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Chapter 1

Introduction

1.1 Motivation

Energy is an essential input for any economic activity and has been fundamental for
human and economic development. Technological innovation in the conversion and use
of energy is closely related to this development. The ability to convert ever larger quan-
tities of energy and consume these with increasing efficiency provided greater amounts
of power, heat, transport, and light and improved human societies’ standard of living
and economic prosperity (Fouquet, 2009). The progress from simple human power to
the use of draft animals, the water wheel, and the steam engine increased power avail-
able dramatically by about 600-fold. The steam engine, in particular, revolutionized
energy conversion and introduced the Industrial Age by making power plants geograph-
ically independent of the proximity to energy sources. Subsequent advances in energy
technology, such as electricity, more efficient steam engines, nuclear power, renewable
energy, energy distribution (such as electrical grid and pipelines), and improvements
in energy efficiency have led to ever more convenient, portable, versatile, and efficient
ways of energy conversion and use (Newell, 2011). This technological change can also
be observed in the improvements in energy intensity that have occurred in the world’s
industrialized countries: The amount of energy required to produce one unit of output
has been falling by approximately 1% per year over the last century. More recently,
similar improvements began to occur in many transition and some developing countries
(UNDP, 2000). This development allowed the world to produce ever more wealth per

unit of energy.

However, today’s ways of converting and consuming energy have substantial adverse ef-

fects on the environment. These include indoor and outdoor air pollution, hydrocarbon
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and trace metal pollution of soil and groundwater, oil pollution of the oceans, radioac-
tive waste, and emissions of carbon dioxide (COg2) and other anthropogenic greenhouse
gases (GHG) (Gallagher et al., 2006). One of the greatest threats to the global environ-
ment is climate change caused largely by the human-induced increase in anthropogenic
GHG emissions since the pre-industrial era. Climate change has already had observ-
able negative impacts on the global environment, such as rising sea levels, expansion of
deserts, and more frequent extreme weather events. Without significant reductions in
GHG emissions these impacts are predicted to become severe, pervasive, and irreversible.
How to provide the energy required to sustain and increase economic prosperity and,
at the same time, mitigate climate change is therefore the most serious environmental
policy challenge the world faces today. Averting dangerous climate change will require
to limit the increase in global mean temperature to no more than two degrees Celsius
above pre-industrial levels. Reaching this two degrees Celsius goal requires substantial
and sustained reduction efforts to stabilize the concentration of greenhouse gases in the
atmosphere. Reducing emissions from energy conversion and use is a key component to

achieve this mitigation goal (IPCC, 2014).

Energy technology innovation is a crucial factor to address this challenge. Controlling
and limiting climate change will require a major change in the global energy system with
a transition from existing energy technologies to new green (that is, low-GHG and GHG-
neutral) energy technologies (Nakicenovic and Nordhaus, 2011). These green energy
technologies can reduce GHG emissions from energy conversion and use by lowering the
carbon intensity of energy or the energy intensity of economic activity. Thereby, they
can reduce the long-term costs of meeting a GHG reduction target to societies (IPCC,
2014). Accelerating innovation in green energy technologies is therefore essential to
combat global warming. While the importance of green energy innovation is widely seen
and an extensive research effort has been made to analyze these innovations, it is still
not completely understood what determines and what are the economic consequences of

innovation in these technologies.

This thesis aims to improve the understanding of green energy innovation. In three
interrelated essays it applies empirical methods to analyze the innovation process in green
energy technologies focusing on two main aspects. First, it studies the determinants of
green energy innovation: on the one hand for a set of different green energy technologies,
and on the other hand specifically for clean coal technologies. Second, it examines the
link between innovation in green energy technologies and the economic performance of

the innovating firms.

Chapter 2 empirically investigates the effect of energy prices and technological knowl-

edge on innovation in green energy technologies using country-level European patent
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data. The research is motivated by the ambiguous evidence on the determinants of
green energy innovation, especially with respect to the determinants of innovation in
specific technologies. It aims to deepen the understanding of these determinants in or-
der to answer the question, whether policies should foster green energy innovation by
stimulating the demand for green energy technologies via increasing energy prices, or by

enhancing the technological capability via improving the knowledge stock of an economy.

Chapter 3 empirically examines the determinants of clean coal innovation using firm-level
worldwide patent data. Motivated by the essential role coal plays in global electricity
generation and the large environmental footprint of this sector, the research seeks to
shed light on the factors enhancing innovation in technologies that allow coal use in
electricity generation while mitigating its impact on the environment. Understanding
these factors can help policymakers to design the appropriate energy and environmental

policies for encouraging more innovation in clean coal technologies.

Chapter 4 empirically analyzes and compares the impact of innovation in green and
non-green energy technologies on the economic performance of firms using firm-level
Furopean patent data. The research is motivated by the insufficient evidence on the
economic effects of green energy innovation, especially regarding the relationship between
innovating in green energy technologies and the economic performance of the innovating
firms. It aims to answer the question, whether firms gain (forgo) economic opportunities

by innovating (not innovating) in green energy technologies.

1.2 Thesis Outline

After having discussed the motivation, the following section outlines the overall structure
of the thesis. The main part of the thesis consists of three interrelated empirical essays
dealing with two main topics of green energy innovation: its determinants and its impact
on firm performance. Each of the three essays has a dedicated chapter in this thesis and
can be read independently. The subsequent paragraphs briefly outline the research
questions, the data used, the econometric methodology employed, and the main results

of each of the three essays.

1.2.1 Energy Prices, Technological Knowledge, and Innovation in Green
Energy Technologies: a Dynamic Panel Analysis of European
Patent Data

The essay in Chapter 2, ”Energy Prices, Technological Knowledge, and Innovation in

Green Energy Technologies: a Dynamic Panel Analysis of European Patent Data”,
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empirically investigates the effect of energy prices and technological knowledge on inno-
vation in green energy technologies. It is forthcoming in the Journal CESifo Economic
Studies (Kruse and Wetzel, 2015).! The essay was written in co-authorship with Heike

Wetzel. Contributions to all aspects of the essay were made in equal parts.

In the essay, we consider both demand-pull effects, which induce innovative activity from
the demand side by increasing the expected value of innovations, and technology-push
effects, which drive innovative activity from the supply side by extending the technolog-
ical capability of an economy. We aim to answer the question, whether demand-pull or
technology-push factors are the main drivers of green energy innovation. Our analysis
is conducted using patent data from the European Patent Office (EPO) on a panel of
26 Organisation for Economic Co-operation and Development (OECD) countries over a
32-year period from 1978 to 2009. We investigate the determinants of innovation sepa-
rately for 11 different green energy technologies. Utilizing a dynamic count data model
for panel data based on the pre-sample mean scaling estimator, we account for path de-
pendencies in knowledge generation, endogeneity issues, and unobserved heterogeneity.
The results indicate that the existing stock of knowledge is the main determinant of
innovation in green energy technologies. This confirms the technology-push hypothesis
stating that innovation is induced by advances in the technological capability of an econ-
omy. Furthermore, the results reveal significant differences across technologies in that
energy prices have a positive impact on innovation for some but not all green energy
technologies. This finding confirms the demand-pull hypothesis for some technologies
suggesting energy prices as a major driver of green energy innovation and supports our
approach of a technology-specific analysis. Moreover, we uncover significant differences
comparing the period before and after the Kyoto protocol agreement in 1997. More pre-
cisely, the results indicate that the effect of energy prices and technological knowledge on

green energy innovation becomes more pronounced after the Kyoto protocol agreement.

1.2.2 Innovation in Clean Coal Technologies: Empirical Evidence from
Firm-Level Patent Data

Chapter 3, ”Innovation in Clean Coal Technologies: Empirical Evidence from Firm-
Level Patent Data”, empirically examines the determinants of clean coal innovation.
This essay has been published in the Working Paper Series of the Institute of Energy
Economics at the University of Cologne (Kruse and Wetzel, 2016). It is a joint work
with Heike Wetzel, who co-authored the essay and equally contributed to all parts.

! This article is copyrighted by Oxford Journals and reprinted by permission. The presented article
first appeared in CESifo Economic Studies, online first October 2015, doi: 10.1093/cesifo/ifv021.
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In the essay, we analyze supply-side and demand-side factors expected to affect clean
coal innovation. The factors analyzed are: scientific and technological capacity, overall
propensity to patent, public R&D, coal prices, market size as well as environmental
policies and regulations aiming at the reduction of emissions from coal-fired electricity
generation. Our analysis builds on a panel of 3,648 firms that filed 7,894 clean coal
patents across 55 national and international patent offices over a 32-year period from
1978 to 2009. The study inquires into the determinants of clean coal innovation at the
firm-level using almost the entire population of worldwide clean coal patents filed in
the considered period. We utilize a negative binomial count panel data model based on
the pre-sample mean scaling estimator that accounts for endogeneity issues, unobserved
heterogeneity, and overdispersion in the count variable. Our results indicate that energy
prices have a negative impact on innovation in after pollution control technologies, but
do not affect innovation in efficiency improving combustion technologies. These findings
suggest that increasing energy prices leads to less innovation in technologies that make
the conversion of coal into electricity even more expensive. Moreover, we find evidence
of a strong relationship between environmental regulation of emissions from coal-fired
power plants and clean coal innovation. While regulation of COs emissions has a posi-
tive impact on clean coal patenting in general, nitrogen oxide (NOx) (and sulfur dioxide
(SO3)) regulation is found to positively affect after pollution control patenting only. A
firm’s history in clean coal patenting and its total patent filings are found to positively
affect clean coal innovation. These results indicate that firms build on existing knowl-
edge and innovate more in clean coal technologies the higher their overall propensity to

innovate.

1.2.3 Innovation in Green Energy Technologies and the Economic Per-

formance of Firms

The essay presented in Chapter 4, ”Innovation in Green Energy Technologies and the
Economic Performance of Firms”, empirically analyzes and compares the impact of
innovation in green and non-green energy technologies on the economic performance of
firms. It was written solely by the author of this thesis and has been published in the
Working Paper Series of the Institute of Energy Economics at the University of Cologne
(Kruse, 2016).

In the essay, I seek to understand the economic effects of green energy innovation and
answer the question, whether firms gain (forgo) economic opportunities by innovating
(not innovating) in green energy technologies. My analysis is based on a panel of 8,619

patenting firms including 968 green energy patenters from 22 European countries over
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an estimation period of 8 years (2003-2010) and a patent count period of 32 years (1977-
2010). To construct the panel, firm accounts data from the AMADEUS database is
combined with data on firms’ patent applications from the OECD REGPAT database.
I measure economic firm performance in terms of productivity and use a panel data
model based on an extended Cobb-Douglas production function in which productivity is
a function of capital, labor, and innovative output. My results show that green energy
innovation has a statistically significant negative impact on economic firm performance.
In contrast, non-green energy innovation is found to have a statistically significant posi-
tive impact on economic firm performance. This suggests that private economic returns
in terms of productivity are lower for green energy than for non-green energy innovation.
I also find evidence that the negative effect on firm performance is more pronounced for
renewable energy sources than for energy efficiency technologies. Moreover, my findings
indicate that the negative relationship between green energy innovation and performance
is stronger for larger firms. Furthermore, the negative impact of green energy innovation
on performance is found to be stronger with a larger time lag between both. Finally,
the results show that the negative impact of new green energy patents on performance

is less pronounced when firms can build on an existing stock of green energy knowledge.

1.3 Literature Review and Contribution

The final section of the introduction reviews the related empirical literature on the deter-
minants and performance effects of innovation in energy and environmental technologies

and discusses the fit and contribution of the three thesis essays to this literature.

1.3.1 Determinants of Innovation in Energy and Environmental Tech-

nologies - Empirical Evidence

There is a large and growing empirical literature on the factors that affect innovation
in energy and environmental technologies. The following paragraphs survey the key

empirical studies in this field. Table 1.1 provides a summary of these studies.?

The first contributions to this literature investigate the effect of environmental regu-
lation on energy and environmental innovation. Lanjouw and Mody (1996) examine
the impact of environmental regulation stringency proxied by pollution abatement con-
trol expenditures (PACE) on innovation in environmental technologies. Innovation is
measured by patent data from the United States (US), Japan, Germany, and 14 low-

and middle-income countries from 1972 to 1980. On a descriptive account they find

2 In addition to the surveyed literature this section draws on Popp et al. (2010).
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strong evidence of a positive relationship between PACE and environmental innovation.
Jaffe and Palmer (1997) also investigate the correlation between PACE and innovation.
Their investigation is based on R&D expenditures and US patent filings across a panel
of US manufacturing industries from 1974 to 1991. However, while Lanjouw and Mody
(1996) focus on environmental innovation, Jaffe and Palmer (1997) look at overall (that
is, environmental and non-environmental) innovation. They identify a positive impact
of PACE on R&D spending, but find no effect on patenting. Brunneimer and Cohen
(2003) study how environmental innovation by US manufacturing industries is affected
by changes in PACE. They measure innovation by US patent filings during 1983 and
1992. In contrast to the descriptive examination in Lanjouw and Mody (1996) and Jaffe
and Palmer (1997), they estimate the relationship between abatement pressures and
environmental patenting using multivariate regression analysis. Their results indicate

that PACE has just a small impact on environmental patenting.

Popp (2006) tests the impact of environmental regulation on innovation more directly.
He investigates the effect of SO5 and NOx regulations on air pollution control technolo-
gies. Using patents filed in the US, Japan, and Germany during the period 1970 to 2000,
he finds that patenting in pollution control significantly increased in response to higher
environmental regulatory pressure. Johnstone et al. (2012) also analyze the effect of
environmental regulation stringency on innovation in environmental technologies. Their
study is based on worldwide patent filings by 77 countries between 2001 and 2007. Data
from a World Economic Forum survey of top management business executives is used to
proxy regulation stringency. They find that more stringent environmental regulations

do lead to more environmental patents.

Popp (2002) contributes to the literature by considering not only the effect of demand-
side factors, but also the effect of supply-side factors on technological change. He uses
US patent data from 1970 to 1994 to estimate the impact of energy prices and scientific
knowledge on innovation in energy and energy-efficiency technologies. Estimating a
distributed-lag pooled regression model, he finds a significant positive impact of energy
prices on innovation. He also shows that the existing stock of knowledge has strong
positive effects on innovation. Popp (2002) concludes that both the supply of ideas and

the demand for ideas shape the direction of energy and energy-efficiency innovation.

A similar analysis was carried out by Verdolini and Galeotti (2011). They study the
impact of energy prices and scientific knowledge on innovation in energy technologies
using panel data on US patent applications by 17 countries from 1975 to 2000. Their
baseline results confirm the positive effects of both factors on innovation. Although
the authors do not differentiate by individual technologies, separate estimations reveal

differences between energy-supply and energy-demand technologies. While the effect
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of energy prices stays significant for supply technologies, it becomes insignificant for

demand technologies.

This result is a first indicator that the relative importance of demand-pull and technology-
push factors is specific to individual technologies. Johnstone et al. (2010) add to the
literature by further investigating the technology-specific drivers of energy and environ-
mental innovation. They use filings at the EPO from 25 OECD countries during 1978
to 2003 to investigate the determinants of technological change in five renewable energy
technologies. The analysis shows that energy prices and renewable energy policies have
a significant impact on patenting for some types of technologies. It is also shown that
government expenditures on renewable energy R&D and growing electricity consump-
tion are likely to increase renewable energy patenting. However, their study focuses on
the policies and does not explicitly account for technology-push effects. Nesta et al.
(2014) also examine the effect of renewable energy policies on innovation. They extend
Johnstone et al. (2010)’s analysis by additionally looking at the interplay between these
policies and competition, but do not differentiate by technologies. Based on world-
wide renewable energy patent filings from 27 OECD countries over the period 1976 to
2007, they find that renewable energy policies induce innovation, but that they are more

effective in countries with liberalized energy markets.

A number of papers investigate the determinants of innovation for specific energy-
efficiency and renewable energy technologies. Crabb and Johnson (2010) study if higher
fuel prices and stricter Corporate Average Fuel Economy (CAFE) standards lead to in-
creased innovation in energy-efficient automobile technologies. Measuring innovation by
US patent filings from 1980 to 1990 and using a dynamic model of patenting they find a
positive impact of fuel prices but no impact of CAFE regulations on innovation. Peters
et al. (2012) focus on the innovation effects of domestic and foreign technology-push
and demand-pull policies for solar photovoltaic technologies. They analyze a panel of 15
OECD countries over the period 1978 to 2005 using worldwide patent filings. First, they
find that domestic technology-push policies foster domestic but not foreign innovation.
Second, they show that both domestic and foreign demand-pull policies induce domestic
innovation. In a very similar setting Dechezleprétre and Glachant (2014) analyze the
effect of domestic and foreign demand-pull policies on innovation in wind power gener-
ation technologies. Worldwide wind power patent filings from 28 OECD countries are
used as an indicator for innovation. In line with Peters et al. (2012), they find evidence
that wind power technology innovation is positively affected by policies both from home
and abroad. However, they find that the marginal effect of domestic policies is 12 times
larger. Lindman and Séderholm (2015) also analyze wind energy technologies but aim
at identifying the innovation impacts of different domestic policies. Using PCT patent

applications from four western European countries, they show that both public R&D
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and feed-in tariffs have a positive impact on wind energy innovation. In addition, they
find that the impact of feed-in tariffs is more profound for mature technologies and
that public R&D induces more innovation in combination with feed-in tariffs. From the
latter result they conclude that innovation in wind energy technologies requires both
R&D and learning-by-doing. Finally, Costantini et al. (2015) look at the differentiated
impact of demand-pull and technology-push policies on biofuels innovation. Conduct-
ing an empirical analysis on EPO patents in biofuels technologies filed by 35 countries
(OECD and some non-OECD), they find positive effects of technological capabilities and

environmental regulation on innovation.

Our work (Kruse and Wetzel (2015); Chapter 2 of this thesis) analyzes the impact of
energy prices and technological knowledge on green energy innovation based on EPO
patent data from 26 OECD countries over the 1978 to 2009 period. It contributes to
the literature discussed above in three respects: First, by investigating the impacts sep-
arately for 11 different green energy technologies, second, by using European patent
data to assess the validity of the conclusions reached on US patent data, and third, by
applying state-of-the-art count data techniques. Our findings show a positive impact of
energy prices on innovation for some but not all technologies. This is, apart from differ-
ences for a small part of technologies, in line with the findings of Johnstone et al. (2010)
and Verdolini and Galeotti (2011). Technological knowledge is found to have a positive
effect on innovation for all technologies, which is also consistent with previous research
by Popp (2002) and Verdolini and Galeotti (2011). Moreover, the results indicate that

both effects are more pronounced after the Kyoto protocol agreement.

More recent studies investigate the determinants of energy and environmental innovation
directly at the firm-level. Ayari et al. (2012), using data on EPO renewable energy patent
counts for 154 firms from 19 European countries over the 1987 to 2007 period, find that
firms’ own R&D expenditures have a positive impact on renewable energy patenting,
but that R&D expenses from competitors or other industries have no effect. They also
find that increasing oil prices and primary energy consumption are likely to induce
renewable energy innovation. Calel and Dechezleprétre (2014) investigate the effect of
the European Union Emissions Trading system (EU ETS) on innovation in low-carbon
technologies. Based on EPO patent filings by 5,568 firms from 18 countries, they find
that the EU ETS has increased low-carbon innovation among regulated firms, but has

not affected patenting for non-regulated firms.

Barbieri (2015) and Aghion et al. (2016) focus on drivers of technological change in the
automotive industry. Barbieri (2015) uses patent data on green automotive technologies

filed worldwide by 355 firms between 1999 and 2010 to analyze the impact of European
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environmental policies on innovation. The results indicate that post-tax fuel prices, en-
vironmental vehicle taxes, COs standards, and European emission standards positively
affect green automotive patenting. Using a panel of 3,423 automotive industry inno-
vators, Aghion et al. (2016) analyze which factors direct technical change from dirty
(internal combustion engine) to clean (for example, electric, hybrid, and hydrogen) car
technologies. They show that increasing tax-inclusive fuel prices leads to more patenting
in clean and less patenting in dirty technologies. Analyzing the effect of knowledge they
find path dependence for both technologies caused by firm’s own patenting history and

spillovers between firms.

The study by Noailly and Smeets (2015) focuses on directing technical change from
fossil-fuel (FF) to renewable energy (REN) technologies in the electricity generation
sector. They analyze worldwide FF and REN patents filed by 5,471 firms over the 1978
to 2006 period. Distinguishing between specialized firms, which innovate in either FF or
REN technologies, and mixed firms, which innovate in both technologies, they find that
FF prices positively affect innovation for both technologies. FF and REN knowledge is
found to induce FF and REN innovation, respectively. FF market size only has a positive
effect on FF patenting in mixed firms, while REN market size positively impacts REN

innovation in specialized firms only.

Our study (Kruse and Wetzel (2016); Chapter 3 of this thesis) investigates the deter-
minants of clean coal innovation using worldwide patent filings from 3,648 firms over
the 1978 to 2009 period. It contributes to the existing literature in four respects: First,
by focusing specifically on innovation in clean coal technologies, second, by inquiring
into the determinants of clean coal innovation directly at the innovator-level, third, by
conducting an analysis based on almost the entire population of clean coal patents,
and fourth, by providing quantitative evidence on the global pattern of clean coal in-
novation. Our results show a negative impact of energy prices on innovation in after
pollution control technologies, but no impact on innovation in efficiency increasing com-
bustion technologies. In line with Popp (2006), we find a positive effect of NOx /SOq
regulation on after pollution control innovation. Moreover, we identify positive impacts

of CO4 regulation and technological knowledge on clean coal innovation in general.
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1.3.2 Innovation in Energy and Environmental Technologies and the

Economic Performance of Firms - Empirical Evidence

The empirical literature on the relationship between innovative activity and economic
performance at the firm-level is large and diverse. Table 1.2 summarizes the key empirical
studies in this field. It gives an overview of the indicators used to proxy innovation and
performance, the samples examined, and the central results. The majority of these
studies identifies a positive impact of innovative activity on firm performance. However,
since these studies analyze the impact of general innovation, the findings cannot be

simply transferred to energy and environmental innovation.

Very few empirical studies have specifically investigated the direct link between innova-
tive activity in energy and environmental technologies and economic firm performance.
Since the focus of this section is on the relationship between energy and environmen-
tal innovation and firm performance, I will confine myself at this point to referring to
the studies exploring specifically this relationship. These studies are reviewed in the

following paragraphs and are also summarized in Table 1.2.

To my knowledge, the study by Ayari et al. (2012) is the first attempt to investigate
the direct association between innovation in energy and environmental technologies and
firm performance. Ayari et al. (2012) analyze the impact of renewable energy innovation
on performance based on a panel of 154 firms from 14 European countries over the
1987 to 2007 period. They use EPO renewable energy patent counts as a proxy for
innovation and return on assets and stock market return as alternative measures of
firm performance. They find evidence that renewable energy patenting has a significant
positive impact on both measures of performance. However, since the analysis is based

on a relatively small sample, the results should be read with some caution.

