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I 

Summary 

Shortages in supply of nutrients and freshwater for a growing human population are critical global 

issues. Traditional centralized sewage treatment can prevent eutrophication and provide sanitation, but 

is neither efficient nor sustainable in terms of water and resources. Source separation of household 

wastes, combined with decentralized resource recovery, presents a novel approach to solve these issues. 

Urine contains within 1 % of household waste water up to 80 % of the nitrogen (N) and 50 % of the 

phosphorus (P). Since microalgae are efficient at nutrient uptake, growing these organisms in urine 

might be a promising technology to concomitantly clean urine and produce valuable biomass containing 

the major plant nutrients. While state-of-the-art suspension systems for algal cultivation have mayor 

shortcomings in their application, immobilized cultivation on Porous Substrate Photobioreactors 

(PSBRs) might be a feasible alternative. The aim of this study was to develop a robust process for 

nutrient recovery from minimally diluted human urine using microalgae on PSBRs. The green alga 

Desmodesmus abundans strain CCAC 3496 was chosen for its good growth, after screening 96 algal 

strains derived from urine-specific isolations and culture collections. Treatment of urine, 1:1 diluted 

with tap water and without addition of nutrients, was performed at a light intensity of 600 µmol photons 

m-2 s-1 with 2.5 % CO2 and at pH 6.5. A growth rate of 7.2 g dry weight m-² day-1 and removal efficiencies 

for N and P of 13.1 % and 94.1 %, respectively, were determined. Pre-treatment of urine with activated 

carbon was found to eliminate possible detrimental effects of pharmaceuticals. These results provide a 

basis for further development of the technology at pilot-scale. If found to be safe in terms human and 

environmental health, the biomass produced from three persons could provide the P for annual 

production of 31 kg wheat grain and 16 kg soybean, covering the caloric demand in food for almost one 

month of the year for such a household. In combination with other technologies, PSBRs could thus be 

applied in a decentralized resource recovery system, contributing to locally close the link between 

sanitation and food production. 

 



 

II 

Zusammenfassung 

Die Verknappung von Nährstoffen und Frischwasser für eine wachsende menschliche Bevölkerung sind 

globale Probleme von großer Tragweite. Traditionelle zentralisierte Abwasserreinigungssysteme 

können zwar Eutrophierung verhindern und Siedlungshygiene erreichen, sind aber in Bezug auf 

Wasserverbrauch und Ressourcen weder effizient noch nachhaltig. Die getrennte Sammlung von 

Haushaltsabwässern an ihrer Quelle, kombiniert mit dezentraler Rückgewinnung von Ressourcen, ist 

ein neuartiger Ansatz um diese Probleme zu lösen. Urin beinhaltet in 1 % des Gesamtabwassers eines 

Haushalts bis zu 80 % des Stickstoffs (N) und 50 % des Phosphors (P). Da Mikroalgen Nährstoffe 

effizient aufnehmen können, ermöglicht die Kultivierung dieser Organismen auf Urin dessen 

gleichzeitige Reinigung sowie Gewinnung von Biomasse, welche die hauptsächlichen 

Pflanzennährstoffe enthält. Während die Suspensionskultur von Mikroalgen nach dem Stand der 

Technik erhebliche Defizite in ihrer Anwendbarkeit hat, könnte die immobilisierte Kultur auf Porous 

Substrate Photobioreaktoren (PSBRs) eine mögliche Alternative sein. Ziel dieser Arbeit war die 

Entwicklung eines robusten Prozesses zur Nährstoffrückgewinnung aus minimal verdünntem Urin mit 

PSBR-immobilisierten Mikroalgen. Die Grünalge Desmodesmus abundans Stamm CCAC 3496 wurde 

unter 96 Stämmen, aus spezifischen Isolationen und Kultursammlungen, aufgrund seines guten 

Wachstums ausgewählt. Die Behandlung von Urin, 1:1 verdünnt mit Leitungswasser und ohne Zusatz 

von Nährstoffen, fand bei einer Lichtintensität von 600 µmol Photonen m-2 s-1, bei 2.5 % CO2 und pH 

6.5 statt. Eine Wachstumsrate von 7.2 g Trockenmasse m-² Tag-1 und Aufnahmen von 13.1 % und 94.1 

% von N und P wurden erreicht. Die Behandlung von Urin mit Aktivkohle konnte mögliche hemmende 

Effekte von Pharmazeutika verhindern. Diese Ergebnisse bilden eine Basis für die weitere Entwicklung 

der Technologie im Pilot-Maßstab. Falls Risiken für die Gesundheit von Mensch und Umwelt 

ausgeschlossen werden können, könnte die Algenbiomasse eines 3-Personen-Haushalts genutzt werden, 

um jährlich 31 kg Weizen und 16 kg Soja zu produzieren, was den kalorischen Nahrungsbedarf für ca. 

einen Monat des Jahres decken würde. In Kombination mit anderen Technologien könnten PSBRs in 

einem dezentralen System zur Ressourcenrückgewinnung angewendet werden und dazu beitragen, die 

Verbindung zwischen den Nährstoffen in Abfall und der Lebensmittelproduktion lokal herzustellen. 
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1 Introduction 

1.1.  The global nutrient and water crises 

The availability of fresh water and nutrients to supply basic human needs can be considered to be among 

the mayor future challenges facing humanity as a whole. Of the 9 billion people estimated to inhabit the 

earth in 2050, 2-7 billion will expectedly be facing water shortages (Cordell et al. 2011; UNESCO 2006). 

In order to produce food for this rapidly growing human population, industrial agriculture is in demand 

of large quantities of mineral fertilizer. The principal nutrients in plant fertilizer are nitrogen (N) and 

phosphorus (P), both vital elements needed by all organisms. Nitrogen for fertilizer is commercially 

produced using the Haber-Bosch process, fixing atmospheric di-nitrogen into a reduced, bio-available 

form: Ammonia (Haber 1910). Global synthesis of ammonia amounted to ~ 100 Tg per year in 2008 

and is projected to rise in parallel with the growing population (Erisman et al. 2008). The energy demand 

of this process is at least 32 MJ kg-1 N, making up for approximately 1-2 % of the total global energy 

consumption (Erisman et al. 2008). In contrast, phosphorus is a finite resource which is commercially 

mined from mineral rock deposits. The mayor reserves are spatially confined to 5 countries: Morocco, 

China, USA, Jordan and South Africa (Jewell & Kimball 2015). Mining of phosphate rock for fertilizer 

amounts to ~ 20 Tg per year (Cordell et al. 2011) and different projections predict the depletion of land-

based reserves in 50-250 years (Cordell et al. 2009; Isherwood 2000; Smil 2000). Although the exact 

timing is difficult to foresee and further P reserves might be tapped into by dredge mining of seamounts 

in the future (Jewell & Kimball 2015), the irreplaceable and finite nature of this element is obvious. In 

the words of biochemist and famous science writer Isaac Asimov:  

“Life can multiply until all the Phosphorus has gone and then there is an inexorable halt which nothing 

can prevent.” (Asimov 1974) 
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Besides the energetic, economic and societal concerns linked to fertilizer production, its extensive use 

also has mayor environmental implications. Over-application, inefficient conversion and run-off from 

fields into aquatic ecosystems leads to eutrophication and is considered the main cause of hypoxic “dead 

zones”, found in more than 400 marine systems globally (Diaz & Rosenberg 2008). Toxic cyanobacteria 

blooms and the associated loss of freshwater supply are also mainly linked to the input of nutrients from 

agriculture (Michalak et al. 2013). Apart from run-off, N is also lost from animal- and plant-producing 

agricultural systems in form of the greenhouse gas nitrous oxide (N2O) (Mosier et al. 1998). For P it is 

assumed that only about 16 % of the extracted resource is being consumed as human food, while the 

rest is lost by erosion or in animal waste (Chen & Graedel 2016; Rittmann et al. 2011). Besides an urgent 

need to optimize agricultural practices towards higher nutrient efficiency, the nutrients that do end up 

in human consumption present a valuable source for recovery and reuse. Indeed, the P present in human 

urine and feces could account for up to 22 % of global P-demand if it were recovered as fertilizer (Glibert 

et al. 2006).  

The treatment of human excreta thus presents a valuable opportunity to close the link between sanitation 

and food, however currently used technology is not designed for this purpose (Verstraete et al. 2009; 

Ashley et al. 2011). Centralized municipal wastewater treatment plants (WWTPs), as employed in most 

industrialized countries, have the main purposes of preventing environmental degradation by removing 

pollutants and protecting public health by providing sanitation (Hammer & Hammer 2012). A central 

technology in such operations is the activated sludge process, in which organic compounds are 

microbially converted, mainly into gaseous carbon dioxide (CO2). Due to its need for aeration, this 

process makes up between 45-75 % of the total energy demand in a WWTP and is the mayor cost factor 

in its operation (Henze et al. 2008). Nitrogen is conventionally removed by a sequence of nitrification 

and denitrification steps, microbial processes under aerobic and anaerobic conditions, respectively. The 

desired outcome is the conversion of fixed nitrogen into gaseous di-nitrogen (N2), however N2O is also 

produced and may account for up to 3.4 % of total N converted (Wang et al. 2016). Phosphorus can be 

efficiently removed from municipal waste water either chemically, by precipitation with iron or 

aluminium or biologically, by phosphate accumulating organisms (PAO) (de-Bashan & Bashan 2004). 
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In both cases the P ends up in sludge, together with contaminants such as heavy metals and 

pharmaceutical residues, significantly reducing its reuse potential (Smil 2000). In practice, the sludge 

from such treatments is often burned (Hammer & Hammer 2012) and thus more than 10.5 million tons 

of P are not recovered for reuse annually (Liu et al. 2008). Another seemingly wasteful aspect in the 

centralized system of municipal WWT is using large amounts of (drinking-) water to transport (flush) 

relatively small amounts of liquid and solid waste. The installation of piping for sewage disposal is the 

mayor cost in implementation of municipal WWTPs, while the dilution of waste streams impedes the 

potential to recover resources (Dockhorn 2016). Pipes for sewage disposal are considered an 

inappropriate technology in regions which are water stressed (Fry et al. 2008). Diffuse emissions of CH4 

and H2S from sewers are further reasons to question the sustainability of such systems (Verstraete et al. 

2009). It can be concluded that centralized WWT is an end-of-pipe technology which is effective at 

removing pollutants from water in the forms of gas and sludge, but largely disregards the potential of 

resource recovery and water savings.  

In developing countries, where most of the global population increase is expected, water and nutrient 

scarcity as well as lack of sanitation are concerns of an even greater dimension. Open defecation is still 

a widespread practice in large parts of Africa and Asia, where 2.6 billion people have no access to 

improved sanitation facilities (WHO & UNICEF 2012). The lack of processing of human waste brings 

about serious health risks (epidemics, malnutrition) as well as environmental degradation, endangering 

the availability of potable water (Corvalan et al. 2005). At the same time, rising mineral fertilizer prices 

are increasing the economic pressure on farmers who are relying on their acquisition (Agoramoorthy 

2008; Hossain & Singh 2000). Taken in concert, these arguments are calling for a paradigm shift in the 

way in which human waste is viewed: Not only as a source of pollutants, but at the same time as a mine 

of valuable resources to be recovered. In order to fulfill future needs of human nutrition and health and 

to conserve global ecosystems, the unidirectional flow of nutrients and water should be changed into to 

a system of locally closed loops. Both in industrialized and developing countries, there is an urgent need 

for solutions that combine adequate sanitation with a valorization of the nutrients from human waste. 
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1.2.  Source separation and resource recovery 

A relatively new idea in applied research on municipal wastewater treatment is source separation 

combined with decentralized sanitation and resource recovery. The concept is being investigated under 

various labels such as DESAR (decentralized sanitation and reuse; (Kujawa-Roeleveld & Zeeman 

2006), ECOSAN (ecological sanitation; (Langergraber & Muellegger 2005)) or NoMix (Larsen & 

Lienert 2007). While different combinations of technologies for collection and treatment are being 

proposed, the unifying principle is to separately collect waste streams and to treat them on-site, with the 

aims of maximal resource recovery and water savings. Pilot operations for > 100 inhabitants or workers 

are currently being operated at the head-offices of the German technical co-operation GTZ, Kullön 

residential area (Sweden), Sneek residential area (the Netherlands), Erdos Eco-Town (China), the 

EAWAG research institute (Switzerland) and other places worldwide (Lienert & Larsen 2010; 

Kvarnström et al. 2006; Zeeman & Kujawa-Roeleveld 2011; Zhou et al. 2010). Sweden is the pioneer 

in No-mix technology, with  over 135,000 urine-diverting toilets installed before 2006 (Lienert & Larsen 

2010). Figure 1 schematically shows the flow of the main liquid and solid waste streams in a model 

household: 

 

Figure 1: Schematic drawing showing source separation of waste streams in a model household. Image courtesy 

of Alex Graf Illustration with modifications by the author. 



Introduction 

5 

Grey water, originating from showering, dishwashing and laundry makes up the largest volume of 

household waste waters (~80 %) (Li et al. 2009). The concentration of pollutants is relatively low and it 

can be upgraded to safe irrigation- or flush-water by simple processes, such as settling and sand filtration 

(Finley et al. 2009) or treatment in a rotating biological contractor (Friedler et al. 2005). Toilet wastes 

can be collected by urinals and No-mix toilets, a technology which is generally viewed positively by 

potential users (Lienert & Larsen 2006; Pahl-Wostl et al. 2003). The type of toilet defines the degree of 

dilution, with water saving options such as vacuum- and low flush toilets preferable (Johansson 2000). 

Brown water, comprised of feces, paper and flush water, contains most of the organic compounds in 

household waste (50-70%) in a concentrated form (Kujawa-Roeleveld & Zeeman 2006). It can be 

combined with kitchen- and other organic waste and treated by anaerobic digestion, a microbial 

conversion producing biogas. The gas, mainly consisting of CO2 and methane (CH4), can be used for 

cooking as well as heating of houses and of the treatment systems itself, making anaerobic digestion a 

core technology in most decentralized sanitation systems (Wendland et al. 2007; Zeeman & Kujawa-

Roeleveld 2011).  

Urine, which together with flush water is collectively termed yellow water, contains within less than 1 

% of the total volume of household waste water up to 80 % of the N and 40-50 % of the P, as urea and 

ortho-phosphate, respectively (Wilsenach & van Loosdrecht 2006). These high concentrations make it 

an attractive stream for the recovery of nutrients. Indeed, urine can be directly applied to agricultural 

crops, a practice that has historically been widely used e.g. in China ~5000 years ago (Ashley et al. 

2011) and is recently being tested at larger scales, for example in Sweden (Johansson 2000). Although 

results from growth experiments with various crops have been positive (Akpan-Idiok et al. 2012; 

Pradhan et al. 2007), several problems are associated with the direct application of urine: Runoff to the 

environment in case of rain, volatilization of N depending on application technique and climate (Rodhe 

et al. 2004), and large volumes of liquid that need to be stored, since constant application would 

oversupply the fields (Winker et al. 2009). Storage of urine under non sterile conditions leads to the 

bacterial hydrolysis of urea to ammonium (NH4
+) / ammonia (NH3), according to the following formula 

(from Udert et al. 2003):  
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𝑁𝐻2(𝐶𝑂)𝑁𝐻2 + 2𝐻2𝑂  𝑁𝐻3 + 𝑁𝐻4
+ + 𝐻𝐶𝑂− 

The reaction increases the pH of the solution, shifting the equilibrium between NH4
+ and NH3 towards 

the uncharged ammonia (pKa 9.3) (Warner 1942). The high pH can lead to volatilization of ammonium 

to the gas phase as well as precipitation of phosphate-containing minerals (e.g. struvite 

(NH4MgPO4·6H2O) or calcium-phosphate (Ca(H2PO4)2), making urine an unstable liquid in storage 

(Maurer et al. 2006). Furthermore, the application of urine to soils can lead to increases in salinity, 

threatening their long term fertility (Mnkeni et al. 2008; Jönsson 2004).  

A technique to temporally uncouple the application of fertilizer from urine excretion and to solve the 

issue of salinity increase makes use of the bacterial hydrolysis of urea by intentional precipitation of 

struvite (Magnesium ammonium phosphate; MAP), a mineral composed of the three elements in an 

equimolar ratio (Ronteltap et al. 2007; Ban & Dave 2004). The process can be realized with the simple 

means of a stirred tank reactor and addition of a magnesium source, and has been demonstrated at pilot-

scale in various studies (Adnan et al. 2003; Lind et al. 2000; Etter et al. 2011). Struvite has been used in 

greenhouse trials for various crops and proved to be a good source of phosphorous (Gell et al. 2011; 

Antonini et al. 2012). Despite the advanced status of this technology, its mayor shortcoming is the 

limited nitrogen recovery potential, which is dictated by the 1:1 molar ratio of N and P in struvite. Since 

atomic N:P ratios can range between 30:1 – 50:1 in human urine (Putnam 1971), struvite precipitation 

leaves the largest fraction of nitrogen unused. For the same reason it cannot suffice as a complete 

fertilizer for plants. Indeed, pot trials on wheat (Triticum aestivum) fertilized with struvite showed that 

plants were nitrogen limited (Ganrot et al. 2007). 

1.3. Microalgae for nutrient recovery 

Microalgae are very efficient at taking up mineral nutrients, using sunlight as their sole source of energy. 

The concept of phototrophic municipal waste water treatment employing these organisms has first been 

proposed almost 60 years ago with High Rate Algal Ponds (HRAPs) for concomitant nutrient recovery 

and oxygenation (Oswald et al. 1957). The number of studies in the field has since risen rapidly, 

especially due to the recent efforts of producing biofuels from algae (e.g. Pittman et al. 2011). Although 
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practical experience is still scarce, microalgal biomass grown on wastewater might realistically be used 

as an organic slow release fertilizer, due to its elemental composition being similar to that of plants 

(Kebede-Westhead et al. 2004; Mulbry et al. 2005). Besides a suitable content of N and P, algal biomass 

also contains plant growth-promoting microelements (e.g. Fe, Mn, Zn, Cu), which may increase its 

usefulness as fertilizer (Shaaban 2001). Alternatively, high value compounds (e.g. pigments) could be 

extracted from biomass, enhancing the economic feasibility of this approach (Cai et al. 2013). Using 

microalgae to recover nutrients from source separated urine thus presents an added-value alternative to 

struvite treatment. 

To-date, there are ten published studies dealing with microalgal nutrient recovery from human urine, all 

of which employed suspension systems for cultivation: Adamsson (2000) used Scenedesmus acuminatus 

to provide a feed for Daphnia magna in combination with the culturing of tomatoes. In this study, urine 

was applied at a 1:100 dilution, with the addition of Fe and Mg. Feng & Wu (2006), Yang, Li, et al. 

(2008) and Yang et al. (2008) as well as Chang et al. (2013) cultivated Spirulina (Arthrospira) platensis 

in 1:140 dilutions of synthetic human urine, with the addition of micronutrients and vitamins, placing 

their studies in the context of life-support systems for space travel. Zhang et al. (2014) encountered 

problems of mineral precipitation when using urine at moderate dilutions (between 1:1 and 1:5) and 

circumvented the problem by dosing small amounts of urine as N and P source to a conventional growth 

medium for Chlorella sorokiniana. Using the same algal strain, Tuantet et al. were the first to establish 

stable growth on minimally diluted (1:1) and undiluted human urine, in both microtiter plate experiments 

(Tuantet, Janssen, et al. 2014) and continuously operated flat plate reactors (Tuantet, Temmink, et al. 

2014). In their studies, the addition of trace elements as well as Mg and P was considered necessary, 

mainly due to loss of the latter two elements by uncontrolled precipitation (Tuantet, Temmink, et al. 

2014). Jaatinen et al. (2016) used dilutions from 1:25 up to 1:300 at low light intensities to cultivate 

Chlorella vulgaris and found that under these conditions, bacteria were dominating their cultures. 

Finally, Coppens et al. (2016) cultivated Arthrospira platensis on urine which was pre-stabilized by a 

biological nitrification step.  
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These studies provide a framework for the further development of urine treatment with microalgae 

towards a realistic application. In this context the use of low dilution factors without the addition of 

chemicals should be imperative, in order to maximize the water- and resource-efficiency of the process. 

