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Chapter 1

Introduction

Energy economics is a broad field offering the researcher opportunities to explore differ-

ent research questions that are inspired by real world energy systems including electricity

and resource markets and related environmental and climate issues. In this thesis, the

following four essays on energy economics, covering the above listed topics, are presented:

� Chapter 2: A test of the theory of nonrenewable resources - Controlling for market

power and exploration (based on Malischek and Tode, 2015)

� Chapter 3: Models of endogenous production capacity investment in spatial oligopolis-

tic markets

� Chapter 4: Modeling strategic investment decisions in spatial markets (based on

Lorenczik et al., 2014)

� Chapter 5: The future of nuclear power in France: an analysis of the costs of

phasing-out (based on Malischek and Trüby, 2014).

The essays are stand alone and may be read in any order. The selection of research

topics and methodologies presented in these essays is governed by the author’s interests,

the hope that by probing these markets new knowledge and understanding could be

gained, as well as by the adequacy of the methodologies to the respective topics.

This introduction provides a short summary of the four essays, including a discussion

of how each essay adds to existing literature and improves understanding of the topics

explored. The introduction concludes with reflections on future research and possible

improvements to methodologies for each of the four essays.

1



Chapter 1. Introduction 2

1.1 Introducing the essays

Chapter 2 investigates one of the workhorse models of resource economics, the Hotelling

model of an inter-temporally optimizing resource extracting firm. The essay is based

on Malischek and Tode (2015) to which both authors contributed in equal parts. It

is motivated by recently sparked interest in Hoteling’s model as a result of new appli-

cations like Hans-Werner Sinn’s Green Paradox and the fact that, despite providing a

convincing theory of fundamental concepts like resource scarcity, empirical validations of

the Hotelling model are largely absent. This is usually attributed to data shortcomings

in the empirical analyses conducted so far or the simplifying assumptions made in the

baseline Hotelling model. Even though further work has therefore focused on theoretical

extensions of the standard Hotelling model, convincing empirical evidence for the theory

is still missing. The empirical analysis presented in Chapter 2 adds to the literature on

tests of the Hotelling model by extending the standard Hotelling model by exploration

activity as presented in Pindyck (1978) and market power as presented in Ellis and

Halvorsen (2002) and bringing this extended model, which is in essence a combination

of existing model extensions, to a newly constructed data set for the uranium mining

industry. Applying a Hausman test, we test whether a major resource extracting min-

ing firm in the industry is following the theory’s predictions. Our results show that the

theory is rejected in all considered settings. We therefore add to the existing literature

on negative results of the theory’s validity.

Chapters 3 and 4 turn to a different research stream in energy economics which is not

restricted to energy market applications but also draws on game theory and operations

research. The essays presented in the two chapters investigate the difference in market

outcomes under spot-market based trade as compared to long-term contract based trade

in oligopolistic markets with investments. The analysis is motivated by recent develop-

ments in resource markets, including the iron ore and the metallurgical coal markets,

which are experiencing a shift away from long-term contract-based trade towards spot-

market based trade. It is also relevant for electricity markets, which feature a mix of

differently traded products.

Chapter 3 analyzes the electricity market application of the impact of a shift away from

long-term contracts to spot-market based trading on supply, investment and welfare. It

takes an analytical approach and presents a spatial extension of the one node, peak and

base-load player model presented in Murphy and Smeers (2005). The extended model

consists of two markets and two players, representing a peak and a base-load producer,

which can each serve both markets. In the chapter, criteria are developed for the two

market structures to result in the same market outcome. Further, it is shown that, if
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divergent and under certain assumptions, supply, investments and consumer welfare are

higher under spot-market based trade than under long-term contracts.

Chapter 4 changes both methodology and market focus of the investigation, moving

from an analytical to an empirical analysis and from a simple electricity market model

to a detailed model of the global seaborne metallurgical coal market. The chapter is

based on Lorenczik et al. (2014) to which all three authors contributed in equal parts.

It presents for the first time the empirical solution of a large-scale spatial oligopolistic

spot-market based trade model with investments. The model drops the rather restrictive

assumptions posed on the number of players and their cost structures used in Chapter

3. The validity of the developed modeling approach is shown through various sensitivity

analyses. The results demonstrate in this more general context that supply, investments

and welfare are higher under spot-market based trade than under long-term contracts.

