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Abstract 
Posttranslational attachment of the small ubiquitin-related modifier (SUMO) to a protein, 

commonly known as sumoylation, is a highly dynamic process of conjugation and 

deconjugation. This work is concerned with the latter. Via different approaches it 

characterizes the S. cerevisiae SUMO-specific protease Ulp2, giving insight into its 

mechanism, its structure, as well as its role in vivo. It was found that Ulp2 dismantles poly-

SUMO sequentially starting from the distal end (exo mode) down to two linked SUMO 

moieties. This differentiates Ulp2 from all other members of the Ulp/SENP family of 

proteases that have been analyzed, so far. Previous studies suggested rather stochastic 

mechanisms for all of them. Apparently, Ulp2 recognizes a region at the N-terminus or 

surrounding surfaces of SUMO that are not accessible in moieties of the chain other than the 

most distal one. Full accessibility to the N-terminus needs to be granted in order to achieve 

full cleavage efficiency. Additionally, Ulp2 requires at least tri-SUMO to bind and/or to 

process a target chain. Binding seems to happen in a cooperative manner, meaning that all 

three binding sites have to be occupied in order to achieve interaction. It was found that in 

each one of the units of a trimeric SUMO chain a different surface area is involved in 

SUMO/Ulp2 interactions in the event of cleaving off the most distal unit. The entire 

mechanism and preferences of Ulp2 are contained in its catalytic domain (UD). In the course 

of this work, the crystal structure of this domain was solved. The structural insights confirmed 

Ulp2’s family affiliation with Ulp1, and underscored its close relation to SENP7. 

Nevertheless, concrete unique regions in the structure open up opportunities for discovering 

the reasons for the distinct mechanistic characteristics Ulp2 exhibits. Also, surface charge and 

hydrophobicity of the UD is significantly different to Ulp1 as well as SENP7 active domains. 

In vivo studies in the course of this work showed that polymeric SUMO is not subjected to 

degradation alongside the anchor protein it is attached to, but rather liberated beforehand. 

Ulp2 was identified as the major, if not only, SUMO-specific protease involved in this SUMO 

recycling process. However, it is yet to be clarified whether mono- and di-SUMO 

modifications are subjected to degradation, since Ulp2 would not process that. In the light of 

the mechanistic findings, the in vivo analysis led to a model in which Ulp2 is in an 

antagonistic relationship with STUbLs: While it prevents SUMO chains from getting long 

enough for STUbLs to capture them, once a STUbLs has bound polymeric SUMO, it 

obstructs the chain in such a way that it is not possible for Ulp2 to attack it, thus the substrate 

inevitably files into degradation by the proteasome. 
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Zusammenfassung 
Sumoylierung, die posttranslationale Modifikation eines Proteins mit SUMO (small ubiquitin-

related modifier), ist ein hoch dynamisches Wechselspiel aus Konjugation und De-

konjugation. Im folgenden Text liegt der Fokus auf letzterem, genauer noch auf der SUMO-

spezifische Protease Ulp2. Diese Arbeit charakterisiert Ulp2 sowohl mechanistisch als auch 

strukturell und erlaubte durch gezielte In-vivo-Experimente, den mechanistischen 

Gegebenheiten eine Funktion im größeren, zellulären Kontext zuzuordnen. Wie sich zeigte, 

baut Ulp2 poly-SUMO-Ketten von ihrem distalen Ende her ab. Das unterscheidet Ulp2 

signifikant von sowohl Ulp1, der einzigen anderen bekannten S. cerevisiae SUMO-Protease, 

als auch seinen humanen Orthologen, SENP6 und SENP7, die Ketten eher ungeordnet, 

stochastisch prozessieren. 

Bei einer Kettenlänge von zwei SUMOs stoppt der Abbau durch Ulp2. Weder mono- noch di-

SUMO-Modifikationen werden von Ulp2 als Substrate erkannt, dementsprechend weder 

dekonjugiert noch gebunden. Die Resultate aus unterschiedlichen experimentellen Ansätzen 

deuten darauf hin, dass die Oberfläche von Ulp2 drei verschiedene SUMO-Bindestellen 

aufweist, die simultan besetzt sein müssen, um eine ausreichend starke Interaktion zwischen 

Enzym und Kette zu erhalten. Sterisch unbeschränkter Zugang zum Aminoterminus des 

distalen SUMO erwies sich als Grundvoraussetzung für maximale Prozessierungseffizienz. 

Scheinbar erkennt Ulp2 eine Region am N-Terminus oder umliegende Oberflächen von 

SUMO, die in anderen Glieder einer poly-SUMO-Kette weniger zugänglich sind. Es zeigte 

sich, dass Ulp2 in jedem seiner drei Bindungspartner eine andere Oberfläche erkennt. 

Sämtliche genannte Eigenschaften sind in der aktiven Domäne angelegt; die nicht-

katalytischen Domänen haben mechanistisch keine Relevanz. Im Zuge dieser Arbeit wurde 

die Kristallstruktur der aktiven Domäne von Ulp2 (UD) gelöst. Sie zeigte klare Ähnlichkeiten, 

aber auch signifikante Unterschiede zwischen der Tertiärstruktur und der 

Oberflächenbeschaffenheit (Ladung/Hydrophilie) von Ulp2 und Ulp1. Die Ähnlichkeit zu 

SENP7 erwies sich als wesentlich größer, doch auch hier gab es prägnante Divergenzen, die 

Ansätze für weitere mechanistische Aufklärung bieten. In-vivo-Experimente in S. cerevisiae 

zeigten, dass polymeres SUMO nicht gemeinsam mit seinem Substrat abgebaut, sondern 

vorab von Ulp2 dekonjugiert wird. Vor dem Hintergrund der mechanistischen Erkenntnisse 

dieser Arbeit ergibt sich ein Modell, in dem Ulp2 die Kettenlänge von SUMO-Konjugaten in 

einem gewissen dynamischen Rahmen hält und damit auch eine antagonistische Rolle zu 

STUbLs (SUMO-targeted Ubiquitin ligases) einnimmt, die ausschließlich poly-SUMO-Ketten 

binden können, um das an ihnen haftende Substratprotein seinem Abbau zuzuführen.
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1  Introduction 
	
This year (2016) marks 20 years since SUMO was first reported on. It was found as a 

covalently linked attachment to RanGAP1, a GTPase activating protein in humans (Mahajan 

et al. 1997; Matunis et al. 1996). The name SUMO, small ubiquitin-related modifier, was 

chosen as a tribute to its similarity to ubiquitin. Ubiquitin and its kinsman, collectively 

termed ubiquitin-like proteins (Ubls), are posttranslational modifiers. Upon conjugation to 

proteins, they alter the properties of their targets, thereby increasing the variety of the 

proteome in eukaryotic cells. So far, hundreds of proteins have been found to be sumoylated 

at some point during the cell cycle (Wohlschlegel et al. 2004; Zhou et al. 2004; Denison et 

al. 2005; Hannich et al. 2005; Panse et al. 2004; Wykoff et al. 2005; Vertegaal et al. 2006; 

Golebiowski et al. 2009; Schou et al. 2014; Hendriks et al. 2014). This makes SUMO the 

Ubl modifying the second larges pool of proteins, only outnumbered by ubiquitin itself. 

SUMO-conjugated proteins are frequently found in the nucleus, pointing towards 

sumoylation being an important nuclear process (Rodriguez et al. 2001).  

Many sumoylated proteins are tumor suppressors, transcription factors and nuclear body 

proteins, a fact that accounts for a fast-growing interest in the understanding of the SUMO 

system. Since usually only a small fraction, frequently less than 1 %, of a substrate is 

sumoylated at any given time (Johnson 2004), studying sumoylation is not trivial, and there 

might be many more SUMO targets yet to be discovered.  

 

1.1  SUMO genes 
SUMO has been shown to be essential in most eukaryotes (Johnson et al. 1997; Nacerddine 

et al. 2005). Schizosaccharomyces pombe represents a known exception from this general 

view. Its sole SUMO-encoding gene, pmt3, is not essential, but a knockout mutant suffers 

from severe genome maintenance defects and is barely viable (Tanaka et al. 1999). Another 

exception is the filamentous fungus Aspergillus nidulans (Wong et al. 2008). In 

Saccharomyces cerevisiae (S. cerevisiae), SUMO is expressed from a single gene, SMT3 

(suppressor of mif two), which encodes a 101-amino acid molecule (Meluh et al. 1995). Like 

S. cerevisiae, Caenorhabditis elegans features only a single SUMO gene (Choudhury et al. 

1997). In contrast, plants have several; e.g. Arabidopsis thaliana expresses SUMO from 8 

different genes (Kurepa et al. 2003; Novatchkova et al. 2012). In higher eukaryotes, so far, 4 
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isoforms have been found: SUMO1-4 (Mahajan et al. 1997; Matunis et al. 1996; Johnson 

2004; Shen et al. 1996; Kamitani et al. 1998; Mukhopadhyay et al. 2007; Bohren et al. 

2004).  

 

1.2  SUMO protein  
SUMO has a molecular weight of ~11 kDa, but on an SDS-PAGE adds a ~20 kDa increment 

in size to the protein it is linked to. While SUMO shares only ~18 % sequence identity with 

ubiquitin, the two structures are for the most part superimposable (Fig. 1) (Johnson 2004; 

Bayer et al. 1998). Like all Ubls, SUMO features the ubiquitin superfold, a β-grasp fold in 

which four β-strands surround an α-helix which diagonally transverses the molecule (Bayer et 

al. 1998; Welchman et al. 2005; Vijay-Kumar et al. 1987). But unlike ubiquitin, SUMO has 

an N-terminal extension of ~20 amino acids, which is flexible in solution (Bayer et al. 1998). 

This region is rich in proline, glycine, and charged residues. Notably, this flexible part has 

been shown to be dispensable, as a corresponding N-terminally truncated SUMO mutant can 

still serve its essential functions (Bylebyl et al. 2003).  

 

 
FIGURE 1: Structures of SUMO and ubiquitin. Graphics were prepared with  
Chimera using PDB 1L2N (Smt3) and PDB 1UBQ (ubiquitin) in ribbon  
representation. N-t. = amino-terminus; C-t. = carboxy-terminus. 

 

1.2.1  SUMO isoforms 

The four different SUMO genes in mammalian cells translate to four different SUMO 

isoforms. The human SUMO1 (also known as sentrin, Ubl1 and Smt3c) was the first one to 

be discovered in a homology screen to yeast SMT3 (Shen et al. 1996). SUMO4, the latest 

discovered member, is a special case and will be discussed separately below. 
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SUMO1 shares only ~45 % sequence identity with SUMO2 and SUMO3, which are virtually 

identical (~95 % similarity), hence frequently referred to as SUMO2/3 (Johnson 2004; Flotho 

et al. 2013). Despite the fact that SUMO1 and SUMO2/3 are activated and conjugated by the 

same E1 and E2 enzymes, they have significantly different features (Johnson 2004; 

Mukhopadhyay and Dasso 2007; Flotho and Melchior 2013). To start with, they show unique 

intracellular abundance: The cell cycle-dependent distribution of SUMO2/3 has been shown 

to be distinct from SUMO1 location, mobility and dynamics (Ayaydin et al. 2004). 

Additionally, conjugation of SUMO2/3 is strongly induced upon various stresses; SUMO1 

modification, in contrast, dominates under non-stress conditions (Seifert et al. 2015). Another 

noticeable difference between SUMO1 and the other two paralogues is its inability to 

efficiently form chains (Tatham et al. 2001). While SUMO2/3 efficiently form polymers on 

their substrates, the existence of poly-SUMO1 has been debated (Flotho and Melchior 2013; 

Tatham et al. 2001; Saitoh et al. 2000). Even though, SUMO1 polymerization has been 

observed in vitro (Pichler et al. 2002; Yang et al. 2006a; Pedrioli et al. 2006), the prevalent 

role of SUMO1 in in vivo poly-SUMO conjugates seems to be terminating SUMO2/3 chain 

elongation by capping (Matic et al. 2008). Yet another difference of the SUMO paralogues 

lies in the abundance of their free forms. There is a large pool of free, unconjugated 

SUMO2/3, but SUMO1 exists predominantly in its conjugated form (Saitoh and Hinchey 

2000). That does not implicate SUMO1 as being favored by the conjugation machinery, but 

might find its origin partly in the fact that SUMO2/3 is expressed ten times more than 

SUMO1 (Saitoh and Hinchey 2000). The difference in abundance is counterbalanced by 

significantly faster cleavage of SUMO2/3- than SUMO1-conjugates (Flotho and Melchior 

2013; Kolli et al. 2010). Although targets and downstream effectors of the SUMO paralogues 

significantly overlap, some proteins are preferentially conjugated to a certain subfamily. So 

far, two distinct mechanisms that account for this have been reported on. One of them is 

based on intrinsic preferences of the substrate protein itself (Meulmeester et al. 2008; Zhu et 

al. 2008); the other one has been described in the course of RanGAP1 studies. It was found 

that while being efficiently modified with either of the paralogues, only RanGAP1-SUMO1 

was stably incorporated in a Ubc9-RanBP1-RanGAP1 complex, and that this complex 

formation prevents desumoylation of RanGAP1 (Zhu et al. 2009; Werner et al. 2012). Other 

mechanisms –possibly involving E3 ligases– have been subject to speculation, but are yet to 

be discovered (Flotho and Melchior 2013). 
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While SUMO1 and SUMO2/3 are ubiquitously distributed in most tissues, SUMO4 

apparently is expressed in a tissue- or organ-specific way. So far, it has been detected only in 

discrete areas like spleen, pancreatic islets, kidney or lymph node (Guo et al. 2004; Wang et 

al. 2008). Several important transcription factors involved in immune response have been 

found to be modified by SUMO4, suggesting a regulatory role in that field (Wang and She 

2008). However, its maturation is not yet understood. Despite 86 % identity to SUMO2/3 

(Bohren et al. 2004), none of the known SUMO-specific proteases recognizes SUMO4 as a 

target (Mukhopadhyay and Dasso 2007). Interestingly, a single-site mutation modulates pre-

SUMO4 amenable to processing by SENP2 (Wang and She 2008; Liu et al. 2014). 

Nevertheless, its biological relevance is still unclear. 

 

1.3  The sumoylation cycle 
SUMO proteins are translated as immature precursors that require processing to become 

conjugation competent. The proteolytic reaction trims off several C-terminal residues to 

expose a diglycine motif. Attachment of SUMO happens via an ATP-dependent enzymatic 

cascade strongly reminiscent of ubiquitination (Komander et al. 2012). In general, 

sumoylation involves three different classes of enzymes: A SUMO-activating enzyme (E1), 

which renders the C-terminal carboxyl group of SUMO active for reaction, and then forms a 

thioester with it; a SUMO-conjugating enzyme (E2), and a SUMO ligase (E3) (Gareau et al. 

2010; Hickey et al. 2012). Chemically speaking, the result of the sumoylation cascade is the 

formation of an isopeptide bond between the C-terminal carboxyl group of SUMO and an ε-

amino group of an acceptor lysine on the surface of a substrate molecule (Johnson 2004; 

Geiss-Friedlander et al. 2007; Kerscher et al. 2006; Capili et al. 2007). A general overview of 

the SUMO cycle is given in Fig. 2. In the first step, the SUMO-specific E1 activating 

heterodimer consisting of SUMO-activating enzyme subunit 1 (SAE1; also known as Aos1) 

and SUMO-activating enzyme subunit 2 (SAE2; also known as Uba2) activates the C-

terminus of SUMO in a two-step reaction: First, it forms a SUMO adenylate with it. Then, 

after a dramatic remodeling of the E1 active site, a conserved cysteine residue on the E1 

attacks the adenylate to result in an SAE2~SUMO thioester bond (Olsen et al. 2010; Dye et 

al. 2007; Schulman et al. 2009). The E2 conjugating enzyme Ubc9 binds to a ubiquitin fold-

domain of SAE2. Upon interaction of the thioester-charged E1 enzyme with Ubc9, SUMO is 

transferred to the catalytic Cys residue of the E2 enzyme, again forming a thioester bond. At 

this point, there are two possibilities: Either Ubc9 directly interacts with the SUMO target to 
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modify an acceptor lysine on its surface, or E3 protein ligases facilitate this process. The 

latter is usually the case and much more efficient. Basically, there are two mechanisms: 

Either, the SUMO E3 enzymes recruit the substrate protein into a complex with the 

Ubc9~SUMO thioester, thereby promoting specificity, or in case of direct E2-substrate 

interaction, they expedite sumoylation by stimulating the E2 enzyme to transfer SUMO to the 

target protein. Either way, the result is a SUMO moiety covalently attached to a Lys residue 

on the surface of an acceptor.  

 
FIGURE 2: Schematic representation of the SUMO cycle. SUMO precursors are processed by specific 
proteases to expose their C-terminal di-glycine motives. The mature SUMO is activated and conjugated to a 
target protein via an E1-E2(-E3) cascade. In an ATP-dependent step it forms a thioester bond to the active Cys 
of the E1. This is then transesterified to the Cys of the E2 enzyme. Then, directly or via an E3 ligase, the 
conjugation-competent SUMO is transferred to an ε-amino group of an acceptor lysine on the surface of a 
SUMO substrate. The SUMO modification itself can then serve as a target, leading to SUMO chain formation. 
SUMO-specific proteases are able to dismantle the chains again. 

1.4  Polysumoylation 
Notably, not only mono- and multisumoylation (several SUMO molecules attached to 

different Lys residues on the same protein), but also polysumoylation, meaning formation of 

SUMO chains, is possible. The finding of SUMO chains came as a surprise, as in vivo most 
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substrates are decorated with single SUMO moieties –frequently at multiple sites, though 

(Johnson et al. 1999; Mahajan et al. 1998). Polymeric SUMO is possible, because the SUMO 

sequence itself contains lysine residues, which can serve as a docking site for another SUMO 

moiety. These residues lie in a favoring environment, a so-called sumoylation motif (see 

section 1.5) (Bylebyl et al. 2003; Tatham et al. 2001; Johnson et al. 2001; Bencsath et al. 

2002). Generally, they are located in the flexible N-terminal appendix. While SUMO2/3 have 

only one such lysine, Lys11, Smt3 features three of them: Lys11, Lys15, and Lys19 (Johnson 

2004; Tatham et al. 2001; Ulrich 2008). They are known as the canonical attachment sites. 

However, in the last few years it has become obvious that formation of polymeric SUMO 

chains is by far not restricted to these prominent lysine residues. For instance, rendering them 

inoperable as linkage sites by replacing them with arginine does not significantly reduce 

buildup of SUMO chains. Only exchange of all lysine residues present in SUMO inhibits 

polysumoylation (amongst other reports of this, it was confirmed in this work, though data 

not shown). Poly-SUMO chains accumulate upon heat shock, osmotic- and replicative stress 

(Vertegaal 2010). However, the relevance of SUMO chains is still not clear. In yeast, 

polysumoylation can be eliminated without notable effects on SUMO function or conjugates 

pattern (Bylebyl et al. 2003; Takahashi et al. 2003). Many endeavors have been made to 

unravel this puzzle, and for instance the discovery of SUMO-targeted ubiquitin ligases (see 

section 1.8) gave the explanation of polymeric SUMO one plausible direction, but the exact 

function of SUMO chains still awaits elucidation. The fact that they are rapidly turned over, 

hence scarce in vivo, is a major obstacle to investigations in that direction.  

 

1.5  Sumoylation motif 
Usually, SUMO is attached to a lysine residue embedded in the consensus motif ΨKxE on 

the surface of a target protein. In this recognition pattern, Ψ stands for a hydrophobic residue, 

while “x” can be any residue. Of note, the glutamate is the most highly conserved position 

(Rodriguez et al. 2001; Sapetschnig et al. 2002). ΨKxE is the recognition site for the E2 

Ubc9 (Sampson et al. 2001), and the interaction between motif and enzyme are key to the 

conjugation mechanism (Bernier-Villamor et al. 2002; Lin et al. 2002; Reverter et al. 2005). 

Obviously, this motif is too short and too undefined to confer specificity on the sumoylation 

process. Indeed, more than one third of all proteins characterized to date contain such a patch, 

but only a small amount of them are sumoylated (Yang et al. 2006b). Consequently, there 

must be further determinants to account for accurate sumoylation. It has been shown that the 
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steric environment is another determinant for SUMO attachment signals (Pichler et al. 2005), 

likely, because the target lysine residue must be accessible to the SUMO-conjugating 

machinery. Apart from secondary structure elements factoring in, extended variants of the 

core consensus motif were described. Among them were a negatively charged amino acid-

dependent sumoylation motif (NDSM) (Yang et al. 2006b), and a phosphorylation-dependent 

sumoylation motif (PDSM). For both of them, clusters of residues downstream of the ΨKxE 

core were found to strengthen the interaction between substrate and Ubc9, thereby promoting 

SUMO conjugation (Yang et al. 2006b; Mohideen et al. 2009; Hietakangas et al. 2006). 

There are also reports of sumoylation of the inverted motif [(E/D)xKΨ] (Ivanov et al. 2007; 

Matic et al. 2010). In addition to that, several proteins have been found to be modified on 

sites that do not conform to ΨKxE (Hendriks et al. 2014; Adamson et al. 2001; Ishov et al. 

1999; Lin et al. 2003; Chakrabarti et al. 2000; Picard et al. 2012). Indeed, this seems to be 

quite frequently the case (Hendriks et al. 2014). Taken together, the exact set of determinants 

for sumoylation remains elusive.  

 

1.6  SUMO interacting motif 
At its basis, units of SUMO attached to a target protein create a new interaction platform on 

the surface of this protein. In order for this role to be fulfilled, there must be patches in the 

respective interaction partners that recognize SUMO. In 2000, the first conserved SUMO-

interacting motifs (SIMs) were reported (Minty et al. 2000). SIMs are typically composed of 

a hydrophobic core with the loose consensus sequence V/L/I-x-V/L/I-V/L/I (x = any amino 

acid) and several acidic amino acids, frequently juxtaposing the core (Minty et al. 2000; Song 

et al. 2004; Hecker et al. 2006; Kerscher 2007). Frequently, SIMs are located in unstructured 

protein regions. Upon binding, the hydrophobic core arranges itself in a β-strand 

conformation that fits in a pocket of SUMO formed by its α1-helix and its β2-strand (Hecker 

et al. 2006; Song et al. 2005). The core motif binds SUMO in a parallel or anti-parallel 

orientation, depending on the distribution of the negatively charged residues, that extends the 

SUMO β-sheet (Gareau and Lima 2010; Reverter and Lima 2005; Song et al. 2005). This 

allows interactions between the aliphatic residues of the SIM and the hydrophobic pocket of 

SUMO. The negatively charged residues can be decisive for the affinity, polarity, as well as 

for the paralogue-specificity of the SUMO/SIM interaction, probably by salt bridging and 

hydrogen bonding with conserved basic residues on the SUMO surface (Meulmeester et al. 

2008; Hecker et al. 2006; Chang et al. 2011). So far, three different types of SIMs are known: 
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SIMa (ΨΨxΨAcn), SIMb (ΨΨDLT) and SIMr, (AcnΨxΨΨ) (Praefcke et al. 2012; 

Sriramachandran et al. 2014). In the bracketed description, Ψ is a hydrophobic residue (V, I 

or L), n is a number between two and five, and Ac stands for Asp, Glu or Ser. Even though it 

is not an acidic amino acid, Ser is frequently found in SIMs, probably due to it being a target 

for phosphorylation (Sriramachandran and Dohmen 2014). Compared to the 16 known 

ubiquitin-binding domains (Grabbe et al. 2009), the diversity of SIMs as it is to date is small. 

This might indicate that there are additional types of SIMs, still awaiting their discovery. 

 

1.7  The ubiquitin-proteasome system 
A eukaryotic cell has two main systems for protein degradation: The lysosomal pathway and 

the ubiquitin-proteasome system (UPS) (Haas et al. 2008; Laney et al. 2001). While the 

former is autophagy-based, degrading extracellular proteins that have been imported into the 

cell by pinocytosis or endocytosis, the UPS operates the degradation of intracellular proteins 

(Hochstrasser 1995; Goldberg 1995). It degrades approximately 80-90 % of the intracellular 

proteins involved in every cellular function and process (Chen et al. 2010). Compared to the 

autophagy-lysosome system, this degradation pathway is highly selective.  

The UPS consists of many different molecules, with the main players being ubiquitin, 

ubiquitinating enzymes, deubiquitinating enzymes (DUBs), and proteasomes (Zhong et al. 

2016). The 26S proteasome is a 673-kDa multi-catalytic proteinase complex, which is found 

in the nucleus as well as in the cytosol (Chen and Dou 2010; Lowe et al. 1995). It is 

composed of several subunits: The 20S core particle consists of 28 subunits, 14 α-subunits, 

each weighting 25.8 kDa, and 14 β-subunits (22.3 kDa each), which form a barrel-shaped 

structure of four stacked rings arranged in a α7β7β7α7-manner (Lowe et al. 1995). This is the 

proteolytic heart of the proteasome. The core is capped at one or both ends by the 19S 

regulatory particle. The 19S regulatory particle can be further subdivided into the lid- and the 

base subcomplexes. The former consists of ~10 subunits; the latter features 6 AAA-type 

ATPases plus 2 non-ATPase subunits (Sauer et al. 2011). A simplified overview of the UPS 

is given in Figure 3. 
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FIGURE 3: Schematic representation of the UPS pathway of degradation. Sizes of the individual 
components are not proportionate. A substrate is polyubiquitinated via an enzymatic cascade analogous to the 
sumoylation cascade presented in Fig. 2. Thereby, it is targeted to the 26S proteasome, a barrel-shaped protease 
consisting of multiple subunits. Before fed into the proteolytic core (20S), deubiquitinating enzymes dismantle 
the ubiquitin chain and the 19S regulatory particle unfolds the substrate protein.  
 

The degradation signal is ubiquitin, a highly conserved 76-amino acid protein (Goldknopf et 

al. 1977). Ubiquitinated proteins are recognized by receptors in the 19S particle. Proteasome-

attached DUBs remove ubiquitin from the target protein, before it is unfolded by ATPases in 

the 19S base. From there, the polypeptide is translocated into the 20S core for destruction. 

Three different proteolytic activities act there: Chymotryptic-, tryptic- and caspase-like 

activities attack the target, and typically cleave it into peptides of 4-25 amino acids (Voges et 

al. 1999; Geng et al. 2012; Groll et al. 2000; Köhler et al. 2001a; Köhler et al. 2001b). The 

ubiquitin molecules liberated before the destruction process add to the pool of free ubiquitin 

competent to be used in another round of target protein ubiquitination. 

 

1.8  SUMO-targeted ubiquitin ligases 
The SUMO- and the ubiquitin pathways maintain a certain level of crosstalk. For long, it has 

been thought that this was of purely antagonistic nature (Ulrich 2005). Therefore, it came as a 

surprise when it was found that the two also work hand in hand. SUMO-targeted ubiquitin 

ligases (STUbLs) [also known as ubiquitin ligases for sumoylated proteins (ULS)] recognize 

poly-SUMO chains and decorate them with ubiquitin (Uzunova et al. 2007; Perry et al. 2008; 

Lallemand-Breitenbach et al. 2008). This files the target protein in the UPS pathway of 

degradation (Praefcke et al. 2012; Sriramachandran and Dohmen 2014; Uzunova et al. 2007; 

Perry et al. 2008; Heideker et al. 2009; Geoffroy et al. 2009; Hunter et al. 2009). In the last 

decade, several STUbLs have been identified by the presence of SIMs, their interaction with 

SUMO, or via homology studies (Weisshaar Stefan R. 2008; Sun et al. 2007; Prudden et al. 

2007; Xie et al. 2007; Køhler et al. 2015; Westerbeck et al. 2014). The proteins distinguish 
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themselves by combining two features in their structures: A RING-finger domain (variants of 

zinc-fingers that coordinate two zinc atoms in a cross-brace structure; mediates protein-

protein interaction (Borden et al. 1995; Saurin et al. 1996)) that allows for interaction with a 

ubiquitin-conjugating enzyme, and several SIMs. The former characterizes them as ubiquitin 

ligases, the latter as SUMO-binding proteins (Sriramachandran and Dohmen 2014; Uzunova 

et al. 2007; Perry et al. 2008). The existence of more than one SIM in STUbLs enables them 

to selectively ubiquitinate target proteins that carry poly-SUMO chains (Hannich et al. 2005; 

Uzunova et al. 2007; Lallemand-Breitenbach et al. 2008; Sun et al. 2007; Prudden et al. 

2007; Xie et al. 2007; Weisshaar et al. 2008; Tatham et al. 2008). In S. cerevisiae, to date 

two STUbLs have been identified, named Uls1 and Uls2. Uls1 (also known as Ris1, Dis1 and 

Tid4) is a 1612-amino acid protein accommodating a RING finger motif, a Swi2/Snf2-like 

translocase domain, and four predicted SIMs (Hannich et al. 2005; Sriramachandran and 

Dohmen 2014; Uzunova et al. 2007). Uls2, in contrast, is a heterodimer consisting of Slx5 

and Slx8. Slx5 (synthetic lethal of unknown function 5; also known as Hex3) contains two 

SIMs and a RING finger domain (Uzunova et al. 2007; Xie et al. 2007; Ii et al. 2007; Wang 

et al. 2006). Aberrant levels of the human STUbL Rnf4 have been implicated in a number of 

diseases including cancer (Perry et al. 2008; Pero et al. 2001). This highlights the importance 

of STUbLs for cellular homeostasis. 

In summary, linking ubiquitin and SUMO pathways, STUbLs represent another regulatory 

mechanism for levels of sumoylated forms of a substrate. 

1.9  Desumoylating enzymes 
Posttranslational modification in general offers the opportunity to provoke much faster 

responses than regulation via transcription alteration. Sumoylation is not an exception: It 

provokes an immediate cellular response to various intracellular signals and extracellular 

stimuli. Obviously, for this regulatory mechanism detachment of the modification is as 

important as conjugation. Deconjugation is carried out by specific enzymes broadly referred 

to as SUMO proteases. They cleave between the terminal Gly of SUMO and the Lys residue 

on the substrate it is attached to. Some SUMO proteases are also capable of processing 

SUMO precursors, thereby making it competent for conjugation in the first place.  

