrast, almost similar values were attained with the linear and 

exponential models for the barley experiment 2012 and for the paddy rice experiment of both 

years. A possible reason for this is that only earlier growing stages were surveyed which will 

be discussed hereafter based on the results of the barley case study. 

Table 7-2. R2 values for linear and exponential regression between CSM-derived 
plant height and dry biomass for the field experiments. 

Site and year Linear  Exponential  

Paddy rice experiment 2011 0.86 0.84 

Paddy rice experiment 2012 0.66 0.65 

Barley experiment 2012  0.85 0.83 

Barley experiment 2013 (whole observed period) 0.68 0.79 
Barley experiment 2013 (pre-anthesis) 0.65 0.74 

Barley experiment 2014 (whole observed period) 0.66 0.87 
Barley experiment 2014 (pre-anthesis) 0.84 0.88 
   

For comparing the results with generally assumed growth patterns, Figure 7-6 shows the 

observed development of plant height and dry biomass of barley across the growing season, 

based on the data derived from the barley field experiment presented in Tilly et al. (2015a, 

Chapter 6). For each data point all mean values of either CSM-derived plant height or 

destructively measured dry biomass, attained in one of the overall 14 campaigns are averaged. 
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Moreover, the general trend curve of each parameter is indicated as polynomial function of 

the 3rd degree. Since the campaigns were carried out across three growing seasons, the values 

are plotted against the day after seeding as comparable timescale. Although variations 

between the values of the different years are observable, the overall trend can be summarized 

to three phases: before day 50 after seeding a slight increase is detectable for plant height 

and dry biomass, then until day 80 after seeding both parameters rise strongly, and afterwards 

the plant height stays almost constant while the dry biomass further increases. Referring to 

Table 6-1, day 50 and day 80 after seeding are broadly assignable to the change from BBCH 

stage 2 (Tillering) to 3 (Stem elongation) and from 5 (Heading) to 6 (Anthesis), respectively. 

Taking now Figure 2-4 into account, these plant heights fit well to the assumed plant growth 

across the growing season with slightly increasing plant heights during tillering, a strong rising 

during stem extension and heading, and almost constant plant heights afterwards.  

Such general statements are more complicated for biomass. First of all, the development 

of the plants as qualitative change has to be regarded. As shown in Figure 7-7 the increase of 

dry biomass across the growing season can be allocated to different plant parts, namely root, 

leaf, stem, spike, and grain. The root biomass stays almost constant across the growing season 

and is not considered in the following as only the aboveground biomass was regarded in the 

case studies. Approximately until day 50 after seeding leaves make up the greatest portion of 

the total dry biomass. Afterwards the leaf and stem biomass values increase and constitute 

mostly to the total amount. Around day 80 after seeding the spike and shortly afterwards the 

grain biomass start to contribute substantially to the increasing total dry biomass. This again 

fits well to the three phases observed for the barley biomass (Figure 7-6).  

The general trend between both parameters can hence be summarized according to these 

three phases. During the early growing stages (< BBCH Stage 3; ~ day 50 after seeding) 

increasing dry biomass can be expected as being almost proportional to increasing plant 

height, with a slight increase of both parameters and a parallel course of the trend curves. In 

the middle phase (< BBCH Stage 6; ~ day 80 after seeding) the values strongly increase, but 

the relation is still almost linear and the trend curves are still almost parallel to each other. 

Figure 7-6. Mean trend of plant height and dry biomass of barley across the 
growing season with trend curves as polynomial functions of the 3rd degree. 
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However, after anthesis this tendency changes. Since the biomass further increases while the 

plant height stays constant, a non-linear relation must be assumed, which is also indicated by 

the different course of the trend curves. Overall, this fits well to the better performance of 

the exponential BRMs, in particular when the whole observed period, beyond anthesis, is 

regarded. (Table 7-2). 

Nevertheless, the validity of the linear and exponential models should be further 

investigated. It is shown that good results are achievable with the BRMs, but the question 

remains whether the dependency of biomass on other plant parameters can be expressed by 

such quite simple mathematical expressions or if more complex functions are necessary. 

Lemaire et al. (2007), for example, discovered an allometric relationship between LAI 

expansion and dry biomass accumulation for different crops. Further research should be 

carried out regarding the question if such allometric functions also better constitute the 

relationship between plant height and dry biomass. However, it has to be kept in mind that 

the approach is aimed to be simple to apply at field scale and it is questionable which model 

is the best compromise solution to keep the balance between effort and benefit.  

