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a b s t r a c t

A variety of ionic liquids has been tested for its catalytic effect on the dehydrogenation of

ethylene diamine bisborane (EDB). The catalytic activity of ionic liquids, such as 1-butyl-

2,3-dimethylimidazolium chloride ([BMMIM]Cl), 1-butyl-2,3-dimethylimidazolium acetate

([BMMIM][OAc]), 1-butyl-3-methylimidazolium acetate ([BMIM][OAc]) and 1-butyl-3-

methylimidazolium methylsulfonate ([BMIM][OMs]) is compared and the mixture

[BMMIM]Cl/EDB was investigated. This system is able to deliver about 6.5 wt% of hydrogen

at 140 �C competing with conventional hydrogen storage pressure tanks. The correlation

between polarity of the ILs and hydrogen yield was investigated and the suitability for

hydrogen storage systems is evaluated and discussed.

Copyright ª 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.

1. Introduction

The ongoing demand for fossil fuels challenges current sci-

entists to develop a material able to substitute oil based en-

ergy carriers sustainably. A very appealing material due to its

wide availability and high energy content is hydrogen [1,2].

One critical hurdle in the application of hydrogen as energy

carrier is its storage due to its low gravimetric density and

scarce compressibility. One approach to solve this problem is

storing hydrogen chemically and releasing it thermally or by

reaction on demand [1e7].

As hydrogen storage material several compounds are dis-

cussed. Apart from (metal-)hydrides, amides and imides, the

dehydrogenation and reforming of hydrocarbons and amine

borane adducts is considered [2]. The advantages and disad-

vantages of these compounds and some physical or combined

storage methods are precisely discussed in the review article

by Schüth and co-workers [2].

The focus of research in the class of amine boranes lies

mainly on ammonia borane (AB) due to its low molecular

weight and thus high hydrogen content [3,8e16]. The

decomposition of AB results in a distinct contamination of the

released hydrogen by ammonia and borazine, which is

a major problem for application in fuel cells [13,17,18]. The

decomposition of AB derivatives can circumvent this problem

since nitrogen substituted derivatives of borazine as well as

substituted amines are substantially less volatile. In this

context methyl amine borane (MeAB) [19], sec-butyl amine
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borane (SBAB) [20], hydrazine borane (HB) [7] and ethylene

diamine bisborane (EDB) have been investigated [5,6].

For engineering and handling reasons liquid hydrogen

storage materials are preferred. Especially controllability of

the release and refueling issues favor a liquid storage system

over solid ones.

One approach toward a liquid system and to improve gas

purity is to incorporate an amine borane in a cyclic compound.

The cyclic boronnitrogen (BN) systemBN-2-methylcylopentane

is able to release 4.7 wt% of hydrogen and has the major

advantage of being liquid [21]. The dehydrogenation product of

this compound is the cyclic trimer, which is also liquid. The

recycling of this system was demonstrated, although its effi-

ciency is still unsatisfactory.

Besides the approaches of using molecular hydrocarbons

as hydrogen storage material, the application of ionic liquids

(IL) and their unique properties promise considerable advan-

tages. ILs support the hydrogen liberation [11] and uptakemay

be enhanced by providing a liquid system when solubilizing

solid spent fuel materials. ILs have a very low volatility, hence

no contamination of the gas stream is to be expected, and

appear chemically inert while providing a polar solvent envi-

ronment for chemical reactions. Their tunable properties

make them interesting for a variety of applications in this field

of research [22].

The application of ILs as hydrogen storage material has

been attempted in two different ways. The first was the

incorporation of a cyclohexyl moiety in an imidazolium IL, so

that the cation of the IL can be reversibly dehydrogenated [23].

The second approach targeted a BN compound, but ionic in

nature: The salt consisting of methylguanidinium as cation

and borohydride as anion is liquid at room temperature and

depicts an interesting material for hydrogen liberation [24].

Due to the formation of polymeric species the dehydrogen-

ation results in a solid spent fuel product.

In another way ILs can be employed to solubilize a storage

material. This approach was investigated in the blend of SBAB

and AB in the IL ethylmethylimidazolium ethylsulfate ([EMIM]

[EtSO4]) by Baker and co-workers [20]. This liquid blend is able

to release hydrogen in high purity, since the liberation of

ammonia and borazine is prevented. One of the major draw-

backs, which is a typical problem for application of ILs in this

context, is the reduced gravimetric efficiency resulting from

the addition of IL to the system.

