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Abstract 

 Since Altmann recognized ubiquitously distributed "bioblasts" in 

1890, understanding of mitochondria has evolved from "elementary organisms" living inside 

cells and carrying out vital functions, over the Harman's "free radical theory" in 1956, to one 

of the driving forces of aging and cause of multiple associated diseases impacting society 

today. While a tremendous amount of work has contributed to the understanding of 

mitochondrial biology in different model organisms, the precise molecular mechanisms of 

basic mitochondrial function have yet to be deciphered. 

 By employing an RNA interference mediated screen in 

Caenorhabditis elegans, we identified two transcription factors: SPTF-3, a member of Sp1 

family, and an uncharacterized, nematode specific W04D2.4. We propose that both proteins 

modulate expression of many genes with regard to mitochondrial function including 

mitochondrial single-stranded binding protein encoded by mtss-1, whose promoter was used 

as transcriptional reporter in the screen. Further, RNA sequencing data indicate that 

W04D2.4 indirectly regulates expression of mitochondrial DNA via control of genes 

functionally related to mitochondrial replication and translation machineries. We also 

demonstrate that from all interventions targeting cytosolic translation, MTSS-1 levels are 

elevated only upon knockdown of genes encoding cytosolic ribosomal proteins. Reduction of 

ribosomes leads to increased sptf-3 translation, most likely in an internal ribosome entry side 

(IRES) mediated manner, eventually inducing mtss-1 expression. Moreover, we identify a 

novel role for SPTF-3 in the regulation of mitochondrial unfolded stress response (UPRmt) 

activation, but not endoplasmatic reticulum or oxidative stress responses. 

 Taken together, this study identifies two transcription factors 

previously not associated with mitochondrial biogenesis and UPRmt in C. elegans, establishing 

a basis for further investigation of mito-nuclear interactions. 
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Zusammenfassung 

 Seit der deutsche Pathologe Richard Altmann im Jahr 1890 

Mitochondrien fälschlicherweise als Elementarbauteile der Zelle bezeichnet hatte, trug der 

unaufhaltsame technische und wissenschaftliche Fortschritt dazu bei, dass den 

Mitochondrien heutzutage eine zentrale Rolle im Alterungsprozess und bei diversen 

Pathologien zugeschrieben wird. Trotz beachtlich vieler Erkenntnisse über die 

Funktionsweise und Aufbau der Mitochondrien, existieren immer noch Wissenslücken über 

grundlegende Funktionen des Organells. In der vorliegenden Arbeit konnten wir mit Hilfe 

von Screens, basierend auf dem RNA-Interferenz Mechanismus, zwei Transkriptionsfaktoren 

identifizieren: SPTF-3, Mitglied der Sp1-Familie und den bis dato nicht charakterisierten, 

nematodenspezifischen W04D2.4. Unsere Studie deutet darauf hin, dass beide Proteine die 

Expression von vielen Genen mit mitochondrialer Funktion regulieren. Dazu gehört auch 

das Gen mtss-1, welches das mitochondriale Einzelstrang-bindende Protein kodiert und 

dessen Promoterregion wir im Transkriptionsreporterkonstrukt verwendet haben. Außerdem 

deuten die Ergebnisse der RNA-Sequenzierung darauf hin, dass W04D2.4 die Expression 

der mitochondrialen DNA indirekt reguliert, indem es Transkription von Genen 

kontrolliert, welche Replikations- und Translationsvorgänge in Mitochondrien bestimmen. 

Des Weiteren konnten wir demonstrieren, dass ein Knockdown von ribosomkodierenden 

Genen zu erhöhter sptf-3 Translation führt, voraussichtlich begünstigt durch interne 

ribosomale Eintrittsstelle in der RNA-Sequenz. Darauffolgend führen erhöhte SPTF-3-

Proteinmenge zu verstärkter Expression von mtss-1, was anhand entsprechender RNA- und 

Proteinmengen festgestellt wurde. Darüberhinaus deuten unsere Ergebnisse an, dass SPTF-3 

eine Funktion in der Regulierung der mitochondrialen Antwort auf ungefaltete Proteine 

(mitochondrial unfolded protein response, UPRmt) erfüllt. Abschließend ist festzuhalten, dass 

wir zwei Transkriptionsfaktoren identifiziert haben, welche zuvor nicht mit der Regulation 

der mitochondrialen Biogenese und UPRmt im Fadenwurm Caenorhabditis elegans assoziiert 

wurden und somit neue Möglichkeiten eröffnen, Interaktionen zwischen Mitochondrien 

und Zellkern zu untersuchen. 
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1 Introduction 

1.1 Mitochondria 

1.1.1 Discovering mitochondria 

 At the end of the 19th century, new histological methods and 

advancing microscopy allowed Richard Altmann to detect “granular bodies” within various 

types of plant and animal cells (Altmann, 1890). These granular bodies, initially-called 

“bioblasts” or life germs, displayed staining properties of bacteria. Therefore, these organelles 

(later termed “mitochondria") were interpreted as autonomous, bacteria like structures. 

Moreover, Altmann mistakenly assumed that bioblasts were elementary building blocks 

within eukaryotic cells, which was predominantly the reason why his observations were 

largely neglected. Fifteen years later, Russian botanist Constantin Mereschkowsky 

hypothesized that plastids were once free-living cyanobacteria, which were incorporated by 

heterotrophic cells during the course of evolution (Mereschkowsky, 1905). In his follow-up 

publications he suggested that plant cells are animal cells that incorporated cyanobacteria (for 

review, see (Kutschera and Niklas, 2005)). Interestingly, he accepted Altmann’s idea that the 

nuclei of cells are simply accumulations of mitochondrial “granules”, without considering 

their bacterial origin. However, scientists mainly rejected theories about the bacterial origin 

of plastids and mitochondria, favoring “autogenous” theory, implying that the organelles 

evolved de novo within eukaryotes. Though Mereschkowsky’s hypothesis provides the basis 

for the endosymbiotic theory, it was revived only when, in 1970, Lynn Margulis presented 

her theory on the origin of plastids and mitochondria in the context of arising cell and 

molecular biology in Origin of Eukaryotic Cells. She postulated that both organelles were at 

some point engulfed by a protoeukaryote host and reduced to ensure energy supply. The first 

experimental evidence supporting endosymbiotic theory was delivered by molecular 

phylogenetic analysis of ferredoxins, 5S ribosome RNAs and c-type cytochromes between 

diverse types of bacteria, green algae and organelles of eukaryotes (Schwartz and Dayhoff, 

1978). That study revealed shared recent ancestry between chloroplasts and cyanobacteria, 

and between mitochondria and respiring photosynthetic bacteria, supporting bacterial origin 
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of eukaryotic organelles. Moreover, temporal mapping of these events suggested that 

mitochondria and chloroplasts became endosymbionts at two distinct stages around 2 and 

1.1 billion years ago, respectively. Since these discoveries, an ever expanding field of genomic 

sequencing and computational methods of phylogenetic inference have been shaping the 

evolutionary tree, generating models for eukaryotic origins (for review, see (Embley and 

Martin, 2006)). More recent analyses supporting endosymbiotic theory suggest that 

mitochondria evolved from free-living ancestors of the Alphaproteobacteria SAR11 clade, 

sister order to the Rickettsiales (Thrash et al., 2011).  

 Though being engulfed, mitochondria retained its genome. 

Mitochondrial DNA (mtDNA) was observed for the first time in chick embryo in 1963 

(Nass and Nass, 1963). Two decades later, mitochondrial genome sequencing began with 

samples from human and murine cells and to this day mtDNA from over 6.000 organisms 

(http://www.ncbi.nlm.nih.gov/genome) has been successfully sequenced (Anderson et al., 

1981; Bibb et al., 1981). This massive data flood revealed that mtDNA is highly diverse not 

only in the number and size of chromosomes but also in the number of protein-coding 

genes: whereas mammalian mtDNA is around 16 kb and harbors 13 protein-coding genes, 

the size of mtDNA from Silene conica, flowering plant, is around 11 Mb, encoding 25 

proteins (Sloan et al., 2012). Notably, the mitochondrial genome is highly reduced 

compared to extant Alphaproteobacteria. Computational inference studies of 

Alphaproteobacteria genome evolution suggest that their ancestors contained 3.000-5.000 

genes indicating endosymbiotic gene transfer from the protomitochondrial genome to the 

nucleus (Boussau et al., 2004). Remarkably, out of 800 human genes with 

Alphaproteobacteria signature, only 200 are found in the mitochondrial proteome, suggesting 

that eukaryotic cell evolution was affected by proto-mitochondrial genes beyond 

mitochondrial function (for review, see (Gray, 2012)).  

 

1.1.2 Mitochondrial architecture and function 

 Mitochondria are organized in a highly dynamic, readily growing, 

dividing and fusing network, which cannot be synthesized de novo and therefore must be 

distributed between dividing cells. Mitochondria are composed of two lipid bilayers that 

subdivide the organelle into two aqueous compartments. Mammalian mitochondria contain 
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around 3.200 predicted, with currently 1.098 experimentally validated proteins, but mtDNA 

harbors only 13 protein-coding genes (Pagliarini et al., 2008; Richly et al., 2003). Therefore, 

the vast majority of mitochondrial proteins are nuclear DNA (nDNA) -encoded, synthesized 

in the cytosol and eventually transported into the organelle. The outer (OMM) and the 

inner mitochondrial membranes (IMM) possess distinct permeability, ensuring compartment 

specific content of intermembrane space (IMS) and matrix (Figure 1.1). Low molecular 

weight molecules can passively cross OMM through transmembrane channels called porins, 

thus IMS content is comparable to that of the cytosol. By contrast, protein rich IMM 

composition is characterized by four times higher cardiolipin content, a mitochondria 

specific lipid, which makes it highly impermeable to ions and solutes (Gebert et al., 2009; 

Zinser et al., 1991). Therefore, sophisticated transport machineries, translocase of outer 

(TOM) and translocase of inner membrane (TIM) complexes, actively facilitate movement 

of proteins into OMM, IMS, IMM and matrix. Many mitochondrial proteins contain 

mitochondrial targeting signals that can be present as cleavable N-terminal matrix targeting 

sequence (MTS) or an internal targeting signal, which direct proteins to the IMS or the 

IMM (Neupert and Herrmann, 2007). The TOM complex is considered to be the entry gate 

for virtually all mitochondrial proteins of cytosolic origin. 

 Mitochondria are broadly known as the power plants of the cell, 

supplying them with energy in the form of adenosine triphosphate (ATP) generated by 

oxidative phosphorylation (OXPHOS). On a regular day humans use the amount of ATP 

equal to their own weight, largely due to brain and muscle activity. Since the human body 

contains only around 250 g of ATP at a time, a highly efficient ATP recovery system is a 

prerequisite. Nevertheless, in addition to supplying energy via oxidative phosphorylation, 

β-oxidation (catabolism of fatty acids) and tricarboxylic acid cycle (TCA cycle, also known as 

Krebs cycle), mitochondria are important for calcium homeostasis, apoptosis, cellular 

differentiation, and heme and iron-sulfur (Fe/S) cluster synthesis (Alberts et al., 2002). 

Notably, Fe/S proteins of mitochondrial origin are indispensible for nDNA maintenance and 

cytosolic translation, emphasizing the importance of mitochondria for cell survival (Stehling 

and Lill, 2013). 
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Figure 1.1 Mitochondrial architecture 
Schematic representation of mitochondria, enveloped by two separate lipid bilayers: inner (IMM) 
and outer mitochondrial membranes (OMM). Thus, two distinct compartments are formed, each 
containing specific set of molecules. Mitochondrial DNA (mtDNA) resides in the matrix; translocase 
of outer (TOM) and translocase of inner membrane (TIM) complexes facilitate movement of 
proteins from cytosol into mitochondria. Cristae are invaginations of IMM into the matrix, that 
increase total surface of IMM and serve as primary site of action for oxidative phosphorylation 
(OXPHOS) complexes (Vogel et al., 2006). 
 

 The mitochondrial OXPHOS system is unique as all five 

multiprotein complexes of the OXPHOS system reside in the IMM, whereas its around 90 

components are encoded by two distinct genomes, nuclear and mitochondrial DNA. 

Thirteen mtDNA-encoded proteins are translated in the matrix in close proximity to the 

IMM, where they are assembled into functional complexes together with around 80 

imported nDNA-encoded proteins. The electron transport chain (ETC) consists of four 

complexes: complex I (CI, NADH:ubiquinone oxidoreductase, EC 1.6.5.3), II (CII, 

succinate:ubiquinone oxidoreductase, EC 1.3.5.1), III (CIII, ubiquinol:ferricytochrome c 

oxidoreductase, EC 1.10.2.2), and IV (CIV, cytochrome c oxidase, COX, EC 1.9.3.1) (for 

review, see (Fernandez-Vizarra et al., 2009)) (Figure 1.2). ETC receives electrons from two 

donors: NADH and FADH2. Whereas NADH is produced in the course of glycolysis, TCA 

cycle and β-oxidation, FADH2 stores the energy from oxidation of succinate to fumarate, two 

intermediates in the TCA cycle. This redox-reaction is facilitated by complex II, functionally 

connecting TCA cycle with ETC. The donated electrons enter the ETC at complexes I and 

II, facilitating sequential oxidoreductase reactions that culminate in the reduction of 

molecular oxygen to water by complex IV. Electron flow through the ETC provides energy, 

enabling complexes I, III and IV to pump H+ ions across the IMM into the IMS. (for review, 
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see (Lodish et al., 2000)). The difference in H+ concentration between the matrix and IMS 

builds up a proton-motive force across the IMS. Eventually complex V exploits flow back of 

protons into the matrix to generate ATP from adenosine diphosphate (ADP) and phosphate 

group (Pi). 

 

 
 

Figure 1.2 Respiratory chain 
Schematic representation of oxidative phosphorylation, with complexes I-IV functionally grouped 
into electron transport chain (ETC). Electrons from NADH and FADH2 are passed from complexes 
I and II by Coenzyme Q10 (CoQ) to complex III, further by cytochrome c (CytC) to complex IV 
resulting in reduction of molecular oxygen to water. The energy from the electron flow is driving 
proton pumping activity of complexes I, III and IV, generating a proton gradient across the IMM. 
Flowing back into matrix, protons are exploited by complex V to generate ATP from ADP and Pi. 
 

 The efficiency of the OXPHOS system depends on many factors, 

one of which is the spatial distribution of single complexes, as electrons are passed down 

from CI and CII, via CIII to CIV. Though for the sake of clarity, OXPHOS is presented as 

strung-together complexes. There are two distinct models explaining organization of 

complexes in the IMM (Figure 1.3).  
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Figure 1.3 Fluid, solid and plasticity models of OXPHOS complexes organization 
Representation of single complexes and electron carriers is indicated in the fluid model. 
Supercomplex formation in the plasticity model includes single complexes of each type, although the 
actual stoichiometry may vary (Enriquez and Lenaz, 2014). Illustration from (Acin-Perez et al., 
2008). 
 

 The “solid model” was based on experimental co-isolation of 

complexes I and III, and on observations that once the electron transport system has been 

formed, single complexes do not dissociate upon dilution or centrifugation (Hatefi et al., 

1962a; Hatefi et al., 1962b). Therefore, it was postulated that respiratory activity is based on 

solid supercomplex formation enabling fast intra- and inter-complex electron transfer (Green 

and Tzagoloff, 1966). The second, “random collision model” or “fluid model” suggests that 

the mitochondrial inner membrane is rather a fluid-state layer and that all membrane 

proteins, including the OXPHOS complexes, are freely and independently diffusing and 

colliding within this layer (Hackenbrock et al., 1986). Moreover, single complexes do not 

interact physically with electrons transported by CoQ and CytC between the complexes. 

Therefore, diffusion rates have controlling capacity on the electron transport kinetics. As is 

often the case, the truth most likely lies somewhere in between. A third, “plasticity model” 

suggests that two other models are extremes of the dynamic organization of complexes. In 

this model, single complexes form supercomplexes and so called respirasomes 

(supercomplexes additionally containing electron carriers CoQ or CytC, therefore able to 
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respire) (Acin-Perez et al., 2008). Whereas every complex can also be found freely in the 

IMM, mostly complex I seems to associate with other complexes in various combinations 

and proportions: CI+CIII, CI+CIII+CV, CI+CII+CIII+CIV or CI+CIII+CIV. However, the 

organization and physiological relevance of supercomplexes in vivo is still to be deciphered 

(for review see, (Enriquez and Lenaz, 2014)). 

 

1.1.3 Mitochondrial genome 

1.1.3.1 Organization 

 Given their common evolutionary origin, it is not surprising that 

mitochondria reveal similar genetic and cellular functions among eukaryotes. The most 

radical common development of mitochondrial genomes across taxa is that the majority of 

their native genes were transferred to the nucleus, where they are expressed to drive 

mitochondrial biogenesis or further cellular processes. Whereas the transfer event is indicated 

by the presence of protomitochondrial genes within the nuclear genome, it still remains 

unclear when, how and how often it occurred (Timmis et al., 2004). An extreme example of 

genome reduction can be observed in mitochondrion-related organelles, hydrogenosomes 

and mitosomes, which entirely lack mtDNA (for review see, (Gray, 2012)).  

 In all organisms that contain mitochondria, the initial mtDNA 

coding capacity was strongly downscaled with time. However, the outcome of this reduction 

shows remarkable variations in size, organization and expression among eukaryotes. In most 

animals it exists as a single, circular, double-stranded DNA molecule, but there are many 

examples of mtDNA organized as one or multiple, circular or linear chromosomes (for 

review, see (Gray et al., 1999; Nosek et al., 1998)). For example, mtDNA of Polytomella 

piriformis, colorless green alga, is divided into two linear chromosomes, the mitochondrial 

genome of Pediculus capitis, human head louse, is distributed on 20 circular chromosomes, 

each containing one to three genes (Shao et al., 2012; Smith et al., 2010). Further, the size of 

the chromosomes can be as small as 6 kb in protists from the Apicomplexa phylum, or as 

large as 1.6 Mb in Cucumis sativus, cucumber (Alverson et al., 2011; Hikosaka et al., 2010). 

Following variations in size, also the gene content differs between species. Freshwater protist 
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Reclinomonas Americana leads the field with 97 mitochondrial genes, of which 65 are 

protein-coding (Lang et al., 1997). 

 In mammals, nuclear DNA is diploid. On the contrary, the 

maternally inherited mitochondrial content of a single cell can vary between 1.000 and 

10.000 DNA molecules, especially high in energy demanding tissues like brain and skeletal 

muscles (Bogenhagen and Clayton, 1974; Masuyama et al., 2005; Miller et al., 2003). This 

polyploidy is governed by excessive mtDNA replication, potentially resulting in two states: 

“heteroplasmy” and “homoplasmy”. While homoplasmic state implicates only identical 

mtDNA molecules within one cell, heteroplasmic cells harbor at least two different mtDNA 

variants. In principle, mtDNA molecules can be replicated multiple times or not at all, 

potentially allowing clonal expansion of a mutated mtDNA, outnumbering wild type 

variant. However, mutated mtDNA molecules have to exceed a certain threshold, usually 

60%-90%, to become pathogenic (Trifunovic et al., 2004; Tuppen et al., 2010). 

 There are no histones in mitochondria to pack and protect the DNA 

as there are in the nucleus. Instead, mtDNA forms nucleoprotein complexes (nucleoids), 

with, inter alia, mitochondrial transcription factor A (TFAM), a high-mobility group-box 

(HMG) containing protein. Beyond its pivotal role in transcription and replication, TFAM 

bends mtDNA in a U-shape manner at unspecific sequences, thus protecting the otherwise 

naked DNA and providing structural basis for expression activities (for review, see (Kukat 

and Larsson, 2013)). Superresolution experiments estimated the approximate size of a 

nucleoid at 100nm, prevalently containing a single copy of mtDNA (Kukat et al., 2011). 

 The double helix contains two differently denoted strands, “heavy” 

(H) and “light” (L). The nomenclature is based on the proportion of heavier G+T 

nucleotides leading to different sedimentation in denaturating alkaline cesium chloride 

gradients. Mammalian mtDNA contains 13 protein-coding genes, all subunits of OXPHOS 

system, 2 ribosomal rRNAs and 22 tRNAs, part of mitochondrial translation machinery 

(Figure 1.4). Notably, complex II subunits are exclusively encoded by nDNA. Intriguingly, 

whereas in the cytosol over 30 tRNAs are required to ensure amino acid specificity, in 

mitochondria only 22 tRNAs are used. This is due to the relaxed codon usage, when many 

mitochondrial tRNAs recognize any of the four nucleotides in the third anticodon position. 

Moreover, the “universal” code is altered in mitochondria leading to different “meanings” in 

4 out of 64 codons (Alberts et al., 2002).  
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 Dense gene packing and absence of introns characterize animal 

mtDNA, with few exceptions in some Cnidaria species (Beagley et al., 1996). Since coding 

sequences directly follow each other, little room is left for DNA regulatory sequences (Alberts 

et al., 2002). The major non-coding region is the 1kb large displacement loop (D-loop) that 

harbors important regulatory elements for replication and transcription. It contains 

promoters for light (LSP) and heavy strand (HSP) transcription, origins of heavy strand 

replication (OH) and termination-associated sequences (for review, see (Falkenberg et al., 

2007)). 

 

 
Figure 1.4 Structures of human and C. elegans mtDNA 
Human genome contains 37 genes: 13 protein-coding genes, subunits of Complex I (ND1, ND2, 
ND3, ND4L, ND4, ND5, ND6), III (cyt b), IV (Cox1, Cox2, Cox3) and V (ATP6, ATP8), 2 
ribosomal RNAs (12S rRNA, 16rRNA) and 22 tRNAs, indicated by single letter code for 
corresponding amino acid. The “D-loop” region contains replication and transcription promoter 
sequences. C. elegans mtDNA differs by the arrangement of the genes and the lack of ATP8. Images 
courtesy of Ivana Bratic Hench. 
 

1.1.3.2 mtDNA transcription 

 In mammals there are three main transcription promoters: LSP and 

HSP1, residing around 150 bp from each other in the D-loop region, and HSP2 located 

between HSP1 and 12S rRNA gene (Figure 1.3). Transcription from LSP and HSP2 results 

in polycistronic precursor RNAs covering the entire coding portion of the light and heavy 

strand respectively. Thus, the HSP2 initiated transcript corresponds to 2 rRNA, 12 protein-

coding and 14 tRNA genes, while LSP1 to 1 protein-coding and 8 tRNA genes. However, 
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HSP1 was found to be terminated at the end of the 16S rRNA gene, predominantly 

generating 12S and 16S rRNA (Montoya et al., 1983). The “tRNA punctuation” model 

implies that tRNA genes flank all protein and ribosomal genes, therefore their excision from 

polycistronic transcripts is necessary to produce mature mRNAs and rRNAs (Ojala et al., 

1981). 

 The mammalian basic transcription machinery requires a specific set 

of proteins that is different from that of nuclear DNA. It includes mitochondrial DNA-

directed RNA polymerase (POLRMT), TFAM and one of the two mitochondrial 

transcription factor B paralogs (TFB1M or TFB2M), all necessary and sufficient for 

transcription (Falkenberg et al., 2002; Shi et al., 2012). TFAM not only unspecifically wraps 

mtDNA but also specifically binds upstream of LSP and HSP1 transcription promoters 

(Fisher et al., 1987; Gaspari et al., 2004). The exact position of the binding sites within 

promoter region may imply that TFAM binding results in partial unwinding of mtDNA 

allowing transcription. The C-terminal tail region of TFAM interacts with the heterodimeric 

POLRMT:TFB2M(TFB1M) complex, thereby recruited to the initiation site. TFB1M and 

TFB2M additionally function as rRNA methyltransferases, whereas TFB1M is suggested to 

be highly active as methyltransferase and TFB2M as a transcription factor (for review, see 

(Falkenberg et al., 2007)). 

 Further mtDNA transcription is regulated by a family of 

mitochondrial transcription termination factor (MTERF) proteins: MTERF1-4. MTERF1 

and MTERF2 are unique to vertebrates, while MTERF3 and MTERF4 are highly conserved 

among different phyla and can be also found in C. elegans (Linder et al., 2005). Initially 

MTERF1 was proposed to regulate mitochondrial ribosome biogenesis due to its binding 

downstream of rRNA genes and MTERF3 to generally repress transcription initiation 

(Fernandez-Silva et al., 1997; Park et al., 2007). However, a more recent study suggests that 

MTERF1 does not regulate heavy strand promoter activity but rather reduces light strand 

transcription to prevent transcriptional interference at the LSP (Terzioglu et al., 2013). 

 

1.1.3.3 mtDNA replication 

 Mitochondrial DNA can be replicated independent of cell cycle and 

in non-dividing cells (Bogenhagen and Clayton, 1974). Similar to transcription machinery, 
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replication machinery is also specific to mitochondria. In vitro studies of minimal 

mammalian mtDNA replisome revealed three proteins required for sufficient replication: 

mitochondrial DNA polymerase γ (POLγ), mitochondrial TWINKLE helicase and 

mitochondrial single-stranded DNA binding protein (SSBP1 or mtSSB) (Korhonen et al., 

2004). POLγ and TWINKLE are capable of using a double stranded template and 

generating DNA molecules of 2kb length. While TWINKLE unwinds the mtDNA duplex 

in an ATP dependent manner, SSBP1 coats the single strands in tetrameric fashion 

facilitating the opening and unwinding. Addition of SSBP1 further stimulates TWINKLE 

helicase activity leading to products of 16 kb of size, which corresponds to the full-length 

mtDNA (Korhonen et al., 2003). 

 Studies in mice revealed that RNA primers generated during LSP 

transcription are simultaneously required for replication at OH, suggesting that the initiation 

process for replication and transcription is the same and that the mechanism distinguishing 

DNA or RNA synthesis is subject to downstream events (Brown et al., 2008; Chang et al., 

1985). The initial “strand displacement” or “asynchronous” model implicates that the 

unidirectional replication from OH displaces the parental heavy strand and after 

approximately two-thirds of the molecule exposes the origin of light strand replication (OL) 

on the displaced H-strand, so that lagging strand synthesis is initiated in the opposite 

direction (Kasamatsu and Vinograd, 1973). The model suggests that the lagging strand 

synthesis is continuous, without repeated priming (Larsson, 2010). The OL resides in a 30 bp 

region within five tRNAs genes and is therefore called WANCY region (Figure 1.4). The 

segregation of daughter molecules occurs once H-strand synthesis is finished, leaving one 

daughter cell intermediate with an incompletely synthesized L-strand (Robberson et al., 

1972). 

 On the contrary, the “strand coupled” model suggests that H- and 

L- strands are replicated simultaneously, initiated near the OH in the D-loop region (Holt et 

al., 2000; Yang et al., 2002). Discovery of multiple RNA:DNA hybrids, representing 

ribonucleotide incorporation on the replicating lagging strand, gave rise to the RITOLS 

(ribonucleotide incorporation throughout the lagging strand) replication mode, suggesting 

that the lagging strand is initially incorporated RNA, before subsequent conversion to DNA 

(Yang et al., 2002; Yasukawa et al., 2006). Data for this model was gained from employing 

neutral/neutral two-dimensional agarose gel electrophoresis (2D AGE), allowing for DNA 
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molecules to be distinguished according to size and strand configuration. Later, 2D AGE was 

used to reexamine the “asynchronous” model, suggesting that the RNA:DNA represent 

alternative  replication origins for L-strand synthesis and that the “strand displacement” is 

the predominant mode of mtDNA replication (Brown et al., 2005). Overall it is not fully 

clear which is the mtDNA replication mode in mammals, possibly a combination of the two 

described or even more. Furthermore, little is known about the termination mechanism 

beyond its location or the precise relationship between replication and transcription. 