Chapter 5 investigates investment decisions in yet a different light than Chapters 3

and 4, namely by looking at the influence of uncertainty on investment decisions. It

is based on Malischek and Trüby (2014) to which both authors contributed in equal

parts. While previous work in this area of energy economics has mostly focused on

weather or fuel-price uncertainty, Chapter 5 focuses on the effect of policy uncertainty

on market outcomes. The topic is motivated by the central role policy frameworks play

in energy markets, in particular in electricity markets. This assertion is best illustrated

by the German and European electricity markets which are both strongly influenced

by numerous quotas, remuneration schemes and policy decisions against/in favor of

certain technologies. Further, the rapid speed at which policies may change poses a

significant amount of uncertainty to market participants. The recent history of German

nuclear policy after the Fukushima catastrophe, leading to the phase-out decision from

the technology just shortly after prolonged lifetimes of nuclear power plants had been

decided on, may serve as an illustration. In Chapter 5, we turn our attention to the

largest nuclear power producer in Europe, France. With France heatedly debating the

role of nuclear technology, we analyze how policy uncertainty regarding nuclear power

in France may feature in the French and European power sector. Different pathways

for nuclear policy in France are investigated using a stochastic linear programing model

of the European power system. The analysis shows that the costs of uncertainty in

this particular application are rather low compared to the overall costs of a nuclear

phase-out.
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1.2 Future research and possible improvements to method-

ologies

The four chapters address different research questions, each of which requires a differ-

ent methodology. Chapter 2 presents a quantitative analysis of an extended Hotelling

model. For this analysis, econometric methods are applied. Even though the baseline

Hotelling model is extended by the features of market power and exploration activity,

the theory could not be validated. The critique applied to previous literature may there-

fore also apply to the analysis presented here: First, the model may fail to incorporate

important features of the industry or of the decision-making process within the firm.

One such factor that industry participants might consider and which is not considered

in the model is uncertainty. For example, in the essay, despite uranium demand being

rather well predictable due to long lead times of nuclear power plant constructions and

the predictability of nuclear power plant shut downs, the events following the nuclear

accident at Fukushima show that uranium demand is subject to shocks and uncertainty.

A test for this particular shock is provided in the appendix to the chapter. The test

shows that the findings of the analysis do not not change by accounting for this shock.

A more in-depth analysis of shocks and an extension of the model to incorporate un-

certainty may, however, provide an interesting stream for further research, in particular

in light of testing other markets. Second, the data collected may be insufficient to cap-

ture the firm’s behavior in all detail. In response to this critique it may be noted that

the collected data are the best available to the authors and the particular choices and

assumptions made are documented in the appendix to the chapter.

In Chapters 3 and 4, strategic interaction of players in a game theory context is intro-

duced. While it is possible to derive analytically properties of a simple version of the

model in Chapter 3, the complexity of the model due to the large number of players

in Chapter 4 makes an analytical solution infeasible and therefore requires an empirical

analysis and computer assistance. Several extensions of the analysis presented in the two

chapters might be of interest. First, the restrictions imposed in Chapter 3 on the players’

cost structure may be too restrictive to apply to the important class of resource-market

applications. While the electricity-market application introduced in Chapter 3 is impor-

tant, further research could investigate more general cost structures and explore whether

the results may be extended to a more general context. Second, only one supply and one

investment period are considered in the models in Chapter 4. As investments usually

have a medium to longer-term horizon, taking into account several supply and invest-

ment periods might be more adequate. However, rapidly increasing computer run-time

when using more periods prohibited such an analysis. Third, investment decisions are

typically prone to uncertainty regarding certain parameters, like for instance demand.
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As with the issue of multiple time periods mentioned above, this analysis has not been

within the scope of the current modeling and computational power.

Chapter 5 uses a stochastic linear programing model of the European power system

to investigate the effect of policy uncertainty on system costs. Probably the most im-

portant critique to the analysis presented in Chapter 5 is that there are costs that are

not considered in the analysis. These costs include among others the costs of nuclear

catastrophes, the risk of operating nuclear plants and the costs of storing nuclear waste.

These costs are at best hard, if not to say, impossible to quantify. In order to keep the

analysis within the boundaries of the modeling approach taken and in order not to get

lost in discussions on the quantification of these costs, these costs are not included in

the analysis. Further, retrofit and investment costs for nuclear power plants can only

be approximated and are based on publicly-available resources. Clearly these costs are

prone to uncertainty and there is a large bandwidth of costs that could be considered rea-

sonable. Extending the work presented in Chapter 5 through various further sensitivity

analyses may be a promising avenue for future research.





Chapter 2

A test of the theory of

nonrenewable resources -

Controlling for market power and

exploration

Despite the central role of the Hotelling model within the theory of nonrenewable re-

sources, tests of the model are rarely found. If existent, these tests tend to ignore two

key features, namely market power and exploration. We therefore extend the literature

on tests of Hotelling’s theory by conducting an implicit price behavior test, incorporat-

ing for the first time the concepts of market power and exploration into a single model.

When applied to a newly constructed data set for the uranium mining industry, the null

hypothesis of the firm optimizing inter-temporally as implied by Hotelling’s theory is

rejected in all settings. However, parameter estimates of the model still yield valuable

information on cost structure, resource scarcity and market power. Our results suggest

that the shadow price of the resource in situ is comparably small at the beginning of the

observations and is therefore potentially overshadowed by market power. However, even

as the shadow price increases over time, firms still fail to incorporate it in their decision

making.