Human urine contains compounds of interest for algal growth in the following order of concentration: 

Urea, Cl, Na, K, S, P, Ca and Mg (Putnam 1971). Trace elements such as Fe, Cu and Zn are also usually 

present, with their concentration depending on individual habits (Rodríguez R. & Díaz R. 1995). Fresh 

urine contains urea as the main source of nitrogen, which is known to be used by a variety of microalgae 

(Antia et al. 1991; Neilson & Larsson 1980). The uncharged free ammonia, formed by hydrolysis of 

urea and a shift of the NH3/NH4
+ equilibrium at high pH, can diffuse freely across cell membranes and 

is toxic to most organisms, including microalgae (Azov & Goldman 1982). Furthermore, the 

precipitation of phosphate containing minerals, typical for hydrolyzed urine (Udert et al. 2006), can 

deprive algae of phosphorus for their growth. Thus, in order to prevent the formation of toxic NH3 and 

P-precipitates, using fresh urine to grow an alga that can metabolize urea while exhibiting tight pH-

control appear to be of utmost importance. The selection of an algal strain that is adapted to growth on 

urine might furthermore circumvent the need for addition of nutrients.  

Despite the relative success of the abovementioned studies, the employed systems of suspension based 

cultivation have mayor shortcomings when practically applied: The most common large-scale algal 

cultivation system is the raceway pond or HRAP, as it is usually called in wastewater treatment. Due to 

the shallow light penetration, HRAPs show low productivities and resulting low biomass concentrations, 

leading to high energy consumption and costs for separating biomass and water (harvesting) (Hoffmann 

1998). Furthermore, controlling the strain of algae which dominates in these open systems is difficult 

and contamination with grazing organisms frequently lead to culture crashes and operational downtime 

(Cai et al. 2013). Closed photobioreactors (e.g. tubular or flat plate PBRs) can be operated much more 

efficiently, due to short light paths and controlled process conditions (Ugwu et al. 2008). However, their 

investment costs are relatively high and the problem of harvesting algae from the suspension still poses 

a significant economic hurdle for their application in wastewater treatment (Acién et al. 2012). 

Submerged biofilm systems solve some of these issues by growing a productive and dense biomass that 
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is simple to harvest (Kesaano & Sims 2014). Nevertheless, washout of cells is commonly observed in 

such systems (Boelee et al. 2011; Posadas et al. 2013), leading to problems especially in regions were 

the concentration of suspended particles in discharge water is controlled (Mallick 2002).  

A relatively new approach to the technical cultivation of algal biofilms are Twin Layer - porous substrate 

bioreactors (TL-PSBRs), where water and biomass are effectively separated. The method was invented 

at the University of Cologne and initially used for small scale cultivation of algae in biosensors and 

culture collections (Melkonian & Podola 2004; Nowack et al. 2005; Podola & Melkonian 2003). At full 

scale, these immobilized systems might overcome many of the shortcomings of conventional algal 

cultivation, since they combine high productivities with simple construction and operation (Podola et 

al. 2016; Schultze et al. 2015). Figure 2 shows a schematic representation of the PSBR technology at 

different levels of magnification:  

 

Figure 2: Schematic representation of a Twin Layer Porous Substrate Biofilm Photobioreactor (PSBR). (A) 

PSBR-immobilized cells and physical processes. (B) Arrangement of layers in a vertical PSBR. (C) Large-scale 

vertical PSBR with multiple sheets. a: algal biofilm, b: microporous membrane, c: culture medium, d: direction of 

medium flow, e: medium reservoir, f: medium pump, g: diffusion of solutes, h: extracellular matrix, i: algal cells, 

j: gas exchange, k: irradiance, l: evaporation. Image from (Podola et al. 2016), reprinted with permission from Cell 

Press. 
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Cells are immobilized on a sheet-like porous membrane impermeable to the cells due to its pore size, 

but permeable for liquids, in order to supply dissolved nutrients (substrate layer; Fig. 2, b). The liquid 

medium (wastewater) is applied to a glass fiber or grid by dripping and is transported through this layer 

by gravity (source layer; Fig. 2, c). The low energy demand for water circulation as well as the low 

water content of biomass and associated ease of harvesting and processing of biomass can make these 

systems economically highly attractive (Podola et al. 2016), which is especially important for 

wastewater applications. The spread of contamination is usually minimal, since invasion from the 

medium is prevented by means of the substrate layer while organisms coming from the air are 

immobilized along with the algal biomass. Furthermore, the low shear forces to which cells are exposed 

enable the cultivation of a diverse variety of microalgal species (Nowack et al. 2005; Benstein et al. 

2014; Naumann et al. 2013; Kiperstok et al. 2016). The system has been employed for nutrient recovery 

from various municipal waste waters, both at laboratory-scale (Shi et al. 2007) and prototype-scale (Shi 

et al. 2014), as well as for anaerobically digested black water (pers. obs., unpublished data), but so far 

not for the treatment of source separated human urine.  
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1.4.  Outline of this study 

The aim of this study was to establish a robust process in which PSBR-immobilized microalgae would 

recover nutrients from minimally diluted, unamended human urine. To achieve this, three distinct steps 

were taken:  

 

(1) Isolation of algae from the environment and screening of strains from culture collections 

Algae which are able to grow on human urine were enriched from the environment and established 

as clonal cultures. Furthermore, strains derived from other wastewater sources or showing potential 

of utilizing urea were selected. In a comprehensive screening several promising strains were chosen 

for further experiments. 

(2) Investigation of the nitrogen metabolism of selected strains with focus on urea 

Selected axenic strains were tested for their ability to grow on various nitrogen sources and their 

metabolism of urea was investigated in liquid cultures, to draw conclusions on the use of this 

molecule. 

Using the information from steps (1) and (2), one strain was selected to: 

(3) Optimize process parameters for stable growth and nutrient recovery  

The selected strain was grown under semi-realistic laboratory conditions on a Twin Layer PSBR 

system. Process parameters as well as necessary pre-treatments of urine were optimized to ensure 

stable operation of the treatment. The potential for recovery of nitrogen and phosphorus was 

determined. 
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2 Materials and Methods 

2.1.  Human urine  

Four batches of human urine were used in the course of this study. Batch A and B were collected in 

2014 from 1 and 3 male members of the Melkonian laboratory, respectively. Batches C and D were 

collected during the 2015 and 2016 editions of the animal physiology practical course at University of 

Cologne, respectively, from student volunteers of both genders. The details of the collections are 

summarized in table 1. 

Table 1: Urine batches used in the various experiments, their 

volumes, number of donors and experiments they were used in. 

 Urine 

batch 

Number  

of donors 

Volume 

(L) 

Experiment 

(chapter #) 

A 1 3 Isolation (3.2) 

B 3 6 

 

Suspension Screening (3.3) 

C 53 25 

 

Prevention of precipitation (3.5) 

Growth on TL-PSBR (3.6) 

 

D 

 

57 

 

40 

 

Growth on TL-PSBR (3.6) 

Nutrient recovery (3.7) 

 

Collections lasted 3-5 days. During the time of collection, urine was stored in 10 and 25 l plastic 

containers at 4 °C. Once the collection of one batch was complete, the whole volume was mixed and 

stored frozen in plastic bottles (0.5 – 1 l) at -20 °C until use. To formulate a growth medium for 

microalgae, urine was diluted with different kinds of water. Waters used were: Ultrapure water (MQ), 

Tap water from Cologne (TapCGN), and tap water from Bonn (TapBN). The elemental composition of 

these waters was analyzed by inductively coupled plasma –mass spectrometry (ICP-MS) at the MS-

platform at University of Cologne using an ICP-MS 7700 (Agilent, Santa Clara, USA). Electrical 

conductivity and pH of urine as well as mixtures of urine and water were measured regularly. 
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2.2.  Nutrient determination 

Concentrations of the mayor forms of nitrogen and phosphorus were measured routinely for new batches 

of urine as well as during some experiments. All nutrient measurements are based on spectrophotometric 

analyses, carried out using an infinite PRO 200 multiplate reader (Tecan, Männedorf, Switzerland) in 

96-well microtiter plate format. Calibration curves were measured whenever a new batch of color 

reagent was used. 

2.2.1. Urea 

Urea was determined using a method modified from Orsonneau et al. (1992). The principle was 

quantification of the color change of a pH indicator upon enzymatic hydrolysis of urea. In short, 300 µl 

of color reagent containing 2.5 mM indicator grade σ-cresolphtalein complexone (Alfa Aesar, 

Karlsruhe, Germany) were placed in the microtiter plate, mixed with 6 µl of sample and the absorbance 

at 575 nm was measured as background value. After this, 30 µl of enzyme solution (200 kUnits l-1 of 

urease from jack bean (SERVA electrophoresis GmbH, Heidelberg, Germany) in 150 mM NaCl) were 

added and the mixture was incubated in the dark at 37 °C for 10 min. Absorbance at 575 nm was 

measured again and the difference between absorbances was compared to a calibration curve (0-500 

mM urea) to give the sample concentration of urea. Since this method was newly established in the 

laboratory, tests were conducted to determine if matrix-associated effects would jeopardize the accuracy 

of the method when employed in urine. In a standard addition procedure, known concentrations of urea 

were added to a sample of urine and compared with a calibration curve. The concentration of 64.5 mM 

in the urine sample could be back-calculated with >95% accuracy at added urea concentrations between 

0-500 mM. Thus, the method was found to be suitable, the results are presented in appendix I. 

2.2.2. Ammonia / Ammonium 

Concentrations of ammonia and ammonium were determined using the indophenol method based on 

Verdouw et al. (1978), modified to suit the microtiter plate format. Briefly, 200 µl of reagent 1 (5 % 

sodium salicylate) and 10 µl of sample were mixed with 50 µl of reagent 2 (0.1 M NaOH solution with 

5 % sodium citrate, 0.8 % sodium dichloroisocyanurate and 0.3 % sodium nitroprusside). The color 
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reaction was performed at room temperature in the dark for 60 min, after which the absorbance at 660 

nm was measured. Calibration curves were prepared with standards of 1-8 mM NH4
+. 

2.2.3. Nitrate / Nitrite 

Nitrate and nitrite (NOx) concentrations were determined using a method according to Miranda et al. 

(2001). Calibration curves were prepared using standards of 0.1-3 mM NO3
-. 

2.2.4. Phosphate 

Ortho-phosphate (PO4
-) concentrations were determined according to Murphy & Riley (1962) with 

modifications to suit the microtiter plate format. Briefly, 2.5 µl of sample was diluted in 200 µl MQ 

water and mixed with 40 µl of the color reagent in the well. Incubation was performed in the dark at 40 

°C for 30 min after which the absorbance at 882 nm was measured. Calibration curves were prepared 

using standards of 0.1-2 mM PO4
-. 

2.2.5. Total nitrogen and phosphorus 

Total nitrogen and total phosphorus concentrations in digests of liquid samples were measured as NO3
- 

and PO4
-, respectively. To oxidize all forms of nitrogen and phosphorus present, a persulfate digestion, 

based on the method of Cabrera & Beare (1993), was performed. The digestion solution contained 5 % 

K2S2O8, 1.68 % NaOH and 3 % H3BO3. The sample was added in a ratio of 1:1 and the digestion 

performed at 95 °C for 3h. Measurements of nitrate and phosphate in the digestate were performed as 

described above. 

2.2.6. Identification of precipitates 

Precipitation of phosphorus-containing minerals (e.g. struvite (NH4MgPO4·6H2O) or calcium-phosphate 

(Ca(H2PO4)2) is a well-known phenomenon in urine, especially when the pH rises due to hydrolysis of 

urea under non sterile conditions (Udert et al. 2006). Since precipitated nutrients are not available for 

algal growth, experiments to control the pH were conducted to test methods of counteracting 

precipitation. 500 ml of urine, 1:1 diluted with TapBN, were placed 1l glass bottles which were left 

under non sterile conditions at 23 °C, as in later Twin Layer experiments. To one set of bottles, constant 

sparging of air with 2.5 % CO2 at 1 l min-1 was applied. As a control, another set of bottles was sparged 
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with just air at the same flow rate. Experiments were carried out in triplicate. The pH, as well as 

concentrations of ammonium and urea were measured, to monitor the effect of hydrolysis. The formed 

precipitates were analyzed after 14 days, with a method based on the works of Doyle et al. (2003) and 

Hen Sabbag et al. (2016). The precipitate was washed 3-fold by centrifugation and replacement of 

supernatant with MQ water. Precipitates were then dissolved by addition of 1 M HCL. Cations (Mg+, 

Ca+) were bound by addition of 0.25 mM ETDA and the pH was brought back to neutrality by addition 

of 1 M NaOH. No more precipitates were visible at this point and the solution was used for measurement 

of ammonium and phosphate, as described above. 

2.3.  Algal strains  

To find algal strains optimally suited for growth on human urine, two different strategies were employed: 

(A) Isolation of new strains from the environment on human urine and (B) Testing of established strains, 

mainly isolated from wastewater sources or with other indications to be suitable for growth on urine 

such as literature on the use of urea as nitrogen source. 

2.3.1. Isolation  

For the isolation of algae from the environment, open plastic containers filled with 250 ml of urine of 

batch A, diluted with MQ at 1:1, 1:5 and 1:10 dilutions were placed on the premises of the 

“Versuchsgärtnerei” at University of Cologne, sheltered from rain. This setup is from hereon called 

“urine trap”. The urine traps were left in the open for 6-8 weeks in April and May of 2015, until algal 

growth was visible. The establishment of clonal cultures was attempted both directly from the raw 

samples and from enrichment cultures. The latter were derived by placing a subsample in artificial 

growth media and incubating it at 23 °C and ~100 µmol photons m-² s-1 light intensity using a 14:10 h 

light:dark cycle. The media used were Waris-H (McFadden & Melkonian 1986) and BG-11 (Stanier et 

al. 1971) as modified by Naumann et al. (2013). In several cases Waris-H+Si was used, which 

additionally contained 0.5 mM Na2Si3. Isolation of single cells was performed using the microcapillary 

technique, as described by Pringsheim (1946), with the aid of an inverted microscope. At this level, 

cultivation was performed in 24-well microtiter plates and 50 ml Erlenmeyer flasks. Once unialgal 

cultures were established, they were attempted to be made axenic by spraying onto an agar-dish and 
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subsequent picking of a single colony, as described by Surek & Melkonian (2004). For this purpose 

cultures were washed several times by gentle centrifugation (300 g) and re-suspension in fresh culture 

medium, to discard most bacterial contaminants. The dilute algal suspension was then placed in a sterile 

reagent tube with a glass capillary held in place by cotton. A stream of filter-sterilized air was guided to 

the opening of the capillary, producing a fine mist that was sprayed onto the petri dish, which contained 

the respective growth medium solidified by 1 % agar. After several weeks, plates were inspected visually 

and bacteria-free colonies that were derived from a single algal cell were transferred into liquid medium 

with a sterile toothpick.  

2.3.2. Identification of isolates  

Identification of algal strains isolated in this study was based mainly on morphological characteristics. 

The guidelines used can be found in Linne von Berg et al. (2012). As a further tool for identification 

and taxonomic placement, the information found on algaebase.org (Guiry & Guiry 2016) was used.  

To obtain unambiguous identities and allow for strain comparisons with the literature, isolates of interest 

for further experiments were also identified by sequencing of the nuclear encoded small subunit rRNA 

operon (SSU rRNA) and subsequent database comparison. DNA was isolated using the CTAB method 

(Stewart & Via 1993), with the modification of adding acid washed glass beads for more efficient cell 

disruption, and stored at -20 °C until further use. Fragments of interest were amplified via Polymerase 

Chain Reaction (PCR) (Saiki et al. 1988). PCR reagents of type “Dreamtaq” (Fermentas, Waltham, 

USA) were used throughout. DNAse-free water used was “molecular grade water” (Applichem, Omaha, 

USA). The composition of one reaction is presented in table 2.  

Table 2: List of PCR components 

Component Volume 

Reaction buffer 2.5 µl 

dNTP mix (0.25 mM) 2.5 µl 

Forward primer 0.25 µl 

Reverse primer 0.25 µl 

Polymerase 0.125 µl 

Matrix-DNA 0.5 µl 

Molecular grade water 25 µl 
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Primary amplification was performed with EAF3 forward and ITS055 reverse primers, while in the 

secondary partially nested amplification, BR was used as reverse primer while EAF3 remained the 

forward primer (Marin et al. 2003). Reactions were performed in a thermocycler as follows: 3 min 

denaturation at 95 °C, followed by 30 cycles of 0:45 min denaturation (95 °C), 1 min annealing (55 °C) 

and 3 min extension (72 °C). Final extension was performed for 5 min at 62 °C, followed by a continuous 

hold at 10 °C. As a control for the success of amplification, 3 µl of PCR product mixed with 3 µl of 

“orange loading dye” (Fermentas, Waltham, USA) were run on a 1 % agarose gel in TAE buffer (2 mM 

Tris, 1 mM Na-acetate, 5 µM Na2-EDTA). The voltage was 100 V and separation continued for 15-30 

min. 1.5 µl of “1 Kb DNA ladder” (Fermentas, Waltham, USA) served as reference concerning the 

amount and length of PCR product. To purify the product, 100 µl of isopropanol were added and the 

DNA left to precipitate overnight at -20 °C. After centrifugation, the resulting pellet was washed 3 times 

with 80 % ice-cold ethanol. Finally the pellet was air-died and re-suspended in 50 µl of molecular grade 

water. Sequencing was performed commercially in “prepaid plate kits for PCR product” (Eurofins 

Genomics, Ebersberg, Germany). Obtained sequences were aligned and corrected manually with 

AlignIR software V 2.0.48 (LI-COR Biosciences, Bad Homburg, Germany). Next relatives were found 

in the public databases by BLAST-algorithm search (Altschul et al. 1990) on the NCBI website 

(http://blast.ncbi.nlm.nih.gov; accessed 06.07.2015 and 20.07.2016).  

2.3.3. Stock cultures 

Stock cultures were kept in 50 ml Erlenmeyer flasks at 16 °C and ~30 µmol photons m-² s-1 light intensity 

under a 14:10 h light:dark cycle using Waris-H medium. Cultures were transferred regularly, 

approximately every 6 weeks. Cultures were transferred ~1 week before using them as inoculum for an 

experiment, to ensure logarithmic growth. The following table lists the 96 different microalgal strains 

that were used in the course of this work: 
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Table 3 A: Microalgal strains used in this study, their growth media and sites of origin. 

CCAC: Culture Collection of algae at university of Cologne (letter B stands for presence 

of bacteria); CCAP: Culture Collection of Algae and Protozoa; BI: Brazil Isolate provided 

by Alice Kiperstok; U: Urine isolates from this study; VZ: isolates provided by Veronica 

Zilz (AG Melkonian). WWTP – waste water treatment plant. 

Identifier Species Medium Origin 

BI-11 Chlamydomonas sp. Waris-H municipal WWTP, settlement 

BI-16 Desmodesmus sp. Waris-H municipal WWTP, settlement 

BI-19 Chlorella sp. Waris-H municipal WWTP, settlement 

CCAP 211/8K Chlorella sorokiniana BBM freshwater 

U 10.1 Chlamydomonas sp. BG 11 urine enrichment 

U 10.10 Chlorella sp. BG 11 urine enrichment 

U 10.2 Cocconeis BG 11 urine enrichment 

U 10.3 Stichococcus sp. Waris-H+Si urine enrichment 

U 10.3 Stichococcus sp. Waris-H+Si urine enrichment 

U 10.4 Synechococcus sp. BG 11 urine enrichment 

U 10.5 Navicula sp. Waris-H+Si urine enrichment 

U 10.6 Heterococcus sp. (?) Waris-H+Si urine enrichment 

U 10.7 Chlorella sp. Waris-H+Si urine enrichment 

U 10.8 Chlorella sp. Waris-H+Si urine enrichment 

U 10.9 Trebouxia sp. (?) BG 11 urine enrichment 

U 2.1 Chlorella sp. Waris-H+Si urine enrichment 

U 2.2 Synechocystis sp. Waris-H+Si urine enrichment 

U 2.3 Phormidium sp. BG 11 urine enrichment 

U 2.4 Desmodesmus sp. Waris-H+Si urine enrichment 

U 5.1 unidentified coccal BG 11 urine enrichment 

U 5.2 Sphaerocystis / Coenochloris Waris-H+Si urine enrichment 

U 5.3 Chlamydomonas sp. Waris-H+Si urine enrichment 

U 5.4 Chlorella sp. Waris-H+Si urine enrichment 

U 5.5 Chlamydomonas sp. Waris-H+Si urine enrichment 

U 5.6 Chlamydomonas sp. Waris-H+Si urine enrichment 

U 5.7 unidentified coccal Waris-H+Si urine enrichment 

U 5.8 Scenedesmus sp. BG 11 urine enrichment 

U 5.9 Chlorella sp. BG 11 urine enrichment 
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Table 3 B (continued): Microalgal strains used in this study, their growth media and sites 

of origin. CCAC: Culture Collection of algae at university of Cologne (letter B stands for 

presence of bacteria); CCAP: Culture Collection of Algae and Protozoa; BI: Brazil Isolate 

provided by Alice Kiperstok; U: Urine isolates from this study; VZ: isolates provided by 

Veronica Zilz (AG Melkonian). WWTP – waste water treatment plant. 