Generally, the achieved results are comparable good as those stated in other studies on 

TLS-based estimations of biomass. Results for the estimations of dry biomass were shown by 

Eitel et al. (2014). In that study, high R2 values of at least 0.72 were found for the relationship 

between observed dry biomass of wheat and TLS-derived vegetation volume. 

Lumme et al. (2008) estimated the grain yield of different crops and yielded correlation 

coefficient of up to 0.99 against reference values. Hosoi and Omasa (2012) demonstrated that 

the biomass of paddy rice can be estimated from lidar-derived plant area density (R2 up to 

0.99). The authors also presented similar results for estimations on wheat (Hosoi and 

Omasa, 2009). However, all of these studies were carried out at plot level and their 

applicability at field scale is not shown yet. On the contrary, along with the aim of finding 

a trustworthy estimator for biomass, a major aim of the herein presented study was that the 

approach should be suitable for a practical implementation at field scale. This usability of the 

Figure 7-7. Dry biomass accumulation in crop parts. Modified 
from Fischer (1983). 
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CSM approach for scales larger than plot level was shown by surveys on two paddy rice fields 

and one maize field.  

In the paddy rice case study the BRMs were investigated whether they can be transferred 

to other sites (Tilly et al., 2015b, Chapter 4). Therefore, several BRMs were established with 

the field experiment data sets according to the equations stated in Table 2-3. Then, the 

independent plant height data sets from the farmer’s fields, which were not considered in the 

model calibration, were used for estimating the biomass on these fields (Section 4.2.5). The 

validation against destructive samplings revealed moderate to good results (R2 = 0.56 - 0.90; 

Table 4-5). These analyses were based on the spatially averaged 1D data sets, but such 

biomass estimations are possible for the entire field. This is exemplified in Figure 7-8, showing 

a dry biomass map for the paddy rice units investigated in village 36 (Field description given 

in section 4.2.1). Based on the 3D data of plant height, the dry biomass is estimated for the 

entire field with the linear BRM, established from the two year combined data set of the field 

experiment (Table 4-5). This BRM was chosen since it showed the best performance in the 

validation analysis. The map demonstrates that CSM-derived plant heights are worthwhile for 

a spatially resolved mapping of dry biomass. As shown in Figure 4-2, the plant development 

in these management units was very heterogeneous and must be taken into account as source 

of error for the estimations. Nevertheless, this heterogeneous plant status is clearly visible, in 

particular in the eastern unit, which shows overall lower values for the amount of dry biomass.  

Spatially resolved mapping of biomass at field scale is frequently performed with satellite 

remote sensing. Active systems with SAR sensors, for example, are useful to overcome 

problems of cloudiness and light dependency (Koppe et al., 2012; Ribbes and Le Toan, 1999; 

Zhang et al., 2014). Cloud-free conditions are necessary for observations with optical sensors, 

Figure 7-8. Dry biomass map of the paddy rice units in village 36 for the 16.07.2012. Estimated from 
the CSM-derived plant height with the BRM: Biomass = 12.37 ∙ plant height - 273.19 (Table 4-5). 
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which are further limited by the dependency on solar radiation. Nevertheless, acquisitions at 

multiple wavelengths allow the derivation of VIs which can be used for quantifying biomass 

(Claverie et al., 2012; Kross et al., 2015), but moreover they allow a qualitative assessment of 

parameters, such as the LAI or chlorophyll and nitrogen content (Clevers and Gitelson, 2013; 

Delegido et al., 2013). In-situ studies are widely performed since ground-based measurements 

are useful to evaluate satellite-derived data (Gnyp et al., 2014a; Koppe et al., 2010). 

Therefore, ground- or vehicle-based approaches with field spectrometers are investigated 

which aim at the derivation of VIs for estimating biomass (Casanova et al., 1998; 

Gnyp et al., 2014b; Montes et al., 2011; Thenkabail et al., 2000). In the meanwhile, the benefit 

of spectral measurements for evaluating the plant status during the growing season was also 

recognized in some areas of conventional agriculture. This use of optical sensors can be 

demonstrated by the number of available commercial devices, such as Crop Circle (Holland 

Scientific Inc., 2011), GreenSeeker (Nu-Tech International, 2015), ISARIA (Fritzmeier 

Umwelttechnik, 2015), or N-Sensor (Yara, 2015). These or similar sensors are extensively 

investigated in scientific studies (Cao et al., 2013; Erdle et al., 2011) and regularly used in 

practice (Gebbers et al., 2011; Thessler et al., 2011).  

