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Zusammenfassung
Die vorliegende Arbeit beschäftigt sich mit der Frage wie man Bodenheteroge-
nitäten quantifizieren kann und wie sie sich auf die atmosphärische Grenzschicht
auswirken. In der Grenzschicht werden Energie und Masse hauptsächlich durch
große Wirbel transportiert. Deswegen ist es wichtig zu verstehen, welche Auswir-
kungen Heterogenitäten auf diese Wirbel haben. Da diese Wirbel eine komplexe
Struktur besitzen und auf einer großen Bandbreite von Skalen variieren, ist es sehr
aufwendig Informationen über sie durch Messungen zu erhalten. Hoch aufgelöste
Modelle bieten hier eine Alternative. In dieser Studie, wird ein zwischen Boden
und Atmosphäre gekoppeltes großes Wirbel Model verwendet. Dieses ist in der
Lage die großen Wirbel explizit aufzulösen und kann so benutzt werden, die auf-
tretenden Fragestellungen zu beantworten.

In dieser Arbeit wird eine kurze Einführung in die Theorie der großen Wirbel
Simulationen gegeben. Außerdem gibt sie einen Überblick über einige der Ver-
fahren welche benutzt werden um Heterogenitäten zu quantifizieren. Die in die-
ser Arbeit entwickelte Methode, die sogenannte Entropiespektrumsmethode, wel-
che zur Quantifizierung verwendet wird, wir anschließend erklärt. Bei dieser Me-
thode werden die räumlich verteilten Daten (sowohl atmosphärische Größen als
auch Landoberflächenparameter) mit Hilfe der Wavelettransformation in hoch-
und tiefpassgefilterten Anteile zerlegt. Für jeden einzelnen Anteil wird anschlie-
ßend die Shannon Entropie berechnet. Es wird außerdem gezeigt, wie man mit
Hilfe der Entropiespektrumsmethode die dominante Skala einer Heterogenität be-
stimmen kann.

Um zu zeigen, welchen Einfluss unterschiedliche Heterogenitäten auf die atmo-
sphärische Grenzschicht haben, werden neun verschiedene Landnutzungsmuster
untersucht. Für jedes Muster werden Simulationen mit dem gekoppelten großen
Wirbelmodel durchgeführt. Die Simulationsergebnisse werden mit der Entropie-
spektrumsmethode untersucht. Dies geschieht für die potentielle Temperatur, das
Wasserdampfmischungsverhältnis, sowie für den sensiblen und den latenten Wär-
mefluss. Die Untersuchung wird sowohl für instantane und als auch für zeitlich
gemittelte Werte durchgeführt. Die Anwendung der Methode auf die Modeller-
gebnisse dient außerdem der Untersuchung ab welcher Höhe der Einfluss der He-
terogenität vernachlässigbar ist. Die Ergebnisse zeigen, dass das Verhalten des
Entropiespektrums davon abhängt, welche Größe untersucht wird. Dies läßt ver-
muten, dass die atmosphärische Antwort auf Landoberflächenheterogenität sehr
komplex ist. Des Weiteren zeigt sich, dass für die gewählten Heterogenitäten die
instantanen Werte weniger Aussagekraft darüber besitzen, ab wann der Einfluss
des Bodens vernachlässigbar ist, als die zeitlich gemittelten Werte. Die Analyse
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der Spektren zeigt eine stärkere Abhängigkeit von der betrachteten physikalischen
Größe als von der verwendeten Landnutzung. Die Ergebnisse zeigen, dass für die
untersuchten Daten der Einfluss der Heterogenität oberhalb von 400 m für die
gemittelte potentielle Temperatur und das gemittelte Wasserdampfmischungsver-
hältnis; oberhalb von 260 m für den gemittelten sensiblen Wärmefluss; und für
variierende Höhen für den gemittelten latenten Wärmefluss, vernachlässigbar ist.
Ab dieser Höhe überwiegt das Eigenmuster, welches durch die Selbstorganisation
der Turbulenz erzeugt wird, den Einfluss der Landoberflächenheterogenität.

Ein Vergleich der Entropiespektrumsmethode, welche den Informationsaspekt der
Heterogenität beschreibt, mit statischen Methoden, welche die Struktur beschrei-
ben, zeigt für homogene und zufällige Muster gute Übereinstimmung. Für eine
real existierende Heterogenität ist die Entropiespektrumsmethode überlegen. Die
Entropiespektrumsmethode zeigt außerdem, welchen Einfluss die Auflösung der
Heterogenität auf die Atmosphäre hat. Dieser ist wieder abhängig von der betrach-
teten physikalischen Größe und ob die zugrunde liegenden Heterogenität korre-
liert oder zufällig angeordnet ist.
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Abstract
This thesis deals with the questions how land-surface heterogeneity can be quanti-
fied and how it can influence the atmospheric boundary layer. In this layer energy
and mass are mainly transported by large eddies and therefore, it is important to
understand how they are affected by the land-surface heterogeneities. Since large
eddies have complex structures, which vary on a wide range of scales, it is highly
demanding to obtain knowledge about them via measurements. High-resolution
models offer an alternative. In this study, an atmosphere and land-surface coupled
large-eddy simulation (LES) model, which explicitly resolves the large eddies, is
used to address the concerned questions.

In this thesis a short introduction to the theory of LES is given, followed by an
outline of some approaches for heterogeneity quantification. The method devel-
oped in this study for the quantification, namely, the entropy spectrum method, is
then explained. In this method, the spatially-distributed data (of atmosphere and
land-surface quantities and parameters) are decomposed into low- and high-pass
filtered parts via wavelet transformation. For each part, the Shannon entropy is
calculated. It is elaborated how to obtain from the entropy spectrum the dominant
scale of the heterogeneity.

In order to investigate how land-surface heterogeneity influences the atmospheric
boundary layer, nine different land-use patterns are designed. Simulations with
the atmosphere and land-surface coupled LES model are carried out for each of
these patterns. The simulation results, including potential temperature, water-
vapor-mixing ratio, sensible and latent heat fluxes, are analyzed with the entropy
spectrum method. The analysis is done for instantaneous as well for temporally
averaged values and is found useful for identifying the height above which the
influence of land-surface heterogeneity is negligible. The results show that the
entropy spectra differ for different atmospheric variables, suggesting that the re-
sponse of the atmosphere to land-surface heterogeneity is rather complex. In ad-
dition, it is shown that for a given land-surface pattern, the instantaneous values
are less helpful to answer the question above which height the influence of the het-
erogeneity is negligible, than the temporally averaged values. The analysis with
the temporally averaged values shows larger differences between the spectra of
different parameters than between the spectra of the same parameter for different
heterogeneities. From the results, it is concluded that for the cases investigated,
the influence of the heterogeneity is negligible above 400 m height for the aver-
aged values of potential temperature and water-vapor-mixing ratio; 260 m for the
averaged sensible heat flux (of some experiments); and varying heights for the av-
eraged latent heat flux. Above these heights it is concluded that the Eigen-pattern
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arising from the self-organization of turbulence prevails over the influences of the
land-surface heterogeneity.

A comparison of entropy, which describes the information aspect of heterogene-
ity, with statistical methods, which describe the structure aspect of heterogeneity,
shows a good agreement for homogeneous and random patterns. For a real exist-
ing heterogeneity, the entropy spectrum method is superior. Moreover, the entropy
spectrum method shows how the resolution of heterogeneity influences the atmo-
sphere. This influence is dependent on the investigated physical variable and if
the investigated heterogeneity is correlated or random.
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1 Introduction

Modern weather forecasting and climate projection rely primarily on numerical
models. To improve these models, it is necessary to better understand the physical
processes which influence the weather and climate system and to better repre-
sent them in the models. Of particular interest to this study are the atmosphere
and land-surface interactions over heterogeneous areas that determine the model
lower boundary conditions. In recent years, the resolution of weather and climate
models has significantly increased, from 10 km to 1 km in the case of numer-
ical weather forecast and from 100 to 10 km in the case of climate projection.
However, the resolutions are still insufficient to resolve all relevant processes,
and the unresolved processes have to be parametrized. There are two types of
parametrization: the first type involves the representation of the interactions be-
tween the model-resolved (grid-scale) and model-unresolved (sub-grid-scale) pro-
cesses, known also as the closure problem, and the second type involves the rep-
resentation of the interactions between the atmosphere and the other components
of the weather/climate system, e.g. between the atmosphere and the land surface,
i.e., the parametrization of the model boundary conditions.

An effective transport mechanism in the atmospheric boundary layer is the con-
vection by large eddies, and hence to investigate the atmosphere and land-surface
interactions on the large-eddy scale is of particular importance. As large eddies
span over a wide range of scales, high-resolution data both in space and time for
variables like temperature, humidity and wind speed are required for their charac-
terization. It is highly demanding to obtain such data via measurements, although
concerted effort has been made over the years in field campaigns. The difficulty
is in particular to obtain suitable data sets for the characterization the atmosphere
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1. Introduction

and land-surface coupled system over heterogeneous land surfaces. As an alter-
native, large-eddy simulations (LES) (cf. Section 2.4) can be used to generate
high-resolution synthetic data for the purpose. In recent years, LES models have
been substantially improved for studying atmosphere and land surface interac-
tions.

Most weather and climate models assume a spatially homogeneous land surface
on the sub-grid scale. This is reflected in the fact, that the parametrization of
surface fluxes relies on the Monin-Obukhov Similarity Theory (cf. Section 2.3).
This assumption may be in general too simplistic. Studies so far have demon-
strated that land-surface heterogeneity on the grid scale as well as on the subgrid
scale are both important to the exchanges of energy and mass between the atmo-
sphere and the land surface (e.g. Hechtel et al. [1990]; Mahrt [2000]; Heinemann

and Kerschgens [2005]).

On the subgrid scale, studies (e.g. Avissar and Pielke [1989], Shao et al. [2001])
identified the "aggregation effects" and "dynamic effects" of heterogeneity. The
aggregation effect occurs because the fluxes estimated using spatially averaged
state variables differ from spatially averaged fluxes. This is a consequence of
the non-linear relationships between the fluxes and the state variables. Dynamic
effects occur because land-surface heterogeneity can generate sub-grid-scale mo-
tions, which contribute to the exchange processes, but are not accounted for in the
parametrization.

A widely used method for the treatment of land-surface heterogeneity in land-
surface schemes is the "mosaic" method (Avissar and Pielke [1989]; Koster and

Suarez [1992]) in which land-surface cells with the same properties are grouped
into patches for which the fluxes are then computed. This method recognizes the
importance of the land-surface properties, but neglects the spatial variations of the
atmospheric variables and the dynamic effects associated with land-surface het-
erogeneity.

More recently, a downscaling technique has been proposed by Schomburg et al.
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[2010], which takes the effect of land-surface heterogeneity on the atmosphere
into account. However, this technique is mainly a statistical manipulation of the
data and is not a sufficient representation of the dynamic effects. The resolution is
an important issue of modeling the atmosphere. The modeling of the land-surface
itself on the grid-resolved scale is difficult. In addition, if land-surface hetero-
geneity lies on a sub-grid-scale of the model, it is difficult to resolve the effect of
land-surface heterogeneity on the grid-scale.

Mahrt [2000] gave an overview of the blending height concept. He viewed the
blending height as a scaling depth that describes the decrease of the influence of
surface heterogeneity with height. The author was aware of the fact that the blend-
ing height is not a level where the influence of the surface heterogeneity suddenly
and completely vanishes, but a height where the influence of the surface hetero-
geneity decreases below a threshold. This concept is useful for some applications.
However, to find a universal threshold value is in general difficult. In addition,
for most of the blending height concepts there is only one heterogeneity scale.
The problem how to obtain this heterogeneity scale, leads to the problem how to
quantify it.

One current research goal is to parametrize heterogeneous land-surface processes
in weather and climate models. In order to achieve this goal several steps are
necessary: (1) development of an LES model to obtain high-resolution data; (2)
development of suitable decompositions of land-surface heterogeneity; (3) quan-
tification of land-surface heterogeneity; (4) investigation of the propagation of
land-surface heterogeneity in the atmospheric boundary layer; (5) describing the
heterogeneity with only a few parameters in order to reconstruct land-surface het-
erogeneity; and (6) parametrization of land-surface heterogeneity in weather and
climate models.

Point (1), the development of an LES model, has already been done by Shao et al.

[2013]. With this model it is possible to obtain the high-resolution data needed to
investigate the structure of the atmospheric boundary. The emphasis of this thesis
are the points (2) - (4). Possible decomposition methods are the Fourier transfor-
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1. Introduction

mation and the wavelet transformation (Morlet et al. [1982]; Daubechies [1990]).
Both of them have been used in various applications (Bacry et al. [1993]; Briggs

and Levine [1997]). In this thesis the wavelet transformation is used, because it
keeps the prominent features of the heterogeneity unchanged.

For the quantification of land-surface heterogeneity many approaches are pos-
sible. Which one should be used depends on the scientific question. Garrigues

et al. [2006] gave an overview of the methods used for the quantification of spatial
heterogeneity. These include the autocorrelation (Ford [1976]), fractals (Mandel-

brot [1983]), the local variance (Woodcock and Strahler [1987]), the variogram
(Curran [1988]), spectral methods (Hough [1989]), the hierarchical decomposi-
tion (Woodcock and Harward [1992]) or the probability density function (PDF)
(Giorgi [1997]). Other studies (e.g. Andraud et al. [1998]; Van Siclen [1997];
Fjellstad et al. [2001]), make use of the information entropy (Shannon [1948]).
Some studies combine the variogram with wavelet transformation (Gloaguen and

Dimitrakopoulos [2009]), while others use empirical orthogonal functions, cf.
Hannachi et al. [2007] for a review. However, in this thesis the entropy spec-
trum method is independently developed and used, which is a combination of
the Shannon entropy and wavelet transformation. In some earlier studies (Labat

[2005]; Brunsell et al. [2008, 2011]; Brunsell and Anderson [2011]), aspects of
the method proposed in this thesis have been used.

Another focus of this study is on point (4), i.e., the investigation of the propaga-
tion of land-surface heterogeneity in the atmospheric boundary layer. This point
has been studied to some extent by Courault et al. [2007]; Huang and Margulis

[2009] and Shao et al. [2013]. In this thesis, the focus lies on the response of at-
mospheric quantities such as temperature, moisture, sensible and latent heat fluxes
to land-surface heterogeneity. To this end, atmosphere and land-surface coupled
large-eddy simulations are carried and the results are analyzed with the entropy
spectrum method.
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In this thesis, the following two research questions are examined:

1. How to quantify land-surface heterogeneity?

2. Above which height is the influence of land-surface heterogeneity negligible?

The answer to the first question is the quantification of land-surface heterogeneity
with the entropy spectrum method. The second question is answered by investi-
gating the entropy spectra at different heights of the simulation results obtained
with a coupled LES model.

The outline of the thesis is as follows. In Chapter 2 the basic theory for LES
is given. In Chapter 3 a brief review of some existing methods for heterogeneity
quantification is given. In Chapter 4 the improvements to the entropy spectrum
and the input data and the model setup are described. In addition, an analysis
of the different land-use patterns with the entropy spectrum method is shown. In
Chapter 5 the results from the LES model are shown in order to investigate the
atmospheric response to the different land use patterns. As an example the pat-
terns and spectra for a homogeneous land-use pattern are shown. Afterwards, the
atmospheric responses on different time scales to land-surface heterogeneity are
investigated. It is also dealt with the question how the resolution of the land-use
patterns influences the entropy spectra. In addition, a comparison of the entropy
spectrum method with other methods is done. The thesis is closed with a conclu-
sion.
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1. Introduction
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2 Turbulent Flows in the Atmosphere

2.1 Governing Equations

In order to understand the results of the present thesis, it is necessary to first ex-
plain the model with which they are obtained. The large eddy version of the WRF
(Weather Research and Forecast) model is used for this study. WRF, a numerical
weather prediction model, solves a set of equations for the atmospheric motion,
known as the governing equation, which consists of the continuity equation, the
equation of motion, the conservation of moisture, the conservation of energy and
the equation of state. As the governing equations are coupled and contain non-
linear terms, they must be solved numerically.

The differences between the models for atmospheric motions on different scales
are diminishing. A numerical weather prediction (NWP) model can be used today
for LES, if the model resolution is sufficiently high. Models, which can explicitly
resolve the large-eddy scale turbulent processes in the atmosphere, i.e., the model
resolution corresponds to the inertial sub-range of the turbulence, are called LES
models. In order to understand how an LES model works, it is necessary to under-
stand the governing equations for atmospheric turbulent flows and to know how
they are solved. In this Chapter, the governing equations are presented, followed
by an illustration of the averaging method used in most NWP models. The closure
problem together with the assumption of spatial homogeneity, which is made in
most NWP/climate models, is then discussed. After the discussion of these basics,
the technique of LES is explained.
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2. Turbulent Flows in the Atmosphere

2.1.1 Continuity Equation

The conservation of mass states that the temporal change of density ρ in a certain
volume is determined by the divergence of the mass flux ρu,

∂ρ

∂t
+∇ · (ρu) = 0. (2.1)

Where u is velocity and ∇ is the Nabla operator. This equation can be written in
its component form using the summation convention that a summation goes over
double indices in one term,

∂ρ

∂t
+
∂ρuj
∂xj

= 0. (2.2)

For velocities much smaller than the speed of sound, the air can be assumed as an
incompressible fluid and Equation (2.2) reduces to

∂uj
∂xj

= 0, (2.3)

which is known as the incompressibility approximation. For this kind of fluids, ρ
does not depend on position x or time t.

2.1.2 Equation of Motion

The derivation of the equation of motion starts with Newton’s second law
F = ma, i.e., force equals mass times acceleration. Mainly three external forces
act on an air parcel in the atmosphere. These forces are the gravitational force, the
Coriolis force and the pressure gradient force. The gravitational force is
Fg = −mg, with g = (0, 0, 9.81 m/s2)

T . The Coriolis force is Fc = 2mu ×Ω,
with u the velocity of the particle and Ω = (0, ω cosφ, ω sinφ)T the angular
velocity vector, with the latitude φ and ω the angular velocity of the earth. The
pressure gradient force is Fp = −m

ρ
∇p, with the density ρ and the pressure p.

