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vorgelegt von

Nico Riedel

aus Mettmann
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Abstract

The concept of evolution, which was introduced by Charles Darwin in 1859, and also
its mathematical description by the theory of population genetics are well-established.
Population genetics describes the development of a population under the influence of
mutations, creating new genetic variants, and natural selection, increasing the fre-
quency of favorable phenotypes. Yet, the experimental verification of selective forces
acting on species has proven difficult. With new experimental techniques that have
been established in the field of quantitative genetics, like the sequencing of DNA or
measurements of gene expression levels, it has become possible to find signs of natural
selection on the level of the genome.

In this thesis, I develop a statistical test based on population genetics theory that
can infer lineage-specific differences in selection between multiple lines of a species.
The test employs data from quantitative trait experiments and uses a log-likelihood
scoring to quantify the evidence for different selective scenarios. I show that the use of
multiple lines increases both the power and the scope of selection inference. Extensive
numerical simulations demonstrate that the test can distinguish selection from neutral
evolution as well as different scenarios of lineage-specific evolution. The principle of
maximum entropy is used to derive a modified version of the selection test that accounts
for the multiple testing problem arising when many traits are tested for selection at
the same time. The developed test is applied to two published plant datasets and a
published dataset of gene expression levels in three yeast lines. In all cases, I find
signs of selection not seen with a two-line test. For the yeast dataset I find pervasive
adaptation linked to stress resistance both on the level of individual genes as well as for
larger gene modules consisting of several genes, like protein complexes and pathways.
This adaptation signal is also reflected on the protein levels.
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Kurzzusammenfassung

Sowohl das Konzept der Evolution, welches 1859 von Charles Darwin eingeführt wurde,
als auch die mathematische Beschreibung durch die Populationsgenetik sind seit langem
etabliert. Die Populationsgenetik beschreibt die Entwicklung einer Population unter
dem Einfluss von Mutationen, welche neue genetische Varianten erzeugen, und der
natürlichen Selektion, welche die Häufigkeit der günstigen Phenotypen erhöht. Jedoch
hat es sich als schwierig erwiesen, diese selektiven Kräfte experimentell nachzuweisen.
Neue experimentelle Techniken die sich im Feld der quantitativen Genetik etabliert
haben, wie das Sequenzieren der DNA oder der Messung von Genexpressionsleveln,
haben es ermöglicht, Spuren der natürlichen Selektion auf dem Level des Genoms
nachzuweisen.

In dieser Dissertation entwickle ich einen statistischen Test welcher auf der Theorie
der Populationsgenetik basiert und mit welchem man linienspezifische Unterschiede in
der Selektion zwischen verschiedenen Linien einer Spezies nachweisen kann. Dieser
Test verwendet Resultate von Experimenten über quantitative Merkmale und ver-
wendet einen Log-Likelihood-Quotienten um die Evidenz für verschiedene selektive
Szenarien zu quantifizieren. Ich weise nach, dass die Verwendung von mehreren Lin-
ien sowohl die Leistungsfähigkeit als auch den Anwendungsbereich des Selektionstests
vergrößert. Umfangreiche numerische Simulationen zeigen, dass der Test zwischen
Selektion und neutraler Evolution als auch zwischen verschiedenen linienspezifischen
Evolutionsszenarien unterscheiden kann. Das Prinzip der maximalen Entropie wird
verwendet um eine modifizierte Version des Selektionstests herzuleiten, welche das
multiple Testproblem berücksichtigt, welches auftritt, wenn viele Merkmale gleichzeitig
auf Selektion getestet werden. Der entwickelte Test wird auf zwei publizierte Pflanzen-
datensätze sowie einen publizierten Datensatz zu Genexpressionsleveln in drei Hefe-
linien angewandt. In allen Fällen finde ich Hinweise für Selektion, welche nicht durch
einen Zwei-Linien-Test entdeckt werden. Für den Hefedatensatz finde ich weit verbre-
itete selektive Anpassung die mit Stressresistenz verbunden ist, sowohl auf dem Level
einzelner Gene als auch für größere Genmodule, die aus mehreren Genen bestehen,
wie zum Beispiel Proteinkomplexen. Diese Adaption kann auch für die Proteinlevel
nachgewiesen werden.
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Chapter 1

Introduction

In the past decades the field of quantitative genetics has experienced a tremendous
progress. Quantitative genetics deals with traits of an organism that vary continuously
(called quantitative traits), like the height of a plant or the expression level of a gene,
and their underlying genetic basis. The development of the method of QTL analysis
allowed to map observed changes in the phenotype, like changes in morphology, to the
genome. This method helped to uncover the genetic basis of quantitative traits (Mackay
2004; Mackay et al. 2009). In numerous organisms like crop, cattle, or yeast genetic
loci underlying many traits have been determined (Marullo et al. 2007; Goddard and
Hayes 2009). In recent years, new, advanced experimental techniques have allowed the
mapping of all gene expression or protein levels of an organism simultaneously, taking
quantitative trait analysis from a level of individual macroscopic phenotypes to the level
of changes in genes underlying these phenotypes (Hoheisel 2006; Bantscheff et al. 2007).
Furthermore, crossing multiple lines has allowed to study a greater genetic diversity
underlying many quantitative traits. Yet, many challenges still persist. Identifying the
genes underlying quantitative trait loci has proven difficult and was only possible with
further experimental effort for individual cases (Fanara et al. 2002; De Luca et al.
2003) and interactions between different genetic loci have also complicated the picture
of the genetic architecture underlying quantitative traits.

On the theoretical side, the field of population genetics has been long established,
building the theoretical foundation for the stochastic evolution of populations under the
influence of natural selection, mutations and random fluctuations in the composition
of the population (called genetic drift) (Hartl et al. 1997). The theory of population
genetics uses stochastic differential equations to describe the time evolution of a pop-
ulation which allows to gain insights into the dynamics of the evolutionary process.
Established results describe the probability for new, beneficial mutations to spread in
a population as well as the time it takes to fixation. There is also an close connection
between the fields of population genetics and statistical physics (de Vladar and Bar-
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ton 2011b). The time evolution of allele frequencies in a population can be described
using stochastic differential equations and the steady state of a population, balancing
the forces of selection (increasing the fitness) and random genetic drift (decreasing the
fitness), can be determined using methods of statistical mechanics.

In this thesis, I combine aspects of both fields to study the evolutionary history
of quantitative traits. Based on established results from population genetics theory I
construct a model for the evolution of quantitative traits. This model quantifies the
strength of evidence for selection acting on a particular trait. I define a log-likelihood
score that weights different selective scenarios against each other. The model is defined
for an arbitrary number of lines and I show that using multiple lines increases both the
power and the scope of selection inference. First, a test based on three or more lines
detects selection with strongly increased statistical significance. Second, a multiple-
line test allows to distinguish different lineage-specific selection scenarios, unlike in
the case of two lines. Extensive numerical simulations show the ability of the test to
distinguish neutral evolution from selection as well as different scenarios of lineage-
specific selection. I show explicitly how the sensitivity of the test depends on the
number of lines. Different violations of the model assumptions, like epistasis or shorter
evolutionary timescales, are investigated, showing the overall robustness of the model.
In addition to the case of long evolutionary times considered in the original model, I
also give a solution for short evolutionary times. The multiple testing problem that
arises when many traits are tested for selection is considered. Using the principle
of maximum entropy, I derive a modified version of the developed selection test that
accounts for a possible ascertainment bias.

I apply the multiple-line test to QTL data on floral character traits in plant species
of the Mimulus genus and on photoperiodic traits in different maize lines, where sig-
natures of lineage-specific selection are found that are not seen in a two-line test.
Finally, I use a dataset of expression QTL (eQTL) for three lines of the yeast species
Schizosaccharomyces pombe to study the adaptation of oxidative stress response both
for individual genes as well as for gene modules, like protein complexes or pathways. I
consistently find high levels of selection on both genes and gene modules. The analysis
of gene modules exclusively under selection in the stress condition uncovers the adap-
tation of stress response on the level of individual genes and protein complexes. An
analysis of the protein levels connected to the expression levels shows that the selection
on the transcriptional level is also reflected in translational changes.
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Genetics and evolution

The field of genetics has undergone a rapid development during the last decades. Build-
ing upon the success of the discovery of DNA as the carrier of the genetic information
necessary for the functioning and reproduction of an organism, the understanding of
the structure and functionality of the genome has progressed. Many new experimental
techniques changed genetics into a quantitative field (Hoheisel 2006; Bantscheff et al.
2007). Nowadays it is possible to measure the genetic sequence of numerous organisms,
including humans (Metzker 2010). The field of quantitative genetics contains a rich
variety of interesting mathematical problems and challenges connected to statistical
physics. For example, the evolution of species is a stochastic system. Many processes
inside organisms like the activity and regulation of genes and its time dynamics is a
many-body problem with strong interaction between the individual elements of the
system. Numerous inference problems appear in this context, where the result of a
process is observed (like in the evolution of species), while the underlying dynamics are
unknown. The contribution of statistical physics is to build appropriate mathemat-
ical descriptions of the underlying processes which for example allow to infer model
parameters from experimental observations.

In this chapter I introduce the basic genetic concepts necessary to understand the
background and motivation for the selection test developed in this thesis. I start with
a short introduction to DNA and the genome. The notion of quantitative traits and
quantitative trait loci (QTL) is explained, which are key concepts used for the selec-
tion test. I end the introductory chapter with the topics of evolution and population
genetics, which puts the evolution of a population in a quantitative context described
by stochastic differential equations.
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2.1 The Genome

2.1.1 DNA

The DNA (deoxyribonucleic acid) stores all the inheritable information of an organism.
It is a linear molecule consisting of the four nucleotides cytosine (C), guanine (G),
adenine (A), or thymine (T). It is structured as a double helix of two complementary
strands of nucleotides with pairwise bonds between the nucleotides C and G as well
as A and T. During reproduction the whole DNA of an organism is duplicated. The
genome denotes the sum of all DNA present in an organism, which is often distributed
on different chromosomes, that are separate DNA molecules. The sequence information
contained in the genome is called the genotype of an organism and can be measured
through DNA sequencing (Metzker 2010).

2.1.2 Genes and proteins

Genes are the central elements of the genome. Genes serve as the blueprint for proteins,
which are biomolecules that perform a vast number of functions in an organism. The
coding region of a gene is marked by a characteristic starting sequence, also called pro-
moter, and is read off by a protein called polymerase. In the step called transcription,
the polymerase synthesizes a single stranded RNA molecule with the complimentary
nucleotide sequence. This messenger RNA (mRNA) is in turn read off by the ribosome,
where three nucleotides are read off at a time, forming a codon. Each codon is assigned
an amino acid (the smallest components of a protein), where different codons can map
to the same amino acid. This map from nucleotide codons to amino acids is called
the genetic code and is almost universal among all life forms (Crick et al. 1961). All
codons are read off sequentially to produce a sequence of amino acids, which form the
protein sequence of the underlying gene. This step is called translation. In summary,
the conversion of genetic information starts with the DNA sequence of a gene and is
mediated via the mRNA to form a protein as a final product. This process is also
known as the central dogma of molecular biology (Crick et al. 1970). A gene can exist
in different variants which are called alleles.

Not all genes are needed in an organism at all times or in all tissues. Therefore, a
complex gene regulatory system exists that controls the gene expression (gene expres-
sion denotes the amount of mRNA produced from a gene in the step of transcription).
An example for important elements of gene regulation are transcription factor binding
sites, which are typically located within the promoter sequence close to the starting
point of a gene. These sites can bind proteins, that are called transcription factors,
which can modulate the binding probability of the polymerase which in turn modu-
lates the gene expression levels. Many genes are coding for proteins that can alter the
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expression of other genes. Thus, all genes are part of a complex regulatory network
with many interactions between genes.

2.2 Quantitative traits and QTL mapping

2.2.1 Quantitative traits

While the genome provides all genetic information - the genotype - of an organism, the
phenotype of an organism is the set of all observable characteristics or traits. These
can be morphological traits like size or color but also more microscopic traits like the
expression level of a gene or a protein level. The phenotype of an organism is a result
of two main factors, the genotype and environmental factors. While the genotype
provides the basic information for all features of an organism, environmental factors
like nutrition, temperature, or the surrounding ecosystem can influence the phenotype
as well. Understanding the genotype-phenotype map, which captures the relationship
between the genotypes of an organism and its observed phenotypes, is one of the central
problems of genetics (Doerge 2002; Mackay et al. 2009). While the complete genotype-
phenotype map is still out of reach, the genetic basis of individual phenotypes, like e.g.
yield traits in maize (Xing and Zhang 2010), has already been uncovered.

Some traits have a very simple genetic basis, with only a single genetic locus af-
fecting the trait and with only a few possible characteristics, see Figure 2.1 (A). These
traits are called Mendelian traits, as the Mendelian inheritance patterns can directly be
observed. An example for this is the flower color of pea plants, as originally discovered
by Mendel (Mendel 1866).

In contrast to this, most traits have a complex genetic basis with many genetic
regions influencing the trait (Mackay et al. 2009). The combined influence of these
genetic loci leads to an effectively continuous scale of trait characteristics, see Fig-
ure 2.1 (B). These traits are called quantitative traits. Examples for quantitative
traits are flower size (Chen 2009), leaf number (Coles et al. 2010), or bristle number in
flies (Mackay and Lyman 2005). Any genetic region that has an influence on a quan-
titative trait is called a quantitative trait locus (QTL). QTL can be genes linked to
the phenotype or regulatory elements that alter the expression of these genes. Often,
a QTL might be caused by allelic variants such as single nucleotide polymorphisms
(SNPs), where only changes in individual nucleotides occur, in coding as well as non-
coding regions (Stam and Laurie 1996; Harbison et al. 2004; Jordan et al. 2006; Zheng
et al. 2010).
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Figure 2.1: Mendelian traits and quantitative traits. (A) Mendelian traits are only
governed by a single genetic locus (marked by the dark bar) in the genome and can only
take on few distinct and clearly defined characteristics. (B) Quantitative traits are affected
by many genetic loci. Taken together the effects of these loci generate an approximately
continuous spectrum of possible trait values.

2.2.2 QTL mapping

Understanding the complex genetic basis of quantitative traits is a key step towards
the genotype-phenotype map and is important in many different contexts like the
understanding of complex diseases in humans (Plomin et al. 2009). QTL analysis allows
to identify the QTL underlying a quantitative trait by linking phenotypic variation to
genetic markers. This is done by crossing individuals of different strains (also called
lines) of a species. These might be different breeding lines for cattle or crops (Goddard
and Hayes 2009; Xing and Zhang 2010) or different strains of wild yeast isolates that
were collected in different environments (Marullo et al. 2007; Gerke et al. 2009). In the
crossed individuals the two genomes of lines 1 and 2 recombine (which happens in the
second offspring generation or F2 generation for diploid organisms that have a duplicate
chromosome set) and the alleles of the lines get reshuffled. In these crosses the genome
is a mixture of DNA stretches originating from line 1 and stretches originating from
line 2 (see Figure 2.2 (B)).

For the crosses the trait values T of the quantitative trait (e.g. plant height mea-
sured in cm) as well as the genotype in form of genetic markers are measured. The
goal of QTL mapping is to find genetic markers which are correlated with the trait
value, i.e. to find markers where the trait value is on average higher when the allele
of that marker is inherited from line 1, compared to the crosses with the marker allele
from line 2. The genetic markers need to differ between the lines and to be evenly
distributed across the genome with a sufficient density. These markers can be for ex-
ample single nucleotide polymorphisms (SNPs) (Wicks et al. 2001) or microsatellites
(repetitive DNA elements) (Somers et al. 2004). With QTL mapping the QTL cannot
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Figure 2.2: The principle of QTL mapping. (A) The goal of a QTL mapping experiment
is to determine the genetic basis underlying trait differences ∆T between different lines of
a species. (B) To achieve this goal, individuals of the lines are crossed. The genome of
the offsprings (the F2 generation for diploid organisms) is a mixture of the genomes of the
parental lines created by recombination events between the genomes. A certain number of
markers (M1 . . .M4) spread over the entire genome is measured in the offsprings to determine
from which line they originate. (C) QTL mapping algorithms are used to determine which
markers are correlated with the trait. If the trait value of the crosses is on average higher
when a marker originates from line 1, it is likely that a QTL close to the marker is affecting
the trait. This likelihood is quantified by the QTL mapping algorithm. Markers for which the
likelihood is above a significance threshold (red areas) are in linkage with a QTL. Since the
QTL cannot be measured directly but only by linkage to nearby markers, the QTL mapping
does not reveal the exact gene or mutation causing the QTL, but allows to infer the number
and effects of QTL affecting a trait.
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be identified directly. Instead, the markers are in genetic linkage with nearby QTL
due to the rare frequency of recombination events, as the whole genetic region around
a marker gets inherited from the same line (Lynch et al. 1998). Thus, QTL mapping
only identifies markers that are close to a QTL, but it does not unravel the nature
of the QTL itself. As another restriction of QTL mapping only the genetic diversity
present between the lines can be uncovered. Since all QTL that have the same allele
in both lines also have that allele in all crosses, no difference of the trait effect can be
observed between the lines for these QTL.

QTL mapping is a computationally nontrivial task. Many effects like interactions
between QTL (called epistasis) (Wang et al. 1999), multiple testing problems (arising
due to the high number of possible trait-marker pairs) (Doerge and Churchill 1996),
or a limited number of recombination events lead to complications in the analysis.
There are many different QTL mapping algorithms employing different techniques like
the interval mapping (Lander and Botstein 1989), composite interval mapping (Zeng
1994), or multiple trait mapping (Jiang and Zeng 1995; Kao et al. 1999). Up to today,
quantitative traits of many organisms have been mapped, ranging from bristle numbers
or wing shape in Drosophila to yield traits in rice (Dilda and Mackay 2002; Mackay
2004; Mezey et al. 2005; Mackay and Lyman 2005; Bernier et al. 2007; Flint and
Mackay 2009; Xing and Zhang 2010). But only in few cases and with additional exper-
imental effort it was possible to fine-map individual QTL, identifying the gene or even
the nucleotide change responsible for the QTL (Pasyukova et al. 2000; Fanara et al.
2002; De Luca et al. 2003; Moehring and Mackay 2004; Harbison et al. 2004; Jordan
et al. 2006). In recent years, QTL analysis has also been expanded onto multiple-line
crosses, where crosses between all possible pairs of the lines or backcrosses to a com-
mon line are performed. It has been shown that utilizing information from several lines
drastically increases the power and accuracy of QTL identification (Rebai and Goffinet
2000; Steinhoff et al. 2011) and the genetic variability that can be accessed (Blanc
et al. 2006).

2.3 Population genetics and evolution

Evolution describes the change of the genetic composition of a population over time.
These changes can occur on the species level, with the creation of new species, or on
the molecular levels, with e.g. changes in gene expression levels. Random genetic mu-
tations lead to a genetic diversity in a population by creating new genetic variants.
Natural selection acts on the level of different genetic variants of a population. Some
of the genetic variants might have favorable phenotypes that have a greater reproduc-
tive success than other phenotypes. Since the individuals with favorable phenotypes
accumulate a larger number of offsprings over the generations, this often leads to the
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prevalence of the favorable phenotype.

The fitness of an organism is the measure of its reproductive success and is defined
as the average number of offsprings of an individual (Wrightian fitness; for subtleties
between slightly different definitions of fitness see also (Orr 2009)). If the fitness of
all variants in a population is the same, the population is evolving neutrally. In this
case, new mutants can become prevalent in the population without any effect on the
reproductive success, which is called random genetic drift.

Population genetics is the mathematical description of the evolutionary process at
the population level (Hartl et al. 1997). Central to population genetics is the evolution
of a population of N individuals under the effect of mutations, selection and repro-
duction. The evolution of a population is a stochastic process that can be described
by a stochastic differential equation. While selection is a directed process, increasing
the fraction of the fittest individual in the population, reproductive fluctuations lead
to undirected changes in the composition of the population. These stochastic fluctua-
tions are larger for smaller population sizes and tend to zero for very large populations,
leading to an effectively deterministic evolution of allele frequencies in the population.
Mutations introduce new genotypes in the population that can have different fitness
values than the ancestral genotype.

In the simplest case, a population consisting of two genotypes a and b with (Malthu-
sian) fitness Fa and Fb, respectively, evolves under the action of selection and repro-
ductive fluctuations as (Lässig 2007)

d

dt
Na/b(t) = Fa/bNa/b(t) + χa/b(t) , (2.1)

where the population size Na/b(t) of individuals with genotype a or b, respectively,
evolves according to a simple exponential growth law with a growth rate Fa/b. χa/b(t)
is a noise term that describes the reproductive fluctuations in the population. It
is defined as a Gaussian random variable with mean 〈χa/b(t)〉 = 0 and variance
〈χa(t)χb(t)〉 = Na(t)δ(t− t′)δa,b that describes uncorrelated white noise. The evolution
of the population fraction x(t) = Na/(Na + Nb) can be written in term of a Fokker-
Planck equation that captures the time evolution of the probability distribution of the
x(t):

∂

∂t
P (x, t) =

1

2N

∂2

∂x2
x(1− x)P (x, t)−∆Fa,b(t)

∂

∂x
x(1− x)P (x, t) , (2.2)

where N is the total population size and ∆Fa,b(t) = Fa(t) − Fb(t) (Kimura 1962;
Lässig 2007). Without mutations introducing new genotypes, the population eventually
reaches the fix points x = 1 or x = 0. At x = 1 the whole population is monomorphic
and only consists of individuals of genotype a, called fixation of the genotype, while at
x = 0 the genotype a is lost.
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In this context there are many interesting questions arising: What is the probability
of fixation of a newly introduced mutation? How does this fixation probability depend
on the fitness of the mutant? What is the distribution of fitness values of new mutants?
What is the typical time to fixation? How do different mutations that arise at the same
time interact with each other?

The fitness of new mutants depends on the fitness landscape the population is living
in. A fitness landscape is a theoretical construct that maps every genotype onto a fitness
value, where a population tends towards genotypes with the highest fitness (’fitness
peaks’) (Orr 2005). As the genotype typically consists of many factors the fitness
landscape is often very high-dimensional. A single mutation can have vastly different
effects on fitness depending on the type of the fitness landscape. A fitness landscape can
be smooth, with the fitness contributions of different parts of the genotype adding up
linearly. Otherwise there can be interactions between different alleles, called epistasis,
where for example a certain combination of alleles that individually have a positive
effect on fitness, leads to a decrease in fitness. This can make the fitness landscape
more ’rugged’, create multiple peaks, and make it more difficult for a population to
reach the global fitness optimum (Whitlock et al. 1995).

When new mutations are allowed in the model, the fix points where the population
becomes monomorphic are not the end of the dynamics. Instead, new mutations arise
from time to time and either get fixed or are lost. For this, the weak mutation limit is
typically assumed where the time for a new mutation to arise is much longer than the
time to fixation. Otherwise multiple competing mutations can arise, leading to a more
complicated dynamics which is known under the name of clonal interference (Gerrish
and Lenski 1998). For a new mutation to become fixed in the population, it has to
overcome the random reproductive fluctuations. When only a single individual with
the new mutation is present at the beginning, it can easily go extinct even when the
mutant has a higher fitness than the rest of the population. It can be shown that the
substitution rate ua→b that describes the fixation of genotype b (after the genotype
arises via a mutation) in a population with genotype a is (Kimura 1962)

ua→b = Nµa→b
1− exp(−2∆Fab)

1− exp(−2N∆Fab)
, (2.3)

where µa→b is the mutation rate for creating genotype b from genotype a. This result
will be used later for the population genetics model underlying my selection test.

2.4 Connection to statistical physics

Even though statistical physics does not directly relate to the topics of genetics and evo-
lution many concepts of statistical physics can be transferred to these fields of research
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and can help to deepen the mathematical understanding in many cases. As mentioned
before, population genetics deals with the stochastic evolution of a population, well
described by stochastic differential equations. Many-body problems arise at numerous
levels of genetics and evolution, as in the context of gene regulatory networks, with
many genes that alter the expression of other genes, or at the level of species, with
different species competing for limited resources in an environment. Evolution takes
place on timescales that often span millions or billions of years, but only the species
and genomes present today can be observed. This leads to many inference problems:
given the genomes of todays species, what is the evolutionary history of the lines and
how are the species related? One of the great success stories was the inference of the
famous tree of life, which describes the evolutionary relations of all species, from the
comparison of their genetic sequences (Woese and Fox 1977; Delsuc et al. 2005).

In the case of population genetics the connection to statistical physics goes even
deeper. The system of an evolving population of many individuals can readily be
mapped onto a thermodynamic system. Analogously to macroscopic observables that
arise from the underlying microscopic dynamics in a thermodynamic system, the time
evolution of averaged quantities (like allele frequencies or trait values) are considered
for the large number of individuals of an evolving population (de Vladar and Barton
2011a; de Vladar and Barton 2011b). In population genetics the population size de-
termines the magnitude of fluctuations in the population composition and is playing
the role of inverse temperature. In addition, the fitness plays the role of the (negative)
energy of the system, as the population tends to the state of maximum fitness and the
steady state distribution of allele frequencies in certain evolutionary models has been
found to follow a Boltzmann distribution (Sella and Hirsh 2005). A free fitness can be
defined which increases during the evolutionary dynamics and that reaches its maxi-
mum in the steady state of the system (Iwasa 1988; Sella and Hirsh 2005; Barton and
de Vladar 2009; Barton and Coe 2009). As for the free energy in thermodynamics the
free fitness balances two concepts: the maximization of fitness (corresponding to the
minimization of energy) and the maximization of entropy. Also the non-equilibrium as-
pects of adaptation to changing environments with a constant fitness flux in the steady
state (Mustonen and Lässig 2009; Mustonen and Lässig 2010) as well as the connection
to disordered systems (Mustonen and Lässig 2008) have been explored. Overall, this
shows the close connection between population genetics and thermodynamic systems.