Eventually, discovery of new enzymes is expected to shed light onto mtDNA replication 

mechanics (Holt and Reyes, 2012). 

 However, so far investigation of mtDNA replication mechanisms 

was largely conducted in mammals. A recently published study in C. elegans suggests that in 

nematodes the replicating mtDNA appears as a lasso like structure with concatemeric 

(containing multiple DNA copies) tails, which are predicted to be eventually resolved in 

monomeric circles (Lewis et al., 2015). This replication mechanism is similar to the one 

from phages and given that POLγ and TWINKLE are believed to be derived from 

bacteriophages, among metazoans C. elegans may represent the ancestral mtDNA replication 

mode (for review, see (Shutt and Gray, 2006)). 

 

1.2 Aging 

“How old would you be if you didn’t know how old you are?” 

- Leroy Robert “Satchel” Paige, baseball player, July 9, 1948 

 

 “Aging” and “senescence” are terms universally used to describe 

what happens to an organism in the course of time. However, there is still no uniform 

scientific definition of “aging” and no consensus which components the definition should 

consider and which it should exclude. One of the phrasings describes aging as “deteriorative 

changes with time during post maturational life that underlie an increasing vulnerability to 

challenges, thereby decreasing the ability of the organism to survive” (Masoro, 1997). 

Though aging is broadly perceived as a function of time, time itself only imperfectly 

correlates with the physiological processes involved in aging and therefore should become an 
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independent parameter in biogerontology (Arking and Dudas, 1989). This seems reasonable, 

when for example two individuals from the same species and of the same chronological age 

reveal two different physiological states. Instead, three main conditions were suggested to 

characterize aging: they must be (i) deleterious, (ii) progressive and (iii) intrinsic (Strehler, 

1982). There are only two basic ways in which aging can occur: according to a 

predetermined genetically driven program or due to random, accidental events (Hayflick, 

2007). This duality gave rise to two major sets of aging theories: stochastic and systemic 

ones.  

 Stochastic theories describe aging in the light of thermodynamics. 

Condensed energy tends to disperse and to reach the state of energetic equilibrium within 

the system. Living organisms are constantly but randomly attacked by a variety of 

degenerative events and processes increasing entropy that may negatively affect functionality 

of biological molecules. This can be antagonized by cellular internal mechanisms and repair 

systems. Therefore, the aging process occurs because the energetic level of molecules shifts 

towards inactive or malfunctioning, and internal repair systems fail to counteract energy 

dispersal any more (Hayflick, 2007). Various theories suggest different explanations for 

aging, like increased somatic DNA mutations, telomere loss or accumulation of damaged 

proteins, just to name a few (for review, see (Kirkwood, 2005)). 

 However, systemic theories describe aging as a genetically 

programmed process. Whereas the theories vary in the number of specific genes and 

mechanisms driving aging, they all have in common the genetic basis of senescence. 

Nevertheless, they are not entirely deterministic as environmental impact is considered to 

some extent (Arking, 1998). It also becomes more obvious that organisms are programmed 

to survive rather than to die (Kirkwood, 2005). Still, multiple genetic interventions were 

shown to modulate lifespan of different organisms: inhibition of insulin/insulin-like growth 

factor 1 (IGF1), target of rapamycin (TOR) signaling and modest inhibition of respiration 

all increased lifespan in worms, flies and mice (for review, see (Kenyon, 2010)). Though 

these interventions prolong lifespan, they do not give an answer to the question of what 

causes aging. Deciphering mechanisms responsible for lifespan determination rather 

contribute to our understanding of longevity that is not equal to aging, as length of life 

describes its endpoint rather than the age-associated changes (Hayflick, 2007).  
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1.2.1 Mitochondrial Free Radical Theory of Aging 

 Almost 60 years ago Denham Harman proposed the free radical 

theory of aging, suggesting that aging, as well as the associated degenerative diseases, could be 

attributed to the deleterious effects of reactive oxygen species (ROS) on various cell 

compartments (Harman, 1956). As ROS are mainly produced just off the mitochondrial 

electron transport chain, mitochondria were later declared as a prime target for oxidative 

damage (Harman, 1972). Hence the free radical theory evolved into mitochondrial free 

radical theory of aging (MFRTA).  

 In the course of time, substantial evidence has emerged from various 

studies to lend support to this theory. It has been shown that mitochondria become larger 

and less numerous with age, accumulating vacuoles and cristae abnormalities (Frenzel and 

Feimann, 1984). In aging humans the oxidative phosphorylation capacity has been reported 

to decline in skeletal muscle, liver, heart and brain (Cottrell and Turnbull, 2000). Potential 

differences in enzymatic activities of single ETC complexes could negatively affect oxidative 

phosphorylation and hence promote ROS production (Kwong and Sohal, 2000). Studies in 

flies, worms and mammals have shown that aging is associated with increased amounts of 

mtDNA deletions and/or point mutations (Gadaleta et al., 1992; Lee et al., 1993; Melov et 

al., 1995; Piko et al., 1988; Yui et al., 2003). These mtDNA rearrangements appear to occur 

principally in post-mitotic tissues and their accumulation with age is a consistent feature of 

senescent multicellular animals (Melov et al., 1999).  

 More recent studies have shown that the accumulation of 

mitochondrial dysfunctions in aging tissues is not uniform and it is generally believed, that 

just a subset of cells accumulate mtDNA mutations over the threshold levels. For example 

the number of COX deficient cells progressively increases in skeletal and cardiac muscle and 

brain of elder individuals (Cottrell et al., 2001; Muller-Hocker, 1989, 1990). However, the 

relevance of mtDNA mutations in aging organisms is still controversial, as most of these data 

have been seen as a consequence rather than a driving force of aging.  

 

1.2.2 The mtDNA mutator mouse 

 The first causative link between mtDNA point mutations and an 
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aging phenotype in mammals was provided by the mtDNA mutator mouse model, which 

expresses a proofreading deficient form of the nDNA-encoded mitochondrial DNA 

polymerase γ (Trifunovic et al., 2004). POLγ is uniquely responsible for both mtDNA 

replication and repair (Kaguni, 2004). Moreover, it has been shown that it is absolutely 

essential for mammalian embryogenesis (Hance et al., 2005). The proofreading deficiency 

was introduced to promote progressive, random accumulation of mtDNA mutations during 

the course of mitochondrial biogenesis and such homozygous knock in mice developed a 

mtDNA mutator phenotype with a three to fivefold increase in the levels of point mutations. 

The mtDNA mutator mice developed normally from birth to early adolescence but 

subsequently acquired some features of premature aging such as weight loss, reduced 

subcutaneous fat, alopecia, kyphosis, osteoporosis, anemia with progressive decrease in 

circulating red blood cells, reduced fertility, cardiomyopathy and sarcopenia (Trifunovic et 

al., 2004). In contrast to the mitochondrial theory of aging, mutator mice did not reveal 

increased ROS production or increased oxidative stress (Trifunovic et al., 2005). According 

to the “Vicious cycle” theory, mtDNA mutations accumulate exponentially during life, 

leading to impaired oxidative phosphorylation activity (Bandy and Davison, 1990). However 

mutator mice accumulated mutations proportionally and their load was already substantial 

very early in embryonic life, most likely due to extensive mtDNA replication (Trifunovic et 

al., 2005). The linear fashion of mtDNA mutation accumulation suggests no involvement of 

a vicious cycle as proposed by the mitochondrial theory of aging. It seems that the onset of 

premature ageing is not accompanied by a large de novo accumulation of mtDNA mutations, 

but is rather due to cumulative physiological damage caused by the high mutation load 

during adult life, and/or to segregation or clonal expansion of specific mutations. Still, it is 

possible that the mutation load might be an underestimate because cells with the highest 

levels of deleterious mutations may be lost due to cell death and/or replicative disadvantage.  

 

1.3 Regulation of mitochondrial biogenesis in mammals 

 Mitochondrial biogenesis represents complex physiological process 

that implicates growth of pre-existing mitochondria, requiring synthesis and for the vast 

majority also import of mitochondrial proteins into the organelle, delivery of lipids to 
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mitochondrial membranes and mtDNA replication. Notably, mitochondrial mass, 

organization and function vary between different cell types and are dynamically adapted to 

environmental and intracellular stimuli. While mitochondrial biogenesis serves as long-term 

adaptation, transient energetic or metabolic requirements can be met by adjusted expression 

of a corresponding subset of nDNA-encoded mitochondrial genes (Hock and Kralli, 2009). 

As the nuclear genome harbors most of the genes with regard to mitochondrial function, 

nuclear factors are designated to orchestrate their expression. In 1989, analysis of mammalian 

cytochrome c promoter revealed specific nuclear factor binding sites. The corresponding 

nuclear respiratory factor 1 (NRF-1) was proposed to control expression of nDNA-encoded 

mitochondrial genes in addition to housekeeping transcription factors (Evans and Scarpulla, 

1989). Ever since further genes and factors were identified to be involved in regulation of 

mitochondrial biogenesis, some of which are presented below (for review, see (Kelly and 

Scarpulla, 2004; Scarpulla, 2008)). 

 

1.3.1 Nuclear transcription factors 

 NRF-1/2: Palindromic binding sites of NRF-1 are most frequently 

found in proximal promoters of ubiquitously expressed genes, however presence of regulatory 

elements does not necessarily means biological relevance (FitzGerald et al., 2004). Human 

NRF-1 was found to occupy promoter elements of 691 genes, many of which are 

mitochondria-related, representing OXPHOS enzymes, mitochondrial translation, 

transcription and import machineries (Cam et al., 2004). More recent analysis employing 

Chromatin ImmunoPrecipitation followed by deep sequencing (ChIP-seq) identified 2.470 

NRF-1 target genes in human neuroblastoma cells, underlying its central role in regulation 

of mitochondrial biogenesis, but also extra-mitochondrial processes such as cell cycle 

progression, DNA damage repair or RNA metabolism (Satoh et al., 2013). NRF-1 exerts its 

positive regulatory activity on transcription as a homodimer, with multiple phosphorylatable 

serine residues, which enhance its binding and trans-activation functions (Gugneja and 

Scarpulla, 1997). Phosphorylation of NRF-1 is induced in quiescent fibroblasts upon serum 

exposure and in hepatoma cells upon exposure to exogenous oxidants (Herzig et al., 2000; 

Piantadosi and Suliman, 2006). 
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 Human NRF-2 (homolog of murine GA-binding protein (GABP)) 

acts as heterodimer consisting of two α and two β subunits. Initially it was shown to bind 

essential elements in the gene encoding the cytochrome oxidase subunit IV (COXIV). Later 

NRF-2, along with NRF-1, was proposed to regulate all 10 nDNA-encoded COX subunits 

(Ongwijitwat and Wong-Riley, 2005). Neuronal stimulation by depolarization is suggested 

to induce NRF-2 translocation from the cytoplasm to the nucleus, thereby facilitating its 

transcriptional activity (Yang et al., 2004; Zhang and Wong-Riley, 2000). Apart from 

regulation of COX genes, NRF-2 binding elements were discovered in cis-regulatory elements 

of other nDNA-encoded mitochondrial genes, e.g. complex II subunits and mtDNA 

transcription machinery. Whereas both, NRF-1 and NRF-2 binding sites, can frequently be 

found in the proximal promoters of mitochondrial genes, some genes reveal either NRF-1 or 

NRF-2, which can also differ between rodents and humans (for review, see (Kelly and 

Scarpulla, 2004)). Together NRF-1 and NRF-2 directly control expression of nDNA-

encoded OXPHOS subunits and genes involved in mitochondrial transcription, offering a 

mechanism for bigenomic transcriptional control (Figure 1.5). 

 PPARα/β (or δ)/γ: Peroxisome-proliferator activated receptor α 

(PPARα) was the first nuclear receptor, shown to regulate mitochondrial metabolism. 

Originally implicated in peroxisomal fatty acid oxidation (FAO), now PPARs are known to 

transcriptionally control mitochondrial FAO enzymes (for review, see (Madrazo and Kelly, 

2008)). FAO enzymes act within the mitochondrial matrix, oxidizing fatty acids to Acetyl 

Coenzyme A (Acetyl-CoA), which is fed into the TCA cycle, generating energy-rich 

intermediates, which provide electrons for the ETC. PPARα is predominantly enriched in 

tissues with high FAO capacity such as heart, liver or brown adipose tissue. The PPAR 

family is completed by ubiquitously expressed PPARβ (also known as δ) also participating in 

FAO and adipose-enriched PPARγ that directs programs involved in adipocyte 

differentiation and fat storage (Figure 1.5). PPARs reveal different but overlapping spatial 

and temporal expression patterns. Upon binding their ligand, PPARs form heterodimers 

with retinoid X receptor (RXR) and occupy cognate DNA response elements. Next to 

ligand-mediated activation, PPARs are activated by endogenously produced ligands regulated 

by transcriptional coactivators and corepressors. 

 ERRα/β/γ: The second family of nuclear receptors consists of 

estrogen related receptors (ERR). Structural characteristics have determined their 
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nomenclature, however classic estrogens do not activate them. Similar to PPARs, high levels 

of ERRα were initially shown to activate expression of FAO enzymes in oxidative tissues like 

heart, kidney and brown fat (Sladek et al., 1997; Vega and Kelly, 1997). Later, studies on 

heart and skeletal muscle revealed that ERRs regulate the expression of genes involved in 

effectively all mitochondrial energy producing pathways (Huss et al., 2004) (Figure 1.5). As 

nonobligatory heterodimers ERRα and ERRγ	occupy promoters of genes involved in TCA, 

FAO and OXPHOS, which additionally reveal NRF-1 and cAMP response element-binding 

protein (CREB) binding sites (Dufour et al., 2007).  

 CREB, SP1 and YY1: In addition to the NRF-1 binding site, 

cytochrome c gene revealed recognition sites for common transcriptional activators: 

specificity protein 1 (SP1) and CREB (Evans and Scarpulla, 1989). Phosphorylation of 

CREB determines its activity and is critical for its interaction with PRC and NRF-1 

(Vercauteren et al., 2006). It appears that CREB function is required for rapid cytochrome c 

response to cyclic adenosine monophosphate (cAMP) and to serum-stimulated cell growth 

(Gopalakrishnan and Scarpulla, 1994; Herzig et al., 2000). However CREB binding sites do 

not represent common promoter elements of nDNA-encoded mitochondrial genes 

(Scarpulla, 2008) (Figure 1.5).  

 Next to cytochrome c, SP1 is involved in transcriptional regulation 

of cytochrome c1 (subunit of complex III) and adenine nucleotide translocase 1 (ANT1), 

both lacking NRF binding sites (Li et al., 1996a; Li et al., 1996b). The number and 

organization of GC box binding sites for SP1 determine its contribution to transcriptional 

activity, which can also be repressing (Zaid et al., 1999). More recent studies in mice show 

Sp1 family members mediated transcriptional regulation of all thirteen genes encoding 

cytochrome c oxidase subunits (Dhar et al., 2013; Johar et al., 2013). Similar to NRFs, 

transcriptional regulation of the three mtDNA-encoded COX genes is indirect via expression 

of control genes involved in mtDNA transcription.  

 The ubiquitous Ying Yang 1 (YY1) transcription factor was initially 

reported to be involved in regulation of mammalian COX gene expression (Figure 1.5). The 

promoter region of murine Cox5b contains three YY1 binding elements and appears to be 

suppressed by the presence of YY1 (Basu et al., 1997). However, the minimal promoter of 

bovine COX7B contains two YY1 binding elements, which are essential for promoter activity 

(Seelan and Grossman, 1997). Yet it remains to be deciphered, which mechanisms underlie 
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the dual function of YY1. Nevertheless, more recent studies not only show that YY1 binding 

motifs are enriched in a variety of mitochondrial genes regulated by rapamycin and PGC-1α, 

but also that YY1 function is required for mammalian TOR-mediated control of 

mitochondrial function (Cunningham et al., 2007). Moreover skeletal-muscle-specific YY1 

knockout mice reveal decreased levels of nDNA-encoded mitochondrial gene transcripts 

resulting in bioenergetics deficiencies, accompanied by reduced OXPHOS protein levels and 

impaired respiratory activity (Blattler et al., 2012).  

 

1.3.2 Nuclear coactivators 

 Over the years accumulating data suggests that a manageable 

number of transcription factors, including the aforementioned ones, directly regulate 

expression of nDNA-encoded mitochondrial genes. Moreover, they appear to indirectly 

regulate mtDNA expression and maintenance by activating transcription of nuclear genes 

composing respective machineries. Consequently the question arises, how activities of various 

transcription factors are coordinated to enable mitochondrial biogenesis regulation. The 

discovery of PGC-1 family of coactivators has offered one possible mechanism integrating 

physiological stimuli and orchestration of transcription activity in vertebrates. 

 Initially, the name giving interaction of PPARγ coactivator-1 α 

(PGC-1α) with PPARγ was observed in murine brown adipose tissue, pointing toward cold-

induced PGC-1α activity as a requirement for adaptive thermogenesis (Puigserver et al., 

1998). In this study PGC-1α was shown to induce expression of uncoupling protein-1 

(Ucp-1), indicating promoted uncoupled respiration to generate heat. Soon after, PGC-1α 

was reported to coactivate NRF-1, NRF-2 and PPARα (Vega et al., 2000; Wu et al., 1999) 

(Figure 1.5). Based on the structural similarity to PGC-1α, identification of PGC-1β and 

PGC-related coactivator (PRC) has completed the PGC-1 family (Andersson and Scarpulla, 

2001; Kressler et al., 2002; Lin et al., 2002). Generally, PGC-1 family members bind to the 

respective transcription factor, and are thereby recruited to the transcription site of the target 

gene. At the same time PGC-1 recruits histone acetyltransferases and the Mediator complex 

to enhance transcription initiation (Hock and Kralli, 2009). The critical feature of these 

coactivators is their high versatility in interacting with distinct transcription factors, 

including NRF-1/2, PPARs, ERRs and YY1 (Figure 1.4). This allows them to activate 
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different biological programs in a tissue specific manner (for review, see (Lin et al., 2005)). 

In mitochondria-rich tissues like heart, brown fat and muscles, expression of PGC-1α is 

strongly induced upon cold exposure and short-term exercise, resulting in increased 

expression of mitochondrial genes (Baar et al., 2002; Lehman et al., 2000; Wu et al., 1999). 

Importantly, mice lacking only PGC-1α or only PGC-1β are viable, showing modest 

decrease in mitochondrial gene expression (Lelliott et al., 2006; Lin et al., 2004). However 

PGC-1αβ double knockout animals die shortly after birth, with severe cardiac dysfunction 

and abnormalities in brown adipose tissue, suggesting at least partial functional redundancy 

between PGC-1α and PGC-1β (Lai et al., 2008). 

 This level of mitochondrial-nuclear communication integrates 

distinct physiological stimuli like cold exposure, caloric intake or exercise, which stimulate 

mitochondrial biogenesis through PGC-1 activity. Transcriptional and posttranscriptional 

control mechanisms of PGC-1α add further plasticity to the biogenic response (for review, 

see (Ryan and Hoogenraad, 2007)). External temperature decrease can be sensed by β-

adrenergic receptors, which transduce the signal via cAMP pathway, eventually leading to 

transcriptional activation of PGC-1α (Puigserver et al., 1998). Another case of mitochondrial 

biogenesis upregulation can be observed in long-term exercising mice. Muscular energy 

deprivation is sensed by AMP activated kinase (AMPK) which activates calcium/calmodulin-

dependent protein kinase IV (CaMK IV), eventually enhancing Pgc-1α expression (Schaeffer 

et al., 2004; Zong et al., 2002). On the posttranscriptional level, for example, mitogen-

activated protein kinases (MAPK) transmit extracellular signals, such as chemical and 

physical stress, into intracellular responses (for review, see (Cargnello and Roux, 2011)). One 

member of MAPK family, p38 MAPK, has been shown to stabilize PGC-1α by 

phosphorylation, thereby extending its half-life from ~2 to ~6 hours (Knutti et al., 2001; 

Puigserver et al., 2001). In response to cytokines, p38 MAPK activated PGC-1α targeted 

nDNA-encoded mitochondrial gene expression in muscle cells (Puigserver et al., 2001). 

Another example is the lysine deacetylase sirtuin 1 (SIRT-1) that is induced in response to 

fasting signals and consequently acetylates PGC-1α (Rodgers et al., 2005). Notably, in 

contrast to p30 MAPK, SIRT-1 regulates PGC-1α activity targeting genes with 

gluconeogenic but not mitochondrial function. The mentioned examples by far do not cover 

all facets of how PGC-1 family members are regulated on genetic and protein levels. 
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However, variety and tissue specificity of transcription factors and cofactors emphasize highly 

versatile modes of mitochondrial biogenesis regulation in mammals. 

 

 
Figure 1.5 Mitochondrial biogenesis regulatory framework in mammals 
Nuclear DNA-binding factors regulate transcription of distinct but overlapping sets of mitochondrial 
genes (thick black lines). Their activity is orchestrated and fine-tuned by coregulators (blue lines). 
Additionally, there is interregulation among the transcription factors (horizontal black lines). 
Feed-forward and feedback loops (dashed lines) further activate the system. Specificity is achieved by 
tissue and trigger signal specificity (not indicated). PGC-1, peroxisome proliferator-activated receptor 
coactivator-1; PRC, PGC-1 related coactivator; PPAR, peroxisome proliferator-activated receptor; 
ERR, estrogen related receptor; GABP (NRF-2), GA-binding protein; NRF-1, nuclear respiratory 
factor; YY1, Ying Yang 1; CREB, cAMP response element-binding protein. Illustration adapted from 
(Hock and Kralli, 2009). 
 

1.4 Retrograde response 

 Another mechanism of mitochondrial-nuclear communication 

suggests adaptations in nuclear transcription in response to changes in mitochondrial 

functional state. Such changes in mitochondria can be caused by the loss of mtDNA, 

oxidative stress or protein aggregation. The mtDNA mutator mouse model has demonstrated 

that accumulation of mtDNA mutations can lead to a premature aging phenotype with 

reduced respiratory capacity. While proof-reading-deficient polymerase predominantly 

introduced a plethora of random point mutations into mtDNA, there is a number of 
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mitochondrial diseases characterized by defects in one single mitochondrial protein-coding 

gene (for review, see (Schapira, 2012)). But also “naturally” aged tissues reveal increased load 

of mtDNA mutations and decline in the mitochondrial respiratory enzyme activities 

(Cortopassi et al., 1992; Lezza et al., 1994). Initially mitochondrial diseases were classified as 

disorders caused by a dysfunction of the mitochondrial respiratory chain originating from 

sequence changes in either mitochondrial or nuclear DNA. However, malfunction of other 

mitochondrial proteins not directly involved in oxidative phosphorylation are associated with 

further human pathologies. Mitochondrial metabolic and structural anomalies are observed 

in Alzheimer’s and Parkinson’s diseases, although it is not clear whether mitochondrial defect 

is causative (for review, see (Perier and Vila, 2012; Santos et al., 2010)). But also less drastic 

interventions like food deprivation or temperature shift affect mitochondrial functionality 

(Mollica et al., 2005; Schulz et al., 2007). While some of the mentioned examples could 

transiently enhance or reduce mitochondrial activity, others potentially deteriorate 

mitochondrial function causing sustainable and eventually malicious proteostatic and 

metabolic changes. 

 However caused, antagonizing mitochondrial dysfunction is vital for 

cellular and consequently organismal survival. As the vast majority of mitochondrial proteins 

are encoded in nuclear DNA, it is consequential to assume that there are mechanisms for 

communication between mitochondria and the nucleus in order to adapt expression of 

nuclear genes in response to changes in mitochondrial functional state but also to ensure 

similar synthesis rate of respiratory chain subunits. The directed signaling from mitochondria 

to the nucleus is termed “mitochondrial retrograde signaling” or more broadly mitochondrial 

stress responses (MSR), and it modulates cellular activities under both normal and 

pathophysiological conditions (Butow and Avadhani, 2004). While such retrograde signaling 

is conserved from yeast to mammals, the molecular mechanisms governing the 

communication do differ between species, most likely reflecting their specific metabolic and 

environmental peculiarities (Liu and Butow, 2006). 

 

1.4.1 … in yeast 

 First studies suggesting existence of mitochondrial-nuclear 

communication reach back to 1987, when defects inducing the expression of nuclear genes 



  1 Introduction 

 23 

were observed in mtDNA (Parikh et al., 1987). Since then, retrograde signaling in the 

budding yeast, Saccharomyces cerevisiae, was intensively studied and core regulatory elements 

were identified.  

 The major physiological role of the RTG pathway is to assure 

glutamate availability. Glutamate represents 85% of total cellular nitrogen content and is the 

essential source for amino nitrogen used in biosynthetic reactions like amino acid synthesis 

(Magasanik and Kaiser, 2002). As mentioned earlier, succinate dehydrogenase fulfills dual 

function, feeding electrons into the electron transport chain and converting succinate to 

fumarate within the scope of the TCA cycle (Figure 1.2). Thus in respiratory-deficient cells 

that are devoid of mtDNA (ρ0), the TCA cycle fails to operate in full, thereby reducing the 

production of α-ketoglutarate (α-KG), which when transaminated gives rise to glutamate. 

Two groups of RTG-target genes play a role in the maintenance of glutamate supply in cells 

with compromised mitochondrial function (Figure 1.6 A). The most prominent and best-

studied member of the first group is the peroxisomal isoform of citrate synthase (CIT2). 

Displaying increased expression in ρ0 cells, CIT2 generates citrate within the glyoxylate cycle, 

which can be fed into the mitochondrial TCA cycle (Liu and Butow, 2006). The second 

group contains genes with unchanged expression, encoding the first three reactions of the 

TCA cycle, namely mitochondrial citrate synthase (CIT1), aconitase (ACO1) and isocitrate 

dehydrogenases (IDH1/2). In cells with stable mitochondrial function expression of TCA 

cycle genes is under the control of Hap transcription factors, while in respiratory deficient 

cells the control is dominated by RTG-genes (Liu and Butow, 1999). With the control of 

these two gene groups, the RTG pathway carries out metabolic adaptation to assure TCA 

cycle dependent α-KG supply, required for glutamate synthesis. 

 Next to its essential role for the TCA cycle functionality, ACO1 

expression is reported to be essential for mtDNA maintenance, as a packaging substitute of 

Abf2p (homolog of mammalian TFAM) (Chen et al., 2005). Thereby, ACO1 links 

retrograde signaling to mitochondrial biogenesis, independently of its TCA cycle function, as 

other mutations of Krebs cycle enzymes did not induce mtDNA loss to the same extent as 

aco1∆ (McCammon et al., 2003). 
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Figure 1.6 Metabolic events modulating retrograde response and the RTG pathway  
(A) Respiratory deficiency as in ρ0 cells disrupts TCA cycle, represented by the dashed line. Drop in 
α-KG levels induces expression of genes involved in anaplerotic pathways, indicated in red. These 
genes are involved in anaplerotic pathways, replenishing TCA cycle with metabolic intermediates. 
Blue genes indicate potential RTG pathway targets. (B) Key players of the RTG pathway. When 
active, Rtg2p binds Mks1p, reducing its inhibitory effect on the Rtg1/3p complex. Dephosphorylated 
Rtg3p enables the complex translocation to the nucleus, where it initiates transcription of genes with 
R-box containing promoters. Grr1p mediates free Mks1p ubiquitination. Bmh1/2p protects Mks1p 
from degradation when retrograde pathway is inactive. Illustrations from (Liu and Butow, 2006). 
 

