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Abstract

Understanding the dynamics of blood cells is a crucial element to discover
biological mechanisms, to develop new efficient drugs, design sophisticated
microfluidic devices, for diagnostics. In this work, we focus on the dynamics of
red blood cells in microvascular flow.
Microvascular blood flow resistance has a strong impact on cardiovascular

function and tissue perfusion. The flow resistance in microcirculation is governed
by flow behavior of blood through a complex network of vessels, where the
distribution of red blood cells across vessel cross-sections may be significantly
distorted at vessel bifurcations and junctions.
We investigate the development of blood flow and its resistance starting

from a dispersed configuration of red blood cells in simulations for different
hematocrits, flow rates, vessel diameters, and aggregation interactions between
red blood cells. Initially dispersed red blood cells migrate toward the vessel
center leading to the formation of a cell-free layer near the wall and to a
decrease of the flow resistance. The development of cell-free layer appears to be
nearly universal when scaled with a characteristic shear rate of the flow, which
allows an estimation of the length of a vessel required for full flow development,
lc ≈ 25D, with vessel diameter D. Thus, the potential effect of red blood cell
dispersion at vessel bifurcations and junctions on the flow resistance may be
significant in vessels which are shorter or comparable to the length lc.
The presence of aggregation interactions between red blood cells lead in

general to a reduction of blood flow resistance. The development of the cell-
free layer thickness looks similar for both cases with and without aggregation
interactions. Although, attractive interactions result in a larger cell-free layer
plateau values. However, because the aggregation forces are short-ranged at
high enough shear rates (¯̇γ & 50 s−1) aggregation of red blood cells does not
bring a significant change to the blood flow properties.
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Also, we develop a simple theoretical model which is able to describe the
converged cell-free-layer thickness with respect to flow rate assuming steady-
state flow. The model is based on the balance between a lift force on red blood
cells due to cell-wall hydrodynamic interactions and shear-induced effective
pressure due to cell-cell interactions in flow. We expect that these results can
also be used to better understand the flow behavior of other suspensions of
deformable particles such as vesicles, capsules, and cells.

Finally, we investigate segregation phenomena in blood as a two-component
suspension under Poiseuille flow, consisting of red blood cells and target cells.
The spatial distribution of particles in blood flow is very important. For
example, in case of nanoparticle drug delivery, the particles need to come closer
to microvessel walls, in order to adhere and bring the drug to a target position
within the microvasculature. Here we consider that segregation can be described
as a competition between shear-induced diffusion and the lift force that pushes
every soft particle in a flow away from the wall. In order to investigate the
segregation, on one hand, we have 2D DPD simulations of red blood cells and
target cell of different sizes, on the other hand the Fokker-Planck equation for
steady state. For the equation we measure force profile, particle distribution
and diffusion constant across the channel. We compare simulation results with
those from the Fokker-Planck equation and find a very good correspondence
between the two approaches. Moreover, we investigate the diffusion behavior of
target particles for different hematocrit values and shear rates. Our simulation
results indicate that diffusion constant increases with increasing hematocrit
and depends linearly on shear rate.

The third part of the study describes development of a simulation model of
complex vascular geometries. The development of the model is important to
reproduce vascular systems of small pieces of tissues which might be gotten
from MRI or microscope images.
The simulation model of the complex vascular systems might be divided

into three parts: modeling the geometry, developing in- and outflow boundary
conditions, and simulation domain decomposition for an efficient computation.

We have found that for the in- and outflow boundary conditions it is better
to use the SDPD fluid than DPD one because of the density fluctuations along
the channel of the latter. During the flow in a straight channel, it is difficult to
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control the density of the DPD fluid. However, the SDPD fluid has not that
shortcoming even in more complex channels with many branches and in- and
outflows because the force acting on particles is calculated also depending on
the local density of the fluid.
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Kurzzusammenfassung

Die Dynamik der Bewegung von Zellen im Blut zu verstehen ist ein wesentlicher
Schritt auf dem Weg zu neuen Wirkstoffen, zu einer besseren Diagnostik von
Krankheiten und hat Anwendung im Bereich der Mikrofluidik. Das Hauptau-
genmerk in dieser Arbeit liegt dabei auf der Dynamik der roten Blutkörperchen
in mikrovaskulärem Fluss.
Der mikrovaskuläre Strömungswiderstand hat einen ausgeprägten Einfluss

auf die Funktionalität des kardiovaskulären Systems und die Durchblutung des
Gewebes. Dieser Strömungswiderstand in der Mikrozirkulation wird durch das
Fließverhalten des Blutes durch ein komplexes Adernetzwerk bestimmt. Dabei
kann sich die Verteilung roter Blutkörperchen entlang des Querschnitts einer
Ader an Gabelungen und Kreuzungen wesentlich ändern.

In dieser Arbeit untersuchen wir die Entwicklung von Blutfluss und des
zugehörigen Strömungswiderstands in Simulationen von Dispersionen roter
Blutkörperchen in Abhängigkeit von unterschiedlichen Parametern wie Häma-
tokrit, Flussrate, Aderdurchmesser und Aggregationswechselwirkung zwischen
roten Blutkörperchen . Die anfn̈glich gleichverteilte Dispersion roter Blutkör-
perchen bewegt sich zum Zentrum der Ader hin, wodurch sich eine Zell-freie
Schicht an der Aderwand bildet und der Strm̈ungswiderstand abnimmt. Die
Entwicklung dieser Zell-freien Schicht scheint fast universell zu sein, wenn
sie mit der charakteristischen Scherrate des Flusses skaliert wird. Dies er-
laubt, die für eine vollständige Entwicklung des Flusses notwendige Aderln̈ge
abzuschätzen, zu lc ≈ 25D, mit D dem Aderdurchmesser. In Adern, deren
Länge in der gleichen Größenordnung wie lc oder darunter liegt, kann daher der
Strömungswiderstand and Gabelungen und Kreuzungen durch Ansammlungen
roter Blutkörperchen stark beeinflusst werden.

Üblicherweise führen Aggregationswechselwirkungen zwischen roten Blutkör-
perchen zu einer Abschwächung des Strömungswiderstands. Die Enstehung der
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Zell-freien Schicht ist sowohl mit als auch ohne verwendung von Aggregation-
swechselwirkungen ähnlich. Attraktive Wechselwirkungen führen allerdings zu
einer Verbreiterung der Zell-freien Schicht. Da die Aggregationswechselwirkun-
gen jedoch kurzreichweitig sind ist der Einfluss auf die Strömungseigenschaften
des Bluts bei ausreichend hohen Scherraten (¯̇γ & 50 s−1) gering.

Weiterhin wurde im Rahmen dieser Arbeit ein simples theoretisches Modell
entwickelt, das sich bei in konvergiertem, konstantem Fluss zur Beschreibung der
Schichtdicke der Zell-freien Schicht in Abhängigkeit von der Fließgeschwindigkeit
eignet. Dem Modell liegt ein Kräftegleichgewicht zwischen einer durch hydro-
dynamische Zell-Wand-Wechselwirkungen resultierenden Auftriebskraft auf die
roten Blutkörperchen und eines durch den Scherfluss resultierenden effektiven
Drucks aufgrund der Zell-Zell-Wechselwirkungen im Fluss zu Grunde. Die
hieraus erhaltenen Ergebnisse können auf Suspensionen anderer deformierbarer
Partikel wie Vesikeln, Kapseln und Zellen übertragen werden udn auch für diese
zum besseres Verstn̈dnis beitragen.
Abschließend wurden Entmischungsphänomene in Blut, beschrieben als

Zwei-Komponenten-Mischung von roten Blutkörperchen und anderen Zellen
in Poisseuille-Fluss, untersucht. Die räumliche Verteilung von roten Blutkör-
perchen ist von besonderem Interesse. So müssen zum Beispiel in der Wirk-
stoffabgabe von Nanopartikeln die Nanopartikel so nah wie möglich an die
Aderwände kommen, um dort anzuhaften und den Wirkstoff abzugeben. Wir
nehmen hier an, dass Entmischung beschrieben werden kann als Wettbewerb
zwischen Scherfluss-induzierter Diffusion und der Auftriebskraft, die weiche
Partikel innerhalb eines Flusses von der Wand wegdrückt. Zur Untersuchung
der Entmischungsphänomene wurden sowohl 2D DPD Simulationen von roten
Blutkörperchen und Zellen verschiedener Größen durchgeführt als auch die
Fokker-Planck-Gleichung zur Beschreibung des steady state verwendet. Für
letzteren Ansatz wurden die Kr̈fteverteilung, die Partikelverteilung und die Dif-
fusionskonstante enlang des Kanals gemessen. Die Ergebnisse der beiden Ansẗze
wurden vergleichend gegenüber gestellt und zeigten weitreichende Übereinstim-
mungen. Weiterhin untersuchten wir das Diffusionsverhalten von Zellen für
verschiedene Hämatokritwerte und Scherraten. Unsere Simulationsergebnisse
zeigen, dass die Diffusionskonstante mit steigendem Hämatokritwert ansteigt
und linear von der Scherrate abhängt.
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Im dritten Teil dieser Arbeit wurde eine Simulationsmethode zur Unter-
suchung komplexer vaskulärer Geometrien entwickelt. Diese Methode findet in
der Reproduktion kleiner Gewebeeinheiten Anwendung, die aus aus MRI oder
Mikroskopie stammenden Bildern erhalten werden.

Die wesentlichen drei Teile der Methodik sind die folgenden: Geometriemod-
ellierung, Ein- und Ausfluss-Randbedingungen und die domain decomposition
der Simulationsbox zur effektiven computergestützten Berechnung.
Es stellte sich heraus, dass sich das SDPD-Fluid besser zur Modellierung

der Ein- und Ausfluss-Randbedingungen eignet als ein DPD-Fluid, da letzteres
zu starke Dichtefluktuation entlang des Kanals zeigt. So ist es schwierig,
während des Flusses durch einen geraden Kanal die Dichte des DPD-Fluids zu
kontrollieren. Dieses Problem tritt für das SDPD-Fluid weder in dieser noch in
komplexeren Geometrien mit mehreren Verzweigungen und Ein- udn Ausflüssen
auf, da für dieses die auf die Partikel wirkende Kraft in Abhängigkeit von der
lokalen Dichte des Fluids berechnet wird.
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1. Introduction

In 1808 Thomas Young has started his report in Royal Society with the words
that mechanical motion inside a living body are governed by the same laws
as laws for inanimate bodies, so that blood flow in arteries and venules can
be described using certain laws from hydraulics [114]. Although we know
Young from the elastic modulus and the wave theory of light, he was not
only professor of Physics, but also a medical doctor. Such a diverse activity
was very common at those times; however, nowadays science becomes more
specialized. Nevertheless, engineers and physicists bring together more and
more understanding of various processes in medicine and biology.

Blood is an essential liquid in our body. In diseases like in diabetes, sickle-cell
anemia or malaria, blood properties might change. In diabetes, the blood sugar
level rises and changes viscosity of the blood. This can cause cardio-vascular
diseases, such as stroke [12]. Sickle-cell anemia is a genetic disease where RBCs
in deoxygenated state have not a normal biconcave but a sickle shape and
become stiffer. When deoxygenated, RBC’s hemoglobin forms strands which
push the membrane from inside causing an abnormal shape and rigidity. These
RBCs can not pass through small arteriols and capillaries, causing occlusions
(Fig. 1.1).

Malaria disease is caused by parasitic protozoans from the genus Plasmodium.
The parasite is transmitted by mosquitoes. Once inside a body, it is able to
attach to a RBC membrane, penetrate inside a cell, and affects its stiffness. The
changed properties of infected RBCs lead to their different behavior in blood
flow. For example, such RBCs have different motion and can be differently
arranged in flow. Since infected cells are stiffer than healthy cells, mirofluidic
devices are being developed to separate infected cells from healthy ones, for a
further analysis.

Hence, a thorough understanding of blood properties and its cells is required.
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1. Introduction

Figure 1.1.: (Left) Figure healthy RBCs can easily pass through microvessels, because of
their high deformability. (Right) Sickle-cell (SC) occlusion example shows the
typical situation, when stiff RBCs are blocking the microvessel at a branching
point. The illustration is taken and modified from National Heart, Lung and
Blood Institute, http://www.nhlbi.nih.gov.

These processes and changes in blood flow are investigated not only experi-
mentally, but also numerically. Simulations provide an opportunity to model
and examine such a system in a faster and cheaper way, bringing new insights
in addition to experimental measurement.

1.1. Blood

Blood carries oxygen, nutrients, some proteins, hormones etc. to body cells
and takes away metabolic wastes. Heart pumps the blood to keep a pressure
difference which makes blood to flow similarly to any building’s heating system.
Blood is oxygenated in the lungs and travels around the body through aorta,
arteries, arterioles, capillaries, venules, veins, returning back to the lungs. The
body of an adult has about 5 liters of blood. One circle takes appr. 20 seconds,
which means that RBCs come back to the heart three times per minute. This
also means that during one day, the heart pumps over 7000 liters!
For most species, the oxygen is carried by RBC’s hemoglobin, but there

are some animals such as crustaceans and mollusks which use hemocyanin.
Hemocyanin sometimes gives the body a blue color, because of the copper in
its structure.
In vertebrates, blood consists of plasma and cells suspended in it. Plasma

constitutes 55% of blood by volume and has 92% of water. Salts, minerals,
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proteins, glucose, blood cells and etc. are suspended in the plasma. RBCs or
erythrocytes make the blood red and correspond to a major fraction by volume:
up to 45%. White blood cells (WBC) or leukocytes are the immune cells, which
protect the body from infections and foreign invaders. WBCs take up to 1% of
blood volume. Finally, platelets or thrombocytes help to stop bleeding and play
a significant role in a wound healing process. The number ratio of platelets to
RBCs is about 1 : 10 to 1 : 20.
RBCs are cells without nucleus and their role is to carry hemoglobin for

oxygen transport. Hemoglobin has iron in its structure, which gives RBCs red
color. A single erythrocyte has a discoidal biconcave shape, with a diameter
between 6 and 10 µm, depending on its age and a thickness of 2 µm (Fig 1.2).
RBCs are very deformable, and can go through capillaries with diameters down
to 3 µm. RBCs have a very high area to volume ratio, which helps to better
take up and release oxygen. Though RBCs carry oxygen, the carbon dioxide is
taken away by plasma.
RBCs are produced in the bone marrow and have a life expectancy about

110 days, after which they get destroyed by macrophages. One of the very
important properties of blood is RBC volume fraction or hematocrit Ht. Ht

varies from 37% to 55% depending on location. Also, hematocrit values are a
bit lower for women than those of men.

Figure 1.2.: Blood cells images from Scanning electron microscope. From left to right:
RBC, activated platelet, WBC, non-activated platelet. The origin of images:
(left) The National Cancer Institute at Frederick (NCI-Frederick), (right)
Ref. [69].

The membrane of a RBC consists of three layers: glycocalyx on the outside of
the cell, a lipid bilayer with many transmembrane proteins, and a cytoskeleton
which is located under the lipid bilayer. The cytoskeleton (Fig. 1.3) is a network

3



1. Introduction

Figure 1.3.: Spectrin network of a RBC. Left: spectrin skeleton of a mouse from Ref. [50]
with the bar of 200 µm; Right: triangular network model from Ref. [26] used
for simulations.

of spectrin proteins which makes a RBC more durable. Even though a RBC is
highly deformable, it nearly conserves its volume and area. Moreover, due to
these three layers a membrane possesses viscoelastic properties [40].

Another major component of blood is a platelet or thrombocyte (Fig. 1.2
right). In adult human body there are about 15− 40× 104 platelets per mm3

of blood. Platelets are responsible for patching damaged vessels and stopping
bleeding. They have a biconvex discoidal lens-shape and are about 3 µm in
diameter [41]. Platelets are produced in bone marrow and circulate in blood for
7− 10 days. They also have no nuclei and are much stiffer, than RBC. Similar
to RBCs, platelets have an internal cytoskeleton which consists of actin and
tubulin polymers.