With this, it follows the equations of motion

F = ma = m
du

dt
= −2mΩ× u−mg − m

ρ
∇p. (2.4)
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2.1. Governing Equations

If the total time derivative is decomposed and divided by the mass, the results are
the Euler equations

∂u

∂t
+ u∇ · u = −2Ω× u− g − 1

ρ
∇p. (2.5)

In the following the so-called flux form of the Euler equations will be derived. For
a quantity a given in advection form, i.e. uj ∂a∂uj , the flux form can be obtained by
adding the continuity equation multiplied by a.

uj
∂a

∂xj
+ a

∂uj
∂xj︸︷︷︸
=0

=
∂(auj)

∂xj
. (2.6)

If the advection form of Equation (2.5) is written in its components, it follows that

∂ui
∂t

+ uj
∂ui
∂xj

= εij3fcuj − δi3g −
1

ρ

∂p

∂xi
. (2.7)

With εijk being the Levi-Civita-Pseudo-Tensor, δij the Kronecker delta and where
fc = 2ω sinφ denotes the Coriolis parameter. From Equation (2.7) follows the
Euler equations in flux form

∂ui
∂t

+
∂(uiuj)

∂xj
= εij3fcuj − δi3g −

1

ρ

∂p

∂xi
. (2.8)

The Euler Equations are valid for a fluid without friction. If the viscous stress for
an incompressible fluid µ

ρ
∆u (Landau and Lifshitz [1987];Prager [2004]), where

µ is the viscosity, is added to Equation (2.8) it follows the Navier-Stokes equations
for an incompressible fluid

∂u

∂t
+ u∇ · u = −2Ω× u− g − 1

ρ
∇p+ ν∆u, (2.9)

where the kinematic viscosity ν = µ
ρ

is introduced. For convenience, the Navier
Stokes equations is written in their different components

∂ui
∂t

+ uj
∂ui
∂xj

= −δi3g + εij3fcuj −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

. (2.10)
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2. Turbulent Flows in the Atmosphere

The second term can be written as

uj
∂ui
∂xj

=
∂ (ujui)

∂xj
− ui

∂uj
∂xj︸︷︷︸
=0

(2.11)

This leads to a form of the Navier-Stokes equations needed in Section 2.4:

∂ui
∂t

+
∂ (ujui)

∂xj
= −δi3g + εij3fcuj −

1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

. (2.12)

2.1.3 Conservation of Moisture

Moisture is an important quantity in the atmosphere. The temporal changes of
moisture in the atmosphere can be attributed firstly to the advection by wind and
molecular diffusion and secondly to the moisture sources and sinks. This can be
expressed as

∂q

∂t
+ uj

∂q

∂xj
= νq

∂2q

∂x2
j

+
Sq
ρair

, (2.13)

where q is the specific humidity of air and νq is the molecular diffusivity for water
vapor.

2.1.4 First Law of Thermodynamics

The First Law of Thermodynamics is the law of energy conservation, which states
that the change of energy E can be done via work dW = −pdV or heat transfer
dQ

dE = −pdV + dQ. (2.14)

Here p is pressure and V is volume. With the specific heat capacity at constant
volume and the temperature T , the entropy S and the mass m

cv =
T

m

(
∂S

∂T

)
v

=
1

m

(
∂E

∂T

)
v

, (2.15)

it follows that
mcvdT = −pdV + dQ (2.16)
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2.1. Governing Equations

cvdT = −pdα + dQ̃, (2.17)

with α = V/m = 1/ρ the specific volume and Q̃ = Q/m the heat transfer per
mass. After taking the derivative with respect to time it follows that

cv
dT

dt
= −pdα

dt
+
dQ̃

dt
. (2.18)

2.1.5 Equation of State

Temperature and pressure variations are related via the equation of state. If air is
assumed to act like an ideal gas, that is the individual gas molecules can be seen
as point particles with weak or no interactions between each other, then the ideal
gas law is

pV = NkBT = nNAkBT = nRT, (2.19)

with N being the number of gas particles, kB = 1.38 10−23 J/K the Boltzmann
constant,NA = 6.02 1023 1/mol the Avogardo number andR = NAkB = 8.31 J/molK

the ideal gas constant. If one writes in Equation (2.19) for n = m
M

, with m being
the mass of the particles in kg andM the molecular mass in kg/mol, then Equation
(2.19) becomes

pV =
m

M
RT = mRMT ⇔ p =

m

V
RMT = ρRMT, (2.20)

where RM is the specific gas constant of air.

2.1.6 Reynolds Averaging

In atmospheric models, the Equations (2.2), (2.12), (2.13), (2.18) together with
Equation (2.20), form a complete set of equations for the variables ρ, u, T , q and
p. These equations are difficult to solve analytically and are commonly solved
numerically. For Reynolds averaged atmospheric models, physical variables are
decomposed into a mean part and turbulent perturbations. The following averag-
ing rules are valid for general variables A = A+ a′ and B = B + b′

(A+B) = A+B (2.21)

11



2. Turbulent Flows in the Atmosphere

A = A (2.22)

AB = AB (2.23)

dA

dt
=
dA

dt
(2.24)

From rules (2.21) to (2.24) it can be obtained that

a′ = 0 (2.25)

Ba′ = 0 (2.26)

AB = AB + a′b′. (2.27)

Terms like a′b′, a′2, a′b′2 and a′2b′2 are not necessarily zero. In the following,
the process of Reynolds averaging is demonstrated by filtering the Navier-Stokes
Equations (2.12). It can be similarly applied for Equations (2.2), (2.13), (2.18)
and (2.20). The decomposition for velocity can be written

ui = ui + u′i, (2.28)

where ui is the mean part of the velocity and u′i is the turbulent part. In addition
to ui, the decomposition is done for the variables ρ = ρ+ ρ′ and p = p+ p′. Also
the Boussinesq approximation is applied, that is the assumption ρ′ � ρ is made,
if it is not related to g. With this it follows from Equation (2.12)

∂ (ui + u′i)

∂t
+
(
uj + u′j

) ∂ (ui + u′i)

∂xj

= −δi3g + εij3fc
(
uj + u′j

)
− 1

ρ

∂ (p+ p′)

∂xi
+ ν

∂2 (ui + u′i)

∂x2
j

. (2.29)

Arranging the terms and averaging the whole equation lead to

∂ui
∂t

+
∂u′i
∂t︸︷︷︸
=0

+uj
∂ui
∂xj

+ uj
∂u′i
∂xj︸ ︷︷ ︸
=0

+u′j
∂ui
∂xj︸ ︷︷ ︸
=0

+u′j
∂u′i
∂xj

12



2.1. Governing Equations

= −δi3g + εij3fcuj + εij3fcu′j︸ ︷︷ ︸
=0

−1

ρ

∂p

∂xi
+

1

ρ

∂p′

∂xi︸ ︷︷ ︸
=0

+ ν
∂2ui
∂x2

j

+ ν
∂2u′i
∂x2

j︸ ︷︷ ︸
=0

. (2.30)

The result is

∂ui
∂t

+ uj
∂ui
∂xj

+ u′j
∂u′i
∂xj

= −δi3g + εij3fcuj −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

. (2.31)

Adding to the third term u′i
∂u′j
∂xj

= 0 for an incompressible fluid and write this term
in the following form

u′j
∂u′i
∂xj

+ u′i
∂u′j
∂xj

=
∂(u′ju

′
i)

∂xj
. (2.32)

and obtain the Reynold averaged Navier-Stokes equations in flux form

∂ui
∂t

+
uj∂ui
∂xj

+
∂(u′ju

′
i)

∂xj
= −δi3g + εij3fcuj −

1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

. (2.33)

By moving the third term to the right hand side, it follows

∂ui
∂t︸︷︷︸
I

+
uj∂ui
∂xj︸ ︷︷ ︸
II

= − δi3g︸︷︷︸
III

+ εij3fcuj︸ ︷︷ ︸
IV

− 1

ρ

∂p

∂xi︸ ︷︷ ︸
V

+ ν
∂2ui
∂x2

j︸ ︷︷ ︸
V I

−
∂(u′ju

′
i)

∂xj︸ ︷︷ ︸
V II

. (2.34)

Equation (2.34) is similar to Equation (2.12), except for the turbulent terms at the
end. The meanings of the different terms are as follows:

• Term I represents the storage of mean momentum;

• Term II describes the advection of mean momentum by the mean wind;

• Term III shows that gravitation acts only in the vertical direction;

• Term IV describes the Coriolis force;

• Term V represents the pressure gradient force;

• Term VI represents the influence of viscous stress on the mean motion;

• Term VII represents the influence of Reynolds’ stress on the mean motion.

13



2. Turbulent Flows in the Atmosphere

Term VII can also be written as

∂(u′ju
′
i)

∂xj
=

1

ρ

∂τij
∂xj

(2.35)

where τij = −ρu′iu′j is the Reynolds’ stress tensor.

Equation (2.34) is the equation for the mean velocity, but it is not closed because
the Reynolds shear stress terms, u′ju′i, are unknown. In other words, to forecast
the behavior of the mean velocity, knowledge on turbulence is needed. This leads
to the closure problem.

2.2 The Closure Problem

As a result of Reynolds averaging applied to the Equations (2.2), (2.13), (2.18)
and (2.20), the mean quantities now depend on the correlations (or the second
statistical moment) of the turbulent components, e.g., u′iu′j . In principle, it is
possible to derive the equations for the correlations, but they again contain higher
order moments u′iu′ju′k. The number of unknowns grows faster than the number of
equations, as Table 2.1 illustrates. The order of the moment for which a prognostic

Table 2.1: Example showing a tally of equations and unknowns for various sta-
tistical moments, demonstrating the closure problem for turbulent flow. The full
set of equations includes even more unknowns. Taken from Stull [1988]

Prognostic Moment Equation Number of Number of
Eq. for: Equations Unknowns

ui First ∂ui
∂t

= . . .− ∂(u′iu
′
j)

∂xj
3 6

u′iu
′
j Second

∂u′iu
′
j

∂t
= . . .− ∂(u′iu

′
ju

′
k)

∂xk
6 10

u′iu
′
ju
′
k Third

∂u′iu
′
ju

′
k

∂t
= . . .− ∂(u′iu

′
ju

′
ku

′
m)

∂xm
10 15

equation is established gives the order of the closure. From Table 2.1 it can be
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2.3. Monin-Obukhov Similarity Theory

seen, that the number of unknowns is larger than the number of equations for each
order of closure. In order to solve the closure problem, several techniques have
been proposed. One simple approach of a first order closure scheme is the K-
theory, in which the fluxes of a variable ξ are parametrized via the gradient of ξ
times a parameter K, that is

u′jξ
′ = −K ∂ξ

∂xj
, (2.36)

ξ stands for any physical variable, like u, T or q. K is the exchange coefficient.
For atmospheric surface-layer flow simulations, K can be estimated using the
Monin-Obukhov similarity theory (MOST). In order to understand the difference
between most weather models and the LES model used in the present study it is
necessary to understand MOST, which is explained in the following section.

2.3 Monin-Obukhov Similarity Theory

Monin and Obukhov [1954] analyzed the processes of turbulent mixing in the
atmospheric surface layer using the theory of similarity. The starting point is the
Reynolds averaged Navier-Stokes Equations (2.34):

∂ui
∂t

+
uj∂ui
∂xj

= −δi3g + εij3fcuj −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

−
∂(u′ju

′
i)

∂xj
. (2.37)

To this equation, the following assumptions are made

• The flow is stationary: ∂ui
∂t

= 0.

• The flow is horizontally homogeneous: ∂uj
∂xj

= 0, except for j = 3.

• The mean vertical velocity is zero: u3 = w = 0, therefore uj
∂uj
∂xj

= 0.

• The Coriolis force can be neglected: fc = 0.

• The horizontal pressure gradient can be neglected: ∂p
∂x1

= ∂p
∂x2

= 0.

• The viscous friction can be neglected: ν ∂
2ui
∂x2j

= 0
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2. Turbulent Flows in the Atmosphere

• The turbulent momentum flux is horizontally homogeneous:
∂(u′ju

′
i)

∂xj
= 0,

except for j = 3.

• The flow is aligned to the x1 direction.

With these assumptions, Equations (2.37) are reduced to

∂u′w′

∂z
= 0. (2.38)

or
−u′w′ = const. (2.39)

In other words, the momentum flux in the vertical direction

τ

ρ
= −u′w′ (2.40)

is vertically constant.

Following Monin and Obukhov [1954], the logarithmic wind profile can be de-
rived based on similarity arguments.

The dynamic (or friction) velocity, u∗, is defined as

u2
∗ = τ/ρ. (2.41)

Monin and Obukhov [1954] used the fact, that the dynamic velocity (as a statistical
moment) is invariant under the similarity transformations

x′ = kx, y′ = ky, z′ = kz t′ = kt. (2.42)

In the stationary regime, they investigated the behavior of the ratio

u(z2)− u(z1)

u∗
= f

(
z2

z1

)
. (2.43)

Corresponding to the ratio of the velocities, the function f is a non-dimensional
quantity. Due to the assumption of self-similarity f is a function only depending

16



2.3. Monin-Obukhov Similarity Theory

of the ratio z2/z1. The function can be determined in the following way. Assume
z3 > z2 > z1. Then

f

(
z2

z1

)
+ f

(
z3

z2

)
=���u(z2)− u(z1) + u(z3)−���u(z2)

u∗
=
u(z3)− u(z1)

u∗

=f

(
z3

z1

)
= f

(
z3

z2

z2

z1

)
. (2.44)

With ζ1 = z2/z1 and ζ2 = z3/z2, Equation (2.44) can be written as

f(ζ1ζ2) = f(ζ1) + f(ζ2). (2.45)

Equation (2.45) has the solution

f(ζ) = C ln ζ. (2.46)

AssumingC = 1/κ, with κ being the Karman constant, then from Equation (2.43)
it follows

u(z2)− u(z1)

u∗
=

1

κ
ln
z2

z1

. (2.47)

Equation (2.47) can be written as

u(z2)− u(z1) =
u∗
κ

ln
z2

z1

. (2.48)

Equation (2.48) can be integrated between the heights z1 and z2∫ z2

z1

du

dz
dz =

u∗
κ

∫ z2

z1

1

z
dz. (2.49)

When examining infinitesimal close values z1 and z2, that means |z2 − z1| <
ε, ε > 0, it follows from Equation (2.49)

du

dz
=
u∗
κz
. (2.50)
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2. Turbulent Flows in the Atmosphere

Monin and Obukhov [1954] introduced a length scale L

L = − u3
∗

κ g

T

q
cpρ

(2.51)

and a temperature T∗
T∗ = − 1

κu∗

q

cpρ
. (2.52)

The minus sign and the Karman constant are introduced due to convention. The
signs of L and T∗ are determined by the kind of stratification. Monin and Obukhov

[1954] investigated the non-dimensional magnitudes

κz

u∗

du

dz
(2.53)

and
z

T∗

dT

dz
(2.54)

They stated that these non-dimensional characteristics should be functions of ex-
ternal parameters and of z. From Equations (2.53) and (2.54) follows

κz

u∗

du

dz
= ϕm

( z
L

)
(2.55)

and
z

T∗

dT

dz
= ϕh

( z
L

)
, (2.56)

where ϕm is the stability function of momentum and ϕh is the stability function
of heat. Equations (2.55) and (2.56) can be written as

du

dz
=
u∗
κz
ϕm

( z
L

)
(2.57)

and
dT

dz
=
T∗
z
ϕh

( z
L

)
. (2.58)
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The K-Theory (Equation (2.36)) represents a connection between the flux and the
gradient:

−u2
∗ = u′w′ = −Km

du

dz
. (2.59)

WhereKm stands for the exchange coefficient for momentum. By inserting Equa-
tion (2.57) in Equation (2.59) it follows

u2
∗ = Km

du

dz
= Km

u∗
κz
ϕm

( z
L

)
. (2.60)

From which the coefficient Km is calculated as

Km =
κu∗z

ϕm
(
z
L

) . (2.61)

Similarly, for Equations (2.36) and (2.58), it follows

q

cpρ
= T ′w′ = −Kh

dT

dz
= Kh

T∗
z
ϕh

( z
L

)
. (2.62)

The exchange coefficient for heat Kh is

Kh =
qz

cpρT∗ϕh
(
z
L

) (2.63)

together with Equation (2.52) it follows

Kh =
qz

cpρ

κu∗cpρz

qϕh
(
z
L

) =
κu∗z

ϕh
(
z
L

) . (2.64)

With this knowledge, it is possible to understand the LES used in the thesis and
explained in the next section.

2.4 Large-Eddy Simulation

Large eddies are the main contributors to the transfer processes in the atmospheric
boundary layer. LES models were invented in the 1960s (Smagorinsky [1963]),
and substantially developed in the 1970s and 1980s (Deardorff [1970]; Moeng
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[1984]). Today, LES models are well established for the simulation of turbulent
flows in the atmosphere (Sullivan et al. [1998]; Beare et al. [2006]; Kleissl et al.

[2006]; Kumar et al. [2006]).