 The RTG pathway consists of four positive, Rtg1p, Rtg2p, Rtg3p, 

Grr1p and four negative regulators, Mks1p, Lst8p, Bmh1p and Bmh2p (for review, see (Liu 

and Butow, 2006)). RTG1 and RTG3 encode transcription factors that form heterodimers to 

bind to the promoter region of target genes at the so-called R box (Figure 1.6 B). Out of 

these two, only Rtg3p is a phosphoprotein that can be phosphorylated at multiple sites. The 

inactive cytosolic Rtg1/3p complex is activated upon dephosphorylation of Rtg3p and 

consequently joint nuclear translocation (Sekito et al., 2000). The cytosolic Mks1p inhibits 

the RTG pathway by promoting Rtg3p phosphorylation. In turn, Rtg2p is indirectly 

responsible for Rtg3p dephosphorylation by reversibly binding Mks1p, thus diminishing its 

activity. The inhibitory effect of Mks1p can also be abrogated by Grr1p, which mediates 

ubiquitination of the former, leading to its degradation. Lst8p is an integral component of 

both TOR complexes. Data from genetic experiments suggest that it acts as a negative 

regulator of the RTG pathway at two sites, upstream of Rtg2p and between Rtg2p and 

Rtg1/3p (Liu et al., 2001). Lastly, two functionally redundant Bmh1p and Bmh2p proteins, 

which are highly conserved among eukaryotes, were suggested to negatively regulate the 
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RTG pathway by protecting Mks1p from ubiquitination or by binding Rtg3p, thereby 

keeping it in the cytosol.  

 Much insight was gained into relations between positive and 

negative regulators, and obviously Rtg2p and Mks1p interaction is central for RTG pathway 

activity. However, it is still not clear what signal determines their interaction. The designated 

task of the RTG system is to maintain α-KG supply for glutamate synthesis, which in turn 

potently suppresses the RTG pathway (Liu and Butow, 1999). On the other hand, reduced 

α-KG levels in damaged mitochondria result in elevated ammonium ion (NH4
+) levels, 

suggesting a positive effect of accumulating ammonia on RTG-dependent gene expression 

(Tate and Cooper, 2003). Rtg2p also contains an N-terminal ATP binding domain that is 

necessary for Rtg2p-Mks1p interaction, whereas the interaction most likely happens via the 

C-terminal region (Liu and Butow, 2006; Liu et al., 2003). This raises the possibility of ATP 

dependent regulation of Rtg2p activity (Liu and Butow, 2006).  

 

1.4.2 … in mammals  

 The central players in the mediation of the RTG pathway, Rtg2p 

and Mks1p, were found in multiple fungal species. By contrast, in mammals, RTG related 

genes have not been identified thus far. However, several studies suggest calcium and ROS as 

mediators of mitochondrial stress (for review, see (Whelan and Zuckerbraun, 2013)). 

  Depletion of mtDNA in murine C2C12 skeletal myocytes causes 

loss of mitochondrial membrane potential and elevated concentration of free calcium in the 

cytoplasm (Biswas et al., 1999). Partial mtDNA depletion in human lung cancer cells 

revealed 3-fold increase in steady state cytosolic calcium, accompanied by induction of 

antiapoptotic genes, tumor-specific markers and calcium pathways (Amuthan et al., 2002; 

Amuthan et al., 2001). Rising calcium levels are sensed by CaMK IV, which was shown to 

activate CREB, involved in cytochrome c expression, and induce Pgc-1α expression 

(Gopalakrishnan and Scarpulla, 1994; Wu et al., 2002). Yet, it remains to be determined 

whether observed calcium concentrations and proposed pathways are physiologically 

relevant.  

 Next to disturbed calcium homeostasis, mitochondrial stress can 

lead to excessive ROS production. This in turn can be sensed by nuclear factor erythroid 
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2-like 2 (NFE2L2, previously known as NRF2, hence frequently confused with NRF-2). In 

non-stressed cells, ubiquitous NFE2L2 is constantly degraded in the cytoplasm by Keap1. In 

the presence of ROS, Keap1 undergoes conformational changes, thereby releasing NFE2L2, 

which subsequently translocates to the nucleus (Itoh et al., 1999). There, NFE2L2 binds 

antioxidant response elements (ARE), thus inducing expression of cytoprotective genes 

involved in the antioxidant response, such as heme oxygenase 1 and glutathione 

S-transferases (Hayes et al., 2000) (Itoh et al., 1999). Notably, ARE have also been found in 

the promoter region of NRF-1, indicating a connection between antioxidant response and 

mitochondrial biogenesis (for review, see (Vomhof-Dekrey and Picklo, 2012)). 

 A specific branch of retrograde signaling is the mitochondrial 

unfolded protein response (UPRmt). Mitochondria are equipped with a certain range of 

intramitochondrial proteases and molecular chaperones to facilitate degradation of e.g. 

damaged proteins, or folding of nascent peptides respectively (for review, see (Rugarli and 

Langer, 2012)). Accumulation of un-/misfolded proteins within the organelle leads to 

disturbed proteostasis and requires assistance from nDNA-encoded auxiliary proteins. 

Surveying and signaling such changes ideally leads to full restoration of mitochondrial 

function. The mammalian UPRmt is poorly understood, however treatment with ethidium 

bromide, which depletes mtDNA, leads to increased transcript and protein levels of heat 

shock proteins 60/10 (Hsp60/10), two chaperonins involved in protein folding in the 

mitochondrial matrix along with heat shock 70kDa protein 9 (HSPA9 also known as 

mtHSP70) (Martinus et al., 1996; Ryan et al., 1997). Analysis of Hsp60/10 promoters 

revealed the presence of CAAT/enhancer-binding protein (C/EBP) and C/EBP homologous 

protein (CHOP) binding sites, required for efficient transcription (Zhao et al., 2002a). A 

possible mechanism for integration of mitochondrial status is that accumulation of protein 

aggregates leads to elevated CHOP levels (Zhao et al., 2002a). However, in the human 

genome 3.899 nuclear genes contain CHOP-C/EBP binding elements, suggesting additional 

factors involved in UPRmt activation and it is still enigmatic how the signal is transduced 

from mitochondria to the nucleus (Ryan and Hoogenraad, 2007). 
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1.4.3 … in C. elegans  

 Not much is known about nuclear factors modulating 

mitochondrial biogenesis in worms.  The search for homologs of NRF-1/2, PGC-1 and 

RTG-genes in lower eukaryotes including nematodes has been unsuccessful so far (Knutti et 

al., 2000; Lin et al., 2005). Functional homologs of mammalian PPARα/β/γ and ERRα/β/γ 

have not been identified yet but might exist in worms, as 5 times more nuclear hormone 

receptors are present in nematodes than in humans (for review, see (Antebi, 2006)). 

However, it appears only natural that there are mechanisms regulating mitochondrial 

biogenesis, for the simple fact alone that a single C. elegans hermaphrodite produces around 

300 eggs, all equipped with functional mitochondria. Moreover, the dynamic nature of this 

regulation is underlined by observations that mtDNA content of somatic cells increases in 

the course of development, but exposure to heat shock reduces the content of mitochondrial 

proteins (Bratic et al., 2009; Liang et al., 2014).  

 Though initial observations that mitochondrial stress specifically 

activates expression of mitochondria-directed chaperones were made in mammals (described 

in previous paragraph), more insight into the mechanism of the UPRmt was gained from 

studies on C. elegans (Figure 1.7 A). Expression of two mitochondrial chaperones HSP-6 and 

HSP-60, mammalian mtHSP70 and HSP60 respectively, is activated in response to 

mitochondria-specific stress, which is not inducing endoplasmatic reticulum or cytosolic 

stress responses (Yoneda et al., 2004). This kind of stress can be generated by ethidium 

bromide treatment or disturbing protein folding environment via inhibition of enzymes 

involved in mitochondrial protein homeostasis, such as metalloprotease SPG-7 (homolog of 

human paraplegin, part of m-AAA protease). The foundation stone to the understanding of 

UPRmt regulation was laid, when RNAi screens for factors mediating UPRmt identified 

ubiquitin-like protein UBL-5 and homeobox transcription protein DVE-1, shown to bind 

the hsp-60 promoter (Benedetti et al., 2006; Haynes et al., 2007). Proteolytic activity of the 

mitochondrial protease CLPP-1 was designated as an important step in the stress signal 

generation, which leads to DVE-1 and UBL-5 activation (Haynes et al., 2007). Major 

progress in deciphering signal transduction from mitochondria to the nucleus was made by 

the identification of the bZip activating transcription factor associated with stress-1 

(ATFS-1) (Haynes et al., 2010). It possesses a nuclear localization signal (NLS) and 
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N-terminal mitochondrial targeting sequence (MTS) (Nargund et al., 2012). In unstressed 

worms, ATFS-1 is constantly imported into mitochondria, where it is degraded most likely 

by the Lon mitochondrial protease (encoded by C34B2.6). Under mitochondrial stress 

ATFS-1 import into mitochondria is attenuated and it partially translocates to the nucleus, 

where it activates expression of 391 genes, binding directly to 70 of the respective gene 

promoters, including mitochondrial chaperones and transporters but also genes involved in 

ROS detoxification and glycolysis (Nargund et al., 2015; Nargund et al., 2012). Import of 

ATFS-1 into the mitochondria is attenuated by the activity of the mitochondrial inner-

membrane localized ABC transporter, HAF-1, which is proposed to contribute to the export 

of unfolded proteins, previously cleaved by CLPP-1 protease (Haynes et al., 2010). However, 

HAF-1 most likely has modulating effects on the UPRmt, as some mitochondrial stresses like 

spg-7 knockdown do not require HAF-1 activity for response induction (Nargund et al., 

2012). Notably, a truncated version of ATFS-1, lacking MTS, robustly and constitutively 

induces hsp-60 expression (Nargund et al., 2012). A recent study suggests that during 

mitochondrial stress ATFS-1 not only induces transcription of aforementioned genes, but 

also coordinates bigenomic expression of OXPHOS genes (Nargund et al., 2015). ChIP-seq 

analysis revealed that ATFS-1 binds not only promoters of nuclear genes but also the non-

coding region of mtDNA. While ATFS-1 enhanced transcription of mitochondrial 

protective genes and genes involved in OXPHOS assembly, expression of mtDNA- and 

nDNA-encoded OXPHOS genes was reduced in an ATFS-1 dependent manner (Nargund 

et al., 2015). The mechanism by which ATFS-1 reduces mtDNA transcripts is unclear, 

however identification of a second, shorter isoform of ATFS-1 was shown to be upregulated 

during mitochondrial stress and proposed to be responsible for reduced OXPHOS 

transcripts (Nargund et al., 2015). Hence, ATFS-1 is suggested to simultaneously promote 

mitochondrial proteostasis and to match OXPHOS complexes generation to the current 

mitochondrial functional state (Nargund et al., 2015) (Figure 1.7 B). 

 Additionally, in a pathway complementary to ATFS-1 mediated 

UPRmt, mitochondrial stress attenuates cytosolic translation (Figure 1.7 A). ROS production, 

presumably resulting from impaired respiration, is sensed by the cytosolic general control 

non-derepressible-2 kinase (GCN-2), which phosphorylates eukaryotic translation initiation 

factor 2 α, eIF2α, thereby diminishing cytosolic translation initiation (Baker et al., 2012). 
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Thereby, attenuation of cytosolic translation may be seen as auxiliary mechanism to protect 

stressed mitochondria from the additional burden of imported proteins. 

 

 
 

Figure 1.7 Mitochondrial stress signaling in C. elegans 
(A) Molecular chaperones HSP-6 and HSP-60 ensure protein folding within mitochondria. 
Accumulating un-/misfolded proteins are cleaved by CLPP-1 protease and exported into the 
cytoplasm by HAF-1 transporter, where they attenuate mitochondrial import of ATFS-1. Thus 
ATFS-1, which possesses MTS and NLS, translocates to the nucleus where it, most likely in a 
complex with ubiquitin-like protein UBL-5 and homeobox transcription protein DVE-1, initiates 
transcription of mitochondrial protective genes, which restore mitochondrial environment and 
function. In a complementary pathway increased ROS production induces GCN-2 mediated eIF2α 
phosphorylation, thereby inhibiting cytosolic translation, consequently reducing protein-folding 
burden in mitochondria. Illustration from (Jovaisaite et al., 2014). (B) During stress cytosolic 
ATFS-1 translocates to the nucleus where it induces transcription of OXPHOS assembly and 
mitochondrial protective genes. At the same time ATFS-1 has inhibitory effect on the expression of 
nuclear- and mtDNA-encoded OXPHOS genes. In this way ATFS-1 adapts OXPHOS complexes 
biogenesis to the disturbed mitochondrial environment until full organelle recovery. HSP, heat shock 
protein; ATFS-1, activating transcription factor associated with stress-1; MTS, mitochondrial 
targeting sequence; NLS, nuclear localization signal; GCN-2, general control non-derepressible-2 
kinase; TIM, translocase of inner membrane; TOM, translocase of outer membrane; ROS, reactive 
oxygen species; eIF2α, eukaryotic translation initiation factor 2 α. Illustration from (Nargund et al., 
2015) 
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1.5 Objectives 

 Mitochondrial biogenesis is a complex process, which implicates 

coordinated expression of different subsets of genes defining mitochondrial functionality. 

Given that genes with mitochondrial function are distributed between two genomes, 

orchestration mechanisms are required to ensure efficient expression and assembly of 

OXPHOS complexes. Further, the rate of mitochondria-related gene expression integrates 

internal and external, chemical and physical stimuli, allowing cellular adaptation to current 

nutrient availability and energy requirements, increasing organismal chances of survival. 

Eventually, mitochondrial dysfunction becomes prominent during aging and is also 

associated with various types of diseases (for review, see (Nunnari and Suomalainen, 2012; 

Schapira, 2012; Terman and Brunk, 2004)). 

 Various mammalian nuclear transcription factors and coactivators 

were identified as pivotal regulators of mitochondria-related gene expression. By contrast, to 

date, no homologs of these factors were found in C. elegans (Knutti et al., 2001; Lin et al., 

2005). This raises the possibility of an alternative or as of yet neglected meshwork of factors 

determining mitochondrial biogenesis in worms. Deciphering regulatory mechanisms in 

C. elegans may contribute to further understanding of mitochondrial biology in mammals. 

Thus, we designed a reporter strain to monitor mitochondrial replication that is associated 

with the dynamics of mitochondrial biogenesis (Schultz et al., 1998). Using this model, we 

conducted large-scale RNA interference (RNAi) screens allowing us to identify factors 

potentially involved in mitochondrial biogenesis and characterized selected candidates with 

regard to their role in various aspects of mitochondrial functions. 
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2 Materials and Methods 

2.1 Chemicals and biological materials 

Size markers for agarose gel electrophoresis (Gene Ruler DNA Ladder Mix) and for 

SDS-PAGE (Page Ruler Prestained Protein Ladder Mix) were obtained from. Chemicals and 

material used in this work are listed in (Table 2.1). Solutions were prepared with double 

distilled water. StrataPrep Plasmid Miniprep Kit (Agilent Technologies, USA) was used for 

plasmid isolation from bacteria and NucleoSpin Gel and PCR Clean-up (Macherey-Nagel, 

Germany) was used for DNA extraction from agarose gel. 

 

Chemical/Enzyme Supplier 

2-methyl-2-butanol Sigma Aldrich, USA 

agar VWR, USA 

agarose ultra pure Thermo Fisher 

ammoniumpersulfat (APS) Sigma Aldrich, USA 

ampicillin Sigma Aldrich, USA 

bovine serum albumin (BSA) Sigma Aldrich, USA 

bromophenol blue Merck, Germany 

calcium chloride dihydrate VWR, USA 

chloroform Merck,  Germany 

cholesterol Sigma Aldrich, USA 

deoxynucleotides (dNTPs) Sigma Aldrich, USA 

dimethylsulfoxide (DMSO) Merck, Germany 

disodium phosphate Merck, Germany 

dithiothreitol (DTT) Sigma Aldrich, USA 

enhanced chemiluminescence (ECL) PanReac AppliChem, Germany 

ethanol, absolute PanReac AppliChem, Germany 

ethidium bromide Sigma Aldrich, USA 

ethylendiamine tetraacetate (EDTA) PanReac AppliChem, Germany 
glycerol Sigma Aldrich, USA 
glycine PanReac AppliChem, Germany 
glycogen Roche, Switzerland 
hydrochloric acid (37%) VWR, USA 
IPTG PanReac AppliChem, Germany 
isopropanol (2-propanol) PanReac AppliChem, Germany 
magnesium chloride Merck, Germany 
magnesium chloride hexahydrate  Sigma Aldrich, USA 
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Chemical/Enzyme Supplier 
magnesium sulfate  Merck, Germany 
methanol PanReac AppliChem, Germany 
nitrogen (liquid) Linde, Germany 
nonfat dried milk powder PanReac AppliChem, Germany 
nonidet P40 (NP-40) Sigma Aldrich, USA 
nystatin suspension Sigma Aldrich, USA 
phosphate buffered saline (PBS) PanReac AppliChem, Germany 
potassium chloride PanReac AppliChem, Germany 
potassium phosphate dibasic VWR, USA 
potassium phosphate monobasic Sigma Aldrich, USA 
protease Inhibitor Cocktail Tablets Roche, Switzerland 
proteinase K PanReac AppliChem, Germany 
Rotiphorese Gel 40 (37.5:1) Roth, Germany 
sodium azide Sigma Aldrich, USA 
sodium chloride PanReac AppliChem, Germany 
sodium dodecyl sulfate (SDS) PanReac AppliChem, Germany 
sodium hydroxide PanReac AppliChem, Germany 
sodium hypochlorite 14% VWR, USA 
tetracyclin hydrochloride PanReac AppliChem, Germany 
tetramethylethylenediamine (TEMED) Sigma Aldrich, USA 
trishydroxymethylaminomethane(Tris) PanReac AppliChem, Germany 
Tween 20 PanReac AppliChem, Germany 
β-mercaptoethanol (BME) PanReac AppliChem, Germany 

Table 2.1 Chemicals and biological materials used in this study 
 

2.2 Worm experiments 

2.2.1 Maintenance of C. elegans 

Standard techniques were used for growing and maintaining of C. elegans populations 

(Stiernagle, 2006). In brief, animals were kept on nematode growth medium (NGM) agar 

plates (0,25% bacto-peptone, 0,3 % NaCl, 1,7 % agar, 1mM CaCl2, 1mM MgSO4, 25mM 

KPI buffer pH 6, 5 μg/ml cholesterol, nystatin 25 units/ml) at 20°C in air permeable boxes 

and fed Escherichia Coli OP50 strain bacteria, unless otherwise indicated. In all experiments 

worms were used as synchronized populations. 
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2.2.2 Nematode strains 

Strain Genotype 

N2, Bristol wild type 

ATR0011 mtss-1pr ::gfp III 

ATR0031 Ex[W04D2.4pr ::gfp] 

ATR0028 Ex[myo-3pr ::W04D2.4::mcherry] 

ATR0025 Ex[aco-2pr ::gfp] 

ATR0026 Ex[cts-1pr ::gfp] 

ATR0027 Ex[hmg-5pr ::gfp] 

ATR0018 glp-4(bn2) I;mtss-1pr ::gfp III 

ATR0024 gcn-2(ok871) II;mtss-1pr ::gfp III 

ATR0022 ife-2(ok306) X;mtss-1pr ::gfp III 

MQ989 isp-1(qm150)IV;ctb-1(qm189) 

SJ4005 zcIs4 [hsp-4pr ::gfp V] 

SJ4100 zcIs13 [hsp-6pr ::gfp V] 

SJ4058 zcIs9 [hsp-60pr ::gfp V] 

SJ4143 zcIs17 [ges-1pr ::gfpmt] 

SJ4103 zcIs14 [myo-3pr ::gfpmt] 

ATR1010 isp-1(qm150)IV;ctb-1(qm189);hsp-6pr ::gfp 

ATR1040 isp-1(qm150)IV;ctb-1(qm189);gst-4pr ::gfp 

TB2601 polg-1(ok1548)/+ II; +/mln [dpy-10(e128)mls14] II 

Table 2.2 List of strains with respective genotypes used in this study 
 

2.2.3 Generating synchronized worm population 

Gravid animals were washed off the plates and collected in 3.5 ml M9 buffer (20mM 

KH2PO4, 40 mM Na2HPO4, 80 mM NaCl, 1mM MgSO4). A mix containing 0.5 ml of 5M 

NaOH and 0.356 ml Sodium Hypochlorite 14% (VWR, USA) was added to the worms. 

Shaking every 2 min, animals were incubated until dissolution of somatic tissues after ~10 

min. Unharmed eggs were centrifuged for 30 sec at 1.200xg and washed with fresh M9. After 

repeating the centrifugation and washing cycles 4 times, eggs were either directly used for 

subsequent experiments or incubated on a shaker at 20°C over night in M9. Next day 

synchronized population of L1 staged animals were transferred to fresh NGM plates.  
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2.2.4 Biosorter 

Measurement of GFP signal intensity in large populations of worms was performed using 

BioSorter®INTRUMENT and FlowPilot™ software (Version 1.5.5.4) (Union Biometrica). 

Synchronized worms were collected at day 1 of adulthood with M9 buffer and washed 

multiple times to get rid of bacteria. At least 100 worms per condition were used for analysis, 

determining   

 

2.2.5 Crossing of C. elegans strains 

In order to outcross a mutation or cross two different genotypes, crossings were set up by 

placing 2 L4 staged hermaphrodites of one of the strains together with 10 males of the other 

strain on the same NGM plate. If mating was successful (~50% occurrence of male progeny), 

L4 hermaphrodite progeny (F1 generation) were singled on new NGM plates and allowed to 

lay eggs. Then F1 generation animals were analyzed for desired genotype by single worm 

PCR and respective progeny was allowed to develop. Eventually F2 animals were singled 

again in order to lay eggs. After analyzing F2 animals, F3 worms of desired genotype were 

kept as working strain.  

 

2.2.6 Lifespan assays 

The RNAi effect was followed during entire lifespan. Synchronized populations were used 

for lifespan measurements. At least 100 animals were used per condition and scored every 

other day. Worms that died due to internally hatched eggs, vulva protrusion, desiccation or 

due to crawling out of the plate were censored. All lifespan assays were conducted at 20°C, 

unless otherwise indicated. 

 

2.2.7 Oxygen consumption 

Oxygen consumption rates were measured using the Oxygraph-2k high-resolution 

respirometry system (Oroboros Instruments GmbH, Austria). 300 animals of desired age 

were manually picked and transferred to non-seeded NGM plates from where they were 
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immediately recollected with M9 buffer. The worms were resuspended in 50µl M9 buffer 

and introduced into the Oxygraph chamber containing 2ml of M9 buffer, maintained at 

20°/25°C. Oxygen consumption was measured for a minimum of 15 min. The slopes of the 

linear portions of the plots were used to calculate oxygen consumption rates. All 

measurements were performed alternating the chambers and at least 6 times. Data were 

analyzed using DatLab4 software (Version 4.3).  

 

2.3 Molecular biology and biochemistry 

2.3.1 RNAi 

To inhibit specific gene function we used a standard feeding RNAi protocol (Kamath et al., 

2001). In brief, either eggs (all screening experiments) or L1 stage larvae were placed on 

NGM-RNAi plates (NGM plates additionally containing 100 µg/ml ampicillin, 25 µg/ml 

tetracycline, 1mM IPTG) seeded with E. coli bacteria expressing double-stranded RNA of a 

specific gene. All RNAi clones were retrieved from the Ahringer RNAi library and checked 

before their use by sequencing. If the sequence was wrong or bacteria did not grow, 

respective clone was taken from the Vidal RNAi library. For RNAi screens 384-pin replicator 

was used to transfer bacteria from glycerol stock library into fresh LB-medium containing 

deep-well plates. Worms feeding on bacteria carrying the empty vector (L4440) were used as 

control. When performing double RNAi experiments e.g. A+B, for control condition single 

RNAi bacteria were diluted with L4440 vector carrying bacteria e.g. A+L4440 to ensure 

equal availability of dsRNA. After reaching day 1 of adulthood worms were scored, collected 

for further biochemical experiments or imaged. 

 

2.3.2 Cloning 

The mtss-1pr ::gfp reporter was constructed by amplifying ~1kb genomic region containing 

the putative promoter of C. elegans mtss-1 using the primers Pmtss.SphI and Pmtss.AgeI and 

ligating the fragment into the SphI–AgeI sites of pPD95.75 plasmid to create 

Pmtss1.pPD95.75, subsequently injected into N2 animals to create mtss-1pr ::gfp III 

(ATR0011) strain. Construct was integrated using UV-irradiation as described (Evans, 
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2006). After successful integration the strain was outcrossed 4 times with N2, following GFP 

expressing animals. The W04D2.4pr ::gfp reporter was constructed by amplifying ~1kb 

genomic region containing the putative promoter of C. elegans W04D2.4 using the primers 

PW04.HindIII and PW04.XbaI and ligating the fragment into the HindIII–XbaI sites of 

pPD95.75 plasmid to create PW04.pPD95.75, subsequently injected into N2 animals to 

create Ex[W04D2.4pr ::gfp] (ATR0031) strain. The myo-3pr ::W04D2.4::mcherry reporter was 

constructed by amplifying the C. elegans W04D2.4 coding sequence using the primers 

W04.XbaI and W04.XbaI and ligating the fragment into the XbaI site of pCFJ104 plasmid 

to create W04.pCFJ104, subsequently injected into N2 animals to create 

Ex[myo-3pr ::W04D2.4::mcherry] (ATR0028) strain. The hmg-5pr ::gfp reporter was 

constructed by amplifying 300bp genomic region containing the putative promoter of 

C. elegans hmg-5 using the primers Phmg5.SphI and Phmg5.AgeI and ligating the fragment 

into the SphI–AgeI sites of pPD95.75 plasmid to create Phmg.pPD95.75, subsequently 

injected into N2 animals to create Ex[hmg-5pr ::gfp] (ATR0027) strain. For all constructs 

rol-6(su1006dm)pRF4 was used as co-injection marker. Injection mix containing reporter 

construct and co-injection marker did not exceed 100ng/µl DNA concentration. ATR0025 

and ATR0026 were generated as described (Yoneda et al., 2004). All DNA fragments were 

amplified using Pfu DNA polymerase (Promega, USA) using respective primers (Table 2.3) 

and sequenced by GATC Biotech, Germany. Digestion reactions were performed using 

restriction enzymes (New England Biolabs, USA) and ligations were performed using T4 

DNA Ligase (Thermo Fisher, USA) following manufacturer’s instructions. One Shot 

TOP10 chemically competent E. coli cells (Thermo Fisher, USA) were used for 

transformation. All other strains were purchased from Caenorhabditis Genetics Center 

(CGC) (Table 2.2).  
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Name Genotype Sequence 5'-3' Application 

mtss.SphI 
mtss-1 

GCGGCATGCTTTACAATAAGAAAGT 
cloning 

mtss.AgeI AATACCGGTTTTCTATAATTTTGGTTTATCGA 

Phmg5.SphI 
hmg-5 

TGCGCATGCAGAAGAAGAAATATC 
cloning 

Phmg5.AgeI AGTACCGGTCTTCGAAAATAAGAGTTTTAAG 

PW04.HindIII.fw  
W04D2.4 

TATAAAGCTTCGCTCGTAGAGTTCCTTCGA 
cloning 

PW04.XbaI.rev ATCTGGCTCTAGATCGATATCATCAGTCAT 

W04.XbaI.fw 
W04D2.4 

TGACTTCTAGAATGACTGATGATATCGATGA 
cloning 

W04.XbaI.rev TGACTTCTAGATAGCTCCAAATTCCAGTATT 

Table 2.3 Oligonucleotides used for cloning 
The restriction site is indicated in the primer name. 
 