2.1 Introduction

There is hardly a field in economics that has been influenced by one single publication

as much as the field of resource economics. Harold Hotelling published his work on the

7
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economics of exhaustible resources in 1931 (Hotelling, 1931). The paper gained attention

in the 1970s due to the oil embargo and the subsequent energy crisis as well as the

debate initiated by Meadows et al. (1972). Even today, the assumption of inter-temporal

optimization within the nonrenewable resource industry, as introduced by Hotelling, is

the foundation for many policy recommendations as seen in Hans-Werner Sinn’s green

paradox (Sinn, 2008).

Even though Hotelling’s theory maintained academic attention for over 80 years, empir-

ical applications and tests of the theory are rarely found mainly due to the vast number

of influencing factors within the model paired with the unavailability of appropriate data

sets. However, in order to derive policy recommendations, such as the ones implied by

the green paradox, understanding the significance of the theory is crucial. Thus, the

question as to whether the scarcity of a nonrenewable resource influences the actual

decision-making process of a mining industry is the focus of this analysis.

This process depends on the value of the resource in situ (which can be represented

by the shadow price, the scarcity rent or the user cost) and whether it is large enough

to be incorporated into the firm’s choice of variables. The relative size of the shadow

price of the resource in situ compared to the full cost of production crucially depends on

different characteristics of the extraction and processing of the resource as well as the

market in which the firm is operating.

So far, the majority of empirical tests addressed methodological or data issues and hardly

found evidence of the practical relevance of Hotelling’s theory. Yet, two factors are

mostly ignored that directly influence the shadow price and a firm’s decisions. First, the

resource shadow price depends not only on the extraction decisions but also on decisions

made in order to increase the resource stock by exploratory activities. Exploration

influences the shadow price as under the assumption that lower cost deposits will be

produced first, increasing resource stock decreases extraction costs (Pindyck, 1978). For

that reason, exploration is a critical feature of mining industries (Krautkraemer, 1998).

Second, the market structure has impacts on a firm’s decision regarding extraction. For

instance, for a monopolistic producer of a nonrenewable resource, it might be optimal

to restrict production in order to increase prices (Lasserre, 1991). Further, the existence

of rents from market power might support a conjecture by Halvorsen (2008), namely

that the shadow price of the resource in situ is too small to be considered in a firm’s

decisions. The existence of rents from market power might therefore overshadow shadow

prices and hence, explain, why tests tend to reject the theory.

Given the relevance of market power and exploration in nonrenewable resource indus-

tries, we extend the literature on tests of Hotelling’s theory by conducting a test based

on the methodology introduced by Halvorsen and Smith (1991), incorporating for the



Chapter 2. A test of the theory of nonrenewable resources - Controlling for market
power and exploration 9

first time the concepts of market power, as introduced by Ellis and Halvorsen (2002),

and exploration, as in Pindyck (1978) into a single model. Using data from a newly

constructed data set for the uranium mining industry, we study the consistency of the

behavior of the shadow price with the Hotelling model and perform an implicit price

behavior test for a major firm in the industry. We estimate two models: one accounting

only for the static optimality implied by the Hotelling model and another accounting

additionally for dynamic optimality. Applying a Hausman specification test, the null

hypotheses of the firm extracting the resource inter-temporally optimal is rejected in all

of the settings analyzed. Despite this rejection, parameter estimates of the model still

allow us to derive information on costs, resource scarcity and market power mark-ups.

These estimates suggest that the shadow price of the resource in situ is comparably

small at the beginning of the observations and may be overshadowed by market power,

which may explain why the firm fails to optimize inter-temporally. However, even as

steep increases in shadow prices occur in the later observations, the firm still fails to

incorporate its size into its decision making.

The remainder of this article is structured as follows: Section 2.2 presents existing

literature on the topic. Section 2.3 describes the theoretical model, while Section 2.4

introduces the applied econometric framework. Section 2.5 introduces the data used and

market considered. Test results and parameter estimates are discussed in Section 2.6.

Section 2.7 concludes.

2.2 Literature Review

Hotelling (1931) was the first to introduce and solve the inter-temporal optimization

problem in nonrenewable resource economics. As a consequence, the concept of the

shadow price of the resource in situ was also established. Academic and public interest

was low until the end of the second half of the last century when the publication of

Meadows et al. (1972) and Solow’s lecture on Hotelling’s model (Solow, 1974) boosted

interest in the theory of nonrenewable resource extraction. Subsequent additions to the

literature are extensively surveyed by Krautkraemer (1998). Today, Hotelling’s work is

considered to be the foundation of resource economics and plays a significant role in the

discussion on climate change and, e.g., in the discussion on the green-paradox (Sinn,

2008).