SUMO proteases are not only responsible for maturation of nascent SUMO, and 

deconjugation of the modifier from its target, but by doing so they also regulate the pool of 

conjugation-competent SUMO in the cell (Xu et al. 2009). All known SUMO-specific 

proteases are cysteine proteases featuring a papain-like proteinase fold (Hickey et al. 2012). 
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Although they share some catalytic features, the different superfamilies distinguish 

themselves by the specific fold of their catalytic domains (Hickey et al. 2012). All SUMO-

specific peptidases of the Ulp/SENP superfamily known to date belong to the C48 family of 

thiol proteases (Hickey et al. 2012; Shin et al. 2012; Schulz et al. 2012).  

The first SUMO-specific protease to be described was the budding yeast enzyme ubiquitin-

like protein-specific protease 1 (Ulp1) (Li et al. 1999). Shortly thereafter, sequence 

comparison of its catalytic domain to databases uncovered the existence of a second protease 

of that kind in S. cerevisiae, Ulp2 (Li et al. 2000a), as well as the first mammalian SUMO 

protease SENP1 (Gong et al. 2000), and many others in various organisms (Mukhopadhyay 

and Dasso 2007).   

 

1.9.1  Structures of SUMO proteases and catalytic mechanism 

In 2001, the first structure of a SUMO-specific protease was solved. It was the catalytic 

domain of Ulp1 in complex with Smt3 trapped in a transition-state-like conformation 

(Mossessova et al. 2001). The high-resolution insight into its active site confirmed Ulp1 to 

belong to the cysteine proteases, as its sequence similarity to the adenovirus processing 

protease (AVP) had previously suggested (Li and Hochstrasser 1999). The structure revealed 

that Ulp1 makes contact with Smt3 via an extensive surface area, and that unique hydrophilic 

interactions and a high number of salt bridges account for its specificity for SUMO. Notably, 

Ulp/SENP proteases bind SUMO via surfaces distinct from SIMs (Hickey et al. 2012; 

Mossessova and Lima 2001). The active-site pocket harbors the catalytic triad (His-Asp-Cys) 

and an additional fixed Gln residue in close proximity, which stabilizes the transition state 

during catalysis (Mossessova and Lima 2001; Reverter et al. 2004, 2006). The SUMO C-

terminal diglycine motif is positioned in a shallow tunnel formed by the side chains of two 

Trp residues. This tunnel is so narrow that insertion of any residue other than glycine is 

sterically hindered (Mossessova and Lima 2001). Structures of SENP1 and SENP2 in 

complex with SUMO or sumoylated substrates showed many similarities, including the Trp 

tunnel and SUMO-enzyme interfaces (Reverter and Lima 2004, 2006; Shen et al. 2006a; 

Shen et al. 2006b). The structures of SENP1 and -2 bound to real substrates revealed that the 

scissile bond (= bond that is subject to cleavage) is oriented in a cis configuration with 

respect to the amide nitrogens for cleavage. It is kinked in a right angle to the C-terminus of 

SUMO (Reverter and Lima 2006; Shen et al. 2006a). If in trans, the nitrogen atoms would 

cause a clash between the residue C-terminal to the scissile peptide bond and the active site 
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loop of the protease. A cis arrangement positions the carbonyl group of the scissile bond in an 

optimal position for catalysis (Hay 2007). 

 

 
FIGURE 4: Domain architecture of Ulp/SENP family members. Black boxes = catalytic domains; line = 
non-catalytic domain; residues of catalytic triad are marked in one-letter code; total length of protease (in amino 
acids) is given on the far right of every schematic. Putative SIMs are indicated by asterisk (*). 
 

Unlike other members of the Ulp/SENP family, Ulp2, SENP6 and SENP7 carry large loop 

insertions within their catalytic domains (Hickey et al. 2012) (Fig.4). SENP6 and SENP7 

both have four of these. Resolution of the structure of the active domain of SENP7 showed 

that its loop1, which is not conserved in Ulp2, projects towards the putative SUMO binding 

interface, and mutant analysis indicated that it is decisive for SUMO paralogue specificity 

(Lima et al. 2008). So far, no structure information is available for SENP6. 

 

1.9.2  Regulation of SUMO proteases 

SUMO proteases are regulated in a number of different ways. Firstly, localization limits their 

activity radius (Kolli et al. 2010). Secondly, transcriptional regulation controls the abundance 

of e.g. specific SENPs. For instance, the promoter region of SENP1 contains androgen 

response elements as well as a hypoxia response element, thus is stimulated under such 

conditions. Additionally, it has been proposed that SENP1 itself triggers its own transcription 

via a positive feedback loop (Bawa-Khalfe et al. 2007; Xu et al. 2010; Cheng et al. 2007). 
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SENP2, in contrast, participates in a negative feedback loop (Lee et al. 2011). Thirdly, 

SUMO proteases are frequently subject to post-translational modification, influencing their 

activity and/or stability. For example, under normal conditions, SENP3 is ubiquitinated and 

turned over via the UPS. Upon oxidative stress, its ubiquitination is attenuated (Kuo et al. 

2008; Yan et al. 2010). Ulp2, in turn, is subject to cell cycle-dependent phosphorylation 

(Baldwin et al. 2009). Fourthly, protease activity can be directly affected by specific cellular 

stresses. To name just one, heat shock was found to render several SENPs irreversibly 

inactive (Pinto et al. 2012). Another very interesting activity-regulation mechanism has been 

suggested: SENP1 has been found to dimerize via an intersubunit disulphide bond in 

response to oxidative stress (Xu et al. 2008). Since the active-site cysteine was involved, the 

authors of that study proposed that the transient disulphide bond might protect the enzyme 

from irreversible oxidation of the catalytic cysteine residue.  

Last but not least, shielding may play a role for the rate of desumoylation of a given 

substrate. Still not completely understood, substrate binding by other, competing cellular 

proteins can hinder SUMO proteases to process a target (Hickey et al. 2012; Xu et al. 2005). 

 

1.9.3   Misregulated SUMO proteases 

In the last decade, the SUMO cycle has attracted a considerable degree of attention since its 

deregulation has been associated with various pathological conditions including pathogen 

proliferation, neurological disorders or cancer (reviewed in e.g. (Droescher et al. 2013; 

Wimmer et al. 2012; Sarge et al. 2009)). At any given time during the cell cycle, a distinctive 

pattern of SUMO conjugates is observed (Kolli et al. 2010). Disturbance of the crosstalk 

between sumoylation and other post-translational modifications (e.g. ubiquitin) can easily tip 

over the finely tuned levels of sumoylated proteins and thereby severely impair homeostasis 

(shown for specific proteins by e.g. (Song et al. 2015; Dou et al. 2010; Román González-

Prieto 2015; Liu et al. 2013; Mukhopadhyay et al. 2010a)). Unsurprisingly, SUMO-specific 

proteases have been found to be implicated in the development of several important 

conditions (Chun-Jie Huang 2015). In the last few years, misregulation of the two 

mammalian SUMO proteases SENP6 and SENP7 have been identified as a factor in 

development of certain types of cancer and other disorders. For example, recently, elevated 

SENP6 activity was reported to promote gastric cancer by liberating SUMO1 from the 

transcription factor FoxM1 (Song et al. 2015). SENP6 also plays a role in toll-like receptor 

(TLR) inflammatory signaling. SENP7, in turn, was found to modulate the stability of c-Myc, 
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an oncogene, by balancing out the STUbL pathway of degradation (Román González-Prieto 

2015). 

 

1.9.4  Proteases 

1.9.4.1  In mammals   

SUMO is also known as sentrin. This explains the naming of the first-discovered family of 

SUMO deconjugation enzymes in mammals, sentrin-specific proteases (SENPs). So far, six 

different, highly specific SUMO proteases have been identified: SENP1-3 and SENP 5-7 

(Mukhopadhyay and Dasso 2007). They are tightly controlled, and are equipped with distinct 

features and biological significance in cells; accordingly, they are not redundant (Chun-Jie 

Huang 2015). On a side note: For some time, another protease identified in human cells was 

counted among them, and accordingly termed SENP8. However, SENP8 represents a special 

case: It is non-specific for SUMO, but, in fact, it is specific for neddylation. Neural-

precursor-cell-expressed developmentally downregulated protein-8 (NEDD8) is a Ubl and 

conjugated to substrates in a process called neddylation (Shin et al. 2011; Kamitani et al. 

1997). Appropriately, SENP8 is often referred to as human deneddylase 1 (DEN1) or 

NEDD8-specific protease (NEDP1) (Gan-Erdene et al. 2003; Wu et al. 2003; Mendoza et al. 

2003). In vitro, desumoylation of specific substrates by individual SENPs is generally not 

strongly paralogue specific, even though the activity levels have been found to be different 

for some SENPs depending on the SUMO isoform they are confronted with. However, some 

of the SENPs have clear preferences for certain isoforms in vivo (Hickey et al. 2012). 

Due to their early connection to Ulps, SENPs have been grouped into two branches: the Ulp1 

branch and the Ulp2 branch. The classification is made according to the architecture of their 

active domains. Those SENPs featuring unconventional elements, specifically big loop 

insertions, fall into the Ulp2 branch, all others are assigned to the Ulp1 branch 

(Mukhopadhyay and Dasso 2007; Hickey et al. 2012; Hay 2007; Nayak et al. 2014). 

Most SENPs localize in the nucleus or colocalize in distinguishable subnuclear compartments 

(Kolli et al. 2010).  Since many cytoplasmic proteins, e.g. FAK, NEMO and IκBα, have been 

found to be sumoylated at some point (Shin et al. 2012; Kadaré et al. 2003; Mabb et al. 2006; 

Takahashi et al. 2008), it has long been speculated on how their respective SUMO 

modifications would be removed. Recently, a new class of desumoylation enzymes was 

discovered in mammalian cells and characterized to some degree: Desumoylating 

isopeptidases (DeSI), of which currently two members (DeSI-1 and DeSI-2) are known (Shin 
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et al. 2012). They belong to the C97 family of proteases. DeSIs recognize substrates distinct 

from SENP targets, suggesting that they are highly selective for specific substrates. As just 

one example, DeSI-1 specifically desumoylates the transcription repressor BZEL (Shin et al. 

2012). Interestingly, DeSI-1 and DeSI-2 have been suggested to feature only a catalytic dyad 

(Suh et al. 2012). However, this hypothesis requires structural analysis of a DeSI in complex 

with SUMO, which is not available yet. Shortly after the identification of DeSIs, a third type 

of SUMO proteases was found. Ubiquitin-specific protease-like 1 (USPL1), a low-abundance 

protein, localizes exclusively in cajal bodies, where it plays an essential role (Schulz et al. 

2012). Of note, this role is separate from its catalytic activity. USPL1 belongs to the C98 

family of proteases and is neither related to the Ulp/SENP-, nor to the DeSI family. However, 

its catalytic domain shows some homology to the C19 family of ubiquitin-specific proteases 

(Schulz et al. 2012). Taken together, to date there are three distinct classes of SUMO 

proteases in humans. This is reminiscent of the diversification seen for deubiquitinating 

enzymes (DUBs), which are each filed into one of five structural classes (Komander et al. 

2009). However, the paralogue diversity within the DUB superfamily exceeds by far the 

number of SUMO-specific enzymes, with ~100 predicted DUBs, none of these resembling 

Ulps or SENPs. Though, as its name indicates, USPL1 shows remote similarity to the USP 

class of DUBs (Schulz et al. 2012). Considering the plethora of sumoylated proteins which 

has already been found in mammals (Li et al. 2004; Zhao et al. 2004b; Yang et al. 2015), it is 

likely that there are even more SUMO protease families, yet to be identified. 
 

1.9.4.2  In budding yeast   

To date, in S. cerevisiae two SUMO-specific proteases are known, Ulp1 and Ulp2. Genetic 

studies with yeast strains carrying mutations in either of the two revealed distinct phenotypic 

defects in the absence of each protease, as well as unique sumoylation patterns in the 

different strains, indicating distinct substrate specificity (Li et al. 2000b). Localization in the 

cell strongly influences this selectivity.  

1.9.4.2.1 Ulp1  

As mentioned above, the 621-amino acid enzyme Ulp1 was the first SUMO-specific protease 

to be discovered. It is essential, and the temperature sensitive mutants, with whom it has been 

studied in vivo, exhibit a severely sick phenotype even at permissive temperature (Li and 

Hochstrasser 1999; Li et al. 2003; Soustelle et al. 2004). Despite their common classification, 

Ulp1 distinguishes itself from Ulp2 by its ability to process SUMO precursors in addition to 



Introduction 

 18 

general SUMO deconjugation (Li and Hochstrasser 1999, 2003). Unlike Ulp2, Ulp1 lends 

itself very well to recombinant expression in E. coli and in vitro analysis (Li and 

Hochstrasser 1999; Mossessova and Lima 2001). Even high-definition structural information 

is available for Ulp1 –alone and in complex with Smt3 (Mossessova and Lima 2001; Xu et 

al. 2008). This, however, only allows limited insight into what might be true for Ulp2, since 

the catalytic domains of the two Ulps are only ~27 % identical, and there is no obvious 

similarity at all between their non-catalytic domains (Li and Hochstrasser 2000a; 

Schwienhorst 2000). Despite all this information that has been collected about Ulp1, its 

substrate selectivity, like for Ulp2, is still poorly understood. However, as correct localization 

of Ulp1 seems to be highly important for cell homeostasis, its spatial sequestration might be a 

crucial part of that. Ulp1 localizes at the nuclear periphery, primarily to the inner surface of 

the nuclear pore complex (NPC) (Li and Hochstrasser 2003; Panse et al. 2003; Palancade et 

al. 2007; Lewis et al. 2007; Zhao et al. 2004a). Precisely, it interacts with Pse1, Kap95 and 

Kap60 via its NPC-targeting domain, that comprises the first 340 residues of the enzyme 

(Panse et al. 2003). A Ulp1 mutant, in which this domain is deleted, localizes throughout the 

cell (Li and Hochstrasser 2003), and causes accumulation of Rad52 foci, which indicate 

endogenous DNA damage and repair (Palancade et al. 2007). Notably, when this truncated 

version of Ulp1 is expressed in a Ulp2-deficient strain, it partially suppresses several growth 

defects coming along with a ULP2 knockout, and reduces the levels of sumoylated Ulp2 

substrates (Li and Hochstrasser 2003). This, as well, highlights the importance of a tight 

restriction of Ulp1 localization in order to control its in vivo activity. Even more so, high 

levels of Ulp1 activity mislocalized to the nucleoplasms have been found to be lethal (Li and 

Hochstrasser 2003; Panse et al. 2003). Interestingly, transiently during M-phase a fraction of 

Ulp1 is exported to the cytoplasm, where it desumoylates septin proteins (Takahashi et al. 

2000; Elmore et al. 2011; Makhnevych et al. 2007). Septins are heavily sumoylated in a cell-

cycle dependent manner and arrange into filaments at the bud neck of dividing cells 

(Takahashi et al. 2008). The details of this temporary Ulp1 delocation still await their 

discovery.  

 

1.9.4.2.2 Ulp2  

The second known SUMO-specific protease in S. cerevisiae, Ulp2, is far less studied than 

Ulp1. At least in parts, this is because this 1034-amino acid protein is not easy to 

recombinantly express and has exhibited very weak enzymatic activity in vitro in previous 
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studies (Li and Hochstrasser 2000b). This is just one of many features it shares with its 

mammalian orthologs SENP6 and SENP7 (Lima and Reverter 2008; Drag et al. 2008). In 

vivo, Ulp2 has been studied to a much larger extent.  

1.9.4.2.2.1 Ulp2 regulation and localization  

Ulp2 is a low-abundance, cell cycle-regulated phospho-protein (Baldwin et al. 2009; 

Strunnikov et al. 2001). It is phosphorylated during mitosis at at least two sites in the C-

terminal non-catalytic domain (CTD), and this transient modification is dependent on Cdc5 

and cyclin-dependent kinase 1 (Cdk1) (Baldwin et al. 2009). Indeed, Cdc5 revealed itself as a 

negative regulator of Ulp2 when it was found that two known Ulp2 targets, Top5 and Pds5, 

fail to accumulate in a sumoylated state in the absence of Cdc5 (Baldwin et al. 2009). Apart 

from this, Ulp2 is spatially controlled. Ulp2 localizes throughout the nucleus and 

occasionally the nucleolus (Kroetz et al. 2009; Srikumar et al. 2013). Its nuclear localization 

is critical for most, if not all, functions of the protease (Kroetz et al. 2009). A strain in which 

Kap95, a nuclear import receptor, is mutated, is defective in nuclear import of Ulp2, which 

results in aberrant accumulation of poly-SUMO structures (Kroetz et al. 2009). Ulp2 binds 

chromatin and has been suggested to desumoylate chromatin-associated proteins such as 

histones and topoisomerase II (Hannich et al. 2005; Strunnikov et al. 2001; Bachant et al. 

2002; Nathan et al. 2006). Overexpression of it suppresses defects in chromosome 

condensation and segregation, pointing towards a role in regulating these processes (Meluh 

and Koshland 1995; Strunnikov et al. 2001). This function is conserved in the analogous 

enzymes in C. elegans and humans (Mukhopadhyay et al. 2010a; Pelisch et al. 2014).  

1.9.4.2.2.2 The ULP2 knockout mutant  

A ULP2 knockout mutant has a very distinct phenotype: Apart from abnormal cell 

morphology and a severe growth- and sporulation defect, ulp2-∆ exhibits elevated levels of 

chromosome loss and delayed recovery after DNA-damage induced cell-cycle checkpoint 

arrest. What is more, that strain is highly sensitive to various stresses like hydroxyurea, 

temperature and DNA-damaging agents (Li and Hochstrasser 2000a; Schwienhorst 2000; 

Strunnikov et al. 2001; Bachant et al. 2002; Schwartz et al. 2007). Another very prominent 

feature of the ulp2 knockout is the accumulation of high-molecular weight (HMW) SUMO 

conjugates, so big they hardly penetrate the resolving gel upon SDS-PAGE analysis (Bylebyl 

et al. 2003).  

Like its mammalian orthologs SENP6 and SENP7, Ulp2 has been found to be capable of 

dismantling long poly-SUMO chains (Bylebyl et al. 2003; Lima and Reverter 2008; 
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Mukhopadhyay et al. 2006). Indeed, previous studies established a correlation between loss 

of SENP6 or Ulp2 and a failure to disassemble poly-SUMO chains (Bylebyl et al. 2003; 

Mukhopadhyay et al. 2006).  

1.9.4.2.2.3 Ulp2 domain architecture and functions 

Apart from its catalytic domain, Ulp2 has large C- and N-terminal non-catalytic domains. 

Utilizing truncation mutants, the CTD has been identified as a requirement for efficient 

depolymerization of large poly-SUMO conjugates (Kroetz et al. 2009). However, that mutant 

showed an only minor growth defect, suggesting that factors other than the HMW SUMO 

species also account for the growth defects of ulp2-∆ cells, or that such conjugates can be 

tolerated to some extent. It has been suggested that, in addition to SUMO chain 

deconjugation, the growth-regulating roles of Ulp2 involve removal of SUMO from specific 

target proteins (Kroetz et al. 2009). Very recently, a study using a quantitative mass 

spectrometry approach to analyze the effects of ulp1 and ulp2 mutations on the intracellular 

sumoylation pattern found that Ulp2 has a highly specific desumoylation activity in vivo, 

while Ulp1 exhibits a broader specificity towards many substrates (de Albuquerque et al. 

2016). This fortified previous findings, which indicated that Ulp2 has critical functions in the 

depolymerization of poly-SUMO modification on specific substrates (Bylebyl et al. 2003; 

Kroetz et al. 2009).  

In general, Ulp-class SUMO proteases have extensive, poorly conserved N-terminal non-

catalytic domains (NTDs). These NTDs are associated with subcellular localization and 

regulation of activity (Hickey et al. 2012; Kroetz et al. 2009). Previous studies showed that 

the NTD of Ulp2 is necessary and sufficient for nuclear localization of the enzyme (Kroetz et 

al. 2009). It contains two short nuclear-localization signal (NLS)-like motifs, either of which 

alone is sufficient to sustain nuclear localization and function of Ulp2 (Kroetz et al. 2009). 

Indeed, in that study it was found that a single 7-amino acid long NLS makes the entire NTD 

obsolete. Fusing it to a corresponding ∆NTD mutant of Ulp2 restored Ulp2 in vivo 

functionality almost completely, suggesting that the low sequence conservation of the NTDs 

might be due to the fact that only the NLS in this part of the protein are relevant for its proper 

cellular function (Kroetz et al. 2009). 

Both the NTD and CTD of Ulp2 are predicted to lack stable tertiary fold to large extents 

(Kroetz et al. 2009). Intrinsically disordered protein regions are frequently implicated in low-

affinity but high-specificity protein-protein interactions (Dyson et al. 2005). Ulp2 non-

catalytic domains contain three predicted SIMs: one in the NTD, and two in the CTD (Kroetz 
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et al. 2009). One of the two C-terminal SIMs is located directly adjacent to the catalytic 

domain and has already been subject to several studies (Baldwin et al. 2009; Kroetz et al. 

2009). Still, the specific function of any of the three motifs is unknown. 

 

1.9.4.2.3 Wss1 

The list of SUMO-specific proteases in budding yeast would not be complete without 

mentioning Wss1. Originally, weak suppressor of smt3-33 (Wss1) was identified as a 

suppressor of the temperature sensitive phenotype produced by an L26S SUMO mutation 

(Biggins et al. 2001), and has been implicated in the response to genotoxic stress (O'Neill et 

al. 2004). 

For a short period of time, Wss1 was regarded as the possible missing link between SUMO- 

and ubiquitin metabolisms, as it exhibited some deubiquitination activity to ubiquitin-SUMO 

mixed species and depolymerized SUMO chains in vitro, and physically associated with the 

26S proteasome (Mullen et al. 2010). However, these findings were under debate ever since 

they had been published, and further studies could not confirm the SUMO- or ubiquitin-

isopeptidase activity (Su et al. 2010; Stingele et al. 2014; Balakirev et al. 2015). As it turns 

out, rightfully so. In 2014, Wss1 was newly classified as a DNA-dependent protease involved 

in repair of DNA-protein crosslinks (Stingele et al. 2014). A later study identified Wss1 as an 

inactive metalloprotease under normal conditions that is activated by single-strand DNA 

upon genotoxic stress via a cysteine-switch regulatory mechanism. Downregulation of Wss1 

activity was found to be mediated by autoproteolysis. Contrasting the aforementioned study, 

it was shown to have a SUMO ligase-like activity and to promote poly-sumoylation of 

proteins with which it interacts. This includes Cdc48. Indeed, Wss1 forms a ternary complex 

with the AAA ATPase Cdc48 and the adaptor protein Doa1. Upon DNA damage, this 

complex is recruited to already sumoylated targets and promotes elongation of their SUMO 

chains (Balakirev et al. 2015). Taken together, Wss1 seems to be a highly interesting protein, 

but in terms of activity profile it is not to be named in one line with the Ulps.  

1.10   Thesis objectives 

The main interest of this work was to characterize Ulp2 on the level of the molecule. Data on 

the enzyme itself was scarce, since it was fractious as a study object. However, in order to 

assume structure-function relationships, this hurdle had to be overcome.  

This study set out to analyze the following aspects: 

1) What are the requirements for a SUMO chain to serve as a Ulp2 target? 
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2) How does Ulp2 process a target chain? Randomly or in an ordered manner? 

3) What is the molecular/structural basis on which the Ulp2/SUMO interactions are 

based? 

4) What is the basis of the proteolysis defect in ulp2-∆? 

5) How do its preferences and mechanistic conditions influence Ulp2’s activity in vivo?  

Previous work had shown that the absence of Ulp2 causes a severe proteolysis defect in S. 

cerevisiae, adding up to an already highly interesting phenotype of the ulp2-∆ mutant. This 

was the starting point for further functional characterization of Ulp2 in vivo, which is 

addressed in the last part of this work. 
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2  Material and Methods 

2.1  Material 

2.1.1  Escherichia coli strains 

	
Tab.1: E. coli strains used in this study. 
Strain  Genotype/relevant genotypic characteristics Source 

XL1 Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 

lac [F´ proAB lacIqZΔM15 Tn10 (Tetr)] 
Stratagene 

BL21-CodonPlus E. coli B F– dcm ompT hsdS(rB– mB–) gal 

λ(DE3)[pLysS Camr] 
Novagene 

BL21(DE3) E. coli str. B F– ompT gal dcm lon hsdSB (rB
–

mB
–) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 

nin5]) [malB+]K-12(λS) 

Novagene 

 

2.1.2  Saccharomyces cerevisiae strains 

	
Tab.2: S. cerevisiae strains used in this study. 
Strain  Relevant genotype Source 

JD47-13C MATa leu2-∆1 trp1-∆63 his3-∆200 ura3-52 lys2-801 

ade2-101 

Dohmen et al. (1995) 

yJE1 MATa ulp2-∆::HIS3 smt3-KallR::TRP1 This work 

yJE2 MATa pdr5-∆::nat smt3-HA ulp1-I615N This work 

MS84 MATa pdr5-∆::nat smt3-HA lab collection 

MS87 MATa pdr5-∆::nat ulp2-∆::HIS3 smt3-HA lab collection 

MS91 MATa pdr5-∆::nat smt3-HA wss1::hygB lab collection 

yKU1 MATa ulp2-∆::HIS3 lab collection 

sul25-2 MATa ulp2-∆::HIS3 uba2-ts9 lab collection 

smt3-KallR MATα smt3-KallR::TRP1 Erica Johnson 
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2.1.3  Plasmids 

	
Tab.3: Plasmids used in this study.  
Plasmids for yeast are described as such. For all others, the description indicates the recombinant protein(s) 
encoded in them. TEVp.r.s. = TEV protease recognition site; His6 = hexahistidine tag; T = terminator; P = 
promoter; CYC1 = cytochrome c-1; CUP1 = metallothionein.  
Plasmid name Description Source 

pACYC-Duet-
Aos1p/Uba2p 

His6-Aos1, Uba2-Stag J. Wohlschlegel 
(Wohlschlegel et 
al. 2006) 

pRSF-Duet- 
Ubc9/Smt3p 

His6-Smt3, Ubc9-Stag J. Wohlschlegel 
(Wohlschlegel et 
al. 2006) 

pRSF-Duet-
Ubc9/Smt3p- 
K11R,K15R,K19R 

His6-Smt3(K11R,K15,K19R), Ubc9-Stag M. Schnellhardt 

pHUbp41 His6-Ubp41 R. Baker 
pMAF17 PCUP1-UB-R-eK-HA-Ura3-TCYC1; yeast expression plasmid M. Froehlich 
pMAF60 PCUP1-UB-V76-eK-DHFR-2xHA-TCYC1; yeast expression plasmid M. Froehlich 
PCA129 PCUP1-PRS316-stp-102-3xHA-TCYC1; yeast expression plasmid C. Andreasson 
pLS1 FLAG-Smt3-∆N17Smt3(M0)-3xΔN17Smt3-eGFP-HA-His6 L. Schürholz 
pLS2 FLAG-Smt3-∆N17Smt3(M1)-3xΔN17Smt3-eGFP-HA-His6 L. Schürholz 
pLS3 FLAG-Smt3-∆N17Smt3(M2)-3xΔN17Smt3-eGFP-HA-His6 L. Schürholz 
pLS5 FLAG-Smt3-∆N17Smt3(M4)-3xΔN17Smt3-eGFP-HA-His6 L. Schürholz 
pLS6 FLAG-Smt3-∆N17Smt3(M5)-3xΔN17Smt3-eGFP-HA-His6 L. Schürholz 
pLS7 FLAG-Smt3-∆N17Smt3(M6)-3xΔN17Smt3-eGFP-HA-His6 L. Schürholz 
pJE2 FLAG-Ubiquitin-1xΔN17Smt3-eGFP-HA-His6 This work 
pJE3 FLAG-Ubiquitin-2xΔN17Smt3-eGFP-HA-His6 This work 
pJE4 FLAG-Ubiquitin-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE5 FLAG-Ubiquitin-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE6 FLAG-Smt3-eGFP-HA-His6 This work 
pJE7 FLAG-Smt3-ΔN17Smt3-eGFP-HA-His6 This work 
pJE8 FLAG-Smt3-2xΔN17Smt3-eGFP-HA-His6 This work 
pJE9 FLAG-Smt3-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE10 FLAG-Smt3-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE12 MBP~TEVp.r.s.~Ulp2-FLAG This work 
pJE14 FLAG-eGFP-HA-His6 This work 
pJE18 MBP~TEVp.r.s~Ulp1-FLAG This work 
pJE20 FLAG-Smt3(G98A)-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE22 FLAG-5xΔN17Smt3-eGFP-HA-His6 This work 
pJE23 MBP~TEVp.r.s~Ulp2(C624A)-FLAG This work 
pJE26 FLAG-Smt3(G98A)-ΔN17Smt3(G98A)-3xΔN17Smt3-eGFP-

HA-His6 
This work 

pJE28 FLAG-Smt3(G98A)-His6 This work 
pJE30 FLAG-Smt3(G98A)-ΔN17Smt3(G98A)-His6 This work 
pJE31 FLAG-Smt3(G98A)-2xΔN17Smt3(G98A)-His6 This work 
pJE32 FLAG-MBP-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE33 FLAG~TEVp.r.s.~Smt3-4x∆N17Smt3-eGFP-HA-His6 This work 
pJE34 FLAG-SUMO1-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE37 FLAG-2xUbiquitin-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE38 FLAG-3xUbiquitin-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE42 FLAG-SUMO2-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE43 FLAG-Smt3(G98A)-Ubiquitin-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE44 FLAG-Smt3(G98A)-SUMO2-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE45 FLAG-Smt3(M0)-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE50 FLAG-Smt3(M2)-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE51 FLAG-Smt3(MEnd)-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE54 FLAG-Smt3-ubiquitin-3xΔN17Smt3-eGFP-HA-His6 This work 
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pJE55 FLAG-Smt3-SUMO2-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE56 FLAG-Smt3(M1)-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE69 FLAG-Smt3(M4)-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE70 FLAG-Smt3(M5)-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE71 FLAG-Smt3(M6)-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE76 FLAG-Smt3-ubiquitin-1xΔN17Smt3-eGFP-HA-His6 This work 
pJE82 FLAG-SUMO2(Smt3 motifs M1, M5, MEnd)-4xΔN17Smt3-

eGFP-HA-His6 
This work 

pJE83 FLAG-ubiquitin(Smt3 motifs M1 & M5 inserted in loop)-
4xΔN17Smt3-eGFP-HA-His6 

