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Standard Abbreviations 
 

Abbreviation Significance 
Amp Ampicillin 
APS Ammonium persulphate 
A. tumefaciens Agrobacterium tumefaciens 
ATP Adenosine 5-triphosphate 
bp Base pair 
BSA Bovine serum albumin 
°C Degree centigrade 
cDNA Complementary deoxyribonucleic acid 
Cellulase 1, 4-[1,3;1,4]-β-D-Glucan 4-glucano-hydrolase 
Ci Curie 
DAP Days after pollination 
dATP Deoxyadenosinetriphosphate 
dCTP Deoxycytidinetriphosphate 
DEPC Diethylpolycarbonate 
dGTP Deoxyguanosinetriphosphate 
DMSO Dimythysulfoxide 
DNA Deoxyribonuleic acid 
DNase Deoxyribonuclease 
dNTP Deoxynucleosidetriphosphate 
DTT Dithiothrietol 
dTTP Dioxythimydinetriphophate 
E. coli Escherichia coli 
EDTA Ethylenediaminetetraacetic acid 
EtBr Ethidium bromide 
EtOH Ethanol 
g Gram 
X g Gravitation constant (980 cm/s) 
GFP Green fluorescent protein 
h Hour 
HAT Histone acetyltransferase 
HDAC Histone deacetylase 
HEPES 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid 
H2O Water 
HRP Horseradish peroxidase 
kb Kilobase (s) 
kDa Kilodalton (s) 
kV Kilovolt 
l Litre 
LiOAc Lithium acetate 
mA Milliampere 
MES 4-morpholin-ethanesulphonic acid 
min Minute(s) 
mmol Millimolar 
MOPS 3-(N-morpholino)-propanesulphonic acid 
mRNA Messenger ribonucleic acid 
NaOAc Sodium acetate 
ng Nanogram 
NAA α-naphthalene acetic acid 
ODx Optical density at specific wavelength 
PAA Polyacrylamide 
PAGE Polyacrylamide gel electrophoresis 
PCR Polymerase chain reaction 



   
 

PEG Polyethylene glycol 
pg Picogram 
pmol Picomol 
PMSF Phenylmethanesulphonfluoride 
PVPP Polyvinylpyrrolidone  
RNA Ribonucleic acid 
rRNA Ribosomal ribonucleic acid 
RT Room temperature 
RT-PCR Reverse transcription-polymerase chain reaction 
SDS Sodium dodecyl sulphate 
SDS-PAGE SDS polyacrylamide gel electrophoresis 
sec Second(s) 
TCA Trichloroacetic acid 
TEMED N,N,N’,N’-Tetramethylethylenediamine 
TRIS Tris-(hydroxymethyl)-aminomethane 
U Unit 
O/N Over night 
V Volt 
%(v/v) Volume-percent 
%(w/v) Weight-percent 
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General Introduction 
 

 
1.1  Eukaryotic transcription 

 
The eukaryotic genome is packaged into the compact state of 

chromatin that forms the scaffold from which the fundamental nuclear 

processes of transcription, replication and DNA repair occur. Chromatin is 

composed of nucleosomes that are comprised of DNA wrapped around an 

octameric core containing two molecules each of histones, H2A, H2B, H3 and 

H4 (Wolffe and Hayes, 1999). The assembly of a stable nucleosome core 

depends on the initial hetero-dimerization of H3 with H4 and the subsequent 

dimerization of two H3/H4 dimers to form the (H3/H4)2 tetramer (Eickbusch 

and Moudrianakis, 1993). Histones H2A and H2B form a stable heterodimer in 

a manner structurally homologous to H3/H4, but do not self-assemble into 

stable tetramer complexes. Rather, dimers of (H2A/H2B) bind to either side of 

the (H3/H4)2 tetramer to form the core which can wrap >160 bp of DNA 

(Wolffe and Hayes, 1999). The linker histone H1 stabilises the assembly of 

the octameric core into higher order structures characteristic of chromatin 

(Marmorstein, 2001). Whereas core histones are essential for chromatin and 

chromosome assembly, linker histones are not required (Dasso, et al., 1994; 

Shen et al., 1995). 

Each core histone contains a highly helical globular carboxy-terminal 

domain that comprises about 75% of the amino acid content and forms the 

interior core of the nucleosome particle (Marmorstein, 2001). External to these 

folded globular domains, ~25% of the mass of the core histones is contained 

within flexible and highly basic tail domains that are highly conserved across 

various species (Wolffe and Hayes, 1999). These domains are located at the 

N-termini of all four-core histone proteins and at the C-termini of histone H2A 

(Bohm and Robinson, 1984). These N-termini, if fully extended, can project 

well beyond the superhelical turns of DNA in the nucleosome (Luger et al., 

1997). A schematic of chromatin scaffold along with histone tail domains is 

shown in figure 1.1.   
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Figure 1.1) Chromatin scaffold along with sites for post-translational 
modifications within the histone tail domains. The histone tail domains and the 
nucleosome core proper are viewed along the superhelical DNA axis. The tail domains are 
modelled as fully extended polypeptide chains to show the approximate length of these 
domains with respect to the histone fold domains (columns). The top and bottom 
superhelical turns of core DNA are coloured blue and light blue, respectively. H2A, H2B, H3 
and H4 are coloured cyan, green, yellow and magenta, respectively, while arginine and 
lysine residues in the tails are coloured red. The H2A C-terminal tail is indicated as H2AC. 
Only the top four polypeptides are shown in their entirety. Tails from histones in the 
bottom half of the nucleosome are shaded lighter than those from the top half. Well-
characterized sites of acetylation on lysines are indicated by an asterisk. Sites of 
methylation (M), the site of phosphorylation (P) in the H3 tail (Ser10), and sites of 
ribosylation (R) and ubiquitination (U) in H2A and H2B are also indicated. See text for 
details about various modifications of histone tails (Wolffe and Hayes, 1999). 

 
Histone tails mediate internucleosomal contacts as extended chains of 

nucleosomes are compacted to form chromatin fibre (Garcia-Ramirez et al., 

1992). Furthermore, the tails are critical for the self-assembly of condensed 

fibres into higher order structures (Tse and Hansen; 1997; Tse, et al., 1998). 

Histone tail interactions change as the chromatin fibre undergoes folding or 

compaction suggesting that specific tail interactions are correlated with 

specific conformations of the fibre (Fletcher and Hansen, 1996). 

Regulatory expression of genes is pivotal to almost all the biological 

phenomena including development, differentiation, cell growth and response 
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to environmental cues. Transcriptional regulation of gene expression is a 

commonly utilised regulatory mechanism and is largely mediated through 

sequence-specific DNA binding proteins that recognise cis-acting elements 

located on the promoter and the enhancer regions of the target genes. 

Binding of such transcription factors to the relevant cis-acting elements 

facilitates other components of the transcription machinery to initiate the 

mRNA synthesis. However chromatin (as described above) appears to be an 

inhospitable environment for the molecular machines that use it as a substrate 

for various nuclear processes (Wolffe and Hayes, 1999). DNA in the 

nucleosomes is in a highly condensed and repressive state. Nucleosomes are 

remarkably stable to physical perturbation and under physiological conditions 

nucleosomal arrays fold into stable higher order structures that self-associate 

within the nucleus to achieve concentrations in excess of 50 mg/ml (Wolffe 

and Hayes, 1999). Under such repressive conditions the access of the 

transcription machinery to the target promoters is not possible. Packaging 

promoters in nucleosomes prevents the initiation of transcription by bacterial 

and eukaryotic RNA polymerases in vitro (Kornberg and Lorch, 1999). 

Nucleosomes exert a similar inhibitory effect upon transcription in vivo. 

Turning off histone synthesis by genetic means in yeast, leading to 

nucleosome loss, turns on transcription of all previously inactive genes (Han 

and Grunstein, 1988). Despite this repression complex metabolic processes 

involving DNA occur very efficiently in the cell. This contrasting requirement 

between the storage and the functional utility is met through the use of 

specialized molecular machines that reversibly disrupt and modify chromatin. 

Eukaryotic transcription machinery includes certain classes of non-DNA 

binding transcriptional co-activators (or adaptors) that modify or alter the 

chromatin structure in such a way as to facilitate access by the transcription 

machinery to the DNA (Roth and Allis, 1996).   
 

1.2  Chromatin modifying mechanisms 
 

 Research done over the last decade has shown that at least two 

different, yet highly conserved, mechanisms are used by eukaryotic cells to 

relieve nucleosomal repression and facilitate transcription (Kuo and Allis, 
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1998). The two mechanisms, described below, differ in whether or not they 

use covalent modification to alter chromatin structure (Kingston and Narlikar, 

1999).  
 

a) Chromatin remodelling complexes, which use the energy of ATP 

hydrolysis to locally disrupt or alter the association of histones with 

DNA (Vignali et al., 2000). These structural changes are accomplished 

without covalent modification and can be involved in either activation or 

repression (Kingston and Narlikar, 1999).  
 

b) Histone acetyltransferase (HAT) and histone deacetylase (HDAC) 
complexes, which regulate the transcriptional activity of genes by 

determining the level of acetylation of the amino-terminal domains of 

nucleosomal histones associated with them (Kuo and Allis, 1998). 
 

1.2.1 Chromatin disruption by DNA polymerase, RNA polymerase 
and SWI/SNF Complexes 

 

Molecular machines driven by ATP hydrolysis, including DNA and RNA 

polymerases and SWI/SNF-type complexes, can disrupt chromatin structure. 

Nucleosomes are disrupted by DNA polymerase with the pre-existing histone 

(H3/H4)2 tetramers being distributed between both daughter DNA duplexes 

and reassociating with pre-existing and newly synthesized histone (H2A/H2B) 

dimers (Wolffe and Hayes, 1999). Half of the newly assembled nucleosomes 

on nascent DNA contain newly synthesized diacetylated histone H4 and 

consequently will be more accessible to the transcriptional machinery (Ura et 

al., 1997). RNA polymerase needs to disrupt histone-DNA contacts in half of 

the nucleosome in order to effect cooperative displacement of the remaining 

histone-DNA interactions (Studitsky et al., 1994). Prokaryotic DNA and RNA 

polymerases have remarkable success in traversing chromatin templates 

(Bonne-Andrea et al., 1990). On the other hand eukaryotic RNA polymerases 

II and III have difficulty progressing along nucleosomal arrays (Wolffe and 

Hayes, 1999). 

Eukaryotic polymerases make use of additional factors to promote 

elongation through chromatin. These include proteins of the SWI/SNF (SWI, 

mating type SWItching; SNF, Sucrose Non Fermenting) class of genes 
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(Brown et al., 1996). These genes were first identified in yeast and their 

products were shown to oppose the inhibition of transcription by histones in 

vivo (Kornberg and Lorch, 1999). Mono-nucleosomal substrates lose the 

rotational constraint of DNA on the histone surface in the presence of yeast or 

mammalian SWI/SNF complexes (Kwon et al., 1994; Imbalzano et al., 1994). 

This loss requires ATP hydrolysis and facilitates the access of DNA-binding 

proteins to DNA in the nucleosome. Examples of plant proteins involved in 

ATP dependent chromatin remodelling are the products of Arabidopsis 

thaliana L. DDM1 and MOM loci (Kakutani et al., 1995, Amedeo et al., 2000). 

The mechanism of action of ATP dependent chromatin remodelling 

factors is not clearly understood.  One of the models is that histones H2A and 

H2B are displaced or destabilized within the nucleosome (Peterson and 

Tamkun, 1995). Removal of H2A and H2B facilitates access of transcription 

factors to nucleosomal DNA (Hayes and Wolffe, 1992) and facilitates 

transcription (Hansen and Wolffe, 1994).  
 

1.2.2 Structural and functional consequences of acetylation of 
core histones 

 

The histone tail domains provide sites for several different types of 

post-translational modifications including methylation, ADP ribosylation, 

phosphorylation, ubiquitination and acetylation (Allfrey et al., 1964; Bradbury, 

1992; Marmorstein, 2001). Such post-translational modifications have long 

been correlated with various nuclear activities, including replication, chromatin 

assembly and transcription (Grunstein, 1997; Durrin et al., 1991).  

Of such modifications, acetylation and deacetylation have generated 

most interest since gene activity was first correlated with histone acetylation. 

Nearly 40 years ago it was proposed that the acetylation state of the core 

histones within chromatin is associated with gene regulation (Allfrey et al., 

1964; Pogo et al., 1966) whereby genes containing hypoacetylated histones 

were transcriptionally repressed, while genes containing hyperacetylated 

histones were transcriptionally active. However, a direct link between 

chromatin function and acetylation was established by the discovery that 

coactivator complexes required for transcriptional activation function as 
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histone acetyltransferases (HAT’s; Brownell et al., 1996; Ogryzko et al., 1996; 

Kou et al., 1998), while co-repressors containing histone deacetylases 

(HDAC’s) confer transcriptional repression (Taunton et al., 1996; Alland et al., 

1997; Hassig et al., 1998).  
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.2) Equilibrium of steady-state histone acetylation is maintained by 
opposing activities of HAT’s and HDAC’s. Acetyl coenzyme A is the high-energy acetyl 
moiety donor for histone acetylation. HAT’s transfer the acetyl moiety to the ε-NH3

+ groups 
of internal lysine residues of histone N-terminal domains. Reversible reaction is catalysed 
by HDAC (Kuo and Allis, 1998). 

 

Histone acetylation is a reversible process (figure 1.2). HAT’s transfer 

the acetyl moiety from acetyl coenzyme A onto the ε-NH3
+ group of specific 

lysine residues present in the amino-terminal tails of each of the core histones 

resulting in the neutralisation of a single positive charge on each residue 

(Allfrey et al., 1964). Deacetylation catalysed by histone deacetylases, on the 

other hand, involves the removal of the acetyl moiety and, accordingly, the 

restoration of a positive charge on the histone tail (Brownell and Allis, 1996).  

Histones are locally modified on target promoters and specific lysines 

in particular histones are functional targets for acetyltransferases and 

deacetylases (Kuo et al., 1998; Kruger et al., 1995; Rundlett et al 1998). A 

hypothetical model of the mechanism of action of HAT’s is shown in figure 1.3.  
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Figure 1.3) A model for the mechanism of action of histone acetylation. 
Transcription factors bind DNA at enhancer sites or promoter sites near to the TATA box 
and initiation site via the DNA-binding domains (DBD) and recruit co-activators (like Gcn5 
and P/CAF) to specific DNA sites using their activation domains (AD). The yeast nuclear 
histone acetyltransferase Gcn5p, in association with Ada2/3p, forms a co-activator 
complex that is thought to function in a targeted manner. In mammalian cells, the co-
activator p300/CBP (which also functions as a HAT) and its associated HAT, PCAF, are 
recruited in the same fashion. These activities of the HAT’s are thought to enhance 
transcription by RNA polymerase II (pol II) holoenzymes on a nucleosomal template by 
acetylating nucleosomes. (Hassig and Schreiber, 1997) 

 

Several possibilities for the biological effects of lysine acetylation on 

chromatin structure have been suggested. These can be summarised below: 
 

a) Each acetylation reaction neutralises a positive charge and thus 

potentially weakens the interaction of the core histones with the 

negatively charged DNA. This may destabilise the nucleosomes and 

facilitate the binding of transcription factors to their recognition 

elements within isolated nucleosomes (Graessle et al., 2001).  

b) Acetylated histones wrap DNA less tightly in mono-nucleosomes, which 

may result in a decrease in the amount of DNA superhelical writhe 

constrained by the nucleosome (Wolffe and Hayes, 1999).  

c) Acetylation may disrupt the secondary structures that are known to 

exist within the H3- and H4 N-termini when they are bound to 
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nucleosomal DNA (Baneres et al., 1997). This might further destabilize 

interactions with DNA and the nucleosome itself. 

d) Acetylation may also facilitate factor access and transcription from 

nucleosomal arrays by decreasing the stability of the completely 

compacted 30 nm chromatin fibre (Tse et al., 1998; Ura et al., 1997; 

Nightingale et al., 1998).  It is also likely that acetylation leads to the 

destabilisation of long range structures through which the chromatin 

fibre is folded into chromosome itself (Annunziato et al., 1988).  

e) Acetylation may act as a highly specific signal that alters histone-

protein interactions. This possibility is supported by the finding that 

non-histone proteins can also be acetylated and deacetylated by HAT’s 

and HDAC’s (Graessle et al., 2001). Among these proteins are 

structural proteins (HMG proteins), transcriptional activators (e.g. p53, 

c-myb, GATA-1, MyoD, E2F etc.), nuclear receptor co-activators 

(ACTR, TIF2), general transcription factors (TFIIE, TEIIF).   

 

1.2.3 Phosphorylation, ubiquitination, ADP-ribosylation and 
methylation as rivals to core histone acetylation 

 

In contrast to the studies on the structural and functional consequences 

of histone acetylation, the impact of other post-translational modifications of 

the core histones is relatively unexplored. Histone H3 is rapidly 

phosphorylated on serine/threonine residues within its basic N-terminal 

domain, when extracellular signals such as growth factors stimulate quiescent 

cells to proliferate (Mahadevan et al., 1991). Based on charge effects 

phosphorylation of histone H3 might be expected to have structural 

consequences comparable with acetylation.  

Ubiquitin is a 76 amino acid peptide that is attached to the C-terminal 

tail of histone H2A and perhaps H2B. Ubiquitinated H2A is incorporated into 

nucleosomes, without major changes in the organization of nucleosome cores 

(Wolffe and Guschin, 2000). Only one nucleosome in 25 contains 

ubiquitinated histone H2A within non-transcribed chromatin. This increases to 

one nucleosome in two for the transcriptionally active HSP70 genes (Levinger 

and Varshavsky, 1982).  
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ADP-ribosylation of core histones may lead to localized unfolding of the 

chromatin fibre. The synthesis of long negatively charged chains of ADP-

ribose may well facilitate a partial disruption of nucleosomes, presumably by 

exchange of histones to this competitor polyanion (Wolffe and Hayes, 1999). 

Core histones are methylated on their lysine residues. Most 

methylation in vertebrates occurs on histone H3 at Lys9 and Lys27 and 

histone H4 at Lys20. The lysine positions on H3 are not known sites of 

acetylation while lysine 20 on H4 is subject to acetylation in plants (Wolffe and 

Hayes, 1999; Waterborg, 1990). Methylation of H3 seems to be correlated 

with acetylated regions of chromatin while methylation of H4 seems to have 

the opposite correlation (Annunziato et al., 1995). The exact role(s) of this 

modification has not been elucidated. 

 
1.2.4   HAT’s and their biological functions 

 

HAT’s can be classified with respect to their intracellular location and 

substrate specificity as either nuclear A-type (HAT A) or cytoplasmic B-type 

(HAT B). A-type HAT’s are involved in the post-synthetic acetylation of all four 

nucleosomal core histones and have long been thought to promote 

transcription related acetylation although their involvement in other processes 

such as DNA repair and replication is also likely (Kuo and Allis, 1999). 

Conversely B-type HAT’s are believed to have a housekeeping role in the cell, 

acetylating newly synthesised free histones (primarily histone H4 at lysines 5 

and 12) in the cytoplasm for transport into the nucleus, where they may be 

deacetylated and incorporated into chromatin (Kölle et al., 1998; Ruiz-Carrillo 

et al., 1975; Allis et al., 1985).  

 

1.2.4.1 Histone acetyltransferase Gcn5  
 

The first type-A HAT of known function, viz. GCN5 (General Control 

Nonderepressible-5) was identified in a genetic screen in yeast designed to 

isolate mutants unable to grow under conditions of amino acid limitation 

(Georgakopoulos and Thireos, 1992). The yeast cells’ response to changes in 

amino acid regime is coordinated by the activity of a bZip transcription factor, 

GCN4. Gcn4 activates the transcription of a large number of amino acid 
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biosynthesis genes when yeast cells are starved for amino acids (Hinnebusch, 

1990). However the ability of Gcn4 to activate a target promoter depends on 

the products of a number of gcn loci identified in this screen, including GCN5. 

Later it was suggested that the encoded protein (Gcn5) could function as an 

adaptor that mediates and enhances the interaction of the transcriptional 

activation domain of the DNA bound activators like Gcn4 with the basal 

transcriptional machinery (Georgakopoulos and Thireos, 1992).  The GCN5 

locus was recognized to be a HAT on the basis of sequence homology with 

the first functionally identified histone acetyltransferase gene from 

Tetrahymena (Brownell et al., 1996) and was subsequently shown to encode 

an active enzyme. Functional characterisation of yeast Gcn5 revealed a direct 

correlation between the ability of the protein to acetylate histones and its 

ability to activate transcription (Wang et al., 1998; Kuo et al., 1998). Various 

studies have mapped and characterised the functional domains of yeast Gcn5 

(figure 1.4). 
 

 

 

 

 

Figure 1.4) Typical domain structure of Gcn5 proteins. An N-terminal HAT domain, a 
central Ada2 interaction-domain and a C-terminal bromo-domain. Also shown is the PCAF 
homology domain found in mammalian Gcn5 proteins (see text for details).  

 

The domains identified include a C-terminal bromo-domain (Tamkun et 

al., 1992), which interacts with the histone N-termini (Ornaghi et al., 1999), a 

central domain responsible for interaction with adaptor protein Ada2 

(Alteration/Deficiency in activation), and an N-terminal HAT-domain. 

Functional analysis of mutagenised Gcn5 HAT-domain identified 

conserved residues critical to HAT activity and demonstrated the direct 

correlation of Gcn5 HAT function with cell growth, in vivo transcription and 

histone acetylation at Gcn5 dependent promoters’ in vivo (Kuo et al., 1998). 

Further studies on these mutants showed that Gcn5 HAT activity also has an 

effect on chromatin remodelling (Gregory et al., 1998).   

Gcn5-homologous proteins have been cloned from humans, plants, 

fungi and protozoa (Smith et al., 1998). Mammalian Gcn5 HAT’s contain an 

PCAF  homology Ada2 interaction-
domain Bromo-domainHAT-domainPCAF  homology Ada2 interaction-
domain Bromo-domainHAT-domain
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additional domain at the N-terminal end. This domain shows homology to 

PCAF (p300/CREB binding associated factor; CREB, cAMP response 

element-binding protein) protein and is known as PCAF homology-domain 

(Forsberg et al., 1997).  The PCAF-domain of mammalian Gcn5 has been 

implicated in the acetylation of histones in nucleosomes (Xu et al., 1998). It 

has also been shown to bind to CBP (CREB binding protein) and p300 (Yang, 

et al., 1996), both of which are transcriptional co-activators and interact with a 

large number of developmentally important transcription factors (Kamei, et al. 

1996).   
Nuclear histone acetyltransferases are often subunits of large protein 

complexes. Among known nuclear HAT’s, TAF250 (TATA binding protein 

associated factor) is a subunit of large TFIID complex and CBP/p300, SRC-1 

(steroid receptor cofactor 1) and ACTR (activator of thyroid and RA receptor) 

may all be components of a single, large co-activator complex that facilitates 

the functioning of nuclear hormone receptors (Pollard and Peterson, 1998).  

The yeast Gcn5 is a catalytic subunit of three distinct complexes: Ada 

complex (0.8 Mda), SAGA (Spt, Ada, Gcn5, Acetyltransferase) complex (1.8 

Mda) and a 200 kDa complex (Grant et al., 1997; Pollard and Peterson, 1997; 

Saleh et al., 1997).  Models of Ada and SAGA complexes are shown in figure 

1.5. In addition to several unknown subunits, each complex contains the 

adaptor Ada2 and Ada3 gene products, and SAGA also contains Spt 

(suppressor of transcription) proteins viz. Spt3, Spt7, Spt8 and Spt20 (Grant 

et al., 1997). Unlike the isolated catalytic HAT subunits, which can only 

acetylate isolated core histones, these complexes are able to acetylate 

histones within nucleosomes (Grant et al., 1997).  
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Figure 1.5) Models of Ada and SAGA structure and function. The scenario shows that 
the Ada and SAGA complexes are distinct in terms of function and composition. Both 
complexes would contain the nucleosome acetylating function of GCN5 but might possess 
some unique uncharacterised subunits (e.g. AdaX and AdaY, SptX and SptY) and interact 
with different types of activators (Act1 and Act2, Grant et al., 1998). 
 
 

1.2.4.2 Adaptor protein Ada2  
 

A genetic screen in yeast identified proteins that could functionally 

interact with the activation domain of the herpes simplex virus activator, VP16 

(Berger et al., 1992). Several genes, Ada2 (Alteration/Deficiency in activation; 

Berger et al., 1992), Ada3 (Pina et al., 1993), Ada4 (Marcus et al., 1994) and 

Ada5 (Marcus et al., 1996; Roberts and Winston, 1996) were identified and 

cloned. Mutations in any one of them slowed yeast growth and reduced the 

activation by acidic activators such as VP16 and yeast Gcn4. Ada4 was 

shown to be identical to Gcn5 while Ada5 was shown to be Spt20 (Barlev et 

al., 1995; Grant et al., 1998). Ada2, Ada3 and Gcn5 (Ada4) interact with each 

other in vitro (Horiuchi et al., 1995) and in vivo (Candau and Berger, 1996), 

which strongly argues for the existence of a physiologically relevant Ada 

complex. This is further supported by the fact that mutant strains in either 

ada3 (Pina et al., 1993) or gcn5 (Marcus et al., 1994) have properties similar 

to ada2 mutants. The role of such an Ada complex could be to constitute a 

physical link to allow productive interaction between the activation domains of 

transcription factors and the basal transcription machinery. Ada2 may play a 
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central role in such a complex since it physically interacts with activation 

domains from VP16 (Silverman et al., 1994; Barlev et al., 1995), Gcn4 and 

also with TBP (TATA binding protein; Barlev et al., 1995). Further studies 

proved that indeed Gcn5 and Ada2 are present in multi-protein complexes 

(Grant et al., 1997; Pollard and Peterson, 1997; Saleh et al., 1997; figure 1.4). 

Gcn5 mediated HAT activity of these complexes is lost in strains bearing 

disruptions of Ada2 or Ada3 (Grant et al., 1998) indicating the crucial role of 

Ada2 and Ada3. 

Genes encoding putative adaptor proteins have been isolated and 

cloned from a range of eukaryotes including plants as for Gcn5. The 

sequence similarity between Ada2 proteins from different organisms is less 

highly conserved than Gcn5. Nevertheless various studies have characterised 

a number of functional domains in Ada2 proteins (figure 1.6). 
 

 

 

 

 

 

Figure 1.6) Typical domain structure of Ada2 proteins. All proteins contain a zinc 
binding- and a myb-resembling DNA binding-domain at the N-terminal end and a central 
Ada3 interaction-domain. 

 

The similarity between various Ada2 proteins is found primarily in three 

regions. The most N-terminal region includes a cysteine-rich zinc binding 

domain (comprising of 2 zinc fingers with 6 conserved cysteine and 2 flanking 

histidine residues). This region is capable of binding to both Gcn5 and the 

transcriptional activation domain of VP16 (Candau et al., 1996; Barlev et al., 

1995). Deletion of the cysteine rich region from yeast Ada2 reduces co-

immunoprecipitation of Gcn5 but has little discernible phenotype in vivo 

(Candau and Berger, 1996). The N-terminal segment of Ada2 also contains 

one copy of a motif present three times in the DNA binding domain of the Myb 

protein family (Lane et al., 1990; Berger et al., 1992). Deletion of the myb 

motif does not affect co-immunoprecipitation of Gcn5 but cripples the ability of 

Ada2 to support transcriptional activation in vivo (Candau and Berger, 1996). 

Ada3 interaction-
domain
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DNA binding-domain

(SANT domain)

Zinc binding-
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Recently it was shown that this domain is required for the normal acetylation 

of histones by the SAGA complex (Sterner et al., 2002). The central region is 

responsible for interaction with Ada3 (Candau et al., 1996) and its deletion 

causes debilitating phenotypes in vivo (Stockinger et al., 2001). 
 

1.2.5  The histone acetyltransferase superfamily 
 

A large number of transcriptional regulators have been found to 

possess intrinsic HAT activity (Table 1.1; Sterner and Berger, 2000).  
 

 

HAT HAT complex Function Organism 
Gcn5-related N-acetyltransferases (GNAT)  
Gcn5     Ada, SAGA Coactivator of transcription  Ubiquitous     
Hat1     Complex with Rbap48  Cytoplasmic acetylation of H4 

(deposition-related)  
Ubiquitous     

PCAF     PCAF complex  Coactivator of transcription  Mammals     
Hpa2     –  Unknown     Yeast     
Elp3     RNA polymerase II 

complex  
Transcription (elongation)  Yeast     

CBP/p300  Associates with different 
regulatory proteins  

Coactivator of transcription  Ubiquitous     

Nuclear receptor coactivators  
ACTR     –  Coactivator of transcription  Mammals     
SRC-1     –  Coactivator of transcription  Mammals     
TIF2     –  Coactivator of transcription  Mammals     
TAFII250     TFIID     Factor associated with TBP  Ubiquitous     
TFIIIC (90, 110, 220)  TFIIIC complex  RNA polymerase III transcription  Human     
MYST-family     
Sas3     Nun     Silencing     Yeast     
Esa1     Nun     Cell cycle regulation  Yeast     
MOF     MSL complex  Gene dosage compensation  Insects     
MOZ     –  Malignant diseases  Human     
Tip60     Tip60 complex  HIV-Tat interaction  Human     
HBO1     HBO complex  Interacts with replication origin 

recognition complex  
Human     

 
 

Table 1.1) HAT families and their transcription-related functions. ACTR¯activator of 
thyroid and RA receptor; HAT¯histone acetyltransferase; MOF¯male absent on first; MYST 
¯ MOZ, Ybf2/Sas3, Sas2, Tip60; PCAF¯p300/CBP associated factor; rOX¯RNA on X; SRC-1 
¯ steroid receptor cofactor 1; -, not known (Lusser et al., 2001). 

 

Sequence analysis of these proteins reveals that they fall into distinct 

families that show high similarity within families but poor to no sequence 

similarity between families (Kuo et al., 1998). Gcn5/PCAF family of HAT 

proteins (GNAT family) function as coactivators for a subset of transcriptional 

activators. This family contains a catalytic HAT domain that preferentially 

acetylates lysine 14 of histone 3 and to a lesser extent lysine 8 and lysine 16 

of histone H4 (Wang et al., 1998; Kuo et al., 1998; Kuo et al., 1996). 
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1.2.6   HDAC’s and their biological functions 
  

 The connection between acetylation and transcription is further 

augmented by the fact that deacetylation can cause transcriptional repression 

(Grunstein, 1997; Struhl, 1998). Histone deacetylases from various organisms 

are shown in table 1.2.  
 

HDAC-family 
(examples) 

Enzymes Organisms Proteins associated directly or 
indirectly with HDAC-complexes 

RPD3-like     
      RPD3, HOS1-3  Yeast           
      RPDA, HOSA  Aspergillus     Sin3, Rbap, SAP, MAD, MAX, NcoR,  
      DHDAC1-3     Drosophila melanogastor SMRT, Mi2, MTA2, MBD3, MeCP1,  
      HDA1-3     Caenorhabditis elegans  MeCP2, Ikaros, UME6, Ski, p53, HPV  
      HDm     Xenopus laevis  E7, PcG, YY1, LIM, Hunchback,  
      HDAC1-3      Chicken, mammals  Groucho, LAZ3, PLZF, BRCA1, 

HDAC4,  
      HDAC7, 8  Chicken, mammals  HDAC5     
      RPD3/HD1-B  Zea mays        
HDA1-like     
      HDA1     Yeast           
      DHDA2     D. melanogastor  HDAC3, MEF2A, NcoR, SMRT  
      MHDA1, 2  Mouse           
      HDAC4-6     Human           
HD2-like     
      HD2     Plants     Homopolymer of HD2-p39 and 

phosphorylated forms  
SIR2-like     
NAD-dependent     
      SIR2     Yeast     Sir3, Sir4, Net 1  
      SIR2-homolog     Mouse            

 

Table 1.2) HDAC families of various organisms. HDAC-histone deacetylase (Lusser et 
al., 2001). 
 