Identifier Species Medium Origin 
VZ 147 Acutodesmus sp. Waris-H+Si municipal WWTP, inflow 

VZ 148 Acutodesmus sp. BG 11 municipal WWTP, inflow 

VZ 150 Acutodesmus sp. Waris-H+Si municipal WWTP, inflow 

VZ 165 Chlamydomonas sp. Waris-H+Si municipal WWTP, inflow 

VZ 185 Chlorella sp. Waris-H+Si municipal WWTP, inflow 

VZ 199 Dictyosphaerium sp. Waris-H+Si municipal WWTP, inflow 

VZ 200 Dictyosphaerium sp. Waris-H+Si municipal WWTP, inflow 

VZ 205 Haematococcus sp. BG 11 municipal WWTP, inflow 

VZ 213 Kirchneriella sp. Waris-H+Si municipal WWTP, inflow 

VZ 223 Klebsormidium sp. BG 11 municipal WWTP, inflow 

VZ 228 Monoraphidium cf. arcuatum Waris-H+Si municipal WWTP, inflow 

VZ 237 Monoraphidium cf. litorale BG 11 municipal WWTP, inflow 

VZ 246 Monoraphidium cf. litorale Waris-H+Si municipal WWTP, inflow 

VZ 252 Mougeotia sp. Waris-H+Si municipal WWTP, settlement 

VZ 276 Oocystis sp. Waris-H+Si municipal WWTP, inflow 

VZ 278 Oocystis sp. Waris-H+Si municipal WWTP, inflow 

VZ 279 Oocystis sp. Waris-H+Si municipal WWTP, inflow 

VZ 280 Oocystis sp. Waris-H+Si municipal WWTP, inflow 

VZ 281 Oscillatoria sp. BG 11 municipal WWTP, settlement 

VZ 289 Phormidium sp. Waris-H+Si municipal WWTP, inflow 

VZ 304 Stauroneis ? Waris-H+Si municipal WWTP, inflow 

VZ 305 Stauroneis ? Waris-H+Si municipal WWTP, inflow 

VZ 309 Stichococcus bacillaris Waris-H+Si municipal WWTP, inflow 

VZ 340 Uronema sp. Waris-H+Si municipal WWTP, inflow 

VZ 344 Uronema sp. BBM municipal WWTP, inflow 

VZ 351 Acutodesmus cf. acuminatus BG 11 municipal WWTP, inflow 

VZ 355 Acutodesmus cf. dimorphus Waris-H+Si municipal WWTP, inflow 

VZ 356 Acutodesmus cf. dimorphus Waris-H+Si municipal WWTP, inflow 

VZ 392 Chlorella sp. SFM municipal WWTP, inflow 

VZ 393 Chlorella sp. BG 11 municipal WWTP, inflow 

VZ 437 Klebsormidium cf. dissectum Waris-H+Si municipal WWTP, inflow 

VZ 462 Phormidium sp. Waris-H+Si municipal WWTP, inflow 

VZ 462 Phormidium sp. BG 11 municipal WWTP, settlement 

VZ 466 Pseudoanabaena sp. BG 11 municipal WWTP, settlement 

VZ 472 Rhoicosphenia sp. BG 11 municipal WWTP, settlement 

VZ 473 Sphaerobotrys cf. fluviatilis Waris-H+Si municipal WWTP, inflow 

VZ 475 Sphaerobotrys cf. fluviatilis Waris-H+Si municipal WWTP, inflow 

CCAC 1964 B Stichococcus bacillaris BBM drainage metal waste deposit 

CCAC 3524 B Desmodesmus maximus Waris-H freshwater 

CCAC 3552 B Scenedesmus quadricauda  Waris-H freshwater 

CCAC 3521 Kirchneriella sp. Waris-H freshwater 

CCAC 3526 B Kirchneriella sp. Waris-H freshwater 

CCAC 3525 B Kirchneriella sp. Waris-H freshwater 

CCAC 2143 B Chlamydomonas sp. Waris-H freshwater 

CCAC 2844 B Synechococcus sp. Waris-H freshwater 

CCAC 3271 B Chlorella vulgaris BBM industrial WWTP (automotive) 

CCAC 0041 Chlamydomonas terricola  BBM squeeze sample sewage field 

CCAC 3496 Desmodesmus abundans  Waris-H industrial WWTP (automotive) 

CCAC 3315 B Euglena sp. Waris-H freshwater 

CCAC 0126 Halochlorella rubescens BBM marine 

CCAC 3520 B Kirchneriella sp. Waris-H freshwater 
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2.4.  Experimental cultivation 

2.4.1. Screening  

The initial screening for growth on urine and determination of an appropriate dilution factor was 

performed in 24 well microtiter plates with 1 ml cultures, using absorbance at 750 nm as measure of 

growth in undiluted, 1:1 diluted and 1:5 diluted urine. Most cultures used in the screening were not 

axenic. In preliminary trials, both the absorbance at 680 nm (chlorophyll absorption maximum) and 750 

nm (general turbidity without pigment interference) were tested and compared (see appendix II). The 

two measures showed a strong linear relationship (r²>0.9724), thus 750 nm was chosen to prevent 

interference from differences in chlorophyll content due to the physiological state of cells, as other 

authors have done before (e.g. Griffiths et al. 2011). To prevent excessive bacterial growth, urine was 

sterile filtered through 0.2 µm filter cartridges into autoclaved flasks in a laminar-flow cabinet before 

using it as culture medium. Inoculation was performed from log-phase cultures, which were harvested 

and washed by centrifugation (800 g, 7 min) and three times replacement of the medium with sterile 

urine of the appropriate concentration. Cultures were inoculated at a density yielding an absorbance at 

750 nm of 0.1 and then grown at 23 °C and 80 µmol photons m-2 s-1 with 14:10 h light:dark cycle on a 

LED-table for 6 days. Cultures were set up in triplicates. Cultures grown in Bold’s Basal Medium (BBM; 

Bischoff & Bold 1963), as modified by CCAP, Oban, UK (www.ccap.ac.uk), were used as control. 

A comprehensive screening of 96 algal strains was subsequently performed in 96-well microtiter plates 

on 1:1 diluted urine. Cultures had a volume of 200 µl. To prevent excessive evaporation of water from 

the cultures, the outer wells of the microtiter plate were filled with water only, causing a moist 

atmosphere in the plate. Absorbance at 750 nm was measured on days 1, 4 and 5. Two reference strains 

(CCAC 0126 and U 5.5) as well as a negative control (non-inoculated urine) were used in each plate 

experiment. Besides these changes, experiments were conducted under the same conditions as stated 

above. 
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2.4.2. Nitrogen metabolism 

To determine the capabilities of using different nitrogen sources, experiments under axenic conditions 

were performed with seven axenic strains, using Bolds Basal Medium (BBM) and modifications thereof. 

In the modifications nitrate was exchanged for either urea (BBMurea) or ammonium (BBMNH4) at the 

same final nitrogen content. Cultures were grown in Erlenmeyer flasks or on agar plates (with addition 

of 1 % agar to the medium). Before the start of an experiment, axenicity of stock cultures was verified 

by sub-culturing in Bacterial Standard Medium (BSM), as prepared by CCAC, Cologne, Germany 

(www.ccac.uni-koeln.de). A drop of culture was placed in BSM, which was diluted 1:1, 1:10 and 1:100 

with Waris-H medium in reagent test tubes or 24 well microtiter plates. These were incubated for a total 

of 7 days at the growth conditions of the algal culture as well as at 37 °C in the dark. As negative control 

sterile culture medium was used, while a culture known to be contaminated by bacteria served as positive 

control. Bacterial contamination could be seen as turbidity in the medium. 

Erlenmeyer flask 

Cultures in BBMurea medium were set up in four replicates. After washing cells three times in sterile 

medium, cultures were inoculated at 2 x 105 cells ml-1 and incubated at 23 °C and a light intensity of 

100 µmol photons m-² s-1 on a LED-table for 23 days. Negative controls consisted of un-inoculated 

media. Samples to determine cell numbers and dissolved nutrients were taken at regular intervals. Cells 

were counted using a hemocytometer and nutrients were measured as described above. A liquid sample 

to determine dry biomass and pH was taken at day 9 and at the end of the experiment. For biomass 

determination, 10 ml of culture were filtered onto a polycarbonate filter of known weight. The filter was 

dried at 105 °C for at least 3 h and left to cool down in a desiccator until a stable weight was reached. 

Addition of 10 µl of a urease solution of 220 U ml-1 (Serva Electrophoresis, Heidelberg, Germany), 

dissolved in 0.15 M NaCl, was performed at day 9 to those cultures which showed no growth until that 

time point (i.e. were unable to use urea as N-source). 
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 Agar Plate 

Cultures were set up in four replicates. Media used were BBM, BBMurea and BBMNH4. As negative 

control, an agar medium without nitrogen source was used. Before inoculation, cells were harvested and 

washed three times in sterile medium, after which the suspension was diluted to contain 100 cells in 50 

µl of medium. This drop was placed on the agar dish and spread on the surface with a sterile glass 

reagent tube. Plates were incubated at 23 °C and 50 µmol photons m-² s-1 for 4 weeks. After this time, 

algal colonies were counted and their diameter measured, using a binocular with camera and the image 

analysis software Image J version 1.51d (Schneider et al. 2012). The average total colony area per plate 

was used as a means of assessing algal growth in this experiment.  

2.4.3. Cultivation on Twin Layer-PSBR 

Laboratory scale Twin Layer experiments were conducted as described by Schultze et al. (2015), based 

on Shi et al. (2007). A dry weight inoculation density of 2.5 g m-² on polycarbonate filter disks was used 

in experiments for determination of growth, while a fully inoculated nylon membrane was used for the 

nutrient recovery experiment, as described in chapter 2.4.3.3. All Twin Layer experiments were 

conducted at temperature-controlled conditions, at 21 °C. Medium was exchanged after 4 days, if not 

mentioned otherwise. In order to work under more realistic conditions, dilutions of urine and refilling 

of evaporated water was performed with either MQ water, tap water from Bonn (TapBN) or tap water 

from Cologne (TapCGN) in this experimental section. In some of the experiments, the pH was kept 

constant by means on-demand CO2 addition in the medium. This was realized by means of a PH-803 

pH-controller (Analytical Instruments, Colombo, Sri Lanka), connected to a solenoid valve type 356 

3/2NC G1/8 (ASCO-Numatics, Michigan, USA) which regulated a flow of 2.5 % CO2 when the set pH 

value was exceeded. The full experimental setup, as it was used in this experimental part, is shown in 

figure 3. 
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Figure 3: Schematic representation of the experimental setup in Twin Layer experiments with pH control. (A) 

Setup with inoculated polycarbonate disks for growth rate determination. (B) Setup with inoculated nylon 

membrane for nutrient recovery. a:  medium reservoir, b: peristaltic pump, c: pH-meter, d: CO2-source, e: solenoid 

valve. Black dashed lines: medium flow, black unbroken lines: electrical connection, blue lines: gas tubing. 

Graphic courtesy of Björn Podola and modified by the author. 

 

2.4.3.1. Screening 

An initial screening, to test the capability of strains to grow immobilized with urine as medium and to 

select the strain for further optimization, was performed with 9 algal strains. The conditions were: 1:1 

diluted urine (Urine batch C : TapBN); constant 2.5 % CO2 supplied to the medium and atmosphere; 

600 µmol photons m-² s-1. 

2.4.3.2. Optimization 

A series of experiments was conducted to optimize growth of the selected strain. The variables that were 

tested and respective experimental conditions are summarized in table 4. 
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Table 4: Summary of experimental parameters for optimization of growth of strain CCAC 3496 on 

Twin Layer. Resp. water stands for use of the same type of water as used for dilution/evaporation 

refill. 

Experimental 

variable 

Urine 

batch 

Diluent 

water 

Evaporation 

refill 

Light 

intensity 
(µmol photons 

m-² s-1 )  
pH 

control 

Pre-treatment/ 

comment 

Light 

intensity 

 

C 

 

TapBN 

 

MQ 

 

400, 600, 

800, 1000 

constant 

CO2 

  

pH 

value 

 

C 

 

TapBN 

 

TapBN 

 

600 

 

6, 6.5, 

7, 7.5  

Diluent 

water 

 

D 

 

MQ, TapBN 

or CGN, Undil. 

resp. water 

 

600 

 

6.5 

  

Evaporation 

refill 

 

D 

 

TapBN 

or CGN 

resp. water 

or MQ 

600 

 

6.5 

 

& regrowth 

experiments 

Pre- 

Treatment 

 

D 

 

TapBN 

 

MQ 

 

600 

 

6.5 

 

activated carbon, 

sterile filtration 

 

When using urine of batch D, an inhibitory effect on growth was detected, together with a bleaching of 

biomass. To investigate the cause of this, several experiments were performed:  

 Freshly inoculated filters were grown on the same batch of urine which had previously caused 

inhibition, to check whether a limitation was present in the medium. 

 Biomass (approx. 1 cm² surface area) from partially bleached filters was scraped off and used 

as inoculum for a culture in Waris-H medium, to check whether the effect was reversible. These 

cultures were prepared in 50 ml Erlenmeyer flasks and illuminated at 100 µmol m-² s-1. Cells 

were counted regularly with a hemocytometer. 

 A growth experiment on Twin Layer was conducted with urine that had been treated with 

activated carbon as well as sterile filtered, to check if a dissolved molecule (e.g. pharmaceutical 

compound) or a bacterial component caused the inhibition and if the negative effect could be 

alleviated. 

Activated carbon treatment was performed in the following way: 10 g of activated carbon type 

“Carbopal MB4” (Donau Carbon, Frankfurt, Germany) per 1 l of 1:1 TapBN diluted urine were 

suspended in the liquid and mixed thoroughly on a magnetic stirrer for 10 min at room temperature. The 
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particles were then filtered out by a series of decantations over coffee filters of type “Aromata No 4” 

(Lidl, Neckarsulm, Germany). Sterile filtration was performed as described previously. 

2.4.3.3. Nutrient recovery 

To determine the removal and uptake of nitrogen and phosphorus from activated carbon-treated urine, 

a Twin Layer experiment with a fully inoculated surface was performed. A nitrocellulose membrane of 

type “Zeta-Probe” (BIO RAD, Hercules, USA) with 0.45 µm pore size was used as substrate layer and 

a surface of 300 cm² (dimensions 10 cm x 30 cm) was inoculated by means of gentle filtration with a 

stencil to reach a biomass density of 2.5 g m-². The source layer was applied to the wet substrate layer 

(glass fiber) and secured by plastic paper-clips. The experiment was conducted at the previously defined 

optimal growth conditions. Concentrations of N and P were measured daily and the experiment was 

conducted until no more reduction in phosphorus concentration was detectable. The medium was not 

changed during this period. Algal biomass was then completely scraped off from the surface and washed 

in MQ water by repeated centrifugation and exchange of the liquid. Part of this suspension was brought 

onto polycarbonate filters for dry weight determination. After weighing, the biomass was grinded with 

a mortar and pestle and ~5 mg were weighed into tin cups for analysis of nitrogen content with a Flash 

2000 elemental analyzer (Thermo Scientific, Waltham, USA). Phosphorus content of the ground 

biomass was determined by acid digestion according to Hu & Barker (1999) and subsequent 

measurement of dissolved orthophosphate, as described above. 

2.5.  Statistics 

All statistical analyses were performed with GraphPad Prism software for Windows, version 6.01 

(GraphPad Software, La Jolla, California, USA). Comparison of replicate measurements were analyzed 

by one-way ANOVA with multiple comparison and Turkey’s post-hoc test. Rates were calculated as 

linear regressions over a certain time period. Comparison of rates was performed by analysis of 

covariance (ANCOVA) with multiple comparison. 
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3 Results 

3.1.  Analysis of urine batches 

To evaluate the variability of urine used in this study, each batch was analyzed for its nitrogen and 

phosphorus content, conductivity and pH value before any experiments were carried out with it. Table 

5 summarizes the results of these measurements. 

Table 5: Chemical characteristics of the different urine batches used in this study.  

Urine 

batch 

[total N] 

(g/L) 

[Urea-N] 

(g/L) 

[NH4-N] 

(g/L) 

[total P] 

(g/L) 

[PO4-P] 

(g/L) 

Atomic 

N:P ratio 

Conductivity 

(mS/cm) pH 

A 5.76 5.70 0.06 0.29 0.28 43 15.75 6.74 

B 4.50 4.41 0.09 0.29 0.28 34 11.85 6.83 

C 3.70 3.52 0.15 0.21 0.21 38 6.51 6.97 

D 2.50 2.38 0.09 0.17 0.17 31 8.83 7.02 

 

The variability in composition of urine of different batches was quite large. Batch A showed the highest 

content in total N, with 5.76 g L-1 while batch D had the lowest total N content of 2.5 g L-1. Nitrogen 

was present mainly (>95%) as urea in all cases, while ammonium made up only a minor fraction. The 

variability in total P content was similarly high, with 0.29 and 0.17 g L-1 as the maximum and minimum 

values in batch A and D, respectively. Phosphate was the mayor form of phosphorus present in all 

batches. The atomic ratio of N:P ranged between 31:1 and 43:1. Conductivity ranged between 6.51 and 

15.75 mS cm-1. The pH of urine was similar in all batches, with minor variations between 6.74 and 7.02. 
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3.2.  Diversity of isolates  

From the urine traps, 23 unialgal cultures were established. Table 6 gives an overview of the strains, 

their identities based on morphological characteristics and the conditions of their isolation. 

Table 6: Isolated strains, identification based on morphology and conditions of isolation. Isolations 

were performed with urine of batch A diluted with MQ water at the indicated levels. Secondary 

enrichments were done by placing a subsample into the respective growth medium and isolating 

from there after ~ 1-3 weeks. Cultures were kept in the indicated medium. 

Strain Class 

Species 

(morphology) Dilution 

Secondary 

enrichment Medium 

U 2.1 Trebouxiophyceae Chlorella sp. 1:1 x Waris-H + Si 

U 2.2 Cyanobacteria Synechocystis sp. 1:1 x Waris-H + Si 

U 2.3 Cyanobacteria Phormidium sp. 1:1  BG-11 

U 2.4 Chlorophycae Chlamydomonas sp. 1:1  Waris-H + Si 

U 5.1 Chlorophycae unidentified coccal 1:5 x BG-11 

U 5.2 Chlorophycae Sphaerocystis sp. 1:5 x Waris-H + Si 

U 5.3 Chlorophycae Chlamydomonas sp. 1:5 x Waris-H + Si 

U 5.4 Trebouxiophyceae Chlorella sp. 1:5 x Waris-H + Si 

U 5.5 Chlorophycae Chlamydomonas sp. 1:5 x Waris-H + Si 

U 5.6 Chlorophycae Chlamydomonas sp. 1:5 x Waris-H + Si 

U 5.7 Chlorophycae unidentified coccal 1:5 x Waris-H + Si 

U 5.8 Chlorophycae Scenedesmus sp. 1:5  BG-11 

U 5.9 Trebouxiophyceae Chlorella sp. 1:5 x BG-11 

U 10.1 Chlorophycae Chlamydomonas sp. 1:10 x BG-11 

U 10.2 Bacillariophyceae Cocconeis sp. 1:10  BG-11 

U 10.3 Trebouxiophyceae Stichococcus sp. 1:10 x Waris-H + Si 

U 10.4 Cyanobacteria Synechococcus sp. 1:10 x BG-11 

U 10.5 Bacillariophyceae Navicula sp. 1:10 x Waris-H + Si 

U 10.6 Xanthophyceae Heterococcus sp. (?) 1:10 x Waris-H + Si 

U 10.7 Trebouxiophyceae Chlorella sp. 1:10 x Waris-H + Si 

U 10.8 Trebouxiophyceae Chlorella sp. 1:10 x Waris-H + Si 

U 10.9 Trebouxiophyceae Trebouxia sp. (?) 1:10 x BG-11 

U 10.10 Trebouxiophyceae Chlorella sp. 1:10 x BG-11 

 

Of the 23 isolates, 10 were recovered from the 1:10 dilution, 9 from the 1:5 dilution and 4 from the 1:1 

dilution. Of all isolates, 1 was of the class xanthophyceae, 2 bacillariophyceae, 3 cyanobacteria, 8 

trebouxiophyceae and 9 chlorophyceae. The most abundant species were Chlorella ssp. and 

Chlamydomonas ssp.. About 17 % of the isolates were derived directly from the urine samples, while 

the others were isolated from secondary enrichments. 
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Several of the isolates, and other strains with which the main experiments were carried out, were also 

identified by molecular methods (SSU rRNA sequencing). The full sequences are given in appendix III. 