The gravimetric efficiency is a major advantage of several

solid systems. One solid AB derivative under investigation is

HB mixed with LiH to balance the number of protic and

hydridic hydrogen atoms in the system [7]. The gravimetric

efficiency of this system is outstanding; nearly 12 wt% could

be released at moderate temperatures.

In the mixture of AB and 1-butyl-3-methylimidazolium

chloride ([BMIM]Cl) [11] the use of the IL clearly lowers the

temperature required for dehydrogenation and improves the

extent of hydrogen production. It is proposed that this

enhancement is caused by the stabilizing effect of the IL in the

formation of an intermediate diammoniate of diborane.

The influence of transition metal salts on this system was

investigated [25]. At low temperatures these metal salts

improve hydrogen yield from AB decomposition in [BMIM]Cl

considerably. Under the mentioned conditions the reduction

of these metal salts seems plausible. Although the nature of

the active species remains unclear, the beneficial effect of

some metal salts could be demonstrated.

Efficient recycling is a major topic in the search for

a hydrogen storage material since recycling is crucial for an

acceptable efficiency. One prototypic reaction for the regen-

eration of AB spent fuel has recently been demonstrated by

Sutton and co-workers [26]. The regeneration was realized by

stoichiometric reduction with hydrazine in liquid ammonia.

In our approach different ILs have been tested for sup-

ported dehydrogenation of EDB. The polar reaction medium

provided by some ILs enhances decomposition in means of

reduced temperature and extent of hydrogen release. For one

particular IL, namely 1-butyl-2,3-dimethylimidazolium chlo-

ride ([BMMIM]Cl) the dehydrogenation characteristics for dif-

ferent compositions and temperatures have been tested and

compared. The thermal dehydrogenation can be supported by

certain ILs in regards to the required temperature and overall

yield at temperatures of 100e140 �C.

2. Experimental

All ILs have been prepared according to or adapted from lit-

erature methods [27e29]. All dehydrogenation reactions were

carried out without precautions against moisture or oxygen.

For the dehydrogenation experiments, in general 25 mg EDB

was mixed with 25 mg of the respective IL. In cases of liquid

ILs a tolerance of 10% was set due to technical limitations. A

glass reactor was connected to a mass flow meter (vide infra)

and set into an aluminum block that was preheated to the

desired temperature. All dehydrogenation data were cor-

rected by experimental data of empty glass reactors at the set

temperature to compensate for thermal expansion.

The amount of released hydrogen was determined with

a mass flow meter of the manufacturer mks connected via an

analog connection to a desktop computer. The data were

recorded with the software RealView 3.0 by ABACOM. Data

processingwas conductedwithOriginPro 8.5GbyOriginLab. The

purityof the releasedhydrogenwascontrolled inrepresentative

samples with a HPR20 gas analyzing system byHiden Analytical.

3. Results and discussion

3.1. Screening of ILs

The enhanced effect of certain ILs on the thermal H2 liberation

from EDB has been evaluated. The thermal dehydrogenation

can be described as a dehydropolymerization as shown in the

following reaction scheme (Fig. 1). The singlemolecules of EDB

oligomerize to boron bridged species while releasing

hydrogen.

For this application a variety of ILs has been chosen.

The first subset are ionic liquids containing methyl and

dimethylimidazolium cations (see Fig. 2). Derivatives with

butyl chains, butyronitrile sidechains (1-(butyronitrile)-3-

methylimidazolium chloride) and diethylamino functional-

ized ethyl sidechains (1-(N,N-diethyl-2-amino)ethylene-2,3-

dimethylimidazolium chloride) were applied. As counter
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ions methylsulfonate (mesylate), N,N-bis-(trifluorosulfonyl)

imide, chloride, acetate, iodide, tetrafluoroborate and hexa-

fluorophosphate were used. The possible enhancing effect of

these ILs on the dehydrogenation of EDB/IL mixtures was

investigated.

It should be noted that the decomposition of pure EDB has

an induction period, that is suppressed by almost every

tested IL, apart from [BMMIM][NTf2] and [BMIM][OMs] (see

Fig. 3). The least performing IL in this subset is [BMMIM]I.

