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Abstract

Inflammatory signaling in the tumor microenvironment has been increasingly

recognized to be a common, critical driving force for cancerogenesis. Unraveling

inflammatory signaling in cancer initiation might give further insights into cancer

formation to develop novel therapeutic treatment possibilities. This study intro-

duces SOCS3-U, a novel reporter mouse line to conditionally visualize inflamma-

tory signaling. The SOCS3-U modification was targeted to the endogenous sup-

pressor of cytokine signaling 3 (SOCS3) locus, a negative feedback regulator of the

JAK/STAT pathway highly upregulated by a variety of key inflammatory media-

tors. Here, a loxP flanked stop cassette in the first intron of SOCS3-U prevents the

compound expression of SOCS3 and IRES-GFP. Thus, Cre-mediated recombination

of the loxP flanked stop cassette leads to GFP expression in those cells that have

upregulated SOCS3 expression. Moreover, the SOCS3 ORF has been flanked by rox

sites to generate conditional SOCS3 knock-out mice in a Dre/rox-dependent man-

ner, and the GFP configuration of SOCS3-U can be switched to firefly luciferase. In

first experiments, SOCS3-U mice were used in mouse models of chemically induced

colorectal and hepatocellular carcinoma to identify activation of distinct immune

cell populations. These experiments demonstrate that SOCS3 negative M2 macro-

phages specifically upregulate CCL20 that attracts CCR6 expressing lymphocytes

to the inflamed colon as a driving force for colorectal cancerogenesis. In the liver,

inflammation promotes the formation of a hitherto unknown NK-T cell subpopula-

tion that specifically upregulates IL-6Rα. Moreover, a novel generated AlbDre BAC

transgenic mouse line creates hepatocyte specific SOCS3 knock-out mice via the

Dre/rox system, providing the opportunity for sophisticated combinatory mouse

models using more than one recombinase. Taken together, this study provides a



novel genetic tool for the universal visualization of inflammatory signaling in vivo.



Zusammenfassung

Entzündungsreaktionen im Tumormikromilieu werden mehr und mehr als gemein-

samer, entscheidender Katalysator in der Krebsentstehung erkannt. Die Netzwerke

dieser Entzündungsreaktionen zu entschlüsseln verspricht daher neue Einblicke

in die Krebsentstehung und könnte neue Behandlungswege eröffnen. In dieser

Arbeit wird SOCS-U vorgestellt, eine neue Mauslinie um Entzündungsreaktionen

konditional sichtbar zu machen. Die SOCS-U Modifikation wurde in den endo-

genen suppressor of cytokine signaling 3 (SOCS3) lokus getargetet, einen sensitiven

Rückkopplungshemmer des JAK/STAT Signalweges. Hier verhindert eine loxP

flankierte stop Kassette im ersten Intron von SOSC3-U die kombinierte Expression

von SOCS3 und IRES-GFP. Cre-abhängige Rekombination der loxP flankierten stop

Kassette führt daher zu GFP Expression in Zellen, die SOCS3 hochreguliert haben.

Zudem wurde der SOCS3 ORF mit rox Stellen flankiert, um Dre/rox abhängig

konditionale SOCS3 Knock-out Mäuse zu erhalten. Darüber hinaus kann die GFP

Konfiguration von SOCS3-U in eine Luziferase Konfiguration geändert werden.

In ersten Experimenten wurden SOCS-U Mäuse in Mausmodellen von chemisch

induziertem Darm- oder Leberkrebs eingesetzt, um eigenständige Untergruppen

innerhalb verschiedener Immunzellarten zu identifiziert. Diese Experimente kon-

nten zeigen, dass SOCS3-negative M2 Makrophagen spezifisch die Expression von

CCL20 erhöhen, wodurch CCR6 exprimierende Lymphozyten in den entzünde-

ten Darm angezogen werden und die Krebsentstehung fördern. In der Leber be-

fördert eine Entzündung die Ausbildung einer bisher unbekannten NK-T-Zell Un-

tergruppe, die spezifisch IL-6Rα hochreguliert. Des Weiteren kann eine neue Alb-

Dre BAC transgene Mauslinie genutzt werden um Hepatozyten-spezifische SOCS3

Knock-out Mäuse mittels des Dre/rox Systems zu generieren, was die Möglichkeit



für elegante Mausmodelle mit mehr als einer Rekombinase ermöglicht. Zusam-

mengenommen stellt diese Arbeit ein neues, genetisches Werkzeug zur universellen

Identifizierung von Entzündungsreaktionen in vivo bereit.



1 Introduction

The development of a complex, higher organism from a single, fertilized oocyte

is a vastly complicated process, and the evolution to multicellular organisms justi-

fiably took place over the course of billions of years.

1.1 Inflammation associated cancerogenesis

Once an organism is fully developed, tissue growth is restricted to very defined

areas harboring adult stem cells. Aberrations from this very controlled tissue

growth are called neoplasms, which are further divided into benign neoplasms,

whose growth does not spread -or metastasize- to neighboring tissues, and ma-

lignant neoplasms, which have the potential to metastasize to other tissues. Ma-

lignant neoplasia -or cancer- therefore does not constitute a singular disease, but

rather encompasses uncontrolled cell growth in almost every tissue and invasion

of these malignant cells into other tissues. The various cancer types display a high

variability in incidence, mortality, severity, associated risk factors or geographical

distribution (Fig. 1.1). There are, however, certain common hallmarks shared by all

cancer types [seminally reviewed by Hanahan & Weinberg, 2011]. Cancer has been

a constant burden on human health throughout history, with the earliest references

preserved dating back to 3,000 BC [Hajdu, 2011].

In 2012, estimated 8.2 million cancer related deaths for the first time outpaced

coronary heart diseases (7.3 million) and stroke (6.6 million), the undisputed lead-

ers of the cardiovascular diseases (CVDs) and primary cause of death (17.5 mil-

lion combined for CVDs), with 14.1 million new cancer cases world-wide [WHO,

GLOBOCAN 2012, by Ferlay et al., 2015]. Among cancers, colorectal cancer has the
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a b

Figure 1.1: Estimated world-wide new cancer cases and deaths in 2012
Estimated new cancer cases (incidence) and deaths (mortality) world-wide for
2012, differentiated in more developed regions and less developed regions for
(a) males and (b) females [modified from Ferlay et al., 2015]

third highest incidence (1.4 million new cases) with 694,000 deaths (mortality to in-

cidence ratio of 0.49) in 2012, with a higher occurrence of about 55% in developed

regions. Liver cancer ranks only fifth in incidence (782,000 new cases) but has a

staggering mortality to incidence ratio of 0.95 (745,000 deaths), with higher occur-

rence in males and a strong bias towards less developed regions (83% of new cases).

Most cancer types have a rather late onset and further deteriorate over time, and

so the relative cancer occurrence is higher in developed regions; a trend which is

likely to continue, given the increasing age-average of populations in developed re-

gions. Consistently, European regions account for roughly 25% of cancer incidence

and 20% of cancer deaths but accommodate only 10% of the global population.

1.1.1 Influence of the tumor microenvironment on cancerogenesis

In the last decades, our paradigm how we define cancer has substantially changed.

Cancer is not anymore viewed as a few of out-of-control cells, but rather a network

of different cell types surrounding and permeating masses of proliferating cells, al-

most forming tissue of their own. In fact, it is now believed that the interactions of

cells of this so called tumor microenvironment with each other and the tumor cells

are enabling cancerogenesis in the first place, a notion that becomes more apparent

if the hallmarks of cancer are considered in more detail. Even if our conception of
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tumors has broadened, the ability to proliferate and replicate indefinitely remains

to be the prime hallmark of cancer cells. This includes a susceptibility to growth

factors released by cancer cells themselves or immune cells in the tumor microen-

vironment, but also the ability to circumvent negative proliferation regulators, like

contact inhibition. The classical countermeasure to a over-proliferating cell is for

the cell to undergo apoptosis, either by cell-intrinsic mechanisms, or by ligand-

induced, extrinsic apoptosis. A developing tumor therefore has to be able to both

suppress the intrinsic apoptotic machinery, as well as to evade extrinsic apopto-

sis. The heightened replicative and proliferative potential of tumor cells requires a

continuous supply of nutrients and oxygen, which the tumor achieves by inducing

enhanced vascularization. The last step in tumorigenesis is the invasion and metas-

tasis of hitherto unaffected tissues, which can also be facilitated by non-tumor cells

within the microenvironment [Gocheva et al., 2010].

Immune cells infiltrate the tumor microenvironment in high numbers and inhere

a critical role in tumorigenesis, albeit a dichotomous one. Developing tumors need

to escape destruction by immune cells, as becomes apparent if the increase in can-

cer formation upon immunodeficiency is considered [Vajdic & van Leeuwen, 2009].

Continuous inflammation however has tumor promoting functions, in that immune

cells can release reactive oxygen species which can induce DNA damage in cancer

cells, contributing to the genomic instability and mutagenesis [Maeda & Akaike,

1998]. Additionally, immune cells secrete various cytokines and chemokines into

the tumor microenvironment, some of which, e.g. EGF (epidermal growth factor),

VEGF (vascular endothelial growth factor) or FGF2 (basic fibroblast growth factor),

actively induce proliferation. This is especially true for cells of the innate immune

system, which is heavily involved in wound healing and tissue remodeling. Conse-

quently, tumors have been long compared to „wounds that do not heal“ [Dvorak,

1986].

Very similar to the inflammatory response to a wound, a developing tumor

attracts and activates leukocytes to the afflicted tissue [Mantovani et al., 2004].
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Amongst the first leukocytes recruited are neutrophils, followed by monocytes

differentiating into macrophages. These macrophages will then strongly secrete

growth factors and cytokines into the tumor microenvironment, impacting on the

endothelial, epithelial and mesenchymal cells in the vicinity [Coussens & Werb,

2002]. Additional cytokines and chemokines are secreted from the tumor cells,

e.g. IL-6 (interleukin-6) and CSF-1 (colony stimulating factor 1), which push the

differentiation of myeloid cells to tumor associated macrophages (TAMs) [Allavena

et al., 2000]. Although TAMs kill neoplastic cells via phygocytosis to a certain extent

upon IL-2 or IL-12 stimulation, they also release angiogenic and lymphangiogenic

factors that stimulate neoplasia [Schoppmann et al., 2002]. The tumor microenvi-

ronment is generally recognized as having high levels of IL-10, blocking cytotoxic

T-lymphocytes, and TGF-β (transforming growth factor beta), while having low

levels of IL-12 and a defective TH1 response [Germano et al., 2008]. The low lev-

els of the anti-carcinogenic IL-12 coincides with an increase in pro-carcinogenic

IL-23, mediated by STAT3 (signal transducer and activator of transcription 3) [Ko-

rtylewski et al., 2009]. Likewise, TAMs have a strong bias towards the M2 polariza-

tion [Mantovani et al., 2002], skewed by the survival-factor NF-κB (nuclear factor

κ-light-chain-enhancer of activated B cells) [Hagemann et al., 2008].

1.1.2 Hepatic inflammation drives hepatocellular carcinogenesis

The vast majority (85%-90%) of liver cancer is represented by hepatocellular car-

cinoma (HCC) [El-Serag, 2011], which is mainly driven by cirrhosis after hepatitis

B (HBV infection) or C (HCV infection), prolonged alcohol consumption or non-

alcoholic steatohepatitis (NASH) [Donato et al., 2002; Yoshioka et al., 2004; Sherman,

2005]. Common hallmark of cirrhosis is an enhanced inflammation, and elevated

serum levels of IL-6 can be found in patients with HBV, HCV or sustained alco-

hol consumption [Khoruts et al., 1991; Kakumu et al., 1991; Malaguarnera et al.,

1997], whereas obesity generally is increasingly recognized as a state of chronic

low grade inflammation [Hotamisligil et al., 1993]. Persistent inflammatory signal-
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ing in the liver leads to wide-spread hepatocyte death, which is compensated by in-

creased proliferation, further contributing to carcinogenesis [Bisgaard & Thorgeirs-

son, 1996]. NF-κB, mediating the effect of proliferation on the balance of prolif-

eration and apoptosis, has consequently been recognized as a tumor promoter in

inflammation-associated cancerogenesis [Pikarsky et al., 2004]. Consistently, high

levels of the catalytic subunits IKKα (IκB kinase α) and IKKβ are a prerequisite for

malignancy in hepatocellular carcinoma [Jiang et al., 2010].

Hepatocyte specific deletion of IKKβ increases chimcally-induced, via injection

of the carcinogen diethylnitrosamine (DEN), HCC development, possibly due to

enhanced cell death due to an elevated JNK (c-Jun N-terminal kinase) activity and

concomitant ROS (reactive oxygen species) accumulation, consistently accompa-

nied by increased hepatocyte proliferation [Maeda et al., 2005]. Interestingly, IKKβ

ablation both in hepatocytes and Kupffer cells (KCs) has the opposite effect and

decreases DEN-induced HCC susceptibility, while exhibiting higher levels of liver

injury and cell death and no detectable IL-6 upon DEN injection. Kupffer cells,

liver resident macrophages, are important inflammatory contributors and the ma-

jor source for proliferation stimulating mitogens in the liver [Fausto, 2000]. In-

creasing levels of IL-1α, released from dying hepatocytes, induces IL-6 release from

KCs, elevating the inflammatory tone and subsequently causing even more hepato-

cyte death and resulting hyperproliferation, a potential driving force for HCC de-

velopment [Naugler et al., 2007; Sakurai et al., 2008]. Compellingly, this effect is

more pronounced in males, mirroring the enhanced risk for men to develop HCC,

whereas the IL-6 release by KCs in females is inhibited by high levels of estrogen

[Mantovani, 2007]. In line with the tumor promoting effect of a hepatocyte specific

IKKβ deletion, loss of the NF-κB regulatory subunit IKKγ in hepatocytes causes

steatohepatitis and spontaneous HCC development [Luedde et al., 2007]. Addition-

ally, hepatocyte specific deletion of the TLR (toll-like receptor) signaling mediator

MyD88 (myeloid differentiation primary response gene 88) reduces DEN-induced

HCC formation via decreased activation of both NF-κB and JNK pathways [Ströhle,
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Figure 1.2: Increased risk of cancer related death upon obesity in men
Relative risk to die a cancer related death upon obesity depicted for a high body
mass index (BMI, in parentheses) compared to reference category (BMI between
18.5 and 24.9) in men. Asterisks indicate non-smoking group. [from Calle et al.,
2003]

2012].

Obesity is a major risk factor for hepatocellular carcinoma

Obesity has been recognized as a state of chronic low grade inflammation and

increases the risk of almost all cancers, with varying severity for individual cancer

types per gender [Calle et al., 2003]. People with a body mass index (BMI, weight[kg]
height2[m]

)

of at least 40 had dramatically increased death rates for all cancers combined (52%

for men and 62% for women respectively) compared to men and women with

normal weight (BMI between 18.5 and 24.9). Amongst men, a BMI of at least 35

increases the relative risk to die from liver cancer 4.52 fold, the strongest increase

in relative risk of death for all cancers (Fig. 1.2). As a consequence, an estimated

90.000 death per year in the USA are attributed to a BMI greater than 25.

In line with the obesity-associated increased risk of developing liver cancer, high-

fat diet (HFD) fed rats develop not only NASH but have a higher incidence of

pre-cancerous markers and pre-neoplastic lesions upon DEN injection [Wang et al.,

2009]. Consistently, HFD feeding aggravates spontaneous HCC development upon
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hepatocyte specific IKKγ deletion in mice [Wunderlich et al., 2008]. NASH devel-

opment as a cause for HCC is furthermore dependent on the non-canonical NF-κB

pathway, as LIGHT (TNFsF14) secretion from NK-T cells promotes hepatic lipid

uptake and ultimately leads to cancer formation [Wolf et al., 2014]. The exacerbated

tumorigenesis accompanying obesity is reversed in a whole body IL-6 knock-out,

in line with the previously demonstrated role for IL-6 in DEN-induced HCC for-

mation [Park et al., 2010]. Interestingly, in contrast to the IL-6 deletion, whole body

IL-6Rα deletion fails to exert a protective effect on obesity promoting HCC devel-

opment [Gruber et al., 2013]. On normal chow diet (NCD), IL-6 signaling inhibits

GSK-3β, a serine/threonine protein kinase targeting the key anti-tumor regula-

tor Mcl-1 for polyubiquitinylation by MULE (Mcl-1 ubiquitin ligase E3), thereby

prohibiting hepatocyte apoptosis and promoting cancerogenesis. In concert with

decreased GSK-3β activity upon IL-6 signaling, expression of MULE and PP-1α, a

GSK-3β activating protein phosphatase, is inhibited in a pSTAT3 dependent man-

ner. Loss of IL-6Rα therefore protects from DEN-induced HCC formation by desta-

bilizing Mcl-1, subsequently increasing apoptosis of damaged hepatocytes. Obesity

aggravates tumor formation in the liver by further stabilizing Mcl-1 in an IL-6 in-

dependent manner, enabling continued proliferation of malformed hepatocytes.

Intriguingly, a hepatocyte specific IL-6Rα deletion does not confer protection

from DEN-induced HCC development even on NCD, whereas T-cell specific IL-6Rα

ablation (IL-6RαT-KO) protects from DEN-induced HCC even under obese condi-

tions [Gruber, 2013]. The function of effector T-cells is tightly controlled by regu-

latory T-cells (Tregs), and combined IL-6 and IL-1 signaling is required to release

effector T-cells from Treg-mediated repression and mount both a strong TH1 and

TH17 response [Nish et al., 2014; Schenten et al., 2014]. Consequently, Treg depletion

via i.p. injection of an α-CD25 antibody in the tumor initiation phase completely

abrogates the protective effect of IL-6RαT-KO on DEN-induced HCC development

[Gruber, 2013].
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1.1.3 Inflammatory bowel disease and gut microbiota

Although increased inflammation in the tumor microenvironment is a charac-

teristic of every cancer type, some cancers show an especially high association of

chronic inflammation with cancerogenesis. Colorectal cancer (CRC) develops pre-

dominantly after continuos inflammatory bowel disease, e.g. chronic ulcerative

colitis or Crohn’s disease [Jess et al., 2005; Danese et al., 2011]. Development of

CRC is recapitulated in a mouse model of colitis associated cancerogenesis (CAC),

where mice are injected with the procarcinogen azoxymethane (AOM) and tumori-

genesis is promoted by induction of colitis with dextran sulfate sodium salt (DSS)

application [Tanaka et al., 2003]. The enhanced inflammatory profile upon colitis

exerts a deleterious effect on tumorigenesis, as becomes apparent in light of an

enterocyte specific IKKβ deletion. Loss of IKKβ and therefore canonical NF-κB ab-

lation dramatically reduces AOM/DSS induced tumor formation by 75% [Greten

et al., 2004]. While the inflammatory tone is unaffected, IKKβ is required for Bcl-XL

(B-cell lymphoma-extra large) expression, thus IKKβ ablation protects from CRC

development via enhanced apoptosis. Interestingly, IKKβ deletion in the myeloid

lineage also protects from AOM/DSS induced tumor formation, albeit to a smaller

extent, but does so by reducing the inflammatory tone.

Inflammation in the colon is furthermore affected by the gut microbiome, which

is in constant contact with the colonic mucosa, the tissues with the highest prolif-

erative capacity, completely renewing the single-cell epithelial layer every 4-5 days

[van der Flier & Clevers, 2009]. The gut microbiome in the large intestine contains

over 1011 cells per g content and can differ greatly between individuals, further

influenced by the dietary composition [Louis et al., 2014]. Metabolites produced by

gut microbiota can have both protective and deteriorating effects, highlighting the

importance of a healthy gut microbiome. Short-chain fatty acids (SCFAs), like bu-

tyrate and propionate, can inhibit histone deacetylases in colonocytes and immune

cells, affecting signal transduction via transcription factors, ultimately leading to

a downregulation of pro-inflammatory cytokines, like IL-6 and IL-12, and thereby
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counteracting tumorigenesis [Chang et al., 2014]. Additionally, SCFAs are impli-

cated in driving the differentiation of FoxP3+ (forkhead box P3) Tregs, which exert

an inflammation controlling effect [Smith et al., 2013]. Furthermore, butyrate sig-

naling can inhibit NF-κB activation and selectively drive apoptosis in malformed

cells [Thangaraju et al., 2009].

Conflicting data however show a tumor-promoting effect of butyrate in a mouse

model of mutations both in the Apc (adenomatous polyposis coli) and Msh2 (MutS

homolog 2) genes [Belcheva et al., 2014]. Other detrimental metabolites, like hydro-

gen sulfite or bile acid, on the other hand, drive the expression of pro-inflammatory

cytokines and can cause DNA damage in colonocytes [Roediger et al., 1997; Islam

et al., 2011]. Elevated levels of these pathogenic microbiota will eventually lead to

their detection by dentritic cells via microorganism-associated pattern (MAMPs),

subsequently promoting a TH17 mediated IL-23 upregulation, concomitantly down-

regulating IL-10 [Grivennikov et al., 2012]. This continuing inflammatory signaling,

caused by pathogenic bacteria, can lead to loss of colonocyte barrier function, en-

abling the efflux of gut microbiota from the colon lumen into the submucosa, ulti-

mately further driving inflammatory signaling.

The diverse effects of the various microbiota, often dependent on a very fine-tuned

balance between tumor-promoting and -inhibiting bacteria, sometimes even contro-

versial effects of the same metabolite (e.g. butyrate), place the gut microbiota at a

very delicate position in tumorigenesis, substantiated by microbiota affecting the

efficacy of immunotherapy against other cancer entities [Garrett, 2015].