Marin (2014) analyzes the effect of environmental and non-environmental innovation on
firm performance based on a larger but shorter panel of 5,905 Italian firms over the period
2000 to 2007. Innovation is measured by patents filed at the EPO and firm performance
is proxied by value added. He finds that in most cases environmental patents have no
significant impact on firm performance. For non-environmental patents, on the other
hand, the effect on performance is found to be statistically significant positive. The
return of environmental innovation is therefore substantially lower than that of non-
environmental innovation. Since firms have innovated in environmental technologies
and since resources that can be allocated to R&D activities are limited, Marin (2014)
concludes that this result evidences a crowding out of environmental innovation at the

expense of non-environmental innovation.
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In a very similar study, Marin and Lotti (2016) assess the effect of environmental and
non-environmental innovation on firm performance for a once more larger and longer
panel of 11,938 Italian firms from 1995 to 2006. They use EPO and PCT-WIPO patent
counts as alternative measures of innovation and value added as a proxy for performance.
As in Marin (2014), they find evidence of a generally lower return for environmental
compared to non-environmental innovation. This result leads them again to the con-
clusion, that environmental innovation crowds out more profitable non-environmental

innovation.

Worter et al. (2015) examine the link between environmental innovation and perfor-
mance based on industry-level data. Their analysis is conducted on a panel of 22 man-
ufacturing industries from 12 OECD countries over the period 1980 to 2009. They use
accumulated patent counts (that is, patent stocks) from 12 different countries to mea-
sure the environmental innovation activity of the industries. Performance is, as in Marin
(2014) and Marin and Lotti (2016), measured in terms of value added. The results show
that the general relationship between environmental patenting and industry performance
is U-shaped. But since the turning point is very high, this result is only relevant for a
few industries that already have a very large environmental knowledge stock. For most
industries, environmental patenting is negatively related to performance. From this
finding they conclude, that environmental innovation will not proceed without further

policy incentives.

Finally, my work (Kruse (2016); Chapter 4 of this thesis) analyzes the contribution of
green and non-green energy innovation to economic firm performance using a panel of
8,619 firms from 22 European countries over the 2003 to 2010 period. Sales are used as a
proxy for firm performance and EPO patent stocks as an indicator for innovative activity.
My study contributes to the literature presented in this section in three respects: First,
by providing additional evidence on the return of energy and environmental innovation,
second, by comparing the return to the one of more general innovation, and third, by
analyzing a comparatively large and broad sample of European firms. I find evidence
that green energy patenting is negatively related to firm performance, while non-green
energy patenting is positively related. The finding suggests that returns are lower for
green energy than for non-green energy innovation and is in line with previous results
found by Marin (2014), Marin and Lotti (2016), and Worter et al. (2015). I conclude,
that green energy innovation crowds out more rewarding non-green energy innovation,
but that this crowding out can be welfare increasing if green energy technologies have

higher social returns than non-green energy technologies.
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Chapter 2

Energy Prices, Technological
Knowledge, and Innovation in
Green Energy Technologies: a
Dynamic Panel Analysis of

European Patent Data

2.1 Introduction

In a growing field of literature, economists have empirically investigated which economic
and political factors influence the rate and direction of innovation in green energy tech-
nologies. However, researchers still lack evidence on the determinants of green energy
innovation, especially when it comes to the determinants of innovation in specific tech-
nologies. Understanding these determinants is crucial in order to design the appropriate
policies to foster green energy innovation. Should these policies stimulate the demand
for green energy technologies by increasing energy prices, or should they enhance tech-

nological capability by improving the knowledge base of an economy?

This article empirically investigates how green energy innovation in different technolo-
gies has developed in response to changes in energy prices and technological knowledge.
For the purpose of this article we define green energy technologies as energy efficiency,
renewable energy, fuel cell, carbon capture and storage (CCS), and energy storage tech-
nologies. We consider both demand-pull effects, which induce innovative activity from

the demand side by increasing the expected value of innovations, and technology-push

17



Chapter 2. Energy Prices, Technological Knowledge, and Innovation in Green Energy
Technologies: a Dynamic Panel Analysis of European Patent Data 18

effects, which drive innovative activity from the supply side by extending the techno-
logical capability of an economy. We aim to shed light on the ongoing debate as to
whether demand-pull or technology-push factors are the main drivers of green energy
innovation. We hypothesize that both increasing demand, due to higher energy prices,

and increasing technological capability induce green energy innovation.

To test these hypotheses, we analyze a panel on green energy innovation, drawing from
data on patent applications at the European Patent Office (EPO). Patent counts rep-
resent an output-oriented measure of innovative activity. Compared to other measures,
such as research and development (R&D) expenditures, patents are closely linked to
invention, are easy to collect, and are available for a long time period at the coun-
try and technology level. The limitations are that not all inventions are patented or
patentable, patents differ in their economic value, and the propensity to patent varies
across technologies and countries. Some of these limitations can be addressed by count-
ing high-value multinational patents and controlling for technology- and country-specific
effects. All together, despite some problems associated with patent counts, the findings

in the literature indicate that patents are a fairly good proxy for innovative activities.?

In line with this, we count patent applications in green energy technologies following
a structure defined by the International Energy Agency (IEA) and using International
Patent Classification (IPC) codes from the green inventory developed at the World Intel-
lectual Property Organization. Our data set covers 11 distinct green energy technologies
for 26 Organization for Economic Co-operation and Development (OECD) countries,

spanning over a 32-year period from 1978 to 2009.

This article is related to the empirical body of literature on the determinants of green
energy innovation. In particular, we build on the pioneering work of Popp (2002),
who uses US patent data from 1970 to 1994 to estimate the impact of energy prices
and quality-weighted knowledge on innovation in environmentally friendly technologies.
Estimating a pooled regression model for all technologies, Popp finds that both factors

have a significant positive impact on innovation.

More recently, a similar analysis was carried out by Verdolini and Galeotti (2011). They
study the impact of energy prices and knowledge stocks on innovation in energy tech-
nologies using panel data on United States Patent and Trademark Office patent appli-
cations for 17 countries from 1975 to 2000. Their baseline results confirm the positive
effects of both factors on innovation. Although the authors do not differentiate by indi-

vidual technologies, separate estimations reveal differences between energy-supply and

3 For a more detailed discussion on the advantages and disadvantages of using patents as a proxy for
innovation see, for example, Griliches (1990), Dernis et al. (2002), and OECD (2009).
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energy-demand technologies. While the effect of energy prices stays significant for supply

technologies, it becomes insignificant for demand technologies.

This result is a first indicator that the relative importance of demand-pull and
technology-push factors is specific to individual technologies. However, up to now, re-
liable and detailed technology-specific empirical evidence is still missing. One notable
exception is Johnstone et al. (2010), who use European patent data from 1978 to 2003 to
investigate the determinants of technological change in five renewable energy technolo-
gies. They find important differences across technologies. However, their study focuses
on policy instruments and does not explicitly account for technology-push effects. Our
study seeks to fill this void in previous research by accounting for these technology-push

effects and by additionally covering a broader base of technologies.

Our work contributes to the existing literature in three respects. First, we investigate the
determinants of innovation separately for 11 different green energy technologies. This
may help scholars and policy makers understand the divergent effects of energy prices
and technological knowledge on green energy innovation across technologies. Second, our
analysis uses European patent data to assess the validity of the conclusions reached using
US patent data. Third, we apply state-of-the-art count data techniques to control for
unobserved heterogeneity, account for the dynamic character of knowledge generation,

and address endogeneity issues.

The remainder of the article is organized as follows. Section 2.2 provides a brief outline
of the baseline theory guiding our empirical analysis. Section 2.3 presents the data.
Section 2.4 describes the econometric methodology employed. Section 2.5 presents and

discusses the results. Section 2.6 concludes.

2.2 Theoretical Background

For green energy technologies, the process of technological change is characterized by two
key market failures. First, the harmful consequences of energy conversion and energy
use on the environment constitute a negative externality. In the absence of appropriate
price signals, there is no economic incentive to reduce these negative consequences.
Since there is no demand for reduction, the demand for reduction technologies will also
be low. Consequently, there is insufficient private incentive to invest in R&D for such
technologies. Even if this negative externality was internalized via, for example, a tax
or a cap-and-trade system, a second market failure persists: the value accruing from
private investments in R&D tends to spill over to other technology producers. These

spillovers constitute a positive externality. Since the private investor incurs the full costs
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of its efforts but cannot capture the full value, there is insufficient private incentive to
invest in R&D. This second market failure applies to private R&D activity in general
and is not specific to green energy R&D. However, it has been shown that spillovers
are larger for green than for the average of technologies (Dechezleprétre et al., 2013).
As a result, the two market failures together lead to a double underprovision of green
energy technologies by market forces. This double underprovision can be addressed
by a combination of environmental policies (addressing the negative externality) and
innovation policies (addressing the positive externality) (see, for example, Jaffe et al.,
2005, Newell, 2010).

The underlying concept is policy-induced innovation. This concept is the theoretical
basis for the demand-pull and technology-push effects on innovation activities. First
proposed by Hicks (1932), it originally states that changes in relative factor prices in-
duce innovation, which reduces the need for the factor which has become relatively more
expensive. More generally, it posits that both changes in demand and changes in tech-
nological capability determine the rate and direction of innovation. Changes in demand
include shifts on the macro level that affect the profitability of innovative activity at
a given level of technological capability. Analogously, changes in technological capa-
bility include scientific and technological advancements that affect the profitability of
innovative activity at a given level of demand (Griliches, 1990, Verdolini and Galeotti,
2011).

Following Verdolini and Galeotti (2011), the relationship between demand, technological

capability, and innovation can be formalized as
I, = f(Dy, TCY), (2.1)

where I denotes innovative activity, Dy denotes demand, and T'C; denotes technological
capability. A standard proxy for innovative activity is the number of patent applica-
tions, which measures the invention of new or the improvement of already-existing green
energy technologies. This does not include the mere activation of existing green energy

technologies.

Demand can be proxied by expected energy prices py, which signal the expected general
scarcity of energy in an economy. Increasing energy prices increase the willingness to
pay for R&D in technologies that either convert energy at a lower average cost or use
energy more efficiently. More concretely, a policy-induced increase in the energy price
triggers the generation of new clean or energy-saving technology patents because the

value of a given patent is higher than in the scenario without the policy-induced change.
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Technological capability can be proxied by technological knowledge, a concept which is
typically measured by innovation activities undertaken in the past. Innovation activities
in the past are expected to induce innovation activities today or, as expressed by Baumol
(2002), ‘innovation breeds innovation’. Due to the cumulative nature of research, earlier
innovations facilitate later ones, as these can build on existing technological knowledge.
The positive effect of earlier innovations consists of making later innovations possible, re-
ducing costs, or accelerating development and, as such, creating private benefits for later
innovators (Scotchmer, 1991). Acemoglu et al. (2012) show that this path dependence
exists in green technological change. Firms in economies with a history of innovation in
green technologies in the past are more likely to innovate in green technologies in the
future. Using the end-of-period stock of past patents, K;_1, as a measure for innovation

activities in the past, Equation 2.1 becomes

Iy = g(pf, K1), (2.2)

where both factors are expected to have a positive impact on innovation activity.

Following these expectations, governments can foster green energy innovation in two
ways: implement policies that increase energy prices and thus increase the private pay-
off to successful innovation, that is demand-pull, and implement policies that increase
the stock of knowledge and thus decrease the private cost of producing innovation, that is
technology-push. Examples of policies that increase energy prices are emission taxes and
emission trading systems. Examples of policies that increase the knowledge stock are
government support for the private generation and patenting of scientific and technolog-
ical knowledge, the provision of high quality education and training systems, promotion
of business networks and technology transfer as well as government-sponsored R&D and
tax incentives to invest in private R&D. Researchers have come to a consensus that in
order to stimulate innovation in green energy technologies, both types of instruments

are necessary (Nemet, 2009).

2.3 Data

Our analysis is conducted using patent data from the OECD REGPAT database (OECD,
2013). The database combines information on patent activities from two complementary
sources: the EPO’s Worldwide Patent Statistical Database (PATSTAT) and the OECD
patent database. It contains patent applications filed at the EPO based on the priority
date, that is, the first filing date of the invention worldwide. Several studies have
shown that this date is strongly related to R&D activities and is closest to the date of
discovery of an invention (see, for example, Griliches, 1990, OECD, 2009). Furthermore,
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in contrast to patent applications filed at national institutions, multinational patent
applications such as those filed at the EPO often constitute innovations of high value
that are expected to be commercially profitable and thus justify the relatively high
application costs (Johnstone et al., 2010). Hence, utilizing EPO patent applications

ensures that applications for low-value inventions are excluded from our analysis.

All patents are classified according to the IPC system, which assigns each patent to a
specific area of technology (WIPO, 2013a). In particular, the ‘TPC Green Inventory’
provides the IPC codes for patents relating to so-called Environmentally Sound Tech-
nologies (WIPO, 2013b). Combining the IPC codes with the energy technology structure
developed at the IEA (IEA, 2011), we count the technology-specific annual green en-
ergy patent applications at the EPO between 1978 and 2009 on the country level. The
patent applications are assigned by country of origin (based on the country of the in-
ventor) using fractional counts. That is, each patent application is counted as a fraction

for the respective country, depending on the inventor’s share in the patent.

As a result of the availability of appropriate IPC codes and missing values for some of
the utilized variables, our analysis covers 11 green energy technologies and 26 OECD
countries. The technologies are: energy efficiency in residential and commercial build-
ings, appliances, and equipment (EEBAE), energy efficiency in transport (EET), other
energy efficiency (EEO),? solar energy, wind energy, ocean energy, biofuels, geothermal

energy, fuel cells, CCS, and energy storage.

Table 2.1 provides an overview of the development of the total number of EPO patent
applications in these technologies for the 26 countries. As shown, in the whole sample
period, the highest number of green energy patent applications is observed for the USA,
followed by Japan and Germany. The lowest number of green energy patent applica-
tions belongs to Slovakia. Furthermore, all countries significantly increase their patent
activities in green energy technologies over time. Across all countries, we observe an
increase in green energy patenting of more than 130% from the 1978-1984 period to
the 2005-2009 period. In total, our database contains more than 175,000 green energy

patent applications.

As patent activities in green energy technologies may be affected by a country’s overall
propensity to patent innovations, we include a control variable covering the country-
specific total number of annual EPO patent applications. In doing so, we control for

variations in the propensity to patent both across countries and across time. Figure 2.1

4 Patents with multiple IPC codes belonging to multiple green energy technologies are counted for
each of these technologies. The total number of green energy patents corresponds to the sum of patents
from all green energy technologies.

® Following the IEA energy technology structure, the other energy efficiency group includes waste
heat recovery and utilization, heat pumps, and measurement of electricity consumption.
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Table 2.1: Number of green energy EPO patent applications by country and time

period.
Country  1978-1984  1985-1989  1990-1994  1995-1999  2000-2004  2005-2009 Total
AT 213 226 316 328 543 752 2,379
AU 157 173 204 340 487 413 1,774
BE 171 148 202 378 442 422 1,763
CA 170 259 266 671 966 993 3,325
CH 654 609 563 766 780 896 4,269
CZ 1 1 5 11 32 70 120
DE 4,544 3,829 3,555 5,303 7,421 8,394 33,046
DK 69 130 238 448 546 939 2,371
ES 30 32 91 170 278 651 1,252
FI 45 92 185 224 274 348 1,168
FR 1,630 1,619 1,512 1,900 2,101 2,670 11,433
GB 1,323 1,260 1,046 1,592 1,788 1,572 8,581
GR 5 9 26 23 26 51 140
HU 64 40 27 32 27 42 232
1E 7 14 6 36 60 121 244
1T 341 515 471 612 1,080 1,364 4,383
JP 1,647 2,628 3,195 5,934 10,043 10,082 33,528
LU 10 3 7 18 15 32 84
NL 615 634 656 1,008 1,439 1,542 5,894
NO 35 45 68 130 206 327 810
NZ 9 18 20 48 72 68 236
PT 1 7 7 9 16 49 88
SE 415 255 373 481 505 633 2,663
SK 0 0 1 8 19 18 45
TR 2 2 1 5 14 39 63
US 5,849 6,628 7,362 12,324 13,341 9,824 59,328
Total 18,004 19,177 20,405 32,798 42,521 42,314 175,220

Note: The country codes represent Austria (AT), Australia (AU), Belgium (BE), Canada (CA),
Switzerland (CH), Czech Republic (CZ), Germany (DE), Denmark (DK), Spain (ES), Finland (FI),
France (FR), United Kingdom (GB), Greece (GR), Hungary (HU), Ireland (IE), Italy (IT), Japan (JP),
Luxembourg (LU), Netherlands (NL), Norway (NO), New Zealand (NZ), Portugal (PT), Sweden (SE),
Slovakia (SK), Turkey (TR), and United States (US).

shows the annual trends in green energy and total patenting for the six leading (in terms
of green energy) innovative countries in our database. Green energy patent applications
are shown on the left axis and total patent applications on the right axis. In all countries,

we see a steady and similar growth in green energy and total patent applications.

Figure 2.2 illustrates the annual trends in patenting for the 11 technologies. First of
all, it can be seen that the number of patent applications differs significantly among
the technologies. A huge number of patent applications is related to biofuels, EET,
and EEO. In contrast, the number of patent applications in ocean energy is rather
low. Furthermore, for all technologies, we observe an increase in patent activities over
time. However, the growth paths differ substantially. For example, for biofuels and fuel
cells, we see a significant increase during the 1990s. After that, patent activities begin
to decrease. A completely different picture emerges for wind and solar energy. Here,
we observe an above-average growth starting from the mid-1990s, with exceptionally

high growth from the mid-2000s. This result emphasizes the increasing prominence of



Chapter 2. Energy Prices, Technological Knowledge, and Innovation in Green Energy

Technologies: a Dynamic Panel Analysis of European Patent Data 24
DE
2000 a0 s00
o 20000 600
— === - 10000 400
~ -
od Lo 200
T T T T
1980 1990 2000 2010
GB Jp
4004 A~ —_ |e000
300 7 - 4000
200 2000
100
T T T T T T T T
1980 1990 2000 2010 1980 1990 2000 2010
NL us
400 - L4000 30004 ~ |- 40000
// 4 = ~ _
- .~
200 - _ P - 2000 2000 - 20000
10004 ===
0 Fo o4~ Fo
T T T T T T T T
1980 1990 2000 2010 1980 1990 2000 2010
Year

—— Number of green energy patents (left axis)

— — — Number of total patents (right axis)

Figure 2.1: Annual number of green energy EPO patent applications and annual number
of total EPO patent applications by six leading innovative countries and by time period,
1978-2009. Note: The country codes are the same as in Table 2.1.

electricity generation from wind and solar energy resources over the last two decades.
Especially in the case of solar photovoltaics, the technological development is reflected

by a tremendous reduction in panel costs, peaking at a 75% cost decrease between 2008
and 2011 (IEA, 2012b).

Energy storage, CCS, and geothermal energy have experienced relatively steady growth
but on rather low levels. Apart from different growth paths, there is also a significant
difference in the level of patent activity between the categories considered. In particular,
patent activity has grown from about 0 to above 1,000 for solar energy and the three
energy efficiency technologies, while other technologies grew on rather low levels. An

exception is biofuels, which had a high level of patent activity already in 1980.

As the main focus of our analysis is to investigate the impact of energy prices and
technological knowledge on green energy innovation, we include a price index and a
knowledge stock in our model. The price index is drawn from the Energy Prices and
Taxes Database of the IEA (IEA, 2012a). It depicts the country-specific real total
energy end-use price (including taxes) for households and industry with the base year
2005. As described in Section 2.2, expected energy prices signal the expected scarcity
of energy in an economy and thus affect the demand for innovation in green energy

technologies. Our energy index is used as a proxy for these expected energy prices.
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Figure 2.2: Total annual number of EPO patent applications of 26 OECD countries by
green energy technology and by time period, 1978-2009.

Using different energy prices for different technologies would be preferable.® However,
technology-specific price series often show a high amount of missing values. Furthermore,
as we have technology groups covering several sub-technologies, it is not always possible
to identify the appropriate price. Overall, as the index used in this study is a composite
of industry and household prices for oil products, coal, natural gas, and electricity,
it is expected to be a reliable proxy for the average development of energy prices.”
Comparable indices have been used in a number of other studies (see, for example,

Popp, 2002, Verdolini and Galeotti, 2011).

Figure 2.3 displays the average real total energy end-use price index for households
and industry among the 26 OECD countries in the database from 1978 to 2009. After
a peak in the early 1980s (following the oil crises of the 1970s), a rough decrease in
the energy price index is seen until the late 1990s. From then on, the index almost
continuously increases. In 2008, it indicates an increase in the total energy end-use price
of approximately 15%, relative to the base year 2005. A similar pattern can be observed

for the vast majority of the country-specific indices.?

5 For instance, we would prefer to use electricity prices for electricity generation technologies and oil
prices for transport technologies.

" In fact, the development of the individual energy price time series for the years and countries where
detailed data are available is very similar to the development of the utilized composite index.

8 The country-specific price indices are provided in the appendix (Figure A.5).
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Figure 2.3: Average real total energy end-use price for households and industry among
26 OECD countries (index: 2005=100), 1978-2009.

The knowledge stock is constructed using the perpetual inventory method following
Cockburn and Griliches (1988) and Peri (2005). Basically, the technology-specific knowl-
edge stock is obtained by counting all patents which have accumulated for the respective
technology in a country up to a certain year. The technology-specific knowledge avail-
able to researchers and inventors in each country and year is then represented by the

end-of-period stock, which covers all patents accumulated up to the previous year.

The end-of-period knowledge stock Kj;j;—1 for technology j = 1,...,M in country i =
1,...,N and year t = 1, ..., T is calculated as

Kiji—1 = PATjji—1 + (1 —0) Ko, (2.3)

where PAT;j;_1 is the number of patent applications, and ¢ is a depreciation rate that
accounts for the fact that knowledge becomes obsolete as time goes by. The rate of
depreciation is set to 10%, which is consistent with other applications in the patent and
R&D literature (see, for example, Verdolini and Galeotti (2011)). The initial knowledge
stock Kjji, is given by Kiji, = PAT;j1,/(0 + g), where PAT;j, is the number of patent
applications in 1978, the first year observed. The growth rate ¢ is the pre-1978 growth
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in knowledge stock, assumed to be 15%, and & again represents depreciation of 10%."