As academic interest rose, first tests of the theory were conducted. Different analyzes

have since been done, which Chermak and Patrick (2002) classified into two main groups:

price path and price behavior tests. Price path tests examine whether the price of a

nonrenewable resource changes according to Hotelling’s r-percent rule (i.e., whether
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the price increases at the rate of interest). None of the price path analyzes done by

Barnett and Morse (2013), Smith (1979) and Slade (1982) could find evidence for the

theory in actual data. However, these tests come with strong assumptions resulting from

simplifications in Hotelling’s model: First, technology is assumed to be constant over

time and second, the relation of extraction costs to the resource base and marginal costs

is not considered.

Price behavior tests incorporate the price path into the decision-making process of the

extracting firm. Explicit price behavior tests assume a process that consists of extraction

and direct selling of the nonrenewable resource. This implies that the extracted resource

is not processed and therefore marginal costs are simply given by the extraction costs.

The results of these analyzes are ambiguous: While Farrow (1985) and Young (1992)

reject the theory, Stollery (1983) and Slade and Thille (1997) obtain positive results

whereas Miller and Upton (1985) present mixed results. As Chermak and Patrick (2002)

point out, even though the test approach is similar across analyzes, data handling and

underlying assumptions vary strongly.

For most nonrenewable resources, processing of the resource is a necessary step (e.g.,

extraction of the mineral of interest from the ore) before the good can be sold. As

the majority of mining firms can, in general, be considered vertically integrated (i.e.,

offering both mining and processing of the resource), explicit price behavior tests are not

applicable to most nonrenewable industries. Implicit price behavior tests, on the other

hand, take vertical integration into account. The results of previous analyzes considering

implicit price behavior are again mixed. While Halvorsen and Smith (1991) reject the

theory, Chermak and Patrick (2001)1 obtain positive results. Caputo (2011) develops a

nearly complete set of the testable implications of the Hotelling model; however, he finds

that data inadequacies prevent testing all the implications of the theory. Compared to

Caputo’s analysis, the test in this paper could be considered to be only a partial test,

as we closely follow the approach of Halvorsen and Smith (1991).

Table 2.1 gives an overview of the tests conducted thus far and their main character-

istics.2 It becomes obvious that the tests do not only vary in their testing approach

but also in the data time resolution and level. Furthermore, almost all articles assume

perfect competition in the input and output markets. Exploration activities as a means

of increasing the resource base are generally not considered.

1Using data from Chermak and Patrick (2001) and the test approach of Halvorsen and Smith (1991),
Chermak and Patrick (2002) do not reject the theory.

2Table 2.1 is a slightly extended version of Table 1 in Chermak and Patrick (2002).
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Assumptions of perfect competition or monopoly market structure for nonrenewable

resource markets have been the norm ever since Hotelling (1931). The idea that this

may not be an appropriate assumption for the mining industry was first empirically

shown by Ellis and Halvorsen (2002). They extend the general Hotelling framework

with respect to a one-shot Nash-Cournot oligopoly and find that prices substantially

exceed marginal costs in an application to the international nickel industry. However,

these mark-ups can be attributed to a large extend to market power rather than the

resource scarcity rent.

The impact of exploration activities and an extension of the resource base on the

Hotelling framework was first investigated by Pindyck (1978). By allowing the firm

to simultaneously decide on exploration activities (with certain outcomes) and resource

extraction, they find that exploration activities and the resource price and production

path are related: With an increase in reserves comes an increase in production. How-

ever, as the discovery of further reserves and, hence, the exploration activity declines,

production also decreases. Subsequent research on exploration in the context of non-

renewable resources was surveyed by Cairns (1990) as well as Krautkraemer (1998). A

noteworthy empirical application was made by Pesaran (1990). By investigating explo-

ration and production decisions for oil at the United Kingdom continental shelf, they

find a reasonable degree of support for the theoretical consideration of exploration in

the Hotelling framework.

Our paper contributes to the existing stream of literature in several ways: First, we

extend the literature on empirical tests of Hotelling’s theory by means of incorporating

two important features of nonrenewable resource industries, namely, combining the the-

oretical extensions found in Ellis and Halvorsen (2002), with regard to market power,

and Pindyck (1978), with regard to exploration activity. Second, we conduct an im-

plicit price behavior test in the spirit of Halvorsen and Smith (1991) using a newly

constructed data set for the uranium mining industry. In order to address data limita-

tions, we apply a multiple imputations approach. Third, despite obtaining negative test

results, our analysis allows us to provide suggestions for why firms may not optimize

inter-temporally. More specifically, we find that among others market power mark-ups

may cast a shadow on the scarcity rent and therefore incentivize short-term rather than

long-term planning.
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Table 2.2: Notation

Abbreviation Explanation

State variables
χ Cumulative resource additions
S Amount of proven resources

Control variables
E Extraction rate
Q Rate of final output
B Exploration expenses

