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Abstract 

Information on agro-ecosystems is crucial for understanding the agricultural production and 

its impacts on the environment, especially over large agricultural areas. The Sanjiang Plain 

(SJP), covering an area of 108 829 km², is a critical food base located in NE-China. Rice, 

soya bean and maize are the major crops in the SJP which are sold as commercial grain 

throughout China. The aim of this study is to set up an Agro-Environmental Information 

System (AEIS) for the SJP by employing the technologies of geographic information systems 

(GIS), remote sensing (RS), and agro-ecosystem modelling. 

As the starting step, data carrying interdisciplinary information from multiple sources are 

organized and processed. For an AEIS, geospatial data have to be acquired, organized, op-

erated, and even regenerated with good positioning conditions. Georeferencing of the multi-

source data is mandatory. In this thesis, high spatial accuracy TerraSAR-X imagery was used 

as a reference for georeferencing raster satellite data and vector GIS topographic data.   

For the second step, the georeferenced multi-source data with high spatial accuracy were 

integrated and categorized using a knowledge-based classifier. Rice was analysed as an ex-

ample crop. A rice area map was delineated based on a time series of three high resolution 

FORMOSAT-2 (FS-2) images and field observed GIS topographic data. Information on rice 

characteristics (i.e., biomass, leaf area index, plant nitrogen concentration and plan t nitrogen 

uptake) was derived from the multi-temporal FS-2 images. Spatial variability of rice growing 

status on a within-field level was well detected.  

As the core part of the AEIS, an agro-ecosystem modelling was then applied and subse-

quently crops and the environmental factors (e.g., climate, soil, field management) are linked 

together through a series of biochemical functions inherent in the modelling . Consequently, 

the interactions between agriculture and the environment are better interpreted. In the AEIS 

for the SJP, the site-specific mode of the DeNitrification-DeComposition (DNDC) model 

was adapted on regional scales by a technical improvement for the source code.  By running 

for each pixel of the model input raster files, the regional model assimilates raster data as 

model inputs automatically. 

In this study, detailed soil data, as well as the accurate field management data in terms of 

crop cultivation area (i.e. rice) were used as model inputs to drive the regional model.  Based 

on the scenario optimized from field observation, r ice yields over the Qixing Farm were 

estimated and the spatial variability was well detected. For comparison, rice yields were de-
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rived from multi-temporal FS-2 images and the spatial patterns were analysed. As repre-

sentative environmental effects, greenhouse gas of nitrous oxide (N2O) and carbon dioxide 

(CO2) emitted from the paddy rice fields were estimated by the regional model.  

This research demonstrated that the AEIS is effective in providing information about (i) 

agriculture on the region, (ii) the impacts of agricultural practices on the environment,  and 

(iii) simulation scenarios for sustainable strategies , especially for the regional areas (e.g. the 

SJP) that is lacking of geospatial data .  
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Zusammenfassung 

Informationen zu Agro-Ökosystemen sind entscheidend für das Verständnis der landwirt-

schaftlichen Produktion und ihrer Auswirkungen auf die Umwelt, vor allem auf großen land-

wirtschaftlichen Flächen. Die Sanjiang Ebene (SJP), mit einer Fläche von 108 829 km², ist 

eine kritische Lebensmittelbasis in Nordost-China. Reis, Sojabohnen und Mais sind die wich-

tigsten Kulturpflanzen in der SJP, welche als Getreide in ganz China verkauft werden. Das 

Ziel dieser Studie ist es, ein Agro-Umweltinformationssystem (AEIS) für die SJP einzurich-

ten, mit Hilfe des Einsatzes der Technologien der geographischen Informationssysteme 

(GIS), Fernerkundung (RS) und der Agrarökosystem-Modellierung. 

Als Ausgangsschritt werden Daten mit interdisziplinären Informationen aus mehreren Quel-

len prozessiert. Für ein AEIS müssen Geodaten aufgenommen, organisiert, gehandhabt, und 

sogar mit guter Positionierung umgewandelt werden. Die Georeferenzierung von Daten aus 

unterschiedlichen Quellen ist obligatorisch. In dieser Arbeit wurden TerraSAR -X Bilder mit 

hoher räumlicher Genauigkeit als Referenz verwendet, um Raster-Satellitendaten und topo-

graphische Vektor-GIS-Daten zu georeferenzieren. 

Für den zweiten Schritt wurden die georeferenzierten Daten aus unterschiedlichen Quellen 

mit hoher räumlicher Genauigkeit mit Hilfe eines wissensbasier terten Klassifikators inte-

griert und klassifiziert. Als Beispiel-Feldfrucht wurde Reis analysiert. Eine Anbaukarte für 

Reis wurde erstellt, auf der Grundlage einer Zeitreihe von drei hochauflösenden FOR-

MOSAT-2 (FS-2) Bildern und im Feld aufgenommenen topographischen GIS-Daten. Infor-

mationen zu den Charakteristika des Reis (d.h. Biomasse, Blattflächenindex, Stickstoffkon-

zentration und Stickstoffaufnahme) wurden aus den multitemporalen FS-2 Bildern abgelei-

tet. Die räumliche Variabilität des Reisanbaustatus innerhalb der Felder konnte zufrieden-

stellend detektiert werden. 

Als Kernstück des AEIS wurde dann eine Agrarökosystem Modellierung angewendet und 

damit die Feldfrüchte und deren Umweltfaktoren (z.B. Klima, Boden, Bewirtschaftung) mit-

einander verbunden, durch eine Reihe von biochemischen Funktionen aus der Modellierung. 

Infolgedessen können die Wechselwirkungen zwischen Landwirtschaft und Umwelt besser 

interpretiert werden. In dem AEIS für die SJP wurde der ortsspezifische Modus des DNDC 

Modell auf regionaler Ebene durch eine technische Verbesserung des Quellcodes angepasst. 

Durch Anwenden für jeden Bildpunkt der Modelleingangsrasterdateien, assimiliert das regi-

onale Modell die Rasterdaten automatisch als Modelleingaben.  

Datenunsicherheiten über Böden und Bewirtschaftungsinformationen stellten sich als die 

wichtigsten Faktoren bei der regionalen Modellierungsanwendung heraus. Deshalb werden 
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in dieser Studie detaillierte Bodendaten, sowie die genauen Bewirtschaftungsdaten in Bezug 

auf die Pflanzenanbaufläche (z.B. von Reis) als Modelleingaben verwendet, um das regionale 

Model zu betreiben. Basierend auf einem durch Feldbeobachtungen optimierten Szenario, 

wurden Reiserträge auf regionaler Ebene geschätzt und die räumliche Variabilität zufrieden-

stellend detektiert. Zum Vergleich wurden die Reiserträge aus multitemporalen FS-2 Bildern 

abgeleitet und die räumlichen Muster analysiert. Als beispielhafte Umweltwirkungen wurden 

die Treibhausgase Distickstoffoxid (N2O) und Kohlendioxid (CO2), die aus den Reisfeldern 

emittiert werden, von dem regionalen Modell geschätzt.  

Diese Untersuchung zeigt, dass ein AEIS effektiv ist, vor allem für eine Region (z.B. SJP) in 

der Geodaten fehlen, indem Informationen über (i) die Landwirtschaft in der Region, (ii) die 

Auswirkungen landwirtschaftlicher Praktiken auf die Umwelt und (iii) Simulationsszenarien 

für nachhaltige Strategien bereitgestellt werden.  
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1 Introduction 

1.1 Preface  

The global food demand is continuously increasing under the pressure of the increasing 

world population. Simultaneously, the total area of agricultural land in the world is decreas-

ing due to urbanisation, desertification, water scarcity, and climate change (Lambin and 

Meyfroidt, 2011; Foley et al., 2005; Vörösmarty et al., 2000). Consequently, the gap between 

the increased food needs and the decreased agricultural areas results in a more intensified 

management in agriculture, which severely affects the agro-environmental resources in a 

non-sustainable manner (Tilman et al., 2011; Poudel et al., 2013; Macary et al., 2013; Popp 

et al., 2013; Naeem et al., 2012; Ronald, 2011; Georghiou, 2012). Arguably, there is a great 

potential to boost crop yield, as well as spare resources and reduce environmental conse-

quences through optimizing management (Seufert et al., 2012; Stafford, 2000; Schaller, 

1993), particularly in the developing countries, such as China, the loss of agricultural area is 

severe and food production is highly depending on intensive management (Ju et al., 2009; 

Zhang et al., 2013). Especially in China, where only 8% of the world’s agricultural area has 

to feed up to 20 % of the world population (Smil, 1999), the pressure on the (agro-)environ-

ment increased significantly in the last three decades (Jiang et al., 2013; Siciliano, 2012). 

Therefore, it is of key importance in China to optimize inputs e.g. for crop pro duction, to 

increase crop yield and to reduce environmental effects (Zhang et al., 2004; Zhu and Chen, 

2002). 

As one of the major food crops, rice feeds over half of the world population (FAO，2014) 

and is especially important in China due to its long cultivation history (> 7000 years) (Cao 

et al., 2006) and its potential for high yield (Yuan, 1997). Particularly, in the areas that are 

rich of water resource and suitable climate, i.e. the north eastern part of China, japonica rice 

cultivation areas were increased in the past decades because of better economic profits, good 

quality, and excellent taste (Kako and Zhang, 2000; Wang et al., 2013). Regarding food se-

curity issue, improving rice yield is still the major concern of China for a long time (Peng et 

al., 2009). However, paddy rice under intensive management affects the environment signif-

icantly due to overuse of fertilizer and pesticide, consumptions of large amount of water, 

and greenhouse gas emissions (Zhang et al., 2012; Pingali and Roger, 2012; Zwart and Bas-

tiaanssen, 2004). Thus, efforts of improving rice yield paralleled with reducing environment 

effects becomes the focus of agronomists in recent decades. For instance, to improve soil 

fertility, optimize field management strategies, and reduce greenhouse gas emissions etc., are 

common suggestions that have been continuously addressed (e.g., Schmidt et al., 2011; 
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Huang et al., 2010; Li, 2010). However, the agro-ecosystems are complex and cross-relation-

ships exist among the agro-environmental factors (i.e., crop, climate, soil, water, manage-

ment strategies), thus an integrated framework based on multi-disciplines is needed to pro-

vide agro-environmental information that may contribute to sustainable agriculture (van It-

tersum et al., 2008; Schaller, 1993; van Cauwenbergh et al., 2007).    

To understand and manage the complex agro-ecosystem for a balance between the compet-

ing needs on the increase of food productivity and on the maintenance environment/re-

sources, agro-environmental resource management systems have to be implemented 

(McCloy, 2005). In this study, an Agro-Environmental Information System (AEIS), in the 

content of a spatial environmental information system (SEIS) (Bareth, 2009), was imple-

mented to investigate and support the management of the agro-ecosystem resources. Spe-

cifically, the AEIS in this research refers to a spatial data infrastructure (SDI) that is orga-

nized to drive regional agro-ecosystem models. An SDI categorize and integrate geospatial 

data from multiple sources, to maximize the potential value of the available geospatial data, 

especially for a data poor region (Bareth, 2009).  

This work was conducted in the Sanjiang Plain (SJP) in north eastern China, a significant 

commercial food base in China. The SJP is also one of the few areas that are managed under 

modern agricultural mechanization in China (Wu et al., 2007).  During the past 60 years, the 

landscapes of the SJP changed dramatically from wetlands to farmlands, accompanied by 

sharp changes in the agro-environmental factors (e.g., soil, water, climate) (e.g., Yan et al., 

2002; Huang et al., 2010; Wang et al., 2009; Zhang et al., 2007). Thus an AEIS is highly 

required in the SJP to guarantee food production, and to describe and manage the agro-

environment.  

To implement an AEIS in the SJP, we follow the logic pyramid of ‘data-information-

knowledge-understanding-decision’ system (Rowley, 2007) by acquiring, organizing, build-

ing, operating and regenerating geospatial data. As a remote area in China, the SJP is poor 

in spatial data availability in the past. Nonetheless, managers including local officers, re-

gional decision makers, and even farmers, are showing increasing interests in using geospatial 

data to analyze the agriculture status and to make decisions (e.g., Liang et al., 2013; Ma, 

2015; Lu et al., 2002). For the AEIS in the SJP, it is a critical task to deal with the geospatial 

data regarding data availability, coverage, classification, accuracy and inconsistency. 

Research of agricultural science is characterized by a high fragmentation in research methods 

and tools, and the integration of the diverse methodologies  and techniques is required in the 

agro-ecosystem research (van Ittersum et al., 2008). Technically, the AEIS is implemented 
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based on geographical information systems (GIS), remote sensing (RS) and modelling. GIS 

technology provides a flexible environment for storing, analyzing, and displaying digital data 

necessary for an agro-environmental information database (Devogele et al., 1998; Güting, 

1994). Satellite RS provides cost-effective multi-spectral and multi-temporal data, and turns 

them into information valuable for monitoring and understanding crop growth status (Moran 

et al., 1997). Agro-ecosystem models describe the exchange process and mater fluxes in the 

soil-vegetation-atmosphere system by calculating the crop growth as functions of various 

environmental factors, such as soil, climate, water and fertilizer (Baldocchi et al., 2002; Wang 

et al., 2014; Chen et al., 2014).  

Specially, in the agriculture system research, the difficulties in the cross-scale issue, such as 

model application from one scale hierarchy to another, are recognized in previous studies 

(e.g., Dalgaard et al., 2003; Hansen and Jones, 2000; Resop et al., 2012). Information of the 

farmers’ response on farm level/scale are vital in the research of an agro-ecosystems, for 

instance the climate change effects on agriculture (Reidsma et al., 2010). The AEIS in this 

study has to provide not only regional agro-environmental information for the managers, 

but also precise field-level information and management suggestions particularly for the 

farmers. Thus, the site-specific agro-ecosystem models have to be generalized onto a re-

gional scale by e.g. creating additional computer scripts . Integrated by the geospatial data of 

crop information and environmental information, the AEIS provides and predicts agro-en-

vironment information at fine resolutions. 

1.2 Research problems and objectives 

1.2.1 Research problems 

Spatial data in a well-organized structure are necessary to provide effective mechanisms for 

data storage, investigation, transfer and archiving (Mückschel et al., 2008; Curdt, 2014). 

However, problems of spatial inconsistencies inherent in the multi-source data are inevitable 

(Verburg et al., 2011; Li, 2010). Due to technical or political reasons (Bareth and Yu, 2002), 

a lot of spatial data for certain regions may not available, especially the high resolution data. 

For instance, in the SJP, soil data of 1:1 000 000 scale are available for the total area, whereas 

the 1:200 000 scale is not available for every county. In this study, soil data of 1:200 000 are 

available only in 12 of the 23 counties in the SJP. In some cases, accurate information tends 

to be deficient because the available data generally have to be produced by many different 

people, with varying interests and perspectives, archived in different formats, and generally 

collected at different times (McCloy, 2005). Previous studies explored methods for pre-pro-
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cessing and organizing multi-discipline data for soil-vegetation-atmosphere interactions re-

search (e.g., Curdt, 2014; Reinartz et al., 2011). Expert systems are effective methods in 

processing data of multiple disciplines which have been implemented to integrate remotely 

sensed data with other data, to get land use classifications in higher accuracy (Stefanov et 

al., 2001; Wentz et al., 2008). To date, there is still a lack of research focusing on the trans-

ferable methods for georeferencing spatial data of different formats (e.g., raster, vector).  

The second problem for an AEIS is to generate the accurate spatial information including 

soil, climate, water, as well as field management. Field management is critical in agro-eco-

system model applications on regional scale (Kersebaum et al., 2007). Accurate crop culti-

vation area classification from high resolution satellite images can be used to link c rop-

specific field management information to regional models (Waldhoff and Bareth, 2009). Be-

sides, identifying crop cultivation areas accurately from high resolution images is also critical 

for crop monitoring (Jin et al., 2015). For a specific crop area delineation, Waldhoff (2014) 

demonstrated that the implementation of multi-data (i.e., RS raster data, GIS vector data) 

can significantly improve the crop area classification, although there might be a lack of GIS 

data in certain regions. In the AEIS for the data-poor SJP, methods of integrating GIS and 

RS data have to be explored to improve the usage of the available data . Spatial soil data are 

important not only crop for yield production but also for agro-ecosystem models (Eitzinger 

et al., 2004; Li et al., 2004; Kersebaum et al., 2007). Soil data of fine resolution and high 

(spatial) quality are most difficult to obtain because of the ‘costly’ data collection , and some 

‘sensitive’ local policies (Bareth and Yu, 2002).  Therefore, to merge, calculate, assign soil 

properties based on the available soil information, for instance to generate the soil hydraulic 

properties based on soil type and soil organic matter information, a re one of the key steps 

to implement an AEIS in a data poor region.  

Third, to get the knowledge of the development status and appearance of the crops through 

a year(s) is fundamental to the AEIS in the SJP. As an advanced technology, satellite RS 

imagery with coarse and medium resolution are widely used in rice cultivation research 

(Kuenzer and Knauer, 2013; Jin et al., 2015; Zhang, et al., 2015). However, studies conducted 

on rice using high resolution RS images were limited in the past two decades (Kim and Yeom, 

2012; Chang et al., 2013). There is still a lack of investigations for detecting rice spatial 

variability on a within-field level with reliable accuracy.  

Last but not least, cross-scale issue is an obstacle with endless complex for modelling appli-

cation in multiple spatial scales (Ostrom, 2007; Sayer et al., 2013). Process-based agro-eco-

system models can be implemented in interdisciplinary projects to investigate the interac-
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tions between complex components by assimilating data from diverse sources and repre-

sented in diverse formats (Câmara, 1996; Schreinemachers and Berger , 2011; An, 2012). 

However, most of the models are designed to simulate at site or field scales . Detailed infor-

mation from the site model is also required in large geographic areas. The DeNitrification-

DeComposition (DNDC) model is a process-based geochemical agro-ecosystem model 

which simulates the C and N cycle in agro-environment ecosystems (Li et al. , 1992; Giltrap 

et al., 2012). Although the DNDC model was developed with both a site-specific mode and 

a regional mode, the site-specific mode was assumed to be more flexible and transparent 

(Perlman et al., 2013). In the regional mode, the research region is divided into small sub-

units based on the assumption that the attributes in each unit are uniform. The model merges 

the results from all units to obtain a regional result. Whereas in the site-specific mode, more 

site-specific model parameters can be adjusted to decrease the model uncertaint ies. To trans-

fer the site models onto a regional scale without losing detailed simulation information is 

beneficial for an agro-environmental study. To implement the AEIS in the SJP, generalisa-

tion of the site-specific model has to be innovated. 

1.2.2 Research objectives  

The overall purpose of this study is to investigate the potential of available spatial data to 

serve regional agro-ecosystem modelling for a data poor environment. Agro-ecosystem mod-

elling facilitates to explore and to better understand the interactions among the factors for 

agricultural production (e.g., soil, water, crop, climate, etc.) which might support decision 

making for an optimized regional planning and management of crop production. Conse-

quently, a key task is the acquiring, organizing, operating and generalizing of geospatial data, 

or the set-up of a SDI which fulfills the demands of the modelling purpose. The SDI and 

the interfaced model (models or the modelling scenarios)  together form an Agricultural En-

vironmental Information System (AEIS) (Bareth, 2009).  

In this study, a state-owned farm, Qixing Farm, which is located in the SJP, NE-China, is 

selected a study area. In terms of available and accessible (geo)data, the study area can be 

considered as a data poor environment region. Therefore, ( i) the set-up of a SDI for a re-

gional modelling is first task. This includes to 1) acquire and organize data from multiple 

sources; 2) georeference the multi-source geospatial data to overcome the inherent spatial 

heterogeneity; 3) derive accurate rice maps by combining GIS and RS data for monitoring 

rice growing status and linking field management information to the accurate rice map in 

agro-ecosystem modelling; and 4) detect the temporal rice status with high spatial resolution 

satellite imagery. The second task is to (ii) implement agro-ecosystem models (i.e. DNDC) 
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for estimating paddy rice yield at a regional scale. Then the AEIS can be used to (iii) inves-

tigate the effects of environmental factors (i.e., soil) on rice yield. Finally (iv) the impacts of 

agricultural production on the environment can be analyzed from model scenarios and thus 

to provide information for reducing environmental effects . 

1.3 Outline 

The introduction chapter (chapter 1) presents the background of this study and the research 

aims. The SJP and its agro-environmental problems are addressed in chapter 2.  The meth-

odology for an AIES is introduced in chapter 3, which is followed by the main parts (chap-

ters 4 – 6) that are based on three published or submitted journal papers. 

In chapter 4 (Zhao et al., 2015a), a georeferencing method of using TerraSAR-X imagery as 

ground control information is described to pre-process the geospatial data from multiple 

sources. To eliminate positional discrepancies in different geospatial datasets from multiple 

sources, multi-temporal TerraSAR-X imagery was processed as a referencing image. Using 

this method, both topographic data and raster satellite images data are georeferenced with 

high spatial accuracies. This approach promotes the implementation of an AEIS that is based 

on the integration of multiple data. 

In chapter 5 (Zhao et al., 2015b), an accurate rice cultivation area map for the Qixing Farm 

was derived using a Multi-Data Approach (MDA). An expert classifier was applied in the 

MDA to integrate GIS boundary data and multi-temporal (FORMOSAT) FS-2 images. The 

final classification accuracy for the rice map is >91 %. Besides, rice growing status was 

monitored on a within-field level using FS-2 images. As a data preparation procedure in 

Chapter 5, atmospheric correction and georeferencing of the FS-2 images are presented. 

Then empirical multiple linear regression (MLR) models are constructed to relate the satellite 

reflectances to rice parameters including weight of biomass, LAI values, plant nitrogen (N) 

concentrations and plant N uptake. Maps of rice status representing within -field variability 

are retrieved based on the strong relationships between the image reflectance  information 

and the rice parameters. 