Figure 2.4 depicts the development of the accumulated technology-specific knowledge
stocks over time. Except for biofuels and EEQO, all technologies start at a very low level
of patents (close to zero) in 1978. Thereafter, the majority of technologies exhibit a
distinct development: the accumulated stock rises linearly until it begins to increase
sharply at the end of the 1990s. The increase of CCS, EEO, and geothermal patents
at the end of the 1990s remains moderate. The development of ocean patents stands
still throughout the 1990s before it also starts to sharply increase. In 2009, the highest
accumulated stocks are observed for biofuels and EEO, whereas the lowest stocks are

for geothermal and ocean.
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Figure 2.4: Accumulated knowledge stocks of 26 OECD countries by green energy
technology and by time period, 1978-2009.

In addition to the price, knowledge stock, and total patents variables, we also include
a variable reflecting publicly funded research, development, and demonstration expen-
ditures. The data are drawn from the Energy Technology Research and Development
Database of the IEA (IEA, 2012¢) and contains the annual national government expendi-
tures on energy research, development, and demonstration disaggregated by technology

in million constant US dollars at 2011 prices.

9 Note that our empirical analysis is conducted for the time span 1983-2009. Thus, the influence of
any inaccuracies that may be inherent in the way in which the initial knowledge stock is calculated is
rather small.
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2.4 Model Specification

As we measure green energy innovation by patent counts, we use count data techniques
in our econometric approach. A standard Poisson regression model for panel data takes

the following exponential form:

it = exp(hy B+ i) + wit, (2.4)

where y;; is a nonnegative integer count variable, z, is a vector of explanatory variables,
1; is a unit-specific fixed effect, and wu; is a standard error term. The subscripts i =

1,...,N and t = 1,...,T denote the observation unit and time, respectively.

It should be noted that the values of our dependent variable, the fractional counts of
patent applications, are not necessarily integers. That is, strictly speaking, our de-
pendent variable is not count data. However, as noted by Silva and Tenreyro (2006)
and Wooldridge (2002), the dependent variable does not have to be an integer for the
Poisson estimator to be consistent. An alternative approach used in a number of empir-
ical studies is the estimation of a log-linear model by ordinary least squares. However,
this approach cannot handle zero values in the data and hence would be unnecessarily
restrictive. For this reason, Silva and Tenreyro (2006) strongly recommend a Poisson

specification for a nonnegative continuous dependent variable with zero values.

Following this recommendation, our baseline model can be defined as

PAT;j = exp(Bo + Bpln Pi—1 + Br In Kij—1 + Brep In R&Djji—1
+ Brpar InTPATy 1 + By Ty + m) + wiji,

(2.5)

where PAT;j; is the fractional patent count for technology j in country ¢ and time
t, P is a price index, K represents the end-of-period knowledge stock as defined in
Equation 2.3, R&D denotes publicly funded expenditures on research, development,
and demonstration, T PAT is the fractional patent count of all patent applications, T’
represents a time trend, 7; is a unit-specific fixed effect, and wu;;; is a standard error
term. The independent variables P;;, R&D;j;, and T'PAT;; are lagged by 1 year in order

to mitigate any reverse causality problems.

Another econometric issue that needs to be addressed is the dynamic character of our
model. As defined in Section 2.3, our knowledge stock variable is a function of the lagged
dependent variable. This path dependence violates the assumption of strict exogeneity
of all regressors required by the traditional fixed effect count data estimator developed
by Hausman et al. (1984).
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To account for this problem of predetermined (that is, weakly exogenous) regressors in
dynamic count data models, Blundell et al. (1995, 2002) propose an alternative estima-
tor: the pre-sample mean (PSM) scaling estimator. This estimator relaxes the strict
exogeneity assumption by modeling the unit-specific fixed effects via pre-sample infor-
mation on the dependent variable. Following this approach, the unit-specific fixed effects
in Equation 2.5 are defined as

ni =0 In PAT;, (2.6)

where PAT;; = (1/N) Zﬁle PAT;j, is the PSM of patent applications by country ¢
in technology j and year n. N is the number of pre-sample observations and 6 is an

unknown parameter to be estimated.

Another alternative to estimate dynamic count data models with predetermined regres-
sors is the quasi-differenced generalized method of moments (GMM) estimator developed
by Chamberlain (1992) and Wooldridge (1997). However, as noted by Blundell et al.
(2002), a well-known problem of this estimator is that it can be severely biased. In
particular, when the sample is small and the regressors are highly persistent over time,

the lagged values of the predetermined regressors can be weak predictors of the future.

Conducting Monte Carlo simulations, Blundell et al. (2002) show that the PSM scal-
ing estimator outperforms the quasi-differenced GMM estimator in almost all settings.
Furthermore, while formally shown to be consistent for a large number of pre-sample
periods only, it outperforms the quasi-differenced GMM estimator even in the case of
only four pre-sample observations. We therefore follow Blundell et al. (1995, 2002) and
build our empirical model on the PSM scaling estimator as defined in Equations 2.5 and
2.6.

2.5 Results

2.5.1 Baseline Results

Our baseline results are presented in Table 2.2. As the explanatory variables enter the
estimations in log form, the estimated coefficients can be interpreted as elasticities. We
estimate our model for each technology separately as well as for all technologies together.
As shown, the results differ significantly between the technologies, which strongly sup-
ports our approach of a technology-specific analysis. The observed differences can be
explained by the different application areas, cost structures as well as maturity levels
of the technologies. Nevertheless, one common result for all technologies is the positive

impact of the knowledge stock on patent applications. The corresponding coeflicients
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are positive and statistically significant at the 1% level in all models. The estimated
elasticities between 0.534 and 1.020 suggest that, depending on the technology, a 10%
increase in knowledge stock is associated with a 5.3-10.2% increase in patent activities.
This finding is consistent with previous research (see, for example, Popp, 2002, Ver-
dolini and Galeotti, 2011) and in line with the technology-push hypothesis stating that

innovation is induced by advances in the technological capability of an economy.

Table 2.2: Estimated coefficients of the PSM Poisson model. Estimation time span:
1983-2009. Dependent variable: Number of patent applications at the EPO.

Variable EEBAE EET EEO Solar Wind Ocean
Energy price;—1 —0.559 0.205 0.059 1.115*** —0.180 0.612*
(log) (0.350) (0.179) (0.166) (0.150) (0.496) (0.348)
Knowledge stock;_1 0.930™** 1.011*** 0.534*** 0.640*** 0.884*** 0.743***
(log) (0.095) (0.067) (0.079) (0.080) (0.069) (0.128)
Public R&D;—1 (log) —0.002 —0.004 —0.001 0.036 0.187*** 0.072

(0.011) (0.011) (0.008) (0.051) (0.042) (0.063)
Total patents;_1 0.316™" 0.185*** 0.558*** 0.497**~ —0.049 —0.002
(log) (0.145) (0.058) (0.075) (0.133) (0.060) (0.098)

. —0.026™" —0.036™" —0.039"*~ 0.013** 0.059*** 0.030™**

Time trend

(0.012) (0.007) (0.006) (0.006) (0.007) (0.010)

0.029 —2.706™** —2.642*** —1.917*** —1.228" —4.349
Constant

(2.170) (0.950) (0.727) (1.137) (2.244) (1.595)
Observations 518 517 517 534 518 462

Biofuels Geothermal  Fuel cells CCS Storage All

Energy price;—1 —0.638" 0.370** 1.730 0.563*** 0.026 0.086
(log) (0.380) (0.145) (1.847) (0.215) (0.250) (0.165)
Knowledge stock:_1 0.749*** 0.793*** 0.948*** 1.020"** 0.732%** 1.013***
(log) (0.130) (0.117) (0.207) (0.068) (0.081) (0.032)
Public R&D;_1 (log) 0.100™** 0.050 0.024 —0.057"* 0.048 0.017*

(0.024) (0.043) (0.068) (0.023) (0.035) (0.010)
Total patents;_1 0.371*** 0.215*** 0.017 —0.015 0.510**~ 0.138***
(log) (0.107) (0.069) (0.212) (0.047) (0.137) (0.022)

. —0.058™** 0.006 —0.218"* —0.024™*" —0.018" —0.036™*"

Time trend

(0.007) (0.009) (0.088) (0.005) (0.010) (0.006)

1.232 —4.351"** —3.011 —3.436™** —4.062"** —1.856™"
Constant

(1.673) (0.735) (5.785) (1.052) (1.523) (0.848)
Observations 523 503 114 485 519 5210

Notes: All models control for unit-specific fixed effects by using PSM information on the first 5
years available (1978-1982). Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. *** ** and *: Significant at the 1, 5, and
10% level.

A completely different picture emerges for our second focus of interest, the impact of
energy prices or demand-pull effects on innovation activities. Here, our results reveal
significant differences among the technologies. The coeflicient for the energy price is

positive and statistically significant for solar, ocean, geothermal energy, and CCS only.
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The strongest impact is observed for solar energy, indicating a price elasticity higher than
1. This finding is in accordance with Johnstone et al. (2010), who also find a significant
positive effect of the energy price on patent activities in solar energy. Furthermore, also
in common with Johnstone et al. (2010), we do not find any effect of the energy price
on patent activities in wind energy. For the other two technologies, however, our results
differ from those of Johnstone et al. (2010). While Johnstone et al. (2010) do not find
any effect of the energy price on patent activities in geothermal or ocean energy, our
results indicate a positive effect. However, the estimated coefficient for ocean energy
is only significant at the 10% level. Interestingly enough, for biofuels, we observe a
statistically significant negative coefficient for the energy price, however, again only at
the 10% level.

Finally, for the three energy efficiency technologies, we do not find any significant impact
of the energy price on patent activities. This is in line with the concept of the energy
efficiency gap. While the demand-pull hypothesis assumes that increasing energy prices
increase the market value of innovations that convert energy at a lower average cost or
use energy more efficiently, market success of energy-saving technologies is not always
assured. Due to the uncertainty about future energy prices and the irreversible nature of
the investment, consumers heavily discount and thus undervalue future savings from en-
ergy efficiency improvements (Greene et al., 2013). Other explanations for failing market
diffusion include imperfect information, costs of adoption, and consumer heterogeneity
(Jaffe and Stavins, 1994). When innovators predict non-adoption by consumers despite
cost-effectiveness at current prices, they are not reacting to price signals. Empirical evi-
dence of the energy efficiency gap in particular stems from energy demand technologies,
which confirms our empirical findings (see, for example, Alberini et al., 2013, Greene
et al., 2013).10

Our result of insignificant price coefficients for the three considered energy efficiency
technologies is also in line with the findings of Verdolini and Galeotti (2011) for a pooled
group of energy demand technologies. Regarding energy supply technologies, however,
we observe a more heterogeneous picture. While the pooled approach of Verdolini and
Galeotti (2011) suggests a significant positive impact of the energy price on patent ac-
tivities in a group of energy supply technologies, our technology-specific approach with
a separated regression for each technology reveals divergent effects. We find a signifi-
cant positive impact of the energy price on patent activities in four supply technologies
(solar, ocean, geothermal energy, and CCS), a negative impact in one supply technology
(biofuels), and no significant impact in three supply technologies (wind, fuel cells, and

storage).

10 For a discussion of theoretical explanations and the controversial empirical evidence see, for exam-
ple, Gillingham and Palmer (2014).
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Referring to public R&D expenditures, the estimated coefficients indicate either no or
just a minor impact of public R&D expenditures on patent activities. A statistically
significant impact of public R&D expenditures is shown for wind energy, biofuels, and
CCS only. Among these, the highest elasticity can be observed for wind energy. The
estimated elasticity of 0.187 suggests that a 10% increase in public R&D expenditures
results in an approximate 1.9% increase in patent activities. This result is consistent
with Klaassen et al. (2005), who find that public R&D plays a key role in inducing
cost-reducing wind energy innovations in Europe. In contrast, the estimated negative
elasticity of public R&D expenditures for CCS indicates a decrease in patent activi-
ties when public R&D expenditures increase. As noted by Popp (2002), such a result
may be driven by a crowding-out effect of public R&D expenditures on private R&D

expenditures.'!

The estimation results for our control variable total patents are generally as expected.
For 7 of the 11 technologies, we find a statistically significant and positive coefficient, sug-
gesting that for the majority of green energy technologies, patent activities are affected
by the overall propensity to patent. This is also confirmed by the highly statistically
significant and positive coefficient for total patents in the model including all technolo-
gies. Only for wind energy, ocean energy, fuel cells, and CCS do overall patent activities

seem to have no impact on the technology-specific patent activities.

In order to account for the development of green energy innovation activities over time,
we also add a time trend to our estimations. Here, we observe a statistically significant
negative time trend for 7, a statistically significant positive time trend for 3, and a
statistically insignificant time trend for 1 of the 11 technologies. A negative time trend
suggests diminishing returns to R&D activities or, in other words, more difficulties in
developing new innovations. As new innovations are more difficult for relatively mature
technologies, the different signs of the time coefficients point to different maturity levels

of the technologies.

2.5.2 Robustness Tests

In order to test the sensitivity of our baseline results, we conduct a number of robustness
tests. First, we repeat the estimations in Table 2.2 with different dynamic specifications
for the energy price. More specifically, we reestimate our baseline model with the energy

price lagged 2 years, 3 years, and with a moving average of past energy prices over 5

11" As noted before, we lag the R&D variable by 1 year in order to mitigate any reverse causality prob-
lems. This approach also accounts for the fact that R&D efforts do not immediately lead to innovative
output (Hall et al., 1986). In order to test the sensitivity of the R&D results to other lag structures, we
reestimate the baseline model from Table 2.2 with public R&D expenditures lagging 2, 3, and 4 years.
Overall, the results are robust to these alternative specifications.
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years. The estimated coefficients for the alternative energy prices as well as for the

1-year lagged energy price used in our baseline model are depicted in Table 2.3.

Table 2.3: Different dynamic specifications for the energy price. Estimation time span:
1983-2009. Dependent variable: Number of patent applications at the EPO.

Variable EEBAE EET EEO Solar Wind Ocean
Energy price;—1 (log) —0.559 0.205 0.059 1.115"* —0.180 0.612"
(0.350)  (0.179) (0.166) (0.150)  (0.496)  (0.348)
Energy price:—2 (log) —0.481 0.340** 0.085 1.198"** —0.015 0.577
(0.346)  (0.148) (0.144) (0.165)  (0.526)  (0.365)
Energy price:—3 (log) —0.366 0.353** 0.138 1.209***  0.007 0.610™**
(0.311) (0.164) (0.130) (0.182) (0.535) (0.227)
Energy pricepa (log) —0.411 0.344" 0.119 1.275***  0.006 0.526"
(0.363) (0.182) (0.154) (0.169) (0.617) (0.295)
Biofuels Geothermal Fuel cells CCS Storage All
Energy price;—1 (log) —0.638" 0.370*" 1.730 0.563***  0.026 0.086
(0.380)  (0.145) (1.847) (0.215)  (0.250)  (0.165)
Energy price:—2 (log) —0.552 0.382*** 0.600 0.703*** 0.148 0.159
(0.368)  (0.128) (1.186) (0.127)  (0.224)  (0.146)
Energy price;_s (log) ~0.528" 0.322** 1.413 0.818"**  0.253 0.211*
(0.307) (0.145) (0.991) (0.105) (0.231) (0.118)
Energy pricepra (log) —0.714" 0.375™* 3.369"" 0.805***  0.216 0.179
(0.405)  (0.152) (0.145) (0.145)  (0.259)  (0.144)

Notes: Estimations are based on the same specification as in Table 2.2. To conserve space,
only the coefficients for the different energy prices are presented. The complete tables are available
from the authors upon request. Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. *** ** and *: Significant at the 1, 5, and
10% level. Energy priceaa: Moving average of the energy prices of the previous 5 years.

Overall, the estimated coefficients are very similar for all specifications. Only for EET,
ocean energy, and fuel cells do we see some notable changes in statistical significance or
magnitude. With an increasing time lag between energy prices and patent activities, the
price coefficients for EET become statistically significant. Thus, it seems that energy
prices from 2 or more years prior have a positive impact on patent activities in trans-
port energy efficiency. A similar effect can be observed for fuel cells, with the moving
average of past energy prices being statistically significant at the 1% level. For ocean
energy, however, the results remain ambiguous. While the highly statistically significant
coefficient for the 3-year lagged price indicates a positive price effect, the other price

coefficients are either insignificant or only significant at the 10% level.

The second robustness test we conduct is the utilization of different depreciation rates
in the calculation of the end-of-period knowledge stock. Table 2.4 reports the estimated
knowledge stock coefficients for depreciation rates of 5%, 10% (as used in the baseline
model depicted in Table 2.2), 15%, and 20%. For all specifications, the coefficients are
positive and highly statistically significant at the 1% level. Furthermore, the magnitude
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of the coefficients is very similar within each technology. Thus, our baseline result saying
that the knowledge stock is a significant driver of patent activities in all technologies is
robust to different assumptions on the depreciation rate.

Table 2.4: Different depreciation rates for the knowledge stock. Estimation time span:
1983-2009. Dependent variable: Number of patent applications at the EPO.

Variable EEBAE EET EEO Solar Wind Ocean
Knowledge stock,_;,  0.952*"* 1.055*** 0.522*** 0.641*** 0.941*** 0.741***
6 =0.05 (log) (0.107) (0.079) (0.083) (0.091) (0.071) (0.156)
Knowledge stock:_1, 0.930*** 1.011** 0.534*** 0.640*** 0.884*** 0.743***
§ =0.10 (log) (0.095) (0.067) (0.079) (0.080) (0.069) (0.128)
Knowledge stock;_;,  0.915"* 0.980*** 0.547** 0.638"*** 0.844*** 0.718***
6 = 0.15 (log) (0.086) (0.060) (0.075) (0.070) (0.070) (0.113)
Knowledge stock,_;,  0.904*** 0.958"** 0.560*** 0.635*** 0.814*** 0.684***
§ =0.20 (log) (0.079) (0.055) (0.072) (0.063) (0.071) (0.105)
Biofuels Geothermal  Fuel cells CCS Storage All

Knowledge stock,_;,  0.804*** 0.836** 0.948*** 1.063*** 0.738*** 1.069***
6 =0.05 (log) (0.138) (0.133) (0.229) (0.087) (0.094) (0.039)
Knowledge stock,_;,  0.749*** 0.793*** 0.948*** 1.020%** 0.732*** 1.029%**
¢ = 0.10 (log) (0.130) (0.117) (0.207) (0.068) (0.081) (0.034)
Knowledge stock;_;,  0.723"* 0.746*** 0.949*** 0.977** 0.720*** 0.980***
6 = 0.15 (log) (0.124) (0.107) (0.191) (0.063) (0.072) (0.028)
Knowledge stock,_;,  0.716*** 0.702*** 0.950*** 0.938*** 0.704*** 0.960***
6 =0.20 (log) (0.118) (0.101) (0.179) (0.065) (0.067) (0.025)

Notes: Estimations are based on the same specification as in Table 2.2. To conserve space,
only the coefficients for the different knowledge stocks are reported. The complete tables are available
from the authors upon request. Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. *** ** and *: Significant at the 1, 5, and
10% level.

Another robustness test is conducted by limiting our sample to the time span 1998-
2009. The reasoning for this is 2-fold: First, we observe a significant growth in green
energy patent applications within the latter periods of our sample. Hence, our results
may be influenced, in particular, by developments in these periods. Second, a shorter
sample period implies a longer pre-sample period that can be used to calculate the PSM
information. By choosing the cut-off year 1998, we increase the number of pre-sample

periods from 5 to 20 years.

Furthermore, 1998 is the first year after the Kyoto protocol was signed. The Kyoto
protocol was the first international agreement among the world’s industrialized countries
that aimed to reduce greenhouse gas emissions via a legally binding commitment. Even
though the protocol did not come into force until 2005, it can be interpreted as a first

indicator toward a more green energy-oriented policy. This change of future policy



Chapter 2. Energy Prices, Technological Knowledge, and Innovation in Green Energy
Technologies: a Dynamic Panel Analysis of European Patent Data 35

expectations may have affected the development of green energy innovations in the years
following (Johnstone et al., 2010).1% 13

Table 2.5 reports the results of our short-term model with the estimation time span 1998-
2009. Still, for all technologies, the knowledge stock seems to be a major driver of green
energy innovation. Moreover, for most technologies, the magnitude of the correspond-
ing coefficient is much higher than in our baseline estimations. Assuming diminishing
marginal productivity of the stocks in generating patents, this result indicates that the
stocks significantly increased in the period after the Kyoto protocol was signed. As
depicted in Figure 2.4 in the data section, such a development can be observed for the

majority of the technologies.

The most pronounced impact of the knowledge stock in the short-term model is shown
for fuel cells, with an estimated elasticity of 1.378. This value indicates that a 10%
increase in knowledge stock is associated with an approximately 14% increase in patent

activities.

For the energy price, a more diversified picture is shown. In fact, we observe a number of
significant changes compared to the results of our baseline model depicted in Table 2.3.
While the formerly statistically significant price coefficients for ocean energy, biofuels,
and CCS are now insignificant, the respective coefficients for EET and energy storage
become significant. Furthermore, the magnitude of the still positive and statistically

significant price coefficients for solar and geothermal energy is much higher than before.

Referring to the other variables, public R&D, total patents, and the time trend the
results of the short-term model are in general in line to those obtained from the baseline
model. Still, public R&D expenditures seem to have only a minor impact on patent
activities. However, compared to our baseline model indicating a statistically significant
and positive impact of public R&D on patent activities for wind energy and biofuels only,
we now observe a statistically significant and positive impact of public R&D for two more
technologies, namely EEBAE and energy storage. Furthermore, in spite of some changes
in significance, the estimated coefficients for total patents and the time trend again
suggest a positive impact of the overall propensity to patent and diminishing returns to

R&D activities over time on green energy patent activities for most technologies.

12 The signature of the Kyoto protocol may not be the only factor that changed the development of
green energy innovation in these years. Other political and economic reasons might be, for instance, the
rise of China and India or the liberalization of the European energy markets. Nevertheless, since the
Kyoto protocol marks a substantial break in international environmental policy, the Kyoto argumentation
seems to be the most plausible one in this context.

13 In the European Union, the Kyoto obligations were fulfilled via the implementation of an Emissions
Trading System, which sets a price on emissions from power generators and specific industries from 2005
onward. Its effect on energy prices is captured in the energy price index.
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Table 2.5: Estimated coefficients of the PSM Poisson model. Estimation time span:
1998-2009. Dependent variable: Number of patent applications at the EPO.