Parameters
T State of technology
P Market price of final output
W Market price of reproducible inputs (labor, capital)
X Amount of reproducible inputs (labor, capital)
r Real interest rate
λ1 Shadow price of reserves (i.e., resource in situ)
λ2 Shadow price of cumulative discoveries

Functions
f Exploration function
R Revenue function
U Utility function
V Firm-specific factor prices of competing firms
Y Exogenous global demand shifters
CR Restricted cost function
FTC Full total costs
FMC Full marginal costs

Subscripts
K Capital
L Labor
CAP Global thermal capacity of nuclear power plants
MFM Recycled warheads (“Megatons for Megawatts”)
INV Changes in global uranium inventories
LAU,LKZ Labor Australia, Kazakhstan
KAU,KKZ Capital Australia, Kazakhstan
SAU, SKZ Proven reserves Australia, Kazakhstan

2.3 Theoretical Model

We consider the optimization problem of a resource extracting and processing firm. The

firm faces an inverse residual demand function which is assumed to be given by

P (t) = P (Q(t), T (t), Y (t), V (t)) , (2.1)

where P denotes the price of the firm’s final product, Q the quantity of the firm’s

product, Y a set of exogenous demand shifters entering the demand system and V the

firm-specific factor prices of the other firms including, e.g., location-dependent costs for

labor and capital. The observable arguments of the residual demand curve are threefold:

own quantity, structural demand variables and the other firm’s cost variables. Modeling

of inverse residual demand curve hence closely follows Baker and Bresnahan (1988).
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The firm is assumed to maximize its profits U , which are defined as revenues minus full

total costs FTC:

U(t) = P (t) ·Q(t)− FTC(t). (2.2)

The necessary first order condition gives

FMC(t) =
∂FTC(t)

∂Q(t)
= P (t) +

∂P (t)

∂Q(t)
·Q(t), (2.3)

where FMC denotes the firm’s full marginal costs, obtained by taking the derivative of

the firm’s full total cost with respect to its own quantity.

In order to derive the firm’s full marginal costs, we have to analyze the firm’s decision-

making process in more detail. The firm operates a two-stage production process: In

the first stage of production, a nonrenewable resource is extracted and fed into the

second stage of production, where it is processed into a final output. We thus assume

a vertically integrated firm, which holds true for most companies in resource industries.

The production function of the firm is given by

Q(t) = Q(E(t), X(t), S(t), T (t)), (2.4)

where E is the extraction rate of the nonrenewable resource, X is the amount of re-

producible inputs (i.e., capital and labor), S the amount of proven resources and T the

state of technology.

Dual to this cost function is the restricted cost function of reproducible inputs, CR,

which is defined by

CR(t) = CR(Q(t), E(t),W (t), S(t), T (t)) (2.5)

with W denoting the market price of the reproducible inputs (see, e.g., Halvorsen

and Smith, 1984). The firm’s decision-making process is then given by the following

(generalized) Hotelling model

max
E(τ),Q(τ),B(τ)

∫ T

t
e−r(τ−t) [R(Q(τ))− CR(Q(τ), E(τ),W (τ), S(τ), T (τ))−B(τ)] dτ

(2.6)

subject to: χ̇(τ)− E(τ) = Ṡ(τ) (2.7)

f(B(τ), χ(τ)) = χ̇(τ) (2.8)

S(τ), Q(τ), B(τ), χ(τ), E(τ) ≥ 0. (2.9)
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As shown in Equations (2.7) and (2.8), our model incorporates the exploration activities

of the firm: Given a certain effort B and already discovered resources χ, new resources

χ̇ are found by means of the exploration function f(B,χ). Consequently, the avail-

able stock is equal to discoveries minus extracted quantities. Pindyck (1978) introduced

the concept of exploration into the Hotelling framework, arguing that producers “are

not endowed with reserves but must develop them through the process of exploration”

(Pindyck, 1978). Therefore, the producer’s choice set is increased by the decision to

invest in exploration activities. The approach in this article is to assume a set of char-

acteristics for the exploration function f . Those include (i) increasing discoveries with

increasing exploratory expenditures, (ii) diminishing marginal productivity and (iii)

the discovery decline condition (see, e.g., Pesaran, 1990). Letting λ1 and λ2 denote

the costate variables (or shadow prices) of Equations (2.7) and (2.8), we derive the

Hamiltonian of the optimization problem as

H(t) = R(Q(t))− CR(Q(t), E(t),W (t), S(t), T (t))−B(t)− λ1(t) · (χ̇(t)− E(t))

−λ2(t) · f(B(t), χ(t)). (2.10)

In the following, time arguments are omitted for improved readability. The static opti-

mality conditions, i.e., the first-order conditions of Equation (2.10) with respect to the

control variables E, B and Q, are given by

0 = −∂CR
∂E

+ λ1 (2.11)

0 = −1− (λ1 + λ2) · ∂f
∂B

(2.12)

0 =
∂R

∂Q
− ∂CR

∂Q
. (2.13)

Following the maximum principle, Equations (2.11) to (2.13) state that the Hamiltonian

has to be maximized by the control variables in every point in time t (Chiang, 2000).