In chapter 6 (Zhao et al., submitted), spatial variability in rice yields at the Qixing Farm are 

estimated from process-based geochemical modelling DNDC and the FS-2 imagery. First 

the site-specific mode of the DNDC is applied and assessed using the detailed field measured 

data. Then the site-specific model is generalized onto a regional scale by creating additional 

scripts in Python environment. Two additional scripts are created for the model to process  

raster files automatically. Detailed spatial soil data (100 m × 100 m) are prepared as model 

input data. Based on the detailed soil data and the accurate rice cultivation map ( described 
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in chapter 5), spatial variability in modelled rice yield was detected. Additionally, rice yield 

is derived from multiple FS-2 images using empirical MLR model. Finally, the modelled and 

RS-derived rice yields are compared and assessed. Advantages and drawbacks of both meth-

ods are discussed regarding the process-based DNDC model and the empirical MLR model.  

In chapter 7, key problems regarding the AEIS are discussed. The advantages and limita-

tions in the application of multi-source data are documented. Specially, as important results 

from the regional modelling, greenhouse gas (e.g., CH4) emissions are analyzed under dif-

ferent field management strategies and environmental conditions.  Drawbacks inherent in the 

‘process-based’ agro-ecosystem model are pointed out. 

Chapter 8 outlines the forthcoming research tasks and the future opportunities to promote 

the AEIS for the SJP. 
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2 Study Area and Data   

2.1 The Sanjiang Plain and its agro-ecosystem problems 

2.1.1 Geographic conditions 

The SJP (Figure 2-1) locates (129°11' ‒ 135°05'E, 43°49' ‒ 48°28'N) in the northeast part 

of the Heilongjiang province, NE-China. It is an alluvial plain formed by the Songhua river, 

Heilong river and Wusuli river. The Heilong river forms the international border with Russia 

to the north, and the Wusuli river forms another boundary with Russia to the east.  

The SJP consists of two sub alluvial plains separated by the Wanda mountain. The plain 

located in the north of the Wanda mountain, named ‘the low Sanjiang plain’, is formed by 

Songhua river, Heilong river and Wusuli river. The other plain, named ‘Muling-Xingkai 

plain’, located in the south of the Wanda mountain is formed by Xingkai lake and the south 

part of Wusuli river and its branches. The total area of the SJP is 108 829 km² with a plain 

area of 51 300 km². The area of The SJP exceeds the area of the Netherlands by 2.6 times 

and approaches one third of the total area of Germany.  

The elevation of the SJP in the southwest is higher than in the northeast due to the low hills 

and mountains in the south and west part. The average elevation is about 45-80 m above sea 

level. Most of the rivers in the area have slight gradients and large channel curve coefficients.  

The Qixing Farm locates in the central part of the SJP. It is a typical nation-owned farm 

which is a technique-pilot farm in rice cultivation in the SJP.  



Study Area and Data | 18 

 
 

 

Figure 2-1: The study area Sanjiang Plain in Heilongjiang province, NE-China (Zhao et al., 2015b).  

2.1.2 Climate status 

The climate in the SJP belongs to the temperate humid or sub-humid continental monsoon 

climate. The mean annual temperature ranges from 1.4 to 4.3 °C, with an average maximum 

of 21 ‒ 22 °C in July and an average minimum of -18 °C in January. The mean annual 

precipitation is 500-650 mm and 80% of the rainfall occurs between May and September. 

The frost-free period is 120 ‒ 140 days.  

During the last decades, the annual temperature in the SJP experienced a regional risen which 

was greatly contributed to warming up in winter and spring, paralleled with a decrease in 

annual precipitation (Yan et al., 2002; Luan et al., 2007).  
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The SJP is divided into three accumulated temperature zones according to the annual accu-

mulated temperature of ≥10 °C. One zone locates in the northwest part of the SJP, with an 

annual accumulated temperature of about 2400 °C. The second zone locates in the south 

part of the SJP, with an annual accumulated temperature of about 2500 °C. The third zone 

locates in the east part of the SJP, with an annual accumulated temperature of about 2300 °C 

(Zou et al., 2010). The annual accumulated temperature increased in all zones (Zou et al., 

2010). The frost-free days per year are 120 ‒ 140 days (Huang et al., 2010). Under the global 

warming trend, there is climate warming up in the SJP, which benefited the rice cultivation 

in this area. Gong et al. (2015) investigated the cool injury for rice during the past 50 years 

from 1961 to 2010 in the Heilongjiang province. They found the center of the cool injury 

area has been decreased and moved northward. On the other hand, agriculture may affect 

the climate as well. Studies (Huang et al., 2010; Liu et al., 2013; Xu et al., 2015) show inter-

actions between the agricultural land use and the climate in the SJP. Paddy rice decreases 

the greenhouse gas emission, compared to dry land cultivation (Huang et al., 2010).  

2.1.3 Soil conditions  

There are five main soil types in the SJP: black soil, meadow soil, albic soil, bog soil, and 

dark brown soil. These five soils occupy more than 95% of the whole area (Nachtergaele et 

al., 2008).  The black soils are mainly distributed in areas with moderate slopes in Fujin, 

Baoqing, Jixian, and Jiamusi. More than 80 % of the black soils have been reclaimed. The 

thickness of the black soils are around 75 ‒ 95 cm. They are favorable for agriculture because 

of the physical and chemical characteristics. The meadow soils are the azonally distributed 

soils in the SJP. They are distributed in the flat areas in the counties of Fujin, Jixian, Baoqing, 

and the national farms of Youyi, Wujiuqi and Erjiuyi.  More than 55 % of the meadow soils 

have been reclaimed. The black soil layers of the meadow soils reach up to 50 ‒ 100 cm. 

However, improvement of agricultural use for meadow soils are needed because the heavy 

clay soil characteristics make them prone to waterlogging. Albic soils mainly distribute in 

the Muling-Xingkai plain and the Fuyuan delta. They are the main arable land soil. The black 

soil layers of the albic soils are normally within a thickness of 10 ‒ 20 cm. An area of more 

than 43 % has been reclaimed. Bog soils distribute in the low areas of water pools, covered 

by water seasonally or annually. The surface of the bog soils are peat layers of various thick-

ness. Currently, 15 % of the bog soils are reclaimed. The dark brown soils distribute in the 

mountainous and hilly areas. They can only be used as forest land due to the terrain topog-

raphy (Song et al., 2010). 
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Soil quality in the SJP was degrading regarding many of the soil elements such as N, phos-

phorus (P), and potassium (K) (Wang et al., 2009; Wang, 2005). Soil organic carbon (SOC) 

has significantly decreased due to the tillage cultivation of agriculture (Zhang et al ., 2007). 

Soil erosion is another important issue that has received widely investigation (Zhang et al., 

2008; Liu and Ma, 2000).  

In order to select appropriate sustainable strategies for preventing the detrimental effects of 

agriculture on soils, i.e. soil erosion, desertification, salinization, compaction, pollution, etc., 

research should focus on development of an accurate soil quality monitoring and evaluation 

system at multiple scales (Wang et al., 2009). 

2.1.4 Land use change 

The SJP was a virgin area before the 1950s. After the foundation of the People’s Republic 

of China, as Wang et al. (2006) mentioned, there were three important events that facilitate 

the reclamation in the SJP (Figure 2-2). The first event was the ‘Great Leap Forward’ move-

ment. From 1956 to 1960, about 81 500 veterans were encouraged to go to the SJP to reclaim 

wetlands aiming to enlarge the agricultural area and improve food production. The second 

event was the ‘Cultural Revolution’. From 1970 to 1972, about 450 000 educated young 

people entered this region for agriculture in response to the ‘going to the countryside and 

settling in the communes’ movement. The third event was the ‘reform and open’ policy of 

1979. Due to the policy of the agricultural modernization, some farms were selected for pilot 

projects of modern agricultural farming. The application of advanced agricultural machinery 

improved the grain production as well as the reclamation efficiency (Wang et al., 2006; Luan 

and Zhou, 2013; Hohlrb, 1991). The wetland has been fragmented seriously due to its sig-

nificant loss (Wang et al., 2011).  
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Figure 2-2: The reclamation area in the SJP from 1949 to 1999 (Wang et al ., 2006).  

 

Table 2-1 shows an overview of the land use change in the SJP during the 1980s until 2000. 

Specially, paddy rice area was increased by more than 1.5 times from 1995 to 2000. 

Table 2-1: Land use change (%) for selected classes from the 1980s until 2000 in the Sanjiang Plain for the rep-
resentative counties (Zhao et al., 2012).  

Land use change (%) in the Sanjiang Plain  

  Paddy field Dryland Grassland Wetland Others 

Time 
1980s 

‒ 1995 
1995 ‒ 
2000 

1980s  

‒ 1995 

1995 

‒ 
2000 

1980s 

‒  
1995 

1995 

‒  
2000 

1980s 

‒  1995 

1995 

‒  2000 

1980s 

‒  
1995 

1995 

‒  
2000 

Baoqing -88.5 1097.7 73.8 -40.3 -18.3 -17.0 -24.9 -11.2 -1.1 -3.8 

Luobei 216.9 550.7 15.4 -28.6 -47.5 15.5 -27.3 -8.3 0.3 -3.1 

Mishan -56.6 185.4 24.3 -13.5 -2.9 -38.2 -7.4 -14.9 3.5 -6.6 

Fuyuan 6.5 161.9 61.5 9.5 -89.3 -87.6 -7.3 -7.4 10.7 -1.4 

Hulin 18.6 145.7 45.0 -4.9 -70.3 33.5 -3.0 -22.2 7.5 -2.2 

Yilan -14.9 80.5 11.6 -10.0 -54.9 9.9 4.2 -11.3 -0.6 -1.0 

Huachuan 61.0 73.2 -7.3 -12.7 280.6 -6.0 4.6 -56.3 -16.1 -4.5 

Tangyuan -13.5 62.4 8.9 -14.8 16.6 -37.7 70.9 -41.5 -9.8 9.2 

Fujin 99.1 43.3 3.6 -0.2 -29.8 23.6 -8.3 -3.8 1.3 -0.7 

Youyi 1204.4 42.4 2.6 3.1 33.9 -25.3 -45.0 -44.3 5.8 -0.5 

Muling -22.3 28.7 -3.2 10.4 3.6 -2.5 
no wet-

land 
no wet-

land 
1.8 -3.7 

Total 
change 

-28.3 157.2 14.6 -7.7 -45.0 2.4 -11.3 -10.6 1.6 -3.9 
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2.1.5 Water resource  

The total water amount of the SJP is 161.9 × 108 m³. The amount of the surface water and 

the groundwater are 116.3 × 108 m³ and 85.6 × 108 m³, respectively. The amount of repeat 

water between the surface water and the groundwater is 39.9  × 108 m³ (Zhong et al., 2008). 

The catchment area of the SJP is around 2.61 × 106 km². There are more than 190 rivers in 

this area, belonging to the three water systems of Heilong, Songhua and Wusuli rivers (Fig-

ure 2-3). The flow directions of the rivers are dispersed. In the northern area, the rivers 

flow to the northeast, while in the eastern area, the rivers flow to the north. In the surface 

of the wetland area, there is normally a thin water layer of ≤ 1 m. 

 

Figure 2-3: Surface water system and elevations in the Sanjiang Plain.  
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The groundwater table in the SJP is normally within a depth of ≤ 5 m. The hydraulic gradient 

of the groundwater is about 1/1000 in the hilly region, 1/5000–1/10000 in the central plain, 

and 1/500–1/150 near the river. The groundwater discharges into the rivers and lakes. The 

flow direction of groundwater is from southwest to northeast in the low Sangjiang Plain and 

the groundwater flows from northwest to southeast in the Muling-Xingkai plain (Song et al., 

2010). 

In the year 2009, the total agricultural water use was 75.9 × 108 m³, accounting for 97.1% of 

the total water consumption of industry, agriculture and citizens. 97 % of the irrigation area 

was cultivated with paddy rice and 69 % of the total paddy rice area use groundwater (Song 

et al., 2010).  

Jiang et al. (2011) investigated the water resource carrying capacity in the SJP by creating a 

water evaluated index system and criteria to integrate a water resource system, a social sys-

tem, an economic system, and an ecosystem. They found that in the middle part of the SJP, 

along the Wanda mountainous area, the water carry ing capacity is high. Whereas in the south 

and north part of the SJP, where the two sub-plains are located, the water carrying capacity 

is moderate and the water resources exploitation and socioeconomic development  are com-

patible. 

Taking the Jiansanjiang area as an example, the groundwater table decreased in the past 

decades, coupling with an increase of the rice cultivation area (Figure 2-4).  

 

Figure 2-4: Change of groundwater in the Jiansanjiang area, coupled with the increased rice cultivation area 
(Ren 2014).  
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2.1.6 Ecosystem service 

The pressure of agriculture and ecosystem services are especially severe in the developing 

world where human-environmental interaction patterns are very dynamic and under stress 

due to the rapid economic, socio-demographic and technological changes (Fegraus et al. , 

2012). 

Wetlands have multiple functions in ecosystems as they can improve water quality, provide 

flood control, mitigate climate change, and assist in groundwater recharge. (Mitsch and Wil-

son, 1996; Munyati, 2000, An et al., 2007). National reserves are important ‘storage of natural 

genes’ (Zhou et al., 2009) as it is a habitat for various plants and wild animals.  

Before the agricultural reclamation of the SJP, the upland areas were covered by the natural 

vegetation of dense and mixed coniferous forests and broad-leaf forests. The vegetation in 

the river floodplains and lowlands included an immense expanse  of freshwater wetlands, 

reed marshes, wet sedge meadows, grass meadows, lakes, and riparian willows and other wet 

forests (Zhou and Liu, 2005). Due to its noteworthy rich biodiversity, the SJP wetlands are 

ranked as globally important in the Directory of Asian Wetlands . There are about 1000 species 

of plants, 37 ecosystem types and 528 species of vertebrate fauna in this area  (Ni and Li, 

1999). Some wildlife species ranked by the World Conservation Union as  globally threatened 

are found in these wetlands. However, according to Wang et al. (2006), the ecosystem service 

values in the SJP have declined by 40 % between 1980 and 2000, attributing to the 53.4 % 

loss of wetland. 

Human activities, especially agricultural reclamation, are considered as major threats to the 

wetland ecosystems in the SJP. Since the late 1990s, the government has been fully aware of 

the seriousness of environmental problems resulting from damages to natural ecosystems. 

They changed the ‘food first’ agricultural policy to  an ‘environmental friendly agriculture’ 

policy. The idea of ‘farmland back to wetland ’ and ‘construction of an ecological province 

for Heilongjiang province’, etc., were adopted. Studies tried to find proper sites for turning 

agricultural fields back to wetland according to the wetness index and agricultural produc-

tivity (Huang et al., 2010). Various measures have been applied to prevent and cure the 

severely disturbed environment and a conservation area has been built such as the Xingkai 

Lake, Honghe, and Sanjiang national nature reserves. 
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2.1.7 Rice cultivation 

There are 23 counties and 52 nation-owned farms in the area, with a population of 8.66 

million in 2010, among which 41 % were engaged in farming (HSB and HSTNB, 2011). 91% 

of the cultivation area in the Jiansanjiang area are rice (HSB and HSTNB, 2011). 

The agriculture in the SJP faces the problem of serious waterlogging because of the flat 

geographical topography and clayed soil conditions. In the past, rice was used to offset the 

field waterlogging. Since 1992, when the market-directed economic system replaced the for-

mer planned economic system, paddy rice areas were increased dramatically. Driven by the 

higher economic efficiency and the availability of technologies for rice cultivation, many 

drylands were converted into paddy rice fields.  

In the more than 30-years rice cultivation history in the SJP, people try their best to inves-

tigate rice cultivation mechanisms. To produce rice with higher yield, higher quality, while 

using less fertilizer inputs, series of rice cultivation regimes have been developed in the past 

decades. Wang et al. (2011) proposed an optimum rice cultivation regime for the albic soil 

area in the SJP. Cao et al. (2005) investigated field measures for high yield rice. Liu (2010) 

introduced an optimum rice cultivation regime for NE-China which emphasized the 

knowledge of pest and disease control. Water saving irrigation coupled with rice cultivation 

skills were also studied (Lv et al., 2014). These research studies emphasized several steps of 

paddy rice cultivation including the seed pre-germination procedure, the seedlings green-

house nursery in early spring, key skills in the transplanting process, fertilization time and 

amount, irrigation strategies, pest-weed-disease control and harvest time. People in the SJP 

have to explore skill-intensive strategies to avoid wasting solar energy, since the growth 

season is short (130 ‒ 135 days) and the frost-free period is even shorter (120 ‒ 140 days). 

2.2 Data 

2.2.1 Multi-source data  

To implement and AEIS, data have to be organized from various governmental bureaus or 

non-governmental organizations such as local research institutions or special research 

groups. In this study, datasets from different sources, each characterized by their unique 

attributes and properties, are referred to as  multi-source data. 
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2.2.2 Data organization 

 Topographic data 

In this study, detailed topographic datasets for the whole SJP on a scale of 1:250 000 were 

purchased from the National Geomatics Center of China (NGCC).  In which ground features 

of land use, elevation, cities, roads, waters, etc., are represented. Since the AEIS in this study 

aim to provide information also for farmers at the field level, more detailed topographic data 

at the field level are needed. Thus a set of field boundary data of Qixing Farm in an inde-

pendent coordinate system was provided by the Qixing Modern Agriculture Research Center. 

Unfortunately, the scale of this data is not clearly defined. This field boundary data provides 

information on field borders, building areas, water pools (for storing irrigation water), as 

well as field ownership and crop types of the fields. 

 Climate data  

Climate data were organized for the SJP. For the model application, daily weather data col-

lected from the nearest weather station-Jiansanjiang weather station (located in the northern 

part of Qixing Farm), was used. This data includes maximum and minimum temperature, 

precipitation, wind, humidity, visibility etc., which satisf ies the DNDC model requirements. 

 Soil data  

Soil parameters are very often the most sensitive input parameters in agro-ecosystem models 

(Li et al., 1992; Kersebaum et al., 2007). Spatial information on soils is necessary to target 

disaggregated agro-ecosystem modeling. A soil information system is essential for providing 

agro-ecosystem model input parameters. In this study, a spatial soil type map with a scale of 

1:100 000 was provided by the Chinese Academy of Agricultural Sciences. This soil data 

provide soil types in the genetic soil classification of China ’s soil classification system. 

Soil organic carbon (SOC) and soil pH values of the top soil layer (0 – 20 cm) for the entire 

Qixing Farm were provided by the Qixing Modern Agriculture Research Center . These data 

were measured from 1156 measured samples, which were evenly distributed over the Qixing 

Farm.  

Soil samples of the top soil layer (0 – 20 cm) at the field experiment sites were collected and 

analyzed for a site-specific analysis. This soil data provide information of the soil nutrients 

N, P, K, SOC and the pH value.  
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 Remotely sensed data  

FORMOSAT-2 (FS-2) satellite imagery was used to derive rice vegetation information. The 

FS-2 collects multispectral images with a ground pixel resolution of 8  m × 8 m over a swath 

of 24 km. The FS-2 images used in this study are optical images with 4 bands of blue (450–

520 nm), green (520–600 nm), red (630–690 nm), and near-infrared (760–900 nm). Three 

tiles of high quality images covering the main arable land area (~56,000 ha) of the Qixing 

Farm were captured on 24 June, 6 July, and 9 August in 2009. Thus, both the vegetative 

phase (24 June and 6 July) and the reproductive phase (August 9) of rice are well represented 

in these images. Integrated with the GIS boundary data for the Qixing Farm, the FS-2 images 

were also used to delineate accurate rice areas. 

 Field observation data  

Ground truth of agronomic data were measured in field campaigns. Samples at 42 sites were 

collected during the entire rice growing season in 2009. All these 42 sites were located in 

seven farmers’ fields being spatially separated. Each site was represented  by one plot cover-

ing approximately 0.1 – 0.3 ha. The final plant samples collected from each site were a  

mixture of three or four spatially separated samples which were taken from the same plot. 

As ground truth data, the areas of the sample sites were mapped using a Trimble™ Global 

Positioning System (GPS) receiver.  

Field management calendars of transplanting, N topdressing, irrigat ion, application of in-

secticides, and harvest dates, were recorded. Several field campaigns were carried out to 

collect samples from the tillering stage, booting stage, heading stage, 20 days after heading, 

and the harvest stage. For each site, biomass, LAI and plant N concentration were measured 

and plant N uptake was calculated as well.  

The plant samples were processed in the following steps: After the field sampling, the plants 

were first cleaned, and then separated into different organs (leaves,  stems, panicles) to meas-

ure the biomass values. LAI was measured using a sub-sample of the leaf biomass. One sub-

sample consisted of 10 – 20 leaves, randomly selected among the youngest fully  developed 

leaves. All fresh samples were processed in the oven at 105 °C for half an hour to stop 

enzyme activity. After that, they were dried at 75 °C for at least 72 h until a constant weight 

was reached before they were finally weighted. N concentration was measured using the 

Kjeldahl-N method. The plant N uptake was calculated as the aboveground dry mass multi-

plied by the N concentration. Grain samples were collected at harvest time. The grain sample 

for each site was combined of three or more sub-samples that were collected from an area 

of 1 m². All samples were processed by grain threshing, drying, weighting.  
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35 sites from different farmers were used to validate the model regional application. These 

35 sites are mainly clustered in three areas in the Qixing Farm. The yields of these 35 sites 

were recorded by the farmers when they were selling their grain after harvest. It was calcu-

lated as the total yield of the total field area including the field ridges, water pools and 

channels. The building area of living houses might also be calculated into the field area.  