1.2 Supressor of cytokine signaling 3 (SOCS3)

Inflammatory signaling, whether it being pro- or anti-inflammatory, is a very

important tool for an organism to elicit a strong, specific and rapid response to a

particular stimulus, and it is therefore paramount to tightly control both its onset

as well as termination. Cytokines are potent mediators of inflammatory signaling

and are a cornerstone of the immune response, but can also control proliferation or
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contribute to tissue remodeling. Cytokines are usually kept in low concentrations

but can be released in high quantities in a very short amount of time, so that their

effect on their respective target tissues runs at peak efficiency. The intracellular

effect of cytokine signaling can have a profound impact on various other signaling

cascades as well as dramatically change gene expression, so unchecked inflamma-

tory signaling can very well exceed the deleterious effects of its cause, and is in

some cases fundamental part of the problem in the first place. Eukaryotic cells

have therefore a wide array of ways to terminate inflammatory signaling at their

disposal, one of it being the SOCS family of eight proteins.

1.2.1 SOCS mediated cytokine signaling feedback inhibition

The SOCS family of proteins comprises eight proteins, SOCS1-7 and CIS (cytokine-

inducible Src-homology 2-containing protein). The eponymic SOCS1 was first de-

scribed in parallel by three groups in 1997 [Starr et al.; Naka et al.; Endo et al.],

and CIS in 1995 [Yoshimura et al.]. The shared functional significance of the SOCS

protein family members as negative feedback inhibitors is reflected in their struc-

tural similarity (Fig. 1.3), containing a central SH2 (Src homology 2) domain and

a highly conserved SOCS box at the C-terminus [Hilton et al., 1998]. SOCS1 and

SOCS3 contain an additional, conserved kinase inhibitory region (KIR domain) at

their N-terminus [Yasukawa et al., 1999]. The respective domains dictate three po-

tential routes of dissipating inflammatory signaling for SOCS proteins.

Mechanism of SOCS3 negative feedback regulation

The most prominent domain is the C-terminal SOCS box, which can interact with

the elongin B/C heterodimer and cullin-5 to form an E3 ubiquitin ligase [Zhang

et al., 1999; Zheng et al., 2002]. SOCS proteins can utilize this domain to directly

target cytokine receptors, JAKs (janus kinases) or downstream mediators of inflam-

matory signaling for degradation [Kamura et al., 2004]. Although there are certain

targets for SOCS3 E3 ligase activity known [Williams & Palmer, 2012], the affinity
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Figure 1.3: Structural overview of the SOCS protein family
CIS and SOCS1-7 share a central SH2 domain and a C-terminal SOCS box.
SOCS1 and SOCS3 contain an additional KIR domain at the N-terminus. [mod-
ified from Galic et al., 2014]

of SOCS3 for cullin-5, and thereby ultimately its E3 ligase activity, is comparably

low [Babon et al., 2009], indicating that SOCS3 is inhibiting inflammatory signal-

ing rather through its SH2 or KIR domains than an E3 ligase activity via its SOCS

box. SOCS proteins are inhibitors of cytokine signaling through the JAK/STAT

pathway and are able to rapidly decrease activated STAT transcription factors. IL-6

stimulation leads to phosphorylated STAT3 (pSTAT3) in hepatocytes with one or

two copies of SOCS3 within 15 minutes and persists for 2h, which is prolonged to

4h in the absence of SOCS3 [Croker et al., 2003]. SOCS proteins bind with their

SH2 domain to phosphotyrosines on various cytokine receptors, e.g. pY757 on

gp130 (glycoprotein 130), pY800 on IL-12Rβ2 (IL-12 receptor β 2) or pY985 on the

leptin receptor (LepR) in case of SOCS3, with a much higher affinity than JAKs,

thereby competitively inhibiting binding and subsequent activating phosphoryla-

tion of JAKs [Nicholson et al., 2000]. SOCS proteins with a KIR domain, like SOCS3,

can also directly bind and inhibit JAKs (Fig. 1.4). In fact, SOCS3 specifically binds

receptor/JAK dimers, which, together with the selective affinity for certain recep-

tors, may explain why SOCS3, although being able to bind to three of the four

JAK/STAT kinases (JAK1, JAK2 and TYK2, but not JAK3), does not inhibit signal-
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Figure 1.4: Mechanism of SOCS3 feedback inhibition on JAK/STAT signaling
Binding of the ligand induces dimerization and subsequent activation of as-
sociated JAKs. JAK phosphorylation of the respective receptor β-chains trig-
gers recruitment and phosphorylation of downstream STAT signaling media-
tors. Phosphorylated STAT dimers translocate to the nucleus and activate target
gene expression, including SOCS3. SOCS3 translocates to the plasma membrane
and inhibits JAK/STAT signaling. [from Babon & Nicola, 2012]

ing by all cytokines utilizing those kinases [Kershaw et al., 2013].

SOCS3 expression is induced by various stimuli

SOCS3 expression is mainly induced by signaling through the JAK/STAT path-

way, but is upregulated differentially in response to the respective upstream me-

diator of JAK/STAT signaling. i.v. injection of IL-6 results in an upregulation of

SOCS3 mRNA in mouse livers within 20 minutes and returns to basal levels after

8 h [Starr et al., 1997]. The SOCS3 promoter contains two STAT1/STAT3 responsive

elements [Auernhammer et al., 1999] and is most prominently induced by IL-6 type

cytokines. Apart from IL-6, IL-11 and LIF as IL-6 type cytokines, SOCS3 is also

upregulated by leptin [Bjørbaek et al., 1998], TNFα [Emanuelli et al., 2001], CNF

[Bjørbaek et al., 1999], insulin [Emanuelli et al., 2000] and resistin [Steppan et al.,

2005]. Expression of SOCS3 is also activated by IL-10 derived pSTAT3, but SOCS3

does not inhibit signaling by IL-10, a cytokine with classical anti-inflammatory ca-

pacities [Yasukawa et al., 2003; Lang et al., 2003; Niemand et al., 2003].
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SOCS3 activity is efficiently terminated by post-translational modification

The efficient inhibition of JAK/STAT signaling by SOCS3 requires an equally

efficient termination of that inhibition, in order to normalize the transcriptome

of the target cell and prime it for an upcoming, novel signaling event. Whereas

JAK/STAT inhibition by SOCS3 will prevent further de novo expression, SOCS3 is

post-translationally regulated through several mechanisms. The SOCS3 SH2 do-

main contains an unstructured region containing a PEST sequence [Babon et al.,

2005], a motif commonly associated with a short protein half-life [Rogers et al.,

1986]. Furthermore, SOCS3 is tyrosinephosphorylated at residues Y204 and Y221

in the SOCS box, inhibiting the interaction of SOCS3 with elongin C and target-

ing SOCS3 for proteasome-mediated degradation [Haan et al., 2003]. Proteasomal

degradation of SOCS3 can also be achieved via polyubiquitination at SOCS3 K6, a

conserved residue absent in a naturally occurring truncated form of SOCS3 via al-

ternative translation after ER stress or activated protein kinase (PKR) [Sasaki et al.,

2003].

Furthermore, SOCS3 is regulated by promoter methylation and miRNA action

[Boosani & Agrawal, 2015]. miR-122, the most abundant miRNA in the liver, is

a potent regulator of SOCS3 activity, although the mechanism is not completely

elucidated. Conflicting reports in Huh7 HCC cells show either an increased SOCS3

promoter methylation in the absence of miR-122, resulting in silencing of SOCS3 ex-

pression and subsequently enhanced phosphorylation of STAT3 upon interferon-α

(IFN-α) stimulation [Yoshikawa et al., 2012], or binding of miR-122 to the 3’UTR

of SOCS3 mRNA and thereby a post-transcriptional SOCS3 inhibition [Gao et al.,

2015]. SOCS3 inhibition by promoter methylation has been observed in several

colorectal cancer cell lines, where the methyltransferase DNMT1 downregulates

SOCS3 expression via hypermethylation in an IL-6 dependent manner [Li et al.,

2012]. Blocking DNMT1 increases SOCS3 expression in unchallenged cells, render-

ing them susceptible to IL-6 induced SOCS3 upregulation. A SOCS3 downregula-

tion by hypermethylation can also also be observed during the progression of lung
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cancer in rats [Liu et al., 2010] and humans [He et al., 2003]. SOCS3 promoter analy-

ses from various human HCC cell lines revealed aberrant methylation in three cell

lines, and six out of 18 primary HCC samples [Niwa et al., 2005]. The responsible

methylation site co-localizes with a conserved STAT binding site, approximately

500 bp upstream of the translation start site, providing a possibility for efficient

ablation of STAT induced SOCS3 expression. Moreover, SOCS3 is a direct target of

miR-483-5p, an intronic miRNA in the IGF2 locus, in murine Hepa1-6 hepatoma

cells, substantiating SOCS3’s function both in metabolism as well as cancerogenesis

[Ma et al., 2011]. Consistently, an upregulation of miR-802 under obese conditions

indirectly increases SOCS3 expression by downregulating the transcription factor

Hnf1b [Kornfeld et al., 2013]. Furthermore, diabetic patients exhibit a decrease in

miR-185 plasma levels, negatively correlating with blood glucose levels and SOCS3

expression [Bao et al., 2015]. An inhibition of miR-185 in the pancreatic beta-cell

line MIN6 results in a decreased glucose stimulated insulin secretion, reduced cell

growth and viability and ultimately increased apoptosis. SOCS3 is a direct target

of miR-185, as co-tranfection of a SOCS3-expressing plasmid and miR-185 restores

the metabolic phenotype. miR-185 additionally has already been implicated in

cancer progression of various human cancer entities, namely non small cell lung

cancer [Takahashi et al., 2009], colorectal cancer [Liu et al., 2011], ovarian-, renal-

and breast-cancer [Imam et al., 2010] and gastric cancer [Li et al., 2014], though no

connection to SOCS3 is reported. A miR-203 knock-down in breast cancer tissues

however enhances SOCS3 expression and increases apoptosis [Ru et al., 2011].

SOCS3 function is indispensable for the developing organism

SOCS3 functions at the heart of several highly important signaling pathways, and

as such plays a crucial role in embryonic development. Consequently, a homozy-

gous whole body knockout of SOCS3 is lethal between embryonic days 11 and 13

(E11-E13), due to placental deficiency [Roberts et al., 2001]. Conditional knock-

outs, using the Cre/loxP system, have been utilized to elucidate the contribution
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of SOCS3 to individual cell types or signaling processes.

1.2.2 SOCS3 controls immune cell differentiation

Function of both the innate as well as adaptive immune system relies heavily

on inflammatory signaling, whether immune cells are attracted by chemokine sig-

naling to a site of infection or whether their maturation to elicit are more defined

response is induced by interleukins or other cytokines. SOCS3 function, like that

of other suppressors of cytokine signaling, is very important in many immune

cell types. SOCS3 is constitutively expressed in CD4+ naïve T-cells and maintains

their quiescent state [Yu et al., 2003]. Stimulation of naïve T-cells with hen egg

lysozyme decreases SOCS3 expression and concomitantly upregulates IL-2 pro-

duction, which is in line with an observation that elevated SOCS3 action inhibits

CD28-mediated IL-2 production and proliferation in T-cells via its SH2 domain

[Matsumoto et al., 2003]. Conflicting data demonstrate hyperproliferation of CD8+

T-cells from gp130Y757F/gp130Y757F mutant mice (where SOCS3 cannot bind to, and

thereby inhibit signaling through, the gp130 receptor) in response to T-cell recep-

tor (TCR) signaling, suggesting an impact of SOCS3 on IL-27 signaling rather than

TCR- or CD28-mediated signaling to modulate T-cell proliferation [Brender et al.,

2007]. An inverse correlation between SOCS3 and IL-2 expression corroborates an

implication for SOCS3 in TH cell lineage commitment, where high levels of SOCS3

expression have been found in the TH2 subtype, which does not express IL-2, and

only very low levels in IL-2 secreting TH1 cells [Egwuagu et al., 2002]. SOCS3

function in TH cell lineage commitment is further substantiated by an enhanced

TH2 development, measured by enhanced IL-4 in combination with suppressed

IFN-γ production, upon SOCS3 overexpression and consistently TH2 suppression

alongside SOCS3 haploinsufficiency [Seki et al., 2003]. Enhanced SOCS3 action in

TH2 cells leads to a reduction of IL-12 induced STAT4 activation by binding to

pY800 on IL-12Rβ2, subsequently inhibiting IFNγ secretion and maintaining the

TH2 commitment [Yamamoto et al., 2003].
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SOCS3 and TH17 cell development

The classical concept of naïve CD4+ T-cells developing either into TH1 or TH2

cells had to be modified with the recognition of IL-17 secreting CD4+ T-cells as

a separate subtype, consistently termed TH17, which is negatively regulated by

TH1 and TH2 cells [Harrington et al., 2005; Park et al., 2005]. Development of TH17

cells is driven by dendritic cells secreting IL-23, a heterodimeric cytokine sharing

subunit p40 with IL-12 and also signaling through the IL-12β1 receptor [Aggarwal

et al., 2003]. An investigation of the TH1/TH2 polarization in context of a SOCS3-

deficiency via MMTV-cre (mammary tumor virus-cre) [Hennighausen et al., 1995]

revealed no changes compared to the wild-type, but enhanced STAT3 phosphory-

lation upon IL-23 stimulation and a subsequent induction of IL-17 secretion [Chen

et al., 2006]. Similar results were obtained when TGF-β stimulation of naïve CD4+

T-cells increased TH17 development by decreasing SOCS3 expression, thereby also

prolonging pSTAT3 signaling [Qin et al., 2009]. An elevated secretion of TGF-β

from SOCS3-deficient CD4+ T-cells was already implicated in the development of

TH3 cells [Kinjyo, 2006], but later connected to an increased IL-17 production upon

siRNA mediated SOCS3 down-regulation in CD4+ T-cells [Moriwaki et al., 2011].

The inhibitory effect of SOCS3 on TH17 T-cell development was further substan-

tiated by LIF (leukemia inhibitory factor) treatment of CD4+ T-cells and the sub-

sequent SOCS3 and ERK upregulation, abrogating pSTAT3 signaling essential for

TH17 T-cell proliferation [Cao et al., 2011], as well as impaired IL-17 production

upon SOCS3 overexpression in T lymphocytes [Romain et al., 2013].

TH cell proliferation is globally suppressed bei CD4+CD25+FoxP3+ Tregs, which

do not show SOCS3 expression [Pillemer et al., 2007], despite their expression of

and signaling through IL-6Rα [Doganci et al., 2005]. Stimulation of Treg/TH co-

cultures with IL-2 and IL-6 inhibits the Treg-mediated TH cell suppression, due to

dominant effects of the cytokines on TH cells. Further analyses demonstrated that,

since SOCS3 mRNA is indeed expressed also in Tregs, SOCS3 protein levels have to

be kept low by post-translational modification. The inverse correlation of SOCS3
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levels and IL-2 signaling observed in TH cells seems to also be reflected in Tregs,

where IL-2 signaling is crucial for their homeostatic maintenance [Fontenot et al.,

2005]. Rapid SOCS3 upregulation in Tregs upon infection could therefore medi-

ate the release of TH cells from Treg-mediated suppression. Furthermore, SOCS3

deletion in dendritic cells (DCs) selectively promotes FoxP3+ Tregs by increasing

TGF-β1 production, suggesting SOCS3 as a key regulator of the DC-mediated bal-

ance between regulatory and effector T-cells [Matsumura et al., 2007].

SOCS3 promotes M1 macrophage polarization

Macrophages are part of the innate immune system, and act both as antigen-

presenting cells (APCs) as well as mediators of the immune response of infiltrat-

ing leukocytes. Macrophages can be differentiated into „classically activated“ (M1)

macrophages and „alternatively activated“ (M2) macrophages [reviewed by Mosser

& Edwards, 2008]. M1 macrophages are considered anti-microbial and cytotoxic

and are induced by a combination of IFN-γ and pro-inflammatory stimuli like LPS

or TNF-α, whereas M2 macrophages function mainly in tissue-repair and are in-

duced by IL-4 or IL-10. Polarization to either subtype renders the macrophage

unresponsive to the inducers of the respective other subtype [Erwig et al., 1998]. In

line with the differentiating functions of M1 vs. M2 macrophages, 80% of infiltrat-

ing macrophages in the acute stage of nephrotoxic nephritis express either SOCS1

or SOCS3, with the majority expressing SOCS3 [Liu et al., 2008]. Markedly, bone-

marrow derived macrophages (BMDMs) stimulated with IFN-γ exclusively express

SOCS3, whereas IL-4 stimulated BMDMs selectively upregulate SOCS1. Respon-

siveness to M2 inducing IL-4 signaling is restored upon siRNA mediated SOCS3

knock-down, demonstrating a function for SOCS3 in maintaining M1 polarized

macrophages. A correlation between SOCS3 expression and M1 polarization is

substantiated by a strong co-expression of SOCS3 and the M1 marker iNOS (nitric

oxide synthase) in infiltrating, glomerular macrophages in nephritis [Arnold et al.,

2014]. siRNA mediated SOCS3 depletion results in an upregulation of M2 markers
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like arginase-1 or mannose receptor. A potential mechanism for unresponsive-

ness of M1 macrophages to M2 inducing stimuli in context of SOCS3 activity is

provided by observations from peritoneal macrophages obtained from db/db mice,

where IL-4 induced, IRS-2 (insulin receptor substrate)/PI3K (phosphoinositide 3-

kinase)-association-dependent upregulation of IL-1Rα is attenuated by a chronic

SOCS3 overexpression [O’Connor et al., 2007]. Consistently, macrophages from

IL-4Rα-/- mice showed an upregulation in SOCS3 protein levels [Whyte et al., 2011].

Conflicting data show an enhanced M1 macrophage polarization upon myeloid-

specific SOCS3 deletion, although an upregulation of SOCS3 in macrophages upon

M1 inducing cytokine stimulation is confirmed [Qin et al., 2012]. Furthermore, a

myeloid-specific deletion of SOCS3 promotes both TH1 and TH17 response of CD4+

T-cells. Interestingly, responsiveness of SOCS3 deficient macrophages to IL-4 stim-

ulation is not assessed.

TH1/2 cytokines IFN-γ and IL-4 are also released in large amounts by stim-

ulated NK-T cells, which are an abundant T-cell subpopulation in the liver. A

lymphocytic overexpression of SOCS3 using the lck (lymphocyte specific protein

tyrosine kinase)-promoter in T and NK-T cells (Lck-SOCS3 tg) results in decreased

serum IFN-γ and IL-4 levels, without affecting lymphocyte numbers oder cyto-

toxic activity, when Lck-SOCS3 tg mice are subjected to a Concanavalin-A (ConA)

induced model of hepatitis [Nakaya et al., 2009]. Lck-SOCS3 tg mice are protected

from ConA induced hepatitis, and exhibit decreased phosphorylation of STAT1 and

STAT3 specifically in NK-T cells, and not in T-cells. This leads to suppression of

cytokine release from NK-T cells, ultimately suggesting a protective effect against

liver injury for SOCS3 expression in NK-T cells, as opposed to SOCS3 action in

hepatocytes, where a deletion of SOCS3 protects against ConA induced hepatitis

[Ogata et al., 2006b].

1.2.3 SOCS3 regulates energy homeostasis

The regulation of energy homeostasis is a very complex machinery, encompass-
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ing the central control by the arcuate nucleus in the hypothalamus, as well as

peripheral control in tissues like liver, skeletal muscle or adipose tissue. Abundant

energy in form of elevated blood glucose levels triggers the release of insulin from

the pancreas, which signals both on neurons in the arcuate nucleus to modify food

intake as well as on peripheral tissues like the liver, to suppress gluconeogene-

sis, or skeletal muscle to take up glucose. With food intake constantly exceeding

energy consumption, ever increasing amounts of adipocytes will be stored in the

adipose tissue, which correlates with their proportional secretion of leptin, the

„satiety hormone“. The intricate network of energy homeostasis is under extensive

investigation for many decades now and reviewed constantly and manifold [e.g.

Karatsoreos et al., 2013; Friedman, 2014].

Both insulin and leptin upregulate SOCS3 expression, and both their intracel-

lular signaling cascades are in turn regulated by SOCS3. A deletion of SOCS3 in

neuronal precursor cells with nestin-cre or synapsin-cre results in increased and

prolonged tyrosinephosphorylation of STAT3 upon leptin administration [Mori

et al., 2004]. This enhanced leptin sensitivity leads to increased expression of pro-

opiomelanocortin (POMC) in neurons, which secrete the anorexigenic neuropep-

tide α-MSH. Consequently, leptin administration results in reduced food intake

and a greater weight loss in mice with neuronal SOCS3 deficiency. Furthermore,

weight gain upon HFD feeding is decreased and insulin sensitivity maintained in

the absence of SOCS3 in neurons. A more specific deletion of SOCS3 in POMC neu-

rons of the arcuate nucleus results in a very similar phenotype, namely enhanced

leptin sensitivity and glucose tolerance upon NCD and reduced weight gain, due

to increased energy expenditure, and improved insulin sensitivity on HFD [Kievit

et al., 2006]. Another brain region involved in feeding behavior is the ventromedial

hypothalamus (VMH), whose neurons abundantly express steroidogenic factor 1

(SF-1). Deletion of SOCS3 with a SF-1-cre consistently leads to enhanced leptin sen-

sitivity, reduced food intake and improved insulin sensitivity [Zhang et al., 2008].