In this thesis, I combine the two fields of quantitative trait analysis and popula-
tion genetics. I develop a novel statistical framework to test different evolutionary
hypotheses for multiple QTL lines. This test is based on a population genetics model
describing the evolution of traits under different selective scenarios. This test allows
to infer the evolutionary history of traits and can determine lineage-specific differences
in the selection pressure between different lines.
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Chapter 3

Multiple-line selection model

As explained in the previous chapter, QTL analysis can be used to obtain information
on the number and effect sizes of QTL affecting a trait. The aim of this thesis is to
quantify the evolutionary forces acting on a trait using information from QTL analysis.
In this chapter, I develop a selection test that can infer lineage-specific selection on
quantitative traits using multiple QTL lines. The model used for the selection test is
derived using established population genetics theory. A log-likelihood score is intro-
duced that tests different selective and neutral scenarios against each other. I provide
arguments for the superiority of a multiple-line selection test as compared to a two-line
test and perform numerical simulations to show its feasibility. Finally, I analyze the
robustness of the selection test when several of the model assumptions are violated.

3.1 Idea of the selection test

When a trait diverges between two lines there are two basic evolutionary mechanisms
that could have affected the change in trait values: First, natural selection that acts
as a directed force, increasing or decreasing the trait value in one (or potentially all)
of the lines. Second, when an allele is established in a population only due to random
fluctuations in the composition of the population, this is called genetic drift (Lande
1976). For example two different plant lines grow in two geographically separated
regions where individuals of one of the lines have on average a larger size. This can
reflect either an adaptation of one (or both) of the lines to the different habitats, or
random genetic changes that accumulated after the reproductive isolation following
the geographic separation of the lines. The idea to distinguish these two cases, which
was developed by Orr (Orr 1998), is the following: Under selection consistent changes
of the QTL in one line would be expected, i.e. the QTL at different positions in the
genome would all affect the trait value in the same way (e.g. 9 out of 10 QTL would
increase the trait value in line 1). Under genetic drift a more even distribution of alleles
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that increase or decrease the trait value would be expected. Of course, an imbalance
of alleles can also be created in this case, yet one would typically expect less extreme
imbalances as in the selective case.

Here, I use population genetics theory to develop a model that quantifies the evi-
dence for natural selection versus genetic drift acting on a quantitative trait. I construct
a population genetics model of QTL evolving in n haploid populations in the weak-
mutation regime with full recombination. Trait and fitness are linear functions of the
states of the loci. The effects of inter-locus epistasis, simultaneous polymorphism and
lack of recombination will be examined in section 3.6.

3.2 Derivation of the model

I consider a quantitative trait T affected by L QTL labeled l = 1 . . . L. I assume QTL
analysis has been performed for a number of n lines yielding estimates for the number,
position and average effects of the QTL on the trait that are used as parameters in
the model (see Figure 3.1). Due to the poor resolution of QTL mapping which is
limited by the frequency of recombination events in the crosses (Lynch et al. 1998)
the particular genetic feature affecting a QTL is unknown. Usually, many genes lie
within the range of a QTL marker (Lynch et al. 1998) and only further experiments
can clarify the molecular basis of a QTL (Mackay et al. 2009). Yet, we know that
each locus is characterized by a genotype, and the genotype at each locus affects the
trait in a particular way. As an example, consider a trait affected by a transcription
factor. A transcription factor is a molecule that binds to a regulatory region close to
a gene to alter its gene expression. In that case, the regulatory region of a gene may
affect the trait. This regulatory region consists of a specific sequence of nucleotides
that affect the binding strength of a particular transcription factor. A change in that
sequence can alter the binding strength of the transcription factor and thus alter the
expression of a gene which finally affects the value of a quantitative trait. I approximate
the relationship between trait and locus by a two-state variable q with states ”on”
(functional binding site in the regulatory region) or ”off” (non-functional site). For
simplification and since genetic details of a QTL are not known I describe each locus
l by a number of macroscopic effect states ql (states for short). That way, I only allow
for few possible states at each locus and each genotype is assigned to one of this states.
In general, different genotypes at a locus correspond to the same state (there are many
different sequences with a functional binding site, and even more without). In the
following, I denote the number of genotypes corresponding to a state by ωq.

In general, each of the n lines could have a different state at a given locus. As
there are limitations in QTL mapping, the information on the effect state of a locus
is indirect. In most cases it is not known what genetic feature close to a marker
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determines the state of the locus (as there are typically many genes linked to one
marker). Instead, for each allele at a locus, QTL analysis gives the effect a particular
allele has on the trait averaged over many crosses. And due to the uncertainty on
the estimated effects, different alleles with a very similar effect on the trait cannot be
distinguished. QTL studies involving crosses of 4 different lines (Blanc et al. 2006;
Coles et al. 2010) showed that most QTL fall into a two state scheme, where a QTL
either increases or decreases the trait value in a line. For this reason, I restrict myself
to a two-state model with states ql = ±1 per locus, effectively focusing on the genetic
feature that has the largest effect on the trait. Yet, in a QTL study with 25 different
maize lines, many different alleles could be found at one locus (Buckler et al. 2009), in
which case an extension to a multiple state model would be necessary.

I assume a linear trait model without trait epistasis (inter-locus epistasis) where
the state at each locus contributes additively to the trait

T ({ql}) =
L∑
l=1

alql, (3.1)

where {ql} denotes the set of states of all loci in a single line. The additive QTL effects
al are obtained from experiment as the average trait contribution of a locus averaged
over many crosses between different lines, as is the state ql of a particular allele (see
Figure 3.1). Without loss of generality I assume al ≥ 0 and ql = ±1, such that ql = +1
(termed the + state) results in a higher trait value than ql = 1 (the − state).

Figure 3.1: QTL data available from QTL experiments. From a QTL experiment one
obtains the following data necessary for the selection test: the additive effect al that is fixed
for locus l in all lines i = 1, . . . , n and the state qi,l which can take the values ±1 and which
can be different for each line (assuming that there are only two possible states). The trait
value is the sum of contributions from all loci, see eq. (3.1).
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Furthermore, I assume a linear Malthusian fitness (log-fitness) landscape

F ({ql}) = sT ({ql}) =
L∑
l=1

salql, (3.2)

with the selection coefficient s. That is, if the trait is under selection (with selection
strength s), the fitness increases linearly with the trait value. Fitness is the measure
for the reproductive success of an individual and in population genetics fitness can be
related to the probability of the establishment of an allele. Under the assumption of
a linear fitness landscape, the effect of the state of a locus on both trait and fitness is
independent of the states of other loci. This assumption will be examined and relaxed in
section 3.6. The model contains no environmental component (quantitative traits often
behave differently across different environments such as e.g. varying temperatures;
such effects are not considered here) and (for a diploid population) no dominance (a
dominant allele masks the effect of a recessive allele).

I use established results from population genetics theory to derive the probability
of observing the possible states q = ± at a given locus. In population genetics the time
evolution of a population of effective population size N is considered under the influence
of selection, described by the fitness F , stochastic fluctuations of the reproductive
process (genetic drift) and mutations (with a mutation rate µ) (Lässig 2007). While
mutations introduce new alleles into a population, selection and genetic drift finally lead
to their fixation. In the case of low mutation rates (also called weak-mutation regime,
which is the relevant regime for eukaryotes and most prokaryotes (Stewart and Plotkin
2013)) the time until a new mutation arises is much longer than the time needed for the
fixation of a new allele. Thus, the population is monomorphic (i.e. has the same alleles
in all individuals) most of the time. The other case, where several mutations segregate
in one population and compete against each other is called clonal interference (Gerrish
and Lenski 1998). In summary, mutations introduce new alleles at a certain rate and
these mutations are either fixed in the population with a certain probability or lost.
Kimura (Kimura 1962) derived the rate of fixation of a new mutation in the weak-
mutation regime. This can be done by solving the Fokker-Planck equation (2.2) in
the stationary case, when ∂P (x, t)/∂t = 0. This yields the probability of fixation of

a new mutation with fitness advantage ∆F as 1−exp(−2∆F )
1−exp(−2N∆F )

. Multiplying this fixation
probability with the probability of creating an individual with this mutation in the
population, which is µN , yields the substitution rate

uq→−q = µN
1− exp(−2∆F )

1− exp(−2N∆F )
, (3.3)

which depends on the fitness difference ∆F between the two possible states q and −q,
the mutation rate µ, and the effective population size N . When considering multiple
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loci, these loci do not segregate independently, but they are linked by the genetic
sequence they share (called genetic linkage). There are two possible mechanisms that
can break this linkage: recombination and a low mutation rate. Recombination events
lead to a mixing of the genomes of different individuals. If a recombination event
happens between two loci, one locus is inherited from one individual while the second
locus is inherited from the other individual, which allows the loci to mix between
different genomes. A low mutation rate leads to a monomorphic population where the
mutations at different loci fix one by one and do not interfere. Thus, assuming the
weak-mutation regime is sufficient to guarantee an independent segregation of the loci.

At low mutation rates, most loci are monomorphic at a given point in time, but
may differ between lines (due to mutations that fix in a given population before the
next mutation occurs). The state statistics P (q) of a locus describes the probability
that this locus in a given line is in state q. In the limit of long evolutionary times
between lines, this statistics no longer changes with time, so the probability P (q) is
stationary (equilibrium). Under neutral evolution the genetic sequence constituting the
locus is allowed to evolve freely and the equilibrium probability P (q) depends only on
the number of sequence variants ωq of the locus corresponding to state q. One obtains

P (q|Ω) =
ωq

ω+ + ω−
=

exp(Ωq)

exp(Ω) + exp(−Ω)
, (3.4)

where I have introduced the multiplicity factor Ω = (1/2) log(ω+/ω−) of a locus which
allows to capture the imbalance between + and − state in a single parameter. Loci
with a high multiplicity factor have more sequence variants for the + state and thus
a higher probability to be in that state. In the example with the transcription factor
binding site, the number of sequences with a functioning binding site ω+ is much lower
than the number of sequences without such a site ω−, leading to P (q = +1) � 1
in the absence of selection (see also Figure 3.2). The multiplicity factor of a locus
quantifies the asymmetry between the + and − state in the absence of selection, and
correspondingly the relative number of mutations at a locus increasing or decreasing
the trait.

Under selection, however, the fitness differences between the states can also create
an additional bias towards one of the states. From eq. (3.3) one obtains that the
ratio between the transition rates u+→−/u−→+ simplifies to µ+→−/µ−→+ exp(2N∆F ) ∝
exp(2N∆F ) for N∆F � 1� ∆F (strong selection) and the probability to be in state
q is proportional to exp(2NF ) (Iwasa 1988; Berg et al. 2004; Sella and Hirsh 2005;
Lässig 2007). The bias in mutation rates between states is exactly captured by the
multiplicity factor Ω. Thus the probability of states for one locus becomes

P (q|Ns,Ω, a) =
exp(2Nsaq + Ωq)

exp(2Nsa+ Ω) + exp(−2Nsa− Ω)
, (3.5)
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Figure 3.2: Multiplicity factor of a QTL. A QTL is typically governed by a longer genetic
sequence (e.g. a transcription factor binding site) and many sequence variants contribute to
the two effective states q = ±. The number of sequence variants contributing to the +
and − state, ω+ and ω−, can be very asymmetrically distributed. For example the + state
can correspond to a functional transcription factor binding site (top) , while the − state
corresponds to a non-functional binding site (bottom). Since the number of sequence variants
which correspond to a non-functional binding site is much larger, there is an asymmetry
between the number of sequence variants corresponding to the two states, ω− � ω+. This
asymmetry is contained in the multiplicity factor Ω = (1/2) log(ω+/ω−).
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where I used the linear fitness function from eq. (3.2). I define a selection coefficient
σ = Nsa for each locus proportional to the additive effect a, which is the relevant
quantity determining the strength of the selection. Since the effective population size
N is usually unknown and N and s always appear together, only their product will be
estimated later.

If there are n lines, each line i = 1 . . . n can be in a different state q at that locus.
Thus, one locus consists of the set of states (q1, q2 . . . , qn). Assuming the lines evolve
independently of each other, the joint probability distribution in the limit of long
evolutionary time factorizes over lines, so the state statistics for a given locus is

Pundiv(q1, . . . , qn|Ns1, . . . , Nsn,Ω, a) =
1

Z
e
∑n
i=1(2Nsia+Ω)qi , (3.6)

where Z =
∑

q1,...,qn=±1 e
∑n
i=1(2Nsia+Ω)qi . Here, each line can be under a different se-

lection pressure si but the multiplicity factor is fixed, which reflects the same genetic
basis of that locus in all lines.

Here, one needs to consider one subtlety arising from QTL analysis based on crosses
between individuals from different lines: In the crosses only the effects of loci differing
in their state q in at least two lines can be determined. A locus that has the same
allele in all lines will also have that allele in all crosses between the lines, rendering its
trait contribution invisible. This means that, independent of the number of lines, there
are always two state configurations q1 = q2 = . . . = qn = ±1 that cannot be observed.
From eq. (3.6) the result for the diverged loci directly follows as

P (q1, . . . , qn|Ns1, . . . , Nsn,Ω, a) =
1

Z ′
e
∑n
i=1(2Nsia+Ω)qi , (3.7)

where I allow only diverged configurations (q1, . . . , qn) and the normalization constant
has changed to Z ′ =

∑′
q1,...,qn=±1 e

∑n
i=1(2Nsia+Ω)qi where the sum

∑′ excludes the two
unobserved configurations q1 = q2 = . . . = qn = ±1.

Under the linear fitness model (3.2), states at different loci are statistically inde-
pendent, so the state statistics for several loci is the product of (3.7) over loci

P ({qi,l}|{Nsi}, {Ωl}, {al}) =

Ldiv∏
l=1

P (q1,l, . . . , qn,l|Ns1, . . . , Nsn,Ωl, al), (3.8)

where the number of loci with different states in at least two lines is denoted by Ldiv.
With this state statistics I can assign a probability to each of the possible configura-
tions {qi,l} given the selection strength of the lines and the multiplicity factors of the
loci.
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3.3 Inference of selection and log-likelihood scoring

of evolutionary scenarios

The state statistics (3.8) can be used to infer the parameters of the model (selection
strengths Nsi for different lines and the multiplicity factors Ωl at different loci) from ex-
perimental data on the states {qi,l} across lines and loci and on the additive effects {al}.
Denoting the position of the maximum of a function f(x) over x by x∗ = argmax

x
f(x),

the maximum-likelihood estimates of the free parameters {Nsi,Ωl} are obtained by
maximizing (3.8) with respect to the free parameters

{Ns∗i ,Ω∗l } = argmax
{Nsi,Ωl}

P ({qi,l}|{Nsi}, {Ωl}, {al}) . (3.9)

There are some limitations to the inference of multiplicity factors and selection
strengths. In order to obtain a proper maximum likelihood estimate a minimal amount
of data is required. For the estimation of the selection strength Nsi the number of loci
L is crucial, since the amount of data per selection parameter increases with L. For
the estimation of the multiplicity factors the number of lines n is the important factor.

The number of lines in QTL studies is typically very low, with most studies in
the range of 2 − 4 lines (Rebai and Goffinet 1993; Brem and Kruglyak 2005; Blanc
et al. 2006; Coles et al. 2010; Steinhoff et al. 2011). For a low number of lines
some restrictions on the estimation of the multiplicity factors exist. For two lines
there are in principle four different state configurations per locus (see also Table 3.1)
(q1, q2) = (+,+), (+,−), (−,+) and (−,−). Two of the configurations are not diverged
between the lines and thus cannot be observed in experiment. The only observable loci
are in states (+,−) or (−,+), for which the multiplicity factor Ω cancels out (see also
Table 3.1). Hence the state statistics (3.7) does not depend on the multiplicity factors
for two lines, making their inference impossible. This means on the one hand that
one cannot access information about the multiplicity factors from two lines. On the
other hand, there are less free parameters to be estimated in the maximum likelihood
function (3.9) as the Ωl drop out, leaving only the Nsi to be estimated.

For three lines one either has configurations with two + states (e.g. (+,+,−))
that have a term +Ω in the state statistics (3.7) (see also Table 3.2) or configurations
with two − states (e.g. (−,−,+)) that have a contribution of −Ω. For the maximum
likelihood estimation of Ω via eq. (3.9) both cases lead to extreme values of Ω∗: the
estimate diverges to +∞ for a surplus of + states and to −∞ for a surplus of − states.
This is caused by the insufficient amount of data per locus that leads to overfitting,
categorizing the configurations into two classes: Ω∗ = +∞ only allows configurations
with two + states and assigns zero probability for configurations with two − states
and vice versa for Ω∗ = −∞. This overfitting is reduced with an increasing number of
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relative
q1 q2 probabilities

- - e−2N(s1+s2)a−2Ω

+ - e2N(s1−s2)a

- + e−2N(s1−s2)a

+ + e2N(s1+s2)a+2Ω

Table 3.1: Relative probabilities for the state configurations in two lines. The
relative probabilities of eq. (3.7) (excluding the normalization Z ′) are given for two lines.
Only loci with states (+,−) and (−,+) in the two lines are detected in the crosses. For these
states, only the difference of selection strength s1 − s2 of the two lines and the additive a
enter the state statistics (3.7). The multiplicity factor Ω cancels out for the diverged state
configurations.

relative
q1 q2 q3 probabilities

- - - e2N(−s1−s2−s3)a−3Ω

- - + e2N(−s1−s2+s3)a−Ω

- + - e2N(−s1+s2−s3)a−Ω

+ - - e2N(+s1−s2−s3)a−Ω

+ + - e2N(+s1+s2−s3)a+Ω

+ - + e2N(+s1−s2+s3)a+Ω

- + + e2N(−s1+s2+s3)a+Ω

+ + + e2N(+s1+s2+s3)a+3Ω

Table 3.2: Relative probabilities for the two unobservable and the six observable
state configurations of a locus for three lines. In contrast to the case of two lines,
configurations that show no difference between two lines (e.g. (q1, q2) = (+,+)) can now
be observed (as in (q1, q2, q3) = (+,+,−)). Still, there are two configurations (+,+,+) and
(−,−,−) that remain unobservable. For three lines, the multiplicity factor Ω enters the
relative probabilities of all possible state configurations
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lines (for 4 lines one has the three cases Ω∗ = +∞ for e.g. (+,+,+,−), Ω∗ = 0 for e.g.
(+,+,−,−) and Ω∗ = −∞ for e.g. (−,−,−,+)) but the amount of knowledge that can
be gained about the multiplicity factors from a small number of lines remains limited.
Yet, it would be a mistake not to include the multiplicity factors into the analysis
since a bias towards a certain state in many loci under neutral evolution might be
misinterpreted as selection. Still, even with this very limited knowledge about the
multiplicity factors selection can be inferred. Given that one observes for example only
loci with two + states (such that all Ωl are positive) one can ask if an accumulation
of the − state is seen in one of the lines. Such a case would hint towards a difference
in selection strength between the lines, as opposed to a case where the − states are
evenly distributed across the lines, as expected under neutral evolution.

Another restriction caused by the multiplicity factors is that selection strengths
can only be determined relative to each other. The likelihood (3.9) depends on the
states qa,l via

∑
a,l(Nsaal + Ωl)qa,l. A constant shift of the selection strength by an

amount of s0 in all lines, s′i = si + s0, can always be compensated by a shift of the
multiplicity factors by Ω′l = Ωl + 2Ns0al leaving the likelihood (3.9) unchanged. This
makes the estimation of selection strength only possible up to an additive constant,
which only fixes the fitness differences between the lines. Given a uniform selection
strength si = s̄ in all lines and multiplicity factors Ωl = 0, this situation cannot be
distinguished from the case of neutral evolution with si = 0 but with multiplicity
factors Ωl = 2Ns̄al. This is also true for the case of two lines where the multiplicity
factors cancel out but only differences of the selection coefficients appear in the state
statistics (see Table 3.1), so that no uniform mode of selection is detectable. Thus, for
the rest of the thesis I only consider cases of lineage-specific selection and determine
selection strengths relative to each other. Using further information on multiplicity
factors (for instance from mutation accumulation experiments (Rice and Townsend
2012a)), or further assumptions (for instance that multiplicity factors are uncorrelated
with the effect sizes, or are on average non-negative) one can also obtain information
on absolute selection strengths from eq. (3.8).

Often the number of loci gained from QTL experiments is limited. When only few
loci are known for a trait, the inference of all parameters may be unreliable due to
overfitting. In this case it is convenient to restrict the parameter space of the si and
test specific hypotheses against each other. For example, one can have a completely
neutral scenario, where all selection coefficients are set to zero with (s1, s2, . . . , sn) =
(0, 0, . . . , 0), a case of lineage-specific selection with only one line being under selection
with (s1, s2, . . . , sn) = (s1, 0, . . . , 0), or several lines under different selection pressures
with (s1, s2, . . . , sn) = (s1, s, . . . , s).

I define a log-likelihood score that quantifies the evidence for two such evolutionary
scenarios compared against each other. For two scenarios P and Q the log-likelihood
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score is defined as

SQ,P =

Ldiv∑
l=1

ln

(
Q(q1,l, q2,l, . . . , qn,l|Ns∗1, . . . , Ns∗n,Ω∗l , al)
P (q1,l, q2,l, . . . , qn,l|Ns∗

′
1 , . . . , Ns

∗′
n ,Ω

∗′
l , al)

)
, (3.10)

where for both scenarios the maximum likelihood estimate (3.9) for the corresponding
model parameters is computed separately. The score is positive if the configuration
(q1,l, . . . , qn,l) is more in accord with scenario Q and negative if it is more in accord
with scenario P .

Both these scenarios are described by statistics of the form (3.8) but differ in their
parameter values. The remaining selection parameters are estimated together with
the multiplicity factors according to (3.9), giving the maximum likelihood estimate
{Ns∗i ,Ω∗l } for scenario Q and {Ns∗′i ,Ω

′

l∗} for scenario P .
When two scenarios with different numbers of free parameters are tested against

each other, the log-likelihood score is generally biased towards the scenario with more
parameters. A simple way to correct this bias is the Bayesian information criterion
(BIC) (Schwarz 1978). The BIC is a model selection criterion and penalizes a surplus
in model parameters. When an increase in the number of parameters is not leading to
a clearly increased fitting accuracy the model with more parameters will be rejected.
Under the BIC correction, the log-likelihood score (3.10) is decreased by an offset

SBIC
Q,P = SQ,P − k/2 lnLdiv , (3.11)

where k is the excess number of parameters of scenario Q compared to scenario P
(assuming that Q has more free parameters).

3.4 Advantages of multiple-line testing

3.4.1 Increase in the number of detected loci

In this section I will highlight the advantages of multiple-line crosses for the inference
of selection. There is a simple reason why a QTL selection test benefits from the
use of multiple lines. Since only loci with different states in at least two lines can be
observed in QTL analysis, a certain fraction of loci affecting the trait remains hidden
since their effect cannot be measured. Increasing the number of lines increases the
probability that a locus is diverged in at least one line, making it accessible to QTL
analysis (see Figure 3.3). For two lines, there are 2 out of 4 possible states per locus
that are diverged, (q1, q2) = (+,−) and (−,+) while loci with the states (+,+) and
(−,−) cannot be observed. Increasing the number of lines to three, there are already 6
out of 8 states that are diverged, (+,+,−), (+,−,+), (−,+,+), (+,−,−), (−,+,−),
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and (−,−,+). In the case that both states appear with equal probability this would
mean a reduction of the fraction of unobserved loci from 50% in two lines to 25% in
three lines. Increasing the number of lines further would lead to a further reduction
of the proportion of unobserved loci. In general, the probability for a locus to remain
unobserved under the effect of selection strength si and a multiplicity factor Ω is given
by

γ(n|si,Ω) =
n∏
i=1

P (+1|Nsi,Ω, a) +
n∏
i=1

P (−1|Nsi,Ω, a), (3.12)

where I used eq. (3.5) to calculate the probability for the two unobserved states with
q1 = q2 = . . . = qL = ±1.

two lines

three lines

Figure 3.3: Increasing the number of lines increases the number of diverged loci.
Top: A quantitative trait might be influenced by many loci. But many of them might not
be observable (shown transparently) since they are not diverged between the two lines used
for QTL analysis. Bottom: Increasing the number of lines typically increases the number of
diverged loci, making QTL analysis more powerful.

To test how the number of lines affects the estimation of model parameters as in
eq. (3.9) and the scoring of scenarios as in eq. (3.10), I compare selective and neutral
hypotheses against each other using artificial data. For this I generate artificial QTL
data under different scenarios, which I label for easy reference. In the first, neutral
scenario P0, the selection strength on all lines is zero (s1, s2, . . . , sn) = (0, 0, . . . , 0). In
the second scenario Q1, only line 1 is under selection (s1, s2, . . . , sn) = (s, 0, . . . , 0).