The spatial area covered by one spectrometer measurement is however small and hence 

the acquisition of an entire field is almost impossible and not intended with common sensors. 

Nevertheless, it is known that hyperspectral data are well suited for estimating plant 

parameters related to the canopy density and cover, such as the LAI (Broge and Leblanc, 2001; 

Haboudane et al., 2004) or for determining the water content (Clevers et al., 2008). Since 

qualitative statements are hardly possible with the TLS-derived plant heights, the fusion of 

spectral and non-spectral metrics is highly recommendable and targeted in the overall aim of 

this study (Figure 1-2). Moreover, reconsidering the assumed non-linear relation between 

plant height and biomass during the final growth stages (Figure 7-6), the information covered 

in the VIs might be valuable to improve biomass estimations. A literature search of existing 

research on the fusion of spectral and non-spectral estimators yielded only a few number of 

studies. Beside the already mentioned approach by Marshall and Thenkabail (2015), 

Reddersen et al. (2014) showed an approach for predicting grassland biomass from LAI, 

ultrasonic sward height, and VIs. Moreover, Bendig et al. (2015) presented first attempts of 

fusing UAV-based measurements of plant height with VIs. 

A first step towards the fusion of TLS-derived plant height and spectral data is shown for 

the barley field experiment in Tilly et al. (2015a, Chapter 6). By establishing bivariate and 

multivariate BRMs based on plant height and six VIs, strengths and weaknesses of both 

parameters as individual estimators and the benefit of fusing plant height with each of the VIs 

were investigated. A main outcome of this study is that TLS-derived plant height is a robust 

individual estimator across all regarded cases (Table 6-6). For dry biomass R2 values up to 0.85 

(estimated vs. measured biomass) were reached with plant height as estimator, while the VIs 

showed highly differing results (R2: 0.07 - 0.87). It has to be noted that for the pre-anthesis 

some VIs (REIP, GnyLi, NRI) performed slightly better or equally good as plant height. In 

contrast, most of the VIs showed a better performance for the estimation of fresh biomass 

(R2: 0.21 - 0.82), while plant height performed slightly worse (R2 up to 0.73). In order to assess 
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this, the activities in ripening cereals should be examined by considering in which plant parts 

assimilation occurs, meaning that exogenous substances are converted to endogenous 

compounds (Munzert and Frahm, 2005). Figure 7-9 shows this for cereals after heading 

(BBCH stage 5, Table 2-2). It is clearly visible that assimilation processes take place almost 

entirely in the upper parts of the plants and that while plant height stays constant, the biomass 

increases, in particular due to the growing ears. Supported by the better performance of the 

VIs for the estimation of fresh biomass, it can be assumed that this increase in living plant 

material might be better determinable by qualitative aspects such as LAI or water content. 

Although the multivariate BRMs could improve the estimations in some cases (R2 up to 

0.89), a major benefit could not be concluded. Nonetheless, the idea of such improved 

biomass estimations should not be rejected. This case studies was a first attempt and certain 

criticisms have to be stated, such as that VIs were used which are known for estimating 

biomass from hyperspectral data and further studies are necessary to investigate if other parts 

of the spectral range or other combinations of bands are better suitable. Moreover, six 

spectrometer measurements were carried out per plot but without assessing the 

x, y coordinates of each position. These measurements were averaged, resulting in 1D data 

sets with one spectrum per plot. Hence, possible in-plot variations in plant height could not 

be directly linked to variations of the density, LAI, or water. Recent studies show attempts of 

directly acquiring spatial and spectral data with one system, whereby errors related to 

different sensors can be prevented. Aasen et al. (2015), for example, introduced a method to 

obtain 3D hyperspectral information from a UAV-based snapshot camera. Based on the data 

of one campaign, they attained good results for the calculation of plant height (R2 = 0.70) and 

moderate values for biomass (R2 = 0.29). Compared to estimations across the growing season, 

analyses based on measurements of a single date are known to show a weaker performance. 