Table 7 gives the results of the closest relatives found when comparing the obtained sequences with the 

public database. Only those sequences originating from validly published research or from public culture 

collections were included in the list.  

Table 7: Molecular identification of selected strains. BI: Brazil Isolate; CCAC: Culture Collection of Algae 

at University of Cologne; U: Urine isolate; CCAP: Culture Collection of Algae and Protozoa. Nucleotide 

blast queries were made on NCBI-website (http://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed: 15.07.2016). 

Sequenced strain 

 

Comparison 

 

Closest relative 

 
ID 

 

Length 

 (bp) 

Coverage 

 (%) 

Identity 

(%) Species Accession # 

Publication/ 

Culture collection 

 

BI-11 

 

1687 

 

99 

 

99 

 

Chlamydomonas zebra 

 

U70792.1 

 

(Buchheim et al. 1997) 

 

CCAC 3496 
 

895 
 

 

97 99 Desmodesmus abundans KR904903.1 (Barbano et al. 2015) 

97 99 Scenedesmus abundans X73995.1 (Kessler et al. 1997) 

U 2.1 1694 
 

100 99 Chlorella sorokiniana KU948990.1 (Li, Q. and Chen 2016) 

U 2.4 1206 
 

96 99 Desmodesmus bicellularis KP726231.1 (Kaplan-Levy et al. 2016) 

U 5.5 1698 

 

100 99 Chlamydomonas moewusii FR865598.1 CCAP 11/5D 

U 10.10 1695 

 

100 99 Chlorella luteoviridis FR865678.1 CCAP 211/5B 

 

Molecular identifications were identical with those based on morphology to the genus level in all cases. 

More resolved identifications were obtained by finding close relatives, with high sequence identities, in 

all cases. Strain CCAC 3496 yielded 2 close relatives which were validly published and had the same 

values for sequence coverage as well as sequence identity. Scenedesmus abundans, as used by (Kessler 

et al. 1997) can be viewed as a synonym for Desmodesmus abundans (Guiry & Guiry 2016). In a 

previously published physiological test, this strain was found to produce secondary carotenoids, 

possessed a functional nitrate reductase and did not rely on thiamine or vitamin B12 for its growth 

(Kessler et al. 1997).  

A large degree of morphological variability was detected in suspension cultures of strain CCAC 3496 

(Fig. 4), although this has not been validated statistically: When growing strain CCAC 3496 in Waris-

H culture medium cells were elongated oval shaped and ornamented with spines, mainly arranged in 

groups of four in one row (Fig. 4 B). Single cells and groups of two cells were also observed. When 
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growing the organism in 1:1 diluted urine cells were slightly enlarged and round to oval shaped (Fig 4 

A). Some were arranged in groups of four or two cells while many were also present as single cells. 

Spines were absent in cells from this medium. 

 

Figure 4: Photographs of colonies of Desmodesmus abundans CCAC 3496 grown in different media in suspension 

culture. A: Urine (1:1 diluted with TapBN), B: Waris-H. Images were taken after 3 days in the medium. Images 

are magnified 1000x and were taken with differential interference contrast.  

 

3.3.  Screening for growth on human urine 

3.3.1. Choice of dilution 

The initial screening to determine an appropriate dilution factor of urine with 6 selected strains was 

performed using the absorbance at 750 nm as measure of algal growth. The results are represented in 

figure 5.  
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Figure 5: Summary of the dilution screening. Absorbance at 750 nm was used as growth measure of algal strains 

in urine of different dilutions (diluted with MQ) in suspension cultures in 24-well microtiter plates. Captions denote 

the algal strain. BBM medium was used as control. Values represent the mean +/- SD (n=3). 

 

The assessment of growth performance is based on ANOVA comparison of the final absorbance values 

on day 6. Strain BI-11 showed no significant difference between 1:1 dilution and either 1:5 dilution or 

BBM growth medium. Undiluted urine alone showed a significantly lower absorbance than all the other 

treatments (p<0.001). In strain BI-16, BBM medium yielded the highest growth, which was however 

statistically not different to growth in 1:5 diluted urine (p>0.1). The 1:1 dilution resulted in an 

intermediate growth, which was statistically not different from the value reached in the 1:5 dilution. 

Undiluted urine yielded the lowest growth in this strain, clearly different from all other treatments 

(p<0.01). In strains CCAC 3271, BI-11 and BI-19 there was a lag period of 2 days observed in BBM 
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medium. In strain BI-19 there was also a decrease in growth between days 2 and 4. Due to this irregular 

behavior, this strain was excluded from further analysis. In strain CCAC 0126 undiluted urine yielded 

the lowest final absorbance value, which was significantly lower than all others (at least p<0.05). The 

other treatments were statistically not different from one another. In strain CCAC 0041 growth in BBM 

was significantly higher than in all other treatments (p<0.0001). The dilutions of urine resulted in a 

similar final measure of growth. For strain CCAC 3271 there was a clear decrease in absorbance in 

undiluted urine between days 4 and 6, which resulted in the lowest final value, significantly lower from 

the other treatments (at least p<0.05). The other dilutions as well as BBM medium resulted in similar 

final absorbance values.  

Taken in concert, it can be seen that for most of the strains tested, undiluted urine yielded the lowest 

final absorbance at day 6. The differences between the 1:1 and the 1:5 dilutions were in most cases not 

significant. Therefore, a dilution of 1:1 of urine with water was chosen for all following experiments. 

3.3.2. Choice of algal strains 

To narrow down the selection of strains to be used for physiological characterization and experiments 

on Twin Layer, a screening of 96 strains for short term growth on urine was performed. Figures 5 A-C 

show the results of the comparative screening in 96-well microtiter plate cultures carried out in 6 

separate experiments, with absorbance at 750 nm used as measure of growth.  



Results 

32 

 

Figure 6 A: Strain screening. Absorbance at 750 nm was used as growth measure in 1:1 diluted urine (with MQ) 

in suspension cultures in 96-well microtiter plates. Non-inoculated urine was used as negative control. Values 

represent the mean +/- SD (n=3). 
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Figure 6 B (continued): Strain screening. Absorbance at 750 nm was used as growth measure in 1:1 diluted urine 

(with MQ) in suspension cultures in 96-well microtiter plates. Non-inoculated urine was used as negative control. 

Values represent the mean +/- SD (n=3). 
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Figure 6 C (continued): Strain screening. Absorbance at 750 nm was used as growth measure in 1:1 diluted urine 

(with MQ) in suspension cultures in 96-well microtiter plates. Non-inoculated urine was used as negative control. 

Values represent the mean +/- SD (n=3). 
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In all but 8 strains, a statistically relevant increase in absorbance at 750 nm was observable in the 

timeframe of the experiment (p<0.01). The largest increase was in most cases found in the first day of 

the experiment. Some strains increased in absorbance throughout the experimental period, while in 

others there was no more increase visible between days 4 and 5. The positive controls (U 5.5 and CCAC 

0126) showed similar behavior in all cases and yielded final absorbances on day 5 between 0.480-0.628 

and 0.493-0.556, respectively. The single values for each of the two were statistically not different from 

each other (p<0.005). The negative control, which was un-inoculated urine and principally represented 

bacterial growth and other forms of turbidity increase (e.g. precipitation of minerals) increased linearly 

in all cases and resulted in absorbances at day 5 between 0.268 and 0.335. When this background 

absorbance at day 5 of each experimental run was subtracted from the respective values of the strains 

tested, 9 remained which showed an actual increase in absorbance associated with algal growth. These 

are shown in figure 7. Those strains represent the ones which were used in further experiments, screening 

their growth on Twin Layer (section 3.6).  

 

Figure 7: Summary of strain screening. Increase in absorbance at 750 nm was used as growth measure in 1:1 

diluted urine (diluted with MQ) in suspension cultures in 96-well microtiter plates. The absorbance of negative 

controls (bacterial background) was subtracted and only positive values are shown. Values represent the mean +/- 

SD (n=3). 

 

The largest increase in absorbance in the 5 days of growth period was observed for strain U 2.4, followed 

by strain CCAC 3496. The final increase of strains U 5.5 and U 2.1 were statistically not different from 

each other and other strains showed increases of less than 0.1 absorbance units. 
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3.4.  Nitrogen metabolism of axenic strains 

3.4.1. Urea utilization 

In the next step several strains, from which axenic cultures were present, were used to investigate their 

nitrogen metabolism with emphasis on the use of urea as nitrogen source. Figure 8 shows the results of 

cell counts (C) as well as urea (B) and ammonium (A) measurements in suspension cultures of 3 selected 

strains using a modified BBM medium which contained urea as sole nitrogen source.  

 

Figure 8: Cell growth and nitrogen species development in axenic suspension cultures using modified BBM 

medium with urea as only N-source. A: Ammonium concentration; B: Urea concentration; C: Cell numbers. 

Dashed line indicates the time of urease addition to H. rubescens CCAC 0126 culture. Values represent the mean 

+/- SD (n=4). 
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strain, which immediately alleviated the limitation in growth. At the end of the experiment (day 21) all 

3 strains showed similar final cell densities, which were statistically not different from one another. Urea 

concentrations in U 5.5 and CCAC 3496 decreased in parallel with the increase in cell numbers during 
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the first 9 days, after which there were only minor changes detectable. In CCAC 0126 the concentration 

of urea was constant until day 9, as in the negative control. Upon the addition of urease, urea 

concentrations in the cultures of this strain decreased rapidly. Ammonium concentrations in cultures of 

strain U 5.5 were almost not detectable throughout the experimental period, while in cultures of CCAC 

3496 there was an immediate release of ammonium, which occurred for as long as cells were growing. 

In the cultures of strain CCAC 0126, ammonium release was observed only after addition of the enzyme. 

Figure 9 shows the results of dry biomass and pH development in the same experiment. 

 

Figure 9: Biomass and pH development in axenic suspension cultures using modified BBM medium with urea as 

only N-source. A: pH; B: dry biomass. Dashed lines separate the days of sampling. Small letters above bars 

represent significant differences according to one way ANOVA with Turkey’s post-hoc test (at least p<0.05). 

Values represent the mean +/- SD (n=4). 
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a minor increase in pH, which stayed rather stable from day 9 onwards. Biomass increased throughout 

the experiment for strains CCAC 3496 and U 5.5, while it stagnated for CCAC 0126, until the addition 

of urease enzyme on day 9, after which this strain also showed an increase in biomass dry weight.  

3.4.2. Various nitrogen sources 

To further elucidate the nitrogen use capabilities of selected strains, a growth experiment was performed 

on agar plates, using BBM medium with different nitrogen sources. The results of this are shown in 

figure 10. 

 

Figure 10: Colony growth of axenic cultures on agar plates with modified BBM containing different nitrogen 

sources. Colony area is calculated by the mean number of colonies per plate times the mean diameter of colonies. 

The same data is plotted twice for ease of comparison: A: comparison by nitrogen source; B: comparison by strain. 

Small letters above bars represent significant differences according to one way ANOVA with Turkey’s post-hoc 

test (at least p<0.05).Values represent the mean +/- SD (n=4). 
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on this N-source. Strain U 5.5 showed the highest growth on nitrate and urea and strain CCAC 3496 

grew similarly well on all three nitrogen sources.  

3.5.  Water analysis and prevention of precipitation 

3.5.1. Water analysis 

In order to perform them under more realistic conditions, tap water was used to prepare the dilutions of 

urine for Twin Layer experiments. Initial experiments with TapCGN water indicated that there was a 

large potential for the formation of precipitates when used for dilutions of urine. To make a more 

informed choice on the source of water to be used, an ICP-MS analysis of mayor solutes in TapBN and 

TapCGN waters was performed. The main elements of interest for algal cultivation are presented in 

Figure 11. 

 

Figure 11: Concentrations of elements relevant for algal growth in tap waters from Bonn and Cologne. Top graphs 

show macro-elements, bottom graphs show micro elements. Refer to the difference in scale. Values represent a 

single measurement. 
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The most striking differences are the elevated concentrations of calcium and sodium in TapCGN, which 

are about 5x and 6x higher, respectively, than in TapBN. Values of sulfur and magnesium are also 

elevated in TapCGN, showing about 3x the concentration of TapBN. Among the micro-elements, 

TapBN showed elevated concentrations of iron, approximately 6x higher than in TapCGN, while 

TapCGN had elevated concentrations of copper and zinc, about 8x and 7x higher, respectively, than in 

TapBN. Electrical conductivity in TapCGN and TapBN was 0.531 and 0.340 mS cm-1, respectively. 

Due to the lower content in elements that might form precipitates (Ca and Mg) and the elevated 

concentration in iron, which might promote algal growth, TapBN was chosen as the standard water for 

dilution in most experiments. 

3.5.2. Prevention of precipitation 

An experiment to assess the means of preventing the precipitation of phosphorus-containing minerals in 

a setting similar to a growth experiment on Twin Layer-PSBR was performed. Urine diluted 1:1 with 

TapBN was placed under non-sterile conditions and aerated with either normal air or air amended with 

2.5 % CO2. After 14 days, there was visible precipitation in the air-treated urine, while none was visible 

in the CO2-treatment. Table 8 shows the results of the analysis of the precipitates.  

Table 8: Prevention of precipitation by pH control with constant addition of 2.5 % CO2. Values were determined 

in 1:1 diluted urine (TapBN) after 14 days of development under non-sterile conditions at 23°C. Starting pH was 

6.7. Concentrations of ammonium and phosphate were measured from dissolved precipitate. n.d. stands for not 

detectable. Values represent the mean +/- SD (n=3). 

 Variable CO2 controlled pH no pH control 

Final pH 7.02 +/- 0.01 9.1 +/- 0.25 

Precipitate (g l-1)  11.01 +/- 1.32 157.90 +/- 11.35 

[Ammonium] (mM) 0.49 +/- 0.02 7.09 +/- 0.24 

[Phosphate] (mM) n.d. 7.11 +/- 0.11 

Ratio NH4:PO4 n.d. 1.00 +/- 0.12 

 

In the air-treatment, pH rose from 6.7 to 9.1 at the end of the experiment, while in the CO2-treatment 

pH only went up to a value of 7.1. There was about 14x more precipitate (by weight) present in the air-

treatment. Analysis of NH4
+ and PO4

- showed that the precipitate contained the two molecules in an 

almost equimolar ratio.  
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3.6.  Growth on Twin Layer-PSBR  

3.6.1. Screening of strains on Twin Layer 

To assess their potential for immobilized growth and treatment of urine, an experiment on Twin Layer 

with the 9 best growing strains (as found in the microtiter plate screening (Fig. 6)) was performed. Figure 

12 shows the results of this screening.  

 

Figure 12: Immobilized growth of different algal strains on 1:1 (TapBN) diluted urine of batch C. Conditions 

were the following: 600 µmol photons m-2 s-1 light intensity; 2.5 % CO2 constantly supplied to the medium vessel 

and the atmosphere. The medium was changed every 4 days. Evaporation was refilled daily with MQ water. The 

experiment with CCAC 3496 was repeated (triangles). Lines represent linear regressions. Values represent the 

mean +/- SD (n=3). 

 

Most of the tested strains grew in a linear fashion for the first 6 days, except for U 2.1, which showed a 

decrease in biomass already from day 3 onwards. Between days 6 and 9 all strains except for CCAC 

3496 showed a decline or stagnation of biomass. Only strain CCAC 3496 showed linear growth 

throughout the experimental period of nine days. To validate this result, the experiment with this strain 

was repeated. The slopes (growth rates) of the two experiments conducted with Desmodesmus abundans 

CCAC 3496 were compared by analysis of covariance (ANCOVA) and were found to be statistically 
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not different (P=0.2906). The pooled growth rate can be expressed as 10.33 +/- 0.354 g m-² day-1. This 

strain was selected for further experiments. 

3.6.2. Optimizing growth of CCAC 3496 

As a next step, it was attempted to optimize growth performance of CCAC 3496 by changing several 

parameters, in order to maximize the nutrient recovery potential of this strain.  

3.6.2.1. Light intensity 

An experiment was conducted to find the optimal light intensity for this strain. The results are presented 

in figure 13.  

 

Figure 13: Immobilized growth of Desmodesmus abundans CCAC 3496 on 1:1 (TapBN) diluted urine of batch C 

at different light intensities. Conditions were the following: 400-1000 µmol photons m-2 s-1 light intensity; 2.5 % 

CO2 constantly supplied to the medium vessel and the atmosphere. The medium was changed every 4 days. 

Evaporation was refilled daily with TapBN water. Lines represent linear regressions and different letters indicate 

significant differences between them according to ANCOVA and Turkey’s post-hoc test (p<0.0001). Values 

represent the mean +/- SD (n=3). 

 

All treatments displayed linear increase in dry weight throughout the experimental period of 9 days. The 

growth rates of the 400 and 600 µmol photons m-2 s-1 treatments were significantly different from one 
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another (P=0.0045; F=9.66616). Likewise, the growth rate of the 600 µmol photons m-2 s-1 treatment 

differed significantly from the 800 and 1000 µmol photons m-2 s-1 treatments (P<0.0001) according 

ANCOVA analysis. The highest growth rate reached in this comparison of light intensities was 9.130 

+/- 0.4223 g m-² day-1 at 600 µmol photons m-2 s-1. Thus, further experiments were conducted at this light 

intensity. 

3.6.2.2. pH-value 

For the following experiment, the pH control system of on-demand CO2 addition to the medium (Fig.3) 

was implemented to identify the optimal pH for growth of strain CCAC 3496. The results are shown in 

figure 14.  

 

Figure 14: Immobilized growth of Desmodesmus abundans CCAC 3496 on 1:1 (TapBN) diluted urine of batch C 

at different set pH values, regulated by CO2 addition. Conditions were the following: 600 µmol photons m-2 s-1 

light intensity; pH 6-7.5; 2.5 % CO2 constantly supplied to the atmosphere. The medium was changed every 4 

days. Evaporation was refilled daily with TapBN water. Lines represent linear regressions and different letters 

indicate significant differences between them according to ANCOVA and Turkey’s post-hoc test (p<0.00015).  

Values represent the mean +/- SD (n=3). 

 

Dry weight increased linearly during the 9 days of experiment for the treatments of pH 6, 6.5 and 7. At 

pH 7.5, growth decreased between days 5 and 7 and stagnated towards the end of the cultivation period. 
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The highest growth rate reached in this comparison of pH values was 8.033 +/- 0.2638 g m-² day-1 at pH 

6.5. This value was significantly different from all other pH treatments (P<0.00015) according to 

ANCOVA analysis and the highest among the treatments. Therefore, 6.5 was chosen as the pH set-point 

for all further experiments. 

3.6.2.3. Source of diluent water 

As the next step, an experiment was conducted to test the effect of using different waters for the dilution 

of urine, as well as for replacing the evaporated water. The results are shown in figure 15. 

 

Figure 15: Immobilized growth of Desmodesmus abundans CCAC 3496 on urine of batch D diluted with water 

from different sources. Conditions were the following: 600 µmol photons m-2 s-1 light intensity; pH regulated at 

6.5; 2.5 % CO2 constantly supplied to the atmosphere. The medium was changed every 4 days. Evaporation was 

refilled daily with the respective water. Different letters indicate significant differences in the biomass on day 5, 

according to one-way ANOVA with Turkey’s post-hoc test (p<0.005). Values represent the mean +/- SD (n=3). 

 

This experiment yielded unexpected results. Biomass increase was linear in all treatments, except 

TapBN, for the first 5 days, after which biomass growth stagnated and even slightly decreased in all 

treatments. In TapBN biomass growth stagnated already after 2 days. The cease in biomass growth was 

concurrent with a gradual bleaching of biomass observed in all treatments. Due to the non-linear growth 
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in this experiment, a calculation of growth rates was not possible. Instead the maximal biomass reached 

on day 5 was compared. The treatment with 1:1 dilution with TapCGN water yielded the highest biomass 

of 48.56 +/- 3.18 g m-². This value was statistically different from the maxima in all other treatments 

according to one-way ANOVA with Turkey’s post-hoc test (p<0.001). 