If the endothelial layer of a vessel is damaged or interrupted, platelets come
to this site and patch the hole. Firstly, they adhere to the damaged vessel wall
with a help of von Willebrand factor. This is possible through the activation
of their receptors and shape change (Fig. 1.2 left). Lastly, they bind to each
other and form a plug. After platelets have formed a plug, the healing process
is not yet finished and the tissue has to be repaired. This process is an initial
part of a complex wound-healing mechanism, causing the bleeding to stop. A
low platelet count in blood might cause long bleeding times. A high platelet
count or vessel wall irregularities might cause venuous and arterial trombosis.

WBCs (Leucocytes) have a spherical shape and a diameter of 6 − 20 µm
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depending on the type (Fig. 1.2 left). There are about (4− 11)× 103 WBCs
per microliter of blood. Distinct from RBCs and platelets, WBCs have a
nucleus. Leucocytes are part of the body immune system. They protect the
body from infectious diseases and foreign invaders. WBCs can transmigrate
through vessel walls to tissue by adhesion on the wall to reach the infection.
WBCs are produced in bone marrow and there exist five WBC types with
different physical and functional properties.

WBCs helps to remove foreign substances e.g. viruses, bacteria, drugs, since
they are foreign objects, unknown to the immune system. Malaria parasites
bypass this protection by hiding inside the RBC, such that WBCs can not
detect them. An increased number of WBC above a certain limit in blood
usually indicates an inflammation. There might be also an increased production
by bone marrow, a decreased uptake by tissue cells and a decreased attachment
to the vessels walls.

More and more artificial particles are produced nowadays for therapeutic or
other reasons. They might be of different sizes: from nano- to micro-scales.
Scientists try to develop particles which can be easily taken up by body cells,
stay long enough in the body, cause less damage, get certain spreading over
the body. These nano- and micro-particles, might be of different shapes and
structures: spheroid, polymer-like, encapsulated, etc [5].
It is very important to be able to control the distribution of nano- and

micro-particles [98] in order to deliver them where they are needed. In many
cases adhesion of these particles to target sites is desired. In microvessels,
particles should be able to migrate through the walls and avoid WBCs, to
bring drugs to targeted cells. This migration process depends on size of the
particles so they may not be able to go through the wall or even pass through
the capillaries, if their diameter is too large. Also, flow dynamics may not let
a drug particle to come close to the vessel wall. Moreover, their adhesion is
another aspect, which can reduce the efficiency of particle delivery.
As RBCs make one circle from the heart and back in about 20 sec, extra

particles are get expected to have similar circulation times. Different shapes and
sizes of nano-particles and micro-particles were investigated for their efficiency.
For example, it is difficult for big particles with diameters Dp > 4 µm to pass
through capillaries, because they can stuck there [102]. Particles with Dp ≤ 3
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µm are easily taken up by the immune system in leaver, spleen or lungs [17,47].
Circulation in the body of particles with 150 nm < Dp < 200 nm appeared to
be much longer than that of particles which Dp > 300 nm or Dp < 70 nm [62].
On the other hand, it was shown recently that spherical particles of diameter
Dp ≈ 2 µm have a higher adhesion rate, than smaller nanoparticles, but the
latter are much easier for endocytosis, or cell uptake [74,75].

Another property, which can affect drug efficiency is the shape of a particle.
Spherical particles are worse than discoidal ones in terms of accumulation in
organs [17]. Elongated particles are more resistant to the immune system,
but have less opportunity to pass in between endothelial cells [10,74]. Adhe-
sion of different particle shapes has been studied both theoretically [16] and
experimentally [42].
These results lead to the idea of compound particles, which could possess

the properties of different types of particles. Such a compound particle can be
developed by means of biocomputing, where a nano-particle is able to "decide"
based on simple logic operators [3, 65] (Fig. 1.4).

Figure 1.4.: Biocomputing nanoparticle example. Following the input signal, the covering
yellow particles disassemble and open the output green receptor. From
Ref. [65].

1.2. Physical basis

Blood behavior in microcirculation can not be explained using a continuous
fluid model. Soft matter physics investigates substances such as blood, polymer
solutions, self-propelled particles (Janus particles, E.coli bacteria), gels, etc.
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Characteristic length scales for soft matter are in the range from 10 nm to 10

µm. Interesting behaviors of these materials can not be explained based on
atomistic or molecular structure of the materials. For instance, soap bubbles
are large in comparison with molecules which form it, and the macroscopic
mechanical properties of a foam are derived from interactions between bubbles.
As in a soap solution, many of soft matter are one- or multi- component
suspensions in a buffer solvent. Interactions with the solvent play an important
role, especially in cases where flow is applied.

Hydrodynamics deals with fluids in motion, e.g. water in pipes. Therefore,
hydrodynamics laws can be employed to describe the dynamics of fluids. If
we use Newton’s second law to describe the motion of a viscose fluid, we can
derive the Navier-Stokes equation (NSE):

ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p+ η∇2v + fext

∇ · v = 0
(1.1)

where v is the velocity vector, p is the pressure field, η is dynamic viscosity, and
fext is external force. The NSE is widely applied across the fluid-dynamics field,
starting from hydrodynamics of a system with quite high density, and ending
with gas flows. In combination with Maxwell’s equations they can describe
magnetohydrodynamics.

The NSE becomes much simpler, if the fluid inertial forces compared to
viscous forces characterized by Reynolds number Re, is insignificant (Re� 1).
Re is a dimensionless number, which is defined as follows:

Re = ρVchLch/η (1.2)

where ρ is the fluid density, Vch and Lch are characteristic flow velocity and
length. Flow pattern at a low Re is laminar (Fig. 1.5), i.e. flow layers stay
parallel without disruptions between them. In that case NSE takes a simple
form:

∇p− η∇2v = fext
∇ · v = 0

(1.3)
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because, if Re� 1 we can neglect the part ρ(v · ∇)v) and the part
∂v
∂t

is zero
because we consider the steady flow. This system is called Stokes equation. Such
a flow has an interesting property: solutions are time-reversible, ie time-reversed
flow can be described by the same equation, as the direct one.

Figure 1.5.: A fixed sphere in laminar flow. Streamlines are parallel and do not cross.

1.3. Simulation methods

The dynamical behavior of these many-body systems is very complicated.
Several decades ago scientists would calculate positions and velocities of small
number of particles particles by hand on paper. Nowadays simulations play an
important role in science and engineering, providing the possibilities to make
fast computations and bring new insights to complex systems. One of the
first simulation methods was Monte Carlo (MC) simulation. The Monte Carlo
method is widely used and based on a repeated random sampling, leading to
the final distribution of system states. To conclude, MC method can be used
to describe any problem having a probabilistic nature.
Another simulation method is Molecular Dynamics (MD). This method is

based on an approach, where particles interact with each other by means of the
Newton’s second law. With a large number of particles a discretization scheme is
needed. Using appropriate discretization, the method repeatedly calculates the
positions and velocities according to the equation of motion. Although, MD is
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1.3. Simulation methods

computationally expensive for mesoscopic simulations, it is very popular. Also,
the MD method includes thermal fluctuations and hydrodynamic interactions.

If we switch from the Newton’s second law to Langevin equation [14] in our
simulations, we will obtain Brownian dynamics. The Langevin equation 1.4 is
a stochastic differential equation describing for example a random movement
of a particle in a fluid. There is an additional term in Langevin equation, that
mimics the random kicks, or thermal motion by the molecules of the fluid.

m
d2x
dt2

= −λdx
dt

+ ε(t) (1.4)

where λ represents viscous force which is proportional to the particles velocity,
and a noise term η(t) is random collisions with the fluid molecules with a
Gaussian probability distribution and properties 〈ε(t)〉 = 0, 〈ε(t)ε(t′)〉 =

Dδ(t− t′), where D is diffusion and δ(t) is the Dirac delta-function.

Unfortunately, in the Brownian dynamics there are no hydrodynamic in-
teractions. However, through the inclusion of Oseen tensor, the problem can
be eliminated. The Oseen tensor is used as a simplified description of hydro-
dynamic coupling in the fluid. Due to linearity of the Stokes equation for an
incompressible Newtonian fluid exists a solution in Green’s function, known as
the Oseen tensor. If we add to the equations 1.3 that the boundary conditions
are vanishing at infinity |v|, p→ 0 as r→∞, and replace the forcing term by
a point force acting at the origin Fδ(r), the solution for the v(r) and p(r) are
given by:

v = F · J(r)

p(r) =
F · r
4πr3

(1.5)

where J =
1

8πη

(
E
r

+
rr
r3

)
and E is unit tensor.

There are two ways to include hydrodynamic interactions into the methods
above: on-lattice and off-lattice. In Lattice-Boltzmann Method (LB), instead of
solving NSE, the Boltzmann equation is solved on a discrete lattice to simulate
fluid flow. Although, solving Boltzmann equations does not include thermal
noise, it was explicitly added in new versions of the LB method [44]. One of
the shortcomings of the method is that Galilean invariance is not conserved
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because of the lattice.
An another simulation technique, Multi-particle collision (MPC) dynamics

[44], a off-lattice method, that incorporates both thermal fluctuations and
hydrodynamics. In this method, a simulation domain is divided into cells.
System evolution consists of streaming and collision steps: in the streaming
step particles move in a ballistic way, while in the collision step the center
of mass (CM) velocity of every cell is calculated and all relative velocities of
cell particles are randomly rotated. The cell’s position is updated before the
rotation in order to conserve Galilean invariance.

In this thesis, we use the Dissipative Particle Dynamics (DPD) method [22].
In this method, every DPD particle is considered to be a representation of a
small fluid cluster rather than single atoms. DPD particle is a statistic depiction
of such a cluster in equilibrium. Every particle interacts with each other in
the Newton’s way via pairwise forces: conservative, dissipative and random.
Dissipative and random force are chosen such that they fulfill fluctuation-
dissipation theorem and act as a thermostat.
As an improvement of the DPD method, Smoothed DPD (SDPD) [21] was

introduced by mixing DPD and smoothed particle hydrodynamics SPH [70,71].
SPH is a method for simulating a fluid flow, that came to fluid simulations
from astrophysics. The method works by dividing the fluid into a number of
discrete elements. A property to be determined is substituted by a sum of
the relevant properties over the particles in the element, or so-called kernel.
As an advantage of SDPD, equation of state, transport coefficients can be
input directly, and the modeled fluid has less compressibility artifacts than
that in the DPD method. However, SDPD is computationally more expensive
than DPD. The SDPD was recently improved to include angular momentum
conservation [73] which can be crucial for modeling multi-phase suspensions.
In addition, there are simulation models, which combine several different

methods to capture different scales of a system. For example, to model blood
flow in large vessels continuous approach is sufficient, so there is no need in
simulating blood cells explicitly. In the domains, where these large vessels
branch into two or more smaller ones, or to investigate blood flow in an
aneurysm [31], it might be useful to apply a particle-based method, like DPD
or SPDP. In cases where even smaller scale is needed, the model can be
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1.4. Blood cells under flow

complemented by atom- or molecular-level approaches like MD. In this work,
simulations were done using DPD and SDPD methods, and they will be
discussed in detail later in Chapter 2.

1.4. Blood cells under flow

It is possible to use continuous approach to model blood flow in vessels down
to 200 µm [25]. Blood exhibits a non-Newtonian behavior at small capillaries
because RBC size becomes comparable with channel diameter and should be
taken into consideration.

The collective flow behavior of RBCs is affected by the motion of single cells.
A RBC under different conditions, such as confinement, flow rate, inner-to-
outer viscosity difference may move differently. The most common and known
dynamics in simple shear flow are tank-treading (TT), tumbling (TB) and
swinging or breathing (SW) motions.

A RBC in TT motion reminds of the motion of a tread of a tank, so that
the shape and relative position of the cell are not significantly changing, but
the membrane of a cell moves around its center of the mass (COM) with a
constant angular velocity. The inclination angle of a cell with respect to flow
direction stays also constant.

In the TB regime, the cell rotates around its COM almost like a rigid body
without motion of the membrane. The rotation velocity also remains quite
stable.

The third motion (SW) can be considered as an intermediate regime between
TT and TB. The cell or vesicle is in TT motion and oscillates about a certain
inclination angle with a stable periodicity [1, 76]. These motions were observed
experimentally [1, 54], and in simulations, while TT and TB motions were also
described theoretically [55].

In Poiseuille flow, a RBC has a parachute shape, normal biconcave shape,
and slipper shape (Fig. 3.5, 3.6) [26,66,95]. These shapes have been discovered
in experiments as well [106]. There are also different shapes, which might be
corresponding to variations of the shapes discussed above.

The motion of a single RBC is interesting, because depending on the type of
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motion it is possible to construct microfluidic devises to separate them from
each other based on their intrinsic properties. This is also important for the
prediction of flow resistance, and the development of more efficient drug-delivery
processes.

Blood as a multicomponent suspension can segregate under flow. Segrega-
tion means that different components of the suspension may occupy different
positions in flow. For example, RBCs are likely to be found in the center of
the channel in Poiseuille flow, but WBCs marginate to the walls (Fig. 1.6).
Similar segregation pattern can be observed for platelets in simulations and
experiments [72, 105]. Segregation of different particles in flow is considered to
depend on differences in size and shape, particle elasticity, collisions with other
particles, shear-induced diffusion, and lift force which pushes cells away from
the walls [57].

Figure 1.6.: Segregation of WBCs in Poiseuille flow. RBCs are occupying the center of
the flow. WBCs are pushed toward the walls. The figure from [101].

If the shear rate is high, then the diffusion constant should be also large.
Due to a fast flow velocity, the particles will have more kicks from neighboring
particles. This frequency of the collisions will sum up into an effective the
diffusion. If one the particles in a pair collision is softer than the other, the
resulting displacement for the softer particle will be less, in comparison with the
stiffer one. Soft particles can bypass stiff particles and maintain the position in
a flow.
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1.4.1. Lift force

In addition to the shear-induced diffusion, every non-spherical particle under
flow experiences a lift force. The nature of this force is hydrodynamic: TT
membrane motion directs the fluid towards the wall, resulting in a cell-wall
interaction. Thus, the particle experiences pressure difference and moves away
from the wall (Fig. 1.7).
The hydrodynamic lift force depends on vesicle’s elasticity, shape, and dy-

namics. A rigid sphere will not experience this force, because of the reversibility
of the Stokes flow: if in a direct shear flow the particle moves away from the
wall, then in reversed setup it should move to the wall, but it will still move to
the center, because there is no difference between these two setups. As a result
of such a symmetry breaking, the rigid sphere does not experience the lift force.
A vesicle in TB motion undergoes a smaller lift force, than that in TT motion.
The lift force is larger for big vesicles in comparison to small ones [2, 103],
depending algebraically on a characteristic radius with a power between 3 and
4 [2, 79, 103]. It has been suggested that the lift force decays as a squared
distance from the wall, and proportional to the shear rate Fl ∼ γ̇/h2 [2, 68].

Figure 1.7.: Pressure field around a TT cell in shear flow, given by the color map. The
image is taken from Ref. [68].

Even though lift forces act on every non-spherical particle in flow, there
are still particles located near the walls. In case of different volume ratios of
different particle types, one type can experience a stronger lift force and is
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more probable to be found at the channel center.

1.4.2. Attractive interactions

RBC position at the center of a channel during flow makes blood to exhibit a
non-Newtonian shear-thinning behavior. At high shear rates blood viscosity
is lower, than that at low shear rates, because when RBCs occupy the center,
plasma acts as a “lubrication” layer for the central flow, reducing blood viscosity.
This effect can be enhanced by aggregation of RBCs, or so-called rouleaux
structure (Fig. 1.8). That structure remains a stack of coins and is considered
to form due to either depletion interaction because of an effect of different
proteins solved in the blood on RBCs,or bridging by some blood proteins.
Although, rouleaux is not possible without proteins in plasma. However, at
high shear rates the structure get destroyed and aggregation forces are no longer
relevant.