2.4.1 LES Filtering

In LES models, the equation system is filtered into a grid-resolved part and a
subgrid part. The large eddies lie on the grid-resolved part and the small eddies
lie on the subgrid part (Leonard [1975]; Moeng [1984]). The filtering is done via
the convolution with a filter function G(x)

〈ui〉(x) =

∫
Gi(x)ui(x− r)dr, (2.65)

where ui stands for the different components of the velocity. For the filtering,
many functions can be chosen, for example Gaussian or box filters. Following
Pope [2000] the residual field can be written as

u′i = ui − 〈ui〉. (2.66)

Therefore, the LES decomposition is

ui = 〈ui〉+ u′i. (2.67)

This decomposition appears similar to the Reynolds decomposition, but is differ-
ent in that

〈u′i〉 6= 0. (2.68)

Applying the LES filtering to the Navier-Stokes equations (Equation 2.12) leads
to

∂〈ui〉
∂t

+
∂〈ui〉〈uj〉
∂xj

= −δi3g + εij3fc〈uj〉 −
1

ρ

∂〈p〉
∂xi
− ∂τij
∂xj

+ ν
∂2〈ui〉
∂x2

j

, (2.69)

where
τij = 〈uiuj〉 − 〈ui〉〈uj〉 (2.70)
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is the subgrid stress. In order to solve Equation (2.69), a closure for the sub-
grid stress is again needed. Several subgrid closures are available. One is the
Smagorinsky closure (Smagorinsky [1963]), in which the subgrid stress tensor is
parametrized as follows

τij = −2Ksm〈Sij〉, (2.71)

where the 〈Sij〉 is the rate of strain tensor

〈Sij〉 =
1

2

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
(2.72)

and
Ksm = (Cs∆C)2

√
2〈Sij〉〈Sij〉 (2.73)

is the subgrid eddy viscosity. The parameter Cs depends on the filter width ∆c

which is often chosen to be the model resolution. In this case, Cs is usually set to
Cs ≈ 0.17.

Another widely used closure is the k−l model (Deardorff [1980]). In this closure,
the subgrid fluxes are parametrized by

τij = Km

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
, (2.74)

with
Km = Ckl

√
e, (2.75)

where e is the subgrid turbulent kinetic energy, l is the mixing length and Ck is
an empirical constant Ck = 0.15 (Shao et al. [2013]). If the mixing length is set
corresponding to the model resolution, so that lx = ∆x and lz = ∆z, then the
subgrid eddy diffusivity for a scalar Kh,sg can be expressed as

Kh,sg =
Km,sg

Pr
, (2.76)

where Pr ≈ 0.3 is the Prandl number.
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2.4.2 LES-ALM

Equation (2.69) is the starting point for the development of the LES model of
Shao et al. [2013]. The underlying weather model is the WRF model (Skamarock

et al. [2008]). The used land-surface scheme is based on the NOAH community
land-surface model (Chen and Dudhia [2001]), where NOAH stands for the four
involved collaborators: National Centers for Environmental Prediction (NCEP),
Oregon State University, Air Force, Hydrologic Research Lab. Shao et al. [2013]
made three modifications to the model, and called the modified model a Large-
Eddy Simulation Atmosphere-Land-surface Model (LES-ALM). In the following,
the paper by Shao et al. [2013] is summarized and their modifications are outlined.

Shao et al. [2013] first adopted the idea of Shaw and Schumann [1992] and treated
vegetation as momentum sinks in the equations of motion. They added a term for
the canopy drag

SMi = −αfCdV 〈ui〉 (2.77)

to Equation (2.69). The variables in Equation (2.77) are Cd = 0.15 the dimen-
sionless drag coefficient (Shaw et al. [1988]), V is the local wind speed and αf is
the vegetation frontal area index. The final equation of motion reads as

∂〈ui〉
∂t

+
∂〈ui〉〈uj〉
∂xj

= −δi3g+εij3fc〈uj〉−
1

ρ

∂〈p〉
∂xi
−∂τij
∂xj

+ν
∂2〈ui〉
∂x2

j

+SMi. (2.78)

In a similar way as for momentum, the vegetation also acts as sources or sinks for
heat. The source term can be added to the temperature equation (Equation (2.18))
through

ST = −αtCTV
(
T − TC

)
. (2.79)

In Equation (2.79), the quantities are the leaf area density αf , the dimensionless
exchange coefficient Ct, the air temperature T and the canopy temperature Tc.

In addition, the vegetation acts also as a source for moisture. The source term
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can be expressed as

Sq = − (1− fwet)
αt
2
Cq [q − qs(Tc)]− fwet

αt
2
CdV [q − qs(Tc)] , (2.80)

where fwet is the fraction of wet vegetation, q the specific humidity and qs(Tc) is
the saturation specific humidity at canopy temperature Tc. This source term can
be added to the moisture equation (Equation (2.18)).

Shao et al. [2013] concluded from Equation (2.79) and (2.80) that a scheme for the
canopy temperature is needed. In the following, a brief discussion of the idea of
their scheme is presented. They stated that the canopy temperature is determined
by

αtεσT
4
c = ksRs + klRl − ρcpST − ρLSq, (2.81)

where ε is the vegetation emissivity, σ is the Stefan-Boltzmann constant, ks, kl are
canopy extinction coefficients for short-wave net radiation fluxRs, and long-wave
net radiation flux Rl, respectively. ρ is the air density, cp is the air specific heat
at constant pressure and L is the latent heat of vaporization of water. Their idea
was that they expressed the short-wave radiation through the vegetation canopy
by dividing the vegetation into bins of size δz.

In order to explain the second modification made by Shao et al. [2013], first the
parametrization of the sensible heat in usual LES models is shown. The sensible
heat flux H = cpρw′T ′ can be parametrized via Equation (2.36):

H = ρcpKh
∂T

∂z
(2.82)

The eddy diffusivity Kh can be derived from MOST (Equation 2.64) as

Kh =
κu∗z

ϕh
, (2.83)

with κ, u∗ and ϕh defined as in Section 2.3.
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The sensible heat flux can also be expressed by

H = −ρcp
T a − T 0

rh
, (2.84)

with T a being the reference-level air temperature and T 0 the surface temperature.
The aerodynamic resistance rh is related to the eddy diffusivity as follows

rh =

∫ z

z0

1

Kh

dz′. (2.85)

Since Kh is known from MOST (cf. Equation (2.83)), an integration can be done
which gives

rh =
1

κu∗

{
ln

(
z

z0h

)
−
∫ z

z0h

[
1− ϕh

(
z′

L0

)]
d ln z′

}
. (2.86)

z0h stands for the roughness length for heat and L0 is the Obukhov length. This
flux formulation is used in large-eddy atmosphere and land-surface coupled sim-
ulations. However, Shao et al. [2013] emphasized four points, why this flux for-
mulation is questionable:

1. The derivation of MOST assumes horizontal homogeneity with the effect of
advection being negligible. These assumptions do not hold on the scale of
atmospheric large eddies.

2. The MOST similarity functions are empirically derived using averaged
boundary-layer measurements.

3. In the framework of an LES model, the MOST-based diffusivity and viscos-
ity estimates near the surface are inconsistent with the model closure-based
diffusivity and viscosity estimates, causing contradictions between model
closure and boundary condition.

4. Even if MOST were applicable, the similarity parameters could not be
specified with confidence, especially in areas of land-surface heterogene-
ity, causing large uncertainties in flux estimates.

24



2.4. Large-Eddy Simulation

Especially point (1) is the reason why LES-ALM is used in the present thesis,
since the flux formulation in LES-ALM does not rely on MOST and therefore not
on spatial homogeneity.

In the following, an outline of the LES-ALM flux formulation is given. In LES-
ALM, the fluxes are expressed through a grid-resolved flux and a subgrid flux.
That means for the sensible heat flux H

H = Hg +Hsg, (2.87)

and for the latent heat flux LE

LE = LEg + LEsg. (2.88)

The grid-resolved fluxes can be computed as

Hg = ρcpw̃T̃ (2.89)

and
LEg = ρLw̃q̃. (2.90)

Where w̃ and T̃ are the grid-resolved vertical velocity and air temperature, respec-
tively. The subgrid heat fluxes are calculated as

Hsg = −ρcp
T̃a − T̃0

rh,sg
(2.91)

and

LEsg = −ρLβ q̃a − q̃s(T̃0)

rq,sg
, (2.92)

where T̃a and q̃a are the air temperature and specific humidity at the lowest model
level. The variable T̃0 is the surface skin temperature and q̃s(T̃0) is the saturation
specific humidity at T̃0. β is usually assumed to be a linear function of the soil
moisture in the top soil layer (Irannejad and Shao [1998]). For simplicity it is
assumed that rh,sg = rq,sg. The main point is now that these resistances cannot be
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Figure 2.1: LES-ALM configuration. The vegetation canopy is vertically re-
solved in multiple layers and thin soil layers are used to allow the land surface to
respond on the large-eddy time scale. Taken from Shao et al. [2013].

obtained by MOST. Instead, the resistances are calculated as the integral over the
reciprocal eddy diffusivity

rh,sg =

∫ z1

z0s

K−1
h,sg(z)dz, (2.93)

where z0s is the roughness length which depends on the land use type. z1 is the
lowest model level height. It is assumed that the eddy diffusivity scales with the
height z as

Kh,sg(z) = Kh,sg(z1)

(
z

z1

)n
. (2.94)
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The eddy diffusivity at the lowest model level height Kh,sg(z1) is estimated form
the subgrid closure scheme (Equation (2.76)). The integration of Equation (2.94)
together with Equation (2.93) gives

rh,sg =
z1

Kh,sg(z1)

[
ln

(
z1

z0s

)]
, (2.95)

for n = 1. For n > 1 the integration gives

rh,sg =
z1

(1− n)Kh,sg(z1)

[
1−

(
z1

z0s

)n−1
]
. (2.96)

Shao et al. [2013] summarized that their flux calculation differs from that of a
conventional land-surface scheme in the following three points

1. The main components of the fluxes are grid-resolved.

2. The parametrization of the subgrid components are in consistency with the
flow subgrid closure.

3. The computation of the fluxes does not rely on MOST.

However, Shao et al. [2013] stated that the validity of the scaling behavior ofKh,sg

(Equation (2.94)) has to be analyzed further.

The third modification which was made to the model by Shao et al. [2013], was
to choose an appropriate soil-layer configuration. They stated that to allow land
surface to respond to the effects of large-eddies, the thickness of the soil layer
∆s should be corresponding to the typical atmospheric time scales tA and the soil
thermal diffusivity νG, as follows

∆s ∼
√
νGtA. (2.97)

For tA = 1 day, ∆s should be approximately 0.2 m. For a shorter time tA =

10 min, ∆s should be approximately 0.01 m. The soil-layer configuration as well
as a sketch of the canopy temperature scheme is shown in Figure 2.1.
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2.4.3 Performance of the LES-ALM

Shao et al. [2013] compared the model output of the LES-ALM with measure-
ments. These measurements were obtained from the Transregional Collaborative
Research Centre 32 "Patterns in Soil-Vegetation-Atmosphere-Systems: Monitor-
ing, Modelling and Data Assimilation" (Vereecken et al. [2010]). The data in the
present thesis is also partly based on these measurements (cf. Section 4.2 for
more details). For the comparison measurements from two fields (sugar beet and
harvested winter wheat) were used. In the following only one example of their
comparison is shown. Figure 2.2 shows the comparison of the simulated and ob-
served sensible heat and latent heat fluxes for the harvested wheat and the sugar
beet surface averaged over a 30 minute interval. The two different experiments

Figure 2.2: Comparison of the LES-ALM with measurements. (a) Comparison
of the simulated and observed sensible heat (red) and latent heat fluxes (blue) for
the harvested wheat surface. (b) As (a) but for the sugar beet surface. Experiment
1 is the model setup with the explicit canopy scheme a fine soil layer configuration
as shown in Figure 2.1 and the surface layer scheme explained in Section 2.4.2.
Experiment 2 is the model setup with with a bulk canopy scheme and 4 soil layers:
0.1, 0.3, 0.6 and 1 m. The surface layer scheme is based on MOST. Obs. stands
for the observations. Taken from Shao et al. [2013].

refer to the different model setups. Experiment 1 is the model setup with the ex-
plicit canopy scheme a fine soil layer configuration as shown in Figure 2.1 and
the surface layer scheme explained in Section 2.4.2. Experiment 2 is the model
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setup with a bulk canopy scheme, 4 soil layers: 0.1, 0.3, 0.6 and 1 m. The surface
layer scheme is based on MOST. Shao et al. [2013] obtained from Figure 2.2 that
for the harvested wheat surface, the sensible heat flux of the second experiment is
underestimated from the late morning to the early afternoon. They concluded that
the simulated sensible heat flux of the first experiment agreed much better with
the observations. They stated that the latent heat flux of the second experiment
over the sugar beet surface is overestimated compared to the measurements. This
overestimation has been reduced in the first experiment. For the sugar beet sur-
face, both experiments showed an overestimation of the sensible heat flux. Shao

et al. [2013] argued that this overestimation is based on setting of the albedo value
for the sugar beet surface of 0.22. This value could have been too low. However,
Shao et al. [2013] concluded that their modifications to the model have improved
the model results significantly.

Tests show that LES-ALM is able to investigate the influence of the land-use het-
erogeneity on the atmospheric boundary layer. As explained in the introduction,
to have this kind of high-resolution models is the first step of the investigation.
The next step is to define heterogeneity in order to understand its influence on the
atmosphere. The next chapter gives a review of existing methods for heterogene-
ity quantification and introduces the Shannon entropy and the entropy spectrum
for the quantification.
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3 Existing Methods for
Heterogeneity Quantification

To understand how land-surface heterogeneity influences the atmospheric bound-
ary layer, it is essential to find a quantification for heterogeneity. In the following,
a short outline of the traditional approaches to quantifying many important aspects
of land-surface heterogeneity is given (Hintz et al. [2014]).

The term heterogeneity is used in different scientific fields, and may mean dif-
ferent things. For example, in ecological science, the meaning of heterogeneity
is different from the meaning in biology, physics or meteorology. The problem
how to quantify heterogeneity is an old one and the literature is very extensive.
The way how to deal with the problem of characterizing heterogeneity is very
field specific. In most cases the characterization is done regarding to a specific
scientific question. To give a comprehensive overview of all methods used for
heterogeneity quantification is beyond the scope of the present thesis. Therefore,
only the most common methods for the description of two-dimensional hetero-
geneities are discussed here.

As summarized by Mölders et al. [1996] and Garrigues et al. [2006, 2007], there
are several ways to deal with heterogeneity. One way is, for instance, to average
the surface properties (Lhomme [1992]; Dolman [1992]). This leads to a more
homogeneous surface, but tells nothing about how heterogeneous the underlying
structure was before averaging. Some researchers understand heterogeneity as the
variance of a physical quantity. They obtain the relative variance by normalizing
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the variance with the mean. A high relative variance implies a more heterogeneous
surface, while a low relative variance implies a more homogeneous one. While
relative variance is useful as an integrated statistical quantity, it is insufficient to
distinguish the structures of the heterogeneity. That means heterogeneities with
the same relative variance can be profoundly different in terms of structure. Alter-
natively, researchers use spectral and PDF approaches describing surface hetero-
geneity. The spectral approaches refer to methods that use Fourier transformation
and related techniques.

Land-surface heterogeneity can be differentiated with respect to four main as-
pects: structure, information, anisotropy and contrast. The diversity of the differ-
ent aspects of heterogeneity makes it difficult to find a single measure, which can
describe all aspects. Each of the four categories has influences on the atmospheric
motion. The focus of the present thesis is the quantification of the information
aspect of heterogeneity. In the following, an outline of the approaches used for
quantification, namely, the Taylor diagram, the variogram, the power spectrum
and the PDF approach, is given. The last one is important to develop the entropy
spectrum method.

3.1 Taylor Diagram

The Taylor diagram groups together several statistical parameters (e.g. correla-
tion coefficient, root mean square error difference and variance) (Taylor [2001])
in a single plot. It shows how much structures have in common in terms of their
statistics.

Let R be the correlation coefficient function and E ′ the centered root mean square
error difference, defined by

R =
1

Nσfσr

N∑
n=1

(
fn − f

)
(rn − r) (3.1)
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and

E ′ =

√√√√ 1

N

N∑
n=1

[(
fn − f

)
(rn − r)

]2
, (3.2)

respectively. In Taylor’s notation, fn is the investigated variable, rn is the refer-
ence variable, f and r are their mean values and σf ,σr are the standard deviations

Figure 3.1: Geometric relationship between the correlation coefficient R, the
centered root means square error difference E ′ and the standard deviations σf
and σr. Taken from Taylor [2001].

of f and r, respectively. The data set contains N points in time or space. Then,
the geometric relationship between R,E ′, σf and σr is as follows

E
′2 = σ2

f + σ2
r − 2σfσrR. (3.3)

This can be obtained via the law of cosines

c2 = a2 + b2 − 2ab cosφ. (3.4)

The Taylor diagram is then constructed as shown in Figure 3.1. An example is
given in Figure 3.2. According to Taylor [2001], it is not possible to determine
from E ′ how much of the error comes from the difference in structure and phase
or how much error comes from the difference in the amplitude of the variations.
From the Taylor diagram it can directly be seen how much two structures have
in common, in terms of their statistics. However, for using the Taylor diagram
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Figure 3.2: Example of a Taylor diagram. The radial distance from the origin
is proportional to the standard deviation. The centered RMS error difference be-
tween the test and reference field is proportional to their distance apart (in the
same units as the standard deviation). The correlation between the two fields is
given by the azimuthal position of the test field. Taken from Taylor [2001].

for heterogeneity quantification one has to choose a threshold, in order to tell if
two structures are significantly different. The Taylor diagram of one of the model
results is shown in Section 5.6.

3.2 Variogram

One often-used tool is the variogram γ (or structure function). A variogram de-
scribes the difference between the values at the points Z(xi + h) and Z (xi) as a
function of h

γ(h) =
1

2n(h)

n(h)∑
|xi−xj |=h

[Z (xi)− Z (xj)]
2 . (3.5)

The sum goes over all n(h) pairs of points xi and xj at lag distance h. This
method has the advantage, that it can describe heterogeneities in terms of spatial
correlations at different lag distances. There is a strong connection between var-
iogram and autocorrelation coefficient function R. The larger the autocorrelation
coefficient function and the smaller the variogram is, the stronger the correlation
between the locations with distance h.
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3.3. Power Spectrum

3.3 Power Spectrum

Another often-used method to investigate land-surface heterogeneities is the power
spectrum. There are two equivalent definitions of a power spectrum. The first is
that it is the magnitude of the Fourier transform of the data, and the second is that
it is the Fourier transform of the autocorrelation function.