The selection strength for scenario Q1 is chosen as Ns = 10, such that one obtains
an average selection coefficient σ = Nsa = 1 (corresponding to a probability of 0.88
for a locus to be in the + state) with mean additive effect a = 0.1. The multiplicity
factors Ωl are set for both scenarios to ±0.2 for half of the loci each (a value of Ω = 0.2
corresponds to a 50% higher chance to have a + state than a − state under neutral
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evolution). The additive effects {al} are drawn from a gamma distribution, as in (Orr
1998; Zeng 1992), with shape parameter α = 2 and rate parameter β = 20. After
choosing the effects {al}, their values are fixed and are taken to be known explicitly
(in practice obtained through experiments using QTL crosses).

In each run, a set of states {q1,l, . . . , qn,l} is drawn for L = 20 loci from the probabil-
ity distribution (3.6) using scenario Q1. For the subset of loci with different states in at
least two lines I use eq. (3.9) to calculate the maximum likelihood values for the model
parameters of both scenario P0 and Q1, respectively. The log-likelihood score (3.10) is
obtained by inserting both state statistics for Q1 and P0 with their respective estimated
model parameters. To gauge the statistical significance of a given value of this score,
I also estimate the probability of reaching the same score or higher under the neutral
scenario P0. For this, I repeatedly draw configurations from the state statistics (3.6)
under the neutral scenario P0, using the same input parameters for the Ωl and the
al. For each neutral configuration I calculate the score (3.10) as mentioned before. I
define a p-value as the fraction of scores under neutral scenario P0 that are equal to
or larger than the score obtained under selective scenario Q1. This p-value quantifies
how likely it is to obtain the observed score under the neutral scenario (type I error
rate). The lower the p-value the less likely it is to obtain the score under scenario
P0, strengthening the evidence for scenario Q1. To gauge how frequently a positive
score occurs in favour of scenario Q1 with selection on any of the lines 1, 2, or 3, the
configurations drawn from the null model P0 are sorted according to the size of their
trait values T1, T2, T3 (such that the trait with the highest trait value gets assigned
the selection coefficient s of scenario Q1). The results of the simulations for different
numbers of lines can be found in Figure 3.4.

As expected, the mean log-likelihood score for the selective scenario Q1 increases
with the number of lines, which is the consequence of the increase in the number of
detectable loci Ldiv. The increase in score is largest when going from two to three lines.
Adding further lines only leads to a diminishing increase. The score finally saturates
when all existing loci are detectable. Together with the increase in score a decrease
in the average p-value can be observed, since more loci allow for a better distinction
between the selective and the neutral scenario.

A theoretical expression for the dependency of the mean score on the number of
lines can easily be derived. Assuming that the score contribution is on average the
same for each locus, leading to a linear increase of the score with the number of loci,
I obtain the relationship S(n)/S2 = 1−γ(n|si,Ω)

1−γ(2|si,Ω)
, where 1 − γ(n|si,Ω) is the number of

diverged loci in n lines with γ(n|si,Ω) defined in eq. (3.12). Since I average over many
loci to obtain S, the multiplicity factor Ω appearing here has to be understood as an
average multiplicity factor. One can rewrite this relationship to give the score for n
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Figure 3.4: Log-likelihood score and its statistical significance for different num-
bers of lines. (A) The average log-likelihood score (3.10) is shown for many realizations of
lineage-specific scenario Q1 compared to neutral scenario P0 for different numbers of lines at
a fixed total number of L = 20 loci. With an increasing number of QTL lines more loci are
diverged between the lines and thus are detectable. This leads to an increase of the score
with the number of lines. The increase in score is largest from two to three lines. For a large
number of lines an asymptotic value of the score is reached, as all loci become detectable. The
theoretical prediction of the score increase (3.13) fits the simulation results very well. (B) As
the score increases with an increasing number of lines the expected p-value for scenario Q1

decreases, reflecting a better distinction between scenarios Q1 and P0.
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lines as a function of the score obtained for two lines S2

S(n) = S2
1− γ(n|si,Ω)

1− γ(2|si,Ω)
. (3.13)

This function increases monotonically with n and reaches an asymptotic value of
S2

1
1−γ(2|si,Ω)

when all loci become detectable for a large number of lines (see also Fig-

ure 3.4).
Nevertheless, the number of detectable QTL, and hence the statistical signal of

selection can remain small, even when the number of lines is large. This is the case if
selection strength is so high in all n lines that all or nearly all QTL have the same state
in all lines. This can be seen from the expression for the fraction of unobserved loci
γ(n|si,Ω), which tends to 1 as all si go to ±∞. For a selection coefficient σi = Nsia > 2
in all lines, less than 5% of the loci are observable for three lines (assuming Ω = 0).
In practice, this particular problem can be remedied by including one line with small
selection pressure on the trait.

So far, the increase in statistical power in multiple-line tests is due to an increase
in the number of diverged loci Ldiv with the number of lines. In order to address other,
qualitative effects arising when the number of lines is increased, Ldiv is kept fixed for
the remainder of this thesis.

3.4.2 Two vs. three lines at a constant number of crosses

Another interesting point to be addressed when comparing two- and multiple-line
crosses is the efficient use of experimental crosses. Performing a large number of crosses
would be preferable as this increases the statistical power of QTL mapping and thus the
number of detected QTL. Yet, the necessary experimental effort limits the number of
crosses that can be performed, which can go up to a few hundreds (Lynch et al. 1998).
Performing a QTL analysis for multiple lines increases the experimental effort even
further, as more pairwise crosses need to be performed between the different lines (or,
depending on the mating design, with a common base line). For this reason I compare
two- and three-line tests while keeping the total number of crosses constant. Given a
fixed number of crosses that can be performed, should those crosses be concentrated
on two lines, or should crosses between all possible pairs of three lines be performed
(with fewer crosses between each pair of lines)?

Here, I use a simulation of a very simple scenario to test this hypothesis. A QTL
mapping of a simulated QTL experiment is used to assess the power to detect selection
in both cases. A quantitative trait is simulated for three lines by drawing a number of
Ldiv = 10 diverged loci from the state statistics (3.7). I again use scenario Q1, where
line 1 is under selection while the other lines evolve neutrally, as described above.
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For the QTL mapping I simulate 100 single nucleotide polymorphism (SNP) markers,
with 10 of the markers (equally spaced, i.e. markers 1, 11, 21, . . .) being perfect QTL,
meaning that they are perfectly linked to the QTL and their states always reflect the
state of the linked QTL. Crosses between the different lines are simulated. In one
case, a number of Mtot crosses is performed between lines 1 and 2 only, while in the
other case Mtot/3 crosses each are performed for the pairwise combinations of lines 1
and 2, lines 1 and 3 as well as lines 2 and 3. The recombination probability between
two adjacent markers is set to 0.25 such that the different QTL markers are passed
on approximately independently. The trait value of each cross is determined from the
state configurations at the QTL markers and the additive effects al using the linear trait
model (3.1). For the QTL mapping I use the random forest QTL mapping algorithm
as described in (Michaelson et al. 2010; Clément-Ziza et al. 2014) which can be used to
perform two- and multiple-line QTL mapping. The QTL mapping results in a q-value
for each of the markers, quantifying the probability that this marker is a true QTL.
I only keep the markers with q < 0.05, assuming that these are the QTL affecting
the trait. For each QTL the additive effects a′l (note that I do not assume knowledge
about the true underlying effects al) can be estimated by sorting the crosses into the
two groups with states ± at that particular marker and calculating the mean trait value
for each of the groups. The difference of these means gives an estimate for a′l. For three
lines the estimates for a′l coming from the different pairwise crosses are averaged over.
The states q′l for the QTL are set to + if the nucleotide in that line is associated with
a higher trait value and set to − if it is associated with a lower trait value. For the
resulting estimated state configurations {q′l} and additive effects {a′l} the score (3.10)
is calculated, comparing scenarios Q1 and P0.

As can be seen in Figure 3.5 (A) the mean score for the three-line crosses surpasses
the score for the two-line case at around 200 total crosses. Similarly, at a high number of
crosses the p-value is lowest for three lines (Figure 3.5 (B)). Thus, the three-line design
is more effective at detecting selection given a sufficient number of crosses. However,
for a small number of crosses the two-line test is more effective. The existence of
two regimes can be understood as follows: On the one hand, there are typically more
diverged QTL in three lines, as shown in the previous section. For a very high number
of crosses the power of QTL mapping is high enough to detect all loci, leading to more
detected loci in three lines (see Figure 3.5). On the other hand, for a diverged locus not
all crosses are informative in three lines. If there is for example a locus with the state
configuration (+,−,−), only crosses between lines 1 and 2 as well as lines 1 and 3 are
informative, while crosses between line 2 and 3 give no information about that QTL
since it is not diverged between the lines. Thus for three lines more QTL are diverged
but for each diverged QTL there are only 2/3 of the crosses that are informative,
making it more difficult to detect the QTL.

While I only consider a very simple model for QTL mapping here, where the exact
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Figure 3.5: Comparing the selection test on QTL mapping data for two and three
lines at a constant number of crosses. (A) The log-likelihood score (3.10) averaged over
1000 runs is plotted with pairwise crosses either between three lines or between two lines
against the total number of crosses. The mean score for scenarios Q1 tested against P0 as
a function of the total number of crosses increases faster for three lines with a crossover at
around 200 crosses. (B) Similarly, the mean p-value decreases faster for three lines, making
detection of selection easier for a high number of crosses. (C) For three lines more QTL are
diverged compared to a two-line design. As a result, more QTL can be detected in the limit
of a large number of crosses, where all diverged loci are also detected.
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results depend on the details for the simulation, this still points out that it can be
beneficial for the detection of selection to distribute a total number of available crosses
on two lines. The crossover region at around 200 to 300 crosses is reasonable when
compared to number of crosses taken in real QTL experiments (Lynch et al. 1998).

3.5 Statistical power of the selection test

In this section I want to determine under which conditions the detection of selection
is possible. For that, several different evolutionary scenarios are tested against each
other at a varying degree of selection strength. I use the scenarios P0 and Q1 as
defined in section 3.4.1. Additionally, I define a second lineage-specific scenario Q2

with (s1 = +s/2, s2 = +s/2, s3 = −s/2), where selection acts in different directions
in the different lines. Finally, I define the only possible selective scenario for two
lines Qtwo with (s1 = +s/2, s2 = −s/2) (which is identical to any other scenario
with a difference in selection coefficients of ∆s = s since a constant mode s̄ with
(s1 = +s/2 + s̄, s2 = −s/2 + s̄) vanishes), and the neutral two-line scenario Ptwo with
(s1 = 0, s2 = 0). Simulations are performed as described in section 3.4.1 but this time
varying the selection strength in the selective scenarios. For three lines I test selective
against neutral scenarios (Q1 vs. P0, Q2 vs. P0) and different lineage-specific selection
scenarios against each other (Q2 vs. Q1). Also for two lines selection is tested against
neutral evolution (Qtwo vs. Ptwo).

As can be seen in Figure 3.6 the score distributions of the scenarios Q1 and P0

separate as the selection strength s increases, making distinction between selection
and neutral evolution more reliable. Also the fraction of p-values below a threshold
of 0.05 in favor of the selective scenario increases steeply with increasing selection
strength (see Figure 3.7). This shows that the test can clearly distinguish between
selection and neutral evolution as well as different lineage selective scenarios. The test
works in a suitable parameter regime, allowing to detect selection for only few available
loci (L & 4 loci for Nsa = 1) and reasonable selection strength (Nsa = 1 corresponds
to a probability of 0.88 for a locus to be in the + state for Ω = 0).

3.6 Robustness of the model assumptions

The selection test is based on a simple population genetics model and contains several
simplifying assumptions. In this section, I explore how the test behaves in cases where
the model assumptions are violated such that the model is no accurate description of
the dynamics anymore. In particular, the model assumes a linear trait model, a linear
fitness landscape, a low mutation rate leading to a mostly monomorphic populations
and long evolutionary times, such that the state statistics is in equilibrium. Therefore,
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Figure 3.6: Distribution of the log-likelihood score for selective scenario Q1 and
neutral scenario P0 at different selection strengths. (A)-(C) While for small selection
strength selective and neutral scenario are not distinguishable, the separation of the score
distributions increases with increasing selection strength, making the detection of selection
more reliable.

I perform finite-population simulations that capture these features not considered in
my model. The simulations explore a regime with and without multiple segregating
loci, two kinds of epistasis, fitness and phenotype epistasis, and a range of evolutionary
times.

3.6.1 Epistasis and multiple segregating loci

Wright-Fisher model For the simulations I use the Wright-Fisher model (Wright
1931) that explicitly describes the dynamics of a population of N individuals under the
action of reproduction, selection, and mutations. The model considers non-overlapping
generations, such that in one time-step the old generation is entirely replaced by the
new generation. The population size is kept fixed during the simulation. To model
reproduction, each individual in the new generation chooses one individual of the old
generation at random from which it inherits the genome. Selection enters the step
of reproduction such that the probability that an individual of the old generation is
chosen as parent is dependent to its fitness. Mutations enter the model by switching
the state of each locus in each individual with probability µ before the new generation
is formed. I assume no recombination between the individuals, such that all loci are
perfectly linked for each individual and only mutations can change the composition of
loci in an individual.

An important quantity which has to be considered in population genetics is the
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Figure 3.7: The power of the selection test rises steeply with selection strength.
The fractions of p-values in favor of the selective scenarios under a threshold of 0.05 are
given. The scenarios tested against each other are Q1 vs. P0, Q2 vs. P0, Q2 vs. Q1, and
Qtwo vs. Ptwo. In all cases the fraction of statistically significant and correctly identified
cases rises steeply with the selection strength. At very high selection strength all cases are
correctly identified. This shows that the selection test can successfully identify selection and
can distinguish between different selective scenarios.
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number of polymorphic loci (which are loci for which two or more alleles segregate in
the population) that are typically present in a population at one point in time. If the
mutation rate µ is small (as assumed in my model), the population is monomorphic
most of the time and if a new mutation occurs, the time required for that mutation
to get lost or to spread to fixation is much shorter than the time interval between
two successive mutations. If the mutation rate is large, however, there will be several
mutations present in the population at a given time. These mutations will compete
against each other (if they are beneficial), since without recombination only one of them
can go to fixation. This phenomenon is called clonal interference (Gerrish and Lenski
1998). A consequence of clonal interference is that the adaptation speed is slowed down
compared to a situation with recombination, since not all beneficial mutations can be
fixed (Gerrish and Lenski 1998). A quantity to measure the degree of clonal interference
in the system is 2µLN lnN , where L is the number of loci and N is the population
size (Wilke 2004). 2µLN lnN > 1 is the regime where clonal interference plays a
role (where on average at least one beneficial mutation arises per generation). Since I
assume a low mutation rate in my model, such that there is no clonal interference, I
will perform simulations with the Wright-Fisher model both with and without clonal
interference to see the effect on the test performance.

Phenotype epistasis First, I consider phenotype epistasis. This means that the
trait value is not only determined by the additive contributions of each separate locus,
but also interactions between loci. To model phenotype epistasis, I add a pairwise
interaction term to the linear relationship between QTL states and the trait value (3.1),
yielding

T ({ql}) =
L∑
l=1

alql +
L∑

l,m=1

Jlmqlqm. (3.14)

J is a L×L symmetric matrix describing the interactions between loci. The interaction
coefficients {Jlm} are drawn from the same gamma distribution as the effects {al}
(and are assigned random signs). However, the average value of the {Jlm} is varied
relatively to that of the {al} by multiplying them with a factor J0/L. Then, for J0 = 1
the cumulative contribution to the trait from the epistatic interaction

∑
l,m |Jl,m| is on

average as large as the contributions from the linear term
∑

l al. The regime of large
J0 corresponds to significant epistasis: in this regime the trait value T can change
significantly with the change of state of a single locus. I assume that, as it is generally
the case, the epistatic interactions {Jlm} are not known.

I perform numerical simulations with the Wright-Fisher model using the epistatic
trait model (3.14). Starting from a random initial configuration {ql} for L = 15 loci,
a Wright-Fisher model is simulated with three independent populations of 100 indi-
viduals each evolving over M generations. I simulate the population under selective
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scenario Q1. At the end of each run, the configuration of loci with the largest frac-
tion in the population is used to calculate the score (3.10), comparing scenarios Q1

and P0. I perform simulations both at a high mutation rate that leads to multiple
segregating loci (mutation rate µ = 0.0002 over M = 3000 generations, resulting in
2µLN lnN ∼ 27.6 � 1 which is clearly in the regime of clonal interference) and in a
second regime with low mutation rates (µ = 2.5 × 10−5 over M = 25000 generations,
with 2µLN lnN ∼ 0.35; M is increased compared to the first case to compensate
for the lower number of mutations in order to keep the total number of mutations
approximately constant), where there is typically at most a single segregating locus.
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Figure 3.8: Statistical significance of the selection test in the case of phenotype
epistasis. The expected p-value of the likelihood score (3.10) comparing selective scenario
Q1 and neutral scenario P0 on data generated under scenario Q1 assuming the epistatic trait
model (3.14). With increasing coupling strength J0 of the epistatic interactions the linear
trait model assumed by the selection test becomes more and more inaccurate. This leads to
a decrease in the sensitivity of the selection test. For very high coupling strength the test
is not able to distinguish selective and neutral scenario anymore, but it retains some of its
power for only moderate selection strength. There is only little difference between the cases
with and without multiple segregating loci.

As J0 is increased, the effect of each locus on the trait becomes coupled to the
states of other loci and the linear trait model (3.1) becomes increasingly inaccurate.
This results in a decrease in the sensitivity of the test, as can be seen in Figure (3.8).
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While at very high coupling strength between the loci the test is not able to distinguish
between selection and neutral evolution anymore, it still retains some power for low
and moderate couplings. There is barely any difference to be seen between the cases
with and without multiple segregating loci, suggesting that the test is robust with
respect to a violation of the assumption of the weak mutation regime. If the epistatic
interactions (3.8) would be known, these could be implemented into the test as well,
restoring the sensitivity of the test.

Fitness epistasis Next, I test a second possible form of epistasis, fitness epistasis.
In the case of fitness epistasis, the fitness function does not follow the linear form (3.2)
but shows some kind of non-linear behavior with respect to the trait value. Here, I
choose the special case of a quadratic fitness function

F ({ql}) = −se(T ({ql})− T0)2, (3.15)

where T ({ql}) is the original, linear fitness function (3.2). The fitness function now has
a parabolic shape with parameter T0 giving the trait value with the maximal fitness
and the parameter se determining how quickly fitness decreases away from the maxi-
mum. To compare fitness epistasis to the case of a linear fitness landscape, the fitness
parameters T0 and se are chosen such that mean and variance of the distribution of
trait values T equals those without epistasis at a given value of the selection strength
Ns. Each line can have a different set of fitness parameters T0,i and se,i, corresponding
to different selection strength si for the linear model. In this way, the scenarios with
and without fitness epistasis can be compared directly even though the shapes of the
fitness functions are completely different. Again, I perform numerical simulations in
regimes with and without multiple segregating loci, analogously to the case of phe-
notype epistasis. Figure 3.9 shows that there is no big difference between the cases
with and without epistasis. The feature of the plot showing that the quadratic fitness
function actually leads to an improvement of the sensitivity of the test is merely an
artifact arising due to the very different shapes of the two fitness functions - fixing
mean and variance for the trait values is not enough to perfectly compare the two
fitness functions. As before there is no difference between the cases with and without
multiple segregating loci. This shows that the test is not particularly sensitive to the
choice of the fitness function (linear or quadratic fitness function).

Pleiotropy Beyond epistasis, the results of a QTL-based test for selection are poten-
tially limited by pleiotropic effects: a subset of QTL of one trait may affect a second,
unknown trait. If this unknown trait is under selection, but not the first, a QTL-based
test may erroneously lead to the conclusion that the first trait is under selection (be-
cause some of its loci show a signal of selection induced by the second, unknown trait).
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Figure 3.9: Statistical significance of the selection test in the case of fitness epis-
tasis. The selection test (3.10) is applied to data generated under a model with a quadratic
fitness function. The expected p-value was calculated as in the case of phenotype epistasis
before, this time applying the selection test to data generated both under a model with a
quadratic fitness function (3.15) and the linear version (3.2). The simulation results show
that there is no qualitative difference between the cases with and without fitness epistasis.
The sensitivity of the test is even larger in the case with fitness epistasis. This is, however,
only an artifact of the very different fitness functions that cannot be compared perfectly (even
though mean and variance of the distribution of trait values T is the same in both cases).
Again there is no difference between the cases with and without multiple segregating loci.
Simulation parameters: fitness parameters for each line T0,i and se,i for the case with fitness
epistasis are always chosen to match mean and variance of the trait value distributions for
the three lines of the linear fitness case at a selection strength of (Ns, 0, 0) for scenario Q1.
Other simulation parameters as in Figure 3.14.
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Hence, the evidence for selection from QTL statistics pertains to the trait the loci were
identified for, or some unknown trait with substantial overlap of QTL loci with the
trait under study. Conversely, the trait under study may be under selection (favouring
+ states, say), but some of its loci affect another trait also under selection, favouring −
states. If the second trait is unknown, the test would infer a selection strength on the
first trait that is too low. With a small number of lines or loci, the signal of selection
may even be lost altogether.

Relaxed purifying selection Another limitation of the selection test concerns the
interpretation of selection parameters. It is not possible to distinguish positive selection
from relaxed purifying selection. Positive selection means a change in selection strength
in a line that e.g. makes the increase of the trait value from a neutral baseline favorable.
Relaxed purifying selection however denotes the situation, where all lines were under
selection favouring a certain trait value (Fraser 2011). When the purifying selection
pressure disappears in one of the lines, the trait value will tend back to its neutral
baseline. Both cases lead to a pattern in the state configurations where the optimal
trait value is very different between the lines and no distinction is possible. Instead,
the test is sensitive to any kind of change in the selection strength acting on the lines.
This problem is already known for different QTL-based selection tests and discussed
in the work of (Fraser 2011).

3.6.2 Evolutionary timescales

Next, I assess the assumption of long evolutionary times since the divergence of the
lines. The state statistics (3.8) was derived in the steady state and is reached a long time
after the divergence of the different lines. This means that all loci have changed state
often since the last common ancestor, such that the state statistics does not depend
anymore on the initial state of the locus and the phylogenetic relationship between
the lines. The equilibration time depends, besides the mutation rate, on the strength
of selection and the size of the mutational targets. In a regime of short evolutionary
times, most loci have not changed their state (and are thus not detected in crosses) and
most diverged loci have undergone a single change of state over the phylogeny. With a
sufficient number of lines, the two scenarios can be distinguished easily on the basis of
the QTL states in all lines; in the limit of short times the states are compatible with a
single mutation event in the phylogeny (for each diverged locus). Yet, this assumption
might rarely be fulfilled perfectly in experiment. Therefore, I probe the statistical
power of the equilibrium test at different evolutionary times. A version of the selection
test working in the regime of short evolutionary times is developed in chapter 5.

I perform numerical simulations analogous to the ones described in section 3.5. But
instead of drawing configurations {q1,l, . . . , qn,l} from the equilibrium distribution (3.8),
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I simulate transitions between states for a number of t time steps at each locus with
substitution rates µ 4Nsia

1−e−4Nsia
and µ −4Nsia

1−e4Nsia for the transition from − to + and vice
versa (Kimura 1962), see also chapter 5. The phylogenetic relationship between the
lines is given by the phylogenetic tree in Figure 5.1. To simulate the transition between
short and long evolutionary times, the average number of substitutions per locus µt is
varied. At low values for µt only few loci are diverged, corresponding to the short time
limit. At high values for µt each locus has switched states often, corresponding to long
evolutionary times. To keep the number of diverged loci Ldiv constant, the number of
total loci is varied with the mutation rate (Ldiv is smaller than the total number of
mutable QTL loci L when the expected number of substitutions per locus is smaller
than 1) and only events with a fixed number of Ldiv diverged loci are kept. For each
configuration the log-likelihood score (3.10) is calculated and a p-value is obtained by
repeated simulations of a neutral model on the observed diverged loci (keeping the
additive effects al and the multiplicity factors Ωl fixed).

The change of the sensitivity of the selection test (3.10) that is built on the assump-
tion of long evolutionary times at varying levels of substitutions per locus is shown in
Figure 3.10. The statistical power decreases only slightly when going from long to short
evolutionary times and the test retains some of its statistical power even as µt becomes
small, making it feasible to use even when the assumption of long evolutionary times
is not completely satisfied. The statistics of states in this limit of short evolutionary
times is derived in chapter 5.