 Rpd3, a yeast co-repressor, was first identified in genetic screenings as 

a positive and negative regulator for a subset of yeast genes (Vidal and 

Gaber, 1991). Later on it was discovered that RPD3 locus encodes the 

catalytic subunit of histone deacetylase complexes (Kuo and Allis, 1998). The 

deacetylation-repression connection was most clearly demonstrated by the 

isolation of a human histone deacetylase, HDAC1 (HD1), whose sequence 

was highly similar to that of yeast RPD3 (Kornberg and Lorch, 1999). Another 

histone deacetylase RbAp48, a protein previously found to interact with 

retinoblastoma (Rb) is also a subunit of chromatin assembly factor CAF1 

(Verreault et al., 1996) and is implicated with chromatin assembly as well. 

Biochemical fractionation of yeast extracts led to the discovery of two distinct 
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yeast deacetylation activities, HDA (350 kDa complex) and HDB (600 kDa 

complex). Protein microsequencing and subsequent sub-cloning 

demonstrated that the catalytic subunits for these deacetylase complexes 

were encoded by HDA1 (HDA complex) and RPD3 (HDB complex) genes. In 

yeast deletion of HDA1 or Rpd3 leads to hyperacetylation of histones H3 and 

H4 (Rundlett et al., 1996).   

 All of the known deacetylases occur in multiprotein complexes. The 

complexes are able to deacetylate histones only in nucleosomes, where as 

the isolated deacetylase subunits cannot. These deacetylase complexes 

interact with DNA-binding proteins, to be recruited to specific promoters 

(Kornberg and Lorch, 1999). 
 

1.2.7   Histone deacetylase inhibitors 
 

 The discovery of compounds capable of inhibiting the enzymatic 

hydrolysis of acetamido groups (deacetylation) has proved instrumental in the 

study of histone acetylation. No such inhibitors are known for HAT’s (Lusser et 

al., 2001). Inhibitors used are butyrate and microbially derived compounds of 

diverse chemical composition, such as Trichostatin A (TSA) and Trapoxin 

(TPX). 

 Millimolar concentrations of butyric acid inhibit HDAC’s. However 

butyric acid also causes additional effects on cellular activities in vivo that are 

not directly linked to histone hyperacetylation (Yoshida et al., 1995). On the 

other hand, highly potent and specific small molecule HDAC inhibitors like 

TPX and TSA, provide useful tools for studying effects of acetylation while 

avoiding unwanted side effects. 

TPX is an irreversible inhibitor belonging to a family of histone 

deacetylase inhibitors whose conserved structural motif consists of a 12-atom 

cyclic tetrapeptide backbone that mimics the acetyl lysine and may bind in the 

vicinity of the enzyme's active site (figure 1.7). The Streptomyces metabolite 

TSA is a nonpeptidic HDAC inhibitor that lacks structural similarity to the TPX 

family, but has a lysine side chain mimic with a terminal hydroxamic acid, 

which is a likely ligand for the presumptive metal in the HDAC enzyme active 

site (Hassig and Schreiber, 1997).  
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Figure 1.7) Chemical structures of some HDAC inhibitors. (a) Butyric acid, TPX and 
TSA inhibit HDAC’s at low concentrations in vivo and in vitro. The structure of the 
epoxydecanoic acid (Aoe) side chain of Trapoxin approximates acetyl lysine and may bind 
in the vicinity of the enzyme's active site. Biochemical experiments suggest that TSA and 
TPX bind the same inhibitory site of HDAC1 (Taunton et al., 1996). Hydrolysis or reduction 
of the epoxide results in complete loss of biological activity, suggesting that Trapoxin may 
form a covalent adduct with an HDAC active site residue (Hassig and Schreiber, 1997).  

 

1.3   Histone acetylation in plants 
 

Both histone acetylation and deacetylation occur in plants, and it is 

likely that these processes regulate similar functions to those identified in 

other eukaryotes. The most extensively acetylated histone in plants is H3, in 

contrast to the situation in non-plant eukaryotes where H4 is most highly 

acetylated (Waterborg, 1990). A further difference is that in plants, H4 is 

acetylated (mono- to penta-acetylated forms) at five lysine residues (Lys 5, 8, 

12, 16 and 20). Lysine 20 in animals and yeast is not acetylated but is 

methylated instead, and is therefore unavailable for acetylation (Lusser et al., 

2001). Monocotyledonous maize (Z. mays L.) has been employed as a plant 

model for detailed biochemical, enzymatic and molecular characterisation of 

different HAT and HDAC types, their substrate specificities and developmental 

regulation (Graessle et al., 2001). In germinating seedlings of maize three 

HAT and four distinct HDAC activities have been detected by 

chromatographic fractionation of cellular extracts (Loidl, 1994; Lechner et al., 

1996).  
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Fractionation of cellular extracts from germinated embryos yielded 3 

distinct HAT activities (Lechner et al., 1996), HAT-A1, HAT-A2, and HAT-B. 

Maize HAT-B was shown to acetylate newly synthesised H4 at lysine 5 and 

12, before chromatin assembly (Kölle et al., 1998). HAT-B (similar to Hat1p 

from yeast), found at least partly in the cytoplasm is thought to be important 

for the transport of newly synthesised H4 into the nucleus and also for its 

correct assembly into the nucleosomes (Lusser et al., 1999). However 

deletion of the Hat1 gene from yeast does not reveal any mutant phenotype. 

Recently it has been shown that the histones need not be acetylated to 

interact with chromatin assembly factor CAF-1 or to be deposited onto 

chromatin (Verreault, 2000). Since H4 and H3 N-termini in yeast are 

functionally redundant, it was suggested that the acetylation of H3 N-termini 

by another, unidentified enzyme could complement the lack in H4 acetylation 

(Graessle et al., 2001). 

In plants, genes involved in the process of histone deacetylation have 

been cloned and analysed for their activity (Rossi et al., 1998; Wu et al., 2000 

a and b; Tian and Chen, 2001). HDAC’s have been categorized into three 

classes (table 1.2; Davie and Chadee, 1998). Classes 1 and 2 contain 

enzymes that are homologous to the yeast proteins Rpd3 and Hda1, 

respectively. Proteins related to maize HD2 belong to class 3. Recently, the 

yeast-silencing information protein Sir2 (silent information regulator 2) has 

been shown to be an NAD-dependent (Nicotineamide adenine dinucleotide) 

HDAC (Guarente, 2000), thus defining a fourth class. Three biochemically 

distinct HDAC activities have been identified in pea and four in maize (HD1A, 

HD1BI, HD1BII and HD2; Loidl, 1996; Lechner et al., 2000). Maize HD1BI 

(ZmRpd3) and HD1BII are class 1 HDAC (Lusser et al., 2001). Several EST 

clones from Z. mays, A. thaliana and other plant species are also available 

that are homologous to the HDA-1 family, although none of them has been 

studied in detail (Lusser et al., 2001). 

HD2-like HDAC’s (Wu et al., 2000) form multigene families of highly 

similar members within the plant kingdom (Lusser et al., 2001) but no closely 

related proteins have been identified so far in animals or fungi. The nucleolar 

location of HD2 in maize cells suggests a possible role in the regulation of 
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rRNA genes (Lusser et al., 1997). Targeting a deacetylase, AtHD2A, to a 

reporter gene in vivo, caused its repression (Wu et al., 2000a).   

The phenomenon of histone acetylation in plants has been mainly 

addressed via biochemical studies of purified complexes and the analysis of 

histone acetylation patterns on isolated chromatin components, although 

transcriptional adapter proteins have been characterized recently in A. 

thaliana (Stockinger et al., 2001), and several HAT sequence types (GCN5, 

MYST, ESA, HAT-B) are present in plant genome databases (Lusser et al., 

2001).  

The isolation of the putative transcriptional co-activators (GCN5 and 

ADA2) from maize has been previously reported (Becker et al., 1999). The 

GCN5 homologous sequence from maize (ZmGCN5; GenBank Acc.: 

AJ428540) was isolated by two hybrid screening using an RT-PCR AtAda2 as 

a bait. The isolated cDNA contained an open reading frame of 1545 bases, 

predicting a polypeptide of 515 amino acids. Further analysis showed that 

ZmGCN5 is a single copy gene and is constitutively expressed in dividing 

cells. In vitro acetylation assays showed that the isolated protein could 

acetylate the core histones (H2A, H2B, H3 and H4) but not nucleosomes in 

vitro (Marcus Riehl, Diplomarbeit, Universität Giessen, 1999).  

Database searches identified a barley EST (clone BCD450, GenBank 

Acc.: AA231679) homologous to AtAda2. Primers were designed based on 

this sequence, and a 226bp fragment amplified by genomic PCR was used to 

screen a barley cDNA library. A cDNA clone ca. 1kb in length was used in turn 

to screen an amplified maize silk cDNA library. The screen yielded 2 positive 

clones, of which one possessed an open reading frame of 1695 bp predicting 

a polypeptide of 565 amino acids. The ZmAda2 cDNA (GenBank Acc.: 

AJ430205) clone was sequenced, and showed homology to the published 

Ada2 genes from A. thaliana (Heinz-Albert Becker, personal communication). 

Ada2 is a small multigene family in maize and is expressed in all tissues and 

at all stages of development examined. GST spin-down experiments showed 

that ZmGcn5 could interact with ZmAda2 in vitro (Marcus Riehl, Doktorarbeit, 

Universität Köln, 2002). Both ZmGcn5 and ZmAda2 proteins were over-

expressed in E. coli and antibodies were raised against them.  
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1.4 Role of transcriptional activators with acidic 
activation domains 

  

The eukaryotic transcription initiation machinery, consisting of RNA 

polymerase II and at least 50 other additional components is recruited to the 

promoters of target genes by activators (Holstege et al., 1998). Specific 

activator proteins bind at one or more locations upstream (known as enhancer 

or upstream activation sequences or UASs) of the TATA sequence, the site 

where TATA box binding protein (TBP) nucleates the assembly of basic 

transcription factors and RNA polymerase II (Drysdale et al., 1995; Banerji et 

al., 1981; Guarente et al., 1982). These transcriptional activator proteins 

contain two functional domains, one that dictates the DNA binding and a 

second that activates transcription (Brent and Ptashne, 1985). The activation 

domains interact with other factors including TFIID or TFIIB (TF–transcription 

factor) and facilitate the binding of RNA polymerase II at the start site of 

mRNA synthesis (Schmitz et al., 1997). The activation domains of several 

yeast activators are characterised by a high content of acidic amino acids 

(Hope and Struhl, 1986; Ma and Ptashne, 1987 a, b) while activation domains 

from metazoans consist of many classes, including acidic, glutamine-rich and 

proline-rich types. Acidic activators such as yeast GAL4 (Ma and Ptashne, 

1987 a, b) and Gcn4 (Hope and Struhl, 1986) activate transcription in many 

eukaryotic organisms. Metazoan acidic activators work in yeast, while non-

acidic activators such as the glutamine-rich activator Sp1 (Courey and Tijan, 

1988) appear not to function. Thus the mechanism by which acidic activation 

domains function seems to be conserved (Berger et al., 1992).  

 Activators can directly interact with one of the basic transcription 

factors (Geisberg et al., 1994; Ingles et al., 1991; Lin et al., 1991) however 

there are indications that activators interact with basic factors through 

mediators or co-activators (Drysdale et al., 1995). Transcriptional activator 

Gcn4 is one of the activators that have been shown to interact with Ada2 of 

the Ada2-Gcn5 coactivator complex. Gcn4 is a transcriptional activator of 

genes encoding amino acid biosynthesis enzymes in Saccharomyces 

cerevisiae L.. Gcn4 is a member of the bZIP (basic/leucine zipper) family of 

transcriptional activators that binds to DNA as a homodimer (Landshulz et al., 
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1988; Hope and Struhl, 1987). The activator domain of Gcn4 resides in the 

stretch of acidic amino acids located roughly in the centre of the protein while 

the N-terminal region serves as a sequence-specific DNA binding domain 

(Hope and Struhl, 1986; Hope et al., 1988). Furthermore the activation domain 

of Gcn4 can also interact with TBP (Melcher and Johnston, 1995). There are 

also indications that activation by Gcn4 is mediated by the RNA Pol II 

holoenzyme (Kim et al., 1994) and by TFIID (Klebanow et al., 1996). These 

findings suggest that Gcn4 may interact with multiple GTFs (General 

transcription factors) and co-activator proteins in order to stimulate 

transcription. A model summarising the role of Gcn4 is shown in figure 1.8. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.8) Model summarizing the in vitro interactions between the Gcn4 
activation domain and RNA polymerase II holoenzyme, TFIID and Gcn5-Ada2 
coactivator complex. A dimer of Gcn4 is depicted to bind to a Gcn4 binding site located 
upstream from the TATA element in a Gcn4-regulated promoter. The activation domain 
(AD) of Gcn4 is shown interacting independently with the mediator complex of RNA Pol II 
holoenzyme (containing SRB-encoded proteins, TFIIF, Gal11p, and Sug1p) and the Spt-
Ada-Gcn5 complex (Drysdale 1998). DBD - DNA-binding domain. 

 

 A number of transcriptional activators have been identified from 

plants. Among these maize Opaque-2 (ZmO2), a member of the bZIP 

transcription factor family, is expressed during late endosperm development 

(Gallusci et al., 1994). ZmO2, located on the chromosome 7 was cloned by 

transposon tagging (Schmidt et al., 1987; Motto et al., 1989) and is involved in 
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the regulation of seed storage protein synthesis, modulating the transcription 

of 22 kDa zein genes and of the b-32 albumin (Kodrzycki et al., 1989; Schmidt 

et al., 1990; Lohmer et al., 1991). The 22-kDa zeins are most abundant 

endosperm storage proteins in maize. The function of b-32 albumin in 

endosperm development is not clear but the protein shares homology with 

type I ribosome inactivating proteins (Maddaloni et al., 1991).  A number of 

distinct functional domains have been identified on the O2 protein. These 

include a basic region followed by a leucine zipper, responsible for DNA-

binding and dimerization (Hartings et al., 1989; Aukerman et al., 1991) and an 

N-terminally located acidic activation domain responsible for transcriptional 

activation (Schmitz et al., 1997). 

 ZmO2 shows many similarities to yeast Gcn4. Both possess bZip 

DNA-binding-domains, have acidic activation-domains and also share similar 

DNA target sequences (Vinson et al., 1989; Ziff 1990; Katagiri and Chua, 

1992; Lohmer et al., 1991). Homology between the basic regions of ZmO2 

shows 50% similarity and 40% identity to Gcn4 at the amino acid level 

(Hartings et al., 1989). Furthermore, ZmO2 partially complements the GCN4 

mutation in yeast (Mauri et al., 1993). Such a high degree of conservation 

between ZmO2 and Gcn4 suggests that these bZip proteins might be 

functionally equivalent and raises the possibility that ZmO2 might also recruit 

the Gcn5-mediated co-activator complexes via an interaction with ZmAda2. 
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Aim of the project 
 

 

At the commencement of this project, two maize genes encoding 

putative transcriptional co-activator proteins viz. ZmGcn5 histone 

acetyltransferase and the adaptor ZmAda2 had been isolated in the Thomson 

laboratory at Max Planck Institute, Köln (Becker et al., 1999). Evidence from 

other eukaryotes shows that Gcn5 is a histone acetyltransferase, which 

modifies the N-terminal tails of the lysine residues of the histones in 

nucleosomes (Brownell et al., 1996). This reduces the strength of histone-

DNA interaction and the DNA becomes accessible to transcription machinery 

resulting in increased levels of transcription of specific gene products (Wang 

et al., 1998; Kuo et al., 1998).  Ada2 is an adaptor protein (Berger et al., 

1992), which interacts with Gcn5 (Candau and Berger et al., 1996). Ada2 can 

also directly interact with transcriptional activators to evoke transcription of 

specific genes (Silverman et al., 1994; Barlev et al., 1995). Both these 

proteins are present inside the cell in multi-protein complexes. Two such 

complexes have been characterised in yeast viz. the Ada and SAGA 

complexes (Grant et al., 1997; Pollard and Peterson, 1997). These 

complexes show intrinsic HAT activity due to Gcn5. Gcn5 interacts with the 

rest of these complexes through Ada2 (Candau and Berger et al., 1996). Most 

of this information has been accumulated by research on S. cerevisiae or 

mammalian systems (discussed in the introduction). Little is known about 

organisation and mechanism of action of these proteins in plants. 

Experiments performed in the Thompson lab at MPIZ showed that ZmGcn5 

can acetylate free histones (at lysine positions 5, 8, 12 and 16) and can also 

interact with ZmAda2 in vitro (Marcus Riehl, Diplomarbeit, 1999, Doktorarbeit, 

2002). The purpose of this research was to functionally characterise these 

genes and to add to the basic knowledge and understanding of transcriptional 

activation in plants. Specifically the objectives of the study were to: 
 

1. Understand and characterise the Gcn5-Ada2 complexes in plants and  
 

2. Establish the role of histone acetylation and deacetylation in regulating 

plant gene expression. 
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Materials and Methods 
 
2.1  Materials 
 

2.1.1  Antibiotics 
 

Name Stock Final concentration Organism 

Ampicillin Water 100 µg/ml Escherichia coli L. 

Carbenicillin Water 100 µg/ml Agrobacterium tumefaciens L. 

Claforan Water 250 µg/ml A. tumefaciens L. 

Kanamycin Water 25 µg or 100 µg/ml E. coli L. /A. tumefaciens L. 

Phosphinothricin Water 200 µg/ml Z. mays L. 

Rifampicin Methanol 100 µg/ml A. tumefaciens L. 

Tetracycline Ethanol 100 µg/ml A. tumefaciens L. 

 
2.1.2   Plant materials 
 

Zea mays L. cv. A69Y 

Zea mays L. cv. B37 

Zea mays L. cv. HE-89 Cell line 

Nicotiana tabacum L. cv. BY2 (suspension cell line) 

Nicotiana tabacum L. cv. SR1 (greenhouse cultivar) 

Vigna unguiculata L. (Cowpea) 
 

2.1.3  Bacterial Strains, cloning vectors and oligonucleotides 
 

2.1.3.1  E. coli strains 
 

 DH10B: F-, mcrA∆(mrr-hsdRMS-mcrBC)Φ80dlacX74, deoR, recA1, 

endA1, araD139, ∆(ara,leu)7607, galU, galK, λ –rspl, nupG (GIBCO 

BRL)   
 XL1 Blue MRF´: ∆(mcrA)183, ∆(mcrCB-hsdSMR-mrr)173 endA1 

supE44 thi1 recA1 gyrA69 relA1 lac[F’ proAB lacqZ∆M15Tn10(Tetr)] 
 

2.1.3.2 Agrobacterium tumefaciens strain 
 

 LBA-4404: Smr, (Rifr) (Hoekma, et al., 1983) 
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2.1.3.3 Cloning vectors 
 

 

Vector Origin 
pBluescript® SK(+/-) Stratagene (Alting-Mees et al., 1992) 

pBin19 Clontech (Bevan, M., 1984) 

pRTO2 Schmitz et al., 1997 

pRT 100- pRT 107 Töpfer et al., 1988 

pGFP-JS Sheen et al., 1995 

pMON999 CFP/YFP Shah et al., 2001 

pGEMTEasy Promega, (Robles, 1994) 

pAHC25 Christiansen and Quail, 1996 

 
2.1.3.4 Oligonucleotides used for cloning and PCR analysis 
 The oligonucleotides used in the current study are listed below and 

were purchased from Life Technologies, Gibco BRL or MWG Biotech.  
 

Primer name Primer sequence 5’→3’  
Gcn5PromterFwd: GCCACCATGGAAATATTTTTGGGT 

Gcn5PromterRev: GCCGTCCATGGGGGGAAAGAGGGGA 

Nco1Gcn5Fwd: TCCCCTCTTTCCCCCCATGGACGGCCT 

Nco1Gcn5Rev: GCGCCCATGGTTGAGAGTTGTGCAAG 

Gcn5NtermRev: CATACCATGGGTTCATCAACGCCGTCA 

Gcn5HatFwd: GAACCCATGGTATGGTTGGTA 

Gcn5Ada2IntFwd: GCGCCCATGGAGTGTAAAATTGACCCA 

Gcn5Ada2IntRev: GCCCATGGGTTGCCTGTAAGTATTATAGT 

ApaINubFwd: GCGGGCCCATGCAGATTTTCGTCAAGACT 

SacINubRev: GCGAGCTCTAGCGTCGACCCCGGGCTCGA 

BglIIAda2Fwd: GCAGATCTCATGGGGCGGTCGCGAGGGGT 

SalIAda2Rev: GCGTCGACCGTAGGCAACTCCACATGGTT 

EcoRIGcn5Fwd: GCGAATTCATGGACGGCCTCGTGGCGCCGT 

AgeIGcn5Rev: GCACCGGTGCTCTTGGTTGAGAGTTGTGCA 

NcoIAda2Fwd: GCCATGGGGCGGTCGCGAGGGGTGCAGAA 

NcoIAda2Rev: GCCCATGGCCGTAGGCAACTCCACAT 

ClaIO2Fwd: GCATCGATATGGAGCACGTCATCTCAATG 

XbaIO2Rev: GCTCTAGAATACATGTCCATGTGTATGGC 

35SFwd GATACAGTCTCAGAAGACCAGAGGGCTA 

Gcn5As  TGGCAAGGGTACATTAAAGATTATGAC 

PextGcn5:   CCGTCCATGCGGGGAAAGAGGGGAAG 

Universal  GTA AAA CGA CGG CCA GT 

Reverse CAG GAA ACA GCT ATG AC 
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2.1.4  Chemicals  
 

Laboratory grade chemicals and reagents were purchased from Roth 

(Karlsruhe), Serva (Heidelberg), Boehringer (Mannheim), Merck (Darmstadt), 

Beckman (München), GIBCO BRL (Neu Isenburg) and Sigma (Deisenhofen) 

unless otherwise stated. Filter paper was obtained from Whatman. 

Radioactive nucleotides were obtained from Amersham Buchler 

(Braunschweig). Tissue culture chemicals were obtained from Sigma, Merck, 

Duchefa and Roche unless otherwise stated. 
 

2.1.5  Photographic material 
 

Kodak X-omat film was used for autoradiography in conjunction with 

exposure cassettes fitted with high speed Trimax intensifying screens. For the 

detection of rare messages PhosphorImager system from Molecular 

Dynamics was used. Mitsubishi film (Mitsubishi Electric Corporation, Japan) 

was used to photograph ethidium bromide stained gels using Bio-Rad Gel-doc 

electrophoresis photosystem. 
 

2.1.6  Enzymes 
 

2.1.6.1 Restriction enzymes 
 

Restriction enzymes were purchased from Boehringer (Mannheim), 

GIBCO BRL, Pharmacia Biotech (Braunschweig), New England Biolabs 

(Schwalbach) and Stratagene (Heidelberg) unless otherwise stated. 10 x 

buffers for restriction enzymes were those supplied by manufacturers. 
 

2.1.6.2 Nucleic acid modifying enzymes 
 

Standard PCR reactions were performed using homemade Taq DNA 

polymerase while for the cloning of the PCR products, cloned pfu or platinum 

pfx polymerases (Gibco BRL) were used. Following modifying enzymes were 

purchased from Gibco BRL and Roche Ltd, except otherwise stated: 

 T4 DNA ligase       

 T4 Polynucleotide kinase      

 DNase I, from bovine pancrease     

 RNase I, from bovine pancrease      
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 Shrimp alkaline phosphatase      

 Taq DNA polymerase      

 Platinum pfx polymerase       

 Cloned pfu polymerase       

 Lysozyme         

 Superscript II RT        
 

2.1.7  Proteases and Protease inhibitors 
 

Proteinase K        Merck 

Protease inhibitor cocktail      Sigma 
 

2.1.8  Media  
 

Unless otherwise stated all the media were sterilised by autoclaving at 

121°C for 20 minutes. Heat labile solutions were sterilised using Steritop filter 

sterilisation units from Millipore prior to addition of autoclaved components. 

For the addition of antibiotics the solutions were cooled down to 50°C. 
 

 BY2 culture medium: MS plant salt mixture (as per supplier’s 

instruction), 3% sucrose, 200 mg/l KH2PO4, 1 mg/l Thiamine HCl, 0.2 

mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), 100 mg/l myo-inositol. 

 Lauria Bertani (LB) broth: 1% tryptone peptone, 0.5% yeast extract, 

1% NaCl. For the preparation of solid media 1.5-2% agar was added to 

the above broth.  

 N6 maize culture medium: N6M medium is a version of N6 (Chu et 

al., 1975) medium where the microelements are substituted for MS 

microelements. The aqueous N6M medium was used for suspension 

culture while the solidified N6M medium for the maintenance of callus. 

 Protoplast culture medium (K3/0.4 M sucrose): Macro-salt stock 

solution 10 ml, micro-salt stock solution 1 ml, MS vitamins 1 ml, 

Fe/EDTA 5 ml, myo-inositol 100 mg, Xylose 250 mg, Sucrose (0.4 M) 

136.92 g, NAA 1 mg, Kinetin 0.2 mg. (For stock solutions see section 

2.1.9.1). 

 YEB broth: 0.5% (w/v) beef extract, 0.1% (w/v) yeast extract, 0.5% 

(w/v) peptone, 0.5% (w/v) sucrose, 2 mM MgSO4 pH 7.4. 
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2.1.9  Buffers and Solutions 
 

2.1.9.1 General buffers and solutions: 
 

 30% Acrylamide: 29.2% (w/v) acrylamide, 0.8% (w/v) N-N’– 

methylene bisacrylamide in deionised water. 
 Denhardt’s solution (100x): 2% (w/v) BSA, 2% (w/v) Ficoll, 2% (w/v) 

PVPP360. 

 DEPC water 0,1% (w/v): DEPC in deionised water shaking over night 

at 25°C followed by autoclaving. 
 Ethidium bromide stock: 5 mg/ml ethidium bromide in sterile 

deionised water. Stored at 4°C. 
 K3 Fe/EDTA (1 L) (x200): 5.57 g FeSO4 .7H2O, 7.45 g Na2EDTA. The 

two components are dissolved separately by heating, then they are 

mixed and boiled for 10 minutes. 
 K3 Macro-salt stock solution (200 ml) (x100): 3g FeSO4, 18 g 

CaCl2.2H2O, 50 g KNO3, 2.7 g (NH4)2SO4, 5 g MgSO4.7H2O. 
 K3 Micro-salt stock solution (1 L) (x1000): 6.2 g H3BO3, 22.3 g 

MnSO4.4H2O, 10.6 g ZnSO4.7H2O, 0.83 g KI, 0.25 g Na2MoO4.2H2O, 

and 0.025 g CuSO4.5H2O. 
 K3 Vitamin-solution (200 ml) (x1000): 400 mg Glycine, 400 mg 

Nicotinic acid, 900 mg Pyridoxine HCl, and 20 mg Thiamine HCl. 
 Magnesium mannitol solution (MaMg): 0.2% MES, 0.5 M Mannitol, 

0.015 M MgCl2.6H2O. Solution is brought to pH 5.7 with KOH and filter 

sterilized or autoclaved. 

 PEG solution:  25% PEG 1500 or 40% PEG 4000, 0.1 M MgCl2.6H2O, 

0.45 M mannitol, 0.02 M HEPES pH 6.0 with KOH. 

 20 x SSC: 3M NaCl, 300 mM sodium citrate. 

 20 x SSPE: 200 mM disodium hydrogen phosphate, 20 mM sodium di-

hydrogen phosphate, 3.6 M NaCl, 20 mM EDTA pH8. 

 TAE buffer: 400 mM Tris-HCl, 200 mM NaOAc, 18 mM EDTA pH 7,8 

with glacial acetic acid. 

 W-5 solution: 0.154 M NaCl, 0.125 M CaCl2.2H2O, 0.005 M KCl and 

0.005 M Glucose. Solution is brought to pH 5.7 with KOH and filter 

sterilized.  
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 SM phage dilution buffer: 50 mM Tris-HCl pH 8.0, 10 mM NaCl, 8 

mM MgSO4.7H2O, 0.01% (w/v) gelatine. 
 

2.1.9.2 DNA buffers  
 

 DNA extraction buffer: 100 mM Tris-HCl pH 8,5, 100 mM NaCl, 50 

mM EDTA pH 8, 2% SDS and 0.1 mg/ml proteinase K (added at the 

time of use). 

 DNA loading buffer (10x): 30% (v/v) glycerol, 1 x TAE, 0.025% (w/v) 

bromophenol blue, 0.025% (w/v) xylene-glycol. Stored at 4°C. 
 

2.1.9.3 Hybridisation buffers: 
 

 Microarray (cDNA) hybridisation buffer: 0.5 M Na-Phosphate pH 

7.2, 7% SDS, 1 mM EDTA pH 8.0, and 100 µg/ml salmon sperm DNA 

at 65°C. 
 Northern hybridisation buffer: 5 x SSPE, 50% deionised formamide, 

5 x denhardt solution, 0.5% SDS, 200 µg/ml denatured salmon sperm 

DNA at 42°C. 
 Southern hybridisation buffer: 5 x SSC, 0.5% SDS, 5 x denhardt´s 

and 50 µg/ml denatured salmon sperm DNA at 65°C. 
 Stripping buffer for cDNA arrays: Boiling solution of 5 mM Na-

phosphate pH 7.2, 0.1% SDS followed by rising in 2 x SSC. 
 Stripping buffer for Northern/Southern blots: Boiling solution of 

0.1% (w/v) SDS or 0.2 M NaOH at 42°C followed by rising in 2 x SSC. 
 

2.1.9.4 Protein buffers: 
 

 Histone (crude) extraction buffer: 0.4 M sucrose, 10 mM Tris-HCl pH 

8.0, 0.10 mM MgCl2, 5 mM β-mercaptoethanol and protease inhibitor 

cocktail.  

 Laemmli buffer (4x): 0.25 M Tris-HCl pH 8.2, 0.4% (w/v) SDS, 767 

mM Glycine, and protease inhibitor cocktail. 

 Nuclei extraction buffer: 0.5 M sucrose, 5 mM EDTA, 5 mM DTT, 30 

mM Tris brought to pH 7.7 with 0.5 M MES and protease inhibitor 

cocktail. 
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 Pellet buffer: 1.7 M sucrose, 10 mM Tris-HCl pH 8.0, 0.15% Triton X-

100, 2 mM MgCl2, 5 mM β-mercaptoethanol and protease inhibitor 

cocktail.  

 Protein blocking solution: 500 mM NaCl, 20 mM Tris-HCl pH 7.5, 

0.05% Tween 20, and 5% non-fat milk powder. 

 Protein blotting buffer: 25 mM Tris-HCl pH 8,3, 192 mM Glycine, and 

20% methanol. 

 Roti load protein sample buffer (4x): Roti-load buffer concentrate, 

(Roth) was used for loading protein samples onto SDS-PAGE gels. 
 Stripping buffer for protein blots: 100 mM β-mercaptoethanol, 2% 

SDS, and 62.5 mM Tris-HCl pH 6.7. 
 T-TBS (1x): 500 mM NaCl, 20 mM Tris-HCl pH 7,5, 0,05% Tween-20.  