3.4 Probability Density Function

Another approach is to investigate the PDF, p(x), of surface parameter x, which
tells how frequent a certain parameter value occurs. If the range of possible x-
values is divided into m = xmax−xmin

∆
windows of size ∆, then the probability

pi = p (xi) ∆ of finding x in bin i is

pi =
ni
N
. (3.6)

Here, N is the total number of grid cells and ni the number of cells with x ly-
ing in the interval xi − ∆

2
< x ≤ xi + ∆

2
. Therefore, the PDF shows how often

a specific value occurs. If the surface parameter consists only of a few values,
then the surface is usually more homogeneous. If it consists of many different
values the surface is often more heterogeneous. Figure 3.3 shows as an example
the albedo patterns of two real land surfaces (cf. Section 4.2 for more details). In
Figure 3.3 (a), the pattern is relatively homogeneous compared to the pattern in
Figure 3.3 (b). Figure 3.3 (c) and (d) show the corresponding PDFs. The latter
has a uniform shape in comparison to the former.

The PDF gives no information on the spatial distribution of the parameters on
the surface. To take the spatial distribution into account, it is necessary to find
a way to decompose the surface into different parts. Many decomposition meth-
ods are available. There are studies which use the Fourier transformation for the
decomposition, e.g. Perron et al. [2008]. The Fourier transformation has the dis-
advantage that it changes the prominent features of the heterogeneity. Therefore,
the method presented in this study makes use of a more localized transformation,
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Figure 3.3: Surface albedo (a) and the corresponding PDF (c) for a relatively
homogeneous surface. (b) and (d) as (a) and (c), but for a more heterogeneous
surface. Taken from Hintz et al. [2014].

namely, the wavelet transformation. Another possibility can be the recently de-
veloped orthogonal PDF decomposition method by Liu et al. [2015].

3.5 Wavelet Transformation

Wavelet transformation is widely used in science for data analysis (cf. Kumar and

Foufoula-Georgiou [1997]; Labat [2005] for reviews). Some other examples of
the applications of wavelet transformation can be found in Kumar and Foufoula-

Georgiou [1993], where they used wavelet transformation to analyse rain fall data.
Labat et al. [2005] used the wavelet transformation to study the time scale vari-
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ability of river discharges. Brunsell et al. [2008] used the wavelet transformation
for the study of remote sensing data. Gloaguen and Dimitrakopoulos [2009] ap-
plied wavelet transformation in combination with the variogram method to analyse
the spatial dependencies of geological patterns.

The wavelet transformation is an integral transformation similar to the Fourier
transformation. For a function f (x) and the wavelet Ψ ∈ L2(R), the wavelet
transformation of f(x) to the wavelet Ψ is defined as

LΨf(a, b) =
1√
cΨ |a|

∫
f (x) Ψ

(
x− b
a

)
dx, (3.7)

where L2 (R) denotes the vector space of square-integrable functions and a ∈
R\{0} and b ∈ R are the wavelet parameters. The parameter a zooms the wavelet

and b shifts the wavelet. The parameter cΨ is defined as cΨ = 2π
∫ |Ψ̂(ω)|2

|ω | dω,

where Ψ̂ (ω) denotes the Fourier transformation of the wavelet. The coefficient
cΨ can also be used to define a wavelet. That means every function Ψ is a wavelet,
if the condition 0 < cΨ < ∞ holds. Geometrically, the condition means that
wavelets are functions which Fourier transformation decays faster than their argu-
ments.

Many wavelets are possible for analysis. In the present thesis, the Haar wavelet
(Haar [1910]) is used. It is defined as

Ψ (t) =


1 0 ≤ t < 1

2

−1 1
2
≤ t ≤ 1

0 else

(3.8)

The interpretation of the Haar wavelet is that it gives the deviations of f from its
local mean value. The wavelet filter acts as a high pass filter. The corresponding
low pass filter is then the difference between the original signal and its high pass
filter that means between f and LΨf . Here, the Haar-wavelet transformation is
iteratively applied to the low pass signal. The one-dimensional wavelet transfor-
mation is generalized into two dimensions by first transforming in the horizontal
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direction of the surface and afterwards in the vertical direction.

A disadvantage of the wavelet transformation, when applied to not sufficiently
continuously distributed data, is that filtering can create new values, which were
not present prior to filtering. For example, the low pass of 12 and 10 is 11. If the
number 11 was not present in the data set prior to the filtering, the filtering would
create this new value.

Via the wavelet transformation, it is possible to define a scale as the wavelet fil-
tering length. In the case of the wavelet transformation, the filtering length is
increased by a factor of two in every filtering step. For example for a data set with
15 m resolution, the filtering lengths or scales are 30 m, 60 m, 120 m etc.

3.6 Entropy

For heterogeneity quantification (cf. point (3) in the introduction), it is useful
to find an integrative parameter that quantifies the amount of information of the
heterogeneity, namely the information entropy. Entropy is a quantity used in many
scientific fields. In the next paragraph, the origin of entropy from thermodynamics
is shown (as can be found in e.g. Fließbach [2010]). After that, the concept is
transferred to information theory by mainly following the idea of Shannon [1948]
and a derivation which can be found in Haken [1983].

3.6.1 Entropy in Thermodynamics

Entropy is a well-known concept in physics. In statistical thermodynamics, one
macrostate can represent a physical system, for example, the magnetization of a
metal, or the pressure in a volume filled with gas. Each macrostate has a very
large number of microstates, which can be the orientation of the individual spins
in a metal or the velocity of the individual particles in a volume. Entropy is a
macroscopic quantity which relates the logarithm of the number of microstates Ω

to one macrostate M
S(M) = k ln Ω. (3.9)
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The proportionally constant k is the Boltzmann constant kB = 1.38 10−23 J/K.
The partition function is another term for the number of microstate. This defini-
tion builds a connection between the microscopic properties of a system and its
macroscopic values. For example, the temperature T of a system can be obtained
as the derivative of the entropy with respect to energy E

1

T
=
∂S

∂E
. (3.10)

This is done via the relation

dE = TdS − pdV + µdN. (3.11)

The variables here are pressure p, volume V , chemical potential µ and particle
number N . The entropy defined here is additive. This can be seen by looking at
two systems A and B. Assuming that ΩA is the partition function of system A

and ΩB is the partition function of system B. Then the partition function of the
combined system is Ω = ΩAΩB and the entropy calculates as

S = kBln Ω = kBln(ΩAΩB) = kB [ln ΩA + ln ΩB ] = SA + SB. (3.12)

Thermodynamic entropy can be seen as a measure for the disorder of the system.
The reason is, that perfect order of a system is realized when there is only one
possible state, meaning Ω = 1 and therefore S = 0. If there is a large number
of microstates, then entropy is higher. Entropy reaches its maximum in the equi-
librium, which is the macrostate with the highest number of microstates, which
means a higher disorder of the system.

3.6.2 Entropy in Information Theory

There is another but related use of the entropy concept, which is used in the present
thesis. In the following the main aspects of the entropy in information theory are
derived. The derivation of the ideas is similar to that found in Haken [1983].

Let R be the number of possible realizations of a system, which is the number of
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how many different states a system can have. For a coin with two sides, the num-
ber of possible realizations is two. For a six-sided dice, the number is six. A con-
nection between the number of realizations and the information S is demanded.
This connection should be of the form, that information should be additive for
independent realizations. That means if there are two independent realizations of
the system, R1 and R2 then for the total number of realizations R the following
condition holds

R = R1 ·R2. (3.13)

For example, for two six-sided dices, R1 = R2 = 6. The total number of realiza-
tions is R = R1 ·R2 = 36. Like for the entropy in thermodynamics, the following
condition has to be valid

S (R1 ·R2) = S (R1) + S (R2) . (3.14)

This condition can only be fulfilled, if the information or Shannon entropy (Shan-

non [1948]) is of the form
S = k lnR. (3.15)

At this stage, the choice of the constant k and the base of the logarithm are arbi-
trary.

A practical example is how the information is stored in a computer. All data
in a computer are stored as series of length N of zeros and ones. Therefore, the
number of possible realizations is 2N . The typical unit for data storing is the bit.
If information is expressed in bits, meaning that information of a series of length
N of zeros and ones has the information N bit, and then the entropy is

S = k lnR = k ln 2N = kN ln 2 = N [bits]. (3.16)

That means the constant k has to be set to

k =
1

ln 2
=

log2e

log22
= log2e. (3.17)
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In general, the constant k can have any value and can give the entropy a unit.

In the following, a practical formula is derived which is more convenient for the
application to land-surface heterogeneity, that is an expression for the number of
realizations R found that can be connected to the PDF of the parameters of the
surface. This derivation can also be found in Haken [1983]. Assume a sequence
of zeros and ones of length N . Let N0 be the number of zeros and N1 the number
of ones. Then for the length of the sequence N = N0 + N1 is valid. The number
of possible realizations R of this sequence can be estimated through the possible
distributions of a set of N0 elements on a set with N elements:

R =

(
N

N0

)
=

N !

N0! (N −N0)!
=

N !

N0!N1!
. (3.18)

The information S ′ = k lnR is then calculated as

S ′ = k (lnN ! − lnN0! − lnN1! ) . (3.19)

The nomenclature is changed from S to S ′, the reason for this will become clear
later. With the help of Stirling’s formula, the natural logarithm can be tailored in
the following way

lnN ! ≈ N(lnN − 1) (3.20)

For large N (N > 100) this approximation is good. Applying Stirling’s formula
to in the Equation (3.19) leads to

S ′ = k [N lnN −N −N0 lnN0 +N0 −N1 lnN1 +N1] (3.21)

S ′ = k [(N0 +N1) lnN −N0lnN0 −N1lnN1 ] (3.22)

S ′ = k [N0 (lnN − lnN0) +N1 (lnN − lnN1)] (3.23)

S ′ = −k [N0 (lnN0 − lnN) +N1 (lnN1 − lnN)] (3.24)

S ′ = −k
[
N0ln N0

N
+N1ln N1

N

]
. (3.25)

41



3. Existing Methods for Heterogeneity Quantification

By now introducing the information per symbol, it follows that

S ′

N
= −k

[
N0

N
ln
N0

N
+
N1

N
ln
N1

N

]
. (3.26)

With the probability p0 to obtain a zero or p1 to obtain a one , that means

pi =
Ni

N
, i = 0, 1, (3.27)

the entropy is

S =
S ′

N
= −k [p0ln p0 + p1ln p1 ] . (3.28)

S is called the entropy (or information) of the sequence. This can be generalized
to systems that have m different states:

S = −k
m∑
i=1

pi ln pi. (3.29)

For the quantification of land-surface heterogeneity, this entropy is used. The pi
are the PDF of the investigated parameters on the surface. The constant is set
to one, k = 1 and the logarithm is set to the base 2. The sum over the pi is
constrained by

m∑
i=1

pi = 1. (3.30)

Following Haken [1983], it can be derived for which distribution of the parameters
the entropy has its maximum value. This means to find an extreme value for the
pi. With the constraint of Equation (3.30), the method of the Lagrange multipliers
is used, so that the following term is an extreme

−
m∑
i=1

piln pi + λ
m∑
i=1

pi = Extr. (3.31)
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The task is to find the value of Lagrange parameter λ. Therefore, the derivative
with respect to pi of the equation is taken. This leads to

−ln pi − 1 + λ = 0. (3.32)

This equation has the solution
pi = eλ−1. (3.33)

The solution is independent of the index i. Therefore, all pi have to be equal.
Putting the result in the constraint that the sum over all probabilities has to be
unity

m∑
i=1

pi = 1 (3.34)

leads to
m∑
i=1

eλ−1 = M eλ−1︸︷︷︸
pi

= 1 (3.35)

=> pi =
1

M
. (3.36)

That means entropy has its maximum value if all parameters are equally dis-
tributed. This is true if the number of parameters does not change, that is m =

const. However, when comparing the entropy of two different surfaces with dif-
ferent m, the entropy will be in general larger if the number of different parameter
values is higher. This requires some considerations on how to compare entropies
of different surfaces.

Entropies are usually additive. The entropy investigated in the present thesis is
a function of the PDF of parameters on the surface. In the following, an example
is shown, why it is not possible that this entropy is always additive. Figure 3.4
shows two artificial surfaces. Both of them consist of 64 grid points with two
parameters. Consider the left pattern in Figure 3.4. The left area of the pattern
consists of the parameter one and the right area consists of parameter two. This
configuration can be seen as an analogy to thermodynamics, where a box is sep-
arated by a wall into a gas filled area and an empty area. In thermodynamics,
the empty area has only one microstate, therefore the entropy is equal to zero,
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Figure 3.4: Patterns to illustrate the problem of entropy. Two artificial surfaces
with 8x8 grid points. Both consist of two parameters and have the same PDF. The
spatial arrangement is different, but the entropy is the same.

S1 = 0. The entropy of the area filled with gas depends on the number of particles
in the area. Assume there are N gas molecules. The number of different possible
configurations of N particles is

N−1∑
k=1

(
N

k

)
= 2N . (3.37)

The entropy is calculated as follows

S2 = kBln 2N = kBN ln 2 . (3.38)

If the wall is now removed, the particles will distribute in the whole volume.
However, since the number of particles does not change, the entropy St of the
whole system will not change,

St = kBN ln 2 . (3.39)
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This is equal to the sum of the entropies for each individual system, that is

St = S1 + S2 = kBN ln 2. (3.40)

In contrast to thermodynamics, it is shown in the following, that the entropy in
the information theory context is not additive. Looking again at the left pattern of
Figure 3.4, which has only two parameters and each parameter only in one area of
the pattern. That means for the probabilities

p1 = p2 =
1

2
. (3.41)

The entropy of pattern one is

S = −k
[

1

2
ln

1

2
+

1

2
ln

1

2

]
= −kln

1

2
= kln 2 . (3.42)

If the left pattern of Figure 3.4 is divided into two parts, then each part consists
of one parameter only. That means that in this case p1 = 1 . Then the entropy of
each individual part is

S1 = −kp1ln p1 = 0 (3.43)

and
S2 = −kp2ln p2 = 0. (3.44)

The total entropy
St = S1 + S2 = 0 6= k ln 2 (3.45)

is not additive. A possible explanation is that the individual parts of the surfaces
are only characterized by its PDF. The PDF does not take into account the spatial
distribution of each individual grid point. It merely gives the relative occurrence
of a parameter on the surface. Therefore, the PDF is the same for 64 grid points
with 1 parameter or for 32 with 1 parameter. The PDF will always give p1 = 1.
Entropy is an integrative quantity of the PDF. If the surface is divided into parts,
then the PDF will change. Due to this effect of changing the PDF, this will change
the entropy. The solution would be a PDF of the surface that not only keeps track
of how often a surface parameter occurs, but also on its position on the surface.
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This would lead to a multi PDF. The description of a surface with this multi PDF,
that is the occurrence and position of all surface parameters, will need as much
data as the surface itself. Therefore, this PDF will not help to describe the sur-
face with fewer parameters. However, if it is possible to obtain such multi PDF
of the surface, then the resulting entropy of the surface should be additive. In the
present thesis, the common PDF definition is used. Therefore, a decomposition
will change the PDF in a non-additive way. Consequently, the resulting entropy is
not additive.

The Shannon entropy describes the information content of a surface. It is an in-
tegrative quantity of the parameter PDF. Therefore, surfaces with the same PDF
will have the same entropy. This can be seen again in the example of Figure 3.4,
where the two shown surfaces have the same PDF, but their spatial arrangement
is obviously different. Due to the equal PDF, the entropies are identical. To solve
the problem of the non-uniqueness of entropy, a decomposition method is needed
to take into account the spatial arrangement. In the present study, the wavelet
transformation is used in order to decompose the surface into a low- and a high
pass part.

3.7 Entropy Spectrum

If the wavelet transformation and entropy calculation is applied iteratively to the
low pass part, the result is an entropy distribution on different wavelet scales. This
is called the entropy spectrum. It is used for the quantification of land-surface
heterogeneity. It can also be used as a definition of a pattern. That means that a
pattern is the distribution of information on different scales. The entropy spectrum
has the following advantages. It takes into account the spatial arrangement of a
pattern. That means it is able to distinguish between land surfaces with the same
PDF but different spatial arrangements. The reason is the clear scale dependence
of the entropy spectrum. In addition, the information aspect of heterogeneity can
be estimated. With the entropy spectrum relevant scales can be determined. More-
over, the location of the relevant structures can easily be reconstructed since the
sum of the low pass and the high pass reproduces the original data.
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Figure 3.5: Artificial example patterns to illustrate the entropy spectrum method
(the combination of wavelet transform and information entropy)

An example for the entropy spectrum and for the application for two-dimensional
patterns is shown in Figure 3.5, where the two-dimensional patterns consist of the
arbitrary chosen values 1, 2, 3 and 4. With the help of the wavelet transformation
the surface is decomposed into a low- and high pass part. For this example, this is
only done in the horizontal direction. The result is that the resolution in the hori-
zontal direction decreased by a factor of two. This means that the two horizontal
grid points have the same value in the low pass. After computing the low and high
pass parts, the entropy for each is calculated. In this example, most information
content lies on the first wavelet scale, since on that scale entropy has its maximum.