3.7 Comparison to other selection tests

I give a brief summary of the connection to other selection tests on quantitative traits.
The test developed here follows the test of Orr (Orr 1998) in that I use a two-state
model at each locus and infer selection from the statistics of + states (increasing the
trait value) and − states (decreasing the trait value). Also I condition the allele statis-
tics on the phenotypic difference to deal with a potential bias introduced by testing
multiple traits (see next chapter). Unlike Orr, I use population genetic models to
compare the empirical allele statistics with the statistics observed under different evo-
lutionary scenarios. The approach of Rice and Townsend (Rice and Townsend 2012a)
is similar in spirit, but uses information from mutation accumulation experiments,
which go beyond standard QTL analysis. Numerical simulations performed to assess
the statistical power of the test are similar to Rice and Townsend (Rice and Townsend
2012b) (which however focus on the connection to the variance of the distribution of
additive effects) and for the multiple testing simulations in the next chapter a scenario
analogous to Anderson and Slatkin (Anderson and Slatkin 2003) is used.
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Figure 3.10: The power of the selection test based on equilibrium statistics (3.8)
over different evolutionary times. The significance of the three-line equilibrium selection
test decreases only slightly with decreasing number of state changes per locus since the last
common ancestor (corresponding to shorter evolutionary timescales). Both at intermediate
times and even for short evolutionary times the equilibrium test retains most of its power.
Parameters: evolutionary scenario Q1 tested against P0, average selection coefficient σ =
Nsa = 1, number of diverged loci Ldiv = 10, phylogenetic tree as given in Figure 5.1 with
t1 = t2 = 50 time steps, µ = 0.0002− 0.06.
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Chapter 4

Multiple Testing and Maximum
Entropy

In this chapter, I address the multiple testing problem that arises when analysing mul-
tiple traits from a QTL analysis and discuss several possible methods dealing with
this problem: the Holm-Bonferroni method, the Benjamini-Hochberg procedure, and a
method based on conditioning on the trait difference. I show that the state statistics
conditioned on the trait difference can be obtained using the maximum entropy prin-
ciple. I derive the conditioned state statistics and test the ability of the methods to
reduce the false positive rate in a multiple testing scenario.

When the selection test is applied to multiple traits of the same QTL study it can
happen that some of the traits get a positive test result even in the absence of selection.
This, however, should not come as a surprise since, if the number of tested traits is
high enough, one expects that some traits obtain high test scores by pure chance. This
is known as the problem of multiple testing. There are several established methods
that account for the multiple testing bias, like the Holm–Bonferroni method or the
Benjamini–Hochberg procedure, which are briefly described in the next section.

Similarly, there might be a bias in the way the traits were selected for analysis in
the QTL study. From a possibly very large pool of traits only few traits were selected
for analysis because they showed a clear divergence between the lines. This induces an
ascertainment bias on the level of the pool of possible traits, which is harder to quantify.
It might not even be clear how many traits the trait pool comprises. There are cases
like expression QTL (eQTL) studies, where all gene expression levels in an organism
are considered and the total number of traits is clearly defined (Fraser et al. 2010). In
this case a standard multiple testing correction is applicable. In other cases, where e.g.
different leaf or flower characteristics of a plant are measured, the number of traits that
can possibly be measured is unclear. One possible way to correct for this ascertainment
bias was proposed by Orr (1998): The state statistics (3.8) will be conditioned on the
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observed trait difference. That way, information coming from a difference in trait values
is neglected from the analysis, circumventing a possible ascertainment bias. Instead,
one answers the question if one still can distinguish neutral evolution and selection,
given a certain trait difference between the lines. While this general idea was proposed
by Orr (1998), I will show in the following that the state statistics conditioned on the
observed trait difference can be obtained by the method of maximum entropy.

4.1 Classical multiple testing corrections

In this section I discuss some of the standard multiple testing corrections that can be
applied if the total number of traits is known.

4.1.1 Holm-Bonferroni Correction

A suitable multiple testing correction is the Holm–Bonferroni correction (Holm 1979),
which has the advantage that no independence of the different hypotheses needs to be
assumed. This is particularly important in QTL analysis, since different traits can be
affected by the same genetic loci. The Holm–Bonferroni correction controls the family-
wise error rate (FWER), i.e. the false positive rate not only for a single trait but for
a whole set of traits. The FWER is the probability that at least one false positive
is observed in the set of traits. If there are m traits for which scenario Q is tested
against the null hypothesis of scenario P , one calculates the log-likelihood score SQ,P
(3.10) and the corresponding p-values pj for all m traits. The traits are then ranked
according to their p-values with the highest p-values first. Next, one searches for the
first trait j∗ for which pj > α/(m+ 1− j), where α is the significance threshold for the
family-wise error rate. Scenario P can then be rejected for the traits 1, . . . , j∗− 1, but
not for traits j∗, . . . ,m.

The Holm-Bonferroni correction is a rather conservative and strict approach, since
it focuses on the family-wise error rate. Thus, it barely allows any false positives in
the whole set of tested traits and possibly neglects many traits that are under selection
(meaning a high type II error rate). However, it might be desirable to find more true
positive cases while accepting a higher false positive rate (type I error rate), especially
for a very large number of traits as in the case of eQTL studies.

4.1.2 Benjamini–Hochberg procedure

A less strict test that controls the false discovery rate (FDR) instead of the FWER at
the expense of a higher false positive rate is the Benjamini–Hochberg procedure (Ben-
jamini and Hochberg 1995). For this procedure one again tests scenario Q against the
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null hypothesis of scenario P for m traits and calculates SQ,P as well as the correspond-
ing p-values pj. The traits are again ranked according to their p-values, but now one
searches for the largest trait index j∗, for which pj ≤ j

m
α, where α is the significance

threshold for the false discovery rate. Now the null hypothesis of scenario P can be
rejected for j = 1 . . . j∗. As this correction is not focusing on keeping the number of
false positives in the whole set of traits small, it is especially suited for datasets with
large number of traits, where a small fraction of false positives in the entire dataset is
acceptable.

4.2 Conditioning on the trait difference

As emphasized by Orr (Orr 1998), a large trait difference between two lines alone is
not sufficient evidence for lineage-specific selection. The proposal of Orr for this case is
to use, in place of (3.8), a state statistics conditioned on the empirical trait difference
between two lines by restricting the states to those giving rise to the observed trait
difference T1 − T2. In doing so, the part of the evidence for selection that comes from
the trait difference between two lines is discarded. Instead, one focuses on differences
in the state statistics between neutral and selective scenario given that they produce
the same trait difference. Orr defines the trait difference as

R = T1 − T2 =
L∑
l=1

al(q1,l − q2,l) (4.1)

for the case of two lines (Orr 1998). Here, I generalize this notion to the case of n lines
and denote the maximal trait difference across two lines

Rmax =
L∑
l=1

al(q1,l − q2,l), (4.2)

where the lines are ordered such that line 1 has the largest trait value T1 =
L∑
l=1

alq1,l

and line 2 has the smallest trait value T2.
The goal is to calculate the state statistics (3.8) conditioned onRmax, P ({qi,l}|Rmax).

This statistics can then be used in the log-likelihood score (3.10) in place of the neu-
tral null model. The calculation to obtain P ({qi,l}|Rmax) is based on the principle of
maximum entropy.

The principle of maximum entropy was first stated by E. T. Jaynes (Jaynes 1957).
This general principle applies to situations with incomplete knowledge on the proba-
bility distribution p(x) of some variable x. This distribution must be consistent with
any prior information on x one might have (for instance the mean value of x), but
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otherwise it should be as unbiased as possible. The principle of maximum entropy
states that the distribution which best describes the incomplete state of knowledge is
the distribution which maximizes the information entropy

H(X) = −
∑
x

p(x) ln p(x) (4.3)

with respect to p(x) subject to the constraints resulting from prior information. The
principle of maximum entropy is a central part of statistical physics, where the max-
imum entropy principle gives rise to the well known Boltzmann distribution p(x) ∝
e−βE(x) which is derived for the configuration x of an ensemble of particles subject to
a constraint on the mean value of the energy E(x). Other applications of the princi-
ple of maximum entropy are in image reconstruction (Narayan and Nityananda 1986),
language modelling (Berger et al. 1996), and neural networks (Mora and Bialek 2011).
In the context of quantitative traits, the principle of maximum entropy and the associ-
ated calculus of exponential distributions has been used to estimate unobserved allele
frequencies and to infer selection from trait observables (Prügel-Bennett and Shapiro
1994; Ruttray 1995; Prügel-Bennett and Shapiro 1997; Berg et al. 2004; Mustonen and
Lässig 2005; Lässig 2007; Mustonen et al. 2008; Barton and de Vladar 2009; de Vladar
and Barton 2011a; Nourmohammad et al. 2013a; Nourmohammad et al. 2013b).

4.2.1 Pedagogical example

Here, I give a simple concrete example to demonstrate the link between ascertainment
bias and the maximum entropy principle. For this, I derive a probability distribution
subject to a constraint on the mean value of the variable using the maximum entropy
principle.

Consider a uniform distribution p0(x) in the interval [0, 1]. Now sets of ten numbers
xi, i = 1, . . . , 10 are drawn independently from the distribution p0(x) and their sum
m =

∑1
i=1 xi is considered (see Figure 4.1 left). The value of m will fluctuate from

set to set with an average of 5 and each contributing value xi will come from the
uniform distribution p0(x). Now, I filter the results and retain only those sets whose
sum is close to m̄ 6= 5. While the sum of values m is fixed to one particular value,
the individual xi contributing to the sum are still variable and are originally drawn
from the uniform distribution p0(x). Yet, this external condition creates a bias in
the original distribution p0(x), and for m > 5 one finds that larger values x appear
with a higher probability compared to the uniform distribution (see Figure 4.1). So
clearly, the effective distribution p0(x) from which the xi are drawn under conditioning
on m̄ is different. This is the ascertainment bias induced by conditioning the sum of
each set. Now the question is, how does the restriction of the sum m influence the
distribution p0(x) of the single xi? This is answered by the principle of maximum
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entropy, which allows to determine the exact form of this biased distribution p(x). The
relative information entropy between the original (uniform) distribution p0(x) = 1 for
x ∈ [0, 1] and biased distribution p(x) has to be maximized:

H(p) = −
1∫

0

dx p(x) log
p(x)

p0(x)
, (4.4)

subject to the constraints

1∫
0

dx p(x) = 1 ,

1∫
0

dx xp(x) =
m̄

N
, (4.5)

where N = 10 is the size of each set. Here, the first condition ensures the normaliza-
tion of the distribution and the second condition fixes the average contribution of a
single value x to m̄/N . The two constraints can be incorporated using two Lagrange
multipliers. The method of Lagrange multipliers is a method to maximize a function
subject to one or more constraints. In order to maximize a function f(x) subject to
a constraint g(x) = 0, one maximizes the function L(x, λ) = f(x) + λg(x), where λ is
a constant that needs to be determined to fulfill the constraint. This is easily gener-
alized to multiple constraints, where one additional Lagrange multiplier is added for
each constraint. The maximum of the function is then found by taking the partial
derivatives with respect to all variables and Lagrange parameters and setting them to
zero.

In this case the method of Lagrange multipliers for the relative information entropy
together with the constraints (4.5) yields

Ĥ(p) =−
1∫

0

dx p(x) log p(x) + λ1

 1∫
0

dx p(x)− 1


+ λ2

 1∫
0

dx xp(x)− m̄/N

 , (4.6)

which needs to be maximized with respect to p, λ1, and λ2. Here, I inserted p0(x) = 1
for x ∈ [0, 1]. The derivatives with respect to λ1 and λ2 automatically give the two
constraints (4.5). The functional derivative with respect to p yields

∂Ĥ

∂p
= − (log p(x) + 1) + λ1 + λ2x = 0 . (4.7)
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Figure 4.1: A biased distribution can be inferred with the maximum entropy
method. Left: Numbers drawn from a uniform distribution in the interval [0, 1]. Right:
Only sets of ten numbers drawn from p(x) are considered that have a sum close to m = 8.
This leads to a bias in the distribution p(x) which now has a mean of 0.8. The exact form
of the distribution can be calculated analytically using the method of maximum entropy.
This analytical result takes on an exponential form (red line) and agrees perfectly with the
histogram obtained by drawing sets of ten numbers randomly from the uniform and only
keeping 1000 sets with a sum in the interval 7.95 < m < 8.05.
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Solving with respect to p(x) yields

p(x) = eλ2x+λ1−1. (4.8)

Ascertainment bias thus makes x exponentially rather than uniformly distributed. The
values for λ1 and λ2 have to be determined by inserting p(x) from (4.8) into the
constraints (4.5) and solving for λ1 and λ2. For the case of m̄ = 8 and N = 10 one
obtains λ1 ≈ −1.62 and λ2 ≈ 2.67. The result for p(x) shown in Figure 4.1 agrees
perfectly with the histogram of numbers in sets with a constrained sum (note that a
perfect agreement is only expected for a large number of N ; as seen from Figure 4.1,
N = 10 already leads to a reasonably good approximation).

Suppose one did not know whether the original distribution p(x) from which the
data were drawn was uniform or not and one had access only to data subject to the
known constraint. If the distribution of the empirical data deviates from or agrees with
the maximum entropy distribution p(x), then this deviation or agreement could be used
to quantify the likelihood that the original data came from the uniform distribution
(vs. an alternative hypothesis).

I now adopt this approach for the log-likelihood testing with the log-likelihood
score (3.10). For this, the neutral (uniform) scenario is replaced by the maximum
entropy distribution of the neutral scenario conditioned on the trait difference (tested
against an alternative, selective hypothesis). That way, I test if the data rather origi-
nate from a completely neutral state statistics, which is however biased due to a higher
trait difference, or if they originate from a proper selective scenario.

4.2.2 Derivation of the ascertained neutral scenario

I now apply the principle of maximum entropy analogously to the state statistics (3.7) to
derive the neutral scenario Ph(q1, . . . , qn|Ω, a) conditioned on the trait difference Rmax

from the original neutral scenario P0. This introduces an additional parameter h which
is used to adjust the trait difference Rmax in the neutral scenario. The distribution
Ph(q1, . . . , qn|Ω, a) is obtained by maximizing the information entropy

H(P ) =−
′∑

qi=±1

Ph(q1, . . . , qn|Ω, a) log

(
Ph(q1, . . . , qn|Ω, a)

P0(q1, . . . , qn|Ω)

)

+ λ0

(
′∑

qi=±1

Ph(q1, . . . , qn|Ω, a)− 1

)

+ h

(
a

′∑
qi=±1

(q1 − q2)Ph(q1, . . . , qn|Ω, a)− Rmax

Ldiv

)
, (4.9)
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with respect to Ph(q1, . . . , qn|Ω, a). Here, the first term denotes the unconstrained
information entropy and the other two terms again comprise the Lagrange multipliers
for the constraints. The second term ensures the normalization of the distribution Ph
with a normalization parameter λ0 and the third parameter fixes the trait difference
to Rmax with the additional parameter h. Again the sums

∑′ over all possible states
qi = ±1, i = 1, . . . , n exclude the undiverged states q1 = . . . = qn = ±1.

Taking the functional derivative with respect to P gives, similar to the result in the
previous section

∂Ĥ

∂P
= −

(
log

Ph
P0

+ 1

)
+ λ0 + ha(q1 − q2) = 0. (4.10)

Solving this equation with respect to Ph gives

Ph(q1, . . . , qn|Ω, a) = exp (ha(q1 − q2))P0(q1, . . . , qn|Ω) /Z̃

=
exp (ha(q1 − q2) + Ω

∑n
i=1 qi)

′∑
{q′1,q′2,...,q′n=±1}

exp (ha(q′1 − q′2) + Ω
∑n

i=1 q
′
i)

, (4.11)

where I have the new normalization constant Z̃ = λ0− 1. Note that equation (4.11) is
only the result for a single locus. As defined before in (3.8) one obtains the full state
statistics by taking the product over all loci Ph({qi,l}|{Ωl}, {al}) =

∏Ldiv

l=1 Ph(q1,l, . . . , qn,l|Ωl, al),
where the parameter h is the same for all loci.

As can be seen in equation (4.11), the old neutral state statistics P0 gets multiplied
by a factor of exp (ha(q1 − q2)) with an additional parameter h that determines the
trait difference Rmax =

∑
l al(q1,l−q2,l). A larger value of h leads to a higher probability

for a + state in line 1 and a higher probability for a − state in line 2, thus leading to an
increasing trait difference Rmax. This increase of the trait value in line 1 and decrease
in line 2 always happens symmetrically around a mean trait value (which can itself be
biased towards a higher or lower trait value by the combined effect of the multiplicity
factors Ωl which are the same for all lines) (see Figure 4.2 a). This can be distinguished
from other selective scenarios, where for example only one line is under selection and
has a trait value diverged from the value of the other lines (see Figure 4.2 b).

The maximum-entropy statistics Ph conditioned on Rmax will be used to describe
the state statistics under neutral evolution and with ascertainment bias. One can now
compare a selective scenario against the neutral scenario under conditioning on Rmax

using the log-likelihood score

SQ,Ph =
L∑
l=1

ln

(
Q(q1,l, q2,l, . . . , qn,l|Ns

′
1, . . . , Ns

′
n,Ω

′

l, al)

Ph∗(q1,l, q2,l, . . . , qn,l|Ω∗l , al)

)
. (4.12)
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Figure 4.2: Maximum entropy solution for neutral evolution under ascertainment
bias can be distinguished from selection. (A) The maximum entropy solution for neutral
evolution conditioned on the trait difference Rmax (4.11) predicts that the trait contribution
of the line with the highest trait value (line 1) and the line with the lowest trait value (line
2) symmetrically diverge from the mean trait value (which can itself be biased due to the
effect of the multiplicity parameters Ωl which are however the same for all lines). (B) In
many selective scenarios, however, the situation is different. For example, only one line (line
1) can be under selection for a high trait value. This leads to one line with a trait value very
different from the trait values of the other lines. Therefore, the selective scenario becomes
distinguishable from the neutral scenario under ascertainment bias. Note that the distinction
between neutral and selective scenarios is not possible when only two lines (line 1 and 2) are
available. In this case, both scenarios would simply produce the same trait difference Rmax

and one would have no possibility to distinguish between them.
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This log-likelihood score now also depends on the ascertainment parameter h. The
value of the ascertainment parameter h∗ are estimated together with the values of the
multiplicity parameters for scenario Ph by maximizing the log-likelihood score with
respect to all parameters.

If one considers the maximum entropy solution (4.11) for the case of two lines, one
sees that the probabilities for the two observable states (+,−) and (−,+) exp(ha(q1−
q2))/C match the probabilities of the selective scenario (see Table 3.2) exp(2N∆sa(q1−
q2))/C (the multiplicity parameters cancel out in the case of two lines). Here, the as-
certainment parameter h and the selection parameter 2N∆s can be identified with each
other, yielding the same functional form. Maximizing the log-likelihood score (4.12)
with respect to ∆s for the selective scenario Q and with respect to h for the neutral
scenario then lead to exactly the same state statistics, making distinction between the
two cases impossible. As a result, the log-likelihood score comparing evolution under
selection at equilibrium with the neutral statistics conditioned on the observed trait
value is exactly zero. Hence, for two lines at equilibrium it is not possible to distinguish
neutral evolution with ascertainment bias from the effect of selection.1

This is, however, completely different for more than two lines. In this case the state
statistics in the selective scenario in equilibrium (3.8) differs from the neutral scenario
and the log-likelihood score (4.12) generally gives non-zero results, making distinction
between neutral evolution and selection possible. (However, there is again a particular
selection scenario, s1 = +s, s2 = −s, s3 = 0, . . . , sn = 0, that is not distinguishable
from neutral evolution conditioned on Rmax.)

To test the statistical power of the different approaches to the multiple testing prob-
lem, I perform numerical simulations using a simple multiple testing scenario where
a trait is picked from a larger set of traits. This multiple testing scenario follows the
lines of Anderson and Slatkin (Anderson and Slatkin 2003). For this I draw state
configurations {ql,i} for m = 5 traits at random from the neutral scenario P0 for three
lines. Then the traits are ordered according to the maximal phenotypic difference Rmax

occurring between any two of the three lines. To create an ascertainment bias I only
pick the trait with the largest phenotypic difference for further analysis. For this trait I
test for selection using selective scenario Q1 against the neutral scenario. This is done
in three different ways: First, by using the completely neutral scenario P0 without any
correction for ascertainment bias. Second, using the conditioned neutral scenario Ph

1A key difference of my log-likelihood score to Orr’s test is that Orr not only uses the empirically
observed additive effects {al} available from crossing experiments, but also additive effects drawn from
a plausible distribution P (a). Orr’s test can appear to yield significant results when calculating the
trait difference R using the additive effects empirically determined from crosses, but using a different
set of additive effects drawn from some distribution P (a) for p-value computations. Consistent with
this, Rice and Townsend found that the outcome of Orr’s test strongly depends on the assumptions
made on that distribution and that the test can produce nonsensical results (Rice and Townsend
2012b) in particular cases.
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and third, by using scenario P0 and applying the Holm-Bonferroni correction. In each
case the score (4.12) is computed, testing selective scenario Q1 against the correspond-
ing neutral scenario, as well as the corresponding p-value. This procedure is repeated
many times over to get an estimate for the false discovery rate (FDR) in all cases.
Here, a significance threshold of p < 0.05 (p < 0.05/5 = 0.01 in the case of the Holm-
Bonferroni correction) is applied. The false discovery rates (which can be found in
Table 3.1) are clearly elevated without any correction while the conditioning on Rmax

and even more pronounced the Holm-Bonferroni correction lead to a reduced FDR.
This result for the conditioning on Rmax is in accord with Anderson and Slatkin (An-
derson and Slatkin 2003), who found that the Orr test, which uses a similar correction
scheme, also led to conservative test statistics.

method false discovery rate

no correction 0.20

conditioning on Rmax 0.11

Holm-Bonferroni 0.044

Table 4.1: False discovery rates for the different methods accounting for the mul-
tiple testing bias. While applying no correction leads to a clearly elevated false discovery
rate, this can be significantly reduced by applying the neutral scenario conditioned on the
phenotypic difference. The Holm-Bonferroni procedure yields the smallest false discovery
rate, but here the total number of traits has to be known.

Next, I simulate one trait under the selective scenario Q1 and the other traits under
the neutral scenario P0. Then, I determine in which fraction of the cases the trait under
selection is correctly identified with a p-value p < 0.05 (p < 0.05/5 = 0.01 in the case
of the Holm-Bonferroni correction) for all three methods (true positive rate), given
that the trait under selection turns out as the trait with the highest trait difference.
As can be seen in Figure 4.3, the true positive rate in the case without any correction
is highest, but also suffers from the highest false positive rate (which can be read off
from the value of the curve at the very left of the plot, where the selection strength
σ → 0 corresponds to a neutral scenario). Both the conditioning on the phenotypic
difference and the Holm-Bonferroni correction have a lower true positive rate, but at
a much lower false positive rate. For high selection strength σ the Holm-Bonferroni
method has a higher statistical power to detect selection and should thus be preferred
(the fraction of significant p-values is higher for the conditioning on Rmax for small
values of σ only because it operates at a higher effective false positive rate as the
Holm-Bonferroni method). However, the Holm-Bonferroni method can only be applied
if the total number of traits is known, which is not always possible.

While the maximum trait difference Rmax is a plausible observable on the basis of
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Figure 4.3: True positive rate of different methods dealing with the multiple
testing problem. While the true positive rate is highest without any multiple testing
correction, it also has the highest false positive rate of 0.20 (which can be read off as the
value on the very left of the plot, where the selection strength σ tends to zero, corresponding
to the neutral case). The Holm-Bonferroni correction works both for two and three lines
and has a higher true positive rate at high selection strength than the conditioning on the
phenotypic difference. The higher true positive rate of the conditioning on Rmax for low
values of σ is only achieved along with a higher false positive rate. The conditioning on Rmax

for two lines is not possible and would only result in a flat line at the false positive threshold
since selection and the conditioned neutral distribution cannot be distinguished.
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which traits can be selected from a larger pool, it is by no means the only one. For
instance, with three lines, traits could in principle be selected based on the difference
between the trait in line 1 and the trait mean in line 2 and 3, R∆ = T1 − T2+T3

2
.

One would use this observable when looking specifically for traits with lineage-specific
selection acting on line 1. For s2 = s3 ≡ s0 the fitness (3.2) can be written

F (T1, T2, T3) = s̄(T1 + T2 + T3) + ŝ

(
T1 −

T2 + T3

2

)
(4.13)

with s̄ = (s1 + 2s0)/3 and ŝ = s1 − s̄ = 2(s1 − s0)/3. The maximum entropy distri-
bution conditioned on R∆ is proportional to exp(hR∆) and thus again differs from the
equilibrium distribution ∝ exp(βF (T1, T2, T3)), except in the special case s̄ = 0.



62 Chapter 4. Multiple Testing and Maximum Entropy



Chapter 5

Short evolutionary times

In this chapter, I consider the limit of short evolutionary times as opposed to the equi-
librium model in chapter 3. But the assumption of long evolutionary times, such that
the state statistics is in equilibrium, might not always be valid. Because of this and
because it is usually difficult to consider arbitrary evolutionary times (where the evo-
lutionary times and mutation rates have to be known), this limit of short evolutionary
times is worthwhile considering. The limit of short evolutionary times is characterized
by nµt� 1, which denotes the average number of mutations per locus (where n is the
number of lines, µ the mutation rate per locus and generation, and t the number of gen-
erations since the divergence of the lines). In this regime, most loci are not diverged
between the lines and the loci that are diverged have undergone a single mutation.
Nevertheless, the total number of diverged loci nµtL should be at least of order one.