 

2.1.9.5 RNA buffers: 
 

 Extraction buffers 
  

 Buffer I: 0.1 M NaCl, 0.05 M Tris-HCl pH 9, 0.01 M EDTA, 2% 

SDS and 0.2 mg/ml proteinase K (added at the time of use). 

 Buffer II: 0.4 M NaCl, 0.01 Tris-HCl pH 7.5, 0.2% SDS. 

 Buffer III: 0.1 M NaCl, 0.02 M Tris-HCl pH 7.5, 0.01% SDS. 

 Buffer IV: 0.01 M Tris-HCl pH 7.5. 

 

For extraction of total RNA: 0.2 M Tris-HCl pH 7.5, 0.1 M LiCl, 5 mM 

EDTA, 1% SDS. All buffers are prepared in 0.1% DEPC water. 

 
 Formaldehyde gel-running buffer (5xMOPS): 0.1 M MOPS pH 7.0, 

40 mM NaOAc, 5 mM EDTA pH 8.0, DEPC to a final volume of 0.1%. 

Left overnight shaking at 25°C and then sterilised by filtration through a 

0.2 µ Millipore filter. Stored at room temperature protected from light. 
 Formaldehyde gel-loading buffer: 50% glycerol, 1 mM EDTA (pH 

8.0), and 0.025% bromophenol blue. 
 RNA incubation buffer: 1 x MOPS, 1.75% formaldehyde, 0.5% 

deionised formamide. Made up in DEPC water at the time of use. 
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2.2  Methods 
 

2.2.1  Nucleic acid manipulations 
 

 All nucleic acid manipulations viz. restriction digestion of DNA, 

dephosphorylation of plasmid vectors and ligation of DNA molecules etc were 

performed as per standard laboratory methods (Maniatis et al., 1989).  
 

2.2.1.1 Polymerase chain reaction (PCR) amplification  
 

For plasmid or genomic PCR, 10-50 ng of DNA was used while for RT-

PCR the amount of DNA template depended on the transcript abundance and 

varied between 20 and 100 ng. The reaction was done in 50 µl final volume 

with following components (Innis et al., 1990) 
 

20-50 ng of Template DNA  (genomic or plasmid) 

1x PCR amplification buffer without Mg 

0.2 mM each dNTP mix (dATP, dGTP, dCTP, dTTP) 

1.5 mM MgCl2 

0.5 µM of each primer 

2.5 U homemade Taq DNA polymerase. 

 

The amplification was carried out in a Biometra® Thermal Reactor 

using the below given parameters: 
 

1 Initial denaturation 3 minutes at 95°C 

2 Denaturation  1 minute at 94°C 

3 Annealing 1 minutes at 58-60°C  

4 Extension 1 minutes at 72°C  

 

The steps 2 to 4 were cycled 30-35 times, followed by a final extension 

of 10 minutes to ensure the completion of the reactions. For direct PCR on 

bacterial colonies the initial denaturation was increased to 5 minutes. 
 

2.2.1.2 Cloning PCR products 
 
 The PCR products were cloned into Promega pGEM®-T Easy Vector 

system. The system utilises the tendency of Taq DNA polymerase to generate 

fragments with a 5’ A nucleotide overhangs. PCR products ran on the gel 
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were purified using High PCR purification kit (Boehringer Mannheim) and 

ligated into the pGEM®-T Easy vector as per standard laboratory protocols. 
 

2.2.1.3 Primer extension (Current protocols in molecular biology) 
 

 50 µg of total maize RNA was used as a template for primer extension. 

100 ng of primer (PextGcn5, see section 2.1.3.4) was labelled with γP32-ATP 

by incubation for 1 hour at 37°C with 10 U T4 polynucleotide kinase. The 

reaction was carried out in 10 µl volume with following components: 

 

1 µl 100 ng/µl Oligonucleotide primer 

1 µl 10x T4 Polynucleotide kinase buffer 

1 µl 1 mM Spermidine 

1 µl 100 mM DDT 

3 µl 10 µCi/µl γ-32P-ATP 

10 U T4 Polynucleotide kinase 

H2O to 10 µl final volume 

 
 

 After labelling the reaction was stopped by adding 2 µl of 0.5 M EDTA 

and 50 µl TE buffer and incubating at 65°C for 5 minutes. The labelled primer 

was purified using an oligonucleotide purification kit from Gibco BRL and 

resuspended in 100 µl H2O. The purified radiolabeled oligonucleotide was 

then hybridised to the maize total RNA at 65°C for 90 minutes. The reaction 

was carried out in 15 µl volume with following components: 

 

10 µl total maize RNA (50 µg) 

1.5 µl 10x Hybridisation buffer (1.5 M KCl, 0.1 M Tris-Cl, pH 8.3, 10 mM EDTA) 

3.5 µl radiolabeled oligonucleotide (from the step described above) 

  
 

The primer extension reaction was carried on the hybridised RNA-

primer mixture at 45°C for 1 hour using 200 U of Superscript II reverse 

transcriptase (Gibco BRL). The reaction was carried out in a final volume of 

45 µl total volume with following components: 
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15 µl RNA/primer in hybridisation buffer 

0.9 µl 1 M Tris-HCl, pH 8.3 

0.9 µl 0.5 M MgCl2 

0.25 µl 1 M DTT 

6.75 µl 1 mg/ml actinomycin D 

1.33 µl 5 mM dNTP mix 

200 U Superscript II RT 

H2O to 45 µl final volume 
 

 The reaction was stopped by adding 105 µl RNase reaction mix (100 

µg/ml salmon sperm DNA; 20 µg/ml RNase A) and incubating at 37°C for 15 

minutes. Following phenol/chloroform extraction the product was analysed on 

a 9% acrylamide/7 M urea gel. The same primer (PextGcn5) was used for a 

sequencing reaction on the genomic template of ZmGCN5 using T7 

sequencing kit (Amersham Pharmacia) according to manufacturer’s protocol. 

The sequencing reaction was used as a size marker for the primer extension 

product. After the run, the gel was dried and subjected to PhosphorImager 

analysis. 
 

2.2.2  Transformation of E. coli 
2.2.2.1 Preparation of electro-competent E. coli cells 
 

10 ml of an overnight culture of E. coli strain (XL1 Blue or DH10B, see 

section 2.1.3.1) was added to 1 litre of LB broth and shaken at 37°C until the 

bacterial growth reached an OD600 = 0.5-0.6. The bacteria were pelleted at 

3000 x g for 10 minutes at 4°C and the pellet gently resuspended in ice-cold 

sterile water. The cells were pelleted as before and again resuspended in ice-

cold water. The process was repeated twice. Finally the cells were gently 

resuspended in a 1/100 volume of the initial culture in 10% sterile glycerol, 

pelleted once more and then resuspended in 5 ml 10% glycerol. 50 µl aliquots 

of cells were frozen in liquid nitrogen and stored at –70 till use. 
 

2.2.2.2 Transformation of electro-competent E. coli cells 
 

20 to 50 ng of salt-free ligated plasmid DNA was mixed with 50 µl of 

electro-competent cells, and transferred to the 0.2 cm cold BioRad 

electroporation cuvette. The BioRad gene pulse apparatus was set to 25 µF 
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capacitance, 1.6 kV voltage and the pulse controller to 200 ohms. The cells 

were pulsed once at the above settings for 5 seconds and 500 µl of LB broth 

was immediately added to the cuvette and the cells were quickly resuspended 

and incubated at 37°C for I hour. A fraction of the transformation mixture was 

plated out onto selection media plates. 
 

2.2.3  DNA analysis 
 

2.2.3.1 Plasmid DNA isolation 
 

Plasmid DNA was isolated by alkaline lysis method of Birnboim and 

Doly (1979). High quality DNA for sequencing or plant transformation was 

isolated using Qiagen Mini-, Midi- or Maxi-prep kit (Qiagen Plasmid 

Purification Handbook, September 2000) 
 

2.2.3.2 Isolation of maize DNA for PCR screening 
 

Maize DNA for PCR screening was isolated by following the protocol of 

Edwards et al. (1991).  
 

2.2.3.3 Southern blotting (Maniatis et al., 1989) 
 

10 µg of genomic DNA or 1 µg of Plasmid DNA, digested to completion 

with appropriate restriction enzymes, was electrophoretically separated on 1% 

agarose gels in TAE buffer. The gels were treated with 0.125 N HCl solution 

to depurinate the DNA, followed by denaturation for 30 minutes in 0.5 M 

NaOH and 1.5 M NaCl. The DNA was neutralised by washing the gels in 0.5 

M Tris-HCl pH 7.5, 1.5 M NaCl for 30 minutes. The denatured/neutralised 

DNA was then transferred and bound to a Hybond N membrane (Amersham) 

following the standard capillary transfer procedure (Maniatis et al., 1989). 

Filters were UV cross-linked (120000 µJoules cm-2 for 30 s, using Stratagene 

UV cross linker), prehybridised (2 hours) and hybridised (overnight) in 

southern hybridisation buffer (section 2.1.9.3) at 65°C. Following hybridisation 

with appropriate probes, the filters were washed twice in 2x SSC, 0.1% SDS 

for 10 minutes and twice in 1x SSC, 0.1% SDS for 10 minutes. After washing 

the filters were sealed in plastic bags and exposed to autoradiography at -
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80°C using Kodak XOMAT film and intensifying screens or subjected to 

PhosphorImager analysis. 
 

2.2.4  RNA analysis  
2.2.4.1 Isolation of total and poly (A)+ RNA from plant tissues 

 

Plant material finely ground in liquid nitrogen was resuspended in the 

total RNA extraction buffer and incubated at 37°C for 1 hour. Following three 

phenol/chloroform extractions RNA was precipitated with 1 volume 8 M LiCl 

prepared in DEPC (Diethylpolycarbonate) water, washed with 70% ethanol 

and resuspended in DEPC treated water. 

Poly (A)+ enriched RNA was isolated according to Bartels and 

Thompson (1983). Finely ground plant material resuspended in RNA buffer I 

and incubated at 37°C for 1 hour was extracted with phenol/chloroform three 

times. Oligo dT cellulose was added to the aqueous phase (0.1 g oligo dT 

cellulose/10 g of starting plant tissue). Following slow agitation at room 

temperature for 15 minutes the cellulose was spun down and washed thrice 

with buffer II and subsequently three times with buffer III till the optical density 

of the eluate was A260 ≤ 0.05. Poly (A)+ RNA bound to the oligo dT cellulose 

was eluted at 55°C with 5 ml of pre-warmed buffer IV (for the description of 

the buffers see section see section 2.1.9.5). RNA was precipitated with 4 M 

NaCl and 2.5 volumes of absolute ethanol, pelleted at 13000 x g for 30 

minutes at 0°C and then washed thrice with 70% ethanol. Pellet was dried 

and resuspended in DEPC treated water and stored at –70°C. 
 

2.2.4.2 In vitro transcription for the production of spiking RNA 
control for microarrays 

 

 2.5 µg of DNA (Nebulin cDNA cloned into pBluescript) was used for in 

vitro transcription. The reaction mix included following components: 
 

1 M DTT 

100 mM of A, G, C and U ribonucleotides 

10x T7 polymerase buffer 

50 U RNase inhibitor 

25 U T7 RNA polymerase 
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The components were mixed in a total reaction volume of 50 µl. The 

reaction was carried out at 37°C for 1 hour and was stopped by adding 0.5 µl 

of DNase I. The RNA was aliquoted and stored at -70°C.   
 

2.2.4.3 RNA electrophoresis 
  

 In order to avoid RNase contamination an electrophoresis tank was 

specifically designated for separating RNA samples on denaturing agarose 

gels. 15 µl of RNA incubation buffer was added to 50 µg of total RNA in a total 

volume of 20 µl and incubated at 65°C for 15 minutes. Following the 

incubation, the denatured RNA samples were mixed with 5 µl of formaldehyde 

gel loading buffer and separated in a I% (w/v) denaturing agarose gel 

containing 1 x MOPS, 2.2 M formaldehyde and using 0.2% 5 x MOPS, 0.08% 

formaldehyde as the running buffer. 
 

2.2.4.4 Northern blot analysis (Maniatis et al., 1989) 
 

After electrophoresis, the samples were blotted onto Hybond N nylon 

membranes (Amersham) following the standard capillary transfer procedure 

(Maniatis et al., 1989). RNA was fixed to the membrane by UV cross-linking 

as described in Southern blotting (see section 2.2.3.3). Prehybridisation (2 

hours) and hybridisation (overnight) of the filters was done in Northern 

hybridisation (section 2.1.9.3) buffer at 42°C. Following hybridisation, filters 

were washed in 2 x SSC, 0.1% SDS, once at 45°C and twice at 65°C and 

exposed to autoradiography or subjected to PhosphorImager analysis. 
 

2.2.5  Preparation of radioactively labelled probes 
 

2.2.5.1 Random prime [α-32P] dCTP labelled probes  
 

For Northern and Southern blot analysis radioactive probes were 

prepared from agarose gel electrophoresis-separated DNA fragments using 

the T7 QuickPrime®Kit (Pharmacia Biotech) as follows:  
 

34 µl denatured DNA (50 to 100 ng) 

10 µl reaction mix (containing buffer, nucleotides and random primers) 

5 µl (3000 Ci/mmol) [α-32P] dCTP 

1 µl T7 DNA polymerase 
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   The reaction was incubated at 37°C during 30 minutes. Following the 

removal of unincorporated nucleotides using High Pure PCR purification kit 

(Boehringer Mannheim) the eluate was denatured at 95°C for 5 minutes and 

immediately chilled on ice prior to use. 
 

2.2.5.2 First strand cDNA synthesis with [α-33P] dCTP  
 

 Radioactive cDNA probes for microarray filter hybridisations were 

prepared following the protocol of Hoheisel et al., 1993. The different steps 

are summarized below. 
 

 Oligo hybridisation 
 

Total RNA (30 µg) X µl 

Poly A+ RNA Nebuin (0.5%) X µl 

DEPC water X µl 

Oligo dT primer (500 ng) X µl 

Total reaction volume 11 µl 
 

Following an incubation at 70°C for 10 minutes, the reaction was 

equilibrated at 43°C for 5 minutes and then the first strand cDNA synthesis 

reaction was carried out at 42°C for 1 hour with following components: 
 

 First strand cDNA synthesis 
 

Oligo hybridised RNA 11 µl 

Reverse transcription buffer 5X 6 µl 

0.1 M DTT (freshly prepared) 3 µl 

10 mM [dATP, dGTP, dTTP] 3 µl 

50 µM dCTP 3 µl 

[α-33P] dCTP 30 µCi 3 µl 

Superscript II RT (200 U) 1 µl 

Total reaction volume 30 µl 
 

After the cDNA synthesis the RNA was hydrolysed at 65°C for 30 

minutes in presence of 1% SDS, 0.5 M EDTA and 3 M NaOH followed by 

incubation at room temperature for 15 minutes. The reaction was neutralised 

with 2N HCl and the cDNA was pelleted down using 3 M Na acetate pH 5.3 

and 10 mg/ml yeast t-RNA carrier and 2.5 volumes of absolute ethanol. The 

pellet was dried and resuspended in water.  
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2.2.6  Expression profiling using cDNA microarrays 
 

Whole genome expression profiling facilitated by the development of 

cDNA microarrays (Schena et al., 1995; Lockhart et al., 1996) represents a 

major advance in genome wide functional analysis (Hughes et al., 2000). 

Microarrays have become an indispensable too for the investigation of gene 

expression profiles and gene polymorphisms. In a single assay, the 

transcriptional response of each gene to a change in cellular state can be 

measured, whether it is disease, a process such as cell division, or a 

response to a chemical or genetic perturbation (DeRisi et al., 1997; Heller et 

al., 1997; Holstege et al., 1998). The method makes it possible to survey 

thousands of genes in parallel and has several areas of application.  One is 

expression monitoring (Chee et al., 1996) in which the transcript levels of 

genes are measured in different physiological conditions both in cultured cells 

and tissues, to search for regulatory expression patterns. Understanding 

patterns of expressed genes is expected to improve our knowledge of highly 

complex networks that cross communicate in hitherto unknown ways. The 

microarray technology can be divided into four main steps (figure 2.1): 

 

 

 

Figure 2.1) Key steps in cDNA microarray procedure 
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a) PCR amplification of the gene collection organised in a 384 well 

microtiter plate. 

b) Transfer of PCR products, in duplicates, onto nylon membranes (or 

glass chips) using a “gridding” robot. In this step replica filters are 

generated. 

c) Hybridisation of independent filters to complex probes prepared from 

cDNA reverse transcribed from total or poly A+ RNA extracted from 

control and treatments. 

d) Filter analysis. This involves reading the filters using a scanning 

device (e.g. PhosphorImager from Molecular Dynamics), quantification 

and analysis of signals using specialised computer software (e.g. 

Array Vision/Array Stat from Imaging Research Inc.) 
 
2.2.6.1 Amplification of cDNA inserts from maize cDNA and 

expressed sequence tag (EST) collection 
  

The maize cDNA collection comprising of 800 EST clones from 

Missouri (Monsanto, USA) and around 1800 EST clones collected in 

Thompson lab (Ricardo Velasco, Max Planck Institute, Köln, unpublished 

results) were amplified by PCR with universal and reverse primers in 96-

mirowell plates (Advanced biotechnologies) in a Peltier Thermal Cycler (PTC-

225 DNA Engine Tetrad, MJ Research, Inc.).  The clone identities can be 

found at http://www.mpiz-koeln.mpg.de/~riehl/ArrayDB/MzArrayDB.htm.  

Since most of the cDNAs were cloned into pBluescript® or pBluescript® 

derived vectors (see section 2.1.3.3), universal and reverse primers were 

used for amplification of desired inserts. In cases where the cDNAs were 

cloned into other vectors, PCR amplification was done with vector specific 

primers or the primers specific for amplifying inserts in those vectors. 1 µl of 

each clone (taken from plasmid stock or directly from bacterial stock) was 

loaded into 96 micro-well plates. A PCR master mix was prepared (as 

described in section 2.2.1.1) and 99 µl was dispensed into each well. For 

difficult to amplify templates dimethyl sulfophoxide (DMSO) was added to a 

final concentration of 5%. PCR amplification was carried out as described 

earlier (section 2.2.1.1). 
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2.2.6.2 Spotting of cDNA onto nylon filters 
  

30 µl of each PCR reaction was loaded onto a 384 well microtiter plate 

(NUNC), sized 12.5 x 8 cm2. Seven such plates contained all the cDNA clones 

while an empty 8th plate served as a blank control for subtraction of any 

background during micro-array analysis. The microtiter plates were placed 

onto a bio-gridder robot (BioGrid/MicroGrid with cooling, BioRobotics). 22 cm2 

Hybond N+ nylon filter placed on top of 3 sheets of Whatman paper soaked in 

denaturing solution (1.5 M NaCl, 0.5 M NaOH) was also placed at the 

appropriate place on the robot. 

The bio-gridder was programmed to produce DNA spots in a pattern of 

4 x 4 so that a repetition of each PCR product was present in each nylon filter. 

The final spotting pattern in a 4 x 4 field was as shown in the table 2.1. The 

numericals from 1 to 8 represent the eight 384 well microtiter plates used for 

spotting. As can be seen each PCR product was spotted twice in a 4 x 4 field. 

The spotting plan and the final organisation of the clones on the nylon filters 

can be found at http://www.mpiz-koeln.mpg.de/~riehl/ArrayDB/AllPlates.htm.  

 

 

 

 

 

 

Table 2.1) Spotting pattern on nylon filters. Spotting was done from eight 384well 
microtiter plates containing 2600 maize EST’s. The numbers in the boxes represent the 
plate number from which the clone was taken for spotting. Each clone was represented on 
the filter twice. 
 

After spotting, nylon filters were placed two times for 4 minutes on top 

of 3 MM Whatman paper pre-wetted in neutralising solution (1 M Tris pH 7.6, 

1.5 M NaCl). The DNA was fixed to the membrane by UV irradiation at 20000 

µjoules cm-2 for 30 seconds using Stratalinker (Stratagene). 
 

2.2.6.3 Hybridisation of nylon-array filters 
  

Array filters were hybridised according to Hoheisel, 1993 with some 

minor modifications. Prehybridisation was done in 20 ml of microarray 

3451

6387

5741

3262

3451

6387

5741

3262
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hybridisation buffer (see section 2.1.9.3) at 65°C for 2 hours. After 

prehybridisation, 10 ml of microarray hybridisation buffer along with 50 ng of 

labelled probe (section 2.2.5.2) was added to the prehybridisation solution 

and the hybridisation was carried over night at 65°C. The filters were washed 

twice in 40 mM Na-Phosphate pH 7.2, 0.1% SDS at 65°C. Finally filters were 

blotted dry and subjected to PhosphorImager (Molecular Dynamics) analysis 

by exposing to a phosphor screen overnight.  
 

2.2.6.4 Microarray quantifications 
 

 The imaging of the array filters was done with the software supplied 

with the Storm 860 Scanner. The ArrayVision (ARV), Imaging Research Inc., 

6.0 software version was used for the quantification, analysis and 

interpretation of the DNA array data. The software gave a final output of spot 

volume quantifications  (in MDC, molecular dynamics count), which were 

already normalised to a control and also included background corrections.  
 

2.2.7  Protein analysis 
 

2.2.7.1 Crude nuclear pellet isolation from maize cell lines 
 

 The protocol was based on Nagahshi and Hiraike, 1982. Essentially 5 g 

of callus from pelleted HE-89 cell lines; finely ground in liquid nitrogen was 

mixed with 10 ml of ice-cold nuclei extraction buffer (see section 2.1.9.4) and 

filtered through a 2 layers of Miracloth into a 15 ml falcon tube. The solution 

was centrifuged at 1000 x g for 5 minutes at 4°C. The pellet was resuspended 

in 0.5 ml of the extraction buffer and the protein concentration checked by 

performing a Bradford reaction (using BioRad Protein assay system). The 

resuspended nuclear pellet was aliquoted and stored at -80°C for further use. 
 
2.2.7.2 Crude histone purification from maize cell lines 

 

 The protocol was based on Moehs et al., 1988. 5 g of pelleted HE-89 

cell line (callus), finely ground in liquid nitrogen was mixed with 20 ml of ice-

cold histone extraction buffer (see section 2.1.9.4) and filtered through two 

layers of Miracloth and pelleted at 12000 x g for 10 minutes. The pellet was 

completely homogenised in 10 ml of pellet buffer (section 2.1.9.4) and 
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centrifuged again at 27000 x g for 30 minutes. The pellet was thoroughly 

resuspended in 1 ml 0.4 M HCl and put into an eppendorf tube and 

centrifuged at 13000 rpm for 1 minute. Supernatant was collected and 

neutralised with ammonia and precipitated with 5 volumes of ice-cold acetone. 

The acetone was washed off and the pellet dried and resuspended in nuclei 

resuspension buffer (0.35 M NaCl, 1 mM Tris pH 8, 0.1 mM PMSF). Protein 

concentration was determined using the BioRad Protein assay (Bio-Rad) and 

the samples frozen in small aliquots and stored at -80°C for further use. 
 

2.2.7.3 Western blot analysis (Maniatis et al., 1989) 
 

Protein samples were run overnight on a discontinuous SDS-PAGE 

gel, electro-blotted in protein blotting buffer onto supported nitrocellulose 

membrane (Schleicher and Schuell) and blocked overnight at 4°C or for 1 

hour at room temperature in TTBS (see section 2.1.9.4) containing 5% (w/v) 

non-fat powdered milk. The primary antibody was diluted to the working 

concentration in blocking solution (TTBS containing 5% milk) and then 

incubated with the membrane at room temperature for 3 hours. The 

membrane was washed 3 x 10 minutes in TTBS and then incubated with 

biotinylated-goat-anti-rabbit-antibody (Sigma) diluted 5000 fold in blocking 

solution. The membrane was again washed 5 x 5 minutes in TTBS followed 

by antibody detection by ECL reagent as per the manufacturer’s instructions 

(ECL system, Amersham Pharmacia). The image was captured using Lumi-

imager system from Boehringer Mannheim (Roche). 
 

2.2.8  Isolation of genomic clones 
 

2.2.8.1 Screening of lambda (λ) phage libraries 
 

A maize genomic library  (EMBL-3) from Clontech was screened for a 

ZmGCN5 genomic clone using the following method. 5-10 ml of LB broth 

(containing 0.2% maltose + 10 mM MgSO4) was inoculated with a single 

colony of E. coli (K803 strain) and incubated at 37°C, shaking at 300 rpm 

overnight. In the morning a fresh culture was initiated (from the overnight 

culture) for 3-4 hours under same conditions till the OD600 reached 1.0.  The 

culture was spun down at 3000 x g and the pellet resuspended and diluted to 
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OD600=0.5 with 10mM MgSO4. The titer of the library was calculated by 

diluting 2 µl of the phage stock library in 1ml SM buffer (see section 2.1.9.1; 1: 

500 dilution). 2µl from the first dilution were mixed with fresh 1 ml SM buffer 

(1:250000 dilution).  2, 5, 10 and 20µl from the second dilution were used to 

inoculate 200 µl of E. coli (in 10 mM MgSO4). The culture was pre-incubated 

for 15 minutes at 37°C and the inoculated E. coli mixed with 4 ml of LB top 

agarose (pre-warmed to ~ 48°C) before plating out evenly on LB plates. The 

plates were incubated at 37°C overnight. The following formula was used to 

calculate the titer (plaque forming units (pfu) per ml) of the library. 

 
            Pfu / ml =      x dilution factor x 103µl /ml 

 
 

Typically 12 almost confluent 22cm x 22cm plates were used for first 

screen, which represented a total of approximately 2.6 x 106 plaques. The 

plates were blotted for 5 minutes with individually numbered Amersham 

Hybond-N nylon membranes. The blots were placed DNA side up, on to 3 MM 

Whatman paper soaked in denaturation solution for 5 minutes, neutralised by 

placing on to a paper soaked with neutralisation solution for 5 minutes and 

then rinsed in 2 x SSC. After drying on a Whatman paper, the DNA was linked 

to the membranes using Stratagene UV cross-linker (Stratalinker®). The 

membranes were prehybridised (2 hours) and then hybridised with a [α-32P] -

dCTP labelled fragment of ZmGCN5 cDNA. The hybridisation buffer consisted 

of 0.5 M Na-Phosphate pH 7.2, 7% SDS, 1 mM EDTA pH 8.0, and 100 µg/ml 

salmon sperm DNA at 65°C. The blots were washed and exposed to 

autoradiography. The putative positive plaques were picked out of the plate 

using the wide bore end of a Pasteur pipette and the phage particles eluted 

into 1 ml SM buffer by shaking at 400 rpm at room temperature for 2-3 hours, 

or eluting at 4°C overnight. The phage particles were re-screened as above 

and the process was repeated until plaque purity was achieved i.e. all the 

plaques present on the plates were positive. The positive plaques were picked 

and used for the production of high titer phage lysate for the purification of 

phage DNA. 

 
 

Number of plaques

µl of dilution used 
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2.2.8.2 Production of high titer phage lysate 
 

 100 µl of an overnight culture of E. coli K 803 was mixed with 105 pfu of 

bacteriophage and incubated at 37°C for 15 minutes. 3 ml of molten (48°C) 

top agarose (0.7%) was added to the inoculated bacteria and evenly poured 

onto a 90mm plate containing 30-35 ml of hardened bottom agar. Plates were 

incubated for 6-8 hours at 37°C. When the plates were almost confluently 

lysed they were removed from the incubator and 5 ml of SM buffer was added 

to the plates. Plates were stored at 4°C overnight with intermittent, gentle 

shaking. A Pasteur pipette was used to harvest the SM buffer from the plates. 

Another 1 ml of SM buffer was added to the plates to recover all the 

bacteriophage. 100 µl of chloroform was added to the pooled SM, vortexed 

briefly and centrifuged at 4000 x g for 10 minutes at 4°C. Supernatant was 

recovered and stored at 4°C with a drop of chloroform. This lysate was serially 

diluted, as in phage library screening and the phage titer calculated. 
 

2.2.8.3 Purification of phage DNA 
 

 Qiagen λ-DNA purification method was used for the purification of the 

phage DNA (Qiagen® Lambda Handbook, August 1998).  
 

2.2.9  DNA sequencing 
 

DNA sequences were determined by the MPIZ DNA core facility on 

Applied Biosystems (Weiterstadt, Germany) Abi Prism 377 and 3700 

sequencers using Big Dye-terminator chemistry. Premixed reagents were 

from Applied Biosystems. Oligonucleotides were purchased from Life 

technologies. 
 

2.2.10 Transient gene expression in plant protoplasts via PEG 
mediated transfection  

 

2.2.10.1 Preparation of protoplasts from tobacco BY2 cell line 
 

Tobacco cell line BY2, derived from Nicotiana tabacum L. cv. Bright 

Yellow 2 (Kato et al. 1972) was propagated and used for protoplast isolation 

according to Nagata et al. (1981). 5 ml of the 7-day-old stationary culture was 

transferred to 95 ml of fresh culture medium (see section 2.1.8). After three 
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days of culture, cells in the exponential phase were harvested by passing 

through a 100 µm sieve and used for protoplast preparation. 
 

2.2.10.2 Preparation of mesophyll protoplasts from tobacco (SR1) 
and cowpea leaves 

 

 Tobacco SR1 plants (Maliga et al., 1973) were grown under sterile 

conditions until 7 cm tall (leaves were approximately 4 cm at this stage). 

Leaves were cut and transferred to 155 mm petridishes containing 40ml 

K3/0.4M (see section 2.1.8), macerozyme (0.1%) and cellulase (0.4%) for 20-

22 hours in dark at 26°C. After overnight incubation the petridishes were 

shaken slowly for 30 minutes at room temperature. For the preparation of 

protoplasts from cowpea (Vigna unguiculata) the under-epidermis of the 

leaves was removed and the leaves were incubated (with the removed under-

epidermis down) in the K3/0.4 M/cellulase/macerozyme solution for 3-4 hours 

at 26°C while gently shaking. After the appropriate incubation the 

protoplast/debris solution was filtered through double sieves (upper 250 µm, 

lower 100 µm) and the flow through transferred to 50 ml Falcon tubes and the 

volume adjusted to 50 ml using K3/0.4M sucrose (see section 2.1.8). The 

falcon tubes were centrifuged at 500 rpm for 15 minutes. The protoplasts 

band at the top of the solution was removed and resuspended very carefully in 

Ca-man solution (0.6 M mannitol, 10mM CaCl2 solution) and washed three 

times. Finally the protoplasts were resuspended in 10 ml of W5 solution. The 

protoplast titer was determined using the Fuchs-Rosenthal counting chamber 

and the protoplasts pelleted at 500 rpm for 5 minutes and resuspended to 2 x 

106 protoplasts/300 µl in MaMg solution (section 2.1.9.1). 
 

2.2.10.3 Transfection of protoplasts 
 

Transfection of protoplasts was performed according to Negrutiu et al. 

(1987) with some minor modifications. 10-20 µg of DNA was mixed with 0.3 

ml aliquots of freshly isolated protoplasts (about 2 x 106), followed by mixing 

with 0.6 ml of PEG solution (section 2.1.9.1). The PEG-protoplast mixture was 

incubated for 20 minutes at room temperature and diluted by adding 10 ml of 

W5 solution (see section 2.1.9.1). Protoplasts were centrifuged at 100 x g for 

5 minutes and the pellet was resuspended in 5 ml of protoplast culture 
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medium (K3, 0.4 M sucrose solution; see section 2.1.8). Transfected 

protoplasts were incubated at 28°C in the dark. Sample aliquots for transient 

GFP fluorescence were taken 18-24 hours after the treatment of the 

protoplasts. 
 