The approach is not completely new. It has been applied by several research
groups, for example Brunsell et al. [2008, 2011] and Brunsell and Anderson

[2011]. The method is improved by Hintz et al. [2014] by investigating the in-
fluence of the parameter PDF to the entropy spectrum. In order to distinguish
which part of information comes from the surface and which comes from the pa-
rameter PDF, the entropy at each scale is compared to a reference value obtained
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Figure 3.6: Illustration of the reference entropy spectrum. The bold blue arrows
stands for shuffling of the pattern. The light blue arrows stands for applying the
low- and the high pass filter, respectively. S0 is the entropy of the original pattern
which is equal to the entropy of the shuffled pattern. SL1 is the entropy of the
level 1 low pass. SH1 is the entropy of the level 1 high pass. SRL1 stands for the
entropy of the level 1 low pass obtained from the shuffled pattern. SRH1 stands for
the entropy of the level 1 high pass obtained from shuffling the original pattern.
SL2 is the entropy of the level 1 low pass of the level 1 low pass of the original
pattern. SH2 is the entropy of the level 1 high pass obtained from the level 1 low
pass of the original pattern. SRL2 stands for the entropy of the level 1 low pass
obtained from the shuffled pattern of the level 1 low pass. SRH2 stands for the
entropy of the level 1 high pass obtained from the shuffled level 1 low pass.
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by estimating the low or high pass entropy of a randomly arranged surface with
the same PDF as the preceding low pass. Usually, this value is different from the
low- or high pass entropy obtained by iteratively applying the filter to a randomly
arranged surface with the PDF of the original surface. The method to get the ref-
erence value numerically is to take the preceding low pass surface and shuffle the
grid cells until all spatial correlations are destroyed. From this reference surface,
the corresponding low and high pass entropies are estimated as usual. A chart to
illustrate procedure of the reference spectrum is shown in Figure 3.6.
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4 Methodology

In Chapter 3 some of the main existing methods for heterogeneity quantification
are outlined. It is explained, that land-surface heterogeneity can be differenti-
ated regarding four main aspects: structure, information, anisotropy and contrast.
In this thesis the focus lies on the quantification of the information aspect of
land-surface heterogeneity. This quantification is done via the entropy spectrum
method. This method, i.e., a combination of Shannon entropy and the wavelet
transformation, has been used in studies by Labat [2005]; Brunsell et al. [2008,
2011]; Brunsell and Anderson [2011]. This method is independently developed
in this study and has been improved by investigating the dominant scale from the
entropy spectrum, as shown in the following section.

4.1 Estimation of the Dominant Scale

To illustrate how to estimate the dominant scale of a pattern, two synthetic pat-
terns (Figure 4.1) are taken as examples. In the two patterns each cell represents
an area of 15 x 15 m2. Both patterns have the same PDF. The data shown in
Figure 4.1 (a) are created by randomly arranging values for each cell which cor-
responds to a 15 x 15 m2 area. For the pattern shown in Figure 4.1 (b) correlated
structures of size 11 x 11 cells, corresponding to 165 x 165 m2 are created. These
structures are randomly arranged.

Figure 4.2 (a) shows the low pass entropy spectrum of the random pattern shown
in Figure 4.1 (a) as a solid red curve and the reference curve as a dashed red
line. The solid black line represents the high pass entropy spectrum, while the
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Figure 4.1: Two different synthetic surface albedo patterns with the same PDF.
(a) Data randomly arranged with spatial resolution of 15 m, and (b) data randomly
arranged with spatial resolution of 165 m, i.e., each big cell contains 11 × 11 grid
cells. Taken from Hintz et al. [2014].

Figure 4.2: (a) Entropy spectrum calculated from the random surface shown in
Figure 4.1 (a) The low-pass entropies are shown as red lines, and the black lines
show the high-pass entropies. The full lines correspond to the estimated values,
while the dashed lines correspond to the reference values, respectively. (b) Same
as (a) but for the correlated pattern shown in Figure 4.1. Taken from Hintz et al.
[2014].
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dashed black curve corresponds to the reference high pass entropy spectrum.
Figure 4.2 (b) shows the Haar entropy spectrum for the surface shown in Figure
4.1 (b) with the same color code as before. In Figure 4.2 (a), a strong increase of
the entropy is seen in the first filtering step. This occurs because the distribution
of the values is pronounced non-equidistant (values are 8, 14, 15, 19, 22 and 33).
The Haar wavelet filter creates new values, which are not present in the original
pattern. This leads to an artificial increase in entropy. In the shown example, the
second and following filtering steps create only few values and enhance param-
eter values around the global mean value. The effect that most of the numbers
lies around the global mean value dominates the effect of creating new parameter
values, which leads to a decrease of entropy.

In Figure 4.2 (a), the reference curve, and the original curve agree very well with
each other, verifying that the pattern is pure noise. Correlations of the surface lead
to similar low-pass values. Deviations occur only at the borderlines between the
structures. The effect of the borders increases with increasing filtering scale up
to the half size of the structures. If new values are created at the borders, the low
pass entropy of the Haar wavelet filtering increases on small scales. By studying
many different surfaces it can be seen that the maximum low pass entropy might
occur earliest at the filtering scale just below the structure length, and latest at the
filtering scale that is twice the structure scale. Thus, if the maximum of the low
pass entropy occurs at a characteristic scale, L, then the structure length λ lies
between half of the scale and twice the scale. To narrow this range the position
of maximum high pass entropy has to be taken into account. If the maxima of
both low and high pass, occur at the same scale, L, then the dominant scale λ lies
between half and the full scale, i.e.

0.5L ≤ λ < L. (4.1)

If instead the maximum of the low pass L occurs one filtering scale earlier, i.e.
half the scale, than for the high pass, then the dominant scale λ lies between
L ≤ λ < 2L. On scales much larger than the structure sizes, the surface looks
random again and the low pass entropy decreases. The entropy approaches the
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reference value. The filtering scales, where the deviation to the reference values
are most pronounced, indicate the width of the correlated structures.

Figure 4.2 (b) shows the Haar entropy spectrum of the structure shown in Fig-
ure 4.1 (b). The red full curve shows again the low pass entropy. As predicted, it
increases up to scales below the pattern size, and decrease at scales above it. The
maximum low pass entropy occurs at filtering scale L=120 m. Thus, the pattern
must have a dominant scale between 60 m and 240 m. The maximum of the high
pass entropy occurs at filtering scale 240 m. This reduces the range of possible
the dominant scales between 120 m and 240 m. This is in agreement with the syn-
thetic pattern where the real length scale of the structures is 165 m. The high pass
of the Haar wavelet filtering consists of the deviations between the low pass and
the preceding low pass. If the surface has correlations the high pass PDF becomes
peaked at value zero and the resulting entropy is small. Deviations occur again
at the borders between structures. Thus, the entropy rises with increasing filter-
ing scale up to the size of the structures. On larger scales, the structures have a
noisy behavior. The entropy decreases. Therefore, the maximum of the high pass
indicates the length of the structure size. For randomly arranged surfaces, the en-
tropy is larger than in the correlated case. Thus, again the difference between the
entropy value and the corresponding reference value indicates the strength of the
correlations on this scale.

However the method has some limitations. The entropy spectrum is only able
to find the dominant scale under the following conditions. (i) The number of val-
ues is not too large. That means the number of values should be less than 10 % of
the number of grid points. This is a rough estimate. The reason is, if the number
of values is too large, every surface will look random. This can be understood
by investigating a pattern, where every grid point has a different value. In reality
the difference of the values may be marginal; however, the entropy spectrum will
still count every single value even if the value does not differ very much from its
neighbor value. This problem is taken into account by normalizing and rounding
of the values (cf. Section 5.1). However, if the numbers of values are too large
the entropy spectrum will show a peak at the first filtering scale and then will
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Table 4.1: Model setup and comparison with Shao et al. [2013]

This study Shao et al. [2013]
Model LES-ALM LES-ALM

Domain Size 3.84 x 3.84 x 2.2 km3 7.5 x 6.0 x 2.2 km3

Horizontal Resolution 15 m 60 m
Simulation Time 12.00 - 13.30 UTC 8.00 - 20.00 UTC

Horizontal Wind Speed none 3-4 m s−1

show a fast decrease. This behavior is usually the behavior of a random pattern.
The number of values where the method still works can dependent on the spatial
arrangement. (ii) The size of the biggest structures should be smaller than the
filtering size. (iii) The number of values is to less. The reason is if there are only
two values, the dominant scale is found at that scale, where the number of values,
due to the filtering process, reaches its maximum. These errors can be avoided if
one takes into account also the reference entropy spectrum. The calculation of the
reference spectrum is computational intensive. Therefore, and in order to make
the results plots better to read, the reference spectrum is omitted.

4.2 Data and Model Setup

The study area is the Rur River catchment (6.4◦E, 50.8◦N), Germany. Many field
measurements have been carried out in the context of the SFB/TR 32 Patterns in
Soil-Vegetation-Atmosphere-Systems: Monitoring, Modeling, and Data Assimi-
lation Vereecken et al. [2010]. The simulations are carried out for the area around
the two towns Selhausen and Merken. The area is arable land with 75 % cov-
ered by cultivated plants. Typical field sizes of the region are in the range of
one to a few hectares with a typical length scale of 100 m. The horizontal res-
olution of the data set is 15 m. The land use data set is taken from Waldhoff

[2010]. The simulation domain is 3.84 km in the east-west direction and in the
north-south direction. This is due to the fact, that with the Haar wavelet trans-
formation, the filtering length is a power of two. Therefore, this domain size to
3.84 km = 15 m x 256 grid points is chosen.
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Table 4.2: Conversion between land use types and corresponding albedo values

Land Use Type Albedo [%]
Forest 14
Pasture 19

Beet 22
Water 8

Settlement 15
Bare Soil 33

The choice of this area has the following advantages to the simulations. First, due
to the structure of the fields and their typical sizes of 100 m, one of the dominant
heterogeneity length scale is a priori known. Second, the data set has a resolution
high enough to analyze large eddies. Third, due to the field experiments the sim-
ulation results can be compared to measurements. This has already been done by
Shao et al. [2013] (Cf. Section 2.4.3).

Shao et al. [2013] also uses the LES-ALM. The model setup in the present thesis
is equal to that of Hintz et al. [2014]. Table 4.1 shows the model setup, together
with a comparison with the model setup of Shao et al. [2013]. There are two main
differences in the model setup. First the resolution is chosen to be 15 m. Second
the simulations are done without wind. If the simulations would be in the presence
of wind, the signal of the land surface would have been shifted inside or outside
of the domain. Moreover, it would be more difficult to find relationships between
the lower layers and the layers above them.

4.3 Entropy Analysis of the Land Use Patterns

In this section, the applications of the entropy spectrum method to the results of
numerical experiments are shown. To understand the influence of land-surface
heterogeneity nine different numerical experiments with different land-use inputs
are set up. These inputs are (a) A constant land use where the whole domain
consists only of bare soil. (b) An arrangement, where the center of the domain is
forest surrounded by bare soil. (c) A random arrangement with nearly the same
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Figure 4.3: Different land uses, used as input data for the numerical experiments
with the LES-ALM. (a) A constant land use where the whole domain consists
only of bare soil. (b) An arrangement, where the center of the domain is forest
surrounded by bare soil. (c) A random arrangement with nearly the same PDF as
the original data. (d) The original land use data with 15 m structure size. (e) The
level 1 Haar wavelet filtered surface. (f) The level 2 Haar wavelet filtered surface.
(g) random arranged surface with structures of the size of 120 m (h) Same as (g)
but the structure sizes are 240 m (i) Same as (g) and (h) but the structure sizes are
480 m and the blocks are shifted with respect to the origin.
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Figure 4.4: The entropy spectra of the albedo patterns shown in Figure 4.3. For
(a) the dominant scales is λ = 3840 m. (b) The dominant scale lies in the range
between 240 ≤ λ < 480 m. (c) The dominant scale lies in the range between
15 ≤ λ < 30 m (d) - (f) The dominant scale lies in the range between 60 ≤ λ <
120 m (g) The dominant scale lies between 120 ≤ λ < 240 m (h) The dominant
scale lies in the range of 240 ≤ λ < 480 m (i) The dominant scale lies between
480 ≤ λ < 960 m.
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Table 4.3: Entropy of the different land use inputs SLU and of the averaged values
of temperature SΘ, water vapor Sq, sensible heat flux SH and latent heat flux SLE

Land use pattern SLU SΘ Sq SH SLE

(a) 0 2.23 2.48 2.33 2.44
(b) 0.62 2.15 1.46 2.15 0.70
(c) 2.12 2.43 2.38 2.16 2.17
(d) 2.05 2.34 2.44 2.06 2.25
(e) 2.02 1.85 2.32 2.05 2.01
(f) 1.89 1.72 2.43 1.87 1.96
(g) 2.01 2.24 2.41 1.99 2.19
(h) 1.95 2.20 2.28 1.96 2.07
(i) 1.88 1.99 2.87 2.04 1.63

PDF as the original data. (d) The original land use data with 15 m resolution. (e)
A level 1 Haar wavelet filtered surface. (f) A level 2 Haar wavelet filtered surface.
(e) and (f) were obtained by first converting the land use data into albedo values,
and then make the Haar wavelet transformation and converting it back to land use
data by combining the new created albedo values into accordingly chosen land
use types. The conversion from land use to albedo values is done via Table 4.2.
(g) An arrangement where a similar PDF as (d) is put together to blocks of the
size of 120 m and these are then randomly distributed. (h) Same as (g) but the
blocks are 240 m large. (i) The same as (g) and (h) but the blocks are 480 m large
and the blocks are shifted with respect to the origin. That means that the borders
of the blocks do not lie on the filtering window, which is for the Haar wavelet
transformation a power of two. Each of the land use data has a resolution of 15
m. Table 4.3 shows the entropy of the land-use-input pattern, together with the en-
tropy of the temporal averaged (cf. Section 5.4) values at the surface. The surfaces
(c), (e), (h) and (i) were created with nearly the same PDF as the original data of
the whole 7.5 x 6 km domain, consisting of the different land use types forest, pas-
ture, water, settlement, beet and bare soil. However, for the simulation only a part
of the domain (3.84 km x 3.84 km) is chosen. As already explained, the domain
size corresponds to 256 x 256 grid points. This has been done, because if the size
of the domain in grid size is a power of two then there is no confusion what might
occur when the filter reaches the border of the domain. Figure 4.3 from left to
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right and from top to bottom show the albedo structures corresponding to these
land use inputs.

For each of the land use inputs the dominant scale is computed. Due to the fact,
that the entropy spectrum method cannot be applied directly to the land use values,
they are first transformed into albedo values. From the albedo values the entropy
spectrum and the dominant scale is then estimated. Figure 4.4 shows the entropy
spectrum for each of the albedo structures of Figure 4.3. For each of the entropy
spectra the dominant scale is estimated. For Figure 4.3 (a) the dominant scale is
λ = 3840 m, because this distribution consists only of one value. Therefore, all
entropies are to zero. Thus, the dominant scale is defined as the domain size.

For (b) the dominant scale lies in the range of 240 ≤ λ < 480 m. This can
be estimated, because the low pass and the high pass entropy have both their
maximum at the 480 m scale. That means that the dominant scale lies between
1
2

480 = 240 m and 480 m. The patch size of the forest values where chosen to
be of the order of 100 x 100 grid points, which converts to 1500 x 1500 m. The
maximum filtering length would be 3840 m, which translate to 256=28 grid points.
The entropy spectra are calculated up to 64=26 grid points. This corresponds to
960 m filtering length. Therefore, the entropy spectrum of Figure 4.3 (b) cannot
resolve this dominant scale. The maxima of the low and the high pass entropy
occur at a scale of 480 m. At this scale, the number of parameters has its maxi-
mum. Therefore, in this special and artificial case, where the surface consists only
of two parameters, the dominant scale cannot be estimated correctly with the en-
tropy spectrum method. However, this can be solved by choosing a larger domain
size.

(c) For the random arranged surface, the dominant scale lies in a range between
15 ≤ λ < 30 m. This is consistent, because arranging the surface randomly,
should destroy every spatial correlations and therefore there is no dominant length
scale. The fact, that the entropy spectrum finds a dominant structure between 15
and 30 m, is reasonable, because the spatial resolution is 15 m meaning that the
smallest scale possible is 15 m. The reason why the entropy does peak at the 30 m
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rather than on the 15 m scale, is that the albedo values are a only six values and
during the filtering process, many new albedo values between the original ones
are created. In this case a higher number of values leads to a higher entropy. Con-
sistently, the entropy spectrum estimates the lack of a dominant scale or in other
words, there is no spatial correlation between the different points.

This can be discussed even further. Comparing the entropy spectrum of the struc-
ture consisting only of one value (Figure 4.4 (a)) with that of the random case
(Figure 4.4 (c)). The entropy spectrum of (a) is flat, the entropy of (c) is a fast
decaying function. These two cases are the extremes of a homogenous surface (a)
and heterogeneous surface (c). All other surfaces lie between them. From this, it
can be speculated that if the entropy spectrum has a similar shape to that of (a)
or (c) it is very likely that the structure is constant or random, respectively. Of
course, there can be exceptions to this rule. However, it is a first hint, how one can
make a reconstruction of the pattern, if the entropy spectrum is the only known
quantity.

The structure Figure 4.3 (d) consists of the albedo values obtained, by the trans-
forming the land use data into corresponding albedo values. For the entropy spec-
trum, both low- and high pass entropies show a maximum at a scale L = 120 m.
Thus, typical structures have a length scale 60 ≤ λ < 120 m. This is in agreement
with the field size of around 100 m.

The pattern of Figure 4.3 (e) is the level one Haar wavelet transformation of the
original data shown in Figure 4.3 (d). The entropy spectrum of the low pass is
constant in the unfiltered and the first filtering step, i.e. at a scale of 15 m and
30 m. This is reasonable, because the in the first level Haar wavelet filtering step
the average goes over 30 m of the data. The dominant scales of (d) and (e) lie on a
scale larger than 60 m. Therefore, the shape of (e) is similar to that of (d) between
the 30 m and 60 m.

For the same reason the dominant scale of Figure 4.3 (f) lies in the range between
60 ≤ λ < 120 m. However, here the first three scales have the same entropy. The
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shape differs from that shown in (d), but it is still able to determine the dominant
scale. Even though it not so easy to perceive the maximum, as in the two spectra
of (d) and (e).

The entropy spectra (g) - (i) are the spectra of the artificially generated surfaces.
Their dominant scales are known in advance. This is achieved this by considering
the following two points. First, blocks of a specific size (120 m for (g), 240 m
for (h) and 480 m for (i)) are put together. Second, these blocks are arranged ran-
domly so that spatial correlations is destroyed as much as possible.

From the entropy spectrum (g) can be seen that it is constant for the scales from
15 to 120 m. At the 240 m scale, both low pass and high pass entropies have a
peak. So that it can be concluded, that the dominant scale lies in the range of
120 ≤ λ < 240 m. The sizes of the blocks with the same values are 8 x 8 grid
points, which corresponds to 120 m x 120 m. Therefore, the entropy spectrum can
determine the dominant scale appropriately.