In the short-time limit the state statistics also depends on the phylogenetic tree
of the lines, which is assumed to be known. Since the mutation affecting one locus
can happen at different branches of the phylogenetic tree, its probability of occurrence
depends also on the length of the branch, which is proportional to the evolutionary
time. Also not all state configurations (q1, q2, q3) can be reached from the ancestral
state c, which is the state of the locus in the common ancestor of the lines, by a single
mutation. As the size of the phylogenetic tree and especially the number of possible
trees grow very quickly with the number of lines, it is infeasible to calculate the state
statistics for general number of lines n. Here, I only consider the cases n = 2 and
n = 3. In the following, I assume the phylogenetic tree for three lines as defined in
Figure 5.1.

5.1 Two lines

First, I consider the case of two lines. Here, both possible diverged final states for a
locus (q1, q2) = (+,−) and (−,+) can be reached from either ancestral state c = ±.
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The transitions between states of a locus (resulting in the fixation of the new state at
that locus in the population) with additive effect a in a population of size N under the
influence of a selection strength s occur with transition rates

u+(Ns, a) = µ+
2Nsa

1− e−2Nsa
(5.1)

for the transition from ancestral state c = − to state + and

u−(Ns, a) = µ−
−2Nsa

1− e2Nsa
(5.2)

for the transition from ancestral state c = + to state −. This result follows from
eq. (2.3) when ∆F is assumed to be small. Here, µ+ and µ− denote the mutation
rates for the transitions − → + and + → −, respectively. In the absence of selection
a difference in the mutation rates can still lead to a bias in the probability for a
transition to the + or − state, much like the multiplicity factor Ω in the case of long
evolutionary times. Since the mutation rates µ+ and µ− are not defined for individual
nucleotides but as effective mutation rates between the states of a locus that can consist
of many nucleotides, a bias between these rates can be very likely, as already explained
for the case of long evolutionary times. Therefore, I again introduce a parameter Ω
that, similar to the multiplicity factor in the case of long evolutionary times, quantifies
the bias towards the one or the other transition under neutral evolution. Since only
the relative difference µ+

µ−
between the two mutation rates counts in the remainder of

the calculation, one parameter is enough to encode the information about the bias in
mutation rates. Without loss of generality, I set µ− to 1 and replace µ+ with eΩ. This
yields the relative transition rates

uc(Ns, a,Ω) = eΩ(1−c)/2sc(Ns, a) (5.3)

with

sc(Ns, a) =
−2Nsca

1− e2Nsca
(5.4)

for an ancestral state c = ±1.
The probability for a transition to occur in line i for a given ancestral state c follows

now as

P (i|Ns1, Ns2, a, c) =
uc(Nsi, a,Ω)

uc(Ns1, a,Ω) + uc(Ns1, a,Ω)
=

sc(Nsi, a)

sc(Ns1, a) + sc(Ns1, a)
, (5.5)

since the mutational bias Ω included in uc(a,Ns,Ω) cancels out. The evolutionary
times of the lines since the ancestor do not enter the equations for two lines, since in
this case only a trivial phylogenetic tree with two equally long branches is possible and
the time parameter t cancels out due to the normalization.
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Often it might not be possible to infer the ancestral states c for the loci. In this
case one can average over both possible ancestral states c = ± with an appropriate
prior. Here, I make the assumption that the state statistics of the ancestral line was
in equilibrium before the divergence of the two lines. Without any selection acting on
the ancestral line the bias in mutation rates alone would influence the state statistics.
For two mutation rates µ+ and µ− the probability for an ancestral state c would be
P (c) = µc

µ++µ−
= 1

1+
µ−c
µc

. Additionally, the ancestral line can be subject to selection

with selection strength sanc, which gives rise to a factor of eNsanca. Switching to the
notation with the Ω parameter, I obtain

Panc(c,Nsanc,Ω) =
1

1 + e−cΩ
eNsanca. (5.6)

With this result for the prior probability, one can average the probability to obtain
one of the possible states (q1, q2) = (+,−) and (+,−) over the ancestral states. One
obtains

P (q1, q2|Ns1, Ns2, a,Ω) =
Panc(q2, Nsanc,Ω)uq2(Ns1, aΩ) + Panc(q1, Nsanc,Ω)uq1(Ns2, a,Ω)∑

c=±1

2∑
i=1

Panc(c,Nsanc,Ω)uc(Nsi, a,Ω)

.

(5.7)
Contrary to equation (5.5) both ancestral states c = ± enter the equation, such

that Ω does not cancel out directly. Yet, the terms Panc(c,Nsanc,Ω) and uc(Ns, a,Ω)
appear only in combination in eq. (5.7). As it turns out, the dependency on Ω is the

same for both c = + and c = −. One gets Panc(±, Nsanc,Ω)u±(Ns, a,Ω) ∝ eΩ

1+eΩ
, such

that the dependency on Ω cancels out also in the case of unknown ancestral states.
The reason why Ω cancels out in this case as well is easily understood: if there is a bias
towards the + state, the probability to start with c = +, Panc(+, Nsanc,Ω), is high,
but the transition probability u+(Ns, a,Ω) to the − state is low. If the bias is towards
the − state, the probability to start with c = + is low, but the transition probability
to the − state is high, resulting in the same probability for both cases.

Thus, I can write the two-line result as

P (q1, q2|Ns1, Ns2, a) =
P two

anc (q2, Nsanc)sq2(Ns1, a) + P two
anc (q1, Nsanc)sq1(Ns2, a)∑

c=±1

2∑
i=1

P two
anc (c,Nsanc)sc(Nsi, a)

,

(5.8)
which is now independent of Ω. Here, I define P two

anc (c,Nsanc) = eNsanca.
The distribution (5.8) conditioned on the phenotypic difference can now be obtained

analogously to the equilibrium case in chapter 4. The result P (q1, q2|Ns1, Ns2, a, Rmax)
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has again introduced a new term exp(ha(q1 − q2)) leading to the trait difference Rmax

by adjusting the parameter h. But now, for the short-time dynamics, this result for
the neutral scenario under conditioning on Rmax has not the same form as the selective
scenario anymore, unlike the case of long evolutionary times (see section 4.2.2). Thus, it
is in principle possible to distinguish neutral evolution and selection in this case. Yet,
as the numerical simulations in section 5.3 show, the test has barely any statistical
power in this case.

5.2 Three lines

In the case of three lines, the phylogenetic tree of the lines becomes important as well.
Two lines will be more closely related while a third line is the outgroup. In the following
I define line 3 as the outgroup, resulting in a phylogenetic tree as given in Figure 5.1.
There are two time intervals t1 and t2 denoting the times between the speciation events
and an additional selection strength s12 for the ancestor of the two more closely related
lines 1 and 2 (see Figure 5.1).

t2t1

q1

c q2

q3

s1

s2

s3

s12

Figure 5.1: Phylogenetic tree for three lines. In the short-time limit the phylogenetic
tree is important for the calculation of the state statistics. The branch lengths t1 and t2,
the ancestral state c, and the selection strengths s1, s2, s3, and s12 determine the relative
mutation probabilities in the different branches.

For four of the six possible diverged configurations a unique ancestor can be as-
signed: Denoting line 3 as the outgroup, configurations (q1, q2, q3) = (+,−,−) and
(−,+,−) diverged from the ancestral state c = −, configurations (−,+,+) and (+,−,+)
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from ancestor c = +. Configurations (+,+,−) and (−,−,+) can either be reached by
a mutation in the ancestor of lines 1 and 2 or a mutation in line 3 (see also Figure 5.2).

Under neutral evolution the relative probability for a state configuration (q1, q2, q3)
depends only on the length of the branch in the phylogenetic tree (which is proportional
to the passed evolutionary time) in which the mutation occurs. The multiplicity factors
Ωl of the loci would in principle also play a role, but they again cancel out, as described
in the previous section for the case of two lines. The relative probability for the
transition from c = + to (−,−,+) for example is proportional to t1 since the mutation
can only happen in the ancestor of lines 1 and 2, while the configuration (+,−,+) can
only be reached by a mutation after the divergence. Thus the relative probability is
proportional to t2 in that case.

With selection included the relative transition probabilities also depend on the
selection strength in the different branches. In the most general case, there are the
selection strength s1, s2, s3, s12 (see Figure 5.1) and sanc (for the ancestral line).

As already for the two-line result in eq. (5.8), the relative transition rates for the
different state configurations are now composed of the branch length of the phylogenetic
tree in which the mutation happens, the probability Panc(c,Nsanc) for ancestral state c
and the transition rates sc(Ns, a) for that change of state. Here, I again assume that the
ancestral states are unknown and need to be averaged over. A straightforward extension
to the case of known ancestral states is easily possible. For the state configurations
(−,−,+) and (+,+,−) that can be reached from either ancestral state the relative
probabilities for both transitions from c = + and c = − are added up, weighted with
their probability of occurrence P (+, Nsanc) and P (−, Nsanc), respectively. In total I
obtain

(−,−,+) (t1 + t2)P (−, Nsanc)s−(Ns3, a) + t1P (+, Nsanc)s+(Ns12, a)

(−,+,−) t2P (−, Nsanc)s−(Ns2, a)

(+,−,−) t2P (−, Nsanc)s−(Ns1, a)

(+,+,−) t1P (−, Nsanc)s−(Ns12, a) + (t1 + t2)P (+, Nsanc)s+(Ns3, a)

(+,−,+) t2P (+, Nsanc)s+(Ns2, a)

(−,+,+) t2P (+, Nsanc)s+(Ns1, a) , (5.9)

for the relative probabilities of the state configurations. The absolute probabilities are
obtained by normalizing by the sum of all relative probabilities. As in the case of
two lines, only combinations of P (c,Nsanc)sc(Ns, a) appear, such that the multiplicity
factors Ωl again cancel out. One can write the short-time probability distribution
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Figure 5.2: Allowed transitions for three lines. The phylogenetic tree for three lines
is constraining the three-line states that can be reached by a single mutation from ancestral
state c. (A) Four of the six possible diverged states can be reached from ancestral state
c = +, while states (−,+,−) and (+,−,−) cannot be reached by a single mutation. (B)
While the two states (+,+,−) and (−,−,+) (where the outgroup line is in a different state)
can also be reached from the ancestral state c = −, two other states (+,−,+) and (−,+,+)
that could be reached from c = + are now inaccessible. Thus, four of the six configurations
can be assigned to a unique ancestral state.
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Qs(q1, q2, q3|a) in a more compact form as

Qs(q1, q2, q3|a) =
1

Z

(
t2P (k,Nsanc)sk(Nsq=−k, a) + δq1,q2t1·

[P (k,Nsanc)sk(Ns3, a) + P (−k,Nsanc)s−k(Ns12, a)]
)
. (5.10)

Here, I define the shorthand k = q1 + q2 + q3 = ±1, and Nsq=−k denotes the selection
strength of the line with the minority state (e.g. Ns3 for the configuration (−,−,+))
and Z =

∑′
q1,q2,q3=±1Qs(q1, q2, q3|a). Again, the two states with q1 = q2 = q3 = ±1 are

excluded from this sum.
The neutral distribution Ps(q1, q2, q3|a) is straightforwardly derived from eq. (5.10)

by setting all selection parameters to zero. This leads to P (c, 0) = 1 and sc(a, 0) = 1.
Since the multiplicity factors cancel out, the only dependency that is left is the one on
the branch length of the phylogenetic tree. One obtains

Ps(q1, q2, q3) =
t2 + δq1,q22t1

6t2 + 4t1
. (5.11)

Again, the distribution (5.10) conditioned on the maximal phenotypic difference
Rmax can be obtained as before, yielding an additional term exp(ha(q1 − q2)) to fix
Rmax.

5.3 Statistical power of the short-time test

Now eq. (5.10) and (5.11) can be used to compare different selective scenarios for short
times using the log-likelihood score (3.10). For this, the parameters of the scenarios
are estimated by maximum likelihood, where one has the new selection parameter sanc

of the ancestral line but no more multiplicity parameters Ωl. The evolutionary times
t1 and t2 are assumed to be known and will not be estimated by maximum likelihood.

To explore the statistical power of the selection test in the short-time regime, I per-
form numerical simulations as in section 3.5 but with the short-time scenario (5.10) ap-
plied on simulated data created under a short-time dynamics. Similarly to the equilib-
rium case I define the selective scenarioQ1 with selection parameters (s1, s2, s3, s12, sanc) =
(s, 0, 0, 0, 0), the neutral scenario P0 with selection parameters (0, 0, 0, 0, 0) as well as
the two-line scenarios Qtwo with (s1, s2, sanc) = (s, 0, 0) and Ptwo with (0, 0, 0). The
evolutionary timescales are chosen as t1 = t2 (since only the relative values of t1 and
t2 play a role). For better comparability to the equilibrium case I consider sets of
Ldiv = 10 diverged loci drawn from the short-time state statistics (5.10). The additive
effects {al} are again drawn from a gamma distribution with parameters α = 2 and
β = 20 (mean effect a = 0.1 per locus).
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Figure 5.3 shows that both the three-line and the two-line version of the short-time
test are able to distinguish selection and neutral evolution. The statistical power of
the three-line test is somewhat lower in the short-time case, yet the test works in a
reasonable parameter range. For two lines it is effectively impossible to detect selection
using the test incorporating the conditioning on the phenotypic difference Rmax. So
even though neutral and selective state statistics are now different, unlike in the case
of long evolutionary times, the difference turns out to be too small to utilize it for the
selection test.

Q1 vs. P0 Equilibrium
Q1 vs. P0 Short time 
Qtwo vs. Ptwo Short time
Qtwo vs. Ptwo Short time, R-cond.
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Figure 5.3: Statistical power of the short-time selection test. The statistical power
of the short-time selection test applied to simulated data under the short-time dynamics is
compared to the equilibrium selection test applied to simulated data under the long-time
dynamics. Again, the fraction of significant scores (P ≤ 0.05) for configurations drawn
under selective scenario Q1 are plotted against the selection strength σ. The curve for the
comparison of scenarios Q1 and P0 in equilibrium for three lines is taken from Figure 3.7.
The comparison of three-line scenarios Q1 and P0 under the short-time dynamics gives a
somewhat lower but similar significance. This shows that also for short evolutionary times
and without the knowledge of the ancestral states of the loci (which is not assumed here) the
inference of selection is possible. Also in the case of two lines the comparison of Qtwo and Ptwo

the statistical power rises quickly with selection strength σ. For the case of two lines with
conditioning on the phenotypic difference the selective scenario now gives a different result
than the neutral scenario, unlike in the case of long evolutionary times. Yet, the statistical
power is only marginal in this case, making the conditioned two-line test infeasible.



Chapter 6

Selection on Plant Quantitative
Traits

In this chapter I will apply the multiple-line selection test on several datasets. To probe
the feasibility of the test under realistic circumstances I will use data from two plant
quantitative trait studies, one comparing four different maize lines and one comparing
three different lines of the genus Mimulus. In both studies the environmental differences
behind the divergence of the traits under investigation are known and different selection
pressures among the lines may reasonably be expected. In the next chapter I will
apply the selection test to a far bigger study of expression QTL (eQTL) in three lines
of Schizosaccharomyces pombe, where thousands of expression levels serve as traits, to
infer which expression levels are under selection.

6.1 Maize photoperiodic response traits

First, I investigate a QTL study comparing four different maize lines (Zea mays L.
subsp. mays) (Coles et al. 2010). Two of the maize lines (CML254, Ki14) originate
from tropical regions while the other two lines (B73, B97) originate from temperate
regions. While the tropical lines encounter a short-day environment with relatively
stable day length over their growth period, the temperate lines are used to a long-
day environment. In the study, both the tropical and temperate lines were grown
in both environments. While the temperate lines are not affected by day length and
have an equally long growth period in both environments, the tropical lines react to
the long-day environment with an increased length of the growth period and a higher
number of leaves compared to the short-day environment. In their study, Coles et al.
(2010) investigated the genetic basis of photoperiodic response of several traits, which is
defined as the difference in trait value between short- and long-day environment, using
QTL analysis. In particular, they measured the ’growing degree days to anthesis’
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(GDDTA) and the ’growing degree days to silking’ (GDDTS). ’Growing degree days’
is a measure for the growth time weighted by the temperature for each day, which
accounts for a higher growth rate at higher temperatures. Anthesis corresponds to the
time point of completed flower development and silking corresponds to the time point
where the silk fibres emerge in maize. Additionally, the traits plant height (PH), ear
height (EH; the ear holds the maize kernels), and total number of leaves (TLN) were
measured.

For maize it has been shown that the architecture of quantitative traits such as
flowering time and leaf size accurately follows a model with additive trait effects and
only weak epistatic effects (Buckler et al. 2009; Tian et al. 2011). In Coles et al. (2010),
the additive effect of alleles from different QTL and the corresponding experimental
errors are given. For each locus it is specified which lines harbour an allele with the
same effect on the trait (within experimental error). To obtain the states {qi,l} for each
QTL in the different lines I determine all QTL which show alleles that have one of two
experimentally distinguishable effects on the trait. In those cases, I can unambiguously
assign the + state to the lines with the higher trait value and the − state to the allele
with the lower trait value.

While for the majority of loci the two-state assumption holds true, about one third
of the QTL did not fall into the two-state pattern as they either have more than two
significantly different alleles or have an unclear assignment of alleles (for example line
1 has allele a, line 2 has the distinct allele b, and the allele of line 3 is consistent
with either allele a or b within the measurement uncertainty of the trait values). The
additive effects of the two-state loci are determined as the mean of the absolute values
of the trait effects of all lines (including both the + and the − states). The resulting
states {qi,l} and additive effects {al} can be found in Table 6.1. Here, the two traits
EH and TLN are not included since they both had less then four two-state QTL, which
is not enough to test for selection.

To test for selection I define the four line selective scenario Q4 with (NsB73 =
Ns, NsB97 = Ns, NsCML254 = +Ns, NsKi14 = +Ns), that has a single selection
parameter. In this scenario selection increases the trait value in the tropical lines and
decreases the trait value in the temperate lines. To account for a possible ascertainment
bias, I compare selective scenario Q4 both against the neutral model Ph conditioned on
the trait difference Rmax and the neutral model P0 together with a Holm-Bonferroni
correction. For each scenario, I calculate the multiplicity parameters Ωl and (for the
selective scenario Q4) selection strength s according to eq. (3.9). For scenario Ph I
condition the null model on the pair of lines with the highest trait difference for each
trait. As the total number of traits is not known, I assume here a number of m = 6
traits for the Holm-Bonferroni correction, which corresponds to the number of traits
tested in Coles (2010). However, one has to be careful with this point, since the possible
pool of traits might be larger. Wherever necessary I use the BIC correction (3.11) to
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additive effect al B73 B97 CML254 Ki14
GDDTA [GDD]:

4.73 − − + +
3.85 − − + −
4.43 − − + −
11.13 − − + +

GDDTS [GDD]:
6.33 − − + +
6.20 − − + −
4.68 + − + +
5.68 − − + +

plant height [cm]:
1.10 − − + +
1.25 + + − −
1.73 + − + +
2.10 − + + −

Table 6.1: Additive QTL effects for three quantitative traits in the four maize lines B73,
B97, CML254, and Ki14 estimated from (Coles et al. 2010): growing degree day to anthesis
(GDDTA), growing degree day to silking (GDDTS), and plant height.

correct the log-likelihood scores (3.10) when the number of free parameters is different
between the tested scenarios (as is the case when testing Q4 against P0). Note that
this leaves the p-values unaffected.

First, I consider the GDDTA trait, which measures the time to full flower develop-
ment. For tropical lines, which are not adapted to long day length, the flowering time
is reduced for specimens grown in temperate latitudes compared to tropical environ-
ments (Coles et al. 2010). For the temperate lines no difference in flowering time is
observed between the different environments. For this trait, 4 out of 7 loci show a clear
two-state pattern. I first compare scenario Q4 against the neutral scenario Ph condi-
tioned on trait difference R23 between lines 2 and 3. In this case, the straightforward
maximum likelihood estimate of the parameter h fails, since all states in the high line
are + states and all states in the low line are − states, leading to a diverging h→∞. I
use a lower-bound estimate for h by determining the value h for which the probability
to see this extreme configuration equals pe. pe = 0.1 is chosen to obtain a conservative
estimate for h. For consistency, Ns is determined in the same way. In this case the
log-likelihood score (3.10) SQ4,Ph = 2.77 is positive and thus in favour of the selective
scenario. I test the significance of this score by repeated simulations under scenario
Ph at fixed additive effects {al}. For each configuration drawn from Ph I sort the lines
according to their trait values T . In this way one can account for the possibility that
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under neutral evolution fluctuations create patterns of lineage-specific selection in any
of the lines (rather than only in what is called line 1 here). This results in a p-value
of p = 0.07. Similarly, I test Q4 against P0, which results in a score S = 5.1 and a
p-value of p = 0.048 consistent with the result for Ph. Here, the more restrictive p-value
threshold of p < 0.05/m = 0.01 for the Holm-Bonferroni correction has to be applied
(here m = 5 has to be used, as this will be the smallest p-value of all traits considered).

Next, I test the GDDTS trait, where 4 of 6 loci show a two-state pattern. The
test of scenario Q4 against Ph results in a score SQ4,Ph = 2.77, and a p-value of 0.048
again in favour of the selective scenario. Again Ph is conditioned on R23 and the
lower bound for h is used as described above. The test of Q4 against P0 gives a score
SQ4,P0 = 5.1 with a corresponding p-value p = 0.03, which is consistent with the test
under conditioning. Last, the plant height trait is tested, where 4 out of 6 loci are
two-state loci. Here, both the conditioned test (SQ4,Ph = −0.61, p = 0.42) and the
unconditioned test (SQ4,P0 = −0.9 , p = 0.978) are in favour of the neutral scenario.
The results are summarized in Table 6.3.

For comparison I also apply Orr’s sign test (Orr 1998) (not the equal effects version)
to this dataset. Since the Orr test is a two-line test, I use for each trait the two lines
with the largest trait difference for testing, where one would expect the strongest
signal for selection. Following Orr, the additive effects {al} are taken from a gamma
distribution whose parameters for each trait are estimated by maximum likelihood.
Then the probability to find at least the observed number of + states in the high
line given the observed trait difference R or greater is calculated according to eq. (4)
in Orr (1998). Since I can use all loci that are diverged between two lines (ignoring
possible inconsistencies or additional alleles in the other lines and thus also taking into
account the loci that violate the two-state assumption when considering all lines), one
can actually use more loci than used for the four line test. For both the GDDTA and
the GDDTS trait the lines B73 and CML254 show the largest trait difference. For the
GDDTA trait 6 out of 6 diverged loci have the + state in the tropical line CML254
(see again Table 6.1). Here, the Orr test gives a p-value of p = 0.13. For the GDDTS
trait, 5 out of 5 diverged loci go in the + direction with a p-value of p = 0.2. The plant
height trait has only 2 out of 3 diverged loci in the + state for the line pairs B73 and
CML254 as well as B97 and CML254 with p = 0.99. So no clear signal of selection can
be found using the Orr test.

6.2 Mimulus floral traits

As a second example I consider a QTL study comparing three different plant species
of the genus Mimulus (Chen 2009). For the species M. guttatus, M. platycalyx, and M.
micranthus, which I label as lines 1, 2 and 3, respectively, different floral characters
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were measured. For each of the loci influencing the traits it turns out that there were
two lines with a very similar effect on the trait value (within experimental error) and
one with a significantly different effect. I assigned the same + (−) state to the two lines
with the similar allelic effect if they had the higher (lower) trait value than the third
line. The allelic effects were assigned analogously to the case of the maize traits in
the previous section. Here, I restrict myself to the two traits with the highest number
of available QTL, the corolla width and the corolla length trait. The resulting state
configurations {qi,l} and additive effects al can be found in Table 6.2.

additive effect al M. gutt. M. platy. M. micr.
corolla width [mm]:

0.41 − + −
0.74 + − −
0.39 + − +
0.59 + − −
0.28 + + −
0.64 + − −
0.37 + − +

corolla length [mm]:
0.67 + − −
0.41 + + −
0.21 + − +
0.60 + − −
0.27 − + +
0.51 + + −

Table 6.2: Additive QTL effects for two flower traits of the Mimulus species M. guttatus, M.
platycalyx and M. micranthus estimated from (Chen 2009).

As with the maize traits before, I test the different scenarios on the Mimulus traits,
where I use scenario Q1 (as defined in section 3.4.1) as the selective scenario. This
time the number of traits in the study was m = 5. I start with the corolla width trait
where 7 QTL are available. In this case I condition scenario Ph on the maximal trait
difference R12 between lines 1 and 2. The comparison of scenarios Q1 and Ph yields
a log-likelihood score of SQ1,Ph = 0.38 with a corresponding p-value p = 0.13 slightly
favouring the selective scenario. The unconditioned test yields a score of SQ1,P0 = 1.9
and a p-value of p = 0.05, in good agreement with the results of the conditioned test.

A preference for a selective model is in agreement with the different reproductive
modes of these species (Chen 2009): line 1 reproduces predominantly by outcrossing
(so that large floral characters are needed to attract pollinators), whereas line 2 and
line 3 are mostly self-pollinating (but still maintain a certain degree of outcrossing). In
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the latter species, large petals are less indispensable for reproduction, but nevertheless
require resources to develop and maintain.