This work 

pJE91 FLAG-3xSUMO2-eGFP-HA-His6 This work 
pJE95 5'ΔULP1(I615N)-TULP1; integrative yeast plasmid This work 
pJE100 FLAG-Ubi-MBP-4xΔN17Smt3-eGFP-HA-His6 This work 
pJE101 MBP-Ubc9 This work 
pJE102 MBP~TEVp.r.s.~Ulp2(411-774)-FLAG This work 
pJE103 MBP~TEVp.r.s.~Ulp2(411-693)-FLAG This work 
pJE104 MBP~TEVp.r.s.~Ulp2(1-774)-FLAG This work 
pJE105 MBP~TEVp.r.s.~Ulp2(411-1034)-FLAG This work 
pJE108 MBP~TEVp.r.s.~Ulp2(411-693;C624A)-FLAG This work 
pJE111 MBP~TEVp.r.s.~Ulp2(411-710)-FLAG This work 
pJE114 MBP~TEVp.r.s.~Ulp2(411-1034;C624A)-FLAG This work 
pJE115 MBP~TEVp.r.s.~Ulp2(1-774;C624A)-FLAG This work 
pJE116 MBP~TEVp.r.s.~Ulp2(411-1034; SIM2 mutated)-FLAG This work 
pJE117 MBP~TEVp.r.s.~Ulp2(1-774; SIM2 mutated)-FLAG This work 
pJE119 MBP~TEVp.r.s.~Ulp2(411-774; SIM2 mutated)-FLAG This work 
pJE120 MBP~TEVp.r.s.~Ulp2(411-774; C624A)-FLAG This work 
pJE127 MBP~TEVp.r.s.~(209-774)-FLAG This work 
pJE128 FLAG-Smt3-∆N17Smt3(M2)-ΔN17Smt3-eGFP-HA-His6 This work 
pJE130 FLAG-Smt3-∆N17Smt3(M6)-ΔN17Smt3-eGFP-HA-His6 This work 
pJE132 FLAG-SUMO2-2xΔN17Smt3-eGFP-HA-His6 This work 
pJE133 FLAG-Smt3(M2)-2xΔN17Smt3-eGFP-HA-His6 This work 
pJE134 FLAG-Smt3(M6)-2xΔN17Smt3-eGFP-HA-His6 This work 
pJE135 FLAG-Smt3-SUMO2-ΔN17Smt3-eGFP-HA-His6 This work 
pJE138 MBP-FLAG-TEVprotease(S219A) This work 
pJE144 MBP~TEVp.r.s.~Ulp2(411-710)-3xGly-His6 This work 
pJE159 FLAG-Smt3-∆N17Smt3-∆N17Smt3(M0)-3xΔN17Smt3-eGFP-

HA-His6 
This work 

pJE160 FLAG-Smt3-∆N17Smt3-∆N17Smt3(M1)-3xΔN17Smt3-eGFP-
HA-His6 

This work 

pJE161 FLAG-Smt3-∆N17Smt3-∆N17Smt3(M2)-3xΔN17Smt3-eGFP-
HA-His6 

This work 

pJE162 FLAG-Smt3-∆N17Smt3-SUMO2-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE163 FLAG-Smt3-∆N17Smt3-∆N17Smt3(M4)-3xΔN17Smt3-eGFP-

HA-His6 
This work 

pJE165 FLAG-Smt3-∆N17Smt3-∆N17Smt3(M5)-3xΔN17Smt3-eGFP-
HA-His6 

This work 

pJE166 FLAG-Smt3-∆N17Smt3-∆N17Smt3(M6)-3xΔN17Smt3-eGFP-
HA-His6 

This work 

pJE167 FLAG-Smt3(D61R)-4x∆N17Smt3-eGFP-HA-His6 This work 
pJE168 FLAG-Smt3(S62A)-4x∆N17Smt3-eGFP-HA-His6 This work 
pJE169 FLAG-Smt3(K54A)-4x∆N17Smt3-eGFP-HA-His6 This work 
pJE171 FLAG-Smt3-∆N11SUMO2(M6)-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE172 FLAG-Smt3(K54E)-4x∆N17Smt3-eGFP-HA-His6 This work 
pJE173 FLAG-Smt3(K58A)-4x∆N17Smt3-eGFP-HA-His6 This work 
pJE174 FLAG-Smt3(K58E)-4x∆N17Smt3-eGFP-HA-His6 This work 
pJE175 FLAG-Smt3(E59A)-4x∆N17Smt3-eGFP-HA-His6 This work 
pJE176 FLAG-Smt3(D61A)-4x∆N17Smt3-eGFP-HA-His6 This work 
pJE177 FLAG-Smt3-∆N17Smt3(D79K)-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE178 FLAG-Smt3-∆N17Smt3(Q75D)-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE179 FLAG-Smt3-∆N17Smt3(Q75A)-3xΔN17Smt3-eGFP-HA-His6 This work 
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pJE180 FLAG-Smt3-∆N17Smt3(D74A)-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE181 FLAG-Smt3-∆N17Smt3(E78R)-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE182 FLAG-Smt3-∆N17Smt3(D79A)-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE183 FLAG-Smt3-∆N17Smt3(A73E)-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE184 FLAG-Smt3-∆N17Smt3(D74K)-3xΔN17Smt3-eGFP-HA-His6 This work 
pJE189 FLAG-Smt3-∆N1717Smt3(MEnd)-3xΔN17Smt3-eGFP-HA-His6 This work 
 

2.1.4  Material 

2.1.4.1  Chemicals and consumables 
	
Tab. 4: Chemicals and consumables used in this study. 
Name      Supplier         
 
5-FOA      Carl Roth, Karlsruhe, Germany 
Acetic acid     Carl Roth, Karlsruhe, Germany 
Adenine     AppliChem, Darmstadt, Germany 
Agar      MP Biomedicals, Illkirch, France 
Agarose     Sigma-Aldrich, Steinheim, Germany 
Amylose resin     New England Biolabs, Frankfurt a. M., Germany 
Ampicillin     Sigma-Aldrich, Steinheim, Germany 
Anti-FLAG M2 affinity resin   Sigma-Aldrich, Steinheim, Germany  
Blotting paper     VWR Internationals, Lutterworth, UK 
Bovine serum albumin   Sigma-Aldrich, Steinheim, Germany 
Bromophenol Blue    SERVA Electrophoresis, Heidelberg, Germany 
Calcium chloride    Acros Organics, Geel, Belgium 
Chloramphenicol    Sigma-Aldrich, Steinheim, Germany 
Crystallization plates    TTP-Labtech, Hertfordshire, UK 
Coomassie Brilliant Blue R250  SERVA Electrophoresis, Heidelberg, Germany 
Copper sulfate     Merck, Darmstadt, Germany 
Cycloheximide    Sigma-Aldrich, Steinheim, Germany 
D-(+)-Glucose     Carl Roth, Karlsruhe, Germany 
D-(+)-Maltose     Sigma-Aldrich, Steinheim, Germany 
Di-ammonium hydrogen citrate  Sigma-Aldrich, Steinheim, Germany 
Dimethyl sulfoxide    Carl Roth, Karlsruhe, Germany 
Disodium hydrogen phosphate  Carl Roth, Karlsruhe, Germany 
Dithiothreitol     AppliChem, Darmstadt, Germany 
Mixed dNTP     New England Biolabs, Frankfurt a. M., Germany 
DNA ladder     New England Biolabs, Frankfurt a. M., Germany 
DNA staining solution   SERVA Electrophoresis, Heidelberg, Germany 
Drop/chromatography columns  Bio-Rad, California, USA 
D-Sorbitol     SERVA Electrophoresis, Heidelberg, Germany 
EDTA      Carl Roth, Karlsruhe, Germany 
Ethanol     VWR Internationals, Fontenay-sous-Bois, France 
E.Z.N.A. Plasmid Mini Kit 1   Omega Bio-tek, Norcross, Georgia 
FLAG peptide     Sigma-Aldrich, Steinheim, Germany 
Glass beads (Ø = 0.1-0.11mm)  Sartorius, Goettingen, Germany 
Glass beads (Ø = 0.4-0.5 mm)  Sartorius, Goettingen, Germany 
Glycerol     Carl Roth, Karlsruhe, Germany 
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Glycine     AppliChem, Darmstadt, Germany 
HEPES     AppliChem, Darmstadt, Germany 
Hydrochloric acid    Merck, Darmstadt, Germany 
Hydrogen peroxide    Sigma-Aldrich, Steinheim, Germany 
Hygromycine     Carl Roth, Karlsruhe, Germany 
Imidazole     Sigma-Aldrich, Steinheim, Germany 
Isopropanol     VWR Internationals, Fontenay-sous-Bois, France 
Isopropyl-beta-D-thio-galactoside  Formedium, Hunstanton, England 
Kanamycine     Formedium, Hunstanton, England 
L-Arginine     Carl Roth, Karlsruhe, Germany 
L-Histidine     Merck, Darmstadt, Germany 
L-Isoleucine     Sigma-Aldrich, Steinheim, Germany 
Lithium Acetate    Sigma-Aldrich, Steinheim, Germany 
L-Leucine     AppliChem, Darmstadt, Germany 
L-Lysine     Carl Roth, Karlsruhe, Germany 
L-Methionine     Merck, Darmstadt, Germany 
L-Phenylalanine    Merck, Darmstadt, Germany 
L-Threonine     Carl Roth, Karlsruhe, Germany 
L-Tryptophane    Carl Roth, Karlsruhe, Germany 
Luminol     Sigma-Aldrich, Steinheim, Germany 
L-Uracil     Sigma-Aldrich, Steinheim, Germany  
Magnesium chloride    Carl Roth, Karlsruhe, Germany 
Methanol     VWR Internationals, Fontenay-sous-Bois, France 
MG132     Sigma-Aldrich, Steinheim, Germany 
Nickel-SepharoseTM high performance GE Healthcare, Uppsala, Sweden 
Nitrocellulose membrane   GE Healthcare, Uppsala, Sweden 
Nourseothricin    Jenabioscience, Jena, Germany  
NucleoSpin® Gel and PCR Clean-up Kit Macherey-Nagel, Dueren, Germany 
Nutrient broth     Difco, Meylan cedex, France 
PAGE Ruler Plus    Thermo Fisher Scientific, Massachusetts, USA 
p-coumaric acid    Sigma-Aldrich, Steinheim, Germany 
PD-10 columns  GE Healthcare, Uppsala, Sweden 
PEG 3350     Sigma-Aldrich, Steinheim, Germany 
Peptone     BD, Le Pont de Claix, France 
Potassium chloride    Acros Organics, Geel, Belgium 
Potassium dihydrogen phosphate  VWR Internationals, Leuven, Belgium 
Potassium hydroxide    Merck, Darmstadt, Germany 
Protease inhibitor cocktail (“cOmplete“)      Roche Applied Science, Mannheim, Germany 
Protein Assay Dye Reagent   Bio-Rad, Munich, Germany 
Protein LoBind Tubes   Eppendorf, Hamburg, Germany 
Rotiphorese® Gel 30 (37,5:1)  Carl Roth, Karlsruhe, Germany 
Skimmed milk powder   Carl Roth, Karlsruhe, Germany 
Sodium acetate    AppliChem, Darmstadt, Germany 
Sodium chloride    AppliChem, Darmstadt, Germany 
Sodium dihydrogen phosphate  Merck, Darmstadt, Germany 
Sodium dodecyl sulfate   Carl Roth, Karlsruhe, Germany 
Sodium hydroxide    Merck, Darmstadt, Germany 
Spin-column concentrators   Merck, Darmstadt, Germany 
Syringe filters     Pall Corporation, Cornwall, UK 
Sucrose     Merck, Darmstadt, Germany 
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Super RX medical X-ray films  Fujifilm, Duesseldorf, Germany 
TCEP      Sigma-Aldrich, Steinheim, Germany 
TEMED     AppliChem, Darmstadt, Germany 
Tris      Carl Roth, Karlsruhe, Germany 
Tryptone     Formedium, Hunstanton, England 
Tween 20     AppliChem, Darmstadt, Germany 
Yeast extract powder    Formedium, Hunstanton, England 
Yeast nitrogen base (w/o amino acids) Formedium, Hunstanton, England 
 
 

2.1.4.2  Electrical equipment 

	
Tab. 5: Electrical equipment used during this work. 
Instrument                                                              Manufacturer 

ÄKTAprime chromatography machine Amersham Biosciences (now: GE 
Healthcare), Uppsala, Sweden 

AGFA Curix 60 machine    AGFA, Mortsel, Belgium 
Agarose gel electrophoresis chamber Peqlab, Erlangen, Germany 
Blue light box Clare Chemical Research, Ross on Wye, 

UK 
Centrifuges      Beckman Coulter, Krefeld, Germany; 
       Eppendorf, Hamburg, Germany  
DynaPro NanoStar Wyatt Technology, California, USA 
Elecrophoresis power supply Amersham pharmacia biotech (now: GE 

Healthcare), Uppsala, Sweden  
FE20/EL20 pH meter     Mettler Toledo, Erftstadt, Germany  
HiLoad™ 16/60 Superdex™ 200 column  GE Healthcare, Uppsala, Sweden 
Gradient thermocycler    Biometra, Goettingen, Germany 
MAR345 image-plate detector   marXperts, Hamburg, Germany 
Microscope      Zeiss, Oberkochen, Germany 
MicroMax-007 HF rotating-anode generator VariMax HF, Rigaku, Japan 
Mosquito Crystallization Robot TTP-Labtech, Hertfordshire, UK 
Nanodrop 2000 Spectrophotometer Thermo Fisher Scientific, MA, USA 
Oxford Cryostream 700    Oxford Cryosystems, Oxford, England 
Rocking platform     Biometra, Goettingen, Germany 
Roller mixer CAT M. Zipperer, Ballrechten-Dottingen, 

Germany 
Shaking incubator Infors, Einbach, Germany 

New Brunswick Scientific, Edison, USA 
SDS-PAGE running chamber   Bio-Rad, California, USA 
Semi-dry blotter     Bio-Rad, California, USA 
Spectrophotometer Pharmacia biotech (now: GE Healthcare), 

Uppsala, Sweden 
Tabletop centrifuge     Eppendorf, Hamburg, Germany 
Thermal shaker     Eppendorf, Hamburg, Germany 
Thermocycler      Biometra, Goettingen, Germany 
UV light source     Syngene, Cambridge, UK 
Vortex       Scientific Industries, New York, USA 
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2.1.5  Enzymes 

	
Tab. 6: Enzymes used in this study. 
Name	 Supplier	
AcTEVTM Protease	 Invitrogen	
β-glucoronidase	 Sigma-Aldrich	
DNaseI	 Roche Applied Science	
DreamTaq DNA polymerase	 Thermo Fisher Scientific	
Fast Digest AgeI	 Thermo Fisher Scientific	
Fast Digest BamHI	 Thermo Fisher Scientific	
Fast Digest EcoRI	 Thermo Fisher Scientific	
Fast Digest HindIII	 Thermo Fisher Scientific	
Fast Digest KpnI	 Thermo Fisher Scientific 
Fast Digest MssI Thermo Fisher Scientific 
Fast Digest MunI Thermo Fisher Scientific 
Fast Digest NsiI	 Thermo Fisher Scientific 
Fast Digest PstI	 Thermo Fisher Scientific	
Fast Digest SacI Thermo Fisher Scientific 
Fast Digest XbaI Thermo Fisher Scientific 
Lysozyme Sigma-Aldrich 
Phusion DNA polymerase New England Biolabs 
T4 DNA ligase New England Biolabs 
 

2.1.6  Antibodies 

 

Tab.7: Antibodies used in this study. 
Antibody relevant characteristics Host animal Dilution  Source 
α-HA-tag 
(3F10) 

monoclonal rat 1:5,000 Sigma-Aldrich 

α-FLAG 
M5 

monoclonal mouse 1:2,000 Sigma-Aldrich 

α-Smt3 polyclonal rabbit 1:10,000 M. Miteva, 2007 
α-ubiquitin 
(P4D1) 

monoclonal mouse 1:2,000 Santa Cruz 
Biotechnology 

α-MBP monoclonal mouse 1:10,000 New England 
Biolabs 

α-Cdc11 polyclonal rabbit 1:5,000 Santa Cruz 
Biotechnology 

α-Tpi1 polyclonal rabbit 1:20,000 R. J. Dohmen, 
1991 

α-rat horseradish peroxidase 
(HRP)-coupled 

goat 1:5,000 Abcam 

α-rabbit HRP-coupled donkey 1:5,000 GE Healthcare 
α-mouse HRP-coupled goat 1:5,000 Sigma-Aldrich 
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2.1.7  Media 

	

2.1.7.1  Media for E. coli 

 

For cultivation of E. coli cells, lysogeny broth (LB) was prepared according to the following 

recipe:  

 

    1 % (w/v) tryptone 

0.5 % (w/v) yeast extract 

1 % (w/v) NaCl  

 

To eventually obtain solid medium, 2 % (w/v) agar was added, as well. The medium was 

sterilized by autoclaving.  

 

Antibiotics stocks were prepared at the following concentrations: 

100 mg/ml ampicillin (in ddH2O) 

35 mg/ml chloramphenicol (in ethanol) 

50 mg/ml kanamycine 

The ampicillin and kanamycine stocks were sterilized by passing them through 0.22-µm 

syringe filters. Antibiotic stock solutions were stored at -20 °C, and added to the medium 

when required right before use. 

 

2.1.7.2  Media for S. cerevisiae 

	

2.1.7.2.1 Standard yeast media 

For routine growth of S. cerevisiae either yeast peptone medium containing glucose (YPD) or 

synthetic dextrose (SD) medium was used. The compositions were as described elsewhere 

(Dohmen et al. 1995). In brief, the recipes were as follows: 

 

YPD: 1 % yeast extract 

 2 % peptone 

 2 % glucose 
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SD: 0.67 % yeast nitrogen base (YNB) without amino acids 

 2 % glucose 

  20 mg/l Adenine 

20 mg/l L-Arginine 

60 mg/l L-Isoleucine 

40 mg/l L-Lysine 

10 mg/l L-Methionine 

60 mg/l L-Phenylalanine 

50 mg/l L-Threonine 

 

Tryptophane, histidine, leucine and uracil served as auxotrophic markers and were therefore 

only added if appropriate (meaning: not used as a selection marker). In those cases, they were 

added to the following final concentrations: 10 mg/l l-histidine, 60 mg/l l-leucine, 40 mg/l l-

tryptophan, 20 mg/l uracil. 

  

In order to obtain solid medium, the mixes additionally contained agar at a final 

concentration of 2 %. 

The individual components of each medium (except for yeast extract and peptone, which 

were prepared as one stock) were prepared separately, sterilized and then mixed to obtain the 

final medium. The amino acid stocks, as well as adenine and uracil stocks, were sterilized by 

sterile filtration using 0.22-µm syringe filters; the rest was sterilized by autoclaving.  

Antibiotics stocks were prepared in ddH2O at the following concentrations: 500 mg/ml 

kanamycine, 50 mg/ml nourseothricin, 400 µg/ml hygromycine, filter-sterilized, and then 

stored at -20 °C until needed. 

2.1.7.2.2 Special yeast media 

For crossing of yeast strains, special media were used as follows: 

 

Pre-sporulation medium:  5 % glucose 

3 % nutrient broth  

1 % yeast extract  

2 % agar 
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Sporulation medium:   0.1 % yeast extract 

1 % potassium acetate 

2 % agar 

 

5-FOA-containing medium: the appropriate solid medium supplemented with  

1 mg/ml 5-fluoroorotic acid (5-FOA) 

 

2.2  Methods 

2.2.1  Cell cultivation 

2.2.1.1  Standard conditions 

	

2.2.1.1.1 Escherichia coli 

Unless stated differently, Escherichia coli cells were grown at 37 °C. In case of cultivation in 

liquid medium, the cultures were shaken at 160-180 rpm. Where applicable, ampicillin 

(Amp) was added to the growth medium at a concentration of 100 µg/ml and/or kanamycine 

(Kan) was added to a final concentration of 50 µg/ml. When E.coli strain BL21-CodonPlus 

was used, chloramphenicol (Cam) was added to a final concentration of 25 µg/ml.  

2.2.1.1.2 Saccharomyces cerevisiae 

Unless stated differently, Saccharomyces cerevisiae cells were grown at 30 °C. Temperature 

sensitive strains were cultivated at 25 °C in preparation of the actual experiment. When 

grown in liquid medium, cells were agitated at 180 - 200 rpm. Where applicable, antibiotics 

were added to final concentrations as follows: 500 µg/ml kanamycine (kan), 100 µg/ml 

nourseothricin (nat), 400 µg/ml hygromycine (hygB). 

 

2.2.1.2  Special conditions 

2.2.1.2.1 Protein expression in E.coli 

All recombinant proteins generated in the course of this work were expressed in E. coli 

BL21-CodonPlus cells, with the exception of Ubc9, which was expressed in BL21(DE3) 
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cells. For all constructs featuring MBP, the growth medium was supplemented with 1 % 

glucose. 

In general, cells were grown to an optical density at 600 nm (OD600) of ~0.5 - 0.7, before 

cultures were briefly cooled on ice and expression was induced by addition of isopropyl-beta-

D-thio-galactoside (IPTG). The final concentrations of IPTG were as follows: 

 

• Smt3- and/or GFP-containing constructs: 0.5 mM 

• MBP-Ulp2-FLAG: 1 mM 

• MBP-Ulp1-FLAG: 0.5 mM 

• All other MBP fusion constructs (including truncated Ulp2): 0.3 mM 

 

Further fermentation was allowed at 18 °C for ~20 h in case of the MBP fusion constructs; 

Smt3- and GFP-containing proteins were expressed at 30 °C for 3.5 h.  

One exception was the expression of Ubp41, which was induced at OD600 = 0.8 by addition 

of IPTG to a final concentration of 0.4 mM. Ubp41 was expressed at 30 °C for 6 h. 

2.2.1.2.2 Growth assays of S. cerevisiae 

Most assays involving S.cerevisiae were based on monitoring the presence/abundance of 

specific proteins under certain growth conditions over time. In these cases, cultivation 

deviated from the standard procedure. To test stability of certain proteins, their degradation 

rates in the cell were monitored by inhibiting global translation once a certain cell density 

was reached. To this end, YPD or the appropriate SD medium was inoculated at OD600 = 0.2 

with cells of the strain of interest derived from a fresh overnight culture. In case of 

monitoring proteins expressed from plasmids, the medium was supplemented with 100 µg/ml 

CuSO4. 

Cells were grown to OD600 ~ 0.8, then 30 ml per condition to be tested were harvested by 

centrifugation at 3,900xg for 5 min at room temperature, followed by resuspension in 6.6 ml 

YPD containing 0.5 mg/ml cycloheximide. If the assay asked for proteasome inhibition or 

vacuole inhibition, the pellet was resuspended in 6.3 ml YPD supplemented with 20 µM 

MG132 or 1 mM phenylmethylsulfonyl fluoride (PMSF), respectively, and the cultures were 

incubated for 30 min before cycloheximide was added. Control cultures contained the same 

volume dimethyl sulfoxide (DMSO). If a temperature sensitive strain was used, it was 

cultivated at 25 °C until it reached an OD600 of ~0.8. Cells were pelleted, resuspended in 

YPD and then cultivated at 37 °C for at least 45 min before cycloheximide was added. 
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At defined time points, 1-ml samples were withdrawn from the culture, and immediately 

mixed with ice-cold sodium azide (NaN3) to reach a final concentration of 10 mM NaN3. 

Cells were pelleted by centrifugation at 11,000xg for 1.5 min, at room temperature in a 

tabletop centrifuge. The supernatant was removed using a vacuum pump. The pellet was 

snap-frozen, and stored at -20 °C until further treatment.  

 

2.2.2  Biomolecular techniques 

2.2.2.1  DNA isolation 

	

2.2.2.1.1 Isolation of plasmid DNA from E. coli 

E. coli cells bearing the plasmid of interest were cultivated in 5 ml LB+Amp medium for 12-

16 hours with agitation. Cells were harvested by centrifugation, and plasmid DNA was 

extracted using E.Z.N.A. Plasmid Mini Kit 1 in accordance with the supplier’s manual.  

2.2.2.1.2 Isolation of genomic DNA from E. coli 

In order to obtain carrier DNA that would aid yeast transformation, genomic DNA was 

extracted from E. coli XL1 Blue cells. To this end, the cells were grown in 5 ml LB medium 

for at least 12 hours shaking. Cells were harvested by centrifugation. The obtained pellet was 

resuspended in 250 µl Solution I of the aforementioned E.Z.N.A. Plasmid Mini Kit 1, but in 

this case Solution I did not contain RNaseI. The downstream steps were performed as 

outlined in the manufacturer’s guidelines for the usual application. After elution, the resultant 

DNA was subjected to ethanol precipitation as follows: The elution was mixed with 350 µl 

isopropanol and then subjected to centrifugation at 30,000xg for 2 min at 4 °C. The 

supernatant was discarded and 1 ml of 70 % ethanol was added without mixing. After 

incubation at -20 °C for at least 12 h, the sample was spun down at 30,000xg for 2 min at 4 

°C. The supernatant was discarded and residual ethanol was removed by incubation at 60 °C 

for 10 min. Then, the DNA was resuspended in 100 µl elution buffer by incubation of the 

solution at 99 °C for 10 min followed by 3 min of vigorous vortexing. 

 

2.2.2.2  PCR amplification  

All oligonucleotides were purchased either from Sigma-Aldrich or Integrated DNA 

Technologies (IDT) in a dried form and resuspended in ddH2O. A full list of primers used in 
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this work is provided at the end of the text (pages 115 - 117; Tab. 9). To amplify DNA in 

vitro, polymerase chain reaction was performed. For thermocycling, either a regular, or a 

gradient thermocycler was used, depending on the pair of primer used.  

Afterwards, the resultant DNA fragments were extracted from the reaction mix using 

NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel) following the manufacturer’s 

instructions. Optimal primer annealing temperatures were calculated using the free online 

tool “NEB Tm calculator” provided by New England Biolabs. 

After cloning, all constructs were confirmed by sequencing done by GATC Biotech. 

(Especially the strategy followed to generate the various Ulp2 substrates is described en 

detail in Eckhoff & Dohmen, 2015. For more information than the general description 

provided here, please consult that publication.) 

 

2.2.2.2.1 …for cloning purposes 

DNA fragments meant for downstream genetic applications were generated using the 

proofreading DNA polymerase Phusion (NEB). A typical 50-µl reaction mix contained the 

following components: 

 

10  µl 5x HF buffer (supplied with the polymerase; NEB) 

2.5 µl 10 µM forward primer  

2.5 µl 10 µM reversed primer  

1  µl 10 mM dNTP mix (containing 10 mM of each dATP, dGTP, dTTP, 

dCTP) 

0.5 µl template DNA 

0.5 µl Phusion DNA polymerase 

33  µl ddH2O 

 

If necessary, DMSO was added to the reaction to final concentrations ranging from 4 % to  

10 %. 

In a typical thermocycling program denaturation for 3 min at 98 °C was followed by 22 

cycles of the following progression: 30 sec denaturation at 98 °C, 30 sec of annealing at the 

appropriate temperature, elongation at 72 °C for 30 sec per 1 kb. The program was ended 

with a single, final elongation period of 5 min at 72 °C. 
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If two PCR products had to be fused, or if point mutations or medium-sized insertions were 

introduced, overlap PCR or overlap-extension PCR was applied. The technique is based on 

the idea of fragments priming each other, thus it is crucial to include overlapping sequences 

of adequate length (calculated annealing temperature should be ≥ 50 °C) in the reversed 

primer of the 5’-fragment and in the forward primer of the 3’-fragment. The approach 

involves a two-step procedure after the fragments, which are supposed to be fused, have been 

individually amplified and purified.  

Agarose gel electrophoresis allowed for an accurate enough estimation of the amount of each 

fragment in its solution. The procedure was then as follows:  

 

3      µl 5x HF buffer (supplied with the polymerase; NEB) 

1      µl fragment 1  

x      µl fragment 2 (approximately the same amount as fragment 2)  

0.3   µl 10 mM dNTP mix  

0.15 µl  Phusion DNA polymerase 

15-x µl ddH2O 

 

Components were mixed and subjected to thermocycling after an initial denaturation for 3 

min at 98 °C, there were 8 cycles of 30 sec denaturation at 98 °C, 3 min of annealing at 48 

°C, followed by elongation at 72 °C for 30 sec per 1 kb. In this step, the two fragments 

primed each other. In the second step, the fused fragments were amplified by adding the 

following mix to the initial reaction mix after thermocycling was completed:  

   

9    µl 5x HF buffer (supplied with the polymerase; NEB) 

3    µl 10 µM forward primer used in amplification of the 5’-fragment 

3    µl 10 µM reversed primer used in amplification of the 3’-fragment 

0.9 µl 10 mM dNTP mix (containing 10 mM of each dATP, dGTP, dTTP, 

dCTP) 

0.4 µl Phusion DNA polymerase 

29  µl ddH2O 

 

The second round of thermocycling typically consisted of 17 repeats of 30 sec denaturation at 

98 °C, 30 sec of annealing at the appropriate temperature, and elongation at 72 °C for 30 sec 

per 1 kb. The program was ended with a single, final elongation period of 5 min at 72 °C. 
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2.2.2.2.2 …for screening purposes 

To test for successful cloning, PCR reactions were performed on the basis of the clones 

without prior DNA extraction. If E. coli cells were to be tested, single colonies were each 

resuspended in 30 µl sterile ddH2O, and 5 µl of this suspension were used as template DNA 

in the reaction mix. If S.cerevisiae cells were to be tested, tiny amount of cell material of 

single colonies were placed in individual PCR tubes, and then subjected to 1 min of 

microwaving at 900 W followed by 5 min incubation on ice before the PCR mix was added.  