Figure 1.8.: Reuleaux structure of RBCs. At low shear rates RBCs stick to each other
and form structures, which remind a stack of coins. These structures can
enhance blood shear thinning. The figure is taken from Ref. [78].

1.4.3. Cell-free layer

Cell-free layer (CFL), or plasma “lubrication” layer is another important prop-
erty of blood flow in capillaries. The thickness of CFL affects whole blood
resistance and discharged hematocrit (difference between hematocrits of the
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blood going into a channel and an out-going one) in Fahraeus-Lindqvist ef-
fect [38]. A particle in a body blood flow has an dilemma: from one side, a
particle placed in blood should come closer to the channel center in order to
spread as fast as possible around the body, on another side the particle should
marginate at the wall to transmigrate though it and get the target tissue.

The CFL is very thin without flow; once a flow is applied, the CFL is getting
thicker and reaches a certain value for a fixed flow rate. The CFL layer is
thicker for high flow rates, since the lift force pushes particles stronger away
from the walls. However, there is a limit of cell packing on the center above
which CFL can not develop, because cell-cell interactions counteract the lift
force. Thus, the CFL development can be considered as a competition between
the lift force and cell-cell interactions.

1.5. The Fokker-Planck equation

To investigate the segregation process from a theoretical point of view, the
Fokker-Planck equation is a very useful instrument. The equation describes
the time evolution of a probability density function both for classical and
quantum systems. Also, it is known as Kolmogorov forward equation, since
it was introduced by Andrey Kolmogorov in his paper [56]. In application to
particle distribution it is also called Smoluchovski equation.

If we start from the Langevin equation and switch from particle coordinates
to a probability distributions and path integral, we will get the Fokker-Planck
equation. The equation describes particles distribution through the forces on
particles, and their diffusion constant, like in Brownian motion:

∂

∂t
P (x, t) = − ∂

∂x
[µ(x)P (x, t)] +

∂2

∂x2
[D(x)P (x, t)] (1.6)

where P (x, t) stays for probability density, µ(x) is the viscosity of the fluid,
and D(x) is the diffusion constant.

In this work we investigate blood flow resistance through straight channels
and its dependence on hematocrit, flow rate, RBCs aggregation. Also, we apply

15



1. Introduction

Fokker-Planck equation to the segregation of a two-component suspension in
order to describe the phenomenon using only force and shear-induced diffusion.
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2. Fluid model

Hydrodynamic interactions are essential in blood flow simulations. In this
chapter the simulation fluid model and boundary conditions used for modeling
will be reviewed.

2.1. Dissipative particle dynamics

For our 2D simulations we use DPD method. DPD is a mesoscopic simulation
method, which is in between the microscopic and continuous modeling methods.
Every DPD particle represents a cluster of microscopic particles (Fig. 2.1). In
a DPD system N particles interact with each other via three pairwise forces
- conservative, dissipative and random. The Newton’s second law of motion
governs the evolution of particle positions and velocities over time as

dri = vidt, dvi =
1

mi

(
FC
i + FD

i + FR
i

)
dt, (2.1)

where FC , FD, and FR are conservative, dissipative, and random forces due to
inter-particle interactions, respectively.

The acting force on a particle can be written as:

Fi =
∑
j

Fij =
∑
j

(
FC
ij + FD

ij + FR
ij

)
, (2.2)

the sum goes over all neighboring particles within a cutoff radius. Conservative
force is responsible for fluid compressibility and repels the particles away from
each other, and dissipative is responsible for viscosity. Random and dissipative
forces make up a thermostat, with a controlled equilibrium temperature.
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2. Fluid model

The conservative force between two particles, i and j is usually defined as:

FC
ij = eij

aij(1− rij/rc), if rij ≤ rc

0, if rij > rc
(2.3)

where eij =
rij
rij

is the unit separation vector directed from one particle to the

other, rc is a cut off radius, rij is the distance between the particles, and aij is
a repulsion constant.

Figure 2.1.: Every small dot corresponds to a microscopic particle (e.g. atom or molecule),
dashed circles defines DPD particle. In the DPD method every particle
represents a cluster of microscopic particles.

The dissipative force is taken to be

FD
ij = −γωD(rij)(vij· eij)eij, (2.4)

with velocity vij = vi − vj , a weight function ωD(rij), and the dissipative force
coefficient γ.
The random force is calculated as:

FR
ij = σωRijξijdt

− 1
2eij, (2.5)

with the weight function ωRij , random force coefficient σ, symmetric random
number ξij = ξji and timestep dt. The random number should also have unit
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2.2. Smoothed dissipative particle dynamics

variance and zero mean (〈ξ〉 = 0). Galilean invariance is achieved because we
use only relative variables (vij and rij) in all forces.
In order for the DPD thermostat to maintain equilibrium temperature, the

random and dissipative forces should fulfil the fluctuation-dissiption theorem
[22]:

ωDij = [ωRij ]
2, σ =

√
2kBTγ (2.6)

Although, the weight function is a free choice, the original DPD approach is:

ωRij =

(1− rij/rc)k, if rij ≤ rc

0, if rij > rc
(2.7)

with k = 1. Other values of k might be taken in order to increase the viscosity
of a fluid.

2.2. Smoothed dissipative particle dynamics

Usually for 3D simulations we use the SDPD method. SDPD [21] is a mesoscopic
hydrodynamics method based on two popular approaches: the smoothed particle
hydrodynamics [64, 70] and the dissipative particle dynamics [22, 49] methods.
In SDPD, a simulation system consists of N point particles with mass mi,
position ri, and velocity vi. The three pairwise forces on particle i are defined
as follows

FC
i =

∑
j

(
pi
ρ2i

+
pj
ρ2j

)
wijrij,

FD
i = −

∑
j

γij (vij + (vij · eij)eij) ,

FR
i =

∑
j

σij

(
dW S

ij +
1

3
tr[dWij]

)
· eij,

(2.8)

where eij = rij/|rij| and vij = vi−vj . pi and pj are particle pressures assumed
to follow the equation of state p = p0(ρ/ρ0)

α − b, where p0, ρ0, α, and b are
selected parameters. Density of particles is calculated locally and determined

as ρi =
∑

jWL(rij) with WL(r) = 105
16πr3c

(
1 + 3 r

rc

)(
1− r

rc

)3
being the Lucy

function [64], where rc is the cutoff radius. Furthermore, ∇WL(r) = −rw(r)
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such that w(r) = 315
4πr5c

(
1− r

rc

)2
and wij = w(rij). The coefficients γij and

σij define the strength of dissipative and random forces and are defined as
γij = 5η0

3

wij

ρiρj
and σij = 2

√
kBTγij , where η0 is the desired dynamic viscosity of

fluid and kBT is the energy unit. The notation tr[dWij] corresponds to the
trace of a random matrix of independent Wiener increments dWij, and dW S

ij

is the traceless symmetric part( [93]).

2.3. Time evolution

The time evolution of particle position and velocity in a simulation with a
timestep dt is determined by Newton’s law of motion (Eq. 2.1), which is
integrated using the modified version of velocity-Verlet algorithm [4]:

ri(t+ dt) = ri(t) + dtvi(t) +
1

2
(dt)2fi(t),

ṽ(t+ dt) = vi(t) +
1

2
dtfi(t)

fi(t+ dt) = fi(ri(t+ dt), ṽi(t+ dt))

vi(t+ dt) = vi(t) +
1

2
dt(fi(t) + fi(t+ dt)).

(2.9)

2.4. Fluid viscosity

Simulated results need to be verified with physical ones to compare model
parameters with real fluid properties. Reversed Poiseuille flow virtual setup was
used to calculate the fluid viscosity and then calibrate all parameters Ref. [32].
Here, the computational domain assumes periodic boundary conditions and is
divided into two parts, in every of which a fluid is driven in opposite directions.
Since there are no walls, potential wall effects are eliminated. Fluid viscosity is
calculated via fluid velocity-profile averaging and Poiseuille law.
The Reynold number of typical blood flow is Re < 0.1, so we can neglect

inertial effects in our system. The highest possible Re saves computational time,
because the system will develop faster with a faster characteristic velocity. To
examine that we provide additional simulations with different setup parameters
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2.5. Boundary conditions

Figure 2.2.: Reverse Poiseuille flow simulation setup for fluid viscosity calculation. Periodic
boundary conditions are assumed at every border.

and lower Re. If the results are identical, then we are still in the regime with
low enough Re number.

2.5. Boundary conditions

In simulations, where confined flow behavior is investigated, the walls are
modeled by frozen fluid particles. These walls are constructed from the snapshot
of a simulation with the same particles in a fully periodic box. This is done
to simulate the same fluid properties in the wall, save the computational time
by not developing frozen particle’s coordinates, and to eliminate the density
fluctuations at the wall. Typically, the thickness of the walls is about rc, since
they do not increase the computational time. Frozen particles are included
into the neighbor list calculation only from one side - their positions are not
integrated. The interactions between frozen particles and all other particles
are the same as those with the fluid particles.

The walls reflect all moving particles Ref. [31]. A fluid particle with a start
position xk and velocity vk which should encounter the wall at xBC moving
with a velocity vBC is considered. If at time t′ so that 0 ≤ t′ < dt, the fluid
particle would encounter the wall, than new coordinate and velocity of the
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2. Fluid model

particle shall be calculated in a different way:

t′ = (xk − xBC)/(vBC − vk),

r(t+ dt) = r(t) + t′v(t) + (dt− t′)v(t+ dt),

v(t+ dt) = 2vBC(t)− v(t).

(2.10)

This is a bounce-back reflection rule, which is used to provide better no-slip
boundary conditions in comparison to specular reflection [97]. Here, both tan-
gental and normal velocities of the particle are reversed. In specular reflections,
only the normal velocity component is reversed after the collision and a the
higher friction needed for no-slip conditions.

In order to fully satisfy the no-slip boundary conditions, the adaptive shear
force is introduced. The shear force acts in tangential direction on the fluid
particles closer than rw to the wall. The force is calculated on the basis of
velocity difference between the estimated fluid velocity at the wall and vBC :

ft(∆h) = Ck(∆vt)

(
1− ∆h

rw

)4

, (2.11)

where ∆h is the distance from the fluid particle to the wall, Ck is adaptive shear
force coefficient, which is calculated as Ck+1 = Ck + α∆vt; αr is a relaxation
parameter, which can be calculated adaptively including previous flow behavior,
or be a constant.

Adaptive shear force operates several iteration steps and converges to ∆vt = 0

and fkt = const.

Lees-Edwards boundary conditions To investigate the diffusion behavior
in unconfined shear flow we used Lees-Edwards boundary conditions [58]. A
box without walls is considered so that every particle which escapes the box
from the left will appear at the right, and vice-versa; same for bottom and
top. With simple shear applied, an escaping particle will change it velocity
with changing sides (Fig. 2.3). The particle moving from the bottom to the
top will appear at the same place at the bottom of the upper periodic box, e.i
shifted to the left upper side of the dotted box. The upper and lower rows of
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2.5. Boundary conditions

boxes move in opposite directions with velocity ux. Because there are no walls,
Lees-Edwards condition eliminates the lift force effect, hence it is possible to
measure effective diffusion in shear flow.

Figure 2.3.: Lees-Edwards boundary conditions. The upper and lower rows of boxes move
in opposite directions. The actual simulation box is dotted, while the white
ones are for explanation clarity. On the right side figure depicts how the cell
will be inserted under the conditions.
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3. Blood simulation

Blood consists mainly of plasma and RBCs by volume. Thus, a good approx-
imation for blood flow simulation can include only fluid and RBCs. Blood flow
in large channels can be approximated with a continuous model, while in small
channels with diameters about 0.5DRBC < Dch < 10DRBC we have to model
RBCs explicitly.

3.1. Cell model

RBC models are often based on a membrane approach. A RBC is modeled
as a closed membrane with elastic and bending potential, area and volume
conservation constrains, to mimic elastic and viscous properties of the cell
properly. There are two types of RBC models: discrete and continuous Ref.
[19,33,63,82]. In a continuous model RBC membrane is described by a set of
equations, which are then discretized Ref. [33,63]. We use model from Ref. [26]
for 3D simulations.

3.1.1. 2D RBC model

In 2D, RBCs are modeled as closed bead-spring chains, which incorporate
bending rigidity and an area constraint. 2D model of the cells is a closed
bead-spring chain (Fig. 3.1). Every vertex pair has sping potential:

Usp =
∑

j∈1...Ns

[
kBT lm(3x2j − 2x3j)

4p(1− xj)
+
kp
lj

]
, (3.1)

where lj is the length of the j-th spring, lm is the maximum spring extension,
xj = lj/lm, p is the persistence length, and kp is the spring constant. With such
spring definition we can define a nonzero equilibrium spring length l0. The
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3. Blood simulation

Figure 3.1.: 2D RBC model as a closed beads-spring chain. The chain has bending rigidity
and total area conservation.

bending potential of a membrane is modeled as:

Ubend =
∑

j∈1...Ns

kb [1− cos(θj)] , (3.2)

for two neighboring springs with an angle θj between them, and kb is the
bending constant. The cell area constraint is modeled as:

Uarea = ka
(A− A0)

2

2
, (3.3)

with the area constant ka. A denotes instantaneous area, while A0 is a desired
area.

3.1.2. 3D RBC model

As a thrifty approach to simulate a 3D RBCs, the low-dimensional RBC
model was introduced by [80]. The model consists of several colloidal particles
simulated via DPD particles, connected with worm-like chain to each other
combined with bending resistance (Fig. 3.2). The model captures the essential
mechanical properties of RBCs and allows to cut the computational costs.
Although, the computational costs and the simplicity are essential, with this it
is not possible to reproduce a complex RBC-membrane dynamics like TT or
wrinkling [108].

In our simulations we used another method to model RBCs - triangulated
spring-network model [18,26,27,77]. Each RBC is constructed by a collection
of Nv particles linked by Ns = 3(Nv − 2) springs with the potential (3.1). The
bending rigidity of a membrane is modeled as in 2D (3.2). Finally, to mimic
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3.1. Cell model

Figure 3.2.: A low-dimensional RBC model constructed from several colloidal particles.
Ref [80].

area-incompressibility of the lipid bilayer and incompressibility of the inner
cytosol, we use two constraints with the potentials given by

Uarea = ka
(A− Ar)2

2Ar
+
∑
j

kd
(Aj − A0

j)
2

2A0
j

,

Uvol = kv
(V − Vr)2

2Vr
,

(3.4)

where ka, kd, and kv are the global area, local area, and volume constraint
coefficients, respectively. A and V are the instantaneous RBC area and volume,
while Aj is the instantaneous area of an individual triangle in a triangulated
network. Ar, A0

j , and Vr are the desired total RBC area, area of the j-th face
(set according to the initial triangulation), and total RBC volume, respectively.

The RBC model parameters (e.g., p, kp, kb) can be related to macroscopic
membrane properties (e.g., shear, Young’s, and bending moduli) through a
linear analysis for a regular hexagonal network [26, 27]. For instance, the
membrane shear modulus is given by

µ0 =

√
3kBT

4plmx0

(
x0

2(1− x0)3
− 1

4(1− x0)2
+

1

4

)
+

3
√

3kp
4l30

, (3.5)

where x0 = l0/lm. The corresponding area-compression K and Young’s Y
moduli can be found as K = 2µ0 + ka + kd and Y = 4Kµ0/(K + µ0). The
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3. Blood simulation

bending coefficient kb in Eq. (3.2) can be expressed in terms of the macroscopic
bending rigidity κ of the Helfrich model [46] as kb = 2κ/

√
3. The coefficients

ka, kd, and kv can be selected large enough to approximate properly area-
incompressibility of the lipid bilayer and incompressibility of the inner cytosol.
Thus, the necessary model parameters are calculated directly from desired
macroscopic RBC properties. In addition, we also employ a “stress-free” model
of a RBC obtained by computational annealing such that equilibrium length li0
for each spring is set to the corresponding edge length within initial membrane
triangulation [26, 27]. This also implies that lim = li0 × x0 is set individually
with x0 = 2.2, see Refs. [26,27] for more details.