As for the peripheral impact on energy homeostasis, obesity has been increas-
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ingly recognized as a state of chronic low grade inflammation [Hotamisligil et al.,

1993; Xu et al., 2003]. Increased circulating cytokine levels under obese conditions,

as assesed in mice lacking the leptin receptor (db/db mice), subsequently upregu-

late SOCS3 in hepatocytes [Ueki et al., 2004a]. Increased expression of SOCS3 in the

liver inhibits insulin signaling by blocking the IRS1 binding site pY960 on the in-

sulin receptor, resulting in insulin resistance [Emanuelli et al., 2001]. Consequently,

a hepatocyte specific SOCS3 knock-out increases insulin stimulated IRS1 phospho-

rylation [Senn et al., 2003] and thereby protects from IL-6 induced insulin resis-

tance [Torisu et al., 2007; Sachithanandan et al., 2010], whereas an overexpression

of SOCS3 leads to insulin resistance by reducing IRS1 and IRS2 phosphorylation

[Ueki et al., 2004b].

The protective effect on energy homeostasis of attenuated SOCS3 function in

hypothalamus and liver is, to a lower extent, also present in other peripheral tis-

sues. A knockout of SOCS3 in the white adipose tissue (WAT) shows only a mild

protection of obesity induced insulin resistance in female mice [Palanivel et al.,

2012], while a SOCS3 deletion in skeletal muscle results in an increased periph-

eral glucose disposal and partially protection from insulin resistance [Jorgensen

et al., 2012]. Furthermore, a whole body SOCS3 haploinsufficiency (SOCS3+/-) con-

veys enhanced leptin sensitivity and protection from diet-induced obesity [Howard

et al., 2004].

1.2.4 SOCS3 is heavily involved in cancerogenesis

The interplay between metabolism, inflammation and cancer puts SOCS3 in a

key position to influence tumorigenesis. As a hepatocyte specific SOCS3 deletion

in the ConA-induced hepatitis model, prolonging intracellular signaling after cy-

tokine stimulation, protects from liver injury by upregulating Bcl-XL and thereby

decreasing apoptosis, loss of SOCS3 in hepatocytes and the resulting escape from

apoptosis exacerbates DEN-induced HCC formation [Ogata et al., 2006b]. A similar

aggravation of DEN-induced HCC formation can be observed upon SOCS3 hap-
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loinsufficiency. Interestingly, SOCS3 depletion in both liver parenchymal as well

as non-parenchymal cells together exacerbates not only HCC formation, but also

ConA-induced hepatitis via TGF-β1 upregulation [Ogata et al., 2006a]. Consistently,

a hepatocyte specific gp130 knock-out ameliorates acute inflammation upon high-

dose DEN-injection, demonstrated by decreased serum ALT/AST (alanine and as-

partate transaminases) levels as well as less IL-6 and oncostatin M (OSM) in liver

protein lysates [Hatting et al., 2015]. HCC initiation 24 weeks after regular-dose

DEN-injection is unchanged compared to wt, but differences are visible in HCC

progression, 40 weeks after DEN-injection. Tumor tissue shows less nodules, a ten-

dency for less tumor associated inflammation, less DNA damage and decreased

TGF-β expression.

A similar, tumor-suppressive function for SOCS3 has been assigned in colorectal

cancer (CRC) formation. An intestinal epithelial cell (IEC)-specific SOCS3 deletion

(SOCS3IEC-KO) results in a strong hyperproliferation and hyperplasia after treat-

ment with colitis-inducing DSS [Rigby et al., 2007]. Consistently, SOCS3 overex-

pression in intestinal epithelial cell lines inhibits proliferation. Additional AOM

injection into DSS-treated SOCS3IEC-KO mice results in increased tumor formation,

initiated by elevated levels of nuclear pSTAT3 and NF-κB, ultimately increasing

IEC proliferation and tumorigenesis. Risk of CRC formation, among other can-

cers, has additionally been found to be elevated in obesity [reviewed in Renehan

et al., 2008]. Interestingly, genetically obese, leptin-deficient (ob/ob) mice subjected

to the AOM/DSS model develop more tumors, comparable to HFD-fed wild-type

animals, than lean animals, but have a decreased tumor size at later stages despite

overt obesity [Endo et al., 2011]. Consistently, LepR-deficient (db/db) mice also ex-

hibit a decreased tumor frequency and size compared to HFD-fed animals, despite

being obese. The protective effect of loss of leptin signaling is mediated by lack of

pSTAT3 activation and subsequently decreased activation of proliferation in con-

cert with increased apoptosis. Similar observations can be made for gastrointestinal

epithelial cell-specific SOCS3 deletion, initiating hyperproliferation via continuos
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leptin signaling and subsequent pSTAT3 activity [Inagaki-Ohara et al., 2014]. Fur-

thermore, leptin signaling has been found to impact on CD133+Nanog+ Tumor ini-

tiating stem cells (TISCs), which strongly express the LepR [Feldman et al., 2012],

providing a mechanism how increased serum leptin levels under obese conditions

can promote tumorigenesis.

1.3 Site specific recombination & conditional gene targeting

Biological and medical research nowadays heavily relies on the use of geneti-

cally modified organisms to study role and function of genes, both protein-coding

and non-coding. A series of giant leaps in laboratories around the world in the

last 40 years advanced the field from studying individual organisms with random,

naturally occurring mutations to custom made, gene-targeted mice harboring arti-

ficially introduced mutations with nucleotide precision [establishment of gene tar-

geting extensively reviewed by Mario Capecchi, 2005]. The specific disruption of

any target gene, now termed conventional gene targeting, is a vastly powerful tool

to examine gene function, taking full advantage of the sequenced mouse genome

[Mouse Genome Sequencing Consortium et al., 2002]. But even this technique, un-

thinkable mere 30 years ago, has certain limitations when it comes to a very fine

tuned analysis of gene functions or the investigation of essential genes. Utilizing

site specific recombinase (SSR) systems in gene targeting, termed conditional gene

targeting, can alleviate restrictions imposed by conventional gene targeting [Kühn

et al., 1995; Rajewsky et al., 1996].

1.3.1 Mechanism of site specific recombination

With the use of conditional gene targeting and site specific recombination, gene

disruption is elevated from a basic, whole body deletion to a more sophisticated

control of the genetic modification, including excision, insertion or inversion of

DNA fragments with full spatial and temporal control. Site specific recombinases

can be found in several organisms where they have varying functions. SSR systems
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Figure 1.5: Site specific recombination events
Site specific recombination requires two recombinase target sites, indicated by
black arrows, within the DNA and can either result in excision/insertion or in-
version, determined by the relative orientation of the target sites. (a) Two target
sites in tandem orientation will result in the excision of the flanked DNA re-
gions, b and c, as a circular DNA fragment with one target site and the other
target site within the remaining DNA. Insertion of the circular DNA fragment
is possible but unfavored. (b) Two target sites facing each other will result in
an inversion of the flanked DNA regions, f and g, and an otherwise unchanged
DNA structure, enabling further inversions of the flanked DNA regions. [mod-
ified from Branda & Dymecki, 2004]

most commonly used in transgenic mice are members of the λ integrase super-

family of SSRs, like Cre/loxP from bacteriophage P1 [Sternberg & Hamilton, 1981]

or Flp/frt from Saccharomyces cerevisiae [Andrews et al., 1985]. Recombination by

both Cre and Flp follow a common mechanism (Fig. 1.5): Site specific recombinase

tetramers recognize 34 bp DNA regions, composed of two 13 bp palindromic se-

quences, called inverted repeats, flanking an 8 bp non-palindromic core sequence,

called spacer, determining the overall orientation of the recombinase target site.

Recombination requires two such target sites, where the recombinase introduces

strand cleavage, exchange and ligation. The target site orientation determines the

exact recombination event, either facilitating strand excision/insertion in case of

two target sites facing the same direction, or strand inversion in case of two target

sites facing each other. An inversion reaction can occur multiple times, since the

DNA structure is not changed after the recombination event.

Generally, a combination of two transgenic mouse lines is used to utilize site
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specific recombination and conditional gene targeting in mice. One mouse will

express the respective recombinase, using a specific promoter to determine the site

of recombination. The promoter will either convey a spatial control of recombi-

nase expression, differentiating between so called deleter-strains, expressing the

recombinase under a ubiquitous promoter, vs. expressing the recombinase under

a tissue-specific promoter. Recombinase expression can also be under temporal

control using an inducible promoter, to allow targeting of genes essential for de-

velopment. By using post-translational methods of protein induction, spatial and

temporal control of recombinase activity can even be combined. Taken together,

expression of the recombinase usually determines the „condition“ of conditional

gene targeting.

A second mouse harbors recombinase target sites within its genome, whose re-

combination can have various effects. A conditional knock-out allele would have

several exons flanked by recombinase target site to induce strand-excision in the

presence of the recombinase, ideally introducing a frameshift in the open reading

frame to completely abolish gene transcription. A conditional knock-in allele on

the other hand would have a transcriptional STOP-cassette flanked by recombinase

target sites introduced between the promoter and the first exon, enabling tran-

scription of the downstream target gene only in the presence of the recombinase.

Recombinase target sites facing each other are usually used to switch the expres-

sion of one particular gene to another, this way either exchanging gene of interest

expression with expression of a reporter gene, or a mutated version of the same

gene.

1.3.2 Dre/rox is a novel recombinase system distinct from Cre/loxP

The Cre/loxP system is the undisputed incumbent of the site specific recombi-

nases, with the vast majority of conditional mouse lines employing Cre driver lines

and loxP-based target alleles. Cre excels at both efficiency as well as versatility,

when compared to other tyrosine recombinases like Flp or the larger serine recom-
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binases such as ΦC31. Flp matches Cre in versatility, being able to mediate exci-

sion/insertion as well as inversion, but, as a protein from Saccharomyces cerevisiae,

is significantly less efficient in mammalian cells, due to a decreased thermostability

[Buchholz et al., 1996]. A mutated form Flp-e with increased thermostability shows

improved efficiency [Buchholz et al., 1998], but still does not match Cre. Large ser-

ine recombinases like ΦC31 not only lack some of Cre’s high efficiency, but also

are less versatile, in that they only mediate a directed, irreversible integration [Bel-

teki et al., 2003], rendering them well suited for cassette exchange strategies, but

not to cover the diverse applications of Cre. Recently de novo synthesized, codon-

optimized versions of Flp and ΦC31, termed Flp-o and ΦC31-o, further raise their

efficiency to be „similar to Cre“ but, especially for Flp-o, still cannot quite match it

[Raymond & Soriano, 2007].

Sequencing of four P1-related phages, which are maintained as an extrachro-

mosomal plasmid like P1 and should therefore also have a recombinase system to

resolve phage DNA dimers after replication [Austin et al., 1981], to identify Cre ho-

mologs revealed a closely related site specific recombinase system in the phage D6,

termed Dre/rox [Sauer & McDermott, 2004]. Dre recombinase shares 39% similar-

ity with Cre recombinase, and requires the unique rox target site for recombination.

The 32 bp rox site consists of two 14 bp inverted repeats, separated by a directional

4 bp spacer, as compared to the 34 bp loxP site, with about 55% sequence homol-

ogy to loxP. The Dre/rox system was subsequently adopted and analyzed further

in bacteria, in vitro and in vivo [Anastassiadis et al., 2009]. Complete recombination

between rox sites in bacteria is only achieved in the presence of Dre recombinase,

neither in the absence of Dre, nor in presence of Cre recombinase. Likewise, Dre

recombinase does not mediate recombination between loxP sites. Similar results

were obtained with eukaryotic expression vectors and cell lines in vitro, successful

recombination happens exclusively for the Cre/loxP combination or Dre/rox, re-

spectively. The combined efficiency and specificity of Dre/rox was also observed in

vivo (Fig. 1.6). Lastly, an inducible Dre system was constructed utilizing the mod-
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Figure 1.6: Dre specificity in vivo
CAGGs-Dre and CAGGs-Cre mice, expressing the respective recombinase un-
der the ubiquitous CAGGs promoter, were either crossed to ZEG mice, ex-
pressing lacZ before and GFP after successful excision of a loxP-flanked
STOP-cassette, or Rosa-rox-lacZ mice, expressing β-galactosidase after success-
ful excision of a rox-flanked STOP-cassette. (a) LacZ staining and GFP epifluo-
rescence indicate that Dre recombinase does not recombine loxP sites in mice.
(b) Likewise, Cre does not recombine rox sites in mice. [modified from Anas-
tassiadis et al., 2009]

ified progesterone ligand-binding domain developed for the Cre∗PB [Wunderlich

et al., 2001].

1.3.3 Generation of transgenic mice by BAC recombineering

The utility of conditional mouse models and the usage of site specific recom-

binases critically depends on the specificity of the recombinase driver line. This

becomes especially evident if the recombinase is supposed to be expressed under

the control of a tissue-specific promoter, where it is important that every regu-

latory promoter element is functional. Red/ET cloning, also called recombineer-
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ing, is a rapid procedure to create a tissue-specific, transgenic mouse line [Zhang

et al., 1998]. Bacterial artificial chromosomes (BACs) are available ready-to-buy in

a host E. coli strain from the BACPAC Resources Center. By introducing a plas-

mid containing the recombination proteins Redα and Redβ coding sequences from

bacteriophage λ into the recA- host bacteria, the BAC carrying bacteria are recombi-

nation competent if expression from the plasmid is induced by arabinose addition

[Muyrers et al., 1999]. The gene of interest, in this case the recombinase, is ampli-

fied by PCR with 50 bp homology arms corresponding to the translation-start of

the respective driver gene on the BAC. Successful recombination will result in a

modified BAC, expressing the recombinase under the full, endogenous promoter

of at least 5 kbp upstream of the transcription-start. Pronucleus injection of the

modified BAC gives rise to a founder line with full penetrance upon successful

BAC integration into the genome.
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1.4 Objectives

In recent decades, Inflammatory signaling has become increasingly recognized

as a key system both under cancerous as well as obese conditions. Our immune

system is struggling to keep a very delicate balance between initiating cell death

and promoting tissue remodeling by inducing cell proliferation. In this regard,

members of the innate as well as the adaptive immune system secrete a large

variety of inflammatory mediators, cytokines and chemokines, into target tissues

and the blood stream, signaling on parenchymal and non-parenchymal cells alike.

Only the complex interaction of the various inflammatory mediators present, the

source of the respective cytokine or chemokine and the exact target cell, determines

whether innate and adaptive immune response act in concert or with diametral

consequences.

In order to analyze the role of inflammatory signaling of the various immune cell

subpopulations in cancer initiation, promotion and progression, as well as to mon-

itor cancer cell fate, this study aims to develop a universal reporter tool to visualize

inflammatory signaling both in vivo and in vitro. Although different cancer entities

can vary greatly in onset, severity and mortality, there are certain hallmarks on the

cellular level which can be exploited. Suppressor of cytokine signaling 3 (SOCS3) is

a negative feedback regulator of, among others, the JAK/STAT signaling pathway,

and its expression is upregulated by a plethora of inflammatory mediators. Inflam-

matory signaling can therefore be visualized by utilizing the endogenous SOCS3

promoter to drive expression of reporter proteins.

Aim of this thesis is the generation of the universal reporter mouse line SOCS3-U

and to use it in mouse models of chemically induced cancerogenesis. Utilizing

SOCS3-U in combination with different Cre-driver lines to activate only specific

immune cell subpopulations, this study should give a more detailed insight into

the contribution of the respective cell types, its inflammatory mediators and their

impact on cancer initiation, promotion and progression.



2 Materials and Methods

Standard methods of molecular biology were performed according to established

protocols [Green & Sambrook, 2012] if not stated otherwise.

2.1 Genetic Engineering

Cloning of polynucleotides was done using PCR, restriction digest and DNA lig-

ation (T4 DNA ligase, NEB, Frankfurt, Germany). Table 2.2 lists all primers utilized

for cloning and table 2.3 lists all restriction endonucleases. Amplicons generated

by PCR were cloned into the pGEM-T-Easy vector system (Promega, Madison,

WI, USA) and sequenced if not stated otherwise. Sequencing was done by GATC

Biotech (Konstanz, Germany) either utilizing T7 and SP6 primers provided by the

company for sequencing of pGEM inserts, or using the primers listed in table 2.4.

All cloning procedures were performed with XL-10 Gold Ultracompetent cells

(Agilent, Santa Clara, USA). Bacteria were cultivated in LB-medium or on LB-agar

at 37°C if not stated otherwise. Table 2.1 contains a list of contents for bacterial

cultures.

Table 2.1: Bacterial Cultures
Content Stock Working concentration

LB powder 25 g/l

LB-agar powder 35 g/l

Ampicillin 50 mg/ml H2O 50 µg/ml

Tetracycline 5 mg/ml 70% EtOH 50 µg/ml

Chloramphenicol 20 mg/ml 70% EtOH 20 µg/ml

Kanamycin 50 mg/ml H2O 50 µg/ml

X-Gal 40 mg/ml DMF 40 µg/ml

IPTG 0.1 M in H2O 0.2 mM
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2.1.1 Cloning of targeting constructs

Cloning PCRs were done with the High Fidelity PCR Master (Roche Diagnostics,

Mannheim, Germany) according to the manufacturer’s instructions. Standard re-

action conditions generally were: 50 µl reaction mix, containing 50 pmol of each

primer and at least 50 ng DNA template. The thermocycler was programmed ac-

cording to the specific PCR with an annealing temperature fitting the respective

primers and an elongation time of 1 min/kb amplicon.

Table 2.2: Cloning Primer
Description Primer Sequence 5’-3’

SOCS3-U 5MluRL AAAACGCGTTAACTTTAAATAATTGGCATTATT

TAAAGTTAGCCGGCAGTGACCGAGG

3MluRL ACGCGTTAACTTTAAATAATGCCAATTATTTAA

AGTTATGGCTCCACTTGAAAGAAGCTG

5RsrLA AAACGGTCCGAAGCTTAGACTGGCCTCAAAT

3PacLA TTTTTAATTAAGATATCCAACCCCAGACAGTCT

CTTC

5RVRA AAAGATATCGGCGCGCCGTTTAAACATTTAAA

TGGAGCAAAAGGGTCAGAGGGG

3RVRA TTTACCGGTATCCAGGGCTGAGGAGG

5AgeRA AAAACCGGTATCGGCGCGCCGTTTAAA

3AgeRA TTTACCGGTATCCAGGGCTGAGGAGG

5SwaLuc AAAATTTAAATGAAGTTCCTATTCCGAAGTTCC

TATTCTCTAGAAAGTATAGGAACTTCCTTTGCT

CTCTGCAGGCCACCATGGAAGACGCCAAAAA

CATAA

3AscLuc AAAGGCGCGCCTTAAACTTACAATTTGGACTT

TCCGCC

Alb-Dre 5AlbDre TGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAG

ACAAGAGTGAGATCGCCACCATGGGTAAGAA

GAAGA

3AlbDre ATAACTTACAGGCCTTTGAAATGTTGTTCTCCC

AAATCATTATACCGATGGAGGATTTAATATTTC

TGACGC

5Alb GTCTCCGGCTCTGCTTTTTCCAGG

3Alb TGTTCTCCCAAATCATTATACCG

3Dre TACTCCCTAGCCATCTCAGGAGAGAT
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Restriction digest was either performed in a 50 µl reaction mix for cloning or

10 µl reaction mix for analysis. Analytic restriction digests contained around 500 ng

DNA, restriction digests for cloning around 5 µg DNA. Linearized DNA vectors

were dephosphorylated using Antarctic phosphatase (NEB, Frankfurt, Germany).

Separation of DNA fragments was done by agarose gel electrophoresis. DNA frag-

ments were extracted with the QIAEX II gel extraction kit (Qiagen, Hilden, Ger-

many).

Table 2.3: Restriction Endonucleases
Enzyme Supplier Recognition Sequence

AgeI-HF NEB A|CCGGT

AscI NEB GG|CGCGCC

AsiSI Fermentas GCGAT|CGC

AvrII NEB C|CTAGG

EcoRV-HF NEB GAT|ATC

PacI NEB TTAAT|TAA

PvuI-HF NEB CGAT|CG

SwaI NEB ATTT|AAAT

PI-SceI NEB homing endonuclease

For sequencing analysis, 500 ng DNA [20 ng/µl] were sent to GATC Biotech.

Custom primer were sent at 10 µM concentration.

Table 2.4: Sequencing Primer
Description Primer Sequence 5’-3’

SOCS3-U 5SOCS1 GTGCGCAAGCTGCAGGAGAG

5SOCS2 TGTGTACTCAAGCTGGTGCA

5SOCS3 GTAGCTCCCAGTGAGCCAGG

5LA1 CTATCACAGTGTCTCACTGG

5LA2 ATCTCCATCTGTGAGCATCT

5LA3 CTCAATCACCTGCTCTTATC

5LA4 GAGTGATAAGGTAGTAGTTA

5LA5 CTGCCAGAAACCAGCCTTCT

5LA6 CAGCTCTCCGTCGAGGTCCC

5LA7 TCGCCACTGAGGACACCGGA

5RA0 TAAACATTTAAATGGAGCAA

5RA1 GAACTTGTTTGCGCTTTGAT

Continued on next page



Materials and Methods 32

Table 2.4 – continued from previous page

Description Primer Sequence 5’-3’

5RA2 GGCTAGGAGACTCGCCTTAA

5Luc1 CAGTAAGCTATGTCTCCAGA

5Luc2 GTTGGTACTAGCAACGCACT

5Luc3 TAGAATCCATGATAATAATT

5Luc4 CGTATCTCTTCATAGCCTTA

3Luc1 ATATGTGCATCTGTAAAAGC

3Luc2 CCGGTTATGTAAACAATCCGGA

Alb-Dre 5Alb GTCTCCGGCTCTGCTTTTTCCAGG

3AmplifyFlp AGCCAGAAGTCAGATGCTCA

DreSeqJ TGCTGTCTAGATCTGAGAGACT

DreSeq0j CCTGGTATTTTAAAATAGTT

DreSeq1j TCTCATAGGGCCTGCCTGCT

DreSeq2j TAGCTTAGGTCAGTGAAGAG

DreSeq3 TCCACTCCTGGGCTAGATGG

DreSeq4 GTGGGAGACCTGGACCAGAC

DreSeq5 AAAGCCTGAGACACTGATGA

3DreSeq TCTCCGGATTCTCCTCATGGC

Drerevneu GCGGTGGTCCTCCTAGAC

SOCS3-U targeting construct

SOCS3 CDS was amplified using the primers 5MluRL and 3MluRL from ge-

nomic DNA and ligated into the pGEM-T-Easy Vector System. The amplicon was

cut from the pGEM backbone with MluI and ligated with the common Stop-eGFP-

ROSA-CAGs [SERCA, Klisch, 2006] plasmid, cut with AscI. The resulting interme-

diate was cut with NheI and EcoRV and the 5.7 kb fragment was ligated with the

GK12TK plasmid [Wunderlich et al., 2010], cut with AvrII and PmeI. The SOCS3

LAH was amplified using the primers 5RsrLA and 3PacLA from genomic DNA.