2.3.3 Single worm lysis  

For genotyping experiments single animals were collected in a PCR stripe, one worm per 

tube, in 2 µl of single worm lysis buffer (30 mM Tris pH 8, 8 mM EDTA, 100 mM NaCl, 

0.7% NP40, 0.7% Tween 20, proteinase K 100 �g/ml). Next, samples were put at -80°C 

and subsequently lysis program (65°C for 1h, 90°C for 15 min) was run in the Veriti®	

96-well Thermal Cycler (Thermo Fisher, USA). Eventually 6 µl of double distilled water 

were added to each sample (PanReac AppliChem, Germany). GoTaq DNA polymerase 

(Promega, USA) and respective primers (Table 2.4) were used for genotyping experiments in 

20 µl reaction volume (1 µl lysis product as template, 0.5 µM forward primer, 0.5 µM 

reverse primer, 0.2 mM dNTP mix, 1X GoTaq buffer, 0.05 U GoTaq polymerase, water to 

20µl) 

 

Name Genotype Sequence 5'-3' Application 

ok871.int.fw 
gcn-2(ok871) 

GTTTTCGGGATATTCGCAGA 
genotyping 

ok871.ext.rev TGTGGACCCGAAACAGTACA 

ok306.ife2.ext.fw 
ife-2(ok306) 

AAACATTCGTTCATTTCCGC 
genotyping 

ok306.ife2.int.rev CGTTTTGCCAATCGAATTTT 

Table 2.4 Oligonucleotides used for genotyping 
 

2.3.4 Determination of mtDNA copy number 

Worms at day 1 of adulthood were singled and lyzed by standard protocol (Bratic et al., 

2009). The mtDNA copy number was measured by quantitative PCR as previously 
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described (Bratic et al., 2009). In brief, absolute mtDNA content was determined in single 

animal by amplifying mtDNA-encoded endogenous nd1. Standard curve was generated 

using as template serial dilutions of pCR2.1 plasmid containing nd1. Quantitative PCR was 

performed for at least 6 independent samples. Real-time PCR conditions as in measurement 

of transcript levels. 

 

2.3.5 Quantification of nucleic acids 

DNA and RNA concentrations were quantified by measuring the sample absorption at 260 

nm and 280 nm with a NanoDrop 8000 spectrophotometer (Thermo Fisher, USA). A ratio 

greater than 2 of absorptions at 260 nm (DNA/RNA) divided by the absorption at 280 nm 

(protein) was used as an index of purity of DNA/RNA. 

 

2.3.6 Analysis of gene expression  

Transcript levels were analyzed in hermaphrodite animals at day1 of adulthood by 

quantitative real-time PCR using coding sequence specific primer pairs (Table 2.5). Total 

RNA was isolated with TRIzol (Thermo Fisher, USA) and contaminating DNA was 

removed using TURBO DNA-free™ kit (Thermo Fisher, USA). Then 0.8 µg of total mRNA 

was reversely transcribed using High Capacity cDNA Reverse Transcription Kit (Thermo 

Fisher, USA). Samples representing one condition were obtained from 6 biological replicates. 

Real time PCR was performed using QuantStudio 12K Flex Real Time PCR System 

(Thermo Fisher, USA) with the following PCR conditions: 3 min at 95°C, followed by 40 

cycles of 5 sec at 95°C and 16 sec at 60°C. Amplified products were detected with SYBR 

Green (Brilliant III Ultra Fast SYBR Green qPCR Master Mix, Agilent Technologies, USA). 

Relative quantification was performed against Y45F10D.4 (Hoogewijs et al., 2008). Relative 

gene expression was determined using 2-∆∆CT method (Livak and Schmittgen, 2001). At least 

6 biological replicates were used during isolation. 
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Name Genotype Sequence 5'-3' Application 

Y45F10D.4.fw 
Y45F10D.4 

GTCGCTTCAAATCAGTTCAGC 
qPCR 

Y45F10D.4.rev GTTCTTGTCAAGTGATCCGACA 

hmg-5.fw 
hmg-5 

AAAGAAGTACACAGACGAAGC 
qPCR 

hmg-5.rev TTTCTGGAGGACGACATGG 

mtss-1.fw 
mtss-1 

CGATCTCCAAGTCTACCGTC 
qPCR 

mtss-1.rev GTCATCAACCTCTTGCTTGC 

ndufs-3.fw 
nuo-2 

TTCGTGTTCGTACATACACTG 
qPCR 

ndufs-3.rev CTTCACGCTCAAACCAGTC 

MTCE.26.fw 
ctc-1 

GGTGAACAGTCTACCCACC 
qPCR 

MTCE.26. rev GCTAAATCTACTCTACTTCCAGG 

sptf-3.fw 
sptf-3 

CAACAACACCTGATGGATCAC 
qPCR 

sptf-3.rev GGAATGAATTGCACCTGTCTC 

tomm-20.fw 
tomm-20 

ACAACTCCTGTCTATCTTCCA 
qPCR 

tomm-20.rev GAACATTTCCGCAAGACGT 

gfp.fw 
gfp 

CATGGCAGACAAACAAAAGAATG 
qPCR 

gfp.rev CTGCTAGTTGAACGCTTCCATC 

vdac.fw 
vdac-1 

GATCCCACAATACGGAATCACTTT 
qPCR 

vdac.rev CTTGAGTCCACGTCCGAATTG 

hmg-5.fw 
hmg-5 

AGATAAGTACACAGAACTCTCG 
qPCR 

hmg-5.rev CCTCAGTAGATAGTTTCATGAAGTC 

nd-1.fw 
nduo-1 

AGCGTCATTTATTGGGAAGAAGAC 
qPCR 

nd-1.rev AAGCTTGTGCTAATCCCATAAATGT 

Table 2.5 Oligonucleotides used for qPCR-based gene expression analysis 
 

2.3.7 RNA-seq 

The quality of isolated RNA samples was determined using Experion system (BioRad, USA) 

and biological triplicates of required quality (RIN>8, OD260/280=1.8-2.1 and 

OD260/230>1.5) were send to Cologne Center for Genomics (CGC) for RNA sequencings. 

In brief, libraries were prepared using the Illumina®	TruSeq®	RNA sample preparation Kit. 

After poly-A selection, mRNA was purified, fragmented and underwent reverse transcription 

using random primers, followed by second strand cDNA synthesis with DNA Polymerase I 

and RNase H. After end repair and A-tailing, indexing adapters were ligated. The products 

were then purified and amplified (14 PCR cycles) to create the final cDNA libraries. After 

library validation and quantification (Agilent Technologies 2200 TapeStation), equimolar 

amounts of library were pooled. The pool was quantified by using the Peqlab KAPA Library 

Quantification Kit and the Applied Biosystems 7900HT Sequence Detection System. The 

pool was sequenced by using an Illumina TruSeq PE Cluster Kit v3 and an Illumina TruSeq 
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SBS Kit v3-HS on an Illumina HiSeq 2000 sequencer (Illumina, USA) with a paired- 

end  (101x7x101 cycles) protocol. NGS data were analyzed by CECAD Bioinformatics 

facility as described (Wagle et al., 2015).  

 

2.3.8 Protein isolation 

Worms were collected and pelleted in 1.5 ml Eppendorf tubes, then resuspended in 150 µl 

of lysis buffer (25 mM Tris, 0.15 M NaCl, 1 mM EDTA, 1% NP-40, freshly added: 5 mM 

DTT and 1X protease inhibitor cocktail (Sigma-Aldrich, USA), pH 7.4). After 5 consecutive 

freezing (liquid nitrogen) thawing (37°C) worms were sonicated for 3 min at 4°C using 

Bandelin Sonorex RK 102 P (Sigma-Aldrich, USA). Subsequently, samples were centrifuged 

at 4°C, 14.000xg. The supernatant was transferred to a new tube and the protein 

concentrations were measured by using Bradford reagent (Sigma-Aldrich, USA) according to 

the manufacturer's instructions. Eventually, proteins were stored at -80 °C until used. At 

least 4 biological replicates were used during isolation. 

 

2.3.9 Western Blot analysis 

For Western blots (Tris-Glycine gel and buffer system) protein samples were boiled for 

10 min in SDS-PAGE sample loading buffer (50 mM Tris-HCl pH 6.8, 2% SDS, 10% 

glycerol, 1% b-mercaptoethanol, 12.5 mM EDTA. 0.02% bromphenol blue). Proteins were 

separated by SDS-PAGE, 30 µg of protein per lane, and blotted onto nitrocellulose 

membranes (GE Healthcare, United Kingdom). Next, membranes were blocked at room 

temperature for 1h in 5%-milk, PBST (PBS containing 0.05% Tween 20), further referred 

to as 5% MPBST, solution. Subsequently, primary antibodies, diluted in 5% MPBST were 

applied for overnight incubation at 4 °C. Next day, membranes were washed 3 x 10 min 

with PBST. Respective secondary antibody  was diluted in 5% MPBST and applied for 1 h 

at room temperature. All antibodies and working dilutions listed in (Table 2.6). The 

membrane was again washed 3 x 10 minutes with PBST and signal was visualized using ECL 

solution according to manufacturers manual (GE Healthcare, United Kingdom) and 

eventually exposing to FUJIFILM Super RX (Fujifilm, Japan). After development using 

CURIX 60 tabletop processor (Agfa, Belgium) films were scanned using HP LaserJet 500 
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color MFP M575 (Hewlett-Packard, USA).  

Antibody (Cat. #) Distributor Dilution 
primary 
anti-Tubulin (T6074) Sigma-Aldrich 1:5.000 
anti-GFP (A-11122) Thermo Fisher 1:2.000 
anti-HSC70 (sc-7298) Santa Cruz 1:10.000 
anti-COXIV-1 (459600) Thermo Fisher 1:1.000 
anti-NDUFS3 (ab14711) Abcam 1:1.000 
anti-SSBP1 (HPA002866) Sigma-Aldrich 1:500 
anti-Phospho-eIF2α [Ser51] (#3597) Cell Signaling 1:1000 
anti-SPTF-3 (M82) (Hirose and Horvitz, 2013) kind gift from Horvitz lab, MIT 1:2.000 
secondary 
anti-mouse IgG peroxidase (A4416) Sigma-Aldrich 1:2.000 
anti-rabbit IgG peroxidase (A6154) Sigma-Aldrich 1:2.000 

Table 2.6 Antibodies used in this study 
 

2.4 Computer analyses and microscopy 

2.4.1 Photomicrographs 

Photomicrographs were taken using Hamamatsu camera (OrcaR2) and AxioVision software 

4.8 on the epifluorescence microscope (AxioImager Z.1) with Colibri illumination system. 

Worms were mounted on glass slides with 5% agarose pads in the middle. Animals were 

immobilized using 50mM sodium azide. Whenever possible, worms to be compared were 

placed on the same slide. 

 

2.4.2 Statistical analyses and graphical representation 

A two-tailed unpaired Student’s t-test was used to determine statistical significance. Error 

bars represent standard error of the mean (SEM). All p values below 0.05 were considered 

significant: p*<0.05 ; p**<0.01 ; p***<0.001; p****<0.0001. All statistical analyses and 

generation of graphs were performed in GraphPad Prism5.0d. (GraphPad Software, USA). 

All photomicrographs and Western blot scans were arranged using Adobe Illustrator CS6 

16.0.4 (Adobe Systems, USA). Quantification of protein amount was based on calculated 

intensity per mm2 using ImageJ 1.47 software (National Institutes of Health, USA). 

Hardware and protocols for Western blotting from BioRad, USA. 



  3 Results 

 42 

3 Results 

3.1 Transcription factors RNAi screen using mtss-1pr ::gfp 

 In order to identify genes affecting mitochondrial biogenesis we 

designed reporters to monitor changes in mtDNA replication state. In mammals, the 

minimal mtDNA replisome consists of three proteins: POLγ, TWINKLE and SSBP1 (also 

known as mtSSB) (Korhonen et al., 2004). We generated respective reporters coupling green 

fluorescent protein (GFP) expression to the transcriptional activity of the polg-1, F46G11.1 

and mtss-1 putative promoter regions. Only injection of mtss-1pr ::gfp led to successful 

expression of the extrachromosomal array, which was subsequently integrated by ultraviolet 

(UV) irradiation into the genome at chromosome III.  

 When kept at standard laboratory maintenance temperature of 

20°C, GFP was expressed predominantly in the pharynx and the posterior part of the worm. 

Grown at 25°C, mtss-1pr ::gfp expression was robustly upregulated in the intestine (Figure 3.1 

A). The upregulation of the fluorescent signal was confirmed by analysis using 

BioSorter®INSTRUMENT (Union Biometrica) (Figure 3.1 B). Importantly, at no point 

was GFP detected in cells of the reproductive system. In this way we were able to observe 

changes in mtss-1 expression independent of the germ line based mtDNA proliferation. The 

screen was carried out at 25°C, with eggs from bleached worms exposed to bacteria 

expressing double stranded RNA throughout development. After reaching day 1 of 

adulthood we looked for animals expressing GFP at a lower level than control worms fed 

empty vector (Figure 3.1 C). 

 For the screen we used two different RNAi libraries: one 

transcription factor library from Source BioScience which is publicly available on the 

company's website; the second library was generated by the Cole M. Haynes laboratory from 

Memorial Sloan Kettering Cancer Center and is based on a genome-wide in silico screen for 

genes with putative DNA interacting domains. In total, these libraries were comprised of 388 

and 341 targeted genes respectively. We identified five genes whose RNAi mediated 

knockdown decreased mtss-1pr ::gfp expression (Table 3.1). ceh-20 and lin-40 knockdown 
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induced the least fluorescence decrease. Therefore, we decided to focus on sptf-3, gei-17 and 

W04D2.4.  

 
Figure 3.1 Experimental outline to detect genes involved in mitochondrial biogenesis 
(A) Representative photomicrographs of mtss-1pr::gfp transgenic worms raised on control (20°C) or 
increased (25°C) temperature. Scale bar, 0.1 mm. (B) GFP expression levels in mtss-1pr::gfp transgenic 
worms measured with BioSorter®INSTRUMENT (Bars represent mean ± SEM, [Student's t test], 
p****<0.0001, n=400). RFU, relative fluorescence units. (C) RNAi screen workflow. 
 
 

Gene Brief description DNA binding domain GFP signal 
Transcription factor library (www.sourcebioscience.com) 

ceh-20 homeodomain protein HD - TALE î 

lin-40 part of NURD complex ZF - GATA, MYB î 

In silico library (Cole M. Haynes) 
sptf-3 member of Sp1 family of transcription factors ZF - C2H2 - 3 fingers ê 

gei-17 SUMO E3 protein ligase ZF - MIZ ê 

W04D2.4 n/a ZF - C2H2 - 1 finger êê 

control L4440 empty vector  é 

Table 3.1 Candidates from RNAi screen conducted at 25°C 
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3.2 Knockdowns of sptf-3, gei-17 and W04D2.4 decrease lifespan  

 As perturbation of many genes with mitochondrial function affects 

C. elegans lifespan, we next investigated whether knockdown of sptf-3, gei-17 and W04D2.4 

results in a similar phenotype. As we isolated the candidates performing the screen at 25°C, 

initially we performed lifespan experiments at the same temperature. Both gei-17 and 

W04D2.4 knockdown decreased the lifespan of wild type worms in a similar manner by 

~ 25%, compared to control (Figure 3.2 A) (Table 3.2).  

 
Figure 3.2 Lifespan assays upon inhibition of candidate genes 
(A) Lifespan of N2 (wild type) worms subjected to RNAi mediated knockdown of gei-17 and 
W04D2.4 at 25°C. (B) Lifespan of N2 and isp-1(qm150);ctb-1(qm189) worms subjected to RNAi 
mediated knockdown of sptf-3 at 25°C or (C) at 20°C. 
 

 Furthermore, we tested the effect of sptf-3 knockdown on long lived, 

mitochondrial isp-1(qm150);ctb-1(qm189) double mutants. Both single amino acid 

substitutions target mitochondrial respiratory chain complex III subunits: mutations are 

located in the head domain of ISP-1, "Rieske" iron sulfur protein, and mtDNA-encoded 

cytochrome b, respectively. While isp-1(qm150) leads to slowed development and extended 

lifespan, no phenotype was found associated with ctb-1(qm189) (Feng et al., 2001). 
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Nevertheless, ctb-1(qm189) suppresses developmental delay but has no effect on lifespan of 

isp-1(qm150) mutant. Knockdown of sptf-3 function in isp-1(qm150);ctb-1(qm189) 

background reduced mean lifespan by up to 72% at 25°C (Figure 3.2 B) (Table 3.2). 

Remarkably, the lifespan extension phenotype of isp-1(qm150);ctb-1(qm189) was completely 

abolished. At 20°C, the lifespan of wild type worms and isp-1(qm150);ctb-1(qm189) double 

mutants was reduced by sptf-3 knockdown in a similar manner as at 25°C, though to a lesser 

extent (Figure 3.2 C) (Table 3.2). Together these results indicate vital functions of candidate 

genes specifically pronounced at higher temperature. 

 

Strain °C RNAi Median Adult 
Lifespan 

Total Number of 
Animals (Censored) 

% Lifespan 
Change vs. 

Control 

p-Value 
vs. 

Control 
wild type  25 L4440 16 100 (5) - - 
wild type  25 gei-17 12 100 (23) -25 <0.0001 
wild type  25 W04D2.

4 
12 100 (4) -25 <0.0001 

wild type  25 L4440 14 100 (11) - - 
wild type  25 sptf-3 7 61 (3) -50 <0.0001 

isp-1(qm150); ctb-1(qm189) 25 L4440 22 100 (20) - - 
isp-1(qm150); ctb-1(qm189) 25 sptf-3 6 100 (25) -72 <0.0001 

wild type  20 L4440 17 100 (6) - - 
wild type  20 sptf-3 11 100 (48) -35 <0.0001 

isp-1(qm150); ctb-1(qm189) 20 L4440 17 100 (13) - - 
isp-1(qm150); ctb-1(qm189) 20 sptf-3 13 100 (30) -23 <0.0001 

Table 3.2 Lifespan summary 
 

3.3 Endogenous mtss-1 transcripts are reduced upon sptf-3 and W04D2.4 

knockdown 

 To confirm that changes in GFP expression coincide with changes 

in the endogenous mtss-1 expression, we determined the respective transcript levels in worms 

raised at 25°C (Figure 3.3 A). gei-17 knockdown appeared to have no effect on transcript 

levels of mtss-1 or other genes with mitochondrial function, so we decided to exclude it from 

future experiments. sptf-3 and W04D2.4 knockdown decreased the expression of gfp and 

mtss-1 transcripts. sptf-3 knockdown also led to a decrease in hmg-5 (ortholog of mammalian 

TFAM) and tomm-20 (ortholog of human translocase of outer mitochondrial membrane 

(yeast)-like, TOMM20L) transcript levels, whereas vdac-1 (ortholog of human voltage 

dependent anion channel, VDAC1) transcripts seemed not to be affected by knockdown of 

these two transcription factors. Additionally, the visually observed decrease in GFP 

expression was confirmed at the protein level and the efficacy of sptf-3 knockdown was 
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examined using C. elegans specific anti-SPTF-3 antibody (Figure 3.3 B). Knockdown of 

W04D2.4 and sptf-3 caused the strongest reduction of mtss-1 transcript levels out of the 

various transcription factors, which were tested. Therefore, we decided to further investigate 

the role of these two candidates in mitochondrial biogenesis. 

 
Figure 3.3 Transcript and protein levels of genes with mitochondrial function upon sptf-3 
knockdown 
(A) Relative transcript levels of mtss-1, gfp, vdac-1, hmg-5 and tomm-20 in worms raised at 25°C and 
exposed to RNAi. Control indicated by grid line, bars represent mean ± SEM, [Student's t test], 
p*<0.05, p**<0.01, p****<0.0001, n=6. (B) Western blot analysis of GFP and SPTF-3 levels in total 
protein extracts from worms raised on control, W04D2.4 or sptf-3 RNAi at 25°C. Tubulin used as 
loading control. Irrelevant samples between control and W04D2.4 knockdown were removed. 
 

3.4 W04D2.4 localizes to the nucleus at 25°C 

 To shed light on the nature of W04D2.4, we generated a 

transcriptional reporter strain with gfp driven by the 5` upstream promoter region of 

W04D2.4. The highest level of GFP expression was observed in the pharynx, tail and 

nervous system. To obtain information about subcellular localization of W04D2.4, we 
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generated a translational reporter. Instead of the internal W04D2.4 promoter region, we 

used the muscle specific myo-3 promoter, driving the expression of the W04D2.4::mcherry 

construct. Expression of fusion proteins in muscle cells is convenient in terms of cell size, 

number and location, which makes localization of the fluorescent signal relatively easy. In 

contrast, cells that have shown W04D2.4 promoter activity are unsuitable for protein 

localization studies. Contrary, one disadvantage of using the myo-3 promoter is that in body 

wall muscle cells it drives the expression in a declining manner, from strong to weak towards 

adulthood (Chen et al., 2010; Nargund et al., 2012). Therefore in adult worms we did not 

observe strong and clear mCherry signal (data not shown), thus our observations were 

restricted to larval stages. At 20°C mCherry signal was diffused without being directed to any 

cell compartment specifically, whereas at 25°C the signal was detected predominantly in the 

nuclei (Figure 3.5). These results indicate that W04D2.4 is an inducible transcription factor, 

translocating to the nucleus upon temperature increase. 

 

 
Figure 3.4 W04D2.4 transcriptional reporter 
Representative photomicrographs of Ex[W04D2.4pr ::gfp] at 20°C. Scale bar, 0.1 mm.  
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Figure 3.5 Localization of W04D2.4-mCherry 
Representative photomicrographs of Ex[myo-3pr ::W04D2.4::mcherry] at L2 and L4 larval stages at 
20°C/25°C. Scale bar, 20 µm.  
 

3.5 W04D2.4 is involved in the regulation of genes with mitochondrial 

function 

 Our localization studies suggest that W04D2.4 is a transcription 

factor, activated by stress, as it strongly translocates to the nucleus upon temperature 

increase. We next performed RNA sequencing (RNA-seq) analysis to compare 

transcriptomes of worms exposed to W04D2.4 RNAi at 25°C and worms fed empty vector at 

20°C or 25°C. As we were interested in deciphering the regulation of mitochondrial 

biogenesis, we looked closely at all annotated genes with mitochondrial function that were 

up- or downregulated in animals exposed to W04D2.4 (25°C) vs. control (25°C) RNAi, with 

p-value <0.01. In total we identified 222 transcripts that met our criteria. Further, we 

analyzed transcript levels of those genes in three possible combinations: (1) W04D2.4 (25°C) 

vs. control (25°C); (2) W04D2.4 (25°C) vs. control (20°C) and (3) control (25°C) vs. control 

(20°C). Transcript levels of 94 genes were changed in all three conditions whereas 88 were 

changed exclusively due to inhibited function of W04D2.4 (Figure 3.6 A). The vast majority 

of the 222 transcripts were downregulated in worms upon W04D2.4 knockdown (W04D2.4 
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(25°C) vs. control (25°C)) with only 22 transcripts being upregulated (Figure 3.6 B, 

Appendix Table 8.1). 

 
Figure 3.6 RNA-seq transcriptome analysis after W04D2.4 knockdown. 
(A) Venn diagram illustrating transcripts of genes with mitochondrial function altered due to 
W04D2.4 knockdown and/or temperature shift and their overlap (only transcripts changed at 25°C 
in W04D2.4 (RNAi) vs. control (RNAi) were taken into consideration). (B) Heat map comparing 
expression patterns of genes with mitochondrial function in worms raised on W04D2.4 (RNAi) or 
control (RNAi) at 20°C/25°C. Color code indicates Log2 (fold changes). 
 

 Strikingly, at 25°C transcripts of eleven mtDNA-encoded genes 

were downregulated between worms exposed to W04D2.4 and control RNAi (Table 3.3). 

Seven of those transcripts were downregulated exclusively due to W04D2.4 knockdown, 

while four genes showed also reduced transcript abundance already due to temperature 

increase. Further, 31 nDNA-encoded RC (Respiratory Chain) subunit genes were 

downregulated at 25°C upon W04D2.4 knockdown. Moreover, out of the 65 annotated 

mitochondrial ribosomal protein genes (RPG) in C. elegans, downregulation of W04D2.4 

reduced levels of 28 respective transcripts. Additionally, two key chaperones of 

mitochondrial unfolded protein response (hsp-6 and hsp-60) showed reduced transcript levels 

upon W04D2.4 knockdown. Importantly, mtss-1 levels were highly reduced by diminished 

W04D2.4 function and slightly upregulated when the worms were exposed to higher 

temperature only. This not only supports the role of W04D2.4 in mtss-1 regulation but also 

validates the correlation between gfp and mtss-1 expression in the mtss-1pr ::gfp reporter. 