Variable EEBAE EET EEO Solar Wind Ocean
Energy price;_1 0.376 0.766* 0.163 1.735** 0.721 ~1.158
(log) (0.750) (0.429) (0.389) (0.480) (0.592) (0.795)
Knowledge stock:—1 1.362*** 1.260%** 0.816™** 1.005*** 0.955** 1.015***
(log) (0.092) (0.111) (0.200) (0.085) (0.071) (0.154)
Public R&D;_; (log)  0.054™** 0.008 —0.020** —0.010 0.194*** 0.069

(0.016) (0.008) (0.010) (0.040) (0.053) (0.072)
Total patents;_1 —0.067 0.040 0.496*** 0.485***  —0.132** —0.048
(log) (0.198) (0.074) (0.154) (0.127) (0.054) (0.095)

, —0.134***  —0.084***  —0.054"**  —0.053** —0.016 0.072**

Time trend

(0.029) (0.022) (0.018) (0.022) (0.020) (0.036)

0.467 —3.104 —2.102 —9.407"**  —2.805 2.564
Constant

(3.638) (1.906) (1.744) (2.109) (2.502) (3.183)
Observations 241 240 241 248 243 225

Biofuels Geothermal  Fuel cells CCS Storage All

Energy price;_1 0.251 1.536*** 1.398 0.093 1.080*** 0.529"*
(log) (0.158) (0.239) (1.907) (0.499) (0.317) (0.234)
Knowledge stock:—1 0.824*** 0.817*** 1.378%** 0.916*** 0.369"* 1.235%**
(log) (0.269) (0.184) (0.139) (0.189) (0.165) (0.083)
Public R&D;_; (log)  0.129" 0.066 0.029 —0.033 0.089*** 0.012

(0.059) (0.040) (0.050) (0.023) (0.029) (0.012)
Total patents;_; 0.277**" 0.277"** 0.281" —0.104™* 0.011 0.139™*~
(log) (0.073) (0.101) (0.160) (0.046) (0.097) (0.026)

, —0.154***  —0.037 —0.218"* —0.014 —0.035"* —0.096***

Time trend

(0.022) (0.024) (0.087) (0.023) (0.014) (0.015)

0.648 —8.598***  —2.850 —0.728 —5.727%  —1.649
Constant

(0.709) (1.355) (6.244) (2.114) (1.761) (1.208)
Observations 247 229 114 236 242 2506

Notes: All models control for unit-specific fixed effects by using PSM information on the first
20 years available (1978-1997). Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. *** ** and *: Significant at the 1, 5, and
10% level.

Our last robustness test deals with the observed differences between the estimated price
coefficients in our short-term and baseline models (see Tables 2.2 and 2.5). In order to
obtain a more comprehensive picture and to check whether these differences are only
related to the usage of a l-year lagged energy price specification, we reestimate our
short-term model with different dynamic specifications for the energy price (as done

before for the baseline model, see Table 2.3). The results are shown in Table 2.6.

First of all, it can be seen that all estimated price coefficients in the model including
all technologies are positive and statistically significant at least at the 5% level. In our

baseline model, we observe a positive impact of the energy price on patent activities
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Table 2.6: Different dynamic specifications for the energy price. Estimation time span:
1998-2009. Dependent variable: Number of patent applications at the EPO.

Variable EEBAE EET EEO Solar Wind Ocean
Energy price;—1 (log) 0.376 0.766™ 0.163 1.735"** 0.721 —1.158
(0.750) (0.420)  (0.389)  (0.480) (0.592) (0.791)
Energy price;—2 (log) 0.379 1.125™** 0.151 1.728"** 1.002* —1.273
(0.690) (0.266)  (0.339)  (0.458) (0.553) (0.916)
Energy price;—3 (log) 0.597 1.095***  0.331 1.662*** 0.891" —0.742
(0.493) (0.319)  (0.292)  (0.468) (0.486) (0.661)
Energy pricepra (log) 0.766 1.155"**  0.342 1.879*** 1.227** —1.394
(0.554) (0.333)  (0.328)  (0.429) (0.607) (0.916)
Biofuels Geothermal Fuel cells CCS Storage All
Energy price;_1 (log) 0.251 1.536"**  1.398 0.093 1.080%* 0.520**
(0.158) (0.239)  (1.907)  (0.499) (0.317) (0.234)
Energy price;—2 (log) 0.320** 1.479"**  —0.366 0.624™ 1.166™** 0.650™**
(0.133) (0.238)  (1.057)  (0.334) (0.277) (0.196)
Energy price;—3 (log) 0.832"** 1.457***  0.453 1.094*** 1.151*** 0.848"**
(0.190) (0.252)  (0.958)  (0.283) (0.326) (0.169)
Energy pricesra (log) 0.979*** 1,757 1.858 0.941** 1.181*** 0.886™**
(0.361) (0.297)  (1.562)  (0.420) (0.353) (0.194)

Notes: Estimations are based on the same specification as in Table 2.5. To conserve space,
only the coefficients for the different knowledge stocks are reported. The complete tables are available
from the authors upon request. Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. *** ** and *: Significant at the 1, 5, and
10% level.

in green energy technologies only for the 3-year lagged price and just at a 10% level
of significance. This finding, together with the other observed differences in the esti-
mates of our baseline and short-term models, points to the fact that, at least for some
green energy technologies, the development of patent activities changed significantly af-
ter the signing of the Kyoto protocol. With the number of green energy patents rapidly
increasing within this period, our results for the knowledge stock and for the energy
price suggest that both technology-push effects and demand-pull effects gain a more

pronounced impact on patent activities in this period.

Nevertheless, while this observation holds for all technologies in the case of technology-
push effects, demand-pull effects seem to affect only some technologies. With at least
three of the four energy price specifications tested being statistically significant, the
results in Table 2.6 clearly indicate a positive impact of the energy price on patent
activities in 7 of the 11 technologies, namely EET, solar energy, wind energy, biofuels,
geothermal energy, CCS, and energy storage. In our baseline model, this is only the case

for four technologies: EET, solar energy, geothermal energy, and CCS.
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Referring to the magnitude of the estimated price coefficients, some other interesting re-
sults are obtained from our short-term model estimations. For EET, solar, and geother-
mal energy, the magnitude of the price coefficients is much higher in the short-term
model than in the baseline model. Moreover, for solar and geothermal energy, the price
coefficients are much higher than the knowledge stock coefficients, indicating that the
energy price for these technologies is the main driver of patent activities after the Kyoto

protocol was signed.

A similar result can be observed for energy storage. While the estimated price coefficients
are insignificant for all energy price specifications tested in our baseline model, they are
highly statistically significant and positive in our short-term model. Moreover, the
magnitude of the price coefficients is much higher than the magnitude of the knowledge

stock coefficient.

Overall, these results point to a shift in expectations after the Kyoto protocol agreement.
In particular, they suggest that market participants expected green energy-oriented poli-
cies to be pushed forward and energy prices to persistently increase in the future. Argu-
ing on the basis of a classical demand curve for fossil energy, such a development induces
both an upward movement along and an inward shift of the curve. The demand for fossil
energy decreases, and already-available clean substitutes or energy-saving technologies
come into use earlier than without green energy-oriented policies and increased prices.
In addition, the market conditions of green energy technologies become more profitable

and, hence, new patents are generated in this area.

2.6 Conclusions

In this article, we analyzed the effect of energy prices and technological knowledge on
innovation in green energy technologies. We based our analysis on green energy patent
counts from 26 OECD countries and 11 technologies over the period 1978-2009. Our
contribution to the induced innovation literature is 3-fold. We investigated demand and
supply determinants of green energy innovation separately for different technologies. We
used European patent data to consolidate previous results reached on US patent data.
Finally, we estimated a dynamic count data model for panel data using the PSM scaling
estimator proposed by Blundell et al. (1995, 2002). This approach allowed us to account
for path dependencies in knowledge production, endogeneity issues, and unobserved

heterogeneity.

Our analysis yields several interesting findings. First of all, our results indicate that

the main determinant of innovation in green energy technologies is the availability of
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technological knowledge. This confirms the technology-push hypothesis, stating that
innovation is induced by advances in the technological capability of an economy. It also
confirms previous results suggesting that inventors build on existing knowledge and ‘see
further by standing on the shoulders of giants’. Moreover, concerning the demand-pull
hypothesis suggesting energy prices as a major driver of green energy innovation, our
results reveal significant differences across technologies. We find that increasing energy
prices induce innovation in some but not all green energy technologies. This result
supports our approach of a technology-specific analysis. However, even more important
is that we uncovered significant differences comparing the period before and after the
Kyoto protocol adoption. More precisely, our results indicate that the effect of both
energy prices and technological knowledge on green energy innovation is stronger after
the Kyoto protocol agreement. This suggests that the general awareness for clean energy
generation increased. Finally, evidence is presented that government R&D plays either

no or just a minor role in inducing green energy innovation.

From our results, several policy implications can be drawn. First, the strong evidence
for the technology-push hypothesis suggests that policies should enhance technological
capability to foster green energy innovation. That is, policies should support the pri-
vate generation and patenting of scientific and technological knowledge as well as enable
economies to exploit their existing knowledge base. As existing patents spur further
innovative activity, research conditions for companies should be designed accordingly.
Furthermore, depending on the technology, subsidizing energy R&D can encourage inno-
vation and thus increase the economy’s stock of knowledge. Second, concerning demand-
pull, our results show that policies increasing the energy price to internalize the negative
externality have very different inducement effects on different technologies. Policy mak-
ers should be aware of these differences but, once the negative externality is internalized,
let the market decide on innovation activity and the evolution of the energy technology
mix. All together, it may be concluded that distinct technologies have distinct innova-
tion characteristics and, thus, the same set of policies may have different consequences

for different green energy technologies.

Further research could extend our analysis in several aspects. First, the observed dif-
ferences across technologies appear to merit further examination in more detail. In
particular, as our analysis does not include any spillover effects among technologies or
countries, further research could help clarify as to what extent knowledge spillovers are
of particular relevance for green energy innovations. Second, a closer analysis of the
period after the Kyoto protocol agreement seems promising. A deeper understanding of
how this agreement and the related country-specific green energy policies have changed
the innovators’ patent behavior could lead to more targeted policy recommendations

toward a green energy economy.






Chapter 3

Innovation in Clean Coal
Technologies: Empirical Evidence

from Firm-Level Patent Data

3.1 Introduction

Currently, about 40% of world electricity is produced from coal which makes it globally
the first source of electricity generation. World electricity demand is predicted to in-
crease by around two-thirds until 2035 and coal to remain the leading fuel in electricity
production (IEA, 2013b). Reasons for this development are that coal reserves are large
and geopolitically secure, coal is an affordable energy source, and coal-based power can
be easily integrated into existing power systems (IEA, 2013a). In light of this, it is un-
likely that alternative forms of energy can or will completely replace coal-based power

in the near future.

However, coal burning in its current form has strong environmental impacts. On the one
hand, the negative impacts of air pollutants like sulfur dioxide (SO2) and nitrogen oxide
(NOx) on the air quality and, on the other hand, the negative impact of greenhouse
gas emissions like carbon dioxide (COz2) on the climate. The large reliance of electricity
production on coal explains why this sector is, with about 41%, the largest contributor
to worldwide COg2 emissions. Coal accounts for about 70% of these emissions (IEA,
2013b). Therefore, it is essential to develop new and advanced technologies that allow

coal use in electricity generation while mitigating its impact on the environment.

Clean coal technologies (CCT) may help achieving this goal. These technologies aim at

the reduction of emissions in coal-based electricity generation: indirectly, by increasing
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the efficiency of the conversion of coal into electricity (efficiency improving combustion
technologies), or by reducing emissions entering the atmosphere directly at the end of
the pipe (after pollution control technologies).!* Regarding COs, today the intensity
of the most efficient coal-fired power plants lies around 700 grams of COs per kilowatt-
hour (gCO2/kWh). Next generation efficiency enhancing technologies are expected to
reduce COy emissions from coal-based electricity generation to less than 670 gCOy/kWh.
In addition, Carbon capture and storage (CCS) technologies inherent the potential to
reduce emissions to less than 100 gCO2/kWh (IEA, 2012b).

Despite the important role played by coal in electricity generation and the high mit-
igation potential of this sector, very little attention has been devoted to the factors
determining innovation in CCT. Understanding these factors will help policymakers to
design the appropriate energy and environmental policies for encouraging more innova-
tion. Therefore, the goal of this article is to empirically investigate the determinants that
enhance innovation in CCT. We measure innovation at the firm-level by using patent
data from the Worldwide Patent Statistical Database (PATSTAT) maintained by the
European Patent Office (EPO) (EPO, 2014). Altogether our database contains 7,894
CCT first priority patents filed worldwide by 3,648 firms over a 32-year period from
1978 to 2009. We analyze supply-side and demand-side factors expected to affect CCT
innovation. These factors include scientific and technological capacity, overall propen-
sity to patent, public R&D, coal prices, market size as well as environmental policies

and regulations aiming at the reduction of SO2, NOx, and COs emissions.

The article generally relates to the empirical literature on the determinants of innovation
in clean energy technologies using patent data (see, for example, Jaffe and Palmer,
1997, Johnstone et al., 2010, Popp, 2002, Verdolini and Galeotti, 2011). In particular,
we build on Voigt et al. (2008), who use EPO patent data for 22 countries from 1974
to 2005 to examine country-specific determinants of patenting activity in the field of
CCT. Within their empirical analysis, the authors find a positive impact of public R&D
expenditures and negative impacts of the Kyoto protocol and the share of renewables

on CCT innovation.

Our study extends this analysis and contributes to the existing literature in three re-
spects. First, we inquire into the determinants of CCT innovation using international
firm-level panel data. This allows us to investigate factors that enhance CCT innovation
activities directly at the innovator-level. Second, our study conducts a global analysis

based on data from 93 national and international patent offices. This data includes

14 The term CCT is controversial as the impact of CCT innovations on the environment is ambiguous.
On the one hand, CCT innovations increase the efficiency of coal conversion into electricity and therefore
reduce the amount of coal use per kilowatt-hour. On the other hand, these innovations make electricity
generation from coal cheaper, thereby increasing the share of coal in overall electricity generation (Aghion
et al., 2016).
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almost the entire population of all worldwide CCT patent applications filed in the con-
sidered period. Third, we provide quantitative evidence on the temporal trends and the
distribution across countries and firms of CCT innovation. This helps understanding

the global patterns of CCT innovation.

The remainder of this article is structured as follows. Section 3.2 presents the principal
hypotheses tested in our empirical analysis. Section 3.3 presents the data and some
descriptive statistics. In section 3.4, we describe the empirical strategy and discuss the

results. Section 3.5 summarizes the main findings and concludes.

3.2 Principal Hypotheses

The purpose of this article is to test how firm-level CCT innovation is affected by eco-
nomic and political factors. The theory of induced innovation is the theoretical basis
for this relationship (see, for example, Binswanger, 1974, Hicks, 1932). In general, the
theory recognizes that knowledge production is a profit-motivated investment activity
and posits that both changes on the supply-side and changes on the demand-side affect
the rate and direction of knowledge production. Changes on the supply-side include sci-
entific and technological advancements that affect the profitability of innovative activity
at a given level of demand. Analogously, changes on the demand-side include shifts
on the macro level that affect the profitability of innovative activity at a given level of

scientific and technological capability (Griliches, 1990).

On the supply-side, a firm’s scientific and technological capacity, that is, its existing stock
of knowledge, is expected to influence its innovative activity in the future (Acemoglu
et al., 2012). This stock is typically measured by innovation activities undertaken in
the past, that is by historic patent filings (see, for example, Popp, 2002, Verdolini and
Galeotti, 2011). Hence, we expect that firms with a broad history of CCT innovation
in the past are more likely to innovate in CCT in the future. Additionally, a firm’s
patenting activity may be affected by its overall propensity to patent innovations. This
propensity is likely to vary across firms and countries as well as across time, because
different strategies are adopted by firms to capture the rents from innovation and because
legal conditions differ across countries and change over time (Jaumotte and Pain, 2005).
Thus, firms with an overall high propensity to seek for patent protection (typically
measured by total patent filings) are expected to file more patents in CCT. Moreover,
public effort in support of technological development is likely to incentivize innovation
at the firm-level. Government R&D expenditures are an indicator for this effort (Popp
et al., 2010). Therefore, higher CCT-related government R&D expenditures should

induce technological change and hence lead to higher innovative activity in CCT.
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On the demand-side, the price level (or a policy that changes the price level) can be
expected to affect a firm’s innovative activity. Increasing input prices change the op-
portunity costs associated with the use of an input and thus induce innovation in tech-
nologies that aim to reduce the use of this input (Acemoglu et al., 2012, Hicks, 1932).
Thus, increasing the price of coal should lead to innovation in more efficient forms to
produce electricity from coal. However, an increase in the price of coal should, in con-
trast, lead to less innovation in after pollution control technologies since these make
electricity production from coal even more expensive. In addition, the size of the poten-
tial market is likely to affect innovation (Acemoglu et al., 2012). A large market, that
is, a large demand, makes it easier for a firm to recoup its R&D investments. Hence,
a potentially large market for CCT, typically proxied by electricity production, should
lead to more research towards CCT (Johnstone et al., 2010). Finally, environmental
policies and regulations typically affect firms’ innovative activities. Restricting for ex-
ample air pollutant (for example SOy and NOx) and greenhouse gas (for example CO3)
emissions from coal-fired power plants increases the value of both efficiency improving
combustion and after pollution control technologies. The first ones allow to produce the
same output with less input and by this decrease the emissions per unit of output. The
second ones reduce the emissions directly (Popp, 2006). Thus, introducing policies and
regulations aiming at the restriction of emissions should incentivize CCT innovation.

The hypotheses presented above are summarized in Table 3.1.

Table 3.1: Expected determinants of CCT innovation.

CCT (EI/AP)

Supply-side determinants

Scientific and technological capacity + (+/4)
(CCT knowledge stock)

Propensity to patent + (+/4)
(Total patent filings)

Public effort in support of technological development + (+/4)

(CCT-related government R&D)

Demand-side determinants

Price level o(+/-)
(Coal price)
Size of potential market + (+/4)

(Electricity production)
Environmental policies and regulations + (+/4)

(Dummies indicating introduction of emission restricting policies/regulations)

Note: + positive effect; o positive or negative effect; — negative effect. EI = Efficiency improving
combustion technologies; AP = After pollution control technologies.
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3.3 Data

In this section, we present the data used in our empirical analysis and describe the
construction of the explanatory variables. We then show descriptive statistics which

provide instructive insights into the data and the global patterns of CCT innovation.

3.3.1 Data Sources

We use patent data as an output measure of innovative activity at the firm-level to
analyze the potential determinants of innovation in CCT.'® The data originates from
PATSTAT, a statistical database on worldwide patenting activities maintained by the
EPO (EPO, 2014). Patent applications related to CCT are identified by using Interna-
tional Patent Classification (IPC) codes taken from Voigt et al. (2008).'6 We count CCT
innovations in two technology groups: efficiency improving combustion technologies (EI)
and after pollution control (AP) technologies. The EI group contains technologies which
improve efficiency in the conversion process of coal into electricity and thus indirectly re-
duce emissions. These technologies are Pulverized Coal Combustion under supercritical
and ultra-supercritical steam conditions (PCC), Fluidized Bed Combustion (FBC), and
Integrated Gasification Combined Cycle (IGCC). The AP group contains technologies
directly reducing emissions. These are post-combustion pollution control technologies,
that is end-of-pipe (EOP) technologies, and Carbon Capture and Storage (CCS) tech-

nologies. Table 3.2 provides an overview on the considered technologies.!”

Table 3.2: Clean coal technologies.

Efficiency improving combustion technologies

Pulverized Coal Combustion
Fluidized Bed Combustion
Integrated Gasification Combined Cycle

After pollution control technologies

End-of-pipe
Carbon Capture and Storage

15 The advantages and disadvantages of using patents as a measure of innovation have been discussed
at length in the literature. See, for example, Griliches (1990), Dernis et al. (2002), and OECD (2009).

6 To identify CCT innovations filed at the United States Patent and Trademark Office (USPTO),
we follow an approach by Aghion et al. (2016). We use the same IPC codes as the ones used for non-
USPTO patents and complement these with their US equivalents according to the USPC-to-IPC reverse
concordance table available on the USPTO website. The reason is that the IPC system for classifying
patent documents has been adopted just recently by the USPTO. Therefore some older USPTO patents
have no IPC codes.

17 A detailed list of the technologies including the IPC codes can be found in Voigt et al. (2008) and
Rennings and Smidt (2010).



Chapter 3. Innovation in Clean Coal Technologies: Empirical Evidence from
Firm-Level Patent Data 46

For our analysis, we count annual CCT first priority patent filings by firms across 93
national and international patent offices over the period 1978 to 2009.'8 19 Counting first
priority patents ensures that the same invention, which is protected by multiple patents
filed in multiple patent offices, for example by one patent in Germany, one patent in the

US, and two patents in Japan, is counted as one single patent.2’

We ensure that patent applications for low-value inventions are excluded from our anal-
ysis by considering only so called claimed priorities, that is patent applications for which
protection is sought in at least two of the considered offices. The patents are assigned
to years based on their priority date. The priority date refers to the first filing date of
the invention worldwide. It is strongly related to R&D activities and closest to the date
of invention as well as to the decision to apply for a patent (see, for example, Griliches,
1990, OECD, 2009). The resulting data set contains 8,414 high-value CCT first priority
patents filed by 6,302 firms across 60 offices.

A common problem with patent data is the heterogeneity of applicants’ names to be
found in patent documents. We use the ECOOM-EUROSTAT-EPO PATSTAT Person
Augmented Table (EEE-PPAT) database (ECOOM, 2014) to identify unique patent
holders. This database provides a grouping of patent applicant’s names achieved by
harmonizing names through a comprehensive computer algorithm. In addition, we vi-
sually inspect the name match and merge associated applicants (for example, we merge
Siemens with its differently named subsidiaries). This procedure enables us to reduce
the number of distinct applicants of CCT patents from 6,302 to 5,028 (by using the
EEE-PPAT database) and then to 4,330 (by visual inspection).

To investigate the effect of a firm’s scientific and technological capacity, we construct
knowledge stocks Kj; for firm 4 at time ¢ using the perpetual inventory method following
Cockburn and Griliches (1988) and Peri (2005):

Ky = PAT; + (1 — (5) K1 (31)

where PAT;; is the number of CCT patent applications and § is a depreciation rate ac-
counting for the fact that knowledge becomes obsolete as time goes by. The depreciation
rate is set to 10%, as is often assumed in the literature (see, for example, Verdolini and
Galeotti (2011)). The initial knowledge stock Kj;, is given by K, = PATy, /(g + 0),

8 If a single first priority patent is filed by multiple firms, we count it fractionally. That is, if a
patent is filed by more than one firm, the patent count is divided by the number of firms and each firm
receives equal shares of the patent. This avoids giving a higher weight to a patent filed by multiple firms
compared to one filed by just one firm.

19" As it is standard in the literature, we count USPTO patents only if they were granted. The reason
is that until 2001 only granted patent applications are published by the USPTO.