To describe RBC properties, we define an effective RBC diameter as Dr =√
Ar/π. The average effective diameter for a healthy RBC is equal to Dr = 6.5

µm [23]. Table 3.1 outlines RBC parameters for simulations in units of Dr and
kBT , and the corresponding average values for a healthy RBC in physical units.

Coupling between RBCs and the fluid flow is done through viscous friction
[26] between cell vertices and the surrounding fluid particles. The coupling
is implemented via dissipative particle dynamics interactions [22, 49] using
dissipative and random forces similar to FD and FR from Eq. 2.1. The
strength γ of the dissipative force is adjusted to satisfy no-slip boundary
conditions at a membrane. Using an approximation of linear shear flow near
the membrane, the coefficient γ can be expressed in terms of fluid density n,
interaction cutoff radius r′c, number density of membrane particles nm, and
fluid viscosity η [26]. This formulation results in satisfaction of the no-slip
BCs for the linear shear flow over a flat membrane; however, it also serves as
an excellent approximation for no-slip at the membrane surface. Note that
conservative interactions between fluid and membrane particles are turned off,
which implies that the radial distribution function is structureless, i.e. g(r) = 1.

3.1.3. Membrane surface triangulation

The shape of a RBC resembles a deflated sphere, and it is one of the way to get
the biconcave shape for simulations. Moreover, this shape corresponds to the
minimum of bending energy. The shape of a RBC can be described analytically

28



3.1. Cell model

RBC parameters scaled units physical units

Nv 500

Ar 133.5× 10−12 m2

Dr

√
Ar/π 6.5× 10−6 m

Vr 0.34 D3
r 93× 10−18 m3

T 310 K

Yr 1.82× 105 kBT
D2

r
18.9× 10−6 N/m

κr 70 kBT 3× 10−19 J

kd 4.2× 104 kBT
D2

r
4.3× 10−6 N/m

ka 2.1× 106 kBT
D2

r
2.1× 10−4 N/m

kv 1.4× 107 kBT
D3

r
220 N/m2

Table 3.1.: RBC characteristics in units of the effective RBC diameter Dr and kBT , and
the corresponding average values for a healthy RBC in physical units. Nv is
the number of membrane vertices, Ar is the RBC membrane area, Vr is the
RBC volume, T is the temperature, Yr is the membrane Young’s modulus, κr
is the membrane bending rigidity, and kd, ka, and kv are the local area, global
area, and volume constraint coefficients, respectively. In all simulations, we
have chosen Ar = 133.5 and kBT = 0.4, which implies that Dr = 6.5.

in Cartesian coordinates as [23, 25]:

z = ±D0

√
1− x2 + y2

D2
0

[
c0 + c1

x2 + y2

D2
0

+ c2
(x2 + y2)2

D4
0

]
, (3.6)

where D0 is the cell diameter, c0 = 0.1035805, c1 = 1.001279 and c2 =

−0.561381.

To obtain a nearly regular triangulation, point charges on the sphere sur-
face are considered. The electrostatic problem is solved with point charges
“attached“ to the sphere surface. After the equilibrium is reached, the surface
is triangulated.
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3. Blood simulation

Figure 3.3.: Left:Tank treading motion of a vesicle in a shear flow; Right: Tumbling
motion of a vesicle Ref. [73].

3.2. RBC dynamics

RBC dynamics in flow can affect cardiovascular system. Every distinct motion
of RBCs results in a different resistance of the system. Thus, the knowledge
about these motions can help us to construct better microfluidic devices to
separate RBC based on their properties.

3.2.1. Particle dynamics in shear flow

As it was mentioned already, RBC dynamics in shear flow can be tank-treading
(TT ), tumbling (TB) or swinging (SW ) depending on viscosity contrast (λ)
between inner and outer fluids, membrane viscosity and shear rate. TT dy-
namics is a motion of a vesicle membrane when it has a constant inclination
angle θ with flow direction, while inner fluid and membrane are moving around
COM of the cell like a tank tread or treadmill (Fig. 3.3 left).

TB dynamics is a motion of the cell when it rotates as a rigid body around
its COM (Fig. 3.3 right). SW dynamics is an “intermediate” motion between
TT and TB motions, when the vesicle is in TT motion and oscillates around
its COM, so that inclination angle θ changes with a certain periodicity.
Flexible particles undergo elongation and torque in shear flow. The former

tries to align a vesicle with the inclination angle θ = π/4. When the shear
stresses between the membrane and inner fluid go over some threshold, the
inclination angle decreases and the vesicle starts moving in a TB manner. If
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3.2. RBC dynamics

the shear stresses are not high enough, it moves in SW way.

In 1982 Keller and Skalak (KS) [55] developed a theory, which predicts TT
and TB motion of an ellipsoidal vesicle in flow. KS theory can predict the
inclination angle of a vesicle in TT motion. For more details see Appendix A.1.

Figure 3.4.: RBC dynamics in flow from [104]. VB here is SW motion. Ck = ¯̇γτ , where
τ is the characteristic relaxation time of the vesicle.

An ellipsoidal RBC with λ < 3 undergoes TB motion at low shear rates.
Increase of shear rate changes the motion to TT, with small region between,
where the ellipsoidal RBC has an unstable TT-to-TB transition motion. When
λ > 3 stable TT motion is not observed, and RBC undergoes the TB mode.
Healthy RBCs have λ > 3, and TT motion shows SW with a stable frequency
and amplitude (Fig. 3.4), but not for physiological values. Here, one can also
see "Kayaking" motion, when the main axis of the vesicle describes a cone
oriented perpendicular to the plane of shear flow.

Experiments show, that a single RBC subjected to TT for hours, relaxes
to its biconcave shape with the same relative positions of beads fixed at the
membrane. This indicates the existence of energy barrier for RBC to start TT
from TB [36].
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3. Blood simulation

Figure 3.5.: RBC parachute shape in Poiseuille flow with D = 9µm.

Figure 3.6.: RBC in zigzag-slipper shape from [67].

3.2.2. RBC dynamics in Poiseuille flow

Experiments show, that RBCs can change their biconcave shape to a parachute
shape in Poiseuille flow in channels with diameters close to DRBC [24, 107].
This shape is also found numerically [35] (Fig. 3.5).

At low flow velocities, a RBC resembles the biconcave shape and with
increasing velocity it transits to parachute-like shape. Transition from the
biconcave to parachute shape can be investigated by means of the gyration
tensor of a RBC. Since the RBC elongates at the parachute state, the smallest
eigen-vectors increases in comparison with that in biconcave shape [67].

Also, there is a zigzag-slipper shape (Fig. 3.6), when every RBC in flow
takes so called slipper shape. The slipper shape is inclined with respect to flow
stream. At high enough concentrations, they construct a zigzag pattern during
flow.
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3.3. Blood flow simulations

Figure 3.7.: LJ potential as a function of distance

3.3. Blood flow simulations

The rheology of whole blood in a channel is dependent of dynamics of single
RBCs. Different dynamics of single RBCs changes the properties of blood.
Here, we present a common setup for 2D and 3D, and describe the main
properties of the blood flow.

3.3.1. RBC intreactions

To eliminate overlapping of RBCs under flow, the Lennard-Jones (LJ) repulsive
interactions and bounce-back reflections on the cell membrane have been used.
The LJ potential is given by:

ULJ(r) = 4ε

((σLJ
r

)12
−
(σLJ
r

)6)
(3.7)

with the cut-off at the minimum of the potential, so that rmax = 21/6σLJ (Fig.
3.7).

Bounce-back reflections are applied to every particle on a cell, neighboring
with other RBC membranes. Fluid particles are reflected at boundaries and
cell membranes, while cell particles are reflected at other cells membranes and
solid boundaries. Finally, boundaries are frozen and do not move.
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3. Blood simulation

3.3.2. RBC distribution in flow

Typically, straight channels with diameters in the range 0.5DRBC < Dch <

10DRBC and lengths of about 5DRBC < L < 20DRBC are used in both 2D and
3D simulations. The length should be taken long enough to prevent RBCs to
feel their image through periodical boundary conditions.

The flow in the channel is driven by a volume force, applied to every fluid
particle. No-slip boundary conditions and the force lead to the Poiseuille flow
with parabolic velocity profile and maximum velocity at the center:

Vmax =
∆pD2

16Lη
(3.8)

and radial velocity distribution:

v(r) = V0
(
1− 4r2/D2

)
(3.9)

where ∆p is the pressure drop and η is dynamic viscosity. The volume force
f is connected to the applied pressure drop through fn = ∆p/L, with fluid

number density n. For 2D the maximum velocity is Vmax =
∆pD2

8Lη
. Although,

the blood has pulsatile motion within large arteries, in small arterioles, venules
and micro-capillaries it becomes nearly steady.

Dimensionless shear rate γ̇∗ is used to connect simulation results with exper-
imental observations. This parameter is obtained by multiplying the shear rate
with a typical RBC membrane relaxation time or from Re number:

γ̇∗ = ¯̇γτRBC = ¯̇γ
ηD3

r

kr

γ̇∗ =
¯̇γnD2

r

ηRe

(3.10)

with ¯̇γ = v̄/D, kr is membrane bending rigidity and Dr is the RBC diameter.

Under healthy conditions blood velocity for arterioles is in the range 1.0−31.7

mm/s−1, and 0.5−11 mm/s−1 for venules both with diameters about 20 µm [9].

Even though, the Poiseuille flow has a parabolic velocity profile, the blood
flow profile is different and has a lower maximum velocity and lower local slopes
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3.3. Blood flow simulations

Figure 3.8.: Blood flow profile under different conditions in Poiseuille flow from Ref. [25].
Dashed lines show parabolic Poiseuille profile. Dotted lines depict CFL
thickness for different cases.

Figure 3.9.: Hematocrit value (Ht) across the channel. Zero r/D corresponds to the
channel center. Hematocrit decays to zero close to the walls, so there are no
RBCs at the near-wall region.

(Fig. 3.8). Dashed lines correspond to the parabolic flow of the blood plasma
without RBCs. RBCs distribution across the channel shows the reason of the
blood flow profile (Fig. 3.9).

The number of RBCs close to the wall practically zero, so near-wall hematocrit
drops. As a result RBCs the form bulk of flow in the center are moving together
away from the walls. Blood plasma plays a “lubricant role”, allowing the RBC
core to flow at the center. The central arrangement of RBCs is the reason for
the blood flow velocity distribution behavior in the Fig. 3.8.

Fahreus discovered an effect, which is connected with the blood-flow behavior
[37]. He performed experiments with blood in glass tubes and noticed that
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the discharge hematocrit (Hd) is higher than the hematocrit in the tank which
feeds the tube. Hd is the volume fraction of RBCs in blood exiting the tube per
unit time. Therefore, RBC-core flow velocity is higher than an average blood
velocity. After a number of experiments an empirical expression was suggested
by Pries et al. [90] to relate Ht and Hd:

Ht

Hd

= Hd + (1−Hd)
(
1 + 1.7e−0.415D − 0.6e−0.011D

)
(3.11)

where the tube diameter D should be in µm.
The “lubricant” plasma layer void of RBCs is called RBC free layer or just

cell free layer (CFL). The thickness of the CFL plays an important role in
blood flow resistance and volumetric blood-flow rate. CFL also explains another
effect, discovered by Fahreus and Lindquist in 1931 [38]. Their experimental
results have shown, that apparent blood viscosity increases with increasing
channel diameter.

ηapp =
∆pD2

32v̄L
(3.12)

In over words, introducing a relative viscosity ηrel = ηapp/ηpl with ηpl being the
plasma viscosity: the relative viscosity increases with increasing the channel
diameter. The blood viscosity depends highly on Ht because of RBC-core
of flow: the more RBCs are in the channel, the less plasma layer stays for
lubrication. Moreover, RBC inner fluid viscosity under healthy conditions is
about 5 times higher than plasma’s.

3.3.3. Cell-free layer

CFL, as mentioned above, is a domain at the near-wall region void of RBCs.
Although it is called cell-free, there might be some other cells or particles [72].
Here we use this term explicitly for RBCs. CFL can be found not only in
Poiseuille flow, but also in simple shear flow.

CFL strongly depends on channel diameter, because RBCs pack in the center.
However, the “lubricant” layer becomes negligible for D > 200 µm where the
blood flow is very close to the parabolic Poiseuille flow [29]. In vivo results can
be different from in vitro and simulated results because of a glycocalyx layer
at vessel walls. This is the layer, which coats the vessel wall from inside. It is
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estimated to be on the order of 0.4− 0.5 µm [15, 109]. Also, glycocalyx covers
some bacterial epithelia and other cells.

Moreover, shear rate affects the CFL but not so dramatically as D. There is
almost no CFL for γ̇∗ < 1, but as the shear rate increases the CFL thickness
grows until a certain value and then levels off.

Figure 3.10.: CFL measurement in simulations. The straigth line corresponds to an
averaged CFL value, the curved lines display the edge of the RBC-core.

The CFL thickness can be measured with a high-speed camera and a mi-
croscope in vivo and in vitro once the flow is converged. Calculation of the
CFL in simulations is based on the simulation snapshots. The RBC-core flow
is projected onto a plane, such that we can see the RBCs part and the plasma
part near a wall (Fig. 3.10). The edge of the RBC-core is considered to be
CFL. The distance between the edge and the wall is averaged along and around
the channel with different angular orientations. In case of large gaps between
RBCs in one snapshot, the gap part of the edge is continuously connected, to
avoid the overestimation of the CFL.

Microvascular branches and junctions distort RBC distribution across the
channel. This may destroy the converged CFL or make it non-symmetric when
the RBC-core is closer to one side of the wall [20, 51]. This can increase the
flow resistance due to a thinner CFL. However, after some distance (several
channel diameters), the CFL will become symmetric again.
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3.3.4. RBC interactions. Morse potential

Blood exhibits aggregation behavior, when RBCs form a reuleaux structure,
which is similar to a stack of coins (Fig. 1.8). Under low shear rates RBCs
are attracted to each other. There exist two hypotheses for RBCs aggregation.
One hypothesis assumes that there is proteins in plasma, which may bridge
erythrocytes together. Another proposition is based on the idea of depletion
interactions.

Figure 3.11.: Comparison of Morse and harmonic potentials. De is the dissociation energy,
r0 is the equilibrium bond distance.

In our simulations with RBCs aggregation, we use Morse potential. The
potential increases faster than LJ. The potential has short-range repulsive and
long-range attractive interactions.
These aggregation forces are approximated by the Morse potential U(r) =

De[e
2β(r0−r) − 2eβ(r0−r)], where r is the separation distance, r0 is the zero force

distance,De is the well depth of the potential, and β characterizes the interaction
range. The potential showed quite good agreement with experiments [34].
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4. Microvascular blood flow
resistance: role of red blood
cell migration and dispersion

4.1. Introduction

Flow resistance of a full cardiovascular system is mainly attributed to the
resistance of blood flow within microvasculature or microcirculation [61, 81,
87,100], which is comprised of the smallest vessels (e.g., arterioles, capillaries,
venules) with diameters up to about 100 µm. In particular, the the knowledge
about bulk blood properties is far from sufficient to predict the behavior of
blood and its flow resistance in microcirculation. For instance, experimental
measurements [61, 86, 91] of blood flow resistance in vivo have shown that it
may be several time larger than that in in vitro experiments on blood flow
in glass tubes [85, 96]. Several potential contributions to an increased blood
flow resistance in vivo have been suggested. These include vessel irregularities,
bifurcations, and junctions, which may affect the distribution of red blood cells
(RBCs) in a vessel cross-section [83,91,99], the presence of endothelial surface
layer (or glycocalyx) [109, 111] at the vessel walls [86, 92], and the length of
vessel sections between bifurcations and junctions [81,88].