Another field dataset was collected from 22 selected farmers. These farmers were assumed 

to be high yield farmers regarding to their rice yield records in the past 3 to 10 years . The 

22 sites were spatially distributed over the entire Farm. Grain yield in this dataset were 

measured using the same method as in field dataset I. This dataset was used to validate the 

model regional application.  

 Field management data 

Field management data of the 42 experimental sites were recorded during the growing season 

in 2009. Farm management data such as sowing/transplanting/fertilizing date, amount of 

nitrogen fertilizer input, irrigation management (especially for rice), plant protection man-

agement, harvest time, or special regime of management are provided in the farmer’s survey 

conducted in 2009. 

In the modelling regional application, one optimized field management data were applied. 

These optimized field dataset was processed based on the records of the 42 experimental 

sites and another field survey of 79 farmers’ field management data in 2009.  This field man-

agement data were assigned to the delineated rice areas to drive the regional model.   
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3 Methodology 

With the development of computer science, geographical information systems, satellite  RS 

and modelling have been widely applied for agro-environmental research over large geo-

graphic areas (Wang et al., 2015; Shao et al., 2014; McCoy et al., 2011; Wahid et al., 2008).  

Earth observatory and monitoring networks currently provide unprecedented  volumes of 

complex, multi-scale, long-term multidisciplinary explicit data (e.g., NEON, 2015; OOI, 

2015; SAEON, 2015; TERN, 2015; ILTER, 2015; SIGEO, 2015). Simultaneously, data pre-

processing such as georeferencing, co-registration, and categorization are mandatory espe-

cially for an agro-environmental analysis which highly depends on multi -source data in dif-

ferent resolutions, formats, and quality (Li, 2010; Reinartz et al., 2011; Gessner et al., 2015). 

A useful technology, the expert system, can be applied to categorize and analyze the multi-

source research data regarding to different research issues (Liao, 2005).  

Since the mid-1960s, decision support systems have been developed with communication -

driven, data-driven, document-driven, knowledge-driven and model-driven, paralleled with 

the development of computer sciences (Power, 2008). Agricultural decision support systems 

receive increasing interests by scientists and stakeholders. As an example, a framework of 

SEAMLESS (System for Environmental and Agriculture Modelling, Linking European Sci-

ence and Society) is recently developed to contribute to the sustainable agriculture by de-

signing and assessing the integration of agricultural technologies and agro -environmental 

and rural development policies in Europe (van Ittersum et al., 2008). The SEAMLESS ex-

plores links between computer models in multiple dimensions including organisational levels 

(i.e. point or field scale, farm, region, EU and the world), temporal scales and spatial scales 

(Ewert et al., 2011). Based on several backbone models (such as SEAMCAP [an agricultural 

sector model], CAPRI [common agricultural policy regionalized impact], FSSIM [farm sys-

tem simulator], etc.), the SEAMLESS provides systematic analysis to design a sustainable 

agriculture. In this study, the three technologies of GIS, RS and modelling are integrated as 

the backbone tools to implement the AEIS in the SJP.  

3.1 Geographic information system 

The GIS is a computer application designed to capture, store, display, communicate, trans-

form, analyze, and archive geographic information, that is, information tied to specific lo-

cations on or near the earth’s surface (Goodchild, 2009). GIS were originally used isolated 

in land resource management, automated cartography, and transportation. GIS were rapidly 

developed in civilian applications as well as by the military since the 1950s. Especially after 
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the first deployed civilian satellites in the early 1970s, GIS software was quickly generated, 

largely raster-based, that found very useful applications in agriculture (Goodchild , 2009).  

GIS represents ground surface features in two distinct ways. The first way is for discrete 

objects. The objects on the earth are assumed to be countable features that may overlap, but 

between them is emptiness. The features can be represented as, i.e. points, lines and areas. 

The second way is for continuous objects. In this way the earth’s surface is described by a 

series of functions based on location, the functions are used to represent elevation or tem-

perature, or a class or name. The earth’s surface is represented by raster and vector structures 

in a GIS. In a raster structure the set of possible locations is finite, being defined by a gr id. 

In a vector structure, every feature is located using an appropriate number of coordinates. 

Areas and lines are normally represented as ordered sets of coordinates connected by straight 

lines of polygons and polylines, respectively (Goodchild , 2009). These raster or vector data 

have to be referenced to the earth’s surface using a certain form of coordinate system. 

A wide range of GIS software products are available, ranging from versions for hand-held 

devices through desktop systems to server-side GIS. In recent years, open-source GIS are 

growing steadily, and a number of low cost options have appeared .  

GIS combine layers of data with specific locations that provide powerful and critical infor-

mation that can be used for decision-making tools (Estes and Star, 1990). GIS is not only a 

critical tool for balancing the anthropogenic influence and the nature carrying capacity , but 

also a promising tool for bridging these two issues, to achieve something that is bigger than 

the sum of the two in the future (Dangermond, 2009). In this study, GIS is used as a basic 

tool to prepare, process, integrate and analyze multi -source data. 

3.2 Satellite remote sensing 

By the late 1950s aerial photography had been institutionalized in applications in the gov-

ernment and civil society as a source of cartography information (Campbell and Wynne , 

2011). In 1972, the launch of Landsat 1, the first of many earth-orbiting satellites designed 

for observation of the earth’s land areas, marked another milestone. With the development 

of new instruments of collecting satellite images, by the 1990s, commercial capabilities for 

acquiring fine-resolution satellite imagery have been available for civil applications.  During 

the first decade of the 21 st century, the rapid development of the internet enabled public 

access to RS imagery. Therefore software based on RS products are promoted for the use of 

the broader public, for instance the widely applied Google Earth. 
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In the past years, satellite RS as an advanced technology has been used extensively in wetland 

research, forest planning, water erosion assessment, agriculture production, to obtain spatial 

and temporal information (Ozesmi and Bauer, 2002; Holmgre and Thuresson, 1998; Vrieling, 

2006; Gitelson et al., 2014). Because of its operational and economical uses over large areas, 

satellite RS technology has been widely used to conduct in-season crop monitoring and yield 

forecasting for decision making on in-time field management and marketing intervention 

and policy support on regional or global scales (MacDonald and Hall, 1980; Duveiller et al., 

2012b).  

Image classification is an important process to interpret image information by assigning 

objects, features or areas to classes based on their appearance in the imagery. Another 

method to interpret the image information is using vegetation indices (VIs). The VIs are 

formulas of combinations of different spectral bands, which show better sensitivity for veg-

etation. They are used to quantitatively measure the status of the vegetation (Bannari et al ., 

1995). Numerous investigations have related the VIs to several vegetation phenomena rang-

ing from vegetation seasonal dynamics at global and continental scales to tropical forest 

clearance, leaf area index measurement, biomass estimation, percentage ground cover deter-

mination, and photosynthetically active radiation estimation (Lillesand et al., 2014). 

Using satellite RS techniques to monitor paddy rice areas has been propose in the past dec-

ades (Frolking et al., 2002; Xiao et al., 2005; Kuenzer and Knauer, 2013). Satellite RS data 

with coarse and medium resolution are widely used in rice cultivation research (Kuenzer and 

Knauer, 2013; Wang et al., 2010; van Niel and McVicar, 2004). However, the number of 

conducted studies on rice using high resolution RS images was limited in the past two dec-

ades (Kim and Yeom, 2012; Chang et al., 2013; Kim and Yeom, 2014). Identification of rice 

cultivation areas and estimation of agronomic parameters from high resolution images are 

valuable for improving rice production.  

In this study FORMOSAT-2 (FS-2) images and GIS data were combined to delineate the 

paddy rice areas. FS-2 images are used for rice status monitoring in the growing season and 

rice yield estimation.  

3.3 Knowledge-based systems 

The computer user dictionary defines knowledge-based systems (KBS) as computer systems 

that are programmed to imitate human problem-solving by means of artificial intelligence 

and reference to a database of knowledge on a particular subject. The component s of 

knowledge-based systems are a knowledge base, and inference/reasoning mechanisms. The 

knowledge base is the core part of a KBS (Curtis and Cobham, 2008). Since the 1980s, 
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approaches have been reported to utilize both numerical and logical information in KBS 

with an integrated procedure for image analysis in application of agriculture (Kontoes et al., 

1993; Mckeown, 1987; Goodenough et al., 1987).  

To construct a spatial rice information database in Qixing Farm, an expert knowledge base, 

has been designed and implemented. This knowledge base is used to integrate the multi-

source data based on logical rules. It consists of  a rice area mask, a RS base, a soil base, a 

hydrology base, a topographic base, and a farmer management base.  

 Knowledge engineer 

In this study, the knowledge base was constructed using the Knowledge EngineerTM program 

in the expert classifier module in ERDAS IMAGINE software. The ERDAS Expert Classi-

fier interface is designed to handle the process that an expert in a particular field of expertise 

would use to analyse spatial data and infer information within a given location. This process 

can then be repeated by someone without expertise in either the application field or in the 

use of software tools (Lei, 2008). This program can collect spectral information or classes 

from raster images and semi-automatically transfer them into a knowledge database system. 

The expert classification program consists of three components: hypothesis, rule , and con-

dition. A condition compares a pixel (input data) to a real value. A rule assi gns a meaning to 

one or more conditions. A hypothesis forms a classification (output class) on the basis of 

one or more rules. An expert classification system is a hierarchy of rules, or a decision tree  

(Figure 3-1). The decision tree grows in depth when the hypothesis of one rule is referred 

to by a condition of another rule. The terminal hypothesis of the tree represent s the final 

class area of the interest. 

 
Figure 3-1: Components of a knowledge-based system.  

 

 Rules for each knowledge base 

A rule is a conditional statement, or list of conditional statements, about the variable’s data 

values and/or attributes. Rules consist of a number of variables, of which the data values 

and/or attributes are assigned into a certain class constrained to conditional statements. All 
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of the conditional statements must be true in order to make the rule true. The mathematical 

operators in conditional statements in the rules include: =, ≠, >, ≥, <, and ≤. The confi-

dence of the variables depend on the extent of knowledge of the variable values. 

3.4 Agro-ecosystem modelling  

Crop modeling is an effective means in investigating the interactions between crops and  the 

environment due to its capability in the ensemble of varying factors (model inputs) tempo-

rally, and subsequently to simulate crop production and its environmental effects under dif-

ferent scenarios (Rosenzweig et al., 2014; Zhang et al., 2014). With the rapid development 

of computational technologies, process-based crop modelling are widely applied. These crop 

modelling are developed based on a series of bio-physical & -chemical equations regarding 

crop growth. In the 1960s, crop modelling were developed to investigate crop growth in 

response to abiotic environmental factors (de Wit, 1965; Duncan et al., 1967). Models are 

currently being used in support of theoretical research, yield predictions, and decision mak-

ing in agriculture (Long et al., 2006; Lobell and Burke, 2010; Schreinemachers and Berger, 

2011). 

For this study, the DeNitrification-DeComposition (DNDC) model (version 9.5, developed 

by Li et al., 1992, modified by Li et al., 2000, 2007) was chosen in order to test the model 

capability for detecting within-field variability in paddy rice yield for a study area in North-

east-China. The overall aim is to analyze agro-environmental patterns of spatial variability 

in the context of precision agriculture. 

The DNDC model simulates the carbon and nitrogen biogeochemical cycles and is composed 

of the following six interacting sub-models: soil-climate, plant growth, decomposition, ni-

trification, denitrification and fermentation. In several studies, the DNDC model was ap-

plied for paddy rice fields in China (e.g. , Li et al., 2002; Zou et al., 2009; Zhang et al., 2014). 

3.5 Concept of an agro-environmental information system (AEIS) 

Since the last Century, famers have been expected to pay attention not only to economic 

profits but also to environmental impacts in the agricultural system (e.g., Sigrimis et al., 

1999; Bareth, 2009). The agriculture systems are complex. It is difficult, and often even 

impossible, to characterize the functioning of such a complex systems by means of direct 

measurements. Many studies based on empirical regression of the single factors to the envi-

ronment, i.e., pesticide pressure (Vernier et al., 2013), or innovate some indices to evaluate 

the environmental effects (agro-environmental indicators) (Girardin et al., 1999). Indicators 

are a compromise between scientific results and the need for concise information. However, 
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simple indicators ignore the dynamics of the actual status, may provide considerable errors 

especially in terms of amplifications. 

To understand the interactions between the agriculture systems and the environmental im-

pacts, a comprehensive and dynamic policy approach covering a range of spatial and tem-

poral scales and issues is required. A crucial component of this approach is the implemen-

tation of information systems that are relevant, robust, and easily operated by all stakehold-

ers, practitioners, policymakers, and scientists. For instance such information system can 

help to adjust practices, processes and capital in response to the actuality or threat of green-

house gas emissions or climate change (Howden et al., 2007). Ewert et al. (2011) imple-

mented a series of model in a ‘integrated assessment and modelling’ system which integrated 

series of models to investigate the components in the agricultural system on different scales.  

With the development of information acquisition technologies of GIS and RS, it is possible 

to get agricultural information on multiple spatial and temporal scales and thus to merge 

these multi-source data. Process-based geochemical models are effective means to link data 

from the environment factors to biotic crops. A prospect way to achieve the knowledge of 

the interactions between the agricultural systems and its environmental impacts is to com-

bine the three means of GIS, RS, and crop modelling. And subsequently, by linking multi-

source data using the crop modelling, information about the agro-environmental system on 

multiple spatial and temporal scales can be obtained.  

In this study, the AEIS means an information system that provides information for agricul-

ture, environment, and simulation scenarios through regional agro -ecosystem models which 

are driven by the SDIs, especially for a data-poor region. The core idea of the AEIS for the 

SJP is to explore the potential use of the available geospatial data and mainly based on the 

technologies of GIS, RS, and modelling. The AEIS is capable in providing temporally and 

spatially dynamic agro-environmental information at multiple scales , which could contribute 

greatly to field management and regional panning. By conducting a case study in the Qixing 

Farm, this research aims to implement an AEIS to investigate rice production and its envi-

ronmental effects based on multi-source data.  
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Summary 

Geodata, including optical remote sensing (RS) images and topographic vector data, can be 

collected from multiple sources such as surveying and mapping agencies, commercial data 

acquisition companies, and local research institutes. These multi -source data have been 

widely used in past RS and geographic information system (GIS) studies in various applica-

tions. However, spatial inconsistencies inherent in the multi-source data require accurate 

georeferencing to be applied. This is challenging for study sites with limited accessibility and 

few reference maps. To address this challenge, this paper proposes an approach for gener-

ating ground control points (GCPs) using TerraSAR-X (TSX) data. In a case study, TSX 

images were used to georeference multi-source data covering the Qixing Farm in Northeast 

China. First, a stack of five multi-temporal TSX images were processed into one reference 

image to retrieve GCPs. These were then used to georeference the other datasets including 

Huanjing (HJ), Landsat 5 (LS 5), FORMOSAT-2 (FS-2), and RapidEye (RE) satellite images, 

as well as topographic vector datasets. Identifying tie points in the multi -source datasets and 

the corresponding GCPs in the TSX reference image enables georeferencing without field 

measurements. Finally the georeferencing accuracies for the optical RS images were assessed 

by independent check points. Good results were obtained for the HJ, LS 5, FS-2 and RE 
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images, with an absolute error of 7.15 m, 6.97 m, 8.94 m and 10.52 m, respectively. For the 

topographic vector datasets, ideal visual results were achieved, attributable to the rubber 

sheeting algorithm. These results demonstrate that the TSX reference image is suitable for 

georeferencing multi-source data accurately and cost-efficiently. The developed procedure 

can be applied in other study regions and is especially valuable for data -poor environments. 

Zusammenfassung 

Georeferenzierung von Raster- und Vektordaten aus unterschiedlichen Quellen mit Hilfe von multitempo-

ralen TerraSAR-X-Aufnahmen – eine Fallstudie der Qixing-Farm im Nordosten Chinas . Für räumli-

che Analysen kommen Geodaten wie Fernerkundungsdaten und topographische Vektorda-

ten zum Einsatz, die von diversen Einrichtungen, u.a. Vermessungsämtern, kommerziellen 

Geoinformations-Dienstleistern und Forschungsinstituten bereitgestellt bzw. Bezogen  wer-

den. Diese aus unterschiedlichen Quellen stammenden Daten (Multidaten) werden für zahl-

reiche Anwendungen in Fernerkundungs-und GIS- Studien genutzt. Jedoch beinhalten diese 

Daten räumliche Ungenauigkeiten, die zunächst eine präzise Georeferenzierung erforderlich 

machen. Dieses stellt vor allem für Untersuchungsgebiete mit eingeschränkter Zugänglich-

keit und nicht verfügbaren Referenzdaten eine Herausforderung dar.  Dieser Artikel erklärt, 

wie Passpunkte aus Daten des Radarsatelliten TerraSAR-X (TSX) für die Georeferenzierung 

von Multidaten generiert werden können. In einer Fallstudie der Qixing-Farm im Nordosten 

Chinas wurden fünf multitemporale TSX-Radarbilder zu einem Referenzbild zusammenge-

fügt, um mit hoher Genauigkeit Passpunkte 

abzuleiten. Diese Passpunkte dienen der Georeferenzierung mehrerer Multidaten aus diver-

sen Quellen, welche sowohl Huanjing (HJ)-, Landsat 5 (LS 5)-, FORMOSAT-2 (FS-2), und 

RapidEye (RE)-Satellitenbilder als auch topographische Vektordaten umfassen. Die Identi-

zierung derselben Passpunkte in dem TSX-Referenzbild und in den Multidaten diverser 

Quellen ermöglicht eine genaue Georeferenzierung ohne im Gelände aufgenommene Mess-

daten. Die Genauigkeit der Georeferenzierung für die optischen Satellitenbilder wurde durch 

unabhängige Kontrollpunkte bewertet. Es wurden gute Ergebnisse für die HJ-, LS 5-, FS-2 

und RE-Satellitenbilder mit absoluten Fehlern von 7,15 m, 6,97 m, 8,94 m bzw. 10,52 m 

erzielt. Für die Georeferenzierung der topographischen Vektordaten wurden optimale visu-

elle Resultate erzielt, welches dem eingesetzten „Rubber Sheeting Algorithm“ zuzuschreiben 

ist. Diese Ergebnisse demonstrieren die Eignung der aus TSX-Daten abge-leiteten Pass-

punkte, um Multidaten verschiedener Quellen genau und kosteneffizient zu georeferenzie-

ren. Das entwickelte Verfahren kann auf andere Untersuchungsregionen übertragen werden 

und ist besonders wertvoll für Gegenden mit schlechter  Verfügbarkeit von Referenzdaten. 
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4.1 Introduction  

Data quality plays a critical role in geodata related research (Bareth, 2009). To ensure data 

quality, georeferencing becomes a mandatory and crucial task. In this paper, datasets from 

different sources, each characterized by their unique attributes and properties, are referred 

to as multi-source data. Com-pared to single-source data, multi-source data can provide ad-

equate information with different spatial and temporal resolutions, map scales, and spectral 

properties (Li, 2010; Waldhoff et al., 2012). Multi-source data provided by various govern-

mental bureaus or non-governmental organizations such as local research institutions or 

special research groups may vary in many interpretation aspects and in terms of (spatial) data 

quality. Both Geographic Information System (GIS) and remote sensing (RS) data carry 

plenty of geospatial information but with different nature and content and with different 

semantics (Weis et al., 2005). The integration of RS and GIS is emerging as a new research 

field (Zhang, 2010). Gómez-Candón et al. (2012) indicated that the locational errors in high 

resolution images, e.g. GeoEye-1 images, affect the delineation of the input prescription 

map which is a core problem for the implementation of site-specific agricultural management 

strategies. Weber et al. (2008) confirmed that coregistration errors between imagery and field 

sites led to remarkable errors in landscape classification, particularly when the size of the 

target site was similar to the image pixel size. Moreover, in some cases, such as in China, 

detailed topographic data (1:5,000 – 1:25,000) with high spatial accuracy may not be acces-

sible due to data sharing and management policies or lack of surveying and mapping activities 

(Bareth and Yu, 2004). Because of heterogeneous qualities, the integration and georeferenc-

ing processes for multi-source data are indispensable, complex and highly dependent on the 

purpose of the study. 

A variety of methods for multi-source data integration and georeferencing have been devel-

oped in the past decades to eliminate spatial inconsistencies in multi -source datasets. For 

example, a Markov random field model was applied to merge images from multiple sensors 

for a land use classification (Solberg et al., 1996). A statistical approach to match relational 

features was introduced by Walter and Fritsch (1999). An iterative closest point algorithm 

was implemented to match features using a spatially  precise map as the reference (von 

Gösseln and Sester, 2004). Empirical and theoretical methods were implemented by Usery 

et al. (2009) for integrating the national maps of the United States with different scales and 
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resolutions in vector and raster datasets. In addition, several automatic approaches have 

been developed to compute the imagery-to-vector conversion (Wu et al., 2007), identify 

control point pairs from images using vector datasets as the glue layers (Chen et al., 2006), 

conflate vector maps to high resolution imagery (Song et al., 2009), or georeference image 

sequences in real-time (Choi and Lee, 2012). 

In recent studies, Synthetic Aperture Radar (SAR) imagery has been used to quantify the 

spatial in-consistencies of geodata and to collect ground control points (GCPs) for georef-

erencing. SAR sensors are all-weather and day-night active microwave sensors that collect 

information of the targets according to the signal transport time between the sensor position 

and the terrain height. They have the potential to provide images with very high geometric 

accuracy (Ager and Bresnahan, 2009; Rodríguez et al., 2006). In particular, the German Ter-

raSAR-X (TSX) satellite launched in 2007 is equipped with a highly flexible phased array 

antenna for SAR Stripmap, ScanSAR, and Spotlight operations (Mittermayer and Runge, 

2003). An overall ground accuracy of ≤ 1 m has been demonstrated when the images are 

projected to a precise terrain height (Ager and Bresnahan, 2009; Koppe et al., 2010; Nonaka 

et al., 2008). Therefore, the TSX products can be used to generate topographic maps and 

create accurate orthoimagery products (Badurska, 2011; Reinartz et al., 2011; Schneider et 

al., 2009).  