To exclude a negative effect of replacing the evaporated water with tap water, which might have caused 

the observed inhibition, a new experiment was conducted in which evaporation was replaced with either 

the respective tap water or MQ water. The results are shown in figure 16. Since an inhibition of growth 

(concurrent with bleaching of biomass) was again occurring in all treatments after 6 days, freshly 

inoculated biomass was applied on new filters and brought to the glass fibers. It was grown with the 

same bottle of medium for another 9 days, to investigate if a limiting factor in this batch of urine was 

the cause of inhibition.   

 

Figure 16: Immobilized growth of Desmodesmus abundans CCAC 3496 on urine of batch D diluted and 

evaporation replaced with water from different sources. The captions denote the diluent water and the refill water 

before and after the dash, respectively. Conditions were the following: 600 µmol photons m-2 s-1 light intensity; 

pH regulated at 6.5; 2.5 % CO2 constantly supplied to the atmosphere. Circles represent the initial growth, squares 

represent the growth of newly inoculated filters. The medium was changed every 4 days until day 8, after which it 

was no longer changed. Different letters indicate significant differences in the biomass on day 5, according to one-

way ANOVA with Turkey’s post-hoc test (p<0.005). Values represent the mean +/- SD (n=3). 
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Biomass growth showed a similar pattern of stagnation and/or decrease as previously observed. In the 

first growth cycle the TapCGN – TapCGN treatment showed the highest biomass with 55.51 +/- 0.25 g 

m-². This value was statistically different from all other treatments according to one-way ANOVA with 

Turkey’s post-hoc test (p<0.05). In the regrowth experiment, the treatment TapBN – MQ yielded the 

highest biomass at day 18 with a value of 37.58 +/- 2.78 g m-², which was statistically different from all 

other treatments according to one-way ANOVA with Turkey’s post-hoc test (p<0.001). In all cases a 

regrowth was visible, however at a decreased rate compared to the initial growth and with a similar 

pattern of inhibition after 6 days.  

To investigate whether the inhibition was permanent, a portion of bleached biomass was taken from the 

filters of the previous experiment and inoculated into Waris-H growth medium in suspension cultures.  

 

Figure 17: Cell growth of Desmodesmus abundans CCAC 3496 (taken from a partially bleached filter which had 

been cultivated on urine batch D) in Waris-H medium. The captions denote the treatment from which the inoculum 

was taken. Conditions were the following: 100 µmol photons m-2 s-1 light intensity, 20 ml medium in 50 ml 

Erlenmeyer flasks. Values represent the mean +/- SD (n=3). 
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Figure 17 shows that in all cases a logarithmic growth was observed for 7 days, after which cultures 

ceased to grow. A final cell density of 6.59 +/- 0.21 x 106 cells ml-1 was statistically not different between 

the different treatments, according one-way ANOVA with Turkey’s post-hoc test (p<0.001). 

3.6.2.4. Filtration and activated carbon treatment 

The inhibitory substance, or microorganism, was attempted to be excluded from the urine by sterile 

filtration and/or activated carbon treatment. Before a growth experiment was conducted, potential 

effects of these treatments on the nutrient content of urine were determined. Sterile filtration did not 

have an effect on nutrient concentrations, while activated carbon treatment resulted in 17.19 % and 10.11 

% removal of total nitrogen and total phosphorus, respectively. Since significant quantities of total N 

(2.07 g l-1) and total P (0.15 g l-1) were still present, a growth experiment on Twin Layer was performed. 

The results are shown in figure 18.  

 

Figure 18: Immobilized growth of Desmodesmus abundans CCAC 3496 on urine of batch D diluted with TapBN 

water and treated in different ways. The captions denote method of filtration and treatment used. Conditions were 

the following: 600 µmol photons m-2 s-1 light intensity; pH regulated at 6.5; 2.5 % CO2 constantly supplied to the 

atmosphere. The medium was changed every 4 days. Lines represent linear regressions. Values represent the mean 

+/- SD (n=3). 
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It is apparent that the activated carbon treatment yielded the highest growth rate of this comparison 

(7.216 +/- 0.2319 g m-² day-1), which was also statistically different from the growth rate of the combined 

treatment with activated carbon and sterile filtration, according ANCOVA analysis with Turkey’s post-

hoc test (p<0.0001). Furthermore, activated carbon treatment alleviated the bleaching effect on biomass 

that was otherwise observed with urine of batch D (Fig. 19). Interestingly there seemed to be an 

enhanced bleaching of biomass in the treatments with sterile filtration (B compared to A). 

 

Figure 19: Photographs of filters with immobilized Desmodesmus abundans CCAC 3496 on day 9 grown on urine 

of batch D diluted with TapBN water and filtered in different ways. A: unfiltered; B: sterile filtered; C: carbon-

treated; D: carbon-treated and sterile filtered. 

 

Due to the alleviation of the inhibitory effect, activated carbon treatment was selected as pre-treatment 

for the following experiment, determining nutrient recovery from urine of batch D.  

3.7.  Removal and recovery of nutrients 

To assess the potential of recovering nitrogen and phosphorus with immobilized strain CCAC 3496, an 

experiment was performed in which a surface (~300 cm²) was inoculated and the urine was recirculated 

and not exchanged during the experimental period. Nitrogen and phosphorus concentrations were 

measured daily and the experiment was conducted until no more significant removal was observable. 

Figure 20 shows the results of this experiment.  
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Figure 20: Nutrient concentrations in urine of batch D, diluted with TapBN water and treated with activated 

carbon, using immobilized Desmodesmus abundans CCAC 3496. Conditions were the following: 600 µmol 

photons m-2 s-1 light intensity; pH regulated at 6.5; 2.5 % CO2 constantly supplied to the atmosphere. Values 

represent the mean +/- SD (n=4). 

 

Total nitrogen was reduced most rapidly during the first two days, when the rate of removal was 68.75 

mg N l-1 day-1. After this, removal of nitrogen slowed down and stagnated between days 4 and 5. All 

remaining nitrogen in solution was present as ammonium (total-N = ammonium-N) at the end of the 

experiment. Total phosphorus showed the highest rate of removal in the first day of treatment, which 

resulted in a removal rate of 32.79 mg P l-1 day-1. After this, removal gradually decreased until it 

stagnated between days 4 and 5. During the first day, a molar ratio of uptake of ~5:1 (N:P) was 

calculated. The final biomass on the reactor surface was 36.19 +/- 2.945 g m-², which can be converted 

into an overall growth rate of 7.238 g m-² day-1, assuming linear growth. The nitrogen and phosphorus 

content of the biomass at the end of the experiment was found to be 5.36 % and 2.1 %, respectively. 

Thus it can be calculated, that the portion of the removed elements, that was recovered in the form of 

biomass (recovery efficiency) was 87.1 and 87.5 % for N and P, respectively (Tab. 9).  

Table 9: Nutrient removal and recovery by immobilized Desmodesmus abundans CCAC 3496. Recovery 

efficiency is the percentage of nutrients removed from the medium that is found in biomass. Removal efficiency 

is the percentage of total nutrient that was removed in the treatment. Values represent the mean +/- SD (n=4). 

Parameter Nitrogen Phosphorus 

removed from medium (mg) 81.25 +/- 8.6 32.81 +/- 3.9 

recovered in biomass (mg) 71.87 +/- 2.26 26.8 +/- 1.4 

recovery efficiency (%) 87.1 87.5 

initial amount (mg) 619.6 +/- 15.74  34.55 +/- 3.56 

left in medium (mg) 538.34 +/- 11.32 1.74 +/- 1.21 

removal efficiency (%) 13.1 94.1 
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The removal of N was calculated to be 13.1 %, hence there were still significant quantities of nitrogen 

present after the 5 days of treatment. The efficiency of removal for P was 94.1 %, hence almost all 

phosphate from urine was removed at the end of the treatment. 
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4 Discussion 

4.1.  Microalgal strains 

Previous studies that have dealt with the treatment of human urine with microalgae largely relied on 

using established strains from culture collections. Species that have been commonly used are Chlorella 

sorokiniana (Tuantet, Janssen, et al. 2014; Zhang et al. 2014; de Wilt et al. 2016), Chlorella vulgaris 

(Jaatinen et al. 2016), Scenedesmus acuminatus (Adamsson 2000) and Spirulina platensis (Arthrospira 

sp.) (Feng & Wu 2006; Yang, Liu, et al. 2008; Chang et al. 2013; Coppens et al. 2016). The approach 

of focusing on the optimization of process parameters and bioreactors sets aside the untapped potential 

that lies in natural microalgal diversity. To fill this gap in knowledge and to make use of specialist 

strains, a bioprospecting approach of isolating algae adapted to growing in urine together with a 

comprehensive screening of established strains was chosen as the starting point in this thesis. 

4.1.1. Diversity of isolates 

The majority of strains in this study were isolated from the higher dilutions of urine (Tab. 6), indicating 

that 1:1 diluted urine is a harsh environment for algae from the environment, possibly due to high pH 

and resulting high concentrations of NH3 after hydrolysis of urea. Another point that speaks for this 

conclusion is that most isolates (83%) were isolated from secondary enrichment cultures. This means 

that the initial selection of algae occurred in the urine traps, while fastidious growth of isolatable 

populations occurred mainly in the enrichment media into which they were placed afterwards. Strains 

from secondary enrichments might simply have survived in urine (e.g. in the form of resting stages) 

rather than thriving on it. Most of the isolated strains belonged to three mayor phylogenetic groups, 

chlorophyta (green algae), cyanobacteria and bacillariophyta (diatoms) (Tab. 6). The green algae are 

considered to be the most tolerant to high ammonium concentrations among unicellular algae (Collos & 

Harrison 2014), which were most certainly encountered in the urine traps. Some cyanobacteria can also 

tolerate high ammonium concentrations (Collos & Harrison 2014) and occur in extreme environments 
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in general (Rothschild & Mancinelli 2001). Diatoms are also known to be relatively tolerant to high 

ammonium concentrations, ranking behind the chlorophyta and cyanobacteria in the review of  Collos 

& Harrison (2014). Some diatom species (e.g. Nitzschia, Navicula) are known to occur in environments 

with high nutrient inputs and the composition of diatom communities in nature is commonly used as an 

indicator for the eutrophication status of a water body (e.g. Kelly & Whitton 1995).  

Other studies in which algae were isolated from wastewater environments report a similar diversity as 

presented here. Zilz (2013) studied the diversity of microalgae in several municipal wastewater 

treatment plants in western Germany and established a large collection of strains, some of which were 

used in the screening of this study (designated VZ). Considering only those algae which were present in 

the inflows of the treatment plants, before the steps of nitrification and phosphorus removal, her samples 

were dominated by chlorophytes, followed by bacillariophytes and cyanobacteria. Dominant green algal 

species were Chlorella ssp, Chlamydomonas ssp and various scenedesmaceae, which correlates well 

with the species isolated from the urine traps (Tab. 6). A very similar pattern of dominant green algae, 

followed by diatoms and cyanobacteria was found by Chinnasamy et al. (2010), who isolated microalgal 

strains from carpet mill effluents, where ammonia was the mayor form of nitrogen. Thus, it can be 

concluded that the diversity of isolated strains largely represented those species which are typically 

present in wastewater environments.  

One isolate, strain U 10.6, was identified as the xanthophyte Heterococcus sp., a group of organism 

which is not usually found in wastewater environments. It must be pointed out that this species is 

difficult to identify based on morphology alone, since it can undergo variations in appearance depending 

on environmental conditions and life-cycle stage (Darling et al. 1987). Therefore, it might have been 

wrongly identified. The same might be true for the isolate U 10.9, which was identified as Trebouxia 

sp.. Curiously, both these species are known to occur as photobionts in lichens (Darling et al. 1987; 

Kroken & Taylor 2000). In these symbiotic systems, urea is considered to play a role in carbon and 

nitrogen nutrition of both the fungus and the alga (Vicente et al. 1984), while the enzyme urease has in 

some cases been attributed to the algal partner (Millanes et al. 2004). Thus, the algae isolated might 
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indeed belong to these species and could occur in the urine traps in their free living form as early 

colonizers, since they might possess the enzymatic machinery necessary for hydrolysis of urea.   

Isolating algae by providing a niche habitat naturally provides only a snapshot of the true diversity of 

strains capable of growing there. The full diversity was most likely not captured, since only one attempt 

of isolation was made in one specific season (spring), due to a limited amount of enrichment media and 

limited experience of the isolator with the manual techniques. Therefore, the diversity of algae is most 

likely biased towards fast growing and easy-to-isolate strains. However, this is in line with the overall 

aim of finding strains suitable for treatment of urine, where ease of cultivation and speed of growth are 

the main criteria. A more specific isolation strategy, closer to the treatment situation, might have been 

setting up a non-inoculated open Twin Layer system supplied with fresh urine, replaced at regular 

intervals and kept at a constant pH. Such a system would have provided a growth surface for 

environmental algae which are optimally adapted for growing in an immobilized way under the 

treatment conditions, and might have yielded even more suitable isolates. 

4.1.2. Choice of organisms  

During the suspension culture screening in 1:1 diluted urine, several strains which had been isolated 

from urine traps did not grow well (e.g. strains U 10.8, U 10.1, U 5.1 and U 5.8; Fig. 6 A, B and C). 

Those strains had however been derived from higher dilutions of urine, while two strains isolated from 

1:1 urine traps ranked among the highest in this screening (U 2.1 and U 2.4; Fig. 7). This further 

highlights the fact that the dilution of urine is a critical factor for the growth of some strains.   

Chlamydomonas moewusii strain U 5.5, which had performed among the best three strains in the initial 

screening in suspension culture (Fig. 7), did not show good growth when immobilized on Twin Layer 

PSBR (Fig. 12). This deviation might be explained by the morphology of the organism, since some 

flagellate algae have previously been observed to show only poor growth when immobilized (B. Podola, 

pers. comm.). Surprisingly, Desmodesmus bicellularis strain U 2.4 as well as Chlorella sorokiniana 

strain U 2.1, which showed among the highest growths in the initial screening (Fig. 6 C), also grew only 

poorly when immobilized on Twin Layer PSBR (Fig. 12). The reason for this divergence is not clear, 
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but it indicates that using an immobilized system for screening (e.g. the “Phycomat” (Nowack et al. 

2005)) might have resulted in a  more suitable selection of strains for further experiments. C. sorokiniana 

(CCAP 211/8K), which has previously been chosen for studies of nutrient recovery from urine (Tuantet, 

Temmink, et al. 2014; Zhang et al. 2014), ranked on place 24 of the 96 strains tested in the suspension 

screening (Fig. 6 B). This further points to the potential of using the biological approach to improve the 

selection of organisms most suited for the treatment of urine. 

Desmodesmus abundans (CCAC 3496) was chosen as the algal strain for further work because it 

displayed, as the only tested organism, linear growth for up to 9 days when immobilized on Twin Layer 

with 1:1 diluted urine as medium (Fig. 12). The organism also grew rapidly in suspension culture, further 

simplifying the preparation of inocula for Twin Layer cultures. This strain originated from the 

wastewater of a paint-finishing system of an automotive company, speaking for a very robust organisms 

tolerant to heavy inorganic pollution. Members of the genus Desmodesmus are indeed known for their 

cosmopolitan distribution in freshwater habitats and are commonly found at sites of high nutrient input 

(Sheath & Vis 2013). Morphological polymorphism, as observed in this study (Fig. 4), is a well-

described phenomenon in the genera Scenedesmus and Desmodesmus (Trainor 1966; Lürling 2003) and 

in some cases functional conclusions have been drawn. The disappearance of spines, as was observed 

in cultures of D. abundans CCAC 3496 when grown in urine, has previously been attributed to adverse 

growth conditions such as high salt concentration (conductivity), nutritional deficiencies or presence of 

inhibiting substances (Marčenko 1969). All of these conditions might have been encountered when 

growing in urine. A decreased spine formation upon exposure to high conductivities has also been 

observed for the desmid Staurodesmus omearii  (Miebach 2014). In that species, it might be interpreted 

as a mechanism to avoid low nutrient concentrations in the natural situation, since cells with spines 

(mainly composed of cell-wall material) become heavier, sinking to the bottom of a water body were 

nutrient concentrations are generally higher than in the open water (M. Melkonian, pers. comm.). The 

slight enlargement of D. abundans cells in the present work might further be due to the inability to 

divide, which could be interpreted as a deficiency in some critical nutrient when growing in urine. 
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4.2. Nitrogen metabolism 

To elucidate their physiological capacities and to aid in the selection of a suitable organism for treatment 

of urine, several axenic strains were tested for their use of different nitrogen sources. 

4.2.1. Differences in nitrogen metabolism 

As can be seen in figure 10, all tested strains were able to utilize ammonium as sole nitrogen source and 

grew similarly well on this N-source on agar plates. This is in line with the textbook concept that this 

most reduced mineral form of nitrogen is in many cases the preferred nitrogen source for microalgae, as 

well as for most other photolithotrophs (Raven et al. 1992; Giordano & Raven 2014). Indeed, it has been 

shown in C. vulgaris, that the expression of nitrate reductase is repressed in the presence of ammonium, 

leading to a preferred uptake of ammonium (Morris & Syrett 1963). Energetically ammonium is 

preferable over nitrate, since its use does not require any further reduction before incorporation into 

amino acids (reviewed by Cai et al. 2013). Nitrate served as a good N-source for strains U 5.5 and CCAC 

3496, while in strain CCAC 0126 it resulted in growth similar to that on ammonium (Fig. 10). The fact 

that the Desmodesmus strains BI-16 and U 2.4 did not grow on nitrate (Fig. 10 A) is unusual, since 

nitrate is generally considered a good nitrogen source for most microalgae (Healey 1973). However, 

these strains also only showed intermediate/low growth on the other N-sources in this experiment (Fig. 

10 B). Thus it might be the case that these strains are generally not suited for growth on agar plates 

under the given conditions. To substantiate this claim, one would have to perform a test in suspension 

culture, providing nitrate as sole N-source. The highest growth on urea as N-source was achieved by 

strains U 5.5 and CCAC 3496, while CCAC 0126 was seemingly unable to use this N-source. These 3 

strains were chosen for a further elucidation of their urea use capabilities in suspension cultures (Figs. 

8 & 9).  

Halochlorella rubescens CCAC 0126 showed no growth (cells and dry weight) with urea as sole N-

source, until an external dose of urease enzyme was added on day 9. From then onwards cell numbers 

increased and ammonium release was detected in parallel with a decrease in urea concentration. After 

the addition of enzyme there was also an increase in pH, typical for the hydrolysis of urea. Taken in 
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concert, these results point to the conclusion that the organism does not possess a functional enzyme 

capable of splitting urea.  

Chlamydomonas moewusii U 5.5 grew exponentially with urea as sole N-source for the first 9 days 

(Fig. 8). In this timeframe concentrations of urea decreased steadily, while ammonium concentrations 

remained close to the detection limit throughout the experimental period. Since there was also no 

significant rise in pH (Fig. 9), the external hydrolysis of urea and presence of ammonium in the medium 

can be excluded. These results can be seen as evidence that C. moewusii strain U 5.5 possesses all the 

transport and enzymatic components necessary to take up urea and intracellularly hydrolyze it. As with 

many other soluble nutrients, uptake of urea can occur via high- and low-affinity uptake systems, their 

regulation depending on the concentration gradient between the environment and the cell. In the model 

chlorophyte Chlamydomonas reinhardtii, a distant relative to C. moewusii,  the active transporter DUR3 

has been identified as an important uptake system for urea (Kirk & Kirk 1978). The gene family coding 

for this transmembrane protein complex has later been identified in a number of other eukaryotic algae 

(Solomon et al. 2010). This high affinity transporter uses the energy from a sodium gradient across the 

cell membrane; it belongs to the sodium:solute symporter family also present in higher plants and fungi 

(Wang et al. 2008). Activity of this system is considered to be light-dependent and is down-regulated 

by the presence of ammonium in cultures as well as in natural phytoplankton populations (Rees & Syrett 

1979; Lomas et al. 2002). Transport of urea into the algal cell can also occur via a low-affinity passive 

transport system, the mayor intrinsic proteins (MIPs) or aquaporins (reviewed by Giordano & Raven 

2014). Little is known about regulation of urea transporting MIPs in algae, however it can be deduced 

from higher plants that these channels are especially important at high external urea concentrations, as 

would be the case under agricultural fertilization (Kojima et al. 2006) or in urine. The type of urea 

splitting enzyme present in C. moewusii is an open question. However C. reinhardtii is known to possess 

the ATP dependent UALase enzyme instead of urease (Solomon et al. 2010). The following formula 

shows the overall reaction catalyzed by UALase in vivo (from Syrett & Leftley 1976): 

𝐶𝑂(𝑁𝐻2)2 + 𝐴𝑇𝑃 +  𝐻2𝑂 → 𝐶𝑂2 +  2𝑁𝐻3 + 𝐴𝐷𝑃 + 𝑃𝑖 
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The ATP dependency is a puzzling feature, since there seems to be no thermodynamic requirement in 

the breakdown of urea by the urease enzyme.  Syrett & Leftley (1976) have speculated that the reason 

might be a tight metabolic control of UALase, requiring the input of energy. It has been shown in C. 

reinhardtii, that UALase synthesis is indeed substrate-controlled (Hodson et al. 1975), while evidence 

of urease activity in Phaeodactylum tricornutum speaks for a constitutive mode of expression (Leftley 

& Syrett 1973). Another distinguishing feature are the differences in Michaelis-Menten constants 

between the two enzymes. Comparing values from various organisms, urease can have 150-500 fold 

higher Km than UALase (Syrett & Leftley 1976; Reithel 1971), speaking for an advantage of UALase-

possessing microalgae at low environmental concentrations of urea. 