The endothelial surface layer resembles a polymeric brush at a vessel wall
with an estimated thickness of about 0.5 − 1.5 µm [89, 113]. Its effect on
an increased flow resistance can be interpreted as an effective reduction of
the vessel diameter due to the glycocalyx, and a large enough thickness of
this layer (∼ 2 µm) provides a plausible explanation for the discrepancy of
experimentally measured blood flow resistances in vivo and in vitro [86, 92].
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However, contribution of the other effects have not been rigorously studied. As
an example, RBCs in microvessels migrate away from the walls leading to a
layer near a wall void of RBCs [11,43]. This layer is called cell-free layer (CFL)
or RBC-free layer, and its thickness is directly associated with the blood flow
resistance [28,81,96]. In the microvasculature, blood flow and in particular the
distribution of RBCs in a vessel cross-section can be significantly disturbed
at bifurcations and junctions resulting in a reduced CFL thickness and an
increased flow resistance. After the RBC distribution is distorted at a vessel
bifurcation, in the following vessel segment RBCs will migrate toward the vessel
center leading to a dynamic development and recovery of the CFL thickness.
Thus, the flow resistance in microcirculation is affected by the degree of RBC
dispersion at vessel junctions and the length of the CFL recovery after the
distortion in comparison to a characteristic length of vessel segments between
bifurcations in microvascular networks.

RBC migration and the development of CFL are governed by hydrodynamic
interactions of RBCs with channel walls [2, 7,13] and cell-cell interactions or
collisions in flow [45,57]. The former RBC-wall interaction is usually referred to
as a lift force [2, 7, 13, 68], while the latter one is called shear-induced diffusion
or shear-induced normal stress [45,60]. The lift force drives RBCs away from
the vessel walls, while the cell-cell interactions lead to an effective dispersion
of RBCs. The balance between these two contributions at steady flow results
in a converged thickness of the RBC flow core and CFL. Clearly, the CFL
development and its final thickness are functions of a number of parameters
including hematocrit (volume fraction of RBCs), flow rate, vessel diameter,
and aggregation interactions between RBCs.
The main focus of this research is a systematic investigation of CFL de-

velopment in microvessels for a number of blood flow conditions using meso-
scopic simulations [29, 33]. We use the smoothed dissipative particle dynamics
method [21] to study the development of blood flow for various flow conditions
starting from a fully-dispersed configuration of RBCs. Following the migration
of RBCs away from the walls, the CFL thickness is dynamically monitored until
it converges to a constant value of a fully-developed flow. The time evolution
of CFL thickness appears to be nearly universal with respect to flow rate for
physiological hematocrits Ht ≤ 0.45; this range of hematocrits is also directly
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relevant for healthy microcirculatory blood flow [61, 84]. This allows us to
define a length lc for the development of CFL, which is nearly independent
of the flow rate and equal to approximately 25D, with the vessel diameter D.
Thus, the effect of RBC dispersion at vessel bifurcations and junctions on the
flow resistance may be significant in vessels which are shorter or comparable
to the length lc, while in longer vessel sections it can be practically neglected.
Aggregation interactions between RBCs result in a reduction of blood flow
resistance, since they aid to maintain a more compact RBC flow core.

Finally, we also develop a simple theoretical model which describes well the
final CFL thickness when the flow has converged. The model considers the
balance between a lift force on RBCs due to cell-wall hydrodynamic interactions
and shear-induced effective pressure due to cell-cell interactions in flow. This
model supports the idea that these are the two main mechanisms which govern
the final CFL thickness. Similar ideas have also been applied to describe
dispersion of RBCs after injection [45]. We hope that our results will help to
better understand also the flow behavior of other suspensions of deformable
particles such as vesicles, capsules, and cells, and will trigger new investigations
in this area.

4.2. Models & Methods

We employ the smoothed dissipative particle dynamics (SDPD) method [21]
to model fluid flow. SDPD is a mesoscopic simulation technique, where each
SDPD particle corresponds to a small volume of fluid instead of individual
atoms or molecules. The RBC membrane is represented by a triangulated
network model [18, 26,27,77] and coupled to fluid flow using friction forces.

4.2.1. SDPD model

Table 4.1 presents the fluid simulation parameters in units of the fluid particle
mass m, the cutoff radius rc, and the thermal energy kBT . Even though SDPD
allows one to directly input desired fluid viscosity η0, the measured dynamic
viscosity η of SDPD fluid might be slightly different. The assumption that
η = η0 is reliable only if each SDPD particle has a large enough number of

41



4. Microvascular blood flow resistance: role of red blood cell migration and dispersion

p0r3c
kBT

ρ0r
3
c α br3c

kBT
η0r2c√
mkBT

nr3c
ηr2c√
mkBT

675 10.125 7 675 266.8 10.125 284.6

Table 4.1.: SDPD fluid parameters used in simulations. Mass, length, and energy for
SDPD fluid are measured in units of the fluid particle mass m, the cutoff
radius rc, and the thermal energy kBT , respectively. p0, ρ0, b, and α are
parameters for the pressure equation, n is the number density of fluid particles,
and η0 and η are the desired and measured dynamic viscosities of the SDPD
fluid. In all simulations, we have set m = 1, rc = 1.5, and kBT = 0.4.

neighboring particles, which may require large enough rc and/or density of
fluid particles n. Consequently, we advise to always check validity of the
approximation directly using a shear flow simulation. For instance, SDPD fluid
with the parameters in Table 4.1 yields slightly larger fluid viscosity measured
in a shear flow setup than η0.

4.2.2. RBC model

For the simulations we used a triangulated spring-network RBC model [18,
26, 27, 77]. Each RBC consists from a collection of 500 particles linked by
Ns = 1494 springs, with area and volume conservations and dihedral potential.

4.2.3. RBC aggregation model

For blood, the attractive cell-cell interactions are crucial to represent aggregation
of RBCs. These forces are approximated by the Morse potential described in
Subsection 3.3.4. The Morse potential parameters were chosen as β = 1.5 µm−1,
r0 = 0.3 µm, De = 0.3kBT and showed quite good correspondence with
experiments [34].

4.2.4. Cell-free layer

Cell-free layer (CFL) is a fluid layer close to the channel wall void of RBCs.
In Poiseuille flow, CFL forms due to a hydrodynamically-induced lift force
on RBCs close to a wall [2, 7, 68] leading to their migration toward the tube
center and leaving a near-wall fluid layer free of RBCs. Fluid viscosity in the
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CFL region is similar to that of plasma, whose viscosity is considerably lower
than the effective viscosity in the tube center populated by RBCs. Thus, a
CFL serves as an effective “lubrication” layer for the RBC core to flow and its
thickness is directly associated with the resistance of blood flow.

4.2.5. Simulation setup

The simulation setup contains a single periodic cylindrical channel with a
diameter D = 20 µm or 40 µm and the length of L = 60 µm. The channel is
filled with fluid particles and suspended RBCs. The average plasma viscosity
under healthy conditions is assumed to be η = 0.0012 Pa · s. For simplicity,
the fluid viscosity inside a RBC is set to be the same as that of blood plasma.
However, we also provided simulations with viscosity contrast 5, where RBC
inner fluid (cytoplasm) has viscosity 5 times higher, than outer fluid (plasma).
The flow is driven by a constant force f applied to each solvent particle, which
is equivalent to a constant pressure gradient ∆P/L = fn, where ∆P is the
pressure drop and n is the number density of solvent particles. To characterize
the flow we define an average (or pseudo) shear rate ¯̇γ as

¯̇γ = v̄/D, (4.1)

where v̄ = Q/A is the average flow velocity with a volumetric flow rate Q
through a cross-sectional area A = πD2/4.

Before the start of flow, RBCs are distributed almost randomly in the tube
as shown in Fig.4.1(a). This distribution is achieved by running a simulation
without a flow for some time, which allows RBCs to diffuse and reach their
equilibrium distribution. After that the flow is started and the development of
CFL is measured in time as RBCs migrate away from the wall. For comparison
Fig.4.1(b) illustrates the distribution of RBCs for D = 40 µm, Ht = 0.3, and
¯̇γ = 298 s−1 after the blood flow has been fully developed. Clearly, RBCs have
migrated toward the channel center yielding a CFL near the wall.
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Figure 4.1.: Simulation snapshots for D = 40 µm and Ht = 0.3. (a) Before the flow is
applied, RBCs are distributed nearly randomly in the tube. (b) After the flow
has converged for ¯̇γ = 298 s−1. The CFL region can be clearly seen.
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Figure 4.2.: Development of the CFL thickness in time after flow has been started for
the case of Ht = 0.3 and D = 20 µm. The time is normalized by the
pseudo-shear rate. (a) The CFL thickness evolution for different pseudo-shear
rates. (b) The same set of data as in plot (a) with all curves normalized by
the plateau value of the CFL thickness δf at large ¯̇γ. The inset in (b) is a
log-log plot illustrating a power-law behavior of the CFL curves at small t¯̇γ.
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4.3. Results

4.3.1. Cell-free layer evolution

We first investigate the development of the CFL in blood flow. Already in
the absence of flow, a non-zero CFL thickness is measured due to the entropic
repulsion (e.g., due to hindered rotational motion) between RBCs and the tube
wall. In addition, since we consider relatively small vessel diameters, a non-zero
wall curvature prevents RBCs from fully conforming with its cylindrical shape,
which also results in a non-zero CFL thickness. After the flow is started, RBCs
migrate away from the wall, and the development of the CFL is monitored in
time. Figure 4.2(a) shows the evolution of the CFL thickness δ(t) for different
driving forces (or pressure gradients) for the case of Ht = 0.3 and D = 20 µm.
The time is normalized by the ¯̇γ value of the fully-developed flow. The CFL
curves show a rapid increase of the CFL thickness up to about t¯̇γ ≈ 25 followed
by a plateau, which we will also refer to as a final CFL thickness δf . The values
of δf are larger for higher flow rates; however, the growth is clearly limited by
excluded-volume interactions between RBCs in the flow core and is expected
to approach a constant value for large ¯̇γ.

Fig. 4.2(b) presents the same CFL curves with their plateau values scaled
by δf . The scaled CFL curves appear to be similar indicating that the shear
rate ¯̇γ is the only relevant time scale here. Thus, the development of CFL
for Ht = 0.3 is mainly governed by shear forces in flow. A similar conclusion
can be drawn for low Ht supported by our simulation data for Ht = 0.15 (not
shown here) and for higher Ht shown in Fig. 4.3. Some discrepancies between
the curves in Figs. 4.2(b) and 4.3(b) for different shear rates indicate that there
may exist a second relaxation time. The initial fast time scale is governed by
¯̇γ and corresponds to RBC migration away from the wall as it was discussed
before. The second time scale is related to cell-cell interactions in flow such that
RBCs in the core of the flow have to re-arrange and reach a denser flow-induced
packing. This time scale is slower than that for RBC migration, and appears
to be more noticeable for larger Ht values. This process is also illustrated in
Fig. 4.4 by the development of hematocrit profile for Ht = 0.45. While the
initial shift of the local hematocrit curve away from the wall is rather rapid,
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Figure 4.3.: Development of the CFL thickness in time after flow has been started for the
case of Ht = 0.45 and D = 20 µm. The time is normalized by the pseudo-
shear rate ¯̇γ. (a) The CFL thickness evolution for different pseudo-shear
rates. (b) The same set of data as in plot (a) with all curves normalized by
the plateau value of the CFL thickness δf . The inset in (b) is a log-log plot
illustrating a power-law behavior of the CFL curves at small t¯̇γ.

the further development of local RBC density in the bulk appears to be slower.
However, the convergence of the CFL to δf is nearly independent of hematocrit
(Ht ≤ 0.45) and occurs within t¯̇γ ≈ 25.

To verify that the conclusions made so far do not change significantly for a
different vessel diameter, we performed a number of simulations for D = 40 µm.
The corresponding CFL dynamics is shown in Fig. 4.5 for different Ht values.
The convergence of CFL thickness is reached by the time t¯̇γ ≈ 25, in agreement
with the simulation data for D = 20 µm.

4.3.2. Effect viscosity contrast

RBCs are more likely to show a TB motion than TT , when the inner fluid is
more viscous than the outer one. Tumbling RBC as a subject to a weaker lift
force, than under tank-treading [68]. As a result, the CFL convergence under
flow fora physiological viscosity contrast takes longer, than for RBCs with the
viscosity contrast λ = 1. Results for the case where RBCs have a viscosity
contrast λ = 5 are shown in Fig.4.6(a).

The CFL becomes thicker in this case. On the other hand, simulations with
separated inner and outer fluids of the same viscosity contrast still show thicker
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Figure 4.4.: Development of the hematocrit profile in time after flow has been started
for the case of Ht = 0.45, D = 20 µm and ¯̇γ = 117 s−1 . Different lines
correspond to different times.
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Figure 4.5.: Development of the CFL thickness in time after flow has been started for the
case of D = 40 µm and different Ht values. The time is normalized by the
pseudo-shear rate ¯̇γ.
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CFL for the TT motion rather than for TB motion. The result has a good
physical explanation, because the lift force acts stronger on TT RBC, than TB
one.
An another interesting observation is that after a rapid growth of the CFL,

RBCs “packing” in the center takes longer than for the system with a viscosity
contrast 1.
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Figure 4.6.: D = 20 µm and Ht = 0.3: (a) CFL development over time for the simulations
with viscosity contrast. (b) hematocrit distribution across the channel for
simulations with and without viscosity contrast.

The hematocrit distribution across the channel looks also differently: Fig.4.6(b).
As we can see, RBC are occupying not exactly the center of the channel, but
an intermediate area. That arrangement might be, possibly, because the higher
RBC viscosity makes them more difficult to squeeze between each over and
increases the role of cell-cell interaction.

The comparison of CFL dynamics for permeable and non-permeable vesicles
also brigs an interesting result (Fig 4.7). The green dash-dot-dot line depicts
the dynamics of RBSs with permeable membrane. The CFL here converges
much faster, the for blue and red lines, which stay here for non-permeable
membranes. Blue line shows the dynamics of RBCs with λ = 5, red line -
λ = 1. TT RBC Converge first stage of CFL faster, than TB. However, the
lines coincide close to the end. That might mean, that at the channel center
packing and ”bumping“ play more role, than lift force.
As a result, RBCs with a viscosity contrast of 5 make relative viscosity of

simulated blood lower, and intensify the Fahreus-Linquist effect. A thicker
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CFL results in a lower flow resistance. On the other side, the CFL convergence
time for a larger viscosity contrast appears to be longer, so that a blood vessel
should be long enough to take the advantage of a thicker CFL.
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Figure 4.7.: Comparison of CFL dynamics for permeable (green dash-dot-dot line) and
non-permeable vesicles (blue solid and red dashed lines). Difference between
blue and red lines is different viscosity contrasts: 5 for blue and 1 for red.
RBCs with higher viscosity contrast develop CFL slower.

4.3.3. Effect of RBC aggregation

The presence of aggregation interactions between RBCs leads in general to a
larger CFL thickness. Figure 4.8 compares the development of CFL thickness
for the cases with/without aggregation interactions. Initially, the CFL for
the simulations with RBC aggregation seems to develop similarly to the cases
without RBC aggregation present. However, attractive interactions between
RBCs lead to a larger final CFL thickness δf in comparison with that without
aggregation. The dynamics of CFL development appears to be not significantly
affected by the presence of RBC aggregation such that δf plateau is roughly
reached at t¯̇γ ≈ 25, independent of RBC aggregation properties. Note that the
strength of RBC aggregation used here corresponds to normal aggregation level
in blood under healthy conditions [34], and stronger aggregation interactions
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between RBCs, which may be present in some blood diseases and disorders,
may alter the conclusions. However, we expect that effective attraction between
RBCs should shorten the time for CFL convergence rather than extend it and
therefore, the estimated CFL development time should become even faster
for stronger RBC aggregation present. Finally, at high enough flow rates
(¯̇γ & 50 s−1 for the healthy aggregation level) RBC aggregation should not
make a significant contribution to blood flow properties [34], see also Fig.
4.9(a).
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Figure 4.8.: Effect of RBC aggregation. CFL development over time for blood flow
with/without RBC aggregation interactions. D = 20 µm and Ht = 0.3.