Taken together, the RNA-seq data indicate that W04D2.4 primarily affects expression of the 
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mitochondrial genome. Under the chosen temperature of 25°C, knockdown of W04D2.4 

reduces transcript levels of mtDNA genes. W04D2.4 likely indirectly affects replication and 

translation processes within mitochondria, by modifying transcript levels of a broad range of 

mitochondrial RPGs and/or parts of the replication machinery (polg-1, mtss-1). Additionally, 

W04D2.4 might further directly affect mitochondrial respiratory chain complexes by 

altering expression of RC subunits encoded by the nuclear genome. Though W04D2.4 

showed intriguing features like nuclear translocation upon temperature increase and high 

probability of being involved in the expression of mtDNA and RC subunits, it seems to be 

nematode specific, as there are no distinct W04D2.4 homologs in any other organisms. At 

this point we decided to focus exclusively on the second candidate from the screen, namely 

sptf-3.  
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RC Subunits (mtDNA) 
 

nduf-6 -0.17 - 0.09 
ND5 -1.19 -1.52 -0.36 

 
Y94H6A.8 0.15 - 0.14 

ND4 -0.76 -1.13 -0.4 
 

nuaf-1 -0.25 - - 
CYTB -0.22 -0.58 -0.39 

 
Y71H2AM.4 -0.2 - - 

ND1 -0.97 -0.15 - 
 

Replication/Transcription/ Translation 

ND2 -0.88 -0.2 - 
 

mtss-1 -2.5 -2.1 0.38 
ND3 -0.82 -0.22 - 

 
polg-1 -0.31 -0.2 - 

ND6 -1.2 -0.21 - 
 

mrps-23 -2.97 -3.6 -0.66 
COX2 -0.46 -0.4 - 

 
mrpl-23 -0.21 -0.43 -0.25 

ATP6 -0.75 -0.28 - 
 

mrps-15 -0.19 -0.41 -0.25 
COX3 -0.39 - 0.22 

 
mrps-25 -0.45 -0.65 -0.23 

ND4L -1.01 - - 
 

W03F8.3 -0.61 -0.27 0.31 
RC Subunits (nDNA) 

 
mrps-31 -0.51 -0.19 - 

C18E9.4 -0.33 -0.61 -0.32 
 

mrpl-49 -0.46 0.48 - 
nuo-1 -0.2 -0.31 -0.14 

 
mrpl-24 -0.37 -0.16 - 

nuo-5 -0.22 -0.4 -0.21 
 

mrps-10 -0.35 -0.34 - 
nuo-2 -0.17 -0.26 -0.12 

 
mrpl-19 -0.34 -0.35 - 

C33A12.1 -0.19 -0.3 -0.14 
 

mrpl-55 -0.31 0.47 - 
T20H4.5 -0.2 -0.29 -0.12 

 
mrps-16 -0.3 -0.5 - 

sdha-1 -0.22 -0.42 -0.23 
 

mrps-9 -0.28 -0.29 - 
T02H6.11 -0.13 -0.22 -0.12 

 
mrpl-35 -0.27 -0.21 - 

ucr-1 -0.32 -0.45 -0.16 
 

mrps-5 -0.27 -0.23 - 
cyc-1 -0.16 -0.22 -0.09 

 
mrps-26 -0.24 -0.09 - 

isp-1 -0.19 -0.24 -0.09 
 

mrps-17 -0.22 -0.23 - 
cyc-2.1 -0.11 -0.16 -0.08 

 
mrpl-51 -0.19 -0.29 - 

Y71H2AM.5 -0.12 -0.23 -0.14 
 

mrpl-32 -0.18 0.26 - 
atp-2 -0.95 -1.19 -0.28 

 
mrpl-50 -0.14 -0.38 - 

atp-4 -0.21 -0.34 -0.16 
 

mrps-18C -0.14 -0.16 - 
atp-5 -0.43 -0.55 -0.15 

 
mrpl-11 -0.13 -0.4 - 

Y82E9BR.3 -0.18 -0.36 -0.2 
 

mrpl-18 -0.31 - 0.36 
R53.4 -0.24 -0.4 -0.19 

 
mrpl-45 -0.24 - 0.27 

atp-3 -0.09 -0.18 -0.12 
 

mrps-24 -0.23 - 0.2 
H28O16.1 -0.43 -0.53 -0.13 

 
mrpl-41 -0.22 - - 

asb-1 -0.39 -0.43 -0.07 
 

mrps-7 -0.22 - - 
nuaf-3 -0.48 -0.3 - 

 
tsfm-1 -0.15 - - 

F45H10.3 -0.2 -0.29 - 
 

CD4.3 -0.16 - - 
F57B10.14 -0.53 -0.19 - 

 
UPRmt 

ZK1128.1 -0.23 -0.08 - 
 

hsp-60 -1.09 -1.16 -0.11 
cco-2 -0.16 -0.16 - 

 
clpp-1 -0.72 -0.22 - 

F58F12.1 -0.26 -0.33 - 
 

hsp-6 -0.32 -1.7 - 
R04F11.2 -0.16 -0.29 - 

     Table 3.3 RNA-seq results for genes involved in RC, mtDNA expression and UPRmt 
Values indicate Log2 (fold change). No value means unchanged expression, under set criteria. 
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3.6 sptf-3 is the only sptf gene affecting mtss-1pr ::gfp expression 

 In mammals 9 SP and 16 KLF transcription factors belong to the 

Specificity Protein/ Kruppel-like factor (SP/KLF). In C. elegans the Sp family includes sptf-1, 

sptf-2, sptf-3 and tlp-1 genes (Ulm et al., 2011; Zhao et al., 2002b). In order to test whether, 

in addition to sptf-3, also other Sp family members affect mtss-1 expression, we 

downregulated the three sptf family members, namely sptf-1-3, and compared mtss-1pr ::gfp 

induction levels (tlp-1 still to be tested). Only sptf-3 knockdown was able to reduce 

mtss-1pr ::gfp expression, which was most obvious in worms raised at 25°C (Figure 3.7 A). 

Neither sptf-1, nor sptf-2 had any effect on gfp expression, independent of temperature 

conditions. In order to quantitatively confirm the effect of sptf-3 knockdown, we determined 

the fluorescence signal using BioSorter®INSTRUMENT (Figure 3.7 B). At 25°C 

downregulation of sptf-3 clearly induced a reduction in GFP signal intensity compared to 

untreated control worms. These data suggest that from the sptf gene family members only 

sptf-3 is required for the upregulated mtss-1 expression.  

 
Figure 3.7 Only sptf-3 knockdown prevents mtss-1pr ::gfp induction 
(A) Representative photomicrographs of mtss-1pr ::gfp transgenic worms raised on control or sptf RNAi 
at 20°C/25°C. Scale bar, 0.2 mm. (B) GFP expression levels in mtss-1pr::gfp transgenic worms 
measured with BioSorter®INSTRUMENT (Bars represent mean ± SEM, [Student's t test], 
p****<0.0001, n=100). RFU, relative fluorescence units. 
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3.7 sptf-3 knockdown affects induction of reporter constructs representing 

TCA cycle and mtDNA transcription  

 Next, we aimed to investigate whether loss of sptf-3 affects 

expression of other genes involved in mitochondrial functions. To monitor mtDNA 

transcription we generated the hmg-5pr ::gfp reporter, with hmg-5 as functional C. elegans 

ortholog of mammalian TFAM (Sumitani et al., 2011). TFAM function is involved in 

mtDNA packaging, maintenance, initiation of transcription and replication (Kukat and 

Larsson, 2013). Additionally, we generated previously described reporters representing two 

enzymes of the TCA cycle: aconitase and citrate synthase (Yoneda et al., 2004). The 

enzymatic activity of citrate synthase is often used in mammalian systems as a marker for 

mitochondrial mass. Populations of worms carrying extrachromosomal arrays were then 

exposed to sptf-3 RNAi at 20°C and 25°C (Figure 3.8). On control plates all three reporters 

showed an increase in GFP fluorescence simply by keeping the worms at higher 

temperatures. However knockdown of sptf-3 at 25°C reduced Ex[cts-1pr ::gfp] and 

Ex[hmg-5pr ::gfp] expression to the level of animals kept at 20°C. Moreover, sptf-3 knockdown 

moderately decreased GFP signal in Ex[aco-2pr ::gfp] reporter at 20°C and 25°C 

(Figure 3.8 A). At 20°C the expression of Ex[cts-1pr ::gfp] (Figure 3.8 B) and Ex[hmg-5pr ::gfp] 

(Figure 3.8 C) reporters was not altered by sptf-3 knockdown. Additionally, results from 

Ex[hmg-5pr ::gfp] experiments are supported by our previously observed reduction in hmg-5 

transcript levels upon sptf-3 knockdown (Figure 3.3 A). Taken together, these experiments 

indicate that sptf-3 mediates regulation of cts-1 and hmg-5 expression, genes involved in the 

TCA cycle and mtDNA transcription/maintenance, respectively. These data suggest that the 

role of sptf-3 in mitochondrial function is not restricted to the transcriptional regulation of 

mtss-1.  
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Figure 3.8 sptf-3 knockdown affects mitochondrial reporters 
Representative photomicrographs of (A) Ex[aco-2pr ::gfp], (B) Ex[cts-1pr ::gfp] and (C) Ex[hmg-5pr ::gfp] 
transgenic worms with respective quantification using BioSorter®INSTRUMENT raised on control 
or sptf-3 RNAi at 20°C/25°C. Scale bar, 0.2 mm. Bars represent mean ± SEM, [Student's t test], 
p*<0.05, p****<0.0001, n≥100). RFU, relative fluorescence units. Scale bar, 0.2 mm. 
 

3.8 sptf-3 knockdown promotes mitochondrial hyperfusion without 

significantly affecting mitochondrial mass 

 Given the fact that sptf-3 knockdown affected expression of 

transcriptional reporters representing respective mitochondrial functions, we wanted to know 

whether sptf-3 knockdown affects mitochondrial morphology. For this purpose we used 

another reporter strain zcls14 (myo-3pr ::gfpmt), in which the muscle specific myo-3 promoter 

drives expression of GFP targeted to mitochondria. Once worms reached day 1 of adulthood, 

mitochondrial morphology was investigated in the 19th ventral muscle pair where we 
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observed three different states: linear, hyperfused and fragmented (Figure 3.9 A). Whereas in 

control worms at 20°C the three states seem to be almost equally presented within the 

investigated number of individuals, sptf-3 knockdown appears to drive the network towards 

the hyperfused state (Figure 3.9 B). The temperature increase promotes fragmentation of 

mitochondrial networks in control and sptf-3 RNAi conditions, whereby the number of cells 

with hyperfused networks is lower in control condition. These results indicate that sptf-3 

knockdown facilitates formation of hyperfused mitochondrial networks. Mitochondrial 

fission and fusion processes are governed by distinct sets of proteins, which are highly 

conserved in yeast, flies, worms and mammals (for review, see (Westermann, 2010)). 

Reduction of SPTF-3 levels possibly affects expression of genes directly involved in 

fusion/fission events. On the other hand, inhibition of sptf-3 function may lead to changes in 

the mitochondrial functional state resulting in alteration of fusion/fission ratio. 

 
Figure 3.9 Mitochondrial network morphology upon sptf-3 knockdown 
(A) Representative photomicrographs of mitochondrial networks in myo-3pr ::gfpmt  transgenic worms 
raised on control or sptf-3 RNAi at 20°C/25°C. Scale bar, 10µm. (B) Classification of observed 
mitochondrial morphology in the 19th ventral muscle pair (n=14). 
 

 Next we tested whether sptf-3 knockdown influences general 

mitochondrial mass. One way to access this information is to quantify the amount of GFP 

targeted to mitochondria. To this end, we used myo-3pr ::gfpmt and ges-1pr ::gfpmt (ges-1 

encodes a gut-specific type B carboxylesterase) reporters. Knockdown of sptf-3 slightly 

reduced the GFP signal: in muscle specific reporter by 2% (Figure 3.10 A) and in gut 

specific reporter by 10% (Figure 3.10 B), yet statistically significant in both cases. However, 

sptf-3 knockdown might affect the levels of GFP at any point: from transcription initiation 

to mitochondrial import. Previously we observed reduction in tomm-20 transcript levels 
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upon sptf-3 inhibition (Figure 3.3 A). This reduction may lead to changes in the 

mitochondrial import efficiency, which would possibly lead to misinterpretations of 

mitochondrial mass based on the amount of the imported GFP. To compare mitochondrial 

mass between two conditions via fluorescent signal, at least equal amounts of marker should 

be present in the cell and it should penetrate mitochondria independent of mechanisms 

possibly affected by chosen conditions. Therefore mitochondrial mass should be determined 

differently, e.g. using mitotracker. 

 

 
Figure 3.10 Mitochondrial mass upon sptf-3 knockdown 
BioSorter®INSTRUMENT analysis of mitochondrial mass reflected by GFP signal in (A) myo-3pr 

::gfpmt and (B) ges-1pr ::gfpmt raised on control or sptf-3 RNAi at 25°C. Bars represent mean ± SEM, 
[Student's t test], p**<0.01, p****<0.0001, n=100). RFU, relative fluorescence units. 
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3.9 sptf-3 knockdown reduces mtDNA copy number but does not affect 

respiration 

 We next investigated whether SPTF-3 affects mtDNA copy 

number, using a polg-1(ok1548) mutant as the ultimate control for impaired mtDNA 

replication (Bratic et al., 2009). We found that sptf-3 knockdown reduced the absolute 

number of mtDNA molecules by ~22% at 20°C (Figure 3.11 A). However the decrease was 

not as prominent as ~86% observed in polg-1(ok1548) mutants. Maintaining worms at 

elevated temperature increased mtDNA content by 19% in control animals and 29% upon 

sptf-3 knockdown (Figure 3.11 A). To further investigate mild reduction in the mtDNA 

content upon sptf-3 knockdown, we determined mRNA levels of polg-1, encoded by nDNA, 

and of nduo-1, encoded by mtDNA (Figure 3.11 B). Reduction in polg-1 transcript levels via 

sptf-3 knockdown was mild and apparently not strong enough to mimic total loss of polg-1. 

Most likely the residual POLG-1 activity is sufficient to maintain mtDNA at almost normal 

levels. nduo-1 levels were not significantly reduced, however declining tendency might result 

from reduced hmg-5 transcript levels upon sptf-3 knockdown (Figure 3.3 A). Taken together, 

these data indicate that sptf-3 regulates transcripts of genes involved in mtDNA replication 

and transcription. Regardless, residual activity of either SPTF-3 or the target genes is 

sufficient for mtDNA expression. 

 As the integrity of mitochondrial genome and the sufficient 

production of RC subunits might correlate with mitochondrial mass and their functional 

state, we decided to investigate the respiration of worms upon sptf-3 knockdown. The 

respiration rate was increased with developmental state but also with higher temperature 

(Figure 3.12 A). Nevertheless, sptf-3 knockdown did not affect oxygen consumption 

compared to control animals. These results suggest that mild decrease in mtDNA levels 

orchestrated by the loss of sptf-3 does not have an effect on expression of RC subunits and 

therefore does not affect respiration. It also indicates that RC capacity is not directly 

connected to the level of mtDNA, as we observed minor increase in mtDNA content of wild 

type worms at 25°C compared to 20°C (Figure 3.11 A), while respiration rates where 

increased several fold (Figure 3.12 A). As previously reported, reduced sptf-3 activity leads to 

reduced brood size underlining its role in embryonic development (Ulm et al., 2011). Also in 

our hands, RNAi mediated knockdown of sptf-3 resulted in decreased number of progeny, 
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however mtDNA experiments suggest that this developmental function of sptf-3 is largely 

independent of mtDNA content (Figure 3.12 A, B).  

Figure 3.11 mtDNA copy number upon sptf-3 knockdown  
(A) Absolute mtDNA copy number determined by quantitative real-time (PCR) in wild type worms 
raised at 25°C and exposed to control, sptf-3 RNAi or and in polg-1(ok1548) mutants. Bars represent 
mean ± SEM, [Student's t test], p*<0.05, p**<0.01, p****<0.0001, n=6. (B) Relative transcript levels 
of polg-1 and nduo-1 in worms raised at 25°C and exposed to control or sptf-3 RNAi. Bars represent 
mean ± SEM, [Student's t test], p**<0.01, n=6. 
 

Figure 3.12 Respiration capacity and brood size upon sptf-3 knockdown 
(A) Oxygen consumption measured in animals exposed to control or sptf-3 RNAi, at 20°C/25°C after 
reaching L4/day 1 of adulthood (n=6). (B) Laid eggs were counted per single animal raised on 
control or sptf-3 RNAi at 20°C/25°C. Bars represent mean ± SEM, [Student's t test], p**<0.01, 
p***<0.001, p****<0.0001, n=6. 
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3.10 SPTF-3 is a broad-spectrum transcription factor 

 Recent ChIP-seq experiments revealed that SPTF-3 binds 2,459 

genomic regions, indicating its direct transcriptional targets (Hirose and Horvitz, 2013). In 

that study, two different C elegans specific SPTF-3 antibodies, namely N81 and M82, were 

used for immunoprecipitation and the respective list was generated, containing genes with 

SPTF-3 binding sites in the respective proximal promoter regions (Hirose and Horvitz, 

2013). In that list we searched for genes encoding mitochondrial proteins (Table 3.4). 

Supporting our previous findings SPTF-3 binding motif was found in the promoter region 

of mtss-1 and cts-1. No SPTF-3 binding site was found in the promoter region of aco-2, 

suggesting that we observed an indirect effect of sptf-3 knockdown on aco-2 expression 

(Figure 3.8 A). Interestingly polg-1 and hmg-5 promoter regions do not appear to contain 

SPTF-3 binding motifs. However both genes are predicted to belong to distinct operons, 

together with pqn-87 and nrde-4 respectively, which in turn possess SPTF-3 binding 

elements in proximal promoters. Additionally, SPTF-3 bound regions were detected 

upstream of a number of RC subunits and mitochondrial ribosomal protein genes. These 

ChIP-seq data suggests that SPTF-3 is involved in a variety of biological processes, including 

mitochondrial respiration, translation and mtDNA expression.  

 
Gene Brief description M82 N81 

Respiratory chain subunits (Human orthologs) 
(Human orthologs) F31D4.9 NDUFA1 + + 

Y53G8AL.2 NDUFA9 + + 

C34B2.8 NDUF15 + + 

Y18D10A.3 NDUF15 + + 

C50B8.3 NDUFAF1 - + 

Y116A8C.30 NDUFAF2 + + 

Y51H1A.3 NDUFB8 + + 

nuo-5 NDUFS1 + + 

nuo-2 NDUFS3 + + 

nduf-5 NDUFS5 + - 

W10D5.2 NDUFS7 + + 

nuo-1 NDUFV1 + + 

C03G5.1 SDHA + + 

cyc-1 CYC1 + + 

cyc-2.1 CYCS + + 

ucr-2.2 UQCRC2 + + 

ucr-2.1 UQCRC2 + + 

ucr-1 UQCRC1 + + 

W09C5.8 COX4I1 + + 

cco-2 COX5A + + 
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Gene Brief description M82 N81 

Respiratory chain subunits (Human orthologs) 
(Human orthologs) cco-1 COX5B + + 

tag-174 COX6A1 - + 

H28O16.1 ATP5A1 + + 

atp-2 ATP5B + + 

asb-2 ATP5F1 + + 

Y82E9BR.3 ATP5G1 + + 

Y82E9BR.3 ATP5G2 + + 

Y82E9BR.3 ATP5G3 + + 

atp-3 ATP5O + + 

R04F11.2 ATP5I + + 

T05H4.12 ATP5J + + 

asg-2 ATP5L + + 

Mitochondrial ribosomes (Human orthologs) 
(Human orthologs) mrps-7 MRPS7 + + 

mrps-12 MRPS12 - + 

mrps-17 MRPS17 + + 

mrps-23 MRPS23 + + 

mrps-34 MRPS34 + + 

mrpl-9 MRPL9 - + 

mrpl-15 MRPL15 + + 

mrpl-17 MRPL17 + + 

mrpl-20 MRPL20 + + 

mrpl-28 MRPL28 + + 

mrpl-32 MRPL32 + + 

mrpl-47 MRPL47 - + 

mrpl-49 MRPL49 + + 

mrpl-51 MRPL51 + + 

mrpl-53 MRPL53 - + 

mrpl-55 MRPL55 + + 

Other mitochondrial proteins 

 clpp-1 ClpP + + 

ZC376.7 ATFS-1 + + 

mtss-1 ortholog of human SSBP1 + + 

cts-1 Citrate Synthase + + 

Y67H2A.4 MICU 1 + + 

tag-61 ANT-1.1 + + 

pdp-1 Pyruvate Dehydrogenase Phosphatase homolog + + 

T25G3.4 a putative mitochondrial glycerol-3-phosphate dehydrogenase + + 

nmat-2 Nicotinamide Mononucleotide AdenylylTransferase homolog + - 

H25P06.1 hexokinases + - 

timm-23 tim23 + + 

rpom-1 RNA POlymerase, Mitochondrial + - 

sco-1 SCO1 cytochrome c oxidase assembly protein + + 

mtch-1 Mitochondrial carrier homolog 1 + + 

atad-3 ATAD3, mitochondrial membrane bound ATPase + + 

cchl-1 Cytochrome C Heme-Lyase + + 

mecr-1 Mitochondrial trans-2- Enoyl-CoA Reductase + + 

tufm-1 TU elongation Factor (EF- Tu), Mitochondrial + + 

idhg-1 (Isocitrate DeHydrogenase Gamma ) + + 

akap-1 A-Kinase Anchor Protein + + 

mdh-2 encodes a homolog of malate dehydrogenase + + 
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Gene Brief description M82 N81 

Other mitochondrial proteins 

Y66A7A.2 subunit shared by the endoribonucleases RNase MRP and RNAse P + - 

wah-1 Worm AIF (apoptosis inducing factor) Homolog + - 

mai-2 Mitochondrial ATPase Inhibitor family + + 

srs-1 predicted mitochondrial seryl-tRNA synthetase (SerRS) + - 

ogdh-1 OxoGlutarate DeHydrogenase + + 

acl-3 ACyLtransferase-like protein with role in triacylglycerol metabolism + + 

ech-2 enoyl-coenzyme A hydratase  involved in mitochondrial beta-oxidation of fatty acids + + 

tgt-1 tRNA-guanine transglycosylase + + 

nkcc-1 Na-K-Cl Cotransporter homolog + - 

coq-3 involved in COenzyme Q (ubiquinone) biosynthesis + + 

dhs-13 short-chain dehydrogenase + + 

tomm-20 Translocase of Outer Mitochondrial Membrane + + 

letm-1 (Leucine zipper, EF-hand, TransMembrane mitochondrial protein + + 

pus-1 putative tRNA pseudouridine synthase + + 

immt-1 Inner Membrane of MiTochondria protein homolog + + 

mai-1 Mitochondrial ATPase Inhibitor family + + 

got-2.2 Glutamate Oxaloacetate Transaminase + + 

dct-1 DAF-16/FOXO Controlled, germline Tumor affecting + + 

dhb-1 homolog of the beta subunit of an NAD+-dependent mitochondrial isocitrate dehydrogenase + + 

Table 3.4 Putative transcriptional targets of SPTF-3  
(+)/(-) Indicates the precipitation status of the genomic region with the respective antibody. List 
adapted from (Hirose and Horvitz, 2013). 
 

 We next wanted to know whether sptf-3 knockdown affects 

transcript and consequently protein levels of genes with mitochondrial function. Inhibiting 

sptf-3 activity was shown to affect oocyte and vulval formation, sometimes leading to animals 

retaining the eggs (Ulm et al., 2011). Trapped embryos might skew results from transcript 

and protein level analysis of parental postmitotic tissues. Therefore we decided to use 

animals, which lack progeny. Thus we crossed the mtss-1pr ::gfp reporter strain to the 

temperature sensitive mutant glp-4(bn2), which gets sterile if shifted to 25°C. We 

determined transcript and protein levels of nuo-2, ortholog of human NDUFS3 and 

mtDNA-encoded ctc-1, ortholog of human COXIV-1 (Figure 3.13 A, B, C). Though we 

detected decreased transcript levels of ctc-1 upon sptf-3 knockdown, we did not observe any 

changes on protein level, neither for NDUFS-3 nor for COXIV-1. Decreased levels of mtss-1 

and hmg-5 upon sptf-3 knockdown reproduced our results from Figure 3.3 A, once again 

supporting SPTF-3 involvement in the expression of these genes (Figure 3.13 A). At 25°C, 

impaired sptf-3 function led to GFP decrease on mRNA and protein levels (Figure 3.13 B, 

C). Due to the lack of working antibodies in C. elegans we were not able to investigate 

protein quantities of further candidates from the list. Collectively, these data indicate that 
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under chosen conditions, sptf-3 knockdown reduces transcript but not protein levels of tested 

RC subunits, which is supported by unchanged respiration rates (Figure 3.12 A). 

 
Figure 3.13 Transcript and protein levels of genes with mitochondrial function upon sptf-3 
knockdown 
(A) Relative transcript levels of nuo-2, ctc-1, mtss-1, hmg-5 and gfp in mtss-1pr ::gfp; glp-4(bn2) worms 
raised at 25°C and exposed to RNAi. Bars represent mean ± SEM, [Student's t test], p****<0.0001, 
n=6. (B) Western blot analysis of COXIV-1, NDUFS3, and GFP levels in total protein extracts from 
worms raised on control or sptf-3 RNAi at 20°C/25°C. HSC70 and Tubulin used as loading control. 
(C) Relative quantification of COXIV-1 and NDUFS3 amounts normalized to HSC70; GFP 
normalized to Tubulin. Eventually relative amounts were normalized to their respective control 
RNAi, 25°C sample. Bars represent mean ± SEM, [Student's t test], p*<0.05, p****<0.0001, n=4. 
 

3.11 mtss-1pr ::gfp suppressor screen 

Disclaimer: Paragraphs 3.11, 3.12 and 3.13 contain experiments partly conducted by Estela 

Cepeda Cores and Brianne Nesbitt, unpublished data. 
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 Another screening approach was set up to identify candidate genes 

potentially suppressing mitochondrial biogenesis. The experimental outline was the same as 

in Figure 3.1 C, except this time we were interested in finding knockdown conditions, 

leading to increased mitochondrial biogenesis, represented by induced mtss-1pr ::gfp 

expression. Hence, the worms were raised at standard temperature of 20°C, at which the 

expression level of GFP is low (Figure 3.1 A). When exposing animals to RNAi, we were 

looking for genes whose knockdown resulted in enhanced GFP signal. Importantly, 

candidates from the suppressor screen do not necessarily actively suppress reporter 

expression. There is also the possibility that only their inhibition leads to mtss-1pr ::gfp 

induction.  