The amplicon was cut from the pGEM backbone with PvuI and PacI and inserted

into the GK12TK-SOCS3 intermediate, cut with PacI. The SOCS3 RAH was ampli-

fied using the primers 5RVRA and 3RVRA from genomic DNA, which served as

template for a second amplification using the primers 5AgeRA and 3AgeRA. Fire-

fly luciferase CDS was amplified using the primers 5SwaLuc and 3AscLuc from the

pTE-Luc plasmid [Jordan et al., 2011]. The amplicon was cut from the pGEM back-
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bone with AscI and SwaI and inserted into the pGEM-RA intermediate, cut with

AscI and SwaI as well. The RA-Luc intermediate was cut from the pGEM backbone

with AgeI and inserted into the GK12TK-SOCS3-LA intermediate, cut with AgeI as

well.

Alb-Dre recombinant BAC

Construction of the Alb-Dre recombinant BAC was performed via Red-E/T re-

combination [Muyrers et al., 1999]. Dre CDS and a neomycin resistance cassette

were amplified using the primers 5AlbDre and 3AlbDre from the pTE-Dre-neo/kana

[Tim Klöckener, University of Cologne] plasmid. The resultant DNA fragment con-

tains 50 bp homology arms with the endogenous Alb locus.

1.4 ml LB medium containing chloramphenicol were inoculated with 30 µl over-

night culture of Alb-BAC carrying bacteria and cultivated for 3 h at 37°C. Cells

were centrifuged for 30 sec at 11,000 xg, 4°C. Cells were washed with 1 ml chilled

water and centrifuged again. The cell pellet was resuspended in 20-30 µl chilled

water. Resuspended cells were mixed with 3 µl pSC101-BAD-gbaA [100-200 ng/µl].

Cells were transformed via electroporation (1350 V, 10 µF, 600 Ω). Electroporated

cells were resuspended in 1 ml LB medium and incubated for 70 min at 30°C. Cells

were plated on LB agar plates containing tetracycline and chloramphenicol and

incubated over night at 30°C. Colonies were picked and incubated in LB medium

containing tetracycline and chloramphenicol over night at 30°C. 1.4 ml LB medium

containing tetracycline and chloramphenicol were inoculated with 30 µl overnight

culture and incubated at 30°C until an OD600 of 0.15 was reached. 20 µl L-Arabinose

were added and the cells incubated for 60 min at 30°C. Cells were then incubated

at 37°C until an OD600 of 0.4 was reached. Cells were centrifuged for 30 sec at

11,000 xg, 4°C. Cells were washed with 1 ml chilled water and centrifuged again.

The cell pellet was resuspended in 20-30 µl chilled water. Resuspended cells were

mixed with 3 µl linearized, recombinant DNA fragment [100-200 ng/µl]. Cells were

transformed via electroporation (1350 V, 10 µF, 600 Ω). Electroporated cells were
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resuspended in 1 ml LB medium containing 20 µl L-Arabinose and incubated for

70 min at 37°C. Cells were plated on LB agar plates containing kanamycin and in-

cubated over night at 37°C. Colonies were picked and checked for correct insertion

of the recombinant fragment. Recombinant BACs were linearized with PI-SceI and

purified with the NucleoBond® Xtra BAC kit (Macherey-Nagel, Düren, Germany)

for transfection.

2.1.2 Cell culture

All cells utilized were maintained in an incubator with constant conditions (95%

humidity, 37°C, and 10% CO2 saturation), while handling and passaging of cells

was performed under a sterile hood (Hera Safe KS 12, Heraeus Instruments).

Bruce4 embryonic stem cells [ES-cells, Köntgen & Stewart, 1993] were used for all

transfection and kept on a confluent layer of mouse embryonic fibroblasts (MEFs).

MEFs were passaged three times and treated with mitomycin C (MMC, Sigma-

Aldrich) to serve as feeder cells for ES cells to maintain their pluripotency. Growth

medium for ES cells was changed every day and every 2-3 days in case of MEFs.

Contents of the various growth media are listed in table 2.5.

Passaging of cells

MEFs were passaged upon confluence, ES-cells at 85% confluency or at least

every three days to maintain pluripotency. Cells were washed twice with PBS and

incubated with trypsin-solution (0.05% trypsin, 0.02% EDTA in PBS) at 37°C for

5 min. Trypsin digest was stopped with 1:1 FCS-containing medium. Cells were

centrifuged (270 xg, 5 min, 4°C) and seeded on fresh plates. MMC-treated MEFs

were seeded on gelatin-coated (0.2% gelatin in PBS, = 5 min at 37°C) plates to

enhance adherence. Cells were counted in a C-Chip Neubauer improved counting

chamber (Peqlab, Erlangen, Germany) if indicated.
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Freezing and thawing of cells

For cell freezing, cells were trypsinized and centrifuged as described before. The

cell pellet was resuspended in FCS containing 10% DMSO and stored at -80°C

for short term storage or liquid nitrogen for long term storage. Frozen cells were

thawed 1:40 in the appropriate culture medium, centrifuged and seeded in fresh

medium on the appropriate dish.

Transfection

Medium of the ES-cells was changed 2-3 hours prior to transfection. 40 µg tar-

geting construct were linearized with AsiSI, purified with isopropanol precipita-

tion and resuspended in 400 µl PBS under sterile conditions. 107 ES-cells were

trypsinized and also resuspended in 400 µl PBS. ES-cells and linearized plasmid

were mixed in an electroporation cuvette (0.4 cm) for transfection (230 V, 500 µF,

∞ Ω; GenePulser Xcell™, Bio-Rad, München, Germany). Cells were incubated for

5 min at RT and subsequently resuspended in ES-medium and seeded on four

10 cm dishes with feeder cells. Selection with G418 and counterselection with

ganciclovir for correct integration of the targeting construct started two days post

transfection and was carried out for seven days. Picking of colonies was performed

nine days post transfection.

Picking of colonies

ES-cells were washed twice with PBS prior to picking colonies. Cells were picked

in 40 µl PBS and transferred to a 96-well plate (round bottom) containing 25 µl

trypsin solution. Picking was stopped once the 96-well plate was full or at least

30 minutes after picking the first colony. Cells were incubated for 5 min at 37°C and

trypsin reaction was stopped with 100 µl ES-medium. 50 µl each were transferred

to three 96-well plate (flat bottom) with feeder cells and incubated for three days.

Two plates were frozen at -80°C (25 µl trypsin solution plus 25 µl FCS containing

20% DMSO) and the third one split on three gelatin-coated 96-well plates (flat
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bottom). Cells were incubated until confluency, where two plates were washed

twice with PBS and frozen at -20°C. The third plate was washed twice with PBS and

incubated in ES-cell lysis buffer (10 mM Tris-HCl, 10 mM EDTA, 10 mM NaCl, 0.5%

N-Lauroylsarcosine, 4% Proteinase K) over night at 56°C. DNA was precipitated

by adding 100 µl isopropanol and 30 min incubation at RT. The supernatant was

discarded and the pellet washed with 200 µl 70% EtOH, dried for 30 min at 37°C

and resuspended in 25 µl TE plus RNAse A. 10 µl restriction digest mastermix

(3,5 µl buffer, 2 µl enzyme, 0.01 µl 1 M DTT, 0.02 µl spermidine, 4.5 µl H2O) were

added and incubated over night at 37°C for Southern blot analysis (cf. 2.1.3).

HTNC transduction

Cre-mediated recombination in vitro was performed with a transducible His-TAT-

NLS-Cre (HTNC) protein [Peitz et al., 2002]. Cells were seeded on culture plates

and grown to about 95% confluency. 1 µM HTNC was applied for 16-20 hours in

DMEM / PBS [1:1] without antibiotics or supplements.

Growth media

Growth media were prepared under sterile conditions and stored at 4°C.

Table 2.5: Cell Culture Media
Medium Contents Supplier

ES-medium DMEM with L-Glutamine Gibco

15% FCS Biochrom AG

1 mM Sodium Pyruvate Gibco

1x Non-essential Aminoacids Gibco

10 U/ml LIF supernatant -

0.1mM β-Mercaptoethanol Gibco

2 mM L-Glutamine Gibco

100 U/ml Pen-Strep Gibco

300 µg/ml G418 (if indicated) Gibco

2 mM Ganciclovir (if indicated) Sigma-Aldrich

EF-medium DMEM plus Glutamax Gibco

10% FCS Biochrom AG

Continued on next page
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Table 2.5 – continued from previous page

Medium Contents Supplier

1 mM Sodium Pyruvate Gibco

1x Non-essential Aminoacids Gibco

100 U/ml Pen-Strep Gibco

Hepatocyte-

medium

DMEM with L-Glutamine Gibco

10% FCS Biochrom AG

1 mM Sodium Pyruvate Gibco

1x Non-essential Aminoacids Gibco

100 U/ml Pen-Strep Gibco

Hepatocyte-

fasting-medium

DMEM with L-Glutamine Gibco

4% FCS Biochrom AG

1 mM Sodium Pyruvate Gibco

1x Non-essential Aminoacids Gibco

100 U/ml Pen-Strep Gibco

2.1.3 Southern blot analysis

Gel electrophoresis and blotting

10-15 µg digested genomic DNA was loaded on an 0.8% agarose gel and run

over night at 30 V. The gel was incubated for 20 min in 0.25 M HCl for depurina-

tion. DNA was blotted on Hybond-XL™ charged nylon membrane (GE Healthcare,

Freiburg, Germany) by alkaline capillary transfer with 0.4 M NaOH over night.

The membrane was then washed for 20 min in 2x SSC (SSC: 300 mM NaCl, 30 mM

Na3C6H5O7) buffer and cross-linked at 80°C for 40 min.

Labeling and hybridization

DNA fragments of the respective Southern probes were amplified by PCR or

restriction digest (cf. table 2.6). Radioactive labeling with 25 µCi α32P-dCTP of

150 ng DNA was performed with the Ladderman DNA Labeling Kit (Takara Bio,

Shiga, Japan). The membrane was incubated in 30 ml pre-hybridization solution

(1 M NaCl, 50 mM Tris-HCl pH 7.5, 10% dextransulfate, 1% SDS, 250 µg sonicated
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salmon sperm DNA) for 4 h. The labeled probe was added and the membrane

hybridized at 65°C over night. The membrane was washed in increasingly stringent

Southern wash solution (2x SSC ↘ 0.5x SSC, plus 0.1% SDS) until the radioactive

signal was below 30 mSv. Detection of the radioactive signal was done with Kodak

MS hypersensitive films after over night exposure at -80°C.

Table 2.6: Southern probes
Probe Source Amplification

SOCS3-U LA1 genomic DNA 5’-GATATCTCTGAATGCATCCAAGTTCTG-3’

5’-GATATCGATGCACAGCCAGCTTCTCA-3’

SOCS3-U RA1 genomic DNA 5’-GATATCACATGCTATGGCACACGTGT-3’

5’-GATATCCTGGGATGAAGTTCCTTGTC-3’

NeoR A-04 plasmid∗ 5’-TGAATGAACTGCAGGACGAGGCA-3’

5’-GCCGCCAAGCTCTTCAGCAAT-3’
∗ Mao et al., 1999

2.2 Protein Biochemistry

2.2.1 Protein extraction

Proteins from tissues or cells were extracted in organ lysis buffer (50 mM HEPES,

1% Triton X-100, 50 mM NaCl, 0.1 M NaF, 10 mM EDTA, 10 mM Na3VO4, 0.1% SDS,

2 mM benzamidine, 10 µl/ml aprotinine, 2 mM PMSF, proteinase inhibitor cock-

tail, pH 7.4). Final protein lysates were diluted in organ lysis buffer and 4x SDS

loading dye (250 mM Tris-HCL pH 6.8, 10% SDS, 87% glycerol, 200 mM DTT,

0.04% bromphenol blue).

Protein extraction from tissues

Organs were extracted from mice and a small part was incubated in 1 ml organ

lysis buffer. The tissues were homogenized using an Ultra Turrax homogenizer

(IKA, Staufen, Germany). The homogenate was centrifuged at 17,000 xg for 60 min

at 4°C. Protein concentration of the cleared homogenate was determined using

a NanoDrop ND-1000 UV-Vis Spectrophotomoter (Thermo Fisher Scientific Inc.,



Materials and Methods 39

Schwerte, Germany) and adjusted to 10 µg/µl.

Protein extraction from cells

Cells were washed twice with PBS and scraped from the dish in an appropriate

amount of organ lysis buffer. Cells were homogenized using a Vibrax VWR ba-

sic (IKA, Staufen, Germany) at 1000 rpm for 20 min at 4°C. The homogenate was

centrifuged at 17,000 xg for 60 min at 4°C. Protein concentration of the cleared ho-

mogenate was determined using a NanoDrop ND-1000 UV-Vis Spectrophotomoter

(Thermo Fisher Scientific Inc., Schwerte, Germany) and adjusted to 10 µg/µl.

2.2.2 Western blot analysis

SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Isolated proteins were separated by size via SDS-PAGE. Resolving gels contained

10% acrylamide if not stated otherwise. Gel electrophoresis was carried out in SDS

running buffer (25 mM Tris, 200 mM glycine, 3.5 mM SDS) at 100 V for 2 h. 1.5 mm

gels were used and loaded with PageRuler Prestained Protein Ladder (Thermo

Fisher Scientific Inc., Schwerte, Germany) and 100 µg protein per sample.

Western blot

Proteins were blotted from polyacrylamide gels onto PVDF-membrane (Bio-Rad,

Munich, Germany) at 100 mA for 1 h. Membranes were blocked with 1% blocking

reagent (Roche, Mannheim, Germany) in TBS-T for 1 h at RT. Incubation with the

primary antibody in 0.5% blocking reagent was performed over night on a rotator

at 4°C. Membranes were washed thrice in TBS-T for 10 min at RT and subsequently

incubated with the appropriate secondary antibody in 0.5% blocking reagent for 1 h

at RT on a rotator. Membranes were washed thrice in TBS-T for 10 min at RT and

subsequently incubated in 10 ml Pierce ECL Western Blotting Substrate (Perbio Sci-

ence, Bonn, Germany) for 1 min at RT. Detection of luminescence was performed
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using Amersham Hyperfilm chemiluminescent film (GE Healthcare, Little Chal-

font, UK). Membrane stripping was done in stripping solution (65 mM Tris-HCl

pH 6.8, 2% SDS, 0.7% β-Mercaptoethanol) for 30 min at 56°C if indicated. Table 2.7

contains a list of all antibodies used.

Table 2.7: Antibodies for Western blot
Antibody Cat.No. Supplier

Monoclonal anti-α-Tubulin T6074 Sigma-Aldrich

phospho-STAT3 (Y705) (D3A7) XP Rabbit mAb 9145 Cell-Signaling

SOCS3 Antibody 2923 Cell-Signaling

α-Rabbit IgG (whole molecule) Peroxidase Conjugate A6154 Sigma-Aldrich

α-Mouse IgG (whole molecule) Peroxidase Conjugate A4416 Sigma-Aldrich

2.3 Molecular Biology

2.3.1 quantitative Real-Time PCR

Quantitative Real-Time PCR was performed with the QuantStudio™ 7 Flex Real-

Time PCR System (Applied Biosystems®, Foster City, USA).

mRNA isolation

mRNA from tissues and cells was isolated using the RNAeasy kit (Qiagen, Hilden,

Germany). Tissues were homogenized using an Ultra Turrax homogenizer (IKA,

Staufen, Germany), cells were homogenized with using QIAshredder columns (Qi-

agen). DNA was digested on-column with the RNase-Free DNase Set (Qiagen).

Instructions given by the manufacturer were followed for all kits. RNA concentra-

tion was assessed by measuring absorption at 260 and 280 nm using a NanoDrop

ND-1000 UV-Vis Spectrophotomoter (Thermo Fisher Scientific Inc., Schwerte, Ger-

many) and adjusted to 200 ng/µl.

cDNA synthesis and qPCR setup

1 µg RNA was was reversely transcribed with High-Capacity cDNA Reverse
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Transcription kit (Applied Biosystems, Foster City, USA) and amplified using Taq-

Man Gene Expression Master Mix with TaqMan Assay-on-demand kits (Applied

Biosystems) following the instructions given by the manufacturer. Realtime probes

used for gene expression analysis are listed in table 2.8. Relative expression was

determined for target mRNA and samples were adjusted for total mRNA content

by quantitative PCR for the housekeeping gene hypoxyanthine guanine phospho-

riboysl transferase (HPRT). Calculations were performed by comparative method

(2−∆∆CT ) [Livak & Schmittgen, 2001].

Table 2.8: Realtime Taqman probes
Symbol Transcript Name Probe

Ccl20 Chemokine (C-C motif) ligand 20 Mm01268754_m1

Cd4 Cluster of differentiation 4 Mm00442754_m1

Cd8a Cluster of differentiation 8 Mm01182107_g1

Csf1 Colony stimulating factor 1 Mm00432685_m1

Il17ra Interleukin-17 receptor A Mm00434214_m1

Il6ra Interleukin-6 receptor α chain Mm00439653_m1

Socs3 Suppressor of Cytokine Signaling 3 Mm00545913_s1

Tnfsf14 Tumor necrosis factor superfamily member 14 Mm00444567_m1

Hprt Hypoxanthin-phosphoribosyl-transferase Mm00446968_m1

2.3.2 Flow cytometry

Quantitative flow cytometry was performed either with the MACSQuant® VYB

and MACSQuant® Analyzer 10 flow cytometers (both by Miltenyi Biotech, Bergisch

Gladbach, Germany) or FACSCalibur™ (3.5, 3.6) flow cytometer (BD Bioscience,

Heidelberg, Germany). Cell sorting was done with the FACSVantage™ SE (3.8, 3.13)

or FACSAria™ II (3.9) cell sorters (both by BD Bioscience, Heidelberg, Germany).

Extracellular staining

Isolated non-parenchymal cells were treated with Trustain fcX™ for 15 min at

4°C. Cells were centrifuged at 400 xg for 5 min at 4°C. The pellet was resuspended

in 100 µl FACS-buffer with Trustain fcX™ and the appropriate antibody for extracel-
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lular staining (cf. table 2.9). Cells were stained for 30 min at 4°C, and the reaction

was stopped by adding 400 µl FACS-buffer. Cells were centrifuged at 400 xg for

5 min at 4°C and resuspended either in 200 µl FACS-buffer for analysis or 200 µl

fix-perm buffer for intracellular staining.

Intracellular staining

Cells were incubated in fix-perm (#00-5123, eBioscience) for 30 min at RT and

subsequently washed three times with 200 µl perm-buffer (#00-8333, eBioscience).

Staining with the appropriate antibody (cf. table 2.9) was performed in 50 µl

perm-buffer for 30 min at 4°C. Cells were washed twice in 200 µl perm-buffer

and resuspended in 200 µl FACS-buffer for immediate analysis or IC-fix (#00-8222,

eBioscience) for over night storage.

Table 2.9: Antibodies for FACS
Antibody Cat.-No. Supplier

Trustain fcX™ (anti-mouse CD16/32) 101320 Biolegend

APC anti-mouse NK-1.1 108709 BioLegend

Brilliant Violet 421™ anti-mouse CD3ε 100336 Biolegend

LIVE/DEAD® Fixable Aqua Dead Cell Stain Kit L34957 Applied Biosystems

FITC anti-mouse NK-1.1 108705 Biolegend

PE/Cy7 anti-mouse F4/80 123114 Biolegend

PE/Cy7 anti-mouse TCR β 109222 Biolegend

PE anti mouse/rat CD126 (IL-6Rα chain) 115805 BioLegend

PE-CF594 anti-mouse CD3ε 562332 BD Horizon™

Magnetic cell isolation and cell separation

T-cells were separated from other non-parenchymal cells by MACS separation

using CD90.2 microbeads (#130-049-101, Miltenyi Biotech) and LS columns (#130-

042-401, Miltenyi Biotech). Instructions by the manufacturer were followed.

Stimulation of Cytokine-production

Cytokine production of isolated T-cells was stimulated in vitro prior to intra-
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cellular staining. T-cells were resuspended in 2 ml stimulation medium (DMEM,

10% FCS, 50 mg/ml PMA, 500 ng/ml Ionomycin, 1 µl/ml GolgiPlug™), seeded on

a 6-well dish and incubated at 37°C for 6 h.

2.4 Animal handling

2.4.1 Animal care

Mice (Mus musculus, C57Bl/6N) were housed in a virus-free facility at 22-24°C

on a 12 h light / 12 h dark cycle. Animals were fed standard rodent chow (Teklad

Global Rodent 2018; 53.5% carbohydrates, 18.5% protein, 5.5% fat (12% calories

from fat); Harlan, IN, USA). All animals had access to water and food ad libi-

tum. Procedures and euthanasias were reviewed by the animal care committee,

approved by local government authorities (Tierschutzkommission acc. §15 TSchG

of the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen)

and were in accordance with NIH guidelines.