4.3.4. Theoretical model for CFL

The importance of CFL thickness is its direct correlation with blood flow
resistance. The larger the CFL, the lower the resistance to blood flow will be,
which has been found in the Fahraeus-Lindqvist effect [38]. The final CFL
thickness δf increases with flow rate and channel diameter as illustrated in Fig.
4.9. Also, RBC aggregation enhances the CFL at least at small enough flow
rates. The final CFL thickness δf is a consequence of the lift force on RBCs
driving them away from the wall [2, 7, 68] and cell-cell interactions or collisions
in the bulk of flow dispersing the RBCs. Thus, to describe δf with respect to
different shear rates theoretically, the lift force on RBCs, which compresses the
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Figure 4.9.: CFL thickness for a converged flow for different flow rates and channel
diameters. (a) Final CFL thickness δf for D = 20 µm. Solid lines correspond
to simulations with aggregation interactions between RBCs, while the dashed
lines are simulations without RBC aggregation. (b) Final CFL thickness δf
for D = 40 µm.

cell core of the flow, should be balanced by an effective pressure due to collisions
in flow. Following the idea based on an effective temperature in Ref. [110], a
particle pressure Π in a sheared colloidal suspension can be described as

Π = n(kBT + csηeff γ̇Vr)Z, (4.2)

where n = Ht/Vr is the RBC number density, cs is a constant, ηeff is an effective
suspension viscosity, γ̇ is the shear rate, and Z is the compressibility. The first
term in Eq. (4.2) corresponds to the thermal contribution of pressure, while the
second term represents the shear-induced component due to particle interactions
or collisions in flow [39, 45, 60]. The compressibility Z for a suspension of
spherical colloids has a number of different theoretical approximations, where
that by Carnahan & Starling [8] is perhaps the most successful one with

Z(φ) =
1 + φ+ φ2 − φ3

(1− φ)α
, (4.3)

where φ is the particle volume fraction and α = 3. For RBCs, the compressibility
Z is likely to increase slower with φ than that for rigid spheres, so that α is
likely to be smaller than 3. However, exact details are not so important here,
since our goal is a semi-quantitative approximation of CFL.
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The particle pressure inside the flow core is balanced by the surface pressure
Πs, which arises from a hydrodynamic lift force on RBCs and an entropic
repulsion of RBCs from the wall due to hindered rotational motion. The
entropic repulsion force can be approximated as Fe = kBT/h (e.g., for a rigid
disk), where h is the distance from cell’s center-of-mass to the wall. This force is
only important at distances smaller than the disk radius and at very low shear
rates (¯̇γ < 1); for instance, it provides a non-zero CFL thickness in absence
of flow. Here, we omit any dependence of Fe on the shear rate (in general,
Fe should reduce with increasing shear rate), since its contribution becomes
negligible in comparison with the lift force already for ¯̇γ ≥ 1. Thus, the surface
pressure can be approximated as

Πs =
Fe + Fl
D2
r

=
kBT

hD2
r

+
clηoγ̇D

2
r

h2
, (4.4)

where Fl is the lift force [13, 45, 68, 103] and cl is a constant. In general,
the lift force would depend on particle properties (e.g., rigidity, viscosity
contrast between inner and outer fluids) and its dynamics (e.g., tank-treading
or tumbling, inclination angle), so that Eq. (4.4) should be considered as an
expression which captures general trends of a lift force on RBCs. The balance
between these two pressures (Πs = Π) allows us to describe semi-quantitatively
the CFL thickness for different shear rates. As an approximation in both Eqs.
(4.2) and (4.4), we assume γ̇ = ¯̇γ of the tube flow, while ηeff in Eq. (4.2) is
calculated according to the empirical relations for blood flow in tubes [85]. Also,
for the compressibility Z in Eq. (4.3) we assume α = 2, since a suspension
of RBCs should be more compressible as that of hard spheres. Figure 4.10
presents the simulation data for δf against fits of the theoretical model with
cs = 10−4 and cl = 10−3. The symbols correspond to simulation data, while
the solid lines with corresponding colors are fits by the theoretical model. In
spite of the simplicity of the model, the theoretical fits describe the data quite
well, especially for a fixed diameter D = 20 µm and different Ht values. The
agreement for different diameters and Ht = 0.3 is less satisfactory.
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4.4. Discussion

Our simulations show that the initial rapid RBC migration away from the
wall is nearly independent of the various conditions, such as hematocrit and
flow rate, when scaled with the characteristic shear rate. This indicates that
initially the shear rate is the only relevant time scale for the RBC migration.
An experimental investigation of vesicle migration away from a wall [13] has
shown that vesicle displacement ∆y follows a power-law behavior ∆y ∼ tβ. A
log-log plot of the CFL development curves shown as an inset in Figs. 4.2
and 4.3 indicates that the initial rapid CFL-thickness increase is close to a
power-law behavior with an exponent of about 1/3, which is consistent with
the fact that Fl ∼ 1/h2. Thus, the initial migration of RBCs is similar to
the migration of single cells. After that the RBC migration slows down and
another time scale corresponding to the relaxation of RBC core due to cell-cell
interactions becomes relevant. This can be seen better for the case of Ht = 0.45

in Fig. 4.3, where cell-cell interactions affect the CFL convergence. However,
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for all investigated hematocrits (Ht ≤ 0.45) the rearrangement process of RBCs
in the flow core only weekly affects the time for CFL convergence as shown in
Figs. 4.2 and 4.3.

Another important conclusion, which can be drawn from the CFL develop-
ment results, is that the length of blood-flow convergence to steady state is
practically independent of the flow rate. Thus, for physiological hematocrits, in-
cluding those for normal microvascular blood flow [61,84], the flow convergence
time is equal to about tc ≈ 25/¯̇γ = 25D/v̄. Then, the length required for the
flow to converge is lc ≈ v̄tc = 25D. For instance, for D = 20 µm, lc ≈ 0.5 mm,
independently of the flow rate and Ht.

The estimation of the convergence length for blood flow has direct implic-
ations for quantifying this effect on the flow resistance in microcirculation.
Microcirculatory blood flow is not always steady, since, for instance, the dis-
tribution of RBCs in a vessel cross-section can be significantly distorted at
bifurcations leading to a diminished CFL and an increase in the flow resistance.
Following the flow development after a dispersion of RBCs, we can estimate
an effective increase in resistance. For this purpose, we divide a length L of
the channel into a number of slices of thickness ∆x. Then, the pressure drop
∆P (xi) at every slice i is equal to

∆P (xi) =
128Qη(xi)∆x

πD4
, (4.5)

where η(xi) is the effective viscosity at a slice i, which is a monotonically
decreasing function of x as x→ L, since the CFL develops and its thickness
increases. When, the CFL thickness comes to a plateau value, the local effective
viscosity would also saturate. On the other hand, ∆P = (128QηeffL)/(πD4) =∑

i ∆P (xi). Thus, the effective viscosity over the channel length L can be
expressed as

ηeff =
1

L

∑
i

η(xi)∆x ≈
1

L

∫ L

0

η(x)dx = η. (4.6)

The effective resistance over the channel length L characterized by ηeff will
mainly depend on L and the initial dispersion of RBCs which would affect
η(0). The performed simulations corresponds to the worst-case scenario of
RBC dispersion, since they are allowed initially to diffuse and fill up the full
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channel cross-section. Therefore, the maximum value of η(0) can be estimated
as the bulk viscosity of blood for a given tube Ht, which is normally several
times larger than the plasma viscosity for physiological Ht values. However,
the RBC core distortion past vessel bifurcations in blood flow is likely to be
less than that assumed initially in simulations and hence, η(0) is generally
expected to be even smaller in microvasculature. With respect to the vessel
length L, the effect of potential RBC dispersion can be practically neglected if
L� 25D; however, it may noticeably increase the flow resistance if L is smaller
than or comparable to 25D, which is an approximate CFL convergence length.
Characteristic lengths of microvascular vessels between bifurcations [81] are on
the order 0.5− 1 mm. Thus, the contribution to blood flow resistance due to
the potential RBC dispersion at vessel bifurcations and junctions is expected
to be rather small for vessels with diameters D . 20 µm, while in vessels with
larger diameters this contribution should be significant.
Aggregation interactions between RBCs lead to a reduction of blood flow

resistance evidenced by the increased terminal CFL thicknesses in Fig. 4.9(a).
The corresponding flow resistances characterized by the relative viscosity are
shown in Fig. 4.11. The relative viscosity is defined as ηrel = Qplasma/QRBC ,
where Qplasma corresponds to the rate of flow of plasma without RBCs, while
QRBC is the flow rate of blood for the same pressure gradient. Analogously,
ηrel = ηapp/η, where ηapp is the apparent blood viscosity in tube flow. The
curves in Fig. 4.11 demonstrate that aggregation interactions in blood lead
to a decrease in flow resistance, at least at the low flow rates which would be
relevant in the venular part of microcirculatory blood flow. It is also likely that
the aggregation interactions between RBCs would lead to a lower distortion
of RBC flow core at bifurcations further contributing to the reduction of flow
resistance.
Finally, the theoretical model for the δf thickness confirms that the main

mechanisms for CFL formation are the lift force which drives RBCs away from
the wall and the shear-induced pressure due to cell-cell interactions in flow
which disperses RBCs. Thus, δf corresponds to a CFL thickness when these
two driving forces balance each other. The value of cs for RBC suspension is
considerably smaller than that estimated for colloidal suspensions (cs = 1/9)
in Ref. [110]. This might be due to an alignment of RBCs in flow such that
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Figure 4.11.: Relative viscosity (the ratio of blood apparent viscosity to plasma viscosity)
of blood flow for different Ht values, flow rates, and RBC aggregation.
D = 20 µm. The data are shown by solid lines for systems without
aggregation interactions and by dashed lines for the simulations where RBC
aggregation interactions were present.

the effective particle size for inter-cell collisions is much reduced. Another
uncertainty comes from the assumption for the function Z whose value might
be well overestimated. The value of cl in this work also appears to be much
smaller than that suggested for single vesicles (cl ≈ 0.1− 0.2) in Refs. [68, 103].
A reduction in lift force is likely to happen due to the alignment of RBCs in
flow and their increased concentration. However, the ratio of the constants cs
and cl, which determines the value of δf at large ¯̇γ, is not very far from the
above estimations [68,103,110]. Due to a number of simplifying assumptions,
the discrepancies between the δf values and the fits in Fig. 4.10 are not
entirely surprising and can be easily alleviated by changing the constants cs
and cl, which are likely to be sensitive to different RBC dynamics and local
concentration. Finally, following these arguments we can often anticipate the
changes in CFL thickness and flow resistance. For example, for rigidified RBCs
the lift force should be considerably reduced, and therefore, it should result in
a smaller CFL thickness. Also, more spherical suspended cells and/or particles
than RBCs are also subject to a reduced lift force from the wall.
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4.5. Summary

4.5. Summary

We have investigated the development of CFL in blood flow starting from
a fully dispersed cell configuration. RBCs migrate away from the wall due
to a lift force which arises from cell-wall hydrodynamic interactions. The
convergence of CFL thickness toward a constant δf value at steady-state flow
appears to be nearly universal if scaled with the average shear rate, and the
corresponding power-law behavior is similar to that of a single vesicle migrating
away from a wall. Aggregation interactions between RBCs lead to a larger
CFL thickness in comparison to the flow where attractive interactions between
cells are absent. The final CFL thickness δf is well described by a theoretical
argument that at steady state a balance between lift forces on RBCs and
shear-induced effective pressure due to cell-cell interactions in flow exists. The
theoretical model describes quite well the δf dependence on shear rate in spite
of many simplifying assumptions made.
Our results allow us to estimate the effect of a reduced CFL thickness on

blood flow resistance which may occur, for instance, at vessel bifurcations where
RBC can get dispersed. The universality of CFL convergence with respect
to flow rate results in the estimation for the vessel length lc required for full
CFL development to be approximately 25D. Thus, in vessels with a length
comparable or shorter than 25D the effect of RBC dispersion on the flow
resistance might be considerable, while in much longer vessels this effect may be
neglected. Quantitatively, this effect can be taken into account by averaging the
effective fluid viscosity η(x) along the vessel length, which is directly associated
with the CFL development. Finally, the presented results are not only relevant
for blood flow, but also for a flow of suspension of deformable particles such
as vesicles, capsules, and cells. Their migration mechanisms are expected to
be similar, even though quantitatively the current predictions may be altered,
since the lift force and shear-induced pressure depend on the properties and
dynamics of specific particles. We hope that the presented results will trigger
further investigations of such systems in order to better understand their flow
properties.
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5. Segregation mechanism of
multicomponent suspension
under flow

5.1. Introduction

Blood consists of plasma, red blood cells (RBC), platelets and white blood
cells (WBC). The cells are suspended in plasma. Under normal conditions,
humans have about 45% of RBC by volume, in blood and much less WBCs
and platelets. Thus, blood can be considered as a multicomponent suspension,
where some types of particles might be in the near-wall region, while overs stay
at the center.

The near-wall region is interesting from the particle-adhesion standpoint,
since particles in that region can interact with the wall, and potentially be
transported to tissues through the vessel walls. Otherwise, if particles always
occupy the center region, they will be simply carried further by the flow. Thus,
the region is interesting for drug delivery, and if we can predict the behavior of
different particles in blood flow, we can construct more efficient drug carriers.

Due to differences in shapes, stiffnesses and sizes, particle segregation phe-
nomena in blood under flow can occur. For example, Fig. 5.1 a) shows, that a
large particle might be pushed toward the vessel wall by RBCs. In the other
example in Fig. (5.1 b)), we see that small particles also end up in the near-wall
region. Different shapes and sizes of nano- and micro-carriers have been used
to investigate the migration of particles in blood flow numerically [72] and
experimentally [17,47,102], in order to identify good particle characteristics for
drug delivery.
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5. Segregation mechanism of multicomponent suspension under flow

Figure 5.1.: a) Snapshot of the simulation from Ref. [30]. At high hematocrits RBCs are
pushing a WBC to the wall, while at low hematocrits a WBC stays in the
center. b) Snapshots of the 3D and 2D simulations from Ref. [72]. RBCs are
located mainly at the center of the channel, while platelets are pushed to the
wall.

Our main target here is a theoretical explanation of the segregation phe-
nomena using Fokker-Planck equation. The equation connects the particle
distribution, with a force acting on particles and their diffusion across the
channel. Measuring the force, diffusion and distribution of particles, we can
verify weather the Fokker-Planck equation properly describes the segregation
phenomenon. This result would indicate that particle drift force and its local
diffusion are the two main mechanisms for the segregation in flow.

Considering a two-component suspension under Pois1euille flow. Measured
any two of the parameters, the third one can be extracted from the Fokker-
Planck equation. For example, blood particles distribution across the channel
in a converged flow can be measured experimentally. Next, the force profile or
diffusion across the channel are needed. It is also not very difficult to measure
the force acting on every particle in simulations, because it is calculated every
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time-step for equations of motion. To measure the diffusion constant profile, we
will need another simulation to eliminate the lift force effect. This can be done
with Lees-Edwards boundary conditions [58]. Modeling different hematocrits
and flow rates we can measure particle distribution at various conditions, and
then use it in the discretized Fokker-Planck equation.
Additionally, we investigate the diffusion of soft particles depending on

different hematocrits and shear rates. It is known, that for rigid spheres in
simple shear flow the effective diffusion constant can be estimated through
a collision frequency in the flow or so-called particle-particle collisions [6, 60].
This estimation gives D ∼ φγ̇, which means the more particles in the unit
volume φ, the more collisions a particle has, the higher diffusion constant is
found. And there is a higher probability for a particle to be "kicked" under
high shear rates γ̇.