2.2.11  Microscopy 
 

2.2.11.1 Light fluorescence microscopy 
 

Protoplasts transfected with fluorescent proteins were examined under 

Leica DMRB or Zeiss Axiophot light microscopes equipped with 

epifluorescence optics (GFP specific fluorescence observed using HQ GFP, 

HQ GFP LP filters; blue light exciter BP 450-490 nm; beam splitter RKP 510 

nm; emitter LP 520 nm). DsRed (Ds or ds- Discosoma sp.: excitation 558nm, 

emission 583nm) fluorescence was observed using specific filters. 
 

2.2.11.2 Confocal laser scanning microscopy (CLSM) 
 

Detailed analysis of intracellular fluorescence was done by confocal 

laser scanning microscopy (CLSM) using a Zeiss LSM 510 microscopy 

system (Carl-Zeiss) based on an Axiovert inverted microscope equipped with 

an Argon ion laser as an excitation source. CFP and YFP tagged proteins 

expressed in protoplasts were excited by the 458 nm and the 514 nm laser 

lines sequentially. CFP fluorescence was selectively detected by HFT 458 

dichroic mirror and BP 470-500 band pass emission filter while YFP 

fluorescence was selectively detected by using HFt 514 dichroic mirror and 

BP 535-590 band pass emission filter. In both cases the chlorophyll 

autofluorescence was filtered out and detected in another channel using a 

LP650 long pass filter. A 25 x Plan-Neofluar water immersable objective lens 

(numerical aperture 0.8) was used for scanning protoplasts. The pinhole size 

was 66 µm for CFP, 76 µm for YFP and 90 µm for chlorophyll 

autofluorescence. Images and data captures were analysed with Zeiss 

LSM510 software. 
 

2.2.11.3 Fluorescence spectral imaging microscopy (FSPIM) 
 

 Fluorescence resonance energy transfer (FRET) between the 

fluorescently labelled probes was measured by FSPIM. Spectral imaging was 
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done using a Leica DMR epifluorescence microscope equipped with a 

Chromex 250 IS imaging spectrograph (Albuquerque, NM, USA) coupled to a 

Photometrics CH250 CCD (Charged coupled device) camera (Tucson, AZ, 

USA). The excitation light source was a 100 watt mercury lamp coupled to an 

excitation filter wheel. Fluorescent spectral images were acquired using a 20 x 

Plan Neofluar objective (numerical aperture 0.5), an omega 435 df10m band 

pass excitation filter, an omega 430 DCLP dichroic mirror and a 455 long pass 

emission filter (Schott, Mainz, Germany). Spectral images were acquired 

using a 150 groove/mm grating, set at a central wavelength of 500 nm and a 

slit width of 175-250 µm. Typical exposure and CCD integration time was 2-5 

seconds. Data processing and background autofluorescence was performed 

as described (Gadella et al., 1997). 
 

2.2.12 Plant transformation 
 

2.2.12.1 Maize transformation, regeneration and maintenance of 
transgenic callus and suspension cell lines 

  

 Transformation of maize suspension cell line HE-89 (Morocz et al, 

1990) was kindly carried out by Anja Siedel/Dr. Steinbiss (Monocot 

Transformation Group, MPIZ) or by Dr. Günter Donn (Maize transformation 

group, Aventis Crop Sciences, Frankfurt). Transformation procedure was 

based on the protoplast PEG uptake method (Morocz et al, 1990). The 

protoplasts were co-transformed with the plasmid containing the gene of 

interest and with a plasmid containing Phosphinothricin (BASTA) resistance 

gene for the selection of transformants. Once the transgenic callus lines were 

established and characterised by PCR and Northern blots, they were put into 

suspension culture and maintained on the suitable selection (BASTA) and 

sub-cultured as recommended (Morocz et al, 1990). 
 

2.2.12.2 SR1 tobacco cultivar transformation  
 

 A single colony of Agrobacterium containing the transformation vector 

was inoculated in 5 ml of YEB containing the selection antibiotics and grown 

under dark at 28°C for 48 hours. Sterile plant material (SRI tobacco) was 

grown for 6-8 weeks on MS medium. Leaf discs of approximately 1-3 cm were 

cut and placed in 20 ml of liquid MS medium (BY2 subculture medium; section 
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2.1.8). 2 ml of the fresh bacterial culture was added and incubated with the 

tobacco leaf discs for 30 minutes at room temperature. Leaf discs were then 

removed from the solution and laid upside down on solidified MS medium and 

incubated for 2 days at 26°C. After washing thrice in liquid MS medium, the 

leaf discs were transferred to fresh MS plates containing claforan (500 mg/l), 

kinetin (0.2 mg/l), auxin (1.0 mg/l) and the proper antibiotic to select for the 

growth of transgenic calli. After one week the calli were again transferred to 

fresh plates containing claforan, kinetin, auxin and selective antibiotic. 

Between 3-4 weeks, calli formed at the periphery of the leaf discs and 

subsequently shoots developed from these calli. Once the shoots were 0.5-

1.0 cm in size they were removed and placed on MS medium with claforan but 

lacking auxin and kinetin for the development of roots. When each plantlet 

developed roots, they were transferred to small pots and transferred to 

greenhouse for further growth and genetic analysis. 
 

2.2.12.3 BY2 tobacco cell line transformation 
 

Tobacco cell line BY2, maintained as described earlier (2.2.10.1) was 

stably transformed as per the method described by An G (1987). 
 

2.2.13  Chemical treatment of HE-89 cell line 
 

Maize suspension cell line HE-89 was cultured weekly as 

recommended (Morocz et al. 1990). For Trichostatin A treatment, rapidly 

dividing cells, 3 days after the subculture, were treated with different 

concentrations of TSA (0.5 – 5.0 µM) and cultured further for 10 -12 hours 

under the same conditions. After the treatment the cells were pelleted and 

frozen at -70oC until further use. 
 

2.2.14  Computer Software 
 

2.2.14.1 Visualisation and quantification of DNA and RNA blots by 
PhosphorImager technology 

 

The PhosphorImager from Molecular Dynamics (Johnston et al., 1990) 

was used to quantify the activity of radioactive bands on the nylon 

membranes. Image Quant software version 1.0 for Macintosh (1995), 
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Molecular Dynamics was used for basic analysis and data reporting/graphing 

functions.  
 

2.2.14.2 DNA sequence analysis 
 

 DNA sequences were characterised by using GCG software package 

version 9.0 from Genetic computer group (Madison, WI) and the BLAST 

network service (Altschul et al., 1990). 
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Characterisation of a ZmGCN5 genomic clone 
 
3.1  Introduction 
 

A database search for plant orthologues of histone acetyltransferase 

gcn5 and adaptor ada2 (in 1998) yielded two A. thaliana sequences, a cDNA 

for AtGCN5 (AF037442), and an AtADA2 genomic sequence (GenBank Acc.: 

Z97341). Primers designed on AtADA2 genomic sequence were used to 

isolate the corresponding AtADA2 cDNA by RT-PCR (Heinz Albert-Becker, 

MPIZ, personal communication). This cDNA was used as bait in yeast two 

hybrid system to screen maize 7 DAP, endosperm hybri-ZAP cDNA library. 

The screening yielded 16 clones out of which one clone showed sequence 

homology to GCN5 histone acetyltransferase (Becker et al., 1999). Full-length 

ZmGCN5 cDNA was afterwards isolated by screening a maize pistil (silk) 

cDNA library (Marcus Riehl, Diplomarbeit, Universität Giessen, 1999). The 

cDNA  (GenBank Acc: AJ428540) contained an open reading frame of 1545 

bases, predicting a polypeptide of 515 amino acids.  

Protein sequence comparison of ZmGcn5 (figure 3.1), with other 

members of GNAT (GCN5 related N-acetyltransferase; Sterner and Berger, 

2000) superfamily showed that three functional domains present in other 

Gcn5 sequences are shared by ZmGcn5: the catalytic domain at the N-

terminus responsible for the acetyltransferase activity, a centrally located 

domain responsible for the interaction with adaptor protein Ada2, and the C-

terminal bromo-domain, which interacts with the histone N-termini (Ornaghi et 

al., 1999).  

Sequence comparison with other Gcn5 proteins also pinpointed an N-

terminal extension in ZmGcn5. However this extension showed no homology 

to the PCAF domain in mammalian GCN5 HAT’s (discussed in section 

1.2.4.1). Recently, full length AtGcn5 (Stockinger et al., 2001) and TgGcn5, a 

Gcn5 HAT protein from a protozoan parasite (Hettmann and Soldati, 1999) 

were reported to have N-terminal extensions, but these are unrelated in 

sequences to that present in ZmGcn5.  
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Figure 3.1) Comparison of ZmGcn5 with other members of GNAT protein family. 
All family members (Human, Drosophila, Rat, Maize, Arabidopsis, Yeast and Taxoplasma) 
share a catalytic HAT domain, the Ada2 interaction domain and the bromo-domain. A PCAF 
homology is present only in the metazoan family members. Amino acid positions of the 
putative domains are indicated above the diagram. The percentage of identical amino acid 
residues is shown on the right.  Acc. Nr: HsGcn5, AF029777; DmGcn5, AF029776; 
MmGcn5, AF254441; ZmGcn5, AJ428540; AtGcn5, AF338768; ScGcn5, X68628; TgGcn5, 
AF197953. 

 

 

At the time of the isolation of ZmGCN5, the full-length clones of 

AtGCN5 and TgGCN5 were not known. The N-terminal extension in ZmGCN5 

raised many questions: 
 

1. Is the N-terminal extension in ZmGCN5 part of the encoded protein or 

is it part of an unspliced intron sequence? 
 

2. Do plant GCN5 genes contain the PCAF homology domain? 
 

A database search for any plant protein sharing homology with the 

PCAF region of mammalian Gcn5 gave no hits, so a genomic clone of 

ZmGCN5 was isolated to characterise the 5´ end of the gene. 
 
3.2 Isolation and characterisation of a ZmGCN5 genomic clone 
 

Full-length cDNA sequence of ZmGCN5 (1.54Kb) was used as a probe 

to screen the maize genomic library EMBL3 from Clontech (section 2.2.8). 

The Clontech EMBL 3 library was generated from the DNA extracted from 2-

leaf stage maize seedlings (B73 cultivar). The DNA was partially digested with 

restriction endonuclease MboI and the fragments between the size range 8 to 

22 Kb were cloned into the BamHI site of vector EMBL-3. SalI is one of the 
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flanking multiple cloning sites and the insert DNA can be excised from the 

clones by digestion with endonuclease SalI.  

2 x 106 pfu were screened and 12 hybridising clones were obtained 

after three successive rounds of screening. To confirm the clone authenticity 

and generate subclones, phage DNA was prepared using Qiagen Lambda 

DNA purification kit (Qiagen). The inserts were excised from the λ-vector and 

the products, run on an agarose gel were Southern blotted onto a nylon 

membrane and hybridised using the ZmGCN5 cDNA as a probe. The size of 

the insert within the lambda vector was approximately 17 kb (figure 3.2, SalI 

digest).   
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.2) Southern blot on λ-ZmGCN5.1 genomic clone. The λ-DNA was digested 
with different restriction endonucleases as indicated and probed with full length ZmGCN5 
cDNA. 

 

All the 12 clones showed the same digestion and hybridisation pattern 

indicating that the isolated clone was over-represented in the lambda library. 

Further analysis was carried out on a representative clone (viz. λ-ZmGCN5.1). 

In order to ascertain that the isolated clone contained both N- and C-terminal 

regions of the gene, specific 5´and 3´ probes were generated and used to 

hybridise restricted λ clones. Both types of probes gave strong hybridisation 

signals indicating that whole GCN5 gene was present in a single lambda 
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clone. DNA, single and double digested with different restriction enzymes, 

was Southern blotted and the sizes of the bands were used to construct the 

detailed restriction map of ZmGCN5 genomic clone. The detailed restriction 

map is shown in figure 3.3. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3) Restriction map of maize λGCN5 genomic clone. (a) 17Kb Z. mays 
genomic insert within left and right λ arms. (b) Orientation of ZmGCN5 within the λ vector 
along with relative restriction sites. (c) Intron-exon structure of ZmGCN5 genomic clone. 
(Not scaled) 

 

Based on the deduced restriction map a series of digests were made to 

generate fragments, which would cover entire GCN5 coding sequence and 

the putative promoter region. DNA was double digested with BamHI and SmaI 

and the 4Kb BamHI fragment and 5.1Kb BamHI/SmaI fragments were cloned 

into pBluescript vector digested with BamHI and BamHI / EcoRV respectively. 

Putative sub-clones generated were digested with appropriate enzymes, 

Southern blotted onto a nylon membrane and hybridised with specific 5´ and 

3´ ZmGCN5 cDNA probes to confirm the clone authenticity and their 

orientation and position within the genomic fragment. The sub-clones were 

sequenced, initially using the universal and reverse primers from 
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          ATGGACGGCCTCGTGGCGCCGTCGCCATCCCACTCCGGCGCCACCTCCGGCGGCGGGGCC  
         M  D  G  L  V  A  P  S  P  S  H  S  G  A  T  S  G  G  G  A   20 
         TCCCACCGCAAGCGGAAGCTCCCGCCGTCGTCGCTCTCCGACGCCACCGGCGACGAGGAC 
         S  H  R  K  R  K  L  P  P  S  S  L  S  D  A  T  G  D  E  D   40 
         GACGACACCACCGCTCCGTCATCCCCCTCCACGGCCCCATCCTCGCCCTCTCGCCCGTCA 
         D  D  T  T  A  P  S  S  P  S  T  A  P  S  S  P  S  R  P  S   60 
         TCTCCATCTTCTTCGCACTCCGACGATGACGACGACGACTCGCTCCACACGTTCAATGCC 
         S  P  S  S  S  H  S  D  D  D  D  D  D  S  L  H  T  F  N  A   80 
         GCGCGCCTCGACGGCGCGCCGAGTGGGGGCTCTGCGTCCGGCCGTCCTCCTAAGCCGGAT 
         A  R  L  D  G  A  P  S  G  G  S  A  S  G  R  P  P  K  P  D   100 
         TCCTCATCAGTGTCTGCTGCTGCGGCGGCAGCCGCGGCTGCGGTGGGTGGAGGACCTAAG 
         S  S  S  V  S  A  A  A  A  A  A  A  A  A  V  G  G  G  P  K   120 
         CCGGAGCCCGGCTCGGCGAACGCCGGCGACGGGAAGGAGGACACAAAGGGGCTGTTCACG 
         P  E  P  G  S  A  N  A  G  D  G  K  E  D  T  K  G  L  F  T   140 
          

  GACAACCTTCAGACCAGCGGCGCGTACAGCGCCCGTGAGGAGGGCCTCAAGCGCGAGGAA 
         D  N  L  Q  T  S  G  A  Y  S  A  R  E  E  G  L  K  R  E  E   160 
         GATTCAGGACGGCTGAAGTTTCTCTGGTATTCTAATGACGGCGTTGATGAACACATGATA 
         D  S  G  R  L  K  F  L  W  Y  S  N  D  G  V  D  E  H  M  I   180 
          

         TGGTTGGTAGGGTTGAAGAATATCTTCGCCCGACAGCTTCCTAATATGCCCAAAGAATAT 
         W  L  V  G  L  K  N  I  F  A  R  Q  L  P  N  M  P  K  E  Y   200 
          

         ATTGTACGCCTTGTCATGGATAGAACTCACAAGTCAATGATGGGTATCAGGAACAATATT    
         I  V  R  L  V  M  D  R  T  H  K  S  M  M  G  I  R  N  N  I   220 
          

         GTCGTGGGGGGCATTACTTATCGCCCTTATGCAAGCCAGAGATTTGGAGAAATAGCGTTT 
         V  V  G  G  I  T  Y  R  P  Y  A  S  Q  R  F  G  E  I  A  F   240 
         TGTGCTATCACAGCTGATGAGCAAGTTAAAGGCTATGGAACAAGATTAATGAATCATTTG 
         C  A  I  T  A  D  E  Q  V  K  G  Y  G  T  R  L  M  N  H  L   260 
         AAACAACATGCACGGGATGCTGATGGGCTCACACATTTCTTAACCTATGCTGATAACAAT 
         K  Q  H  A  R  D  A  D  G  L  T  H  F  L  T  Y  A  D  N  N   280 
          

         GCTGTTGGCTATTTTGTAAAGCAGGGTTTCACAAAGGAGATCACATTGGACAAAGAAAGA 
         A  V  G  Y  F  V  K  Q  G  F  T  K  E  I  T  L  D  K  E  R   300 
          

         TGGCAAGGGTACATTAAAGATTATGACGGAGGAATATTGATGGAGTGTAAAATTGACCCA 
         W  Q  G  Y  I  K  D  Y  D  G  G  I  L  M  E  C  K  I  D  P   320 
          

         AAGCTGCCATATGTTGATGTGGCAACAATGATTCGACGTCAAAGGCAGGCCATTGATGAG 
         K  L  P  Y  V  D  V  A  T  M  I  R  R  Q  R  Q  A  I  D  E   340 
          

         AAGATCAGAGAGCTTTCTAACTGCCATATTGTTTATTCAGGAATTGATTTTCAAAAGAAA 
         K  I  R  E  L  S  N  C  H  I  V  Y  S  G  I  D  F  Q  K  K   360 
          

         GAAGCTGGCATTCCAAGAAGACTGATAAAGCCAGAAGATATCCCTGGTCTCAGGGAAGCT 
         E  A  G  I  P  R  R  L  I  K  P  E  D  I  P  G  L  R  E  A   380 
         GGGTGGACGCCTGATCAATTGGGGCATTCTAAATCACGATCATCATTCTCCCCGGACTAT 
         G  W  T  P  D  Q  L  G  H  S  K  S  R  S  S  F  S  P  D  Y   400 
          

         AATACTTACAGGCAACAGCTTACTACCCTTATGCAGACAGCGCTGAAGAATCTGAATGAA 
         N  T  Y  R  Q  Q  L  T  T  L  M  Q  T  A  L  K  N  L  N  E   420 
         CATCCTGATGCTTGGCCATTCAAAGAGCCTGTGGATTCACGGGATGTTCCAGACTATTAT 
         H  P  D  A  W  P  F  K  E  P  V  D  S  R  D  V  P  D  Y  Y   440 
          

         GATATCATCAAAGATCCTATTGATTTAAGAACAATGTTAAGAAGAGTCGACTCGGAACAA 
         D  I  I  K  D  P  I  D  L  R  T  M  L  R  R  V  D  S  E  Q   460 
         TATTATGTGACCCTAGAGATGTTTGTAGCCGACATGAAGAGAATGTTCAGCAATGCAAGA 
         Y  Y  V  T  L  E  M  F  V  A  D  M  K  R  M  F  S  N  A  R   480 
          

         ACTTACAATTCTCCAGATACTATCTATTACAAATGTGCGACACGGCTTGAAAACTTCTTC 
         T  Y  N  S  P  D  T  I  Y  Y  K  C  A  T  R  L  E  N  F  F   500 
         TCGGGCAGAATTACTGTACTGCTTGCACAACTCTCAACCAAGAGCTAG 
         S  G  R  I  T  V  L  L  A  Q  L  S  T  K  S  *               515   
  
  
 

Figure 3.4) ZmGCN5 open reading frame. Sequence of the coded cDNA for ZmGCN5 
and its deduced amino acid sequence. Predicted protein domains are colour coded, 
underlined and identified in the left hand column. Intron positions within the cDNA are 
marked with black arrowheads. Position of mapped nuclear localisation sequence (NLS) in 
the N-terminal is shown in bold, underlined italic letters (red). 
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pBluescript and afterwards by designing gene specific primers till the full-

length genomic clone of ZmGCN5 was assembled. The sequencing also gave 

2.8 kb upstream region of ZmGCN5 gene.  

Sequence comparison of genomic clone with the cDNA sequence 

identified 12 introns, ranging in size from 73 bp to 1.4 kb. The latter was 

situated in the middle of the gene (figure 3.3 c). The ZmGCN5 cDNA open 

reading frame and the positions of the identified introns are shown in the 

figure 3.4. 
 

3.3 Identification of the transcription start site and the putative 
promoter elements of ZmGCN5 gene   

 

Identification of the N-terminal methionine residue within the genomic 

clone was an important step towards characterisation of the ZmGCN5 gene. 

The sequenced 2.8 kb upstream region of the ZmGCN5 genomic clone did 

not show any homology with the PCAF domain of metazoan GCN5 HAT’s or 

any other protein. This led to the conclusion that most likely there is no other 

domain missing in ZmGCN5.  

Primer extension was performed to map the transcription start site. 

Initial efforts to generate a primer extension product were not successful 

because of the very high GC content in the N-terminal of ZmGCN5 leading to 

very stable RNA secondary structures. In order to circumvent this problem a 

primer was designed at the putative translation start site. The primer 

sequence (PextGcn5) is shown section 2.1.3.4 and also in figure 3.6. Primer 

extension reaction (section 2.2.1.3) was performed on the total RNA extracted 

from maize leaves with PextGcn5 primer labelled with γ-32P-ATP. Products 

were separated on a 9% acrylamide/7 M urea gel. The sizes of the products 

were estimated from α33P-dCTP labelled sequencing reaction on the genomic 

sequence using the same primer. The results are shown in figure 3.5. Three 

bands at 80, 96 and 111 bp were identified. These products may have 

originated from three different transcription start sites or the lower bands may 

represent premature termination of the reverse transcription reaction. The 

position of the 111 bp band was taken as the transcription start site.  
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Figure 3.5) Primer extension products generated by a ZmGCN5 specific primer. 
Reverse transcription products generated from Z. mays leaf total RNA using a primer 
designed to the 5’ UTR of λGCN5.1 (lane P). The sizes of the products were estimated from 
α [33P] dCTP labelled sequencing reaction on the genomic sequence using the same primer. 
The sequence between the arrows amplified on the left side. 
 

Analysis of the sequence upstream of the translation start site was 

done by using time delay neural networks software (TDNN – http://www-

hgc.lbl.gov/projects/promoter.html). The program analyses the structure of 

individual promoter elements such as TATA box, GC box, CAAT box and the 

transcription start site within a sequence using a novel technique that 

combines neural networks with pruning. A neural network is pruned to 

recognise promoter elements until it reaches a local minimum. The procedure 

eliminates all those weights in the network that add the lowest predictive value 

to the overall prediction. After pruning the neural network is retrained until it 

again reaches a local minimum. This procedure is repeated until a defined 

error level is reached. These single predictions for each element are 

combined using time-delay neural networks for a complete promoter site 

prediction. TDNNs are appropriate for recognising promoter elements 

because they are able to combine multiple features, even those that appear at 

different relative positions in different sequences. The software identified two 
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regions between -104 to -153 and -298 to -347 (taking the A residue from 

ATG as position 0 and counting backwards) as a putative minimal promoter 

(see figure legend 3.6). The identified regions had an error level of 0.75 and 

0.70, which indicates that this region has a very good probability of 

representing a functional promoter. These regions contain a canonical TATA 

box, a CAT box as well as the GC box. This is shown in figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6) Predicted promoter region of ZmGCN5 gene. Sequences predicted to 
represent potential minimal promoters are shown in yellow. The residues to which the 
primer extension products were mapped are enlarged and shown in red. The primer 
sequence used to generate the extension products is shown in red along with an 
underlined N-terminal ATG.  

 

3.4 The ZmGCN5 promoter drives the expression of Green 
fluorescent protein (GFP) in transiently and stably 
transformed BY2 and SR1 tobacco protoplasts. 

  

In order to confirm the functionality of the isolated ZmGCN5 promoter, 

the 2.8Kb promoter fragment was used to drive the transient and stable 

expression of GFP in protoplasts prepared from either BY2 and/or SR1 

tobacco line (see section 2.2.10). For this purpose the promoter fragment was 

amplified by PCR and transcriptionally fused to the GFP coding sequence as 

shown in figure 3.7. The primers used for amplifying the ZmGCN5 promoter 

(Gcn5PromoterFwd, Gcn5PromoterRev) are listed in section 2.1.3.4. 

2201  TTAAAAAAAT TACCATGGAT ATGTTATTAT AAACATACAC ATATCCTATG 

2251  GATAACAAAA TCCACTATAC TAATACTCGA TACATAATTA CTCGCGGTTA 

2301  TTTGTCATCC CTACATGATG TCATCTCTAT GCATGTTTCC ATAGAGAGAA 

2351  AAGATAGGGC ATGCAACGTT GCATGTAGGT AAGAGTATCT CTAACAGATT 

2401  TCCTATTTTA TTTTCTATCA CATTCTTTAT TTCAATCTTT ATTATACAAA 

2451  TAGTGTAATC TAGAATGCAA AATAATATCT TATACGACCT ACTAGACATA

2501 TTAGAGATGG CCTATATGAC CTTGACAAAC AGTGGAAGGA CATAACTGTC 

2551  ATTTATAAAA TTTTCAGGAA AAAAGGTATT TATAATTTTT TCACGCAAAA 

2601  AACAAGCGAA AATGTATGCA GTGGGATATT TTATCTAGAT AAAGTTGGTT 

2651  AACCGGGATA ATTAGATGAG CGCAACCAGC CTATTTTAAG CGAAAACAAA 

2701 AAGGCCCAAA CTCGAAAGCA TCCCCTTCTG GCCTTCTCAC CACGAACACG 

2751  CGGGACACCT CGGAAGCAAC CGGCTCCCAG ATCTGCCGAA GAACCCTACC 

2801  ACCCAACGTT CTAGAACTTC CCCTCTTTCC CCGCATGGAC GGCCTCGTGG
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Figure 3.7) ZmGCN5 promoter transcriptionally fused to GFP (Sheen et al. 1995; 
TL–Translational Enhancer) 

 

The analysis of GFP protein showed that the promoter was active and 

could drive the GFP expression. GFP itself does not contain any intracellular 

localisation signal so protein expression was observed throughout the cell 

(figure 3.8 panels GCN5Prom::GFP). The control protoplasts were 

transformed with GFP under the 35S promoter from cauliflower mosaic virus 

(35S::GFP). The protoplasts prepared from stably transformed SR1 plants 

confirmed the results obtained with the transient analysis (data not shown). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8) GFP expression under the 2.8Kb ZmGCN5 promoter in tobacco BY2 
and SR1 protoplasts. Also shown is a control protoplast transfected with 35S::GFP 
construct. 
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Localisation and targeting of ZmGcn5 
 

 
4.1  ZmGcn5 is a nuclear type A histone acetyltransferase 
 

In order to function as a transcriptional co-activator and modify the 

chromatin, ZmGcn5 should be targeted to the nucleus. This was tested by 

creating a translational fusion of ZmGCN5 with the GFP and analysing the 

fusion protein in tobacco BY2 and SR1 protoplasts. An NcoI restricted PCR 

fragment of full length ZmGCN5 cDNA was cloned into the NcoI site of the 

vector pGFP-JS (Sheen et al., 1995) to make a C-terminal fusion of ZmGCN5 

with GFP (figure 4.1). The primers used for amplification (NcoIGcn5Fwd and 

NcoIGcn5Rev) are listed in section 2.1.3.4. The resultant vector was used to 

transfect protoplasts isolated from BY2 and/or SR1 tobacco lines (section 

2.2.10) and the transient fusion protein expression was observed under a light 

fluorescence microscope. The results are shown in figure 4.2. 
 

 

 

 

 

Figure 4.1) Schematic representation of the 35S::GCN5GFP construct used for 
studying the sub-cellular localisation of ZmGCN5. (TL- Translational Enhancer) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2) Micrographs of protoplasts prepared from BY2 and SR1 tobacco lines 
transformed with 35S::GCN5-GFP. Also shown are control protoplasts transformed with 
35S::GFP only.  Upper middle panel shows a transfected protoplast observed under bright 
field as well as GFP specific excitation. 
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The fusion protein was exclusively targeted to the nucleus (figure 4.2, 

panels 35S::GCN5GFP) in comparison to the protoplasts transfected with 

GFP alone under the control 35S promoter from cauliflower mosaic virus 

(panel 35S::GFP), where GFP fluorescence was seen throughout the cell.  
 

4.2 The extended N-terminal region of ZmGcn5 contains a 
functional nuclear localisation sequence (NLS) 

 

Although it seems possible that a protein (up to 40 - 60 kDa in size) 

without its own nuclear targeting signal may enter the nucleus simply by 

diffusion (Peters, 1986; Silver, 1991) or via cotransport with a protein that has 

one (Dingwall et al., 1982; Zhao and Padmanabhan, 1988), many nuclear 

proteins have their own NLS. A search for potential nuclear targeting residues 

in ZmGcn5 using the computer program PSORT (http://psort.nibb.ac.jp/) 

pinpointed a stretch of basic amino acid residues in the extended N-terminal 

segment of the protein between positions 23-26 (see figure 3.4). Since this 

extended N-terminal segment shares no homology with other known Gcn5 

proteins and is also unique when compared to AtGcn5, we investigated the 

following possibilities: 
 

1. Is the predicted NLS in the extended N-terminal segment of the protein 

functional? 

2. Is there any cryptic (non-canonical) but functional NLS within the well-

characterised domains of ZmGcn5? This could be a possibility 

because the ScGcn5 (Accession number X68628) does not seem to 

have a canonical NLS, but is a nuclear HAT, raising the possibility that 

it is transported to nucleus via a non-canonical NLS. 
 

In order to ascertain the above possibilities, a series of fragments of the 

coding sequence of ZmGCN5 were translationally fused to the GFP reporter. 

The regions used for making translational fusions with GFP are shown in 

figure 4.3.  

Specific primers were designed to amplify the desired regions (between 

amino acids 1–175, 175–420, 314–515 and 175–515) introducing NcoI sites 

at both N- and C-terminal ends. The primers (NcoIGcn5fwd, Gcn5NtermRev, 

Gcn5HATFwd, Gcn5Ada2IntFwd, Gcn5Ada2IntRev, NcoIGcn5Rev) are listed 
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in section 2.1.3.4. These PCR fragments were then digested with the 

endonuclease NcoI and cloned in the NcoI site of vector pGFP-JS (Sheen et 

al., 1995). 
 

 
Figure 4.3) Schematic of ZmGCN5 fragments used for translational fusion with 
GFP. Different domains of ZmGCN5 (shown by red lines) were PCR amplified using specific 
primers and translationally fused with GFP coding sequence. 
 

 
 
 
 
 

 

 

 

 

 

 

 

Figure 4.4) Summary of ZmGCN5 deletions tested by transient gene expression 
and the location of the encoded fusion proteins. 

 
The resulting plasmids were transfected into BY2 tobacco protoplasts, 

and the GFP fluorescence was examined under a light fluorescence 

microscope. Around 75-100 transformed protoplasts were screened for each 

fusion construct. Nuclear targeting of the GFP was observed only with fusions 

containing the N-terminal region of the ZmGCN5 or full-length ZmGcn5 

protein (see figure 4.4), pinpointing a functional nuclear localization signal in 
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the N-terminus of the protein, upstream of the region of homology with 

ScGcn5 or AtGcn5. 