A typical 25-µl reaction contained the following ingredients: 

 

2.5   µl 10x buffer (supplied with the polymerase; Thermo Fisher Scientific) 

1.25 µl 10 µM forward primer  

1.25 µl 10 µM reversed primer  

 0.5  µl 10 mM dNTP mix  

 0.5  µl DreamTaq DNA polymerase 

ddH2O to a final volume of 25 µl 

 

The thermocycling program consisted of initial denaturation for 10 min at 95 °C, followed by 

35 cycles of the following sequence of steps: 30 sec denaturation at 95 °C, 30 sec of 

annealing at the appropriate temperature, elongation at 72 °C for 1 min per 1 kb (expected 

fragment size). The program ended with a single, final elongation period of 5 min at 72 °C. 

 

2.2.2.3  Agarose gel electrophoresis 

For DNA analysis, agarose gel electrophoresis was used. Different molecular weights/lengths 

of DNA fragments account for different mobility when migrating through an agarose gel to 

which an electric field is applied (Ross et al. 1964a, b). The agarose gels typically contained 

1 - 2 % (w/v) agarose in TAE buffer (40 mM Tris, 20 mM Sodium acetate, 1 mM EDTA) and 

0.002 % SERVA DNA stain G. Prior to loading, DNA samples were mixed 6:1 with 6x 

concentrated DNA loading dye [2 mM EDTA, pH 8.0, 4 % (w/v) Sucrose, 0.025 % (w/v) 

Bromophenol Blue]. Gels were run at a constant voltage of 140 V until sufficient separation 

was reached. For visualization, the DNA stain was excited using either UV light provided by 

a Gene Genius Bioimaging system (Syngene) if documentation was the only purpose, or 

using blue light from a Dark Reader (Clare Chemical Research) if the DNA fragments were 

meant for downstream application. In the latter case, correctly sized fragments were excised 
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from the gel, and then purified using NucleoSpin® Gel and PCR Clean-up Kit (Macherey-

Nagel) as described in the supplier’s manual. 

 

2.2.2.4  DNA restriction digestion 

PCR-generated DNA fragments and plasmid DNA were digested using site-specific 

restriction endonucleases. The enzymes were purchased from the FastDigest product line of 

Thermo Fisher Scientific. Reactions were set up in PCR tubes. In a typical 50-µl reaction, the 

desired volume of DNA was mixed with 2 µl of the relevant enzyme (in case of double-

digest: 2 µl of each) in the reaction buffer supplied with the endonuclease. Restriction 

digestion was allowed for 30 min up to 2 hours in a thermocycler at a constant temperature of 

37 °C. If necessary, afterwards the enzymes were inactivated by incubation at a higher 

temperature as recommended by the supplier. Then, the DNA fragments were purified as 

described above for PCR products. If larger fragments had to be shed, the digestion mix was 

subjected to agarose gel electrophoresis and desired fragments were excised from the gel 

prior to purification. 

 

2.2.2.5  Vector dephosphorylation 

If a vector was subjected to digestion by only one restriction endonuclease to exploit a 

compatible-end strategy, or if the generated sticky ends of a double-digest were compatible, 

the vector was subjected to dephosphorylation prior to ligation with the insert. For this, after 

restriction digest was completed, the vector was eluted from the purification column in 15 µl 

elution buffer. The eluate was mixed with 2 µl ddH2O, 2 µl reaction buffer (supplied with the 

phosphatase), and 1 µl thermosensitive Alkaline Phosphatase (FastAP), and then incubated at 

37 °C for 1 hour. The mix was then subjected to a 5-min incubation at 80 °C, and 

subsequently used in downstream applications without further treatment. 

 

2.2.2.6  Ligation of DNA fragments 

To fuse DNA fragments into vectors, T4 DNA ligase was used in accordance with the 

supplier’s guidelines. Typically, ligation was allowed for 30 min at room temperature in a  

20-µl reaction containing 400 u of enzyme (1 µl). Later, 10 µl of this were used to transform 

chemically competent E. coli XL1 Blue cells. 
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2.2.2.7  Generation of transformation-competent E. coli cells 

To obtain transformation-competent E. coli cells, 100 ml LB medium (in case of BL21-

CodonPlus cells: +Cam) was inoculated with 1 ml of a freshly-grown overnight culture of the 

desired strain. Cells were cultivated to OD600 = 0.3. Then, cultures were decanted into pre-

cooled 50-ml conical plastic tubes and allowed to cool down for ~5 min on ice. Afterwards, 

cells were harvested by centrifugation for 10 min at 1,700xg in a centrifuge equipped with a 

swing-bucket rotor cooled to 4 °C. The supernatant was discarded and the pellet was 

resuspended in 50 ml (total volume) 0.1 M CaCl2. The suspension was incubated on ice for 

20 min before cells were pelleted again by centrifugation as before. The supernatant was 

discarded and the pellet was resuspended in 4 ml 0.1 M CaCl2. For long-term storage, 

glycerol was added to a final concentration of 15 % and the cell suspension was aliquoted 

into 1.5-ml reaction tubes. The competent cells were kept at -80 °C until further usage.  

 

2.2.2.8  Transformation of E. coli cells 

To introduce integer plasmid DNA into E. coli cells, 0.5 µl of the plasmid solution of interest 

was used. To transform E. coli cells with DNA from a ligation, 10 µl of a 20-µl ligation 

reaction were used. In either case, a 100-µl aliquot of chemically competent cells was thawed 

on ice. The DNA was added and dispersed by gentle tapping of the tube. The mix was heat-

shocked by incubation for 30 - 60 sec at 42 °C. The cells were briefly incubated on ice, 1 ml 

of LB medium was added to the tube, and recovery was allowed for 45 min at 37 °C shaking. 

Cells were collected by centrifugation in a tabletop centrifuge for 5 min at 800xg, and spread 

on an LB plate supplemented with the appropriate antibiotics.   

 

2.2.2.9  Transformation of S. cerevisiae cells 

To introduce DNA into S. cerevisiae cells, high efficiency yeast transformation as described 

previously (Daniel Gietz et al. 2002) was applied. In brief, 5 ml of the appropriate medium 

was inoculated at OD600 = 0.2 with the strain of interest cultivated in an overnight culture. 

Cells were grown to an OD600 ~ 0.6 - 0.8, and then harvested by centrifugation at 1,700xg for 

5 min at room temperature. The resultant pellet was resuspended in 1 ml ddH2O. Cells were 

transferred to a 1.5-ml reaction tube and pelleted by centrifugation at 1,500xg for 5 min at 

room temperature in a tabletop centrifuge. Cells were resuspended in 1 ml 0.1 M sterile 

lithium acetate, before being subjected to another centrifugation step. The resultant pellet was 
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resuspended in 48 µl ddH2O, and then mixed with the following components by pipetting up 

and down:   

250 µl 50 % (w/v) PEG-3350 

     35 µl 1 M LiAc 

       4 µl self-made carrier DNA 

       2 µl plasmid DNA 

 

The transformation mix was incubated at 30 °C (in case of temperature sensitive strains: 25 

°C) for 25 min, before being transferred to 42 °C for another 20 min. Cells were collected by 

centrifugation at 1,500xg for 5 min at room temperature, resuspended in 100 µl ddH2O and 

then plated on the appropriate selective medium.  

 

2.2.3  Genetic techniques  

2.2.3.1  Mating and sporulation of S.cerevisiae strains 

Since only a single strain used in this work was generated by crossing of strains, this 

description is not general. 

To generate the smt3-KallR ulp2-∆ (yJE1) strain, cells of the smt3-KallR strain (obtained 

from Erica Johnson) were mixed with cells of yKU1 on YPD, and incubated as such for 1 

day. Diploid cells were selected on SD-His-Trp medium. Cells of a single colony were then 

grown for three days on pre-sporulation medium before starving them for seven days on 

sporulation medium. Tetrad dissection was done manually using a Zeiss microscope and a 

self-made molecular picking rod. In preparation for that, a small amount of spores was 

resuspended in 50 µl of a 4 % solution of β-glucoronidase, and then incubated for 10 min at 

37 °C. A fine line of the cell suspension was then drawn on a YPD plate and allowed to dry 

by leaving the plate open next to a flame for 5 min. After dissection, cell growth was allowed 

for five days at 30 °C. The final strain was selected on SD-His-Trp plates, and the mating 

type was determined by test crossing with the mating type determination strains KMY38 

(MATα trp5-27) and KMY39 (MATa trp5-27). 
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2.2.4  Biochemical techniques 

2.2.4.1  SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

In order to analyze protein-containing samples, they were separated electrophoretically on 

SDS-containing polyacrylamide gels following the original guidelines described by Laemmli 

(1970). 

 

Resolving gels of different percentage were cast following these recipes: 

 

Chemical agent 8 % 10 % 12 % 

1.5 M Tris-HCl, pH 8.8 3.75 ml 3.75 ml 3.75 ml 

30 % (w/v) Acrylamide / 0.7 % Bisacrylamide 4 ml 5 ml 6 ml 

10 % (w/v) SDS 150 µl 150 µl 150 µl 

10 % (w/v) APS 150 µl 150 µl 150 µl 

TEMED 15 µl 15 µl 15 µl 

ddH2O 7.1 ml 6.1 ml 5.1 ml 

 

Stacking gels consisted of the following components: 

 

2.5 ml Tris-HCl, pH 6.8 

1.7 ml 30 % (w/v) Acrylamide / 0.7 % Bisacrylamide 

100 µl 10 % (w/v) SDS 

100 µl 10 % (w/v) APS 

10 µl TEMED 

5.6 ml ddH2O 

 

Gels were allowed to polymerize for at least 1.5 h before usage.  

To run SDS-PAGEs the following buffers were used: 

 

Running buffer: 25 mM Tris, 192 mM glycine, 0.1 % SDS 

 

6x SDS-PAGE loading buffer: 0.375 M Tris-HCl, pH 6.8, 48 % glycerol, 12 % SDS, 0.6 M

       DTT, 0.06 % Bromophenol Blue 
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Unless high molecular weight-samples were separated, sodium acetate was added to the 

running buffer in the outer chamber to a final concentration of 100 mM. Unless in the 

appropriate buffer already, samples were mixed 6:1 with 6x SDS-PAGE loading buffer. To 

estimate protein size, a colored standard marker (PAGE Ruler) was run alongside with the 

samples. Proteins were allowed to migrate through the stacking gel at 120 V. Once they 

entered the separation gel, voltage was increased to 180 V. 

 

2.2.4.2  Coomassie staining of proteins in SDS polyacrylamide gels 

When SDS-PAGE had been performed to estimate protein yield and purity from purification 

(not for the purpose of immunodetection), the gel was stained with Coomassie Brilliant Blue 

after the run was completed. The following solutions were used: 

  

Coomassie Brilliant Blue staining solution: 30 % methanol, 10 % acetic acid, 0.3 % (w/v) 

Coomassie Brilliant Blue R250 

 

Destaining solution: 30 % methanol, 10 % acetic acid 

 

The gel was incubated in ~100 ml of staining solution at room temperature for ~15 min with 

agitation. The gel was briefly rinsed with ddH2O, and then incubated in an excess volume of 

destaining solution. Destaining solution was repeatedly renewed until the dye was only held 

back in the protein bands. 

 

2.2.4.3  Detection of proteins by immunoblotting (Western Blot) 

Separated proteins were transferred to nitrocellulose membranes using semidry blotting. The 

hardware used was a Bio-Rad semidry blotter connected to a Pharmacia Biotech power 

supply. The standard buffer was composed as follows: 

 

Blotting buffer: 25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS, 20 % MeOH 

 

PBS: 1.8 mM KH2PO4, 10 mM Na2HPO4, 2.7 mM KCl, 137 mM NaCl; pH 7.4 

 

PBS-T: PBS + 0.1 % Tween 20  
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Detection solution: 100 mM Tris-HCl, pH 8.5, 2.5 mM Luminol, 400 µM p-coumaric acid, 

        0.02 % hydrogen peroxide 

 

When HMW species were supposed to be transferred, the methanol concentration in the 

blotting buffer was reduced to 5 %. For blotting of proteins smaller than 25 kDa, the buffer 

was prepared without SDS. 

 

In general, protein transfer was allowed at a constant current of 2.5 mA/cm2 for 1 h. To 

transfer HMW species, the current was increased to 3 mA/cm2 and blotting time was 

elongated to 1 h 40 min. To detect low molecular weight species (e.g. mono-SUMO or -

ubiquitin), the blotting sandwich contained two layers of membrane, of which only the upper 

one was used in subsequent steps. Additionally, the transfer was stopped after 40 min and the 

membrane was incubated in a boiling water bath for 40 min after transfer. Before further 

treatment, the membrane was dried on the bench. 

To prevent unspecific antibody binding, membranes were incubated in 5 % (w/v) skimmed 

milk powder in phosphate-buffered saline (PBS) for at least 1 h with agitation. Primary 

antibodies were diluted in 5 % (w/v) skimmed milk powder in PBS-T. Antibody binding was 

allowed overnight at 4 °C with gentle shaking. Membranes were washed 3x by incubation in 

an excess volume of PBS-T with agitation at room temperature for 10 min, before being 

incubated with the corresponding secondary antibody at room temperature with gentle 

shaking for 50 min. Membranes were washed 3x with PBS-T as before. For induction of 

HRP-produced luminescence, blots were incubated for 1 min in detection solution, which 

was prepared freshly right before use. Signals were documented by exposing X-ray films to 

the blots and developing those in an AGFA Curix 60 machine as described by the 

manufacturer. 

 

2.2.4.4  Antibody removal 

When detection of different antigens was necessary, antibodies were removed by incubating 

the respective blot three times in an excess volume of 0.2 M sodium hydroxide for 10 min at 

room temperature with agitation. Afterwards, the membrane was rinsed briefly with ddH2O 

before being blocked and probed as described above.  
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2.2.4.5  Protein purification  

All purification steps were carried out at 4 °C. All buffers and solutions were ice-cold. All 

material was pre-cooled before in contact with any protein-containing solution. All purified 

proteins were analyzed via Western Blot before being used in downstream applications. For 

estimation of protein concentration, either a spectrometric dye assay (Bio-Rad protein assay) 

or a nanodrop spectrophotometer was used. 

2.2.4.5.1  Purification of Ulp substrates 

All Ulp substrates were affinity-purified employing a two-step procedure. Each of these 

constructs carried an N-terminal FLAG tag and a C-terminal hexahistidine tag; both of which 

were employed for purification in order to obtain substrate chains at maximum purity.  

The following buffers were used: 

 

Lysis buffer: 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 % glycerol, 4 mM MgCl, 1x 

protease inhibitor mixture, 2.5 mg/ml lysozyme, 0.8 mg/ml DNaseI 

 

Ni buffer: 50 mM Tris-HCl, pH 7.4, 500 mM NaCl, 10 % glycerol, 4 mM MgCl, 20 mM  

       imidazole 

 

FLAG buffer: 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 % glycerol, 4 mM MgCl 

 

Protease buffer: 50 mM Tris-HCl, pH 8.0, 1 mM DTT, 0.5 mM EDTA 

 

The OD600 of each expression culture had been measured before harvest. For each 1 OD600 

unit of cells (corresponds to the amount of cells in 1 ml of culture with OD600 = 1) 15 µl lysis 

buffer was added to the frozen pellet. Cells were carefully resuspended, aliquoted into 2-ml 

reaction tubes (1 ml/tube) containing 500 µl of glass beads (Ø = 0.1-0.11mm), and then 

incubated for 5 min at 4 °C, followed by a 5-min incubation on ice. The lysate was subjected 

to 4 repeats of 1 min vigorous vortexing followed by 1 min incubation on ice. Subsequent 

centrifugation at 30,000xg for 20 min at 4 °C cleared the crude extract from cell debris. The 

supernatant was recovered and supplemented with sodium chloride and imidazole to final 

concentrations of 500 mM and 20 mM, respectively. Per 1 ml of extract, ~400 µl equilibrated 

nickel-sepharose was added. Binding was allowed for ~25 min on a rotating wheel. Then, the 

resin was transferred to a drop column, and washed with ~15 ml Ni buffer. Proteins were 
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eluted with 200 mM imidazole in FLAG buffer. For elution, the resin was incubated with 1 

column volume (CV) of FLAG buffer + 200 mM imidazole for 5 min before the eluate was 

collected. All elution fractions were pooled, and imidazole concentration was reduced to a 

minimum by repeated dilution and concentration of the protein solution using spin-column 

concentrators. Then, ~40 µl anti-FLAG M2 affinity resin was added, and binding was 

allowed for 2.5 h on a rotating wheel. The resin was washed in-batch 5x with 1 ml FLAG 

buffer, before the proteins were eluted in 2x 200 µl FLAG buffer containing 150 µg/ml 

FLAG peptide. Each elution step consisted of 1.5 h rotation on a wheel, subsequent 

centrifugation at 100xg for 1 min, followed by careful recovery of the supernatant. Pooled 

elutions were subjected to another centrifugation at 30,000xg for 10 min, before they were 

aliquoted into PCR tubes, snap-frozen in liquid nitrogen, and then stored at -80 °C until 

usage.  

To produce substrates without N-terminal FLAG tag, elution from anti-FLAG resin was done 

enzymatically. To this end, to the respective resin 400 µl protease buffer was added. 

Depending on the construct, 1 unit of AcTEVTM Protease or 10 nM of Ubp41 was added, and 

cleavage was allowed for 8 h while rotating. In case of the migration standards for mono-

SUMO, FLAG-Smt3 and ∆N17Smt3, cleavage by TEV protease was prolonged to 16 h. 

After collection of these elutions, a fresh 1 unit of TEV protease was added to them, and 

cleavage was allowed for 8 more hours.  

2.2.4.5.2  Purification of sumoylated Ubc9 

To obtain authentic Smt3 chains, the reconstituted sumoylation pathway in E. coli described 

by Wohlschlegel et al. (2006) was used. An MBP-tagged version of Ubc9 introduced to the 

system allowed for purification of authentically sumoylated Ubc9 via amylose resin.  

 

Amylose buffer: 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 17 % glycerol 

 

Lysis of the expression cells was done as described above for the artificial substrates. The 

cleared crude extract was mixed with 500 µl amylose resin (50 µl/ml of extract) and 

incubated for 1 h on a rotating wheel. The resin was then washed in a drop column with a 

total volume of amylose purification buffer. Specifically bound proteins were eluted with 10 

mM maltose in amylose purification buffer. The final pooled eluate was treated and stored as 

described for the Ulp substrates. 
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2.2.4.5.3  Purification of Ubp41 

The Ubp41 variant used in this study carried a hexahistidine tag. 

Unlike all other expression cultures harvested in the course of this study, the Ubp41-

expressing cells were not washed with PBS. Instead, the pellet was resuspended in 15 µl of 

lysis buffer per absorbance unit of cells, and the suspension was then stored at -20 °C.  

 

Lysis buffer: 50 mM Na2HPO4/NaH2PO4, pH 7.5, 300 mM NaCl, 12 mM imidazole, 10 mM  

           DTT, 4 mM MgCl2, 30 % glycerol 

 

After ~16 h at -20 °C, the suspension was thawed on ice, 1x protease inhibitor, 2.5 mg/ml 

lysozyme, 0.8 mg/ml DNaseI and 1 mM PMSF were added, and glass bead lysis and extract 

clearance were performed as described above for the Ulp substrates (2.2.4.5.1). The 

supernatant was recovered and mixed with 500 µl of equilibrated nickel-sepharose beads. 

The downstream procedure matched the purification protocol described under 2.2.4.5.1 for 

nickel-based purification, except that all buffers additionally contained 30 % glycerol and 1 

mM DTT.  

2.2.4.5.4  Purification of full-length Ulp2 

To obtain pure full-length Ulp2, MBP-Ulp2-FLAG was purified via its FLAG tag.  

The following buffers were used: 

 

Lysis buffer: 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM DTT, 4 mM MgCl, 1 mM 

EDTA, 1x Protease inhibitor mixture, 2.5 mg/ml lysozyme, 0.8 mg/ml DNaseI 

 

Buffer M: 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM DTT 

 

Lysis procedure and subsequent clearance of cell debris was done as described for the Ulp 

substrates.  

 

Lysis procedure and subsequent clearance of cell debris was done as described for the Ulp 

substrates (2.2.4.5.1). To each 5 ml of lysate, 40 µl of anti-FLAG M2 resin was added, and 

binding was allowed for 1 h while rotating. After that, resin beads were washed in batch 5x 

with 1 ml of Buffer M. Specifically bound proteins were eluted by incubating the resin with 

100 µl Buffer M containing 100 µg/ml FLAG peptide for 1 h on a rotating wheel. 
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2.2.4.5.5  Purification of the Ulp2 active domain 

While for all other proteins used in the course of this study small amount were sufficient, 

crystallization required a large-scale approach for purification of the active domain of Ulp2. 

To this end, MBP-Ulp2(411-710)-3xGly-His6 fusion construct with a TEV protease 

recognition site inserted between MBP and Ulp2 was employed.  

The following buffers were used: 

 

Lysis buffer: 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 2 mM DTT, 10 % glycerol, 4 mM 

MgCl2, 1 mM EDTA, 1x Protease inhibitor mixture, 1 mg/ml lysozyme, 0.2 mg/ml DNaseI 

 

Buffer Amy: 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 2 mM DTT, 10 % glycerol 

 

Buffer On: 10 mM HEPES-KOH, pH 7.0, 150 mM NaCl, 1 mM DTT 

 

Ni* Buffer: 10 mM HEPES-KOH, pH 7.0, 1 M NaCl, 1 mM DTT, 20 mM imidazole 

 

Buffer Sto: 10 mM HEPES-KOH, pH 7.0, 100 mM NaCl, 10 mM DTT 

 

Final buffer: 10 mM HEPES-KOH, pH 7.0, 100 mM NaCl, 1 mM TCEP 

 

Cell pellets were grinded to a fine powder using mortar and pestle. Both tools were pre-

cooled with liquid nitrogen, and while grinding every 2-3 min liquid nitrogen was scooped 

into the mortar to keep the powder frozen. The powder was transferred to pre-cooled 50-ml 

tubes. Per 1 gram of powder, 5 ml of lysis buffer was added. The mix was incubated on a 

roller mixer until the powder was completely dissolved in the lysis buffer. Subsequent 

centrifugation at 30,000xg for 20 min at 4 °C cleared the crude extract from cell debris. The 

supernatant was mixed with 1 ml amylose resin per 20 ml extract. Binding was allowed for 

2.5 h on a roller mixer. Afterwards, the resin was transferred to a drop column and washed 

with 20 CV of Buffer Amy. Proteins were eluted in 5 CV of Buffer Amy supplemented with 

20 mM maltose. All elution fractions were pooled, and the buffer was exchanged to Buffer 

On using PD-10 columns as described in the supplier’s manual. The protein solution was 

diluted 1:4 in Buffer On, and to each 50 ml, freshly purified MBP-FLAG-TEV protease was 

added to a final concentration of ~1 µM. Cleavage was allowed for at least 15 h on a roller 

mixer. Afterwards, the mix was passed through a 0.22-µm filter. The solution was 
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supplemented with 20 mM imidazole. To each 50 ml of protein solution, 1 ml of equilibrated 

nickel-sepharose was added. Binding was allowed for ~20 min on a roller mixer. The resin 

was washed in drop columns with 20 CV of Ni* Buffer. Proteins were eluted in 10-15 CV of 

Ni* Buffer containing 250 mM imidazole. Buffer was exchanged to Buffer Sto using PD-10 

columns. 

The protein solution was then subjected to gel filtration via a HiLoad™ 16/60 Superdex™ 

200 (GE Healthcare) column connected to an ÄKTAprime machine featuring a fractionator. 

Fractions containing the protein of interested were tested for monodispersity using a DynaPro 

NanoStar DLS instrument (Wyatt Technology) in accordance with the supplier’s guidelines. 

Monodispers fractions were pooled and concentrated to 3 mg/ml in spin-concentrators (30 

kDa cut-off). 

 

2.2.4.5.6  Purification of TEV protease 

TEV protease N-terminally tagged with MBP was purified using amylose resin. The 

purification via amylose resin, including lysis etc., was done as described above for the Ulp2 

active domain (2.2.4.5.5). The enzyme was purified freshly every time. 

 

2.2.4.6  In vitro desumoylation assay 

Desumoylation assays were carried out in 1.5-ml Protein LoBind Tubes (Eppendorf). Unless 

stated differently, crude extract from E. coli containing the respective recombinantly 

expressed Ulp were used. The extracts were prepared as described under 2.2.4.5.1 for the 

substrates. Substrates and lysates were diluted in activity test buffer (ATB).  

 

ATB: 10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 10 mM DTT, 1 mM EDTA 

 

The amount of substrate necessary to produce a sufficiently detectable signal was estimated 

by Western Blot for each substrate individually. 

 

Each set-up contained the following: 

 

     6 µl extract (diluted or undiluted) 

     2 µl substrate (diluted or undiluted) 

   12 µl ATB 
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Unless indicated differently, cleavage was allowed at 30 °C for 2 h. Then, reaction mixtures 

were subjected to centrifugation at 30,000xg for 5 min at 4 °C. Seventeen microliters of 

supernatant were mixed with 6x SDS-PAGE loading buffer and boiled for 5 min. Cleavage 

products were then analyzed by SDS-PAGE and immunodetection. 

 

Deubiquitination assays were carried out likewise, except for the reaction mix containing 2 µl 

of purified Ubp41 (amount was not defined) instead of Ulp2 (lysate). 
 

2.2.4.7  Ulp2 binding assay 

The entire assay was done at 4 °C. The following buffers were used: 

 

Buffer A: 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 17 % glycerol, 1 mM DTT 

 

Buffer B: 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 17 % glycerol, 1 mM DTT, 1 mg/ml 

     BSA 

 

Crude extract of E. coli cells expressing MBP-Ulp2(C624A)-FLAG was prepared as 

described under 2.2.4.5.1 for the substrates. The extract was diluted 1:3 in Buffer A. For each 

1 ml of undiluted lysate, 50 µl amylose resin was added, and binding was allowed for 1.5 h 

on a roller mixer. For controls, another aliquot of amylose resin was treated identically but 

without addition of lysate. Resins were collected by centrifugation at 500xg for 1 min, 

transferred to a 1.5 ml reaction tube, and washed in batch: Once with 10 CV of Buffer A, 

then 4 times with 10 CV of Buffer B. With the last washing step, the resin was split into 20-

µl aliquots in 1.5-ml Protein LoBind Tubes. To each tube, 200 µl Buffer B was added. 

Substrate was added to a final concentration of ~100 nM to each aliquot of resin with or 

without immobilized Ulp2(C624A). Binding was allowed for 1.5 h on a rotating wheel. 

Subsequently, beads were collected by centrifugation at 500xg for 1 min and washed once 

with 1 ml of Buffer B, followed by transfer to fresh tubes and washing twice with Buffer A. 

Bound proteins were collected by adding 40 µl of SDS-PAGE loading buffer to each tube 

and boiling for 5 min. Binding was analyzed by SDS-PAGE and immunodetection.  
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To assay the substrate MBP-4xSmt3-GFP, the same protocol was followed, but anti-FLAG 

M2 resin (10 µl/tube) was used instead of amylose resin. Instead of substrates featuring a 

FLAG tag, their equivalents not carrying a FLAG tag were employed.  

 

2.2.4.8  Preparation of crude extracts from S. cerevisiae 

Depending on what was supposed to be detected, different extraction methods were 

employed. However, the extraction buffer was always the same: 

 

Extraction buffer: 60 mM Tris-HCl, pH 6.8, 5 % glycerol, 2 % SDS, 4 % β-mercaptoethanol, 

        0.0025 % (w/v) Bromophenol Blue 

 

For SUMO detection, pellets were resuspended in 400 µl 0.1 M NaOH, and incubated for 5 

min at room temperature. Cells were then pelleted again by centrifugation at 16,000xg for 1.5 

min. The liquid was discarded. Each pellet was resuspended in 100 µl extraction buffer and 

immediately incubated at 99 °C for 3 min. To each suspension, 50-80 µl glass beads (Ø = 

0.4-0.5 mm) were added, and each tube was subjected to 1 min of vigorous vortexing, 

followed by another 3 min of boiling at 99 °C. Then, the samples were subjected to 

centrifugation at 16,000xg for 3 min, and the supernatant was recovered into fresh tubes. 

 

For all other objectives, the respective pellets were each resuspended in 100 µl extraction 

buffer and immediately incubated at 99 °C for 5 min. Samples were spun down at 16,000xg 

for 3 min, and the supernatant was transferred to fresh tubes.  

 

2.2.5  Crystallization and crystal analysis 

	

2.2.5.1  Crystallization and data collection 

Crystals of Ulp2(411-710) were obtained at 4 °C employing the sitting-drop vapour-diffusion 

technique. The reservoir solution contained 0.2 M di-ammonium hydrogen citrate and 20 % 

(w/v) PEG 3350. Single crystals appeared after 7 days from a 2:1 ratio of protein solution to 

reservoir solution. Crystals were cryo-protected in reservoir buffer containing 20 % glycerol 

and snap-frozen in liquid nitrogen prior to diffraction analysis. 



Material and Methods 

 51 

Initial data were collected in-house using a Rigaku MicroMax-007 HF rotating-anode 

generator equipped with HighFlux mirrors and a MAR345 image-plate detector at 100 K 

using an Oxford Cryostream 700. A total of 180 degrees of data was collected with an image 

width of 0.2 degrees and an exposure time of 120 seconds. For phasing, a sulphur-SAD 

experiment was performed at the Swiss Light Source (Paul-Scherrer-Institute, Villigen, 

Switzerland) at beamline X06DA equipped with a Pilatus 2M detector (Dectris, Switzerland). 

Conditions employed were according to a published procedure (Weinert et al. 2015). The 

wavelength was set to 2.0664 Å corresponding to an energy of 6.00 keV. The frame width 

was set to 0.05 degrees with an exposure time of 0.05 seconds. Beam attenuation was set to 

21.7 % resulting in an estimated radiation dose of 0.5 MGy per 360 degrees. Data were 

collected in four 720 degrees sweeps with a chi angle of the PRIGo goniostat (Waltersperger 

et al. 2015) of 0, 10, 20, and 30 degrees, respectively. 

 

2.2.5.2  Data processing, structure determination and refinement 

Native data were processed using XDS and scaled with XSCALE (Kabsch 2010). The 

structure was solved by single-wavelength anomalous dispersion using phases computed by 

the phenix.autosol routine of the PHENIX package (Adams et al. 2011; Read et al. 2011). 