2.4.2 Genotyping

Isolation of genomic DNA

Mouse tail biopsies for genotyping were taken at weaning age (D18-D25) and

subsequently digested in 600 µl tail lysis buffer (100 mM Tris-HCl pH 8.5, 5 mM

EDTA pH 8.0, 0.2% SDS, 200 nM NaCl) containing proteinase K (1/100) at 56°C

over night. DNA was precipitated using 600 µl 100% isopropanol and centrifuga-

tion at 17,000 xg. Afterwards, DNA was washed with 500 µl 70% ethanol, cen-

trifuged at 17,000 xg and dried. The DNA pellet was resuspended in TE buffer (10

mM Tris-HCl pH 7.5, 1 mM EDTA) containing RNase A (1/1000).

Polymerase chain reaction

For genotypic analysis, polymerase chain reaction (PCR) was performed on tail

DNA using the primers given in table 2.10. For PCR DreamTaq PCR MasterMix and
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DNA polymerase (Fermentas/Fisher Scientific Germany GmbH, Schwerte, Ger-

many) was used. Standard PCR contained approx. 50 ng DNA, 25 pMol of each

primer, 25 µM dNTP mix and 1 unit DNA polymerase in a 25 µl reaction mix.

Table 2.10: Genotyping Primer
Mouse Line Primer Sequence 5’-3’

SOCS3-U 5SOCS3U1 TTTTCTCTGGGCGTCCTCCTAG

3SOCS3U2 AGCGCATCGCCTTCTATCGCC

5SOCS3U3 CTGGATCTGACATGGTAAGTAAGCTT

3SOCS3U4 CCGCACAGCGGCCGCTAC

3SOCS3U5 CAAGCGGCTTCGGCCAGTAAC

3SOCS3U6 AATTGTTCCAGGAACCAGGGC

5SOCS3U7 CCGCGATCAATTCGGTACCG

Alb-Dre 5Alb2 GAGTGTAGCAGAGAGGAACC

3Alb TGTTCTCCCAAATCATTATACCG

3Dre TACTCCCTAGCCATCTCAGGAGAGAT

Universal Dre DreSeqJ TGCTGTCTAGATCTGAGAGACT

Drerevneu GCGGTGGTCCTCCTAGAC

Universal Cre mom0137 CTGCAGTTCGATCACTGGAAC

mom0138 AAAGGCCTCTACAGTCTATAG

oIMR6694 TCCAATTTACTGACCGTACA

oIMR6695 TCCTGGCAGCGATCGCTATT

Rosa-RedTomato oIMR9020 AAGGGAGCTGCAGTGGAGTA

oIMR9021 CCGAAAATCTGTGGGAAGTC

oIMR9103 GGCATTAAAGCAGCGTATCC

oIMR9105 CTGTTCCTGTACGGCATGG

2.4.3 Mouse experiments

STAT3 signaling

STAT3 signaling was induced by i.p. injection of upstream ligands, where indi-

cated, at the following concentrations: 50 ng/g IL-6, 20 ng/g TNFα, 250 ng/g LPS.

Ligands were dissolved in PBS at a concentration corresponding to an injection

volume of 10 µl/g.
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DEN-injection

long-term chronic Diethylnitrosamin (DEN) injection of 25 mg/kg BW [2.5 mg/ml

H2O] was performed in male mice i.p. 14 days after birth. Treated animals were

sacrificed and their livers analyzed either 4 or 8 month post injection. short-term

acute DEN injection of 100 mg/kg BW [10 mg/ml H2O] was performed in male

mice i.p. 8-12 weeks after birth. Treated animals were sacrificed and their livers

analyzed 0, 1, 2, 3 or 10 days post injection.

AOM/DSS treatment

Mice were injected i.p. with 10 mg/kg BW [1 mg/ml PBS] azoxymethane (AOM)

and had their drinking water supplemented with 2.5% [w/v] dextransulfate for

5 days. Treated animals received pure drinking water for additional 3 days before

they were sacrificed and their colons analyzed.

Isolation and cell culture of primary hepatocytes

Mice were anesthetized and their liver perfused via vena cava with EBSS-perfusion

buffer (0.5 mM EGTA in EBSS) for 5 min, followed by perfusion with 50 ml EBSS-

collagenase buffer (10 mM HEPES, 15 mg Collagenase IV, 2 mg trypsin inhibitor in

EBSS). Afterwards, hepatocytes were released from cell association in 10 ml EBSS

and filtered through a 100 µm strainer. Cells were washed twice with hepatocyte

culture medium (Table 2.5). Cells were counted and an appropriate cell num-

ber, depending on the respecitve growth area, was seeded on collagen coated cul-

ture plates (BD Biocoat). Culture medium was changed after 4 hours. Cells were

kept in hepatocyte-medium for another 12 hours and then starved in hepatocyte-

fasting-medium for 4 hours. Hepatocytes were stimulated with 50 ng/ml IL-6 in

hepatocyte-fasting-medium for the indicated timepoints.

Isolation of non-parenchymal liver cells

Mice were sacrificed and their liver perfused with HBSS via vena cava. Liv-
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ers were incubated in 5 ml liver dissociation buffer (150 mM NaCl, 5.6 mM KCl,

5.5 mM Glucose, 20.1 mM HEPES, 25 mM NaHCO3, 2 mM CaCl2, 2 mM MgCl2,

500 U/ml collagenase IV, 150 U/ml DNAse I, pH 7.4), disrupted with the gentleMACS™

dissociator (Miltenyi Biotech, Bergisch Gladbach, Germany) and further incubated

at 37°C. Cells were filtered through a 100 µm strainer, and both the c-tube as well

as the strainer washed with PEB (0.5% BSA, 2 mM EDTA in PBS). The filtrate was

centrifuged at 50 xg, 4°C for 5 min and the supernatant, containing the NPC frac-

tion, filtered through a 40 µm strainer. The hepatocyte pellet was resuspended in

30 ml PEB, again centrifuged and the supernatant also filtered through the 40 µm

strainer. The filtrate was centrifuged at 350 xg, 4°C for 10 min and the NPC-pellet

resuspended in PEB up to a volume of 5 ml.

The NPC solution was mixed with 5 ml 40% Histodenz [w/v PBS] and 5 ml each

underlayed 5 ml PEB in a small falcon tube for gradient purification. The gradients

were centrifuged at 1500 xg, 4°C for 20 min without brake and the NPCs collected

from the interface. NPCs from both tubes were combined and diluted in PEB up

to a volume of 50 ml. Cells were centrifuged at 350 xg, 4°C for 10 min and the

NPC-pellet resuspended in FACS buffer (2% FCS, 2 mM EDTA in PBS).

2.5 Chemicals and Materials

Table 2.11: Chemicals
Chemical Supplier

β-mercaptoethanol Applichem, Darmstadt, Germany

Acrylamide Roth, Karlsruhe, Germany

Agarose Peqlab, Erlangen, Germany

Ammoniumpersulfat (APS) Sigma-Aldrich, Seelze, Germany

Bacillol Bode Chemie, Hamburg, Germany

Bovine serum albumin (BSA) Sigma-Aldrich, Seelze, Germany

Bromphenol blue Merck, Darmstadt, Germany

Desoxy-ribonucleotid-triphosphates (dNTPs) Amersham, Freiburg, Germany

Developer G153 AGFA, Mortsel, Belgium

DEPC Applichem, Darmstadt, Germany

Continued on next page
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Table 2.11 – continued from previous page

Chemical Supplier

Dimethylsulfoxide (DMSO) Merck, Darmstadt, Germany

Enhanced chemiluminescence (ECL) Kit Perbio Science, Bonn, Germany

Ethanol, absolute Applichem, Darmstadt, Germany

Ethidium bromide Sigma-Aldrich, Seelze, Germany

Ethylendiamine tetraacetate (EDTA) Applichem, Darmstadt, Germany

Fixer G354 AGFA, Mortsel, Belgium

Formamide Applichem, Darmstadt, Germany

Glycerol Serva, Heidelberg, Germany

Glycine Applichem, Darmstadt, Germany

GolgiPlug™ BD Biosciences

HEPES Applichem, Darmstadt, Germany

Hydrochloric acid (37%) KMF Laborchemie, Lohmar, Germany

Isopropanol (2-propanol) Roth, Karlsruhe, Germany

LB Applichem

Magnesium chloride Merck, Darmstadt, Germany

Methanol Roth, Karlsruhe, Germany

Nitrogen (liquid) Linde, Pullach, Germany

Paraformaldehyde (PFA) Sigma-Aldrich, Seelze, Germany

Phenol/Chloroform/Isoamylalkohol Roth, Karlsruhe, Germany

Phosphate buffered saline (PBS) Gibco BRL, Eggenstein, Germany

Potassium chloride Merck, Darmstadt, Germany

Potassium dihydrogenphosphat Merck, Darmstadt, Germany

Potassium hydroxide Merck, Darmstadt, Germany

Sodium acetate Applichem, Darmstadt, Germany

Sodium chloride Applichem, Darmstadt, Germany

Sodium citrate Merck, Darmstadt, Germany

Sodium dodecyl sulfate Applichem, Darmstadt, Germany

Sodium fluoride Merck, Darmstadt, Germany

Sodium hydrogen phosphate Merck, Darmstadt, Germany

Sodium hydroxide Applichem, Darmstadt, Germany

Sodium orthovanadate Sigma-Aldrich, Seelze, Germany

Sodium pyrophosphate Sigma-Aldrich, Seelze, Germany

Tetramethylethylenediamine (TEMED) Sigma-Aldrich, Seelze, Germany

Trishydroxymethylaminomethane (Tris) Applichem, Darmstadt, Germany

Triton X-100 Applichem, Darmstadt, Germany

Trizol Applichem, Darmstadt, Germany

Tween 20 Applichem, Darmstadt, Germany

Western Blocking Reagent Roche, Mannheim, Germany



3 Results

Inflammatory signaling comprises a plethora of metabolic processes. Its main

function lies in the defense against infections, but the immune system tries also

to counteract non-infectious burdens on the organism. The development of can-

cer heavily depends on the infiltration of immune cells into the tumor microenvi-

ronment. In case of so called inflammation-driven cancers, the secreted immune

factors, such as cytokines and chemokines, are even a prerequisite for the tumor

development. A low grade chronic inflammation has also been observed under

obese conditions, where white adipose tissue stress in turn attract immune cells to

this site.

3.1 Generation of a universal reporter tool for inflammatory

signaling

The suppressor of cytokine signaling 3 (SOCS3) gene is part of a negative feedback-

loop for numerous intracellular pathways, most prominently the JAK/STAT path-

way or NF-κB, and is strongly upregulated independent of the particular cause of

inflammation. Therefore the SOCS3 locus has been chosen to drive the SOCS3-U

allele, a reporter tool to visualize active inflammatory signaling.

3.1.1 Genetic features of SOCS3-U

The SOCS3 Universal Tumormicroenvironment Activation Measurement Allele

(SOCS3-UnTAMAble / SOCS3-U) is a versatile reporter tool to measure inflam-

matory signaling in vitro and in vivo. The activity of the allele is controlled by

a loxP-flanked neo-stop cassette and depends on Cre-mediated recombination,
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Figure 3.1: SOCS3-U multi-recombinase reporter allele
Activity of the SOCS3-U allele is controlled by a loxP-flanked neo-stop cassette.
The rox-flanked endogenous SOCS3 CDS can be excised by Dre, and the IRES-
GFP reporter can be switched to firefly luciferase expression by FLP-mediated
recombination.

which not only terminated transcription, but also serves as a survival signal as

it provides resistance against G418. Once active, the reporter allele utilizes the

endogenous SOCS3 promoter to drive compound expression of SOCS3 and IRES-

GFP. The SOCS3 coding sequence (CDS) is flanked by rox-sites and can be excised

by Dre-mediated recombination, yielding a functional knock-out of SOCS3 in Dre-

expressing tissues. After Dre-mediated recombination, the reporter allele can be

modified by FLP-mediated recombination to switch from IRES-GFP to express fire-

fly luciferase, enabling the visualization of SOCS3 activity in vivo in a non-invasive

manner (Fig. 3.1).

3.1.2 SOCS3-U targeting vector generation

For the generation of the SOCS3-U targeting vector, existing genetic tools avail-

able in our lab could be used. The common Stop-eGFP-ROSA-CAGs [SERCA,

Klisch, 2006] plasmid contains a loxp-flanked neo-stop cassette, followed by an

IRES-GFP reporter cassette flanked by FRT sites in tandem orientation. In a first

step, SOCS3 CDS was amplified by PCR from genomic DNA. Rox-sites for Dre-

mediated recombination are small enough to be introduced into the PCR amplicon

as primer overhangs. The rox-SOCS3-rox amplicon was digested with MluI re-

striction enzyme and ligated between the loxP-flanked stop cassette and the IRES-

GFP reporter cassette into the AscI-digested SERCA plasmid. The complete loxP-

neo/stop-loxP-rox-SOCS3-rox-frt-IRES-GFP-frt fragment was subsequently excised

from the SERCA backbone with an NheI/EcoRV double digest and ligated into the

GK12TK plasmid () backbone, cut with AvrII and PmeI. The left arm of homology
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(LAH), necessary for targeting of the SOCS3 locus, was amplified by PCR from ge-

nomic DNA, digested with PvuI and PacI and inserted into the PacI restriction site

in front of the loxP-flanked neo/stop cassette. The right arm of homology (RAH)

for the SOCS3 was amplified by PCR from genomic DNA and the firefly luciferase

CDS was amplified via PCR from the pTE-Luc plasmid (). The luciferase amplicon

contained a FRT site at the 5’ end, introduced as a primer overhang, and was lig-

ated as a reverse complement in front of the RAH into the pGEM-T-Easy cloning

vector with AscI/SwaI double digest. The resulting luciferase-frt–RAH fragment

was cut from the pGEM-T-Easy backbone via AgeI restriction digest and ligated at

the 3’ end of targeting construct into the GK12TK plasmid.

The SOCS3-U allele was targeted into the SOCS3 locus, which consists of two

exons. Exon 1 and the first 88 nucleotides of exon 2 form the 5’UTR. The coding

sequence of SOCS3 is located within exon 2, followed by a 3’UTR (Fig. 3.2a). A

targeting vector flanked by 5 kb homologous regions (LAH and RAH, respectively)

was constructed, ensuring the correct targeting to the endogenous SOCS3 locus. To

prevent random integration of the construct into the mouse genome, the targeting

construct contains the negative selection marker herpes-simplex-virus thymidine

kinase (HSV Tk) cassette besides the homologous regions (Fig. 3.2b). Upon ran-

dom integration of HSK Tk, cells will also contain and express the viral thymidine

kinase, which renders them susceptible to ganciclovir treatment. Correctly targeted

cells only contain the region between the homologous regions and are therefore re-

sistant to G418 and ganciclovir. Southern blot analysis can be performed to identify

correctly targeted ES cells. Integration of the SOCS3-U allele introduces additional

EcoRV restriction sites, yielding two smaller fragments (9 & 9.7 kb for probes LA1

and RA1 respectively) compared to the 17.9 kb wt fragment (Fig. 3.2c).

3.1.3 Successful targeting of the endogenous SOCS3 locus

107 Bruce4 C57BL/6 ES cells [Köntgen et al., 1993] were transfected with 40 µg

AsiSI-linearized SOCS3-U targeting construct and subsequently selected for G418
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Figure 3.2: SOCS3-U targeting construct is targeted to the murine SOCS3 locus
(a) The murine SOCS3 locus comprises 2 exons, with exon 1 and the first
88 nucleotides of exon 2 forming the 5’UTR, and a 1.5 kb 3’UTR. The coding
sequence, depicted in black, lies completely within exon 2. (b) Correct targeting
of the targeting construct was assured by 5 kb homologous regions with the
targeted locus (LAH and RAH respectively). The targeting construct contains a
loxP flanked neo-stop cassette, the rox-flanked endogenous SOCS3 exon 2 and
a FRT-flanked IRES-driven eGFP / firefly luciferase double reporter. Random,
non-homologous recombination of the construct was inhibited by the HSV TK
cassette outside the homologous regions of the targeting construct. (c) Integra-
tion of the targeting construct into the murine SOCS3 locus could be verified
by Southern blot analysis. Integration of the targeting construct introduces ad-
ditional EcoRV restriction sites, yielding two smaller fragments (9 & 9.7 kb for
probes LA1 and RA1 respectively) compared to the 17.9 kb wt fragment, or a
6.1 kb fragment for the neo-probe, hybridizing with the neomycin resistance
cassette.

resistance for 10 days. 800 ES cell clones were isolated, expanded and analyzed

for correct integration of the SOCS3-U knock-in allele into the endogenous SOCS3

locus via Southern blot analysis. Southern-blot analyses of EcoRV-digested clonal

DNA using both LA1 and RA1 probes on ES cell clones identified 3H2 and 8A10 as

these clones showed the expected transgenic bands (9 & 9.7 kb for probes LA1 and

RA1 respectively) besides the 17.9 kb wt band, confirming successful, heterozygous
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Figure 3.3: Successful targeting of ES cells with SOCS3-U
Southern blot analysis of transfected ES cells. Genomic DNA was isolated from
ES cell clones and digested with EcoRV. 32P radioactively labeled DNA probes,
5’ LA1 probe and 3’ RA1 probe respectively, were used to differentiate wt and
targeted ES cells. Labeling of DNA from ES cell clones 3H2 and 8A10 gave
rise both to the 17.9 kb wt band as well as the 9 kb and 9.7 kb targeted bands.
(cf. Fig. 3.2)

targeting of ES cells with the SOCS3 U targeting construct (not shown). Correctly

targeted 3H2 and 8A10 ES-cell clones were expanded and subjected to in depth

Southern-Blot analysis, confirming that both clones show the expected, additional

9 & 9.7 kb bands (Fig. 3.3). ES cells from the 3H2 and 8A10 clones were injected into

C.B20 blastocysts to obtain chimeras of SOCS3-Ufl;rox;frt-GFP/wt mice. 3 chimeras were

derived from the 3H2 clone, but displayed only very weak chimerism (5%, 5% and

20%), while 4 chimeras derived from the 8A10 clone exhibited higher chimerism

(50%, 55%, 75% and 85%). Only the 75% chimera derived from the 8A10 clone

transmitted the SOCS3-U allele through the germline, successfully establishing the

SOCS3-U mouse line.

Collectively, we have successfully generated the SOCS3-U targeting vector, tar-

geted ES-cells and SOCS3-U mice.

3.2 SOCS3-U variants to analyze inflammatory signaling

The SOCS3-U allele is present in three variants for analytic purposes. The

parental SOCS3-Ufl;rox;frt-GFP variant represents the inactivated state. This allele

functions as a knock-out-first allele, since expression of the endogenous SOCS3

CDS is inhibited by the floxed neo-stop cassette (Fig. 3.4a). Since a whole-body
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Figure 3.4: SOCS3-U variants before and after site-specific recombination
(a) The basic SOCS3-Ufl;rox;frt-GFP allele does neither express SOCS3, nor any of
the reporter genes. (b) After Cre-mediated recombination, SOCS3-U∆;rox;frt-GFP

expresses SOCS3 and an IRES driven GFP in the given target tissues. (c) Via Dre-
and FLP-mediated recombination, the SOCS3-Ufl;∆;frt-Luc allele does no longer
express SOCS3, but utilizes the SOCS3 promoter to drive expression of firefly
luciferase. The allele still has to be activated by Cre-mediated recombination.

SOCS3 ablation is embryonic lethal [Roberts et al., 2001], the basic allele can only

be kept heterozygous in SOCS3-Ufl;rox;frt-GFP/wt mice. Cre-mediated recombination

will yield the SOCS3-U∆;rox;frt-GFP variant and re-enable the expression of SOCS3, as

well as of IRES-GFP (Fig. 3.4b). Homozygous SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP mice

can therefore be crossed to Dre-driver lines, thus generating tissue-specific SOCS3

knock-outs. For non-invasive in vivo imaging, FLP-mediated recombination can

be used on Dre-deleted SOCS3-Ufl;∆;FRT-GFP allele to generate the SOCS3-Ufl;∆;frt-Luc

variant (Fig. 3.4c). After subsequent Cre-mediated activation, firefly luciferase can

be expressed from the endogenous SOCS3 promoter. D-luciferin can be injected i.p.

and will be oxidized by luciferase in an ATP-dependent manner. The invested en-

ergy is released as bioluminescence upon decay of the formerly oxidized product.

Thus, these SOCS3-U variants will help to characterize inflammatory signaling in

the tumor microenvironment in different ways.
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3.3 SOCS3-U can successfully be utilized in vivo

With generation of SOCS3-U mice, the ability to be activated in vivo and an

exclusion of a potential phenotype of unactivated SOCS3-Ufl;rox;frt-GFP/wt mice had

to be investigated.

3.3.1 Cre-activated SOCS3-U cells express GFP upon stimulation

In order to assess the ability of SOCS3-U to express GFP upon stimulation of

SOCS3, SOCS3-U 8A10 ES cells were transfected with pPGK-Cre-bpA plasmid

[Kurt Fellenberg, University of Cologne]. 200 clones were picked and successful

Cre-mediated excision of the loxP-flanked stop cassette was assessed by South-

ern blot analyses. ES cell clone H2 contained the Cre-excised SOCS3-U allele

(Fig. 3.5b). H2 cells were expanded and stimulated with LIF, LPS, or IL-6 for 24h.

FACS quantification of stimulated SOCS3-U ES cells confirmed SOCS3 dependent

GFP activity upon stimulation, though to a low extent (Fig. 3.5c).