5.2. Models & Methods

5.2.1. Fokker-Planck equation

The Fokker-Planck (FP) equation describes particle distribution depending on
the force acting on particles, and diffusion profile across the channel. Also, it is
known as Kolmogorov forward equation, introduced by Andrey Kolmogorov [56].
In application to particle distribution it is called Smoluchovski equation. Any
two-component suspension in flow can segregate. In simulations, we can measure
all components of the FP equation including the force on a particle, the diffusion
profile and the particle distribution profile. Our idea is to plug in the simulation
results onto the Fokker-Planck equation.

After the flow in a microchannel has converged, we can consider the system
to be in steady state. Therefore, we can neglect the left part of the FP equation.
Thus, we verify stationary properties including particle distribution, force
profile, and diffusion profile. It is known, that blood viscosity increases with
increasing hematocrit. This means, that blood viscosity across the channel is
also not constant, because the lift force on RBCs is pushing them away from
the wall. As a result, we have a plasma layer in the near wall region and high
hematocrit at the channel center.
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5. Segregation mechanism of multicomponent suspension under flow

After obtaining these measurements from simulations, we can numerically
solve the equation to verify if the FP equation corroborates the simulation
results. For that we have performed 2D DPD simulations with RBCs and other
suspended (target) particles in Poiseuille flow.

5.2.2. Fluid model

The model of the fluid flow has been performed using DPD [22] method, as
described in Chapter 2.

5.2.3. Model of blood cells

RBCs and target particles are modeled as closed bead-spring chains (Fig.
3.1), which incorporate also bending rigidity and area constraint. Each RBC
includes 100 beads while target cells are made from 50 particles. Target cells
have diameters of DRBC/8, DRBC/4 and DRBC/2 in different simulations. 2D

model of the cells, made from DPD particles is coupled to the background fluid
via DPD interaction.

5.3. Results

We will focus on blood flow behavior in microchannels. Figure 5.2 shows a
snapshot of the simulation setup of RBCs and target cells in Poiseuille flow.
Here, RBCs are more flexible, and have a larger area than target cells. Both
deformability and larger size of RBCs lead to a larger lift force in comparison
to that on target cells.

Every time-step we collected the force acting on every target particle across
the channel from the equations of motion. Measured force profile for the target
particles across the channel is shown in figure 5.3(a). We can see, that a particle
undergoes strong lift force close to the walls (coordinate 0 and 40). However,
other parts of the force profile (coordinates 8 and 33) have the opposite direction.
There, target cells are pushed away from the channel center by the RBCs. So,
the target cells experience different interactions: one from the lift force and
another from RBCs. These interactions result in a distribution profile of the
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Figure 5.2.: Snapshot of the simulation setup. RBCs and target cells of diameter Dc = 4
µm in the Poiseuille flow.

particles in Poiseuille flow, figure 5.3(b). This plot clearly shows that RBCs
are located mainly at the channel center. The target cells are primarily located
near the walls, however there is a probability of finding them at the channel
center.

Figure 5.3.: (Left) Acting force on target particles across the channel. (Right) Distribution
of the target particles (black line) and RBCs (red line) across the channel.

We have to add that calculated force profile is not correct directly at the
walls, because particles are depleted due to a finite size. We know from previous
studies [68] that the lift force decays as a power law with a distance from the
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5. Segregation mechanism of multicomponent suspension under flow

wall. Therefore, the absolute value of the force for a point-like particle is highest
at the wall, without a decay to zero. Confirmation of that we can see in the
density distribution in Fig. 5.3(Right) - such that there are no particles very
close to the walls.
Now we know the force on and the distribution of target particles, so the

only thing missing is the diffusion across the channel. The diffusion constant in
X-direction is reconstructed via multiple simulations with a single target particle
in RBCs in shear flow (figure 5.4) using Lees-Edwards boundary conditions [58].
These conditions were taken to eliminate the presence of lift force and measure
diffusion (no walls - no lift force). By varying shear rates and hematocrit values,
we reproduce different shear planes of the Poiseuille flow in the X-direction.

Figure 5.4.: Snapshot of the simulation setup of diffusion measurements. RBCs and a
target cell are in simple shear flow.

The resulting plots (Fig. 5.5, 5.6) show, that diffusion grows with increasing
hematocrit and shear rate. For low hematocrit values, the diffusion change with
shear rate is not very dramatic, as for high hematocrits. This can be explained
by the increase of particle collision frequency with other particles in flow. The
more collisions per unit time we have, the higher diffusion constant should be.
This result is consistent with the previous studies using colloids [6] and with
experimental results in Ref. [45]. The latter also shows that diffusion constant
decreases with decreasing shear rate and hematocrit, or with frequency of pair
interactions D ∼ γ̇φ, where φ is particle concentration. However, at high
concentrations the cell-cell interactions are estimated to be more significant
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and take the dependence of φ2 instead.
For a two-component suspension in bounded simple shear flow, a detailed

theoretical model was developed in Ref. [94] similar to the FP equation. In
this study, the resulting differential equation predicts well the segregation
development of the two-component suspension which has been also corroborated
by boundary-integral simulations.
The main result of this section is shown in figure 5.7. We can see, that the

theoretical curve is very close to the simulation one. This result indicates,
that segregation of multicomponent suspensions can be described well using
the Fokker-Planck equation. However, there experimental confirmation for the
segregation is still very difficult. Even though density distribution profile can
be measured directly after a flow is converged, diffusion constant and force
profiles are not easy to obtain.

Figure 5.5.: Diffusion constant (D) of a target cell for different heamtocrit values (Hem)
and the shear rates. The figure on the left displays a linear trendline.

5.4. Summary

We have investigated particle distribution of a two-component suspension at
low Re in Poiseuille flow. In Poiseuille flow every flexible nonspherical particle
is pushed away from the wall by the lift force. Also, at the channel center
we can observe multiparticle collisions (cell-cell) interactions. The lift force
and cell-cell interactions are considered as two governing mechanisms in the
segregation phenomenon. Moreover, the lift force and cell-cell interactions
compete in the flow.

65



5. Segregation mechanism of multicomponent suspension under flow

Figure 5.6.: Diffusion constant depending on shear rate and hematocrit value for a target
cell.
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Figure 5.7.: Theoretical (red) and simulation (black) results. On the left target cell has
Dc = 4 µm, on the right Dc = 1 µm.

The Fokker-Planck equation has been used to verify these two mechanisms.
We showed that segregation phenomena of a multicomponent suspension can be
described well by Fokker-Planck equation. Thus, if two profiles from probability
distribution, diffusion constant, and force across the channel are known, we
can obtain the third one. These results are similar to theoretical studies in
ref. [94], where the non-canonical diffusion-drift equation leads to two partial
differential equations for the distribution of a two-component suspension under
simple shear flow.
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5.4. Summary

Additionally, we examined diffusion behavior of target cells suspended in
blood. Our results show, that diffusion increases linearly with increasing shear.
This outcome is consistent with that for colloids [6]. Also, we found that the
diffusion is larger at high hematocrits, which has been shown experimentally [45].
This can be explained by cell-cell interactions within the flow, as D ∼ γ̇φ for low
concentrations, andD ∼ γ̇φ2 for high concentrations, where cell-cell interactions
become more important in comparison to the shear rate.
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6. Simuation of complex
geometries

6.1. Introduction

In order to simulate more realistic vessel geometries in the vasculature, open
boundary conditions (BC) are needed. Periodic boundary conditions (PBC) are
useful for simulating straight tubes, or periodical structure/vasculature. How-
ever, it might become computationally expensive and unrealistic to reproduce
a symmetric image of the system, only to be able to use PBC. For example,
to measure reliable RBC distribution in a channel after passing a bifurcation,
we should make the parent and daughter channels long enough to have the
flow converged (∼ 25Dc) and then make another setup mimicking the mirror
reflection, only to fulfill the PBC (figure 6.1). For this reason, we started to
develop so-called “in- and out-flow” boundary conditions (IOBC), in order to
simulate complex vascular structures and save computational time.
Such a simulation method can be tested using microscope images or MRI

results by a simulation of the blood flow in a small piece of body tissue, e.g.
liver. Moreover, it can be combined with a continuum fluid model, in order to
construct a multi-level blood-flow simulation, where the arterial blood flow is
simulated by the continuous model and the microcirculation by the mesoscale
method.

6.2. Outflow boundary conditions

The outflow BCs were introduced in Ref. [59] for the DPD method. Let us
consider a tube flow as in figure 6.2. Before the “plane Q” the tube is divided
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6. Simuation of complex geometries

Figure 6.1.: Simulation snapshoot of a model of a vascular branching. The fluid with
RBCs flows from left to right with PBC.

Figure 6.2.: Schematic explanation for in- and outflow boundary condition for a tube flow.
From Ref. [59].

into two areas (A and B in the figure), in which velocities of particles are
compared. In a fully developed flow, the difference between average particle
velocities in both domains must be zero. Thus, we should apply the adaptive
force for the several first time-steps to get the fully developed flow. After that,
the force is switched off.

The idea for the force is to make flow converge at the outflow surface (“Pseudo-
plane Q” in Fig. 6.2), using adaptive forces similar to that from the Section
2.5. The outflow-surface is a plane that closes the end of the simulation tube
or microchannel, and particles which cross the plane are deleted. To control
the flow rate and minimize velocity differences between the two areas (A and

70



6.2. Outflow boundary conditions

B in the figure), we apply the adaptive force on the particles near the outflow:

fkout(h) = βk(1− h/r0)p + γkfpress(h),

βk+1 =
q∑

σ=0

βk−σ + ξ(vkA − vkB),

γk+1 = γk +K(φk − φ0)

(6.1)

where the first part of the force removes the velocity difference between areas
A and B, and the second controls the flow rate at the “plane Q”. Here, k is
the iteration number, ξ is the relaxation parameter, and βk is the adaptive
coefficient. Also, h is the distance from a particle to the outflow boundary,
and r0 is the thickness of the domains. r0 is usually taken to be the cut-off
radius in the DPD method. vA and vB are average particle velocities in the
domains. The parameter p defines the strength of the adaptive force and equal
is to p = 6. This value is calculated as a best fit for a decay of the dissipative
force from a DPD particle on the surrounding particles within the distance rc.
The number of relaxation steps to be considered, q, is calculated as follows:

qk+1 =



qk + 1, if nk < n− δn

qk, if n− δn < nk < n+ δn

qk − 1, if nk < n+ δn

(6.2)

where nk is the mean number density at kth step and, δn is an accepted density
deviation.

The other part of the adaptive force controls the flow rate at the “plane Q”.
Here, φk is the instantaneous outflux and φ0 is desired the outflux value which
is calculated depending on the flow parameters.

The force fpress(h) mimics the repulsion from the particles on the right side
of the “plane Q”, similar to that from a wall made of frozen particles. The
fpress(h) on a particle i is calculated as an integral of the repulsive DPD force
multiplied by the radial distribution function over the semi-sphere around the
particle:
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fpress =

∫
Vs

FC(r)g(r)dV, (6.3)

where g(r) is the radial distribution function.
The fluid particles are deleted at the outflow surface to fulfill a volumetric

flow rate which is calculated depending on the flow properties. If simulated,
RBCs or other particles will be also deleted entirely after the last particle of
the membrane crosses the “plane Q”, to avoid problems with calculating the
total area, volume etc.

6.3. Inflow boundary conditions

At the pseudo “plane P” in figure 6.2 particles are inserted to mimic the inflow
of fluid. The inflow conditions depend on the fluid density and the flow velocity.
Thus, the product of the timestep, density, velocity and an area of the plane
gives us the number of particles NA to be inserted:

N i
A = N i−1

A + nδtdAvn,

N i
A = N i

A − 1, ifN i
A > 1.

(6.4)

where i is the simulation step, n is the number density of a fluid, and vn is the
local normal velocity for the local area dA at the inflow “plane P”. Velocity
of the inserted particles for the tube is calculated according to the parabolic
velocity profile:

vn(y) = vmax
(
1.0− (y/R− 1)2

)
, (6.5)

where vmax is the maximum velocity of the Poiseuille flow, and R is the channel
radius.

This number of particles is randomly inserted at the area dA of the “plane P”
with randomized velocities from Maxwellian distribution around the desired
mean value with know a temperature. Because of the thermal fluctuations,
particles might go in the wrong direction (to left in the figure), and therefore
the “plane P” is reflective from the right side. Such kind of insertion leads to
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the local number density fluctuations on the order of 5% because of the softness
of DPD interactions.
The same force fpress is acting on the fluid particles in the direction from

the left to right at of the “plane P”
In this IOBC method, the number of particles is not strictly conserved, since

the number of particles inserted is not connected to the number of particles
deleted.

6.4. Volumetric driving force

In principle, inserted particles should push the other particles towards the end
of the simulation domain because of the incompressibility. However, due to
compressibility artifacts in the DPD method, the fluid density is not uniform
along the channel. This situation is much better for simulations using the

Figure 6.3.: In- and outflow simulations: density profile along the channel. The fluid is
driven by the same volume force for DPD (purple line) and SDPD (green
line) methods. Channel diameter Dc = 10 µm, length L = 70 µm.

SDPD method, but it is still better to use a body force which act on every
particle in the fluid in addition to particles insertion to a desired flow rate (Fig.
6.3). A fluid with the same number density, viscosity and other parameters
but using different simulation methods (DPD and SDPD) was driven by the
same volumetric force. The DPD fluid is very compressible making the IOBC
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setup more difficult, than the SDPD fluid. If we decrease the volume force for
DPD method, we will have better density profile. Also, a higher fluid density
might be used to eliminate the compressibility problems, however, this leads to
higher computational costs.

In order to provide more natural results in our simulations, we compared
pressure and velocity fields for a fluid modeled with the continuous method
and the SDPD method. Comparison between a continuous fluid model solver
and our particle-based simulations for the SDPD fluid shows that there is no
significant difference in the way of driving the fluid: the whole fluid in the
general flow direction or depending on the direction of a particular branch
of the system. For complex geometries that means easier calculations of the
driving force and reliability of the method.

6.5. Inflow of RBCs

Until now only IOBC for fluid particles and outflow of RBCs have been
described. At the moment, we are developing BCs which would allow insertion
of RBCs into the system at the beginning of the channel. This requires an
insertion of RBCs under the conditions of the converged fluid flow. To make
the computations cheaper, we should eliminate the long part at the beginning
of the channel required for flow convergence.

An interesting approach was developed in Ref. [53]. The main idea is to use
a “preseeding periodic domain” with ghost particles which is a short straight
channel but is long enough to avoid an interaction of RBCs with their periodic
images. This domain is placed just before the beginning of the simulated
channel (Fig. 6.4). Once the flow in this generating domain is converged, the
ghost particles from the periodic domain after crossing the border are inserted
further to the right channel which is connected to a complex vascular structure.
Here, we also have the reflection BC from the right side of the insertion plane,
so that particles can flow only from left to right. Particles from the main
simulation domain do not act on particles in the generating domain, so that
the generating domain is completely independent from the main one.

In more detail, ghost particles from the region A2 (Fig. 6.4) are inserted into
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Figure 6.4.: Periodic feeding domain is located on the left of the main simulation domain.
Once the flow is converged in the feeding domain, the flow can be transfered
to the simulation domain on the right from the feeding part. Ref. [53].

the domain A4; particles from the A3 are inserted into the A1. The thickness of
the A3 and A1 domains is the cut-off radius taken in a simulation. The width
of the A2 and A4 domains is taken to be DRBC to copy the RBC completely
from left to right.
The insertion of RBCs is a bit more complex than that for fluid particles

because of the global area and volume constraints. We should insert an entire
RBC in order to avoid difficult problems with of the RBC topology, when only
a part of the RBC crosses the border. Thus, the whole RBC is duplicated
into the main domain, after the last particle of the membrane crosses the right
border of the domain A2. That provides us the natural insertion of RBCs and
fluid particles to the simulations domain without any conceptual problems.