Although the induction period is shorter, the system shows

a lower yield than the pure EDB system. The ILs [BMMIM]

[NTf2], [(CN)BMIM]Cl and [BMMIM][PF6] perform very similar

to pure EDB in reaction rate and yield. A slight enhancement

is obtained by using [BMIM][OMs], [BMMIM][BF4] and

a stronger effect by [BMMIM]Cl and [(Et)2NEMMIM]Cl. The

latter increase the yield of H2 by about 50%. The best per-

forming ILs tested here are the acetate ILs [BMIM][OAc] and

[BMMIM][OAc], resulting in higher reaction rates and

improved yields up to 80e90%.

Most of the dehydrogenations at 120 �C occur in about

20 min. The reaction characteristically starts fast and slows

down during progress. In the cases of [BMMIM][OAc] and

[BMIM][OAc] the reaction takes about 40 min, though the

release is faster than all other tested ILs (see Fig. 3).

To compare the yield of dehydrogenation reactions with

different EDB/IL mixtures, the yields are depicted without ki-

netic information in Fig. 4. The application of [BMMIM]I,

[BMMIM][NTf2], [BMMIM][PF6], [(CN)BMIM]Cl, [BMIM][OMs] and

[BMMIM][BF4] result in hydrogen yields similar to the dehy-

drogenation of neat EDB. Higher yields are obtained when

using [BMMIM]Cl, [(Et)2NEMMIM]Cl, [BMMIM][OAc] or [BMIM]

[OAc]. These ILs yield 3.02, 3.31, 3.67 and 3.81 equivalents of

hydrogen from EDB respectively in comparison to 2.14

equivalents from pure EDB decomposition.

Contradicting our initial expectations the introduction of

functional groups on the sidechains of the ILs does not result

in significantly higher yields ([(CN)BMIM]Cl and [(Et)2NEMMIM]

Cl). The amine functionalized IL performs slightly better

(3.31 eq.) in comparison to the analog ILwith a butyl-sidechain

(3.02 eq.), the nitrile functionalized IL (2.20 eq.) performs

equally as neat EDB (2.14 eq.), hence no significant beneficial

effect on the dehydrogenation is observable.

The subset of ILs with [BMMIM] cations follows a certain

trend implied by the anion. According to the trend in mean

Fig. 1 e Scheme of the dehydropolymerization of EDB.

Fig. 2 e Structures of applied ionic liquids with an imidazolium cation.
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b-values of the KamleteTaft parameters reported by Jessop

et al. [30] the yields of hydrogen relate to the basicity of the

ILs. The ILs containing anions with very low mean b-values,

i.e. [NTf2]
� [PF6]

� and [BF4]
� as well as the ILs containing

anions with higher mean b-values like Cl� and [OAc]�

bearing the identical cationic species ([BMMIM]þ) strictly

follow the trend as can be seen in Fig. 5. There seems to be

a distinct tendency that correlates basicity and hydrogen

yield in this setup though there certainly is no strict linear

correlation.

As there is no mean b-value reported for the iodide

anion, it is omitted. While the ILs containing anions with

lower b-values result in hydrogen yields similar to neat EDB

dehydrogenation, the more basic ones (higher mean b-values,

Cl� and [OAc]�) significantly increase hydrogen yield.

The observed correlation between basicity and promoting

effect on dehydrogenation can as well be found in the results

Fig. 3 e Time-resolved hydrogen release of neat EDB and

different EDB/IL mixtures at 120 �C.

Fig. 4 e Dehydrogenation yields of EDB supported by imidazolium based ILs.

Fig. 5 e Plot of equivalents of released hydrogen in relation

to mean b-values of anions of the applied IL (for NTf2
L, PF6

L,

BF4
L, ClL and OAcL) (line for visualization only).
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obtained by Sneddon et al. [11] for the dehydrogenation of AB.

In their experiments with different imidazolium ILs, the

hydrogen yield follows the same basicity trend as in our ex-

periments. Though they varied the cations sidechains the

yield seems to be determined by the anion and the successive

basicity. The dehydrogenations of EDB as well as AB proceed

via an ionic intermediate as shown in Fig. 1 [5,11]. The for-

mation of the intermediate is proposed to be the rate deter-

mining step. The increase in reaction rate as well as lowering

of the required temperature may result from the stabilization

of this ionic intermediate by a more Brønsted basic environ-

ment as provided by certain ILs.