Desmodesmus abundans CCAC 3496 showed growth on urea as sole N-source, both in cell numbers 

and dry weight (Figs. 8 & 9). In the logarithmic growth phase, from day 0 until day 9, the pH in the 

culture rose substantially from 7.3 to 9.45. In the same timeframe concentrations of urea dropped, while 

an increase in the concentration of ammonium was detected. This experiment clearly shows that the 

strain possesses the enzymatic machinery to hydrolyze urea and thus to make use of the compound as 

sole N-source. Non-enzymatic hydrolysis can be excluded, since the half-life time of urea is 3.6 years 

at 38 °C (Udert et al. 2003). Indeed, a related organism “Scenedesmus sp.” has previously been found 

to utilize urea, showing growth similar to that on nitrate (Ren et al. 2013). However, the fact that 

relatively high concentrations of ammonium were found in the medium is puzzling and can lead to two 

separate conclusions: (a) The alga secretes excess ammonium after intracellular hydrolysis, because the 

nitrogen in the molecule is in excess of the physiological need. This mechanism was proposed by Price 

& Harrison (1988), who concluded that urea serves as both carbon and nitrogen source in the diatom 

Thalassiosira pseudonana and that carbonate and/or ammonium are excreted from the cell in case the it 

does not require one or the other. Little & Mah (1970) also observed ammonium production in 

photoheterotrophic urea-grown cultures of Chlorella ellipsoidea, however only in the stationary phase. 

These authors suggested that ammonia might be excreted if growth is carbon limited. (b) Another 

explanation for the occurrence of ammonium in the medium might be the presence of hydrolytic 

enzymes on the cell surface or their release into the environment, which would then supply the alga with 
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ammonium as exogenous nitrogen source. This would be analogous to the secretion of phosphatases, 

which is a well-studied mechanism by which algae and other microorganism can mobilize organic P-

sources in their environment (Patni et al. 1977). For ureases, enzyme secretion is known from the 

intestinal pathogen Helicobacter pylori, which uses the hydrolysis to locally raise the pH and protect 

itself in the extremely acidic conditions of the stomach (Marshall et al. 1990). Closer to the phototrophic 

realm, several species of lichen have been shown to secrete urea-splitting enzymes in the presence of 

external urea (e.g. Perez-Urria et al. 1989). In one study of the lichen Evernia prunastri, it has been 

shown that ureolytic activity was mainly associated with the photobiont, while the fungal partner did 

not harbor the enzyme (Legaz & Vicente 1981). These authors later showed that the enzyme was located 

within the photobiont’s cell wall (Millanes et al. 2004). While from the experimental data in this thesis 

the location of hydrolysis in CCAC 3496 cannot be concluded, it is nevertheless clear that this organism 

possesses the enzymatic capacity to utilize urea as nitrogen source. Whether the alga contains the urease 

enzyme or the ATP-dependent UALase enzyme cannot clearly be deduced. One hint that the enzyme in 

this organism might not be under tight metabolic control, typical of urease rather than UALase (Solomon 

et al. 2010), is that when the culture started entering senescence, a further decrease in urea concentration 

was observed (Fig. 8). This might be explained by ATP-independent activity of enzymes from lysed 

cells. A similar situation can be found in soils, where a mayor part of urease activity is attributed to free 

urease from lysed bacterial cells or excreted by plants (Hasan 2000).  

To further elucidate the mechanisms involved, one should study the enzyme activity of cell free culture 

medium in which the organism was grown and compare the urease activity in different compartments 

of the cell. Furthermore, uptake characteristics of urea and urea-derived N could be investigated in short 

term incubations with stable isotope-labelled urea, measuring the different intra- and extracellular pools 

of nitrogen. Presence of UALase enzyme activity could be proven by means of demonstrating nickel-

independent hydrolysis of urea and tolerance to inhibition by hydroxyurea, as has been done for 

Chlorella vulgaris and Scenedesmus obliquus (Syrett & Al-Houty 1984). For a certain determination 

which enzyme is involved, the presence or absence of the urease-encoding gene sequence could be tested 

(Baker et al. 2009).  
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4.2.2. Implications for treatment of urine 

Fresh urine contains urea as the mayor nitrogen source. While urine from healthy individuals is generally 

considered sterile, this paradigm has recently been challenged (Wolfe & Brubaker 2015) and minor 

loads of bacteria are usually carried from the skin or through fecal cross contamination and thus enter 

collected urine (Winker et al. 2009). Furthermore, when kept under non-sterile conditions at moderate 

temperatures, such as in the open Twin Layer system, bacteria are inevitably introduced and cause the 

hydrolysis of urea to ammonium (Table 8 and Udert et al. (2006)). Thus, hydrolysis of urine in an open 

system treating urine is inevitable. Strain CCAC 0126, for example, would be able to grow only under 

these conditions, relying on hydrolytic bacteria to release ammonium from urea. While it was shown 

that CCAC 0126 could grow relatively well on Twin Layer with urine for 6 days (Fig. 12), such a 

dependency would decrease the robustness and reproducibility of the process. Growth would depend on 

the presence of bacteria, which could vary due to external factors (e.g. loading of the urine and of air). 

Furthermore, the inability to metabolize urea might lead to a lag-period in algal growth before bacterial 

hydrolysis takes place. Therefore, in order to achieve reliable growth on urine, a strain should be used 

which has the ability to utilize urea as a source of nitrogen in an axenic situation as well as grow well 

on Twin Layer, as is the case for Desmodesmus abundans strain CCAC 3496. 

4.3.  Operation of Twin Layer PSBRs  

4.3.1. Operational parameters 

In order to maximize the capacity of nutrient recovery from urine, several parameters (namely light, pH-

value, type of diluent water and pretreatment of urine) were adjusted before employing a laboratory-

scale treatment system. Optimization was performed using the filter-disk system (Fig 3 A) to accurately 

determine growth rates, while treatment was performed on a fully inoculated membrane (Fig. 3 B) to 

follow the uptake of nutrients. It has to be noted here, that even though parameters were attempted to be 

optimized for maximal growth, the highest growth rate was reached in the initial screening of strain 

CCAC 3496 (compare Figs. 12-14). Determined maximal growth rates varied between 7.24 and 10.43 

g m-2 day-1. This apparent fluctuation in growth performance might, for example, be attributed to the 

presence or absence of particular bacterial populations during the different experiments, which might 
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have affected the chemical parameters of the medium (e.g. by increased or decreased rates of 

hydrolysis). In the case of the nutrient uptake experiment (chapter 3.7) the decreased growth 

performance was most likely due to the difference in composition of this batch of urine (Tab. 5; batch 

D) as well as the activated carbon pre-treatment, which removed some of the nutrients. 

4.3.1.1. Light and CO2 

Light intensities between 400 and 1000 µmol photons m-2 s-1 were tested for their effect on growth of 

D. abundans CCAC 3496. This range was chosen on the basis of previous experimental work with 

PSBR-systems (Schultze et al. 2015; Li et al. 2015) and because this range is close to daytime averages 

of incident radiation in the tropics, as well as in the temperate regions during summer (Norsker et al. 

2011). It has to be noted, that in the case of higher incident solar radiation, the light reaching the growth 

surface on Twin Layer sheets could simply be reduced by hanging sheets more closely to each other 

(light dilution principle; see Fig. 2 C). Optimal growth was found at 600 µmol photons m-2 s-1, while 

higher and lower light intensities resulted in decreased growth rates (Fig. 13). In an algal biofilm, light 

arriving at the surface inevitably decreases with depth into the biofilm, until, depending on biofilm 

thickness, there might be no more light at all. On the surface there is usually a zone of light inhibition 

of photosynthesis, after which there is a zone of optimal growth, followed by an increasing impact of 

light limitation (Li et al. 2015). The overall growth of the biofilm is therefore determined by the relative 

impact of these three zones. The effect of applying CO2 to the gas phase was not investigated in detail. 

However, from previous experience with Twin Layer type PSBRs, it is known that even at relatively 

low light intensities of 200 µmol photons m-2 s-1, the addition of 3 % CO2 can increase algal growth rates 

by up to 50 % (Schultze et al. 2015). Therefore, in the present study, the use of supplementary CO2 was 

considered necessary to obtain optimal algal growth.  

4.3.1.2. Water and pH 

In order to design a more realistic treatment system, which does not rely on costly water purification, 

tap water was used to prepare the 1:1 dilutions of urine used in this part of the study. The use of undiluted 

urine was tested in one instance only, using the urine of batch D, which allowed only poor algal growth 

generally (Fig. 15). Thus, it cannot be said with certainty that the use of undiluted urine is not possible. 
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However, the 1:1 dilution was chosen to accommodate the nature of vacuum low-flush source separating 

toilets for collection, which would yield a similar dilution factor in a realistic situation (Johansson 2000). 

The direct comparison of different waters used for dilution of urine was also carried out using the urine 

of batch D, which did not allow sustained algal growth in any of the cases (Fig. 15). Thus, drawing a 

direct conclusion as to which water is more suitable in a realistic situation is difficult to do. However, 

the elemental composition of the tap waters yielded very different results (Fig. 11). Most notably, 

TapBN was found to contain relatively high amounts of iron, an element of mayor importance for 

phototrophic growth due e.g. to its presence in cytochromes and ferredoxin (Healey 1973). Iron has 

indeed been found to be a limiting factor for algal growth on urine in a previous study (Tuantet, Janssen, 

et al. 2014). In TapCGN, high concentrations of calcium were detected. Calcium is known to form 

precipitates with phosphate at pH values above 9 (Udert et al. 2006), as are often found in non-buffered 

algal growth systems. In preliminary suspension culture experiments using urine diluted with TapCGN 

under non pH-controlled conditions, crystalline precipitates were indeed observed (data not shown). 

When using adequate pH control, precipitation of minerals could be effectively prevented (Tab. 12), 

making the choice of dilution water less critical. Using different waters to refill the evaporated water, 

which is inevitably occurring in a cultivation system with a large exposed surface, seemed to make a 

slight difference for algal growth (Fig. 16).  The use of tap waters (TapBN or TapCGN) for refilling 

water lost by evaporation yielded in both cases significantly higher biomass densities at day 6 than when 

MQ water was used. This might speak for the addition of trace elements through tap waters, however 

this result is ambiguous since urine of batch D was used, which resulted in poor growth generally. 

The control of pH below a value of 7 was found to be a critical factor in the studied system, both to 

prevent precipitation and to allow optimal algal growth. Figure 14 shows that a pH of 6.5 yielded optimal 

algal growth, while a pH of 7 resulted in reduced growth rate. At pH of 7.5 growth rate decreased further 

and linear growth ceased after 7 days. The most likely explanation is that at this pH, the fraction of 

ammonia/ammonium which was present as NH3 became high enough to have a toxic effect on the cells. 

Indeed, modelling of ammonia/ammonium speciation in hydrolyzed urine at pH 7.5 and room 

temperature results in up to 10 % of the molecule being present as NH3 (Siegrist et al. 2013). In the case 
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of urine of batch D, this would result in a theoretical [NH3] of  264 mM, which is far higher than the 

previously determined limits of tolerance of 1.2 mM and 10 mM for a Scenedesmus obliquus and a 

Chlorella vulgaris, respectively (Azov & Goldman 1982; Konig et al. 1987). This would also explain 

the increasingly negative effect of high pH over time (Fig. 14), since towards the end of the experiment 

urea should have been completely hydrolyzed, resulting in increased concentrations of NH3. At a pH 

below 7, the speciation of ammonium ions and free ammonia is completely shifted towards NH4
+ 

(Siegrist et al. 2013), making 6.5 a suitable pH value for this treatment system. The use of fresh (or 

stored frozen) urine under controlled pH conditions prevented uncontrolled hydrolysis and the resulting 

formation of struvite prior to - as well as during - the treatment. The occurrence of struvite when pH 

was not controlled was shown by measuring the equimolar presence of N and P in precipitates which 

formed from urine without adding CO2, while the same was prevented when pH was controlled by 

addition of CO2 (Tab. 8).  

4.3.1.3. Inhibition and activated carbon 

The most prominent challenge that occurred in the experimental work in this thesis was the unexpected 

inhibition of growth that took place when using untreated urine of batch D (Figs. 15, 16 & 18). With 

this batch, biomass development was normal for the first 4-5 days, after which it severely slowed down 

and in some cases decreased towards the end of an experiment. The inhibition of growth was paralleled 

by a progressive bleaching of biomass (Fig. 19 A & B), which speaks for a degradation of chlorophyll 

in the algal cells. The inhibition was not due to a limiting nutrient in the medium (e.g. a trace element 

which was present at lower concentration than in other batches), since newly inoculated biomass 

exhibited a similar pattern of growth followed by inhibition when growing on the same bottle of urine 

(Fig. 16). Inhibition caused by batch D urine was reversible, since almost completely bleached biomass 

taken from the filters grew back normally when inoculated into Waris-H medium in suspension culture 

(Fig. 17). It was possible to alleviate the inhibitory effect by treating the urine of batch D with activated 

carbon, but not by sterile filtration (Fig. 18). Thus, it can be concluded that this batch of urine contained 

a dissolved compound or element, which had an inhibitory effect on algal growth.  
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The most plausible explanation appears to be the presence of an inhibitory pharmaceutical compound, 

or residue thereof, in this batch collected from a large group of 57 people (Tab. 5). Urine is known be 

the mayor excretion route of pharmaceutical compounds leaving the human body (Bester et al. 2008; 

Jjemba 2006). Among the most commonly used pharmaceuticals are non-steroidal anti-inflammatory 

drugs (NSAIDs; e.g. ibuprofen and diclofenac) and antibiotics. The mode of action of toxicity of 

NSAIDs to microalgae has been proposed to be non-specific and mediated by damage to cell membranes 

due to the lipophilic nature of the molecules (Escher et al. 2005). NSAIDs have recently been tested for 

their effect on axenic laboratory cultures of eukaryotic algae (Bácsi et al. 2016). In this study, the growth 

of Desmodesmus communis, a relative to D. abundans CCAC 3496, was inhibited by various NSAIDs 

at concentrations of 100 mg l-1.  Interestingly the inhibition by ibuprofen showed its effect after 4-6 days 

of incubation, the same timeframe as observed in this study. This is by no means a proof for the action 

of this compound, but together with the potentially widespread use of this drug among the donors of 

urine could indicate that such a drug might have been the causative agent of inhibition. Cleuvers (2004) 

performed inhibition experiments with D. subspicatus and found, that while acute inhibitory effects of 

the single NSAIDs were relatively low, the combination of four different compounds increased the 

inhibition up to 75 fold. In another recent study, several NSAIDs did not inhibit growth of Chlorella 

sorokiniana at concentrations of 100-300 µg l-1 (de Wilt et al. 2016). In both recent studies of NSAIDs 

effect on algal growth, only minor uptake or adsorption of the compounds to algal biomass was reported 

(de Wilt et al. 2016; Bácsi et al. 2016), which is in line with the observation that placement of affected 

cells in fresh media resulted in immediate regrowth of the cultures (Fig. 17). A contrasting result was 

observed by Escapa et al. (2016), who showed that biomass was increased in cultures of three green 

algal species to which the NSAID diclofenac had been added. The authors attributed this to the use of 

the compound as an organic carbon source and argued that an algal post-treatment might enhance the 

otherwise unsatisfactory removal of such compounds in municipal WWTPs. However, their study used 

a relatively low concentration of 25 mg l-1. Clearly, inhibition by any toxic compound is concentration 

dependent and concentrations of pharmaceuticals in source separated urine can be expected to be much 

higher than what is commonly found in municipal waste waters.  
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Antibiotics are another type of pharmaceutical that might have inhibited algal growth in this study. 

Although typically used to suppress the growth of prokaryotic organisms, they are also known to be able 

to exhibit toxic effects on eukaryotic microalgae (Provasoli et al. 1951). Although the purpose of these 

early studies was to eliminate bacterial contaminants from algal cultures, it was found that depending 

on the concentration and mode of application, there might be harmful effects on algal photosynthesis 

(Hunter & McVeigh 1961; Melkonian & Weber 1975). There are various kinds of antibiotics and their 

mode of actions vary widely. Most of the studies concerning microalgae have been conducted in the 

framework of aquaculture larval hatcheries (Eguchi et al. 2004; Lützhøft et al. 1999) or related to the 

sensitivity of indicator species in the environment (Campa-Córdova et al. 2006; Lai et al. 2009; Zhang 

et al. 2013). For example, the broad spectrum antibiotic chloramphenicol acted inhibitory both at chronic 

and acute exposure on growth of  Scenedesmus obliquus (Zhang et al. 2013).  

Although the exact nature of the inhibitory compound is unknown, it is clear that the treatment with 

activated carbon was able to alleviate the inhibitory effect of urine batch D on growth (Fig. 18) as well 

as the bleaching effect on biomass (Fig. 19 B & C). The achieved growth rate was somewhat lower than 

those measured before (7.22 vs. 10.33 g m-² day-1), which might have been due to the presence of residual 

amounts of the inhibitory substance, the difference in composition of this batch of urine (Tab. 9), or the 

decrease in P-content of the urine due to the activated carbon treatment (chapter 3.7). Activated carbon 

(AC) is known as an effective adsorbent for a variety of organic and inorganic molecules from liquids, 

mainly due to its large surface area, its internal porosity structure and presence of surface-binding groups 

(Yin et al. 2007). Thermally treated AC, as the one used in this study, is especially suited for binding of 

organic molecules and is often used in small scale waste water treatment operations for the removal of 

pharmaceuticals (Donau Carbon, personal comm). Indeed, activated carbon treatment has been proven 

to remove pharmaceutical contaminants (e.g. Antibiotics, beta-blockers and NSAIDs) from human urine 

(Özel 2012) and has been proposed as a viable option for reducing the risk of the enrichment of these 

substances in decentralized sanitation and resource reuse systems (Udert et al. 2015). In the case of the 

algal treatment studied here, it appears that AC can be used as a “safety net” to ensure that algal growth 

is not inhibited, even though the drug intake of urine donors is not controlled.  
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4.3.2. Efficiency of treatment 

Of the N and P that was removed from the medium, 87.5 and 87.1 % were recovered as algal biomass, 

respectively (Tab. 9), speaking for high recovery efficiencies and only minor fractions of nutrients which 

were “lost” from the system. This lost fraction might be present in the form of bacterial and algal biomass 

which had formed in the tubes and media reservoirs of the systems. In terms of removal efficiency, 

phosphorus was removed almost completely (94.1 %), while nitrogen was only partially removed (13.1 

%). It has to be mentioned that these experiments were carried out on urine of batch D, which had the 

lowest N-content of all urine batches (Tab. 5). Had another batch of urine been used for the uptake 

experiments, then the percentage of recovered N would likely be even lower. The following paragraphs 

will elaborate on the shortcoming of nitrogen recovery this and will attempt to explain this finding: 

The phosphorus content found in strain CCAC 3496 after 5 days of urine treatment was 2.1 % (w/w), 

while the nitrogen content was 5.36 % (w/w), resulting in an atomic N:P ratio of 5.8:1. This is a low 

ratio, when compared with the canonical work of Redfield (1958), who determined a statistical mean 

N:P ratio of 15:1 in phytoplankton-dominated surface water samples across the global oceans. However, 

the universal applicability of this ratio to algal biomass has to be questioned (Geider & Roche 2002). 