20 Multiple patents filed for the same invention are part of a patent family. To identify patents
belonging to the same patent family, we use the DOCDB data set in PATSTAT.
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where PAT;jy, is the number of CCT patent applications in 1978, the first year observed.
The growth rate g is the pre-1978 growth in knowledge stock, assumed to be 15%, and

§ again represents depreciation of 10%.2!

As a control for a firm’s overall propensity to patent innovations, we use data from
PATSTAT on the firm-specific total count of annual patent filings (all patents, not only
CCT) across the 93 offices. Again we only count claimed priorities, that is high-value

inventions filed in at least two offices.

In order to estimate the impact of coal prices on innovation in CCT, we proxy the coal
price using a country-year specific real total energy end-use price for households and
industry. The price is an index with the base year 2005 and includes taxes. The data
is drawn from the Energy Prices and Taxes database of the IEA (IEA, 2014b) and is
available for 30 countries.?? Using coal prices instead would be preferable. However,
as noted by the IEA (2014a), coal prices for electricity generation are not necessarily
comparable between countries because of a great variety of coal qualities in domestic
and international trade. For example, in Germany 40% of total coal input for electricity
generation is lignite. This is usually produced by mines that are located right next to
the power station and owned by the utilities. Hence, for most of the lignite a market
price is not available and the coal price for electricity generation published by the IEA
is only based on prices for domestic and/or imported steam coal (IEA, 2014a). For this
reason, we opted for using a more general price index that is less affected by this kind of
information gap. In addition, as shown in Section 3.3.2, the development of the average
firm-level real total energy end-use price and the average real steam coal end-use price

over time is very similar.??

Since the energy price index is available only at the country-year level, we make the
energy price firm-year specific by constructing firm-specific weights based on the distri-
bution of a firm’s patent-portfolio across countries (Aghion et al., 2016, Barbieri, 2015,
Noailly and Smeets, 2015). The underlying theory is that firms’ innovation decisions
are more likely to be affected by price changes in countries with high importance for
their innovative activity than in countries with low importance. For example, consider
a firm that produces its innovations mainly for the German market. The innovative

activity of such a firm is in all likelihood more influenced by the German energy price

21 Note that our empirical analysis is conducted for the time span 1983 to 2009. Thus, the influence
of any inaccuracies that may be inherent in the way in which the initial knowledge stock is calculated is
rather small.

22 For the EPO we construct an energy price using the mean of GDP-weighted energy prices from
EPO member states.

23 In order to capture not only the effect of changing absolute prices, but also the effect of changing
relative prices on CCT innovation, one could use spreads between different energy prices. However,
to construct price spreads one needs data on fuel-specific price series. These series often show a high
amount of missing values. Therefore, we chose to use absolute energy prices in our empirical analysis.
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than by energy prices from other countries. Hence, we assume that firms’ are differently
exposed to energy prices from different countries and that this exposure depends on the
geographical distribution of its patent-portfolio across countries. The energy price faced
by firm ¢ at time ¢ is therefore computed as the weighted average of energy prices across

countries:

Pit = ZU)ZIZP X Pct (32)

PP

where w;," is a fixed firm-specific patent-portfolio weight for country ¢ and P is the

energy price in country c at time ¢.24 The weight proxies the relative importance of
PP _

country ¢’s market for firm 7’s innovation activity. The weight is calculated as w;,

PP
%, where siIzP is the share of country c in firm i’s overall (that is including all
patents, not only CCT) patent-portfolio®® over the period 1978 to 2009. Furthermore, in

PP

ic
¢’s GDP in world GDP over the same time period, GDP,. Data on the countries’ GDP
is taken from the World Bank’s World Development Indicators (The World Bank, 2015).

order to account for country c¢’s economic size, s;  is weighted by the share of country

The firm-specific weights are time-invariant since siIzP and GDP, are computed using
the patent-portfolio of each firm averaged over the whole sample period as in Barbieri
(2015) and Noailly and Smeets (2015). This approach avoids endogeneity issues that
could arise using time-varying weights. If changes in energy prices affect the relative
importance of countries in the firms’ overall patent-portfolios or the countries’ shares in

world GDP, there might be a feed back of the altered weights into energy prices.

Another approach to avoid this potential endogeneity is to compute the weights using
the patent-portfolio of each firm averaged over a pre-sample period and run the regres-
sions over the residual period as in Aghion et al. (2016). However, this approach has two
disadvantages. First, weights computed over a pre-sample period do not reflect changes
in the patent-portfolio distribution across countries that take place after the pre-sample
period. The shorter the pre-sample period, the larger this problem is. Second, a longer
pre-sample period could alleviate this problem but has the drawback of a shorter es-
timation period which would cover neither the development in CCT patenting in the
1980s (see Figure 3.1) nor the introduction of NOx regulations (see Figure 3.3) in this

period. Therefore, we decided to use in-sample weights.

Following Noailly and Smeets (2015), we measure the effect of the market size on CCT

innovation by using country-year specific data on electricity production. The data is

24 1f there is no energy price available for a country or year, the other energy prices get proportionally
higher weights that add up to 1. This approach is also used for the computation of the other firm-specific
variables.

25 We checked the robustness of our estimation results by using the CCT patent-portfolio instead of
the overall patent-portfolio. Calculating the weights from this narrower patent pool leaves our main
results unchanged.
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obtained from the IEA Energy Balances database (IEA, 2015a) and is measured in TWh

2627 To make market size firm-year specific,

per year. Data is available for 50 countries.
we use the same approach as with prices. That is, we assume that firms’ innovation
decisions are more likely to be influenced by the market size of countries with high
importance for the firms’ innovative activity than of countries with low importance.
Hence, market size for firm i at time ¢ is computed as the weighted average market size

across countries:

My => whl x My (3.3)
(&

PP

where w;," is a fixed firm-specific patent-portfolio weight for country c as in (3.2) and

M, is the market size measured by electricity production in country c at time t.

To examine the influence of emission restricting environmental policies and regulations
on CCT innovation, we use country-year specific dummy variables indicating the years
after the introduction of stringent NOx regulation®® for coal-fired power plants and
the implementation of COz regulation (predominantly cap-and-trade programs), respec-
tively.? Data is taken from Popp (2006) (NOx) and World Bank Group, Ecofys (2014)
(CO2). During our considered time period, 18 of the 60 countries in the data set in-
troduced stringent NO x regulation and 28 implemented COs regulation. To make the
dummy variables firm-year specific, we use the same approach as with prices and elec-
tricity production. Thus, we assume that firms’ exposure to country-specific NOx and
COs regulations depends on the geographical distribution of its patent-portfolio across
countries. The respective dummy variable for firm ¢ at time ¢ is therefore computed
as the weighted average dummy variable across countries based on the importance of

country ¢’s market for firm ¢’s innovation activity:
Dy =Y w/"’ x Dy (3.4)
C

PP

where w;." is a fixed firm-specific patent-portfolio weight for country ¢ as in (3.2) and

(3.3)3Y and D, is the dummy variable in country ¢ at time ¢.

26 For the EPO we construct data on electricity production by adding up production from EPO
member states.

2T Using the share of coal in electricity production as a proxy for the size of the potential market
for CCT innovations would be preferable. However, since data on electricity production from coal is
available only for a fraction of countries and years, we decided to use total electricity production.

28 In order to capture the impact of air pollution regulation on CCT innovation, one would ideally
control for both NOx and SO: regulation. However, comparable data for stringent SO2 regulation is
not available. Since historically there were strong linkages between the introduction of NOx and SO2
regulation, we decided to use stringent NOx regulation as a proxy for both.

29 For the EPO we construct these variables using the mean of the respective GDP-weighted dummy
variables from EPO member states.

39 We use the same patent-portfolio weights to compute the firm-year specific energy price, electricity
production, and regulatory variables because we think that firms’ exposure to these determinants has
the same driver, that is the geographical distribution of patenting across countries. Since we have no
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Finally, to analyze the influence of government R&D on CCT innovation, we use coal
country-year specific government R&D expenditures. Since no data is available for CCT-
specific R&D expenditures, we use coal combustion plus CCS R&D expenditures as a
proxy. The data is drawn from the IEA Energy Technology R&D database (IEA, 2015b)
and contains the annual national government expenditures on coal combustion plus CCS
research, development, and demonstration in million USD (2014 prices and PPP). Data is
available for 28 countries.?! The expenditures are made firm-year specific using a similar
approach to that for prices, electricity production, and regulatory variables. However,
now we incorporate information on the geographical location of patent inventors, that is,
where the inventors worked at the discovery of the invention, to construct firm-specific
weights (Aghion et al., 2016). The underlying theory is that patent inventors are more
likely to benefit from government R&D subsidies in a country they work in than from
R&D subsidies in other countries. Hence, we assume that firms’ are differently exposed
to government R&D subsidies from different countries and that this exposure depends
on the geographical distribution of its various patent inventors across countries. Thus,

government R&D expenditures faced by firm ¢ at time ¢ are:
RDiyy =Y w/, x RDy (3.5)
C

I

where wj, is a fixed firm-specific inventor weight for country ¢ and RD. is the R&D

expenditure in country c at time t. The weight proxies the relative importance of country
I
. . . . . I 5, xGDP,
c in firm ¢’s pool of inventors. The weight is calculated as w;, = S ST <GDP,’

silc is the share of all firm i’s inventors in country c over the period 1978 to 2009.3% In

where

order to account for country c¢’s economic size, s!, is weighted by the share of country
¢’s GDP in world GDP over the same time period, GDP,.%3

After matching the patent data with energy prices, electricity production, regulatory
variables, and government R&D, our final panel data set contains 7,894 high-value CCT
first priority patents filed by 3,648 firms across 55 patent offices over the period 1978 to

good theory why the exposure would have different drivers, we decided not to use different weights
for a robustness test. Using the same weights could of course create multicollinearity problems among
these explanatories. However, as multicollinearity problems only arise if the number of observations
is low or if the correlation between explanatory variables is high and since we have a large number of
observations and since the correlation among our explanatories is fairly low (see Table B.5 (Appendix)),
multicollinearity is very unlikely to pose a problem for our estimations (see, for example, Wooldridge,
2016).

31 For the EPO we construct coal R&D expenditures by adding up expenditures from EPO member
states.

32 If a patent is filed by multiple inventors, we count inventor countries fractionally. This avoids giving
a higher weight to a patent filed by multiple inventors compared to one filed by just one inventor.

33 Note that the inventor weight w’. in equation (3.5), which is based on the distribution of a firm’s
various inventors across countries, is very distinct from the patent-portfolio weight whr in equation
(3.2), (3.3), and (3.4), which is based on the distribution of a firm’s patent-portfolio across countries.
Figure B.1 (Appendix) shows for the USA, that these distributions vary considerably across firms.
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2009. In total (all patents, not only CCT), these firms have filed 832,621 first priority

patents over the same period. Table 3.3 reports summary statistics for the sample.

Table 3.3: Summary statistics for all 3,648 firms from 1978 to 2009.

Mean Std. dev. Min. Max.
CCT patents 0.07 0.57 0.00 36
CCT knowledge stock 0.51 3.34 0.00 139
Total patents 7.36 89.24 0.00 8163
CCT-related government R&D 151.88 418.36 0.00 3511
Energy price 91.12 12.74 51.35 149
Electricity production 2559.84 668.67 16.40 4343
NOx dummy 0.53 0.31 0.00 1
CO2 dummy 0.07 0.18 0.00 1
Observations 113035

Note: Energy prices are an index with the base 2005 including taxes. Electricity production is in
TWh/year. CCT-related government R&D is in 2014 million USD (PPP).

Source: Authors’ calculations, based on PATSTAT, IEA Energy Technology R&D, IEA Energy Prices
and Taxes, IEA Energy Balances, Popp (2006) and World Bank Group, Ecofys (2014).

3.3.2 Descriptive Statistics
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Figure 3.1: Total number of PCC, FBC, IGCC, EOP, and CCS priority patent appli-
cations (claimed priorities) filed worldwide of all firms, 1978-2009. Source: Authors’
calculations, based on PATSTAT.

Figure 3.1 shows the trends in annual priority patent counts of the considered CCT.

Consistent with Voigt et al. (2008), we observe that the different CCT peak at different
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points in time. PCC peaks in the early-1980s and FBC in the early- and almost again
in the late-1980s. IGCC shows a positive trend since the beginning of the early-1990s
and peaks at the end of the sample period. The developments allow to identify three
generations of the EI technologies. From the AP technologies EOP peaks in the mid-
1980s and almost again in the mid-1990s and late-2000s but never drops under a level of
about 50 patents per year. CCS stays nearly constant until the late-1990s and increases

significantly afterwards.

Table 3.4: Top ten inventor firms in CCT.

Firm Rank CCT Other Total Relative Relative
patents patents patents share of share in

CCT in world CCT

total inventions

inventions
Mitsubishi 1 377 26,680 27,057 1.39 4.78
Alstom 2 252 1,689 1,941 12.99 3.19
Babcock & Wilcox 3 252 926 1,178 21.36 3.19
Siemens 4 233 42,996 43,229 0.54 2.95
Asea Brown Boveri (ABB) 5 218 4,056 4,274 5.09 2.76
Foster Wheeler 6 199 177 375 52.93 2.52
General Electric (GE) 7 132 17,481 17,613 0.75 1.67
Hitachi 8 125 33,731 33,856 0.37 1.58
Royal Dutch Shell 9 95 5,619 5,713 1.66 1.20
Combustion Engineering 10 91 482 573 15.88 1.15
Total — 1,974 133,837 135,809 1.45 24.99

Note: The table reports the top ten CCT patent holders based on total number of CCT prior-
ity patent applications (claimed priorities) filed worldwide by all firms from 1978 to 2009. It also reports
the total number of total priority patent applications (including CCT and other patents; claimed
priorities) filed worldwide by these firms from 1978 to 2009.

Source: Authors’ calculations, based on PATSTAT.

Table 3.4 shows the top ten inventor firms in CCT, which together account for one
quarter of worldwide CCT inventions during the sample period. The firms are listed in
declining order of their rank. In addition, the total number of patents is reported so that
the relative share of CCT patents in total inventions can be computed. Looking at the
results, a great heterogeneity between the firms can be observed. The firms differ greatly
with respect to their overall innovative activity ranging from 375 (Foster Wheeler) to
43,229 (Siemens) patents. The relative share of CCT inventions ranges from at most
52.93% to 0.54%, again attributable to Foster Wheeler and Siemens respectively. This
reflects the fact that the top ten is composed of firms focusing on CCT innovation on
the one hand and others having an overall high propensity to patent innovations on the
other hand. Both factors are expected to influence patent filings in CCT. The market
leader in CCT is Mitsubishi with 377 patents, followed by Alstom and Babcock & Wilcox
with more than 250 patents in this field. Regarding total patents, Hitachi, Mitsubishi,
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and General Electric have the highest innovative activity after Siemens, all exhibiting

five-figure patent numbers. The other listed firms patent significantly less.

Table 3.5: Geographical coverage of CCT patent protection across top twenty countries
respectively patent offices for all firms from 1978 to 2009.

Country Share | Country Share
USA 81% | Denmark 10%
EPO 69% | United Kingdom 9%
Japan 57% | Russia 9%
Germany 44% | Brazil 9%
Canada 42% | South Africa 8%
China 35% | Mexico 8%
Australia 31% | France 8%
South Korea 16% | Norway 7%
Spain 15% | Finland 6%
Austria 13% | Poland 6%

Note: The patents in our data set are claimed priorities, that is patents filed in at least two
offices. The table reports the share of these patents that are filed in the top 20 countries respectively
patent offices.

Source: Authors’ calculations, based on PATSTAT.

As described in the section on data sources, we know for every CCT first priority patent
in our data set whether the invention subsequently has also been protected in any of the
other considered 93 patent offices. Accordingly, Table 3.5 summarizes the geographical
coverage of CCT patent protection across the main countries from 1978 to 2009. More
than 80% of CCT inventions are filed, amongst other countries, in the USA. EPO is the
second most important patent office covering nearly 70% of CCT patents of the sample.
Other countries holding high shares include Japan (57%), Germany (44%), and Canada
(42%). While about one third of the patents is filed in China and Australia, all other

countries are characterized by lower coverage of patenting activity.

Turning to the demand-side effects, Figure 3.2 displays the average firm-level develop-
ment of the weighted average real steam coal end-use price as well as the real total energy
end-use price for all firms in the sample from 1978 to 2009. The coal price increases
sharply until the early-1980s before entering a long period of decline which was mainly
caused by technological progress and excess capacities (Ellermann, 1995). During the
2000s, the coal price again increases substantially starting from 30 USD per tonne in
1999 and peaking at nearly 80 USD per tonne in 2009. The reason for the increasing
price trend can be found in the low level of investments in the period with depressed
prices and a subsequent rapid increase in coal demand, especially from newly industri-
alizing countries (Warell, 2006). The data thus provides a great amount of variation
which will be useful in determining the effect of changes in the coal price on innovation.
However, as discussed before, the coal price would be preferable but because of the

mentioned information gaps the total energy price will be used in the empirical analysis
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Figure 3.2: Average firm-level development of the weighted average real total energy

end-use price (index with base year 2005) and real steam coal end-use price for all firms

(USD per tonne, 1996 prices and PPP), 1978-2009. Source: Authors’ calculations,
based on PATSTAT and IEA Energy Prices and Taxes.

instead. Since both variables follow a very similar trend, we consider the total energy

price to be a good proxy for the coal price.

Figure 3.3 depicts further demand-side determinants, namely the average firm-level de-
velopment of the weighted average NOx and CO9 dummy variables for all firms in the
sample from 1978 to 2009. The firm-specific dummies depend on the introduction of
NOx and CO3 regulations in all countries with importance for the firms’ overall innova-
tions. Therefore, the developments in countries with a larger coverage of patents have a
larger effect on the average firm-level dummies. Chronologically, NO x regulation kicks
in first in 1983 (Germany and Switzerland). Other countries follow among which Japan
(1996) and the USA (1998) can be found. As the three individually most important
countries have implemented NO x regulations, the dummy variable jumps to the value
0.8 in 1998. Regulation on COs was almost exclusively implemented in the European
Union with the introduction of the cap-and-trade system in 2005. This is reflected in a

dummy variable of about 0.4 from 2005 onwards.
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Figure 3.3: Average firm-level development of the weighted average NOx and COs
dummy variables for all firms, 1978-2009. Source: Authors’ calculations, based on
PATSTAT, Popp (2006), and World Bank Group, Ecofys (2014).

3.4 Empirical Strategy and Results

In this section we specify the empirical model and discuss the estimation method. Then
we present the estimation results of our baseline specifications and conduct a number of

robustness tests.

3.4.1 Empirical Model

Given the hypotheses stated in Section 3.2 and the variables described in Section 3.3.1,

our empirical model can be specified as follows:

PAT;j = exp(Bo + B1in P14 Poln Kij—1 + f3Iln RDjy 1 + B4 InTPAT, 4
+ BsIn M1 + B6 CO24 + B7 NOxiy + 7 + ;) + uije

where i, j, and t index the firm, technology, and time, respectively. PAT is the an-
nual firm-level patent count for technology j and T PAT is the annual firm-level patent
count for all patents. K represents the end-of-period knowledge stock as defined in
Equation 3.1. P, RD, and M denote the weighted firm-year energy price, the weighted

firm-year government R&D expenditures, and the weighted firm-year market size as
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defined in Equations 3.2-3.4. CO2 and NOx are dummy variables indicating the imple-
mentation of COg regulations (mainly cap-and-trade programs) and (stringent) NOx
regulations, respectively. Like the energy price and the market size, the dummy vari-
ables are weighted by the share of firm ¢’s patent filings in country ¢ and country c’s
economic importance (that is, share in world GDP). 7 and 7 capture unobserved firm-
and time-specific heterogeneity and u;;; is a standard error term. The variables P, K,
RD, TPAT, and M are lagged by one year in order to mitigate any reverse causality

problems.

Given the count data nature of our dependent variable we use count data techniques to
estimate Equation 3.6. A standard approach for panel data is the Poisson fixed effect
count data estimator developed by Hausman et al. (1984). However, this estimator
requires strict exogeneity of all regressors to be consistent. In our model, the regulatory
variables (CO2 and NOzx) and the market size variable M are unlikely to be strictly
exogenous. In addition, as the knowledge stock variable K is a function of the lagged

dependent variable, it is predetermined.

To account for this problem, Blundell et al. (1995, 2002) proposed an alternative es-
timator: the pre-sample mean (PSM) scaling estimator. This estimator relaxes the
strict exogeneity assumption by modeling firm heterogeneity via pre-sample information
on the firm’s patenting activities. Following this approach, the firm-specific effects in

Equation 3.6 are defined as:

ni = 01In PAT;; + 0 D(PAT;; > 0) (3.7)

where PAT;; = (1/N) Zivzl PAT;j, is the pre-sample mean of patent applications by
firm 4, technology j, and year n. IN is the number of pre-sample observations and D is

a dummy variable equal to one if the firm ever patented in the pre-sample period.

Another econometric issue that needs to be addressed is possible overdispersion in the
data. A standard Poisson regression model assumes equidispersion, that is, the mean
and the variance of the counts are equal. However, in many real data applications the
variance is greater than the mean, which is named overdispersion. In this case the
standard Poisson regression model yields inefficient estimates with downwardly biased

standard errors.

A model that relaxes the equidispersion assumption of the standard Poisson regression
model is the negative binomial regression model. The model includes a so called dis-

persion parameter «, that allows the variance and the mean of the counts to differ from
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each other. If « is equal to zero, the negative binomial model reduces to the Poisson

model (see, for example, Long and Freese, 2014).

3.4.2 Empirical Results

The estimation results of our empirical model are presented in Table 3.6. We estimate
the model defined in Equation 3.6 separately for EI-CCT and AP-CCT as well as for all
CCT together. Pre-estimation analyses of the data reveal that for CCT and EI-CCT the
variance of the patents counts is about five times higher than the mean. For AP-CCT it is
about 2.5 times higher. For this reason, we start our empirical analysis with a comparison
of the PSM Poisson and negative binomial regression results. Several standard tests for
model selection, the Akaike Information Criteria (AIC), the Baysian Information Criteria
(BIC), and the likelihood-ratio (LR) test of including the overdispersion parameter « in
the model are reported in Table 3.6. For all technology groups the null hypothesis of «
equal to zero is strongly rejected. Furthermore, the AIC and BIC statistics are always
lower for the negative binomial than for the Poisson regression model. These results
consistently indicate that the negative binomial regression model is preferred over the

Poisson regression model.