The experiment provided support for the hypothesis that, although 

unrelated to other Gcn5 sequences, the N-terminal extensions in plant Gcn5 

proteins might have a specific role to play. In the case of ZmGcn5, the protein 

encoded cannot function as a transcriptional co-activator unless it is correctly 

targeted to the nucleus and this is possible only when the protein contains this 

N-terminal stretch. 
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In vivo interaction studies between the putative coactivators 
ZmGcn5, ZmAda2 & a plant transcriptional activator Opaque 2 
 

5.1  Introduction 
 

ZmGcn5 is a putative transcriptional co-activator expressed throughout 

the plant with highest abundance in tissues containing a high proportion of 

rapidly dividing cells such as young shoots and endosperm (Marcus Riehl, 

Diplomarbeit, Universität Giessen, 1999). In yeast the adaptor protein Ada2 

has been shown to directly interact with Gcn5 (Marcus et al., 1994). Ada2 is 

present in several complexes in yeast, not all of which contain Gcn5 (Grant et 

al., 1997). Ada2 also directly interacts with the bZip type yeast transcriptional 

activator Gcn4 to evoke specific gene activation (Barlev et al., 1995). Maize 

transcriptional activator Opaque-2 (O2), expressed during late endosperm 

development (Gallusci, et al., 1994) shows many similarities to Gcn4 (see 

introduction section 1.4) and raises the possibility that ZmO2 might also 

recruit the Gcn5-mediated co-activator complexes via an interaction with 

ZmAda2.  

 GST spin-down experiments showed that ZmGcn5 interacts with 

ZmAda2 in vitro. However no interaction could be observed between ZmAda2 

and ZmO2 in further GST spin down experiments (Heinz Albert-Becker, Max 

Planck Institute, personal communication). In view of the fact that Ada2 is part 

of a multi-protein complex in yeast (Grant et al., 1997) and probably in all 

higher eukaryotes, it is quite possible that this specific interaction may require 

the presence of additional components. This is supported by the observation 

that by co-immunoprecipitation in presence of nuclear extracts, a specific 

interaction between ZmO2 and ZmAda2 could be detected (Heinz-Albert 

Becker, personal communication).  

In order to define the role of these proteins in the cellular context 

interactions between ZmGcn5 HAT, adaptor ZmAda2 and plant transcription 

factor ZmO2 were tested by in vivo methods. The split-ubiquitin system was 

used to check the in vivo interaction between Gcn5 and Ada2. The results 

were further verified by FRET analysis. FRET was also used to determine the 

interaction between ZmAda2 and the plant transcriptional activator ZmO2. 
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5.2  The Split-ubiquitin system:  
 

This system was introduced by Johnsson and Varshavsky (1994) and 

provides an alternative over the yeast two-hybrid system. Ubiquitin is split into 

N-terminal and C-terminal halves (Nub and Cub respectively) and each half is 

fused to either protein of interest. Cub is additionally fused at the carboxyl-

terminus to a reporter that has been mutated to bear a degradation signal. If 

the two proteins interact inside living cell, the two halves of ubiquitin are 

brought into close proximity and a quasi ubiquitin (Ub) moiety is reconstituted 

and recognised by ubiquitin-specific proteases (UBPs). The fusion containing 

Cub is cleaved, resulting in the release and degradation of the reporter. This is 

schematically shown in figure 5.1. Since ubiquitin proteases are present in the 

cytosol as well as in the nucleus (Varshavsky, 1997; Byrd C., et al. 1998), this 

assay can be used to study interactions reconstituted in the cytosol as well as 

in the nucleus. 

 
 
 
 
 
 
 
 
 

Figure 5.1) Schematic representation of split-ubiquitin system. Nub and Cub are 
fused to the interacting proteins A and B. The AB interaction brings Nub and Cub into close 
proximity. A quasi-native Ubiquitin moiety is reconstituted which is recognised and cleaved 
by UBPs resulting in the release of the reporter R (from Johnsson and Varshavsky, 1994). 

 
5.2.1 Establishment of split-ubiquitin system to study the in vivo 

interaction in plant cells 
 

 The Nub fusion vector was created by inserting an ApaI/SacI restricted 

PCR fragment containing Nub into pRT100 (Töpfer et al., 1988), and the Cub 

fusion vector was created by placing a EcoRI/ApaI restricted fragment 

containing a fusion of Cub with green fluorescent protein (GFP), modified to 

begin with an arginine residue (serving as a degradation signal), into pRT107 
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(Töpfer et al., 1988). The vectors used for generating the fragments of Cub-

Arg-GFP and PCR products of Nub, viz. cup-Cub-Rgfp313 and pADNX-

NubIB1 respectively, were kindly provided by Dr. Norbert Lehming (Max-

Delbrück Lab of the MPG, Köln). PCR fragments containing cDNAs of 

ZmADA2 and ZmGCN5 were cut with BglII/SalI and EcoRI/AgeI respectively 

and inserted into two vectors to create the NubADA2 and GCN5-Cub-Arg-GFP 

fusion vectors. The primers used for amplification of Nub, ZmADA2 and 

ZmGCN5 (viz. ApaINubFwd, SacINubRev; BglIIAda2Fwd, SalIAda2Rev; 

EcoRIGcn5Fwd, AgeIGcn5Rev) are listed in the section 2.1.3.4. The 

schematic representation of the fusions is shown in figure 5.2 and figure 5.3. 

The fusion vectors were then used to transfect BY2 protoplasts. 

 

 

 

 

 

 

 

 
 

Figure 5.2) Construction of gene specific Nub vectors. (a) Skeleton vector containing 
35S::Nub (b) 35S::Nub-ZmADA2. MCS–Multiple cloning site. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3) Construction of gene specific Cub-Arg-GFP vectors. (a) Skeleton vector 
containing 35S::Cub-Arg-GFP (b) 35S::ZmGCN5-Cub-Arg-GFP. 

 

1.047 kb

Arg-GFPCub

H
in

d I
II

Poly A

A
pa

1

H
in

d I
II

E
co

R
I

35S Promoter

M
C

S

(a)

ZmGCN5

H
in

d I
II

1.047 kb

Arg-GFPCub Poly A

A
pa

I

A
ge

I

1.54 KbH
in

d I
II

35S Promoter

E
co

R
I

(b)

1.047 kb

Arg-GFPCub

H
in

d I
II

Poly A

A
pa

1

H
in

d I
II

E
co

R
I

35S Promoter

M
C

S

(a)

1.047 kb

Arg-GFPCub

H
in

d I
II

Poly A

A
pa

1

H
in

d I
II

E
co

R
I

35S Promoter

M
C

S

(a)

ZmGCN5

H
in

d I
II

1.047 kb

Arg-GFPCub Poly A

A
pa

I

A
ge

I

1.54 KbH
in

d I
II

35S Promoter

E
co

R
I

(b) ZmGCN5

H
in

d I
II

1.047 kb

Arg-GFPCub Poly A

A
pa

I

A
ge

I

1.54 KbH
in

d I
II

35S Promoter

E
co

R
I

(b)

N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

(a)

(b)

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II

N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

(a) N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

(a)

(b)

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II

(b)

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II

N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

(a) N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

(a)

(b)

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II

(b)

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II

N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

(a) N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

N ub

H
in

d I
II

Poly A
S

ac
I

H
in

d I
II

A
pa

I

35S Promoter

M
C

S

(a)

(b)

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II

(b)

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II

1.6 kb

ZmADA2N ub

H
in

d I
II

Poly A

S
al

I

A
ge

I

H
in

d I
II

35S Promoter

B
gl

II



Results: Chapter 5  In vivo protein-protein interaction studies 
 

     66

In theory, once protoplasts are co-transformed with ZmGCN5-Cub-Arg-

GFP and Nub-ZmADA2, the encoded interacting proteins would come close 

and a quasi ubiquitin moiety would be reconstituted. This would be recognised 

by ubiquitin specific proteases (UBP’s), which would cleave the Arg-GFP from 

Cub fusion vectors according to the N-end rule pathway (Varshavsky, 1996) 

resulting in the loss of fluorescence in the co-transformed cells. [N-end rule 

refers to the relationship between the metabolic stability of a protein and the 

identity of its N-terminal residue]. On the other hand, if no interaction takes 

place the reporter would remain attached to the Cub and can be visualised. 

When BY2 protoplasts are transfected with a fluorescent protein only about 

25-30% of cells show transient protein expression after 18-24 hours. In this 

situation it would be impossible to identify the cells co-expressing the fusion 

proteins because if the interaction takes place the reporter would be cleaved 

and there would be no difference between the transformed and the 

untransformed cells. In order to circumvent this problem it was decided to use 

35S::dsRed as the second fluorescent marker to identify the viable, 

transformed cells. The assumption being that if cells are co-transfected with 

equimolar amounts of both Nub and Cub fusion proteins, as well as 

35S::dsRed, the interaction between two proteins would lead to the cleavage 

and degradation of the reporter attached to Cub, while the 35S::dsRed would 

still be expressed in the cells. This assumption is based on the fact that a cell 

competent to be transformed does not discriminate between the type of 

incoming DNA (Potrykus, 1990) and if equimolar ratios of the plasmids are 

used one can expect the cell to take up equimolar amounts of the different 

types of incoming DNA provided. In order to test the above assumption BY2 

protoplasts were co-transfected with 35S::GCN5-GFP (nuclear targeted) and 

35S::dsRed and the protein expression was visualised under fluorescent 

microscope with filters specific for GFP and dsRed based fluorescence. Out of 

the total 25-30% transfected protoplasts, almost 95% showed the expression 

of both fluorescent proteins (see figure 5.4). In the remaining 5% of the cells 

the expression levels of one or the other fluorescent protein were very low. 

Having established that the double transfection was working as 

predicted, it could be used to detect the specific protein-protein interactions 

using the modified split-ubiquitin system. BY2 protoplasts were transfected 
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with different permutations of reporter plasmids (table 5.1) and the possible 

interactions were checked under the fluorescence microscope.  

 

 

 

 
 

 

 

 

 

 

 

 
 

Figure 5.4) Double transfection of BY2 protoplasts with 35S::dsRed and 
35S::Gcn5-GFP. Upper panel shows protoplasts seen under dsRed specific excitation and 
the lower panel shows same protoplasts visualised under GFP specific excitation. For 
contrast the bright field images are also shown. 

 
 

 

 

 

 

 

 

 

 

 

Table 5.1) BY2 protoplast transfection scheme for checking interaction between 
ZmGCN5 HAT and the Adaptor ZmAda2 using modified Split-ubiquitin system. 

 

5.2.2 The split-ubiquitin system detects a strong in vivo 
interaction between ZmGcn5 HAT and the adaptor ZmAda2 

  

The ZmGCN5 gene encodes a protein of 515 amino acid residues. The 

central part of the Gcn5 polypeptide is responsible for interaction with adaptor 

protein Ada2 (Marcus et al., 1994). The modified split-ubiquitin system, as 
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described above, was used to determine the interaction between ZmGcn5 

and ZmAda2 in living plant cells. BY2 protoplasts were transfected with 

35S::ZmGCN5-Cub-Arg-GFP, 35S::ZmADA2-Nub and 35S::dsRed in different 

combinations and the transient gene expression was observed after 24-36 

hours. The results are shown in figure 5.5.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 5.5) Modified Split-ubiquitin system detects specific and strong in vivo 
interaction between ZmGcn5 and ZmAda2 in BY2 protoplasts. (A) Protoplasts 
transfected with 35S::dsRed alone (B) Protoplasts transfected with 35S::dsRed and 
ZmADA2-Nub (C) Protoplasts transfected with ZmGCN5-Cub-Arg-GFP and 35S::dsRed (D) 
Protoplasts transfected with ZmGCN5-Cub-Arg-GFP, ZmADA2-Nub  and 35S::dsRed. 
Protoplasts were transfected with above plasmids and the transient gene expression was 
observed after 24-36 hours under a fluorescence microscope. Bright field images are 
shown for comparison. 

 

Co-transfecting protoplasts with 35S::ZmGCN5-Cub-Arg-GFP and 

35S::dsRed resulted in the transient expression of both proteins inside the 

BY2 protoplasts (figure 5.5, C). However it is worth noting that the GFP 

fluorescence was observed throughout the cell. This was somewhat of a 

surprise as the ZmGcn5 contains an NLS and the fusion protein (ZmGCN5-

Cub-Arg-GFP) should have been targeted to the nucleus. By analysing the Cub 

portion of the fusion protein using PSORT computer prediction (PSORT- 

http://psort.nibb.ac.jp/), it became clear that the Cub contains a predictable 

cytoplasmic localisation signal, thus accounting for the fluorescence in the 

cytoplasm. On the other hand, co-transfecting BY2 protoplasts with 

35S::ZmGCN5-Cub-Arg-GFP, 35S::ZmADA2-Nub and 35S::dsRed resulted in 
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the loss of GFP signal in the co-transfected protoplasts while the red 

fluorescence could still be observed (see figure 5.5, D). This suggested that 

interaction between ZmGcn5 and ZmAda2 had led to the reconstitution of 

quasi ubiquitin moiety, which being recognised by UBPs resulted in the 

cleavage and loss of GFP fluorescence.  

Around 100-150 co-transfected protoplasts were analysed for each 

permutation and the experiment was repeated three times. The same results 

were obtained each time, suggesting a specific and strong in vivo interaction 

between ZmGcn5 HAT and the adaptor ZmAda2.  
 

5.3 The fluorescence resonance energy transfer (FRET) system
   

 The modified split-ubiquitin system detected a specific and strong 

interaction between ZmGcn5 HAT and the adaptor ZmAda2. However the 

system as described above did not differentiate whether the interaction took 

place in the cytoplasm or in the nucleus. Fluorescence resonance energy 

transfer (FRET) is an elegant system to address this question. FRET is a 

dipole-dipole resonance interaction between two close molecules where one 

molecule, called the “donor” transfers its excitation energy to the other 

molecule, called the “acceptor” (Mergny et al., 2001, Kenworthy, 2001). FRET 

occurs when the distance between the donor and the acceptor is less than 1.5 

x Förster radius (Ro) for energy transfer (Gadella et al., 1999). Förster radius 

is the distance between donor and acceptor at which the FRET efficiency is 

50% i.e. 50% of the excitation energy absorbed by the donor is transferred to 

the acceptor. One prerequisite for FRET is that the absorption spectrum of the 

acceptor fluorophore must overlap with the emission spectrum of the donor. 

FRET is manifested in different ways: 
  

a) a decrease in the donor fluorescence quantum yield determined by 

FSPIM (fluorescence spectral imaging microscopy),  

b) a decreased donor fluorescence lifetime,  

c) an increased stability of the donor if the acceptor fluorophore is photo-

bleached (Jovin and Arndt-Jovin, 1989) and  

d) an increased (sensitised) acceptor fluorescence emission, if the 

acceptor is a fluorophore (Wu and Brand 1994; Clegg, 1995).  
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Chromophore-mutated GFPs show an excellent spectral overlap and 

hence good FRET pairs can be made using available GFPs (Pollok, et al., 

1999). Cyan and yellow fluorescent mutants of GFP viz. CFP and YFP have 

been widely used for FRET studies in living cells (Gadella et al., 1999). Two 

separate fusion proteins - one containing CFP (cyan emitting GFP) and the 

other, its putative interacting partner containing YFP (yellow emitting GFP) - 

are coexpressed in the cell type of choice. If intermolecular FRET is detected 

(see figure 5.6), it provides direct proof of close proximity of the CFP and YFP 

chromophores and consequently of the existence of the protein-protein 

interaction.  
 

 

Figure 5.6) Detection of protein interactions with FRET. FRET between cyan 
fluorescent protein (CFP) fused to protein A and yellow fluorescent protein (YFP) to protein 
B. Under optimal proximity and angular conditions, interaction between A and B causes a 
decrease in intensity of CFP fluorescence concomitant with an increase in YFP fluorescence 
(adopted from Gadella et al., 1999). 

 

 

FRET has been successfully used to detect protein-protein interactions 

in plant cells (Gadella et al., 1999). FRET was used to augment the results 

obtained from modified split-ubiquitin system and also to study the interaction 

and colocalisation of ZmGcn5 histone acetyltransferase, the adaptor protein 

ZmAda2 and plant transcriptional activator ZmO2 in living plant cells. 
 

5.3.1 In vivo FRET to study interaction between ZmGcn5, 
ZmAda2 and plant transcriptional activator ZmO2 

 

cDNAs of ZmGCN5, ZmADA2 and ZmO2 were translationally fused to 

CFP and YFP in pMon 999 vector (Shah et al., 2001). NcoI restricted PCR 

fragments of ZmGCN5 and ZmADA2 were cloned into NcoI site of pMON999-
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CFP and pMON999-YFP vectors to create ZmGCN5-CFP, ZMGCN5-YFP, 

ZmADA2-CFP and ZmADA2-YFP vectors. Similarly ClaI/XbaI restricted 

ZmO2 fragment was cloned into the ClaI/XbaI digested pMOn999-CFP and 

pMON999-YFP vectors. The primers used for generating PCR fragments (viz. 

NcoIGcn5Fwd, NcoIGcn5Rev, NcoIAda2Fwd, NcoIAda2Rev, ClaIO2Fwd, 

XbaIO2Rev) are listed in section 2.1.3.4. Summary maps of the vectors are 

shown in appendix I. 
 

5.3.2 Colocalisation of ZmGcn5 HAT, adaptor ZmAda2 and plant 
transcriptional activator ZmO2 in living plant cells 

  

 For this purpose transient gene expression in cowpea protoplasts was 

utilised (see section 2.2.10.2). Protoplasts were co-transfected with either 

35S::ZmGCN5-CFP/YFP and 35S::ZmADA2-YFP/CFP or 35S::ZmO2-

CFP/YFP and 35S::ZmADA2-YFP/CFP. After transfection and incubation for 

18-24 hours, the protoplasts were analysed under the confocal laser-scanning 

microscope (CLSM 510, Zeiss). The results are shown in Figure 5.7. 

 

Figure 5.7) Colocalisation of ZmGcn5/ZmAda2 and ZmO2/ZmAda2 in cowpea 
mesophyll protoplasts. (a-d) Confocal images of the protoplasts co-transfected with 
35S::ZmGCN5-CFP 35S::ZmADA2-YFP. The two fluorophores, CFP and YFP, were 
simultaneously visualised. Chlorophyll autofluorescence is shown in Red (b). Colocalisation 
of ZmGcn5 and ZmAda2 is shown in yellowish white fluorescence (d) resulting from the 
overlay of (a) and (c). (e-h) Confocal images of the protoplasts co-transfected with 
35S::ZmO2-CFP and 35S::ZmADA2-YFP. The chlorophyll autofluorescence is shown in red 
(f). Colocalisation is shown by yellowish white fluorescence (h) resulting from the overlay 
of (e) and (g). 
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Figure 5.7 (a-d) shows the colocalisation of ZmGcn5 and ZmAda2 

while (e-f) shows the co-localisation of ZmO2 and ZmAda2. For comparison 

chlorophyll autofluorescence is shown in red. From the combined images 

(Figure 5.7d) it is clear that the targeting and the localisation pattern of 

ZmGcn5 and ZmAda2 completely overlap inside the nucleus suggesting that 

the interaction between these two co-activator proteins occurs inside the 

nucleus. Hardly any fluorescence is detected outside the nucleus. 

The overlay image for ZmO2 and ZmAda2 (figure 5.7 h) also shows 

considerable overlap inside the nucleus although some ZmO2-CFP 

fluorescence is scattered outside the nucleus. 
 

5.3.3  FRET studies between ZmGcn5, ZmAda2 and ZmO2 
 

In order to directly study the physical interaction between ZmGcn5 

histone acetyltransferase, the adaptor ZmAda2 and plant transcriptional 

activator ZmO2 in living plant cells, the CFP and YFP fusion proteins were 

used as a donor-acceptor pair in FRET studies. Fluorescence spectral 

imaging microscopy (FSPIM) was used as a detection system in all FRET 

studies (see section 2.2.11.3). Spectral images were taken from small regions 

within the nucleus co-expressing CFP and YFP fusion proteins, and also 

outside the nucleus, and the fluorescence emission spectrum corrected for 

background was generated. In case of FRET, the CFP fluorescence will be 

quenched and the YFP fluorescence will be increased (sensitised).  

FRET was performed between ZmGcn5 HAT and the adaptor ZmAda2 

and between transcription factor ZmO2 and the adaptor ZmAda2 proteins 

fused either to the donor (CFP) or the acceptor (YFP) molecules. This was to 

ensure that any observed FRET was not due to an unbalanced expression 

ratio of the target proteins. In all experiments where FRET was observed, the 

changes in fluorescence intensity were same irrespective of whether donor 

CFP was fused to one protein or the other.  
 

5.3.2.1 FRET between ZmGcn5 HAT and the adaptor ZmAda2 
 
 Protoplasts were co-transfected with either 35S::ZmGCN5-CFP and 

35S::ZmADA2-YFP or 35S::ZmGCN5-YFP and 35S::ZmAda2-CFP. Both 

these fusion proteins showed tight nuclear targeting and thus the spectral 
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images were recorded from the different regions within the nucleus co-

expressing ZmGcn5-CFP and ZmAda2-YFP fusion proteins (figure 5.8,a). 

  

 

 

 

 

 

 

 

 
 

Figure 5.8) FSPIM analysis of fluorescent ZmGcn5-CFP and ZmAda2-YFP fusion 
proteins. (a) Confocal image of a protoplast co-transfected with 35S::ZmGCN5-CFP and 
35S::ZmADA2-YFP. The two fluorophores, CFP and YFP, were visualised simultaneously 
and the overlay image is shown. Space within the rectangle shows the region used for 
spectral measurements. (b) Emission spectra of the ZmGcn5-CFP and ZmAda2-YFP 
proteins obtained from the nucleus of the co-expressed protoplasts. The X-axis represents 
the wavelengths of CFP and YFP fluorophores and the Y-axis represents their intensities. 
CFP emission occurs at 480 and 505 nm while YFP emission occurs at 525-530nm. The 
blue curve shows the normal spectrum of CFP alone. 
  

In almost all the measurements the YFP/CFP fluorescence intensity 

ratio was found to be above 1.5. A ratio of fluorescence intensity at 530 nm 

over 480 nm (designated as the YFP/CFP emission ratio) of 1.3 or above is 

taken as a sufficient evidence of FRET (Shah et al., 2001). When the spectra 

were recorded from 15 protoplasts each co-expressing ZmGcn5-CFP and 

ZmAda2-YFP or ZmGcn5-YFP and ZmAda2-CFP, the YFP/CFP ratio was 

more than 1.5 in about 95% of the measurements (data not shown). 

In order to rule out the possibility that the increased YFP intensity was 

due to unbalanced ratio of CFP and YFP in the protoplasts, acceptor 

photobleaching experiments were performed. The rationale behind the 

experiment is that if the energy transfer from donor fluorophore (CFP) to 

acceptor fluorophore (YFP) is disrupted by photobleaching of YFP, the donor 

emission should increase over a short period of time till the acceptor again 

becomes available and the FRET is re-established. YFP fluorophore was 

bleached from the ZmGcn5-CFP and ZmAda2-YFP co-expressing cells using 

the photo bleaching function of Carl-Zeiss laser scanning microscope (3 

iterations with 100% laser power at 514nm). The images of both the 

CFP

YFP
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fluorophores before and after bleaching were recorded and are shown in 

figure 5.9.  
 

 
 

Figure 5.9) Acceptor photobleaching to confirm the FRET between ZmGcn5-CFP 
and ZmAda2-YFP. (a-d) Confocal images before photobleaching. (a) ZmGcn5-CFP 
fluorescence before photobleaching of YFP. (c) ZmAad2-YFP fluorescence before 
photobleaching.  (d) The superimposed images of (a) and (c) result in overlay image in 
(d). (e-h) Confocal images of the same protoplasts after photobleaching. (e) Increase in 
CFP fluorescence after photo bleaching. (g) Photobleached ZmADA2-YFP. (h) 
Superimposed images of (e) and (g) result in the overlay in (h). (b and f)  show 
chlorophyll autofluorescence. The images are false coloured to show the changes in 
fluorescence intensities. 

 

When the YFP fluorophore was bleached there was a sharp and 

sudden increase in the intensity of CFP (figure 5.9, a and e). This proved 

beyond any doubt that the physical interaction between ZmGCN5 and 

ZmAda2 brought the fluorophores, CFP and YFP, fused to these proteins, 

close together to facilitate the energy transfer from the donor to acceptor. 

These results show that when the ZmGcn5 histone acetyltransferase and the 

adaptor protein ZmAda2 are targeted to the nucleus they interact physically, 

supporting the results obtained from modified split-ubiquitin system and the 

GST spin down experiments. 
 

5.3.2.2 FRET between adaptor ZmAda2 and plant transcriptional 
activator ZmO2 

 

Protoplasts were co-transfected with either 35S::ZmO2-CFP and 

35S::ZmAda2-YFP or 35S::ZmO2-YFP and 35S::ZmAda2-CFP. Spectral 

images of the fusion proteins were recorded from the different regions within 
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the nucleus co-expressing ZmGcn5-CFP and ZmAda2-YFP fusion proteins. 

The results are shown in figure 5.10.  
 

 
Figure 5.10) FSPIM analysis of fluorescent ZmO2-CFP and ZmAda2-YFP fusion 
proteins. (a) Confocal images of a protoplast co-transfected 35S::ZmO2-CFP and 
35S::ZmADA2-YFP. The two fluorophores CFP and YFP were visualised simultaneously and 
the overlay image is shown. Space within the rectangle shows the region used for spectral 
measurements. (b) Emission spectra of ZmO2 and ZmAda2 proteins obtained from within 
the nucleus of the co-transfected protoplasts. The blue curve shows the normal spectrum 
of CFP alone. 

 

When the spectral images were obtained from protoplasts co-

expressing ZmO2-CFP and ZmAda2-YFP at the nuclear periphery the 

YFP/CFP fluorescence intensity ratio were close to 1.0 in all of the 

measurements suggesting that no interaction occurs between ZmO2 and 

ZmAda2 at the nuclear periphery (data not shown). However when the 

spectra were recorded inside the nucleus a noticeable shift in spectra could 

be observed (figure 5.10 b). The YFP/CFP ratios were close to 1.3 in roughly 

3 out of 5 measurements. About 55-60% of the protoplasts showed an 

increased YFP/CFP ratio of 1.3 when the spectra were recorded from 15 

protoplasts co-expressing ZmO2-CFP and ZmAda2-YFP proteins inside the 

nucleus.  

Acceptor photobleaching experiments were performed for this pair of 

fusion proteins as well. The images of the representative protoplasts before 

and after photobleaching are shown in figure 5.11. When the YFP fluorophore 

fused to ZmAda2 was bleached from the cells co-transfected with ZmAda2-

YFP and ZmO2-CFP, there was a substantial increase in the CFP 

CFP

YFP
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fluorescence (figure 5.11 a and e). Though the increase was not as drastic as 

seen for ZmGcn5-CFP/ZmAda2-YFP FRET, it could still be clearly observed. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 5.11) Acceptor photobleaching to confirm the FRET between ZmO2-CFP 
and ZmAda2-YFP. (a-d) Confocal images before photobleaching. (a) ZmO2-CFP 
fluorescence before photobleaching of YFP. (c) ZmAda2-YFP fluorescence before 
photobleaching.  (d) The superimposed images of (a) and (c) result in overlay image in 
(d). (e-h) Confocal images of the same protoplasts after photobleaching. (e) Increase in 
CFP fluorescence after photobleaching. (g) Photo-bleached ZmADda2-YFP. (h) 
Superimposed images of (e) and (g) result in the overlay in (h). (b and f)  show 
chlorophyll autofluorescence. The images are false coloured to show the changes in 
fluorescence intensities. 

 

Taken together, these results show that the ZmO2 can physically 

interact with ZmAda2 inside the nucleus. However the interaction seems to be 

weak and presumably transient in nature. 
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Biological impact of histone acetylation 
 
 

6.1  Introduction 
 

Regulation of gene expression mostly occurs at the level of 

transcription. The transcription initiation machinery includes factors that bind 

to DNA, cyclin dependent kinases that regulate the polymerase activity and 

non-DNA binding histone acetylases and other enzymes that modify 

chromatin (Roth and Allis, 1996). Cells respond to a variety of changes in their 

environment, growth and development by switching on and off certain gene 

products. How much each of these factors contributes to the global gene 

expression is not clearly understood. Moreover the precise interaction of 

these factors with the transcription machinery is not clear as well. Histone 

acetylation and deacetylation has long been connected to transcriptional 

activation and repression (Struhl, 1998). With the isolation of specific histone 

acetyltransferases and deacetylases from animals, plants and fungi (Lusser et 

al., 1999), efforts have been directed to dissect the specific role of these 

enzymes. Genome-wide expression monitoring is increasingly being used as 

a tool to study the downstream targets of novel genes. Using this approach, 

ScGcn5 was shown to affect a total of 5% genes in a whole-genome 

oligonucleotide microarray experiment (Holstege et al., 1998). The microarray 

technique was employed in the present study to dissect the role of ZmGcn5 

acetylation on the overall chromatin status in maize. The study addressed the 

following questions: 

a) How do cells respond to changes in histone acetylation at the 

transcriptional level? For this purpose histones were hyper-acetylated 

by using the deacetylase inhibitor Trichostatin A (TSA) on maize HE-89 

cell line. The resultant treated and untreated mRNA population was 

used in a microarray experiment. 

b) What are the specific targets of ZmGCN5 acetylation? For this purpose 

maize HE-89 cell line was transformed with a construct expressing 

antisense mRNA strand of ZmGCN5 coding sequence under the 

control of 35S promoter from cauliflower mosaic virus. The transgenic 

material was grown, checked by Northern and Western blots and 
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maintained as suspension cultures. Microarray experiments were done 

using the antisense ZmGCN5 cell line and the control vector 

transformed cell line. 
 

6.2  Histone Hyper-acetylation studies using Trichostatin A 
 

6.2.1 TSA treatment results in a dosage dependent acetylation 
response in maize cell lines.  

 

To monitor the relationship between ZmGcn5 expression and changes 

in the acetylation status of chromatin, maize suspension cell line HE-89 was 

treated with the deacetylase inhibitor TSA. Cell lines were treated with 

different concentrations of TSA ranging from 0.5 µM to 5.0 µM for 10 hours 

and the acetylation status was determined by an immunoblot on crude nuclear 

extracts, run on a 15% SDS PAGE gel, using an antibody raised against 

acetylated lysines of histone H4 [(raised against histones acetylated at lysine 

position 5, 8, 12 and 16; purchased from Serotec) (figure 6.1, 6.2)].  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1) Acetylation status of Histone H4 on TSA treatment. Maize HE-89 cell line 
was treated with different concentrations of TSA for 10 hours and crude nuclear extracts 
prepared from them were run on a 15% SDS PAGE gel and immunoblotted using anti 
acetylated histone H4 antibody. (a) Ponceau S staining showing the histone fraction. (b) 
Dosage dependent acetylation response on histone H4. (c) Immunophilin loading control 
(Hueros et al., 1998). 
 
 
 

66 kDa
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Figure 6.2) Dosage dependent acetylation of Histone H4 on TSA treatment. The 
Boehringer Light Units (BLU) were calculated using the Lumi-imager software from 
Boehringer Mannheim and GCN5/Immunophilin ratios were calculated and normalized 
taking untreated control as 1 BLU. 

 

Acetylation on histone H4 showed an increase with the increasing 

amounts of TSA (figure 6.1 and 6.2). Even the lowest amount of TSA (0.5 µM) 

lead to a 7-fold increase in acetylation on histone H4 while the antibody could 

barely detect the basal/under-acetylated levels in the untreated control.  
 