For example, in a freshwater ecosystem a mean ratio of 12:1 has been determined in one study of 24 

algal strains (Ahlgren et al. 1992). Phosphorus is generally considered the limiting element for 

photosynthesis in aquatic systems, and lower N:P ratios can be expected in nutrient-replete systems 

(Geider & Roche 2002). Indeed, the P content of algal cells is known to show considerable plasticity, 

ranging between 0.5-33 % (w/w) depending on environmental conditions and physiological status of the 

cells (Healey 1973). Thus, generalizations on what a “normal” N:P ratio for algal cells is, are difficult 

to make. Nevertheless, a concentration of 2.1 % can be considered high for algal cells with a balanced 

nutrient status (Healey 1973). There are two distinct explanations possible as to why the observed 

biomass contained elevated amounts of phosphorus: 

Luxury uptake of phosphorus is a well-known process, which describes the uptake and storage of P 

beyond the physiological requirements of the organisms for replication, usually taking place when P is 

present in excess (Azad & Borchardt 1970; Eixler et al. 2006; Borchardt & Azad 1968; Kuenzler & 
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Ketchum 1962). In this case, P is stored in the form of polyphosphate in vacuoles, which can be 

remobilized and provide phosphorus for phases of limitation. This phenomenon is known for a variety 

of microalgae (reviewed by Cembella et al. 1984). Through this mechanism, cells can uncouple growth 

from the external concentration of a limiting nutrient, as described in the cell-quota model (Droop 1977). 

In the present study, the initial N:P ratio of urine (batch D) was 31:1, well above the critical N:P ratios 

between 5:1 and 15:1 considered to favor luxury uptake (Ptacnik et al. 2010). Therefore, it seems likely 

that a limitation by another element came into play, by which the uptake of phosphorus was slowed 

down after 1 day, and which resulted in incomplete recovery of P (Fig. 20). The limiting element might 

have been iron or another critical trace metal, such as boron, copper, manganese or zinc, all of which 

have been suggested to limit algal growth in urine previously (Tuantet, Janssen, et al. 2014). Other 

elements that might have limited growth are vitamins, such as thiamine or cobalamine, which are known 

to be critical for the growth of wide range of microalgae (reviewed by Croft et al. 2006). A simple test 

to answer this would be to try to grow the axenic strain in a medium which is devoid of vitamins. The 

low N:P ratio in the final biomass might be explained by an initial luxury uptake of P into the cells, 

which was followed by the limitation of a critical growth factor, making the use of internal phosphate 

reserves for further cell multiplication impossible. To evaluate luxury uptake, the presence or absence 

of polyphosphate granules in the cells could be evaluated by cytochemical staining and microscopic 

observation (Ebel et al. 1958). To shed further light on what the limiting factor was, a stepwise addition 

of trace elements and vitamins to stationary cultures in urine could be performed. The critical element 

should alleviate growth inhibition.  

 

Precipitation of phosphate-minerals in the biofilm is another possible reason for the high P content 

observed in the produced biomass. Extracellular P adsorption has previously been described for natural 

assemblages of the colonial marine cyanobacterium Trichodesmium (Sañudo-Wilhelmy et al. 2004), 

where it was hypothesized to serve as an external pool of P storage. In a biotechnological situation, 

crystallization of calcium-phosphate in the vicinity of cells of Chlorella emersonii, cultivated at high 

densities in a membrane bioreactor, has recently been observed (Xu et al. 2014; Tang & Hu 2016). 

Especially figure 4 in Tang & Hu (2016) is of interest here, since it shows crystal formation next to algal 



Discussion 

67 

cell. The authors do not state this conclusion, but it seems likely that precipitates were formed due to 

high pH conditions (> pH 9), which are generally favorable for the precipitation of phosphate minerals. 

A similar conclusion was drawn by Craggs et al. (1996), who determined chemical precipitation on their 

algal turf scrubber to be a mayor mechanism for P-removal from wastewater. The same might have 

occurred in the PSBR system employed in this study, although pH in the medium was tightly controlled. 

In a comparable system with PSBR immobilized Halochlorella rubescens, it was shown that in situ pH 

in the depth of the biofilm can vary vastly from the pH in the medium and may reach values up to 9, 

even when CO2 is applied to the atmosphere at the same concentration as in this study (Li et al. 2015). 

Such a localized peak in pH might have been present in the biofilm grown on urine and could have 

caused the precipitation of, for example, calcium-phosphate. This would explain the high P content (and 

low N:P ratio) in the biomass that was observed in this study. Struvite as precipitate is in this case 

unlikely, since it would not affect the N:P ratio of harvested biomass. To validate this hypothesis, 

microscopic observations of harvested biomass as well as separate measurements of intracellular and 

extracellular P should be employed. If found to be indeed the case, this phenomenon could be described 

as a practical way of recovering more phosphorus in solid form than would be possible in the biomass 

alone. Especially in a PSBR system, this would mean an enhanced extraction of P from the liquid phase 

into a harvestable, dry product. However the effect on fertilizer quality would need to be examined, 

since P-containing mineral precipitates might not possess the slow-release properties which are 

attributed to algal biomass. 

4.3.3. Comparison to published studies 

Since most other studies on using algae to treat urine have been conducted with other strains under dilute 

conditions in suspension-based systems, direct comparisons of growth rates and nutrient uptake are 

difficult to make. However, when the biomass productivity achieved in this study is related to the volume 

of urine used, a productivity of 14.5 g l-1 day-1 can be calculated for a growth surface of 0.3 m2 (chapter 

3.7). This compares favorably with the 9.3 g l-1 day-1 which were reported for a continuously operated 

flat plate photobioreactor treating urine augmented with trace elements, in the only published study 

using urine at the same dilution factor (Tuantet, Temmink, et al. 2014). When the authors additionally 
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enriched urine with Mg and P and shortened the light path of the reactor, productivity increased to 14.8 

g l-1 day-1. In the same study, nutrient removal was achieved at 87 % and 76 % for N and P, respectively. 

The N removal is much higher than the 13.1 % obtained in this study, which can be explained by the 

addition of P, optimizing the N:P ratio. P removal was achieved at 94.1 % in the present study and the 

difference might also be due to the addition of P by Tuantet, Temmink, et al. (2014), combined with an 

enrichment of P in the biofilm biomass, as elaborated above. It has to be stated that the operation in 

continuous culture mode can compromise on performance as opposed to batch mode, as it was employed 

in this study. Furthermore, since other operational parameters such as light intensity and temperature 

also differed between studies, these comparisons are inherently only approximations.  

Comparing the system in this study to other biofilm systems, used for the treatment of municipal 

wastewaters, has the same inherent inaccuracies. However, an attempt will be made in order to situate 

the results among other algal systems for nutrient recovery. Based on biomass growth and phosphorus 

content, an overall P-removal rate of 0.152 g m-² day-1 can be calculated for this study (chapter 3.7). This 

is somewhat lower than the rate found in a study of an algal turf scrubber treating municipal wastewater 

by Craggs et al. (1996), who reported 0.73 g P m-² day-1,  but similar to the P removal rate of 0.13 g m-² 

day-1, reported for another algal biofilm system treating municipal wastewater (Boelee et al. 2011). The 

same study reported a nitrogen removal rate of 1 g N m-2 day-1, which is more than twice the N removal 

rate determined in this study (0.413 g N m-2 day-1; chapter 3.7). The rates measured in this study thus 

fall into similar ranges as other algal biofilm systems for nutrient recovery. However, the practical 

advantages of the Twin Layer PSBR in terms of reproducible culture stability and lack of outflow of 

biomass might enhance the applicability of such a system. 

4.4 Implications for application 

In the following section, treatment of urine with a Twin Layer PSBR system will be considered at a 

realistic scale and recommendations will be made on how to optimize and apply such a treatment in a 

decentralized sanitation and resource recovery concept in combination with additional technologies. 
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4.4.1 Optimization and complementation 

It has been concluded that under the given conditions, algae were most likely limited by a critical 

element other than N or P. The fact that in the treatment situation, a growth rate of 7.238 g m-² day-1 

(chapter 3.7) was determined while when growing Desmodesmus abundans CCAC 3496 on 

polycarbonate filters, growth rates of up to 10.33 +/- 0.354 g m-² day-1 were measured (Fig. 12), is another 

point speaking for this conclusion. The lowered growth rate was most likely due to, besides differences 

in the composition of the used urine batches, the larger amount of biomass grown on the same volume 

of urine and thus a relatively lower availability of growth-limiting components. This effect might be 

reduced by using a larger volume of urine to be treated by the same amount of biomass. However, such 

a strategy would only shift the limitation to a later stage, when algae will nonetheless cease to grow 

without having taken up all nutrients. Furthermore, the fact that nitrogen was not completely taken up 

is most likely due to the high N:P ratio in urine. An interesting option to explore might be the use of 

certain cyanobacteria, storing excess nitrogen in the form of cyanophycin, and might thus be able to take 

up relatively more nitrogen than most eukaryotic algae (Lawry & Simon 1982). For this, a dedicated 

screening to find cyanobacteria suitable for growth on urine would be necessary. As mentioned before, 

other authors have argued for the complementation of nutrient deficiency of urine with additional 

phosphate and trace elements, in order to sustain optimal growth of algae. However, when producing a 

relatively low-value and potentially contaminated product such as algal biomass grown on excreta, the 

addition of “clean chemicals” does not seem like a rational choice. If maximal algal production is the 

target, the missing elements should rather be sourced from other waste streams, which could be blended 

in at the right concentration to obtain an optimal growth medium. In a decentralized sanitation system 

with source separation, food waste digestate, animal manure digestate or digested black water could be 

valuable sources of additional phosphorus and trace elements (Bjornsson et al. 2013). When working 

with digestates, it is however critical to have an efficiently running anaerobic process, in order to achieve 

low organic carbon loading in the wastewater. If this is not the case, bacterial growth can be uncontrolled 

and might compromise on algal biomass production (pers. obs., unpublished data).   
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In case an amendment with missing nutrients is not feasible, but full removal of nitrogen from urine is 

desired, the algal treatment should be followed up by a secondary treatment step. This could be, for 

example, physical adsorption and desorption to zeolites, minerals which bind positively charged ions 

and can thus be used for ammonium recovery from liquids (Beler-Baykal et al. 2004; Ban & Dave 2004), 

or volatilization and re-suspension of ammonium via a microbial fuel cell (Kuntke et al. 2012). A low 

energy requiring option for the removal of ammonium via conversion into atmospheric di-nitrogen gas 

could be the completely autotrophic nitrogen removal via nitrate process (CANON) or another variation 

of anaerobic ammonium oxidation (ANNAMOX) (Ahn 2006). The first is a proven technology with 

relatively large need for handling (rinsing, reactivation etc.) of minerals, while the latter two are partially 

still experimental technologies, which require very tight process control. The choice of technology to 

be employed for achieving full nitrogen removal thus strongly depends on the framework situation in 

which it is to be used. A large portion of pollutants, such as pharmaceuticals, should already be removed 

during the active carbon treatment, which seems to be needed to ensure the stability of the algal process. 

Final polishing of the effluent, i.e. removal of trace amounts of nutrients and other pollutants, could be 

performed in a sand- or reed bed filtration (Ellis 1987; Green & Upton 1994), after which the purified 

water might be used for irrigation of plants, toilet flushing or could be discharged.  

4.4.2 Scaling and operation  

Scaling of the model system will be based on achieving maximal P-recovery as determined 

experimentally in this study (95% of initial concentration). Optimal conditions of light intensity and 

duration of illumination, pH control and dilution of urine are assumed. Urine is considered fresh and 

non-hydrolyzed, which might be realized in the form of a small cooled buffer tank (cooled by heat 

exchangers or located underground). The design is proposed for a 3 person household, with an  average 

daily urine excretion of 1.4 l person-1 (Tortora & Derrickson 2006b). Averages from all collections in 

this study are used for concentrations of nutrients in urine (Tab. 5). 

Long term nutrient uptake rates are can be realistically calculated using the biomass growth rate and the 

determined content of the nutrient of interest. In this way fluctuations in uptake rate, e.g. due to luxury 

uptake mechanisms are levelled out (Shi et al. 2007; Shi et al. 2014). Therefore, rates calculated in this 
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way can be assumed to behave linearly over the time for which linear growth has been observed (12 

days; Fig. 18). For P-uptake, a rate of 0.15 g m-² day-1 can thus be estimated. A treatment system for the 

daily volume of urine produced by 3 people would then require a growth surface of 6.5 m².  Leaving 

room for increased loading of urine at peak times of use (guests), a system of 9 m² growth surface, based 

on a single Twin Layer module of 1.5 m height and 3 m width (inoculated on both sides) is proposed. 

The system could be located on the flat roof of a building, covered with a greenhouse or similar shelter, 

minimizing the use of extra space while maximizing available illumination. Treatment would take place 

in a sequencing-batch mode, recirculating a given volume of urine until the target P concentration is 

reached.  

Harvesting and restart of this system would be necessary only when the growth rate decreases 

dramatically due to the thickness of the biofilm. No long term data is available for Desmodesmus 

abundans CCAC 3496, however linear growth at 600 µmol photons m-2 s-1 can be assumed for at least 

12 days from the experimental data. In a study with Halochlorella rubescens CCAC 0126, decrease in 

growth rate at low light occurred only after >40 days (Schultze et al. 2015), presumably because of dark 

respiration in the depth of the biofilm (Li et al. 2015). For an optimization of harvesting cycles 

(balancing the decrease in growth rate over time with the effort of harvesting), one option could also be 

to enlarge the algal growth surface. However detailed studies with the specific strain and conditions are 

needed to substantiate this. The feasibility of different modes of harvesting and regrowth on Twin Layer 

PSBRs is still an open field of research and development, thus the optimal strategy cannot be presented 

here. However some degree of automation seems necessary to make the operation of a wastewater 

treatment module feasible and safe to handle. Harvesting of biomass might be realized by means of a 

soft scraper or by application of a stream of air. Regrowth might be possible from remaining biomass 

on the surface or by re-applying part of the harvested biomass by spray-nozzles. Whether or not regrowth 

of biomass at comparable rates is achievable needs to be determined for this system. Problems that might 

be associated with the prolonged treatment of wastewater in a system, such as bacterial growth in the 

tubing and on surfaces and associated material degradation, will have to be evaluated in detail. 

Especially the durability of the substrate layer to be employed has to be weighed carefully with the price 

associated with the material. 
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4.4.3 Economic considerations 

Light is clearly the mayor variable when thinking about the application of an algal wastewater treatment 

system. The previously considered scenario treats light as an unlimited resource, however this is not the 

case in most parts of the world. Thus, to uncouple nutrient recovery with algae from the availability of 

sunlight, and to make such a system globally applicable, artificial light would have to be used. Utilizing 

the modelling approach of Blanken et al. (2013), based on using LED lighting for the cultivation of 

microalgae and assuming an average energy price of 0.21 € kWh-1 for household consumers in the EU 

(Eurostat 2016), illumination of the immobilized cultivation system would cost approximately 522.50 € 

per year. The price of energy consumption might be reduced to 347 € per year in the future, if advances 

in LED efficiency are being made as projected (Pimputkar et al. 2009; Blanken et al. 2013). The cost 

for illumination might be further reduced substantially if lamps are only used in half of the year (winter) 

or only during certain hours of the day (morning and evening), when natural light intensities so not 

suffice for optimal growth. The cost for activated carbon treatment can be estimated at 36.80 € per year, 

assuming one-time application of 10 g  powdered activated carbon l-1 urine, as performed in this study, 

at a bulk price of 2.4 € kg-1, as stated by the distributor (Donau Carbon, Frankfurt, Germany). The 

application of activated carbon could presumably be optimized with lower quantities and partial reuse, 

which would further lower the cost of this treatment.  For a comparison, the annual cost of wastewater 

disposal was about 96 € per person in 2010 on a European average (Rehberg 2010), resulting in an 

annual price of 288 € for the 3 person household considered. Thus at this point, even if the proposed 

treatment system would replace public wastewater disposal completely, it would economically not be 

feasible to employ artificial light for microalgal growth in this urine treatment system. It also has to be 

mentioned that these calculations do not take into account the cost of the lamps nor of the carbon 

filtration unit or the Twin Layer PSBR itself. However it has to be noted that with increasingly stringent 

legislation on the discharge limits of nutrients and pharmaceuticals in the EU and other places, higher 

prices can be assumed in the future (Christodoulou & Stamatelatou 2016). In such a new framework, 

the economic feasibility of artificial light should be revisited in detail. 
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For the sake of this discussion it is assumed that applicability of the system is limited to areas with ample 

sunshine during the period of use. In the temperate regions (e.g. in southern or central Europe) a feasible 

example might be holiday regions, where the highest demand for wastewater treatment occurs during 

summer. In such a location, source separation of urine and consequent nutrient recovery with microalgae 

could decrease the pressure on centralized wastewater operations, which are in some cases not adapted 

to the high seasonal loads (Goronszy et al. 1995; Larsen & Gujer 1996). Another application in these 

latitudes could be houses in rural settings, where a connection to a sewage system is not possible and 

recovery of nutrients is desirable (e.g. for local food production). To maximize on the outreach effect of 

such a system, modern eco-villages and research centers would be also be suitable locations for 

operation and show-casing, even if an economic need does not exist. 

In the equatorial, subtropical and tropical regions of the world, an algal nutrient recovery system could 

operate year-round and might be a simple decentralized technology to valorize the nutrients present in 

human urine. Implementing it would decrease environmental pollution through untreated runoff, while 

at the same time providing an economic benefit in the form of fertilizer, decreasing the dependency on 

externally-sourced mineral fertilizers (Damodar Reddy et al. 1999). The system could be applied in any 

rural place which does not have existing sewage treatment (Kvarnström et al. 2006) as well as in urban 

developments, which are switching to the use of source separation technologies, as is for example under 

research in southern China (Medilanski et al. 2007). 
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4.4.4. Integration into a decentralized concept 

 

Figure 21: Flow diagram of nutrients and materials in a proposed decentralized treatment and resource recovery 

system of source separated urine. Values are based on the estimates for a household of three people over one year. 

See text for further explanation. 

 

Figure 21 shows a schematic representation of a treatment system based on abovementioned criteria and 

the considerations explained below:  

Assuming year-round operation, a Twin Layer PSBR running on the urine of a  three person household 

could produce ~18.5 kg dry algal biomass per year, containing 348 g of phosphorus and 991 g of 

nitrogen, which could be utilized as fertilizer for growing crops. The yield that can be achieved on these 

nutrients is a rough estimate, due to the limited experience with algal biomass as fertilizer, large 

variations in the properties of soils and crops, effects of agricultural methods and other factors such as 

local climate conditions (Syers et al. 2008). Nevertheless, an estimation will be calculated here, based 

on available data for a wheat-soybean cropping system in India: In a crop rotation, wheat (Triticum 

aestivum) and soybean (Glycine max) are cultivated over an annual cycle on the same plot of land. In 

semi-arid subtropical climates, soybean is cultivated during the monsoon season as a rain fed crop, while 

wheat is cultivated in the dry season with additional irrigation (Aulakh et al. 2003; Damodar Reddy et 

al. 1999). This type of cultivation might replace large parts of the dominant rice-wheat double crop 

system in south and east Asia, due to changes in dietary demands (Khoury et al. 2014) as well as lower 
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water consumption and less potential for nitrogen losses (Aulakh et al. 2003). Considering phosphorus 

as the limiting resource on a nutrient poor Indian soil, an optimal dosage/yield relation has been 

determined for an application rate of 2.62 g P m-1 a-1 in this type of cropping system (Aulakh et al. 2003). 

Assuming a short-term P-availability from algal biomass of 50 % in soil (based on Mulbry et al. 2005), 

an agricultural plot of approximately 66.5 m² could be optimally supplied with the phosphorus recovered 

from the urine of 3 people. Using the pooled averages of 8 years from two research sites, it can be 

estimated that about 31 kg of wheat grain and 16 kg of soybean could be produced per year on this land 

(Damodar Reddy et al. 1999; Aulakh et al. 2003). Assuming an average intake of 2000 kcal person-1 

day-1 (Tortora & Derrickson 2006a) and using the caloric values of 4490 kcal kg-1 and 3370 kcal kg-1 for 

dry soybean and wheat, respectively (USDA 2016), the food produced could supply ~8.1 % of the annual 

dietary need for energy of a three person household. This means that the energetic demand of almost 

one month of the year could be covered by the nutrients derived from urine. Furthermore, due to the 

slow release properties of algal biomass, soils would become enriched with additional N, P as well as 

other plant essential nutrients in the long term.  