Experimental electron density was interpreted to build a model for the Ulp2 catalytic domain 

using SHELX. The model was refined using iterative cycles of computation by phenix.refine 

(Afonine et al. 2012) and manual modeling in Coot (Emsley et al. 2010). 
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3  Results 
To avoid confusion, in this section the generalized term “SUMO” will be substituted by the 

precise name of the actual protein (e.g. “Smt3”). 

 

3.1   Characterizing Ulp2 cleavage mechanism 

	

3.1.1   Ulp2 dismantles poly-Smt3 chains in a sequential manner 

In 2000, Ulp2 was described for the first time. Apart from genetic, in vivo analysis, the 

SUMO specificity of the protease was determined in a cleavage assay using recombinantly 

expressed GST-Ulp2 and a His6-ubiquitin-Smt3-HA construct (Li and Hochstrasser 2000a). 

The authors of that study reported on a very low in vitro activity. In order to gain insight into 

the processing mode, however, the enzyme of interest must be able to process a substrate to 

completion. Consequently, a different approach was needed for this study. Testing the 

original GST-Ulp2 fusion, it proved to be rather insoluble, yielding only little amounts of 

usable material (data not shown). Maltose binding protein (MBP), a frequently used 

purification tag of ~42 kDa, has previously been characterized to have positive effects on 

solubility and folding of its fusion partner (Fox et al. 2003). An N-terminal MBP tag indeed 

overcame the above mentioned solubility problems. An MBP-Ulp2-FLAG construct fulfilled 

the activity requirements of this study. Notably, C-terminally untagged, S-tagged or His6-

tagged versions were inferior (data not shown). For comparison, an analogous construct was 

prepared for Ulp1.  

In order to investigate on preference and cleavage site selectivity, a set of test substrates was 

designed (Figure 5). In each of them, a linear chain of Smt3 moieties was linked to enhanced 

GFP (eGFP). Apart from being a well-characterized protein (Tsien 1998), GFP is reasonably 

stable, compact due to its β-barrel fold (Stepanenko et al. 2013), and also readily trackable by 

its fluorescence during purification. For simplicity, the here-used eGFP will be abbreviated to 

GFP in the following text. Mimicking isopeptide bonds, the individual members of the Smt3 

chains were fused in a head-to-tail manner.  
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FIGURE 5: Schematic representation of test substrate design. Enhanced green fluorescent protein (eGFP) 
served as an anchor protein to which Smt3/ubiquitin(ubi) chains were attached. Each construct was equipped 
with an HA-tag and a hexahistidine (His6) tag at the C-terminus. With one exception [B(I)], all constructs 
additionally had an N-terminal FLAG tag in place of the starting methionine residue. Smt3 units were fused in a 
head-to-tail manner. To mimic natural Smt3-linkages, all but the most distal Smt3 moiety were N-terminally 
truncated, lacking the first 17 amino acid residues (ΔN17Smt3 = aa 18-98). The constructs' abbreviations used 
in the further course of this paper are given under each illustration. A, General constructs. n = 0-4; i = 1-3; 
constructs featuring (I) Smt3 chains of different length, and with (II) ubiquitin-capped Smt3 chains of different 
length. Ubiquitin moieties were fused head-to-tail. Each ubiquitin molecule was led by an extra glycine (Gly) 
residue, which served as a spacer. (III) Control molecule with 5 identical (ΔN17Smt3) chain members. B, 
Constructs with different levels of N-terminal obstruction. Constructs were used to evaluate importance of an 
accessible distal end of a substrate-attached SUMO chain for Ulp2 activity. Black cross = uncleavable peptide 
bond (G98A). Modified from Eckhoff & Dohmen (2015). 
 

As mentioned earlier, Smt3 features three canonical lysine residues, K11, K15 and K19, and 

most Smt3-Smt3 linkages are formed via one of them. To take account of that, all acceptor 

molecules in a chain were truncated by the first 17 amino acids (∆N17), thereby imitating the 

kinked links. All substrates were equipped with an N-terminal FLAG tag and a C-terminal 

hexahistidine tag, both of which serving purification purposes. The former was additionally 

used for analysis for it allowed detection of the first Smt3 moiety. An HA tag between GFP 

and His6 was standardly utilized to obtain assay results. 

A detailed description can be found in the methods section, but in brief, a 5xSmt3-GFP 

substrate was incubated with various dilutions of crude extract from MBP-Ulp2-FLAG-

expressing E. coli cells. Using purified Ulp2 for the assay as a standard was inopportune, 

since purification came at large costs in terms of both material as well as enzymatic activity. 

To ensure that no compound of the lysate was falsifying the assay output, and that there was 

no unspecific cleavage, a MBP-Ulp2(C624A)-FLAG construct was prepared. Mutating the 

active cysteine to alanine renders the enzyme inactive. Crude extract from E. coli cells 

expressing this version of Ulp2 was used as a negative control in each desumoylation assay. 

Indeed, these lysates did not have an impact on the integrity of the tested substrates (Fig. 6A). 
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That means, any observed cleavage activity in the other samples can be assigned to the 

respective Ulp.  

 
FIGURE 6: Ulp2 liberates single Smt3 moieties from the distal end of a substrate-attached Smt3 chain. 
5xSmt3-GFP substrates were incubated with E. coli lysates containing Ulp1 or Ulp2 diluted in activity test 
buffer ("1:1" = undiluted lysate). A lysate that contained the inactive (inact.) variant of Ulp2(C624A) was used 
as a control. Substrates were incubated with different dilutions of Ulp-containing lysates for 2 h at 30 °C. 
Reaction products were then analyzed by SDS-PAGE and anti-HA Western blotting. Full-length substrate is 
labeled on the left-hand side of each blot, cleavage products are labeled on the right. A, Analysis of Ulp2 
activity profile using either E.coli lysate containing MBP-Ulp2-FLAG or purified MBP-Ulp2-FLAG. Purified 
MBP-Ulp2-FLAG was diluted in activity test buffer (ATB). A control sample contained only ATB instead of 
enzyme solution (right lane). 5xSmt3-GFP substrate was treated with dilutions of MBP-Ulp2-FLAG (1:1, 1:2, 
1:5, 1:10, 1:100) for 2 h at 30 °C. B, Analysis of Ulp1 activity profile. C, Schematic representation of 
mechanistic differences between Ulp2 and Ulp1. Ulp2 binds to the first three consecutive Smt3 units and works 
by cleaving single Smt3 units off the end of a chain (exo). Ulp1 requires only a single Smt3 molecule to bind a 
target and can cleave randomly after any Smt3 moiety inside of the chain (endo). 
Figure modified from Eckhoff & Dohmen (2015).  
 
As also reported from other studies, Ulp1 exhibited a comparatively high activity in vitro. 

This was taken into account by using higher dilutions of the extract containing recombinant 

Ulp1. Even though of inferior levels, Ulp2 activity was sufficient to process the substrates to 

completion, thereby allowing for assaying its cleavage profile. Ulp2 exhibited an ordered 

sequential processing activity, dismantling the most distal Smt3 moiety first, then the next in 

line, etc. (Fig. 6A). This diverges from what has been described for SENP6, for which an 

indiscriminate, stochastic cleavage mode has been reported (Békés et al. 2011).  
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In contrast to Ulp2, Ulp1 produced a rather distributive cleavage pattern, indicating that it 

randomly cleaves any isopeptide linkage within a given Smt3 chain (Fig. 6B). These results 

suggest drastically different cleavage mechanisms for the two Ulps, with Ulp2 employing an 

exo mechanism to break down Smt3 chains, whereas Ulp1 operates by a stochastic (endo) 

mode, not showing any preference about which isopeptide bond of a substrate-attached Smt3 

chain to cleave first (Fig. 6C). However, due to its very high activity level in vitro, from a 

dilution series as shown in Fig. 6B, one cannot with reasonable certainty exclude the 

possibility that Ulp1 actually acts as an exo enzyme, but high processivity made the cleavage 

pattern suggest an endo mechanism. To address this issue, the most distal Smt3 moiety of 

5xSmt3-GFP was followed over time when incubated with Ulp1, making use of the 

substrate’s N-terminal FLAG tag.  

 

 
FIGURE 7: Ulp1 removes poly-Smt3 from a substrate chain. Purified 5xSmt3-GFP was incubated with a 
1:2,000 dilution of lysate containing MBP-Ulp1-FLAG. Dilutions were prepared using reaction buffer. At the 
indicated time points, samples were withdrawn and reaction was stopped by addition of SDS-PAGE loading 
buffer and subsequent boiling. Then, reaction mixtures were separated by SDS-PAGE and subjected to Western 
blot detection of FLAG tag. Extract-derived or unspecific bands are indicated by asterisk (*). The full-length 
substrate is indicated on the left-hand side of each blot, cleavage products are indicated on the right. A, Assay 
was performed on ice. B, Assay was performed at 30 °C; inact. = sample contained undiluted extract containing 
MBP-Ulp2(C624A)-FLAG. Modified from Eckhoff and Dohmen (2015). 
 

Of note, only drastically reducing reaction velocity by performing the assay on ice allowed 

for detection of released oligo-Smt3 chains (Fig. 7A). At 30 °C, no such intermediates were 

detectable (Fig. 7B). Apparently, reaction was too fast at that temperature. These findings 

indicate two things: Firstly, Ulp1 indeed works via an endo mechanism. Secondly, it seems to 

be highly processive, and after the first cut rapidly dismantles a chain down to monomeric 

Smt3.  

The band pattern obtained from tracking the GFP-containing leaving group hinted towards 

Ulp2 cleaving off one unit of Smt3 at a time. To verify this, Smt3 chain cleavage was 

monitored over time tracking the FLAG tag attached to the most distal moiety of the substrate 
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chain. It fortified the results that the first Smt3 is exclusively, or nearly so, liberated as a 

single molecule (mono-Smt3; Fig. 8A). This was confirmed using different enzyme dilutions 

(Fig. 8B), as well as by blotting against Smt3 (Fig. 8C). It should be noted that over time 

some larger species were detected by anti-Smt3 antibody. However, the relative amounts are 

negligible. What is more, a single molecule of di- or tri-Smt3 provokes a signal twice or three 

times, respectively, as strong as mono-Smt3 when anti-Smt3 antibody is applied. In this 

context it also has to be mentioned, that the anti-Smt3 antibody used in this study does not 

detect N-terminally truncated Smt3 as efficiently as the full-length version. This leads to an 

overall lower signal of the ∆N17Smt3 bands compared to FLAG-Smt3. 

 

 
FIGURE 8: Ulp2 almost exclusively cleaves off single moieties from Smt3 chains. E. coli lysates containing 
MBP-Ulp2-FLAG were diluted in activity test buffer, and an undiluted lysate containing the inactive (inact.) 
variant Ulp2(C624A) was used as a control. Extract-derived or unspecific bands are indicated by asterisk (*); 
FL = full-length. Products are labeled on the right of each blot. Full-length substrates are indicated on the left 
(not for right panel of C). A, Purified 5xSmt3-GFP was incubated with lysate containing MBP-Ulp2-FLAG in a 
1:10 dilution at 30 °C. At the indicated time points, samples were withdrawn and reaction was stopped by 
addition of SDS-PAGE loading buffer and subsequent boiling. Reaction mixtures were then separated by SDS-
PAGE and subjected to Western blot detection of FLAG tag. B, Purified 5xSmt3-GFP was incubated with the 
indicated dilutions of lysates containing MBP-Ulp2-FLAG for 2 h at 30 °C. Reaction products were then 
analyzed by SDS-PAGE and anti-FLAG Western blotting. C, Left panel, same as A, but performed using 
undiluted MBP-Ulp2-FLAG extract, and Smt3 Western blot detection. Right panel, purified FLAG-Smt3 and 
ΔN17Smt3 were separated on a gel together with a 5xSmt3-GFP+Ulp2-reaction mix and controls, and subjected 
to Western blot detection to determine product sizes. The FLAG-Smt3-6xHis band derives from incomplete 
digestion by TEV protease during purification. Modified from Eckhoff & Dohmen (2015). 
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Since all but the first unit of Smt3 were truncated, it was necessary to check whether 

featuring the first 17 amino acids (with the exception of the first methionine) conferred any 

bias to the enzyme’s preference. To this end, a substrate was tested in which also the most 

distal chain member was a truncated version (5x∆N17Smt3-GFP). As shown in Fig. 9, 

deletion of the N-terminus of the distal Smt3 moiety did not affect the cleavage pattern 

observed for Ulp2. 

 

 
FIGURE 9: Ulp2 does not discriminate between full-length Smt3 and N-terminally truncated (ΔN17) 
Smt3. Comparison of band patterns derived from Ulp2-mediated processing of substrates harboring Smt3 
chains led either by full-length Smt3 or by N-terminally truncated (ΔN17) Smt3. These 5xSmt3-GFP substrates 
were incubated with E. coli lysates containing Ulp2 diluted in activity test buffer ("1:1" = undiluted lysate). As a 
control, a lysate was used that contained the inactive (inact.) C624A variant of Ulp2. Substrates were incubated 
with different dilutions of Ulp2-containing lysates for 2 h at 30 °C. Reaction products were then analyzed by 
SDS-PAGE and anti-HA Western blotting. Sizes of full-length substrates are indicated on the left of the blots, 
product sizes are labeled on the right. Modified from Eckhoff & Dohmen (2015). 
 

Any measure taken to ensure that artificial substrates are as close to authentic ones as 

possible cannot conceal the fact that they are still not natural. In order to test whether linear 

head-to-tail fusions are suitable models for native Smt3 chains, thus allowing accurate 

analysis of Ulp mechanisms, a previously described in vivo sumoylation system reconstituted 

in E. coli was utilized to obtain a substrate decorated with authentic Lys-linked Smt3 chains 

(Wohlschlegel et al. 2006). Ubc9, the SUMO-E2 enzyme, catalyzes its own sumoylation in 

yeast cells (Klug et al. 2013). Exploiting this feature, it was made the anchor protein in the E. 

coli-based system to generate polysumoylated Ubc9 (Fig. 10 A&B). When the system was 

supplied with Smt3 in which the three canonical acceptor sites (K11, 15 and 19) were 

rendered unusable for chain formation by exchanging Lys with Arg (R), the chains were 

markedly shorter. This gives solid hint that the polysumoylated Ubc9 carries chains whose 

linkages have been formed preferentially via one of the major acceptor lysines in Smt3. 

Similar to what was observed for the artificial substrates, Ulp2 processed the native chains 
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attached to Ubc9 sequentially starting from the distal end (Fig. 10C). Hence, one can say that 

the GFP-anchored head-to-tail fusions are a feasible model, and that the mechanistic 

conclusions drawn from those assays well reflect what is true for Ulp2 activity towards 

authentic K-linked Smt3 chains. 

 
FIGURE 10: Ulp2 dismantles authentic, K-linked poly-Smt3 chains from their distal ends. A, MBP-Ubc9 
conjugated to Smt3 was produced utilizing an E. coli-based in vivo sumoylation system. Isopeptide bonds in 
larger Smt3 chains are formed primarily via the canonical acceptor lysines K11,15,19. B, Schematic 
representation of test substrate obtained from reconstituted sumoylation system in E. coli (in this example: 
MBP-Ubc9-4xSmt3). C, MBP-Ubc9 conjugated to poly-Smt3 chains of different lengths was incubated with 
E. coli lysate containing Ulp2 diluted in activity test buffer ("1:1" = undiluted lysate). As a control, lysate 
containing the inactive (inact.) variant of Ulp2(C624A) was used. Substrates were incubated with different 
dilutions of Ulp2-containing lysates for 2 h at 30 °C. Reaction products were then analyzed by SDS-PAGE and 
immunodetection of Smt3. Lysate-derived signals are indicated by asterisk (*). Modified from Eckhoff & 
Dohmen (2015). 
 
 

3.1.2  Three linked Smt3 moieties are the minimum Ulp2-target requirement 

Previous studies identified Ulp2 as an enzyme processing poly-Smt3 chains (Bylebyl et al. 

2003). Considering this and the data presented above, it was of interest to determine the 

requirements on an Smt3 chain to be recognized as a target by Ulp2. To address this, 

substrates featuring 1-5 Smt3 moieties were assayed. As it turned out, neither mono- nor di-

Smt3 were efficiently cleaved by Ulp2 (Fig. 11A). For all other substrates, the reaction 

stopped at the stage of two Smt3 moieties attached to GFP. This indicates that Ulp2 needs a 

minimum of three linked units of Smt3 to efficiently process a substrate chain. To verify this, 

ubiquitin-capped substrates were tested likewise. This set confirmed that mono- or di-Smt3 

does not serve as a Ulp2 target, and that cleavage only occurs when the chain contains at least 
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three linked units of Smt3 (Fig. 11B). In addition, assaying the ubiquitin-capped substrates 

established that, in terms of substrate recognition by Ulp2, ubiquitin moieties could not 

replace Smt3 in a chain.   

 
FIGURE 11: Ulp2 preferentially acts on substrates with chains composed of three or more Smt3 units. 
The indicated substrates were incubated with E. coli lysates containing MBP-Ulp2-FLAG diluted in activity test 
buffer. Undiluted lysate containing the inactive variant Ulp2(C624A) was used as a control. Purified Smt3 
chains consisting of 1 to 5 Smt3 moieties linked to GFP-HA (A) or purified ubiquitin-capped substrates 
consisting of 0 to 4 Smt3 units linked to GFP-HA (B) were subjected to digestion by MBP-Ulp2-FLAG in E. 
coli lysate for 2 h at 30 °C. Reaction products were analyzed by SDS-PAGE and anti-HA Western blotting. 
Sizes of full-length substrates are indicated on the left of the blots, product sizes are labeled on the right. 
Modified from Eckhoff & Dohmen (2015). 
 

3.1.3  Efficient cleavage by Ulp2 requires free access to N-terminal region or 

surrounding surfaces of the distal Smt3 moiety 

Ulp2’s clear preference for the distal end of an Smt3 chain gave rise to the question whether 

disabling free access to the N-terminus would interfere with cleavage, and if so, to which 

extent this would be inhibitory or changing the cleavage pattern. To investigate this, various 

substrates with different N-termini were prepared. To begin with, the standard 5xSmt3-GFP 

substrate, which carries an N-terminal FLAG tag, was compared to a version that lacks that 

tag (∆FLAG-5xSmt3-GFP). As shown in Fig. 12A, if at all, the FLAG tag had a minor effect 

on processing by Ulp2. However, obstructing the distal end with one or two units of 
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uncleavable Smt3 [Smt3(G98A)] made for strong inhibition of substrate processing (Fig. 

12B).  

 

 
FIGURE 12: Blocking access to the N-terminus at the distal end of an Smt3 chain interferes with cleavage 
by Ulp2. The indicated substrates were incubated with E. coli lysates containing MBP-Ulp-FLAG diluted in 
activity test buffer for 2 h at 30 °C. An undiluted lysate containing the inactive variant Ulp2(C624A) was used 
as a control. Reaction products were analyzed by SDS-PAGE and anti-HA Western blotting. Sizes of full-length 
substrates are indicated on the left of the blots, product sizes are labeled on the right. A, Comparison of FLAG-
tagged (5xSmt3-GFP) and untagged (∆FLAG-5xSmt3-GFP) substrate variants in a Ulp2 cleavage assay. B, 
Assessing the impact of uncleavable extensions at the distal ends of Smt3 chains on processing by Ulp2. The 
first two substrates harbor the uncleavable Smt3(G98A) variant in the first or the first two positions. The third 
substrate carries MBP at the distal end of the chain. C, As in B, but using E. coli lysates containing Ulp1 instead 
of Ulp2; none = no lysate in reaction mix, instead more activity test buffer was used. Modified from Eckhoff & 
Dohmen (2015). 
 

Notably, adding pure unanchored 3xSmt3(G98A) chains to a standard reaction mix of Ulp2 

and 5xSmt3-GFP did not decrease reaction efficiency (data not shown). This rules out the 

possibility that the uncleavable moieties in Smt3(G98A)-4xSmt3-GFP and 2xSmt3(G98A)-



Results 

 61	

3xSmt3-GFP function as intrinsic inhibitors by trapping the enzyme. In another variant, the 

first Smt3 is replaced by MBP (MBP-4xSmt3-GFP). The 42-kDa-protein caused a massive 

drop in cleavage efficiency, as well (Fig 12B). Interestingly, the obstruction effect was less 

severe than in case of two consecutive units of Smt3(G98A). Since 2xSmt3(G98A) featuring 

a combined molecular weight of ~23 kDa, this is disproportional to the size of the blocking 

species.  

In summary, these findings demonstrated that cleavage of an Smt3 chain is obliged to start at 

the most distal unit, and obstructing this moiety significantly impairs processing of that chain 

by Ulp2. In contrast to that, none of the obstructing species could hamper chain cleavage by 

Ulp1 (Fig. 12c). 

 

 
FIGURE 13: Multiple units of ubiquitin at the distal end of an Smt3 chain do not interfere with 
processing of an Smt3 chain by Ulp2. Ubi = ubiquitin. A, The indicated substrates were incubated with E. coli 
lysates containing MBP-Ulp2-FLAG diluted in activity test buffer for 2 h at 30 °C. An undiluted lysate 
containing the inactive variant Ulp2(C624A) was used as a control (inact.). Reaction products were analyzed by 
SDS-PAGE and anti-HA Western blotting. Sizes of full-length substrates are indicated on the left-hand side of 
each blot, products are labeled on the right. B, As in A, but anti-ubiquitin Western blotting was used, and the 
blot does not include control samples. C, Same as B, but using purified Ubp41 instead of Ulp2 lysate. Modified 
from Eckhoff & Dohmen (2015). 
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Unlike what was found for uncleavable Smt3 and MBP, capping Smt3 chains with ubiquitin 

had only a mild, if any, inhibitory effect on target processing by Ulp2 (Fig. 13A). 

Surprisingly, attaching one, two or even three units of ubiquitin to 4xSmt3-GFP did not 

interfere with cleavage. Apparently, Ulp2 tolerates a sufficiently flexible appendix such as 

one to three ubiquitin moieties. On a side note, confirming previous findings (Li and 

Hochstrasser 2000a), Ulp2 did not show any activity towards ubiquitin (Fig. 13B). In 

contrast, the ubiquitin-specific protease Ubp41 could readily cleave off the ubiquitin 

molecules in a control experiment (Fig. 13C).  
 

3.1.4  Ulp2 needs at least three consecutive Smt3 moieties to capture a target 

Having established three units as the minimum length of an Smt3 chain to serve as a Ulp2 

target, the obvious next question was whether this preference was due to the enzyme’s 

inability to bind to shorter chains. To this end, a binding test was designed that made use of 

the inactive variant of Ulp2, Ulp2(C624A). While being unable to process a substrate, the 

single-site mutation apparently did not affect the enzyme’s binding abilities. In the assay, 

MBP-Ulp2(C624A)-FLAG was immobilized on amylose resin via its MBP tag, and then 

incubated with different substrates. Control samples confirmed that none of the substrates 

bound to pure amylose resin (Fig. 14); hence, all observed signals are specific and due to 

Ulp2-substrate interaction.  

The assay displayed that Ulp2 indeed needs three units of Smt3 to efficiently bind a target 

(Fig. 14). Interestingly, affinity did not seem to increase for chains longer than three 

members, suggesting a binding mode that involves three Smt3 binding sites on Ulp2, which 

have to be simultaneously occupied in order to achieve full cooperative binding. On a side 

note, capping chains with uncleavable Smt3 did not interfere with the ability of Ulp2 to bind 

to them (Fig.14B). Testing whether this holds true for MBP-4xSmt3-GFP, too, required 

modification of the assay. Instead of amylose, anti-FLAG resin was utilized to immobilize 

the enzyme, and the usual substrates were swapped for analogous ones without FLAG tags. 

As shown in Fig. 14C, an MBP-led chain is still captured by Ulp2, albeit less efficient than 

an uncapped one. 
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FIGURE 14: Ulp2 binds to Smt3 chains featuring at least three members. Input: Volumes of each substrate 
preparation equal to the volumes used in the binding assays were analyzed by SDS-PAGE and anti-HA Western 
blotting. A, MBP-Ulp2(C624A)-FLAG was immobilized on amylose resin, and subsequently incubated with 
~100 nM of substrates with chains of different lengths (+). As a control, the same amount of each substrate was 
incubated with pure amylose resin (-). After 1.5 h, unbound proteins were washed off, and boiling in SDS-
PAGE loading buffer eluted specifically bound proteins. Seventy-five percent of each elution volume were 
analyzed by SDS-PAGE and anti-HAWestern blotting. B, Assessing the ability of Ulp2 to bind to Smt3 chains 
capped by one or two units of Smt3(G98A). Same procedure as for A. C, Assessing the ability of Ulp2 to bind 
to Smt3 chains capped by MBP. Basically same procedure as for A and B, but instead of on amylose resin, 
MBP-Ulp2(C624A)-FLAG was immobilized on anti-FLAG M2 resin, and the substrates did not contain N-
terminal FLAG tags. Modified from Eckhoff & Dohmen (2015). 
 

3.1.5  The active domain of Ulp2 

	

3.1.5.1  Characteristics of the Ulp2 mechanism are grounded in the active domain 

In the last decade, desumoylation enzymes and their cleavage behavior have been the focus 

of several studies. For instance, DeSI-1 and SENP2 have been identified to cleave isopeptide 

bonds rather stochastically (Shin et al. 2012; Lima and Reverter 2008). Since SENP2 belongs 

to the Ulp1-family of proteases, this is not surprising and goes well in line with the endo 

mode of Ulp1 presented above. Interestingly, however, both Ulp2-family SENPs (SENP6 and 
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SENP7) have been reported to cleave SUMO-SUMO linkages randomly, as well (Békés et al. 

2011; Lima and Reverter 2008). Notably, those findings were based on analysis done with 

the active domains only. Ulp2 is a large protein in which the non-catalytic domains comprise 

the major part of the molecule. Of its 1034 amino acid residues, only 283 are counted to the 

active domain (UD), which lies between serine-411 and lysine-693. A previous in vivo study 

identified the N-terminus to be necessary and sufficient for nuclear localization of Ulp2, 

while its C-terminus was found to be required for efficient depolymerization of large poly-

Smt3 conjugates (Kroetz et al. 2009). Against the background of Ulp2’s exo mechanism 

presented in this work, especially the latter finding gave rise to the question, whether the non-

catalytic domains arrange the UD on Smt3 chains in a way that only allows ordered, 

sequential desumoylation. To investigate on this, the UD alone [MBP-Ulp2(411-693)-FLAG] 

was analyzed via the same activity assay as the full-length enzyme before. Surprisingly, the 

cleavage pattern was indistinguishable from the one that had been found for full-length Ulp2 

(Fig. 15A). Also the binding preferences of the truncated version were the same as those of 

wild type (Fig 15B). In conclusion, features of the UD define both the exo mechanism and 

the preference for Smt3 chains of more than three members. The non-catalytic domains do 

not take part in that. 

 

 
FIGURE 15: The UD alone exhibits the same preferences as full-length Ulp2. A, 5xSmt3-GFP was 
incubated with E. coli lysates containing MBP-Ulp2(411-693)-FLAG diluted in activity test buffer for 2 h at 30 
°C. An undiluted lysate containing the inactive, full-length variant MBP-Ulp2(C624A)-FLAG was used as a 
control. Reaction products were analyzed by SDS-PAGE and anti-HA Western blotting. The full-length 
substrate is indicated on the left-hand side of the blot, cleavage products are indicated on the right. B, MBP-
Ulp2(C624A;411-693)-FLAG was immobilized on amylose resin, and subsequently incubated with ~100 nM of 
substrates with chains of different lengths. After 1.5 h, unbound proteins were washed off, and boiling in SDS-
PAGE loading buffer eluted specifically bound proteins. Seventy-five percent of each elution volume were 
analyzed by SDS-PAGE and anti-HAWestern blotting. Left panel was modified from Eckhoff & Dohmen 
(2015). 
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3.1.5.2  A SIM close to the active domain might be controlled by the NTD 

The UD has been reputed to be hard to recombinantly express in an active form. For this 

reason, setting out to analyze it, several differently truncated versions of the full-length 

enzyme were prepared and tested in parallel. In the course of that, an interesting feature of 

Ulp2 was discovered. Among the mutants, two variants, Ulp2(411-774) and Ulp2(411-1034), 

were able to completely dismantle an Smt3 chain (Fig. 16A).  

 

 
FIGURE 16: The UD alone exhibits the same preferences as full-length Ulp2. A, 5xSmt3-GFP was 
incubated with E. coli lysates containing different truncation variants of Ulp2 framed by MBP and FLAG tag 
diluted in activity test buffer for 2 h at 30 °C. An undiluted lysate containing the inactive, full-length variant 
MBP-Ulp2(C624A)-FLAG was used as a control. Reaction products were analyzed by SDS-PAGE and anti-HA 
Western blotting. The full-length substrate is indicated on the left-hand side of the blot, cleavage products are 
indicated on the right. B, Schematic representation of Ulp2 domain arrangement and truncation mutant designs. 
Numbers indicate corresponding position of residues in the respective compartment. Striped = UD. C, As for A, 
but with lysate of Ulp2 truncation variants in which the SIM was mutated (DDDDEEIQII → DDDDEEAQAA). 
D, Input: Volumes of each substrate preparation equal to the volumes used in the binding assays were analyzed 
by SDS-PAGE and anti-HA Western blotting. Inactive (C624A) Ulp2 truncation variants were immobilized on 
amylose resin, and subsequently incubated with ~100 nM of substrates with chains of different lengths. After 
1.5 hours, unbound proteins were washed off, and boiling in SDS-PAGE loading buffer eluted specifically 
bound proteins. Seventy-five percent of each elution volume were analyzed by SDS-PAGE and anti-HAWestern 
blotting. 
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Those mutants lacked the N-terminal non-catalytic domain and their C-terminus exceeded the 

UD. Sequence analysis revealed that both of them contained a certain SIM (see Figure 16B 

for a schematic representation), which had already been reported on (Kroetz et al. 2009) and 

been subject to some in vivo analysis (Baldwin et al. 2009). This motif resides in the borders 

of D719 and E729. To test whether the SIM was causing the gain of function, corresponding 

variants were prepared, in which the hydrophobic residues were exchanged by alanine 

(DDDDEEIQII → DDDDEEAQAA). As shown in Figure 16C, in these mutants wild type 

behavior was restored. This confirmed that the SIM provoked the untypical cleavage activity. 