 Screening through the C. elegans chromosome III, testing ~2.100 

RNAi clones, we found 31 candidates that increased GFP expression compared to control 

treatment (Table 3.5). Notably, 7 of the candidates represent genes encoding distinct 

cytosolic ribosomal proteins. Among 31 candidates, knockdown of RPGs caused the 

strongest GFP induction. Moreover, diminished RPG function resulted in delayed 

development, with a large part of the animals not being able to pass the larval stages at all 

(Figure 3.14 A). They were smaller in size and the ones that reached adulthood had 

massively reduced brood size. To overcome the developmental arrest we exposed worms to 

RNAi from the L3 stage on and still could observe strong induction of GFP expression 

(Figure 3.14 B). Over 80% of worms exposed to RNAi mediated RPG knockdown exhibited 

strong GFP expression, based on visual observations (Figure 3.14 C) and Western blot 

analysis (Figure 3.14 D). Remarkably, the effect of RPG knockdown was so robust that the 

level of GFP expression was higher than in control worms even in animals kept at 25°C 

(Figure 3.14 A, B). Together these data indicate that mtss-1 expression is induced upon 

knockdown of cytoplasmic ribosomal protein genes, independently of temperature and 

developmental stage. At first sight, it seems irrelevant, whether small or large ribosomal 

subunit is affected. 
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Gene Brief description GFP signal 

control L4440 empty vector è 

rps-0 Small ribosomal subunit SA éé 

rps-12 Small ribosomal subunit S12 éé 

rps-1 Small ribosomal subunit S3A éé 

rps-22 Small ribosomal subunit S15a protein éé 

rpl-9 Ribosomal protein L9 éé 

rpl-35 Ribosomal protein L35 éé 

rpl-3 Ribosomal protein L3 éé 

C34C12.8 Adenine nucleotide exchange factor of DnaK (Hsp70)-type ATPases ì 

T24C4.5 DNA primase, catalytic (small) subunit ì 

W06E11.1 DNA-directed RNA polymerase III subunit RPC5 ì 

hum-5 Myosin heavy chain ì 

atp-2 F1 subunit of the ATP synthase subunit é 

cdtl-7 cdc-2 related protein kinase ì 

rpc-2 RNA polymerase III, second largest subunit é 

polq-1 Most closely related to vertebrate DNA polymerase theta (POLQ) ì 

him-10 Structurally related to the Nuf2 kinetochore proteins ì 

F01F1.11 Canopy FGF signalling regulator 1 ì 

mig-21 Transmembrane protein ì 

pars-1 Cytoplasmic prolyl-tRNA synthetase ì 

ubq-1 Ortholog of human ubiquitin C ì 

hmg-4 High mobility group protein SSRP1 ì 

hpl-2 Negatively regulates RNA-mediated interference (RNAi) ì 

Y47D3A.29 Catalytic subunit of DNA polymerase alpha ì 

rabx-5 Rabex-5 Rab5 guanine-nucleotide exchange factor ì 

ubq-2  ubiquitin peptide and large ribosomal subunit protein L40 peptide domains ì 

rpt-6 Triple A ATPase, subunit of the 26S proteasome 19S RP base subcomplex ì 

ccf-1 Homolog of subunit 7 of CCR4-NOT transcription complex from S. cerevisiae ì 

mrg-1 Chromodomain-containing protein orthologous to mammalian MRG15 ì 

T27E9.2 Ubiquinol-cytochrome c reductase hinge protein ì 

ubl-1 Protein similar to Drosophila ubiquitin/ ribosomal protein S27a  ì 

ral-1 Ras-related GTPase homolog ì 

Table 3.5 Candidates from the suppressor screen conducted at 20°C 
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Figure 3.14 Reducing cytoplasmic ribosomes activates mtss-1pr ::gfp reporter 
Representative photomicrographs of mtss-1pr ::gfp transgenic worms raised on control or rps-22 RNAi 
at 20°C/25°C (A) from egg or (B) from L3 stage. Dashed line indicates two independent snap shots, 
yet identical exposure time and color adjustments. Scale bar, 0.2 mm. (C) GFP expression levels were 
compared between singe mtss-1pr ::gfp transgenic worms raised on control or rps-0, rps-22, rps-12, rpl-
35, rpl-9 or rpl-3 RNAi at 20°C and classified as very low, low and high (n=100). (D) Western blot 
analysis of GFP levels in total protein extracts from worms raised on control, rpl-35 or rps-22 RNAi 
at 20°C and collected at L4 stage or day 1 of adulthood. Tubulin was used as a loading control. 
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3.12 From factors involved in cytoplasmic translation only knockdown of 

ribosomal protein genes induces mtss-1pr ::gfp expression 

 Given the fact that ribosomes are not solely forming translation 

machinery we next tested the hypothesis that impairing other genes involved in translation 

would likely induce GFP expression. Additionally, we tested whether knockdown of the 

remaining RPGs results in the previously observed phenotype. We subjected mtss-1pr ::gfp 

worms to all available RNAi clones covering the entire spectrum of annotated cytosolic 

ribosomal proteins, translation initiation/elongation/termination factors and factors known 

to influence translation rates (Table 3.6). Strikingly, 85% of all silenced RPGs induced 

mtss-1pr ::gfp expression. Again, it did not matter whether subunits of small or large ribosomes 

were affected. By contrast, knockdown of all the other selected factors, involved in 

translation associated processes or in modulating translation rates, did not alter mtss-1pr ::gfp 

expression. 

 TOR kinase is a potent regulator of cellular growth and metabolism 

and can be activated in response to nutrients, growth factors and energy status of the cell. 

TOR acts in two distinct complexes, TORC1 and TORC2, and interestingly ribosomes are 

required for TORC2 signaling independently of protein synthesis (Zinzalla et al., 2011). 

This prompted us to take a closer look into C. elegans TOR (CeTOR) signaling, as only 2 

out of 5 known components of TOR complexes were among initially tested factors, namely 

let-363 and daf-15 (Table 3.6). In C. elegans, TORC1 is comprised of daf-15, let-363 and 

C10H11.8, while TORC2 is composed of let-363, C10H11.8, rict-1 and sinh-1. For 

practical reasons, we chose one RPG, namely rps-22, and systematically silenced it in double 

RNAi experiments with genes encoding components of CeTOR complexes (Figure 3.15 A). 

Additionally we tested the effect of reduced CeTORC subunits only. Eventually we analyzed 

the effect of all RNAi combinations on mtss-1pr ::gfp expression using 

BioSorter®INSTRUMENT (Figure 3.15 B). Knockdown of single genes encoding subunits 

of CeTOR complexes either mildly decreased (in case of daf-15, sinh-1) or increased (in case 

of let-363, C10H11.8, rict-1) GFP levels. Notably, conditions that induced mtss-1pr ::gfp 

expression did not reach induction level of rps-22 knockdown. Further, single CeTORC gene 

knockdown, combined with rps-22 knockdown, did not alter GFP levels, compared to 

worms exposed to rps-22 RNAi only. Only silencing of C10H11.8 in combination with 
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rps-22 showed a slight decrease in GFP levels (Figure 3.15 B). Overall, the effect of 

CeTORC related gene knockdown on mtss-1pr ::gfp expression was inconsistent and the 

amplitude of reporter expression changes was much smaller compared to the rps-22 RNAi 

condition. Collectively these data demonstrate that from all translation related factors only 

knockdown of ribosomal protein genes has the capacity to strongly activate the mtss-1pr ::gfp 

reporter and this effect is largely independent of CeTOR signaling. Moreover, these results 

suggest that not the global translation rate but altered stoichiometric balance among 

ribosomal proteins and the associated consequences are responsible for reporter induction.  
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Sequence Name GFP  Sequence Name GFP  Sequence Name G
FP 

control L4440 è  C49H3.11 rps-2 éé  C41D11.2 eif-3.H è 

Cytosolic ribosomes  Y105E8A.16 rps-20 éé  Y40B1B.5 eif-3.J è 

Y71F9AL.13 rpl-1 éé  F37C12.11 rps-21 éé  T16G1.11 eif-3.K è 

F10B5.1 rpl-10 éé  F53A3.3 rps-22 éé  F57B9.6 inf-1(EIF4A) è 

T22F3.4 rpl-11.1 éé  F28D1.7 rps-23 éé  C07H6.5 cgh-1 è 

F07D10.1 rpl-11.2 éé  T07A9.11 rps-24 éé  C26D10.2 hel-1 è 

JC8.3 rpl-12 éé  F39B2.6 rps-26 éé     

C32E8.2 rpl-13 éé  F56E10.4 rps-27 éé     

C04F12.4 rpl-14 éé  Y41D4B.5 rps-28 éé  F53A2.6 ife-1 (eIF4E) è 

M01F1.2 rpl-16 éé  B0412.4 rps-29 éé  R04A9.4 ife-2 (eIF4E) è 

Y48G8AL.8 rpl-17 éé  C26F1.4 rps-30 éé  B0348.6 ife-3 (eIF4E) è 

Y45F10D.12 rpl-18 éé  Y43B11AR.4 rps-4 éé  C05D9.5 ife-4 (eIF4E) è 

C09D4.5 rpl-19 éé  T05E11.1 rps-5 éé  M110.4 ifg-1 (eIF4G) è 

B0250.1 rpl-2 éé  ZC434.2 rps-7 éé  C37C3.2 (eIF5) è 

E04A4.8 rpl-20 éé  F42C5.8 rps-8 éé  F54C9.1 iff-2 (eIF5A2) è 

C14B9.7 rpl-21 éé  F40F8.10 rps-9 éé  T05G5.10 iff-1 (eIF5A) è 

B0336.10 rpl-23 éé  T05F1.3 rps-19 éé  Y54F10BM.2 iffb-1 (eIF5B) è 

D1007.12 rpl-24.1 éé  K11H12.2 rpl-15 è  Translation elongation factors 
F28C6.7 rpl-26 éé  C03D6.8 rpl-24.2 è  F31E3.5 eef-1A.1 è 

C53H9.1 rpl-27 éé  F52B5.6 rpl-25.2 è  R03G5.1 eef-1A.2 è 

F13B10.2 rpl-3 éé  R11D1.8 rpl-28 è  Y41E3.10 eef-1B.2 è 

Y106G6H.3 rpl-30 éé  B0513.3 rpl-29 è  F54H12.6 eef-1B.1 è 

T24B8.1 rpl-32 éé  B0041.4 rpl-4 è  F25H5.4 eef-2 è 

F10E7.7 rpl-33 éé  C09H10.1 rpl-42 è  ZK328.2 eftu-2 è 

C42C1.14 rpl-34 éé  F36A2.6 rps-15 è  Translation termination factors 
ZK652.4 rpl-35 éé  K02B2.5 rps-25 è  T05H4.6 erfa-1 è 

F37C12.4 rpl-36 éé  C23G10.3 rps-3 è  H19N07.1 erfa-3 è 

C54C6.1 rpl-37 éé  Translation initiation factors  Translational control 
C06B8.8 rpl-38 éé  T27F7.3 eif-1 è  Y71H2B.3 ppfr-4 è 

C09H10.2 rpl-41 éé  H06H21.3 eif-1.A è  Y75B8A.30 pph-4.1 è 

F54C9.5 rpl-5 éé  E04D5.1 (eIF2A) è  Y49E10.3a pph-4.2 è 

R151.3 rpl-6 éé  Y37E3.10 (eIF2S1) è  C12D8.10 akt-1 è 

F53G12.10 rpl-7 éé  K04G2.1 iftb-1 è  F46C3.1 pek-1 è 

Y24D9A.4 rpl-7A éé  C01G10.9 (MRI1) è  K08A8.1 mek-1 è 

R13A5.8 rpl-9 éé  ZK1098.4 (eIF2B1) è  F42G10.2 mkk-4 è 

B0393.1 rps-0 éé  Y47H9C.7 (eIF2B2) è  C04G6.1 mpk-2 è 

F56F3.5 rps-1 éé  D2085.3 (eIF2BΕ) è  F09C12.2 (MAPK) è 

D1007.6 rps-10 éé  C27D11.1 egl-45 (eIF3A) è  C41C4.4 ire-1 è 

F40F11.1 rps-11 éé  F55H2.6 clu-1 è  B0261.2 let-363 è 

F54E7.2 rps-12 éé  Y54E2A.11 eif-3.B è  T06E4.3 atl-1 è 

C16A3.9 rps-13 éé  T23D8.4 eif-3.C è  ZC8.6 (PI4K2A/B) è 

F37C12.9 rps-14 éé  R08D7.3 eif-3.D è  C56A3.8 (PI4K2A/B) è 

T01C3.6 rps-16 éé  B0511.10 eif-3.E è  C10C5.6 daf-15 è 

T08B2.10 rps-17 éé  D2013.7 eif-3.F è  Y48G9A.3 gcn-1 è 

Y57G11C.16 rps-18 éé  F22B5.2 eif-3.G è  Y81G3A.3 gcn-2 è 

Table 3.6 List of factors related to translation and their knockdown effect on mtss-1pr ::gfp 
expression 
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Figure 3.15 CeTOR signaling and rps-22 knockdown 
(A) Representative photomicrographs and respective (B) BioSorter®INSTRUMENT analysis of 
mtss-1pr ::gfp transgenic worms raised on control or rps-22, daf-15, let-363, C10H11.8, rict-1; sinh-1 
alone and in combination with rps-22 RNAi at 20°C. Scale bar, 0.2 mm. Bars represent mean ± 
SEM, [Student's t test], p#<0.05, p**<0.01, p****<0.0001, n≥230. * represents analysis of fluorescent 
signal intensity between worms exposed to single RNAi and empty vector, white bars. # represents 
analysis of fluorescent signal intensity between worms exposed to double RNAi and rps-22 RNAi, 
black bars. RFU, relative fluorescence units. RNAi from L3 stage.  
 

3.13 SPTF-3 is the only transcription factor able to alter rps-22 knockdown 

mediated mtss-1pr ::gfp induction 

 Next we wanted to gain more insight into the relation between 

ribosomal subunits and mtss-1 expression. Silencing of RPGs increases GFP protein levels. 

We assumed that it also increases gfp transcripts, which most likely is mediated by a 

transcription factor. Therefore, in double RNAi experiments we screened for transcription 

factors, whose knockdown would abolish GFP induction achieved by rps-22 knockdown. 

From 729 transcription factors tested, only knockdown of sptf-3 abolished the effect of 

downregulated rps-22 (Figure 3.16 A). Moreover, the loss of SPTF-3 prevented temperature 

dependent GFP induction, consistent with previous observations. Not only were GFP levels 

reduced but also endogenous MTSS-1 protein levels, which were determined using 

polyclonal mouse antibody raised against human SSBP1 (Figure 3.16 B). Further, we wanted 
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to know whether RPG knockdown affects sptf-3 expression. Strikingly, rps-22 knockdown 

strongly increased SPTF-3 protein levels (Figure 3.16 C). This effect was so robust, that 

upon sptf-3; rps-22 double knockdown, SPTF-3 was still detectable at the level of control 

samples. Importantly, this induction was not a direct consequence of induced sptf-3 

transcription, as sptf-3 mRNA levels were unchanged upon rps-22 knockdown (Figure 

3.16 D). 

 Collectively, these data suggest that sptf-3 function is required for 

enhanced mtss-1pr ::gfp  expression, induced by rps-22 knockdown. Further, reduction of 

ribosomal subunits increases MTSS-1 and SPTF-3 protein levels. Moreover, increased 

SPTF-3 protein but unchanged sptf-3 mRNA levels indicate that rps-22 knockdown leads to 

enhanced sptf-3 translation. 

 
Figure 3.16 SPTF-3 is required for mtss-1pr ::gfp expression induced by rps-22 knockdown 
(A) Representative photomicrographs of mtss-1pr ::gfp transgenic worms raised on control, sptf-3, 
rps-22 or sptf-3; rps22 double RNAi at 20°C/25°C. RNAi from L3 stage. Scale bar, 0.2 mm. (B) 
Western blot analysis of SSBP1 and (C) SPTF-3 levels in total protein extracts from worms raised on 
control, sptf-3, rps-22 or sptf-3; rps22 double RNAi at 20°C and collected at day 1 of adulthood. 
Tubulin used as loading control. (D) Relative transcript levels of sptf-3 in mtss-1pr ::gfp worms, 
exposed to control and rps22 RNAi at 20°C. Bars represent mean ± SEM, [Student's t test], n=6. 
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3.14 rps-22 knockdown effect is not mediated via GCN-2 kinase  

 Accumulation of misfolded proteins in the endoplasmic reticulum 

(ER) activates a specific, multilane stress response. One of the response components is the 

reduction of cytosolic translation rate by attenuating translation initiation. For that, ER 

stress activates PEK-1 kinase (homolog of the mammalian PERK) that phosphorylates eIF2α, 

thereby interfering with the formation of the ternary complex and diminishing translation 

initiation (Harding et al., 1999; Hinnebusch, 1994). Another dedicated eIF2α kinase in 

C. elegans is GCN-2. Interestingly, in response to mitochondrial stress GCN-2 has been 

shown to phosphorylate eIF2α thereby inhibiting cytosolic translation (Baker et al., 2012). 

Therefore, we decided to test whether induction of mtss-1pr ::gfp expression by rps-22 

knockdown integrates eIF2α activity. Levels of phosphorylated eIF2α were strongly reduced 

in sptf-3; rps-22 double RNAi condition and almost absent when exposed to rps-22 RNAi 

only, suggesting that translation initiation is rather favored upon rps-22 knockdown (Figure 

3.17 A). Unfortunately, we could not quantify the levels of total eIF2α, as the antibody 

raised against mammalian homolog recognizes epitopes not conserved in nematodes. 

Detection of the phosphorylated eIF2α was possible as the region containing the 

phosphorylation site is highly conserved among different species, including C. elegans. 

Nevertheless, this result suggests a possibility of eIF2α contribution to the rps-22 knockdown 

induced mtss-1pr ::gfp expression.  

 Potentially reduced levels of P-eIF2α upon rps-22 knockdown 

prompted us to retest, whether reduction of eIF2α phosphorylation would be sufficient to 

induce mtss-1pr ::gfp expression. One possibility to reduce eIF2α phosphorylation is to inhibit 

gcn-2 function, which we have done in the context of aforementioned experiment (Table 

3.6). However, this time we used gcn-2(ok871) 1.481 bp deletion mutant in order to 

completely prevent GCN-2 mediated eIF2α phosphorylation. Assuming that lack of GCN-2 

decreases levels of phosphorylated eIF2α, we tested mtss-1pr ::gfp expression in gcn-2(ok871) 

animals. Additionally, we tested mtss-1pr ::gfp expression in ife-2(ok306) 1.628 bp deletion 

mutant with reduced accumulation of newly synthesized proteins (Hansen et al., 2007). The 

effect on translation is caused by the function of ife-2 encoding the translation initiation 

factor 4, subunit eIF-4E, which is involved in cap-dependent mRNA translation initiation. 

Again, instead of RNAi mediated knockdown we used a mutant strain in order to be sure 
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that animals did not retain residual IFE-2 activity. Both mutant backgrounds, gcn-2(ok871) 

and ife-2(ok306), significantly reduced mtss-1pr ::gfp expression in worms raised at 20°C 

(Figure 3.17 B). As we have shown previously, temperature increase induces mtss-1pr ::gfp 

expression (Figure 3.1 A, 3.17 B). Strikingly, both mutations prevented enhanced GFP 

expression at 25°C (Figure 3.17 B). Eventually, if our assumption that lack of GCN-2 

decreases levels of phosphorylated eIF2α was correct, then dephosphorylated eIF2α per se 

does not induce mtss-1pr ::gfp expression. Although lack of gcn-2 does not necessarily mean 

predominantly dephosphorylated form of eIF2α, as it still can be phosphorylated by PEK-1. 

 
Figure 3.17 gcn-2(ok871) and ife-2(ok306) impact on mtss-1pr ::gfp 
(A) Western blot analysis of P-eIF2α in total protein extracts from worms raised on control, sptf-3, 
rps-22 or sptf-3; rps22 double RNAi at 20°C and collected at day 1 of adulthood. Tubulin used as 
loading control. (B) Representative photomicrographs of mtss-1pr ::gfp transgenic worms and 
mtss-1pr ::gfp crossed to gcn-2(ok871) and ife-2(ok306) mutants, raised at 20°C/25°C. Scale bar, 0.1 
mm. 
 

 We then tested the impact of rps-22 inhibition on mtss-1pr ::gfp in 

gcn-2(ok871) and ife-2(ok306) backgrounds. To overcome the developmental delay caused 

by RPG knockdown, we diluted rps-22 RNAi with control bacteria in 1:1 ratio. Silencing 

rps-22 robustly induced GFP expression in both mutants (Figure 3.18 A). Nevertheless, both 
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mutations prevented increase of GFP expression to the level observed in control animals 

(Figure 3.18 B). Quantitative PCR analysis revealed clear increase of gfp transcripts in both 

mutants upon rps-22 knockdown (Figure 3.18 C). However, mtss-1 transcripts were mildly 

increased in gcn-2(ok871) and unchanged in ife-2(ok306) background upon rps-22 

knockdown, indicating that changes are more pronounced in the expression of the transgenic 

reporter than endogenous mtss-1.  

 
Figure 3.18 mtss-1pr ::gfp induction in gcn-2(ok871) and ife-2(ok306) mutants 
(A) Representative photomicrographs of mtss-1pr ::gfp transgenic worms crossed to gcn-2(ok871) and 
ife-2(ok306) mutants, raised at 20°C/25°C on control or rps-22 RNAi. rps-22 diluted 1:1 with 
control RNAi. Scale bar, 0.1 mm. (B) Representative photomicrographs of mtss-1pr ::gfp transgenic 
worms and mtss-1pr ::gfp crossed to gcn-2(ok871) and ife-2(ok306) mutants, raised at 20°C/25°C on 
rps-22 RNAi. rps-22 diluted 1:1 with control RNAi. Scale bar, 0.1 mm. (C) Relative transcript levels 
of mtss-1 and gfp in mtss-1pr ::gfp; gcn-2(ok871) and mtss-1pr ::gfp; ife-2(ok306) worms raised at 20°C 
and exposed to control or rps-22 diluted 1:1 with control RNAi. Bars represent mean ± SEM, 
[Student's t test], p*<0.05, p***<0.001, p****<0.0001, n=6. 
 

 Collectively these data indicate that rps-22 knockdown induces 

mtss-1pr ::gfp expression largely independent of gcn-2 function. It is not clear which role the 
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phosphorylation state of eIF2α plays upon rps-22 inhibition but presumably translation 

initiation is favored though total eIF2α levels have to be determined. Furthermore, reduced 

GFP protein levels and unchanged mtss-1 and gfp transcript levels in gcn-2(ok871) and 

ife-2(ok306) mutants support the assumption that reduction of general translation does not 

induce mtss-1pr ::gfp expression, consistent with conclusions from RNAi experiments in 3.12. 

Reduction of global translation and knockdown of rps-22 have rather contrary effects on 

mtss-1pr ::gfp expression, inhibitory and activating respectively.  

 

3.15 sptf-3 knockdown impairs UPRmt induction 

 After discovering that SPTF-3 plays critical role in mtss-1 expression, 

we then asked what is the consequence of sptf-3 knockdown for mitochondrial function. 

When mtss-1 expression rate does not match mitochondrial requirements it might lead to 

functional disturbance of the organelle, which in turn possibly activates stress pathways in 

order to restore functionality. Thus, we decided to investigate sptf-3 function in activation of 

stress responses. A number of transcriptional fusion reporters have been used to monitor 

expression of genes required to cope with compartment specific perturbations. First we 

examined whether downregulation of sptf-3 leads to activation of stress response pathways. 

For this we knocked down sptf-3 in worms expressing gst-4pr ::gfp as oxidative stress reporter 

(Figure 3.19 A), hsp-4pr ::gfp as endoplasmatic reticulum unfolded protein response (UPRer) 

reporter (Figure 3.19 B) and hsp-6pr ::gfp as UPRmt reporter (Figure 3.19 C). Inhibition of 

sptf-3 per se did not induce any stress response, suggesting that loss of sptf-3 does not generate 

compartment specific stress (Figure 3.19 A, B, C). Slight induction of gst-4pr ::gfp and 

hsp-4pr ::gfp at 25°C is rather caused by increased temperature and not by sptf-3 knockdown 

(Figure 3.19 A, B).  
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Figure 3.19 Effect of sptf-3 knockdown on stress reporters 
Representative photomicrographs of (A) gst-4pr ::gfp, (B) hsp-4pr ::gfp and (C) hsp-6pr ::gfp transgenic 
worms raised at 20°C/25°C on control or sptf-3 RNAi. Scale bar, 0.1 mm. 
 

 ATFS-1 and CLPP-1 were identified as two central players in the 

C. elegans UPRmt (Haynes et al., 2010). In the recently published study they appear among 

potential transcriptional targets of SPTF-3 (Hirose and Horvitz, 2013). Thus we 

hypothesized that SPTF-3 function might be required for the UPRmt activation. To test this 

we knocked down spg-7, whose loss is known to induce mitochondrial unfolded protein 

response (Benedetti et al., 2006). Induced response is reflected by expression of 

mitochondrial chaperones such as hsp-6 (ortholog of human HSPA9/mtHSP70). Therefore 

we exposed hsp-6pr ::gfp transgenic worms to spg-7 RNAi only and in combination with atfs-1 

or sptf-3 RNAi (Figure 3.20). Downregulation of spg-7 successfully activated UPRmt, as 

reflected by induced hsp-6pr ::gfp expression. ATFS-1 has been previously shown to regulate 

UPRmt activation (Nargund et al., 2012). Consequently spg-7 knockdown failed to induce 

UPRmt when atfs-1 function was impaired, which served as control for the inhibition of 

activated UPRmt (Figure 3.20). Remarkably, sptf-3 knockdown also prevented spg-7 

knockdown mediated UPRmt activation. Notably, sptf-3 knockdown did not fully suppress 
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hsp-6pr ::gfp expression, as more residual GFP could be detected in sptf-3; spg-7 than in 

atfs-1; spg-7 knockdown condition (Figure 3.20). This indicates that either the role of SPTF-

3 in UPRmt is marginal or it regulates the activity of the hsp-6 promoter rather indirectly, e.g. 

through expression control of another transcription factor such as atfs-1.  

 
 

Figure 3.20 Effect of sptf-3 knockdown on induced hsp-6pr ::gfp expression 
(A) Representative photomicrographs of hsp-6pr ::gfp transgenic worms raised on control, spg-7, spg-7; 
atfs-1, spg-7; sptf-3 or spg-7; mtss-1 double RNAi at 20°C. Scale bar, 0.2 mm. (B) Western blot 
analysis and quantification of mtHSP70, HSP60 and GFP levels in total protein extracts from worms 
raised on control, spg-7 or spg-7; sptf-3 double RNAi at 20°C. Tubulin used as loading control (n=3). 
Asterisk indicates the band excluded from analysis. 
 

 Previously, it was shown that transgenic reporters are much more 

sensitive to mitochondrial perturbations than endogenous genes (Yoneda et al., 2004). This 

prompted us to determine protein amounts of mtHSP70 and GFP in order to explore to 

what extent reporter based GFP levels reflect internal mtHSP70 levels (Figure 3.20 B). 



  3 Results 

 77 

While GFP protein levels clearly supported our visual observations, also mtHSP70 followed 

the pattern of GFP levels, although in a much milder fashion: spg-7 knockdown induced the 

expression of mtHSP70 and sptf-3; spg-7 double knockdown diminished this activation. In 

the same samples we checked the levels of HSP60, another marker of activated UPRmt, and 

found similar changes as in the case of mtHSP70 (Figure 3.20 B). Additionally we tested the 

effect of sptf-3 knockdown on hsp-60pr ::gfp induction. Again, sptf-3 knockdown clearly 

inhibited spg-7 mediated UPRmt activation (Figure 3.21). Taken together these data 

demonstrate that sptf-3 function is required for UPRmt activation. Protein levels of 

endogenous hsp-6 and hsp-60 follow the expression pattern of respective reporter, though to 

a much milder extent. 

 
Figure 3.21 Effect of sptf-3 knockdown on induced hsp-60pr ::gfp expression 
Representative photomicrographs of hsp-60pr ::gfp transgenic worms raised on control, spg-7, spg-7; 
atfs-1, spg-7; sptf-3 or spg-7; mtss-1 double RNAi at 20°C. Scale bar, 0.2 mm. 
 

 In order to test sptf-3 role in a condition where UPRmt is 

constitutively active and does not depend on RNAi efficacy as in the case of spg-7 

knockdown, we used hsp-6pr ::gfp reporter in isp-1(qm150); ctb-1(qm189) background, 

leading to a permanent activation of UPRmt as reported previously (Liu et al., 2014). When 

we knocked down sptf-3, induction of the hsp-6pr ::gfp reporter was robustly inhibited, 

validating our previous observations that sptf-3 function is essential for full UPRmt activation 

(Figure 3.22). 

 Recently it has been suggested that mammalian mitochondrial 

SSBP1 potentiates heat-shock factor 1 (HSF1) transcription activity (Tan et al., 2015). It has 
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been proposed that under stress conditions SSBP1 can be found in the nucleus where it 

interacts with HSF1. At least in murine cells, the presence of SSBP1 enhanced HSF1 

mediated expression of HSP60, HSP10 and mtHSP70 in response to mitochondrial 

proteotoxic stress caused by heat shock (Tan et al., 2015). To investigate the role of mtss-1 in 

activation of UPRmt in C. elegans, we tested induction of hsp-6pr ::gfp and hsp-60pr ::gfp in 

worms with inhibited mtss-1 function (Figure 3.20 A, Figure 3.21, Figure 3.22). In all tested 

conditions mtss-1 knockdown did not attenuate GFP expression suggesting that MTSS-1 is 

not involved in UPRmt activation in C. elegans. In contrast to enhanced expression of 

mitochondrial chaperones in murine cells, heat shock in nematodes does not induce UPRmt 

(Tan et al., 2015; Yoneda et al., 2004). This indicates distinct activation modes of UPRmt 

between nematodes and mammals. 