6.2.2 Increase in acetylation on TSA treatment is accompanied by 
decrease in ZmGcn5 levels.  

 

 In order to look at the levels of ZmGcn5 in TSA treated and untreated 

maize cell lines, crude nuclei were isolated (section 2.2.7.1) and run on a 10% 

SDS PAGE gel. The proteins, transferred onto a nitrocellulose membrane 

were probed with ZmGcn5 specific antibody. The antibody detects a 58 kDa 

ZmGcn5 histone acetyltransferase. As a loading control an antibody raised 

against maize immunophilin (Hueros et al., 1998) was used. An Increase in 

the concentration of TSA resulted in decreasing amounts of the ZmGcn5 

protein levels in the cell. The results are shown in figure 6.3. 
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Figure 6.3) ZmGcn5 levels in TSA treated and untreated maize HE-89 cell line. (a) 
Immunoblot on crude nuclear proteins with anti ZmGcn5 antibody. As a loading control an 
antibody raised against maize immunophilin was used (Hueros et al., 1998). (b) The BLU 
values obtained using Lumi-imager software were used to calculate ZmGcn5/Immunophilin 
ratio and normalised taking untreated control as 1 BLU. 

 

6.2.3  Microarray analysis on TSA treated and untreated cell lines 
 

 Microarray technique was used to analyse the changes in gene 

expression on changing the acetylation status of the cell either by TSA 

treatment or by genetically manipulating the ZmGcn5 levels (discussed later). 

Since the changes in the ZmGcn5 protein levels were more pronounced for 

the 2.5 µM and 5.0 µM TSA concentrations cell lines from these treatments 

were used in the microarray experiment. Total RNA was isolated from the cell 

lines after 10 hours of TSA treatment (section 2.2.4.1 and 2.2.13) and used as 

a template for synthesis of radiolabeled first strand cDNA (see section 

2.2.5.2). This was then used to hybridise 2600 maize ESTs spotted onto the 
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nylon filters. The spotting plan and the complete list of clones along with 

probable identities can be found at the Thompson Lab web page under 

http://www.mpiz-koeln.mpg.de/~riehl/ArrayDB/AllPlates.htm and  

http://www.mpiz-koeln.mpg.de/~riehl/ArrayDB/MzArrayDB.htm. 
 

6.2.3.1 Correction and normalisation of array filters 
 

For the identification of genes that are differentially expressed during 

different developmental stages or different treatments, two or more filters 

hybridised with RNA from each stage or treatment need to be compared. 

However direct comparison of these filters is difficult because of differences 

due to varying efficiencies of reverse transcription, probe purification, 

hybridisation and filter quality etc. In order to get reliable and reproducible 

data, these variations should be compensated for. Different types of controls 

were used in the present study to compensate for these errors. The controls 

were spotted at different positions on plate 3. The controls included: 
 

 A cloning vector like pBluescript in order to assess the non-specific 

hybridisation. pBluescript was spotted in different concentrations (0.1, 

1.0, 10 and 100 ng/µl) at positions N4, N6, N8 and N10. 

 Reference genes like maize immunophilin (Hueros et al., 1998) and 

barley ubiquitin (Gausing and Barkardottir, 1986). Different 

concentrations of Immunophilin (0.1, 1.0, 10 and 100 ng/µl) were 

spotted at H4, H6, H8 and H10.  Similarly ubiquitin was spotted at 

positions H14, H16, H18 and H20 and also at N14, N16, N18 and N 20. 

 An internal control non-coded by plants. These were cDNA’s to 

Nebulin, Desmin and uidA gene, cloned into pBluescript SK(-). Nebulin 

was spotted in different concentrations (0.1, 1.0. 10 and 100 ng/µl) at 

positions D4, D6, D8 and D10. Similarly Desmin was spotted at 

position D14, D16, D18 and D20. The uidA gene was included at 

positions F4, F6, F8 and F10. These controls were included in order to 

provide an internal quantification standard that will not vary between 

probes and would permit a comparison between independent 

hybridisations. 
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6.2.3.2 Development of non-varying Nebulin poly A+ RNA reference 
 

Housekeeping genes are often used as internal references for the 

normalisation of array filters. However while comparing the unknown states of 

gene expression, the constancy of housekeeping genes cannot be assumed a 

priori (Eickhoff et al., 1999). Furthermore there have been studies showing 

housekeeping genes being regulated (Savonet et al., 1997; Bhatia et al., 

1994). A two-pronged strategy was used to circumvent these drawbacks. 

Firstly every hybridisation was repeated three to four times with two filters in 

each hybridisation. Only those filters that showed a correlation coefficient of 

0.90 or higher, when hybridised with same probe, were included for final 

analysis. This compensated for the differences in filter quality, reverse 

transcription efficiency and hybridisation. Filters were hybridised with a 

particular probe only when the incorporation efficiency was more than 30%. 

Furthermore cross hybridisations were performed to rule out the differences in 

the amount of DNA spotted onto different filters. Mean or median values were 

calculated from the filter sets hybridised with same probes. Only after these 

considerations were the data sets from two different treatments compared. 

Secondly a synthetic Nebulin RNA was synthesised and added to the total 

RNA prior to cDNA synthesis. Important considerations for the inclusion of a 

non-varying reference were (i) being an RNA molecule, (ii) presence of an 

oligo(A) tail for selection with oligo-dT cellulose as primer binding site for 

reverse transcription (iii) a sequence not related to the plant sequences, (iv) 

the presence of the hybridisation targets for the standards on the arrays and 

(v) an easy way of synthesis. Nebulin cDNA cloned into pBluescript SK(-) met 

all of these criteria. 

The corresponding Nebulin gene was included in the gene collection 

(as described in the section 6.2.3.1). A known concentration of Nebulin RNA 

was added to each independent reverse transcription reaction, spiked 

together with plant total RNA used for each probe. 

The Nebulin poly(A)+ RNA was generated by an in-vitro transcription 

reaction on the Nebulin cDNA within pBluescript. (The work was done in 

collaboration with Heinz Albert-Becker, MPIZ). The schematic diagram of 

Nebulin cloned within the pBluescript SK(-) is shown in figure 6.4.  
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Figure 6.4) Nebulin cDNA in pBluescript. pBluescript was cut with BamHI and the in 
vitro transcription was done using T7 RNA polymerase. 
 

pBluescript containing the Nebulin cDNA was cut with BamHI so that 

the in-vitro transcription product would terminate after the poly (A) tail and 

would not run into the vector. In vitro transcription was done in the presence 

of T7 RNA polymerase as described in section 2.2.4.2.  

In order to test whether the synthesized Nebulin poly(A) RNA cross 

hybridises with the plant DNA present in the filters, a test hybridisation was 

carried out using 5 µg of Nebulin total RNA, which was reverse transcribed 

and used as a probe. No cross hybridisation was observed to any of the 

spotted plant DNAs or to the pBluescript background control (figure 6.5) 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.5) Cross-hybridisation test. A nylon filter was hybridised to the synthetic 
Nebulin cDNA probe. The Nebulin gene with pBluescript was included in the filters at 
positions D4, D6, D8, D10 and L6 as well as at L6. The pBluscript was included at positions 
N4, N6, N8 and N10. 

 

6.2.3.3 Sensitivity of the microarray system 
 

In order to determine the sensitivity and the linearity of the microarray 

system, a series of hybridisations was performed with increasing amounts of 

synthesised human Nebulin mRNA. Three different filters were hybridised with 

probes prepared from RNA containing between 0.01, 0.1, and 0.5% of 
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Nebulin RNA (in relation to the 30 µg of plant total RNA). The corresponding 

Nebulin cDNA clone was represented on the filters at known concentrations, 

ranging from 0.1 to 100 ng. 

The linearity i.e., the amount of Nebulin probe proportional to the 

amount of Nebulin DNA on the filter was determined by plotting the amount of 

spiked Nebulin RNA against the amount of spotted Nebulin DNA.  The plotted 

values are shown in the appendix II. The results are shown in figure 6.6.  

When the percentage of Nebulin RNA was 0.01%, the values obtained 

showed a polynomial behaviour with a correlation coefficient of R2 = 0.97. This 

implies that when the amount of Nebulin in the probe was 3 ng, inaccurate 

signal intensities were obtained for Nebulin cDNA spotted at concentrations 

between 10 -100 ng.  

When the percentage of the Nebulin RNA was 0.1%, again the values 

obtained showed a polynomial behaviour with a correlation coefficient of R2 = 

0.99.  

When the percentage of Nebulin cDNA in the probe was 0.5%, the 

resulting signal intensities were proportional to the amount of DNA spotted on 

the filters and a linear relation was obtained with a correlation coefficient of R2 

= 0.99. This implies that the detection system was more accurate and 

sensitive when the amount of spiked Nebulin was 150 ng and for the DNA 

spots with a concentration range between 10 to 100 ng. 

  

 

 

 

 

 

 

Figure 6.6) Sensitivity of microarray system. Different percentages of synthesised 
Nebulin were reverse transcribed and used in array filter hybridisations. The graphs show 
ng amount of Nebulin cDNA plotted against the normalised intensity of each spot after 
hybridisation with different percentages of synthesised Nebulin. (The plotted values are 
shown in appendix II). 
  

Based on the above results, 0.5% of the Nebulin RNA was spiked 

together with the plant total RNA before starting the reverse transcription. 
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6.2.3.4 Quantification of the TSA treatment transcript profiles 
 

The expression data obtained from the TSA treatments and control was 

compared and analysed quantitatively using the ArrayVision Software from 

Imaging Research Inc. Five hybridisations were carried out for each treatment 

and control with two filters in each hybridisation. In total 10 independent filters 

each were hybridised to cDNA prepared from 5 µM TSA treated, 2.5 µM TSA 

treated and untreated HE-89 total RNA respectively. The repetitions were 

performed in order to compensate for the errors (like varying efficiencies of 

reverse transcription, probe purification, hybridisation and filter quality etc) 

that might occur during the whole microarray procedure and thus to ensure 

the reproducibility of the profiles. Besides, in addition each DNA was spotted 

on the filters in duplicates, which allowed the assessment of reproducibility 

within the same experiment. Furthermore 150 ng of the synthetic Nebulin 

RNA was included in each cDNA probe synthesis reaction from 30 µg of total 

RNA. The hybridisation, washing and the exposure of the filters were carried 

out as described in section 2.2.6.3. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.7) Nylon filters probed with radiolabeled cDNA prepared from RNA 
isolated from TSA treated and untreated Z. mays HE-89 cell lines. 

 

After hybridisation and proper exposure, the radioactive signal on the 

array filters was read with a scanning device (Storm 860, Molecular 

Untreated Control 5µM TSA treated HE-89 cell line Untreated Control Untreated Control 5µM TSA treated HE-89 cell line 5µM TSA treated HE-89 cell line 
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Dynamics) and the images were captured. Figure 6.7 shows an example of 

two filters hybridised with appropriate probes and scanned. The quantification 

of the signal intensity, normalisation and the subtraction of the local 

background were carried out using ArrayVision (ARV) software (see section 

2.2.6.4). 

In order to assess the reproducibility of the system, hybridisation 

signals obtained from repeats of each double spots on the same filter were 

compared by plotting the normalised intensity of the spot repetition 1 against 

the normalised intensity of the spot repetition 2. Comparison between the 

normalised hybridisation signals for duplicates of control and TSA-treated 

hybridisation experiments is shown in figure 6.8. The signals were 

reproducible, except for a small number of clones (between 5 to 10 clones per 

experiment, representing between 0.25 to 0.5% of the clones present on the 

filter). These clones were not included in the final analysis for the differential 

gene expression between the control and the treatment. 

 

 

Figure 6.8) Reproducibility of hybridisation signals. Comparison of the normalised 
hybridisation signals for duplicates of spotted clones in three different hybridisation 
experiments. cDNA probes were prepared from untreated and TSA treated total RNA. For a 
small number of cDNA (representing between 0.25-0.5% of all clones) up to 2 fold 
variation was observed between the repeat values as a result of hybridisation artefacts in 
the TSA treated lines. 

 

6.2.3.5 Differential gene expression between filters hybridised with 
cDNA prepared from control and TSA treated cell lines  

 

For the analysis of the differentially expressed transcripts between the 

treatments and the control, basic mathematical and statistical tools were 
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applied to the data generated in the microarray analysis. Both concentrations 

of TSA treatments lead to a general increase in the gene expression levels. 

This was expected as TSA inhibits deacetylases, leading to hyper-acetylation 

of core histones associated with increased gene activity. The results are 

shown in the figure 6.9, where the values obtained from the treatments are 

plotted against those obtained from the control. The complete quantified and 

normalised hybridisation results can be viewed at www.mpiz-

koeln.mpg.de/~riehl/ArrayDB/MzArrayDB.htm. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.9) Scatter plots of Trichostatin A microarray experiments. Normalised 
values for TSA treatments were plotted against the normalised values for control.  

 

Difference and ratio scores were used to compare the induction or 

repression of transcripts. The analysis was done using Microsoft Excel. The 

following relations were used for the calculation of genes up or down 

regulated by Trichostatin A treatment. 

 (a) Up-regulation: 

 

                    RatioK  = 
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∆

∆−∆
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Where  K = 1…..n corresponding to each of the data on the array. 
 

(b) Down-regulation: 

                     RatioK =       
 

Z score (as above), substituting the difference value with: 

∆K = (signal intensity control) – (signal intensity sample K) 
 

The normalised averages of the double spots were loaded in an Excel 

worksheet and the up and down regulated transcripts were identified using the 

above equations. Some basic criteria were followed in the identification of 

genes being up or down regulated. 
 

 If the RK > 2.0 and the ZK score > 0 in the equation (a) the transcripts 

were considered to be up regulated. 

 If the RK > 2.0 and ZK score < -0.15 in the relation b the transcripts 

were considered down regulated. 

 The cut off limit (i.e. ratio between control/sample or sample/control) 

was taken as 2.0 in order to rule out any possible false positives. 
 

Basic statistical analysis of the treatments permitted the identification of 

gene expression patterns. The %age of transcripts that were either up or 

down regulated in both treatments are summarised in table 6.1. 
 

Transcript accumulation 2.5 µM TSA 5.0 µM TSA 

Up-regulated 3.4% 3.4% 

Down-regulated 0.5% 0.5% 
 

Table 6.1) Percentage of transcripts regulated by Trichostatin A treatment. The 
percentages were calculated on the basis of a difference of 2 fold in the transcript 
expression levels of the treatment and control. 

 

Both concentrations of TSA lead to almost same differential expression 

compared to untreated control. All the transcripts that were seen to be up 

regulated in 5.0 µM TSA treated material were up regulated in the 2.5 µM 

Normalised Signal Intensity Control 
Normalised Signal Intensity Sample K 

SD∆ = 
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TSA treated material as well, although the signal intensity in both cases 

showed variation (see figure 6.10). The same was true for the down-regulated 

clones. The clones that had signal intensity below 0.1 MDC (Molecular 

dynamics unit) on the filters were weeded out as they might have arisen 

because of background and therefore might not represent the real differences.  

The up-regulated ESTs showing major changes (at least 2.7 fold) in the 

transcript levels on the TSA treatment (2.5 and 5.0 µM TSA) are shown in 

table 6.2. The down-regulated clones are shown in table 6.3. 
 

Table 6.2 (Up regulated ESTs showing major changes in transcript levels on TSA 
treatment) 

 Array Data  Accession Clone Identity Random 

Control TSA treated Fold Number   Matching 
HE-89 HE-89 Induction     Probability

1.71 8.76 5.1 T70634 Histone 4/Stylonychia lemnae 2e-16 

2.10 9.66 4.6 T14716 Histone H2.B/Triticum aestivum 2e-12 

1.82 8.05 4.4 T14777 Histone H4/Physarum polycephalum 1e-20 

1.12 4.93 4.4 AA072442 Histone H2.A/Oryza sativa 5e-06 

1.23 5.32 4.3 T70691 Histone H2.A/T. aestivum 2e-08 

2.45 9.48 3.8 T15325 Histone 2/T. aestivum 3e-21 

3.81 12.67 3.3 P40280 Histone 2A/Z. mays 9.00E-23 

2.71 9.07 3.3 T25236 Histone H2B.2/O. sativa 6e-24 

2.37 7.73 3.2 W21621 Histone H2.B/Z. mays 1.00e-19 

1.71 5.55 3.2 H35878 Histone 2B.1/Z. mays 1.00e-16 

1.24 3.76 3.0 T70646 Histone 3/Pisum sativum 8e-39 

3.82 10.55 2.8 T23357 Histone 3/T. aestivum 2e-50 

3.36 9.66 2.7 T14800 Histone 3/A. thaliana 1e-55 

2.06 5.55 2.7 T23405 Histone 2B/Z. mays 3e-15 

        

0.10 0.75 7.0 AAF65195 Leucine rich repeat protein FLR1/A. thaliana 1.00E-21 

0.47 2.30 4.8 T69041 Cysteine proteinase/A. thaliana 8e-50 

0.29 1.38 4.7 T18839 Heat Shock Protein 70/O. sativa 4e-22 

0.65 3.06 4.7 P29023 Endochitinase B Precursor/Z. mays 2.00E-106 

0.12 0.57 4.6 NP_196305 Polygalacturonase inhibitor protein/A. thaliana 2.00E-26 

0.92 4.06 4.4 AJ297903 Basal layer antifungal peptide (BAP-2)/Z. mays 4.00E-50 

0.22 0.97 4.3 P93438 S-adenosyl-L-methionine synthetase/O. sativa 1.00E-45 

0.16 0.69 4.2 AAB19212.1 Polygalacturonase-inhibiting protein/Malus domestica 2.00E-33 

0.17 0.72 4.2 BAA92982 Similar to Glycine max GH1 protein/O. sativa 6.00E-27 

0.29 1.20 4.1 AAK56130 ß-expansin 7/Z. mays 4.00E-61 

0.49 1.98 4.0 P46611 S-adenosyl methionine synthetase I/O. sativa 5.00E-91 

1.50 5.87 3.9 X67324 MFS18 protein precursor/Z. mays 1e-23 

0.36 1.43 3.9 P30571 Metallothionein-like protein/Z. mays 9.00E-20 

0.23 0.86 3.8 T27554 Aluminium-induced protein/Brassica napus 5e-13 

0.29 1.08 3.7 P09189 Heat shock protein 70/Petunia hybrida 7.00E-98 

0.13 0.47 3.7 Z49063 Polygalacturonase inhibitor protein/Actinidia deliciosa 7.00E-15 
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0.54 2.01 3.7 P30571 Metallothionein-like protein/Z. mays 7.00E-20 

0.46 1.72 3.7 AAG51670 Beta-galactosidase/A. thaliana 3.00E-74 

0.31 1.11 3.5 T02081 ABA stress ripening protein/Z. mays 5e-14 

0.39 1.33 3.4 BAB40923.1 Se-binding protein/O. sativa 1.00E-102 

0.15 0.52 3.4 AAC09245 Tonoplast intrinsic protein/Z. mays 1.00E-44 

0.08 0.29 3.4 P30571 Metallothionein/Z. mays 5e-22 

0.40 1.39 3.4 CAA59990 Elastin like protein/Drosophila melanogastor 1.00E-06 

1.72 5.72 3.3 S46308 Initiator-binding protein/Z. mays 1.00E-85 

0.51 1.56 3.0 P30571 Metallothionein-like protein/Z. mays 5.00E-20 

         

0.12 1.43 11.0 AAG34828 Glutathione S-transferase GST 20/Z. mays 8.00E-76 

0.61 6.34 10.0 T02955 Cytochrome P450 monooxygenase/Z. mays  1.00E-35 

0.14 0.70 5.1 T18851 Methionine synthase/Sorghum bicolor 2e-27 

0.16 0.60 3.7 L77912.1 Phenylalanine ammonia lyase/Z. mays 4e-30 

0.12 0.44 3.7 BAA77214.1 Monodehydroascorbate reductase/O. sativa 2e-07 

0.27 0.84 3.0 W21658 S-adenosylmethionine decarboxylase 2/O. sativa 2e-29 

        

1.89 8.49 4.5 T23285 60S Ribosomal protein, L24/Hordeum vulgare 6e-39 

0.13 0.54 4.2 CAA41024.1 Acyl carrier protein/Z. mays 1e-07 

1.24 4.63 3.7 S23780 Nucleic acid-binding protein/Z. mays 6.00E-82 

0.85 2.82 3.3 BAB09157 Small nuclear ribonucleoprotein/Homo sapiens 2.00E-06 
 

Table 6.2) Up-regulated ESTs showing major changes in transcript levels on 
Trichostatin A treatment. The values in the array data correspond to signal intensities 
on the filters hybridised with cDNA prepared from control or TSA treated lines. Clone 
identity was established by performing protein Blast analysis (Blast X). Random matching 
probabilities based on Blast analysis are also given.  
 

 

Table 6.3(Down regulated ESTs showing major changes in transcript levels on 
TSA treatment) 
 Array Data  Accession Clone Identity Random 

Control TSA treated Fold Number  Matching 
HE-89 HE-89 Attenuation   Probability

37.6 10.5 3.6 NP_199617 Phosphoribosylanthranilate transferase/A. thaliana 1.00E-12 

31.0 8.9 3.5 NP_196983.1 Putative protein/A. thaliana 7.00E-34 

18.8 5.5 3.4 T03766 Probable Glutathione reductase/O. sativa 4.00E-44 

43.8 13.2 3.3 AAC67557.1 Chlorophyll a/b-binding protein precursor/O. sativa 6.00E-22 

41.0 12.6 3.3 P49106 14-3-3-Like protein GF14-6/Z. mays 1.00E-102 

29.8 9.7 3.1 NP_568368.1 Putative protein/A. thaliana 1.00E-11 

15.1 5.3 2.9 Q40784 Possible apospory related protein/Pennisetum ciliare 1.00E-22 

20.9 7.5 2.8 U32428.1 Lipoxygenase/Triticum aestivum 6e-05 

26.7 9.6 2.8 T00720 Hypothetical protein/A. thaliana 1.00E-15 

 

Table 6.3) Down-regulated ESTs showing major changes in transcript levels on 
Trichostatin A treatment. Clone identity was established by doing protein blast analysis. 
Random matching probabilities based on Blast analysis are also given.  
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6.2.3.6 Inhibiting deacetylases by TSA treatment affects many 
classes of genes related to stress, development and 
pathogenesis etc 

 

Analysis of the TSA list for up-regulated clones revealed that about 

30% of the clones showing significant changes in transcript levels were 

histones. Some other classes of sequences related to stress, cell wall 

turnover, cell senescence, photosynthesis etc were also identified and the 

significance of these clones is dealt with in the discussion. However it was the 

up regulation of histone transcripts that posed some interesting questions. 

Histone protein biosynthesis is tightly regulated inside the cell. In order to 

verify whether the microarray transcript profiling results could be reproduced 

on the Northern blot level, total RNA isolated from the control and TSA treated 

lines was hybridised with two histone (Histone 4 and Histone 2B) and two 

non-histone clones (Cytochrome P450 monooxygenase and MFS Protein 

Precursor). The clones for Northern analysis were chosen randomly. As a 

loading control 18S ribosomal RNA was used. The results of the Northern 

hybridisations are shown in figure 6.10. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.10) Northern confirmation on selected array clones modulated by TSA 
treatment. HE-89 maize cell line was treated with 5µM TSA For 10 hours. 50 µg of total 
RNA from the treated and the untreated cell line was blotted onto a nylon membrane and 
hybridised with selected array clones. Clones for Northern blots were selected randomly. 
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The Northern blots confirmed the array results. The selected clones 

were up-regulated in the TSA treated samples as identified through micro-

array technique.  
 

6.2.4 Increase in histone transcripts upon TSA treatment does 
not change the overall histone abundance in the cell 

 

 Whether the increase in mRNA levels on TSA treatment is reflected at 

the protein levels was confirmed by performing an acid extraction to isolate 

quantitatively the histones from untreated and TSA treated maize HE-89 cell 

lines (see section 2.2.7.2). The partially purified histones were then run on a 

15% SDS PAGE gel and visualised by Ponceau S staining. A Western blot 

was done on the same membrane with an antibody raised against maize 

immunophilin to serve as a loading control (figure 6.11) 

 

 

 

 

 

 

 

 
  
 
 

 

 

 

 

 
 

Figure 6.11) Relative amount of histone proteins in TSA treated and untreated 
HE-89 cell line. Histone fractions were acid extracted, resolved on a 15% SDS PAGE gel 
and visualised by Ponceau S staining. Anti-immunophilin antibody was used as a loading 
control. 

 

As can be seen from the figure 6.11, the increase in histone mRNA on 

TSA treatment (as seen by microarray analysis and Northern blots) is not 
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reflected at the protein level. The histone protein levels in the cell remain 

constant relative to a control cytosolic protein immunophilin. 
 

6.3 Transgenic approach to study the impact of histone 
acetylation 

 

 TSA treatment on maze HE-89 suspension cultures provides a general 

overview of the cellular response to histone hyper-acetylation. TSA, a potent 

chemical, inhibits the histone deacetylases (Graessle et al., 2001) and leads 

to hyper-acetylation of histones. Increase in histone acetylation with TSA, also 

resulted in decreased levels of ZmGcn5 protein in the cell. In order to 

specifically dissect the role of ZmGcn5 in maintaining acetylation status in 

maize, a construct expressing antisense mRNA strand of ZmGCN5 coding 

sequence was transformed into maize cell line HE-89.  
 

6.3.1  Generation of antisense transgenic cell lines of ZmGCN5 
 

 An NcoI restricted PCR fragment of ZmGCN5 was cloned into the NcoI 

site of vector pRT104 vector (Töpfer et al 1988). A forward primer annealing 

to the 35S promoter and a reverse primer complementary to the antisense 

strand of ZmGCN5 were used to identify the bacteria containing the ZmGCN5 

antisense construct (figure 6.12). The primer sequences (viz. 35SfwdPrimer 

and Gcn5AsPrimer) are shown in section 2.1.3.4. The cloned antisense 

sequence of ZmGCN5 was verified by sequencing. The resultant vector was 
 

 

 

 

 
Figure 6.12) Schematic diagram of the ZmGCN5 antisense construct used for the 
transformation of maize cell line HE-89. Arrows indicate the primers used to amplify 
990 bp insert from transgenic cell lines expressing the antisense construct. 

 
 

used for the transformation of maize HE-89 cell line. For the selection of the 

transformants, co-transformation was performed with a vector containing 

phosphinothricin (BASTA) resistance gene driven by maize polyubiquitin 

promoter (pAHC25; Christensen and Quail, 1996). The transformation was 
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kindly performed by A. Seidel/Dr. H. Steinbiss (Monocot transformation group, 

MPIZ) and Dr. Günter Donn (Aventis Crop Sciences, Frankfurt). The 

transgenic callus lines were selected on 100 µg/ml BASTA (Phosphinothricin). 

After several rounds of selection the surviving callus lines were checked for 

the expression of antisense strand of ZmGCN5 by PCR, Northern and 

Western blots. 
 

6.3.2 Characterisation of antisense transgenic lines of ZmGCN5 
 

10 callus lines survived the successive selection rounds on 

Phosphinothricin (BASTA). PCR was performed on these lines with specific 

primers to amplify a 990 bp insert. The primers used for the PCR were same 

as described in section 6.3.1. Three lines showed a band of the expected size 

in varying amounts, possibly due to DNA degradation. Control PCR was 

performed on the vector-transformed lines. The results are shown in figure 

6.13. 
 

 
 

 

 

 
 

 

 
 

Figure 6.13) PCR analysis on transgenic maize callus containing the ZmGCN5 
antisense construct. PCR was performed with specific primers amplifying 35S promoter 
and a part of the antisense strand of ZmGCN5. Panel 1-5 shows PCR done on putative 
ZmGCN5 antisense lines. Panel 6 shows PCR on a control line transformed with vector 
only.  

 

In order to generate enough material for biochemical studies the PCR 

positive callus lines were introduced into liquid suspension cultures and 

maintained under BASTA selection. Further characterisation was performed 

on the lines 1 and 4. Total RNA isolated from the PCR positive lines as well 

as a vector transformed control line was transferred onto a nylon membrane 
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and hybridised with a ZmGCN5-specific probe. The same membrane was 

probed with ubiquitin DNA to serve as a loading control (figure 6.14).  

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6.14) Northern analysis of PCR positive ZmGCN5 antisense cell lines.  100 
µg of total RNA was isolated from the frozen tissue and blotted onto a nylon membrane 
and probed with ZmGCN5 cDNA. As a loading control the same membrane was probed 
with Ubiquitin DNA. The bands were quantified using the Image Quant software (Molecular 
Dynamics), and the GCN5/Ubiquitin ratios were determined and normalised to vector 
transformed line as 1 MDC (molecular dynamics count). 

 

Out of the two putative antisense lines, line 4 showed significantly 

decreased ZmGCN5 RNA levels indicating that the antisense of ZmGCN5 

mRNA was being produced in this line. Line 1 also showed some decrease in 

the transcript levels but it was not as drastic as in the line 4. Crude nuclear 

proteins, prepared from both antisense and vector transformed control lines 

were transferred onto a nitrocellulose membrane. Immunoblot was performed 

on the filters using anti ZmGcn5 and the control anti maize immunophilin 

specific antibodies. The results are shown in figure 6.15.  

Both lines showed decreased ZmGcn5 levels as compared to vector 

transformed control line. Line 4 showed an almost 5-fold decrease while line 1 

showed about a 2-fold decrease in ZmGcn5 protein levels. 
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Figure 6.15) ZmGcn5 protein levels in the transgenic maize cell lines. (a) Crude 
nuclei isolated from the antisense and vector transformed maize lines were transferred 
onto nitrocellulose membrane and immunoblotted with anti ZmGcn5 antibody and control 
anti maize immunophilin antibody. (b) ZmGcn5/Immunophilin ratio value plot.  The 
Boehringer Light Units (BLU) were calculated using the Lumi-imager software from 
Boehringer Mannheim and GCN5/Immunophilin ratios were calculated and normalized 
taking untreated control as 1 BLU. 

 

 
6.3.3 Reducing ZmGCN5 results in decreased protein levels of 

histone deacetylase HD1B-I (ZmRpd3) 
 

In order to ascertain whether the reduction in ZmGcn5 protein caused 

changes in deacetylase levels, the crude nuclear extracts transferred on the 

nitrocellulose membrane (section 6.3.2) were immunoblotted with antibodies 

raised against two histone deacetylases – HD1B and HD2. The results are 

shown in figure 6.16. 
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Figure 6.16) ZmRpd3 and ZmHD2 deacetylase protein levels in transgenic maize 
cell lines containing antisense construct of ZmGCN5. As a control a cell line 
transformed with vector only was used. (a) Immunoblot with deacetylase antibodies. (b) 
Deacetylase/Immunophilin ratio plot. The Boehringer light units (BLU) were calculated 
using the Lumi-imager software and the ratio values were normalised to control as 1 BLU. 

 

Anti HD1B antibody was raised against histone deacetylase HD1B-I 

(also called ZmRpd3, Rossi et al., 1998). The antibody detects a 58 kDa 

protein (HD1B-I) and a 51 kDa protein HD1B-II, (Lechner et al., 

2000). Antibody HD2 detects the histone deacetylase protein HD2 (Lusser et 

al., 1997). There are several isoforms of this protein and the protein is 

modified by phosphorylation. The antibody detects the 39 kDa and the 42 kDa 

forms. A 45 kDa form can also be detected but this form is not abundant 

(Personal communication Alexandra Pipal, University of Innsbruck, Austria). 