6.6. Summary

We described the simulation method, which allows us to simulate complex non-
periodic vascular systems. First, the IOBC for fluid particles was presented. In
a non-periodic system, the outflow BCs are achieved by applying the adaptive
force which consists of two parts. The first part of the force controls the
flow rate at the outflow boundary, while the second part eliminates velocity
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difference in the region before the boundary. At the inflow BCs fluid particles
are inserted depending on the fluid density and the flow velocity in order to
achieve a desired flow rate.
We have also found that for the IOBC the SDPD fluid shows less density

fluctuations than a DPD fluid, leading to easier control of viscosity. Even
though, the insertion of particles at the inflow BCs should generate fluid flow,
the application of the body force to move the whole fluid appears to be a more
favorable method for the simulations.

Second, the inflow simulation method for the insertion of RBCs into a system
has been described. We set a preseeding generating domain with ghost particles
before the simulation’s inflow plane of the system. The generating domain
is a straight tube with PBCs. After the flow in the generating domain has
converged, the ghost particles are inserted into the main simulation domain.
This method allows us to implement a converged flow in the system from the
beginning without any additional adaptive forces.
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This thesis is dedicated to several problems concerning blood flow. Blood is a
very important body fluid, which has been always of interest to scientists. It
shows different behavior at different scales: in large arteries it might be con-
sidered as a viscous Newtonian fluid and described using continuous modeling,
while at mesoscales the particulate nature of blood becomes important. For
example, in capillaries, arterioles and venules blood flow the contribution of
blood cells become important. Blood cells are deformable and can be considered
as soft matter. Thus, to model blood flow properly the behavior of RBCs
has to be considered. At mesoscale RBCs significantly affect the flow, so that
theoretical and experimental investigations are needed to bring the answers to
complicated question about blood behavior.
Here, RBCs are modeled by a hexagonal bead-spring mesh [26] on 3D

simulations, coupled to the fluid which represents plasma. In 2D RBCs are
closed bead-spring chains. The 3D model has area and volume constraints,
an angular potential between every two connected edges of the mesh and
dihedral potential for every two neighboring triangles of the mesh. The 2D

representation has an area constraint and angular potential. The fluid particles
and all beads are simulated by means of SDPD for 3D models and using DPD
for 2D models.
Blood flow is simulated in straight channels with diameters from 10 to 100

µm - just in range, where the soft properties of blood are crucial. The length of
the channel is taken long enough in order to eliminate the interaction of RBCs
with their periodic images (typically 40− 80 µm). The RBC volume fraction
in simulated flows is 15− 45% which covers not only physiological hematocrit
values, but also brings a more systematic investigation of the flow behavior.

The dimensionless shear rate is taken in the range γ̇∗ < 90 to represent
venular flow rates, and γ̇∗ > 120 for arteriolar rate. These shear rates are still
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in low Re regime, so the inertial effects are negligible.
Under flow, hydrodynamic lift force acts on every non-spherical particle.

Lift force pushes cells or particles away from the wall, and depends on size,
flexibility and shape of a particle. Also, the lift force increases with increasing
shear rate. As a result, all RBCs occupy the central region of the flow, and
lead to so-called CFL - the region close to the wall void of RBCs. Because
blood contains not only RBCs and plasma, but also WBC and platelets, and
potentially nano- and micro-particles with drugs, the margination (segregation)
phenomenon can be observed. RBCs are more likely to occupy the center, so
that other particles are pushed toward the walls. This effect is interesting from
drug delivery point of view, because they should get marginated for adhesion
and then transmigrate through the vessel walls to the tissue.

In addition, the RBCs’ central positioning reduces vascular resistance, because
they move with a help of a "lubricating" plasma layer. We have investigated
the resistance of blood flow starting from a random RBC configuration and
followed by turning on the flow. This setup is chosen to mimic the RBCs
distortion at bifurcations in the microcirculation. When a converged blood flow
from a feeding vessel encounters bifurcations the RBC distribution is destroyed.
While RBCs are moving in flow, they migrate to the center and the CFL

develops. Once the flow is converged and cells do not significantly change
their distribution, the CFL thickness also converges and fluctuates around a
final value. Converged steady flow is the result of the balance between cell-cell
interactions and the lift force. The cell-cell interactions act to disperse the
RBCs, while the lift force forces them to get together.
An introduction of the attractive interactions between RBCs to mimic re-

uleaux formation, results in a thicker CLF for the same simulation setups. Due
to these interactions RBCs appear to be already grouped in the center of the
flow and aid the lift force to counterbalance the cell-cell collisions.
The dynamics of RBC in flow is similar for different hematocrits and shear

rates: a the rapid growth of CFL at the beginning is followed by a smooth
convergence to the final plateau value. The initial fast convergence is similar
to power law behavior for a single cell moving away from the wall. This shows
that the lift force acts at a relatively short distance from the wall, and thus, it
does not lead to a very thick CFL in wide channels.
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We found, that the vessel length of about 25D is enough for flow to converge
under physiological hematocrits for RBCs without viscosity contrast. For cases
with physiological viscosity contrasts between the inner RBCs fluid and plasma
the convergence length should be about 20 times longer. However, this is the
question of a further research. It is important to note that this result can
be different for altered RBCs, for example more rigid ones in malaria disease,
because the lift force for them would be weaker.

The proposed theoretical model for the CFL thickness based on the pressure
balance, confirms that the CFL dynamics can be considered as a competition
between cell-cell interactions and the lift-force in flow. However, due to the
simplifications made, the theoretical model does not cover all range of hemato-
crits. Moreover, there are no experimental works yet in order to compare the
RBC-core-flow convergence.

The central arrangement of RBCs causes margination of other cells present in
blood. The segregation of different particles in blood is an interesting topic since
the knowledge of segregation behavior for different cells can help in producing
better drug carriers, which would marginate in blood flow and result in their
efficient adhesion.
In the second part of the thesis, particle distribution in a two-component

suspension in Poiseuille flow is investigated. The segregation was simulated in
a 2D DPD setup using in 40 µm diameter channel. The segregation behavior
arises because different particles in flow undergo different lift forces and shear-
induced diffusion. As a result, one type of the particles can be found in the
center, while another one is close to the wall.
Segregation in blood is mostly caused by RBCs. Erythrocytes are highly

flexible and undergo tank-treading motion which results in a stronger lift force
acting on them. As a result, RBCs are more likely to be found in the middle
of the channel, while other cells are pushed away towards the walls. However,
this behavior may change. For example, at high hematocrits Ht > 45, RBCs
start preventing WBCs to be near the wall.
The Fokker-Planck equation has been used to verify the theoretical under-

standing of the phenomenon. If we assume that the equation properly describes
the process, then the force on and diffusion of particles should be sufficient
physical parameters to describe the segregation in flow. The force profile and
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7. Concluding Summary

particle distribution in cross-flow direction have been measured in Poiseuille flow
simulations. For the diffusion constant several simulations with Lees-Edwards
boundary conditions were performed, to mimic different hematocrits and shear
rates across the channel. These boundary conditions help to eliminate the effect
of lift force, so that a pure shear-induced diffusion could be measured. After
measuring the force and diffusion profiles, the discretized Fokker-Planck equa-
tion was solved to compare particle distribution to the segregation results from
simulations. Our results show a good agreement between the Fokker-Planck
equation and the simulation results.

Measured force profile confirmed that if a flexible particle undergoes a strong
lift force near the wall which pushes it to the center, while in the middle the
direction of drift force may change due to interaction with RBCs. The lift force
is stronger for RBCs , and therefore they occupy the center. Consider the lift
force as a gravitational force, acting on particles in space. As a result, heaviest
particles will be found at the bottom, ie closer to the center of the channel.
Another interesting outcome from the simulations of diffusion constant is

that it increases with increasing shear rate or/and RBC volume fraction. The
diffusion-shear dependence is close to a linear one, in agreement with that for
colloids [6]. An experimental study [13] shows similar result, connecting the
diffusion constant with the volume ratio and shear rate: D ∼ γ̇φ. Finally, the
segregation of a suspension can be described by a balance between cell-cell
interaction in flow (ie diffusion), and shear induced lift force.

To conclude, the present study of margination and segregation of soft vesicles
and blood components provides insights about the blood flow resistance and
its dependence on hematocrit, shear rate, tube diameter, and aggregation inter-
actions. Additionally, the segregation behavior of a two-component suspension
in Poiseuille flow has been investigated from theoretical and simulation points
of view.

The third part of the work is devoted to in- and outflow boundary conditions
(BC) the development of which might make us be able to simulate complex
vascular structures without coupling channels to each other in order to fulfill
the periodic boundary conditions. We could start or stop the channel wherever
we want. The inflow BC is responsible for inserting fluid particles and RBCs
into the simulation channel (vasculature). Outflow BC is responsible for proper
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deletion of the fluid particles and RBCs conserving physics of the flow. Also,
we have found that because of compressibility artifacts of the DPD fluid it is
difficult to control the density along the flow. However, the SDPD fluid covers
that drawback and keeps the local density around a desired value.

As a concluding remark, this study of the dynamics of soft particles in flow
in this thesis presents new insights about the mechanisms of margination of
blood cells such as platelets, red blood cells, and drug carriers in blood flow.
Thus, a further insight is added to understand complex behavior of blood flow,
develop early detection and new methods of the drug carrying for diseases as,
for instance, malaria and cancer.
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8. Outlook

The results presented in this thesis provide new ideas for further investigations.
Here are several conceivable projects which might be followed after the thesis.
First of all, simulations of CFL convergence dynamics with RBCs with

viscosity contrast should be investigated more detailed. Since results of the
CFL dynamics differ in order of magnitude for a permeable and non-permeable
membranes, there is an open question how accurate is the permeable membrane
model to be used in investigations.

Figure 8.1.: Example of branching a model in microcirculation. The boundary conditions
allow to set desired inflow properties from the left, and delete particles from
the right. Figure is taken from Ref. [53].

Also, a model of a big system with several bifurcations should bring further
understanding of the blood flow. RBC distribution depending on volumetric
flow rate, hematocrit, and the cell properties might help to optimize drug de-
livery, and understand RBC-plasma separation. Moreover, using the boundary
conditions like in Ref. [53] a small part of microcirculation in a tissue can
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8. Outlook

Figure 8.2.: An example of microfluidic device to separate RBCs from parasites. Picture
taken from [48].

be simulated (Fig. 8.1) to investigate the role of vessel irregularities, and to
identify new laws of blood flow. These laws are very useful to develop so-called
1D blood flow model, which is much cheaper computationally than a 3D model.
Hence, much more complex systems could be simulated to investigate blood
circulation. Also, such a development could be then integrated with magnetic
resonance imaging results to reconstruct the vascular system of a body tissue.

Another interesting direction is to simulate more realistic blood vessels. In
our simulations so far, they were considered to be straight and rigid. This is, of
course, a simplification which helps to avoid certain simulation problems. Hence,
vessels could be simulated as an elastic tissue with irregularities. Furthermore,
vessels are covered by the endothelial surface layer or glycocalyx, whose thickness
could be up to 1 µm. This layer decreases the channel width and has also
different properties under different shear rates.

Another interesting direction, can be to model blood flow in sickle-cell disease.
In the disease hemoglobin polymerizes and forms strands which can burst the
RBC membrane from inside. To model this effect an aggregation model is
needed, which would allow the investigations of sRBC behavior in flow. sRBCs
are stiffer and have different shape, which will also affect the CFL convergence
and blood behavior at bifurcations. Also, bulk rheological properties of blood
in sickle-cell disease can be investigated.

In this thesis pulsatile blood flow was not considered, although several studies
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suggest that this property exists in microcirculation and increases capillary
perfusion [52]. Thus pulsatile blood flow could affect the flow properties of
RBCs and other blood component such as WBCs or drug carriers.
A RBC has different size during its lifetime - it is small (5− 6 µm) at the

beginning and can be up to 9 µm at the end. For microfluidic devices this is a
crucial parameter which can be detected (Fig. 8.2). If the cell has a different
shape, it might move differently in the device and be sorted out. This can be
useful for the separation of old cells from young ones for blood transfusion.

Another step that might be taken, is to simulate the cells more detailed. The
presence of different RBC and WBC membrane proteins could make possible to
investigate the biocomputing nanoparticle drug delivery or the malaria parasite
uptake in silico.
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Appendix A:

Single vesicle flow behavior

A.1: Keller-Skalak theory

Consider a vesicle with fixed ellipsoidal shape: (r1/a1)
2+(r2/a2)

2+(r3/a3)
2 = 1,

where i ∈ 1, 2, 3 are Cartesian axes, and ai is ellipsoid’s radii. The motion
of a vesicle is the balance between the energy that comes from flow and its
dissipation at the membrane and inner fluid motion. The equation for the
balance is:

dθi
dt

=
1

2
γ̇ (B cos(2θi)− 1) ,

B = f0

(
f1 +

1

f1

1

1 + f2(λ− 1)

)
,

f0 =
2

a1/a2 + a2/a1
,

f1 =
1

2
(a1/a2 − a2/a1),

f2 =
1

2
g(α2

1 + α2
2),

g =
∫∞
0

(α2
1 + s)−3/2(α2

2 + s)−3/2(α2
3 + s)−1/2, ds,

αi =
ai

(a1a2a3)1/3
.

(A.1)

where γ̇ is the shear rate of the flow, B is the vesicle’s parameter, which depends
on viscosity contrast and the shape. In TT motion B > 1 and inclination angle

can be found as: θi =
1

2
arccos(1/B). In our simulations we mostly used λ = 1.
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Appendix B:

Simuation of complex
geometries

B.1: Domain construction

In order to create particles for a complex geometry simulation, we use boxes
with frozen particles obtained from simulations of a desired fluid (without RBCs)
with the periodic boundary conditions (PBC) in all directions. Afterwards,
these boxes are replicated many times to fit in the entire complex geometry.

Figure B.1:: Colud of points to create the surface for complex geometries is defined by a
vector and the radius of the disred channel.

Then, we describe every channel of complex geometry with an orientation
vector and two radii: one for inner surface which bounds the fluid particles,
and outer surface which encloses the wall particles. Based on this definition we
develop two clouds of points (Fig. B.1) which will be used later to construct
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Appendix B: Simuation of complex geometries

two surfaces to confine our geometry (Fig. B.2). RBCs might be included into
the system during this step, and can be distributed along the vectors.

Figure B.2:: Triangulated surfaces for complex geometry simulation. Inner surface defines
fluid particles, outer surface defines wall particles.

The next step, is to produce two surfaces, which will define the region for
frozen particles using any software such as Meshlab or SolidWorks (Fig. B.2).
Frozen particles which are found between inner and outer surfaces will be
defined as the wall particles, and those inside the inner surface will be defined
as the fluid particles. The developed code constructs a line which goes through
a frozen particle in the direction of Z axis. If the line crosses the outer surface
twice, then the particle is outside of the surface; if not - it is inside. The same
method is used for the inner surface. Afterwards, the particles found only
inside the inner surface are set to be fluid particles, and those which are not
inside the inner surface, but inside the outer surface - the wall particles.
The same method can be used to determine the plasma fluid inside a RBC

or outside, to simulate RBCs with a non-unity viscosity contrast.

B.2: Domain decomposition

Domain decomposition is a very useful instrument to simulate complex geomet-
ries on parallel computer architectures. A domain decomposition is used in order
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B.2: Domain decomposition

Figure B.3:: Simulation setup (upper image) and its domain decomposition (lower image),
there are several shades of color which look similar on the paper, but they
represent different processors.

to save the computational time via eliminating void regions of the simulation
domain from computation. Thus, only the regions with particles will be taken
into computation by processors. We assign different spatial domains to different
processors in such a way that they can optimally interact with each other. The
connection optimization problem might be solved using, for example, METIS
software from the University of Minnesota (Ref. http://glaros.dtc.umn.edu/ ).

An example of a domain decomposition is presented in figure B.3. Different
colors refer to different processors (there are several shades of color which look
similar on the paper, but they represent different processors).
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