The second trait is the corolla length trait with 6 known QTL and the maximal
trait difference is R13 between lines 1 and 3. Here, the test gives SQ1,Ph = −0.43 and
p = 0.54, so the neutral hypothesis cannot be rejected. A similar result is obtained for
the Holm-Bonferroni procedure (SQ1,P0 = 1.0, p = 0.14). The results are summarized
in Table 6.3.

For comparison, I again apply the Orr test on the two lines with the highest trait
differences as done for the maize traits. For the corolla width trait 5 out of 6 loci
in lines 1 and 2 have the + state. Here, the Orr test yields a p-value of p = 0.42.
Comparing lines 1 and 3 (with also 5 out of 6 + loci but with different additive effects)
gives p = 0.29. For the corolla length trait there are 4 out of 5 diverged loci with the
+ state between lines 1 and 3 and 3 out of 4 diverged loci between lines 1 and 2. The
Orr test yield p-values p = 0.48 and p = 0.72, respectively. Thus, no sign for selection
can be found for these traits using the Orr test.

In both case studies, the statistical significance of the evidence for a particular
evolutionary scenario is limited by the number of identified trait loci. With a higher
number of crosses in the original studies, identifying more trait loci, a stronger statis-
tical signal would be possible.
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maize study Ns4 S p
GDDTA
Q4 vs. Ph 40 2.8 0.07
Q4 vs. P0 40 5.1 0.045
GDDTS
Q4 vs. Ph 27 2.8 0.048
Q4 vs. P0 27 5.1 0.030
plant height
Q4 vs. Ph 0.77 -0.61 0.42
Q4 vs. P0 0.77 -0.90 0.978

Mimulus study Ns1 S p
corolla width
Q1 vs. Ph 2.2 0.38 0.13
Q1 vs. P0 2.2 1.9 0.05
corolla length
Q1 vs. Ph 2.2 -0.43 0.54
Q1 vs. P0 2.2 1.0 0.14

Table 6.3: Summary of results for the QTL data of the maize (Coles et al. 2010) and
Mimulus (Chen 2009) studies. Different evolutionary scenarios are tested against each other
using both conditioning on the trait difference (Ph) as well as the Holm–Bonferroni correction
(P0). Ns1 and Ns4 denote the inferred selection strengths of the selective scenarios Q1 and
Q4, S is the log-likelihood score obtained and p the corresponding p-value. In Mimulus,
corolla width shows some evidence of selection and in maize the photoperiodic response
traits GDDTA and GDDTS.
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Chapter 7

Gene expression evolution in the
yeast S. pombe

The role of gene expression levels as major drivers of adaptation and speciation has
been hypothesised a long time ago (King and Wilson 1975). Yet, providing evidence
for adaptation on specific genes or pathways has proven to be a non-trivial task. In
this chapter, I will study adaptation for stress resistance on gene expression levels of
individual genes as well as protein complexes in yeast. I apply the selection test to
an eQTL study of three different lines of the species Schizosaccharomyces pombe. In
particular, I focus on the differences in gene expression between stress and non-stress
condition. The eQTL dataset provides a large amount of eQTL per gene, allowing
to test for selection both on individual genes and on larger gene modules with clearly
defined biological function. I find signatures of pervasive selection on genes and gene
modules that are connected to biological mechanisms involved in stress response.

The yeast species S. pombe is a model organism for eukaryotic molecular biology
that has been extensively studied. It is only distantly related to the most commonly
used yeast model organism Saccharomyces cerevisiae with a divergence time of ∼ 400
million years and with many genes of S. pombe more similar to their mammalian
homologues than to S. cerevisiae (Sipiczki 2000). Nowadays, a diverse collection of wild
isolates from all over the world is available with samples of S. pombe mostly gathered
from fruits, alcoholic beverages, and fermentation processes (Brown et al. 2011). Yet,
most of the research on S. pombe was conducted on the standard laboratory strain
968 (Leupold 1950) that does not capture the full ecological diversity of the species.
An analysis of the evolution of the different isolates of the organism can provide insight
about the forces of evolution acting on S. pombe and about the genetic targets that
mediate the adaptation to different environments.



80 Chapter 7. Gene expression evolution in the yeast S. pombe

7.1 Yeast dataset

7.1.1 Available data

I use data from a QTL experiment on crosses between all possible pairs of three different
strains of S. pombe (Clément-Ziza et al. unpublished dataset). The following three
strains were used in the QTL experiment: the standard laboratory strain 968 and
the two wild isolates Y0036, which was isolated from South African beverage, and
DBVPG2812, which was isolated from Italian grape must (Jeffares et al. 2015; Brown
et al. 2011). In the following I label these lines as line 1, 2, and 3, respectively. In the
QTL study (Clément-Ziza et al. unpublished dataset) the traits considered were the
expression levels of the of the different S. pombe strains, with expression QTL (eQTL)
having an impact on the level of expression of the genes in the different strains. 46
crosses were performed between line 1 and 2, 44 crosses between lines 1 and 3, and 43
crosses between lines 2 and 3.

In their study, the gene expression levels of all crosses were measured using RNA-
seq under two different conditions, first under oxidative stress through the addition of
H2O2 and second without any stress applied. This allows to study the changes in gene
expression levels under stress and to identify genes involved in the stress response that
have specifically adapted in one or more of the lines.

The following data are available from the experiment:

• Expression data: For each of the crosses as well as for individuals from the pure
lines the expression data of 5260 genes were measured using RNA-seq. RNA-seq
is a next-generation sequencing technique that measures the abundance of RNA
molecules in a sample, which represent the expression levels of the genes.

• Genotype: A total of 1693 genetic markers (SNPs) were analyzed. For each
cross one can determine from which line a marker is inherited.

• eQTL: The QTL mapping looks for statistical correlations between markers and
expression levels. If a high expression level is always observed when the genotype
of a given marker is inherited from the first line, the probability is high that a
QTL close to this marker affects that expression level (see also section 2.2.2).
A list of eQTL that are significant for a certain q-value threshold is given. The
q-value denotes the false discovery rate (FDR) for a particular gene-marker pair.
The number of available QTL at different false discovery rates can be found in
Table 7.1.

Clement-Ziza et al. used the expression data under both conditions for the simul-
taneous QTL mapping as described in Ackermann et al. (2013) that implements the
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FDR static QTL cond. stress QTL cond. non-stress QTL
0.05 2527 963 239
0.1 3932 1389 341
0.15 5511 1754 456
0.2 7173 2034 569
0.25 9079 2351 670

Table 7.1: Number of significant QTL at different levels of the QTL false discovery rate
(FDR) for the three different QTL categories of the S. pombe dataset: static (QTL detected
in both conditions), ’conditional stress’ (detected in stress condition only) and ’conditional
non-stress’. The static QTL category contains most QTL, while the category of ’conditional
non-stress’ QTL is the smallest category. The number of detected QTL drastically increases
with an increasing FDR.

random forest technique (Michaelson et al. 2009; Michaelson et al. 2010). This tech-
nique has the advantage that it strongly increases the statistical power to detect QTL
that are present under both conditions.

This extraordinarily powerful QTL mapping of (Clément-Ziza et al. unpublished
dataset) yields a much higher number of QTL per gene and allowing to test individual
expression levels for selection, which was not possible before (Fraser et al. 2011).

The simultaneous QTL mapping in both conditions also allows to distinguish dif-
ferent kinds of QTL concerning the two different conditions (Ackermann et al. 2013):
First, static QTL, which can be detected in both stress and non-stress condition with
the same effect strength. Second, conditional QTL that are detected in only one of the
conditions and are thus either specific to the stress- or the non-stress condition. This
classification of QTL allows to analyze specific subsets of QTL, e.g. only those QTL
that are found under the stress condition and thus allows to study the genes that are
directly involved in (or at least affected by) the stress response of the organism. The
highest number of QTL can be found for the static category (Table 7.1), while less QTL
are found for the ’conditional stress’ category. Even smaller are the numbers for the
’conditional non-stress’ QTL. Using this dataset of yeast eQTL, I aim to understand
how frequently selection acts on gene expression levels and how strong the selection
pressures are. Furthermore, I will use predefined gene modules (sets of interacting
genes as defined in (Ryan et al. 2012), among which are many protein complexes) to
test if selection acts on biologically relevant units that combine many genes of interest.

7.1.2 State configurations

To apply the selection test the state configurations (q1, q2, q3) have to be determined.
Only QTL that fullfil the two-state assumption and the assumption of additive trait



82 Chapter 7. Gene expression evolution in the yeast S. pombe

effects can be used for the selection model. If for a locus more than two significantly
different alleles per locus exist (i.e. a locus has a different effect in each of the lines)
or if the pairwise trait differences between the lines are not compatible with a single,
additive trait effect, I neglect that locus in the following. Yet, one has to be careful
with this step as this can be a potential source of bias, since a part of the available
data is neglected for the selection analysis. In the following, I also explore the number
of QTL following an additive three state model and what fraction of the loci show
epistasis.

FDR static QTL cond. stress QTL cond. non-stress QTL
0.05 1075 (43%) 552 (57%) 107 (45%)
0.1 1747 (44%) 796 (57%) 147 (43%)
0.15 2534 (46%) 976 (56%) 192 (42%)
0.2 3340 (47%) 1091 (54%) 231 (41%)
0.25 4341 (48%) 1269 (54%) 292 (44%)

Table 7.2: Number of S. pombe QTL with valid state configuration that follow the two-
state assumption and the assumption of additivity. The QTL are again given for different
significance thresholds for the QTL and sorted according to the four QTL categories as
previously done in Table 7.1. The percentage given in brackets denotes the fraction of QTL
that are assigned a valid state configuration for each category.

For all available QTL I calculate the state configurations, as described in detail
in appendix A1. The number of QTL with valid state configuration can be found
in Table 7.2. As can be seen by comparison of Tables 7.2 and 7.1 on average 49%
of the QTL follow the two-state and the additivity assumption at a FDR of 0.25.
The fraction of valid state configurations is particularly high for the QTL that are
conditional for the stress condition. There is a slight dependency of the fraction of
valid state configurations on the FDR: the fraction increases with the FDR for the
static QTL and decreases for the ’conditional stress’ QTL.

The remaining 51% of QTL violate either the two-state assumption or the assump-
tion of additivity. To further test which of the assumptions is not fulfilled, I recalculate
the state configurations while allowing for three different states per locus. In this case,
the consistency check between the additive effects of the crosses simplifies. Yet, to
fulfill the additivity assumption, one consistency relation is still necessary. Taking a13

as the largest additive effect one needs to have a13 = a12 + a23 (within the uncertainty
of the a’s), see also Figure 7.1. This is because three arbitrary fixed trait values T1,
T2, and T3 only allow for two independent values for the trait differences a12, a13, and
a12 while the third trait difference is always determined by the other two.

Reestimating the state configurations with the possibility of three-state loci shows
that only 1.6% of the QTL follow the additive three-state assumption, which is much
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Figure 7.1: In a model that allows for three different trait values T1, T2, and T3, the trait
differences only have two degrees of freedom, as they have to obey the condition a13 = a12+a23

(assuming that a13 is the largest trait difference). A two state model with only two different
trait values is reached by setting either a12 = 0 or a23 = 0.

less than the 49% of two-state QTL. But this also implies that the uncertainties σa of
the additive effects are so large that possible three-state loci where two states have a
similar trait value are considered two-state loci. Thus, the two-state assumption seems
to be reasonable considering this uncertainty. The remaining 49% of QTL cannot be
explained by any additive model. The most probable explanation is that these QTL are
affected by epistasis. An influence of the QTL mapping on this result cannot be ruled
out, but the QTL mapping only influences the choice of QTL, while the non-additive
behaviour is observed using only the measured trait values and genotypes.

Yet, this result cannot be explained with the simplest case of epistasis where there
is one other locus epistatically interacting with the locus that shows the non-additive
behavior. The non-additive behavior is observed as an average over many QTL crosses,
where the genetic background is different in each crossed individual. Thus, for a single
pair of interacting loci this averaging procedure should at least lead to a strong decrease
in the strength of the detected interaction. Rather, this is an interaction with the
genetic background (Rebai et al. 1997; Blanc et al. 2006; Larièpe et al. 2012), where
even averaged over many possible background configurations a non-vanishing epistatic
interaction remains. As already described before in Blanc et al. (2006) pairwise crosses
of three lines can be used to quantify the strength and pervasiveness of the epistatic
interaction with the genetic background. This is not possible for two lines as the
consistency check between the additive effects observed for the different pairwise crosses
is not available. For this dataset epistatic interactions with the genetic background are
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very pervasive, as it concerns nearly half of the loci. Similarly high levels of epistasis
has been found before for the yeast S. cerevisiae, where a QTL analysis of five wild
isolate lines showed epistatic interactions with the genetic background in 69% of all
QTL (Cubillos et al. 2011). In general this supports the hypothesis that epistasis is
common in the genetic architecture of quantitative traits (Mackay 2014).

7.2 Selection on individual genes

First, I consider selection acting on individual genes. The expression level of a gene is
the smallest unit for which selection can be investigated here. I identify genes with a
sufficient number of state configurations to test for selection. I perform the selection test
on the set of static QTL as well as a combination of static and conditional QTL. I apply
corrections for the multiple testing bias, the high FDR of the QTL, and pleiotropy. In
the next section larger sets of genes, that are e.g. part of a pathway or protein complex,
are considered. In that case the focus is on higher level biological functions, with e.g.
the output of a pathway being the feature under selection.

7.2.1 State configurations per gene

To determine the number of state configurations per gene I sort the QTL according
to the targeted genes. In Table 7.3 the distribution of state configurations per gene
is given for a FDR of 0.25. As can be seen the number of genes decreases rapidly for
higher numbers of state configurations. Only for the static QTL a higher number of
genes with 4− 6 state configurations can be found.

state configurations 0 1 2 3 4 5 6
static 2392 1820 728 239 63 12 6

cond. stress 4211 851 177 20 1 0 0
cond. non-stress 4959 289 9 3 0 0 0

Table 7.3: Number of state configurations per gene at a FDR of 0.25. The number of genes
with more state configurations is rapidly decreasing. Only for the static QTL category there
is a higher number of genes with more than four QTL, which are necessary to apply the
selection test.

As mentioned in section 3.5 a minimum of four state configurations is needed to
perform the selection test on three lines. The number of genes with at least four state
configurations is given for each QTL category in Table 7.4. Only for the category of
static QTL a reasonable number of genes with enough QTL can be found. For all
other categories there are no testable genes available. For the static QTL the number
of testable genes also strongly depends on the chosen FDR of the QTL. For low FDR’s
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barely any genes with sufficient state configurations are available and only when a
higher FDR cutoff is chosen a higher number of testable genes is reached.

There are only few genes that have a sufficient number of state configurations to
apply the selection test. To deal with the problem, I use the following strategies: a) In-
stead of only allowing QTL that have a FDR ≤ 0.05 and thus have a very high evidence,
I extend my selection analysis to QTL with a higher FDR of ≤ 0.25. This drastically
increases the number of QTL and testable genes but also increases the probability that
some of the QTL in the analysis are false positives that can skew the results of the
selection test. If, however, the fraction of false positive QTL is low, one might hope
that this has only a minor effect on the results of the selection test. In section 7.2.4 I
describe and apply a strategy to correct for the possible bias introduced by the false
positive QTL. b) No gene has sufficient QTL from the categories of ’conditional stress’
or ’conditional non-stress’ QTL alone. To make use of the conditional QTL, I combine
the QTL for each of the conditions with the static QTL. By forming the two cate-
gories ’static + conditional stress’ and ’static + conditional non-stress’, I consider the
complete set of QTL that can be found under the stress or the non-stress condition
(including both the QTL that are specific to that condition as well as the unspecific
QTL that can be found in any condition), respectively. This allows an inclusion of the
stress/non-stress specific QTL into the selection analysis. A separate analysis of the
stress/non-stress specific QTL would be preferable, as it would yield results specific to
the stress response, which is however not possible here. As can be seen in Table 7.5,
combining the two QTL categories leads to a clear increase in the number of genes with
sufficient state configurations. c) Additionally, I combine sets of genes into biologically
relevant gene modules to further increase the number of available state configurations
per tested unit. That way, not only selection on single gene expression levels, but on
larger biological units can be tested. A definition of the gene modules and the selection
analysis for these can be found in section 7.3.

7.2.2 Selection analysis

For the available genes with at least four state configurations in the categories static,
’static + conditional stress’, and ’static + conditional non-stress’ I apply the selection
test. For this, I use the scenario Q1 with only one free selection parameter (s1, s2, s3) =
(s, 0, 0) and scenario Q2 with two free selection parameters (s1, s2, 0). Q2 is the most
general three line selection model, as only the relative differences in selection parameters
can be inferred. For scenario Q1 I determine for each gene, which line is the most
diverged and assign the selection parameter s to this line. For this, I calculate the
differences between the trait values |∆T12| = |T1 − T2|, |∆T13|, and |∆T23|. The line
which is included in the two highest of these trait differences is the most diverged line
(e.g. line 2 if |∆T12| and |∆T23| are the highest trait differences). Both scenarios are
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FDR static cond. stress cond. non-stress
0.05 1 0 0
0.1 3 0 0
0.15 13 0 0
0.2 39 0 0
0.25 81 1 0

Table 7.4: Number of S. pombe genes with at least four state configurations. Only for the
category of static QTL enough genes with at least four state configurations are available. All
other QTL categories have no genes with enough state configurations to apply the selection
test. For the static category there is additionally a strong dependency on the false discovery
rate cutoff for the QTL. At low FDR barely any gene has enough QTL; only when QTL
with a higher FDR are taken into account more testable genes are available. Even then the
testable genes are only a small subset of the 5260 measured genes.

FDR static + cond. stress static + cond. non-stress
0.05 1 1
0.1 7 3
0.15 20 17
0.2 52 50
0.25 124 93

Table 7.5: Number of S. pombe genes with at least four QTL for the two combined categories
static and ’conditional stress’ QTL as well as static and ’conditional non-stress’ QTL. In
comparison to the individual datasets in Table 7.4 a clear increase in the number of testable
genes can be observed, especially in the case of static and ’conditional stress’ QTL combined
(which are the two largest categories in terms of number of QTL). This strategy of combining
QTL categories also allows to include the conditional QTL into the selection test.
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tested against the neutral scenario P0. The scores and p-values for each scenario are
determined for all genes. The calculation of the p-values for this dataset is described
in appendix A.2.

As can be seen in Figure 7.2 (red histogram) a large fraction of the genes is found
to be under selection both using scenario Q1 and scenario Q2. About 30% of all tested
genes have a significant p-value for scenario Q1 and similarly 33% of the genes for
scenario Q2 using the static QTL (see also Table 7.6). When the set of ’conditional
stress’ QTL is added to the static QTL the fraction of significant genes slightly increases
to 35% for scenario Q1 and to 39% for scenario Q2. There are more genes found to be
under selection using scenario Q2. Since scenario Q2 has one additional free selection
parameter compared to scenario Q1, it has usually less statistical power to detect
selection than scenario Q1 if scenario Q1 provides an accurate description of the data.
Since scenario Q2 yields the stronger signal for selection, scenario Q1 with only one line
diverged from the other two might not be the most precise description for the present
data. Thus, the most general selection scenario Q2 should be preferred in this case.

This clear result suggests that selection on gene expression levels is widespread for
the tested lines of the organism S. pombe. The study of selection on gene expression
levels in S. cerevisiae by Fraser et al. (2010) also found signs for pervasive selection,
while the fraction of selection (a lower bound of 10% of genes under selection was
found) was lower than the fraction found for S. pombe in this dataset. A pervasive role
of directional selection on gene expression levels was also found in other species like
primates (Romero et al. 2012).

What distinguishes this study from most other selection studies on QTL (Fraser
et al. 2010; Bullard et al. 2010; Fraser et al. 2011) is that it allows to identify
individual genes under selection in contrast to larger sets of genes as e.g. pathways
(which will also be considered in the following) allowing to probe selection on an even
smaller genetic level. This is possible due to the large number of eQTL identified
in (Clément-Ziza et al. unpublished dataset) together with the strategy to allow for a
high FDR for the eQTL that drastically increases the number of eQTL.

category genes tested p < 0.05 Q1 p < 0.05 Q2

static 81 24 (30%) 27 (33%)
static + cond. stress 124 44 (35%) 48 (39%)

static + cond. non-stress 93 27 (29%) 34 (37%)

Table 7.6: Number of S. pombe genes with significant p-values. Number of genes that
are tested for selection and number of genes that are found to be under selection (p < 0.05)
under the scenarios Q1 and Q2, respectively. Numbers are given for the static QTL set as well
as the combined sets of ’static + conditional stress’ QTL and ’static + conditional non-stress’
QTL. In all cases a high fraction of genes under selection was found, with the highest fraction
(39%) found in the case of the ’static + conditional stress’ genes and scenario Q2.
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Figure 7.2: A large fraction of S. pombe genes is found to be under selection. The
distribution of p-values calculated for all genes with at least four state configurations using
all static QTL and a FDR cutoff of 0.25 for the QTL. The log-likelihood score (3.10) was
calculated testing selective scenarios Q1 (top) and Q2 (bottom) against the neutral scenario
P0 and a p-value was calculated for each of the scores. For both scenarios Q1 (30%) and Q2

(33%) a high fraction of genes has significant scores in favour of the selective scenario. To
account for the multiple testing bias, a null distribution of p-values is calculated by randomly
reshuffling all state configurations of the tested genes and calculating scores and p-values for
these reshuffled data. This is repeated 10 times to obtain an average null distribution for the
p-values. Comparing actual and reshuffled p-value distribution one sees that, even though
some fraction of the significant genes will be false positives, there are many more significant
genes found than expected by chance, confirming the high fraction of genes under selective
pressure.
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7.2.3 Multiple testing correction

Since many genes are tested for selection, one expects a fraction of genes with a sig-
nificant p-value even under completely neutral evolution. To deal with this multiple
testing problem and to quantify the number of false positive genes, I randomly reshuffle
the state configurations of all tested genes (that have at least four state configurations)
and recalculate their score and p-values. This is repeated 10 times to obtain an av-
erage of the null distribution of p-values, keeping the set of genes, number of QTL
and additive effects fixed. Figure 7.2 (blue histogram) shows that the null distribution
dramatically differs from the p-value distribution for the real data. While the null
distribution is nearly uniform with some deviations that do not come from insufficient
averaging but from the limited number of tested genes, the distribution obtained for
the data is strongly biased towards small p-values with a clear peak at p < 0.05. This
shows a very strong signal of selection in the dataset. When comparing the number of
genes with significant p-values for the two distributions, 5 out of the 24 genes that are
significant under scenario Q1 are expected by chance and around 8 out of the 27 sig-
nificant genes under scenario Q2, suggesting that the majority of significant genes are
true positives. After adjusting for the number of false positive genes, one still expects
19 out of 81 genes (23%) to be under selection for both scenario Q1 and scenario Q2.
So a high fraction of all tested genes is found to be under selection.

To determine more precisely which of the individual genes is under selection, I use
the Benjamini-Hochberg procedure as described in section 4.1. With this procedure
an individual false discovery rate (q-value) is calculated for each gene that accounts
for the multiple testing problem arising due to the large number of tested traits. The
distribution of q-values for both scenarios can be seen in Figure 7.3. The q-value allows
to quantify the probability for each significant gene to be a false positive and allows to
identify the genes where the prediction of selection is most robust. Here, I again choose
a significance threshold of 0.05. 6 of the genes have a q-value below 0.05 for scenario
Q1 and 11 genes have q < 0.05 for scenario Q2, showing that the selection test is able
to identify genes under selection with certainty even in a large dataset with thousands
of genes and more than hundred genes tested for selection.

7.2.4 Adjusting for the high QTL false discovery rate

To incorporate more QTL in the selection analysis, I increased the FDR threshold for
the genes. This strongly increased the number of available QTL and led to a number of
genes with sufficient state configurations for the selection test. Yet, it also increases the
number of false positive QTL that are incorporated in the analysis. False positive QTL
contributing a state configuration to a gene might change the outcome of the selection
test, either leading to a significant score where no selection is present or hiding selection
with a state configuration that does not fit the pattern of the other state configurations
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Figure 7.3: False discovery rate (q-value) for all tested S. pombe genes. For both
scenario Q1 and Q2 there are genes with a q-value below 0.05, showing strong evidence of
selection. With 11 genes with q < 0.05, scenario Q2 seems better suited to describe the
selection in the data than scenario Q1, which identified only 6 genes with q < 0.05.
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for the gene. To correct for the false discovery rate of the individual genes, I introduce
a modified log-likelihood score, where the contribution of each score is weighted by the
expected true discovery rate (which is 1 minus the FDR). I use a modified version of
the log-likelihood score (3.10)

SQ,P =

Ldiv∑
l=1

(1− FDRl) ln

(
Q(q1,l, q2,l, . . . , qn,l|Ns∗1, . . . , Ns∗n,Ω∗l , al)
P (q1,l, q2,l, . . . , qn,l|Ns∗

′
1 , . . . , Ns

∗′
n ,Ω

∗′
l , al)

)
, (7.1)

where FDRl is the false discovery rate for locus l. With this FDR-adjusted log-
likelihood score QTL with a higher FDR contribute less to the score, accounting for
the larger uncertainty for these QTL. I recalculate all scores and p-values using the ad-
justed score (7.1). The results in Figure 7.4 show a very similar picture for the p-value
distribution compared to the unadjusted distribution in Figure 7.2. The exact numbers
of significant genes of the FDR-adjusted score are found in Table 7.7. The very similar
number of genes under selection (there is at most a difference of 3 significant genes
more or less for any category) show that the higher FDR threshold used for the QTL
barely affects the results of the selection test. In the following, I only use the results
obtained using the FDR-adjusted log-likelihood score (7.1).

category genes tested p < 0.05 Q1 p < 0.05 Q2

static 81 23 29
static + cond. stress 124 47 45

static + cond. non-stress 93 27 34

Table 7.7: Number of S. pombe genes with significant p-values using the FDR-
adjusted log-likelihood score (7.1). Comparison with Table 7.6 shows that the number of
genes under selection are nearly identical, indicating only a small influence of the QTL with
elevated FDR rates on the results of the selection test. In two cases (static QTL, scenario
Q2 and ’static + conditional stress’ QTL, scenario Q1) there are even more genes found to
be under selection using the adjusted score. This is not unexpected as a gene that is actually
under selection might get assigned a low log-likelihood score if a false positive QTL with a
state configuration that is not fitting the selective pattern is added.