Thus it can be concluded that this approach should be further regarded with a more extensive 

data set. 

Overall, the results of all case studies demonstrate the advantages of the presented 

approach. The major outcomes are that (I) TLS-derived plant heights show a strong 

Figure 7-9. Assimilation in ripening cereal. Green color marks 
active plant parts. Modified from Munzert and Frahm (2005). 
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relationship to biomass, allowing the derivation of BRMs, (II) these BRMs enable 

non-destructive estimations based on independent plant height data sets, (III) spatially 

resolved biomass estimations at field scale are possible with a CSM, and (IV) an improvement 

of the BRMs through the fusion with spectral data cannot be concluded, but should be further 

targeted.  

Nevertheless, some issues remain, which could not have been regarded in the framework 

of the case studies. This includes, for example, the variations between the cultivars of one 

cereal or the influence of the different fertilizer treatments. Further research is necessary, also 

bearing in mind whether very case-specific approaches and more complex models, such as the 

above mentioned allometric functions (Lemaire et al., 2007), are required or if rather general 

BRMs can be establish by enlarging the data set. 

7.5 Future prospects for laser scanning in agriculture 

The used TLS systems and platforms performed satisfactorily in all case studies and 

demonstrated their usability for monitoring plant height. Furthermore, the developed 

approach offers potential for the realization in agricultural applications. Nevertheless, with 

regard to the stated issues of scanning geometry (Figure 7-2) or transportability (Table 7-1), 

consideration has to be given to the ongoing technical advances in the field of laser scanning. 

In connection with this, the overall availability of new platforms for remote sensing should 

also be considered.  

In general, laser scanning systems are developing in two directions. The number of 

available high-end sensors increases constantly, with the focus on longer scanning ranges 

and/or higher measuring rates, such as the Riegl VZ-2000 (Riegl LMS GmbH, 2015a) or the 

Leica Scan Station P40 (Leica Geoystems, 2015). On the contrary, cost-effective systems come 

up, such as the Velodyne HDL-64E LiDAR sensor (Velodyne, 2014), enabling only acquisitions 

with lower resolutions but having the main advantage of being available for a broader 

audience. The decreasing prices and widespread availability can be shown by the variety of 

applications for which LiDAR sensors are already used. Several car manufacturer attempt to 

integrate them into self-driving cars, such as the Google Car (Boyko and Zhu, 2014). Moreover, 

LiDAR sensors are part of robots, like the rough-terrain robot BigDog (Boston Dynamics, 2013). 

Even though higher measuring rates and faster acquisitions are favorable, for price-oriented 

matters, as in the agricultural sector, approaches are required which are realizable in practical 

applications. Regarding this practicability three categories of systems should be considered, 

distinguishable through their position in relation to the regarded field. These are ground- or 

vehicle-based static systems, mobile systems which are mostly vehicle-based, and 

low-altitude airborne systems.  

Maintaining the static position of TLS during the measurement, one opportunity is the 

establishment of monitoring stations at the field edges or in the center of a field. Permanently 

installed systems might be used for an almost continuous gathering of data across the growing 

season, without or with less human assistance. However, some issues have to be addressed 

first, such as the development of affordable systems with regard to the cost-benefit ratio, 

solutions for a weather-resistant and theft-proof installation, or the definition of the required 
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number of stations, taking into account the measuring range and point density. Moreover, 

monitoring approaches – as presented in the case studies – with static scanners, but which 

are movable between different locations are still meaningful. Based on such measurements 

with a proven method, the reliable knowledge about the behavior of crops across the growing 

season and their responds to changing environmental factors can be enlarged. Beyond that, 

the obtained data can be used as trustworthy reference source for the evaluation of newly 

developed methods. 

Mobile mapping systems based on TLS, also known as mobile laser scanning (MLS), are 

already applied in some cases and should be further considered. Such systems emerged in the 

last two decades and are characterized by their kinematic measuring procedure, meaning the 

position and orientation of the scanner is variable during the scan (Kutterer, 2010). A main 

difference between static and kinematic systems is how the geometric relationship between 

the reflection points is obtained. Static systems capture point clouds with a good internal 

geometric quality and point clouds from different positions can be easily matched based on 

accurate DGPS data. In contrast, in the kinematic mode, each reflection point is captured in 

an own coordinate system due to the motion of the scanner. Consequently, for each reflection 

point the exact position and orientation of the system have to be derived from an inertial 

measurement unit (IMU) and a GNSS. Although the synchronization between these devices 

requires additional effort, the acquisition process can be accelerated, in particular in urban 

environments (Kutterer, 2010). Several systems are already available and benchmark analysis 

revealed elevation accuracies of up to 3.5 cm for road mapping (Kaartinen et al., 2012).  