To verify whether SOCS3-U can be activated by Cre-mediated recombination

in vivo, SOCS3-Ufl;rox;frt-GFP/wt mice were crossed to Cre-deleter mice [Schwenk et al.,

1995] in order to activate SOCS3-U in the whole body (SOCS3-U∆;rox;FRT-GFP/wt).

Peritoneal macrophages and splenocytes were isolated and stimulated ex vivo with

LPS, IL-6, IL-11 or TNFα for 24h. Stimulated macrophages exhibit increasing GFP

fluorescence with IL-6, IL-11 and TNFα compared to LPS-stimulated cells or un-

stimulated macrophages (Fig. 3.6a). In contrast, splenocytes display similar levels

of enhanced GFP fluorescence upon stimulation with LPS, IL-11, TNFα and IL-6

when compared to unstimulated splenocytes (Fig. 3.6b).

Taken together, these experiments demonstrates that the SOCS3-U allele works

in vitro and ex vivo, though to minor effect under these conditions in vivo.

3.3.2 Wild-type like inflammation in SOCS3-Ufl;rox;frt-GFP/wt mice

The SOCS3-U allele is conditionally activated to utilize the GFP or luciferase

reporter as specifically as possible, i.e. either with spatial or temporal con-
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Figure 3.5: GFP fluorescence of SOCS3-U ES cells after Cre activation
(a) Genomic DNA of transfected 8A10 ES cells was isolated and digested with
NsiI and analyzed with the RA1 probe, yielding an 11.3 kb fragment for the
wt SOCS3 allele, a 17.9 kb fragment for the targeted SOCS3-U allele and an
15.5 kb fragment after Cre-mediated activation. (b) ES cell clone H2 shows the
correct 15.5 kb band for Cre-mediated active SOCS3-U. (c) Stimulation with LIF
[4x104 U], LPS [500 ng/ml] and IL-6 [30 ng/ml] upregulated GFP expression
compared to unstimulated SOCS3-U control cells.

trol or a combination of both. Hence, off-target tissues will retain the basic

SOCS3-Ufl;rox;frt-GFP allele, rendering them heterozygous SOCS3 knock-outs. In

order to address, whether a heterozygous SOCS3 knock-out affects the dura-

tion or severity or inflammatory signaling, primary hepatocytes from either wt

or SOCS3-Ufl;rox;frt-GFP/wt mice were isolated and 2x105 stimulated in vitro with

50 ng/ml IL-6 for 0, 15, 30, 60 or 120 min. IL-6 signaling both in wt and

SOCS3-Ufl;rox;frt-GFP/wt mice leads to phosphorylation of STAT3 (pSTAT3) already

after 15 min (Fig. 3.7a). SOCS3 protein levels begin to increase 30 min after IL-6
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Figure 3.6: Isolated cells from SOCS3-U mice express GFP upon stimulation
(a) Peritoneal macrophages and (b) splenocytes from SOCS3-U∆;rox;FRT-GFP/wt

mice were isolated and stimulated ex vivo with LPS [500 ng/ml], IL-6
[100 ng/ml], IL-11 [100 ng/ml] or TNFα [20 ng/ml]. GFP fluorescence was
analyzed by FACS quantification.

stimulation, where also the highest pSTAT3 levels are detected. SOCS3 activity

subsequently blocks IL-6 downstream signaling, consistently decreasing pSTAT3

levels 60 and 120 min after stimulation. Furthermore, Analyzation of SOCS3

mRNA expression 0, 15 and 120 min after IL-6 stimulation from isolated control

as well as SOCS3-Ufl;rox;frt-GFP primary hepatocyte RNA showed no differences in

SOCS3 mRNA upregulation between wt and SOCS3-Ufl;rox;frt-GFP primary hepato-

cytes (Fig. 3.7b).

Importantly, a heterozygous SOCS3 knock-out in primary hepatocytes from

SOCS3-Ufl;rox;frt-GFP/wt mice has no effect on the dynamics of IL-6 signaling in vitro.

Thus, utilization of SOCS3-Ufl;rox;frt-GFP/wt mice in combination with tissue-specific

Cre-driver lines to active SOCS3-U has no detrimental effect on inflammatory sig-

naling, at least in hepatocytes, and can be used as GFP or luciferase reporters.

However, no SOCS3-Ufl;∆;frt-Luc/wt animals to analzyse SOCS3-U driven luciferase

expression could be obtained so far.

3.4 Contribution of macrophages to AOM/DSS induced CRC

Colorectal cancer (CRC) formation is a classic case of inflammation associated
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Figure 3.7: Unaltered SOCS3 expression in SOCS3-Ufl;rox;frt-GFP/wt hepatocyes
(a) Western-blot analyses of primary hepatocytes isolated from wt or
SOCS3-Ufl;rox;frt-GFP/wt mice using pSTAT3, Tubulin and SOCS3 antibod-
ies. Primary hepatocytes were stimulated with 50 ng/ml IL-6 for
0, 15, 30, 60 or 120 min. (b) RNA was isolated from wt or SOCS3-Ufl;rox;frt-GFP/wt

primary hepaotcytes stimulated with 50 ng/ml IL-6 for 0, 15 or 120 min and
SOCS3 mRNA expression of was analyzed by qPCR. Displayed are means ±
SEM, n=3.

cancerogenesis, where inflammatory bowel disease severely increases the risk of tu-

morigenesis. A persistent colitis increases the inflammatory tone in the colon, pro-

moting the uncontrolled growth of intestinal epithelial cells to form polyps which

can eventually transform into colorectal cancer. While the initial cause for the in-

creased inflammation may have numerous reasons, the succession of immune cells

infiltrating the inflamed tissue and their contribution to colorectal cancer formation

remains to be elucidated.

3.4.1 IL-6 mediated colorectal cancer formation

Previous data from our lab indicate that IL-6Rα ablation has a protective effect

on colorectal cancer formation, in that IL-6Rα deficient mice (IL-6Rα∆/∆) exhibit

reduced AOM/DSS induced tumors [Claudia Wunderlich, University of Cologne].

A microarray analyses of these IL-6Rα deficient vs. proficient tumors revealed

decreased levels of CCL20 (chemokine ligand 20), CCR6 (chemokine receptor 6)

and various lymphocyte markers in IL-6Rα∆/∆ tumors. CCL20 is a lymphocyte

attracting chemokine [Hieshima et al., 1997] and signals via CCR6 on target cells

[Baba et al., 1997]. This observation suggests an IL-6 dependent mechanism of

CCL20 expression, attracting lymphocytes to the colon to promote colorectal cancer
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formation.

Abrogation of IL-6 signaling in myeloid cells severely diminishes their ca-

pability of differentiating into alternatively activated towards M2 macrophages

[Mauer et al., 2014]. As IL-6Rα∆/∆ mice exhibit no M2 macrophages and re-

duced CCL20 expression, this led to the hypothesis that M2 macrophages dur-

ing colitis attract lymphocytes to the colon, thereby promoting colorectal can-

cer formation. In order to shed light on the macrophage subpopulations and

their contribution to colorectal cancerogenesis, SOCS3-Ufl;rox;frt-GFP/wt mice were

crossed to LysM-Cretg/wt mice [Clausen et al., 1999]. Furthermore, double-

positives were subsequently crossed toR26-fl-tdTomatofl/fl mice [Madisen et al.,

2010] to control for Cre-mediated recombination by red fluorescence. The result-

ing SOCS3-Ufl;rox;frt-GFP/wt;R26-fl-tdTomatofl/wt;LysM-Cretg/wt mice were subjected to

AOM/DSS treatment to recapitulate the early stage of acute colitis as a driving

force for CRC development. SOCS3-Ufl;rox;frt-GFP/wt;R26-fl-tdTomatofl/wt;LysM-Cretg/wt

mice will express the red fluorescent tdTomato protein in all myeloid lineage de-

rived cells, and express GFP in a SOCS3 dependent manner.

3.4.2 SOCS3low M2 macrophages express CCL20 and IL-17RA

After AOM injection, 5 days of DSS treatment and 3 days recovery phase,

macrophages were isolated from the colon and subjected to fluorescence acti-

vated cell sorting. Untreated control animals exhibit a small cohort of red fluo-

rescent tdTomatohigh;GFPlow macrophages, and virtually no tdTomatohigh;GFPhigh

macrophages (Fig. 3.8a). AOM/DSS treatment strongly increases the amount

of macrophages in the colon, both of the tdTomatohigh;GFPlow type as well as

tdTomatohigh;GFPhigh macrophages (Fig. 3.8b). To investigate which if those macro-

phages express CCL20, RNA from sorted macrophages was isolated and the

expression level of CCL20 mRNA was analyzed by qPCR (Fig. 3.8c). Expres-

sion of CCL20 in tdTomatohigh;GFPlow macrophages upon AOM/DSS treatment

is significantly upregulated 6-fold compared to untreated tdTomatohigh;GFPlow



Results 59

0

2

4

6

8

10

C
C

L
2
0
 m

R
N

A
 e

x
p
re

s
s
io

n
[fo

ld
 c

h
a
n
g
e
 r

e
l. 

to
 u

n
tr

e
a
te

d
 M

a
c
ro

p
h
a
g
e
s
]

tdTomatohigh;GFPlow

tdTomatohigh;GFPhigh

untreated AOM/DSS treated

*
**

0

2

4

6

8

IL
-1

7
R
α

 m
R

N
A

 e
x
p
re

s
s
io

n
[fo

ld
 c

h
a
n
g
e
 r

e
l. 

to
 u

n
tr

e
a
te

d
 M

a
c
ro

p
h
a
g
e
s
]

tdTomatohigh;GFPlow

tdTomatohigh;GFPhigh

untreated AOM/DSS treated

p = 0.06p = 0.09

0

1

2

3

IL
-6

R
α

 m
R

N
A

 e
x
p
re

s
s
io

n
[fo

ld
 c

h
a
n
g
e
 r

e
l. 

to
 u

n
tr

e
a
te

d
 M

a
c
ro

p
h
a
g
e
s
]

tdTomatohigh;GFPlow

tdTomatohigh;GFPhigh

untreated AOM/DSS treated

p = 0.1

a

b

c

d

e

FL1:: SOCS3-GFP

FL1:: SOCS3-GFP

F
L

5
::
 t

d
T
o

m
a
to

F
L

5
::
 t
d

T
o
m

a
to

Figure 3.8: SOCS3low M2 macrophages express CCL20 upon AOM/DSS treatment
Representative FACS blots of macrophages isolated from colons of
SOCS3-Ufl;rox;frt-GFP/wt;R26-fl-tdTomatofl/wt;LysM-Cretg/wt mice either (a) untreated
or (b) treated with AOM/DSS for 5 days. Macrophages were sorted for
tdTomatohigh;GFPlow (red square) and tdTomatohigh;GFPhigh (green square) sub-
populations. RNA from sorted cells was isolated and the expression level of (c)
CCL20, (d) IL-17RA and (e) IL-6Rα mRNA was analyzed by qPCR. Displayed
are means ± SEM, n=4. * p 5 0.05

macrophages. Moreover, CCL20 expression is also significantly higher than in

tdTomatohigh;GFPhigh macrophages, which exhibit only a 2.5 fold upregulation

from the untreated controls. Furthermore, tdTomatohigh;GFPlow macrophages have

4-fold upregulated IL-17 receptor (IL-17RA) expression compared to untreated

macrophages (Fig. 3.8d). IL-17 producing TH17 cells are known to massively in-

filtrate inflamed intestines [Gálvez, 2014]. Lastly, only tdTomatohigh;GFPlow macro-

phages express IL-6Rα and not tdTomatohigh;GFPhigh macrophages (Fig. 3.8e). Cell

numbers of untreated tdTomatohigh;GFPhigh macrophages were too low to analyze

mRNA expression.

Taken together, SOCS3low M2-like tumor associated macrophages (TAMs) ex-

press significantly higher levels of CCL20 and IL-17RA upon AOM/DSS treatment

than SOCS3high M1-like macrophages. Additionally, SOCS3high M1-like macro-

phages do not express IL-6Rα, consistent with the CCL20 expression profile upon

IL-6Rα ablation. These date confirm a distinct influence of M2 TAMs on CRC de-
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velopment and raise the possibility of an IL-17 mediated activity upon increased

inflammation in the colon.

3.5 Investigating macrophage subpopulations in DEN-induced

HCC

Hepatocellular carcinoma development is a classical inflammation associated

cancer that can be experimentally elicited by injection of diethylnitrosamin (DEN)

into 12-15 days old male mice [Vesselinovitch & Mihailovich, 1983]; DEN treated

mice show hepatocellular carcinoma after 8 months.

The impact of Kupffer cell derived cytokines on tumor progression has

been suggested but still remains to be proven [Naugler et al., 2007].

SOCS3-Ufl;rox;frt-GFP/wt;R26-fl-tdTomatofl/wt;LysM-Cretg/wt mice were subjected to the

chronic DEN HCC model, in order to elucidate the contribution of the various

macrophage subpopulations, namely liver resident Kupffer cells, classically acti-

vated M1 macrophages and alternatively activated M2 macrophages, to hepato-

cellular carcinogenesis. SOCS3-Ufl;rox;frt-GFP/wt;R26-fl-tdTomatofl/wt;LysM-Cretg/wt mice

will express the red fluorescent tdTomato protein in all myeloid lineage derived

cells, and additionally express GFP in a SOCS3 dependent manner. Kupffer cells

are not affected by LysM-Cre [Hume, 2011] and therefore express neither tdTomato

nor GFP, but classic macrophage markers such as F4/80 [Austyn & Gordon, 1981].

SOCS3-Ufl;rox;frt-GFP/wt;R26-fl-tdTomatofl/wt;LysM-Cretg/wt mice were sacrificed af-

ter 8 months and non-parenchymal liver cells were isolated and labeled

with an α-F4/80-PE/Cy7 antibody. Fluorescenctly labeled cells could

be sorted into three distinct subpopulations, namely tdTomatolow;F4/80high

Kupffer cells, tdTomatohigh;GFPlow alternatively activated macrophages and

tdTomatohigh;GFPhigh classically activated macrophages (Fig. 3.9a,b). Deter-

mination of the cell numbers revealed around 30% of all non-parenchymal

liver cells to be tdTomato expressing macrophages and approximately 5% be-
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Figure 3.9: SOCS3-U labels activated macrophages in DEN-induced HCC
Representative FACS blots of non-parenchymal liver cells isolated from three
SOCS3-Ufl;rox;frt-GFP/wt;R26-fl-tdTomatofl/wt;LysM-Cretg/wt mice, labeled with an
α-F4/80-PE/Cy7 antibody. (a) tdTomatolow;F4/80high cells were sorted from
tdTomatohigh;F4/80high cells. (b) Cells were further divided into SOCS3-U
dependent GFPhigh and GFPlow cells. Quantification of cell numbers for
tdTomatohigh;GFPlow, tdTomatohigh;GFPhigh and tdTomatolow;F4/80high cells
in (c) absolute cell numbers sorted or as (d) relative cell counts of all
non-parenchymal cells in percent. Displayed are means ± SEM, n=8 for (c)
and n=3 for (d).

ing Kupffer cells (Fig. 3.9d). On average, around 4.8x104 of macrophages

sorted were tdTomatohigh;GFPlow alternatively activated macrophages, 1.2x104

were tdTomatohigh;GFPhigh classically activated macrophages and 5x103 were

tdTomatolow;F4/80high Kupffer cells (Fig. 3.9c).

Collectively, application of SOCS3-Ufl;rox;frt-GFP/wt;R26-fl-tdTomatofl/wt;LysM-Cretg/wt
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mice in the DEN-induced HCC model enables the separation of infiltrating M1

macrophages from M2 macrophages as well as Kupffer cells. These respective

macrophage subpopulations can then be subjected to further in depth analysis,

e.g. transcriptome sequencing, to address their contribution to DEN-induced HCC

development.

3.6 Activation of T-cells in the tumor microenvironment of

HCC

Hepatocellular carcinoma is one of the most common cancers and has a very

high mortality rate of around 95%. HCC develops predominantly from cirrhosis

after hepatitis virus B or C infection, but it is also strongly driven by excessive alco-

hol consumption or non-alcoholic steatohepatitis (NASH). Similar to a hepatic viral

infection, NASH causes enhanced inflammation in the liver, which is the common

driver for HCC initiation. Consistently, infiltration and activation of immune cells

into the steatotic liver could be observed in a mouse model of a choline deficient

high fat diet (CD-HFD), recapitulating clinical observations of choline deficiency

in NASH patients [Wolf et al., 2014]. Furthermore, hepatic lipid uptake, and ul-

timately the transition from NASH to HCC, could be linked to LIGHT (TNFsf14,

tumor necrosis factor ligand superfamily member 14) secretion from NK-T cells.

3.6.1 IL-6 dependent modification of LIGHT expression

Our previous data demonstrated that the protective effect of a whole body IL-6Rα

deficiency (IL-6Rα∆/∆) was abrogated under obese conditions [Gruber et al., 2013].

Interestingly, IL-6Rα deficiency specifically in T-cells (IL-6RαT-KO) protects from

HCC development in lean animals and even during obesity [Gruber, 2013]. Fur-

thermore, IL-6Rα deficiency in hepatocytes showed unaltered HCC development,

indicating that IL-6 signaling on T-cells is critical for HCC development. Together

with the experiments by Wolf et al. we hypothesize that IL-6 induces LIGHT ex-
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Figure 3.10: IL-6 signaling induces hepatic LIGHT mRNA expression
(a) 5000 bp LIGHT promoter analysis with STAT binding sites [MatInspector,
Genomatix, Munich, Germany]. (b) LIGHT mRNA expression in the liver at
indicated timepoints after IL-6 stimulation. Displayed are means ± SEM, n=8.
** p 5 0.01 [data produced with Peter Ströhle]

pression to promote hepatic lipid uptake and progression from NASH to HCC,

corroborated by an analysis of the LIGHT promoter, revealing 30 STAT regulatory

binding sites 5000 bp upstream of the transcription start (Fig. 3.10a). To investigate

this, control mice were injected with IL-6 [50 ng/g] i.p. and hepatic LIGHT expres-

sion was analyzed after 30, 60, 120 and 240 minutes in order to address, whether

expression of LIGHT is regulated by IL-6 signaling. Stimulation with IL-6 leads

to a 1.5 fold induction of hepatic LIGHT mRNA expression already after 30 min,

reaching significance after 60 min with a 2.5 fold induction and peaking with a

3-fold upregulation after 2h (Fig. 3.10b). This clearly demonstrates that LIGHT

mRNA expression in the liver is affected by IL-6 signaling.

To shed light on the contribution of IL-6 signaling on hepatic LIGHT mRNA

expression in the tumor initiating phase of DEN-induced HCC development,

IL-6Rαfl/fl, IL-6Rα∆/∆ and IL-6RαT-KO mice were subjected to the acute DEN model

and LIGHT mRNA expression was analyzed after 1, 2, 3 and 10 days in whole-

liver extracts by qPCR. It was already demonstrated that acute DEN treatment
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Figure 3.11: Alteration of LIGHT mRNA expression upon DEN stimulation
LIGHT mRNA expression in the liver of IL-6Rαfl/fl, IL-6Rα∆/∆ and IL-6RαT-KO

mice at indicated timepoints after DEN treatment. Displayed are means ±
SEM, n=8. *** p 5 0.001 [data produced with Sabine Gruber]

stimulates IL-6 release into the blood stream, peaking after 8 hours with a 4 fold

concentration and returning to baseline levels after 30 hours [Gruber et al., 2013].

Acute DEN treatment leads to significant LIGHT mRNA downregulation after 24h

both in IL-6Rαfl/fl and IL-6Rα∆/∆ animals as well as IL-6RαT-KO mice, persisting until

48h after DEN injection (Fig. 3.11). Subsequently, LIGHT mRNA expression is sig-

nificantly increased 72h after DEN treatment, with a 2 fold upregulation compared

to the basal state in IL-6Rαfl/fl and IL-6RαT-KO mice and up to 3 fold in IL-6Rα∆/∆

mice. LIGHT mRNA expression continues to be elevated and is still upregulated

1.5-2 fold in all genotypes after 10 days. Collectively, IL-6 signaling has an in-

hibitory effect on hepatic LIGHT mRNA expression in the first 48h after DEN

injection, recapitulating the early, tumor initiating phase of hepatocellular carcino-

genesis, followed by a significant induction of LIGHT mRNA expression.

Taken together, LIGHT expression is clearly affected by IL-6 signaling and al-

tered upon high-dose DEN injection, but with minor differences between presence

or absence of IL-6Rα, both in all cell types or only in T-cells. In line with these

experiments, Wolf et al. show that LIGHT in CD-HFD induced HCC was derived

from NK-T cells, which are a special T-cell subpopulation. Furthermore, we have

demonstrated earlier that only a marginal population of NK-T cells (i.e. 2%), the

source of LIGHT expression, do express IL-6Rα [Gruber, 2013]. However, with uti-
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Figure 3.12: Acute DEN elevates SOCS3-GFP expression
GFP fluorescence histograms of non-parenchymal liver cells isolated from
SOCS3-Ufl;rox;frt-GFP/wt;CD4-Cretg/wt mice. SOCS3-GFP intensity is displayed (a)
1 day after acute DEN treatment, (b) 2 days after treatment or (c) 3 days after
treatment compared to untreated control animals in gray.

lization of SOCS3-U reporter mice, active cell-type specific IL-6 signaling can be

visualized to gain further insight into the contribution of IL-6 signaling on NK-T

cells with respect to LIGHT mRNA expression.