Column (3) in Table 3.6 reports the negative binomial estimation results for all CCT
together. As the explanatory variables enter the estimations in log form, the estimated
coefficients can be interpreted as elasticities. Interestingly, the energy price has a neg-
ative and statistically significant impact on CCT patent activities. While this seems
counterintuitive at first glance, the estimated price coefficients for the EI-CCT and AP-
CCT models in Column (5) and (7) reveal that this result is driven by the price reaction
of patent activities in AP technologies. The energy price has no significant impact in
the EI-CCT model but a relatively high negative and strongly significant impact in
the AP-CCT model. The estimated elasticity of -2.155 suggests that a 1% increase in
energy prices results in an approximately 2% decrease in AP patent activities. This
result is in line with our hypothesis that higher energy prices lead to less innovation in
AP technologies, since these make electricity production from coal even more expensive.
Nevertheless, the insignificance of the energy price in the EI-CCT model is unexpected.
In general, we would expect a positive impact of higher energy prices on patent activi-
ties, since innovation in EI-CCT aims at producing electricity from coal more efficiently,

that is with less energy (coal) input.

For the knowledge stock and total patents we observe a common result for both tech-
nology groups. The corresponding coefficients are positive and statistically significant

at the 1% level in all models. In the preferred negative binomial regression models the
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Table 3.6: Baseline results for CCT, EI-CCT, and AP-CCT.

CCT EI-CCT AP-CCT
Poisson NegBin Poisson NegBin Poisson NegBin
Energy price;—1 —1.094 —1.839"** —0.513 —1.250 —1.514 —2.155™*
(log) (1.145) (0.684) (1.759) (1.095) (1.056) (0.845)
Knowledge stock:—_1 0.844*** 0.954*** 0.883™** 0.996™* 0.892*** 0.964***
(log) (0.049) (0.038) (0.066) (0.053) (0.051) (0.049)
Public R&D;—1 —0.039"*~ —0.066™*~ —0.059""* —0.088™** —0.033*" —0.048™**
(log) (0.013) (0.009) (0.016) (0.013) (0.015) (0.012)
Total patentss—1 0.319*** 0.390*** 0.325"** 0.371%** 0.310*** 0.341***
(log) (0.024) (0.018) (0.025) (0.022) (0.018) (0.017)
Electricity prod.;—1 —0.020 —0.059 0.017 —0.011 —0.062 —0.091"
(log) (0.049) (0.037) (0.083) (0.067) (0.054) (0.048)
CO, resulation 0.808** 0.519*** 1.138"** 0.777 0.761**~ 0.502**
2 18 (0.335) (0.171) (0.416) (0.254) (0.281) (0.208)
NO~ resulation 0.457*** 0.518™** 0.239 0.311 0.621**~ 0.631***
x reg (0.158) (0.135) (0.217) (0.201) (0.203) (0.182)
Pre-sample mean —0.256 —0.924** 0.235 —0.657 —0.963*** 11717
P (0.408) (0.363) (0.461) (0.487) (0.331) (0.334)
Pre-samble dumm 0.219* 0.150 —0.092 0.069 0.163 0.057
P Yo (0.128) (0.101) (0.209) (0.138) (0.112) (0.097)
Constant 2.083 6.370" —1.102 3.147 4.483 8.029**
(5.637) (3.266) (8.735) (5.392) (5.173) (3.970)
Log-likelihood -16735 -15924 -8415 -7888 -9577 -9384
Overdispersion 0.943 1.115 0.772
parameter «
1622*** 1055™** 387
LR-test of a =0 (0.000) (0.000) (0.000)
AIC 33540 31920 16900 15847 19224 18839
BIC 33870 32259 17206 16162 19535 19159
Observations 91219 91219 46043 46043 53375 53375
Firms 3638 3638 1820 1820 2138 2138

Notes: Estimation time span: 1983-2009. All models control for unit-specific fixed effects by
using PSM information on the first 5 years available (1978-1982). All models include a full set of time
dummies (not reported). Robust standard errors clustered at the firm-level are in parentheses. ***
*% and *: Significant at the 1%-, 5%-, and 10%-level. For likelihood-ratio test of o = 0, Prob > x? in
parentheses. AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion.
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estimated elasticities for the knowledge stock between 0.954 and 0.996 suggest that a 1%
increase in knowledge stock is associated with an approximately 1% increase in patent
activities. The corresponding elasticities for total patents vary between 0.341 in the
AP-CCT model and 0.390 in the CCT model. These findings are consistent with pre-
vious research (see, for example, Popp, 2002, Verdolini and Galeotti, 2011) and confirm
our hypotheses that innovation in CCT is positively affected by both the scientific and

technological capacity and the overall propensity to patent of the firms.

A different picture emerges for public R&D expenditures. A negative and statistically
significant impact is shown in the CCT, EI-CCT, and AP-CCT model. Although we did
not expect such a result, it may indicate that public R&D expenditures have a crowding-
out effect on private R&D expenditures (Popp, 2002). Nevertheless, the magnitude of the
coefficients is rather small suggesting that from an economic point of view public R&D
expenditures do not really affect firm-level patent activities in CCT. A similar result
is observed for the potential market size. In contrast to our hypothesis, the negative
coefficients for electricity production indicate a negative impact of the potential market
size on innovation activities in CCT. However, the coefficients are small in magnitude

and only statistically significant at the 10% level in the AP-CCT model.

Referring to our regulatory variables, implementation of COs regulation and implemen-
tation of NOx regulation, the estimated coefficients for the different technologies provide
some interesting results. The estimated coefficients for COy regulation are positive and
statistically significant in all models, as expected. For NOx regulation a positive impact
is shown in the CCT and AP-CCT model only. This outcome can be explained by the

specific focus of AP technologies on SO and NOyx abatement processes.

In our baseline models firm-specific fixed effects are captured by two pre-sample vari-
ables: the firm’s average patent count in CCT in the pre-sample period and a dummy
variable equal to one if the firm ever patented in CCT in the pre-sample period. We find
statistically significant coefficients for the pre-sample mean in the CCT and the AP-CCT
model indicating that the applied pre-sample mean estimator is able to capture at least

some of the unobserved firm heterogeneity in our sample.

As a robustness check of this approach, we re-estimate the preferred negative binomial
regression models with a different specification of the pre-sample variables. Instead of
using pre-sample information on CCT patent activities, we now use pre-sample infor-
mation on patent activities in general. The results are presented in Columns (2)-(4) in
Table 3.7. As shown, the magnitude as well as the sign of the statistically significant
coefficients are robust to this alternative specification. Only for electricity consumption
a change in significance is observed. The coefficient is not statistically significant any

more in the AP-CCT model. Furthermore, the pre-sample variables are statistically
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Table 3.7: Robustness results for different pre-sample specification and exclusion of top
innovative firms.

Pre-sample information: total patents Without top ten CCT firms
CCT EI-CCT AP-CCT CCT EI-CCT AP-CCT
Energy price:—1 —1.706™" —1.011 —2.107*" —1.785™** —1.455 —1.976™"
(log) (0.690) (1.099) (0.864) (0.671) (1.018) (0.826)
Knowledge stock:—1 0.925*** 0.966™** 0.915™** 0.953™* 0.997*** 0.956™**
(log) (0.034) (0.043) (0.044) (0.039) (0.050) (0.052)
Public R&D;—1 —0.066™"" —0.087"** —0.049*** —0.072™** —0.097"*" —0.052"*"
(log) (0.009) (0.013) (0.012) (0.009) (0.013) (0.012)
Total patents:—1 0.417** 0.402*** 0.359*** 0.401%** 0.369*** 0.337**
(log) (0.020) (0.027) (0.022) (0.017) (0.022) (0.017)
Electricity prod.;—1 —0.046 0.012 —0.080 —0.065" —0.035 —0.092"*
(log) (0.039) (0.070) (0.050) (0.037) (0.066) (0.047)
CO, resulation 0.528*** 0.792*** 0.505*" 0.521™** 0.723*** 0.500**
2 Teg (0.176) (0.261) (0.212) (0.165) (0.233) (0.200)
NO~ resulation 0.422*** 0.254 0.519"** 0.555"** 0.391* 0.660"**
x reg (0.136) (0.202) (0.183) (0.137) (0.207) (0.185)
Pre-sample mean —0.593*** —0.518"** —0.487*** —1.246™** —1.419"* —0.965"
p (0.110) (0.146) (0.117) (0.342) (0.562) (0.526)
Pre-sample dumm 0.464*** 0.397*** 0.422*** 0.130 0.171 —0.049
P Yo (0.075) (0.111) (0.080) (0.087) (0.123) (0.098)
Constant 5.642* 1.787 7.746™ 6.170" 4.353 7.229”
(3.302) (5.418) (4.068) (3.211) (5.006) (3.869)
Log-likelihood -15894 -7873 -9371 -15094 -7128 -8875
Observations 91219 46043 53375 90959 45783 53115
Firms 3638 1820 2138 3628 1810 2128

Notes: Estimation time span: 1983-2009. All models control for unit-specific fixed effects by
using PSM information on the first 5 years available (1978-1982). All models include a full set of time
dummies (not reported). Robust standard errors clustered at the firm-level are in parentheses. *** **
and *: Significant at the 1%-, 5%-, and 10%-level.

significant in all models. This suggests that the pre-sample information on patent ac-
tivities in general is an even better indicator for unobserved firm heterogeneity than the

pre-sample information on patent activities in CCT only.

The second robustness test we conduct is the exclusion of the top ten innovative firms
in CCT. These firms are responsible for approximately 25% of all CCT patents in the
sample and thus may bias some of our baseline results. As seen in Columns (5)-(7) in
Table 3.7, our main results carry over. In addition, the weak statistical significance of
electricity production in the AP-CCT model is back and NOx regulation is shown to

be statistically significant in all models.
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Table 3.8: Robustness results for different lagged and forward values of the energy

price, public R&D expenditures, and electricity production.

CCT ELCCT AP-CCT
. —1.839%** ~1.250 —2.155"**

Energy price;—1 (log) (0.684) (1.095) (0.845)
. —1.955* —1.641 —2.140"**

Energy price;— (log) (0.653) (1.012) (0.825)
. —2.392"** —2.510" —2.263"*

Energy price,—3 (log) (0.660) (0.998) (0.844)

. —1.314* —0.511 —1.704"

Energy price;+1 (log) (0.743) (1.198) (0.894)
. —0.066"* —0.088"* —0.048"**

Public R&D;—1 (log) (0.009) (0.013) (0.012)
. —0.056™** —0.077*** —0.038"***

Public R&D:—» (log) (0.010) (0.014) (0.013)
. —0.048"** —0.066"** —0.033"*

Public R&D;3 (log) (0.010) (0.015) (0.014)

. —0.059 —0.011 —0.091"

Electricity prod.:—1 (log) (0.037) (0.067) (0.048)

. —0.052 —0.007 —0.092"

Electricity prod.;—2 (log) (0.037) (0.064) (0.048)

. —0.048 ~0.012 —0.088"

Electricity prod.;—3 (log) (0.039) (0.065) (0.049)
. —0.083" —0.046 ~0.109"*

Electricity prod.:+1 (log) (0.040) (0.069) (0.052)

Notes: Estimations are based on the same specification as in Table 3.6.

To conserve space only

the coefficients for the different lagged and forward values of the energy price, public R&D expenditures,
and electricity production are presented. The complete tables are available from the authors upon
request. Robust standard errors clustered at the firm-level are in parentheses. *** ** and *: Significant
at the 1%-, 5%-, and 10%-level.

Given the somehow unexpected results for the energy price, public R&D, and market
size in some of our baseline models, we complete our robustness analysis with alternative
specifications on the lag structure of these variables. More specifically, we re-estimate
our baseline negative binomial specification with a two-year and three-year lagged energy
price, public R&D, and market size (electricity production) variable. Furthermore, as
firms rather consider the future than the past for their innovation decisions, we also
estimate model specifications with forward values, that is, values in ¢ 4+ 1, for the energy
price and the market size. Of course, the utilization of forward values as a proxy for the
firm’s expectations assumes that the expected value in the future is equal to the realized

value in the future.
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The estimated coefficients for the different lag and forward structures of the energy price,
public R&D, and electricity production variables are depicted in Table 3.8. As shown,
our baseline results are left intact. The estimated coefficients for all lagged and forward
values of the energy price indicate a negative impact of higher energy prices on patent
activities in the AP-CCT model. Except for the third lag, the coefficients for EI-CCT
are not statistically significant. In the case of public R&D expenditures the magnitude
of the coeflicients gets smaller with increasing lags. Finally, the coefficients for all lagged
and forward values of electricity production indicate a statistically significant negative

impact of market size on patent activities in the AP-CCT model at the 10% level.

3.5 Conclusions

In this article, we empirically analyzed the determinants of innovation in clean coal
technologies. We conducted our analysis on a panel of 3,648 firms which filed 7,894
CCT patents across 55 patent offices over the period 1978 to 2009. We examined supply-
side and demand-side factors expected to affect innovation in CCT. Our contribution
to the literature is 3-fold. First, we investigate the determinants of CCT innovation
directly at the firm-level. Second, our analysis builds on an almost entire population of
all CCT patents filed worldwide in the considered period. Third, we provide interesting

descriptive evidence on firms’ global CCT patenting behavior.

Overall, our results show that a number of supply- and demand-side factors influence
firm-level patenting activities in CCT. On the supply-side we find evidence that firms
with a higher technological capacity, that is a longer history of patent activities in CCT
and a higher overall propensity to patent, are more active in CCT innovation than
others. This finding confirms previous results for other technologies and is in line with
the technology-push hypothesis stating that innovation activities are path dependent
and build on existing knowledge. Public policies should keep this in mind and create a
research friendly economic environment that fosters the private generation of scientific

and technological knowledge and enables firms to exploit their existing knowledge base.

Another supply-side policy that is usually assumed to push private innovation activi-
ties is public R&D spending. However, for CCT we do not find such an impact. On
the contrary, our findings suggest that public R&D spending reduces or ‘crowds-out’
private R&D investments and thus reduces private innovation activities. Nevertheless,
this potential crowding-out effect seems to be very small and, hence, is economically

negligible.



Chapter 3. Innovation in Clean Coal Technologies: Empirical Evidence from
Firm-Level Patent Data 63

Referring to the demand-side, we find a strong relationship between emission restricting
regulations and CCT innovation. Regulation of CO2 emissions has a positive impact on
CCT patenting activities in general and NOx regulation has a positive impact on AP-
CCT innovation. Given the ongoing high dependence of worldwide electricity production
on coal-fired power plants, this finding emphasizes the importance of strict environmental

regulations on the way towards a cleaner electricity system.

For energy prices a diversified picture emerges. Our hypothesis was that higher energy
prices have a positive impact on input-saving EI-CCT innovation and a negative impact
on post-combustion AP-CCT innovation. However, the findings only support the lat-
ter. As AP technologies make electricity production from coal even more expensive, an

increase in energy prices leads to less innovation in these technologies.

The outcome that we do not find a positive impact of increasing energy prices on EI-
CCT innovation may be due to two effects. On the one hand, we would expect that
increasing energy prices induce innovation in input-saving EI-CCT, as stated in our ini-
tial hypothesis. On the other hand, increasing energy prices may indicate a stronger
support of public authorities for other less polluting types of electricity generation tech-
nologies, in particular electricity generation from renewables and natural gas. In this
case, increasing energy prices would have a negative impact on coal-burning patenting
activities in general. The two effects are opposed to each other and, hence, may cancel

each other out.

Finally, referring to market size, our results contradict the hypothesis that a potentially
larger market size leads to more innovation in CCT. We either find no statistically signif-
icant impact or a slightly significant negative impact. We do not have an explanation for
this result. However, as both the statistical significance and the economic significance

are very low, this unexpected result should not be taken too seriously.

Further research in this field should examine the impact of environmental regulations on
the diffusion of CCT. In this study we analyzed one stage of technological progress, that
is, innovation. The following stage is diffusion. It would be interesting to analyze how
environmental regulations influence the adoption of new CCT in electricity production
processes. Another promising path for additional research is the analysis of spillover

effects among the firms.






Chapter 4

Innovation in Green Energy
Technologies and the Economic

Performance of Firms

4.1 Introduction

Recent empirical economic literature has focused to a great extent on the determinants
and inducement mechanisms of innovation in green energy (GE) (or environmental,
or eco-) technologies. A large number of contributions provides a robust understand-
ing of factors determining and policies inducing GE innovation (see, for example, Jaffe
and Palmer, 1997, Johnstone et al., 2010, Popp, 2002, Verdolini and Galeotti, 2011).
However, little attention has been devoted to the economic effects of GE innovation,
especially to the relationship between innovating in GE technologies and the economic
performance of the innovating firms. Understanding this relationship helps to answer the
widely debated question in the literature on green innovation (see, for example, Marin
and Lotti, 2016, Worter et al., 2015), whether firms gain (forgo) economic opportunities

by innovating (not innovating) in GE technologies.

This article empirically investigates the impact of innovation in GE technologies on the
economic performance of firms. In addition, the impact of GE innovation is compared
to the one of non-GE innovation. I analyze a panel of 8,619 patenting firms from
22 Furopean countries over a period of 8 years from 2003 to 2010. Economic firm
performance is measured in terms of productivity. Using productivity as performance
indicator has several advantages. First, results from production function approaches are
easily interpretable and comparable to other studies (Bloom and Van Reenen, 2002).

Second, firm performance is mainly driven by productivity trends which are closely
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linked to innovation dynamics (Cainelli et al., 2011). Furthermore, compared to data on
market valuation, data on productivity is available for a large number of firms including
medium- and small-sized ones. I specify a panel data model based on an extended Cobb-
Douglas production function in which productivity is a function of capital, labor, and
innovation output. Firm accounts data is taken from the AMADEUS database provided
by Bureau van Dijk (BvD). Innovation at the firm level is measured using patent data
from the Organisation for Economic Co-operation and Development (OECD) REGPAT

database.

My work is related to two strands of empirical literature on innovation and economic firm
performance. The link between innovation and economic performance at the firm level
has been analyzed in a large number of empirical economic articles (see, for example,
Bloom and Van Reenen, 2002, Blundell et al., 1999, Comanor and Scherer, 1969, Ernst,
2001, Griliches, 1981, Griliches et al., 1991, Hall et al., 2005, Lanjouw and Schankerman,
2004, Scherer, 1965). The majority of these investigations identifies a positive relation-
ship between innovative output and economic performance. However, since these studies
focus on general innovation, the results cannot be simply transferred to GE innovation.
There are fewer articles exploring the relationship between GE (or environmental or eco)
innovation and economic firm performance. Ayari et al. (2012) investigate the impact
of renewable energy innovation (patents) on firm performance (return on assets, stock
market return) using a panel of 154 firms from 14 European countries (1987-2007). They
find evidence that renewable energy innovation has a significant positive impact on both
measures of firm performance. Marin (2014) analyzes the effect of environmental and
non-environmental innovation (patents) on firm performance (value added) for a panel
of 5,905 Italian firms (2000-2007). He shows that environmental innovation in most
cases has no significant effect on firm performance, while non-environmental innovation
has a positive effect. In a very similar study Marin and Lotti (2016) analyze the same
relationship using a larger and longer panel of 11,938 Italian firms (1996-2006). They
find positive impacts of both environmental and non-environmental patenting, while
observing a substantially lower return for environmental patents. Worter et al. (2015)
examine the link between environmental innovation (patents) and performance (value
added) on the industry-level. Their analysis is conducted on a panel of 22 manufactur-
ing industries from 12 OECD countries (1980-2009). In contrast to Ayari et al. (2012)
and Marin and Lotti (2016), they find that green innovation is negatively related to
performance for most industries. Overall, the empirical evidence concentrating on GE

innovation can thus be described as ambiguous.

This study contributes to the existing literature in three respects. First, I provide new
evidence on the unsolved question how innovation in GE technologies impacts firms’ eco-

nomic performance. Second, the impact of GE and non-GE innovation on performance
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is compared. Moreover, as robustness check I distinguish two subgroups of GE technolo-
gies: (a) Renewable Energy Sources (RES) and (b) Energy Efficiency (EE) technologies.
Third, I base my analysis on a comparatively large and broad panel of 8,619 European
patenting firms including 968 GE patenters from 22 countries over an estimation period
of 8 years (2003-2010) and a patent count period of 32 years (1977-2010).

The remainder of the article is structured as follows. Section 4.2 outlines the theoretical
background my analysis is based on. Section 4.3 presents and discusses the data. Sec-
tion 4.4 describes the empirical strategy employed. Section 4.5 discusses the results of
the econometric estimations and of the robustness tests. Finally, Section 4.6 summarizes

the main findings and concludes.

4.2 Theoretical Background

Innovative activity in market economies to large parts exists because private profit-
maximizing firms allocate resources to the research and development (R&D) of new
products and processes, for which they see innovation opportunities and market success
and consequently expect a positive impact on future economic performance, that is
positive private returns (Dosi, 1988). The resulting innovation output of private firms is
widely believed to be an important source of economic wealth and growth in economies
(see, for example, Romer, 1986, 1990). In addition, innovation in the subgroup of GE
technologies is acknowledged to be a crucial factor for handling climate change while
maintaining reasonable economic growth (so called green growth) (see, for example,
Acemoglu et al., 2012, Jaffe et al., 2002, Popp et al., 2010).

Private profit-maximizing firms decide about R&D investments solely on the basis of
private returns. Therefore, a firm deciding about two R&D investment projects, one a
GE option and one a non-GE option, would always choose the option with the higher
private return, even though the GE option might have higher social returns (the sum of
both private and non-private returns). Higher social returns for a GE compared to a non-
GE option can result from higher non-private economic returns due to positive innovation
spillovers and the internalization of negative environmental externalities (Dechezleprétre
et al., 2014). As a consequence, private R&D investments in GE technologies depend
on the private return of these investments compared to the private return of non-GE

investments.

In economic theory, arguments can be found in favor and against higher private returns
of GE compared to non-GE innovation. Higher returns may be expected because: (a)

GE technologies are newer and less explored than other technology fields. Therefore,
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research in GE technologies builds on a lower knowledge stock than research in more
mature technologies. This could imply greater development perspectives and opportu-
nities for high marginal private returns (Popp and Newell, 2012). (b) GE technologies
bear the potential of having an impact on many sectors and becoming general purpose
technologies. General purpose technologies are expected to generate large economic
gains (Helpman, 1998). (c) Markets are increasingly shaped by strict environmental
regulations. This induces a larger demand for GE technologies and hence increases the

probability of higher private returns from GE innovation (Colombelli et al., 2015).

Contrariwise, lower returns could arise because: (a) GE technologies often are new to
a firm and lie outside their traditional technological scope. In addition, adjustments of
business processes, working routines, employment, and organizational structures may
be necessary. This could lead to large adjustment costs (Noci and Verganti, 1999). (b)
Financial markets are usually imperfect with regard to technological innovation. These
market imperfections are even more pronounced for GE innovation due to the higher
technical risk and uncertainty about market developments. This may imply high costs

of capital (Worter et al., 2015).

Thus, I derive two rival hypotheses: H1: Private economic returns measured in terms of
productivity are higher for GE than for non-GE innovation, and H2: Private economic
returns measured in terms of productivity are lower for GE than for non-GE innovation.