To verify the effect of the ILs and distinguish promoting

effects of the ILs from basicity effects of the acetate anion we

repeated the dehydrogenation experiment with the addition

of sodium acetate.

In comparison to decomposition of pure EDB (Table 1, entry

1), the addition of sodium acetate (Table 1, entry 2) yields

(within experimental error) a similar amount of hydrogen.

The mixture of EDB with [BMMIM]Cl and sodium acetate

(Table 1, entry 5) resulted in a lower yield compared to EDB

with [BMMIM]Cl (Table 1, entry 3). The preformed IL [BMMIM]

[OAc] appears crucial for improved hydrogen yield (Table 1,

entry 4).

Besides the investigations toward imidazolium ILs a variety

of pyrrolidinium and pyridinium ILs were examined for

promoting effects on the dehydrogenation of EDB (see Fig. 6). In

this subset four different ILs bearing a pyrrolidinium IL, two of

which with butyl and methyl sidechains ([BMpyr][OMs]

and [BMpyr]Cl) and the remaining two with a butyronitrile

and a methyl sidechain ([(CN)BMpyr][NTf2] and [(CN)BMpyr]

[N(CN)2]) were investigated. Secondly, two functionalized pyr-

idinium ILs were subjected to studies, one bearing a butyroni-

trile sidechain ([(CN)Bpy]Cl), the other one with an N,N-

Diethyl-2-aminoethyl sidechain ([(Et)2NEpy][OTs]).

In the dehydrogenation experiments containing each one

of these ILs in a mixture with EDB, all applied ILs suppress the

induction period of neat EDB dehydrogenation (see Fig. 7). The

nitrile functionalized pyridinium IL [(CN)Bpy]Cl reduces

hydrogen yield drastically. All other tested pyrrolidinium and

pyridinium ILs, namely [BMpyr][OMs], [(CN)BMpyr][NTf2],

[BMpyr]Cl, [(Et)2NEpy][OTs] and [(CN)BMpyr][N(CN)2], result in

similar yields as well as similar dehydrogenation speeds. The

best performance in this subset is observed with [(CN)BMpyr]

[NTf2], which yields 2.62 equivalents of hydrogenwhereas 2.08

equivalents are obtained with [(Et)2NEpy][OTs]. In contrast to

the previously discussed imidazolium ILs the pyrrolidinium

and pyridinium ILs have a distinctly smaller effect on the

dehydrogenation of EDB.

In direct comparison of the two ILs with a [(CN)BMpyr]þ

cation a difference to the imidazolium ILs can be seen; here

the less basic IL ([NTf2]
�) performs better than the more basic

one ([N(CN)2]
�). The same applies for the [BMpyr]þ ILs: the

more basic (higher b-value) Cl� IL performs worse than the

[OMs]� IL. Interestingly the least performing of all chosen ILs

is one containing a chloride anion, contrasting the results

with the imidazolium ILs. It seems that as long as there is no

imidazolium cation present, a different mechanism underlies

the supporting effect.

It should be noted, that in case of the tested [OMs]� ILs as

well as the [OAc]� ILs the yield is nearly the same (compare

Figs. 4 and 8). Thus, the effect of the anion seems superior in

Table 1 e Dehydrogenation experiments of EDB toward
the effect of basicity of acetate anions at 120 �C.

Entry Composition Eq. H2

1 EDB 2.14

2 EDB þ Na[OAc] 2.20

3 EDB þ [BMMIM]Cl 3.02

4 EDB D [BMMIM][OAc] 3.67

5 EDB þ [BMMIM]Cl þ Na[OAc] 2.72

Fig. 6 e Structures of used ionic liquids with a pyrrolidinium or pyridinium cation.
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these cases to the effect of the cation. As contrast in the case

of the different tested Cl� ILs the variation in yield is enor-

mous. Therefore, we conclude that the cation plays a crucial

role in the case of the Cl� ILs.

To confirm the purity of the released hydrogen we inves-

tigated the evolved gas via mass spectrometry of representa-

tive samples, which has been applied before [4]. In case of the

tested [OAc]� ILs CO2 and in all experiments diborane (B2H6)

and ammonia (NH3) are possible co-products. No co-products,

but solely air and hydrogen have been found in the dehydro-

genation reaction of EDB in [BMIM][OAc] (see Fig. 9). The out-

standing gas purity of EDB decomposition remains unchanged

by the addition of IL.