7.2.5 Lines with highest trait divergence

With a large fraction of genes under selection the next question is, which of the lines
show the strongest sign for adaptation, i.e. which lines have the highest level of trait
divergence. For this I calculate the line with the highest trait difference compared
to the other two lines for each tested gene (which is the line that gets the selection
coefficient in scenario Q1). The number of genes with diverged lines 1, 2, and 3 for
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Figure 7.4: p-values for the S. pombe genes tested under the FDR-adjusted
log-likelihood score. The distribution of p-values under the FDR-adjusted log-likelihood
score (7.1) for the static QTL has nearly the same shape as the unadjusted distribution (Fig-
ure 7.2). The number of genes with p-values below 0.05 are similarly high for both scenario
Q1 and Q2. This indicates that the elevated FDRs in some of the QTL have no large effect
of the result of the selection test.
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both all tested genes as well as for the significant genes only can be found in Table 7.8.
It can be clearly seen that line 2 is most frequently the most diverged line, while this
is rarely the case for line 1. A possible explanation for the absence of trait divergence
in line 1, which is the lab strain, is that the constant environment experienced under
laboratory conditions leads to reduced selective pressure compared to the other lines
such that no strong changes in expression levels are observed. No bias between up-
or downregulated genes could be found (data not shown). This suggests that line 2
has changed its gene expression levels more than the other lines and possibly being
under the highest selection pressure. Another explanation could be the frameshift in
the gene swc5 of line 2, the South African line, which alters the chromosomal histone
deposition (Clément-Ziza et al. 2014). This effective knockout of swc5 affects the
expression of many of the genes, with the majority of genes downregulated. The signal
of selection seen in the data might be, at least partially, affected by this knockout
phenotype. But as shown in the next section, the results of the selection test are
nearly unaffected when all QTL connected to swc5 are removed from the analysis (see
also Table 7.8).

all significant
category 1 2 3 1 2 3

static 9 38 34 0 17 6
static + cond. stress 10 68 46 0 36 11

static + cond. non-stress 11 39 43 0 18 9
static, no swc5 -QTL 12 37 32 0 17 6

Table 7.8: S. pombe lines with the largest trait divergence for the genes. The
number of genes in which lines 1, 2, or 3 have the largest trait difference (and get assigned
the selection coefficient in scenario Q1) are listed for the different QTL categories. Numbers
are given for both the set of all tested genes and the set of genes with a significant score
(with p < 0.05). In all cases, but especially for the group of significant genes, line 2 is the
most diverged line in the majority of cases while this is never the case for line 1, pointing
towards strong lineage-specific selection in these lines. Excluding the QTL connected to the
swc5 knockout in line 2 that is known to affect a large number of gene expression levels leads
to very similar results, demonstrating no major effect of this gene on the high number of
diverged genes in line 2 found to be under selection.

7.2.6 Pleiotropy

Another point that has to be considered is pleiotropy. In this context pleiotropy de-
scribes the situation where a QTL influences several gene expression levels (Wagner
and Zhang 2011), such that an evolutionary force on one of the genes might also affect
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the second gene via the shared QTL (see also section 3.6.1). Since there are only 1693
markers used for the eQTL analysis but more than 10000 detected eQTL, many of
the markers have to affect multiple genes, implying a high level of pleiotropy. To test
the level of pleiotropy I calculate for each marker how many of the 81 genes tested
for selection (using the static QTL) have a QTL affected by that marker. The anal-
ysis is complicated by the long marker intervals associated with a single QTL. Since
the resolution of QTL analysis is limited by the frequency of recombination events in
the crosses, one QTL can be associated with many markers. Also, the marker inter-
vals of different QTL can overlap even though the underlying genetic variant that is
causal for the QTL is not the same. This leads to an overestimate of the prevalence
of pleiotropy. A high number of genes affected by one marker might not mean a high
level of pleiotropy since different loci within the regions of the marker intervals might
cause the QTL effect.

In Figure 7.5 the number of genes affected by the individual markers can be seen.
The most prominent features of the distribution are the marker hotspots (that affect
many genes) in the region approximately between marker no. 300 and 600, around
marker no. 920, and around marker no. 1580. The large region between marker no.
300 and 600 corresponds to the known region of reduced recombination in line 1 (see
section 7.1.2) which leads to very long marker intervals associated to each detected
QTL that add up in the histogram but which do not imply a high number of QTL in
that region. The marker hotspot around marker no. 1580 corresponds to the known
knockout of the swc5 gene in line 2 (see section 7.2.2) which was shown to affect many
gene expression levels (Clément-Ziza et al. 2014). The underlying nature of hotspot
marker 920 is not known.

The knockout of the swc5 gene was shown to alter the expression levels of many
genes, with most of the genes being downregulated (Clément-Ziza et al. 2014). To
determine the effects of this knockout on the results of the selection test, I repeat
the selection analysis on the static QTL excluding all QTL associated with the hotspot
marker at position 1580. The results showed barely any differences with 23 genes under
selection scenario Q1 (previously: 23 genes) and 30 genes for scenario Q2 (previously 29
genes). Also the results for the largest trait divergence in the lines are consistent (see
Table 7.8). The exclusion of the other hotspots at marker no. 920 and marker no. 515
gives very similar results (data not shown) with only a small reduction in the number
of genes detected for selection even though the number of available QTL is reduced.
This shows the robustness of the selection result with respect to the individual hotspot
markers, which, even though they affect many gene expression levels, have no large
scale effect on the selective signatures within the dataset.
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Figure 7.5: Number of S. pombe genes associated with each marker. For each marker
the number of genes with a QTL connected to that marker is given (of all 81 genes tested
for selection using the static QTL at a QTL-FDR cutoff of 0.25). Because the resolution
of QTL mapping is limited by the distance between recombination events in the crosses,
some QTL are associated with a large marker interval. Due to this effect the distribution
overestimates the amount of pleiotropy. Two genes sharing a QTL marker might not display
a case of pleiotropy if the underlying causal QTL are located at different places of the QTL
marker intervals. One example for this is the region between markers no. 300 and 600, which
corresponds to the known region of reduced recombination in line 1 (see section 7.1.2) leading
to very long marker intervals connected to single QTL that add up in the histogram. Other
QTL hotspots are around marker no. 1580, which is connected to the known knockout of the
swc5 that affects many gene expression levels (Clément-Ziza et al. 2014), and around marker
no. 920.
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7.3 Selection on gene modules

Up to now, I only looked at the selection pressure on individual genes, but selection
might also act on larger units that perform a higher-level biological function for the
organism. For this, I use the gene modules that combine several genes defined in Ryan
et al. (2012). As for the genes, I look for gene modules under selection using both the
static as well as the ’static + conditional stress’ and ’static + conditional non-stress’
QTL. I determine the gene modules exclusively found to be under selection using the
conditional stress QTL and determine the biological function of those gene modules.

In their paper Ryan et al. (2012) created a genome-scale epistasis map of about
60% of the nonessential genome, creating genetic interaction profiles of the genes.
A similarity score measures the similarity of the genetic interaction profiles between
the genes. A hierarchical clustering algorithm is used to group genes with similar
interaction profiles in modules. They found 297 functional modules containing a total
of 992 genes, with the size of the gene modules ranging from 2 genes (for around 2/3 of
the modules) up to 26 genes (Ryan et al. 2012). For many of the gene modules a clear
biological function could be assigned and some could be identified with known protein
complexes as for example the large and small ribosomal subunit.

7.3.1 State configurations per gene module

For the selection analysis, I combine all QTL of the genes contributing to a module.
This allows me to test biologically relevant gene modules that might not have been
accessible before, as not enough QTL were available for the individual genes. Since the
genetic interaction profiles of the genes within one module are similar, I can directly
combine the state configurations of the genes in a gene module. An increase in the
expression level of one gene in a module should have a similar effect as the increase in
another gene (e.g. the number of a protein complex increases if the expression of all
its components increases).

The state configurations of all genes in a module were combined and gene modules
with at least four state configurations were used for further analysis. Table 7.9 lists
the number of gene modules with at least four state configurations for different FDR
thresholds for the QTL. On average, the individual genes contribute approximately 1.5
state configurations to the gene modules, with most of the genes only contributing a
single state configuration and only 10 of the 992 genes contributing 4 or more state
configurations. This shows that the set of QTL used for the selection test of the gene
modules is very different from the set used for the genes such that genes that could
not be tested individually are now accessible for the selection test. Since the gene
modules combine many genes, already at low FDR rates gene modules with sufficient
state configurations are available. Even the set of ’conditional stress’ QTL alone yields
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several gene modules with more than four state configurations. This allows to test this
QTL set separately, without the addition of the static QTL, which was not possible
using individual genes. This does not hold true for the set of ’conditional non-stress’
QTL where not a single gene module has sufficient state configurations. At the highest
FDR of 0.25, 65 out of 297 gene modules can be tested for the static QTL, implying
a much better coverage than for the individual genes, where only 81 out of 5260 genes
could be tested (Table 7.4). Yet, the set of genes in the gene modules is itself only
a limited subset of all genes. Comparing the different sets of QTL, the combined set
of ’static + conditional stress’ QTL has the highest number of testable gene modules,
similarly to the case of the genes.

static + static +
FDR static cond. stress cond. non-stress cond. stress cond. non-stress
0.05 7 2 0 13 7
0.1 15 4 0 25 18
0.15 29 5 0 44 32
0.2 48 8 0 72 53
0.25 65 11 0 90 70

Table 7.9: Number of gene modules for S. pombe with at least four state configu-
rations. Since the gene modules combine several genes, gene modules with at least four state
configurations are already available at the lowest FDR of 0.05, in contrast to the case of the
genes. Even for the set of stress QTL alone some genes with sufficient state configurations
can be found, allowing to analyze this set of QTL separately, which was not possible for the
genes. This is not true for the set of non-stress QTL, where no gene module has four or more
state configurations. At the highest FDR, 65-90 out of 297 gene modules can be tested for
selection. As in the case of the genes before, the combined dataset of ’static + conditional
stress’ QTL clearly has the highest number of testable gene modules.

7.3.2 Selection analysis

Next, I test the gene modules for selection. For this, I calculate score and p-value
for each gene module separately, as already described for the genes in the previous
section. For this, I again use the FDR-adjusted log-likelihood score (7.1). As can be
seen in Figure 7.6, a clear selection signal is present also for the gene modules with
a much larger fraction of gene modules with significant p-values than expected when
comparing to the null distribution. Yet the fraction of gene modules under selection is
smaller than the fraction of genes under selection (see also Table 7.10). An exception
is the set of ’conditional stress’ QTL, which could not be tested for the case of the
genes. Here, 55% (6 out of 11) of the tested gene modules had a significant score,
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Figure 7.6: p-value histogram for the gene modules using the static QTL and the
FDR-adjusted log-likelihood score (7.1). Also for the gene modules the selection test
shows a clear sign of selection for a part of the gene modules (red distribution). Even though
the fraction of gene modules under selection (with p < 0.05) is smaller than for the case of
the genes (see also Table 7.10), it is still elevated compared to the null distribution of gene
modules with reshuffled state configurations (blue distribution).
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which is much higher than the highest fraction of significant genes (39% for ’static +
conditional stress’ QTL, scenario Q2). This gives a clear hint that for the QTL specific
to the stress response selection pressure is much more pervasive.

For comparison, a similar but simpler approach tests for selection on pathways in
the yeast S. cerevisiae and S. bayanus (Bullard et al. 2010). This test only looks at
cis-regulatory changes in gene expression and also finds signs of selection on pathways,
but with a lower prevalence.

category modules tested p < 0.05 Q1 p < 0.05 Q2

static 65 14 (22%) 13 (20%)
static + cond. stress 90 24 (27%) 25 (28%)

static + cond. non-stress 70 17 (24%) 15 (21%)
cond. stress only 11 6 (55%) 6 (55%)

Table 7.10: Number of gene modules for S. pombe found to be under selection us-
ing the FDR-adjusted log-likelihood score (7.1). While the percentage of gene modules
under selection is smaller than in the case of the genes, it is still clearly elevated compared to
expectations under a neutral null model. Especially striking is the fraction of gene modules
under selection for the ’conditional stress’ QTL, which can now be used separately for the
selection test. Here, 55% of the 11 tested gene modules are under selection, far higher than
the highest percentage (39%) reached for the genes using the ’static + conditional stress’ QTL
with scenario Q2. This suggests that the QTL responsible for stress response are experiencing
especially strong selection pressures.

Also for the most diverged lines the picture is very similar to the results for the
genes, see Table 7.11. In many cases lines 2 and 3 are the most diverged lines while this
is still rarely the case for line 1. Especially for the ’static + conditional stress’ QTL line
2 is again by far the most diverged line with nearly 3 out of 4 significant gene modules.
Even more striking, for the set of ’conditional stress’ QTL alone, all six significant
genes are diverged in line 2. This shows that line 2 has a very different phenotype than
the other two lines when considering the set of ’conditional stress’ QTL. This might
hint towards a difference in the response to stress of line 2 that was formed through
adaptation. Again there is no clear bias towards the up- or downregulation of the gene
modules (data not shown).

7.3.3 Stress-specific gene modules under selection

In this and the next section I want to answer two questions. First, are there differences
in selection pressure between the QTL categories? And second, what are the biological
functions of the genes and gene modules that are found to be under selection? For this,
I start with the analysis of the gene modules, since they are more tightly connected to
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all significant
category 1 2 3 1 2 3

static 17 25 23 2 7 5
static + cond. stress 15 47 28 0 18 7

static + cond. non-stress 16 28 26 1 8 6
cond. stress only 2 8 1 0 6 0

Table 7.11: S. pombe lines with the largest trait divergence for the tested gene
modules. Similarly to the results for the genes, line 1 is rarely the most diverged line,
especially when considering the significant gene modules, while especially line 2 but also line
3 are often the most diverged ones. In the case of the ’static + conditional stress’ QTL
and even more pronounced for the stress QTL alone line 2 is the most diverged line for the
majority of gene modules. This could hint to a role of selection in the phenotypic difference
of the lines for the gene modules connected to stress response.

known biological functions, giving a more precise picture about the biological relevance
of the selection test results.

To reveal the differences between the QTL categories, I determine which gene mod-
ules under selection are found exclusively in one of the QTL categories and which
are shared between them. Especially, I want to focus on the gene modules that are
exclusively found in the ’static + conditional stress’ QTL set and the set containing
only the stress QTL. This might help to understand which gene modules are under
selection specifically for the stress response of the organisms. As can be seen in the
Venn diagram in Figure 7.7, the majority of gene modules found to be under selection
for the ’static + conditional stress’ QTL set are exclusive for this QTL set and cannot
be found by using either the static or ’static + conditional non-stress’ dataset. Nearly
all of the remaining significant gene modules are shared between all QTL categories.
This clearly suggests that a subset of the gene modules might have a strong connection
to stress response. Also it shows that the combination of ’static + conditional stress’
QTL is useful to reveal the selective pressures connected to the stress condition. Even
though the ’conditional stress’ QTL contribute only a minority of the QTL to the
combined QTL set (see again Table 7.2), half of the gene modules found to be under
selection are exclusive for this dataset, highlighting the importance of the contribution
of the ’conditional stress’ QTL.

Some significant gene modules exclusive to the ’static + conditional stress’ QTL set
are expected just because this combined QTL set has the highest number of available
QTL, such that more testable gene modules are expected. To test if there are more gene
modules exclusive to the ’static + conditional stress’ QTL set than expected by the
increase in testable gene modules, I compare these numbers to the numbers of testable
gene modules that are exclusive to the individual conditions, see Figure 7.7 (middle).
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As can be seen, a much smaller fraction of testable gene modules are exclusive to the
’static + cond. stress’ QTL set and an exact Fisher test confirms that more gene
modules under selection are exclusive to this condition than expected (p = 0.013).
This again indicates that a higher selection pressure seems to act on gene modules
connected to the stress response.

The results for the ’conditional stress’ QTL set alone produce very similar results
as the ’static + conditional stress’ QTL set (see Figure 7.7 right). Four of the six
gene modules that are found to be under selection for the ’conditional stress’ QTL set
are already found to be under selection exclusively in the ’static + conditional stress’
QTL set. One gene module under selection is shared with all other QTL sets and
is thus found to be under selection either using the static QTL only as well as the
’conditional stress’ QTL only, which are non-overlapping and thus provide different
QTL for selection analysis. So this gene module is found to be under selection using
two completely different QTL sets, providing an even stronger sign for selection than
a positive test in any of the QTL sets alone. The last gene module under selection is
exclusive for the ’conditional stress’ QTL. This means that the static QTL contributing
to this gene module changed the result of the selection test from significant to non-
significant. Overall, the trend is even stronger for the ’conditional stress’ QTL set
alone, where a clear majority of significant gene modules are specific to the stress
condition, confirming the role of the significant gene modules in stress response.

7.3.4 Biological functions of gene modules under selection

Next, I want to investigate the biological functions of the gene modules under selection.
For this, I will use all gene modules that are found to be significant using the ’static
+ conditional stress’ QTL set. With this QTL set a clear surplus of gene modules
under selection could be detected, indicating a role of these gene modules in stress
response. Additionally, this combined QTL set covers a much larger fraction of tested
gene modules, giving a broader overview over the selective pressures for the majority
of gene modules. The ’conditional stress’ QTL set has a much clearer connection to
stress response, with all QTL found in this set exclusively appearing under the stress
condition. Yet, only a small fraction of all gene modules could be tested for this subset
due to a low number of QTL, lacking the broadness of the combined QTL set. Also
most of the significant gene modules found for the stress QTL set are found for the
combined QTL set as well and do not add new insights.

The gene modules found in Ryan et al. (2012) cover a larger fraction of all S.
pombe genes. 997 of 5260 genes are included in the gene modules and cover a broad
field of biological functions as for example transcription, translation, DNA metabolism,
mitosis, or RNA processing. 64 out of the known 297 gene modules could be assigned
a clear biological function which allows to gain a better insight into the biological
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Figure 7.7: Venn diagram for significant S. pombe gene modules as well as all
tested gene modules for the different QTL categories. Left: The number of significant
gene modules that are exclusive to or shared by the three QTL sets static, ’static + conditional
stress’, and ’static + conditional non-stress’. Most remarkably, 11 of the 24 gene modules
are specific for the ’static + conditional stress’ QTL set. This speaks for a stronger selection
on the set of QTL that can only be observed in the stress condition and are thus involved in
the stress response of the organism. Middle: Since the ’static + conditional stress’ QTL set
contains the highest number of QTL, some significant gene modules exclusive to this set are
expected. To test if there is an excess of significant gene modules in this QTL set, I compare
this to the numbers of tested gene modules exclusive to the ’static + conditional stress’ QTL
sets. As can be seen, a significantly smaller fraction of tested gene modules is exclusive to
the ’static + conditional stress’ QTL sets (Fisher’s exact test, p = 0.013). This indicates
that selection pressure is much more pervasive for the gene modules that are specific for the
stress response of the organism. Right: The result for the number of significant gene modules
found using the ’conditional stress’ QTL only is even more pronounced. While only one of
the six significant gene modules is shared with the static QTL and the ’static + conditional
non-stress’ QTL (not shown here), four significant gene modules are in common with the
’static + conditional stress’ QTL set while one gene module has been found to be under
selection that has not been significant for the ’static + conditional stress’ QTL set.
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functions under selection. Because the function of the remaining gene modules remains
unclear, so far not the full range of biological functions connected to the gene modules
can be utilized. Gene modules directly connected to stress response are not available,
such that one cannot expect to find these. Rather, one might expect gene modules
that are reasonably connected to mechanisms included in stress response.

The gene modules that are found to be under selection exclusively in the ’static
+ conditional stress’ QTL set and their respective biological function (gene module
numbers as defined in Ryan et al. (2012) are given) can be found in Table 7.12. For each
gene module also the most common gene ontology (GO) annotations, which name the
biological processes and cellular components connected to the genes, of the associated
genes obtained from the PomBase database (Wood et al. 2011) are given in Table 7.12.
In the GO annotations of the gene modules several GO terms can be found repeatedly.
First, there are several gene modules connected to the regulation of transcription and
translation (gene modules no. 64, 114, 136, 181). It is well known that cells respond
to stress by a broad and coordinated change in gene expression, which allows the
organism to quickly adapt protein levels to changing environmental demands (Holcik
and Sonenberg 2005). As an example, the histone H3-K9 demethylation of gene module
no. 181 is correlated with transcriptional repression (Rosenfeld et al. 2009). Besides
the importance of the regulation of transcription also the regulation of translation is
important for the rapid response to stress (Holcik and Sonenberg 2005). The large
ribosomal subunit (gene module no. 136) is one of the central protein complexes
involved in translation. It was shown that organisms respond to a stress condition by a
general reduction of transcription which allows to save up to 50% of the cellular energy
and increase the production rate of proteins involved in the stress responses (Holcik and
Sonenberg 2005). This makes the regulation of translation a very important mechanism
for stress response.

Additionally, gene modules connected to different kinds of stress responses are found
in the analysis. Most prominently, the two gene modules no. 86 and 114 are involved in
the electron transport chain. They comprise several protein complexes in the mitochon-
drial membrane and are responsible for the cellular respiration, converting biochemical
energy from nutrients to ATP (Joseph-Horne et al. 2001). As reactive oxygen species
are formed within this metabolic pathway, and in particular during situations with
environmental stress, this pathway is one of the major sources of oxidative stress in-
herent to the organism (Herrero et al. 2008). Furthermore, gene module no. 86 is
also involved in the arginine biosynthetic process which is the direct precursor of nitric
oxid, a major responder to oxidative stress (Astuti et al. 2016). Another example for a
gene module involved into the response to oxidative stress is the gene module no. 253,
which is the only gene module found to be under selection using the stress QTL alone.
Although this gene module could not be assigned a clear biological function, it consists
of some key genes of the large ribosomal subunit (rpp201, rpl4302 and rpl2301 ) as
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well as the heat shock protein hsp104, which is known to be involved in the response
to heat stress but also oxidative stress in the yeast S. cerevisiae (Collinson and Dawes
1992; Godon et al. 1998).

As an additional factor, several modules are connected to different kinds of stress
that are not directly connected to the stress applied to the S. pombe lines, but which
might share some common mechanisms for stress response. Gene module no. 64
is connected to the response to glucose starvation and gene module no. 170 to the
response to salt stress. Finally, a connection to the regulation of the mitotic cell cycle
can be found in gene module no. 170; it is known that the cell cycle is typically arrested
as a response to stress (Boonstra 2003).

Overall, the analysis of the significant gene modules exclusive to the ’static +
conditional stress’ QTL show a tight connection to biological functions related to stress
response.