 
Figure 3.22 Effect of sptf-3 knockdown on constitutively induced hsp-6pr ::gfp expression in 
isp-1(qm150); ctb-1(qm189) background 
Representative photomicrographs of isp-1(qm150); ctb-1(qm189); hsp-6pr ::gfp transgenic worms 
exposed to control, atfs-1, sptf-3 or mtss-1 RNAi at 20°C. Scale bar, 0.2 mm. 
 

3.16 sptf-3 function is required specifically for UPRmt induction 

 As SPTF-3 was shown to feature around 2.500 potential DNA 

binding sites, we wanted to investigate the specificity of sptf-3 mediated UPRmt induction. 

To do this we used a negative control, hsp-4pr ::gfp reporter of endoplasmatic reticulum 

unfolded protein response (UPRer). With low basal level GFP expression, it can be activated 
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by pdi-3 knockdown, a gene encoding ER protein disulfide isomerase (Yoneda et al., 2004). 

One possibility to abolish UPRer is to decrease IRE-1 levels, a stress-activated endonuclease 

resident in the ER (Calfon et al., 2002).  Knockdown of pdi-3 massively activated UPRer 

whereas exposure to pdi-3 RNAi in combination with inactivation of ire-1 function blocked 

hsp-4pr ::gfp expression (Figure 3.23 A). After finding conditions, which activate or prevent 

activation of UPRer, we tested whether sptf-3 knockdown affects UPRer induction. Inhibition 

of sptf-3 function did not alter hsp-4pr ::gfp expression, induced by pdi-3 knockdown (Figure 

3.23 A). Together with the observation that also sptf-3 inhibition per se does not induce 

UPRer (Figure 3.19 B) these data suggest that SPTF-3 is not involved in UPRer activation. 

 To test sptf-3 role in mediating oxidative stress response we used 

worms carrying gst-4pr ::gfp reporter construct, which is constitutively expressed in the 

isp-1(qm150) and isp-1(qm150); ctb-1(qm189) mutant background (Khan et al., 2013). 

Glutathione S-transferase 4 (GST-4) is a detoxifying enzyme responsible for conjugation of 

glutathione to electrophiles. Expression of gst-4 is induced in response to oxidative stress, e.g. 

paraquat (Kahn et al., 2008; Tawe et al., 1998). While klf-1 (Kruppel-like transcription 

factor) knockdown was previously shown to reduce gst-4pr ::gfp expression in isp-1(qm150); 

ctb-1(qm189) mutants (unpublished data), sptf-3 knockdown did not reduce but rather 

increased GFP expression, suggesting that SPTF-3 is not required for oxidative stress 

response induction (Figure 3.23 B). Collectively these data suggest that sptf-3 function is 

specifically required for full UPRmt activation, while UPRer and oxidative stress response are 

completely inducible when sptf-3 function is impaired.  

 



  3 Results 

 80 

 
Figure 3.23 sptf-3 knockdown effect on induced UPRer and oxidative stress response 
(A) Representative photomicrographs of hsp-4pr ::gfp transgenic worms raised on control, pdi-3, pdi-3; 
ire-1 or pdi-3; sptf-3 double RNAi at 20°C. Scale bar, 0.2 mm. (B) Representative photomicrographs 
of isp-1(qm150); ctb-1(qm189); gst-4pr ::gfp transgenic worms raised on control, klf-1 or sptf-3 RNAi 
at 20°C. Scale bar, 0.2 mm. 
 

 Previously it has been shown that knockdown of cytosolic ribosomal 

protein genes leads to activation of the cellular surveillance system, which in turn prevents 

activation of UPRmt. Notably, reduction of the KGB-1 kinase, essential component of the 

surveillance system, partially released the inhibitory effect of RPG knockdown on UPRmt 

activation (Runkel et al., 2013). In this study we confirmed that the effect of RPG inhibition 

is highly specific to UPRmt, as rps-22 knockdown almost completely inhibited expression of 

hsp-6pr ::gfp and hsp-60pr ::gfp but only partially of hsp-4pr ::gfp, in conditions when the 

respective UPR branch was active (Figure 3.24 A-C). We also have shown that rps-22 

knockdown mediated mtss-1pr ::gfp induction was dependent on sptf-3 function (Figure 3.16). 

Further, we showed that sptf-3 function is critical for full UPRmt activation (Figure 3.20, 

Figure 3.21, Figure 3.22). Therefore, we investigated the effect of sptf-3 and rps-22 double 

knockdown on hsp-6pr ::gfp induction in isp-1(qm150); ctb-1(qm189) background. As 
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expected, the UPRmt was inhibited by double RNAi treatment but interestingly the 

inhibitory effect was additive. Single rps-22 (Figure 3.24 D) and sptf-3 knockdowns (Figure 

3.22) still exhibited low levels of hsp-6pr ::gfp expression, although upon rps-22 inhibition 

GFP signal was barely detectable. Nevertheless, rps-22; sptf-3 double knockdown completely 

abolished UPRmt induction (Figure 3.24 D). Taken together, our results indicate that sptf-3 

and cytosolic ribosomes specifically modulate UPRmt activity in presumably independent 

manner. Notably, rps-22 knockdown leads to increased levels of SPTF-3 (Figure 3.16 D), 

which theoretically would promote UPRmt induction. Therefore downregulation of 

ribosomal proteins might play a dual role in modulating UPRmt: more dominating, 

inhibitory role via the surveillance system and inducing role through sptf-3.  

 
Figure 3.24 Effect of sptf-3; rps-22 double knockdown on UPRmt induction  
(A) Representative photomicrographs of (A) hsp-4pr ::gfp, (B) hsp-6pr ::gfp, (C) hsp-60pr ::gfp and (D) 
isp-1(qm150); ctb-1(qm189); hsp-6pr ::gfp transgenic worms exposed to control, pdi-3, pdi-3; ire-1, 
pdi-3; rps-22, spg-7, spg-7; atfs-1, spg-7; rps-22, atfs-1, rps-22 and rps-22; sptf-3 double RNAi at 20°C. 
Scale bar, 0.2 mm. 
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4 Discussion 

 Almost 60 years ago the free radical theory of aging was born and 

ever since mitochondrial function, or rather dysfunction, emerged as one of the driving 

forces of aging associated diseases and the aging process in general. Moreover, mitochondrial 

dysfunction has been linked to a wide range of disorders that are remarkably tissue specific 

and differ in the time point of disease onset (for review, see (DiMauro and Schon, 2008; 

Schapira, 2012). To better understand and eventually develop therapeutic strategies, 

numerous studies were targeted at finding the Holy Grail of mitochondrial regulation. 

However, we still do not know exactly how the expression of the mitochondrial and nuclear 

genomes is coordinated. Despite the fact that factors involved in these processes differ 

between species, tissues within one organism have different energetic requirements leading to 

the possibility of correspondingly distinct fine-tuning programs for mitochondrial regulation. 

Moreover, mitochondrial biogenesis might imply diverse sets of players depending on the 

current physiological state of the organism. Indeed the most prominent, stigmatized "master 

regulator" of mitochondrial biogenesis in mammals - PGC-1α - is dispensable under resting 

conditions (Lin et al., 2004). Therefore we established a C. elegans model, which allowed us 

to perform RNAi screens looking for genes facilitating or suppressing activation of 

mitochondrial biogenesis. As one of three proteins essential for mtDNA replication 

(Korhonen et al., 2004; Ruhanen et al., 2010; Sugimoto et al., 2008) mitochondrial single-

stranded DNA binding protein is a valuable marker for changes in mtDNA replication rate, 

which predominantly mirror changes in mitochondrial biogenesis (Chow et al., 2007; 

Civitarese et al., 2007; Lentz et al., 2010). Importantly C. elegans maintenance temperature 

is designated as between 15°C and 25°C, whereas mild heat stress of 25°C is sufficient to 

elevate mtDNA replication (Bratic et al., 2009; Stiernagle, 2006; Vilchez et al., 2012). 

Hence our model allowed us to identify factors important for on demand regulation of 

mitochondrial biogenesis. 
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4.1 C. elegans specific regulation of mitochondrial biogenesis is largely 

unknown 

 In mammals, NRF-1 and NRF-2 regulate the expression of a variety 

of genes in the respiratory chain as well as genes involved in mtDNA expression (for review, 

see (Kelly and Scarpulla, 2004)). Whereas these factors maintain the basal mitochondrial 

biogenesis, their activity is fine-tuned by cofactors like PGC-1α and β in response to external 

physiological stimuli. How changes in mitochondrial functionality are communicated to 

these factors is still to be resolved. Potential signaling factors are calcium, cAMP, AMP/ATP 

levels or redox state (NAD+/NADH) (for review, see (Vega et al., 2015), yet they converge 

on PGC-1α, thus addressing predominantly stress induced signaling but not basal 

adaptations in expression of genes related to mitochondria. In Saccharomyces cerevisiae, 

expression of nDNA-encoded mitochondrial genes can be regulated via the RTG system in 

response to alterations in mitochondrial function, known as retrograde signaling (Liao and 

Butow, 1993). The central role of RTG genes is glutamate homeostasis. During 

mitochondrial stress the RTG system controls the expression of CIT1, ACO1, IDH1 and 

IDH2, enzymes facilitating first three steps of the TCA cycle, and induces expression of 

genes encoding enzymes involved in anaplerotic pathways that provide metabolites required 

for α-ketoglutarate production (Liu and Butow, 1999). So far, no comparable discoveries 

have been made in C. elegans. To our knowledge, there are no RTG genes in nematodes, nor 

there are homologs of NRFs or PGC-1s (Knutti et al., 2000). Interestingly, Mediator 

subunit MDT-15 (mammalian MED15) functionally overlaps with PGC-1α in terms of 

regulation genes involved in fatty acid metabolism (Taubert et al., 2006; Vega et al., 2000). 

Still, no effect of MDT-15 on other mitochondria-related genes has been reported.  

 As mitochondrial biogenesis also has to be regulated in worms, there 

might be mechanisms shared between species, previously not linked or neglected concerning 

regulation expression of genes with mitochondrial function. One possibility is that already 

known mammalian factors have extended or newly acquired functions in nematodes. On the 

other hand, another regulation system could have developed involving C. elegans specific 

factors. Along this line, we investigated regulation of mtss-1pr ::gfp reporter expression by 

knocking down transcription factors and genes residual on chromosome III. A genome wide 

RNAi screen approach will enable the discovery of further factors involved in mitochondrial 
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biogenesis. Transcriptional and translational fusion will help to unveil factors affecting 

transcription, translation and localization. To cover all facets of mtDNA expression, 

hmg-5pr ::gfp (mammalian TFAM) reporter can be used next to mtss-1pr ::gfp in order to 

additionally monitor mtDNA transcription. Moreover, a mutant background that 

upregulates expression of the reporters, has to be determined if search for factors involved in 

stress mediated mitochondrial adaptation is intended.  

 While some factors modulating mitochondrial biogenesis are 

dispensable for organismal survival, others are essential. One study on mice demonstrated 

that one functional copy of Nrf-1 is sufficient to ensure viability and fertility of the animals. 

However, homozygous Nrf-1 mutants die between embryonic days 3.5 and 6.5 due to 

massive loss of mtDNA (Huo and Scarpulla, 2001). Loss of NRF-1 function via siRNA in a 

rat hepatoma cell line resulted in reduction of TFAM and mtDNA levels (Piantadosi and 

Suliman, 2006). Knockdowns of gei-17, sptf-3 and W04D2.4, all reduced lifespan, whereas 

all three mutants with large deletions in coding regions are lethal/sterile, underlying the 

importance of these genes. In the case of sptf-3 knockdown the lifespan reducing effect was 

even stronger at 25°C and normally long-lived isp-1(qm150); ctb-1(qm189) animals were 

undistinguishable from wild type animals raised on sptf-3 RNAi. This suggests that under 

even mild stress as 25°C sptf-3 knockdown effect is robust; suppressing lifespan extending 

effect of deployed mutants. This might be also a hint for the involvement of sptf-3 in 

isp-1(qm150); ctb-1(qm189) mediated lifespan extension. That sptf-3 and W04D2.4 

knockdowns changed transcript levels of different genes, suggests that they target different 

group of genes, partially overlapping. Due to the size and intensity of the project we decided 

to focus on W04D2.4 and SPTF-3 function. 

 

4.2 W04D2.4 a novel, nematode specific regulator of mitochondrial 

biogenesis?  

 Almost as a rule, transcription factors are ornamented with post-

translational modifications (PTMs) determining their localization and activity (for review, 

see (Filtz et al., 2014)). One example of regulating mitochondrial biogenesis through 

transcription factor control was shown in rat cells, when under low oxidant stress level 
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NRF-1 is phosphorylated by AKT and translocates to the nucleus (Piantadosi and Suliman, 

2006). In this study we show that W04D2.4 preferentially localizes to the nucleus at 25°C. 

Yet there are four major questions to be answered, if W04D2.4 is truly a transcription factor: 

(1) which genes are regulated by W04D2.4 (2) at which site W04D2.4 is modified (3) which 

protein facilitates the modification and (4) is temperature the direct cause or is W04D2.4 

modified in response to changes in e.g. mitochondrial biogenesis caused by increased 

temperature. In other words, can we trigger W04D2.4 nuclear translocation by generating 

cellular stress (e.g. using RNAi) or is this response temperature specific?  

 The most important question concerns targets of W04D2.4. The 

RNA-seq data suggest that a big portion of genes with mitochondrial function might be 

transcriptionally regulated by W04D2.4. Strikingly, eleven out of twelve mtDNA encoded 

genes and 28 out of 65 mitochondrial RPGs were less abundant upon W04D2.4 

knockdown. Most likely, mtDNA-encoded genes are indirectly regulated by W04D2.4, since 

next to mitochondrial RPGs, transcripts of mtss-1 and polg-1, representing mitochondrial 

replication machinery, were downregulated upon W04D2.4 knockdown. Notably, in 

mammals NRF-1 was shown to directly regulate expression of OXPHOS genes and 

furthermore of TFAM, involved in mtDNA expression and maintenance (Evans and 

Scarpulla, 1990; Satoh et al., 2013; Virbasius et al., 1993). Our data indicate that W04D2.4 

is involved in direct regulation of genes with mitochondrial function and indirect regulation 

of mitochondrial genes by controlling expression of genes responsible for mitochondrial 

replication and translation processes. For further characterization it is important to 

determine direct transcriptional targets of W04D2.4 using ChIP-seq.  

 

4.3 SPTF-3 regulates expression of genes with mitochondrial function in 

C. elegans 

 Mammalian Specificity Protein/ Kruppel-like factor (SP/KLF) 

family of C2H2-type zinc-finger transcription factors family consists of nine Sp and 16 KLF 

subfamily members (for review, see (Suske et al., 2005)). Despite their similarities in primary 

structure and in affinity to bind GC rich boxes, Sp1-4 have distinct, mainly non-redundant 

functions in vivo. Whereas Sp4 is expressed in neurons, Sp1-3 are expressed ubiquitously (for 
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review, see (Suske, 1999)). More strikingly, Sp1 (Marin et al., 1997) and Sp2 (Baur et al., 

2010) null mice die during embryonic development. Sp3 null mice die at birth due to 

respiratory failure (Bouwman et al., 2000), while two-thirds of Sp4 null mutants die within 

first four weeks after birth and the once which survive are smaller in size and fail to breed 

(Addo et al., 2010; Gollner et al., 2001).  

 In mammals, proximal promoters of several mitochondria-related 

genes contain NRF-1 and NRF-2 recognition sites, indicating nuclear respiratory factor 

mediated regulation of mitochondrial biogenesis (for review, see (Kelly and Scarpulla, 

2004)). Next to NRF-1 and NRF-2, at least one Sp1 recognition site can be found within 

the promoter region of TFAM, TFB1M, TFB2M and POLγ, factors essential for mtDNA 

replication/transcription. Importantly, Sp1 recognition sites function as negative and positive 

elements in the context of TFB1M and TFB2M promoter respectively, suggesting dual 

activity for other Sp transcription factors (Gleyzer et al., 2005). Moreover, Sp3 was suggested 

to act as a transcriptional repressor, due to its low transcription stimulation capacity and 

competitive binding of Sp1 recognition elements (Kennett et al., 2002). 

 In Na2 neurons, Sp1 was shown to induce expression of all 13 COX 

subunits (Dhar et al., 2013). The 10 nDNA-encoded COX genes are regulated directly, 

whereas the mtDNA-encoded ones indirectly via regulating expression of genes encoding 

TFAM, TFB1M and TFB2M. Knockdown of Sp1 by shRNA convincingly reduced 

transcript and protein levels of COX subunits by at least 40%. Strikingly, in primary 

neurons Sp4 and not Sp1 was shown to regulate COX gene expression (Johar et al., 2013). 

However in C. elegans the role of Sp transcription factors in mitochondrial biogenesis have 

not been investigated so far. The nematode Sp family includes sptf-1, sptf-2, sptf-3 and tlp-1 

genes (Ulm et al., 2011; Zhao et al., 2002b). Under our experimental conditions using 

mtss-1pr :gfp reporter, we suggest that in somatic cells only sptf-3 is involved in the regulation 

of mtss-1, though the role of tlp-1 still has to be tested. Notably, consistent with findings that 

Sp1 overexpression eventually leads to apoptosis (Deniaud et al., 2006), we could not 

establish a line transmitting the sptf-3 overexpression array beyond F1 generation. Protein 

blast algorithms do not reveal clear human or murine ortholog of SPTF-3. Though it is 

highly speculative to conclude homology relations based on expression profiles, nevertheless, 

SPTF-3 is ubiquitously expressed which is least overlapping with neuronal specific Sp4 

expression profile in mice (Hirose and Horvitz, 2013).  
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 Additional studies targeting mammalian mitochondrial aconitase 

and citrate synthase, two TCA cycle enzymes, revealed Sp1 sites in their proximal promoters. 

Deletion/mutation of Sp1 recognition sites led to decreased transcript levels of ACO2 and CS 

in reporter constructs (Kraft et al., 2006; Yu et al., 2006). Consistent with the described 

findings we observed decreased expression of aco-2pr ::gfp, cts-1pr ::gfp and hmg-5pr ::gfp 

reporters upon sptf-3 knockdown, though with certain restrictions. In C. elegans neither aco-2 

nor hmg-5, but cts-1 appear to possess SPTF-3 binding sites in predicted promoter regions 

(Hirose and Horvitz, 2013). This supports our observation concerning minor changes in aco-

2pr ::gfp  and strong changes in cts-1pr ::gfp expression levels. Still hmg-5 is possibly regulated 

by SPTF-3, as we detected decreased hmg-5 transcript levels upon sptf-3 RNAi. One possible 

explanation, why in the ChIP-seq data (Hirose and Horvitz, 2013) hmg-5 does not appear, is 

that it resides downstream of nrde-4 gene in the CEOP4236 operon. In turn, nrde-4 

proximal promoter contains one SPTF-3 binding site, suggesting sptf-3 mediated hmg-5 

regulation by distal promoter elements. 

 Further, only four nuclear and one mtDNA-encoded COX subunits 

appear to have a SPTF-3 binding site in their promoters. Testing the transcript and protein 

levels of the subunit encoded by mtDNA, we detected a decrease in the mRNA expression 

but not protein levels upon sptf-3 knockdown. Testing protein levels of other COX subunits 

would require generation of C. elegans specific antibodies. Taken together, these data indicate 

that under tested conditions the effect of sptf-3 knockdown on ctc-1 (homolog of human 

COXIV subunit 1) is moderate, supported by unchanged respiration rates. Possibly general 

Sp mediated regulation of COX genes in C. elegans is distinct from that of mammalian 

systems. Nevertheless our experiments suggest that SPTF-3 is involved in mitochondrial 

DNA maintenance, as mtDNA content was reduced by sptf-3 knockdown, presumably via 

reducing hmg-5, mtss-1 and polg-1 levels. Eventually a broader range of genes with 

mitochondrial function has to be tested for sptf-3 dependent regulation, ideally under 

conditions when mitochondrial biogenesis is robustly upregulated. Moreover, future studies 

should test involvement of other Sp genes in the expression of mitochondria–related genes, 

although we showed that only sptf-3 is involved in mtss-1 regulation under tested conditions. 

 In mouse embryonic fibroblasts (MEFs) mitochondria elongate 

under starving conditions in order to maintain ATP levels (Gomes et al., 2011). In murine 

beta cells (β-cells, pancreas) increased levels of glucose and fatty acids result in changing 
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mitochondrial morphology towards fragmentation (Molina et al., 2009). Moreover, 

knockdown of COX scaffold protein SCO1 in C. elegans and mammalian cells induced 

mitochondrial hyperfusion suggesting transient a compensatory mechanism for maintaining 

ATP levels (Rolland et al., 2013). Interestingly, neither respiratory chain complex I, nor 

mitochondrial polymerase (mrpo-1) or mitochondrial transcription factors (mtfb-1 or hmg-5) 

deficiency lead to hyperfusion, suggesting hyperfused phenotype specificity to COX 

deficiency. Upon knockdown of sptf-3 we also observed a moderate shift of mitochondrial 

networks towards the hyperfused state. This could be an indicator for sptf-3 knockdown 

mediated COX activity impairment, which has to be addressed in future experiments by 

determining ATP levels in sptf-3 deficient worms. While COXIV-1 protein levels and 

respiration were unchanged, transcript levels and mitochondrial morphology were slightly 

altered upon sptf-3 knockdown. This contradiction might result from low sensitivity of used 

assays under given parameters and should be addressed in future experiments. 

 

4.4 Knockdown of cytosolic ribosomal protein genes induces mtss-1 

expression in specific, sptf-3 mediated manner  

 Changing environmental conditions and accessibility of nutrients 

affect organismal growth and survival. Many studies investigated molecular mechanisms of 

lifespan extension mediated by caloric restriction (CR) or cytosolic translation inhibition. In 

CR rats, Electron Microscopy (EM) reveals increased number of mitochondria in liver tissue 

(Lopez-Lluch et al., 2006). Moreover, CR on HeLa cells elevated transcript and protein 

levels of NRF-1 and NRF-2. Interestingly, increased insulin levels appear to diminish the CR 

effect on the expression levels of mitochondrial biogenesis factors. We tested the CR effect in 

our model by using the eat-2(ad1116) mutant. Mutations in eat genes partially disrupt 

pharyngeal function, thereby decreasing food uptake. This genetic CR model increases C. 

elegans lifespan by up to 50% (Lakowski and Hekimi, 1998). In our hands, eat-2(ad1116) 

mutation did not cause elevated expression of mtss-1pr ::gfp (data not shown), suggesting that 

either CR is not affecting mitochondria-related genes at transcriptional level or mtss-1 is not 

part of CR mediated alterations.  
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 Further, in different studies cytosolic translation appears to be the 

focal process coupling nutrient deprivation, mitochondrial biogenesis and longevity (Pan et 

al., 2007; Rogers et al., 2011; Syntichaki et al., 2007; Wang et al., 2008). Moreover, 

contrary to transcription, translational regulation of selective mRNAs displays a sophisticated 

way to quickly adjust protein concentration in response to stress stimuli. In Drosophila 

melanogaster, CR was shown to enhance translation of genes with mitochondrial function 

leading to the eukaryotic translation initiation factor 4E binding protein (4E-BP) mediated 

lifespan extension (Zid et al., 2009). Whereas global translation rate is reduced, mRNAs of 

nDNA-encoded mitochondrial genes are preferentially translated due to less structured 5’ 

UTR. In turn, reduction of ETC subunits diminishes the lifespan extension effect of CR. 

The pivotal role in the regulation of translation events is attributed to the nutrient-sensing 

serine/threonine protein kinase TOR (for review, see (Dowling et al., 2010; Fonseca et al., 

2014)). Acting in two distinct multi-protein complexes TOR modulates translation through 

its downstream effectors. To name but a few, mammalian target of rapamycin complex 1 

(mTORC1) promotes selective translation of genes involved in mitochondrial function by 

phosphorylating 4E-BP (Morita et al., 2013) and mediates formation of the translation 

preinitiation complex via S6 kinase (S6K) (Holz et al., 2005). Remarkably, in our study only 

direct reduction of cytosolic ribosomes induced mtss-1pr ::gfp expression, leading to increased 

transcript and protein levels of both, MTSS-1 and GFP. Notably, GFP protein increase 

indicates that promoted translation of mtss-1 is most likely not caused by mRNA structural 

features but rather by increased mtss-1 mRNA abundance. Neither knockdown of CeTOR 

components nor inhibition of translation factors induced reporter expression. Most likely the 

induction is largely dependent on the mtss-1 promoter activity, that we suggest to be 

regulated by SPTF-3. 

 In response to a wide range of stress conditions, eukaryotic initiation 

factor 2 subunit alpha, eIF2α can be phosphorylated by GCN2, PERK, HRI and PKR, 

reducing availability of ternary complex, which is critical for translation initiation (for 

review, see (Proud, 2005; Sonenberg and Hinnebusch, 2009)). In C. elegans only two kinases 

are known to phosphorylate eIF2α, namely GCN-2 and PEK-1 (homolog of mammalian 

PERK). In addition to UV and nutrients, mitochondrial stress has also been shown to induce 

GCN-2 mediated eIF2α phosphorylation, slowing general translation (Baker et al., 2012). In 

our study, we observed decreased levels of phosphorylated eIF2α upon RPG knockdown. 
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Importantly, we were able to determine only the levels of the phosphorylated eIF2α, missing 

out on the information about the ratio between the phosphorylated and dephosphorylated 

forms. Thus, generating C. elegans specific pan-eIF2α antibody will help to clarify whether 

phosphorylated or simply total eIF2α levels are decreased upon rps-22 knockdown. Given 

that knockdown of a single ribosomal protein gene leads to impaired ribosome assembly, 

dephosphorylated eIF2α could possibly serve as a compensatory mechanism releasing "the 

brake" from translation initiation, allowing maximum translational capacity under the 

present circumstances. Our results suggest, that mtss-1pr ::gfp expression is independent of 

GCN-2 function, as the reporter was inducible upon RPG knockdown in gcn-2(ok871) null-

mutation background. Nevertheless, the induction was lower than in wild type background, 

suggesting that other factors affect global protein synthesis in the absence of functional 

GCN-2. Possibly, phosphorylation of eIF2α is induced in gcn-2(ok871) background, 

potentially via PEK-1, resulting in impaired initiation, subsequently leading to reduced 

translation. Loss of ife-2, homolog of mammalian eIF4E (eukaryotic initiation factor 4E), 

reduces global protein synthesis in C. elegans (Syntichaki et al., 2007). Animals carrying 

ife-2(ok306) deletion allele reproduced reporter induction pattern of gcn-2(ok871) animals, 

indicating reduced global translation upon gcn-2 knockdown. 