The same method of arranging the surface randomly was used for the surface
shown in Figure 4.3 (h). Here blocks of the size of 16 x 16 grid points (cor-
responding to 240 m x 240 m) are put together. The entropy spectrum gives a
dominant scale of 240 ≤ λ < 480 m. This is again in agreement with reality.

In Figure 4.3 (i) a surface which is similar to those in (g) and (h) is shown. How-
ever, here the blocks have sizes of 480 m. To investigate the behavior of the
entropy spectrum, if the filtering window does not match the block borders, the
blocks are shifted so that most of block borders will not lie at even positions. Be-
cause the filtering scales are a power of two, shifting the blocks means that the
filtering windows lies beyond the border of one block. It can be seen that the en-
tropy spectrum can still resolve the dominant scale between 480 ≤ λ < 960 m,
but the maxima are not so pronounced.

For each of the nine numerical experiments the entropy spectrum has been cal-
culated for the physical parameters like temperature, water-vapor-mixing ratio,
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sensible and latent heat flux. As mentioned before the dominant scale of the pat-
tern can be estimated, by comparing the scale of the low pass entropy and the high
pass entropy. Due to the huge number of spectra, this process has been automated.
Therefore, it has not been investigated what happens if the maximum of the high
pass entropy occurs two scales later or at a very different position than the peak
of the low pass entropy.

63



4. Methodology

64



5 Results

In this chapter, the propagation of land surface heterogeneity in the atmospheric
boundary layer is investigated. This is done via the application of the entropy
spectrum method to the model output of the nine numerical experiments (cf. Sec-
tion 4.3). The chapter is structured as follows, after a necessary normalization of
the model outputs (cf. Section 5.1), two examples of the atmospheric responses
of normalized potential temperature and normalized water-vapor-mixing ratio to
a homogeneous land surface are shown (cf. Section 5.2). In Section 5.3 the appli-
cation of the entropy spectrum method to the model output of all nine numerical
experiments after a spin-up time of 30 minutes is shown. These instantaneous
output, i.e. the output at a specific time, show mainly the behavior of the atmo-
spheric turbulence and not so much the influence of the land-surface heterogene-
ity. Therefore, in Section 5.4 the entropy spectrum is applied to the averaged
model output. From these results it is possible to study the influence of resolu-
tion to the entropy spectrum (cf. Section 5.5). In order to validate the results
obtained from the entropy spectrum method, the results are compared to statisti-
cal methods (cf. Section 5.6). For convenience, in this chapter temperature stands
for the averaged potential temperature and water vapor stands for the normalized
water-vapor-mixing ratio.

5.1 Normalization

In order to ensure the comparability of patterns at different heights and to simulta-
neously take into account the varying number of values per variable at every level,
these variable values have to be normalized.
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For Gaussian distributed values, the normalization would usually be done via the
standard score

Zsc (i, j) =
x (i, j)−µ

σ
, (5.1)

where µ is the mean value of the variable x and σ is the standard deviation. For
Gaussian distributed values, the normalized values usually lie between −3σ ≤
ZSC (i, j) ≤ 3σ. However, for non-Gaussian distributed values, the normalized
values can be much larger than 3σ or smaller than −3σ. Therefore, with the
standard score, it is not easy to find a threshold, which is good for all heights. The
data investigated in the present thesis are not all Gaussian distributed. Thus, the
feature scaling normalization is applied. The feature scaling normalization is done
as follows. For every height, the minimum value xmin and the maximum value xmax

are calculated. Then, at each grid point (i, j), the minimum is subtracted from the
value at this point x(i, j) and the result is divided by the difference between the
maximum and the minimum:

Z(i, j) =
x(i, j)− xmin

xmax − xmin
. (5.2)

For the investigated data, i and j range from 1 to 256. After normalization, the
normalized values lie between 0 and 1. If the variable at one height has only one
value, the normalized value is set to 0.

The normalized values are rounded to the first digit. That means the variables
take usually the values [0, 0.1, 0.2, . . . , 0.9, 1]. If the normalized values were
rounded to the second digit, which means 101 different values would be possible.
This would result in a low pass entropy spectrum which in most cases peaks at the
first scale. The reason is that the first filtering step generates the most new values.
Also the spectrum would exhibit an artificial random behavior. That means the
entropy spectrum would decrease very fast after the peak. If the bin size for low
and high pass would also be taken as 0.1, the resulting entropy spectrum would be
flat. Therefore, for the low and high pass filter a bin size of 0.01 is used.
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5.2 Responses to a Homogeneous Pattern

In the following, the entropy spectrum method is applied to an ideal experiment
representing the response of temperature to a land-surface input, which consists
only of bare soil. Figures 5.1 (a) - (e) show the temperature at the surface and in
3, 36, 117 and 561 m height. Figures 5.1 (f) - (j) show the corresponding entropy
spectra. The temperature fields are obtained after a spin-up time of 30 minutes.
This is done to assure that turbulence is fully developed. The development of
larger structures from the bottom to the top of the domain are distinct. From
the shape of the entropy spectrum, a dominant scale between 30 ≤ λ < 60 m
near the surface is estimated. The shape of the high pass entropy, in particular
its fast decrease, shows that the pattern of the normalized temperature has a more
random distribution near the surface than in higher layers. The dominant scale
increases to a range of 60 ≤ λ < 120 m at 36 and 177 m height. At 561 m
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Figure 5.1: (a) - (e) Normalized temperature patterns for the bare soil land-use
(experiment (a)) at the surface and in the heights of the 3, 36, 117 and 561 m at
12.30 UTC. (f) - (j) show the corresponding entropy spectra.

height, the dominant scale increases further to a range of 120 ≤ λ < 240 m.
These dominant scales cannot be obtained visually from the temperature fields in
Figures 5.1 (a) - (e) alone. The possibility to identify the dominant scale is a clear
advantage of the entropy spectrum.

The water vapor for the same bare soil experiment is shown in Figure 5.2 (a) - (e)
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Figure 5.2: (a) - (e) Normalized water-vapor-mixing-ratio structures for the bare
soil land use at the surface and in the heights of the 3, 36, 117 and 561 m. (f) - (j)
show the corresponding entropy spectra.

for the patterns and (f) - (j) the corresponding entropy spectra in the same heights
as for Figure 5.1. The patterns of water vapor look similar to those of temperature.
Especially at 3 m height, the pattern shows a random behavior. However, in 36
and 117 m bigger structures than in the same heights for the temperature field can
be seen. At 561 m, larger structures dominate, but the variations are not as large
as for the temperature at the same height. These large structures at 561 m can also
be seen by eye and are confirmed by the entropy spectrum. That means that the
entropy spectrum can reproduce the impression of the typical structure size of a
pattern as it is seen by the human eye. However, the judgement by eye can now be
exchanged with an analytical procedure which is able to quantify patterns. At 3 m
height, the entropy spectrum decreases fast after a filtering scale of 60 m. This is
usually an indicator for a random behavior. In all levels exhibited in Figure 5.2,
with the exception of 561 m, a clear maximum of the low pass filter entropy at the
60 m scale can be seen. This is also true for the temperature field. However, for
the water vapor the maximum is more pronounced. A trend to larger structures
with increasing height is discernible from the entropy spectra of the water vapor,
where the position of the low pass entropy maximum at 561 m height, lies at the
240 m scale. The difference to the temperature is that there is an intersection be-
tween the low pass entropy and the high pass entropy, which is an indicator for
correlations. This intersection occurs for temperature only at the 561 m height.
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5.3. Instantaneous Responses

5.3 Instantaneous Responses

In this section, the results of the entropy analysis of the nine numerical experi-
ments (explained in Section 4.3) for the instantaneous model outputs of temper-
ature, water vapor, sensible and latent heat flux are presented. Figure 5.3 shows
the entropy normalized by the entropy at the surface for the instantaneous val-
ues of temperature Θ, water vapor q, sensible H and latent heat fluxes LE at 13
UTC. From the blue line in Figure 5.3 it can be seen that for the instantaneous
values of temperature, the corresponding entropies show oscillations in the first
50 m. Between 50 m and 200 m, the entropies show a small increase or decrease,
depending on the land use input. At approximately 200 m the entropies begin
to increase until a maximum is reached. The maxima of the entropies occur at
similar heights for all experiments. That means that the height of the maximum

Figure 5.3: (a) - (i) Entropies normalized by the entropies at the surface as a
function of height for the instantaneous values of temperature Θ, water vapor q,
sensible heat flux H and latent heat flux LE at 13 UTC for the land use inputs of
Figure 4.3.
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is nearly independent from the underlying land use. The positions of the maxima
are 364 m for (a), (d), (g) and (h); 339 m for (b), (e) and (f); and 388 m for (c)
and (i). The heights of the maxima may not have the accuracy of 1 m, since the
difference between two vertical levels are 24.65 m for levels above 90 m height.
In addition, for experiment (f) the maximum is difficult to obtain since the entropy
of (f) is nearly constant between 339 m and 364 m.

The increase of entropy could be an indicator that above 200 m, the atmosphere
begins to form an Eigen-turbulence-pattern through self-organization and the in-
fluence of the land surface vanishes. In this case, the formation of the Eigen-
turbulence-patterns begins at 200 m height until it reaches its maximum informa-
tion content at the heights of the position of the peak in the entropy spectrum.
After that, the information content decreases with increasing height.

Even though the general shapes of the blue curves of Figure 5.3 are similar, their
differences are distinct. The degree of how strong the maximum entropy decreases
with height at high levels differs for each experiment. The entropy of experiments
(e) and (f), which are the Haar filtered cases, have the most features in common.
The main difference is that the edges of (f) look rougher than the ones in (e). The
entropy of (a), (c), (d) and (g) have a similar shape. That means that the response
of the atmosphere with respect to temperature is similar for a constant land use
input as in experiment (a) for the original land use input in experiment (d) and for
a random input with structure sizes of 15 m as in experiment (c) or 120 m as is
experiment (g).

Since in experiment (a) the whole surface has bare soil as land use, the maxi-
mum entropy spectrum of (a) can be interpreted as the response of the atmosphere
to a homogeneous case. The peak of the maximum entropy is clearly visible. As
the surface input is homogeneous, the gain of information at higher levels leads
to the conclusion that this gain is a self-organization effect, which is nearly inde-
pendent of the surface for heights above 364 m. This assertion is supported by the
fact that the spectra of the other experiments peak at nearly the same height as in
experiment (a). If the entropy of the other experiments would peak in at different
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heights compared to experiment (a), the gain of information could not be seen as
independent from the land surface. In the experiments (c), (g), (h) and (i), nearly
all spatial correlation is erased. This means the entropy spectra are those obtained
from a random input. For (c), (g), (h) and (i) it can be seen that the increase and
decrease of entropy is not so profound.

For water vapor q (green curves in Figure 5.3) all experiments look even more
similar than the entropy spectra of temperature. After a decrease of entropy in
the first 30 m above the surface, the entropies increase nearly linearly with height.
The heights of the maxima are 339 m for the spectra of experiments (a), (b), (d)
and (h); 388 m for (c); 314 m for (e), (f) and (g); and 290 m for (i). As for tem-
perature, these heights may not have the accuracy of 1 m. After the maxima, the
entropies decrease faster for (a) - (f) compared to (g) - (i). At 462 m, the entropy
spectra of experiments (a), (b) and (f) show a local minimum. For (d) and (e) the
entropy spectrum shows a plateau. The height of the minimum is 487 m for (h).
The entropy spectra of experiments (g) and (i) do not show any special feature in
the vicinity of these heights. Therefore, it can be concluded from the results, that
for the instantaneous values of water vapor, the land surface is not an important
factor for the information content at higher levels.

The entropy profiles of the sensible heat flux H (red curve in Figure 5.3) show
much more variations than the corresponding ones for temperature and water va-
por. For the sensible heat flux the entropy decrease in the first 20 m above surface.
The entropy of experiment (b), (c), (e) (g) and (f) show some oscillations in this
height, while the entropy of experiments (a), (d) and (h) decrease smoothly. It is
difficult to obtain insights from these spectra, since their shape is dominated by
oscillations. However, maxima can be detected at 364 m for (a), (d) and (f); 388
m for (b) and (h); 314 m for (c) and (g); 339 for (e); and 413 m for (i). Another
difference to temperature and water vapor is that the entropy for the sensible heat
flux is below 1 for nearly all heights. That means that information at the surface
has it maximum value and due to the atmospheric motion the information at higher
levels is destroyed.
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The entropy of the latent heat flux LE (cyan curve in Figure 5.3) exhibit simi-
lar variations as that of the sensible heat flux. However, for latent heat flux there
are significant differences in the entropy between the different experiments. After
oscillations in the first 100 m above surface, the entropy spectra of experiment (a)
and (c) are smooth, with an increasing entropy up to a maximum of 314 m. The
entropy of experiment (b) shows three local maxima: the first at 17 m, the second
at 142 m and the third at 364 m. The position of the maxima for the experiments
(d) - (i) are 364 m for (d); 166 m for (e) and (f); 290 m for (g); 339 m for (h);
and 92 m for (i). That means that for the instantaneous values of latent heat, the
land use is important, since maxima of entropy has some correspondence with the
underlying land use input. However, it is difficult to find a relationship between
the heights of the maxima and the dominant scale of the underlying land use input.

The results show that for the instantaneous values of the model output it is dif-
ficult to relate the entropy spectrum to the underlying land use input. Therefore,
the entropy spectrum is applied to temporal averaged parameters.

5.4 Temporally Averaged Responses

In the following, the results of the entropy analysis of the nine numerical exper-
iments for the temporally averaged parameters are shown. Figure 5.4 shows the
entropy normalized by that at the surface for temperature Θ, water vapor q, sen-
sible H and latent LE heat fluxes averaged over a time period from 1300 - 1330
UTC as a function of height. Figure 5.4 illustrates the differences and similari-
ties between the entropy profiles of temperature, water vapor, sensible and latent
heat flux. The entropy spectra for all experiments, except the entropy spectrum
of latent heat flux LE of experiment (b), show a similar behavior. That means
as for the instantaneous parameters, it is difficult to the see the influence of the
underlying land surface and when this influence can be neglected. However, some
insights can be found. Therefore, in the following a detailed description of the
similarities and differences between the entropy spectra for the different parame-
ters and experiments are shown. From that some conclusions are obtained.
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Figure 5.4: Entropy normalized by that at the surface for temperature Θ (blue),
the water vapor q (green), sensible H (red) and latent LE (cyan) heat fluxes aver-
aged over a time period from 1300 - 1330 UTC for all nine numerical experiments
as a function of height.

From Figure 5.4 it can be seen that entropy profiles for temperature have a sim-
ilar shape for experiments (a) and (c), which are the constant land use and the
randomly arranged land use patterns with 15 m structure size. This is reasonable
since it shows that temperature in the atmosphere responses to a homogeneous
land use in a similar way as to a land use with very small structures. For (a) and
(c) the entropy values do not exceed 1.2. This implies that the information content
at higher levels is similar to that at the surface. The entropy profiles of experi-
ments (b), (d), (e), (f), (g) and (h) show a decrease of entropy in the first meters
above the surface. At approximately 30 to 40 m, a local minimum is reached.
After this minimum the entropy is increasing to local maximum is reached. The
heights of these maxima are not very profound for most of the experiments. They
are approximately at the heights of 70 m for experiment (a); 92 m for experiments
(b) and (e); 117 m for experiment (c); 70 m for experiment (d); 54 m for experi-

73



5. Results

ment (f); 240 m for experiments (g) and (h); and 314 m for experiments (i). The
position of the second minimum for the normalized entropy lies in the interval
between 290 and 364 m. The entropy spectra of show a second maximum at ap-
proximately 400 m for experiments (e) and (f). These approximate heights can
be interpreted as the heights were the influence of the land-surface heterogeneity
begins to become less important.

The profiles that have the most similar shape are the spectra of the random struc-
ture with 120 m structure size in experiment (g) and the random structure with a
structure size of 240 m in experiment (h). This can be explained as follows. From
Table 4.3 it can be seen that the entropies of temperature at the surface for exper-
iments (a), (g) and (h) are similar. That means that at the surface the temperature
has a similar PDF for all three experiments. The similarity between these three
entropy spectra means that similar PDF of temperature at the surface is important.
In other words, if the information of temperature at the surface is similar, then the
responses of temperature in higher levels are similar. An exception is if the land
surface is constant, as in experiment (a). The reason for that is, even though the
PDF of temperature is similar to that of (g) and (h), the response of the atmosphere
is determined more by the constant land use pattern. The land use patterns of ex-
periments (g) and (h) are similar in terms of their correlation: Both are randomly
arranged, which means that most correlations are destroyed.

From Figure 5.4 it can be seen that the shape of the spectrum of the original land
use pattern in experiment (d) has more similarities with the spectra of the random
patterns in experiments (g) and (h) than with experiments (e) and (f). The under-
lying land use inputs of experiments (e) and (f) are the level 1 and level 2 Haar
wavelet filtered experiments. Therefore, it is expected that the entropy spectra of
experiments (d), (e) and (f) should show more similarities than (d) with (g) and
(h). This can be explained as follows. Since the PDF of (d) is more similar to that
of (g) and (h) than to the PDF of experiments (e) and (f), it can be concluded that
for the response of the temperature the PDF is more important than the arrange-
ment of the underlying land use. Otherwise, the entropy spectra of experiment (d)
with (e) and (f) would have more features in common. The construction of the
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Figure 5.5: Scale of the maximum entropy Smax of the temporal average of tem-
perature Θ between 13.00 - 13.30 UTC as a function of height. The grey area
shows the scale of the maximum low pass entropy. The blue area shows the scale
of the maximum high pass entropy.

land use patterns (g) and (h) through the Haar wavelet transformation is that the
resolution decreases by a factor of two from (d) to (e) and by a factor of 4 from
(d) to (f). This decrease in resolution is not perfect, since the transformation is
applied to albedo values and not to the land use itself. Since the entropy spec-
tra of experiments (e) and (f) look similar it can be concluded that this change
of resolution has a minor effect on the response of temperature. This argument is
supported by the similarities of the entropy spectra (g) and (h), where the structure
size increases by a factor of two from 120 m to 240 m. That a very fine or a very
coarse resolution has an effect on the response of the temperature can be seen by
the fact that the entropy spectra of experiment (d) is not strongly related to the
entropy spectra of experiments (e) and (f). In addition, for the coarse resolution of
experiment (i), the response is different from that of experiments (g) and (h). The
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effect of the different resolutions is discussed in more detail in Section 5.5. The
entropy spectrum of experiment (b), which is a forest patch surrounded by bare
soil, differs strongly from all other entropy spectra. This is due to the fact that
the land surface pattern of experiment (b) is very different to that of the others.
The reason why it is not totally different from the others lies in the fact that the
PDF of the temperature at the surface is similar to that of (a), (d), (g) and (h). The
spectrum of the experiment (i) is also different from the others, since firstly the
land use pattern has a large structure size of 480 m and secondly the borders of
the structures are shifted compared to experiments (g) and (h).