Rearranging Equations (2.11) and (2.12), the static optimality conditions result in the

following equations for the shadow prices λ1 and λ2:

λ1 =
∂CR

∂E
(2.14)

λ2 = −
(
∂f

∂B

)−1

− ∂CR

∂E
. (2.15)

The interpretation of Equations (2.13), (2.14) and (2.15) is rather straightforward. Equa-

tion (2.13) states that the firm chooses output quantity Q such that the marginal rev-

enue equates the marginal changes in restricted costs CR. Equation (2.14) states that
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extraction is optimally chosen if marginal changes in restricted costs (due to changes

in extraction E) correspond to the shadow price of the resource in situ λ1. Finally,

Equation (2.15) gives the relationship between the shadow price of exploration λ2 and

changes in the exploration function f with respect to exploration expenditures B as well

as the shadow price of the resource in situ, which is equivalent to the marginal changes

in restricted costs with respect to extraction E. This illustrates that, even though the

restricted cost does not directly depend on the exploration activities, a connection exists

via the amount of proven resources S and the values λ1 and λ2.

The dynamic optimality conditions of the generalized Hotelling model follow from the

relation of the choice for the control variables and the state variables. The dynamic

optimality conditions give the optimal path for the shadow prices (see, e.g., Chiang,

2000, Wälde, 2012)

λ̇1 =
∂CR

∂S
+ r · λ1 (2.16)

λ̇2 = (λ1 + λ2) · ∂f
∂χ

+ r · λ2. (2.17)

Inter-temporal changes in the shadow price of the resource in situ λ1 equate changes in

restricted costs CR with respect to the amount of proven resources S and the changes in

interest rates r. Similar, inter-temporal changes in λ2 result from variations in the inter-

est rates but also from changes in the exploration function f with respect to cumulative

resource additions χ3, weighted by both shadow prices.

2.4 Econometric Model

The restricted cost function covers different variable types: E is an intermediate good,

XL and XK are production inputs of capital and labor, respectively, Q is the output of

the final good, and S is an environment variable. We approximate the true restricted cost

function using an transcendental logarithmic (translog) functional form (see, e.g., Ellis

and Halvorsen, 2002, Ray, 1982). The small time-span covered by our data (compared

to innovation cycles in mining industries) allows us to exclude the state of the technology

T from the cost function. Therefore, the interaction terms of the translog-representation

of the restricted cost function are limited to the intermediate as well as the production

input and output variables. We median-adjust our independent variables, allowing for

first-order coefficient estimates to be interpreted as cost elasticities at the sample median

(Last and Wetzel, 2010).

3By the discovery decline condition: ∂f
∂χ

< 0.
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The restricted cost function is given by

lnCR = α0 + αQ lnQ+
∑
j

αj lnWj + αE lnE + αS lnS

+
1

2

∑
j

∑
k

γjk lnWj lnWk +
1

2
γQQ(lnQ)2 +

1

2
γEE(lnE)2

+
∑
j

γjQ lnWj lnQ+
∑
j

γjE lnWj lnE + γQE lnQ lnE (2.18)

with j ∈ {K,L} and L and K being subscripts for labor and capital. Symmetry and

homogeneity of degree one in inputs are given by the following restrictions:

γKL = γLK∑
j

αj = 1

∑
j

γjQ =
∑
j

γjE =
∑
j

γjk =
∑
j

γkj = 0. (2.19)

We impose homogeneity in prices by dividing by one price and thus account for just one

price in the estimation. Symmetry conditions are imposed directly into the model.

In order to increase estimation efficiency, we incorporate cost share equations into our

system of equations. The cost share equations for production inputs follow directly from

the logarithmic differentiation of the implicit cost function with respect to input prices

(Ray, 1982):

MK = αK +
∑
j

γKj lnWj + γKQ lnQ+ γKE lnE (2.20)

ML = αL +
∑
j

γLj lnWj + γLQ lnQ+ γLE lnE (2.21)

with MK = WKXK/CR and ML = WLXL/CR equal to the shares of reproducible

inputs in restricted cost.

Following Equation (2.3), the supply relation requires an expression for full marginal

costs (FMC), which are given by the partial derivative of full total costs (FTC) with

respect to output quantity Q.