Such accuracy tests are hardly possible in agricultural applications, because the vegetation 

is very likely to move in contrast to the stable position of roads, building façades, or other 

objects in urban environments. A further challenge for the application of MLS in more rural 

environments is the choice of an appropriate platform, as field paths might be hardly 

accessible with conventional cars. In the last few years, different approaches focused on the 

development of other small vehicle-based MLS systems (Kukko et al., 2012). Moreover, some 

multi-sensor platforms exist, like the Phenomobile, which carries three LiDAR sensors, four 

RGB stereo cameras, a spectrometer or hyperspectral camera, and an infra-red thermometer 

or infra-red thermal camera (Figure 7-10 (A); Deery et al., 2014). The achieved data is matched 

Figure 7-10. MLS systems for crop monitoring: (A) Phenomobile (Deery et al., 2014); (B) LiDAR sensor, 
attached to a combined harvester (Lenaerts et al., 2012). 
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based on the accurate GPS information. Hence, such platforms might greatly contribute to the 

simultaneous acquisition of spectral and non-spectral metrics. In general, MLS systems are 

frequently designed for the application at plot level and hence they are useful for monitoring 

field experiments, which are common practice in crop science, but hardly usable at field scale. 

However, for the practical application in conventional agriculture, MLS systems can also be 

worthwhile since, supposing that affordable systems are available, they might get attached to 

tractors or other vehicles and capture data during the regular field management. One 

potential application therefore is already shown with a LiDAR sensor, attached to a combined 

harvester for measuring the swath height of cereals (Figure 7-10 (B); Lenaerts et al., 2012). 

The authors expect that with this knowledge machine settings can be optimized to prevent 

damages of straws, which would lower the quality and thus reduce the price. Beside the use 

of vehicles as platform, applications with humans as source of motion, also referred to as 

personal laser scanning (PLS) (Liang et al., 2013), should be considered. So far only used in 

pioneering studies on the detection of trees, backpack systems like the AKHKA R2 

(Liang et al., 2013) or hand-held mobile laser scanner such as the ZEB1 (Ryding et al., 2015) 

might be useful for crop monitoring. 

Low-altitude airborne systems are also conceivable platforms for laser scanning. 

A distinction has to be drawn between manned and unmanned systems. As an example for 

the latter, the recently introduced Riegl RiCOPTER (Riegl LMS GmbH, 2015b) should be 

mentioned as a promising system. In addition to the LiDAR sensor, this system already includes 

an IMU/GNSS unit and according to the manufacturer’s specification the performance is also 

very good with a measuring rate of up to 350,000 points/sec, a maximal range of 550 m, and 

a range accuracy of 10 mm. The accuracy is however influenced by the position accuracy of 

the IMU/GNSS unit being specified to range from 0.05 m to 0.3 m. Unfortunately, studies on 

the application of the RiCOPTER are not available yet. Another promising UAV LiDAR system 

is the cost-effective alternative YellowScan (YellowScan, 2015). Even though the performance 

of the scanner is much lower (maximal measuring rate 40,000 points/sec; maximal range 

150 m; range accuracy 10 cm), such low-cost systems should be considered for the 

price-oriented agricultural sector. Up to now, other UAV-based laser scanning systems were 

successfully used for detecting pruning of individual stems (Wallace et al., 2014) and 

determining tree heights (Jaakkola et al., 2010), but crop monitoring approaches have not 

been conducted yet. The usability of UAVs for crop monitoring has been demonstrated with 

RGB imaging (Bendig et al., 2014) and spectral measurements (Figure 7-11 (A); 

Aasen et al., 2015; Honkavaara et al., 2013). Main benefits are the easy acquisition of large 

areas and the very flexible usage, but a weak point of this small systems is the vulnerability to 

wind and rain (Colomina and Molina, 2014).  