In order to find a relationship between the dominant scale of the model output
and the normalized entropy, the maximum of the low and high pass entropy at
each height is computed. The scale of maximum entropy is the scale on which
the maximum entropy occurs. For example, the scale of the maximum entropy
of spectrum of Figure 4.2 (d) is the 120 m scale. As explained in Section 4.1 the
scale on which the maximum low and high pass entropy occurs is connected to
the dominant scale of the pattern. Figure 5.5 shows the scale of the maximum of
the low pass entropy (grey area) and of the high pass (blue area) as a function of
height. From Figure 5.5 it can be seen that for the entropy spectra of experiments
(a) and (c), the position of the maximum of the low pass entropy increases after
117 m height and decreases after 216 m height. In this interval, the position of
the entropy remains constant at the 120 m scale. This interval of the constant low
pass occurs for all of the nine numerical experiments performed in the present
study. However, for experiments (d), (e) and (h), this plateau is interrupted. From
Figure 5.5 it can be seen that if the scale of the maximum low pass entropy does
not change, the entropy curve roughly follows the change of the scale of the high
pass entropy. This can be seen for example in the entropy spectrum of experiment
(d) where, after 240 m height, the position of the maximum high pass entropy
decreases from 480 to 240 m. At 413 m height, the scale of the maximum high
pass entropy increases from 240 to 480 m. The entropy mimics roughly this be-
havior. A similar behavior can be seen in entropy spectrum of experiments (e)
between 216 and 388 m height, as well as in the entropy spectrum of experiment
(f) between 216 and 364 m height. However, in order to certain the hypothesis of
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Figure 5.6: Scale of the maximum entropy Smax of the temporal average of water
vapor q between 13.00 - 13.30 UTC. The grey area shows the scale of the maxi-
mum low pass entropy. The blue area shows the scale of the maximum high pass
entropy.

a direct connection between the scale of the maximum high pass entropy and the
change of normalized entropy, more entropy spectra need to be investigated. In
addition, for some entropy spectra, for example the entropy spectrum of experi-
ment (h) between 43 and 92 m height, the change of the scale of the maximum
high pass entropy does not lead to significant change of normalized entropy. The
scale of the high pass entropy maximum shows more variations than the low pass
entropy maximum for experiments (d) - (h). Especially for experiments (e) and
(f), the oscillations of the scale of maximum high pass entropy are stronger than
for other experiments. A general tendency is that the position of the high pass
entropy maximum increases in the first 50 m above surface. It stays constant in
heights of 100 to 300 m above ground and decreases after approximately 300 m
height. In addition, it can be seen that for larger resolutions of the underlying
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land surface input, the high pass entropy maximum shows more oscillations. This
can be seen by comparing experiment (d) with (e) and (f); and (c) with (g) and
(h), respectively. However, if the resolution becomes too coarse or the structures
become too large, the variations in the high pass entropy maximum decrease. For
example, for experiments (b) and (i), the variations in the high pass entropy max-
imum are not well pronounced.

The spectra of entropy for water vapor q look more similar for all nine numer-
ical experiments performed in the present thesis, than the spectra of the entropies
of temperature Θ shown above. It can be seen from Figure 5.4 that the spectra do
not show a minimum in the same height as the entropy spectra of the temperature.
After 15 m height, the entropies for experiments (d) - (h) increase with increasing
height. Below 15 m height these entropy spectra show a global minimum. The
minimum is connected to an increase in the scale of the maximum low pass en-
tropy shown in Figure 5.6. The similarities between the different entropy spectra
are reflected by the approximately constant scales of the low and high pass entropy
maxima. For the water vapor these scales do not change with height for (d) - (f)
and (i) after 15 m height. For all of the entropy spectra the normalized entropies
show a maximum approximately 400 m height. The maxima are approximately
independent from the land-surface pattern. For experiments (a), (c) and (i) the
entropy stays in essence constant. For (b) the entropy show a local maximum at
17 m height. The conclusion is that for a homogeneous (a) and a random surface
(c) as well as a land-surface pattern with large structures, the response of water
vapor is similar. Also for structures with a similar information content, but differ-
ent spatial arrangement the responses are similar. For a land-surface pattern with
strong contrast and a very different information content, the response of water va-
por in lower heights is completely different. However in levels higher than 70 m
the response of water vapor is similar. Figure 5.6 shows the scales of maximum
low- and high pass entropy. These scales do not change very much with height.
This leads to the conclusion that if the scales of maximum low- and high pass
entropy do not change very much, then the corresponding entropy spectrum does
not show many oscillations.
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Figure 5.7: Scale of the maximum entropy Smax of the temporal average of the
sensible heat flux H between 13.00 - 13.30 UTC as a function of height. The grey
area shows the scale of the maximum low pass entropy. The blue area shows the
scale of the maximum high pass entropy.

The red curve in Figure 5.4 shows the entropy spectra of the sensible heat flux
H as a function of height. These spectra show the most variations compared to
the entropy spectra of temperature and water vapor. The entropy of sensible heat
flux gradually decreases with height. In addition, it can be seen that the entropy is
below 1 for all heights above the surface. That means the information at the sur-
face is maximal. The spectrum for experiment (a) is approximately constant. The
entropy spectrum of experiment (b) is also nearly constant, but there is a trend to
lower entropies at higher levels. The entropy spectra of experiments (c), (h) and
(i) show a similar decrease of entropy. The entropy spectra of experiments (d) -
(f) have some features in common: Firstly all show oscillations at lower heights,
secondly the plateau between 60 m and 260 m height and thirdly a decrease of
entropy in levels above 260 m. This leads to the conclusion that the height of 260
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m is the height where the information of the underlying land surface is negligible.
By taking into account the scale of maximum low- and high pass entropy shown
in Figure 5.7, it can be seen that the decrease of normalized entropy corresponds
to an increase of the scale of low- and high pass entropy. However, this behavior
is only true for experiments (d) - (f). The plateau and the decrease of entropy can
also be seen in the entropy spectrum of experiment (g). However, spectrum (g)
differs from (d) in the occurrence of a local minimum at 92 m. From Figure 5.7 it
can be seen that the minimum at 92 m can be related to the increase of the low and
high pass maxima at the same height. In addition, it can be seen that an increase
in scales of both low and high pass entropy lead to a minimum of normalized en-
tropy. Figure 5.7 also shows that the scales of the maximum low and high pass
entropy have more variations than for the other parameters. This can be a hint,
that for the sensible heat flux, the change in the dominant scale of the sensible
heat flux pattern, leads to oscillating entropy.

The entropy spectra of latent heat flux LE are shown as the cyan curves in Figure
5.4. From the Figure it can be seen that all entropy spectra, except for the entropy
spectrum of experiment (b), do not show as much variations as the sensible heat
flux H (cf. red curve in Figure 5.4). Although for most of experiments the en-
tropy maxima are not very profound, the following heights can be obtained. The
heights are 92 m for experiments (a) and (e); 339 m for experiment (c); 290 m for
experiment (d), 412 m for experiment (f); 216 m for experiments (g) and (h); and
142 m for experiment (h). For experiment (b) it is difficult to find the maximum.
The scales of the maximum low and high pass entropy are shown in Figure 5.8.
For (b) the position of the high pass entropy maximum oscillate. However, the
oscillating behavior of entropy cannot be explained by the change of the scale of
maximum entropy. Since the contrast between the land use values of experiment
(b) is much higher than for the other eight experiments, and since the effect that
the latent heat flux is related to the vertical velocity and the water vapor, the oscil-
lation can be explained by the strong circulations induced by the strong contrast.
The connection between water vapor and latent heat flux leads to a smoother en-
tropy spectrum. However, the entropy spectra of water vapor and the latent heat
flux are not identical. As for sensible heat flux, the entropy is lower than 1 above
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Figure 5.8: Scale of the maximum entropy Smax of the temporal average of the
latent heat flux LE between 13.00 - 13.30 UTC as a function of height. The grey
area shows the scale of the maximum low pass entropy. The blue area shows the
scale of the maximum high pass entropy.

the surface for most of the experiments. This means that the information content
at the surface is maximal. Only for the entropy spectrum of experiment (b) as
well as the entropy spectrum of experiment (c) between 265 and 413 m and the
entropy spectrum of experiment (i) between 43 and 314 m the entropy exceed 1.
From Figure 5.8 which shows the scale of the entropy maxima it is difficult to find
a connection between the change of scale and the shape of the normalized entropy
curve.

5.5 The Influence of Resolution

The question how the resolution influences the entropy spectrum of the averaged
values of temperature, water vapor, sensible and latent heat fluxes is investigated
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in this section. Figure 5.9 shows the normalized entropy spectrum of temperature
(Figure 5.9 (a)), water vapor (Figure 5.9 (b)), sensible heat flux (Figure 5.9 (c))
and latent heat flux (Figure 5.9 (d)), for the experiments where the underlying land
use input is the original land use (blue line in Figure 5.9), the level 1 Haar wavelet
transformed land use input (green line in Figure 5.9) and the level 2 Haar wavelet
transformed land use input (red line in Figure 5.9). The resolution of the land use
input decreases by a factor of 2 from the original land use input to the level 1 Haar
wavelet transformed land use input and by a factor of 4 from the original land
use input to the level 2 Haar wavelet transformed land use input (cf. Section 4.3).
Therefore it is reasonable to compare the results for these three land use inputs in
more detail. From Figure 5.9 (a) it can be seen that the entropy profiles of temper-
ature looks similar for the three experiments, as discussed in Section 5.4. By now
going into more detail, it can be seen, that a decrease of resolution of the under-
lying land use input, leads to an increase of entropy of temperature. From Figure
5.9 (a) it can also be seen that this increase is larger comparing the entropy results
for the original land use input to the level 1 Haar wavelet transformed land use
input, than comparing the entropy of the level 1 Haar wavelet transformed land
use input to the level 2 Haar wavelet transformed land use input. In addition, the
second maximum at approximately 400 m height, of the entropy spectra of level 1
Haar wavelet transformed land use input and the level 2 Haar wavelet transformed
level 2 Haar wavelet transformed land use input is not visible in the entropy spec-
tra of the original land use input. That means that decreasing the resolution of the
land use input can lead to a different behavior in the entropy spectrum at higher
levels. That the entropy spectra of the level 1 Haar wavelet transformed and the
level 2 Haar wavelet transformed land use input have a more similar shape com-
pared to the entropy spectrum of the original land use input is not expected. From
Figure 4.3 is can be seen that for the level 1 Haar wavelet transformed land use
input (Figure 4.3 (e)) only small scale heterogeneities are removed. These hetero-
geneities are smaller than 30 m. For the level 2 Haar wavelet transformed land use
input (Figure 4.3 (f)) heterogeneities with sizes smaller than 60 m are removed.
From Figure 4.3 (f) it can be seen that for example the streets between the fields
are removed. It is expected that removing prominent features from the land use
pattern (in this case the streets between the field) should have more influence on
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Figure 5.9: Influence of resolution to correlated land use patterns. The land use
inputs are the original land use input (blue curve), the level 1 Haar wavelet trans-
formed land use input (green curve) and the level 2 Haar wavelet transformed land
use input (red curve) for the averaged values of (a) temperature (b) water vapor
(c) sensible heat flux and (d) latent heat flux.

the response of temperature than removing only smaller features of the land use.

As discussed in Section 5.4 the resolution of the land-use input does not have
a big influence on the behavior on the entropy spectrum of water vapor. However,
the trend that decreasing the resolution leads to an increase of entropy is apparent
in Figure 5.9 (b).

Figure 5.9 (c) shows the entropy spectra of sensible heat flux for the three land
use inputs. In contrast to the entropy spectra of temperature the decrease of reso-
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lution does not lead to an increase of entropy. From the figure it can be seen that
decreasing the resolution of the underlying land use input leads to more oscilla-
tions in the entropy spectrum. This behavior is not expected, since oscillations of
the entropy spectrum should be interpreted as more dynamics of the investigated
parameter. By removing small scale heterogeneities of the land use input, it is
expected that the sensible heat flux should be less dynamic. The interpretation
of a more oscillating entropy spectrum is that the small scale heterogeneities are
not important for the averaged sensible heat flux. In this case the heterogeneities
smaller than 30 m do not lead to more variations of the averaged sensible heat flux.
However, as explained in Section 5.4 the height at which the influence of the land
use pattern is negligible is not affected by removing small-scale heterogeneities
form the land use pattern.

Figure 5.9 (d) shows the entropy spectra of the averaged latent heat flux of the
three land use inputs. It can be seen that the values of the entropy are near to each
other. However, decreasing the resolution leads to a different behavior of the en-
tropy spectra. After approximately 100 m height, the entropy minima and maxima
of the latent heat flux for the original land use input lie in different heights than
the entropy minima and maxima of the latent heat flux for the level 1 and level 2
Haar wavelet transformed land use input. That means for these three experiments
decreasing the resolution of the land surface input change the entropy spectrum.

The investigation of the resolution of the land surface input can be extended to
uncorrelated land use patterns. Figure 5.10 shows the entropy spectra of temper-
ature, water vapor, sensible and latent heat flux of the uncorrelated land surface
patterns with different structure sizes. These different structure sizes can be in-
terpreted as different resolutions. Figure 5.10 (a) shows the entropy spectra of
temperature. It can be seen that for uncorrelated structures, decreasing the struc-
ture size leads to different entropy spectra of temperature. Increasing the structure
size from 15 m to 120 leads to a decrease of entropy until approximately 350 m
height. A further increase of structure size leads to an increase of entropy.

For the entropy spectra of water vapor (Figure 5.10 (b)), the spectrum where the
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Figure 5.10: Influence of resolution to uncorrelated land use patterns. The land
use inputs are the random land use input with 15 m structure size (blue curve), the
random land use input with 120 m structure size (green curve), the random land
use input with 240 m structure size (red curve) and the random land use input with
480 m structure size (cyan curve) for the averaged values of (a) temperature (b)
water vapor (c) sensible heat flux and (d) latent heat flux.

underling land use pattern has the largest structure size show a significant different
behavior than the other three spectra. For them an increase of structure size leads
to an increase of entropy. The difference between the 15 m structure size and the
120 m is larger than the difference between the 120 m structure size and the 240
m structure size.

For the entropy spectra of the averaged sensible heat flux, shown in Figure 5.10
(c), it can be seen that increasing the structure sizes of uncorrelated structures
lead to different entropy spectra. In addition, for the 15 m structure size (blue
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5. Results

curve) and the 240 m structure size (red curve) it is not possible to find a height at
which the land surface is negligible. However for the 120 m structure size (green
curve) as well as the 480 m structure size (cyan curve), prominent heights at ap-
proximately 320 m and approximately 280 m height, respectively can be obtained.
Unfortunately, these heights cannot be related to the structure sizes. For the en-
tropy spectra of the averaged latent heat flux shown in Figure 5.10 (d), it can be
seen that structure sizes of 120 m and 240 m, lead to similar results. Increasing
the structure size from 15 m to 120 m lead to a decrease of entropy. Increasing
the structure size to 480 m, the entropy spectrum significantly changes its shape.

It has to be taken into account that due to the change of the resolution of the
underlying land use pattern, the PDF of the averaged parameters (cf. Table 4.3)
change. Therefore, the conclusions for the dependency of the entropy spectrum to
the resolution is not only an effect of the resolution, but moreover from the PDF
of the parameter at the surface.

5.6 Comparison to other Methods

In order to validate the results of the entropy spectrum method, it is compared to
the correlation coefficient function, R, and the centered root mean square error
difference, E ′. Together with the standard deviation, these are statistical param-
eters used in the Taylor diagram, explained in Section 3.1. Figure 5.11 shows an
example Taylor diagram for the values of temperature averaged between 1300 -
1330 UTC for experiment (d). It can be seen that by taking into account many lev-
els, the Taylor diagram is difficult to compare to the entropy spectrum. Therefore,
for validation of the entropy spectrum method, it is compared to the correlation
coefficient function R and to the centered root mean square error difference E ′.
Both the correlation coefficient function R and the centered root mean square er-
ror difference E ′ are measures for the structure aspect of heterogeneity, while the
entropy is a measure of the information aspect of heterogeneity. A comparison
between the three quantities will show if the structure aspect or the information
aspect is important for the response of the averaged values of temperature, water
vapor, sensible and latent heat flux. In the following the correlation coefficient
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Figure 5.11: Example Taylor diagram for temperature averaged from 1300 - 1330
UTC for the numerical experiment with the original land use as input for the first
70 m.
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function R is written as correlation and the centered root mean square error dif-
ference E ′ is written as root mean square (RMS). As examples, the comparison is
done for the constant land use input of experiment (a), the random land use input
of experiment (c) and the original land use of experiment (d).