In our model, FTC are represented by the sum of restricted costs, exploration expen-

ditures, the shadow price of the resource in situ multiplied by the changes in resource

stock and the shadow price of exploration multiplied by the discoveries from exploration:

FTC = CR+B + λ1(f − E) + λ2f. (2.22)
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From this, we derive the FMC as

FMC =
∂FTC

∂Q
=
∂CR

∂Q
+
∂CR

∂E

∂E

∂Q
− λ1

∂E

∂Q
=
∂CR

∂Q
(2.23)

given the firm sets E at its optimal level. Therefore, the full marginal costs contain no

direct expression of the unknown shadow prices λ1 and λ2 and therefore can be estimated

without further transformations (see also Ellis and Halvorsen, 2002).4 An expression for

the right-hand side is obtained inserting the specification for the restricted cost function,

i.e., Equation (2.18):

FMC =
∂CR

∂Q
=

∂ lnCR

∂ lnQ

CR

Q

= (αQ + γQQ lnQ+
∑
j

γjQ lnWj + γQE lnE)
CR

Q
. (2.24)

The relationship between the firm’s own price and quantity and the other firms’ supply

responses is given by the inverse residual demand curve, which we specify following the

methodology introduced in Baker and Bresnahan (1988). In other words, the inverse

residual demand curve of the firm of interest covers the firm’s price P and quantity Q as

well as the other firms’ factor prices V and global demand shifters Y . As shown in Baker

and Bresnahan (1988), estimation results are not sensitive to the particular specification

(i.e., log-log or linear-linear) of the inverse residual demand curve. For our application,

it is convenient to apply a linear-log specification as it simplifies further calculations.

Thus, the residual demand curve is specified as follows (Baker and Bresnahan, 1988):

P = β lnQ+
∑
k

%k lnVk +
∑
l

τl lnYl. (2.25)

In order to allow for time-varying mark-ups, we apply a semi-parametric approach fol-

lowing Ellis and Halvorsen (2002) and Diewert (1978) and represent β as a polynomial

function in time. In the subsequent estimation procedure, we estimate different func-

tional specifications for the polynomial representation of β. Overall, we find robust

estimation results among different specifications for β(t). Results suggest that specify-

ing the mark-up term as a biquadratic polynomial yields satisfactory results. Further

insights on this procedure are displayed in Appendix A.1. It follows the inverse residual

demand curve as

P = (β0 + β1T + β2T
2 + β3T

3 + β4T
4) lnQ+

∑
k

%k lnVk +
∑
l

τl lnYl. (2.26)

4Note however, that the price of the resource in situ is included in the full marginal costs.
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Having specified the FMC (Equation (2.24)) as well as the inverse residual demand curve

(Equation (2.26)), we can transform and use these estimation equations to obtain the

estimation equation for the supply relation, i.e., Equation (2.3). First, we take the first

derivative of price with respect to firm quantity

∂P

∂Q
=

∂P

∂ lnQ

∂ lnQ

∂Q
= (β0 + β1T + β2T

2 + β3T
3 + β4T

4)
1

Q
. (2.27)

The supply relation for estimation follows as

P = (αQ + γQQ lnQ+
∑
j

γjQ lnWj + γQE lnE)
CR

Q
− (β0 +β1T +β2T

2 +β3T
3 +β4T

4).

(2.28)

We apply the implicit price behavior test by Halvorsen and Smith (1991). In doing so,

we utilize the fact that estimation of the marginal cost function, cost share equation,

inverse residual demand curve and supply relation (i.e., Equations (2.18), (2.21), (2.26)

and (2.28), respectively) is consistent. The resulting estimates of this model represent

the static optimization problem of the firm. However it should be noted that as static

optimality in each point in time is a prerequisite for dynamic optimality, this result

can also represent the dynamically optimal solution. Under the null hypothesis that

the firm optimally extracted its resource, within the framework of the Hotelling model,

the addition of the first dynamic optimality condition given by Equation (2.16) in the

system of equations should result in consistent but more efficient estimates. Under the

alternative hypothesis, the extended model with the dynamic optimality condition is

inconsistent. We test the null hypothesis applying a Hausman specification test.

In order to estimate the model including the dynamic optimality conditions, we first

need to derive the discrete time form of the dynamic optimality condition (2.16), which

is given by

λ1(t) =
∂CR

∂S
(t) + (1 + r)λ1(t− 1). (2.29)

With

λ1 =
∂CR

∂E
=
∂ lnCR

∂ lnE

CR

E
= (αE + γEE lnE +

∑
j

γjE lnWj + γQE lnQ︸ ︷︷ ︸
aλ1

)
CR

E︸︷︷︸
bλ1

= aλ1bλ1

(2.30)

and
∂CR

∂S
=
∂ lnCR

∂ lnS

CR

S
= αS︸︷︷︸

cλ1

CR

S︸︷︷︸
dλ1

= cλ1dλ1 , (2.31)
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we obtain

aλ1(t)bλ1(t) = cλ1(t)dλ1(t) + (1 + r)aλ1(t− 1)bλ1(t− 1). (2.32)

Summarizing, we estimate two models and apply a Hausman specification test. The two

lists below summarize the equations used in each model.