To further explore the potential capability of TSX imagery as a source for locating GCPs 

and subsequently to georeference multi-source data characterized by varying properties and 

accuracies over a large area, a feasible and robust method which takes the advantage of the 

high spatial resolution and high geometric accuracy of TSX imagery is introduced. The main 

specific objectives are (i) to georeference topographic vector data from multiple sources; (ii) 

to improve the georeferencing results of Huanjing (HJ), Landsat 5 (LS 5), FORMOSAT -2 

(FS-2), and RapidEye (RE) satellite images; and (iii) to assess the accuracy of georeferenced 

datasets and to evaluate if the results are highly dependent on the spatial accuracy of the 

TSX imagery. 

4.2 Study area and data   

4.2.1 Study area 

The Sanjiang Plain (SJP), located in Northeast China, is an alluvial plain formed by the 

Songhua River, the Heilong River and the Wusuli River. The topography is fairly flat with a 

slope of < 0.012°. With an area of approximately 11 million ha, it is an important wetland 

area and ecosystem in China. Some wetland sites in this area have been designated for the 
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list of wetlands of international importance (Wang et al., 2006). In addition, the SJP is the 

largest food base of China, where 52 national-owned farms are located. The climate is tem-

perate sub-humid, with a mean annual precipitation of 500 mm – 600 mm (80 % of it occur-

ring between May and September), and an average temperature of 21 °C – 22 °C in July and 

~ -18 °C in January. Nowadays, single season crops of paddy rice, soybean and maize are 

mainly planted in this area.  

The study site Qixing Farm (47.2 °N, 132.8 °E), which covers an area of approximately 

120,000 ha, is located in the central part of the SJP (Figure 4-1). As of 2010, 62 % of the 

study site was arable, dominated by three quarters of paddy rice and one quarter of dryland 

(Zhang, W., Qixing Farm, personal communication, June 2012). In the paddy rice fields, 

rainfed and irrigation systems simultaneously exist. To improve the growing conditions of 

agricultural crops, shelter forests were planted in the late 1980s, primarily to reduce the 

speed of ground wind (Liu and Zhao, 1996). 

 

Figure 4-1: Location of the study area Qixing Farm in Northeast China. 
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4.2.2 Data description 

A time series of five TSX images (stripmap, VV-polarisation, incidence angle ~ 35°, relative 

orbit 88, descending) was taken within 44 days from June 24 to August 7 of 2009 (see Table 

4-1). These five stripmap images in the basic Single Look Slant Range Complex (SSC) form 

with intensity and phase information for each pixel in slant range geometry were used to 

create a TSX reference image. The orbit precision was set to ‘science’, which means that the 

satellite position during image acquisition is calculated with an error of ≤ 20 cm in a post 

processing step (Fritz and Eineder, 2013). This post processing dramatically increases the 

positional accuracy and thereby the image potential for generating GCPs (Koppe et al., 

2010).  

The Qixing Farm field boundary file was produced by the Qixing Modern Agriculture De-

velopment Center. This GIS layer was given in Universal Transverse Mercator (UTM) coor-

dinate reference sys-tem, zone 53 N. It provides the information on crop field boundaries, 

irrigation wells, water drainages, and shelter forests edges at a fine field unit scale. However, 

this dataset did not line up with any of the other datasets in our project. The inconsistency 

was nonsystematic in distance or directions (Figure 4-3). An offset of more than 200 m 

between this dataset and the TSX images was identified in the northwest part, whereas in 

the southeast part the shift was more than 300 m in the opposite direction.  

The public version of the 1:250,000 topographic vector dataset was produced by the National 

Geomatics Center of China (NGCC). This dataset includes multiple layers of administration 

boundaries, settlements, railways, roads, hydrological information, and landscapes. How-

ever, as Bareth and Yu (2004) indicated, the spatial accuracy is not as high as expected. 

Therefore, a refined georeferencing of the public version is needed in this study.  

The HJ, LS 5, FS-2, and RE satellite images were acquired from 2009 to 2012 in the growing 

sea-son. The agricultural constructions, e.g. irrigation channels and raised ridges, for paddy 

rice in the study area are the same year by year and the field boundaries are mostly stable. 

Therefore, one TSX reference image can be used in multiple years. The detai led information 

of the RS data is listed in Table 4-1.  
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Satellite Pixel 
Spacing 

(m) 

Bands Acquisition 
date 

Projection Cloud 
Cover 

(%) 

Processing 
Level 

TSX 1.89 (az) × 
1.57 (rg) 

- June 24, July 5, 
16, 27, Aug. 7, 
2009 

WGS 84 UTM 
53 N 

-- SSC 

HJ(CCD2) 30 × 30 4  June 29, 2012 WGS 84 UTM 
53 N 

0 
(subset) 

2 

LS 5 30 × 30 7 Aug. 26, 2011 WGS 84 UTM 
52 N 

0 
(subset) 

1T 

FS-2  2 × 2 (PAN) 5 July 6, 2009 Geographic 
(Lat/Lon) 

0 1A 

RE 5 × 5 5 May 19, 2012 WGS 84 UTM 
53 N 

0 3A 

4.3 Methods  

4.3.1 Workflow of georeferencing multi-source datasets 

The schematic workflow of multi-source data georeferencing is shown in Figure 4-2. There 

are mainly four steps involved: (1) pre-processing of the multi-temporal TSX images to gen-

erate one single reference image; (2) selection of GCPs from the processed TSX imagery and 

corresponding tie points from optical RS images or topographic vector maps; (3) reducing 

locational errors by recursively reselecting GCPs and corresponding tie points until achiev-

ing low positional error (PE) values or satisfactory visual results; (4) generating georefer-

enced datasets by image resampling or GIS data matching. Steps 1 and 2 are the key steps 

of this approach, which highly affect the quality of the GCP interpretation and consequently 

the final results. 

We decided to use the PE because it is implemented in the software that we used and because 

the documentation of the individual error of every point proves best the efficiency of the 

proposed method. The standard deviation (Std.) that characterizes the overall error is also 

given as a comparison. 

Table 4-1: Characteristics of the RS images.  



Georeferencing Multi-Source Geospatial Data Using Multi-Temporal TerraSAR-X 
Imagery: a Case Study in Qixing Farm, Northeast China | 42 

 
 

 

4.3.2 Creation of the reference image from TSX stripmap acquisitions  

A stack of five TSX stripmap images was used to create the reference image. Radar image 

processing was performed using the Next ESA SAR Toolbox (NEST) distributed under the 

GNU General Public License. To meet the requirement of a geocoded image in which the 

precise outlines of objects are identifiable, certain pre-processing techniques were applied. 

First the “complex pixel values” were used to calculate  an amplitude image representing the 

strength of radar backscatter for each radar pixel cell. During the following “range Doppler 

Figure 4-2: Georeferencing workflow of the multi-source geospatial data, PE = positional error.  
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terrain correction”, the elevation data from the Space Shuttle Topography Mission (SRTM) 

in a spatial resolution of 3 arc-seconds served to transform the radar images from slant range 

geometry into the UTM coordinate reference system. Pixel spacing of the resultant geocoded 

product was set to 2 m to minimize spatial information loss, and to meet the file require-

ments of a manageable product. The main drawback of the SAR image with regard to the 

visible interpretation is the speckle effect which is an inherent noise of all radar images, 

often called grainy salt and pepper noise. To reduce this effect, a mean image of the five 

geocoded images was calculated and a 3x3 mean speckle filter applied. The radiometric res-

olution was reduced from 16 bits to 8 bits. There-fore, the data size was considerably re-

duced. Likewise, the image representation speed was dramatically increased. In spit e of a 

radiometric information loss during this procedure, the processed TSX reference image pro-

vides sufficient information for human interpreters to clearly define unambiguous GCPs 

with a high spatial resolution. Absolute radiometric calibration was not needed in this pro-

cess as all five images have the same calibration constants, and moreover, the quantitative 

analysis of the backscattered signal was not the focus of this study. The resultant grayscale 

radar image was almost speckle-free and the shapes of all objects necessary in this research 

could be identified. 

4.3.3 Georeferencing of topographic vector data 

Georeferencing of the topographic vector data was based on a rubber sheeting algorithm. 

The rubber sheeting, alternatively called rubber sheet, algorithm is one of the earliest and 

the most common computer cartogram algorithms (Tobler, 2004). This technique derives its 

name from the logical analogy of stretching a piece of rubber to fit over some objects (C obb 

et al., 1998). During the process, map areas are subdivided into triangular -shaped regions 

and local adjustments are applied on each single region. After that, each triangle either en-

larges or shrinks iteratively toward its ideal size without changing the topolog y of the map 

(Gillman, 1985; Dougenik et al., 1985). An iterative math-physical cartogram algorithm for 

continuous area was proposed by Dougenik et al. in 1985. This algorithm was recently im-

proved by implementing an auxiliary quadtree structure in the process (Sun, 2013a; 2013b). 

In this study, the rubber sheeting tool of ArcGIS 10.1 was used to transfer the topographic 

vector da-ta. Approximately 600 reference points, evenly distributed over the entire area of 

Qixing Farm, were selected as georeferencing points from the TSX reference image. As 

Rinartz et al. (2009) proposed, the selection of reference points from the TSX image is not 

always a straightforward procedure. Based on our experience, corresponding points were 

selected according to following rules: (1) Select points in the TSX reference image that are 
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located at the intersection of the paddy field ridges, rural road edges, canopy crossings of 

different crops, or corners of artificial waters, which are in all cases clearly identifiable and 

unchanged during the 3 year-period from 2009 to 2012. (2) Avoid elevated objects such as 

forest edges or tall buildings due to their systematic locational errors such as foreshortening, 

layover, and shadowing, induced by the radar imagery acquisition procedure. (3)  Select only 

points that have a corresponding (tie) point in the vector dataset, e.g. the Qixing Farm 

boundary data with line intersections and corners. A similar process was applied to the topo-

graphic GIS data provided by the NGCC.  

4.3.4 Georeferencing of optical RS data 

Multiple optical RS aforementioned data were also selected to demonstrate the georeferenc-

ing process based on the TSX reference image. In particular, image subsets covering the 

Qixing Farm were created for the HJ and LS 5 satellite data. All opt ical satellite images were 

georeferenced according to these main steps: First, all satellite images were reprojected into 

the UTM WGS 84 system to obtain an over-view of the data inconsistencies. Second, a set 

of control points was selected from the TSX reference image based on the aforementioned 

rules. Consequently, the corresponding points have to match the objects which can be clearly 

identified in the optical RS imagery in this case. Third, in order to improve the transfor-

mation model and to minimize the errors caused by the manual measurement, GCPs and 

corresponding tie points were updated iteratively by eliminating the points with highest PEs 

and selecting additional control points until the residual errors fell below the maximum al-

lowed value. The decision if a PE value was too high depended on the spatial resolution of 

the image to be georeferenced. For every single GCP, the maximum allowed value was within 

the subpixel range. Finally, a certain number of independent points were defined as check 

points to evaluate the accuracy of the transformation. During the validation process, the 

GCPs were used to calculate the transformation model while the check points were used to 

evaluate the errors in the geometric transformation independently.  

In our case, the PE is the horizontal distance between the input location of a GCP and the 

transformed location of the same GCP. The PE was calculated according to ( 4 ‒ 1) (Con-

galton and Green, 2008). 

                                                               𝑃𝐸 = √∆𝑋2 + ∆𝑌2                                                       (4 − 1) 

 

Where ∆𝑋 and ∆𝑌 are the positional differences between the reference point and the cor-

responding image or map position in the X and Y directions, respectively.  



Georeferencing Multi-Source Geospatial Data Using Multi-Temporal TerraSAR-X 
Imagery: a Case Study in Qixing Farm, Northeast China | 45 

 
 

4.4 Results 

4.4.1 Georeferencing results of topographic vector data 

After the georeferencing based on the rubber sheeting algorithm, the georeferenced vector 

data of the Qixing Farm field boundaries (cyan) sufficiently fit to the new field boundaries 

which are clearly detect-able in the TSX image. The problem of nonsystematic spatial incon-

sistency was well overcome and the shape of the vector graphics was preserved ( Figure 4-

3). Similar results were also obtained for the topo-graphic data provided by the NGCC. 

 

4.4.2 Georeferencing results of optical RS data 

 Optical RS data were georeferenced according to the method described in the previous 

sections. Table 4-2 shows the relevant information of the selected GCPs.  

Satellite 
Pixel Size 
(resampled) 
(m) 

Imagery/Subset 
Spatial exten-
sion (km) 

Number 
of Con-
trol 
Points 

PE  
(aver-
age) 
(m) 

PE 
(max) 
(m) 

PE 
(min) 
(m) 

Std. 
(m) 

HJ (CCD2) 30 × 30 55 × 55 100 12.66 27.39 1.87 6.70 

LS 5 30 × 30 48 × 68 220 9.04 16.63 0.59 3.85 

FS-2 2 × 2 (PAN) 30 × 28 143 3.43 5.91 0.3 1.35 

RE 5 × 5 24 × 24 64 4.09 9.36 0.60 2.12 

Figure 4-3: Field boundary data, before (yellow) and after (cyan) the georeferencing; red arrows in the left fig-
ure show the vector force of the rubber sheeting procedure. Background data in the right figure: TSX reference 
image.  

Table 4-2: Accuracy of the selected GCPs (PE = positional error, Std. = standard deviation).  
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After recursively selecting control points, the final PEs were less than half a pixel for both 

the HJ (CCD2) and LS 5 images, and nearly one pixel for the FS-2 and RE images. Figure 

4-4 shows the georeferencing results visually. The ground features from each of the images 

fit well. The roads match properly in all images and the paddy field block boundaries are 

ideally aligned to each other in the higher resolution images (TSX, FS-2 and RE). 

 

4.4.3 Spatial accuracies of the georeferenced optical RS data  

To evaluate the spatial accuracies of the georeferenced optical RS data, independent check 

points covering the whole scene were created and their spatial parameters were analyzed. To 

capture the maximum PE results, the check points were located in the areas where the GCP 

Figure 4-4: An example of georeferenced multi-source RS images in comparison to the TSX image. From left 

to right, 1st row: FS-2, TSX, LS 5, HJ, RE, 2nd row: LS 5, HJ, RE, FS-2, TSX, 3rd row: RE, FS-2, TSX, LS 5, 

HJ, 4th row: TSX, LS 5, HJ, RE, FS-2, 5th row: HJ, RE, FS-2, TSX, LS 5.  
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density was relatively low. The results were summarized in Table 4-3. The average PEs of 

the check points were at a sub-pixel value (slightly more than 0.1 pixel) in the HJ (CCD2) 

and LS 5 images. Accuracies of 2.5 pixels and 1.3 pixels were achieved for the FS -2 and RE 

imagery, respectively. The average PE values for all four types of satellite images ranged  

from 3.11 m to 6.66 m. 

Satellite Pixel Size 
(resampled) 
(m) 

Imagery/ Sub-
set Spatial ex-
tension (km) 

Number 
of Check 
Points 

PE (av-
erage) 
(m) 

PE 
(max.) 
(m) 

PE 
(min.) 
(m) 

Std. 
(m) 

HJ 
(CCD2) 

30 × 30 55 × 55 20 3.29 8.05 1.81 1.55 

LS 5 30 × 30 48 × 68 34 3.11 6.48 1.80 1.11 
FS-2 2 × 2 30 × 28 30 5.08 7.44 1.07 1.89 
RE 5 × 5 24 × 24 10 6.66 8.42 4.08 1.21 

 

4.5 Discussion 

4.5.1 Analysis of the anticipated spatial error in the processed TSX reference 

image 

The geometric distortion of SAR imagery products can be caused by three components (Cur-

lander and McDonough, 1991): (1) sensor/platform instability and signal propagation ef-

fects, (2) terrain height, and (3) processor induced errors. The uncertainties embedded in 

the SSC products comprise only the first type of error, which is less than 1 m ( Nonaka et 

al., 2008; Fritz and Eineder, 2013). The second type of errors comes from the SRTM DEM 

dataset. Rodríguez et al. (2006) found that the absolute height error of the SRTM in Eurasia 

was less than 6.2 m; whereas in the SJP study site, where the topography is fairly flat, the 

absolute error was less than 2 m according to the SRTM THED (terrain height error data) 

product. 

Hence, the target range location error (ΔR) determined by the terrain he ight estimation can 

be calculated using (4 ‒ 2) (Curlander and McDonough, 1991): 

                                                               ∆𝑅 = ∆ℎ/tan 𝜂                                                   (4 − 2) 

Where ∆h is the height (DEM elevation) estimation error (2 m) and η is the location incidence 

angle (35º in this study). Therefore, the ΔR for this study was calculated as 2.86 m. The 

processor induced error is process dependent and is denoted as ∆δ i . The overall absolute 

Table 4-3: Accuracy of the independent check points. 
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spatial error of the projected TSX imagery can therefore be calculated by these three com-

ponents, with the result of (3.86+∆δ i) m. Where the processor induced error ∆δ i during TSX 

image processing can be assumed to be infinitely small.  

4.5.2 Quantified spatial accuracy of the georeferenced datasets  

Considering all spatial inconsistent sources, the overall absolute error of the georeferenced 

datasets can be estimated. The overall errors of the georeferenced optical RS data, which are 

equal to the sum of the PE in Table 4-3 and the geometric distortion of the TSX image 

(3.86 m), were 7.15 m, 6.97 m, 8.94 m, and 10.52 m for HJ, LS 5, FS -2, and RE satellite 

images, respectively. Dai and Khorram (1998) found that a registration error of less than 

one-fifth of a pixel should be achieved to detect 90 % of the true changes. Hence, the reg-

istration results for the HJ (CCD2) and LS 5 images can support a change detection analysis 

with a spatial error close to 10 %. 

In surface area estimation, Ozdogan and Woodcock (2006) noted that spatial errors are de-

pendent on both RS image resolution and the field size because of ‘the distribution of sub-

pixel proportions’, especially when the field size is similar to or less than the RS data reso-

lution. In this study, the results of the FS-2 and RE images processing are sufficient for 

field-unit level analysis since the size of each field block unit is typically larger than 5,000 

m2. The field block is the smallest area of a farm management unit and is considered as the 

primary scale for management decisions. The high accuracies for the HJ and LS 5 image 

processing are also beneficial for studies at the farmer-unit level, as a farmer’s crop field is 

generally larger than 20 ha. Figure 4-5 provides a visual result of datasets from multiple 

sources over the entire area of the Qixing Farm. 
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4.5.3 Feasibility of the approach 

In this study, topographic vector datasets and optical RS images from multiple sources were 

georeferenced using GCPs derived from the TSX reference image without the need for la-

bour intensive field work. The creation of the TSX reference image and its use to locate 

Figure 4-5: Georeferenced multi-source data for the study area of Qixing Farm.  
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accurate GCPs is critical, because it not only determines the precision of the results but also 

the feasibility of this method. 

Although many studies (Sowmya and Trinder, 2000; Sohn and Dowman, 2007; Reinartz et 

al., 2009) have attempted to extract geometric features, e.g. GCPs, automatically from satel-

lite images, there is a lack of reports on automatic methods for georeferencing multi -source 

data. Automatic feature extraction methods have limited applicability due to their complex 

parameterization and strict condition requirements (Cobb et al., 1998). Moreover, automatic 

methods for integrating GIS data and satellite imagery are rare.  

The strategy proposed in this study showed that for each dataset, different GCPs we re re-

quired due to the diverse characteristics of the multi -source data. Manual procedure meets 

this requirement and ensures the spatial accuracy. Although the high resolution TSX imagery 

supplies a sufficient number of GCPs, the selection of the GCPs and their corresponding 

tie points is never straightforward. There is still a need to establish the criteria for selecting 

reference points systematically. Another drawback of this method is its inefficiency in pro-

cessing a large number of datasets. However, the proposed method still is especially valuable 

for data-poor environments lacking reference data.  

4.6 Conclusions 

This study provides an applicable and cost-effective approach for georeferencing multi-

source data with different characteristics and non-systematic spatial inconsistencies. It is an 

especially beneficial technique for large study sites with limited accessibility and reference 

maps. The results demonstrated the feasibility of using TSX imagery to accurately georefer-

ence multi-source datasets without in-situ GCP data collection. By using the mean of five 

TSX images and the mean filter, a speckle-free reference image was generated. This proved 

to be critical for locating sufficient GCPs successfully. The PEs of the check points were 

less than 0.2 pixel for the 30 m resolution images (HJ and LS), approximately 2.5 pixels for 

the FS-2 images, and 1.3 pixels for the RE images. The overall positional errors were nearly 

less than 10 m for all four types of images. The discrepancies among each pair of the TS X 

and GIS data were only assessed visually, which demonstrates a need for further study.  
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Abstract  

Rice is a primary staple food for the world population and there is a strong need to map its 

cultivation area and monitor its crop status on regional scales. This study was conducted in 

the Qixing Farm County of the Sanjiang Plain, Northeast China. First, the rice cultivation 

areas were identified by integrating the remote sensing (RS) classification maps from three 

dates and the Geographic Information System (GIS) data obtained from a local agency. Spe-

cifically, three FORMOSAT-2 (FS-2) images captured during the growing season in 2009 

and a GIS topographic map were combined using a knowledge-based classification method. 