3.6.2 Separation of NK-T cell subpopulations using SOCS3-U

In order to address, whether NK-T cells might be a driving force for hepatocel-

lular carcinoma initiation, SOCS3-Ufl;rox;frt-GFP/wt mice were crossed to CD4-Cretg/wt

[Lee et al., 2001] mice to express GFP in a SOCS3 dependent manner in all T-cell re-

ceptor α/β (TCRα/β) expressing T-cells. Acute DEN treatment for 1, 2 and 3 days

leads to an increasing GFP fluorescence intensity in isolated, non-parenchymal liver

cells (NPLCs) (Fig. 3.12). This demonstrates that SOCS3-Ufl;rox;frt-GFP/wt;CD4-Cretg/wt

mice can be utilized to identify lymphocyte subpopulations which are specifically

activated by IL-6 upon acute DEN treatment.

SOCS3-Ufl;rox;frt-GFP/wt;CD4-Cretg/wt mice were subjected to the acute DEN model

and their non-parenchymal liver cells were isolated 60h after injection, to elu-

cidate which cell subpopulation exhibits the strong LIGHT mRNA upregula-

tion oberserved in the liver (Fig. 3.11). 7⁄8 of the isolated non-parenchymal cells

were labeled with α-CD90.2-PE and α-NK1.1-PE/Cy5 antibodies for FACS sort-

ing (Fig. 3.13), and the remaining 1⁄8 was used for quantitative flow cytometry via
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Figure 3.13: Activation of NK-T cells in the liver upon 60h DEN treatment
Representative FACS blots of non-parenchymal liver cells isolated from
SOCS3-Ufl;rox;frt-GFP/wt;CD4-Cretg/wt mice, labeled with α-CD90.2-PE and
α-NK1.1-PE/Cy5 antibodies. (a) Cells were gated in R1 for lymphocytes and
in R2 for T-cells. Cells isolated 60h after treatment with DEN were gated in
R3 for NK1.1high;GFPlow and R4 for NK1.1high;GFPhigh cells. (b) Cells isolated
from untreated controls were gated in R3 for NK1.1high;GFPlow and in R4 for
NK1.1low;GFPlow cells. Quantification of cell numbers for NK1.1low;GFPlow,
NK1.1high;GFPlow and NK1.1high;GFPhigh cells in (c) absolute cell numbers
sorted or as (d) relative cell counts of all cells in R2 in percent. Displayed
are means ± SEM, n=5.

MACSQuant (cf. 3.6.4).

Labeled, non-parenchymal liver cells from DEN treated mice were gated for

CD90.2high T-cells and sorted into NK1.1high;GFPlow and NK1.1high;GFPhigh cells

(Fig. 3.13a). Isolated T-cells from untreated control animals showed almost

no NK1.1high;GFPhigh cells and were therefore sorted into NK1.1high;GFPlow and

NK1.1low;GFPlow cells (Fig. 3.13b). Quantification of sorted cells reveales around

45% of all liver T-cells in DEN treated mice to be NK-T cells, with 65% of



Results 67

them being GFPlow and 35% being GFPhigh NK-T cells (Fig. 3.13d). On aver-

age, 1x104 NK1.1low;GFPlow T-cells, 5x103 NK1.1high;GFPlow NK-T cells and 2.5x103

NK1.1high;GFPhigh NK-T cells were sorted and their RNA isolated for gene expres-

sion analysis.

3.6.3 IL-6 signaling in NK-T cells blocks LIGHT mRNA expression

Gene expression analysis via quantitative real-time PCR of NK1.1low;GFPlow

cells, NK1.1high;GFPlow cells and NK1.1high;GFPhigh cells reveals a highly signif-

icant downregulation of T-cell markers CD8 and CD4 in both NK1.1high;GFPlow

and NK1.1high;GFPhigh cells compared to NK1.1low;GFPlow cells, confirming that

NK1.1low;GFPlow cells are T-cells and the two NK1.1high populations are NK-T cells

(Fig. 3.14). Furthermore, gene expression analysis of IL-6Rα demonstrates that,

although only a very small subpopulation of NK-T cells express IL-6Rα in the

basal state (cf. 3.6.1), NK1.1high;GFPhigh, comprising around 35% of all NK-T cells

(Fig. 3.13d), have IL-6Rα significantly upregulated compared to NK1.1high;GFPlow

NK-T cells that show nearly undetectable levels of IL-6Rα expression. In con-

trast, NK1.1high;GFPlow NK-T cells exhibit a significant 2.5-fold LIGHT upregula-

tion compared to NK1.1low;GFPlow T-cells, whereas NK1.1high;GFPhigh NK-T cells

express only marginal LIGHT mRNA levels (Fig. 3.14).

Taken together, acute DEN treatment leads to a significant IL-6Rα upregulation

in about 35% of NK-T cells after 60h, while LIGHT mRNA expression is inhibited

in this NK-T cell subpopulation.

3.6.4 NK-T cells upregulate IL-6Rα upon acute DEN treatment

In order to verify the IL-6Rα upregulation in NK-T cells upon acute DEN

treatment, isolated, non-parenchymal liver cells from untreated and acute DEN

treated SOCS3-Ufl;rox;frt-GFP/wt;CD4-Cretg/wt mice were labeled with α-CD3-VioBlue,

α-IL-6Rα-PE and α-NK1.1-APC antibodies; dead cells were stained with the Aqua

dead cell stain kit and excluded.
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Figure 3.14: LIGHT is mainly expressed by NK-T cells lacking IL-6Rα
Quantitative real-time PCR analysis of sorted, non-parenchymal liver cells
isolated from SOCS3-Ufl;rox;frt-GFP/wt;CD4-Cretg/wt mice 60h after acute DEN
treatment. Gene expression is displayed as fold change compared to
NK1.1low;GFPlow cells as means ± SEM, n=5. *** p 5 0.001, ** p 5 0.01, * p 5 0.05

NPLCs were gated for CD3high;Aqualow alive T-cells (Fig. 3.15a,b), and no sig-

nificant differences were observed between untreated and DEN treated animals.

T-cells were subsequently analyzed for NK1.1 and IL-6Rα expression (Fig. 3.15c,d)

as well as SOCS3-U-dependent GFP expression (Fig. 3.15e). Whereas 50% of hep-

atic T-cells in untreated mice are NK1.1+;IL-6Rα- NK-T cells, acute DEN treatment

induces IL-6Rα expression in around 35% of NK-T cells (Fig. 3.15f), consistent with

appearance of GFP expression in these T-cells. Taken together, acute DEN treat-

ment induces a significant shift of the hepatic NK-T cell population towards IL-6Rα

expression and downstream signaling.

In a reverse assay, IL-6Rαfl/fl, IL-6RαT-KO and IL-6Rα∆/∆ mice were subjected to the

acute DEN model and NPLCs were isolated after 10 days. Isolated NPLCs were la-

beled with α-CD3-TexasRed, α-NK1.1-FITC, α-IL-6Rα-PE and α-TCRβ-PE/Cy7 an-

tibodies; dead cells were stained with the Aqua dead cell stain kit.

NPLCs were gated for alive, single-cell T-lymphocytes and analyzed for T-cells

and NK-T cells (Fig. 3.16a-c). IL-6Rαfl/fl, IL-6RαT-KO and IL-6Rα∆/∆ mice show

equal numbers of T-cells and NK-T cells, demonstrating that acute DEN treat-

ment does not affect the distribution of T-cell and NK-T cell populations in an
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Figure 3.15: NK-T cells upregulate IL-6Rα upon acute DEN treatment
Representative FACS blots of non-parenchymal liver cells isolated from un-
treated (in black) and DEN treated (in red) SOCS3-Ufl;rox;frt-GFP/wt;CD4-Cretg/wt

mice, labeled with α-CD3-VioBlue, α-IL-6Rα-PE, α-NK1.1-APC antibodies and
the aqua dead cell stain kit. Contour blots show (a,b) alive T-cells, ana-
lyzed for (c,d) NK1.1 and IL-6Rα expression. (e) SOCS3-GFP intensity of alive
T-cells is displayed as an histogram overlay analyses. (f) Quantification of
NK1.1+;IL-6Rα- NK-T cells in Q1 and NK1.1+;IL-6Rα+ NK-T cells in Q2 is dis-
played as means ± SEM, n=5. *** p 5 0.001, ** p 5 0.01

IL-6Rα-dependent manner. IL-6Rα expression analyses of gated NK-T cells how-

ever confirms that a NK-T cell subpopulation from IL-6Rαfl/fl mice expresses IL-6Rα,

which is not present in both in the whole body or T-cell specific IL-6Rα knock-outs

(Fig. 3.16d).

Collectively, while direct, i.p. injection of IL-6 induces acute, hepatic LIGHT

mRNA expression, acute DEN treatment first leads to downregulation of hepatic

LIGHT mRNA expression for 48 hours after injection, followed by a strong LIGHT

upregulation. Concomitantly, acute DEN treatment stimulates IL-6Rα expression

in an NK-T cell subpopulation. Interestingly, LIGHT expression is specifically up-

regulated in the remaining IL-6Rα- subpopulation, but downregulated in IL-6Rα+

cells. However, the exact connection between LIGHT inhibition and IL-6Rα upreg-
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Figure 3.16: Lack of NK1.1+;IL-6Rα+ NK-T cells in IL-6Rα deficient mice
Representative FACS blots of non-parenchymal liver cells isolated from
IL-6Rαfl/fl, IL-6RαT-KO and IL-6Rα∆/∆ mice, labeled with α-CD3-TexasRed,
α-NK1.1-FITC, α-IL-6Rα-PE and α-TCRβ-PE/Cy7 antibodies. Contour blots
show T-cells in Q1 and NK-T cells in Q2 from (a) IL-6Rαfl/fl, (b) IL-6RαT-KO and
(c) IL-6Rα∆/∆ mice. (d) IL-6Rα expression from Q2 NK-T cells is displayed as
an histogram overlay analyses, with the IL-6Rα positive subpopulation marked
by an arrowhead.

ulation still remains to be elucidated.

Moreover, our experiments also demonstrated that the protective effect of IL-6Rα

deficiencies on DEN-induced HCC can be pinpointed to NK-T cells. Only 35%

of those cells react to IL-6, as evidenced by IL-6Rα expression and subsequent

SOCS3-U-GFP expression. This specific NK-T cell subpopulation is of critical im-

portance for HCC development, and understanding the molecular mechanisms

how these cells promote HCC progression might lead to novel therapeutic ap-

proaches. Whether LIGHT is the effector molecule of this population remains elu-

sive.

3.7 Dre-mediated recombination in hepatocytes using AlbDre

mice

The SOCS3-U construct allows for the Dre-mediated excision of the SOCS3 CDS

from the activated SOCS3-U∆;rox;frt-GFP allele, in order to generate tissue specific

SOCS3 knock-outs. In order to analyze the function of SOCS3 in the liver, a hepato-

cyte specific Dre driver mouse line under control of the murine albumin promoter,

termed AlbDre, was generated. The albumin promoter has already been utilized

in generating the hepatocyte specific Cre driver line AlbCre [Postic et al., 1999].
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Figure 3.17: Alb BAC recombination to generate AlbDre mice
(a) Dre CDS and neomycin / kanamycin resistance cassette were amplified by
PCR, containing 50 bp homology arms to exon 2 of the albumin BAC. Suc-
cessful Red/ET recombination integrates the Dre CDS into exon 2, yielding
a 1050 bp PCR fragment opposed to the 850 bp wt fragment. EcoRV digest
for Southern-Blot analysis using the neo-probe hybridizing with the neomycin
resistance cassette gives rise to a 5.3 kb fragment. (b) PCR analysis to iden-
tify positive AlbDre constructs, displaying unmodified Alb BAC, recombined
AlbDre BAC and an AlbDre founder animal.

To generate transgenic AlbDre mice via BAC recombineering, a strategy was de-

veloped to integrate the Dre CDS and kanamycin resistance cassette into the BAC

RP23-301A23, containing the albumin ORF. To this end, the pBAD vector, carry-

ing the viral Redα and Redβ genes, was transformed into RP23-301A23 containing

E. coli. Subsequently, Dre CDS and kanamycin resistance cassette were amplified

by PCR from the pTE-Dre-neo/kana plasmid [provided by Tim Klöckener, Univer-

sity of Cologne], flanked by 50 bp 5’ and 3’ homologous regions to exon 2 of the

Alb gene, and the PCR product transformed into the E. coli carrying the albumin

BAC as well as pBAD plasmid. Successful homologous recombination with the

albumin BAC integrates the Dre CDS into exon 2 of the albumin BAC (Fig. 3.17a).

DNA from E. coli resistant to chloramphenicol (conveyed by the albumin BAC) and

kanamycin (conveyed by the kanamycin resistance cassette introduced by success-

ful recombineering) was isolated and subjected to PCR analysis to identify the wt

BAC by an 850 bp band or AlbDre BAC by a 1050 bp band (Fig. 3.17b). Correct

AlbDre BAC was purified, sequenced, linearized with PI-SceI and injected into the

male pronucleus of a fertilized oocyte to produce AlbDre founder animals. AlbDre

founder mice were crossed to SOCS3-Ufl;rox;frt-GFP/wt mice and their recombination

efficiency was determined by PCR and Southern-blot analyses.



Results 72

3.7.1 AlbDre recombines rox-sites specifically in hepatocytes

In order to address the functionality and tissue specificity of the albumin

driven Dre line, its ability to recombine the SOCS3-U allele was assessed.

To this end, SOCS3-Ufl;rox;frt-GFP/wt mice were crossed to AlbDretg/wt mice, with

SOCS3-Ufl;rox;frt-GFP/wt as controls. 12w old animals were sacrificed and genomic

DNA was extracted from numerous tissues to analyze Dre-mediated DNA re-

combination by PCR in the designated target tissue as well as off-target tissues

(Fig. 3.18a). Further genomic DNA was digested with EcoRV and subjected

to Southern-blot analysis. The rox-flanked SOCS3 coding sequence creates a

6.1 kb fragment, also harboring the neomycin resistance cassette and the IRES-GFP

(Fig. 3.2c). Dre-mediated recombination excises SOCS3 CDS and decreases the

detectable DNA fragment size to 5 kb. DNA fragments were labeled with a

DNA probe specific for the neomycin resistance cassette, which also detects the

neomycin/kanamycin resistance cassette in the AlbDre construct, where EcoRV di-

gest creates a 5.3 kb fragment (Fig. 3.17a). Dre-mediated recombination of SOCS3-U

was detected in hepatocytes with very high efficiency, whereas no recombination

occurred in other tissues such as brain, white adipose tissue and skeletal muscle or

in hepatocytes without Dre expression (Fig. 3.18b).

This confirms not only that the Dre recombinase is functional and exclusively

active in hepatocytes, but also that the SOCS3-U allele can be used with AlbDre to

produce a hepatocyte-specific SOCS3 knock-out mice.

3.7.2 Generating homozygous SOCS3L-KO mice using AlbDre

To produce hepatocyte-specific, homozygous SOCS3 knock-out (SOCS3L-KO)

mice, SOCS3-U∆;rox;frt-GFP/wt mice were crossed to SOCS3-U∆;rox;frt-GFP/wt;AlbDretg/wt

mice. To assess Dre-recombination efficiency, primary hepatocytes were isolated

from SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP and SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP;AlbDretg/wt

mice and 2x105 were stimulated in vitro with 50 ng/ml IL-6 for

0, 15, 30, 60 or 120 min.
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Figure 3.18: AlbDre is exclusively active in hepatocytes
(a) PCR analysis of isolated DNA from hepatocytes (H), brain (B), white adi-
pose tissue (W) and muscle (M) of either SOCS3-Ufl;rox;frt-GFP/wt;AlbDretg/wt or
SOCS3-Ufl;rox;frt-GFP/wt mice. Dre-mediated recombination decreases the frag-
ment size from 300 bp to 230 bp. (b) Southern-blot analysis of isolated DNA
to verify PCR genotyping. Isolated DNA was digested with EcoRV and hy-
bridized with the neoR probe. EcoRV digest of the SOCS3-U allele gives
rise to a 6.1 kb fragment (Fig. 3.2c). Dre-mediated recombination decreases
the fragment size to 5 kb. The 5 kb fragment only appears in hepatocytes
of SOCS3-Ufl;rox;frt-GFP/wt / AlbDretg/wt mice, neither in off-target tissues nor in
hepatocytes in the absence of AlbDre. The band between 6.1 kb and 5 kb is
derived from the AlbDre neomcin/kanamycin cassette, which also hybridizes
with the neomycin probe.

IL-6 stimulation leads to phosphorylation of STAT3 after 15 min

both in hepatocytes from SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP as well

as from SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP;AlbDretg/wt mice (Fig. 3.19a).

SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP;AlbDretg/wt hepatocytes display even higher pSTAT3

levels throughout the course of stimulation, indicating the absence of negative feed-

back inhibition by SOCS3 in these hepatocytes. Furthermore, though progression

of pSTAT3 and SOCS3 levels decrease over time in SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP

hepatocytes, phosphorylation of STAT3 in SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP;AlbDretg/wt

hepatocytes is persistently elevated even after 120 min. Consistently, SOCS3 pro-

tein levels are reduced in SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP;AlbDretg/wt hepatocytes

at all timepoints investigated. Moreover, analyzation of SOCS3 mRNA ex-

pression 0, 15 and 120 min after IL-6 stimulation from isolated wt as well as

SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP;AlbDretg/wt primary hepatocyte RNA demonstrates a

similar trend, but has to be repeated for several timepoints (Fig. 3.19b).

Taken together, recombination of rox-flanked SOCS3-U by AlbDre is occurring

at a high efficiency, as evident by the strong decrease of SOCS3 protein levels upon
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Figure 3.19: Prolonged pSTAT3 activity in SOCS3L-KO mice
(a) Western-blot analyses of primary hepatocytes isolated from
SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP or SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP;AlbDretg/wt

mice using pSTAT3, Tubulin and SOCS3 antibodies. Primary hepatocytes
were stimulated with 50 ng/ml IL-6 for 0, 15, 30, 60 or 120 min. (b) RNA
was isolated from wt or SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP;AlbDretg/wt primary
hepaotcytes stimulated with 50 ng/ml IL-6 for 0, 15 or 120 min and SOCS3
mRNA expression of was analyzed by qPCR. Displayed are means ± SEM,
n=3.

IL-6 stimulation in SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP;AlbDretg/wt hepatocytes. Conse-

quently, STAT3 phosphorylation upon IL-6 stimulation is increased and prolonged

in the absence of SOCS3 in hepatocytes. In conclusion, combination of AlbDre

and SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP is suited to generate SOCS3L-KO mice with a

tissue-specific, functional SOCS3 knock-out exclusively in hepatocytes.



4 Discussion

Since the 1950’s, dramatic changes in the global population structure led to the

aggravation of existing and the emergence of novel health burdens world wide, a

continous trend that has great impact on health both in industrialized as well as

developing regions. The average life expectancy has increased from about 50 years

in 1950 to around 70 today and will approach 80 in 2050 [UN Dept. of Economic

and Social Affairs, 2002]. This development of an ageing population goes hand in

hand with a global drop in fertility rate from 5 in 1950 to 2 in 2050. Consequently,

a larger portion of the global population will be of advanced age, namely 20% will

be above 60 years of age in 2050. A second trend is the ever increasing number of

overweight and even obese individuals [Wang et al., 2008], which is ironically the

reason why the increase in life expectancy is expected to plateau in around 20 years.

Since both ageing and obesity are known risk factors for cancer development, it is

tempting to speculate that future populations will on average be older, heavier and

suffer from a higher incidence of cancer. The underlying cellular and molecular

mechanisms for ageing, obesity and cancer are numerous and so far only partially

understood. Basic research uses animal models to investigate connections between

different diseases, and increased inflammation lies at the heart of many patholo-

gies, including obesity, cancer and even ageing. The novel inflammatory reporter

mouse line SOCS3-U presented in this thesis can help unraveling hitherto unknown

mechanisms in inflammation associated diseases. Moreover, SOCS3-U allows for

the generation of conditional SOCS3 knock-outs by Dre-mediated recombination.
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4.1 The SOCS3-U allele as a novel reporter tool

Cancer research in the last decades has profoundly deepened our understanding

of tumor formation and shifted the paradigm of prerequisites towards a broader

selection of hallmarks [Hanahan & Weinberg, 2011]. The pro-tumorigenic effect of

the tumor microenvironment, encompassing endothelial, epithelial and mesenchy-

mal cells in the near vicinity of cancer cells, as well as immune cells infiltrating the

tumor site and the cytokines secreted by these immune cells, have more and more

been focussed by recent research efforts.

Inflammatory signaling is largely carried out by secretion of cytokines, a broad

category of proteins including interferons, interleukins, colony stimulating factors

and chemokines. Immune cells release these factors into the developing tumor to

induce apoptosis in cancerous cells and drive proliferation and differentiation in

neighboring cells to compensate for the increased cell death. This continuous in-

flammation however will eventually have detrimental effects on the tumor sites,

since deleterious byproducts like reactive oxygen species accumulate and/or be-

cause the increased proliferation leads to transformations of hitherto healthy cells

[Bisgaard & Thorgeirsson, 1996; Maeda & Akaike, 1998]. Misguided actions of the

immune system have therefore been recognized as a key player in cancerogenesis.

Although it is now known that inflammatory signaling by immune cells con-

tributes to cancer formation, the various cancer entities differ immensely in respect

to the exact inflammatory mediator, the source of this mediator and the target cell

of the mediator. Thus, our understanding of the signaling machinery responsible

for cancer formation in general is still very limited. This thesis therefore aimed

at developing a reporter mouse line, which, through conditional gene targeting,

should be universally applicable in a large variety of cancer models. The resulting

SOCS3-U reporter mouse can visualize inflammatory signaling both in vivo and in

vitro with high specificity.
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4.1.1 Successful generation of SOCS3-U mice

The SOCS3-U reporter allele couples expression of either an IRES-driven eGFP

or the firefly luciferase to expression of SOCS3, a negative feedback regulator of the

JAK/STAT pathway in inflammatory signaling. SOCS3-U is targeted to the endoge-

nous SOCS3 locus, to ensure that all regulatory elements of the SOCS3 promoter

are applied to expression of SOCS3-U. Correct genomic targeting of the SOCS3-U

allele was addressed by Southern-blot analyses, and could be confirmed for two

ES-cell clones.