The antibodies were kindly provided by Prof. Peter Loidl, University of 

Innsbruck. As a loading control, an antibody raised against maize 

immunophilin was used.  

The Immunoblot showed that the levels of HD1B-I (ZmRpd3) protein 

were down regulated in the antisense ZmGCN5 lines. However the levels of 
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HD1B-II and HD2 protein were not affected as compared to control lines 

transformed with vector only. The bands were quantified using the Lumi-

imager software from Boehringer Mannheim and the ZmRpd3/immunophilin 

and ZmHD2/Immunophilin ratios were calculated. The values are plotted in 

the figure 6.16 (b). 
 

6.3.4 Microarray analysis on transgenic maize lines containing 
the ZmGCN5 antisense construct 

 

Total RNA, isolated from the antisense ZmGCN5 line 4 and the vector 

transformed control line, was used for radioactive cDNA synthesis as 

described before (see section 2.2.5.2). 2600 maize EST’s spotted onto the 

nylon filters were hybridised with the radiolabeled cDNA. Three hybridisations 

each were carried out for the antisense ZmGCN5 and the vector transformed 

control. In total 9 independent filters each were hybridised to radiolabeled 

cDNA prepared from antisense ZmGCN5 line 4 and vector transformed 

control respectively. The signal intensities were read using the 

PhosphorImager technology as described in section 2.2.14.1. The filters were 

normalised as described earlier for TSA microarrays (section 6.2.3.1–6.2.3.3). 

The expression data from the antisense ZmGCN5 line 4 and vector 

transformed control line was compared and analysed quantitatively using 

ArrayVision software from Imaging Research Inc as described for TSA arrays 

(section 6.2.3). 
 

6.3.4.1 Differential expression between array filters hybridised with 
cDNA prepared from antisense ZmGCN5 and vector 
transformed control maize cell lines 

  

 The hybridisation signals obtained from repeats of each double spot on 

the same filter were compared as described for TSA arrays (section 6.2.3.4). 

The signals were reproducible with correlation coefficients above 0.98. The 

comparison of the normalised values of antisense ZmGCN5 against the 

vector-transformed control is shown in figure 6.17. 
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Figure 6.17) Scatter plot of antisense ZmGCN5 microarray experiment. Normalised 
values for ZmGCN5 antisense line were plotted against the normalised values for control. 
 

 The transcripts up or down regulated by reducing ZmGCN5 expression 

were calculated in the same way as described for TSA arrays (see section 

6.2.3.5). The percentage of transcripts that were significantly up or down 

regulated are summarised in table 6.4. The ESTs showing major changes in 

the transcript levels are shown in appendices III and IV. 
 

Transcript accumulation Knock out ZmGCN5 

Up-regulated 2.5% 

Down regulated 3.8% 
 

Table 6.4) Percentage of known transcripts regulated by knocking out ZmGCN5. 
The percentages were calculated on the basis of a difference of 2 fold in the transcript 
expression levels of the treatment and control. 
 

6.3.4.2 Reducing ZmGCN5 levels affects similar classes of genes 
to those affected by Trichostatin A treatment  

 

Analysis of the ZmGCN5 antisense treatment for up-regulated clones 

(table 6.5) revealed that among the clones showing more than 2 fold increase 

in transcript levels were again core histones. These were the major transcripts 

up regulated in TSA microarrays as well. As seen for TSA microarrays, the 

increase in core histone mRNA was not reflected at the protein levels which 

remained constant in all cases. This led to the conclusion that the cell was 

responding to an increase in the degree of histone acetylation or 

deacetylation by de novo histone mRNA synthesis. 
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Table 6.5) Up-regulated histones between TSA treatment and ZmGCN5 knockout 

 Array Data  GenBank Clone Identity Random 

Control As ZmGCN5 Fold Accession   Matching
HE-89 HE-89 Induction Number   Probability

1.55 8.71 5.6 T14716 Histone 2B/T. aestivum 2e-12 
0.31 1.23 4.0 AA072442 Histone 2A/O. sativa 5e-06 
2.54 8.57 3.4 T15325 Histone 2/T. aestivum 2e-08 
4.75 11.81 2.5 T25236 Histone H2B.2/Z. mays 6e-24 
3.08 7.11 2.3 T23405 Histone 2B/Z. mays 3e-15 
1.06 2.34 2.2 H35878 Histone 2B.1/Z. mays 1.00e-16 
6.65 14.52 2.2 T21621 Histone 2B/Z. mays 1.00e-19 
2.01 4.25 2.1 T70634 Histone 4/Stylonychia lemnae 2e-16 

 

 

 

Table 6.5) ESTs showing up-regulation in transcript levels on TSA treatment 
and/or on knocking out ZmGCN5. The values in the array data correspond to signal 
intensities on the filters hybridised with cDNA from control or TSA treated/antisense line. 
Only those clones are shown where the difference between the control and the antisense 
lines is 2 fold or more. 
 

 

Classes of sequences related to stress, cell wall turnover and cell 

senescence etc that were identified as being up-regulated in TSA microarrays 

were seen down-regulated on knocking out ZmGCN5. Conversely the genes 

that were seen down-regulated in TSA microarrays were up-regulated on 

knocking out ZmGCN5 (tables 6.6, 6.7), confirming that gene regulatory 

effects observed on TSA treatment are directly related to the acetylation and 

deacetylation status of the cell. 
 

Table 6.6) Clones up-regulated in knock out ZmGCN5 microarrays but down- 
regulated in TSA treatment microarrays 

 Array Data  GenBank Clone Identity Random 

Control As ZmGCN5 Fold Accession   Matching
HE-89 HE-89 Induction Number   Probability

0.12 0.47 4.0 AA054812 Chlorophyll a/b binding protein/Z. mays  5.00-20 
12.95 33.48 2.6 AAC67557.1 Chlorophyll a/b-binding protein/O. sativa 6.00E-22 
9.34 30.78 3.3 P49106 14-3-3-Like Protein GF14-6/Z. mays e-102 
0.33 0.77 2.3 Q9SP07 14-3-3-like protein/Lilium longiflorum e-118 
4.08 8.31 2.0 Q40784 Possible Apospory-associated protein/Pennisetum ciliare 1.00E-22 
1.85 3.91 2.1 AA030722 Lipoxygenase -Disease related/Capsicum annuum 1.00E-5 
0.34 0.69 2.1 AAC28490.1 Chlorophyll a/b binding protein/Sorghum bicolor 1.00E-58 
6.01 23.64 3.9 NP_199617.1 Phosphoribosylanthranilate transferase/A. thaliana 1.00E-12 

 
 

Table 6.6) ESTs showing up-regulation in transcript levels on knocking out 
ZmGCN5 but being down regulated on TSA treatment. The values in the array data 
correspond to signal intensities on the filters hybridised with cDNA from control or 
antisense line. Only those clones are shown where the difference between the control and 
the antisense lines is 2 fold or more. 
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Table 6.7) Clones down-regulated in knock out ZmGCN5 microarrays but up- 
regulated in TSA treatment microarrays 

 Array Data  GenBank Clone Identity Random 

Control As ZmGCN5 Fold Accession   Matching
HE-89 HE-89 Attenuation Number   Probability

1.16 0.22 5.3 T27554 Aluminum-induced protein/Brassica napus 5e-13 

18.86 3.91 4.8 T14760 Salt stress protein/O. sativa 9e-07 

2.60 0.59 4.4 CAC06433.1 Expansin/Festuca pratensis 4.00E-05 

10.61 2.58 4.1 T02955 Cytochrome P450 monooxygenase/Z. mays 1.00E-35 

3.18 0.90 3.5 AAL79732.1 Heat shock protein 90/O. sativa 8.00E-86 

14.42 4.30 3.4 T23394 Salt stress protein/O. sativa 4e-07 

1.77 0.54 3.3  P30571  Metallothionein-like protein/Z. mays 1.00E-19 

1.95 0.63 3.1 Q9SW70 Stress-related protein/A. thaliana 8.00E-47 

2.62 0.91 2.9 Q10716 Cysteine proteinase/Z. mays 5e-37 

1.96 0.82 2.4 P30571 Metallothionein-like protein/Z. mays 6.00E-20 

0.77 0.32 2.4 W21658 S-adenosylmethionine decarboxylase 2/Z. mays 2e-29 

1.82 0.88 2.1 BAB40923.1 Putative selenium binding protein/O. sativa e-102 
 

Table 6.7) Down-regulated ESTs showing major changes in transcript levels on 
knocking out ZmGCN5 but being up-regulated in TSA treatment microarrays. The 
values in the array data correspond to signal intensities on the filters hybridised with cDNA 
from control or antisense line. Only those clones are shown where the difference between 
the control and the antisense lines is 2 fold or more. 

 

 On the other hand there were several classes of genes, which were 

seen significantly down-regulated by antisense ZmGCN5 only. A major group 

among them was clones showing identity to actin and tubulin (table 6.8) that 

may reflect a role of ZmGcn5 in maintaining the cellular architecture. Linker 

histones were also reduced in transcript abundance.  
 

Table 6.8) Clones exclusively down-regulated in knock out ZmGCN5 microarrays  

 Array Data  GenBank Clone Identity Random 

Control As ZmGCN5 Fold Accession   Matching
HE-89 HE-89 Attenuation Number   Probability

7.48 1.41 5.3 P23444 Histone H1/Z. mays 6.00E-05 

11.31 2.51 4.5 AAL73043.1 Histone H1-like protein/Z. mays 7.00E-29 

         

0.97 0.23 4.3 AAK84456.1 Actin/O. sativa 3e-65 

2.13 0.60 3.5 P24142 Prohibitin -inhibitor of cell proliferation/M. musculus 3e-10 

2.29 0.70 3.3 P14641 Alpha tubulin/Z. mays 2e-36 

0.75 0.24 3.1 NP_190236.1 Actin 12/A. thaliana 1.00E-15 

9.72 3.65 2.7 P14641 Tubulin alpha-2 chain/Z. mays 2.00E-90 

1.60 0.72 2.2 P41210 Caltractin (mitotic spindle associated protein)/ 
Atriplex nummularia 9e-51 

 

Table 6.8) Down-regulated ESTs showing major changes in transcript levels on 
knocking out ZmGCN5. The values in the array data correspond to signal intensities on 
the filters hybridised with cDNA from control or antisense line. Only those clones are 
shown where the difference between the control and the antisense lines is 2 fold or more. 
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6.3.4.3 Overall trend of genes differentially expressed on TSA 
treatment and in the ZmGCN5 knockout line 

 

Around 200 transcripts were seen to be differentially expressed 

(significantly) on changing the acetylation status of the cell. This constituted 

roughly 7.5% of the total clones analysed in microarray experiments (both 

TSA and ZmGCN5 microarray experiments). The percentage includes all the 

transcripts that were up- or down-regulated in both microarray experiments (2-

fold induction or above). The overall relationship between the transcripts 

going up or down is shown in the Venn diagram in figure 6.18. 
 

 
 
 

 

 

 

 

 

 

 

 

Figure 6.18) Venn diagram of shared and specifically differentially expressed 200 
transcripts for TSA and AS ZmGCN5 microarrays. The percentages of transcripts that 
were up (↑) and/or down-regulated (↓) are shown.  
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Discussion and conclusions 
 
7.1 Role of histone acetylation in transcriptional activation 

 

Chromatin structure, or packaging of the DNA in a eukaryotic cell is a 

highly regulated process and is known to have major impact on the levels of 

transcription (Lusser et al., 2001). In the last 10 years factors putatively 

mediating eukaryotic transcriptional activation have been isolated and are 

being characterised in many laboratories throughout the world. An increasing 

number of enzymes and protein complexes are now known that facilitate 

changes in the chromatin structure with resultant effects on gene expression 

(Greassle, et al., 2001). There is strong evidence to support a role for Gcn5 

histone acetyltransferase mediated transcriptional activation in higher 

eukaryotes (Sterner and Berger, 2000).  

Functional analysis of ZmGcn5 - a plant histone acetyltransferase 

(Becker et al., 1999) - was performed in the present study. The isolated 

histone acetyltransferase was characterised with respect to its sub-cellular 

localisation, in vivo interaction with adaptor proteins and plant transcription 

factors. Cellular responses to changes in histone acetylation were performed 

by modulating the acetylation status of the cell either by chemical induction or 

by knocking out the ZmGCN5 HAT in maize cell lines. The resultant RNA 

populations were reverse transcribed and used to profile 2600 maize ESTs 

spotted on nylon filters. The results showed that the cell quickly responds to 

changes in histone acetylation by de-novo synthesising core histone and also 

modulating the levels of acetylases and deacetylases. A general effect on 

certain classes of genes related to stress, development and pathogenesis 

was also observed. Taken together, the results presented herein suggest a 

direct role of histone acetylation in maintaining an overall chromatin status 

inside the cell. 
 

7.1.1 Plant Gcn5 HAT’s do not contain a PCAF domain 
 

ZmGcn5 shows the typical features of being a member of the GNAT 

(GCN5 related N-acetyltransferase) superfamily (Neuwald and Landsman, 

1997), possessing the catalytic histone acetyltransferase-, the adaptor Ada2 
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interaction-, and bromo-domains, and also being nuclear-localized. Compared 

to ScGcn5 (yeast), ZmGcn5 has an extended N-terminus (figure 3.1). This N-

terminal extension shows no homology with the PCAF (p300/CREB binding 

protein associated factor) region of mammalian Gcn5. The PCAF domain in 

mammalian Gcn5 has been implicated in the acetylation of histones in 

nucleosomes (Xu et al., 1998). It has also been shown to bind to CBP (CREB 

binding protein; CREB, cAMP responsive element-binding protein) and p300 

(Yang, et al., 1996), both of which are transcriptional co-activators and 

interact with a large number of developmentally important transcription factors 

(Kamei, et al. 1996).  ZmGcn5 was shown to acetylate isolated histones but 

not nucleosomes in vitro (Marcus Riehl, Doktorarbeit, Universität Köln, 2002). 

This raised the possibility that the isolated ZmGcn5 might be missing a 

function supplied by an N-terminal PCAF type domain. The possibility was 

investigated by isolating the genomic clone of ZmGCN5 and performing 

primer extension (figure 3.3 and 3.5). The results showed that ZmGCN5, like 

ScGCN5 does not contain a PCAF type domain. Furthermore, database 

searches for any plant protein showing homology to the PCAF region of 

mammalian Gcn5 HAT’s produced no results. The recent characterisation of 

AtGcn5 (Stockinger et al., 2001) confirmed that plant GCN5 genes do not 

contain the PCAF domain. AtGCN5 and TgGCN5 both have an N-terminal 

extension but interestingly these share no homology with the ZmGCN5 N-

terminal region. The occurrence of the N-terminal PCAF domain in all of the 

known metazoan Gcn5 proteins suggests that this domain was present in the 

ancestral metazoan Gcn5, while the absence of the domain in known fungal, 

plant and protozoan Gcn5 proteins suggests that the PCAF domain may be 

unique to animals.  
 

7.1.2 The N-terminal region of ZmGcn5 is essential for the 
nuclear localisation of the protein 

 

The function of ZmGcn5 as a histone acetyltransferase in the 

chromatin context means that it should be properly targeted to nucleus. 

Characterisation of the protein by fusion with a GFP (Green fluorescent 

protein) reporter confirmed that ZmGcn5 is a nuclear type A histone 
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acetyltransferase (figure 4.2). A search for potential nuclear targeting 

sequences using the computer programme PSORT identified a stretch of 

basic amino acid residues in the N-terminal region of ZmGcn5. In order to 

ascertain the functionality of this N-terminally located nuclear localisation 

sequence (NLS), and rule out the possibility of any other cryptic NLS within 

the polypeptide, fragments of ZmGcn5 were translationally fused to GFP and 

analysed for their targeting properties. Only the full-length protein and the N-

terminal region fused to GFP could confer nuclear localisation on the fusion 

protein (figures 4.3 and 4.4). This raises the possibility that the role of the N-

terminal extension might be precise and correct targeting of the protein to the 

nucleosomal substrates. If the protein does not contain this extension, it will 

not be properly targeted to the nucleus and thus may not be able to act as a 

nuclear histone acetyltransferase. This can also possibly explain the non-

homologous nature of this N-terminal extension when compared to other 

HAT’s. Nuclear localisation sequences are often redundant and it is quite 

likely that during evolution a site additional to the original NLS emerged in this 

N-terminal stretch. Most likely the original NLS was afterwards lost via genetic 

drift and that is why this N-terminal stretch has been retained in ZmGcn5. 

However nuclear targeting may not be the only function of this N-terminal 

region. It would be interesting to replace this region with some other sequence 

(containing an NLS) and over-express it in maize cell lines to determine 

whether the encoded nuclear localised protein maintains its function as the 

transcriptional co-activator. 
 

7.2 ZmGcn5 HAT interacts with the adaptor ZmAda2 In vivo 
 

  The enzymatic activity of ZmGcn5 histone acetyltransferase was 

demonstrated by its ability to acetylate free histones, using the E. coli 

expressed GST-fusion protein (Marcus Riehl, Doktorarbeit, Universität Köln, 

2002). However, under these conditions, ZmGcn5 was not able to acetylate 

nucleosomes. Being part of multi-protein complexes inside the cell, like SAGA 

and ADA, Gcn5 proteins are able to acetylate the nucleosomes only when in 

complexes, indicating that other proteins are needed to confer this activity 

(Sterner and Berger, 2000). Gcn5 is linked to the SAGA and ADA complexes 

by its interaction with the adaptor protein Ada2. In order to study the in vivo 
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interaction between the ZmGcn5 and the adaptor ZmAda2, a modified split-

ubiquitin system was used as a sensor for protein-protein interactions in 

planta. Fusion of ZmGcn5 to Nub (N-terminal portion of ubiquitin) and the 

adaptor ZmAda2 to Cub (C-terminal portion of Ubiquitin) coupled to the GFP 

reporter, detected a very strong interaction between the two fusions in vivo. 

This was manifested by the formation of a quasi ubiquitin moiety, which being 

recognised by ubiquitin specific proteases (UBP’s) led to the release and 

degradation of the reporter GFP coupled to Cub (figure 5.5). Since the result 

relied upon the release and degradation of the reporter gene and was thus 

negative in nature, it was decided to validate this interaction by using 

fluorescence resonance energy transfer (FRET) system. It was also of interest 

to determine the co-localisation of the two proteins and also the sub-cellular 

compartment where the interaction took place. Co-transfection of protoplasts 

with ZmGcn5 fused to CFP (Cyan emitting GFP) and the adaptor ZmAda2 

fused to YFP (Yellow emitting GFP) resulted in the tight co-localisation of both 

proteins inside the nucleus (figure 5.7) implying that any interaction between 

these two proteins presumably occurs exclusively inside the nucleus.  

FSPIM (Fluorescence spectral imaging microscopy) inside the nucleus 

detected a clear shift of CFP fluorescence towards YFP fluorescence 

indicating a very strong interaction between ZmGcn5 and the adaptor protein 

ZmAda2 (figure 5.8). When the YFP fluorophore coupled to ZmAda2 was 

photo-bleached so as to make it unavailable to accept energy from CFP, there 

was a sudden and sharp increase in fluorescence emitted by CFP fluorophore 

coupled to ZmGcn5 HAT (figure 5.9). This proved beyond any doubt that the 

physical interaction between ZmGcn5 and the adaptor ZmAda2 brought the 

fluorophores, CFP and YFP, fused to these proteins, close together to 

facilitate the energy transfer from the donor (CFP) to acceptor (YFP). These 

results show that when the ZmGcn5 and the adaptor protein ZmAda2 are 

targeted to the nucleus they interact physically, supporting the results 

obtained from modified Split-ubiquitin system. 
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7.2.1 FRET analysis identifies a transient interaction between the 
adaptor ZmAda2 and plant transcriptional activator ZmO2 

  

 The biological role of Gcn5-containing complexes may be difficult to 

establish from gene knockout phenotypes, for example, if these are lethal, or 

if there is redundancy in functional copies of the coding sequence. In order to 

establish a role for Gcn5 in maize, its interaction with an endosperm-specific 

plant transcriptional activator, Opaque-2 (O2) was investigated. Most previous 

reports indicated Ada2 rather than Gcn5 to be the co-activator component that 

interacts directly with the activation domain of transcriptional activators 

(Barlev et al., 1995). Two A. thaliana Ada2 proteins were recently shown to 

interact in vitro with CBF1, an acidic transcriptional activator involved in cold 

regulated gene expression (CBF1: C-repeat/DRE Binding Factor 1; DRE: C-

repeat/dehydration responsive element, Stockinger et al., 2001; Stockinger et 

al., 1997).   

 GST spin-down experiments failed to show a specific interaction 

between ZmO2 and either ZmGcn5 or the adaptor ZmAda2 (Heinz-Albert 

Backer, Max Planck Institute, personal communication). On the assumption 

that the interaction might require the association of more components of the 

co-activator complex, the interaction between ZmAda2 and ZmO2 was tested 

by in vivo FRET analysis. Co-transfection of protoplasts with transcriptional 

activator ZmO2 fused to CFP and the adaptor ZmAda2 to YFP resulted in the 

predominant localisation of both proteins inside the nucleus although some 

ZmO2-CFP fluorescence could be detected outside the nucleus (figure 5.7). 

Spectral images of the co-transfected protoplasts inside the nucleus showed a 

smaller but noticeable shift of the CFP towards YFP fluorescence indicating a 

relatively weak and possibly transient interaction between the transcriptional 

activator ZmO2 and the adaptor protein ZmAda2 (figure 5.10). Although weak, 

the shift was above the threshold considered meaningful for a successful 

FRET (Shah et al., 2001). Furthermore acceptor photobleaching confirmed 

the energy transfer between ZmAda2 and ZmO2 (figure 5.11). A possible 

explanation for the observed weak interaction could be that since Gcn5 based 

co-activator complexes are needed at several loci during a limited time-frame 

within the cell cycle, they may bind to transcriptional activators mediating the 
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specific co-activator role and then disengage as soon as possible and bind to 

transcriptional activator molecules located on other promoters i.e., the 

interaction may need to be transient and short-lived.  
 

7.2.2 Split ubiquitin as a sensor for in vivo protein-protein 
interaction studies in living plant cells 

 

Split ubiquitin is an elegant system to study in vivo protein-protein 

interactions. The system was first described for S. cerevisiae and the analysis 

was performed with Western blots (Dünnwald et al., 1999). Subsequently a 

selection method in S. cerevisiae based on the split-ubiquitin system was 

demonstrated (Wittke et al., 1999). Recently the system was also used to 

verify protein-protein interactions implicated in the transcriptional regulation of 

human genes (Rojo-Nierbach et al., 2000). A modified version of this system 

was used to study the in vivo interaction between ZmGcn5 HAT and the 

adaptor ZmAda2.  

Split-ubiquitin system takes advantage of the protein ubiquitination 

machinery found in eukaryotes. Eukaryotes contain a highly conserved multi-

enzyme system that covalently links ubiquitin to a variety of intracellular 

proteins that bear degradation signals recognized by this system. The 

resulting ubiquitin-protein conjugates are degraded by the 26S proteasome, a 

large ATP-dependent protease (Varshavsky, 1996; 1997). If a reporter gene, 

coupled to ubiquitin, bears a degradation signal it will be recognised by 

ubiquitin specific proteases (UBP’s) leading to its degradation. In the present 

study the reporter GFP was modified to begin with an arginine. This arginine 

residue is a degradation signal recognised by UBP’s as per N-end rule 

pathway. The N-end rule is a relation between the metabolic stability of a 

protein and the identity of its N-terminal residue (Lehming, 2001, Varshavsky, 

1996). Co-transfection of plant protoplasts with ZmAda2-Nub and ZmGcn5-

Cub-Arg-GFP resulted in the loss of green fluorescence from the transformed 

cells indicating an interaction between ZmGcn5 and ZmAda2. Since the result 

relied on the cleavage and degradation of GFP, the cells were co-transfected 

with a second fluorescent marker protein (dsRed) to report the successful 

interaction (figure 5.5). The results were afterwards verified by FRET analysis. 
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This is for first time that the split-ubiquitin system has been used to detect 

protein-protein interactions in planta.  

Split-ubiquitin in essence is a negative system since the reporter gene, 

instead of being turned on, is cleaved and thus not detected. Furthermore the 

system described in the present work relies on the accurate and precise 

reporting of the co-transfected second marker protein (dsRed), which can be 

misleading if both reporters are not used in equimolar ratios. An improvement 

on the system would be to clone the second marker protein (under its own 

promoter) into the same vector containing the Cub-Arg-GFP. This would 

circumvent the need for co-transfection with second marker and the results 

would be more reliable. In the long run it would also be advantageous to set 

up a selection system in plant cells based on split ubiquitin so that the method 

may be used for screening of in vivo interactions out of a population of 

candidate molecules. 

 

7.3 Contribution of histone acetylation to overall chromatin 
status in maize 

 

Southern blot hybridisation indicated the presence of only one copy of 

ZmGCN5 in the maize genome (Marcus Riehl, Diplomarbeit, Universität 

Giessen, 1999), although the possibility of more distantly related homologues 

which do not cross-hybridise, cannot be eliminated. Indeed, in A. thaliana, two 

GCN5-related sequences have been detected (Marcus Riehl, Doktorarbeit, 

Universität Köln, 2002), and yeast also has more than one Type-A HAT, 

although these appear to have discrete functions (Clarke et al., 1999). Taking 

the advantage of this single copy in maize, knockout lines of ZmGCN5 were 

generated by producing antisense of ZmGCN5 in maize cell lines and looking 

at the transcript profiles using cDNA microarrays. As an alternative way of 

altering the histone acetylation status of the cell, histone hyper-acetylation 

studies were done by using histone deacetylase (HDAC) inhibitor Trichostatin 

A (Yoshida et al., 1995) on the untransformed HE-89 cell line. The treated and 

the control untreated cell lines were also used for transcript profiling. 
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7.3.1 The cell responds to the changes in histone acetylation by 
regulating the levels of acetylases and deacetylases 

 

Specific antibodies raised against the acetylated histones or the 

HAT/HDAC enzymes were used to inspect the levels of acetylation and the 

abundance of acetylases and deacetylases in transgenic or chemically treated 

maize cell lines. Treatment of cell lines with TSA resulted in the hyper-

acetylation of histones, which was detected by using an antibody raised 

against the acetylated histone H4 (acetylated at Lys 5, 8, 12 and 16) (figure 

6.1 and 6.2). Even the lowest amount of TSA (0.5 µM) led to a 7-fold increase 

in acetylation on histone H4 while the antibody could barely detect the 

basal/under-acetylated levels in the untreated control. Using the same 

antibody on the ZmGCN5 knockout lines gave no detectable signal (data no 

shown). This was not surprising as the knockout of ZmGCN5 HAT activity 

would lead to under-acetylation of histones and the antibody in the first place 

barely detected the basal or under-acetylated histones in the untreated cell 

lines.  

When the equilibrium of histone acetylation was disrupted by treatment 

with TSA, ZmGcn5 protein abundance was rapidly down regulated (figure 

6.3). On the other hand using histone deacetylase specific antibodies Rpd3 

and HD2 on the knockout lines showed decreased amounts of HD1B-I 

(ZmRpd3) in these cell lines, although the levels of HD1B-II and HD2 did not 

change much (figure 6.16). This suggests that the cell efficiently recognises 

the extent of changes in acetylation or deacetylation patterns so that when a 

single HAT or HDAC is modulated (as in case of knock-out ZmGCN5) the cell 

tries to balance out this situation by modulating the levels of HDAC or HAT 

respectively. Taken together these results point towards a general yet 

presumably complex mechanism by which the cell is able to compensate for 

the changes in acetylation or deacetylation levels. It is tempting to speculate 

that there might be some receptor molecules, which are able to perceive the 

changes in the histone acetylation and gear the cell towards the 

compensatory response. It will be of interest to investigate the possibility of 

such receptors and unravel their mechanism of action. The overall response 
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of the cell also suggests that the histone acetylases and deacetylases 

contribute significantly to the overall chromatin status. 
 

7.3.2 Histone acetylation affects many classes of genes related 
to stress, development and pathogenesis etc 

  

Microarray analysis on the TSA treated and knock out ZmGCN5 maize 

cell lines recognised a co-ordinated pattern of gene expression. While TSA 

treatments lead to a general increase in gene expression (table 6.1), knocking 

out ZmGCN5 was associated with general decrease in gene expression levels 

(Table 6.4). About 3.4 % of the genes were significantly up-regulated on TSA 

treatment (fold induction above 2) while about 3.8% of the genes were down-

regulated on knocking out ZmGCN5 (fold repression above 2). Several 

classes of genes were regulated by both treatments.  

Among the TSA up-regulated transcripts metallothioneins, cysteine 

proteinases, polygalacturonase inhibitor proteins and Se binding proteins etc 

are stress-related genes (Hsieh and Huang, 1995; Koizumi et al., 1993; Yao 

et al., 1999). Chitinases and basal antifungal proteins are involved in cellular 

responses to pathogens etc (Huynh et al., 1992, Serna et al.,2001). MFS 18 

protein precursor, found in the vascular bundle in the glumes of male flowers, 

is a cell wall protein (Wright et al., 1993). Expansins are involved in cell 

expansion and morphogenesis (Lee and Kende, 200, Lee et al., 2001), beta 

galactosidase is involved in cell wall breakdown (Smith and Gross, 2000) and 

initiator-binding protein is a marker for cell elongation and differentiation 

(Lugert and Werr, 1994).  

Phosphoribosylanthranilate transfer like protein produced in response 

to oxidative stress (Conklin and Robert, 1995) showed a more than 3 fold 

decrease in transcript levels in TSA microarrays. The same was true for 

glutathione reductase, chlorophyll a/b binding protein and GF14-6 proteins. 

Glutathione reductase is regulated via ABA-mediated signal transduction 

pathway (Kaminaka et al 1998). GF14-6 proteins participate in protein/DNA 

complexes and show homology to a widely distributed protein family referred 

to as 14-3-3 proteins. These proteins modulate kinase C activity and activate 

ADP-ribosyltransferase (de Vetten and Ferl, 1994).  
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Classes of sequences related to stress, cell wall turnover, cell 

senescence and pathogenesis etc that were identified as being up-regulated 

in TSA microarrays were down-regulated on knocking out ZmGCN5. 

Conversely the genes related to photosynthesis, ABA signal transduction 

pathway etc that were down-regulated in TSA microarrays were all up-

regulated on knocking out ZmGCN5 (see sections 6.3.4.2, tables 6.5, 6.6, 

6.7). This confirmed that the affects observed on TSA treatment or on 

knocking out ZmGCN5 are directly related to the acetylation and deacetylation 

status of the cell. Microarray analysis also identified some classes of genes as 

being exclusively regulated by ZmGcn5. Prominent among this group were 

the transcripts encoding cytoskeletal components viz. tubulin and actin. 

Reducing the ZmGCN5 levels lead to a decrease in the transcript levels of 

tubulin and actin (table 6.8) pointing towards an effect of ZmGcn5 on the 

overall cellular architecture. The regulation of stress, pathogenesis, 

photosynthesis and development related genes suggest that histone 

acetylation plays a significant role in plant growth and development.  
 