A highly accurate classification map (overall accuracy = 91.6%) was generated based on this 

Multi-Data-Approach (MDA). Secondly, measured agronomic variables that include bio-

mass, leaf area index (LAI), plant nitrogen (N) concentration and plant N uptake were cor-

related with the date-specific FS-2 image spectra using stepwise multiple linear regression 

models. The best model validation results with a relative error (RE) of 8.9% were found in 

the biomass regression model at the phenological stage of heading. The best index of agree-

ment (IA) value of 0.85 with an RE of 13.6% was found in the LAI model, also at the heading 
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stage. For plant N uptake estimation, the most accurate model was again achieved at the 

heading stage with an RE of 11% and an IA value of 0.77; however, for plant N concentra-

tion estimation, the model performance was best at the booting stage. Finally, the regression 

models were applied to the identified rice areas to map the within-field variability of the 

four agronomic variables at different growth stages for the Qixing Farm County. The results 

provide detailed spatial information on the within-field variability on a regional scale, which 

is critical for effective field management in precision agriculture.  

Keywords: rice; FORMOSAT-2; agronomic variable; expert classification;  

multi-data-approach (MDA); within-field variability; Sanjiang Plain; Northeast China  

5.1 Introduction  

Rice (Oryza sativa L.) is one of the most important staple food crops, feeding over half of 

the world’s population. In 2010, the global rice production was approximately 672 million 

tons from a cultivation area of around 154 million ha, with China contributi ng to 29% and 

19% of the rice production and cultivation area, respectively  (FAO, 2014). Paddy rice man-

agement and its irrigation strategy have significant effects on greenhouse gas emissions (Yan, 

et al., 2003; Smith et al., 2008). Globally, rice paddies contribute about 10% of the total 

methane flux to the atmosphere (Global Methane Initiative, 2014). In 2000, the soil nitrogen 

(N), phosphorus (P), and Potassium (K) nutrient deficit induced by rice production ac-

counted for 42% of the global deficit amount (Tan et al., 2005). Paddy rice agriculture in 

China is therefore of national and global significance in terms of both food security and 

sustainable development. 

In the past years, remote sensing (RS) as an advanced technology has been used extensively 

in agriculture to obtain spatial and temporal information about crops (Kumar and Monteith, 

1981; Moulin et al., 1998; Hatfield et al., 2008; Gitelson et al., 2014). Paddy rice areas were 

well projected using RS techniques (Frolking et al., 2002; Xiao et al., 2005; Kuenzer and 

Knauer, 2013). Geographic Information System (GIS) data have been proved to be im-

portant to enhance the accuracy of land use and land cover classification (Waldhoff et al., 

2012; Rozenstein and Karnieli, 2011). RS data with coarse and medium resolution are widely 

used in rice cultivation research (Kuenzer and Knauer, 2013; Chang et al., 2005; Wang et al., 

2010; van Niel and McVicar, 2004; Duggin and Piwinski, 1984; McCloy et al., 1987; Okamoto 

et al., 1998; Che and Price, 1992; Fang et al., 1998; Kim and Yeom, 2012; Son et al., 2013; 

Huang et al., 2013; Peng et al., 2014). However, the number of conducted studies on rice 

using high resolution RS images was limited in the past two decades  (Kim and Yeom 2012; 
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Chang et al., 2013; Kim and Yeom, 2014). Identification of rice cultivation areas and esti-

mation of agronomic parameters from high resolution images are valuable for improving 

rice production. 

Mapping rice cultivation areas accurately is fundamental for the assessment of agricultural 

and environmental productivities, the analysis of food security and therefore national and 

international food trade decisions (MacDonald and Hall, 1980; Xiao et al., 2006; Duveiller 

et al., 2012a). Many previous studies have mapped rice areas  (Kuenzer and Knauer, 2013). 

Various classifiers, including maximum likelihood, artificial neural network, decision tree, 

and spatial reclassification kernel, have been used in vegetation mapping using RS. However, 

classification accuracies are mainly determined by the quality and quantity of RS data. No 

ideal image classifier is uniformly applicable to all tasks (Xie et al., 2008). Extensive field 

knowledge and auxiliary data help to improve the classification accuracy (Xie et al., 2008). 

In the Multi-Data-Approach (MDA) for land use and land cover classifications as well as 

crop rotation mapping, multi-temporal RS and GIS vector data are combined to derive as 

much information as possible. Studies (Wang et al., 2010; van Niel and McVicar, 2004) 

demonstrated that considering extensive field knowledge and ancillary GIS data in the post-

classification process can improve the classification accuracy by up to 10%.  

Agricultural RS refers to the method of non-contact measurements of electromagnetic radi-

ation reflected or emitted from plant materials or soils in agricultural fields (Mulla, 2013). 

Different vegetative covers can be distinguished according to their unique spectral behavior 

in relation to overall ground elements (Tucker, 1979): Visible radiation in the red (630–690 

nm) is absorbed by chlorophyll while radiation in the near infrared (760–900 nm) is strongly 

reflected by leaf cellular structures. Vegetation Indices (VIs) are developed to qualitatively 

and quantitatively evaluate vegetative characteristics by combining spectral measurements 

from different wavelength channels (Bannari, et al., 1995). Theoretically, the VIs should be 

particularly sensitive to vegetative covers, insensitive to non-vegetation factors such as soil 

properties, atmospheric effects and sensor viewing conditions (Jackson et al., 1983). In prac-

tice, factors of soil characteristics, atmosphere and sensor radiometry degradation, as well 

as differences in the spectral responses and bidirectional effects all have considerable effects 

on vegetation indices. Therefore, many VIs have been developed to enhance the vegetative 

cover signal while minimizing the background response (Bannari et al., 1995). Hansen and 

Schjoerting (2003) discussed the optimized NDVI from different band centers and band 

widths to represent wheat parameters such as biomass, leaf area index (LAI), chlorophyll, 

and N status. In their study, the partial least square regression algorithm was applied. Yao 
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et al. (2012) successfully explored empirical models based on ground-based RS techniques 

to estimate N status and improve N use efficiency in rice. Yu et al. (2013) investigated the 

potential of hyperspectral band combinations in interpreting canopy N status in rice. Despite 

the lack of interpretations of the physical mechanisms and interactions between the target 

properties and the measured signals, these empirical models are fundamental materials for 

further research in order to represent the physical reality.  

Remotely sensed photosynthetically active radiation has been used to evaluate the primary 

production of crops (Hall et al., 1990; Baret et al., 2007). The most sophisticated method 

commonly combines RS data with dynamic crop growth models  (Bouman, 1992; Prasad et 

al., 2006). However, these methods require numeric parameters and are sensitive to soil 

background conditions. 

Precision agriculture (PA) emerged in the middle of the 1980s (Mulla, 2013). Later, in 1991, 

satellite data were firstly used in PA (Bhatti et al., 1991). Spatial and temporal variability of 

soil and crop factors within a field is the essential base of PA (Zhang et al., 2002). Measure-

ment of various crop canopy variables during the growing season provides an opportunity 

for improving grain yield and quality by site-specific fertilizer applications. Due to the ability 

of providing high temporal, spatial and spectral resolution images, satellite RS has a signifi-

cant potential in PA (Mulla, 2013; Thenkabail, 2003). The multi-temporal within-field infor-

mation on crop status captured by satellite RS is invaluable in PA.  

Because of its operational and economical uses over large areas, satellite RS technology has 

been widely used to conduct in-season crop yield forecasting for decision making on mar-

keting intervention and policy support on regional or global scales (MacDonald and Hall, 

1980; Duveiller et al., 2012b). Satellite RS is also an essential technique for agro-ecosystem 

studies on regional scales (Donlon et al., 2012; Duveiller et al., 2012a; Duveiller and 

Defourny, 2010). 

The overall aim of this study is to investigate the possibilities and accuracies of within -field 

variability of rice status monitoring during the entire growing season on a county scale (Qix-

ing Farm) using satellite RS data. The term “within-field variability” in this study refers to 

the spatial variability of agronomic variables (biomass, LAI, N concentration, N uptake etc.) 

within a rice crop field defined by enclosed boundaries. The size of a rice field in this study 

ranges from 0.5–100 ha. First, a map of rice cultivation areas was produced using multi -

temporal RS FORMOSAT-2 (FS-2) images, coupled with auxiliary GIS data (MDA) to im-

prove the classification accuracy. Then, empirical regression models were developed to relate 

RS spectra with field measurements of the four agronomic variables. One advantage of this 



Investigating Within-Field Variability of Rice from High Resolution Satellite Imagery in 
Qixing Farm County, Northeast China | 60 

 
 

research is the construction of specific regression models for different growth stages. Based 

on a stepwise regression analysis, the optimized predictors from the satellite images were 

identified to investigate the dynamics of crop canopy characteristics at different stages. The 

specific objectives of this study are to (1) identify rice cultivation areas with high classifica-

tion accuracies based on multi-temporal RS and GIS data; (2) develop regression models for 

deriving rice crop variables from the FS-2 imagery; (3) validate the ability of the regression 

models to estimate rice parameters; (4) apply the regression models to the entire Qixing 

Farm County study area. 

The presented method of extracting high resolution within-field variability information from 

the FS-2 imagery will assist farmers in their site-specific rice crop management and strategy 

planning. 

 

Figure 5-1: Location of the study area in Northeast China (the upper left corner shows a subset of the FS-2 im-
age acquired on 9 August 2009). 
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5.2 Study area 

The study site Qixing Farm (47.2°N, 132.8°E), is located in the Sanjiang Plain (SJP) in 

North-eastern China (see Figure 5-1). The SJP is an alluvial plain formed by the Songhua 

River, the Heilong River and the Wusuli River. The administrative area of the Qixing Farm 

County is about 120,000 ha. The climate in the SJP is temperate sub-humid, with a mean 

annual precipitation of 500–650 mm. Rainfall mainly occurs from May to September during 

the growing season of crops. The accumulated ≥ 10 °C temperature all across the year is 

about 2300–2500 °C and only single-season crops are planted. The topography is rather flat 

with an average elevation of 60 m and is characterized by broad alluvial plains and low 

terraces formed by the rivers. The SJP, which covers an area of more than 100,000 km2, 

exceeding the size of the Netherlands almost by three times, is one of the major agricultural 

areas of China. In 2009, arable land in the SJP accounted for nearly 60% of the total land, 

being dominated by paddy rice (57%) (Ouyang et al., 2013). Since the irrigation constructions 

(water channels, raised ridges) for paddy rice are reusable year by yea r, the field boundaries 

are mostly stable. In recent years, for better economic profit, there has been moderate land 

use change from dryland to paddy rice. Compared with Europe’s highly fragmented agricul-

tural landscapes which prevent the utility of coarse  resolution RS data for quantitative crop 

monitoring and yield forecasting (Xie et al., 2008), SJP’s large homogenous landscapes pro-

vide an ideal site for monitoring crops using satellite RS.  

5.3 Data 

5.3.1 Satellite RS images and GIS data 

FORMOSAT-2 (FS-2) collects multispectral images with a ground pixel resolution of 8 × 8 

m2 over a swath of 24 km. The FS-2 images used in this study are optical images with 4 

bands of blue (450–520 nm), green (520–600 nm), red (630–690 nm), and near-infrared (760–

900 nm). Three tiles of high quality images covering the main arable land area (~56,000 ha) 

of the Qixing Farm were captured on 24 June, 6 July, and 9 August, in 2009. Thus, both the 

vegetative phase (24 June and 6 July) and the reproductive phase (9 August) of rice are wel l 

represented in these images. 

GIS vector data of Qixing Farm field boundaries were provided by the Qixing Modern Ag-

riculture Research Center. Information on crop field boundaries, irrigation wells, water 

drainages, and shelter forests edges are given at a fine field unit scale. Additional information 

such as crop type of each field is given in the GIS attribute table.  
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5.3.2 Ground truth data collection 

Field campaigns for the agronomic data collection were carried out during the entire rice 

growing season in 2009. In total, 42 sample sites covered by the FS-2 images were selected 

for this study. All these 42 sites were located in seven farmers’ fields being spatially sepa-

rated. Each site was represented by one plot covering approximately 0.1–0.3 ha. The final 

plant samples collected from each site were a mixture of three or four spatially separated 

samples, taken from the same plot. As ground truth data, the areas of sample sites were 

mapped using a Trimble™ Global Positioning System (GPS) receiver. Field management 

calendars of transplanting, N topdressing, irrigation, application of insecticides, and harvest 

dates, were recorded. Several field campaigns were carried out to collect samples from the 

tillering stage, booting stage, heading stage, 20 days after heading, and the harvest stage. For 

each site, biomass, LAI and plant N concentration were measured and plant N uptake was 

calculated as well. 

After the field sampling, the plants were first cleaned, and then separated into different 

organs (leaves, stems, panicles) to measure the biomass values. LAI was measured using a 

sub-sample of the leaf biomass. One sub-sample consisted of 10–20 leaves, randomly se-

lected among the youngest fully developed leaves. All fresh samples were processed in the 

oven at 105 °C for half an hour to stop enzyme activity. After that, they were dried at 75 °C 

for at least 72 h until a constant weight was reached before they were finally weighted. N 

concentration was measured using the Kjeldahl-N method. The plant N uptake was calcu-

lated as the aboveground dry mass multiplied by the N concentration. Detailed information 

is listed in Table 5-1. 

In the study area, rice cultivation technologies in high latitude are relatively sophisticated 

and rice cultivation regulations developed by the government are applied by most of the 

farmers. The rice seedlings are first grown in greenhouses and are then transplanted into the 

paddy fields. In the regulations, a date window of 15–25 May is suggested for transplanting 

in order to capture the maximum accumulated temperature throughout the whole year. In 

this research, we divided our ground truth data sets into two groups according to the trans-

planting dates. Sample sites with seedlings transplanted from 15–25 May were used to con-

struct empirical regression models between the agronomic parameters and the RS data. Sam-

ple sites with seedlings transplanted beyond those dates were used as validation data sets to 

evaluate the performance of the regression models. 
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5.4 Methods 

5.4.1 Satellite image pre-processing 

Pre-processing of satellite images prior to vegetation information extraction is essential to 

remove noise and increase the interpretability of image data (Dhaliwal and Benbasat, 1996). 

Solar radiation reflected by the earth surface to the satellite sensors is significantly affected 

by its interaction with the atmosphere. Atmospheric correction is an important pre -pro-

cessing step for satellite RS (Saastamoinen, 1972; Kaufman and Sendra, 1988). The uncer-

tainties resulting from atmospheric effects in agriculture applications of satellite RS have 

been well discussed during the past decades (Duggin and Piwinski, 1984; Che and Price, 

1992; Courault et al., 2003; Hadjimitsis et al., 2010). In this study, atmospheric correction 

was performed using ENVI FLAASH, version 5.1. Table 5-2 lists the main parameters used 

in the atmospheric correction process. The sub-arctic summer model for rural region was 

selected. 

Date Visibility (km) Zenith Angle Azimuth Angle 

June 24 50 146°10′0.84″ −115°13′19.56″  

July 6 50 152°15′58.34″ −45°34′58.34″ 

August 9 50 155°12′2.90″ −83°58′22.08″ 

  

Geometric distortion is another important factor affecting the results of image processing, 

especially when combing geospatial data from different dates or multiple sources. Dai and 

Siamak (Dai and Khorram, 1998) noted that the geometric error even on a sub-pixel level 

can significantly affect the accuracy of land use classification from satellite images. The 

precision of geometric correction depends on the number, distribution, and accuracy of the 

Ground Control Points (GCPs) (Moré and Pons, 2011). To avoid labor intensive work of 

in-situ GCP collection, Zhao et al. (2015) developed a geometric correction method for 

georeferencing multi-source geodata by using TerraSAR-X data as a reference. The same 

method was applied in this study. Specifically, a stacked TerraSAR-X image produced from 

five dates served as the reference to georectify the FS-2 images. The main georeferencing 

parameters are shown in Table 5-3. The positional error (PE) was less than 6 m for all three 

images. More details about the method can be found in Zhao et al. (2015). 

 

Table 5-2: Main atmospheric correction parameters for the FS-2 images.  
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 The mean reflectance and VIs for each sample plot were calculated using the “Zonal 

Analysis” tool in ERDAS IMAGINE 2013. For each of the three FS -2 images, correspond-

ingly 42 RS samples were extracted and used to develop the empirical regression models for 

crop status monitoring. 

5.4.2 Mapping rice cultivation areas 

A rice area map of the Qixing Farm in 2009 was produced using aforementioned MDA. In 

particular, multi-temporal RS and GIS data were integrated to improve the accuracy o f rice 

mapping. Based on the properties/attributes of the different datasets, a knowledge base was 

constructed and implemented, using the Knowledge Engineering tool mounted in ERDAS 

IMAGINE 2013. A series of logical rules were created in the Knowledge Engineering tool 

to integrate the RS and GIS data in order to achieve higher classification accuracy.  

The general steps for delineating rice areas are summarized as follows: (1) a supervised clas-

sification based on the maximum likelihood algorithm was carried out. In order to extract 

more unique spectral signatures, more than five subclasses were classified firstly (for the 

image of June 24: nine subclasses in total with one of them being rice; for the image of July 

6: 16 subclasses in total with three of them representing rice; for the image of August 9: 11 

subclasses in total with three representing rice); (2) the resulting subclasses were further 

combined to five main classes, including rice, dryland, forests, residential areas, and “other 

areas” for each image; (3) isolated pixels were eliminated using the “clump and eliminate” 

functions embedded in ERDAS IMAGINE 2013; (4) an expert classification system based 

on knowledge rules was implemented to integrate and improve the rice classification results 

from multiple dates; and (5) the vector GIS data were used as auxiliary dataset in the post -

classification process to further improve the accuracies of rice classification.  

In a MDA study, Waldhoff et al. (2012) reported that the support vector machine (SVM) 

approach and the maximum likelihood classifier (MLC) yielded similar classification accura-

cies. They found although the SVM method performed slightly better (up to 3%) in three of 

the four cases, the MLC had a shorter processing time. Therefore, the MLC was sel ected in 

Table 5-3: Main georeferencing parameters for the FS-2 images.  

Image Capture 

Date 

Number of  

Control Points 

Number of 

Check Points 

PE of Control 

Points (m) 

PE of Check 

Points (m) 

June 24 100 20 2.991 5.901 

July 6 104 20 4.143 5.032 

August 9 101 20 3.353 5.666 
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this study to derive multi-temporal high resolution land cover classifications over a large 

study area. After the classification, the rice classes derived from the three RS images were 

“combined” by logical rules to take advantage of the specific spectral information corre-

sponding to growth stages. Specifically, in the first step of the supervised classification, to 

improve the producer’s accuracy of rice classes, relatively “broad” spectral information was 

selected as rice spectral signatures. Thus, some other land covers such as “dryland” and 

“bare soils” may have been classified into rice classes as well. However, these misclassified 

areas from one single image could be different from those areas from the other dates, be-

cause spectral differences between rice and other land covers vary with growth stage  (Chen 

et al., 2011). In the next step, using the knowledge base, the pixels classified into rice classes 

in all three RS images were categorized into a new “rice class 1”. The areas classified into  

rice classes in two RS images were categorized into a new “rice class 2”. After that, these 

refined RS rice areas were further “combined” with the GIS data (rice area masks). To assign 

a pixel into the final rice class, the following conditions had to be satisfied: (1) this pixel was 

in the “rice class 1”; or (2) this pixel was in the “rice class 2” and in the GIS rice mask.  

5.4.3 Ground truth data interpolation 

Ground truth data for each site were collected at the tillering stage (28–30 June), the jointing 

stage (10–12 July), the heading stage (2–8 August), 20 days after heading (22–28 August), 

and the harvest time. The FS-2 images were acquired on 24 June, 6 July and 9 August, at 

slightly different dates from the field campaigns. Therefore, the values of the ag ronomic 

variables of biomass, LAI, plant N concentration and N uptake were interpolated for these 

three FS-2 dates. First, a specific polynomial growing curve for each site was constructed 

based on the time series of ground truth data. The values of the agronomic variables for the 

three RS-2 dates were then interpolated. These interpolated values were used as the new 

ground truth data to explore their relationships with the satellite image reflectance and VIs.  

5.4.4 Development of regression models for deriving agronomic variables 

A multiple linear regression method was constructed for each agronomic variable based on 

reflectance values and the VI derived from the FS-2 images and the corresponding field 

measurement. The VI used in this method was treated as an equivalent factor of reflectance. 

Correlation and regression analyses were performed in SPSS 21 (SPSS, Inc., Chicago, IL, 

USA). The format of the multiple linear regression models was as follows:  

𝑌𝐸 = 𝛼0 + 𝛼𝐵𝑙𝑢𝑒 × 𝑅𝐵𝑙𝑢𝑒 + 𝛼𝐺𝑟𝑒𝑒𝑛 × 𝑅𝐺𝑟𝑒𝑒𝑛 + 𝛼𝑅𝑒𝑑 × 𝑅𝑅𝑒𝑑 + 𝛼𝑁𝐼𝑅 × 𝑅𝑁𝐼𝑅 + 𝛼𝑁𝐷𝑉𝐼 × 𝑁𝐷𝑉𝐼 (5 ‒ 1) 
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The NDVI is calculated by the following function:  

  

𝑁𝐷𝑉𝐼 = (𝑅𝑁𝐼𝑅 − 𝑅𝑟𝑒𝑑 )/(𝑅𝑁𝐼𝑅 + 𝑅𝑟𝑒𝑑 ) (5 ‒ 2) 

 

R stands for the reflectance value at the subscripted satellite band. In Equation (1), YE 

stands for the estimated agronomic variable; 𝛼𝑖 is the coefficient of the reflectance at the 

corresponding band/vegetation index. The performance of the regression model was evalu-

ated by the coefficient of determination (R2). 