Interestingly, the pathways found to be under selection in Bullard et al. (2010) for
the species S. cerevisiae and S. bayanus are connected to similar biological functions
with keywords like ribosome biogenesis, respiration, translation, and response to stress
appearing as well. This might hint to common pathways as typical targets for selection
in different environments.

relative
module trait value involved genes GO annotation

64 ssp2, amk2 regulation of transcription,
response to glucose starvation

69 elp1, elp2, elp3, elp6, tRNA modification,
ctu1, ctu2, dph3 tRNA metabolic process

86 tsf1, arg3, arg6, arg11, arginine biosynthetic process,
arg12, lys2, lys3, urea cycle, NAD binding,

lys4, lys12, 2 unassigned mitochondrial matrix

114 atp2, atp15, sep1 mitochondrial proton transport,
ATP biosynthetic process,
regulation of transcription

122 rsn1, rpl3001 vesicle-mediated transport,
cytoplasmic translation

136 rpl2102, rpl1702, rpl2801, large ribosomal subunit,
rpl1601, rpl702, rpl1902, translation

rpl3702, rpl3801

170 pck1, cch1, rga8, mug123, signal transduction,
pmp1, yam8, 1 unassigned response to salt stress,
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175 dsc1, dsc2, dsc3, protein ubiquitination
dsc4, dsc5

181 pbr1, phf1, phf2, histone H3-K9 demethylation
mit1, mlo2, 1 unassigned protein ubiquitination,

regulation of transcription

182 gar2, tma23, rok1 ribosome biogenesis

224 nxt1, mex67, 1 unassigned ribosome biogenesis,
nucleocytoplasmic transport

253 gal1, cxr1, abc3, rpp201, cytosolic large ribosomal subunit,
fcf2, gdh1, tho4, mpc1, regulation of transcription,

rpl4302, rpl2301, hsp104, cellular amino acid metabolic process,
10 unassigned cellular response to misfolded protein

Table 7.12: Biological functions of the significant S. pombe gene modules ex-
clusive to the ’static + conditional stress’ QTL set. For each gene module the most
common gene ontology (GO) annotations are given, which name the biological processes and
cellular components connected to the genes. Many gene modules are connected to biological
functions involved in stress responses, as the regulation of transcription and translation, the
electron transport chain, several stress response mechanisms (oxidative stress, salt stress,
glucose starvation), and regulation of the cell cycle. All gene modules were exclusive to the
’static + conditional stress’ dataset, except for gene module no. 253, which was only found to
be under selection in the ’conditional stress’ QTL set alone. The relative trait values of the
modules in the different lines are given in form of a heat map in the second column, where
the three colors correspond to lines 1 - 3 (from left to right). Red corresponds to the highest
possible trait value (with all loci contributing a + state for the line), while blue corresponds
to the lowest possible trait value (with all loci contributing a − state). White corresponds
to an equal number of + and − states.

Additional stress specific protein complexes Since not all protein complexes
that are known to be connected to the response to oxidative stress are included in the
gene module dataset, I additionally test two well known protein complexes related to
stress response for selection, the proteasome and the respiratory chain complexes. The
proteasome degrades misfolded or damaged proteins (e.g. due to oxidative stress) and is
known to be involved in the response to oxidative stress (Aiken et al. 2011). It consists
of the 20S and the 19S subcomplexes. The 20S subcomplex again has two subunits,
the 20S alpha subunit and the 20S beta subunit. I test these protein complexes for
selection by combining the QTL of all genes contributing to these protein complexes.
I both test the complexes individually for selection, as well as the combination of QTL
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of all complexes that constitute the proteasome. The list of all genes contributing to
the protein complexes were obtained from the PomBase database (Wood et al. 2011).
The 20S alpha subunit consists of 5 genes. Three of the genes contribute one state
configuration and one gene contributes two state configurations. The selection test
gives no significant result for either the Q1 scenario (S = 1.27, p = 0.31) or the Q2

scenario (S = 1.47, p = 0.31). The 20S beta subunit consists of 7 genes with 6 of them
contributing a single state configuration. Here, the selection test gives a significant
score for both scenarios (S = 4.51, p = 0.017 for scenario Q1 and S = 6.59, p =
0.0056 for scenario Q2). Most intriguingly, all of the state configurations consistently
have a + state for line 2 and a − state for line 3. So 6 different genes of the same
protein complex show a consistent change in expression, displaying a remarkable case
of parallel evolution. The 19S subunit consists of 20 genes with 11 resulting state
configurations. Also here the selection test gives a positive result for the selective
scenario (S = 3.65, p = 0.025 for scenario Q1 and S = 3.65, p = 0.035 for scenario Q2).
Finally, as a consistency check I also apply the selection test on the combined set of
state configurations from all proteasome subunits. This can be done since the increase
in any gene expression contributing to the complex is expected to act to increase the
number of produced proteasome complexes. This results in an even stronger selection
result (S = 8.75, p = 1.6 × 10−4 for scenario Q1 and S = 9.36, p = 1.2 × 10−4 for
scenario Q2), showing the consistency of the state configurations between the subunits.

protein complex S p
proteasome 20S alpha 1.47 0.31
proteasome 20S beta 6.59 0.0056
proteasome 19S 3.65 0.035
proteasome combined 9.36 1.2× 10−4

respiratory chain complex I 4.39 0.0042
respiratory chain complex IV 1.29 0.33
respiratory chain combined 5.24 0.013

Table 7.13: Summary of the selection test results for the proteasome and the respiratory
chain complexes. In both cases selection is found both on individual subunits/complexes as
well as on the combined complex. Score and p-value are given for scenario Q2.

The second group of complexes are the respiratory chain complexes. There are four
of these complexes that are located in the mitochondrial membrane and are part of
the respiratory chain, which is one of the major sources of oxidative stress as already
discussed for the stress-exclusive gene modules under selection. Complex I is not found
in S. pombe but replaced by two mitochondrial NADH dehydrogenases (Friedrich et al.
1995; Joseph-Horne et al. 2001). While one of the 2 genes coding for the NADH
dehydrogenases has no state configuration, the other gene has 4 state configurations
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resulting in a selective signal (S = 3.7, p = 0.044 for scenario Q1 and S = 4.39,
p = 0.0042 for scenario Q2). Complex II has 4 genes but no state configuration.
Complex III has 7 genes but only 3 state configurations, which is not enough to perform
the selection test, since at least 4 state configurations are necessary. Complex IV has
11 associated genes and 9 state configurations, but the selective test is not significant
here (S = 1.29, p = 0.27 for scenario Q1 and S = 1.29, p = 0.33 for scenario Q2).
When the configurations of all complexes are combined, which allows to incorporate the
state configurations of complex III and which tests for the consistency of the direction
of change between the complexes, I again retrieve a selective signal (Q1: S = 4.52,
p = 0.0097; Q2: S = 5.24, p = 0.013). The evidence for selection is weaker than for
the proteasome, but a selective pressure still seems to be present. Taken together, this
shows a pervasive selective pressure on biological pathways and complexes related to
stress response. The summary of the results can be found in Table 7.13.

The functional analysis for the genes yields a less clear picture. A GO analysis using
topGO (Alexa et al. 2006) yielded no significant GO terms for any set of significant
genes (static QTL, ’static + conditional stress’ QTL, ’static + conditional non-stress’
QTL, ’static + conditional stress’ exclusive QTL ; all measured 5260 S. pombe genes
used as background gene set), showing no clear preference for any biological functions.
Some of the genes under selection are again connected to the GO terms found for the
significant gene modules that are exclusive for the ’static + conditional stress’ QTL
(regulation of transcription: cdc10, mst1 ; translation: sdo1, tif11 ; respiratory chain:
idh1 ; cell cycle regulation: cut9, apc14, cdc10 ) but the evidence for the contribution
of certain biological functions is clearly lower.

7.4 Protein level changes

A central question remaining to be answered is the question if the selection observed
on the gene expression levels is also reflected in the protein levels. As the biological
function of the genes is mediated by their protein products, a change of protein levels
is expected as a result of selective pressures. In this section, I compare expression and
protein levels of the lines obtained from (Clément-Ziza et al. unpublished dataset).
Protein levels are available for 2180 of the 5260 S. pombe genes and are given in
log-scale. The protein levels are normalized and centered around zero. The method
used to obtain the protein levels is a combination of mass spectrometry and targeted
sequencing (Schmidt et al. 2008) which leads to the measurement of several peptide
groups corresponding to a single gene. I use these data to test the hypothesis that
for genes under selection a change in expression level is also reflected in the protein
level. For this, I divide the genes tested for selection (using the ’static + conditional
stress’ dataset) into two groups: the genes found to be under selection (p < 0.05 for
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Figure 7.8: Protein levels in S. pombe are stronger correlated with gene expression
levels under selection. Gene expression levels are plotted against protein levels for all three
S. pombe lines, distinguished between genes under selection and genes not under selection
(’static + conditional stress’ dataset, selected genes with p < 0.05 for scenario Q2). All gene
expression levels as well as all protein levels are normalized and centered around zero (of
which only a subset is plotted here). For the genes under selection a stronger correlation
could be found between gene expression and protein levels for lines 2 and 3, meaning that
a change in expression level has a stronger effect on the protein levels. This is expected if
the selective forces not only act to change expression levels but also protein levels as the
product of a gene. No clear signal could be found for line 1 which is the the laboratory line.
This might point towards the absence of strong selective forces in this line, which could be
connected to the constant, well-defined environment experienced by the laboratory line.
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scenario Q2) and those not under selection. If selection is acting on the protein levels
as well, a high or low expression level would also lead to a high or low protein level.
When no selection is present, a less tighter connection between gene expression levels
and protein levels might be assumed, as protein levels are often buffered and follow
gene expression levels only to a lower extend (Holcik and Sonenberg 2005). For both
groups and for each line I plot the gene expression levels against the mean protein levels
averaged over all peptides that are assigned to a gene (if the protein level is available
at all), see Figure 7.8. It shows that the protein levels for genes under selection are
more strongly correlated with the expression levels for line 2 and especially for line 3,
which are the lines that showed the strongest level of trait divergence (see Table 7.8).
A linear regression performed on the data also shows that the slope of the fitted line
is steeper for the genes under selection, such that an increase in gene expression leads
to a stronger increase in protein level. From this one can conclude that the selection
acting on the gene expression levels is also reflected in the protein levels. Genes that
are under selection for a higher or lower gene expression level are also showing higher
or lower protein levels. These results are robust with respect to the choice of the
threshold for selection; choosing a threshold as low as p < 0.01 leads to very similar
correlation coefficients (r = 0.90 for line 3) while an increase of the threshold leads to
a slow decrease in the correlation.

Line 1 shows no clear correlation between gene expression levels and protein levels.
This is in line with the result already seen for the selection test in section 7.2.5, where
line 1 was almost never the diverged line. This might reflect that line 1, the laboratory
strain, is cultured under constant conditions such that selective forces as well as the
need for a tight control of protein levels might play a less important role.

The verification of the results of the selection test on the protein levels shows that
the selective forces leave traces both on the transcriptional as well as the translational
level. It might be possible that the protein level is the main target of selection.

7.5 Possible use of protein QTL data

The selection test could be extended to data on protein QTL (pQTL). pQTL would
allow to test selection acting not only on the transcriptional level but also on the
translational level. Genes that are affected by both eQTL and pQTL would allow
to examine the consistency of state configurations obtained from both datasets. For
genes found to be under selection using eQTL only, pQTL state configurations could
be added to the analysis to test if this increases the selection score (in which case the
pQTL state configurations would be in line with the eQTL configurations). A problem
arising in this case would be that additive effects for the two kinds of QTL are not
directly comparable, as the additive effects for the eQTL are given in units of mRNA
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produced, while the additive effects for the pQTL are given in units of the resulting
protein level. A possible solution would be to calculate the effects of each eQTL on
the protein levels, such that all additive effects can be given on the level of protein
changes.

A different ansatz would be to focus on the pQTL data only and to divide them into
two groups: pQTL with known eQTL (reflecting transcriptional changes) and without
known eQTL (translational changes). If for a pQTL an eQTL is known at the same
marker position, it is likely that the original change happened on the transcriptional
level and is passed on to the translational level. If no known eQTL exists this might
either reflect a change in protein level that happens after the transcription, or it might
be that the eQTL is present but was not detected due to e.g. insufficient power of
the eQTL study or a too small additive effect. Using this classification, the selection
score could be split up as Stot = Stranscription + Stranslation with a score contribution
Stranscription from changes on the transcriptional level (pQTL with known eQTL) and
a contribution Stranslation from the translational level (pQTL without known eQTL).
This would allow to quantify the dominant modes of selection, i.e. it could be tested
if there is a majority of changes on the transcriptional or the translational level.

7.6 Comparison to other selection tests

In this section, I will compare the results of my selection test for the yeast eQTL
dataset to other available selection tests. For comparison I will use the Orr test (Orr
1998), and the test of Fraser, Moses, and Schadt (Fraser et al. 2010).

7.6.1 Orr test

The test of Orr (Orr 1998) employs a similar strategy as our selection test (for more
details see also section 3.7) but is only restricted to two lines and does not implement
a population genetics model comparing neutral and selective scenario. Instead it tests
against a simple neutral null model with equal probabilities for the + and − states. As
for the plant QTL datasets in section 6.1 before, I apply the Orr test to the two lines
with the largest trait divergence for each gene. I only consider the QTL with a valid
state configuration for three lines, neglecting QTL that do not follow the two-state
assumption or show epistatic behaviour. This excludes some QTL that would have a
valid state configuration for two lines but not for three lines and leads to less genes
with enough QTL for a selection test. Yet, this leads to a better comparability to the
results of the three-line test, as QTL with possible epistatic interactions that might
create a bias in the two-line data are neglected.

In contrast to the selection test presented in this thesis the Orr test does not find a
sign of selection, being unable to reject the neutral null hypothesis at a p-value threshold
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of 0.05 even for a single gene, as can be seen in Figure 7.9. Yet, the p-value distribution
is biased to lower p-values, suggesting that selection could possibly be detected if more
QTL would be known for the individual genes. When the previously neglected QTL
that have an invalid three-line state configuration but a valid two-line configuration
are incorporated as well, leading to more QTL per gene and more testable genes, very
similar results are obtained with again no gene found to be under selection (data not
shown). This result shows the advantage of a multiple-line test for the detection of
selection.

Figure 7.9: The Orr test cannot reject neutral evolution for the S. pombe eQTL
dataset. The Orr test (Orr 1998) is applied to the two S. pombe lines with the highest
trait divergence for each gene, using only the QTL that also have a valid three-line state
configuration. The Orr test cannot reject the null hypothesis of neutral evolution for a single
gene. So this two-line test cannot find the pervasive selection pressure on the gene expression
levels found with the multiple-line selection test.

7.6.2 Test for genome-wide level of selection

The test of Fraser, Moses, and Schadt (Fraser et al. 2010) uses pairs of cis- and trans-
eQTL affecting a single gene expression level to test for the global level of selection.
If more reinforcing cis- and trans-QTL pairs (with state configurations affecting the
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expression level in the same direction) than opposing QTL pairs (with state config-
urations acting in different directions) were found across all genes, this points to an
overall excess of selection acting on the gene expression levels. As only pairs of eQTL
per gene were considered, the test cannot identify individual genes under selection
but determine the global level of selection. With the large number of eQTL found in
the S. pombe dataset used in this chapter, the identification of individual genes under
selection becomes possible.

To apply the test on the S. pombe dataset, I determine for each QTL with valid
state configuration, if it is a cis- or trans-QTL (with a cis-QTL within the range of 50
kb around the considered gene as in (Fraser et al. 2010); I do not require the trans-QTL
to be on a different chromosome than the gene since S. pombe only has 3 chromosomes
as opposed to the 16 chromosomes of S. cerevisiae used in (Fraser et al. 2010)). As
the majority of eQTL found were trans-QTL (Clément-Ziza et al. 2014), many genes
have multiple trans-QTL. For each gene with multiple trans-QTL, I only pick the QTL
with the highest statistical significance. In total, I obtain 72 genes with a pair of cis-
and trans-QTL. For the further analysis I only consider the state configurations of
lines 2 and 3, as these showed the highest level of trait divergence (see section 7.2.2)
and since line 1 had problems recombining with the other lines (see section 7.1.2). The
number of reinforcing and opposing QTL pairs can be found in the contingency table in
Table 7.14. Under neutral evolution the same number of QTL pairs would be expected
in all categories (which would be 18 pairs per category in this case). This shows a clear
excess of reinforcing pairs (chi-square test: p = 0.002) with 14 more reinforcing pairs as
expected by chance (corresponding to 19% of all 72 pairs) and with 28 more reinforcing
than opposing pairs (39% of all 72 pairs). This is in perfect agreement with the levels
of selection found by the multiple-line selection test (see section 7.2.2), supporting the
hypothesis of widespread adaptation on gene expression levels in S. pombe.

cis q2 > q3 cis q2 < q3

trans q2 > q3 22 10
trans q2 < q3 12 28

Table 7.14: Number of reinforcing and opposing cis- and trans-QTL pairs for the S. pombe
lines 2 and 3. Reinforcing QTL pairs affect the trait in the same direction (states q2 > q3 or
q2 < q3 in both cases; upper left and lower right number) while opposing QTL pairs affect
the trait in different directions (states q2 > q3 in one line and q2 < q3 in the other line; upper
right and lower left number) A clear excess of reinforcing QTL pairs can be seen compared
to a scenario of neutral evolution, where 18 pairs would be expected in each of the four
categories. 14 more reinforcing pairs are seen as expected by chance, corresponding to 19%
of all 72 pairs.
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Conclusions

In this thesis, I combine information from QTL experiments with population genetics
theory to infer the evolutionary history of quantitative traits. I define a model of trait
evolution that is based on population genetics theory and that quantifies the evidence
for different evolutionary scenarios of a trait. A log-likelihood score weights different
selective scenarios against each other and numerical simulations show that the selection
test can distinguish between neutral evolution and selection as well as between different
lineage-specific selection scenarios. In addition to the long evolutionary times that are
assumed in the original model, I also derive the state statistics for two and three lines
in the limit of short evolutionary times.

A major advance compared to previous selection tests is the usage of multiple QTL
lines. I show that multiple lines clearly increase the statistical power to detect selection
by increasing the genetic diversity that is uncovered. An explicit expression for the
increase in statistical power to detect selection as a function of the number of lines
is given. Additionally, a scenario is explored where a fixed number of QTL crosses is
either performed on two lines or distributed on crosses between all possible pairs of
three lines. I find that for a sufficient number of crosses it can be beneficial for the
detection of selection to distribute the crosses on three lines, as more QTL can be
detected.

Applying the selection test to very large numbers of lines poses interesting challenges
in connection with the number of alleles per locus and the rapid growth of the number
of possible evolutionary scenarios. At the same time, the need for experimental crosses
between three or more different lines is a major bottleneck of the multiple-line test.
Due to the additional experimental work involved, there are currently few datasets
on QTL and their additive effects in more lines than two. However recent studies
employing crosses of 25 maize lines and detecting around 30-40 QTL per trait (Buckler
et al. 2009; Tian et al. 2011) as well as the three-line yeast eQTL dataset analyzed in
this thesis, detecting QTL acting on all gene expression levels of the organism, give a
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promising outlook to the future.
To address the problem of ascertainment bias that arises when multiple traits are

tested for selection, I use, besides the established Holm-Bonferroni correction and the
Benjamini-Hochberg procedure, the conditioning on the phenotypic difference as pro-
posed by Orr (Orr 1998). I show that the state statistics conditioned on the phenotypic
difference can be obtained using the maximum entropy principle. It turns out that for
two lines selection cannot be distinguished from the conditioned state statistics under
neutral evolution. Using three or more lines, however, a distinction between neutral
evolution and selection is easily possible. I derive the conditioned state statistics and
explore the capabilities of all methods to reduce the false positive rate in a multiple
testing scenario.

The developed selection test can be a major tool helping to uncover the genetic
basis of adaptation of quantitative traits. One of the most interesting applications
might be studies of expression QTL or protein QTL. Using such datasets, the genome-
wide level of selection on transcription and translation can be uncovered and selective
pressures specific to certain conditions, like changing stress levels or light periods, can
be detected. This might help closing the gap between changes observed in macroscopic
phenotypes, like yield traits in crops, and the genetic changes on the level of individual
genes or pathways, leading to a more detailed picture of the selective forces and their
action on the level of the genome.

Here, the developed selection test is applied on several multiple-line QTL datasets.
For both tested plant QTL studies, one on photoperiodic response traits in Maize (Coles
et al. 2010) and one on Mimulus floral traits (Chen 2009), I find a signature of lineage-
specific selection not seen in two-line tests. A QTL study on gene expression levels in
yeast (Clément-Ziza et al. unpublished dataset) is used to uncover the genetic basis
of adaptation to stress response. A high level of selection on both genes as well as
gene modules that consist of several genes and that have clearly defined biological
functions, like protein complexes or pathways, could be detected. Unlike in most other
studies on QTL adaptation, individual genes under selection could be identified. The
biology behind the gene modules found to be under selection exclusively in the stress
condition is explored and interesting connections to known stress response mechanisms
are uncovered. A strong connection between expression levels and protein levels is
found for genes under selection, with the transcriptional changes also confirmed on the
level of translation, hinting towards protein levels as the actual target of selection.

A possible further application of my selection test is the inference of adaptation
on combined datasets of expression QTL and protein QTL. With this, the action of
selection on the tightly coupled levels of transcription and translation could be studied,
separating the contributions of selection acting on changes of expression levels as well
as protein levels and quantifying how the action of selection on gene expression levels
is reflected in changes of protein levels.



Appendix A

A.1 Calculation of the state configurations of the

eQTL

The step necessary before the selection test can be applied is to calculate the three-line
state configurations (q1, q2, q3) for each of the QTL. Here, I have to consider that the
two-state assumption and the assumption of additive trait effects needs to be fulfilled. If
for a locus more than two significantly different alleles exist (i.e. a locus has a different
effect in each of the lines) or if the pairwise trait differences between the lines are not
compatible with a single, additive trait effect, I neglect that locus in the following.
This step is necessary in order to be able to apply the framework of my selection test.
Yet, one has to be careful with this step as this can be a potential source of bias. In
the following, I also explore how many QTL follow an additive three-state model and
what fraction of the loci show epistasis.

To obtain the state configurations qi, only information from crosses between all
possible pairs of the lines is available. To test if a given QTL fulfills the additive
two-state assumption, consistency between the pairwise crosses needs to be checked.
Starting with a significant QTL-gene pair, I calculate the additive effects for each of
the pairwise crosses. For a given QTL I first look up which of the crosses between line
1 and 2 have the genotype of line 1 and which the genotype of line 2. Then I group
the gene expression levels according to their genotype at the QTL marker position and
calculate the mean gene expression levels and the standard deviation for each group.
The difference between the mean gene expression levels of alleles 1 and 2 gives the
estimate for the additive effect a12 together with its uncertainty σa12 of the line pair 1
and 2. The same is repeated for the pairwise crosses of lines 1 and 3 as well as lines 2
and 3, resulting in additive effects a13 and a23 and uncertainties σa13 and σa23 for each
of the pairwise crosses.

Next, I have to check the the consistency of these additive effects. I first take the
pair of lines with the largest difference in gene expression and assign a + state to the
line with the higher gene expression level and the − state to the line with the lower gene
expression level. In order to obtain a valid configuration the remaining two crosses need
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to be consistent with this. For both remaining crosses I check if a) the additive effects
are consistent to the largest additive effect within error (e.g. |a12−a13| <

√
σ2
a12

+ σ2
a13

if a12 is the largest additive effect) and b) if a is consistent with zero (e.g. |a13| < σa13).
It should be noted that these two points are non-exclusive (e.g. one of the crosses
could have such a high uncertainty in its additive effect that it is both consistent with
the additive effect of the other cross and consistent with zero). One gets a valid state
configuration (q1, q2, q3) for the locus if a) is true for one of the remaining crosses and
b) is true for the other remaining cross.

For example if the cross of line 1 and line 2 has the highest expression difference
and expression is higher in line 1, I assign q1 = + and q2 = − such that only the state
of q3 needs to be deduced. If the cross of lines 1 and 3 gives a trait difference that
is consistent with zero (fulfilling condition b), one can deduce that q3 = q1 = +. If
furthermore the cross of lines 2 and 3 gives an expression difference a23 consistent with
a12 (fulfilling condition a), this is consistent with q3 = −q2 = +. This yields the final
state configuration (q1, q2, q3) = (+,−,+).

The additive effect for a locus is calculated as the mean of the two additive effects
of the pairwise crosses with significantly different states (e.g. a12 and a23 in the case
of a state configuration (+,−,+)).

In some cases it is not possible to calculate one of the additive effects, e.g. if all
markers at the considered position on the chromosome originate from the same line,
such that no difference between the mean expression levels of the two lines can be
calculated. In these cases I only use the two remaining pairwise crosses to determine
the state configuration of the locus. I apply the same procedure when there is only
one cross with a different marker, as it is the case for one large region in the genome
where there is no recombination between lines 1 and 3 and all crosses but one carry
the alleles of line 1 in this region. This region coincides with a chromosomal inversion
in line 1 (Brown et al. 2011; Clément-Ziza et al. 2014).

A.2 Calculation of p-values for the eQTL scores

To obtain a p-value for each of the scores, a null distribution of scores is calculated
separately for each gene by repeatedly simulating instances of the null model for the
given number of QTL and given additive effects. For this, two possibilities exist. Either
the state configurations are directly drawn from scenario P0, or the state configurations
are obtained by randomly reshuffling the state configurations of the QTL within the
dataset (i.e. all state configurations of all the genes are reshuffled, allowing exchange
of configurations between the genes). The second option has the advantage that it
leaves the overall distribution of state configurations unchanged, including possible
biases in the distribution. When looking at the relative frequency of the different state
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configurations in the dataset, no bias towards any configuration is observed. With
only deviations of about 1 % around the expected mean of 16.7 % for each of the six
possible state configurations no significant deviation from a uniform distribution for
the state configurations is present ((+,+,−): 15.3 %, (+,−,+): 16.8 %, (−,+,+):
16.3 %, (+,−,−): 17.2 %, (−,+,−): 17.6 %, (−,−,+): 16.7 %, chi-squared test: p =
0.95). Thus, the two options to obtain the state configurations for the null model are
approximately equal. For simplicity, I implement the first option, calculating the null
distribution of scores from state configurations drawn from P0. The p-value for each
gene is then calculated as the probability that the observed score is obtained from the
null distribution, as already described in section 3.4.1.
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