This work aims to find out which of these hypotheses is right.

4.3 Data

4.3.1 Data Sources

To analyze the impact of GE innovation on the economic performance of firms, I combine
two different databases and construct a unique firm-level data set that matches patent

applicants at the European Patent Office (EPO) to firm accounts.

The first performance-related database is BvD’s AMADEUS which contains annual fi-
nancial data taken from the registries of approximately 19 million firms from 44 Western
and Eastern European countries (Bureau van Dijk, 2015). It covers all sectors with ex-
ception of the financial one and contains up to ten recent years of information per firm.
The database includes firm-level financial information in a standardized format for 26
balance sheet items, 26 profit and loss items, and 26 financial ratios.>* First, I use

information on sales as a measure of economic performance respectively productivity.

34 The coverage of the items varies across countries and time.
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Second, I collect information on the number of employees as a measure of labor input
and information on total assets as a measure of capital input. A GDP deflator from
the World Bank’s World Development Indicators (The World Bank, 2015) is used to
deflate all nominal values. To avoid double-counting firms and subsidiaries, I consider

only firms that report unconsolidated statements.

In order to measure innovation activities at the firm level, I extend the financial data
with patent data from the OECD REGPAT database (OECD, 2015).3> The REGPAT
database covers patent applications filed at the EPO from 1977 to 2011, derived from the
EPO’s Worldwide Patent Statistical Database (PATSTAT, Autumn 2014). To avoid a
truncation downward bias towards the end of the sample period, I consider only patents
filed until 2010. Using EPO patent applications ensures that applications for low-value
inventions are excluded from the analysis. Application costs for multinational EPO
patent applications are generally higher than for applications filed at national institu-
tions. Accordingly, patent applications filed at the EPO often constitute innovations of
high value that are expected to be commercially profitable and thus justify the relatively
high application fees (Johnstone et al., 2010).

The financial data is combined with the EPO patent information using the OECD Har-
monised Applicants’ Names (HAN) database (OECD, 2014). This database provides
a grouping of patent applicants’ names constructed by harmonising names and match-
ing them against company names from business register data. The business register
data stems from the ORBIS database from BvD. Since AMADEUS is a component
of the ORBIS database, the HAN database allows me to match EPO patent informa-
tion to AMADEUS company names. The intersection of the AMADEUS and REGPAT
databases then results in a panel of 11,001 firms from 27 countries®¢

years (1977 to 2010) that applied for at least one patent at the EPO during this period.

over a period of 34

I count GE and non-GE (all patents except GE ones) patent applications filed by these
firms at the EPO over the period 1977 to 2010.37 I date the patents based on their
priority date which refers to the first filing date of the invention worldwide since this
date is strongly related to R&D activities and closest to the date of invention as well as
to the decision to apply for a patent (Griliches, 1990, OECD, 2009). The GE patents are

35 The advantages and disadvantages of using patents as a measure of innovation have been discussed
at length in the literature. See, for example, Griliches (1990), Dernis et al. (2002), and OECD (2009).

36 The countries are (sorted by country code): Austria (AT), Belgium (BE), Switzerland (CH), Czech
Republic (CZ), Germany (DE), Denmark (DK), Estonia (EE), Spain (ES), Finland (FI), France (FR),
United Kingdom (GB), Greece (GR), Hungary (HU), Ireland (IE), Iceland (IS), Italy (IT), Liechtenstein
(LI), Luxembourg (LU), Latvia (LV), Netherlands (NL), Norway (NO), Poland (PL), Portugal (PT),
Romania (RO), Russian Federation (RU), Sweden (SE), and Slovenia (SI).

37 If a single patent is filed by multiple firms, I count it fractionally. That is, if a patent is filed by
more than one firm, the patent count is divided by the number of firms and each firm receives equal
shares of the patent. This avoids giving a higher weight to a patent filed by multiple firms compared to
one filed by just one firm.
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identified by using International Patent Classification (IPC) codes from the “IPC Green
Inventory” (WIPO, 2015a,b). The inventory provides IPC codes for patents relating to
so-called Environmentally Sound Technologies. Combining these codes with the energy
technology structure developed at the IEA (IEA, 2011), I count GE patents from two
groups: RES and EE. The RES group contains five RES technologies: solar energy, wind
energy, geothermal energy, ocean energy, and fuel cells. The EE group contains three
EE technologies: energy efficiency in residential and commercial buildings, appliances
and equipment, energy efficiency in transport, and other energy efficiency3®. Table 4.1

provides an overview on the considered technologies.

Table 4.1: Green energy technologies.

Renewable energy sources technologies

Wind energy

Solar energy
Geothermal energy
Ocean energy

Fuel cells

Energy efficiency technologies

Energy efficiency in residential and commercial buildings, appliances and equipment
Energy efficiency in transport
Other energy efficiency

To investigate the effect of firms’ GE and non-GE knowledge, I construct a GE knowl-
edge stock (GKS) and a non-GE knowledge stock (NKS) for firm ¢ at time ¢ using the
perpetual inventory method following Cockburn and Griliches (1988) and Peri (2005):

GKS;; = GPAT; + (1 — 5) GKSy—1 and (41)

NKSy = NPAT, + (1 — §) NK Si_1, (4.2)

where GP AT, (respectively N PAT;;) is the number of GE (respectively non-GE) patent
applications and J is a depreciation rate accounting for the fact that knowledge becomes
obsolete as time goes by. The depreciation rate is set to 10% as is often assumed in the

literature (see, for example, Verdolini and Galeotti, 2011).3% 40

3% Following the IEA energy technology structure, the other energy efficiency group includes waste
heat recovery and utilization, heat pumps, and measurement of electricity consumption.

39 The initial knowledge stock GK Sit, (respectively NKS;,) is given by GKSi, = GKSit, /(g + 9)
(respectively NK S;y, = NKSi, /(g + 9)) where GPAT; 4, (respectively NPAT;;,) is the number of
patent applications in 1977, the first year observed. The growth rate g is the pre-1977 growth in patent
stock, assumed to be 15%, and § again represents depreciation of 10%.

40 T test the robustness of the regression results against the utilization of different depreciation rates
in the calculation of the knowledge stocks in Section 4.5.2, Table 4.10.
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The availability of the AMADEUS financial firm information is limited. The first avail-
able year is 2003. Since I count patents filed until 2010, I use AMADEUS data from 2003
to 2010. For approximately 22% of the matched firms I have no information on sales,
employment, and/or total assets. For the remaining firms, there are missing values for
some years. Because of these missings, the number of firms and years and, by this, the
number of observations that can be used for the econometric estimations is lower than
in the base sample with 11,002 firms and 34 years. The resulting estimation data set is

an unbalanced panel of 8,619 firms from 22 countries*!

over a period of 8 years (2003 to
2010), that have filed at least one EPO patent between 1977 and 2010. In total, these
8,619 firms filed 3,021 GE patents and 100,835 non-GE patents at the EPO between
1977 and 2010. The GE patents were filed by a subset of 968 firms from 17 countries*?
since not every firm in the full sample applied for a GE patent. The non-GE patents
were filed by a subset of 8,345 firms from 22 countries which shows that almost every

firm in the full sample filed a non-GE patent.

Table 4.2 reports summary statistics for the full sample of 8,619 patenting firms. The
mean values of sales and total assets suggest the presence of some major firms as the
means lie well above the threshold for the AMADEUS classification of a very large
firm. The knowledge stock values demonstrate the difference in patent counts between
GE and non-GE technologies, reflecting that just about 11% of the sampled firms are
GE patenters. The standard deviations of the knowledge stock of GE and non-GE
technologies have a similar level of about 10% of the mean value. The last row shows

that I have on average almost 6 years of data for each firm.

Table 4.2: Summary statistics.

Mean Std. dev. Min. Max.
Sales (million EUR) 186.83 2526.82 0.00 323387
Employees (100s) 3.56 38.85 0.01 2888
Total assets (million EUR) 335.96 4091.64 0.00 310898
GE knowledge stock 0.15 1.35 0.00 108
Non-GE knowledge stock 6.11 63.92 0.00 3627
Observations per firm 5.70 1.93 1.00 8

Note: Sales and total assets are both in 2006 million. The knowledge stock variables are calculated using
the patent data from 1977 to 2010.
Source: Authors’ calculations, based on AMADEUS and REGPAT databases.

Table 4.3 reports correlations between the variables sales, employees, and total assets as
well as GKS and NKS. The highest correlation persists between GKS and NKS (0.552).
This shows that the development of GKS is positively related to those of the significantly
larger group of NKS. The two knowledge stocks are all only weakly correlated to the

41 The countries are AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IT, LI, LU, LV, NL,
NO, PL, SE, and SI.
42 The countries are AT, BE, CH, CZ, DE, DK, ES, FI, FR, GB, IT, LU, LV, NL, NO, PL, and SE.
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measure of firms’ performance, labor, and capital input. As expected, there is also a
positive correlation between the firm indicators themselves, the one between sales and

total assets (0.621) being the highest.

Table 4.3: Correlation matrix.

Sales Employees Total assets GKS NKS
Sales 1
Employees 0.202 1
Total assets 0.621 0.282 1
GKS 0.101 0.101 0.121 1
NKS 0.080 0.106 0.131 0.552 1

Source: Authors’ calculations, based on AMADEUS and REGPAT databases.

4.3.2 Descriptive Statistics

Figure 4.1 shows the development of yearly GE and non-GE patenting activities of all
firms during 1977 and 2010. GE patent applications are shown on the left axis and non-
GE applications on the right axis. Both variables show an increasing trend from 1977
to 2010. The number of yearly non-GE patent applications increases monotonically and
it can be seen that the yearly increases become significantly larger since the beginning
of the 1990s. Yearly non-GE patent applications peak after a small drop at about
8,000 in 2009. The development of the yearly number of GE patents in my sample
is characterized by two periods of growth. While they remain fairly stable well below
100 at the beginning, there is a steep increase to over 100 yearly GE patents at the
end of the 1990s. After a phase of stagnation at the beginning of the 2000s, again an
increase to over 300 yearly GE patents from 2005 to 2008 can be observed. Overall, the
development of GE patents is less steady than the one of non-GE patents.

Table 4.4 shows the distribution of firms by GE and non-GE patents. In the range from
one to 1,000 or more patents, it can be seen how many firms have filed at least a certain
number of patents. As stated before, the sample contains 8,619 firms of which 968 firms
have filed at least one GE and 8,345 firms at least one non-GE patent. Only about 13%
(1,059) of the non-GE firms have filed ten or more non-GE patents while the respective
figure lies at 5% (51) for GE patents, that is the majority of firms has filed less than ten
patents, even more so with regard to GE patents. There are some particularly innovative
firms in the sample as 439 firms have filed 25 non-GE patents or more, 121 firms 100 or
more and still 51 firms 250 or more. Finally, 12 firms have filed 1,000 or more non-GE
patents. Concerning GE patents, there are 15 firms which have filed 25 or more patents

and 2 firms which have filed 100 or more patents.
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Figure 4.1: Number of yearly GE (left axis) and non-GE (right axis) patent applications
filed at the EPO by all firms. Source: Authors’ calculations, based on AMADEUS and
REGPAT data.

Table 4.4: The distribution of firms by GE and non-GE patents.

1 or more 10 or more 25 or more 100 or 250 or 1,000 or

more more more

Firms (GE) 968 51 15 2 0 0
Firms (Non-GE) 8,345 1,059 439 121 51 12

Source: Authors’ calculations, based on AMADEUS and REGPAT data.

Table 4.5 gives complementary information on the distribution of the firms with regard
to technology, firm size?, industry*, and country. The GE patenters in the sample are
more involved in EE than RES innovation as 73% of GE firms have patented in the
field of EE technologies and only 41% in RES technologies. GE firms tend to be larger
compared to the non-GE sample. While 31% of GE firms are categorized as very large,

only 17% of the non-GE sample are. The distribution among industries and countries

43 AMADEUS groups firms into the three size categories very large, large, and medium. For firms to
be classified as very large, they have to satisfy at least one of the following criteria: Operating revenue
of at least 100 million EUR, total assets of at least 200 million EUR, at least 1000 employees, or the
firm has to be publicly listed. The respective criteria for large companies are: at least 10 million EUR
operating revenue, at least 20 million EUR total assets, or at least 150 employees. For medium sized
firms these criteria are: at least 1 million EUR operating revenue, at least 2 million EUR total assets,
or at least 15 employees.

4 AMADEUS assigns firms to industries using NACE (for the French term ”nomenclature statis-
tique des activités économiques dans la Communauté européenne”), the standard European industry
classification system.
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is very similar between GE firms and the non-GE sample. 50% and 54% respectively
are classified as manufacturers which is thus the most prominent industry group. Other
well represented groups are professional, scientific and technical activities, wholesale and
retail trade as well as construction. Concerning the country distribution of the non-GE
firms, Germany (32%) and France (30%) dominate the sample followed by Spain (11%)
and Ttaly (10%). It is interesting to note that GE patenters disproportionately come
from Germany (38%).

Table 4.5: Distribution of firms by technology, size, industry, and country.

Technology RES EE GE
No. of GE firms 399 704 968
% in GE firms 41% 73% 100%
Size Very Large Large Medium All
No. of GE firms 296 305 367 968
% in GE firms 31% 32% 38% 100%
No. of non-GE firms 1,399 2,684 4,262 8,345
% in non-GE firms 17% 32% 51% 100%
Industry Manu- Professional, = Wholesale Construction Other All
facturing scientific and retail
and trade
technical
activities
No. of GE firms 485 159 126 70 128 968
% in GE firms 50% 16% 13% 7% 13% 100%
No. of non-GE firms 4,559 977 1,357 346 1,106 8,345
% in non-GE firms 54% 12% 16% 4% 13% 100%
Country DE FR ES 1T Other All
No. of GE firms 369 290 72 65 172 968
% in GE firms 38% 30% 7% 7% 18% 100%
No. of non-GE firms 2,630 2,542 894 834 1,445 8,345
% in non-GE firms 32% 30% 11% 10% 17% 100%

Source: Authors’ calculations, based on AMADEUS and REGPAT data.

4.4 Empirical Strategy

To empirically evaluate the impact of GE innovation on firm performance, I follow the
approach by Bloom and Van Reenen (2002) who measure firm performance by produc-
tivity. I use a panel data model based on a standard Cobb-Douglas production function
for firm ¢ at time ¢, extended by innovation respectively knowledge as an additional

input:
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Qi = ALGKLTY, (4.3)

where @ is the output, L is the labor input, K is the capital input, I is the knowledge
stock, and A is a constant. The parameters «, 3, and ~ are elasticities with respect to

labor, capital, and knowledge respectively.

The elasticity with respect to labor accounts for the effect on output caused by growth
in labor input. The elasticity with respect to capital accounts for the effect in output
caused by growth in capital input. These parameters measure the corresponding single
factor productivity (SFP) growth. The elasticity with respect to knowledge measures
the total factor productivity (TFP) by accounting for the effect in output not caused by
the growth in labor and capital input. This is in line with the conventional view that
TFP is the measure of the rate of technical change (Krugman, 1996). Precisely, since I
will use sales as a proxy for output, I measure revenue productivity which includes both
changes in factor productivity as well as in markups as firms are able to raise prices for

new innovations (Bloom and Van Reenen, 2002).

Expressing 4.3 in logarithms yields:

In(Q); =1In(A)+aln (L), + Bin(K), +~yin(I),. (4.4)

In the empirical application, I use sales as a proxy for output @, the number of em-
ployees engaged as a proxy for labor L, and total assets as a proxy for capital K. The
knowledge stock I is proxied by the firm’s GE knowledge stock (GKS), capturing GE
specific knowledge, and the respective non-GE knowledge stock (NKS), capturing non-
GE knowledge. This allows a separate assessment of the productivity impact of GE
and non-GE innovation. Including the non-GE knowledge stock also controls for differ-
ences in the firms’ overall propensity to patent innovations. The knowledge stocks are
included in levels and not in logarithmic form since a substantial number of firms have
knowledge stocks of zero (Wooldridge, 2002). In the complete sample of 8,619 firms the
share of zero observations is 91% for the GE and 17% for the respective non-GE knowl-
edge stock. Thus, this share is substantial especially with respect to the GE knowledge
stock.?® In order to mitigate any reverse causality problems and to account for the fact,
that the impact of innovation on productivity is dynamic and comes with a certain time

lag (Bloom and Van Reenen, 2002), the knowledge stock variables are lagged by two

45 Tn a robustness test, I address this approach. I use an alternative specification that includes the
logged total knowledge stock instead of the separated GE and non-GE stocks in levels. Therefore, the
problem of zero knowledge stocks is less pronounced. Using the total knowlege stock in logs does not
change the sign and significance of the coefficients so that I continue to use the knowledge stocks in
levels in the main specification.
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years.?6 To control for correlated unobserved heterogeneity, I include year fixed effects
T; and firm-specific fixed-effects n;. The baseline specification to be estimated then is

given by:

In(Q)y =In(A)+ain (L), + Bin (K); +71 (GKS);_o +72 (NKS);_,
+ T+ n; + wg,y

(4.5)

where u;; is a standard varying error term (across time and firms). I estimate (4.5)
using OLS and fixed-effects (within) regression (least-squares dummy-variable regres-
sion) with standard errors cluster-robust to heteroscedasticity (Section 4.5.1). To test
the robustness of the baseline model, I use alternative specifications with modifications
(Section 4.5.2).

4.5 Results

4.5.1 Baseline Results

The baseline results of estimating the Cobb-Douglas production function (4.5) are pre-
sented in Table 4.6. Initially, the full sample of 8,619 firms is used. Column (1) gives
the OLS estimates of the production function. As the independent variables employ-
ment and total assets enter the estimations in log form, the estimated coefficients can
be interpreted as elasticities. The coefficients on employment and total assets are both
positive and statistically significant at the 1% level. This result is in line with general
expectations. As one would also expect, the sum of the coefficients is close to unity
suggesting constant returns to scale. Column (2) has the results of the fixed-effects
estimator which controls for time-invariant unobserved heterogeneity between firms by
including firm-specific fixed effects. Again the coefficients on employment and total as-
sets are both positive and statistically significant while slightly smaller for employment
and slightly higher for total assets. The estimated elasticities of 0.639 and 0.469 suggest
that a 10% increase in employment or capital is associated with a 6.4 and 4.7% increase

in productivity respectively.

Column (3) reports the results from adding the firm’s GE knowledge stock and the
corresponding non-GE stock as proxies for a firm’s knowledge. As the knowledge stocks
enter the estimation in levels, the estimated coefficients have a percentage interpretation
when they are multiplied by 100, commonly called semi-elasticity. The GE knowledge
stock is negative and significant at the 5% level. The coefficient suggests that an increase

of the stock by 1 would lead to a 3.6% decrease in productivity. A doubling of the stock

46 T test the robustness of my results against other lag structures in Section 4.5.2, Table 4.9.
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Table 4.6: Estimated coefficients of the Cobb-Douglas production function. Estimation
time span: 2003-2010. Dependent variable: Sales (log).

(1) (2) ®3) (4)

Firms All All All GE patenters
Employees (log) 0.700™** 0.639*** 0.643*** 0.441***
(0.029) (0.055) (0.055) (0.094)
Total assets (log) 0.408*** 0.469™** 0.469*** 0.730"**
(0.027) (0.047) (0.046) (0.167)
GE knowledge stock;—_2 —0.036** —0.031**
(0.014) (0.012)
Non-GE knowledge stock;—o 0.001*** 0.001***
(0.000) (0.000)
Year dummies yes yes yes yes
Firm dummies no yes yes yes
Adj. R-Squared 0.581 0.896 0.896 0.915
No. observations 39152 39152 39152 4482
No. firms 8619 8619 8619 968

Note: Column (1), (2), and (3) present the results using the population of all patenting firms. Column
(4) presents the results for the subset of firms with GE patents. The knowledge stock variables are
calculated using the patent data from 1977 to 2010. Robust standard errors clustered by firm are in
parentheses. *** ** and *: Significant at the 1%, 5%, and 10%-level.

with respect to its sample average (0.15) would lead to a 0.5% decrease in productivity.
In contrast, the corresponding non-GE stock is positive and significant at the 1% level.
Here an increase of the stock by 1 would result in a 0.1% increase in productivity. A
doubling of the stock with respect to its sample average (6.11) would result in a 0.6%
increase in productivity. Thus, the marginal effect of GE innovation is negative while
the marginal effect of non-GE innovation is positive indicating that sales markets do not
provide sufficient incentives to increase firms’ GE innovation activities but do provide
enough incentives to increase firms’ non-GE innovation activities. The results suggest,
that there is a positive return in terms of productivity for non-GE innovation, but a
negative return for GE innovation. Thus, hypothesis H2 can be confirmed: Private
economic returns measured in terms of productivity are lower for GE than for non-GE
innovation. The findings are in line with the aforementioned examinations by Marin

(2014), Marin and Lotti (2016), and Worter et al. (2015).

The last column (4) gives the results of the previous specification for the subset of the
968 GE patenters. Using this specification, I test if the results in column (3) are robust
or mainly driven by the shift from a firm without any GE patents to a firm with GE
patents. Again the estimate on the GE knowledge stock is negative and significant
although slightly smaller than in column (3). Likewise the coefficient on the respective
stock in non-GE patents is still positive and significant but slightly lower. The lower

estimates on employment and higher estimates on total assets indicate that the GE
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patenting firms are on average more capital intensive than the non-GE patenting firms.
In fact the GE patenters have on average a 37% higher capital to labor ratio compared

to the complete sample.

4.5.2 Robustness Tests

In order to test the sensitivity of the baseline results presented in Table 4.6, I conduct

a number of robustness tests based on the main model in column (3).

Table 4.7: Differentiating by technology group. Estimation time span: 2003-2010.
Dependent variable: Sales (log).

(1) (2) (3) (4)

Firms All RES patenters All EE patenters
Employees (log) 0.643"** 0.508"** 0.642*** 0.343"**
(0.055) (0.165) (0.055) (0.100)
Total assets (log) 0.469*** 0.714*** 0.469*** 0.707***
(0.046) (0.174) (0.046) (0.238)
RES knowledge stock:_2 —0.055* —0.061**
(0.031) (0.025)
Non-RES knowledge stock:_2 0.001** 0.001***
(0.000) (0.000)
EE knowledge stock;—2 —0.044** —0.029*
(0.022) (0.016)
Non-EE knowledge stock;—2 0.001** 0.001**
(0.001) (0.000)
Year dummies yes yes yes yes
Firm dummies yes yes yes yes
Adj. R-Squared 0.896 0.896 0.896 0.937
No. observations 39152 1816 39152 3344
No. firms 8619 399 8619 704

Note: Estimations are based on the same specification as in column (3) of Table 4.6. Column (1) and (3)
present the results using the population of all patenting firms. Column (2) and (4) present the results
for the subset of firms with RES respectively EE patents. The knowledge stock variables are calculated
using the patent data from 1977 to 2010. Robust standard errors clustered by firm are in parentheses.
**x *¥* and *: Significant at the 1%, 5%, and 10%-level.