In contrast, manned systems, like the gyrocopter shown in Figure 7-11 (B), should be more 

resistant against poor weather, due to their size and general construction. Although less 

research has been done on these platforms yet, gyrocopters reveal potential as laser scanning 

platform due to their flexible usage, high maximum payload and assumable stable position. 

Unfortunately, this system is only equipped with a conventional RGB-, a thermal-, and 

a hyperspectral snapshot camera so far (Weber et al., 2015). However, a few commercial 
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companies already offer LiDAR-based mapping services with gyrocopters (LiDAR USA, 2015; 

WekuFly, 2015). A major issue for both types of airborne systems is that flight permissions 

have to be regarded for all systems depending on the national laws. Moreover, the different 

viewing perspectives have to be regarded, considering the comparability with measurements 

from ground- or vehicle-based platforms. 

As already shown for the different sensor heights of the TLS platforms (Figure 7-2), the 

inclination angle and scanning geometry are likely to influence the results. Taking now into 

account that the perspective of airborne measurements is commonly nadir or almost nadir, 

acquired data and ground- or vehicle- based measurements from an oblique perspective 

cannot be compared without further ado. Nevertheless, a combination of both methods is 

advisable as also shown in a comparative study on modeling peatland surface structures from 

TLS and common plane-based ALS (Luscombe et al., 2014). Based on the request for improving 

ALS-based digital surface models, the authors emphasize the consideration of TLS to attain 

canopy structure in a finer spatial resolution and with greater precision. However, considering 

the issues arising from different perspective, low-altitude ALS systems might be more suitable 

since they allow a similar nadir perspective. Conversely to the downscaling of plane-based 

ALS, the use of low-altitude ALS systems might enable to upscale the CSM-based approach for 

crop monitoring across larger areas. A first attempt of estimating biomass from plane-based 

ALS data was presented by Li et al. (2015). Based on the data set of a single campaign, they 

achieved good results for estimating canopy height, LAI, and biomass of maize. The validation 

analysis against field-measured aboveground biomass revealed high R2 values of 0.82. 

Finally, reconsidering the simultaneous acquisition of 3D data of plant height and spectral 

data, the development of hyperspectral scanners (Suomalainen et al., 2011) has to be 

regarded as promising solution. First laboratory studies showed the usability for capturing 

spectral data and visualizing the gained spectral indices as a 3D point cloud for a Norway 

spruce (Hakala et al., 2012) or for classifying spruce and pine trees (Vauhkonen et al., 2014). 

Similar attempts in forestry applications were also performed with multispectral systems. 

Gaulton et al. (2013), for example, presented an approach with a dual-wavelength laser 

scanner for measuring the 3D distribution of vegetation biochemical properties. Another 

multi-wavelength system with four lasers was introduced by Wei et al. (2012) as promising 

system for acquiring the physiology of a canopy. Even though the applicability under field 

conditions and usability for crop monitoring is not shown yet, a high potential can be assumed 

for such systems. 

Figure 7-11. Low-altitude airborne platforms: (A) MikroCopter Okto XL with hyperspectral snapshot 
camera (modified from Aasen et al., 2015); (B) Gyrocopter (Weber et al., 2015). 



  

 

Discussion 133 

The application of other wavelengths than the typically used near-infrared light is also 

findable in other research fields. Arising from the limited applicability of these conventional 

systems under wet conditions a demand for systems operating with other wavelengths 

emerged. In airborne laser bathymetry a green laser beam can be used to detect submerged 

structures (Doneus et al., 2013). Very recently a few systems were introduced which operate 

with more than one wavelength (Doneus et al., 2015), like the HawkEye III (AHAB, 2015), the 

Optech Titan (Teledyne Optech Inc., 2015), or the RIEGL VQ-880-G (Riegl LMS GmbH, 2015c). 

Generally, the application of such airborne systems in agricultural applications is conceivable, 

but prior an appropriate platform has to be found. Commonly used planes are not flexible 

enough and the payload of UAVs would be widely exceeded. Hence, the above portrayed 

gyrocopter might be a suitable platform. 