 In eukaryotes most mRNAs initiate translation in a cap-dependent 

manner (for review, see (Thompson, 2012)). The presence of a 5’ cap is recognized by 

eIF4E, subunit of the eIF4F cap-binding complex, enabling the initiation factors to load the 

mRNA on the 40S ribosomal subunit, previously recruited as 43S pre-initiation complex, 

consisting of 40S ribosomal subunit, eiF3, eIF1, eIF4A, eIF5 and the ternary complex 

(eIF2GTPmet-tRNA). Once the 40S subunit reaches the start codon, eIF5B recruits the 60S 

subunit to facilitate the formation of the 80S ribosome and allow translation start. During 

certain cellular stress conditions cap-dependent translation is reduced and the alternative cap-

independent protein synthesis is exerted. Around 3% of human cellular mRNAs are heavily 

associated with translational apparatus, despite nonfunctional cap-binding eIF4F initiation 

complex (Johannes et al., 1999). Cap-independent translation requires an internal ribosome 

entry site (IRES), which first were found in viral RNAs. Presently, there is still discrepancy in 

the understanding of well-studied viral and cellular IRES mechanisms (for review, see 

(Komar and Hatzoglou, 2011; Thompson, 2012)). Importantly, under normal growth 

conditions IRES mediated translation utilizes the ternary complex dependent translation 



  4 Discussion 

 91 

initiation, whereas during stress IRES RNAs are translated using eIF5B dependent 

mechanism (Thakor and Holcik, 2012). IRES is found in the 5’ UTR of Sp1 and in rat 

neurons Sp1 protein levels are increased in an early response to ischemia-induced H2O2 

stress. Importantly, at later stages higher levels of Sp1 increased Sp1 transcripts in a feedback 

manner (Yeh et al., 2011). The follow up study showed that also during tumorigenesis Sp1 

was activated in IRES dependent manner (Hung et al., 2014). Our results suggest that 

cellular stress as reduction of cytosolic ribosomes likewise enhances SPTF-3 translation, most 

probably through an IRES mediated mechanism. Subsequently elevated SPTF-3 levels lead 

to higher MTSS-1 transcript and protein levels. SPTF-3 binding sites can be found within its 

own proximal promoter region explaining the upward trend of sptf-3 transcript levels, which 

might get significantly different in animals of later stages. 

 Taken together, our findings suggest that MTSS-1 expression is 

induced exclusively upon ribosomal protein gene knockdown, as RNAi mediated 

knockdown of TOR signaling components and translation factors failed to induce reporter 

expression. This induction appears to be mediated via SPTF-3, most likely through IRES 

dependent translation. Ribosomal profiling and computational sequence analysis will clarify 

whether sptf-3 possesses IRES and whether more mitochondria-related genes are regulated in 

a similar manner. Nevertheless, in C. elegans this intriguing IRES mechanism might offer an 

alternative to the 4E-BP mediated translational modification under stress conditions. It has 

to be tested whether other physiological relevant stimuli can induce mtss-1pr ::gfp expression. 

Antimycin and pathogen infection both generate mitochondrial stress, thus are appealing 

conditions to be tested in the future (Liu et al., 2014; Pellegrino, 2014). Additionally, 

W04D2.4 knockdown not only abolished mtss-1pr ::gfp induction at 25°C but also abrogated 

reporter expression upon RPG knockdown (data not shown). This raises the possibility that 

SPTF-3 and W04D2.4 interaction is essential for mtss-1 transcription. Moreover, SPTF-3 

and W04D2.4 might regulate specifically nDNA-encoded mitochondrial genes when acting 

in combination.  

 Further, adulthood specific reduction of translation associated 

proteins, including rps-22 knockdown, increased lifespan in C. elegans, suggesting general 

translation inhibition induces lifespan extension (Hansen et al., 2007). Notably, in our 

hands permanent exposure to sptf-3 RNAi reduced life span of wild type and long-lived 

worms, causing developmental defects as reported previously (Ulm et al., 2011). 
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Consequently it is to be tested, whether upon RPG knockdown during adulthood only, 

SPTF-3 mediates the lifespan extension effect. SPTF-3 binding sides can be found in 

proximal promoter regions of many ribosomal protein genes (Hirose and Horvitz, 2013). 

Thus increased SPTF-3 levels caused by RPG knockdown might subsequently lead to 

elevated transcription of RPGs. Regulating expression of ribosomal protein genes and/or 

genes with mitochondrial function in a feedback manner are two potential mechanisms for 

SPTF-3 mediated lifespan extension upon RPG knockdown. 

 

4.5 SPTF-3 function is required for the UPRmt activation 

 Proteins are involved in almost every biological process. Newly 

synthesized polypeptides have to fold into their 'native state' to gain functional activity. 

Principally, biophysical features of the amino acid sequence determine the three-dimensional 

structure of proteins. However, the precise protein folding mechanism remains largely a 

conundrum, as no algorithm was found yet to accurately predict 3D structures. Proper 

function has to be assured in spatio-temporal manner, which is challenging in a crowded 

cellular environment. Moreover, protein function mostly depends on conformation 

flexibility presupposing relatively low degree of thermodynamic stability of the native state. 

Mutations, interactions with other proteins or intrinsic physical forces of partially folded 

proteins might lead to kinetically trapped molecules, potentially forming aggregates. 

Molecular chaperones were identified as proteins assisting in de novo folding, refolding of 

denaturated proteins and assistance in proteolytic degradation (for review, see (Hartl et al., 

2011)). Their basal expression is upregulated in order to regain the protein-folding 

environment, and can be induced in an endoplasmatic reticulum, cytosol and mitochondria 

specific manner (Yoneda et al., 2004). The role of chaperones becomes obvious in the light 

of diseases associated with aggregation of misfolded proteins, like neurodegenerative 

Alzheimer's (AD) and Parkinson's diseases (PD) to name the most prominent ones (for 

review, see (Valastyan and Lindquist, 2014)). Notably, various studies indicate involvement 

of dysfunctional mitochondria in the pathogenesis of these diseases (for review, see (Lin and 

Beal, 2006; Rugarli and Langer, 2012)). Therefore, coordinated expression of chaperones 
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might be essential for cell protection from potential consequence of malfunctioning 

mitochondria. 

 Mitochondrial unfolded protein response (UPRmt) displays a 

retrograde response mechanism when changes in mitochondria induce expression of nuclear 

genes in order to reestablish full functionality of the organelle. Though initially 

mitochondrial specific stress response was identified in mammals (Zhao et al., 2002a), much 

more insight was gained from studies in C. elegans. Accumulation of misfolded proteins 

within mitochondria leads to upregulated expression of mitochondrial chaperones HSP-6 

and HSP-60 (mammalian HSPA9 and HSP60 respectively) (Yoneda et al., 2004). ATFS-1 

was identified as the central player in this pathway, with possible dual targeting within cells, 

as it possesses mitochondrial targeting sequence and nuclear localization signal (Haynes et al., 

2010; Nargund et al., 2012). Normally, ATFS-1 is imported into mitochondria, while 

during mitochondrial stress the import efficiency is impaired, so ATFS-1 can translocate to 

the nucleus, thus activating expression of specific mitochondrial protective genes, including 

mitochondrial chaperones hsp-6 and hsp-60. Moreover ATFS-1 directly binds promoters of 

OXPHOS genes in both, nDNA and mtDNA, thus coordinating gene expression between 

the two genomes (Nargund et al., 2015). Our data suggest that SPTF-3 is indispensable for 

full UPRmt induction. Most likely, SPTF-3 regulates hsp-6 and hsp-60 indirectly, via 

regulation of atfs-1, as a SPTF-3 binding site can be found only in the proximal promoter of 

atfs-1 and not of the chaperones (Hirose and Horvitz, 2013). While knockdown of spg-7 

increases atfs-1 mRNA levels (Nargund et al., 2012), future studies will have to address 

whether sptf-3 is responsible for this upregulation and how SPTF-3 activity is specifically 

regulated upon mitochondrial stress. Posttranslational modifications like phosphorylation or 

sumoylation have been found in Sp1, yet the consequences regarding the function have to be 

dissected (for review, see (Waby et al., 2008)). Another study in C. elegans suggests that upon 

disruption of core activities like translation, cellular surveillance system is activated, 

eventually preventing UPRmt induction (Runkel et al., 2013). Our knockdown experiments 

confirm that knockdown of ribosomal protein genes inhibits UPRmt induction, whereas still 

some residual level is detectable in the reporter strains. Given that RPG knockdown induces 

SPTF-3 translation, it appears counterintuitive that UPRmt is inhibited through the 

surveillance system. Possibly, in the case of simultaneous mitochondrial impairment and 

impaired ribosomal function, increased SPTF-3 levels are necessary to preserve basal levels of 



  4 Discussion 

 94 

mitochondrial chaperones; otherwise inhibition of UPRmt would be total, eventually leading 

to critical level of mitochondrial dysfunction. SPTF-3s role in the basal level maintenance is 

supported by our sptf-3; rps-22 double knockdown experiment, where the reporter induction 

is completely abolished. 
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4.6 Conclusions 

 Mitochondrial integrity is one of the defining aspects in the course 

of aging and onset of neurodegenerative diseases. Whereas much progress has been achieved 

in understanding transcriptional regulation of genes with mitochondrial function in 

mammals, there is still a gap of knowledge about how the bigenomic expression is 

coordinated. Moreover, little is known about the regulation of mitochondria-related gene 

expression in C. elegans, particularly in the absence of pivotal transcription factors identified 

in mammals. Therefore, in this study we aimed to identify determinants of mitochondrial 

biogenesis, particularly required upon mild stress in terms of moderate temperature increase. 

Due to the lack of NRF-1, NRF-2 and PGC-1α in C. elegans, we initially focused our 

investigations on transcription factors, finding W04D2.4 and SPTF-3. SPTF-3 is potentially 

involved in the regulation of a subset of OXPHOS subunits and a variety of genes with 

mitochondrial function, due to the presence of SPTF-3 binding sites in respective proximal 

promoters. Its specificity might be dependent on the interaction with W04D2.4, thus 

together, these two transcription factors, offer a potential regulatory complex for 

mitochondria-related genes in C. elegans. Extending the RNAi screen to the genome wide 

level will help to identify the players, communicating mitochondrial state to the transcription 

factors. Further, it will be crucial to investigate the role of SPTF-3 dependent UPRmt 

induction possibly via control of atfs-1 expression and whether SPTF-3 might be the 

connecting node between UPRmt and mitochondrial biogenesis. Though Sp1 coordinates 

expression of COX genes in mammals (Dhar et al., 2013; Johar et al., 2013), cytochrome c 

(CYCS) (Li et al., 1996b) and adenine nucleotide translocase 2 (ANT2) (Li et al., 1996a), 

attention has mainly been given to NRFs, PPARs, ERRs and PGC-1s with regard to the 

regulation of genes with mitochondrial function. Our results indicate that Sp1 family 

transcription factors may play a much bigger role in mammalian mitochondrial biogenesis, 

than assumed thus far. 
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WormBase ID Gene W04D2.4 25°C/ 
control 25°C 

W04D2.4 25°C/ 
control 20°C 

control 25°C/ 
control 20°C 

WBGene00014224 mrps-23 -2.97 -3.60 -0.66 

WBGene00019800 mtss-1 -2.50 -2.10 0.38 

WBGene00010967 ND5 -1.19 -1.52 -0.36 

WBGene00004954 spd-3 -1.18 -1.69 -0.54 

WBGene00194707 C53A5.17 -1.13 -0.89 0.21 

WBGene00002025 hsp-60 -1.09 -1.16 -0.11 

WBGene00000229 atp-2 -0.95 -1.19 -0.28 

WBGene00000550 clu-1 -0.93 -1.21 -0.31 

WBGene00010963 ND4 -0.76 -1.13 -0.40 

WBGene00006565 tfg-1 -0.61 -0.82 -0.24 

WBGene00020993 W03F8.3 -0.61 -0.27 0.31 

WBGene00000877 cyn-1 -0.52 -0.63 -0.15 

WBGene00004015 phb-2 -0.51 -0.68 -0.21 

WBGene00010015 atad-3 -0.50 -0.88 -0.41 

WBGene00016844 sucg-1 -0.49 -0.55 -0.09 

WBGene00021920 mrps-25 -0.45 -0.65 -0.23 

WBGene00010419 H28O16.1 -0.43 -0.53 -0.13 

WBGene00007385 atp-5 -0.43 -0.55 -0.15 

WBGene00003214 mel-32 -0.43 -0.51 -0.11 

WBGene00010303 cri-3 -0.43 -0.54 -0.14 

WBGene00019900 R05G6.7 -0.42 -0.50 -0.11 

WBGene00006574 tin-13 -0.42 -0.58 -0.20 

WBGene00003162 mdh-2 -0.40 -0.53 -0.16 

WBGene00007686 tomm-40 -0.39 -0.53 -0.17 

WBGene00000206 asb-1 -0.39 -0.43 -0.07 

WBGene00010794 dld-1 -0.38 -0.55 -0.20 

WBGene00002879 let-754 -0.36 -0.53 -0.20 

WBGene00002045 icd-1 -0.34 -0.76 -0.45 

WBGene00015413 pdhb-1 -0.34 -0.45 -0.14 

WBGene00022722 ZK370.8 -0.34 -0.53 -0.22 

WBGene00007684 C18E9.4 -0.33 -0.61 -0.32 

WBGene00018963 ucr-1 -0.32 -0.45 -0.16 
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WormBase ID Gene W04D2.4 25°C/ 
control 25°C 

W04D2.4 25°C/ 
control 20°C 

control 25°C/ 
control 20°C 

WBGene00001028 dnj-10 -0.32 -0.14 0.15 

WBGene00000041 aco-2 -0.32 -0.42 -0.14 

WBGene00002001 hars-1 -0.30 -0.56 -0.30 

WBGene00006439 ant-1.1 -0.28 -0.53 -0.28 

WBGene00012315 immt-2 -0.28 -0.15 0.09 

WBGene00020347 T08B2.7 -0.27 -0.37 -0.13 

WBGene00009664 idha-1 -0.27 -0.37 -0.13 

WBGene00004931 sod-2 -0.27 -0.10 0.13 

WBGene00001134 eat-3 -0.26 -0.42 -0.19 

WBGene00007918 sphk-1 -0.26 -0.45 -0.22 

WBGene00009082 dlat-1 -0.25 -0.45 -0.24 

WBGene00011273 R53.4 -0.24 -0.40 -0.19 

WBGene00000765 coq-5 -0.24 -0.41 -0.20 

WBGene00007993 idhb-1 -0.22 -0.39 -0.19 

WBGene00015391 sdha-1 -0.22 -0.42 -0.23 

WBGene00021562 nuo-5 -0.22 -0.40 -0.21 

WBGene00000829 CYTB -0.22 -0.58 -0.39 

WBGene00020348 mrpl-23 -0.21 -0.43 -0.25 

WBGene00020275 atp-4 -0.21 -0.34 -0.16 

WBGene00009187 CELE_F27D4.1 -0.21 -0.35 -0.17 

WBGene00013376 Y62E10A.6 -0.21 -0.39 -0.22 

WBGene00020636 T20H4.5 -0.20 -0.29 -0.12 

WBGene00008505 F01G4.6 -0.20 -0.43 -0.26 

WBGene00003831 nuo-1 -0.20 -0.31 -0.14 

WBGene00017982 hpo-18 -0.19 -0.34 -0.18 

WBGene00010624 mrps-15 -0.19 -0.41 -0.25 

WBGene00007880 CELE_C33A12.1 -0.19 -0.30 -0.14 

WBGene00002162 isp-1 -0.19 -0.24 -0.09 

WBGene00000209 asg-1 -0.19 -0.38 -0.22 

WBGene00022336 Y82E9BR.3 -0.18 -0.36 -0.20 

WBGene00020511 immt-1 -0.18 -0.28 -0.13 

WBGene00004014 phb-1 -0.17 -0.30 -0.16 

WBGene00017261 acl-6 -0.17 -0.27 -0.13 

WBGene00020417 nuo-2 -0.17 -0.26 -0.12 

WBGene00011510 pdha-1 -0.17 -0.26 -0.12 
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WormBase ID Gene W04D2.4 25°C/ 
control 25°C 

W04D2.4 25°C/ 
control 20°C 

control 25°C/ 
control 20°C 

WBGene00009246 CELE_F29C12.4 -0.16 0.13 0.26 

WBGene00015186 misc-1 -0.16 -0.32 -0.19 

WBGene00000869 cyc-1 -0.16 -0.22 -0.09 

WBGene00020679 ogdh-1 -0.16 -0.21 -0.08 

WBGene00007122 CELE_B0250.5 -0.15 -0.39 -0.27 

WBGene00018491 mdh-1 -0.15 -0.39 -0.27 

WBGene00007630 har-1 -0.14 -0.31 -0.20 

WBGene00044305 rad-8 -0.14 -0.26 -0.16 

WBGene00020181 T02H6.11 -0.13 -0.22 -0.12 

WBGene00004930 sod-1 -0.13 -0.19 -0.09 

WBGene00022170 Y71H2AM.5 -0.12 -0.23 -0.14 

WBGene00010809 M01F1.3 -0.11 0.40 0.48 

WBGene00017121 cyc-2.1 -0.11 -0.16 -0.08 

WBGene00010780 K11H3.3 -0.10 -0.16 -0.09 

WBGene00000230 atp-3 -0.09 -0.18 -0.12 

WBGene00000833 cts-1 -0.09 -0.30 -0.24 

WBGene00015814 C16A3.10 0.18 -0.22 -0.43 

WBGene00001794 gta-1 0.20 -0.12 -0.35 

WBGene00000787 cps-6 0.22 0.49 0.24 

WBGene00017659 F21C10.10 0.23 0.98 0.72 

WBGene00008980 tag-299 0.29 0.73 0.40 

WBGene00000114 alh-8 0.37 0.12 -0.28 

WBGene00004932 sod-3 0.42 1.13 0.69 

WBGene00004113 pqn-24 0.42 1.25 0.80 

WBGene00001149 bcat-1 0.43 -0.52 -0.98 

WBGene00001564 icl-1 0.45 0.36 -0.13 

WBGene00012608 Y38F1A.6 0.62 -0.49 -1.14 

WBGene00010957 ND6 -1.20 -0.21 - 

WBGene00010959 ND1 -0.97 -0.15 - 

WBGene00010961 ND2 -0.88 -0.20 - 

WBGene00010966 ND3 -0.82 -0.22 - 

WBGene00010960 ATP6 -0.75 -0.28 - 

WBGene00013433 Y66D12A.7 -0.74 -0.28 - 

WBGene00014172 clpp-1 -0.72 -0.22 - 

WBGene00022862 CELE_ZK1236.1 -0.58 -0.23 - 
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WormBase ID Gene W04D2.4 25°C/ 
control 25°C 

W04D2.4 25°C/ 
control 20°C 

control 25°C/ 
control 20°C 

WBGene00019007 F57B10.14 -0.53 -0.19 - 

WBGene00007859 mrps-31 -0.51 -0.19 - 

WBGene00011123 nuaf-3 -0.48 -0.30 - 

WBGene00002985 lig-1 -0.47 -0.32 - 

WBGene00010965 COX2 -0.46 -0.40 - 

WBGene00011247 mrpl-49 -0.46 0.48 - 

WBGene00021815 Y53G8AR.8 -0.41 -0.29 - 

WBGene00020366   -0.40 -0.20 - 

WBGene00020383 T09B4.9 -0.39 -0.28 - 

WBGene00009092 tomm-20 -0.37 -0.60 - 

WBGene00019076 mrpl-24 -0.37 -0.16 - 

WBGene00012556 mrps-10 -0.35 -0.34 - 

WBGene00004769 sel-12 -0.35 -0.25 - 

WBGene00008924 F17E5.2 -0.35 1.00 - 

WBGene00001740 gro-1 -0.35 -0.24 - 

WBGene00016391 C34B2.6 -0.35 -0.21 - 

WBGene00022470 mrpl-19 -0.34 -0.35 - 

WBGene00011897 scpl-4 -0.34 -0.11 - 

WBGene00044321 mrps-30 -0.33 -0.25 - 

WBGene00007444 CELE_C08F8.2 -0.33 -0.27 - 

WBGene00001093 drp-1 -0.33 -0.19 - 

WBGene00009559 mtx-1 -0.33 -0.72 - 

WBGene00010042 bcs-1 -0.32 -1.44 - 

WBGene00019884 R05D3.12 -0.32 -1.12 - 

WBGene00002010 hsp-6 -0.32 -1.70 - 

WBGene00010557 mspn-1 -0.32 -1.14 - 

WBGene00022045 mrpl-55 -0.31 0.47 - 

WBGene00013258 polg-1 -0.31 -0.20 - 

WBGene00010626 K07C5.3 -0.30 -0.48 - 

WBGene00020604 T20B12.7 -0.30 0.66 - 

WBGene00018961 mrps-16 -0.30 -0.50 - 

WBGene00013462 micu-1 -0.29 -0.53 - 

WBGene00018218 F40A3.3 -0.29 -0.18 - 

WBGene00007129 B0272.3 -0.28 -0.26 - 

WBGene00017319 mrps-9 -0.28 -0.29 - 
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WormBase ID Gene W04D2.4 25°C/ 
control 25°C 

W04D2.4 25°C/ 
control 20°C 

control 25°C/ 
control 20°C 

WBGene00010812 mrpl-35 -0.27 -0.21 - 

WBGene00001509 fzo-1 -0.27 -0.18 - 

WBGene00008452 mrps-5 -0.27 -0.23 - 

WBGene00002183 kat-1 -0.27 -0.19 - 

WBGene00019061 F58F12.1 -0.26 -0.33 - 

WBGene00017137 pink-1 -0.26 -0.43 - 

WBGene00001503 fum-1 -0.25 0.26 - 

WBGene00012094 T27E9.2 -0.25 -0.22 - 

WBGene00016412 mrps-26 -0.24 -0.09 - 

WBGene00015125 B0303.3 -0.24 0.43 - 

WBGene00000423 ced-9 -0.24 -0.53 - 

WBGene00000941 ddp-1 -0.23 -0.21 - 

WBGene00001813 haf-3 -0.23 -0.36 - 

WBGene00014227 ZK1128.1 -0.23 -0.08 - 

WBGene00001985 hop-1 -0.23 -0.82 - 

WBGene00015487 mrps-17 -0.22 -0.23 - 

WBGene00011527 cchl-1 -0.22 -0.18 - 

WBGene00022054 Y67D2.4 -0.21 -0.27 - 

WBGene00018967 F56D2.6 -0.21 -0.14 - 

WBGene00011662 T09F3.2 -0.21 -0.15 - 

WBGene00009740 F45H10.3 -0.20 -0.29 - 

WBGene00000933 dap-3 -0.20 -0.26 - 

WBGene00019544 miro-1 -0.20 -0.21 - 

WBGene00015248 mai-2 -0.19 -0.34 - 

WBGene00011740 mrpl-51 -0.19 -0.29 - 

WBGene00016249 mrpl-32 -0.18 0.26 - 

WBGene00014054 ZK669.4 -0.17 -0.15 - 

WBGene00000996 dif-1 -0.16 -0.20 - 

WBGene00011634 T09A5.5 -0.16 -0.23 - 

WBGene00017770 CELE_F25B4.7 -0.16 -0.55 - 

WBGene00011015 R04F11.2 -0.16 -0.29 - 

WBGene00012553 cco-2 -0.16 -0.16 - 

WBGene00011883 mrpl-50 -0.14 -0.38 - 

WBGene00016142 mrps-18C -0.14 -0.16 - 

WBGene00015133 mrpl-11 -0.13 -0.40 - 
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WormBase ID Gene W04D2.4 25°C/ 
control 25°C 

W04D2.4 25°C/ 
control 20°C 

control 25°C/ 
control 20°C 

WBGene00022719 pdhk-2 -0.13 -0.20 - 

WBGene00010052 CELE_F54D5.7 -0.12 -0.28 - 

WBGene00014202 mmcm-1 -0.11 -0.34 - 

WBGene00012713 Y39E4A.3 0.21 -0.33 - 

WBGene00012794 Y43E12A.2 0.32 -0.43 - 

WBGene00011089 R07B7.5 0.34 -0.25 - 

WBGene00003124 mai-1 0.40 -0.29 - 

WBGene00017640 F20D6.11 0.43 -0.16 - 

WBGene00011105 R07E3.4 0.65 -0.47 - 

WBGene00010035 F54C8.1 1.34 -0.23 - 

WBGene00010485 ant-1.3 -1.59 - -0.22 

WBGene00010962 COX3 -0.39 - 0.22 

WBGene00012204 mfn-1 -0.33 - 0.19 

WBGene00017044 mrpl-18 -0.31 - 0.36 

WBGene00009812 suca-1 -0.30 - 0.22 

WBGene00008164 CELE_C47G2.3 -0.28 - -0.21 

WBGene00022493 mrpl-45 -0.24 - 0.27 

WBGene00023487 mrps-24 -0.23 - 0.20 

WBGene00008147 C47E12.2 -0.22 - 0.19 

WBGene00000418 ced-4 -0.22 - 0.19 

WBGene00017777 F25B5.6 -0.21 - 0.12 

WBGene00019941 pgam-5 -0.20 - -0.17 

WBGene00022126 Y71F9B.2 -0.18 - 0.08 

WBGene00016740 C48B6.2 -0.18 - 0.16 

WBGene00009051 nduf-6 -0.17 - 0.09 

WBGene00012031 T25G3.4 -0.15 - 0.89 

WBGene00020169 mmaa-1 -0.12 - 0.15 

WBGene00001155 ech-6 0.14 - 0.13 

WBGene00022380 Y94H6A.8 0.15 - 0.14 

WBGene00018784 F54A3.5 0.19 - 0.17 

WBGene00004092 ppt-1 0.38 - -0.43 

WBGene00010958 ND4L -1.01 - - 

WBGene00000762 coq-2 -0.26 - - 

WBGene00008225 nuaf-1 -0.25 - - 

WBGene00000764 coq-4 -0.24 - - 
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WormBase ID Gene W04D2.4 25°C/ 
control 25°C 

W04D2.4 25°C/ 
control 20°C 

control 25°C/ 
control 20°C 

WBGene00015185 mrpl-41 -0.22 - - 

WBGene00013324 mrps-7 -0.22 - - 

WBGene00021677 pgs-1 -0.21 - - 

WBGene00022516 mtx-2 -0.20 - - 

WBGene00022169 Y71H2AM.4 -0.20 - - 

WBGene00007622 CELE_C16C10.1 -0.19 - - 

WBGene00010077 F55A11.4 -0.19 - - 

WBGene00016989 CD4.3 -0.16 - - 

WBGene00007113 B0035.15 -0.16 - - 

WBGene00010094 tsfm-1 -0.15 - - 

WBGene00013878 atfs-1 -0.14 - - 

WBGene00019326 K02F3.2 -0.13 - - 

WBGene00044325 tag-321 -0.11 - - 

WBGene00001662 gop-3 -0.10 - - 

WBGene00017864 pcca-1 -0.09 - - 

Table 6.1 RNA-seq based list of annotated mitochondria-related genes, with altered transcript 
levels upon W04D2.4 knockdown 
List of genes graphically represented in Figure3.6 B. The basis of the record are differentially 
expressed genes with mitochondrial function upon W04D2.4 25°C knockdown vs. control at 25°C 
were and p-value <0.01. The two other comparisons, W04D2.425°C/control20°C and 
control25°C/control20°C, regard only genes with changed expression in W04D2.4 
25°Cvs.control25°C comparison.  
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