Biomass and LAI are essential crop physiological variables which determine the crop 

yield. LAI refers to the ratio of leaf surface area to ground area. It is a fundamental canopy 

parameter in agronomy and RS since it drives absorption of solar radiation and evapotran-

spiration for carbon assimilation, and thus primary production. In this research, both bio-

mass and LAI were related to the FS-2 band reflectance based on the aforementioned Equa-

tion (5 ‒ 1). 

N is one of the most remobilizable elements during the reproductive stage in rice plants  

(Tanaka, 1956). Since its remobilization causes leaf senescence, it is directly related to crop 

productivity (Mae and Ohira, 1981). Accurate plant N status detection to develop site spe-

cific N management strategies for rice in the SJP is of importance regarding both agricultural 

and environmental aspects (Yu et al., 2013). In this study, plant N concentration and N 

uptake were also derived from the FS-2 images using the regression model represented by 

Equation (5 ‒ 1). 

5.4.5 Validation of the regression models 

The regression models were evaluated in a validation analysis. The feasibility of the model 

was quantified by the statistical measures of relative error (RE) and index of agreement (IA). 

In a further step, scatterplots were generated to assess the performance of the regression 

models. The RE is the ratio of the Root Mean Square Error (RMSE) to the mean of observed 

values, describing the differences between the predicted and the observed values relative to 

the mean of the ground truth values. The IA represents the degree of agreement between 

the model estimations and observed values (Willmott, 1981). It is calculated as: 

  



n

i

n

i

OiOOiPiPiO
1

2

1

2

)(1IA  (5 ‒ 3) 

where 𝑂𝑖 is the observed value, 𝑃𝑖 is the model-simulated value, and �̅� is the mean of 

observed values. The denominator in Equation (5 ‒ 3) was defined as a “potential 
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error” by Willmott (1981); therefore the IA represents the ratio between the mean 

square error and the “potential error”. Although the IA is sensitive to extreme values 

(Legates and McCabe, 1999), it can be interpreted straightforwardly since it ranges 

from 0–1. 

5.5 Results 

5.5.1 Accuracy of rice area classification 

To compare the classification accuracies from different data sources, 800 random points 

were created in the study area. More than 80 random points were distributed in each class. 

Error matrices were generated to quantify the classification accuracies. The kappa coeffi-

cients of agreement and overall accuracies for the rice class are shown in Table 5-4. 

Data Source 
User’s Accuracy  

of Rice 
Producer’s Accuracy  

of Rice 
Kappa 

Coefficient 
Overall 

Accuracy 

RS single date 
(August 9) 

94.1% 82.6% 0.733 80.8% 

RS multiple dates 
(3 dates) 

89.4% 91.7% 0.781 85.0% 

RS and GIS data 
combined 

94.2% 92.7% 0.881 91.6% 

 

With auxiliary GIS data, both the Kappa and the overall accuracy values for the rice class 

were improved by 0.148 and 10.8%, respectively. While a similar user’s accuracy was ob-

tained after combining the three RS classification maps and the GIS ancillary d ata, the pro-

ducer’s accuracy increased from 82.6% to 92.7%, implying a decrease of 10% in omission 

errors. These results are in line with the conclusions made by Shrestha and Zinck (2001) and 

Rozenstein and Karnieli (2011). 

5.5.2 Empirical regression models 

5.5.2.1 Model development 

The parameters of the best qualified regression models for all agronomic variables are shown 

in Table 5-5. The coefficient of determination R2 was used to evaluate the regression mod-

els.

Table 5-4: Accuracies of rice maps produced from different data sources.  
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A stepwise multiple linear regression was applied to select the best RS predictors for the 

regression models at different phenological stages.  

For the biomass regression models, the best R2 values, ranging from 0.519–0.765, were 

achieved. At the tillering stage, only green and red bands were retained applied to represent 

the biomass; while at the booting stage, all the four bands as well as the NDVI value were 

included in the model. At the heading stage, only green and NIR bands were used . Across 

all three dates, the model for the booting stage (second date), near the height of the growing 

season, gives the highest R2 value of 0.765. 

The stepwise regression analysis for the LAI estimation chose red and green bands as the 

predictors in the tillering stage, NDVI as the only predicting variable in the booting stage, 

and all the four bands as predictors in the heading stage. The LAI estimation model with the 

best performance occurred was found at the heading stage when panicles grow outside of 

the rice stem, with an R2 of 0.65. 

Variations in N concentration are more difficult to detect than biomass or LAI development. 

The N concentration is a weak absorber of spectral radiation and occurs in very small quan-

tities in leaf tissue (0.5%–3%) (O’Neill et al., 2002). The red and green bands of the FS-2 

image were included in the regression model in the tillering stage, while all four bands were 

used in both the booting and heading stages. At the tillering and booting stages, when the 

plant N concentration is at a high level, higher associations were found between the plant N 

concentration and the RS spectra.  

Stepwise regression analysis for N uptake included all four bands as predictors in the tillering 

and booting stages, whereas only green and NIR were needed in the heading stage. The 

highest R2 was 0.483 at the heading stage.  

5.5.2.2 Validation of the regression models 

 Model validation was conducted using independent ground truth data sets as mentioned in 

section 4.4.3.2. Table 5-6 shows the statistics of the model validation.  
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Agronomic varia-
ble 

Phenological 
Stage 

Number of  
Validation Sites 

Model Validation Parameter 

RE (%) IA 

Biomass (kg/ha) 

Tillering 12 39.4 0.38 

Booting 19 27.0 0.32 

Heading 19 8.9 0.68 

LAI 

Tillering 12 31.4 0.38 

Booting 17 15.1 0.60 

Heading 17 13.6 0.85 

N Concentration 
(%) 

Tillering 12 17.7 0.41 

Booting 19 15.3 0.48 

Heading 19 27.7 0.48 

N Uptake  
(kg N/ha) 

Tillering 12 39.9 0.39 

Booting 19 32.5 0.37 

Heading 19 11.0 0.77 

 

Validation analyses (Table 5-6) showed that the regression model for biomass reached the 

lowest RE of 8.9% and highest IA of 0.68 at the heading stage. Across all three dates, for 

the biomass, LAI and N uptake estimation models, the RE value decreases as rice grows. 

The LAI model in the heading stage showed the lowest RE and highest IA values of 13.6% 

and 0.85, respectively. These results demonstrated that the models based on the FS-2 images 

performed better at later growth stages.  

The RE for the N concentration model was the lowest (15.3%) at the booting stage, while 

the IA values increase slightly from 0.41 at the tillering stage up to 0.48 at the later booting 

and heading stages. For the N uptake models, the lowest RE (11%) and the highest IA (0.77) 

also occurred at the heading stage.  

Across all three dates, relationships between the FS-2 derived values and the interpolated 

ground truth data were analyzed by scatterplots (Figure 5-2). The R2 value was the highest 

(0.98) for biomass modeling results, followed by the N uptake model (0.93), whereas a mod-

erate R2 value of 0.78 and 0.84 was achieved for LAI and plant N concentration estimation. 

These results showed that the RS derived values were highly related to the ground truth 

values, and the linear regression trend lines were ideally close to the 1:1 line (dashed diagonal 

lines in the figures). 

Table 5-6: Validation results for the regression models. 
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5.5.3 Regional application of the regression models 

Finally, the regression models were applied to the identified rice areas to map the within -

field variability of the four agronomic variables for the area covered by the FS -2 images in 

the Qixing Farm County. As an example, the results for July 6 are shown in Figures 5-3 to 

5-6. The within-field variability of the rice status can be easily detected in these maps. In 

the biomass map (Figure 5-3), unevenly distributed values and patterns can be identified in 

Figure 5-2: Relationships between RS derived values and ground truth values for (a) biomass; (b) LAI; (c) N 

concentration; and (d) N uptake at the tillering (△), booting (◊), and heading (○) stages. 
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most of the field blocks, revealing significant within-field variability of the growing status. 

Overall, a relatively higher biomass level is shown in the southern part.  

 

 

Figure 5-3: Within-field spatial variability of biomass derived from the FS-2 image of 6 July 2009. 
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The LAI map (Figure 5-4) reveals higher LAI values in the south, especially the southwest, 

region of the study area. Variations within the field blocks are also well detected in this map.  

 

 

Figure 5-4: Within-field spatial variability of LAI derived from the FS-2 image of 6 July, 2009.  
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The N concentration distribution map (Figure 5-5) shows a general random pattern of spa-

tial variation on the intra-field level. Most of the fields had N concentration values of 2.5–

3.5%. However, the within-field variability is still presented. 

 

 

Figure 5-5: Within-field spatial variability of N concentration derived from the FS-2 image of 6 July 2009. 
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Likewise, the N uptake map (Figure 5-6) displays apparent within-field spatial variation. In 

the south and southeast part of the image, a relatively higher plant N uptake is detected.  

 

 

 

Figure 5-6: Within-field spatial variability of N uptake derived from the FS-2 image of 6 July 2009. 



Investigating Within-Field Variability of Rice from High Resolution Satellite Imagery in 
Qixing Farm County, Northeast China | 77 

 
 

5.6 Discussion 

5.6.1 Band selection for different growth stages 

The recorded reflectance of optical imagery from a vegetated surface is a function of several 

physical properties such as vegetation structure, soil type, plant moisture content as well as 

sensor configuration. Plant pigments have distinct absorption spect ra and some have an 

impact upon the reflectance spectra of leaves. This offers the opportunity of characterizing 

pigment concentration from reflectance spectra (Blackburn, 2007), and thus to interpret the 

plant status. Chlorophylls are one of the most important pigments because they control the 

absorption amount of solar radiation which determines the photosynthesis and, conse-

quently, primary production. Several studies have demonstrated that the plant chlorophyll 

concentration indirectly indicates the plant nutrient status because the molecular structure 

of chlorophyll incorporates a large proportion of total leaf nitrogen  (Filella et al., 1995; 

Moran et al., 2000; Yu et al., 2013). 

In our results, different spectral bands were selected for the regression models at different 

growth stages. The red and green band combination performed well for most of the agro-

nomic variables at the tillering stage, whereas green and NIR band combinations performed 

best for biomass and N uptake estimation at the heading stage. At the earlier growth (tiller-

ing) stage, the rice canopy coverage is lower (much less than 100%), resulting in a lower 

chlorophyll concentration on the pixel scale. In addition, the chlorophyll concentration on 

the leaf scale is lower compared to that at the heading stage (Chen et al., 2010; Cao et al., 

2001). However, at the later (heading) stage, the canopy cover is higher, and the leaf level 

chlorophyll concentration is higher as well. The blue band did not frequently show up in the 

stepwise regression models. This may be attributed to the strong scattering effects of the 

atmosphere on blue radiation. 

In addition, we found when the plant N concentration was relatively high, green (520–600 

nm) and red (630–690 nm) bands were effective for the regression models. This result con-

forms to the finding of O’Neill et al. (2002) that the highest correlation between N concen-

tration and reflectance occurred at 697.8 nm, followed by the region  of 536.8–558.5 nm. 

5.6.2 Background effects in the early stage 

According to the model validation results of REs, it can be concluded that the regression 

models for the tillering stage did not perform as well as the ones for the other two stages, 

regardless of regarding all agronomic variables except for N concentration. The highest RE 
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of N concentration occurred at the heading stage, which mainly was caused by the low N 

concentration in leaf tissue at that stage, as mentioned in section 5.2.1. 

According to the IA, the regression models performed best in the heading stage for all the 

agronomic variables, probably resulting from the higher biomass density and thus lower field 

soil and water effects compared to the early stages. This result is in conflict with the f indings 

of Gnyp et al. (2014), who utilized hyperspectral field data for rice biomass estimation and 

achieved better results at the early growth stages. However, in the study of Gnyp et al. 

(2014), a specific vegetation index such as NDVI or RVI (ratio vegetation index) was used 

as the single independent variable in the regression models. They reported that NDVI be-

came saturated at later growth stages before biomass reached 3 t/ha, which might have af-

fected the model performance. They also noted that at the heading stage, the canopy reflec-

tance signal became more complicated since panicles  emerged from the sheath. In this study, 

the original multi-spectral reflectances in addition to NDVI were both used as the descrip-

tive variables in the stepwise regression, which might help to remove the effects of the 

NDVI saturation problem on the model performance at later growth stages. Nevertheless, 

this needs to be further confirmed by analyzing the datasets from the two studies. Addition-

ally, different measurement methods, RS instruments, physical conditions of the rice crop, 

sun angles, and sensor view angles, may also contribute to the discrepancy in these two 

studies. 

In vegetation studies using satellite RS, several caveats have been noted by Myneni et al. 

(1995). These caveats include bidirectional effects, atmospheric effects, canopy structure 

effects, background or soil effects, nonlinear effects of scattering, effects of spectral heter-

ogeneity, adjacent effects, nonlinear mixing, and topographic effects. In thi s study, the back-

ground soil and water effects and the rice canopy structure significantly affect the spectral 

response. Canopy conditions at different stages are clearly represented in the following pho-

tos (Figure 5-7). At the early stage, the rice canopy coverage was relatively low and therefore 

more soil and water background effects occurred. As one of the important canopy structure 

parameters, leaf orientation characterized by a smaller leaf angle (see Figure 5-7) at the early 

stage might result in the weak performance of the regression models as well.  
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5.7 Conclusions 

Due to the integration of multi-temporal FS-2 imagery and GIS data, the rice cultivation 

areas in the Qixing Farm County were more clearly identified. The overall accuracy of the 

entire classified map was improved remarkably from 81.8%– to 91.6%. This highly accurate 

rice cultivation map provides an ideal basis for further analyses of rice crops in the study 

area. 

This study showed that the performance of the regression models was significantly affected 

by rice growth stages. Thus, an optimized band selection for every growth stage is important 

due to the varying spectral reflectance properties. Based on the R 2 values, relatively higher 

goodness-of-fit values were found in the biomass and LAI estimation models than in the 

plant N uptake and plant N concentration models. In particular, for the estimation of plan t 

N concentration, better model goodness-of-fit occurred at the earliest growth stage (tiller-

ing) when the N concentration was relatively high. The RS derived values and the interpo-

lated ground truth values for all the three dates were highly correlated. The most accurate 

models with the lowest REs and the highest IA values were found at the heading stage for 

three of the four agronomic variables, except for the N concentration. In conclusion, this 

Figure 5-7: Rice growth on 24 June (left), 6 July (middle) and 9 August (right).  
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study provides a framework and example of how high resolution satellite RS can support 

agricultural field management such as fertilizer, irrigation and pesticides management strat-

egies by providing within-field agronomic information on a regional scales. The information 

derived from satellite RS could be further used to study the relations between crop growth 

and other phenomena such as carbon fixation, climate change, and sustainable management 

of natural resources. 
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Abstract 

Yield estimation over large areas is critical for ensuring food security, guiding agronomical 

management, and designing national and international food trade strategies. Besides, analyz-

ing the impacts of managed cropping systems on the environment is impor tant for sustain-

able agriculture. In this study, the agro-ecosystem model DNDC (DeNitrification-DeCom-

position) and FORMOSAT-2 (FS-2) imagery were used to detect spatial variabilities of paddy 

rice yield in the Qixing Farm in 2009. The Qixing Farm is located at the center of the San-

jiang Plain in NE-China, which is one of the important national food bases of China. The 

site-specific mode of the DNDC model was adapted due to its advantages of better trans-

ferability and flexibility. It was generalized onto a regional scale by programming a set of 

scripts using the Python programming language. Soil data were prepared as model inputs in 

100 m raster files. The spatial variabilities in modelled yields were well detected based on 

the detailed soil data and an accurate rice area map. Rice yield was also derived from multiple 

vegetation indices based on the FS-2 imagery. It was found that the highest coefficient of 

model determination (CD) and index of agreement (IA) for the modelled yield were 2.63 and 

0.74, respectively, while for the RS-derived yield, the highest CD and IA were 1.2 and 0.55, 
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respectively. Results from both methods were comparable and each method has its own 

advantages. 

Key words: yield estimation; agro-ecosystem model; regionalization; soil characteristics; 

FORMOSAT-2; Sanjiang Plain 

6.1 Introduction 

Yield estimation is significant concerning to global food security issues, food trade strate-

gies, and agro-ecosystems studies (Godfray et al., 2010; Ericksen et al., 2009). Agro -ecosys-

tem modelling is an effective means in yield estimation due to its capability of using various 

environmental factors (model input data) for simulating crop production under different 

scenarios. Remote sensing (RS) is another effective technology for agricultural ap plications 

in terms of yield estimation and sustainability (Atzberger, 2013; Liaghat and Balasundram, 

2010). As one of the major food crops, rice is crucial not only for national economy and 

food security especially in the developing world, but also for the natural ecosystems (Tilman 

et al., 2002). Many rice-related studies have been reported. These studies have focused on 

agro-ecosystem analyses using process-based models and rice area delineation and status 

monitoring using RS technologies (e.g., Fumoto, et al., 2008; Zhang et al., 2011; Kuenzer 

and Knauer, 2010; Zhao et al., 2015a; Huang et al., 2015).  

In agro-ecosystem models, plant development, growth, and their effects on the environment 

are calculated as functions of environmental parameters and agricultural management data. 

Many of such models have been designed and used at field scale, whereas models that inte-

grate abundant information over large geographic extents on regional and global scales are 

needed as well. The significance of generalizing site-specific model into a regional extent has 

been proposed in recent studies (Resop et al., 2012; Thorp and Bronson, 2013). The quality 

and spatial coverage of the available model inputs are key considerations in implementing 

agro-ecosystem modellings on large geographic scales (Bareth, 2009). With high spatial het-

erogeneity, the quality (i.e., scale, accuracy) of soil and management data critically determine 

the accuracies of model results on spatial variability (Hansen and Jones, 2000; Kersebaum 

et al., 2007). 

This study was conducted for Qixing Farm in the Sanjiang Plain (SJP) of NE-China in 2009. 

The DNDC model (DeNitrification-DeComposition, version 9.5; developed by Li et al., 

1992, modified by Li et al., 2000) was chosen to detect spatial variabilities  of paddy rice 

yield. The DNDC model is one of the few agro-ecosystem models that are designed with 

two modes -site-specific and regional (Li et al., 2004). However, the site-specific mode is 
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more flexible and transparent because more input parameters can be adjusted (Perlman et 

al., 2013). Therefore, the site-specific mode of the DNDC model was used and generalized 

to a regional scale through a technical improvement. Raster files of soil properties (e.g., 

SOC, clay fraction, etc.) in 100 m spatial resolution were prepared as model inputs. Addi-

tionally, FORMOSAT-2 (FS-2) satellite imagery with a ground pixel resolution of 8 m was 

used. Rice yield was estimated based on the multi -temporal vegetation indices derived from 

the FS-2 imagery. 

The objectives are to 1) apply the DNDC model and assess its performance in estimating 

rice yield in the SJP; 2) generalize the site-specific model for regional applications; 3) inves-

tigate the effects of soil heterogeneity on spatial variability in rice yield; and to 4) compa re 

and assess the modelled and RS-derived rice yields. 

6.2 Materials and Methods 

6.2.1 Study area 

The study area Qixing Farm (47.2 °N, 132.8 °E), covering an area of approximately 120,000 

ha, is a typical state-owned farm located at the center of the SJP in NE-China (Figure 6-1). 

The SJP, covering more than 100,000 km², is an alluvial plain formed by the S onghua, Hei-

long and Wusuli rivers. It is dominated by temperate sub-humid monsoon climate, with a 

mean annual precipitation of 500 – 650 mm and an annual average temperature between – 

4 °C and 4 °C (Yan et al., 2001). Accumulated temperature (≥ 10 °C) in the SJP ranges 

from 2300 °C to 2500 °C across the year. Only single-season crops are planted. Four main 

soil types - dark brown forest soil, meadow soil, albic soil and bog soil -cover 95% of the 

whole area of the SJP (Nachtergaele et al., 2008).  

The SJP, with 57 % of arable land area in 2009 (Ouyang et al., 2013), is one of the crucial 

food bases of China. In the Qixing Farm, paddy rice areas cover three quarters of the total 

sown areas (SBHR & HRSTCB, 2011).  
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6.2.2 Field data 

Three field datasets spatially distributed in the Qixing Farm were collected in 2009 (Figure 

6-2). 

  

 

Figure 6-1: Location of the study area Qixing Farm in Heilongjiang province, NE-China. 

Figure 6-2: Distribution of field data sites in 2009 in the Qixing Farm. 
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Field dataset I was measured at 42 sites with each representing one field plot (0.5 ‒ 3 ha). 

For each site, detailed crop parameters were measured, including leaf biomass, stem biomass 

and panicle weight. More information on data collection was given in Zhao et al. (2015a). 

Yield was measured by collecting grain samples at harvest time. The grain sample for each 

site consists of three or more sub-samples collected from 1 m². All samples were processed 

by grain threshing, drying and weighting. Specially, a constant water content of 14.5 % was 

assumed in final yield for all three field datasets. In total 33 sites from field dataset I were 

used to calibrate the model (i.e., maximum grain production, biomass fraction of leaf, stem 

and grain) and the data collected from the other nine sites of unique rice cultivar were used 

for site model validation. For the satellite RS approach, 28 cloud-free sites covered by the 

FS-2 images were used to construct the yield estimation model.  

Field dataset II was acquired through a farmer survey. It includes 35 sites with each repre-

senting one farmer’s field (20 ‒ 40 ha). Yield was recorded by farmers and generally calcu-

lated as the total grain weight to the total farmer’s field areas that may include field ridges, 

water pools, channels and even constructional areas. All 35 sites were used for regional 

model validation and 29 cloud-free sites covered by the FS-2 images were used for the RS 

approach validation.  

Field dataset III consists of 22 sites with each site representing one field plot (0.5 ‒ 3 ha). 