First, I repeat the main specification differentiating between two subgroups of GE tech-
nologies: RES and EE technologies. Column (1) and (3) in Table 4.7 present results
using the population of all patenting firms. Overall, the estimated coefficients are sim-
ilar but show differences between the two technology groups. The negative coefficients
of the RES and EE knowledge stocks are higher compared to the coefficient of the GE
knowledge stock, even more so for the RES knowledge stock. Thus, patents in the field
of RES have a more pronounced negative impact on productivity than EE patents. This

finding may be explained by different maturity levels of RES and EE markets. Again
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in contrast, the corresponding coeflicient of the non-RES and non-EE knowledge stocks

are small, but positive and significant.

Column (2) and (4) give the results for the subset of firms with RES respectively EE
patents. Doing this, I test again if the results in column (1) and (3) are robust or mainly
driven by the shift from non-RES respectively non-EE patenters to RES- respectively
EE patenters. The coefficient on the RES knowledge stock is negative and significant
and increases slightly in absolute terms compared to column (1). Contrary, the coef-
ficient on the EE knowledge stock decreases slightly compared to column (3) but still
remains negative and significant. The coefficients on the respective stocks in non-RES
and non-EE patents do not change compared to columns (1) and (3). The estimates
on employment and total assets show that both RES and EE patenters are on aver-
age more capital intensive than non-GE firms, with EE patenters having the highest
capital-intensity. The sum of the coefficients is 1.22 in column (2) and 1.05 in column

(2), suggesting higher returns to scale in tangible factors for RES than EE patenters.

Table 4.8: Differentiating by firm size. Estimation time span: 2003-2010. Dependent
variable: Sales (log).

(1) (2) ®3)

Firms Very large Large Medium
Employees (log) 0.686™** 0.652"** 0.606™**
(0.140) (0.066) (0.063)
Total assets (log) 0.530"** 0.541*** 0.412***
(0.105) (0.063) (0.070)
GE knowledge stock;_2 —0.031* —0.039 —0.056
(0.017) (0.040) (0.113)
Non-GE knowledge stock;—2 0.001* 0.000 0.004***
(0.001) (0.001) (0.001)
Year dummies yes yes yes
Firm dummies yes yes yes
Adj. R-Squared 0.870 0.846 0.814
No. observations 8109 13956 17087
No. firms 1428 2775 4416

Note: Estimations are based on the same specification as in column (3) of Table 4.6. Column (1) presents
the results for the subset of very large, column (2) for the subset of large, and column (3) for the subset
of medium sized firms. The knowledge stock variables are calculated using the patent data from 1977
to 2010. Robust standard errors clustered by firm are in parentheses. *** ** and *: Significant at the
1%, 5%, and 10%-level.

The relationship between innovation and productivity may be dependent on a firm’s
size. Therefore, I conduct a second robustness test differentiating between the size of
the investigated firms. Table 4.8 reports estimated coefficients of the main model for
very large, large, and medium sized firms. The coefficient on the GE knowledge stock,
which has been significant in all previous specifications, is only significant for very large

firms. For very large firms it also has the same size as in the main specification. The
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coefficient on the non-GE knowledge stock, likewise always significant before, is highly
significant for medium sized firms only, significant at the 10% level for very large firms
and insignificant for large firms. Overall, the results are very similar in size but not
always statistically significant. The results suggest that the (negative) impact of GE
innovation on productivity tends to be more pronounced for larger firms whereas the
(positive) productivity effect of non-GE innovation seems to be more important for
smaller firms. Possible reasons for the lower levels of significance are that the sample
sizes are smaller and the variation of the knowledge stocks is lower between firms of

similar size.

Table 4.9: Different lags for the knowledge stocks. Estimation time span: 2003-2010.
Dependent variable: Sales (log).

(1) (2) 3) (4)

Firms All All All All
Employees (log) 0.643*** 0.643™** 0.643**~ 0.642***
(0.055) (0.055) (0.055) (0.055)
Total assets (log) 0.469™** 0.469*** 0.469*** 0.469™**
(0.046) (0.046) (0.046) (0.046)
GE knowledge stock —0.029"* —0.028" —0.036™* —0.034**
(0.013) (0.015) (0.014) (0.017)
Non-GE knowledge stock 0.001*** 0.001"** 0.001"** 0.001**
(0.000) (0.000) (0.000) (0.001)
Year dummies yes yes yes yes
Firm dummies yes yes yes yes
Adj. R-Squared 0.896 0.896 0.896 0.896
No. observations 39152 39152 39152 39152
No. firms 8619 8619 8619 8619

Note: Estimations are based on the same specification as in column (3) of Table 4.6. Column (1),
(2), (3), and (4) present the results for the current knowledge stocks and for knowledge stocks lagged
one, two, and three years, respectively. The knowledge stock variables are calculated using the patent
data from 1977 to 2010. Robust standard errors clustered by firm are in parentheses. *** ** and *:
Significant at the 1%, 5%, and 10%-level.

As noted before, in the baseline specification I lag the knowledge stock variables by two
years in order to mitigate any reverse causality problems and to account for the fact that
innovative output does not immediately have an effect on a firm’s productivity. In order
to test the sensitivity of the knowledge stock results to other lag structures, I conduct a
third robustness test and re-estimate the main model with the current knowledge stocks
and with knowledge stocks lagged one, two (as used in the baseline specification depicted
in Table 4.6), and three years. The results are given in Table 4.9. Overall, the results are
robust to these modifications. The impact of additional GE innovation on productivity
is still negative and the impact of additional non-GE innovation still positive. The higher

point estimates on the two- and three-year lag compared to the zero- and one-year lag
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for both knowledge stocks*” support the hypothesis of a time lag between innovation
and its effect on performance. In other words, patented innovations take some time to
enter the production function. Another explanation for the stronger negative impact of
additional GE innovation for longer lags might be that marginal costs of GE innovation
were higher and demand for GE innovation was lower in earlier periods (for a similar
result and reasoning see Worter et al., 2015).

Table 4.10: Different depreciation rates for the knowledge stocks. Estimation time
span: 2003-2010. Dependent variable: Sales (log).

(1) (2) ®3) (4)

Firms All All All All
Employees (log) 0.642"** 0.643*** 0.643"** 0.643"**
(0.055) (0.055) (0.055) (0.055)
Total assets (log) 0.469"** 0.469*** 0.469"** 0.468™**
(0.046) (0.046) (0.046) (0.047)
GE knowledge stock;—2 —0.026"* —0.036** —0.042*** —0.046"**
(0.012) (0.014) (0.016) (0.017)
Non-GE knowledge stock;_o 0.001** 0.001*** 0.001*** 0.001***
(0.000) (0.000) (0.001) (0.001)
Year dummies yes yes yes yes
Firm dummies yes yes yes yes
Adj. R-Squared 0.896 0.896 0.896 0.896
No. observations 39152 39152 39152 39152
No. firms 8619 8619 8619 8619

Note: Estimations are based on the same specification as in column (3) of Table 4.6. Columns (1),
(2), (3), and (4) present the results for knowledge stock depreciation rates of 5%, 10%, 15%, and 20%,
respectively. The knowledge stock variables are calculated using the patent data from 1977 to 2010.
Robust standard errors clustered by firm are in parentheses. *** ** and *: Significant at the 1%, 5%,
and 10%-level.

The final robustness test is done by utilizing different depreciation rates in the calculation
of the knowledge stocks. Table 4.10 reports the main model estimates for depreciation
rates of 5%, 10% (as used in the baseline estimation depicted in Table 4.6), 15%, and
20%. The higher the depreciation rate, the lower the importance of past knowledge. A
depreciation rate of 100% would mean that the knowledge stock becomes a flow variable,
that is only the patents from the current period contribute to a firm’s productivity. For
all specifications, the coeflicients on the GE and non-GE knowledge stocks are significant
at least at the 5% level. While the coefficient on the non-GE knowledge stock does
not vary in size, the coefficient on the GE stock becomes more negative using higher
depreciation rates. Hence, the negative effect of GE knowledge on productivity becomes
larger when firms can rely on less previous GE knowledge. In other words, a larger GE

knowledge stock mitigates the negative effect that an increase in GE knowledge has on

47 For the non-GE coefficients, the increase concerns the fourth decimal place and cannot be seen in
the presented output table.
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productivity. An explanation might be that firms with a larger knowledge stock in GE
technologies have lower R&D costs for the same amount of inventive output than firms

with a lower knowledge stock.

4.6 Conclusions

In this article, I studied the effect of innovation in GE technologies on the economic
performance of firms and compared it to the effect of non-GE innovation. I based my
study on a panel of 8,619 patenting firms including 968 GE patenters from 22 European
countries over the period 2003 to 2010. To construct the panel, I combined firm accounts

data with data on firms’ patent applications.

My results show that, all else equal, innovation in GE technologies has a negative im-
pact on the economic performance of firms while innovating in non-GE technologies
positively affects firms’ economic performance. This confirms the hypothesis H2 that
private economic returns in terms of productivity are lower for GE than for non-GE in-
novation, which corresponds to previous results found by Marin (2014), Marin and Lotti
(2016), and Worter et al. (2015). I also find evidence for different performance effects
across GE technologies. My results reveal that the negative effect on firm performance is
more pronounced for RES than for EE technologies. Moreover, my findings suggest that
the negative relationship between GE innovation and performance is stronger for larger
firms. Furthermore, the negative impact of GE innovation on performance is found to
be stronger with a larger time lag between both. On the one hand, this supports the hy-
pothesis of a time lag between innovation and its impact on performance. On the other
hand, it indicates that marginal costs of GE innovation decreased and demand for GE
innovation increased over time. Finally, the use of different knowledge depreciation rates
shows that the negative impact of new GE patents on performance is less pronounced

when firms can build on an existing stock of GE knowledge.

Given these results, the initial research question can be answered: since GE innova-
tion guarantees lower private returns than non-GE innovation, firms forgo economic
opportunities by innovating in GE technologies and gain economic opportunities by
concentrating on innovation in non-GE technologies. However, as one can observe in the
data, firms nevertheless have invested in GE technologies. Since the resources that firms
can allocate to R&D investment projects are limited and since firms always choose the
project with the highest private return, this observation evidences a potential crowding
out of GE innovation at the expense of (more rewarding) non-GE innovation. Thus it
seems that there where factors (for example political expectations, environmental reg-

ulation) that somewhat forced firms to use their scarce R&D funds for projects with
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comparatively low returns (Marin, 2014). Assuming that the non-private returns for
the GE and the non-GE project are the same, this crowding out would be welfare de-
creasing. However, if the GE project has higher social returns (that is combined private
and non-private returns) compared to the non-GE project, this crowding out would be
welfare increasing. This then would be an argument for policy intervention aiming to
increase private returns of GE innovation in order to promote socially beneficial green

growth.
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Figure A.1: Total number of green energy EPO patent applications of 26 OECD coun-
tries, 1978-2009.
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Figure A.2: Annual number of green energy EPO patent applications by country, 1978-
2009. Note: The country codes are the same as in Table 2.1.
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Figure A.3: Total number of green energy EPO patent applications over 1978-2009 by
country. Note: The country codes are the same as in Table 2.1.
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Table A.2: Number of EPO patent applications by green energy technology and time

period.
Technology 1978- 1985- 1990- 1995- 2000- 2005- Total
1984 1989 1994 1999 2004 2009
Biofuels 8,848 8,277 6,442 11,780 10,778 6,488 52,614
ccs 408 542 628 912 1,026 1,184 4,701
Fuel cells 434 465 687 1,792 4,522 3,555 11,455
Geothermal 312 244 357 532 723 1,013 3,181
Ocean 221 166 161 229 383 694 1,853
EEO 3,546 4,938 5,957 6,940 8,213 7,450 37,044
EEBAE 760 925 1,348 2,461 4,741 4,632 14,867
Solar 1,554 1,202 1,492 2,425 3,932 6,684 17,290
Storage 293 367 606 1,331 1,696 2,037 6,330
EET 1,430 1,926 2,576 4,027 5,450 6,229 21,640
Wind 197 123 149 367 1,059 2,348 4,245
Total 18,004 19,177 20,405 32,798 42,521 42,314 175,220

Table A.3: Total number of total EPO patent applications and total number of green
energy EPO patent applications over 1978-2009 by country.

Country Number of Relative share Number of Relative share Ratio of green
total patents  in sum of total green energy in sum of green  energy patents

patents patents energy patents to total patents

AT 27,813 1.19% 2,378 1.36% 8.55%
AU 19,492 0.83% 1,773 1.01% 9.10%
BE 27,320 1.17% 1,763 1.01% 6.45%
CA 35,753 1.53% 3,324 1.90% 9.30%
CH 65,331 2.79% 4,268 2.44% 6.53%
CZ 1,588 0.07% 120 0.07% 7.57%
DE 475,912 20.35% 33,045 18.86% 6.94%
DK 18,896 0.81% 2,370 1.35% 12.55%
ES 17,496 0.75% 1,251 0.71% 7.15%
FI 23,121 0.99% 1,167 0.67% 5.05%
FR 175,655 7.51% 11,433 6.53% 6.51%
GB 131,161 5.61% 8,580 4.90% 6.54%
GR 1,363 0.06% 139 0.08% 10.26%
HU 3,239 0.14% 231 0.13% 7.16%
1E 4,258 0.18% 244 0.14% 5.74%
IT 86,489 3.70% 4,383 2.50% 5.07%
JP 419,708 17.95% 33,527 19.13% 7.99%
LU 1,596 0.07% 84 0.05% 5.29%
NL 67,132 2.87% 5,894 3.36% 8.78%
NO 8,065 0.34% 810 0.46% 10.05%
NZ 2,925 0.13% 235 0.13% 8.05%
PT 1,050 0.04% 87 0.05% 8.37%
SE 48,335 2.07% 2,663 1.52% 5.51%
SK 347 0.01% 45 0.03% 13.08%
TR 1,927 0.08% 63 0.04% 3.29%
US 672,831 28.77% 55,328 31.58% 8.22%
Total 2,338,817 100.00% 175,220 100.00% 7.49%

Note: The country codes are the same as in Table 2.1.



Appendix B

Supplementary Material for
Chapter 3

91



Appendix B. Supplementary Material for Chapter 3 92
144 *
: . .
: oo o+t
8% + +
= : + Al + +
Rey + + * ++ ¥y
(4] +, "._'t
2 6 +7,
o 7 s
= + ¥+ 4 + N N + -#;__I_IT-H
£ tE o4 oh L
o] #+ .t + F "_;_+++ +, T4
ill 4R+ ' + * + LI .!.7—'“'+ ks
IS £ s + * 4+ + +4t T 4w
Q F N T + 7 + + +
© oy ST oA + o+ *
a R Faet T
o + 'tlt'.H_ " L, T
o
0 +
T T T T T T
0 2 4 .6 .8 1

Inventor weight

Figure B.1: Patent-portfolio weights versus inventor weights for the USA. Source:
Authors’ calculations, based on PATSTAT. Note: The figure shows combinations of
patent-portfolio weights (y-axis) and inventor weights (x-axis) for the USA for all 3,648

firms.
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Table B.1: Total number of CCT, EI, AP, PCC, FBC, IGCC, EOP, and CCS patents.
Year CCT EI AP PCC FBC 1IGCC EOP CCS
1978 172 101 72 27 31 43 44 28
1979 152 103 49 41 26 36 32 17
1980 193 119 74 25 47 47 47 27
1981 197 120 77 38 44 38 44 33
1982 194 104 90 35 33 36 48 42
1983 207 110 97 53 29 28 68 29
1984 231 116 115 36 37 43 90 26
1985 241 109 132 30 45 34 94 39
1986 223 100 123 22 46 32 96 27
1987 213 113 100 27 48 38 69 31
1988 209 97 112 17 37 43 81 32
1989 207 109 98 17 38 54 70 29
1990 204 96 108 23 36 37 66 42
1991 218 111 107 25 31 55 72 35
1992 225 108 117 15 34 59 74 43
1993 224 126 98 23 31 72 67 31
1994 254 124 130 18 28 78 99 31
1995 255 136 120 32 21 83 86 34
1996 242 140 102 22 23 95 58 44
1997 248 142 107 19 23 100 82 25
1998 234 120 114 12 16 92 66 48
1999 220 111 109 24 19 68 60 49
2000 253 134 119 11 21 102 65 54
2001 240 143 97 31 13 99 40 58
2002 258 147 111 30 18 99 59 52
2003 221 120 101 23 18 79 54 47
2004 258 151 108 26 12 113 45 62
2005 296 141 155 23 20 97 75 80
2006 322 168 155 34 20 113 72 83
2007 406 193 213 46 16 131 87 126
2008 436 219 217 43 28 148 84 133
2009 443 205 239 36 23 146 97 141
Total 7,894 4,129 3,765 883 911 2,335 2,190 1,575

Note: The table reports the total number of CCT, EI, AP, PCC, FBC, IGCC, EOP, and CCS

priority patent applications (claimed priorities) filed worldwide per year of all firms.

Source: Authors’ calculations, based on PATSTAT.
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Table B.2: Distribution of patent-portfolio weights across top four countries respectively
patent offices for the top ten CCT inventor firms from 1978 to 2009.

Firm and countries/patent offices Weight ‘ Firm and countries/patent offices Weight

(1) Mitsubishi (6) Foster Wheeler

Japan 0.324 | USA 0.155
USA 0.273 | Japan 0.133
Germany 0.106 | Canada 0.126
EPO 0.065 | EPO 0.099
(2) Alstom (7) General Electric (GE)

EPO 0.212 | USA 0.235
USA 0.200 | Japan 0.183
Germany 0.158 | EPO 0.151
Japan 0.072 | Germany 0.100
(3) Babcock & Wilcox (8) Hitachi

USA 0.182 | Japan 0.342
Canada 0.124 | USA 0.322
EPO 0.114 | EPO 0.083
Japan 0.112 | Germany 0.072
(4) Siemens (9) Royal Dutch Shell

Germany 0.270 | USA 0.133
EPO 0.239 | EPO 0.133
USA 0.175 | Japan 0.093
Japan 0.095 | Canada 0.093
(5) Asea Brown Boveri (ABB) (10) Combustion Engineering

EPO 0.230 | USA 0.274
Germany 0.205 | Japan 0.126
USA 0.142 | Canada 0.119
Japan 0.074 | EPO 0.089

Note: Patent-portfolio weights are constructed based on the distribution of firms’ patent portfo-
lios across countries over the period 1978 to 2009.

Source: Authors’ calculations, based on PATSTAT.

Table B.3: Distribution of patent-portfolio weights across top twenty countries respec-

tively patent offices averaged over all firms from 1978 to 2009.

Country/patent office Weight ‘ Country/patent office Weight
USA 0.233 | France 0.015
Japan 0.189 | Austria 0.014
EPO 0.130 | Spain 0.012
Germany 0.110 | Brazil 0.009
China 0.070 | South Africa 0.005
South Korea 0.065 | Norway 0.005
Canada 0.032 | Mexico 0.005
Australia 0.023 | Russia 0.004
Taiwan 0.017 | Denmark 0.004
United Kingdom 0.017 | Italy 0.004

Note: Patent-portfolio weights are constructed based on the distribution of firms’ patent portfo-
lios across countries over the period 1978 to 2009.

Source: Authors’ calculations, based on PATSTAT.
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Table B.4: Distribution of inventor weights across top twenty countries averaged over
all firms from 1978 to 2009.

Country Weight | Country Weight
Germany 0.295 | Belgium 0.006
USA 0.285 | Sweden 0.006
South Korea 0.149 | Finland 0.006
Japan 0.099 | Canada 0.005
France 0.056 | Italy 0.005
Switzerland 0.020 | Norway 0.003
Netherlands 0.015 | Denmark 0.003
United Kingdom 0.012 | Singapore 0.003
Taiwan 0.009 | Australia 0.002
Austria 0.009 | China 0.002

Note: Inventor weights are constructed based on the distribution of firms’ inventors across
countries over the period 1978 to 2009.
Source: Authors’ calculations, based on PATSTAT.
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Figure C.1: Number of firms, 2003-2010. Source: Authors’ calculations, based on
AMADEUS and REGPAT data.
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Table C.1: Number of yearly patent applications filed at the EPO by all firms by
technology group.

Year RES EE GE Non-GE
1977 0 0 0 66
1978 0 3 3 212
1979 2 7 9 309
1980 1 9 10 390
1981 1 12 13 504
1982 4 14 18 530
1983 5 16 18 548
1984 7 20 24 647
1985 3 32 35 749
1986 7 26 27 891
1987 4 28 32 1,024
1988 3 25 28 1,140
1989 11 30 32 1,267
1990 5 33 38 1,268
1991 3 29 31 1,331
1992 5 40 45 1,390
1993 10 45 52 1,609
1994 8 42 47 1,768
1995 12 35 40 2,034
1996 11 33 40 2,487
1997 20 57 68 2,886
1998 25 62 77 3,419
1999 26 88 100 3,883
2000 41 108 119 4,278
2001 59 101 143 4,440
2002 51 94 134 4,911
2003 46 94 130 5,522
2004 63 110 168 6,142
2005 54 89 141 6,959
2006 82 142 207 7,324
2007 106 168 241 7,739
2008 132 181 261 7,558
2009 195 192 356 7,925
2010 189 207 336 7,691
Total 1,190 2,171 3,021 100,835

Source: Authors’ calculations, based on AMADEUS and REGPAT data.
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Table C.2: Country distribution of GE firms.

Country No. %
DE 369 38.12
FR 290 29.96
ES 72 7.44
1T 65 6.71
SE 49 5.06
AT 46 4.75
BE 24 2.48
NO 23 2.38
FI 6 0.62
CH 5 0.52
PL 5 0.52
GB 4 0.41
DK 3 0.31
LU 3 0.31
CZ 2 0.21
LV 1 0.10
NL 1 0.10
Total 968 100.00

Source: Authors’ calculations, based on AMADEUS and REGPAT data.

Table C.3: Country distribution of non-GE firms.

Country No. %
DE 2630 31.51
FR 2542 30.46
ES 894 10.71
IT 834 9.99
SE 502 6.02
AT 313 3.75
NO 234 2.80
BE 184 2.20
FI 45 0.54
PL 37 0.44
CH 32 0.38
DK 25 0.30
GB 22 0.26
LU 17 0.20
EE 9 0.11
NL 9 0.11
CZ 6 0.07
HU 4 0.05
LV 3 0.04
GR 1 0.01
LI 1 0.01
SI 1 0.01
Total 8345 100.00

Source: Authors’ calculations, based on AMADEUS and REGPAT data.
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