The decentralized sanitation and resource recovery system could further be upgraded with the 

integration of an anaerobic digester, processing black water and/or kitchen waste to produce biogas, a 

mixture of CH4 and CO2 (e.g. Wendland et al. 2007). While the methane can be used as energy source 

e.g. for cooking or conversion into electricity in a co-generation unit, the CO2 might be diverted into the 

algal module, to ensure optimal growth. With a smart engineering of gas-flow and an algal strain tolerant 

to high CO2 and CH4 concentrations, the PSBR module might thus serve as an upgrading step for biogas, 

removing CO2 and increasing its combustion efficiency. Furthermore, the effluent of anaerobic digestion 

is typically rich in inorganic nutrients and trace elements available for algal growth (Vasconcelos 

Fernandes et al. 2015). Depending on the exact inputs and conditions of digestion, this stream might be 

used to complement the nutrient balance of urine, as proposed in chapter 4.4.1. To-date, practical 

knowledge on the application of algal biomass as fertilizer in agriculture is scarce, but a number of other 

uses could also be of interest. Anaerobic digestion for biogas production might be an option if the 

biomass is found to be contaminated and thus unsuitable as fertilizer (Santos-Ballardo et al. 2016). 
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Potential uses of higher value could be, depending on the strain of algae cultivated, the extraction of 

pigments, fatty acids or the production of chemical building blocks in a biorefinery approach (Milledge 

2011; Olguín 2003).  

The safety of application of any new system for the recycling of nutrients from urine has to be duly 

considered, especially with regard to new transmission routes for pathogens as well as potential 

enrichment of organic pollutants and heavy metals (Winker et al. 2009). In such a small scale setting, 

the input of pharmaceuticals and pathogens into the treatment system could be minimized or avoided, if 

proper practices are adhered to by the users. Nevertheless fecal cross-contamination and input by sick 

users could introduce human pathogens into the algal biomass. There are some indications that drying 

of biomass and subsequent application to soil might inactivate most pathogens originating from urine 

(e.g. due to UV-stress and desiccation), however much more research is necessary to substantiate this 

(Winker et al. 2009; Mulbry et al. 2005). The pre-algal activated carbon treatment proposed in this study 

provides some means of lowering the concentration of pharmaceuticals and other potentially harmful 

substances. This is a relatively well established process (Snyder et al. 2007), however regular controls 

for hazards in biological and chemical forms have to be included in such a system, where closed loops 

can potentially lead to the enrichment of toxic substances and organisms. Before application can be 

considered, the absolute safety for human and environmental health and wellbeing has to be ensured by 

rigorous long term testing at full scale and under realistic conditions. 
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5 Conclusion and Recommendations 

In summary, it can be concluded that a robust treatment for the recovery of phosphorus and partial 

recovery of nitrogen from un-amended and minimally tap-water-diluted human urine has been realized 

by using a selected microalgal strain under controlled process conditions at laboratory scale. Such a 

system might be applied to recover P and partially recover N from source separated urine in a household. 

Should the stability and safety of the process be validated at pilot-scale, it could be integrated with other 

technologies in a decentralized sanitation and resource recovery framework, providing substantial 

amounts of biomass that could serve as a slow-release fertilizer in food production, partially closing 

local nutrient cycles and decreasing pressure on freshwater reserves.  

For future studies with a similar purpose and for further development of the technology, the following 

recommendations are proposed: 

 When using algae for the treatment of wastewater, it is recommended to test a large number of 

diverse strains before deciding on a strain to use. When attempting to isolate algae for this 

purpose, researchers should use conditions that are as close as possible to the intended treatment 

situation, to select specialist strains most suitable for the application at hand.  

 When dealing with concentrated human waste, precautions must be taken to mitigate negative 

effects of unknown substances (e.g. pharmaceuticals). Activated carbon can be a simple and 

effective means of preventing inhibition of growth and eliminating chemical contaminants. 

 The type of water and the applied process conditions (e.g. tap-water and pH control) have to be 

carefully chosen and tuned to each other in order to allow stable operation and to prevent 

chemical precipitation. This is the same for all types of mass cultivation systems of algae. 

 The usefulness and safety of applying algal biomass grown on urine as plant fertilizer should be 

studied in field trials with a large variety of crops, using various agricultural practices under 

various climatic conditions. 
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>BI11 

CCTGCATGTCTAAGTATAAACTGCTTATACTGTGAAACTGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACCTA
CTACTCGGATAACCGTAGTAATTCTAGAGCTAATACGTGCGCACAACCCGACTTCTGGAAGGGTCGTATTTATTAGATAAAAG

GCCAGCCGGGCTCTGCCCGACCTGCGGTGAATCATGATAACTTCACGAATCGTATGGCCTCGTGCCGACGATGTTTCATTCAA

ATTTCTGCCCTATCAACTTTCGATGGTAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGGGTTCGATTCCG
GAGAGGGAGCCTGAGAGATGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCCGACACGGGGAGGTA

GTGACAATAAATAACAATACCGGGCGCTTCGCGTCTGGTAATTGGAATGAGTACAATCTAAATCCCTTAACGAGGATCCATTG
GAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTTAAGTTGTTGCAGTTAAAAAGCTCGTAG

TTGGATTTCGGGTGGGGTGGTGCGGTCCGCCTCTGGTGTGCACTGCTCCGCTCCACCTTCCTGCCGGGGACGGGCTCCTGGGC

TTCACTGTCTGGGACTCGGAGTCGGCGAGGTTACTTTGAGTAAATTAGAGTGTTCAAAGCAGGCCTACGCTCTGAATACATTA
GCATGGAATAACACGATAGGACTCTGGCCTATCTGTTGGTCTGTGGGACTGGAGTAATGATTAAGAGGGGTAGTCGGGGGCA

TTCGTATTCCGTTGTCAGAGGTGAAATTCTTGGATTTACGGAAGACGAACATCTGCGAAAGCATTTGCCAAGGATACTTTCAT

TGATCAAGAACGAAAGTTGGGGGCTCGAAGACGATTAGATACCGTCGTAGTCTCAACCATAAACGATGCCGACTAGGGATTG
GCGGATGTTCTTTTGATGACTCCGCCAGCACCTTATGAGAAATCAAAGTTTTTGGGTTCCGGGGGGAGTATGGTCGCAAGGCT

GAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGCGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGGAAACTTACCA

GGTCCAGACACGGGAAGGATTGACAGATTGAGAGCTCTTTCTTGATTCTGTGGGTGGTGGTGCATGGCCGTTCTTAGTTGGTG
GGTTGCCTTGTCAGGTTGATTCCGGTAACGAACGAGACCTCAGCCTGCTAAATAGTTAACATCGCACCTGCGGTGTGCTGACT

TCTTAGAGGGACTATTGGCGTTCAGCCAATGGAAGTGTGAGGCGATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCA

CGCGCGCTACACTGACGCGAACAACGAGCCTATCCTTGGCCGAGAGGCCCGGGTAATCTTGTAAACCGCGTCGTGATGGGGA
TAGATTATTGCAATTATTAGTCTTCAACGAGGAATGCCTAGTAAGCGCGAGTCATCAGCTCGCGTTGATTACGTCCCTGCCCTT

TGTACACACCGCCCGTCGCTCCTACCGATTGGAATAGCTGGTGAAATGTTCGGATTGGTTTTGCTTGGGGCAACCCGGGCTTG

ACTGAGAAGTTCATTAAACCCTCTATTCTAG 

>CCAC3496  

TGCAAGTTAATTGAATGTAGAGAAACCAGTCGGGGACAATTCGGTATATtCATTGTCAGAGGTGAAATTCTtGGATTTATGAAA
GACGAACTACTGCGAAAGCAtTTGCCAAGGATGTTTTCATTAATTCAAGAACGAAAGTTGGGGGCTCGAAGACGATTAGATAC

CGTCGTAGTCTCAACCATAAACGATGCCGACTAGGGATTGGCGGACGTTTTTGCATGACTCCGTCAGCACCTTGAGAGAAATC

AAAGTTTTTGGGTTCCGgGGGGAGTATGGTCGCAAGGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGCGTGGAG
CCTGCGGCTTAATTTGACTCAACACGGGAAAACTTACCAGGTCCAGACATAGGAAGGATTGACAGATTGAGAGCTCTTTCTTG

ATTCTATGGGTGGTGGTGCATGGCCGTTCTTAGTTGGTGGGTTGTCTTGTCAGGTTGATTCCGGTAACGAACGAGACCTCAGC

CTTTAAATAGTCACGGTCGCTTTTTGCGGCTGGTTTGACTTCTTAGAGGGACAGTTGGCGTTTAGTCAACGGAAGTATGAGGC
AATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCTACACTGATGCATTCAACAAGCCTATCCCTAGCCGA

AAGGCTCGGGTAATCTTTGAAACTGCATCGTGATGGGGATAGATTATTGCAATTATTAGTCTTCAACGAGGAATGCCTAGTAA

GCGCAATTCATCAGATTGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGcTCCTACCGATTGGGTGTGCTGGTGA
AGTGTTCGGATTGGCAATTGAAGGTGGCAACACCGTCGATTgCCGAGAAGTTCATTAAACTCCA 

>U2_1  

CATGTCTAAGTATAAACTGCTTTATACTGTGAAACTGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACCTACTA

CTCGGATACCCGTAGTAAATCTAGAGCTAATACGTGCGTAAATCCCGACTTCTGGAAGGGACGTATTTATTAGATAAAAGGCC

GACCGGGCTCTGCCCGACTCGCGGTGAATCATGATAACTTCACGAATCGCATGGCCTTGCGCCGGCGATGTTTCATTCAAATT
TCTGCCCTATCAACTTTCGATGGTAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGGGTTCGATTCCGGA

GAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGAGGTAGT

GACAATAAATAACAATACTGGGCCTTTTCAGGTCTGGTAATTGGAATGAGTACAATCTAAACCCCTTAACGAGGATCAATTGG
AGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTTAAGTTGCTGCAGTTAAAAAGCTCGTAGT

TGGATTTCGGGTGGGGCCTGCCGKTCCGCCGTTTCGGTGTGCACTGGCAGGGCCCACCTTGTTGCCGGGGACGGGCTCCTGGG

CTTCACTGTCCGGGACTCGGAGTCGGCGCTGTTACTTTGAGTAAATTAGAGTGTTCAAAGCAGGCCTACGCTCTGAATACATT
AGCATGGAATAACACGATAGGACTCTGGCCTATCCTGTTGGTCTGTAGGACCGGAGTAATGATTAAGAGGGACAGTCGGGGG

CATTCGTATTTCATTGTCAGAGGTGAAATTCTTGGATTTATGAAAGACGAACTACTGCGAAAGCATTTGCCAAGGATGTTTTC

ATTAATCAAGAACGAAAGTTGGGGGCTCGAAGACGATTAGATACCGTCCTAGTCTCAACCATAAACGATGCCGACTAGGGAT
CGGCGGATGTTTCTTCGATGACTCCGCCGGCACCTTATGAGAAATCAAAGTTTTTGGGTTCCGGGGGGAGTATGGTCGCAAGG

CTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGCGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAACTTAC

CAGGTCCAGACATAGTGAGGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATGGCCGTTCTTAGTTGG
TGGGTTGCCTTGTCAGGTTGATTCCGGTAACGAACGAGACCTCAGCCTGCTAAATAGTCACGGTTGGTTCGCCAGCCGGCGGA

CTTCTTAGAGGGACTATTGGCGACTAGCCAATGGAAGCATGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCG

CACGCGCGCTACACTGATGCATTCAACGAGCCTAGCCTTGGCCGAGAGGCCCGGGTAATCTTTGAAACTGCATCGTGATGGG
GATAGATTATTGCAATTATTAATCTTCAACGAGGAATGCCTAGTAAGCGCAAGTCATCAGCTTGCGTTGATTACGTCCCTGCC

CTTTGTACACACCGCCCGTCGCTCCTACCGATTGGGTGTGCTGGTGAAGTGTTCGGATTGGCGACCGGGGGCGGTCTCCGCTC

TCGGCCGCCGAGAAGTTCATTAAACCCTCCCACCTAGAGA 
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>U2_4 

GCTTATACTGTGAAACTGCGAATGGCTCATTAAATCATTTATAGTTTATTTGGTGGTACCTTCTTACTCGGAATNNCCGTAAAA
AAATTAGAGCTAATACGTGCGTAAATCCCGACTTCTGGAAGGGACGTATATATTAGATAAAAGGCCGACCGGGCTCTGCCCG

ACCCGCGGTGAATCATGATATCTTCACGAAGCGCATGGCCTTGTGCCGGCGCTGTTCCATTCAAATTTCTGCCCTATCAACTTT

CGATGGTAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAA
CGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTGATACGGGGAGGTAGTGACAATAAATAACAAT

ACCGGGCATTTCATGTCTGGTAATTGGAATGAGTACAATCTAAATCCCTTAACGAGGATCCATTGGAGGGCAAGTCTGGTGCC

AGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTTAATTTGTTGCAGTTAAAANNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNGCAAGGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGCGTGGAGCCTGCGGCTTAATTTGA

CTCAACACGGGAAAACTTACCAGGTCCAGACATAGGAAGGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGT

GCATGGCCGTTNTTAGTTGGTGGGTTGTCTTGTCAGGTTGATTCCGGTAACGAACGAGACCTCAGCCTTTAAATAGTCACGGT
CGCTTTTTGCGGCTGGTTTGACTTCTTAGAGGGACAGTTGGCGTTTAGTCAACGGAAGTATGAGGCAATAACAGGTCTGTGAT

GCCCTTAGATGTTNTGGGCCGCACGCGCGCTACACTGATGCATTCAACAAGCCTATCCCTAGCCGAAAGGCTCGGGTAATCTT

TGAAACTGCATCGTGATGGGGATAGATTATTGCAATTATTAGTCTTCAACGAGGAATGCCTAGTAAGCGCAATTCATCAGATT
GCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCCTACCGATTGGGTGTGCTGGTGAAGTGTTCGGATTGGCAA

TTGAAGGTGGCAACACCGTCGATTGCCGAGAAGTTCATTAAACCCTCCCT 

>U5_5  

GCATGTCTAAGTATAGTACCTTATACTGCGAAACTGCGAATGGCTCATTAAATCAGTTATAATTTATTTGATGGTACTTACTAC

TTGGATAACCNNAGTAATTCTAGAGCTAATACATGCGGATAATCCCAACTTCTGGAAGGGACGTATTTATTAGATAAAAGGC
CAGCCGTGCTTGCACGATCCTGGTTGATTCATGATAACTTCACGAATCGCATGGCCTTGTGCCGGCGATGTTTCAAATAAATA

TCTGCCCTATCAACTTTCGATGGTAGGATAGAGGCCTACCATGGTGATAACGGGTGACGGAGGATCAGGGTTCGATTCCGGA

GAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCCGATACGGGGAGGTAGT
GACAATAAATAACAATATCGGGCATCCAATGTCTGATAATTGGAATGAGTACAATCTAAATCCATTAACGAGGATCCATTGG

AGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTTAAGTTGTTGCAGTTAAAAGGCTCGTAGT

CGAATTTCGGGTGCATCTCGGCGGTCCGCCTCTGGTGAGTACTACTGTGGATGCACCTTTCTGTCGGGGACAGGCTCTTGGGC
TTCACTGTCTGGGACCTGGACTCGGCGAGGTTACTTTGAGTAAATTAGAGTGTTCAAAGCAGGCGAAAGCCTTGAATACATTA

GCATGGAATAGCATGATAGGACTCTGGCCTATCTTGCTGGTCTGTAGGACCGGAGTAATGATTAAGAGGGACAGTCGGGGGC

ATTGGTATTTCCGAGCTAGAGGTGAAATTCTTGGATTTCGGAAAGACCTACCACTGCGAAAGCATTTGCCAAGGATGTTTTCA
TTGATCAAGAACGAAAGTAGGGGGCTCGAAGACGATTAGATACCGTCGTAGTCTCTACCATAAACGATGCCGACCAGGGATT

GGCAGGTGTTCCTTTGATGACCCTGCCAGCACCTTGAGAGAAATCAGAGTCTTTGGGTTCCGGGGGGAGTATGGTCGCAAGG

CTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGCGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAATCTTAC
CAGGTCCAGACGCGGGAATGATGAACAGATTGAGAGCTCTTTTTTGATTCTGTGGGTGGTGGTGCATGGCCGTTCTTAGTTGG

TGGGTTGCCTTGTCAGGTTGATTCCGGTAACGAACGAGACCTCAGCCTGCTAAATAGTCGGCGGTCCTTTCTGGATCGCCTCG

ACTTCTTAGAGGGACTATTGACGTTTAGTCAATGGAAGTGTGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCC
GCACGCGCGCTACACTGATGCAATCAACGAGCCTATCCTTGGCCGAGAGGCCTGGGTAATCTTGGAAATTGCATCGTGATGG

GGATAGATTATTGCAATTATTAGTCTTCAACGAGGAATGCCTAGTAAGCGTGAGTCATCAGCTCGCGTTGATTACGTCCCTGC

CCTTTGTACACACCGCCCGTCGCTCCTACCGATTGGGTGTGCTGGTGAAGTGTTCGGATTGGCTTTGAGGGGTGGCAACACTC
CCCAGAGCCGAGAAGATCATTAAACCCTCCCACCTAGA 
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TGCATGTCTAAGTATAAACTGCTTTATACTGTGAAACTGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACTTAC

TACTCGGATACCCGTAGTAAATCTAGAGCTAATACGTGCGTAAATCCCGACTTCTGGAAGGGACGTATTTATTAGATAAAAGG

CCGACCGGGCTTCTGCCCGACTCGCGGTGAATCATGATAACTTCACGAATCGCATGGCCTTGTGCCGGCGATGTTTCATTCAA
ATTTCTGCCCTATCAACTTTCGATGGTAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGGGTTCGATTCCG

GAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGAGGTA

GTGACAATAAATAACAATACTGGGCCTTTTCAGGTCTGGTAATTGGAATGAGTACAATCTAAACCCCTTAACGAGGATCAATT
GGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTTAAGTTGCTGCAGTTAAAAAGCTCGT

AGTTGGATTTCGGGTGGGGCCTGCCGGTCCGCCGTTTCGGTGTGCACTGGCAGGGCCCACCTTGTTGCCGGGGACGGGCTCCT

GGGCTTTACTGTCCGGGACTCGGAGTCGGCGCTGTTACTTTGAGTAAATTAGAGTGTTCAAAGCAGGCCTACGCTCTGAATAC
ATTAGCATGGAATAACACGATAGGACTCTGGCCTATCCTGTTGGTCTGTAGGACCGGAGTAATGATTAAGAGGGACAGTCGG

GGGCATTCGTATTTCATTGTCTCAGAGGTGAATTCTTGGATTTATGAAAGACGAACTACTGCGAAAGCATTTGCCAAGGANTG

TTTTCATTAATCAAGAACGAAAGTTGGGGGCTCGAAGACGATTAGATACCGTCCTAGTCTCAACCATAAACGATGCCGACTA
GGGATCGGCGGATGTTTCTTCGATGACTCCGCCGGCACCTTATGAGAAATCAAAGTTTTTGGGTTCCGGGGGGAGTATGGTCG

CAAGGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGCGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAA
ACTTACCAGGTCCAGACATAGTGAGGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATGGCCGTTCTT

AGTTGGTGGGTTGCCTTGTCAGGTTGATTCCGGTAACGAACGAGACCTCAGCCTGCTAAATAGTCACGGTTGGTTCGCCAGCC

GGCGGACTTCTTAGAGGGACTATTGGCGACTAGCCAATGGAAGCATGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTC

TGGGCCGCACGCGCGCTACACTGATGCATTCAACGAGCTTAGCCTTGGCCGAGAGGCCCGGGTAATCTTTGAAACTGCATCGT

GATGGGGATAGATTATTGCAATTATTAATCTTCAACGAGGAATGCCTAGTAAGCGCAATTCATCAGATTGCGTTGATTACGTC

CCTGCCCTTTGTACACACCGCCCGTCGCTCCTACCGATTGGGTGTGCTGGTGAAGTGTTCGGATTGGCGACCGGGGGCGGTCT
CCGCTCTCGGCCGCCGAGAAGTTCATTAAACCCTCCCACCTA 
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