Field dataset III was collected from ‘high yield’ farmers according to their yield records (i.e., 

3 ‒ 10 years). Yield was measured similar to field dataset I. All 22 sites were used for the 

regional model validation while 18 cloud-free sites covered by the FS-2 images were used to 

validate the RS-derived yield.   

6.2.3 The DNDC agro-ecosystem model  

6.2.3.1 Model Description 

The DNDC is a process-based geochemical agro-ecosystem model, which is driven by eco-

logical factors (e.g., climate, soil, vegetation, field management) at daily or sub -daily time 

steps (Li et al., 1992; 1994). It was originally developed to estimate greenhouse gas emissions 

from agro-ecosystems. Latter, it was revised to simulate the anaerobic biogeochemistry of 

paddy fields (Li et al., 2004). DNDC consists of six sub-models: soil-climate, plant growth, 

decomposition, nitrification, denitrification, and fermentation. Crop growth is estimated us-

ing a crop growth curve that is generated as a function of elapsed fraction of the growing 

season (Li et al., 1994). Certain revised versions were developed  in which de tailed crop 
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algorithms associated with more biochemical soil conditions are integrated and more com-

plex crop input parameters are needed (Zhang et al., 2002; Fumoto et al., 2008). The DNDC 

model has been widely applied in investigating greenhouse gas emiss ions and soil carbon 

fates (e.g. Li et al., 2000, 2004; Zhang et al., 2002), whereas only a few studies with coarse 

spatial resolution were reported to address rice growth (e.g., Zhang et al., 2011).  

The site-specific mode of DNDC processes model input data by generating a transferable 

and changeable file which includes more parameters relative to its regional mode. For in-

stance, the regional mode lacks options for parameters of water management and way and 

amount of nitrogen (N) fertilizer input which are critical in simulating crop yield.   

6.2.3.2 Technical generalization for regional modelling 

The site-specific mode of DNDC was generalized on a regional scale to take the advantages 

of better transferability and flexibility. Using ESRI ArcGIS 10.3 and Python, two  scripts 

were developed to automatically assimilate raster files as model input data and generate ras-

ter files as model output data, respectively. All raster files have to be co -registered to pixel 

level as the site-specific model runs independently for each pixel. 

Specifically, one script derives pixel values at the same coordinates from all input raster files 

(e.g., clay fraction raster, SOC content raster, etc.) and assigns these values to the model 

input parameters. The other script loops through all output files in a batch mode according 

to the pixel coordinates. For each output parameter (e.g. crop carbon, nitrous oxide flux, 

methane emission, etc.), a raster was generated by assigning its pixels with the recorded 

values of the corresponding coordinates.  

6.2.3.3 Model input data 

6.3.2.3.1 Meteorological data 

Spatial heterogeneity of meteorological data is important for yield variability on large scales. 

Considering data availability and the geographical extent of the study area, meteorological 

conditions were assumed to be spatially uniform for the entire Qixing Farm. Meteorological 

data for the year of 2009 were provided by a meteorological station in the Qixing Farm. 

Model input data comprise daily maximum and minimum temperature, precipit ation, wind 

speed and humidity. 

6.3.2.3.2 Soil data  

Soil input data are critical in crop yield estimation, but they are the most difficult data to 

obtain, especially with detailed spatial resolutions (Bareth and Yu, 2004). The DNDC model 
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provides a soil library, in which 14 sets of default soil properties (e.g., clay fraction, field 

capacity, etc.) are defined regarding to soil textures. However, soils classified in a same soil 

texture may maintain different soil properties such as soil particle constitution. Additionally, 

properties such as hydraulic parameters are even affected by SOC contents (Saxton and 

Rawls, 2006).  

During the Second National Soil Survey in 1980s, soils in China were sampled, analyzed, 

mapped into different scales, and afterwards digitized. For this study, a digital soil type map 

with a fine scale of 1: 100,000 in raster format with a spatial resolution of 100 m was pro-

vided by the Chinese Academy of Agricultural Sciences in 2012. The soil type was classified 

and named in the Chinese soil taxonomy. This  soil type raster file (including six soil types 

for the Qixing Farm) was subsequently used as a spatial reference for other model input 

raster files. Measured point data of soil pH and soil organic matter (SOM) were provided by 

the Qixing Farm Modern Agriculture Research Centre. In total 1156 soil samples of the top 

soil layer (0 – 20 cm) evenly distributed in the Qixing Farm were collected and measured in 

2007 and 2008. 

Nine model input parameters of soil properties were processed in raster format. They w ere 

SOC content (kg C/kg soil), soil pH, bulk density (BD, g/cm³), soil porosity (0 ‒ 1), soil 

texture (0 ‒ 1), clay fraction (0 ‒ 1), field capacity (FC, 0 ‒ 1; water-filled porosity at soil 

field capacity), water-filled porosity at soil wilting point (WP, 0 ‒ 1) and saturated hydraulic 

conductivity (HC, m/hr). Detailed procedures for generating raster files of SOC, soil pH, 

BD, soil porosity, FC and WP were introduced in Zhao et al. (2015b).  

Soil texture and clay fraction 

Soils in the U.S. soil taxonomy are required by the DNDC model. In this study, the available 

soil data were transferred to the U.S. soil taxonomy using following steps. First, for each 

soil type, the constitution of soil particles with different sizes was analyzed according to the 

publications for the SJP (Table 6-1). A database of soil particle size grading curves was 

constructed. Second, the soil particle size grading curves were interpolated by the particle 

diameter metrics of the U.S. soil taxonomy (i.e ., 0.002 mm, 0.02 mm) using cubic spline 

interpolation method in Matlab (Cai et al., 2003). Third, according to the particle diameter 

metrics of the U.S. soil taxonomy, soil texture and clay fraction were calculated for each of 

the soil types. Finally, by merging all soil type data, the soil texture and clay fraction rasters 

for the Qixing Farm were generated (Figure 6-3). 
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Saturated hydraulic conductivity 

HC for each soil type was calculated in the ‘Soil Water Characteristics’ mode of the Soil -

Plant-Air-Water (SPAW) model (Saxton and Rawls, 2006) (Figure 6-3). As required by the 

SPAW model, soil texture and mean value of SOM for each soil type was used to estimate 

HC (Table 6-1). The final HC raster file was generated in ArcGIS 10.3 with a pixel s ize of 

100 m and was lined up to the soil type data

Figure 6-3: Workflow of deriving soil input raster files based on the measured point data and soil type raster 
file.  
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Soil type in  

Genetic Soil 

Classification of 

China Soil 

Reference for 

soil particle  

constitutions 

Soil texture 

in U.S. soil 

taxonomy 

Soil Class 

No. in 

DNDC 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Satu-

rated 

HC 

(m/hr) 

Mean 

value of 

SOM 

(%) 

Gleyed albic 

soil 

Liu et al., 2012 Silt loam 4 16.5 78.8 4.7 0.0231 4.23 

Meadow albic 

soil 

Liu et al., 2012 Silt loam 4 18.9 75.5 5.6 0.0203 4.11 

Typical albic 

soil 

Zhang and Zhang, 

1988 

Silt loam 4 23.7 64.1 12.2 0.0165 4.12 

Black soil Wang et al., 2011; 
Wang et al., 2002; 

Ma et al., 2004, 

Silty clay 

loam 

7 30.4 55.5 14.1 0.0117 3.95 

Bog soil Zhang, 1981 Silty clay 

loam 

7 34 55.2 10.8 0.0124 4.69 

Meadow soil Huo and Liu, 

1985 

Silty clay 10 47.6 40.7 11.7 0.008 4.59 

 

6.3.2.3.3 Field management data  

Field management is a critical factor in agro-ecosystem modelling applications (Kersebaum 

et al., 2007). Crop-specific field management depends on crop types that can be detected 

from land use classifications (Waldhoff and Bareth, 2009). In this study, a high accuracy rice 

map was used. It was derived from multiple FS-2 images and GIS topographic data (Zhao et 

al., 2015a). 

Detailed rice management data regarding tillage, irrigation, transplanting and fertilizer ap-

plication and harvest date were recorded for each site of field dataset I. The field manage-

ment parameters for DNDC were adjusted using the 33 sites data from field dataset I (Table 

6-2). Specially, N fertilizer was set as 85 kg N /ha according to a farmer survey (data not 

shown). 

6.3.2.3.4 Crop-specific input parameters 

Crop-specific input parameters were optimized using data of the 33 sites from field dataset 

I. For the regional application, a set of crop-specific parameters was adjusted in which char-

acteristics of the major rice cultivars (i.e., Longjing 21, Kongyu 131) were considered (Table 

6-2). 

 

 

Table 6-1: Transferred soil textures and selected soil physical properties in the study area. 
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Model input parameter value 

Rice management 

Tillage date / depth (cm) Apr. 30 th / 30 
Transplanting date May 20th 
Times of N application per growing season 4 

Total N input (kg N/ha) 85 

Harvest date Sep. 20 th 

Crop-specific  

parameter 

Biomass production (kg C/ha) 

maximum grain (kg C/ha) 3100 
leaf (kg C/ha) 913 

stem (kg C/ha) 1860 

root (kg C/ha) 652 

Biomass fraction (%) 

grain 47.5 

leaf 14 

stem 28.5 

root* 10 

Biomass C/N ratio* 

grain 55 

leaf 60 

stem 60 

root 70 

Accumulated temperature for maturity  2300 

Water demand (g water/g dry matter)  # 508 

N fixation index (crop N/N from soil)  * 1 

Vascularity index (0-1) # 1 

Optimum temperature (degree C)  # 22 
*Referring to Zhang et al. (2011); #model default value. 

The DNDC model performance is significantly affected by cultivar -specific properties, such 

as accumulated temperature, biomass fractions, and actual field management strategies in-

cluding transplanting date and N input (Zhang et al., 2002; Fumoto et al., 2008). Therefore 

in the site validation, cultivar-specific parameters (i.e., accumulated temperature, biomass 

fraction) and actual field management data from the nine validation sites were used ( Table 

6-4). 

6.2.4 Remote sensing approach 

Multi-temporal vegetation indices have been used to estimate crop yields (Bolton and Friedl, 

2013). In this study, multi-temporal NDVIs (normalized difference vegetation index) derived 

from three FS-2 images were used to estimate rice yield. The FS-2 images were captured on 

June 24th, July 6th and August 9th of 2009. Each image covers the main arable land area (ca. 

56 000 ha) of the Qixing Farm (Figure 6-1). 

Table 6-2: DNDC model input parameters (selected) for regional application. 
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The FS-2 satellite collects multispectral images with four bands of  blue (450–520 nm), green 

(520–600 nm), red (630–690 nm), and near-infrared (760–900 nm). Image atmospheric cor-

rection and geometric correction were described in Zhao et al. (2015a). The NDVI for each 

image was calculated as: 

𝑁𝐷𝑉𝐼 =
𝑅𝑁𝐼𝑅 − 𝑅𝑟𝑒𝑑

𝑅𝑁𝐼𝑅 + 𝑅𝑟𝑒𝑑

                                                                                  (6 − 1) 

 

where RNIR and Rred represent reflectance at the near-infrared and the red band, respectively. 

Rice yield was calculated through an empirical model which was constructed in SPSS 21 

(SPSS, Inc., Chicago, IL, USA) using multiple linear regression (MLR). The NDVIs of the 

three dates were used as descriptive factors in the MLR (Table 6-3). 

Para-
meters 

Coefficient of descriptive variables 
MLR 

method 
Linear 

R² 
total degree 
of freedom 

Sig. 
level NDVI of 

June 24 
NDVI of 

July 6 
NDVI of 
August 9 

Constant 

Value -2 319.254 2 103.761 32874.675 -18 785.41 Enter 0.474 28 p < 0.001 

6.2.5 Statistical analysis 

Statistical measures including the coefficient of model efficiency (EF), the coefficient of 

model determination (CD), and the index of agreement (IA) were used to test the goodness -

of-fit of the DNDC model and the regression model based on the satellite RS data. They 

were calculated as below. 

EF = (∑(𝑂𝑖 − �̅�)2

𝑛

𝑖=1

− ∑(𝑃𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

) ∑(𝑂𝑖 − �̅�)2

𝑛

𝑖=1

⁄                                                    (6 − 2) 

 

CD = ∑(𝑂𝑖 − �̅�)2

𝑛

𝑖=1

∑(𝑃𝑖 − �̅�)2

𝑛

𝑖=1

   ⁄                                                                                       (6 − 3) 

 

IA = 1.0 − ∑(𝑃𝑖 −  𝑂𝑖)2

𝑛

𝑖=1

∑(|𝑃𝑖 − �̅�| + |𝑂𝑖 −  �̅�|)2

𝑛

𝑖=1

⁄                                                     (6 − 4) 

 

In all equations, P i and O i denote the model predicted (P i) and the observed (Oi) value; �̅� is 

the mean of the observed value; n is the total number of observations. The value for EF is 

Table 6-3: Parameters for the multiple linear regression model for the RS approach.  
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up to 1 and a positive value indicates that the trend in the measured data was better described 

by the modelled values than the mean of the observed values. The CD value is larger than 

or equal to 0. A CD value of 1 or above indicates that the model describes the measured 

data better than the mean of the observations. The IA, ranging from 0.0 to 1.0, represents 

the degree of agreement between model estimations and observed values (Willmott, 1981) . 

6.3 Results 

6.3.1 Site-specific model application and site validation   

The DNDC model performed well for site validation based on the site -specific management 

data and the cultivar-specific crop parameters (Table 6-4). 

* n = 9 

 

    Table 6-4: Site-specific input data and performance of DNDC for site validation. 

Cultivar 
T.P. date 
(mm/dd) 

Accumulated 
temperature 
(°C) 

Biomass fraction 
N
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Longjing 21 5/10 
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(Chen et al., 
2014) 0
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The site-specific DNDC model was successfully generalized to the regional scale of the en-

tire Qixing Farm. Spatial variability was well detected over the entire Farm in the yield map 

(Figure 6-4). High yields appeared in the southern part while lower yields clustered in the  

mid-eastern part of the Qixing Farm. Even a ‘within -field’ variability was detected.  

 

 

 

In the regional validation results, satisfactory values were obtained for all assessment indices 

from both field dataset II and III (Table 6-5).  

Figure 6-4: Map of rice yield modelled by the DNDC model and the within-field variability in the inset map. 
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Dataset Sites Linear R² EF CD IA 

Field dataset II 35 0.498** 0.053 1.59 0.667 

Field dataset III 22 0.411* 0.404 2.63 0.74 

Significance test: ** p < 0.005; * p < 0.05. 

Figure 6-5 shows the DNDC modelled and the observed yields at all 57 validation sites 

from both field dataset II and III. The modelled yields and the field observed yields were 

comparable at most of the validation sites. The model overestimated rice yield at low yield 

(< 7500 kg/ha) sites, which may be attributed to the overestimation of ri ce cultivation area 

in the yield calculation algorithm of field dataset II (see in section 2.2), whereas, the model 

under-estimated rice yield slightly at high yield (> 9000 kg/ha) sites .  

 

6.3.2 Soil-specific validation  

With respect to soil types, the best validation result of modelled yield was found in meadow 

albic soil (Table 6-6). Specifically, validation results vary in silt loam soils, attributing to the 

detailed raster input files rather than the default values from the DNDC soil library . 
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DNDC Modelled

Table 6-5: Assessment indices in model regional validation. 

Figure 6-5: DNDC modelled and field observed rice yields at all 57 validation sites.  
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Dataset Sites Soil type Linear R² EF CD IA 

Field dataset II 

6 meadow albic  0.515 0.079 2.04 0.622 

24 meadow  0.284 -0.707 1.06 0.497 

9 all silt loam soils 0.512 0.018 1.88 0.63 

Field dataset III 

8 gleyed albic  0.294 0.233 7.66 0.52 

7 meadow albic  0.873 0.413 11.68 0.633 

4 typical albic  0.08 -0.302 1.29 0.603 

19 all silt loam soils 0.347 0.302 4.60 0.628 

 

6.3.3 Validation of RS-derived rice yield  

For the validation of the RS approach, the CD value was 1.25, higher than 1, indicating the 

RS-derived results described the measured data better than the mean of the observations 

(Table 6-7). Field dataset III showed a better validation results than field  dataset II, with 

CD and IA values of 1.42 and 0.55, respectively . 

Dataset Sites Linear R² EF CD IA 

Field dataset II 29 0.051 -1.161 1.255 0.222 

Field dataset III 18 0.111 -0.194 1.417 0.549 

 

6.3.4 Comparison of modelled and RS-derived yields  

Yield difference was calculated by subtracting the RS-derived value from the DNDC mod-

elled value. A ratio map was generated to show the percentage of yield difference to the 

modelled yield (Figure 6-6). In an overview, the modelled and RS-derived yields are com-

parable. The ratio ranged from -15 ‒ 15 % in most areas. Areas with similar ratio classes 

were rather clustered than randomly distributed, which is reasonable because actual yield 

pattern may tend to be clustered due to spatial patterns of soil conditions, as well as field -

specific cultivars and management strategies. There were more positive areas than negative 

areas, which indicated the modelled yields were more frequently higher relative to the RS-

derived yields. Specially, positive ratio areas occurred more at the field edges . 

Table 6-6: Assessment indices for soil-specific validation.  

Table 6-7: Assessment indices for RS-derived yield.  
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6.4 Discussion 

6.4.1 Model regionalization   

Site-specific models are insufficient in capturing and representing the spatial variability of 

the model concerns (e.g., meteorological conditions, soil properties, plant growth factors, 

land management practices) across landscape (Resop et al., 2012; Thorp and Bronson, 2013). 

Figure 6-6: Ratio map of yield difference ( subtracting the RS-derived yield from the modelled yield ) to the 
DNDC modelled yield. 



Detecting Spatial Variability of Paddy Rice Yield by Combining the DNDC Model with 
High Resolution Satellite Images | 104 

 
 

Although the DNDC model consists a regional mode, its simulation units are basically ad-

ministrative areas or soil polygons which are generally determined by the geographical scales 

of the available data (e.g., Zhang et al., 2014). Thus, parallel analyses of model results from 

different study cases are limited.  

This study generalized the site-specific DNDC model using additional scripts to deal with 

raster files. Since the raster pixels are used as the model simulation units and the pi xel res-

olution is user-defined, it is efficient and flexible to solve practical problems. The pixel 

resolution can be defined regarding not only the scales of the available spatial data but also 

the study concerns. For instance, the pixel resolution/simulation units can be defined ac-

cording to field management information. Additionally, such model regionalization facili-

tates synthetic analysis on crop information modelled by the DNDC and derived from re-

mote sensing imagery. 

6.4.2 Soil effects on DNDC modelled rice yield  

The modelled yield highly depends on the soil properties (Figure 6-7: a-c, e, f). In this 

study, higher modelled yields occur in silt loam and silty clay loam soils with lower clay 

fractions and higher silt contents (Figure 6-7: a-c, Table 6-1). These results are consistent 

with Rüth and Lennartz (2008), who found that the rice yield was positively related to the 

silt content because such soils provide better soil nutrition-holding capacity and proper nu-

trition status for crops. Spatial pattern of modelled yield was positively consistent with HC 

and SOC patterns (Figure 6-7: a, e, f).  

The high yield sites of field dataset III are mainly located in silt loam soils ( Figure 6-7: b), 

which may greatly be attributed to the factor of field management. Management measures 

have greater effects on rice yield in sandy soils than in clayed soils because the high nutrient 

content in heavy clayed soils guarantees high yields (Rüth and Lennartz, 2008). The potential 

of field management effects on rice yield in different soils needs to be further studied. 

There was no significant consistency between the spatial pattern of RS-derived yield and soil 

properties (Figure 6-7: b-f). This is reasonable because the RS-derived yield is a synthesized 

response from all environmental factors (e.g., climate, soil) and human activities rather than 

a single soil factor. Nevertheless, the RS-derived yield was lower in the mid-east part of the 

image covered areas (Figure 6-7: d) where the soil condition was composed of silty clay soil 

texture, high clay content, low HC, and low SOC content. . 
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6.4.3 Sources of uncertainty for regional model application    

6.4.3.1 Field management 

Rice management such as transplanting date and N fertilizer input varies in different paddy 

fields (Table 6-4). However, in the regional application, only one single field management 

case was implemented (Table 6-2), which was not able to reflect the true status for the 

whole area.  

Additionally, certain measures were demonstrated to be critical for rice under the ‘cold’ 

climate conditions in the SJP. For example, certain farmers will keep the depth of water layer 

to be more than 17 cm to avoid cold injury (temperature < 17 °C) during the panicle initia-

tion stage according to practical weather conditions (Meng et al., 2005). Such flexible 

measures are not considered in the DNDC model application . 

6.4.3.2 Crop-specific parameters  

Crop-specific parameters vary with different rice cultivars  (Table 6-4). In the regional ap-

plication, errors may result from the single set of crop-specific parameters (Table 6-2). For 

instance, the under-estimations at the ‘high yield’ sites of field dataset III (Figure 6-5) may 

be due to the ‘improper’ settings of crop-specific parameters because at these sites special 

Figure 6-7: Spatial patterns of estimated rice yield maps and soil data.  
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cultivars are generally planted rather than the domain cultivars of Longjing 21 or Kongyu 

131. 

6.4.4 RS-derive rice yield   

The regional validation for the RS approach showed lower assessment indices (Table 6-7) 

than the modelled results (Table 6-5). Limitations could exist in the empirical model con-

struction. The MLR model was constructed based on only 28 sites which were clustered in 

two villages. Thus the spatial heterogeneity in rice status could not be well represented.  