Of note, all truncation mutants were equally well expressed, ruling out the possibility that 

expression levels were part of the explanation. Also their activity levels were comparable. 

Ulp2(411-774) and Ulp2(411-1034) were able to efficiently process mono- and di-

sumoylated substrates, whereas the other variants, like the full-length enzyme, did not (data 

not shown). Irritatingly, the ability to recognize mono-Smt3 as a target cannot be entirely 

explained by elevated binding abilities. While the gain-of-function mutants were able to 

capture 2xSmt3-GFP in a binding test, they did not bind to monosumoylated GFP (Fig. 16D). 

Since Ulp2(209-774) did not show divergent cleavage activity (Fig. 16A), an element in the 

region between aspartate-210 and asparagine-410 must have some kind of controlling impact 

on the SIM. Since the in vivo relevance of this feature is questionable, the investigations on 

this stopped at this point. 

 

3.1.6  Ulp2 hardly recognizes SUMO2 

As discussed earlier, unlike yeast, humans express four different forms of SUMO, some of 

which are highly different in sequence. These differences account for the paralogue-

specificity of the various SENPs. Smt3 shares about 48 % sequence homology with SUMO1, 

and is ~42 % identical to SUMO2. Ulp2 has been known to recognize SUMO1 (Li and 

Hochstrasser 2000a), but it was unclear whether it would process SUMO2, as well. To test 

this, a SUMO2-led version of the standard substrate was prepared (SUMO2-4xSmt3-GFP) 

and incubated with Ulp2. As shown in Fig. 17A and 17B, SUMO2 has an inhibitory effect on 

the reaction and is hardly trimmed off by Ulp2.  

 



Results 

 67	

 
FIGURE 17: Ulp2 does not bind to SUMO2 and hardly processes it when it is part of an Smt3 chain. A, 
Substrates composed of 4x∆N17Smt3-GFP led by either Smt3, SUMO1 or SUMO2 were incubated with E. coli 
lysates containing MBP-Ulp2-FLAG diluted in activity test buffer for 2 h at 30 °C. An undiluted lysate 
containing the inactive variant Ulp2(C624A) was used as a control. Reaction products were analyzed by SDS-
PAGE and anti-HA Western blotting. The full-length substrate is indicated on the left-hand side of the blot, 
cleavage products are indicated on the right. B, As for A, but without SUMO1 and with higher resolution due to 
a higher number of dilutions. C, MBP-Ulp2(C624A)-FLAG was immobilized on amylose resin, and 
subsequently incubated with ~100 nM of substrates with chains of different composition. After 1.5 h, unbound 
proteins were washed off, and boiling in SDS-PAGE loading buffer eluted specifically bound proteins. Seventy-
five percent of each elution volume were analyzed by SDS-PAGE and anti-HAWestern blotting. 
 

Indeed, the enzyme preferentially cut after the second chain member, which is the first unit of 

Smt3 in the chain. This result was supported by the finding that Ulp2 cannot capture a 

3xSUMO2-GFP substrate in a binding assay (Fig. 17C). Apparently, Ulp2 hardly recognizes 

SUMO2 as a target. 

3.1.7  Ulp2 recognizes different surface areas of each of its three binding 

partners in trimeric Smt3 

The finding of Ulp2 not processing SUMO2 offered a great opportunity to identify the sites 

in Smt3 that are relevant for interaction with the enzyme. Since the structures of Smt3 and 

SUMO2 are superimposable with high accuracy (Fig. 18), it was possible to mutate defined 
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regions without risking severe structural distortion of the molecule, thereby possibly 

provoking false-positive or misleading data.  

 
FIGURE 18: Superposition of Smt3 and SUMO2 structures. Graphics were prepared in Chimera (Pettersen 
et al. 2004) using PDB 1L2N and PDB 2N1W in ribbon representation. white = SUMO2; black = Smt3.  
 

In addition, it narrowed down the number of sites that had to be tested, since all identical 

residues could be excluded from the analysis. The strategy is depicted in Fig. 18.  

 
FIGURE 19: Depiction of motif-exchange strategy. A, M = motif; Alignment of Smt3, SUMO1 and SUMO2 
amino acid sequences. Motifs are highlighted and differentiated by underlining/bold & italic font. Motif 
nomenclature is given below the respective patch. B, Schematic representation of motif-mutant generation 
strategy. A defined sequence stretch of Smt3 was replaced by the corresponding patch of SUMO2. The 
respective hybrid molecule was inserted in the most distal, second or third position or an Smt3 chain; x = 0-6 or 
“End”. Collective name of the respective mutant library is given on the far left, next to the cartoon.  
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In brief, adjacent differing residues were grouped together and subsumed as “motifs”. Figure 

19A shows which region corresponds to which motif name. This nomenclature will be used 

in the entire following text. (On a side note, the odd numbering is due to the development of 

this sub-study and shall not be of any disturbance.) Additionally, “motif” will be abbreviated 

to “M” from now on. 

The respective sequence stretches in Smt3 were exchanged by the corresponding sequence of 

SUMO2, creating sets of mutants carrying these mutations in either the first (= most distal), 

the second, or the third moiety of an Smt3 chain linked to GFP (see Fig. 19B for schematic 

representation). Assaying the binding ability of Ulp2 to Smt3 chains of different length (Fig. 

11), had given a hint towards Ulp2 featuring three different binding sites for Smt3, and that 

all three sites had to be occupied in order to cleave the most distal member in a chain. If that 

hypothesis was correct, different regions of Smt3 should be relevant in the first three moieties 

counted from the distal end to cleave off the first one. As shown in Fig. 20, this, in fact, was 

the case. While Smt3(M1), Smt3(M5) and Smt3(MEnd) at the distal end were dismantled less 

efficiently than wild-type Smt3 (Fig. 20A&D), these mutations did not negatively affect 

cleavage when present in the second or third moiety. In contrast, Smt3(M6) was readily 

cleaved off, but in the second Smt3 unit this patch caused limited processing of the most 

distal chain member (Fig. 20B). Of note, initial data for this set [Smt3-Smt3(M)-3xSmt3-

GFP] of motif mutants (with the exception of the SUMO2 insertion mutant) were raised by 

Lea Schürholz, a Bachelor student, who did this test in the course of her Bachelor thesis 

(2015) using full-length Ulp2 under supervision of the author of this work. For this work, 

some of the constructs were newly cloned, expressed and purified.  

Last but not least, M0 and M4 are only relevant in the third position (Fig. 20C). A structural 

representation of the sites is given in Figure 23. On a side note, due to experimental 

problems, MEnd could not be tested for the third position. This mutant will be tested as soon 

as possible. For each set of mutants, a chain containing a SUMO2 moiety in the position of 

focus was tested alongside the motif variants. The inhibitory effect provoked by this substrate 

set the standard for what was considered a relevant motif. Of note, processing by Ulp1 was 

not limited by the mutations in the different positions (Fig. 21). The interaction points 

between Ulp1 and Smt3 have been determined in a previous crystallization study 

(Mossessova and Lima 2001), and, of course, variants in which these residues were affected 

were not or hardly cleaved off by the enzyme. However, the respective Smt3 chain members 

were merely skipped and did not cause any further relevant effect, as expected considering 

the endo mode by which Ulp1 works.  
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FIGURE 20: Different regions in the three first Smt3 moieties are important for cleavage of the distal 
unit. A, Substrates, in which the most distal Smt3 moiety was mutated or was SUMO2, were incubated with 
E. coli lysates containing MBP-Ulp2(411-710)-FLAG diluted in activity test buffer for 2 h at 30 °C. An 
undiluted lysate containing the inactive variant Ulp2(C624A) was used as a control. Reaction products were 
analyzed by SDS-PAGE and anti-HA Western blotting. The full-length substrate is indicated on the left-hand 
side of the blot, cleavage products are indicated on the right. B, As for A, but here the second moiety was 
mutated. C, As for A, but here the third moiety was mutated. D, As for A, but using the benchmark substrate. 
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FIGURE 21: Ulp1 cleavage pattern is not affected by motif exchanges. Substrates that had been identified as 
conspicuous in the motif screen with Ulp2 were incubated with E. coli lysates containing MBP-Ulp1-FLAG 
diluted in activity test buffer for 2 h at 30 °C. An undiluted lysate containing the inactive variant of Ulp2 was 
used as a lysate control. Reaction products were analyzed by SDS-PAGE and anti-HA Western blotting. The 
arrow on the left-hand side of each blot indicates the size of the full-length substrates, cleavage products are 
indicated on the right. 
 

The importance of M1, M5 and MEnd for the most distal moiety, and of M6 for the second 

Smt3 chain member was verified by exchanging the respective stretches of sequence in 

SUMO2 and testing a corresponding substrate chain [SUMO2(M1,M5,MEnd)-4xSmt3-GFP/ 

Smt3-SUMO2(M6)-3xSmt3-GFP].  

 
FIGURE 22: Exchanging the relevant motifs renders SUMO2 a Ulp2 target. Substrates as labeled were 
incubated with E. coli lysates containing MBP-Ulp2(411-710)-FLAG diluted in activity test buffer for 2 h at 30 
°C. An undiluted lysate containing the inactive variant Ulp2(C624A) was used as a control (inact.). Reaction 
products were analyzed by SDS-PAGE and anti-HA Western blotting. Arrows on the left-hand side of the blots 
indicates the full-length substrate, cleavage products are indicated on the right. 
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Indeed, the respective mutations offset the blocking effect of SUMO2 (Fig. 22). For the third 

copy, this test is –due to time reasons- still pending.  

It should be mentioned that the relevant residues in the most distal unit alone are not enough 

to define a Ulp2 target. When inserted into a susceptible loop of ubiquitin (between Thr9 and 

Gly10; 2 additional glycine residues on each side of the insert as linker), whose C-terminus is 

modified to match Smt3 (LRLRGG → REQIGG), M1 and M5 did not make the resultant 

hybrid a Ulp2 target (Fig. 21, upper rightmost panel). Interestingly, however, this mutant has 

an inhibitory effect on processing, whereas wild-type ubiquitin is readily tolerated, as shown 

above (Fig. 13). However, since such a hybrid mutant is highly adventurous, it shall not be 

subject to any further speculation here. 
 
 

 
FIGURE 23: Structural representation of the sites in Smt3 relevant for binding  
to Ulp2 depending on their position in a chain. Graphics were prepared in Chimera  
(Pettersen et al. 2004) using PDB 1L2N in ribbon representation. Relevant regions  
are depicted in black; 1. = most distal moiety. Motifs were named as defined above. 

 

If mutations in the second chain member affect cleavage of the most distal Smt3 moiety by 

lowering the binding affinity of the enzyme to the chain, a corresponding substrate should be 

captured less efficiently than wild type in a binding assay. Indeed, a three-membered Smt3 

chain featuring M6 mutation in the second unit is poorly bound compared to either the 

positive control or a chain in which M6 is mutated in the most distal moiety instead (Fig. 24). 

As expected, Ulp2 bound neither to SUMO2-2xSmt3-GFP nor to Smt3-SUMO2-Smt3-GFP. 

Smt3-Ubi-Smt3-GFP was hardly captured, as well. This test further supports the idea, that 

there are three different binding sites in the UD, and that all three have to be occupied 

simultaneously to achieve full cooperative binding.  
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FIGURE 24: Binding behavior of UD to various substrates containing mutated Smt3, Ubi or SUMO2. 
MBP-Ulp2(C624A;411-693)-FLAG was immobilized on amylose resin, and subsequently incubated with ~100 
nM of substrates featuring chains of different composition. After 1.5 h, unbound proteins were washed off, and 
boiling in SDS-PAGE loading buffer eluted specifically bound proteins. Seventy-five percent of each elution 
volume were analyzed by SDS-PAGE and anti-HAWestern blotting. NOTE: Elevated affinity to M2-containing 
substrates is addressed in section 3.1.7.1, but since samples were loaded in that order (the M2 substrates being 
not on the outside) the picture was not cut. 
 

The motif screen identified the regions of Smt3 involved in interaction with Ulp2. As shown 

above, Ulp2 treats SUMO1 like Smt3. Hence, motif residues differing between SUMO2 and 

Smt3, but were the same (or very similar, e.g. D and E) in SUMO1, could be excluded from 

further analysis. This left a total of ten sites for the most distal moiety and five for the second 

moiety. The third chain member has not been subject to further analysis, yet. As the 

aforementioned co-crystal of Ulp1 and Smt3 (Mossessova and Lima 2001) identified several 

interaction points between the binding partners that fall into the borders of the herein defined 

motifs M1 and MEnd, these regions -for now- were not analyzed in more detail. That left five 

candidate residues for each, M5 and M6: K54, K58, E59, D61, and S62 in the most distal 

moiety, A73, D74, Q75, E78, and D79 in the second unit. To narrow down the number of 

interaction points, single-site mutants for each of these were prepared and tested. In addition 

to an alanine scan, eight out of the ten were also either exchanged by the corresponding 

residue in SUMO2 (as done for Q75) or by an oppositely charged amino acid. The two 

exceptions were S62 and A73. For these sites, only A73E and S62A were tested.  
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FIGURE 25: Single-site mutants in the M5 or M6 area of Smt3 do not have a strong inhibitory effect. 
Substrates containing point mutations as labeled above the blots were incubated with E. coli lysates containing 
MBP-Ulp2(411-710)-FLAG diluted in activity test buffer for 2 h at 30 °C. An undiluted lysate containing the 
inactive, full-length variant MBP-Ulp2(C624A)-FLAG was used as a control. Reaction products were analyzed 
by SDS-PAGE and anti-HA Western blotting. The full-length substrate is indicated on the left-hand side of the 
blot, cleavage products are indicated on the right. Unspecific bands are indicated by asterisk (*). 
 

As it turned out, single-site mutations in the assayed sites of Smt3 have only a small, if any, 

impact on processing by Ulp2 (Fig. 25). For K58, a small reduction in cleavage can be 

observed in the higher extract-dilutions, but on the whole, exchanging single amino acids did 

not provoke an effect detectable with the assay at hand. Apparently, at least double mutants 

would be necessary to identify individual crucial residues. 

Noted in the margin, the activity assays were performed with a highly active extract of E. coli 

cells expressing the truncated form of Ulp2 MBP-Ulp2(411-710)-FLAG. Even though, the 

blocking effects were more pronounced when the tests were done with lysate containing the 

inherently less active full-length enzyme (data not shown), this choice made sense with 

respect to the results presented in the next section (3.2). 
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3.1.7.1  Exchanging four defined residues in Smt3 creates a version to which Ulps 

exhibit a very high affinity 

In the course of the interaction-point study, it was found that exchanging (maximally) four 

residues in a certain area of Smt3, significantly elevates the affinity of both Ulp2 and Ulp1 

for this molecule. Specifically, these were the mutations N86E, I88T, A91V, and H92F in the 

region M2. In cleavage assays, mutants containing the M2 mutations were highly favored 

over all other Smt3 units in the substrate chains (Fig. 20). This applied to Ulp1, as well (Fig. 

26). When in second or third position, Ulp2 skipped the more distal units and cleaved off the 

M2 mutant directly (Fig. 20B and 20C). A binding test with chains carrying these mutations 

in the most distal or in the second unit of a three-membered chain [Smt3(M2)-2xSmt3-GFP, 

Smt3-Smt3(M2)-Smt3-GFP] identified a significantly enhanced affinity of the enzyme for 

this variant as the most plausible cause (Fig. 24). Even though not relevant for this study, this 

finding might be interesting for other, possibly technical, applications. 

 

 
FIGURE 26: Ulp1, like Ulp2, prefers M2-containing Smt3 mutants. Substrates carrying M2 mutations in the 
first, second or third moiety counted from the distal end of an Smt3 chain were incubated with E. coli lysates 
containing MBP-Ulp1-FLAG diluted in activity test buffer for 2 h at 30 °C. An undiluted lysate containing the 
inactive variant of Ulp2 was used as a lysate control. Reaction products were analyzed by SDS-PAGE and anti-
HA Western blotting. Size of the full-length substrates is indicated on the left-hand side of the blot, cleavage 
products are indicated on the right. 
 

3.2  The crystal structure of the Ulp2 active domain 

3.2.1  Crystallization of the Ulp2 active domain  

As mentioned earlier, Ulp2 has large N- and C-terminal non-catalytic domains. Both are 

predicted to be intrinsically disordered (prediction: NTD ~40 % disordered, CTD >60 % 

disordered) (Kroetz et al. 2009). This puts significant hurdles in the way of structural 

investigations of the enzyme. Even small flexible regions can make crystallization attempts 
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fail. Domains of ~400 amino acids, which to large parts lack a stable tertiary fold, constitute 

an almost insurmountable challenge.  

Since all mechanistically relevant features of Ulp2 are grounded in the UD (see section 

3.1.5.1), structural information of that area should be sufficient to allow for more detailed 

analysis of the cleavage mechanism the enzyme employs. In order to achieve this, protein 

crystallization was applied. Even though the UD in its tightest borders (residues 411-693) 

showed a good level of activity, it was outperformed by the 17-amino acid longer version 

Ulp2(411-710) (Fig. 27), which proved to be not only sufficiently active but also more stable 

than Ulp2(411-693) during purification (data not shown). Both of these features were a hint 

towards Ulp2(411-710) being folded better than the UD in its conventional barriers. Hence, 

the longer version was used for crystallization attempts.  

 
FIGURE 27: Slightly elongating the UD yields a more active construct. 5xSmt3-GFP was incubated with 

E. coli lysates containing truncation variants of Ulp2 as indicated, framed by MBP and FLAG tag, 
diluted in activity test buffer for 2 h at 30 °C. An undiluted lysate containing the inactive, full-length 
variant MBP-Ulp2(C624A)-FLAG was used as a control. Reaction products were analyzed by SDS-
PAGE and anti-HA Western blotting. The full-length substrate is indicated on the left-hand side of the 
blot, cleavage products are indicated on the right. 

 

For economical reasons, FLAG tag-aided purification was not an option, thus the construct so 

far standardly used in this study could not be utilized. Instead, a hexahistidine-tagged version 

of the MBP fusion was prepared. Three residues of glycine between the C-terminus of the 

domain and His6 facilitated for optimal binding to the purification resin and overcame a 

compromise in the enzyme’s activity, which had been observed for a direct fusion (data not 

shown). A TEV protease recognition site between MBP and UD allowed for cleavage of the 

solubility enhancer. Purification consisted of four steps: MBP affinity purification, followed 

by removal of that tag via TEV protease digestion, nickel pull-down, and gel filtration. 

Ulp2(411-710)-Gly3-His6 eluted as a single peak, and SDS-PAGE analysis did not show 



Results 

 77	

degradation products (data not shown). Only monodisperse fractions were used for 

crystallization (DLS data not shown). As shown in Fig. 28B, the final species displayed full 

proteolytic activity in cleavage reactions with 4xSmt3-GFP, indicating that it maintained its 

proper fold during the purification process.  

A single crystal was obtained under conditions as described in the methods section for the 

Ulp2 domain that encompassed amino acid residues 427-704. The structure contains one 

molecule in space group P212121. Electron density maps were obtained with phases calculated 

using data from single-wavelength anomalous dispersion with the anomalous signal from 

sulfur (S-SAD). The structure was refined to 2.3 Å with an R-factor and an Rfree of 0.1689 

and 0.1965, respectively (see Tab. 8 for full information and statistics). Nineteen residues, 

546-564, cannot be observed in the structure (Fig. 28A). They did not yield conclusive 

electron density. It is very likely they compose a flexible loop region in the UD.  

 

 
FIGURE 28: Structure of the catalytic domain of Ulp2. A, Two views of the UD in ribbon representation. N-
t. = N-terminus; C-t. = C-terminus. Secondary structure elements are either lettered (α-helices) or numbered (β-
strands). The catalytic triad is depicted in ball-and-stick representation; the arrow indicates the active cysteine 
residue (C624). The segment AA 546-564, for which no conclusive electron density was obtained, was deemed 
disordered and indicated as a dashed line. Graphics were prepared with Chimera (Pettersen et al. 2004). B, 
4xSmt3-GFP was incubated with different amounts of purified Ulp2(411-710)-3xG-His6 from the protein 
preparation that was used in crystallization for 2 h at 30 °C. Reaction products were analyzed by SDS-PAGE 
and anti-HA Western blotting. The full-length substrate is indicated on the left-hand side of the blot, cleavage 
products are indicated on the right. 
 

3.2.2  The structure of the Ulp2 active domain underlines its classification 

The secondary structure of Ulp2(427-704) includes 11 α-helices  and 7 β-strands. Its active 

site has the central α-helix, three β-strands and the Cys-His-Asp catalytic triad typical for 

papain-like proteases (Drenth et al. 1968). Also, it features the characteristic Trp-tunnel 

through which the di-glycine motif of Smt3 is threaded, as already found in structures of 

Ulp1 and several SENP active domains (Mossessova and Lima 2001; Nayak and Muller 

2014). 
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Table 8: Crystallographic data 
a = Friedel pairs are counted as separate reflections; b = as defined by Diederichs & Karplus (1997); c = Ideal 
values are according to Engh & Huber (Engh et al. 1991); Data in parentheses indicate statistics for data in the 
highest resolution bin. 
Data set Native home S-SAD 
Diffraction source Rigaku MicroMax 007 HF Swiss Light Source X06DA 
Wavelength (Å) 1.5418 2.0644 
Temperature (K) 100 100 
Detector Mar345 Pilatus 2M 
Space group P212121 P212121 
a, b, c (Å) 42.5, 55.5, 172.8 42.5, 55.6, 172.8 
α, β, γ (°) 90, 90, 90 90, 90, 90 
Resolution range (Å) 9.09 – 2.03 (2.58 – 2.43) 86.4 – 2.13 (2.19 – 2.13) 
Total No. of reflections 157,785 (5,237) 1,625,224 (35,003) 
No. of unique reflections a 50,094 (3,099) 18,756 (1,638) 
Completeness (%) 98.3 (82.6) 98.6 (85.6) 
〈I/σ(I)〉 12.3 (1.76) 35.1 (4.8) 
Rmeas b (%) 9.0 (56.6) 12.5 (60.9) 
Overall B factor from Wilson plot 
(Å2) 

28.2 24.8 

Phasing   
No. of sites  11 
Resolution range (Å)  14.8 – 2.5 
FOM  0.27 
Refinement   
Resolution range (Å)  86.4 – 2.3 (2.4 -2.3) 
Completeness (%)  98.6 (85.6) 
σ cutoff  -3.0 
No. of reflections, working set  34,693 
No. of reflections, test set  2,780 
Final Rcryst  0.169 (0.214) 
Final Rfree  0.197 (0.261) 
No. of non-H atoms  2391 
Protein  2174 
Acetate  1 
Water  206 
Protein residues  259 
R.m.s. deviations c   
Bonds (Å)  0.002 
Angles (°)  0.45 
Average B factors (Å2)  34.31 
   Macromolecules  33.58 
   Ligands  51.40 
   Solvent  41.53 
Number of TLS groups  3 
Ramachandran plot   
Most favoured /allowed (%)  97.3/2.7 
Rotamer outliers (%)  0 
Clashscore  2.06 
 
Structural alignment of the UD with Ulp1 and SENP7 active domains underlined its 

relationship with the former, and its family affiliation with the latter (Fig. 29). Even though 

quite different in terms of sequence (~22 % identity), Ulp2 and SENP7 structures are a good 

match. While the alignment to Ulp1 is regular (r.m.s.d. of 1.102 Å over only 86 amino acids; 

20 % sequence identity), the UD can be well aligned with SENP7 active domain over 148 
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amino acids with an r.m.s.d. of 1.066 Å. However, a conspicuous difference between the two 

is the presence of a helix-loop-helix element in the UD (residues 638-666; helices H and I) 

that is missing in SENP7. In its place, SENP7 features a simple loop (Fig. 29B). 

 

 

 
FIGURE 29: Comparison of the UD to other Ulp/SENP family members. Structural superpositions were 
prepared with Chimera (Pettersen et al. 2004). A, Superposition of the Ulp2 catalytic domain (blue) with 
Ulp1catalytic domain (PDB 2HL8; ocher) in ribbon representation. Secondary structure elements of Ulp2 are 
either lettered (α-helices) or numbered (β-strands); N-t. = N-terminus of UD, C-t. = C-terminus of UD. 
Putatively disordered regions are denoted by dashed lines. B, Superposition of the Ulp2 catalytic domain (blue) 
with SENP7 catalytic domain (PDB 3EAY; ocher) in ribbon representation. Secondary structure elements of 
Ulp2 are either lettered (α-helices) or numbered (β-strands); N-t. = N-terminus of UD, C-t. = C-terminus of UD. 
Segments of the domains, for which no structural information is available, are depicted as dashed lines. C, 
Alignment of the sequences corresponding to the catalytic domains of Ulp2, SENP6, SENP7 and Ulp1. Gaps are 
indicated by dots; the missing region in the UD structure is depicted as //, signifying that the sequence is 
missing from the alignment. Secondary structure elements of the UD are sketched above the alignment; arrows 
= β-strands, striped blocks = α-helices; numbering and lettering of the respective elements as in the graphics. 
Helical elements of only 3 residues were not classified as α-helices and are labeled by asterisk (*). Residues 
conserved between all 4 or between Ulp2 and SENP6 and SENP7 are highlighted. Arrowheads below the 
alignment indicate residues of the catalytic triad. 
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3.2.3  Putative Smt3 binding sites in the Ulp2 active domain 

To determine whether three Smt3 binding sites could be provided by the UD with the 

identified Smt3 regions involved, a model was generated for the UD in complex with three 

Smt3 molecules making use of available structures of Ulp1, SENP1 and SENP2 that were 

previously solved in complex with Smt3, SUMO1 and RanGAP1-SUMO1, respectively 

(PDB 1EUV/2IY1/2IO2) (Mossessova and Lima 2001; Reverter and Lima 2006; Shen et al. 

2006a).  

 

 
FIGURE 30: Structural models for interaction between UD and 3 linked Smt3 molecules. Graphics were 
prepared with Chimera (Pettersen et al. 2004). Light blue = active domain of Ulp2 (UD); light green and red = 
most distal Smt3; ocher and dark green = second Smt3; pink and dark blue = third Smt3. Red = M1, M5, MEnd; 
dark green = M6; dark blue = M4, M0. A, Surface display. Smt3 moieties are numbered (1 = most distal unit). 
B, Surface display, 80 % transparency. C, Ribbon representation of the UD and the three Smt3 moieties. For 
better orientation, some structural elements of Ulp2 are labeled (α-helices F, J, and K; N-t. = N-terminus)  D, 
Like C, but the residues in the respective motives are displayed. E, Like C, but rotated to a view where M4 is in 
focus with the putatively disordered loop it might be in contact with. Loop is indicated as grey ellipse. For 
orientation, α-helices of Ulp2 are lettered. 
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As shown in Figure 30, it is possible to arrange three consecutive Smt3 moieties on the UD, 

such that all the regions identified in each of the three chain members are in contact with 

Ulp2. This is, provided that the unstructured segment 546-564 missing in the structure is bent 

such that it makes contact to the M4 surface area of the third moiety (Fig. 30E). This will be 

further discussed in section 4.2.4.1. 

3.2.4  Electrostatic surface potential of the Ulp2 active domain 

The Ulp1-Smt3 co-crystal revealed an extensive protease-substrate interface. Ulp1 contacts 

Smt3 not only at, but also distal from the cleavage site (Mossessova and Lima 2001). The 

contributing interactions were mainly of polar and charge-based nature. Interestingly, the 

electrostatic surface potential of the UD differs significantly from the one of Ulp1, and also 

from the one of the SENP7 active domain (Fig. 31). While Ulp1 and SENP7 contain large 

acidic (red) or basic (blue) patches in their active sites, the UD is largely neutral (white) in 

that region.  

 
FIGURE 31: Electrostatic surface potential and surface hydrophobicity of the catalytic domains of Ulp2, 
SENP7 and Ulp1 are significantly different. Graphics were prepared with Chimera (Pettersen et al. 2004).  A, 
Electrostatic surface potential of the catalytic sites of Ulp2, SENP7 (PDB 3EAY) and Ulp1 (PDB 2HL8). Black 
structure = Smt3, arranged there by alignment of the respective active domain with the structure of Ulp1-Smt3 
(PDB1EUV). Red = negative potential, white = neutral, blue = positive potential. B, Hydrophobicity of catalytic 
sites of Ulp2, SENP7 ((PDB 3EAY) and Ulp1 (PDB 2HL8). Color code is smooth transition from blue = most 
hydrophilic via white to orange/red = most hydrophobic. 
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Considering the differences between Ulp2 and SENP7 active sites, the differences in their 

electrostatic surface potentials would be a plausible explanation for Ulp2 not recognizing 

SUMO2, SENP7’s preferred paralogue, despite their good structural overlap. 

What is more, the UD is neither very hydrophilic (light blue) like the Ulp1 active site nor 

prominently hydrophobic (orange-red). A previous study on Ulp1-Smt3 interaction found 

strong evidence that several charged and polar residues contribute to complementary 

electrostatics in the interface between Ulp1 and its target. Considering the comparatively low 

charge density of the UD, this could be part of the explanation for the mechanistic differences 

between the two SUMO-specific proteases in S. cerevisiae. For further discussion of this, 

please see section 4.2.4.2. 

Interestingly, the surface charge distribution in other parts of the active site is also strikingly 

different from the equivalent areas of Ulp1 and SENP7. Ulp2 contains an extensive basic 

surface where Ulp1 is patchily acidic and SENP7 exhibits mixed charges (Fig. 32). This 

suggests that Ulp2 is fundamentally different not only from Ulp1 but also from its protease 

subfamily member SENP7. It provides a significantly different surface for interactions with 

SUMO. Consequently, major mechanistic differences to other SUMO-specific proteases 

should not be surprising. 