Genetically, SOCS3-U is designed as a knock-out first allele, and activity of

SOCS3-U is dependent on Cre-mediated recombination. Upon activation, SOCS3

and an IRES-driven eGFP will be expressed from the SOCS3-U allele under the con-

trol of the endogenous SOCS3 promoter. Cre-mediated activation of SOCS3-U and

resulting GFP activity after cytokine-stimulation of targeted ES-cells was analyzed

with transfection of a Cre-expressing plasmid in vitro prior to injection of ES-cells

into blastocysts. SOCS3-U ES-cells demonstrated reproducible but an overall weak

GFP fluorescence upon cytokine stimulation. ES-cells in culture are kept pluripo-

tent by addition of leukemia inhibitory factor (LIF), an IL-6-type cytokine inhibiting

cell differentiation [Suman et al., 2013]. LIF signals through a heterodimer of one

LIF-Receptor β-chain and the common gp130 β-chain, activating the JAK/STAT

pathway. The constant exposure of SOCS3-U ES-cells to LIF signaling results in

high, basal levels of SOCS3 [Naka et al., 1997], thereby compromising the SOCS3-

GFP induction by cytokine stimulation and resulting in the rather low shift in GFP

fluorescence.

4.1.2 SOCS-Ufl;rox;frt-GFP/wt mice show wt inflammation response

The precondition of Cre-mediated recombination to activate SOCS3-U and con-

comitantly expression of SOCS3 from the SOCS3-U allele necessitates that the

off-target tissues are functionally SOCS3 haploinsufficient. In order to ensure

that presence of the non activated SOCS-Ufl;rox;frt-GFP allele does not cause sig-
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nificant aberrations in the inflammation response, primary hepatocytes from

SOCS-Ufl;rox;frt-GFP/wt mice were isolated and their response to IL-6 stimulation was

compared to wild-type hepatocytes. IL-6 stimulation led to comparable phosphory-

lation of STAT3 and the resulting SOCS3 upregulation showed an equal capability

to inhibit further pSTAT3 activity after induction of SOCS3. Thus, one SOCS3 allele

can inhibit the JAK/STAT pathway as efficient as two alleles.

4.1.3 SOCS3-U visualizes inflammation in a Cre-dependent manner

Taken together, the novel SOCS3-U reporter mouse line allows for the visualiza-

tion of numerous inflammatory processes in vitro and in vivo. SOCS3, and concomi-

tantly also the eGFP or luciferase reporter respectively, is upregulated not only by

IL-6 type cytokines or TNFα via NF-κB as classical inflammatory mediators, but

also by leptin and insulin, opening up versatile possibilities to monitor metabolic

processes. It is however noteworthy that whole-body SOCS3 haploinsufficiency

conveys a certain level of protection from diet-induced obesity via an increased

leptin sensitivity [Howard et al., 2004].

Since the activity of SOCS3-U is conditionally controlled by Cre-mediated re-

combination, utilization of SOCS3-U can take full advantage of the wide array

of available Cre-driver lines. Accordingly, SOCS3-U can be activated specifically in

defined immune cell populations, neuronal cells or parenchymal tissues. Addition-

ally, AAV-delivered Cre-recombinase or inducible Cre driver can activate SOCS3-U

even in adult animals in a defined manner.

4.2 M2 TAMs attract T-cells to the colon upon AOM/DSS

treatment

Colorectal cancer constitutes a major health burden worldwide, especially in in-

dustrialized countries, and predominantly develops as a consequence of chronic

inflammation in the bowel. Chronic inflammation can be caused by chronic in-
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fections, tobacco smoking or other pollutants, or dietary factors such as obesity.

Patients already suffering from inflammatory bowel diseases, such as Crohn’s dis-

ease or ulcerative colitis, have a strongly increased risk of developing colorectal

cancer. Progression of colorectal cancer as a classic case of colitis associated can-

cerogenesis is recapitulated in the AOM/DSS mouse model [Tanaka et al., 2003].

Injection of the pro-carcinogen AOM is coupled to supplementation of the drinking

water with DSS, which is a strong inducer of colitis.

The cancer promoting effect of the AOM/DSS model can be abrogated in ge-

netic mouse models, in which inflammatory signaling is disturbed. Deletion of

IKKβ in cells of the myeloid lineage reduces the inflammatory tone and alleviates

the tumor burden after AOM/DSS treatment [Greten et al., 2004]. Experiments

from our own lab demonstrate that abrogation of IL-6 signaling in IL-6Rα defi-

cient mice (IL-6Rα∆/∆) reduces colorectal tumor formation in the AOM/DSS model

[Claudia Wunderlich, University of Cologne]. Furthermore, transcriptome analy-

sis of IL-6Rα∆/∆ tumors revealed significant differences compared to IL-6Rα profi-

cient tumors, such as an overall reduction in lymphocyte markers as well as de-

creased CCL20 and CCR6 expression. Additional data showed that loss of IL-6Rα

on myeloid cells abrogates alternative macrophage activation towards the M2 sub-

type [Mauer et al., 2014]. Collectively, these observations prompted the hypothesis

that IL-6 signaling driven M2 macrophages, upon increased inflammation in the

colon, express CCL20, which attract CCR6 expressing lymphocytes [Baba et al.,

1997; Hieshima et al., 1997], promoting colorectal cancer development.

Utilization of SOCS3-Ufl;rox;frt-GFP/wt;R26-fl-tdTomatofl/wt;LysM-Cretg/wt mice in the

AOM/DSS model enabled the identification of M1 and M2 macrophages in order

to elucidate the contribution of the respective subpopulations to colorectal cancer

formation. Expression of tdTomato in LysM-Cre expressing myeloid cells resulted

in red fluorescence both in M1 and M2 macrophages, whereas expression of eGFP

from the SOCS3-U allele in LysM-Cre expressing myeloid cells however was depen-

dent on stimulation of SOCS3. Hence, fluorescence activated cell sorting allowed
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for the separation of tdTomatohigh;GFPlow M2-like and tdTomatohigh;GFPhigh M1-

like macrophages for in depth analysis.

SOCS3 is highly expressed in infiltrating macrophages [Liu et al., 2008] and

shows a strong correlation with M1 macrophages [Arnold et al., 2014]. Data

from this study now could demonstrate the absence of IL-6Rα expression in

tdTomatohigh;GFPhigh M1-like macrophages and a concomitant, unaltered IL-6Rα

expression in tdTomatohigh;GFPlow M2-like macrophages, corroborating a polar-

ized IL-6Rα expression in M2 macrophages and lack of IL-6Rα expression in M1

macrophages. Interestingly, CCL20 mRNA expression exhibited a similar pattern

towards M2 macrophages, substantiating our initial hypothesis of M2 macrophages

predominantly expressing CCL20 upon AOM/DSS treatment.

In addition to the converse CCL20 and IL-6Rα expression in M1- and M2-like

macrophages, tdTomatohigh;GFPlow M2-like macrophages exhibited a strikingly el-

evated IL-17RA expression. Our initial hypothesis was that IL-6 drives CCL20 ex-

pression in macrophages. However, stimulation of BMDMs and qPCR of CCL20 led

to undetectable CCL20 levels upon stimulation, thereby excluding IL-6 as an activa-

tor of CCL20 expression. Thus, we proposed that macrophage polarization towards

M2 as already described leads to the susceptibility to express CCL20, by uprgula-

tion of IL-17RA. IL-17RA is one of five IL-17 receptor subunits and forms het-

erodimers with IL-17RC, transducing signaling evoked by IL-17A and IL-17F, two

of the six IL-17 cytokines, ligand binding [Gaffen, 2009]. IL-17A and IL-17F play a

crucial role in recruitment and activation of immune cells, inducing the expression

of pro-inflammatory cytokines and chemokines, including CCL20 [Iwakura et al.,

2011].

Thus, our current hypothesis is that IL-17 produced by T-cells activates CCL20

expression in IL-17RA expressing M2 macrophages and thereby creates a vicious

cycle of inflammation that drives CRC development. Additionally, IL-17 can sig-

nal directly on intestinal epithelial cells, promoting cell growth and survival. It is

intriguing to speculate that TH17 and γδT-cells release IL-17 cytokines with differ-
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ent target cells, both acting in concert and driving colorectal cancer development.

Further investigation of this hypothesis will lead to novel therapeutic strategies to

combat the continuing spread of colorectal cancer in the coming years.

4.3 Activation of the tumor microenvironment in DEN induced

HCC

Hepatocellular carcinoma account for 85-90% of primary liver cancers, represent-

ing a large global health burden, particularly in males of less developed countries

[El-Serag, 2011]. HCC usually develops gradually from chronic hepatitis, through

either dietary or alcoholically induced, steatotic liver into liver fibrosis, to liver

cirrhosis and ultimately to HCC. Common to all the initial causes for HCC devel-

opment is increased inflammation, marking HCC as an inflammation associated

cancer. Persistent liver inflammation causes hepatocyte death, inducing a compen-

sating hyperproliferation of neighboring hepatocytes, a driving force for cancero-

genesis [Bisgaard & Thorgeirsson, 1996]. HCC development can be recapitulated

in a mouse model of DEN injection into 12-15 days old, male mice, which develop

tumors after 8 months [Vesselinovitch & Mihailovich, 1983]. Furthermore, 8 week

old male mice can be injected with an acute dose of DEN, mimicking the increased

inflammation occurring in the tumor initiation phase.

Abrogation of inflammatory signaling protects against DEN-induced HCC

Numerous observations implicate immune cell action and inflammatory signal-

ing in HCC development. Abrogation of IL-6 signaling was demonstrated to pro-

tect from DEN-induced HCC formation, either in whole-body IL-6 knock-out [Park

et al., 2010] or by IL-6Rα deficiency (IL-6Rα∆/∆) [Gruber et al., 2013]. Kupffer cell

derived IL-6 after hepatocyte death has been shown to aggravate HCC develop-

ment, indicating a contribution of Kupffer cells to liver tumor formation [Naugler

et al., 2007]. Interestingly, contribution of IL-6 signaling to HCC formation does not
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occur directly on hepatocytes, as IL-6Rα deficiency specifically in hepatocytes does

not protect form DEN-induced HCC development; however, the protective effect of

whole-body IL-6Rα deficiency is recapitulated in a T-cell specific IL-6Rα ablation

model [Gruber, 2013]. Despite these observations of the influence of Kupffer cells

as well as lymphocytes on hepatocellular carcinoma development, the exact contri-

bution and interplay between the respective immune cell populations remains to

be elucidated.

4.3.1 Unraveling macrophage subpopulations in DEN induced HCC using

SOCS3-U

Tumor associated macrophages are important mediators of cancer-related in-

flammation and comprise a large part of infiltrating immune cells [Solinas et al.,

2009]. Consistently, signaling by macrophages has been implicated on numerous

occasions with HCC development [Capece et al., 2013]. IL-6 represents a critical in-

flammatory mediator of TAM signaling, in that TAM derived IL-6 promotes TH17

expansion, which suppresses cytotoxic T-cell activity [Kuang et al., 2010; Zhao et al.,

2011]. In addition to M1 and M2 macrophages, inflammatory signaling by liver

resident Kupffer cells affects HCC formation. Interestingly, IL-6 signaling neither

in infiltrating M1 nor in M2 macrophages contributes to DEN-induced HCC for-

mation, as demonstrated by unaltered tumor formation in IL-6Rαfl/fl;LysM-Cretg/wt

mice, but might impact Kupffer cells, as they are not affected by LysM-Cre medi-

ated recombination [Hume, 2011].

Although Kupffer cells are not affected by LysM-Cre expression,

they still express classic marcophage markers such as F4/80 [Austyn

& Gordon, 1981]. Isolation of non-parenchymal liver cells from

SOCS3-Ufl;rox;frt-GFP/wt;R26-fl-tdTomatofl/wt;LysM-Cretg/wt mice subjected to the

chronic DEN model and subsequent labeling with an F4/80 antibody there-

fore allowed for the identification of tdTomatohigh;GFPhigh M1 macrophages,

tdTomatohigh;GFPlow M2 macrophages and tdTomatolow;F4/80high Kupffer cells.
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Parallel transcriptome analysis of all three macrophage subpopulation after chronic

DEN treatment should give novel insight into the crosstalk between myeloid cells,

epithelial cells and lymphocytes in hepatocellular carcinomas. This task is still

under investigation.

4.3.2 Acute DEN treatment induces IL-6Rα proficient NK-T cells

Previous data from our lab already demonstrated a central role for lymphocytes

in HCC development in an IL-6 dependent manner, in that IL-6Rα deficiency on

T-cells protects from DEN-induced HCC development [Gruber, 2013]. Increased

liver steatosis upon CD-HFD feeding, mimicking a tumor development promot-

ing environment, increases hepatic T-cell numbers, including NK-T cells as well as

Tregs, and drives elevated expression of IL-1, IL-17 and LIGHT [Wolf et al., 2014].

NK-T cell secreted LIGHT has been demonstrated to be pivotal for hepatic lipid

uptake in this context, ultimately constituting a driving force for HCC develop-

ment.

Data from this study revealed additional molecular mechanisms linking active

and NK-T cell function to DEN-induced HCC development. mRNA expression

analysis of NPLCs isolated from SOCS3-Ufl;rox;frt-GFP/wt;CD4-Cretg/wt mice subjected

to the acute DEN model demonstrated that approximately 35% of NK-T cells up-

regulate IL-6Rα upon DEN treatment, whereas non activated NK-T cells do not ex-

press IL-6Rα. In line with this experiment, analysis of NPLCs isolated from control

and IL-6Rα deficient mice after acute DEN treatment substantiated an emergence

of an IL-6Rα+ NK-T cell subpopulation. Unexpectedly, LIGHT mRNA expression

was significantly higher in the remaining IL-6Rα- NK-T cells subpopulation. It

is however reasonable to assume that the alteration of LIGHT mRNA expression

upon acute DEN treatment follows a similar mechanism, since increased IL-6 lev-

els were previously demonstrated to be delayed after acute DEN injection [Gruber

et al., 2013].

Collectively, acute DEN injection separates hepatic NK-T cells into two subpop-
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ulations, one IL-6Rα deficient population expressing LIGHT, and one IL-6Rα pro-

ficient population with an elusive function that promotes HCC development. It is

intriguing to speculate that both populations function in concert with active effec-

tor T-cells to drive hepatocellular carcinoma initiation. Increased levels of IL-1 and

IL-17 in the CD-HFD model indicate a possible role for TH17 cells to be the respec-

tive effector T-cell population, corroborated by a TAM-derived IL-6 mediated TH17

cell increase. Continuing analysis of the hitherto unidentified IL-6Rα expressing

NK-T cell subpopulation, the upstream mediator of LIGHT expression by IL-6Rα

deficient NK-T cells and additional hepatocellular target genes will give further

insights into the intricate network of lymphocyte interaction in HCC development.

4.4 AlbDre is a new tissue-specific Dre-driver line

Genetic mouse models represent a cornerstone of basic research in the 21st cen-

tury and are a constant source of discoveries with implications for applied re-

search, pharmaceutical sciences and clinical trials. Efficient genetic analyses relies

on specific genetic tools, to modify genes and study their impact on development,

pathologies or maintenance of a functional orgnanism.

Conditional gene targeting, that is genetic modification using site specific re-

combinases, enables a wide array of possible gene modifications, including gene

disruption, activation or overexpression [Rajewsky et al., 1996]. Site specific recom-

bination requires the modification of the target gene with recombinase target sites,

depending on the desired effect after recombination. The two most common appli-

cations for site specific recombination are conditional gene knock-outs, where usu-

ally several exons are flanked by recombinase target sites and will be excised after

recombination, or conditional knock-ins, where expression of the gene of interest is

inhibited by a target site flanked transcriptional stop cassette until recombination

activates gene expression. The Cre recombinase from bacteriophage P1 and the

corresponding loxP recombination target sites have emerged as the primary site

specific recombination system in the last two decades, combining high efficiency
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with high versatility.

More sophisticated approaches in conditional gene targeting might need a sec-

ond site specific recombination system with similar requirements concerning versa-

tility and efficiency. A distinct recombination system can e.g. be used to simultane-

ously modify two different target alleles in one mouse, or to enhance the specificity

of a construct by tandem application of both recombination systems. The Dre/rox

site specific recombination system from bacteriophage D6 matches these criteria

and can be utilized in parallel or in concert with Cre/loxP [Sauer & McDermott,

2004; Anastassiadis et al., 2009]. This study aimed at creating a tissue-specific Dre-

driver line, expressing the Dre-recombinase specifically in hepatocytes using the

albumin (Alb) promoter.

The Alb promoter was chosen to express Dre-recombinase specifically in hepato-

cytes, as it has been already successfully applied to express Cre-recombinase [Pos-

tic et al., 1999]. Alb encodes for serum albumin, a protein produced exclusively in

the liver and secreted into the blood stream. Expression of the albumin promoter

starts at embryonic day 9.5 (E9.5), and is increasing with full development of the

liver [Kellendonk et al., 2000]. Recombination efficiency in the liver of albumin-

driven Cre-recombinase has been found to be 80%, with no recombination in any

other tissue analyzed, while a closer analysis of target protein levels exclusively

in hepatocytes after Alb-Cre mediated recombination revealed even a reduction by

95% [Postic et al., 1999].

A BAC containing the albumin ORF and the complete promoter including all

regulatory elements was used to generate the transgenic mouse line by recombi-

neering in E. coli [Zhang et al., 1998]. To this end, the Dre-recombinase CDS was

amplified by PCR and introduced into the Alb-BAC by homologous recombina-

tion, mediated by the recombination system Redα and Redβ transformed into the

BAC carrying bacteria. Successful integration of the Dre-recombinase CDS into

exon 2 of the Alb ORF was verified by PCR and sequencing and the recombined

AlbDre BAC injected into the male pronucleus of fertilized oocytes. Integration of
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the recombined BAC occurs randomly and potentially multiple times, so that every

positive founder mouse constitutes a separate transgenic mouse line, and recombi-

nation efficiency has to be determined both for the target tissue as well as off-target

tissues.

The ability of AlbDre to recombine DNA in vivo was addressed in

SOCS3-Ufl;rox;frt-GFP/wt;AlbDretg/wt mice by Southern-Blot analysis. Genomic DNA

was isolated from hepatocytes, brain tissue, white adipose tissue and muscle tis-

sue, and recombined DNA was exclusively detected in hepatocellular DNA. The

Southern-Blot analysis revealed a very high recombination efficiency for AlbDre,

with at least 95% of the DNA being successfully recombined.

To use the AlbDre mouse to conditionally inactivate SOCS3 in hepatocytes,

the SOCS3-Ufl;rox;frt-GFP allele had to be activated, in order to determine the

recombination efficiency of AlbDre on the protein level. Hence, hepatocytes

from SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP and SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP;AlbDretg/wt

(SOCS3L-KO) mice were isolated and stimulated ex vivo with IL-6 to drive SOCS3

expression. SOCS3L-KO-hepatocytes exhibited a significantly delayed upregula-

tion of SOCS3 upon IL-6 stimulation, confirming a high recombination efficiency

for AlbDre. Consistently, STAT3 phosphorylation was significantly prolonged in

SOCS3L-KO-hepatocytes. The eventual expression of SOCS3 even in SOCS3L-KO-

hepatocytes can be attributed to remaining hepatocytes, that have escaped Dre

mediated recombination.

Taken together, a hepatocyte specific SOCS3 knock-out can be generated using

SOCS3-U∆;rox;frt-GFP/∆;rox;frt-GFP and AlbDretg/wt mice, which can be combined with

an additional Cre-dependent knock-out of any gene of interest in another cell type.
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6 Appendix

6.1 Plasmid maps

6.1.1 SOCS3-U targeting construct

Figure 6.1: The SOCS3-U targeting construct
The SOCS3-U targeting construct (22473 bp) with notable features. The left
arm of homology (LAH), containing the untranslated exon 1, and the right arm
of homology (RAH), containing the 3’UTR, flank the knock-in features. The
regulatory region contains a loxP flanked neomycin resistance cassette and the
SV40 polyadenylation signal. SOCS3 exon 2, including 5’UTR (in gray) and the
SOCS3 coding sequence (black arrow), is flanked by rox sites and followed by
the reporter region. The reporter contains an IRES driven GFP, flanked by FRT
sites in tandem orientation, and the bovine growth hormone polyadenylation
signal. The firefly luciferase coding sequence is encoded on the antisense strand
and followed by a FRT site in opposite direction to the other two. Motifs neces-
sary for bacterial replication are depicted together with the AsiSI restriction site
for linearization prior to transfection.
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6.1.2 SERCA plasmid

Figure 6.2: Stop-eGFP-ROSA-CAGs (SERCA)
Stop-eGFP-ROSA-CAGs (SERCA, 16056 bp) with notable features. AscI restric-
tion site lies in front of the FRT flanked IRES-GFP. NheI and EcoRV restriction
sites are used for further cloning. Motifs necessary for bacterial replication are
also depicted. [Klisch, 2006]
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6.1.3 GK12TK plasmid

Figure 6.3: GK12TK
GK12TK plasmid (7314 bp) with notable features. AvrII and PmeI restriction
sites are used for further cloning. Motifs necessary for bacterial replication are
also depicted. [Wunderlich et al., 2010]
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