Nonetheless, compared with the process-based DNDC model, the empirical MLR model 

integrated most environmental and human effects that the RS imagery detected. For instan ce, 

the RS approach successfully detected the lower yields at the field edges (Figure 6-6). Such 

lower yields may result from resource competition of agroforestry system (Riiser and Han-

sen, 2014) since forest belts are generally planted at the field edges in the SJP, whereas such 

effects are out of the scope of the DNDC model . 

In addition, satellite-RS can monitor rice status (i.e., biomass, LAI, etc.) effectively (Zhao et 

al., 2015a). It is promising to integrate RS-derived vegetation information into process-based 

agro-ecosystem models for regional applications.  

6.5 Conclusions 

The DNDC model performed well in estimating rice yield in the SJP, especially when culti-

var-specific parameters and site-specific management data were specialized. Generalizing the 

site-specific model onto regional scales may assist regional studies for addressing agro -envi-

ronmental issues. Detailed soil data and accurate land use maps improved the model perfor-

mance in detecting spatial variabilities in rice yield. High rice yields were found in silt loam 

soils, while the reasons for this result need to be further studied . 

The regional validation showed better yield results from the agro-ecosystem model than the 

RS approach. Nonetheless, the DNDC modelled and RS-derived yields were comparable. 

The RS-derived yield represents a synthesized response of the environmental factors and 

human activities; therefore, it is a complementary method to the process -based modelling 

approach. For example, it can detect the lower yields resulted from f actors that are beyond 

the capability of the process-based modelling. Better results could be obtained by integrating 

the RS-derived information into the process-based agro-ecosystem models. 
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7 Discussion 

This study is a problem-oriented interdisciplinary research on agriculture and its impacts on 

environment. The study was conducted following the logic pyramid of ‘data-information-

knowledge-understanding-decision’ system (Rowley, 2007). Several problems in the AEIS 

are discussed in this section.  

As mentioned in chapter 3, setting up an AEIS is an interdisciplinary study which is based 

on multi-source data. The extreme heterogeneity of data with highly varying characteristics 

in formats, resolutions, usage constraints, information gaps, metadata inconsistencies and 

semantic issues has to be considered (Fegraus et al., 2012). Thus, organization of multi-

source data have to be emphasized. As a key pre-processing procedure for geospatial data, 

the innovative method of georeferencing using TerreSAR-X imagery as ground control in-

formation source is discussed. 

To derive information from the multi-source data, the knowledge-based expert classifier was 

applied. By combining GIS and RS data using the expert classifier, rice areas were delineated 

with high accuracy (chapter 5). Based on this accurate rice area map, FS-2 imagery was used 

to monitor rice status on a within-field level. Although satisfy results were obtained, disad-

vantages still exist due to the characteristics of satellite imagery and the natural conditions 

of the SJP, which are also discussed in this section.  

The DNDC was selected in this study and its site-specific mode has been generalized on the 

regional scale to estimate rice yield (chapter 6). Rice yield was also derived from FS-2 images 

and compared with the modelling results (chapter 6). Furthermore, interactions between 

rice production and soil properties were addressed by the DNDC results and thus the 

knowledge of crop growth and environmental factors was better understood (chapter 6). 

The performance of the agro-ecosystem model DNDC on rice biomass simulation is dis-

cussed in this section. 

7.1 Multi-source data analysis 

Multi-source data are versatile and applicable in diverse areas (Li, 2010) and they are highly 

needed in multi-disciplinary research. However, the multi-source data are characterized by 

their heterogeneous data formats (e.g., GIS topographic data, satellite remote sensing, 

household survey data, soil surveys, vegetation, field observations, and land cover), infor-

mation gaps from different data providers, inconsistency in data precision, etc. (Bareth, 

2009; Fegraus et al., 2012; Khaleghi et al., 2013). Therefore, dealing with multi-source data 
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for the multi-disciplinary research is mandatory.  There are quite a number of challenging 

issues in the ‘pre-processing’ of multi-source data (Li, 2010; Zhang, 2010).  

In this study, the high resolution radar imagery was used to georeference the multi-source 

data to take advantage of its high spatial accuracy (Zhao et al., 2015a). Geospatial data of 

both topographic vector data and satellite raster data can be well georeferenced. However, 

the expense of radar imagery and the spatial coverage of high resolution radar imagery could 

be a constraint in research projects. In this study, the ground control points was manually 

selected from the TerraSAR-X imagery (chapter 4), which obstructs the application of this  

approach especially for a larger area with a big number of datasets needed. Automatic meth-

ods have been proposed for selecting ground control points from satellite images  (e.g., Chen 

et al., 2008), or for single ground features in vector format (e.g., Song et al., 2009) . However, 

very few automatic methods are reported for gereferencing simultaneously both topographic 

vector data and raster data using ancillary data. Using TerraSAR-X imagery as ground control 

information in multi-source data georeferencing is promising, especially in the areas where 

necessary ground control information is lack.  

An efficient tool to ‘pre-process’ the multi-source data is the KBS, which categories and 

integrates multi-source data based on the human’s preliminary understanding of the infor-

mation. Many studies found that the KBS is effective in multiple satellite imagery classifica-

tions (e.g., Cohen and Shoshany, 2005; Ban et al., 2010; Mwaniki and Möller, 2015). How-

ever, few research has been conducted using the KBS to integrate multi-source geospatial 

data in both formats of vector and raster .  

The knowledge-based classification is demonstrated to be an efficient method to derive in-

formation from RS and GIS topographic data. The KBS utilized information from GIS topo-

graphic data into RS-derived classes for area detection, based on creating rules in the expert 

classifier. Specially, the multi-source data have better ability in distinguishing rice areas from 

dryland areas, as shown in the following tables (Table 7-1, 7-2, 7-3). This is because the 

different crops can be better detected by multi-temporal satellite observations due to their 

different phenological characteristics over through the growing season (Zhong et al, 2014) . 

The best results from GIS and multiple satellite data in Table 7-3 are additionally attribute 

to the in-situ surveyed GIS data.     
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  Reference  

  Rice Dryland Forest Residential areas Other Total 

Classification 
of single-date 
RS data 

Rice 319 7 10  3 339 

Dryland 44 112 2 8 3 169 

Forest 14 16 74  3 107 

Residential areas 7 8 7 65  87 

Other 2 13 6 1 76 98 

 Total 386 156 99 74 85 800 

 

  Reference  

  Rice Dryland Forest Residential areas Other Total 

Classification of 
multiple-date 

RS data 

Rice 354 13 19  10 396 

Dryland 15 115 1 5 1 137 

Forest 10 11 74  3 98 

Residential areas 7 8 4 68 2 89 

Other  9 1 1 69 80 

 Total 386 156 99 74 85 800 

 

  Reference  

  Rice Dryland Forest Residential areas Other Total 

Classification of 
RS and GIS data 

Rice 358 13 8  1 380 

Dryland 8 135 1 2 1 147 

Forest 13 4 85   102 

Residential areas 7 1 4 72  84 

Other  3 1  83 87 

 Total 386 156 99 74 85 800 

 

Specifically, the implementation of the KBS classification increases the producers’ accuracies 

and decreases the omission errors (Table 7-4), indicating a better ability in detecting the 

target area of interest than single sourced (RS) data.  

Table 7-1: Confusion matrix of the land cover classification map based on a single date (August 9th) RS image.  

Table 7-2: Confusion matrix of the land cover classification map that was generated by integrating the three 
classifications from the three dates. 

Table 7-3: Confusion matrix of the land cover classification map based on both the RS and GIS data. 
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Accuracy index RS single-date RS Multi-dates RS and GIS data 

Commission error 0.059 0.106 0.058 

User’s accuracy 0.941 0.894 0.942 

Omission error 0.174 0.083 0.073 

Producer’s accuracy  0.826 0.917 0.927 

Kappa 0.733 0.782 0.881 

Overall accuracy 0.808 0.85 0.916 

 

7.2 Accuracies of RS-derived crop information 

Empirical relationships between a crop parameter and the vegetation indices for a certain 

growth stage are the main focus in recent studies (e.g., Bannari et al., 1995; Jacquemoud et 

al., 2009; Yang et al., 2013; Yao et al., 2012). Thus, the empirical relationships between RS 

information and crop parameters are case- and time-specific which limits its transferability 

to other study cases. For instance in this study, rice characteristics (i.e., biomass, LAI, N 

concentration, N uptake) were estimated using time-specific (i.e., June 24 th, July 6th, August 

9th) regression models and such models may not be valid for another year. Although rice 

yield was estimated using one single regression model for all three growth stages (Chapter 

6), the empirical regression model was still limited to the study case. Studies tend to find out 

generic relationships between RS reflectances and crop parameters over a long term (e.g., 

Zhong et al., 2014). However, more investigations are still needed to explore the mechanisms 

between RS reflectances and crop status by decomposing the originating factors of the two.   

In-time response of crop status is required in precision agriculture (Mulla, 2013). With the 

dramatic improvement in temporal frequency of remote sensing imagery, there is growing 

interest in deriving crop information from time series of RS images to conduct in-time/in-

season field management. Such applications could be difficult for rice in the SJP due to 

several reasons. First, rice grows fast during the short growing season of approximately 120 

days. Specially, in some critical growing stages such as jointing stage and heading stage, rice 

status could change greatly in a few days (Ling, 2002). Second, the field management is time 

intensive during the short growing season. For instance, fertilizer could be applied once a 

week and irrigation could be applied twice a week according to the rice status (Yao et al., 

2012).  Third, weather conditions are considerable constraints for the application of satellite 

remote sensing in the SJP (Meng et al., 2005). Under the monsoon climate, clouds and rains 

gather in late June to early August in the SJP, while this period is the key time for rice growth 

Table 7-4: Accuracy indices for land use classification from different data sources. 
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and conducting field management (Yao et al., 2012). Although the weather conditions are 

good for satellite remote sensing in the early growing stage of late May and early June, the 

remotely sensed rice signals are normally too weak due to the low biomass density. Last but 

not least, transferring the commercial satellite imagery into rice information needs pro-

cessing time technically and commercially. 

As aforementioned, generally the RS-based crop status monitoring rely on empirical rela-

tionships between the remotely sensed information and the field observed crop properties 

(e.g., Shang et al., 2015; Vicente-Guijalba et al., 2015; Moran et al., 1997). Therefore, ground 

truth information of crops is indispensable. Field campaigns for collecting ground truth data 

are time consuming and labor-intensive, especially for a large spatial extent.  It is of great 

value to build spectral libraries for specific crops during the whole growing season. However, 

annual differences in crop status calendar and impacts of climate changes have to be con-

sidered for long term investigation (Rao, 2008; Zhong et al., 2014). Moreover, the strategy 

of conducting ground data collection is critical since the errors from ground truth data were 

greater than the errors from the remotely sensed data (Curran and Williamson, 1985).  Fur-

thermore, the accuracy of information derived from the remotely sensed data is highly de-

pends on the positional accuracy of the ground truth data  (Congalton and Green, 2008).  

7.3 Spatial scales for an AEIS 

It is demonstrated that although the multiple scales in an agro-ecosystem study is a difficult 

issue due to the lack of scaling up methods, endless complexity, time lags, limited predicta-

bility of models, and connections between local to macroscales (Sayer et al., 2013; Ostrom, 

2007). In this research, the site-specific DNDC was enabled to apply on a regional scale 

driven by additional scripts. Thus the model run for every pixel to get detailed information 

of the study area.  

Field plots are treated as the basic management units in paddy rice fields since the enclosed 

raised boundaries not only provide uniform crop conditions in terms of water  management, 

tillage, and even fertilizer, but also spatially isolate one field plot from another. Nonetheless, 

within the field block there are still variabilities in rice growing status induced by soil con-

ditions, human activities, or even pests and diseases. Information on a fine resolution of 

within-field scale assists in monitoring rice precisely and clos ing yield gaps through site-

specific management measures, and likewise, decreasing environmental effects such as green-

house gas emissions. 

In this study, 28 ground truth experimental plots were used to construct the empirical mod-

els to extract rice status. The area of each pixel of the FS-2 satellite imagery is 64 m², and 
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the areas of experimental field plots range from 1000 m² to 3000 m². In each experimental 

plot, up to four samples were collected. Limitation exists when using such four samples to 

represent all the pixels (ca. 15 to 47 pixels) in the experimental plot. The differences of 

pixels in one experimental plots may be considerable but averaged by the limited number of 

samples. As a result, the pixel-based ‘within-field’ detection was relatively mixed with neigh-

bouring pixels. In addition, the locations of the 28 ground truth plots were clustered, which 

may lead to uncertainties in the rice monitoring procedure.  Specially, in chapter 5, although 

specific polynomial growing curves for each site were constructed to interpolate the ground 

truth status at the imagery collection dates, it is challengeable to represent the heterogeneity 

of the rice growing process over the entire Qixing Farm by using only 28 ground truth plots. 

7.4 Model uncertainty 

Process-based models are widely used to explore the interactions between the factors of the 

target objects, predict results under certain scenarios, and anticipate possible outcomes un-

der future conditions (Friend et al., 1997; An, 2012). These models are constructed based 

on a series of functions that are represented by mechanism or empirical equations. It is 

challengeable for a process-based agro-ecosystem model to consider every factor relating to 

the intricate and manifold agro-ecosystems (Belcher et al., 2004). On the other hand, redun-

dant parameters in a model will indisputably block the model transferability  (Perlman et al., 

2013). 

With the focus on food production in the SJP, rice yield was first estimated using the pro-

cess-based agro-ecosystem model DNDC. Effects of soil properties on rice yield were ana-

lyzed on the basis of soil characteristics determining the status of available water and nutri-

ents that drive the crop growth. Specially, in the regional modelling application, detailed soil 

data with fine resolution decrease the model uncertainties (Zhang et al., 2016). Validation 

results demonstrated good performance of the DNDC model in regional rice yield estimation 

(chapter 7). 

However, the DNDC model showed weakness in capturing the time series biomass status  

(Figure 7-1, 7-2). The DNDC overestimated the biomass for both the ‘high yield’ and ‘me-

dium yield’ fields (see definitions in chapter 7) across the growing season in 2009. This may 

due to the crop phenological development scheme in the DNDC model, which affects the 

simulation results on plant growth greatly (Fumoto et al., 2008; Zhang et al., 2002). A similar 

shape of the biomass accumulation curves is detected between modelled values and field 

observed values. However, the modelled biomass accumulation curves start earlier than the 
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field observed values (Figure 7-1, 7-2). This may result from the generic crop growth curve 

inherent in the DNDC, which may not be suitable for rice in the SJP.  

 

 

 

 

Due to the limited thermal resource in the SJP, rice has to be sown in the greenhouse in 

early April and the seedlings are grown in the greenhouse until mid-May to improve the local 
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Figure 7-1:  Time series data of DNDC modelled biomass vs. field observed values in the ‘high yield’ fields. 

Figure 7-2:  Time series data of DNDC modelled biomass vs. field observed values in the ‘medium yield’ fields. 
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thermal efficiency. Thus, as a starting step for rice in the paddy field, seedling transplanting 

is a critical activity which greatly determines the phenological stage that drives the partition-

ing assimilates for rice. However, the DNDC version utilized in this study did not include 

the transplanting options for rice. Therefore, it is challengeable for the current model ver-

sion to capture the time series of biomass accumulation due to considerable uncertainties in 

defining the phenological stages. The DNDC-Rice (Fumoto et al. 2008), a revised version 

of DNDC, is promising in future rice applications. 

7.5 Environmental effects 

In an AEIS, impacts of agriculture production on environment have to be interpreted. 

Greenhouse gases emissions from the rice-ecosystems are treated as one important environ-

mental effects on global climate change which have been attracted many focuses (e.g., Huang 

et al., 2010; Linquist et al., 2012). As nitrous oxide (N2O) emissions occur via nitrification 

and denitrification, the anaerobic-aerobic cycling in paddy soils promotes N2O emission 

(Granli and Bøckman, 1994; Smith and Patrick, 1983). It is important to better understand 

the N2O flux coupled with water regimes and fertilizer applications in the paddy field to 

decrease the greenhouse gas effects by conducting field management strategies  (Cai et al., 

1997).   

The DNDC model is one of the few agro-ecosystem models that simulate N2O emissions. 

In DNDC, N2O production/consumption is directly regulated by three factors of soil redox 

potential (i.e. Oxidation-Reduction Potential [Eh]), dissolved organic carbon (DOC) con-

centration and available N (i.e. ammonium or nitrate) concentration (Giltrap et al., 2010). 

One of the key processes controlling N2O production/consumption in paddy soils is soil Eh 

dynamics (Yu and Patrick, 2004). Paddy rice is characterized by the frequent changes be-

tween saturated and unsaturated conditions driven by the water management. During these 

changes in soil water content, the soil redox potential changes is subjected to substantial 

changes.  

The N2O emission pattern (Figure 7-3, left) of the Qixing Farm is consistent with the soil 

input data patterns (Figure in chapter 7). The N2O emissions of this study is lower than the 

results of Brocks et al. (2014), who explored an empirical approach to estimate the N 2O 

emissions all over Germany. The reason could be due to the climate conditions and the 

frequency of anaerobic-aerobic exchanges in the soil. In the SJP, NE-China, the snow-cov-

ered winter with temperature below 0 °C lasts from late October to early April, which is 

much longer than that in Germany. The lower temperature prevents the N 2O flux. Although 
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the agriculture land use in this study is paddy rice, the frequency of human-induced anaero-

bic-aerobic exchanges is lower than that in Germany due to higher precipitation (Brock s et 

al., 2014). 

As a typical greenhouse gas emitted from paddy rice field, carbon dioxide (CO2) character-

izing the SOC dynamics as well (Eswaran et al., 1993). In this study, soil CO2 emissions were 

also modelled using the DNDC model (Figure 7-3, right).  

 

7.6 Summary 

The AEIS 1) assists in multi-source data organization, i.e. using the KBS to integrate multi -

source data for deriving required information; 2) provides information about the agriculture 

in the SJP, i.e. rice status derived from the FS-2 imagery; 3) represents the interactions be-

tween environmental factors and agriculture, i.e. the effects of soil characteristics on rice 

yield; and 4) estimates the environmental effects of agriculture, i.e. greenhouse gas emis-

sions. 

DNDC is a powerful process-based geochemical model that can be used not only to simulate 

crop growth, but also to estimate greenhouse gas emissions and soil C changes (Giltrap et 

al., 2012). The results of this study showed that DNDC is one of the suitable models that 

can be implemented in an AEIS for the research regarding sustainable agriculture.  

However, issues of water resource were not considered in this study. As water is one of the 

basic resource required for paddy rice production, there is a crucial need to investigate water 

resources accompanied with rice and other environmental factors (e.g., climate change).  

Figure 7-3: Maps of DNDC modelled greenhouse gas emissions from paddy rice field in Qixing Farm. 
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8 Future Challenges and Outlook 

8.1 Requirement of a strong network for gathering sufficient high-quality, in-

time data 

As an interdisciplinary research, implementing an AEIS needs multi-source data including 

crop growth, soil characteristics and soil nutrients dynamics, water availability, landscape 

changes, field management evolution. With the dramatic development of the earth observa-

tion and monitoring systems, there is a demand for deploy data to provide synthesized in-

formation for the intended stakeholders. To get sufficient data in time and in high quality, 

strong cooperative networks are need to acquire, manage, archive, interpret and disseminate 

the multi-source data with systematic data metrics, formats, collection protocols, spatial res-

olutions and measurement frequencies. There is a need to explore approaches for pre-pro-

cessing the multi-source data with respect to its heterogeneous and complex characteristics.   

8.2 Improve model capability 

The DNDC model is one of the optimum agro-ecosystem models for an AEIS because it 

enables the users to interpret the interactions between agriculture and environmental factors 

(e.g., greenhouse emissions) on the basis of simulat ing biochemical processes in the soil-

vegetation-atmosphere system. Whereas the crop module of the DNDC has to be further 

improved to capture the crop status precisely.  

Spatial distribution of model responses on a ‘within-field’ level would be beneficial for many 

applications. In future studies, there is a need to explore feasible technologies to generalize 

site-specific models onto regional applications. To adapt process-based models into a GIS 

environment could be promising in the modelling application on a regional extent.  However, 

processing time could be a considerable limitation in the regional application of site-specific 

models. Uncertainties sourced from the spatial data (i.e., climate data, soil data) could ag-

gregate model simulation uncertainties. Proper uncertainty analyses are needed to better un-

derstand the model predictions, especially for a regional applications of site-specific models. 

8.3 Assimilate RS-derived crop information into process-based agro-ecosys-

tem modelling on large extent 

Process-based agro-ecosystem modelling connects the crop variables such as LAI, biomass 

and the developmental phase to the environmental factors of climate, soil and field manage-

ment on intensive time steps. Satellite RS captures unprecedented data in forms of electro-

magnetic signals over a large geographical extent. Such signals are interpreted into earth 
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surface information in terms of vegetation, climate, and soils. The parallel development of 

RS and process-based agro-ecosystem models drives scientists’ interest to develop synergic 

applications. To assimilate RS-derived crop information (i.e., LAI, biomass) into process -

based agro-ecosystem modelling would largely improve the model performances (Dorigo et 

al., 2007). Moreover, model processing time and uncertainties have to be quantitatively con-

trolled. 

8.4 Describing regional long-term stories using the AEIS 

The landscape, soil conditions, water resources, and even micro-climate in the SJP have been 

changed greatly in the past 60 years due to the intensive reclamation events of crop lands. 

These changes from a natural system to a human dominated agricultural system comprise 

many valuable processes for scientists to describe.  Long-term dynamics in its agro-ecosys-

tems are worth to study for a better understanding of the complex interactions between the 

agricultural production and the environmental factors , and ultimately, for sustainable agri-

culture. Future work needs to position the AEIS in a long-term scope, to get better 

knowledge of nature and to guide human beings to perform in a more ‘proper’ way to nature.  
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