Overall, the range of possible applications for laser scanning in agriculture is very large and 

depending on the purpose, different platforms and systems appear to be best suitable. With 

regard to the general increasing focus on site-specific crop management, a growing request 

for non-destructive monitoring approaches can be prognosticated. Beside the general 

advantages of laser scanning as reliable measuring system, the accomplished results 

demonstrate the usability for crop monitoring. Consequently, further research on the 

realization in practical approaches is desirable.  
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8 Conclusion 

Terrestrial laser scanning (TLS) is a promising system for monitoring the plant height of 

crops. The greatest strength of this approach is the possibility to easily acquire 3D data of plant 

height at field level with a very high spatial resolution. Moreover, the ground-based active 

sensor allows a flexible use and the frequency of measurements can be adapted to the 

required temporal resolution. This overall evaluation shall address both the field surveys and 

the achieved data. 

In the field, each platform showed advantages and disadvantages, but overall vehicle-based 

set-ups are preferable. They have major benefits such as an easier transport of the scanner in 

the field but the stability of the platform in particular during the measurements has to be 

regarded. The larger sensor height seems to be useful for an exact detection of the crop 

surface even if a comprehensive analysis was not possible in this study. Hence, further 

research on the influence of the sensor height and scanning geometry on the results is 

necessary. In this context, the oblique perspective of the scanner, due to the acquisition from 

the field edges, has to be regarded. The herein regarded crops paddy rice, maize, and barley 

all belong to the group of cereals which is the most important group for world nutrition. Most 

of the other representatives of this group, such as wheat, rye, or oat are cultivated on easily 

accessible fields. For these crops measuring methods might be better implementable, which 

can be carried out directly from vehicles used for the regular field management, such as 

approaches with mobile laser scanning. However, a transferability of the presented approach 

to other crops, such as tea, sunflower, or sorghum is conceivable. Since an entering of these 

fields during the growing season is not possible or difficult due to the large plant heights or 

flooded fields, acquisitions from the field edges are unavoidable.  

Regarding the achieved data, the major outcomes can be concluded according to the 

working process, portrayed at the beginning of this thesis: 

I. TLS is well suitable for acquiring 3D point clouds at plot and field level. 

II. The point clouds can be interpolated to CSM, which represent the entire crop 

canopy of a field as a 2.5D data set in a very high resolution. 

III. By subtracting a DTM of the bare ground from each CSM, plant heights can be 

calculated pixel-wise. 

IV. Reliable BRMs can be established based on the 1D data sets, in which plant height 

and biomass are spatially averaged across common areas. 

V. A major benefit from the fusion of plant height and VIs in multivariate BRMs cannot 

be concluded, whereby plant height outperforms most of the used VIs. 

VI. The validation against comparative data underlines the correctness of the TLS-

derived data and demonstrates the advantages and robustness of this approach. 

Considering now the demand for such measurements, it should be recalled that the plant 

status depends on variable factors, such as weather and soil conditions or field management 

practices. Biomass-related indices, such as the harvest index and NNI, are widely used to 

quantify this plant status, but the direct non-destructive determination of biomass is not 

possible. Hence, it can be concluded that the main benefits of this TLS-based approach, such 
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as the very high spatial resolution, the temporal flexibility, and the acquisition of the entire 

crop surface are worthwhile for a spatially resolved evaluation of the plant status and based 

on that optimize site-specific crop management. The comparison of plant height and VIs as 

individual estimators in the barley case study showed that plant height is a recommendable 

and robust plant parameter for estimating biomass. Nevertheless, it has to be noted that VIs 

are important for capturing parameters of the vegetation cover, like density or leaf area index 

and biochemical or biophysical parameters, such as nitrogen, chlorophyll, or water content. 

Consequently, research should further focus on a useful simultaneous acquisition of plant 

height and spectral data. 

The rising trend towards precision agriculture or rather site-specific crop management 

since the late 20th century and the generally increasing recognition of the interaction between 

food security and sustainability caused a growing research focus on non-contact surveys with 

remote sensing sensors for agricultural applications. A diversity of approaches for different 

purposes is already available, each of which has certain advantages and disadvantages. 

Looking at the future, even though promising systems exist, the realization in practical 

applications for farmers is still insufficient. In this context, the above discussed conceivable 

approaches based on laser scanning offer promising solutions due to their flexible and quite 

independent applicability. Overall, the implementation of crop monitoring in conventional 

agriculture is urgently required to enable site-specific crop management and secure the food 

supply for almost 10 billion world citizens by the middle of this century.  
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