 
FIGURE 32: Electrostatic surface potential of the catalytic domains of Ulp2, SENP7 and Ulp1. Graphics 
were prepared with Chimera (Pettersen et al. 2004). Electrostatic surface potential of the catalytic sites of Ulp2, 
SENP7 (PDB 3EAY) and Ulp1 (PDB 2HL8). For orientation, structures in ribbon representation are displayed, 
as well. C-t. = C-terminus; N-t. = N-terminus. 
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3.3  Characterizing the relationship between Ulp2 and the proteasomal 

degradation system in vivo 

Deletion of ULP2 provokes a variety of phenotypic effects. Arguably the most prominent 

feature of the ulp2-∆ strain is the accumulation of HMW Smt3 conjugates. Similar aggregates 

are observed upon inhibition of the proteasome, if proteasomal subunits are mutated, or in 

mutants impaired in the ubiquitin conjugation machinery. This evoked the assumption that 

there might be a connection between absence of Ulp2, proteolysis deficiency and the 

ubiquitin-mediated degradation of proteins.  

3.3.1  HMW Smt3 conjugates are the causing agent of a proteolysis defect in 

ulp2-∆ 

Previous studies showed that ulp2-∆ cells are sensitive to canavanine (Miteva 2007), an 

arginine-analogue that leads to accumulation of misfolded proteins, which are then subjected 

to degradation by the UPS pathway. Since yeast mutants impaired in proteasomal degradation 

are significantly sensitive to canavanine, this indicated a proteolysis defect in ulp2-∆. Other, 

unpublished data raised by former members of the Dohmen research group supported this 

finding (data not shown). In the absence of a fully functional degradation system, proteins 

accumulate that would usually be broken down. Hence, the turnover rate of a given 

proteasome substrate is a good indicator of the operational capacity of the proteasome. 

Therefore, the stability of different known proteasomal substrates was tested in ulp2-∆ and 

several comparative strains. To this end, cycloheximide chases were performed. 

Cycloheximide is an inhibitor of protein biosynthesis. Upon addition to the growth medium, 

translation is stopped, thus degradation rates of proteins of interest can be determined by 

monitoring their levels in the cells over time. Employing this strategy, the stability of Ub-R-

eK-HA-Ura was assessed. In this fusion construct, orotidine-5’-phosphate decarboxylase is 

decorated with an N-terminus that makes it prone to degradation via the UPS (N-end rule 

pathway of degradation, for details see (Varshavsky 2011)). In wild-type cells, this protein 

has a high turnover rate (Fig. 33, upper panel). However, in the absence of Ulp2 it is 

significantly stabilized. This stabilization is overcome by additional mutations inhibiting 

Smt3 chain formation, like uba2ts or smt3-KallR. Likewise, Ub-V76-DHFR, which is targeted 

to the proteasome via the ubiquitin fusion degradation (UFD) pathway (Johnson et al. 1995), 

was assayed. The results matched what was found for the N-end rule substrate (Fig. 33, 

middle panel). The same was true for another ubiquitin-dependent proteasome substrate, Stp1 
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(Fig. 33, lowest panel). These findings suggest a global proteolysis defect in the absence of 

Ulp2, caused by the accumulation of HMW Smt3 conjugates.  

 

 
FIGURE 33: Proteasomal substrates are stabilized in the absence of Ulp2. Test substrates were expressed 
from the CUP1 promoter. Indicated strains were grown in YPD containing 100 µg/ml CuSO4 to OD600 ~0.8. 
Translation was stopped by applying cycloheximide as described in section 2.2.1.2.2. Samples were analyzed by 
SDS-PAGE and anti-HA immunodetection. To test for differences in total protein amounts, membranes were 
stripped and reprobed with anti-Cdc11 antibody. Unspecifc bands are indicated by asterisk (*). 
 

3.3.2  Ulp2 is the major player in SUMO recycling 

The identification of STUbLs revealed a new function of Smt3: It can serve as a secondary 

degradation signal. In the face of this direct link between proteasome and Smt3 chains, the 

question arose whether –unlike ubiquitin- polymeric Smt3 is actually not recycled but 

degraded along with the protein it is attached to. Considering the similarity between 

ubiquitin- and SUMO cycles, Smt3 recycling was the more likely scenario. But this 

assumption awaited testing. To this end, cycloheximide chases were performed for different 

strains in the absence or presence of MG132, a proteasome inhibitor. Apart from carrying a 

pdr5-∆ mutation, which allowed MG132 to be fully effective, the test strains genomically 

expressed HA-tagged Smt3, to allow for better detection.  

Figure 34A (first panel) shows that in the benchmark strain Smt3 was stable throughout 4.5 

hours of chase time, suggesting that under normal conditions Smt3 is recycled. As discussed 

above, the absence of Ulp2 causes, among others effects, accumulation of HMW Smt3 

conjugates and a severe proteolysis defect. This raised the question whether these two 

phenotypic features were related. Since a ulp2-∆ mutant seems to be unable to dismantle 

Smt3 chains to any sufficiency, Smt3 being degraded in the absence of Ulp2 was a plausible 

link. When the assay done for the pdr5-∆ smt3-HA strain was performed using the pdr5-∆ 

ulp2-∆ smt3-HA mutant, the results were indeed different: Upon translation stop, Smt3 
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diminished significantly over time (Fig. 34A, second panel). In contrast, Smt3 levels 

remained stable if the proteasome was inhibited. Inhibiting the vacuole did not have an effect. 

These data indicate that in the absence of Ulp2 Smt3 conjugates are subjected to degradation 

by the proteasome. Notably, neither a hypomorphic ulp1-I615N mutant, nor a wss1-∆ strain 

exhibited any variation in Smt3 levels during the assay (Fig. 34B). Therefore, Smt3 recycling 

seems to be –at least for the most part, if not completely– dependent on Smt3 deconjugation 

by Ulp2. 

 

 
FIGURE 34: Smt3 is generally recycled, but in ulp2-∆ it is degraded. Indicated strains were grown in YPD 
to OD600 ~0.8. Translation was stopped by applying cycloheximide and proteasomal/vacuolar degradation was 
inhibited as described in section 2.2.1.2.2. Samples were analyzed by SDS-PAGE and anti-HA Western 
blotting. Equal sample loading was checked by reprobing blots with anti-Cdc11 antibody. A, Assessment of 
Smt3 stability in the presence of all SUMO-specific proteases (left panel) and in the absence of Ulp2 (right 
panel) under inhibition of the proteasomal or the vacuolar degradation pathway. B, Assessment of Smt3 stability 
in the absence of Ulp1 activity (left panel) and Wss1 (right panel), respectively. 
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4  Discussion 
When this work was started, a reasonable amount of information concerning Ulp2 function 

had been obtained from in vivo studies. Yet, data about the enzyme itself was scarce –for 

good reason.  

 

4.1  Ulp2 in-vitro-characterization setup 
 
Attempts to characterize Ulp2 to more detail in vitro frequently failed due to the low level of 

activity the recombinantly expressed enzyme exhibited (Bylebyl et al. 2003; Li and 

Hochstrasser 2000b; Drag and Salvesen 2008). Therefore, this study employed new ideas, 

including a construct different from what had been used before, to fill that gap of knowledge. 

An MBP-FLAG-tag frame replaced the formerly used GST-fusion, allowing expression of 

Ulp2 in E. coli at satisfying activity levels. Several other tags and tag combinations were 

tested, but none of them was superior to MBP/FLAG. Large enzymes frequently pose a 

problem on recombinant expression. The 1034-residue Ulp2 is not an exception. Even though 

solubility was not a problem, generally low expression levels caused poor yield. All measures 

taken to increase the amount failed. This clearly had its roots in the size of the protein, as 

truncation mutants were expressed at much higher levels.   

Luckily, it was possible to conduct the cleavage assays with crude extracts containing the 

recombinantly expressed enzyme without interfering/unspecific reactions or significant noise. 

Clearly, it would be desirable to work with purified enzymes. Unfortunately, affinity 

purification came at large costs, both in terms of material and in terms of protease activity. 

Since the application of lysate did not provoke a cleavage pattern different from when using 

purified Ulp2 (Fig. 6 & 28B), working with crude extracts was a feasible tribute to Ulp2’s 

unruliness. Notably, the equally well soluble, but better expressed UD alone did not result in 

higher activity levels compared to the full-length enzyme, suggesting that the activity Ulp2 

exhibited in the cleavage assays was the maximum one can obtain for this enzyme in vitro. 

The only obvious, larger variable that could be adjusted striving to augment this is the lysis 

procedure. For this work, lysozyme-aided glass bead lysis and grinding were tested, yielding 

equal results. It cannot be excluded that other strategies like freeze-thawing or sonication 

would lead to a higher-quality extracts. But the effect would probably not be striking.  
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Usually, test substrates were linear chains of one or several moieties of Smt3 and/or ubiquitin 

to enhanced GFP. This allowed for maximum flexibility concerning the composition of the 

chains. Subjecting authentic Smt3 chains linked to Ubc9 to digestion by Ulp2 brought the 

same results concerning the Ulp2 mechanism (see Fig. 10). This showed that the head-to-tail 

fusions were an adequate model, thus confirmed also this part of the in vitro system to be 

suitable for Ulp2 characterization.  

4.2  Ulp2 mechanism 

4.2.1  Ulp2 cleaves polymeric SUMO chains from their distal ends 

Using an in vitro approach, the studies presented in this work characterized the mechanism 

by which Ulp2 desumoylates target proteins. The human members of the Ulp2 branch of 

SUMO-specific proteases, SENP6 and SENP7, had previously been analyzed and for both of 

them a rather stochastic mechanism had been proposed. Neither of the two seemed to exhibit 

a preference concerning which isopeptide bond of a SUMO chain to cleave first (Lima and 

Reverter 2008; Békés et al. 2011). The authors of the latest study, the one on SENP6, 

suggested that this could be a common feature of all SENPs and possibly other, non-human 

SUMO-specific proteases, as well. This work showed that this does, at least, not apply to 

Ulp2. Ulp2 clearly showed an exo behavior, a very strong obligation to start dismantling a 

poly-SUMO chain at its distal end. This was confirmed in several different tests, including 

monitoring the liberated species in a desumoylation assay over time (see Fig. 8) and 

obstructing the distal end of poly-SUMO with molecules uncleavable by Ulp2 (see Fig. 12). 

Its exo mechanism puts Ulp2 in stark contrast to the other SUMO-specific protease in 

budding yeast, Ulp1. In comparative tests, Ulp1 exhibited an endo mechanism, randomly 

cleaving any isopeptide bond within a poly-SUMO chain. Interestingly, the endo mode could 

only ultimately be confirmed when reaction speed was significantly lowered by performing 

cleavage assays with Ulp1 on ice. Only then, intermediate products could be detected (Fig. 

7). This suggests that Ulp1 initially cleaves randomly within a chain, then remains bound to 

its end, and with a high processivity dismantles it to completion. A proper characterization of 

the cleavage mechanism of Ulp1 would require more tests. For this work on Ulp2, though, it 

was sufficient to establish its general work mode, endo, which deepens the differentiation of 

the two proteases to the mechanistic level. 
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4.2.2  Its exo behavior differentiates Ulp2 from its subfamily members 

All members of the Ulp2 branch of SUMO proteases, SENP6, SENP7 and Ulp2 itself, have a 

preference for long polymeric chains (Bylebyl et al. 2003; Lima and Reverter 2008; Békés et 

al. 2011). Additionally, they share the common feature of being inactive in SUMO 

maturation (Li and Hochstrasser 2000a; Schwienhorst 2000; Mukhopadhyay et al. 2006). 

Apparently, their cleavage mode puts a stop to this line of parallels (SENP6/7: rather random, 

Ulp2: sequential). However, major differences between family members of the subclasses of 

SUMO-specific proteases might not be all that surprising. As mentioned earlier, the 

categorization of SENPs into Ulp1-like and Ulp2-like is purely based on their domain 

architecture. Those with unconventional domain structure fall into the Ulp2 branch; all others 

are united as Ulp1-type SENPs. This very crude, single criterion leaves a lot of space for 

variation within the subfamilies. Hence, the many common features are indeed more 

surprising than the fact that there seems to be a fundamental difference between the 

desumoylation mechanisms employed by SENP6 and -7, and Ulp2’s exo behavior.  

In general, the catalytic domains of Ulp-class SUMO-specific proteases reside close to their 

C-termini (Hickey et al. 2012) (also see Fig. 4). In this respect, Ulp2 is noticeably different. 

Its active domain is almost exactly centered, framed by a 410-amino acid NTD and a CTD 

comprising 341 residues. This unique attribute might be an explanation for differences 

between Ulp2 and the other members of this class of proteases. Notwithstanding, as this work 

showed, the cleavage mechanism is entirely contained in the active domain. Assays using the 

active domain of Ulp2 did not yield results different from the findings for the full-length 

enzyme. So, if the intramolecular localization of the active domain accounts for distinctive 

features of Ulp2, they are probably not of mechanistic nature, because –at least in case of 

Ulp2– the bare catalytic domain by itself is decisive for the desumoylation mode.  

As mentioned earlier, it should be noted that both of the studies, that gave mechanistic insight 

into SUMO chain cleavage by SENP6 and SENP7, were conducted using only truncated 

versions of the proteases (Lima and Reverter 2008; Békés et al. 2011). Even though the 

studies on Ulp2 do not suggest such a scenario, it cannot be excluded that the non-catalytic 

domains of the SENPs play a role in desumoylation, possibly provoking an ordered 

mechanism similar to Ulp2’s, until the correspondent tests have been made. What is more, 

the results concerning mechanism in the respective studies were not at all that clear. They 

employed mixed-length substrates, whose cleavage pattern is naturally harder to interpret due 

to a variety of species present in the input already. Unfortunately, it was not possible to 

characterize SENP7 via the same system that was utilized for Ulp2. Neither the full-length 
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enzyme, nor the truncated SENP7(AA 662-984) version (the latter was used in the original 

study by Lima et al. of 2008) lent themselves to the activity assay established in this work. 

Different tags and tag combinations (N-terminal MBP combined with C-terminal FLAG tag, 

N-terminal MBP tag only, N-terminal hexahistidine tag, C-terminal hexahistidine tag) were 

tested, but none of the constructs exhibited sufficient cleavage activity towards a GFP-

anchored SUMO2-4x∆N11SUMO2 chain (data not shown). Also working with purified 

SENP7 did not change that outcome –even when following the published protocol for both 

purification of His6-SENP7 and its activity test. Protein purification can be highly complex 

and many small, hardly controllable factors can be decisive for its failure or its success. 

Therefore, the reason for this rout is elusive. Still, the problem will be approached in future 

experiments, since only the cleavage pattern obtained from incubating a substrate-bound 

poly-SUMO2 chain with SENP7 can clarify whether the sequential processing activity found 

for Ulp2 divides the subfamily members, or whether it unites them. 

 

4.2.3  Structure of the Ulp2 active domain 

Amongst other things, this work presents the three-dimensional structure of the Ulp2 active 

domain. Like the other members of the Ulp/SENP family of SUMO proteases, it maintains a 

papain-like fold. As a result, its core and the analogous structure of Ulp1 are well 

superimposable. Nevertheless, there are major differences, as well. Overall, Ulp2 has more α-

helical and less loop regions than Ulp1 (see Fig. 29A). Quite prominently, it contains a helix-

loop-helix element (helices I and H) in a place where Ulp1 features a simple, short loop. 

Based on structural alignment, this part of the active domain has already been subject to some 

analysis and will be explored further in future experiments. Initial data already gave a hint to 

this being an interesting region to investigate more. However, it did not seem to be decisive 

for the exo mode: A Ulp2 mutant in which the helix-loop-helix element is replaced by the 

loop of Ulp1 still starts cleavage at the distal end of a poly-Smt3 chain (data not shown). 

Therefore, the parts of the domain crucial for engaging Ulp2 to a sequential processing mode 

remain to be identified. For several reasons, approaching this question via mutation screens is 

not a feasible strategy. Firstly, amino-acid exchange in the active domain is prone to 

compromising protein fold, thereby probably resulting in insoluble or inactive mutants. 

Secondly, a single-site mutation is probably not enough to erase Ulp2’s compulsion to an exo 

mode of processing; meaning, a combination of mutations would be required. Yet, the assays 

developed in the course of this work are not suitable for high-throughput studies. 
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Consequently, developing new assays would be necessary in order to elucidate the structural 

determinants of the Ulp2 mechanism.  

 

4.2.3.1  Determinants for the exo mode of Ulp2 are not known 

The strong obligation of Ulp2 to exo mode suggests that it recognizes the N-terminal end or 

surrounding surfaces of the most distal Smt3 moiety, and that these regions are not well 

accessible in the other members of the chain. It could be speculated that this might be due to 

internal interactions between the individual Smt3 units and their neighboring moieties, 

resulting in some kind of quaternary structure of the poly-Smt3 chain. However, in general, 

SUMO chains seem to be intrinsically flexible (Békés et al. 2011; Keusekotten et al. 2014), 

so it is unlikely that polymeric Smt3 itself engages Ulp2 to the exo mode. More likely, it is 

dictated by a structural feature of the UD.  

 

4.2.3.2  Ulp2 and SENP7 are well superimposable  

Unsurprisingly, the UD can readily be structurally aligned with the active domain of SENP7 

(see Fig. 29B). To large parts, the two are a quite accurate match. This also applies in case of 

the location of segment 546-564, which could not be solved in the Ulp2 structure. In the same 

region, the SENP7 structure features a gap of 50 residues which are disordered (Lima and 

Reverter 2008). In the previous text it was already mentioned that the Ulp2-like class of 

SUMO-specific proteases is characterized by their aberrant domain architecture, specifically 

insertion loops in their active domains. Apparently, these loops are highly floppy regions. 

These flexible elements might be a determinant for the poly-SUMO preference the members 

of this subfamily exhibit. Obviously, structural studies cannot clarify this, unless the 

respective proteases are crystallized in complex with polymeric SUMO that would possibly 

force the loops in a more rigid conformation. 

 

4.2.4  Ulp2 targets polymeric Smt3 chains 

Previous experiments had shown that Ulp2 cleaves poly-Smt3 chains. This work uncovered 

that there is a minimum length required to make polymeric Smt3 a Ulp2 target. In order to 

process an Smt3 chain efficiently, Ulp2 needs at least three consecutive units of Smt3 (see 

Fig. 11). Mono- or di-Smt3 is not recognized by the protease. What is more, Ulp2 stops 

processing its target at the stage of di-Smt3. The reason for that revealed a binding assay: 
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Ulp2 cannot bind to chains of less than three members (see Fig. 14). Notably, longer chains 

are not captured better than tri-Smt3, indicating that there are three Smt3 binding sites in 

Ulp2, which need to be simultaneously occupied in order to achieve full cooperative binding. 

Most possibly, binding at each of these sites alone would not be sufficiently tight. This idea 

goes in line with Ulp2 ending desumoylation once only two Smt3 moieties are left: If the 

most distal unit of poly-Smt3 is liberated, there are only two binding sites occupied, and the 

protease will loose its target because of insufficient affinity. A longer chain is probably, due 

to proximity, immediately recaptured and subjected to the next cleavage reaction. Di-Smt3, in 

contrast, cannot fill all three binding sites at Ulp2 and therefore no longer serves as a 

substrate. Binding tests with truncation mutants showed that the active domain alone already 

exhibits the three-units-minimum requirement (see Fig. 15). This suggests that the three Smt3 

binding sites are all situated somewhere within the borders of serine-411 and lysine-693. This 

region does not contain any conventional SIM, so Ulp2 binds Smt3 via surfaces distinct from 

that. This is a feature it shares with the other members of the Ulp/SENP class of proteases. 

None of them bears a canonical SIM in its active domain and for those that have been 

structurally analyzed in complex with SUMO, all contacts were found to be different from 

SUMO-SIM interactions (Hickey et al. 2012; Mossessova and Lima 2001; Shen et al. 

2006b).  

 

4.2.4.1  Ulp2 recognizes different regions in the three most distal members of 

polymeric Smt3 

In the course of this work it was found that Ulp2 hardly recognizes SUMO2 as a target (see 

Fig. 17). This fortunate coincidence allowed identifying the regions in Smt3 involved in 

Ulp2-Smt3 interaction. Regions in Smt3 could readily be mutated to their corresponding 

SUMO2 patches with very little, if at all, compromising of protein structure. This was 

confirmed by the fact that all Smt3/SUMO2 mutants were well expressed and could be as 

well purified as the substrates featuring exclusively wild-type Smt3 (data not shown).  

The same set of mutations was introduced into each of the three first moieties (counted from 

the distal end) of a poly-Smt3 chain. These are the Smt3 units involved in interaction with 

Ulp2 in the event of cleavage of the first moiety. From this resulted three libraries of variants, 

containing the mutations in the first, the second or the third copy of polymeric Smt3. Indeed, 

in each of the three, different regions are involved (see Figures 20 & 23). For the first two 

moieties a corresponding SUMO2 mutant confirmed this (see Fig. 22). For the third unit, that 
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test is pending, but will be done as soon as possible. These findings fortify the other results 

pointing towards three distinct Smt3 binding sites in the Ulp2 active domain. By structure 

modeling in Chimera, a possible arrangement of trimeric Smt3 on the UD was prepared. As 

shown in Figure 30, it is possible to place three moieties in a proximity to each other that 

allows isopeptide linkage in the UD with the relevant surfaces facing Ulp2. Admittedly, this 

is only true if the flexible segment between residues 546 and 564, which could not be 

displayed in the structure, is assumed to make contact to the M4 region in the third Smt3 

copy. The patches relevant in that moiety are on opposite sides of the molecule. Therefore, 

some flexibility in the UD is prerequisite for proper binding of it, anyway. Hence, 

participation of a floppy loop fits well into this model. Approaching this question by creating 

a Ulp2 mutant lacking this loop, will probably not lead to further clarification, because a 

severely less active mutant (maybe due to misfolding) and a mutant that cannot properly bind 

the third Smt3 probably yield indistinguishable results in the assays at hand. Testing the 

affinity of this loop to Smt3 and Smt3(M4) is an alternative strategy worth trying. 

 

4.2.4.2  The active site of the UD has a comparatively low surface charge 

Computational analysis of the electrostatic surface potential of the UD revealed that it has a 

comparatively low surface charge (Fig. 31). The prominent acidic and basic patches in Ulp1 

and SENP7, respectively, are largely neutralized. In addition, the area is neither very 

hydrophilic, like the active site of Ulp1, nor particularly hydrophobic. These features are in 

favor of the theory concerning cooperative binding of three Smt3 moieties to the UD. If the 

active site does not have the prerequisites for strong interactions to the substrate, probably 

surfaces elsewhere are involved. Considering that the Ulp1 active site shows a completely 

different picture, with dense charge and high hydrophily, this would explain why Ulp1 

readily processes monosumoylated targets: It binds strongly even to mono-Smt3. On the 

other hand, also SENP7 shows a high charge density in its active site. Even though it has 

never been determined whether it has a minimum requirement towards target chain length, it 

is known to preferentially process polymeric SUMO. So the surface features in the active site 

might be part of the explanation for the mechanistic differences between Ulp1 and Ulp2, but 

should be handled with care.  
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4.2.4.3  Co-crystallization of Ulp2 and its target was not possible 

Unfortunately, it was not possible to obtain a co-crystal of the Ulp2 active domain and a 

trimeric Smt3 chain. This would have made all speculations obsolete. However, none of the 

strategies engaged for this purpose led to success. Even though a complex between an 

inactive version of the Ulp2 active domain [UD(C624A)] and 3xSmt3 could be very well 

purified via gel filtration, it was comparatively unstable and precipitated after only four days 

at 4 °C (data not shown). The weak spot was UD(C624A). Apparently, the single-site 

mutation was enough to compromise the protease structure such that it was significantly less 

stable than its active variant. Using an uncleavable 3xSmt3(G98A) chain and the wild-type 

UD was not an option, since binding between this substrate and Ulp2 was too weak to 

maintain the complex during gel filtration (data not shown). In an attempt to use both 

favorable interaction partners, the active UD and 3xSmt3, the UD was treated with H2O2 to 

oxidize the active site cysteine prior to mixing with the substrate chain. Yet, this caused 

massive denaturation of the UD, leaving only a fraction of the initial protein in solution (data 

not shown). Experimenting with other chemical agents did not lead to success, either. For the 

time being, this endeavor has been suspended, but will probably be resumed sometime in the 

future, since only a crystal structure of the complex can ultimately answer the question of 

which surfaces of the UD accommodate the individual Smt3 moieties of tri-Smt3.  

 

4.2.5  SIMs in Ulp2 

	

4.2.5.1  The SIM close to the active site must be subject to control in vivo 

To study the active domain of Ulp2, different truncation mutants were tested. In the course of 

this, it was found that a ∆NTD version (NTD = residues 1-410), unlike full-length Ulp2, 

targets also mono- and di-Smt3, thus is able to dismantle a poly-Smt3 chain to completion 

(see Fig. 16). The reason for this was tracked down to a SIM comprising the sequence 

between D719 and E729. It could be argued that this gain of function was due to exposure of 

a surface, which is buried in the protein structure under normal circumstances. But, 

apparently, this SIM plays a role in vivo. Studies on truncated versions of Ulp2 in vivo 

implicated it in HU sensitivity of the ulp2-∆ strain and interaction with Cdc5 (Baldwin et al. 

2009). Therefore, there must be a mechanism in place that allows transient exposure. A 

mutant that lacks only half the NTD [Ulp2(209-1034)] behaves like full-length Ulp2 (Fig. 

16). This indicates that there is some element between the residues 210 and 410 that controls, 
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possibly covers up, the SIM, but is flexible enough to be moved to allow access to this 

surface. Since this model requires much further investigation to be tested, and since gain-of-

function mutants are always to be handled with caution, this topic was not explored further. 

On a side note, the ∆NTD mutants were not able to capture monosumoylated GFP in a 

binding assay. Still, they readily processed not only 5xSmt3-GFP to completion but also 

Smt3-GFP (data not shown). The reason for that is not clear. Maybe the binding was strong 

enough for a cleavage reaction but too weak to sustain the repeated washing in a binding 

assay.  

 

4.2.5.2  Possible role of SIMs in the non-catalytic domains of Ulp2 

It remains the question, which role the SIMs in the non-catalytic domains of Ulp2 play. The 

one adjacent to the active domain has already been discussed above. There is another one in 

the CTD (residues 926-934) and one in the NTD (residues 202-209) (also see Fig. 4). Neither 

of them has been analyzed, yet. Respective mutants did not exhibit conspicuous cleavage 

patterns in activity assays with the standard substrate 5xSmt3-GFP (data not shown). 

Intrinsically disordered protein regions are frequently found to be involved in low-affinity but 

high-specificity protein-protein interactions (Dyson and Wright 2005). As mentioned before, 

both the NTD and the CTD of Ulp2 are highly disordered. In the light of that, the SIMs 

together with other sequences present in these regions might direct Ulp2 to specific 

sumoylated target proteins. In that scenario, the other element(s) in that respective domain 

could then recognize the protein, while the SIM recognizes the Smt3 modification. This 

might be another part of the explanation why Ulp2 and Ulp1 have different substrate proteins 

(together with localization in the cell etc.). As mentioned earlier, in vivo, Ulp2 is much more 

specific than Ulp1. The SIM-containing disordered regions could be the reason for that. At 

this point, this is purely speculative. The findings presented in this work might be valuable in 

future experiments addressing this issue. 

	

4.2.6  Ulp2 maintains short Smt3 chains 

Interestingly, some deubiquitinating enzymes (DUBs) also seem to employ an exo activity 

towards their substrates (Komander et al. 2009). Namely, Usp14, the mammalian paralogue 

to the S. cerevisiae DUB Ubp6, was found to dismantle poly-ubiquitin chains from their 

distal ends (Hu et al. 2005). On the level of protein architecture, DUBs and SUMO-specific 

proteases are fundamentally different (Mikolajczyk et al. 2007; Hu et al. 2002; Avvakumov 
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et al. 2006; Renatus et al. 2006). Therefore, it was not possible to draw conclusions from an 

alignment of the active domains of Ulp2 and Usp14, since superimposition was hardly 

possible (data not shown). Still, in terms of cleavage mechanism, the two enzymes seem to be 

similar. It was suggested that the sequential processing mode Usp14 exhibits might be an 

editing function by which it can protect proteins decorated with short ubiquitin chains from 

untimely proteasomal degradation. A similar role for Ulp2 is a possible scenario. The 

discovery of STUbLs revealed that from a certain length on, poly-SUMO chains can 

ultimately lead to degradation of their anchor proteins. However, generally, mono- or di-

SUMO is not sufficient to trigger this pathway (Sriramachandran and Dohmen 2014). For 

instance, Rnf4 requires an at least three-membered chain to efficiently recognize poly-SUMO 

(Tatham et al. 2008). Therefore, keeping chains short prevents modified proteins from 

degradation and also sustains the interaction platform, thus other regulatory functions, SUMO 

attachment to the substrate has created.  

 

4.2.7  Ulp2 and STUbLs 

This work showed that –as expected- Smt3 undergoes recycling. It is not degraded alongside 

with its target proteins, but liberated by Ulp2 before the substrate protein is subjected to 

proteasomal degradation. When monitoring Smt3 levels over time after translation stop, they 

remained stable under normal conditions. In contrast, in the absence of Ulp2, Smt3 

diminished. This could be reversed by inhibition of the proteasome: In the presence of 

MG132, Smt3 was in ulp2-∆ as stable as in the benchmark strain (Fig. 34). Apparently, Ulp2 

is the major player if not the only SUMO-specific protease in S. cerevisiae that is involved in 

recycling of Smt3. An analogous experiment with a hypomorphic ulp1-I615N strain did not 

show reduction of Smt3, indicating that it does not have an impact on this pathway. Wss1 

was tested negatively, as well. As mentioned earlier, Wss1 is not predominantly a 

desumoylation enzyme. Still, it could not be completely excluded that it plays a role in this 

process. That is why it was included in this assay. As shown in Figure 34, its absence does 

not affect Smt3 abundance. 

It must not be overlooked, that the mechanistic obligations do not allow Ulp2 to fulfill the 

recycling job completely. Against the background of the mechanistic studies presented in this 

work, it is clear that it would always leave di-Smt3 attached to the substrate. Therefore, there 

are two options: Either mono- or di-Smt3 is degraded alongside with its target, or there is 
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another, yet unknown SUMO-specific protease involved in this, cleaving off the remainders 

Ulp2 left. Future experiments will hopefully shed light on this. 

Previous data showed that in a triple mutant that not only lacks Ulp2 but also the two 

STUbLs Ris1 and Hex3, Smt3 conjugates are stabilized (Maria Miteva, unpublished data). 