7.3.3 ZmGcn5 contributes significantly to the overall nuclear 
histone acetylation in maize 

 

Close inspection of the up-regulated genes from both treatments (TSA 

and Knock out ZmGCN5) revealed that among the clones showing significant 

changes in transcript levels were core histones (tables 6.2 and 6.5). These 

were identified among the highest up-regulated sequences in both microarray 

experiments. This led to postulation that the cell was responding to an 

increase in the degree of acetylation or deacetylation by de novo synthesis of 

non-acetylated core histone molecules. Histone acetylation is a dynamic 

process (figure 1.2). Gcn5 based co-activator complexes acetylate histones at 

specific loci, allowing the transcription machinery access to otherwise 

repressed DNA and leading to the transcription of desired gene products. 

Histone deacetylases (like Rpd3, HD2 etc), on the other hand, increase 

affinity between the negatively charged DNA and the positively charged 

histones resulting in the restricted access of transcription machinery at 

specific loci.  
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At the global level genes are constantly being up- or down-regulated in 

response to the specific needs of the cell. If this balance is disturbed by 

changing the acetylation or the deacetylation status of the histones, the cell 

tries to redress this by modulating the levels of corresponding deacetylase or 

acetylase enzymes respectively. The cell also responds by de novo 

synthesising core histones, which presumably constantly replace the hyper-

acetylated or de-acetylated histones. Linker Histones were seen down-

regulated in knock out ZmGCN5 cell lines. Linker histones are thought to 

repress transcription (Wolffe and Hayes, 1998). Binding of linker histone leads 

to a partial rearrangement of core histone interactions in the nucleosome (Lee 

and Hayes, 1998; Gushchin et al., 1988). Removal of histone H1 is therefore 

likely to represent a relatively simple means of destabilizing both local and 

higher order chromatin structures and altering core histone-DNA interactions. 

With the GCN5 knockout this seems to be another strategy whereby the cell 

tries to redress the change in its acetylation status. 

Based on the results presented above the whole scenario can be 

represented in two models. 
 

Model A: Cellular response to histone hyperacetylation on TSA 

treatment 
 

There is a dynamic equilibrium between the acetylation and 

deacetylation processes, so that depending on the specific cellular needs 

HAT’s like Gcn5 acetylate histones at specific locations leading to increased 

levels of transcription while deacetylases like Rpd3, HD2 repress 

transcription. Reversible inhibition of histone deacetylases with TSA shifts the 

acetylation-deacetylation equilibrium towards acetylation and the core 

histones get hyperacetylated (figure 6.1). The cell recognises this change by 

an unknown mechanism and tries to compensate for an increase in the 

proportion of acetylated histones by: 
 

1. Down-regulating the production of histone acetyltransferases like Gcn5 

(figure 6.3) and  
 

2. De novo synthesis of non-acetylated core histones (Table 6.2).  
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Figure 7.1) Working model for explaining the cellular response to changes in 
histone acetylation. (A) Cellular response on Trichostatin A treatment.  (B) Cellular 
response on knocking out ZmGCN5 HAT. (Non Ac H – Non acetylated histones) 

(A) 

(B) 
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Model B: Cellular response to knocking out ZmGCN5 histone 

acetyltransferase 
 

 Knocking out ZmGcn5 HAT activity from the cells (figure 6.14 and 6.15) 

shifts the acetylation-deacetylation equilibrium towards histone deacetylation. 

The cell again recognises this shift and tries to compensate for it by: 
 

1. Down-regulating the production of histone deacetylases like Rpd3. 

However it is worth noting that only some and not all deacetylases 

seem to be down regulated (figure 6.16). This assumes significance, as 

ZmGcn5 is not the only histone acetyltransferase inside the cell 

(Lopez-Rodas et al., 1991, Lechner et al., 1996) and presumably there 

is still competition from other HAT’s, so the cell tries to compensate for 

changes in ZmGcn5 levels only. 

2. De novo synthesis of non-acetylated core histones (Table 6.5).  The 

newly synthesised histones, destined for deposition on DNA molecules 

in the nucleus, are acetylated by cytoplasmic B-type HAT’s like Hat1 

(Parthun et al., 1996),  

 

The increase in histone mRNA on changing the acetylation status of 

the cell prompted the investigation of possible effect on histone protein 

abundance in the cells. The results showed that the overall histone 

abundance in the cell does not alter (Figure 6.11); consistent with other 

reports indicating that this is tightly regulated (Jackson et al., 1981, Jackson, 

1987). To redress the balance between acetylated and non-acetylated 

histones, therefore, a fraction of the hyper- or under-acetylated histones must 

be preferentially degraded. The mechanism by which the cell recognises 

these alterations in the ratio of acetylated/non-acetylated molecules is 

unknown. Also the mechanism by which the levels of HAT’s and HDAC’s are 

regulated is unknown and would warrant further investigation.  
 

7.4  Future directions 
 

There is a pressing need to determine the exact structural and 

functional consequences of modifying the histones. These modifications are 

likely to bring about re-arrangements of histone-DNA and histone-protein 
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interactions, especially those involving the histone tail domains. It is still not 

known at which point(s) histone acetylation exerts influence on the regulation 

of transcription. It could be during pre-initiation complex assembly, recruitment 

of RNA polymerase, escape of RNA polymerase into the transcription unit or 

transcriptional elongation. Chromatin is conformationally dynamic, with DNA 

polymerase gaining access to the entire genome once every cell cycle, and 

RNA polymerase to the active transcription units several times per hour for an 

active gene (Jackson et al., 1998). Histone modifications and nucleosome 

disruption follow as a consequence of these events, as chromatin is 

reassembled after the passage of the polymerase.  

The current study was aimed at dissecting the role of histone 

acetylation in plant gene expression. Efforts to disrupt the balance between 

acetylation and deacetylation were met with a very quick compensatory 

response from the cell wherein it tried to restore this balance by up- or down-

regulating certain key players in the chromatin. This shows fineness and the 

complexity of the whole process. How does a cell perceive changes in its 

acetylation status? Which molecules or receptors are involved in this 

network? These are some of the questions that one can ask at this point. 

Furthermore, inducible promoters can be used to drive the expression of HAT 

or HDAC genes in cell lines, which could then be used for expression profiling 

using microarrays. This is likely to provide information about the early and 

specific targets of histone acetylation. 
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Summary 
Transcriptional activation in plants is a relatively poorly studied area. In 

non-plant eukaryotes, gene activation often involves the action of histone 

acetyltransferases (HAT’s) (Lopez-Rodas et al., 1985), which may associate with 

transcriptional activators, or are integral parts of them (Barlev et al., 1995). 

Acetylation of histones in nucleosomes weakens nucleosome-DNA interaction 

(Loidl, 1988, Oliva et al., 1990), and facilitates transcription (Hendzel et al., 

1994). HAT’s reside in multi-protein complexes in mammals and yeast, and 

probably in all higher eukaryotes (Hampsey, 1997). Type A HAT’s are nuclear-

localized, and involved in promoting transcriptional activation by acetylating 

histones within nucleosomes, whereas type B HAT’s, found in the cytoplasm, 

acetylate free histones as part of a nucleosome assembly mechanism (Wiegand 

and Brutlag, 1981; Garcea and Alberts, 1980; Brownell and Allis, 1996). 

cDNA clones encoding putative homologues of GCN5 (General control 

non-derepressible 5) a type A HAT, and a second coactivator, ADA2 

(Alteration/deficiency in activation) were isolated from maize (Riehl, Doktorarbeit, 

Universität zu Köln, 2002). With the help of these clones, molecular and 

biochemical investigations were made to dissect the role of histone acetylation in 

regulating gene expression in plants, using maize where possible. Gcn5 HAT’s 

contain three typical domains; the catalytic domain at the N-terminus responsible 

for histone acetyl-transferase activity, a centrally located domain responsible for 

the interaction with adaptor protein Ada2, and the C-terminal bromo-domain, 

which interacts with the histone N-termini (Ornaghi et al., 1999). Mammalian 

Gcn5 HAT’s contain an additional N-terminal domain known as PCAF 

(p300/CREB binding associated factor) homology domain. This domain is thought 

to be involved in the acetylation of nucleosomes (Xu et al., 1998). 

Characterisation of ZmGCN5 revealed a longer N-terminal stretch showing no 

homology to the PCAF domain in mammalian GCN5 genes. A genomic clone of 

ZmGCN5 was isolated to characterise this N-terminal extension. Studies 

revealed that plant Gcn5 HAT’s do not contain an equivalent PCAF domain. 

ZmGCN5 conferred on a 35S::GCN5-GFP fusion protein nuclear 

localization in both BY2 and SR1 tobacco protoplasts, indicating that the isolated 

gene is a nuclear-located type A histone acetyltransferase. By analysing 

deletions, the region responsible for the nuclear targeting was mapped to the N-

terminus of the protein. Thus an important role for the N-terminus of the ZmGcn5 
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has been established although it shares no homology with other histone 

acetyltransferases (plant as well as animal). 

 In order to monitor protein-protein interactions in planta, investigations 

were made using split-ubiquitin system (Johnsson and Varshavsky, 1994). With 

this system it could be shown that an interaction between ZmGcn5 and the 

adaptor ZmAda2 had taken place in planta. The results were further validated by 

using the Fluorescence resonance energy transfer (FRET) system. FRET 

analysis was also used to detect the in vivo interaction between the adaptor 

protein ZmAda2 and a plant transcriptional activator Opaque 2.  

To monitor the relationship between ZmGcn5 expression and changes in 

the acetylation status of chromatin, transgenic maize cell lines containing an 

antisense version of ZmGCN5 were generated. Furthermore, hyperacetylation of 

core histones was investigated using the deacetylase inhibitor, Trichostatin A. 

RNA populations from the treated and untreated cell lines were reverse 

transcribed and used as probes against 2600 maize EST’s (Expressed sequence 

tags) spotted on nylon filters. Several transcripts showing significant changes in 

expression level on the microarrays were confirmed by Northern blot analysis, 

and changes in histone acetylation and the corresponding histone 

acetyltransferase and deacetylase enzymes were monitored using antibodies. 

Several classes of genes related to stress, pathogenesis, cellular architecture 

and plant development were seen regulated. However the most prominent 

response of the cell was to redress the change in acetylation status. The cell 

responded to inhibition of acetylation or deacetylation by reducing the levels of 

corresponding deacetylases or acetylases respectively, and by an increase in the 

abundancy of histone mRNAs. Although acetylated/deacetylated histones did 

accumulate, as expected, in contrast, there was no overall increase in histone 

protein concentrations, suggesting selective turnover of histones as part of a 

compensatory mechanism.  
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Zusammenfassung 
 

Die Aktivierung der Transkription ist bei Pflanzen ein immer noch lediglich 

in Anfängen verstandener Prozess. Die Genaktivierung bei Eukaryoten geht 

meist einher mit einer Aktivierung von Histonacetyltransferasen (HAT’s, Lopez-

Rodas et al., 1985). Diese kommunizieren mit Transkriptionsfaktoren oder sind 

deren Untereinheiten (Barlev et al., 1995). Die Acetylierung der Histone in den 

Nucleosomen schwächt die Nucleosomen-DNA-Interaktion (Loidl, 1988; Oliva et 

al., 1990) ab und erleichtert so die Transkription (Hendzel et al., 1994). Bei 

Säugern und Hefen befinden sich die HAT’s zusammen mit chromatin 

remoddeling factors und TAFs (transcription activating factors, Lee et al., 1993) in 

Multiproteinkomplexen (Hempsey, 1997). 

Man unterscheidet zwei Gruppen von HAT’s: Typ-A-HATs sind im Zellkern 

lokalisiert und fördern dort die Aktivierung der Transkription der Histone im 

Nucleosom und Typ B HAT’s, lokalisiert im Cytoplasma, acetylieren dort 

voraussichtlich die freien Histone innerhalb des nucleosom assembly mechanism 

(Wiegand and Brutlag, 1981; Garcea and Alberts, 1980; Brownell and Allis, 

1996).   

Zur Analyse der Funktion von HATs bei der Genaktivierung in Mais 

wurden putative Homologe zu einer Typ-A-HAT, GCN5 (general control non-

derepressible 5), und einem Koaktivator, ADA2 (alteration/deficiency in 

activation), isoliert (Riehl, Diplom, 1999; Promotion, 2002). 

Für Gcn5-HAT wurden drei Domänen postuliert: die katalytische Domäne 

am N-Terminus scheint für die Histonacetyltransferaseaktivität verantwortlich zu 

sein, eine zentrale Domäne übernimmt die Interaktion mit dem adapterprotein 

Ada2 und C-Terminal befindet sich eine Bromodomäne, welche mit dem Histon-

N-Terminus interagiert (Ornaghi et al., 1999). Zusätzlich tragen Gcn5 HATs bei 

Säugern noch eine N-terminale Domäne, bekannt als PCAF (p300/CREB binding 

associated factor) homology domain, die vermutlich an der Acetylierung der 

Nucleosomen beteiligt ist (Xu et al., 1998). Der bei der Charakterisierung des 

ZmGCN5 gefunde längere N-Terminus weist keine Homologie zu dieser auf. 

Auch funktionelle Studien ergaben, daß pflanzliche GCN5-genes keine PCAF-

äquivalente Domäne tragen. Anhand von 35s::GCN5-GFP-Fusionsproteinen, mit 

denen Tabakprotoplasten (BY2/SR1) transformiert wurden, konnte eine 

Lokalisation dieser Proteine im Zellkern nachgewiesen werden. Dies weist auf 
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eine Typ A-Histonacetyltransferase hin. Durch Deletionsexperimente wurde die 

für die Kernlokalisation verantwortliche Sequenz (NLS, nuclear lokalisation 

sequence) N-teminal ausgemacht. Somit wurde, trotz fehlender Homologie mit 

anderen HATs die wichtige Funktion des N-Teminus des ZmGcn5-HAT deutlich,  

Mit dem split ubiquitin system konnte eine Protein-Protein-Interaktionen in 

planta zwischen ZmGcn5-HAT und dem Adapter ZmAda2 gezeigt werden 

(Johnsson and Varshavsky, 1994). Dieses Ergebnis wurde ausserdem durch 

eine FRET-Analyse (fluorescence resonance energy transfer) bestätigt: Eine 

Kotransfektion von Protoplasten mit ZmGCN5-CFP (cyan fluorescent protein) 

und ZmADA2-YFP (yellow fluorescent protein) resultierte in einem 

Energietransfer von CFP zu YFP, was eine starke Interaktion zwischen ZmGCN5 

und ZmADA2 zeigt. Die Analyse von ZmAda2 und dem Transkriptionsfaktor 

Opaque2 wies hingegen auf eine schwache Interaktion hin.  

Um die Beziehung zwischen ZmGcn5-Expression und Veränderungen im 

Acetylierungsstatus des Chromatins beobachten zu können, wurden transgene 

ZmGCN5-antisense lines von Mais erstellt. Mit dem Deacetylaseinhibitor 

Trichostatin A wurde Hyperacetylierung untersucht. Die RNAs dieser Pflanzen 

wurden revers transkribiert und als Sonden für ein screening von 2600 Mais EST 

(expressed sequence tag) auf Nylonfiltern eingesetzt (microarrays). Transkripte, 

welche signifikante Veränderungen ihres Expressionsniveaus aufwiesen, wurden 

sowohl durch Northern-, als auch durch Western-blot-Analyse bestätigt. Die 

regulierten Gene liessen sich verschiedenen Klassen zuordnen: Stress, 

Phatogenese, Zytoskelett und Morphogenese. Die Hauptantwort der Zelle 

bestand jedoch darin, die Veränderung des Acetylierungsstatus durch Inhibition 

aufzuheben.  

Diese kommt durch Konzentrationsabfall der korrespondierenden 

Deacetylasen oder Acetylasen bzw. eines Anstiegs der Histon-mRNAs zustande.  
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Appendix I: Schematic of different constructs used for FRET analysis of 
interactions between putative transcriptional co-activators ZmGcn5, 
ZmAda2 and transcriptional activator ZmO2. 
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Appendix II:  Sensitivity of microarray system 
 

0.01% Spiked Nebulin 
ng of spotted Nebulin DNA Signal intensity (MDC)

0.1 0.0125 
1 0 
10 0.0435 

100 0.098 

0.1% Spiked Nebulin 
ng of spotted Nebulin DNA Signal intensity (MDC)

0.1 0.019 
1 0.068 
10 0.0395 

100 0.048 

0.5% Spiked Nebulin 
ng of spotted Nebulin DNA Signal intensity (MDC)

0.1 0.1395 
1 0.078 
10 0.8855 

100 6.208 
 

MDC – Molecular dynamics counts. 
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Appendix III: Clones up-regulated in ZmGCN5 antisense microarrays 
 Array Data  GenBank Clone Identity Random 

Control As ZmGCN5 Fold Accession   Matching 
HE-89 HE-89 Induction Number   Probability
1.55 8.71 5.6 T14716 Histone 2B  
0.31 1.23 4.0 AA072442 Histone 2A  
2.54 8.57 3.4 T15325 Histone 2  
4.75 11.81 2.5 T25236 Histone H2B.2  
3.08 7.11 2.3 T23405 Histone 2  
1.06 2.34 2.2 H35878 Histone 2B  
6.65 14.52 2.2 T18835 Histone 2B  
2.01 4.25 2.1 T70634 Histone 4  

5.19 20.91 4.0 P36886 Photosystem I reaction centre subunit X 6.00E-14 
0.12 0.47 4.0 AA054812 Chlorophyll a/b binding protein, O. sativa 5.00E-50 

12.95 33.48 2.6 AAC67557.1  Chlorophyll a/b-binding protein, O sativa 6.00E-22 
0.34 0.69 2.1 AAC28490.1 Photosystem II Chlorophyll a/b binding protein 1.00E-58 
3.44 18.67 5.4 O76743 ATP-dependent RNA helicase glh-4 0-19 
9.34 30.78 3.3 P49106 14-3-3-Like Protein GF14-6, Z. mays e-102 
4.83 11.51 2.4 CAB85491.1  Putative kinetochore protein [H vulgare]. 1.00E-23 
0.33 0.77 2.3 Q9SP07 14-3-3-like protein, Lilium longiflorum e-118 
2.32 5.26 2.3 T69040.1 MFS18 protein precursor, Z. mays  
0.29 0.62 2.2 T25298 DNA Repair Protein RADI Homolog  
1.16 2.40 2.1 BAB64785.1 Putative RNA helicase, DRH1 [O sativa]. e-100 

1.85 30.96 16.8 AAK63882.1 Thaumatin-like pathogenesis related 5.00E-07 
0.10 0.53 5.3 AAK18619.1 Ankyrin-Repeat Protein (Cytokinine signalling) 4.00E-43 
0.66 3.20 4.8 T14745 Elongation Factor 1-Alpha (Cytoskeleton protein)  
0.71 3.35 4.8 P29023 Endochitinase Precursor B e-106 
4.02 16.12 4.0 NP_568791.1 Avr9 elicitor response protein-like, A. thaliana 3.00E-43 
6.01 23.64 3.9 NP_199617.1 Phosphoribosylanthranilate Transferase 1.00E-12 
0.31 1.18 3.8 AAL13304.1 Leucine Zipper Containing Protein 6.00E-30 
0.20 0.69 3.4 T18839 HSP70  
1.65 5.27 3.2 U76259 Elongation Factor 1-Alpha  
0.56 1.69 3.0 BAA03751.1  Endochitinase [O. sativa]. 8.00E-45 
1.99 5.78 2.9 AAF42979.1 Elongation factor 1 alpha [Zea mays]. e-109 
0.20 0.58 2.8 BAB01964.1 Leucine-rich repeat protein FLR1 [A. thaliana]. 1.00E-21 
0.19 0.48 2.5 Q02028 Stromal 70 kDa heat shock-related protein 1.00E-56 
2.75 6.04 2.2 O24473 Eukaryotic translation initiation factor 3.00E-79 
0.88 1.85 2.1 P33126  Heat Shock Protein 82 e-100 
1.85 3.91 2.1 AA030722 Lipoxygenase (Disease related)  
0.29 0.61 2.1 T04146 Glossy1 homolog - O. sativa (Cell wall related) e-108 
1.85 3.82 2.1 T03395 Probable Lipase - Z. mays. (Cold resistance) 4.00E-25 
4.08 8.31 2.0 Q40784 Possible Apospory-associated protein C 1.00E-22 

0.12 0.57 5.0 T14661 Sucrose synthase (glucosyltransferase)  
0.12 0.60 4.9 BAA76902.1 Cycloartenol synthase 1.00E-22 
3.47 14.33 4.1 NP_174350.1 UDP-galactose 4-epimerase-like protein 9.00E-50 
0.21 0.86 4.0 NP_176563.1 Putative aminopeptidase [A thaliana]. 2.00E-94 
0.11 0.40 3.6 T15306 Protein Disulphide Isomerase  
0.12 0.36 3.1 W21619 ADP-glucose pyrophosphorylase  
0.88 2.31 2.6 S34636 Acetyl CoA carboxylase Z. mays. e-136 
0.14 0.37 2.6 T01414 ADP glucose--starch glucosyltransferase 2.00E-46 
0.11 0.27 2.6 BAA90672.1 GSH-dependent dehydroascorbate reductase 1  3.00E-20 
0.15 0.37 2.5 P93438  S-adenosyl-L-methionine synthetase 5.00E-46 
0.34 0.82 2.4 T25208 ATP-dependent Clp protease sub unit 2.00E-51 
0.14 0.33 2.4 AAG12489.2  O-deacetylbaccatin III-10-0-acetyltransferase 3.00E-73 
0.40 0.95 2.4 T08854 Ferric leghemoglobin reductase - soybean. 7.00E-14 
0.21 0.48 2.3 AAL33589.1 Methionine synthase [Zea mays]. e-106 
0.25 0.57 2.2 T18321 Ribonuclease PH  
0.19 0.42 2.2 T14676 Protein Phosphatase  
1.69 3.40 2.0 AF308474_1 Asparaginase (transport & metabolism of N) 4.00E-05 

2.25 10.69 4.8 Q04832 DNA Binding Protein 3.00E-20 
0.21 0.56 2.7 AAG60186.1 Putative Nucleic Acid Binding Protein 2.00E-13 
0.40 1.04 2.6 AAG59664.1 Putative RNA binding protein [O sativa]. 1.00E-64 
0.80 1.99 2.5 AF034945 RNA binding Protein 7.00E-28 
0.16 0.39 2.4 T18285 Guanine Nucleotide-binding Protein beta subunit  
1.67 8.44 5.1 W21778 L11 ribosomal protein  
2.92 9.43 3.2 P35685  60S Ribosomal Protein L7A 4.00E-20 
0.27 0.81 3.0 T18282 40 S Ribosomal Protein S5, Cytoplasmic  
0.39 0.98 2.5 T18261 40S ribosomal protein S24, cytoplasmic  
0.30 0.63 2.1 AA030697 Ribosomal protein L7  
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Appendix IV: Clones down-regulated in ZmGCN5 antisense microarrays 
 Array Data  GenBank Clone Identity Random 

Control As ZmGCN5 Fold Accession   Matching 
HE-89 HE-89 Attenuation Number   Probability 
7.48 1.41 5.3 P23444 Histone H1. 6.00E-05 

11.31 2.51 4.5 AAL73043.1 Histone H1-like protein [Z. mays] 7.00E-29 

5.92 1.07 5.5 T25279 Alpha tubulin  
0.97 0.23 4.3 T23361 Actin  

17.86 4.86 3.7 Q41764 Actin-depolymerising factor 3 - Z. mays 4.00E-68 
2.13 0.60 3.5 W21711 Prohibitin (inhibitor of cell proliferation)  
7.70 2.36 3.3 T70700 Actin depolymerising factor  
2.29 0.70 3.3 T15332 Alpha tubulin  
0.75 0.24 3.1 NP_190236.1 Actin 12 [A. thaliana]. 1.00E-15 
1.63 0.55 2.9 T15329 Alpha tubulin  
1.56 0.53 2.9 T25274 Alpha tubulin  
1.61 0.59 2.7 W49910 Tubulin  
9.72 3.65 2.7 P14641 Tubulin alpha-2 chain (Alpha-2 tubulin). 2.00E-90 
1.60 0.72 2.2 T18286 Caltractin (mitotic spindle associated protein)  

2.61 0.27 9.8 T01354  Herbicide safener binding protein 1 - Z. mays. 1.00E-81 
1.92 0.30 6.3 P29036  Ferritin 1, (Iron induced protein) 1.00E-12 
2.31 0.41 5.7 AAF33112.1 RPT2 light receptor A. thaliana. 1.00E-39 
5.96 1.10 5.4 T15276 Wound inducible protein--basic  
1.16 0.22 5.3 T27554 Aluminum-induced protein  
1.10 0.22 4.9 T50662 UVB-resistance protein UVR8 - (A. thaliana) 3.00E-86 

18.86 3.91 4.8 T14760 Salt stress protein  
2.60 0.59 4.4 CAC06433.1 Expansin [Festuca pratensis]. 4.00E-05 
2.99 0.71 4.2 AAB88876.1 Putative auxin-repressed protein [P armeniaca]. 3.00E-06 
3.77 0.98 3.8 T14788 18 kDa heat shock protein, plastid  
4.75 1.28 3.7 AA054806 Ferritin (Iron induced protein)  
3.18 0.90 3.5 AAL79732.1 Heat shock protein 90 [O .sativa]. 8.00E-86 

14.42 4.30 3.4 T23394 Salt stress protein  
1.77 0.54 3.3 P30571  Metallothionein-like protein  1.00E-19 
1.95 0.63 3.1 Q9SW70 Stress-related protein. 2.00E-14 
0.97 0.32 3.0 NP_172566.1 ZIP4, a putative zinc transporter [A. thaliana]. 3.00E-56 
2.03 0.67 3.0 NP_196092.1 Disease resistance - like protein [A. thaliana]. 3.00E-73 
2.62 0.91 2.9 W21641 Cysteine proteinase  
1.96 0.82 2.4 P30571 Metallothionein-like protein  6.00E-20 
0.94 0.40 2.4 AAD26530.1 101 kDa heat shock protein [Z. mays] e-107 
1.97 0.84 2.3 AAD29676.1 Plasma membrane MIP protein [Z. mays]. 6.00E-68 
1.38 0.66 2.1 AAK91502.1 NADP-dependent malic enzyme [Z. mays] e-120 
1.82 0.88 2.1 BAB40923.1 Putative selenium binding protein e-102 

2.46 0.63 3.9 AA051902 Nucleotide binding protein  
0.89 0.26 3.5 JE0116 Zinc-finger protein R2931 [imported] - O. sativa. 1.00E-71 
0.86 0.26 3.3 AA054794 Acyl-CoA binding protein  
3.42 1.38 2.5 T25214 Z. mays GTP- binding protein YPTM2  
1.28 0.35 3.6 T01210  Glucose-6-phosphate/phosphate antiporter 7.00E-37 
5.21 1.45 3.6 T23323 10 kDa zein (delta zein)  
0.78 0.33 2.4 Q08047 Starch branching enzyme II  
0.79 0.37 2.1 AAF36688.1 Secretory carrier membrane protein [O. sativa]. 9.00E-07 

4.19 0.62 6.8 AAF23901.2 Calcium-dependent protein kinase [O. sativa]. 1.00E-29 
1.23 0.20 6.1 W49908 Carbonic anhydrase  
1.39 0.27 5.1 W21760 6-phosphogluconate dehydrogenase  

14.08 2.97 4.7 T23368 Peptidyl-prolyl cis-trans isomerase  
1.07 0.24 4.5 AAF66982.1 Transposase [Z. mays]. e-105 
2.44 0.55 4.4 T25264 Alcohol dehydrogenase  

10.61 2.58 4.1 T02955 Cytochrome P450 monooxygenase - Z. mays  1.00E-35 
2.41 0.60 4.0 P22200  Pyruvate Kinase, Cytosolic isozyme. 1.00E-21 
0.88 0.24 3.7 P80608  Cysteine synthase (O-acetylserine sulfhydrylase) e-100 
1.29 0.35 3.6 W21710 Proteolipid, vacuolar ATPase  
1.32 0.37 3.6 T18678 Pyruvate, orthophosphate dikinase  
1.99 0.56 3.6 AAL57038.1 UDP-glucosyltransferase BX9 [Zea mays]. 1.00E-69 
5.20 1.52 3.4 T20381 Phosphoenolpyruvate carboxylase  
1.86 0.55 3.4 AAF23902.1 MAP kinase homolog [O. sativa]. 9.00E-56 
9.44 2.84 3.3 BAB67990.1 Putative protein disulfide isomerase [O. sativa]. 1.00E-16 
1.10 0.35 3.2 BAA88185.1 Similar to pyruvate kinase 7.00E-65 
2.88 0.92 3.1 T23349 Alcohol dehydrogenase  
3.01 0.99 3.0 T18803 Cysteine proteinase inhibitor I  
0.95 0.33 2.9 NP_198236.1 Epimerase/dehydratase - like protein [A. thaliana]. 5.00E-47 
9.77 3.39 2.9 BAB20887.1 NADP dependent malic enzyme [O. sativa]. e-120 
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2.10 0.77 2.7 P26301 Enolase  
1.79 0.66 2.7 T15301 Triosephosphate isomerase  
2.01 0.74 2.7 T18324 RNase PH  
1.97 0.73 2.7 NP_178516.1 Putative acyl-CoA synthetase [A. thaliana]. 3.00E-92 
9.69 3.74 2.6 P12783 Cytosolic phosphoglycerate kinase 1 2.00E-83 

13.16 5.12 2.6 T14778 Peptidyl-prolyl cis-trans isomerase  
2.85 1.12 2.5 W21772 Adenosyl homocysteine hydrolase  
0.76 0.30 2.5 T02942 O-succinylhomoserine (thiol)-lyase 2.00E-81 
0.99 0.40 2.5 T70653 Proteolipid, vacuolar ATPase  
3.27 1.32 2.5 W49890 Triose phosphate isomerase  
0.77 0.32 2.4 W21658 SAM decarboxylase  
2.15 0.91 2.4 CAC59823.1 Xaa-Pro aminopeptidase 1 [L esculentum]. 8.00E-23 
2.59 1.11 2.3 W21612 Sucrose synthase  
2.53 1.09 2.3 T18435 Triosephosphate isomerase  
3.80 1.65 2.3 P93629 Alcohol dehydrogenase  9.00E-84 
1.81 0.82 2.2 CAC09522.1 S-adenosylmethionine decarboxylase [O sativa]. 8.00E-12 
1.48 0.68 2.2 Q08062 Malate dehydrogenase, cytoplasmic. Z. mays e-103 
4.28 1.98 2.2 CAA62847.1 Endoxyloglucan transferase (EXT) [H. vulgare]. 1.00E-04 
2.72 1.28 2.1 P46611 S-adenosylmethionine synthetase [O. sativa]. e-105 
1.38 0.65 2.1 T18824 6-phosphogluconate dehydrogenase  

4.36 0.79 5.5 T14781 Ribosomal protein 27A  
9.94 1.98 5.0 T18312 Ribosomal protein 27A  
7.34 1.69 4.4 AA030700 Ribosomal protein L18  
5.54 1.36 4.1 AA072429 Ribosomal protein L39  
4.04 1.06 3.8 T14795 40S ribosomal protein S11, cytoplasmic  
5.05 1.51 3.3 W49453 Ribosomal protein S13  
1.11 0.37 3.0 T18266 60S ribosomal protein Po, cytoplasmic  
6.12 2.13 2.9 W49429 Ribosomal protein L31  
4.90 1.73 2.8 T14735 60S ribosomal protein L19  
4.14 1.83 2.3 T18654 40S ribosomal protein S28, cytoplasmic  
4.27 2.00 2.1 T25263 Ribosomal 5S RNA binding protein - O. sativa  
1.17 0.56 2.1 T18653 Ribosomal protein L24  
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