After initial experiments with a variety of ILs, [BMMIM]Cl

was investigated in more detail. As accessibility is crucial

[BMMIM]Cl was the IL of choice as a compromise between

performance and access.

3.2. Investigation of the EDB/[BMMIM]Cl system

In further studies we varied the composition and dehydro-

genation temperature of the EDB/[BMMIM]Cl system and

investigated the same dehydrogenation reaction. Since

weight efficiency is crucial for hydrogen storage systems we

varied the amount of IL. As it would be advantageous for the

system to operate at lower temperatures, we tested it at dif-

ferent temperatures. In Fig. 10 the results of variations in

composition at 100 �C, 120 �C and 140 �C are displayed.

The temperature influences the outcome of the dehydro-

genation drastically. In general, higher temperatures increase

the amount of released hydrogen. At 100 �C the decomposition

of neat EDB releases nearly no hydrogen, so the addition of

a small amount of IL results in a large benefit for the reaction:

the 0.25:1 mixture (IL:EDB) of [BMMIM]Cl and EDB delivers

a maximum for the release of hydrogen of about 3.5 wt%.

Higher amounts of IL result in a loss of efficiency due to the

weight penalty induced by the additional weight of the IL. The

120 �C curve demonstrates this fact distinctly. Though addi-

tional IL results in a higher yield (compare Fig. 11) this cannot

compensate for the weight penalty introduced by the IL. From

Fig. 7 e Time-resolved hydrogen release of neat EDB and

different EDB/IL mixtures at 120 �C.

Fig. 8 e Dehydrogenation yields of EDB supported by

pyrrolidinium or pyridinium based ILs.

Fig. 9 e Mass spectrum of the released gas from the

dehydrogenation of EDB/[BMIM][OAc].

Fig. 10 e Efficiency curves of varied EDB/[BMMIM]Cl

mixtures at different temperatures (lines for visualization

only).
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the weight-efficiency point of view at 120 �C pure EDB is more

efficient than all EDB/ILmixtures tested. This is not the case at

140 �C. Here the catalytic effect of the IL results in such a gain

in yield, that it overcompensates the penalty inweight and the

efficiency curve passes a maximum at a ratio of 0.3:1 (IL:EDB)

(6.5 wt%).When the ratio is increased to 1:1 the catalytic effect

of the IL precisely compensates for the weight penalty and the

overall efficiency is equal to neat EDB decomposition.

The weight penalty is of crucial importance here, since the

efficiency of hydrogen release in regards to the amount of EDB

differs significantly from the weight efficiency values. For

clarification the following plot (see Fig. 11) depicts the released

hydrogen in chemical equivalents with respect to the active

material i.e. EDB.

In view of efficiency and weight efficiency the addition of

large amounts of IL is undesirable. Despite the slight increase

in hydrogen yield the weight penalty bears a much stronger

negative effect on efficiency. When only a small amount of IL

is added to EDB, the dehydrogenation distinctly benefits in

efficiency as well as weight efficiency. The effect is strongest

at lower temperatures, as pure EDB scarcely releases hydro-

gen at temperatures of 100 �C. Here the addition of IL is most

advantageous for the reaction.

4. Conclusion

The addition of certain ionic liquids to ethylene diamine bis-

borane is beneficial for promoting dehydrogenation reactions.

Some ILs support the dehydrogenation strongly, though ex-

amples have been found that adversely affect the hydrogen

yield. The performances of imidazolium ILs correlate with the

polarity, where polar ILs bring a greater benefit to the reaction

than unpolar ones. This effect is accounted to stabilization of

the ionic intermediate suggested by Bowden, Autrey et al. [5].

As long as there is no imidazolium ion present, probably

a different mechanism applies, where basicity does not reign

the effect. The deeper investigation of the IL [BMMIM]Cl

showed that mixtures of this IL with EDB are able to improve

the hydrogen yield considerably in most compositions at

temperatures between 100 �C and 140 �C. The efficiency with

respect to the systemsweight can be improved by the addition

of a small amount of IL, which improves the hydrogen yield

overcompensating for the weight penalty introduced by the

IL itself. Especially at lower temperatures the use of ILs is

beneficial for the dehydrogenation meaning the required

temperature for dehydrogenation is distinctly lowered.
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