Apparently, in the absence of Ulp2, the polymeric SUMO-species are ubiquitinated and 

thereby filed into the UPS pathway of degradation. As mentioned above, Ulp2 seems to 

antagonize this. The mechanistic study presented here revealed that Ulp2 needs unimpeded 

access to the distal end of an Smt3 chain in order to exhibit full processing activity. 

Obstructing the amino-terminus of polymeric Smt3 led to a significant reduction of cleavage 

efficiency (see Fig. 12). One can argue, that attaching uncleavable Smt3 or MBP to the 

substrate chains is not physiologically relevant. Nonetheless, the fact that a blocking species 

can keep Ulp2 from processing a poly-Smt3 chain is highly interesting with respect to the 

STUbL pathway. STUbLs bind polymeric SUMO via their various SIMs. Thereby, they are 

actually obstructing the chain, making it inaccessible for Ulp2. Ris1 contains 4 SIMs; the 

heterodimeric Hex3-Slx8 bears a total of 5 SIMs (Sriramachandran and Dohmen 2014). 

These SIMs allow the STUbLs to wrap up a polymeric Smt3 chain extensively. Once they 

attached a sufficient number of ubiquitin moieties to it, UPS shuttle factors might take over, 

thus also assume the blocking role. This possible model for the Ulp2-STUbL interplay is 

sketched in Figure 35. Notably, a similar relationship has been suggested for SENP6 and 

Rnf4. Amongst others, Rnf4 targets the promyelocytic leukemia (PML) protein and the inner 

kinetochore protein CENP-I. SENP6 was found to counteract polysumoylation of both 

proteins, thereby preventing their degradation via the STUbL-UPS pathway (Mukhopadhyay 

et al. 2010a; Hattersley et al. 2011; Mukhopadhyay et al. 2010b). 

 

 
FIGURE 35: Model of possible interplay between Ulp2 and STUbLs. S = Smt3; Ub = ubiquitin. A, 
Polymeric Smt3 bound by a STUbL is obstructed, such that Ulp2 cannot process it. The STUbL decorates the 
Smt3 chain with several ubiquitin moieties, thereby targeting the anchor protein for degradation by the 
proteasome. B, Ulp2 keeps Smt3 chains short, hence STUbLs cannot bind to them. The degradation of the 
substrate via the STUbL-UPS pathway is thereby prevented. 
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4.2.8  Poly-ubiquitin does not interfere with target recognition by Ulp2 

Blocking the N-terminus of poly-Smt3 with MBP or uncleavable Smt3 significantly reduced 

Ulp2’s cleavage activity towards such a target. Surprisingly, attaching ubiquitin to the distal 

end of an Smt3 chain does not have this effect. It is readily tolerated, even when present in 

multiple copies. For instance, trimeric ubiquitin capping an Smt3 chain did not interfere at all 

with processing of that chain by Ulp2 (Fig. 13). However, it should be noted that this study 

utilized linear fusions of ubiquitin to Smt3 and of ubiquitin to ubiquitin. This is far from 

being authentic. Even more than Smt3-, ubiquitin linkages are kinked. Poly-ubiquitin is 

predominantly formed via K11, K48 or K63, and depending on the exact attachment sites, 

this can lead to a highly compact quaternary structure of the ubiquitin chain (Komander and 

Rape 2012). When attached to polymeric Smt3, in contrast to head-to-tail fusions, such 

species might be effective in hampering poly-Smt3 cleavage by Ulp2. Consequently, the 

results derived from the ubiquitin-capped-substrate assays should only be taken as an 

indication for a flexible appendix to be tolerated by Ulp2, but not be transferred to in-vivo 

poly-ubiquitin-Smt3 mixed species being equally well recognized. Actually, it is well 

possible that poly-ubiquitin as a firm structure might even have a blocking effect shielding 

polymeric Smt3 modifications against cleavage by Ulp2. Desumoylation assays utilizing 

authentically linked ubiquitin moieties capping 5xSmt3 anchored to GFP are an obvious way 

to test for this, and will probably be conducted in the near future. 

 

4.2.9  A high-affinity Smt3 variant 

In the course of this work it was found that introducing the mutations N86E, I88T, A91V, 

and H92F in Smt3 yielded a variant to which both Ulp2 and Ulp1 exhibited a significantly 

elevated affinity compared to wild-type Smt3. The mutation selection originated from the 

SUMO2/Smt3 motif-exchange screen. Since this sort of gain-of-function mutants was not in 

the focus of interest, it was not investigated further whether all four mutations were necessary 

for this or one or the other accounted for the effect alone. As shown in Figure 36, for instance 

the side chain of Ala-91 points in the opposite direction of the Ulp1 catalytic site, thus is 

probably irrelevant for this. Interestingly, the regions around these four residues are relatively 

similar, indicating that the point mutations do not create a specifically attractive patch for 

Ulp-Smt3 binding, but are probably directly involved in the interactions. Even though 

irrelevant physiologically, this finding could be interesting as a biochemical tool. The Smt3 

mutant was very well expressed in E. coli and its stability was not compromised compared to 
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wild type (data not shown). Uncleavable Smt3(M2; G98A)/Smt3(M2;∆G98) coupled to 

agarose or sepharose beads could serve as an affinity resin for purification of recombinantly 

expressed Ulps. Other applications are conceivable. It would be worth trying whether a short 

fragment of Smt3 including these mutations is captured by the proteases. This would even 

broaden the options of application. 

 
FIGURE 36: Structural model of residues possibly accounting for high-affinity binding of Ulp proteases 
to Smt3. Graphics were prepared with Chimera using PDB 1EUV. Blue = active domain of Ulp1; ocher = Smt3. 
Side chains of the residues of interest are displayed in red and labeled in 1-letter-code with numbers. 
 

4.2.10  Ulp2 location 

If Ulp2 takes care of Smt3 recycling, it seems reasonable to suppose that it might be located 

in close proximity to the 26S proteasome, possibly being in direct interaction with it. The 

DUB Usp14 associates with the 19S regulatory particle of the 26S proteasome (Lam et al. 

1997). The fact that Ulp2 and Usp14 share the common feature of processing their targets 

sequentially starting from the distal ends, supports the idea of a similar interaction of Ulp2 

with some proteasomal subunit. However, all investigations done in that respect did not point 

to this. In the course of this work, several variants of binding assays and interaction tests 

were employed to put this theory to the test. One strategy was based on co-purification of the 

26S proteasome with its interaction partners as described before (Verma et al. 2000), the 

other one utilized 26S proteasomes purified from yeast and recombinant Ulp2. Neither 

approach led to detection of any association between the two (data not shown). Consequently, 

Ulp2 does not seem to interact with the proteasome. Yet, it is possible that there are 

mediators involved. Ulp2 may make contact to third-party proteins that in turn bind to 

proteasomal structures. Such an indirect interaction would probably escape notice in a 

binding assay as performed in the course of this work. Firstly, if there were only few 

molecules involved, their signal would be under the detection limit of a pull-down 

experiment on the basis of yeast extracts. Secondly, if the interaction between any two of the 
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involved proteins was rather weak, the association would be lost during an assay as done 

here. Purified 26S proteasomes have undergone several washing steps, possibly loosing all 

interaction partners that are not tightly bound to them, and recombinantly expressed Ulp2 

does not have any binding partners available from the outset. Consequently, a completely 

different approach would be necessary to address the question whether Ulp2’s Smt3-

recycling activity is also reflected in its molecular location. Of note, the same experiments as 

described in this section for Ulp2 were done for Ulp1. Xenopus laevis xSENP1 has been 

reported to specifically interact with Psmd1, a subunit of the proteasomal 19S regulatory 

particle (Ryu et al. 2014). However, none of the tests done in the course of this work 

suggested a similar association for Ulp1. Summing up, even though for some time Wss1 was 

suggested to do so (Mullen et al. 2010), to date there is no verified desumoylating protease 

directly interacting with the proteasome in S. cerevisiae. The details of the regulation of Smt3 

recycling will be an interesting topic for future studies. 
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5  Outlook 
At the beginning of this study, Ulp2 was hardly characterized on the molecular level. In vivo 

studies had already given a solid foundation for what its role in the cell is, and had also given 

some hint at its target preferences. However, due to its reluctance to recombinant expression, 

an in-depth characterization was missing. This work established an in-vitro assay system that 

allowed mechanistic insight. Also, solving the structure of the active domain added to the 

deeper understanding of Ulp2 and gave rise to new possibilities for structure-function 

analysis of this protease. Last but not least, in vivo studies focusing on a previously diagnosed 

proteolysis defect of the ulp2-∆ strain suggested a model in which Ulp2 is in an antagonistic 

relationship with STUbLs, competing for polysumoylated substrates. 

Both, structure and in vivo analysis left some standing questions and opened many new 

interesting ones: Which structural features engage Ulp2 to an ordered, sequential processing 

mode? How can Ulp2 carry out its recycling-enzyme role, if it does not associate with the 

proteasome –or does it? Is there another, yet to be discovered, player in SUMO recycling 

trimming off mono- and di-SUMO from proteasome targets? Future experiments will 

hopefully shed light on these issues. 

Twenty years ago, the existence of SUMO was discovered. Where are we going to be twenty 

years from now? This work added another piece to the big puzzle the SUMO network is. A 

puzzle, whose size one can only guess. 
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List of Oligonucleotides 
 
Tab. 9: Oligonucleotides used in this study 
Name Sequence (5’→3’) Description 
JE4234 gatgaattcatggactacaaggacgacgatgacaaggagctccagattttcgtcaagactttg

a 
EcoRI-FLAG-SacI-UBI_fw 

JE4235 ggtggtacccagcgtaatctgggacgtcgtatgggtatttgtatagttcatccatgcca GFP-HA-KpnI_rv 
JE4236 gttcttctcctttactatgcataccacctcttagccttagc UBI-NsiI-Overlap_GFP_rv 
JE4237 gctaagaggtggtatgcatagtaaaggagaagaacttttc Overlap_UBI-NsiI-GFP_fw 
JE4238 gatgaattcatggactacaag FLAG-UBI_fw 
JE4239 ggtggtacccagcgtaatc GFP-HA_rv 
JE4240 ggtatgcatgtcaagcctgagactcac NsiI-∆N17SMT3_fw 
JE4241 tttttctgcagaccaccaatctgttctctgt ∆N17SMT3-PstI_rv 
JE4242 aaaagagctctcggactcagaagtcaatca SacI-SMT3_fw 
JE4281 cgcgcgatgcataccaccaatctgttctctgt SMT3-NsiI_rv 
JE4243 gcgcctgcaggagaacttgtacttccagagcatgtctgccagaaaacgcaagtttaatagtct

c 
PstI-TEVp.r.s.-ULP2_fw 

JE4965 gcgcaagctttcacttgtcatcgtcgtccttgtagtcggtaccagggtcttcatcttccaagag ULP2-KpnI-FLAG-
HindIII_rv 

JE4245 gatggtgatgttaatgggc GFP sequencing (internal) 
JE4246 gactacaaggacgacgatg FLAG_fw 
JE4247 tcggactcagaagtcaagaagc SMT3_fw 
JE4248 ctcctttactatgcagacc SMT3-GFP_rv (sequencing) 
JE4353 ggggaattcatggactacaaggacgacgatgacaaggagctcggtagtaaaggagaagaa

cttttcactgg 
EcoRI-FLAG-SacI-GFP_fw 

JE4353 ggggaattcgagctcggtatgcagattttcgtcaagactttga EcoRI-FLAG-UBI_fw 
JE4250 ggatgtgctgcaaggcg pMALc2x_rv (sequencing) 
JE4768 gctgaagtcttacgaggaag pMALc2x_fw (sequencing) 
JE4269 gaacttgtacttccagagc ULP2 sequencing (internal) 
JE4270 cagccactgttgacgcc ULP2 sequencing (internal) 
JE4271 ctggggaatggttcaccggaac ULP2 sequencing (internal) 
JE4272 ctgcaagctccgcttca ULP2 sequencing (internal) 
JE4273 ggactcgtattgccagc ULP2 sequencing (internal) 
JE4274 gggttaatgatagcattttgg ULP2 sequencing (internal) 
JE4275 cgatgccatcaactccg ULP2 sequencing (internal) 
JE4276 caattgtttccaccggattttc ULP2 sequencing (internal) 
JE4277 gtggtgttcatgttattttg ULP2 sequencing (internal) 
JE4278 ccgtagtacgacagccc ULP2 sequencing (internal) 
JE4279 ctctatcgactgattctatgg ULP2 sequencing (internal) 
JE4280 gatgtggcatttagtagtcc ULP2 sequencing (internal) 
JE4282 gtgtctagcggtttgagac ULP2 sequencing (internal) 
JE4283 ctggggaatggttcaccggaac ULP2 sequencing (internal) 
JE4284 ctgcaagctccgcttca ULP2 sequencing (internal) 
JE4285 ggactcgtattgccagc ULP2 sequencing (internal) 
JE4286 gggttaatgatagcattttgg ULP2 sequencing (internal) 
JE4287 cgatgccatcaactccg ULP2 sequencing (internal) 
JE4288 gtggtgttcatgttattttg ULP2 sequencing (internal) 
JE4289 ccgtagtacgacagccc ULP2 sequencing (internal) 
JE4290 ctctatcgactgattctatgg ULP2 sequencing (internal) 
JE4530a gcgcggatccgagaacttgtacttccagagcatgtcagttgaagtagataagcac BamHI-TEVp.r.s.-ULP1_fw 
JE4532a gcgcctgcagtcacttgtcatcgtcgtccttgtagtcggtaccttttaaagcgtcggttaaa 

atcaaatg 
ULP1-KpnI-FLAG-STOP-
PstI_rv 

JE4361 gcttctcaaaaaagcaattgtg ULP1 sequencing (internal) 
JE4362 gctaaatgacactatcattgag ULP1 sequencing (internal) 
JE4363 cacaattgcttttttgagaagc ULP1 sequencing (internal) 
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JE4364 ctcaatgatagtgtcatttagc ULP1 sequencing (internal) 
JE4406 gcgcgcgagctcgtcaagcctgagactcac SacI-∆N17SMT3_fw 
JE4426 gcgcgagctcaccggttcggactcagaagtcaatca SacI-AgeI-SMT3-fw 
JE4427 aaaagagctcaccggtatgaaaatcgaagaaggtaaactgg SacI-AgeI-MBP-fw 
JE4505 aaaaaaatgcatagtctgcgcgtctttcagggcttc MBP-NsiI_rv 
JE4423 cgcgcgggtaccatgcatagcaccaatctgttctctgt SMT3(G98A)-NsiI-KpnI_rv 
JE4424 cgcgcgctgcagagcaccaatctgttctctgtgagc SMT3(G98A)-PstI_rv 
JE4481** aaaaaaccggtgagaacttgtacttccagagctcggactcagaagtcaatca AgeI-TEVp.r.s.-SMT3_fw 
JE4482 gggggtacccgctctggaagtacaagttctcagcgtaatctgggacgtcg HA-TEVp.r.s.-KpnI_rv 
JE4581 gcgcgagctcgagaacttgtacttccagagctcggactcagaagtcaatca SacI-SUMO1_fw 
JE4584 cgcgcatgcataccccccgtttgttcctg SUMO1-NsiI_rv 
JE4587 gcgcgcatgcatggtatgcagattttcgtcaagactttga NsiI-UBI_fw 
JE4588 cgcgcgctgcagaccacctcttagccttagcac UBI-PstI_rv 
JE4600* gcgcggtaccgctctggaagtacaagttctcatgcataccaccaatctgttctctgt SMT3-NsiI-TEVp.r.s.-

KpnI_rv 
JE4610 gcgcgagctcaccggtgagaacttgtacttccagagcgtcaagcctgagactcac 

 
SacI-AgeI-TEVp.r.s.-
∆N17SMT3_fw 

JE4616 gcgcgcgagctcggtgccgacgaaaagcccaagg SacI-SUMO2_fw 
JE4617 gcgcatgcatacctcccgtctgctgttgg SUMO2-NsiI_rv 
JE4624 gcgcgcatgcatgccgacgaaaagcccaagg NsiI-SUMO2_fw 
JE4625 cgcgcgctgcagacctcccgtctgctgttgg SUMO2-PstI_rv 
JE4966 gcgcatgcatacctcccgtctgctgttggtgagcctcaataatatcgttatcc SMT3(EndM)-NsiI_rv 
JE4967 aaactgcaccacagaaccatctccatcggacacctttaaattg SMT3(M0)_rv (overlap) 
JE4968 gatggttctgtggtgcagtttaagatcaaaaagaccactcctttaag SMT3(M0)_fw (overlap) 
JE4969 gattggttgcccgtcaaatcggaatctgatggagtccatttccttaccctgtc SMT3(M1)_rv (overlap) 
JE4970 atcagattccgatttgacgggcaaccaatcattcaagctgatcagacccctg SMT3(M1)_fw (overlap) 
JE4971 gaacacatcaattgtatcttcatcctccatgtccaaatcttc SMT3(M2)_rv 
JE4972 gcgcatgcataccaccaatctgttctctgaacacatcaattgtatcttc SMT3(M2)-NsiI_rv 
JE4658 aaaactgcaggagaacttgtacttccag PstI-TEVp.r.s._fw 
JE4659 tttttaagctttcacttgtcatcgtcg FLAG-STOP-HindIII_rv 
JE4660 gctaggtttaaacagttctggtgtttc ULP2-PmeI_rv (internal) 
JE4661 gtggaaacaattgatgtatggaag ULP2-MfeI_fw (internal) 
JE4973 ccacttagtaaactaatgaaagcgttcgctaaaagacagggtaag SMT3(M4)_fw (overlap) 
JE4974 gtttactaagtggtgtatgccttttgatcttgaagaagatctctg SMT3(M4)_rv (overlap) 
JE4975 cagggattgtcaatgaggcagttaagattcttgtacgacgg SMT3(M5)_fw (overlap) 
JE4976 cattgacaatccctgtcgttcagcgaacgcttccatcagccttc SMT3(M5)_rv (overlap) 
JE4977 gcaggtgtgtctgtttcattaattctaataccgtcgtacaag SMT3(M6)_rv  
JE4978 gcgcatgcataccaccaatctgttctctgtgagcctcaataatatcgttatcctccatttccaact

gtgcaggtgtgtctg 
SMT3(M6)-NsiI_rv 

JE4675 cgtacaagaatcttaaggagtccatttcctttccctgtcgttcacaataggc SUMO2(M1,M5)_rv 
JE4676 ccttaagattcttgtacgacggtattagaatcaatgaaacagacacacc SUMO2(M1,M5)_fw 
JE4677 gcgcatgcataccaccaatctgttctctgaacacatcaattgtatcttcatcc SUMO2(EndM)_rv 
JE4678 acaagaatcttaaggagtccatttccttaccaccggtcaaagtcttgacgaaaatctgcat UBI(M1,M5)_rv 
JE4679 ccttaagattcttgtacgacggtattagaggtggtggtaaaaccataacattggaag UBI(M1,M5)_fw 
JE4680 gcgcatgcataccaccaatctgttctctcacaagatgtaaggtggactcc UBI(EndM)_rv 
JE4733 aaaggaattgagtttgagaaagacttcaaaag EcoRI-5’∆ULP1_fw 
JE4734 gcccatttgaatttaaccgacgc ∆ULP1(I615N)_fw (overlap) 
JE4735 gcgtcggttaaattcaaatgggc ∆ULP1(I615N)_rv (overlap) 
JE4736 tttggtaccccacaatttactttacttatcctc ULP1+495nt downstream-

KpnI_rv 
JE4737 gcgcaagctttcacttgtcatcgtcgtccttgtagtcggtacctttcagatagctgatgtaattga

g 
 

ULP2(693)-KpnI-FLAG-
HindIII_rv 

JE4739 tttttaccggtaccacctcttagccttagc UBI-AgeI_rv 
JE4743 gcgcaagctttcacttgtcatcgtcgtccttgtagtcggtaccattatcagttattatttcaccg 

 
ULP2(774)-KpnI-FLAG-
HindIII_rv 

JE4746 gcgcctgcaggagaacttgtacttccagagctcaaattcagaatttgatgatgc PstI-TEVp.r.s.-ULP2(411)_fw 
JE4747 gcgcctgcaggagaacttgtacttccagagcatgagtagtttgtgtctacagc PstI-TEVp.r.s.-Ubc9_fw 
JE4748 gcgcaagcttctatttagagtactgtttagcttgaag Ubc9-HindIII_fw 
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JE4755 tttttctgcagaccaccaatctgttctctg SMT3(M2)-PstI_rv 
JE4756 tttttctgcagacctcccgtctgctgttgg SMT3(EndM)-PstI_rv 
JE4774 gcgcaagctttcacttgtcatcgtcgtccttgtagtcggtaccggtgctttttttctcctcc 

 
ULP2(710)-KpnI-FLAG-
HindIII_rv 

JE4798 gcgcctgcaggagaacttgtacttccagagcgataagaagaactcttttatggc PstI-TEVp.r.s.-ULP2(201)_fw 
JE4799 gcgcctgcaggagaacttgtacttccagagcaattcacaagttaatctgctt PstI-TEVp.r.s.-ULP2(209)_fw 
JE4823 gatcctcaatggtgatgatggtggtgacctccgccggtac 

 
KpnI-3xGly-6xHis-HindIII_rv 

JE4824 cggcggaggtcaccaccatcatcaccattgag 
 

KpnI-3xGly-6xHis-
HindIII_fw 

JE4835 aaaaaggatccgactacaaggacgacgatgacaagggtgaatcgtcgtcgccgtcgc 
 

BamHI-FLAG-
TEVPROTEASE_fw 

JE4836 tttttctgcagttaattcatgagttgagtcgcttcc TEVPROTEASE-PstI_rv 
JE4840 gcgcaagctttcaatggtgatgatggtggtgggtacctccaccgccggtaccggtgcttttttt

ctcctcc 
ULP2(710)-KpnI-3xGly-
6xHis-HindIII_rv 

JE4888 ggtatgcatactgagaacaacgatcatattaatttg NsiI-∆N11SUMO2_fw 
JE4889 gtctagcagcgaacgcttccatcagc SMT3(K54A)_rv (overlap) 
JE4890 ttcgctgctagacagggtaaggaaatg SMT3(K54A)_fw (overlap) 
JE4891 gtctttcagcgaacgcttccatcagc SMT3(K54E)_rv (overlap) 
JE4892 ttcgctgaaagacagggtaaggaaatg SMT3(K54E)_fw (overlap) 
JE4893 atttcagcaccctgtcttttagcgaacg SMT3(K58A)_rv (overlap) 
JE4894 gggtgctgaaatggactccttaagattc SMT3(K58A)_fw (overlap) 
JE4895 atttcttcaccctgtcttttagcgaacg SMT3(K58E)_rv (overlap) 
JE4896 gggtgaagaaatggactccttaagattc SMT3(K58E)_fw (overlap) 
JE4897 gtccatagccttaccctgtcttttagcg SMT3(E59A)_rv (overlap) 
JE4898 ggtaaggctatggactccttaagattcttg SMT3(E59A)_fw (overlap) 
JE4899 gtccattctcttaccctgtcttttagcg SMT3(E59R)_rv (overlap) 
JE4900 ggtaagagaatggactccttaagattcttg SMT3(E59R)_fw (overlap) 
JE4901 taaggaggccatttccttaccctgtc SMT3(D61A)_rv (overlap) 
JE4902 gaaatggcctccttaagattcttg SMT3(D61A)_fw (overlap) 
JE4903 taaggatctcatttccttaccctgtc SMT3(D61R)_rv (overlap) 
JE4904 gaaatgagatccttaagattcttg SMT3(D61R)_fw (overlap) 
JE4905 cttaaggcgtccatttccttaccctg SMT3(S62A)_rv (overlap) 
JE4906 atggacgccttaagattcttgtacgac SMT3(S62A)_fw (overlap) 
JE4907 tattagaattcaagaagatcagacccctgaag SMT3(A73E)_fw (overlap) 
JE4908 ctgatcttcttgaattctaataccgtcgtac SMT3(A73E)_rv (overlap) 
JE4909 aattcaagctgctcagacccctgaag SMT3(D74A)_fw (overlap) 
JE4910 gtctgagcagcttgaattctaataccg SMT3(D74A)_rv (overlap) 
JE4911 aattcaagctaaacagacccctgaagatttg SMT3(D74K)_fw (overlap) 
JE4912 gtctgtttagcttgaattctaataccg SMT3(D74K)_rv (overlap) 
JE4913 aagctgatgacacccctgaagatttggac SMT3(Q75D)_fw (overlap) 
JE4914 aggggtgtcatcagcttgaattctaataccg SMT3(Q75D)_rv (overlap) 
JE4915 aagctgatgcgacccctgaagatttggac SMT3(Q75A)_fw (overlap) 
JE4916 aggggtcgcatcagcttgaattctaataccg SMT3(Q75A)_rv (overlap) 
JE4917 cagacccctgcagatttggacatggaggataac SMT3(E78A)_fw (overlap) 
JE4918 atgtccaaatctgcaggggtctgatcagcttg SMT3(E78A)_rv (overlap) 
JE4919 cagacccctcgagatttggacatggaggataac SMT3(E78R)_fw (overlap) 
JE4920 atgtccaaatctcgaggggtctgatcagcttg SMT3(E78R)_rv (overlap) 
JE4921 cagacccctgaacgtttggacatggaggataac SMT3(D79A)_fw (overlap) 
JE4922 catgtccaaacgttcaggggtctgatcagcttg SMT3(D79A)_rv (overlap) 
JE4923 cagacccctgaaaaattggacatggaggataac SMT3(D79K)_fw (overlap) 
JE4924 catgtccaatttttcaggggtctgatcagcttg SMT3(D79K)_rv (overlap) 
JE4925 cttcaggggtctgatcagcttggattggttgcccgtcaaatc SUMO2(M6)_rv (overlap) 
JE4926 ctgatcagacccctgaagatttggacatggaggatgaagatacaattg SUMO2(M6)_fw (overlap) 
MS1980 ggtatgcatactgagaacaacgatcatattaatttg GFP_rv (internal; sequencing) 
T7-981079 taatacgactcactatag pET11a sequencing 
pET-RP ctagttattgctcagcgg pET11a sequencing 
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Appendix 
	

Abbreviations 
	
5-FOA  5-fluoroorotic acid 
aa  amino acids 
amp  ampicillin 
AP  alkaline phosphatase 
APS  Ammonium persulfate 
ATB  activity test buffer 
AVP  adenovirus processing protease 
BSA  bovine serum albumin 
CaCl2  calcium chloride 
cam  chloramphenicol 
Cdk1  cyclin-dependent kinase 1 
CTD  carboxy-terminal non-catalytic domain 
C-terminus carboxyl terminus 
CuSO4  copper sulfate 
CV  column volume 
Cys  cysteine 
dATP  deoxyadenosine triphosphate 
dCTP  deoxycytidine triphosphate 
ddH2O  double-distilled water   
DeSI  deSUMOylation isopeptidase 
DLS  dynamic light scattering 
DMSO  dimethyl sulfoxide 
dGTP  deoxyguanosine triphosphate 
dNTP  deoxynucleoside triphosphate 
DTT  dithiothreitol  
dTTP  deoxythymidine triphosphate   
DUB  deubiquitinating enzyme 
E1  activating enzyme 
E2  conjugating enzyme 
E3  ligating enzyme 
E.coli  Escherichia coli 
EDTA  ethylenediaminetetraacetic acid 
eGFP  enhanced green fluorescent protein 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
GFP  green fluorescent protein 
Gly  glycine 
h  hour 
HCl  hydrochloric acid 
His6  hexahistidine 
HMW  high molecular weight 
HRP  horseradish peroxidase 
hygB  hygromycine 
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IPTG  isopropyl-beta-D-thio-galactoside 
kan  kanamycine 
kb  kilobasepairs 
KCl  potassium chloride 
kD/kDa kilodalton 
KH2PO4 Potassium dihydrogen phosphate 
KOH  Potassium hydroxide 
LB  lysogeny broth 
LB+Amp LB medium containing 100 µg/ml ampicillin 
LB+Cam  LB medium containing 25 µg/ml chloramphenicol 
LiAc  lithium acetate 
Lys  lysine 
M  mol per litre 
m  milli 
MgCl2  Magnesium chloride 
min  minute 
Na2HPO4 disodium hydrogen phosphate 
NaH2PO4 sodium dihydrogen phosphate 
NaCl  sodium chloride 
nat  nourseothricin 
NEDD8  Neural-precursor-cell-expressed developmentally downregulated protein-8 
NLS  nuclear localization signal 
NPC  nuclear pore complex 
NTD  amino-terminal non-catalytic domain 
N-terminus amino terminus 
OD600  optical density at 600 nm 
PAGE  polyacrylamide gel electrophoresis 
PBS  phosphate-buffered saline 
PBS-T  phosphate-buffered saline plus Tween-20 
PCR  polymerase chain reaction 
PML  promyelocytic leukemia 
PMSF phenylmethylsulfonyl fluoride 
RING really interesting new gene 
r.m.s.d. root mean square deviation 
rpm rounds per minute 
SAE1  SUMO-activating enzyme subunit 1 
SAE2  SUMO-activating enzyme subunit 1 
S. cerevisiae Saccharomyces cerevisiae 
SDS  sodium dodecyl sulfate 
SENP  sentrin-specific protease 
SIM  SUMO-interacting motif 
STUbL SUMO-targeted ubiquitin ligase  
SUMO  small ubiquitin-related modifier 
TEMED tetramethylethylenediamine 
TEV  Tobacco Etch Virus 
TEVp.r.s TEV protease recognition site 
Ubc9  ubiquitin-like modifier carrier 9 
Uba2  ubiquitin-like modifier activating enzyme 2 
Ubl  ubiquitin-like protein 
Ubi  ubiquitin 
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UD  Ulp2 active domain 
UFD  ubiquitin fusion degradation 
Ulp  UBL-specific protease 
ULS  ubiquitin ligases for sumoylated proteins   
USPL1  ubiquitin-specific protease-like 1 
Wss1  weak suppressor of smt3-33 1 
SD  synthetic dextrose (medium) 
TCEP  tris(2-carboxyethyl)phosphine 
wt  wild type 
w/v  weight per volume 
YNB  yeast nitrogen base 
YPD  yeast peptone medium containing 2 % glucose 
µg  microgram 
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