Figure 5.12 shows the results for experiment (a), the constant land use pattern,
for the four parameters temperature, the water vapor, the sensible and latent heat
fluxes averaged over a time period from 1300 - 1330 UTC. From Figure 5.12 (b),
it can be seen that the correlation of the temperature, decreases fast with height in
the first 20 m above ground. After a local minimum and a small increase until a
height of 70 m, the correlation decreases slowly and reaches 0 at around 330 m.
This means that at this height the temperature pattern has nothing in common with
that at the surface. After 330 m, the correlation further decreases until it reaches a
value of -0.22 at 388 m height, which means the two patterns are slightly anti cor-
related. After this height the correlation remains approximately constant. Com-
paring the correlation to the RMS it can be seen that the RMS increases fast until a
height of 70 m. After that height, the RMS remains approximately constant, until
it reaches a turning point a 265 m height, after which the RMS increases. Two
local maxima are reached at 388 and 462 m height, respectively. It can be seen
that the RMS maximum occurs at the same height as the local minimum of the
correlation. The connection between correlation and RMS is as expected, since
they are related via Equation (3.3). Therefore, it is sufficient to compare the shape
of the RMS with the entropy, because the comparison of the correlation with the
entropy will show a corresponding behavior. The entropy for temperature shows
a similar behavior as the RMS. The entropy has a local maximum at 70 m. The
minimum of entropy is reached at 265 m height. In addition, there are two local
maxima at 388 and 462 m height. This is in good agreement with the prominent
points of the correlation and the RMS. This connection is not a priori apparent,
since the correlation as well as the RMS are measures of the structure aspect of
heterogeneity, while the entropy is a measure of the information aspect of hetero-
geneity.

For water vapor the correlation decreases slower with increasing height than the
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Figure 5.12: Comparison between correlation coefficient, the RMS and normal-
ized entropy for the atmospheric responses. (a) The land use input for the numer-
ical experiment. (b) The correlation coefficient function as a function of height
for the four parameters temperature, water vapor, sensible heat and latent heat. (c)
Centered root mean square error difference as a function of height for the same
parameters as in (b). (d) Entropy normalized by the entropy at the surface for the
same parameters as in (b).
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other three parameters. At 488 m height, the correlation has a value of 0.55. The
corresponding plot of the RMS (green curve in Figure 5.12) shows increasing val-
ues. It can be seen that the values of the correlation for water vapor is larger than
that for temperature. That means that the water vapor patterns in higher levels the
correlations with the pattern at the surface are stronger than for temperature. For
the RMS, the curve for temperature overpowers the curve for water vapor after
314 m height. The reason is that the absolute value of the RMS cannot tell how
much two structures have in common. The behavior of the entropy spectrum is
similar to that of RMS. For example there are two local maxima at 364 m and 462
m as well as a local minimum at 437 m, which corresponds to the features of E ′.
That means that for a constant land use the entropy method gives similar insights
of the response of water vapor than the RMS. Therefore, the response of water
vapor to a constant land use pattern can be described with a measure of structure
as well as with a measure of the information content.

For sensible heat flux the correlation decreases rapidly with increasing height.
After 11 m, the correlation is -0.23. Above that height, the correlation increases
slowly to a value near 0 at 488 m height. The plot of the RMS shows the corre-
sponding behavior. However, more fluctuations can be seen in the entropy spec-
trum. The entropy decreases rapidly from 1 to 0.69 at 14 m height. With increas-
ing height, the entropy spectrum shows several local minima and maxima. For
example, the maxima occur at heights of 92 m, 216 m and 364 m. These maxima
can also be seen in the spectrum of the RMS. This is also true for the minima at
54 m, 142 m, 290 m and 462 m height. The similarity seen between the RMS
and the entropy for sensible heat flux is also apparent for the entropy spectrum
of the latent heat flux. Some of the prominent features are the maximum at 92
m height and the minimum at 388 m height. That means as for water vapor, the
response of sensible and latent heat flux to a constant land use input can be either
described by quantities describing the structure as well with the entropy spectrum.

For numerical experiment (c), with the random land use input, it can be seen
from Figure 5.13 (b) that the correlations between the surface and the higher lev-
els decrease faster with height than for the numerical experiments (a) and (d) (the
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results for (d) are discussed below). For temperature, the correlation decreases
slower above 43 m height and stronger again above 339 m height. Only in the
height of 339 m the RMS shows a corresponding behavior as the entropy spec-
trum. They show both a local minimum at this height. The maximum of the RMS
at 117 m can also be found in the entropy spectrum. The minimum of the entropy
spectrum at 216 m height can also be found in the spectra of RMS. For water
vapor the local maxima at 364 m and 462 m height, as well as the minimum at
388 m height can also be found in both the entropy spectrum and in the plot of
the RMS. However, they are more difficult to obtain in the plot of the RMS. For
the sensible heat flux the correlation and the RMS do not show the features of the
entropy spectrum, which shows clear maxima and minima. The local minima in
the correlation for the latent heat flux at 11 m height can be seen in the maximum
of the RMS and in a minimum of entropy. However, the entropy maximum at 339
m height is not visible in the correlation plot and hard to obtain from the plot of
the RMS. That means for a random land use input, the response of temperature
and water vapor can be described with a quantity describing structure as well as
with a quantity describing information. However, for the response of sensible heat
flux, the information aspect reacts different, compared to the structure aspect. For
the response of latent heat flux, structure and information aspect lead to similar
results. However, the similarity is weaker than in the case of temperature and wa-
ter vapor.

The comparison for the numerical experiment (d), which the land use pattern is
taken from the real land-surface data, is shown in Figure 5.14. The comparison
between the correlation and the entropy is different than for experiment (a) with
the constant land use pattern as input (cf. Figure 5.12). Only for water vapor the
plots of the RMS and the normalized entropy correspond to each other. Both show
a maximum at 413 m. For the other parameters, Figure 5.14 (c) and (d) show simi-
larities as well as differences. For temperature, the entropy shows a first minimum
at 11 m height. Here the correlation still decreases and the RMS still increases.
At 54 m height both the RMS and the entropy have a local maximum. The global
entropy minimum at 314 m height is not very prominent in the spectrum of the
RMS. For the sensible heat flux, both the correlation as well as the RMS do not
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Figure 5.13: Comparison between correlation coefficient, RMS and entropy for
the atmospheric responses. (a) An arrangement, where the center of the domain
is forest surrounded by bare soil. (b) The correlation coefficient function as a
function of height for the four parameters temperature, water vapor, sensible heat
and latent heat. (c) Centered root mean square error difference as a function of
height for the same parameters as in (b). (d) Entropy normalized by the entropy
at the surface for the same parameters as in (b).
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Figure 5.14: Comparison between correlation coefficient, RMS and entropy for
the atmospheric responses. (a) The original land use data. (b) The correlation
coefficient function as a function of height for the four parameters temperature,
water vapor, sensible heat and latent heat. (c) Centered root mean square error
difference as a function of height for the same parameters as in (b). (d) Entropy
normalized by the entropy at the surface for the same parameters as in (b).
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show the features of the entropy spectrum: this exhibits a maximum at 265 m and
462 m height and a minimum at 388 m height. Only the second maximum can be
recognized in the correlation spectra at 462 m height. For the latent heat flux, the
correlation show fluctuations in the first 24 m above ground. This is also true for
the RMS and the entropy. However none of the two other methods can reproduce
the fluctuations of the latent heat flux entropy at higher levels. That means that for
a realistic land use input only for water vapor the quantities of the structure aspect
as well as the entropy show similar results. For temperature, sensible and latent
heat flux, the comparison shows that the with the entropy spectrum it is possible to
obtain insights about the dynamic responses. Only with this method it is possible
to find the height where the influence of the land surface to the response of the
sensible heat flux is negligible.
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6 Conclusion

The main goal of the present thesis is to propose a method to quantify land-
surface heterogeneity and to investigate the atmospheric responses to it. This
study is embedded in a bigger research program. As described in the introduction
the overall goal of the research program is to parametrize heterogeneous land-
surface processes in weather and climate models. The steps necessary to improve
the parametrizations include: (1) development of an LES model to obtain high-
resolution data; (2) development of suitable decompositions of land-surface het-
erogeneity; (3) quantification of land-surface heterogeneity; (4) investigation of
the propagation of land-surface heterogeneity in the atmospheric boundary layer;
(5) describing the heterogeneity with only a few parameters in order to reconstruct
land-surface heterogeneity; and (6) parametrization of land-surface heterogeneity
in weather and climate models. In the following it is summarized how these points
are dealt with in the present thesis and how this study has contributed to the im-
proved knowledge of each point.

In Chapter 2 the basic theory necessary for the understanding of the LES-ALM
(Shao et al. [2013]) is presented. LES-ALM is used to produce the high-resolution
data [Step (1)]. Step (2) is dealt with in the present thesis in some detail by ex-
plaining the wavelet transformation, which decomposes land-surface data into
low- and high-pass filtered parts, but keeps the prominent features of the het-
erogeneity unchanged. With this decomposition, a wavelet filtering scale is in-
troduced. This filtering scale is necessary for the quantification of the informa-
tion aspect of land-surface heterogeneity [Step (3)]. In Chapter 3 a review of
the methods, such as the Taylor diagram, variance, variogram, spectral and PDF
approaches, used for heterogeneity quantification is given. Many of the exist-
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ing methods are useful for studying land-surface heterogeneity. However, most of
them, for example, the variogram method, requires a large number of calculations,
since the variogram calculates the squared distance for each point at a specific lag
distance. Other methods such as the decomposition with the Fourier transforma-
tion are computationally cheaper, but the Fourier transformation does not preserve
the patterns on different scales.

Land-surface heterogeneities have four different aspects: structure, information
content, contrast and anisotropy. In the present thesis, the emphasis lies on the
information aspect of heterogeneity. In Chapter 3, the entropy as a quantitative
description of the information aspect of heterogeneity is discussed. By combining
the information entropy with the wavelet transformation, the entropy spectrum
is obtained. This method quantifies heterogeneity by measuring the information
of the land-surface patterns on different scales. It can also be used to describe
a pattern. In this context, a pattern is defined as the distribution of information
as a function of (wavelet) scale. The entropy spectrum overcomes the difficulty
of using the Shannon entropy as a single measure, i.e., it cannot distinguish the
different patterns which have the same PDF. Based on the entropy spectrum, the
dominant scale of a pattern can be defined (cf. Chapter 4).

The investigation of the propagation of land-surface heterogeneity (Step 4) is done
in Chapter 5 by analyzing the responses of the atmospheric variables to different
land-surface patterns in a series of numerical experiments using the LES-ALM.
The difference between the numerical experiments lies only in the land-surface
patterns used for the simulation. The land-use patterns tested include a homoge-
neous pattern, a pattern with only two land use types and a strong contrast between
them, four different random patterns with different structure sizes, one real land-
surface pattern, and wavelet filtered patterns. The simulation results of potential
temperature, water-vapor-mixing ratio, sensible and latent heat flux are examined
in considerable detail. The entropy spectrum analysis is applied to the instan-
taneous values and half-hourly averaged values of these variables. For all four
variables, the atmosphere at high levels is dominated by the Eigen-turbulence-
pattern. That means the influence from land-surface heterogeneity is destroyed by
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the atmospheric motion. For investigated patterns, the results show that the shape
of the entropy spectra depend more on the investigated variable than on the land-
surface heterogeneity. In the following the main findings of the entropy analysis
are summarized.

Although, the entropy spectra of potential temperature do not show a strong de-
pendency of the underlying land-use inputs, some relations between the land sur-
face and the behavior of potential temperature can be obtained. (i) The response
of potential temperature to a homogeneous surface is similar to that to a random
surface. (ii) For the instantaneous values, the entropy spectra show maxima be-
tween 340 - 388 m depending on the land surface. The maxima of the averaged
potential temperature are above 400 m for experiments (e) and (f). The interpreta-
tion is that the Eigen-turbulence-pattern begins to superimpose the influence from
the land-surface heterogeneity and it can be concluded that above these heights
the influence of the land-surface heterogeneity becomes less important. (iii) For
averaged potential temperature, the spatial distribution of the land use is more im-
portant than the structure size of uncorrelated land-use patterns. (iv) In addition,
the results show that the PDF of the averaged potential temperature at the surface
is more important than the correlations of the land-use patterns. That means, that
similar PDF of the averaged potential temperature at the surface leads to similar
responses of entropy spectrum of averaged potential temperature at higher levels.
(v) If the scales of the low-pass entropy maxima is constant, then the entropy spec-
trum roughly follows the change of the scales of the high-pass entropy maxima.
(vi) For correlated structures decreasing the resolution of the land-use input leads
to an increase of entropy. For uncorrelated patterns changing the structure size,
leads to different entropy spectra.

For the water-vapor-mixing ratio, the following results are obtained. (i) The
entropy spectra of the instantaneous water-vapor-mixing ratio show maxima be-
tween 290 - 388 m depending on the land use. Above this height, it can be con-
cluded that the influence of the land-surface heterogeneity begin to become less
important. For the averaged water-vapor-mixing ratio, these height is at approxi-
mately 400 m nearly independent from the land-use input. (ii) The entropy spectra
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of the averaged water-vapor-mixing ratio reacts in a similar way to a homogeneous
land-use pattern, a random land-use pattern and land-use patterns with large struc-
tures. (iii) It can also be seen that the entropy spectra of the averaged water-vapor-
mixing ratio show a similar behavior for land-use patterns with similar PDF but
different spatial arrangements. (iv) If the scales of low- and high-pass entropy
maxima stay nearly constant then the corresponding entropy spectrum is approxi-
mately constant. (v) For correlated land-use patterns, changing the structure sizes
of the underlying land-use pattern has no significant effect on the entropy spec-
trum of the averaged water-vapor-mixing ratio. For uncorrelated land use patterns
with not to large structure sizes, an increase of structure size leads to an increase
of entropy.

For the entropy spectra of the sensible heat flux some of the results can be sum-
marized as follows. (i) The entropy spectra of the instantaneous sensible heat
flux show maxima between 314 - 413 m depending on the land-use pattern. For
the entropy spectra of the averaged sensible heat flux maxima can be obtain at
approximately 260 m height, for experiments with realistic land-surface pattern
(experiments (d),(e) and (f)). Above this height, the influence of the land-surface
heterogeneity begins to become less important. (ii) The shapes of the entropy
spectra of the averaged sensible heat flux to the homogeneous land-use experiment
and the response to the small-scale random land use experiment are different. (iii)
The entropy as function of height shows oscillations. That means for the sensi-
ble heat flux, the results from heights which are close together vary more than in
the case of potential temperature and water-vapor-mixing-ratio. (iv) Decreasing
the resolution of the underlying land-use input, leads to more oscillations in the
entropy spectrum. The comparison of different resolutions leads to the conclu-
sion that for the studied patterns, small-scale heterogeneities do not lead to more
dynamics in the entropy spectrum of the averaged sensible heat flux. The results
show, that increasing the structure size of uncorrelated patterns lead to different
entropy spectra. (v) For uncorrelated land-use inputs it is more difficult to obtain
a height above that the influence of the land surface is negligible.

For the entropy spectra of the latent heat flux the following conclusions can be
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obtained. (i) The height of the entropy maximum is difficult to obtain, since the
entropy spectra of the instantaneous values of the latent heat flux show many os-
cillations. Therefore, the maxima of the entropy spectra lie in relatively large
range between 92 - 364 m depending on the land-use pattern. The maxima of the
entropy spectra of the averaged latent heat flux lie in a range between 92 - 412 m.
However, for experiment (b) it is difficult to find a maximum and for some ex-
periments the maxima are not very profound. (ii) Changing the resolution of the
correlated land-use inputs, changes the entropy spectra.

The results of the comparison of the entropy to statistical methods, show that the
response of the averaged water-vapor-mixing ratio, sensible and latent heat flux to
a homogeneous land use input can be equally described with a measure of struc-
ture as well with a measure of information content. For a random land use input,
the response of the averaged potential temperature and the averaged water-vapor-
mixing ratio can be described with a quantity describing structure as well as with
a quantity describing information. However, for the response of averaged sensible
heat flux, the information aspect reacts different, compared to the structure aspect.
For the response of the averaged latent heat flux, structure and information aspect
leads to similar results. However, the similarity is weaker than in the case of the
averaged potential temperature and the averaged water-vapor-mixing ratio. For a
realistic land use input only for the averaged water-vapor-mixing ratio the quanti-
ties of the structure aspect as well as the entropy show similar results. The results
of the averaged values of potential temperature, sensible and latent heat fluxes
show, that with the entropy spectrum method it is possible to obtain insights about
the dynamic responses. Only with this method, it is possible to find the height
where the influence of the land surface to the response of the atmospheric vari-
ables is negligible.

For the analyzed data, the response of the parameters to the original land-use
input with 15 m resolution is different from that of the level one Haar wavelet
filtered land-use input. The level one Haar wavelet filtered land-use input corre-
sponds to a 30 m resolution. However, the results from the 30 m and the 60 m
resolution (level 2 Haar wavelet filtered land-use input) are similar. The entropy
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spectrum method shows that the atmospheric responses of potential temperature
and water-vapor-mixing-ratio are similar for the homogeneous experiment and for
the random experiment with 15 m structure size.

In this research, the Haar wavelet is used. The investigation with entropy spec-
trum could be done with other wavelets. However, by using different wavelets,
the same findings should be obtained, since the physical behavior of a system is
independent of the analyzing method. The investigation presented in this thesis
is not sufficiently comprehensive, since only nine different land use inputs and
four different parameters were investigated. The study could be extended to other
land-use patterns, other model resolutions, other models and other atmospheric
parameters.

Coming back to the Steps (5) and (6), the reconstruction and the parametrization,
the entropy spectrum can be used as a parameter that describes the information as-
pect of land-surface heterogeneity. However, other parameters are needed in order
to reconstruct the pattern from the spectrum. To determine these missing parame-
ters and to develop a reconstruction method that keeps all important features of the
heterogeneity, are the next logical steps for the research. This parameter should
tell if a specific atmospheric parameter is sensitive to a specific length scale of
the land-surface heterogeneity. It should also indicate, whether it is necessary to
simulate the system with a very high resolution. For Step (6), the heterogene-
ity parameter found in step (5) needs to be implemented into the model in order
to find the optimal resolution for modeling of a specific heterogeneity (Step 6).
However, Step (5) has to be finished before the parametrization of land surface
heterogeneities can be improved in weather and climate models.
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