Model 1 (without dynamic optimality condition):

1. The restricted cost function, Equation (2.18);

2. The cost share equation, Equation (2.21);

3. The inverse residual demand curve, Equation (2.26);

4. The supply relation, Equation (2.28).

Model 2 (with dynamic optimality condition):

1. The restricted cost function, Equation (2.18);

2. The cost share equation, Equation (2.21);

3. The inverse residual demand curve, Equation (2.26);

4. The supply relation, Equation (2.28);

5. The dynamic optimality condition, Equation (2.32).

Within our model, the market price of final output P , the quantity of final output Q,

as well as the extracted resource quantities E, are endogenous and need to be treated

in order to prevent biased estimates. Having to deal with endogeneity and simultaneous

equations, we utilize an iterative Three-Stage-Least-Squares approach (3SLS). Despite

being linear in parameters, our system of equations will be nonlinear in endogenous

variables due to transformations of the endogenous variables (e.g., interactions with

other variables and squaring). Even though nonlinear transformations of endogenous

variables are not necessarily a problem5, we follow Wooldridge (2002) (Chapter 9.5)

and use a set of squared and higher-order transformations of exogenous variables. In

addition to exogenous variables already used in our system of equations, we introduce

the following instrumental variables: lnQ3, lnQ4, lnS3, lnS4, lnP 3, lnP 4, T and T 2.

5With endogeneity corresponding to correlation of one variable with the error term, nonlinear trans-
formations may eliminate the correlation.
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2.5 Data

We construct a data set for the Canadian uranium mining firm Cameco Corporation6.

We use quarterly firm-level data for the years 2002-2012. In our estimation, we therefore

work under the implicit assumption that all relevant information is consistent with this

level of aggregation.

Nowadays, uranium is a mineral that is used almost entirely to fuel nuclear power

plants. The market for uranium mining shows considerable concentration on the supply

side, with KazAtomProm, Cameco and Areva covering almost 50% of global uranium

production (as of 2013) (World Nuclear Association, 2014). These firms are vertically

integrated, i.e., they extract the ore, and later mill and process it via leaching to obtain

a uranium concentrate powder (yellowcake or U3O8) that is subsequently processed in

enrichment and fuel fabrication facilities, which are usually operated by other companies.

Yet, the subsequent processing steps do not alter the buyer and seller interaction, as

consumers (i.e., operators of nuclear power plants) directly purchase the yellowcake from

mining firms and afterwards contract subsequent fuel processing (e.g., Neff, 1984). In

the past, contracting was entirely based on long term agreements. However, nowadays

the spot market and spot price indices gained relevance also in terms of spot market-

related contractual agreements (TradeTech, 2011).

Even though uranium itself is abundant in the earth’s crust, most of the deposits are of

such low concentration that production is not profitable. Deposits with relevant uranium

concentration are found predominantly in Australia, Kazakhstan, Canada and Russia

and hence, making these regions targets for exploratory activity by mining firms. With

exploration expenditures of approx. 100 million U.S. dollars in 2012 (Cameco, 2012a)

it becomes clear that exploration is an important feature of the considered firm and

industry.

This short industry description illustrates that the uranium mining industry is suitable

for the proposed test of Hotelling’s theory for various reasons. First, firms are vertically-

integrated, i.e., they are producing and processing the nonrenewable resource. Second,

there is a considerable amount of market concentration. Third, exploration activity is

a relevant decision variable of uranium mining firms. Fourth, because of the time-span

necessary for nuclear power plants to pass authorization and construction, future de-

mand is comparably certain compared with other mining industries. Hence, short-term

price path deviations (Krautkraemer, 1998) are not to be expected. Fifth, consumption

of uranium has no externalities on the climate such as other nonrenewable resources.

6The decision to choose Cameco was made for no particular reason other than it showed a better
data availability compared to competing firms.
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Therefore, environmental externalities are not expected to alter the optimal path of

resource depletion. And sixth, the chemical alteration of uranium in the process of con-

sumption in nuclear power plants makes recycling of uranium almost impossible under

normal circumstances. This is contrary to most other resources used in previous tests,

e.g., nickel and copper. As reintroduction of recycled resources into the system, alters

the extraction path, uranium is in this regard a more suitable resource to consider.

The main data sources are introduced in the following, while a detailed description of

data sources and calculation steps is given in Appendix A.3. Extraction rate E, rate of

final output Q, exploration expenses B, market price of final output P , amount of proven

reserves S and the amount of reproducible inputs for labor XL and capital XK (using

the perpetual inventory method) are taken from Cameco (2012a) and Cameco (2012b).

Prices for reproducible input labor WL are based on Canadian average wages in the

mining industry (Statistics Canada, 2013a), and prices for capital WK are calculated

from producer price indices, depreciation rates and real rate of interest r̃ (Bank of

Canada, 2014b, Statistics Canada, 2013b).

The other firms’ factor prices V used for the estimation of the inverse residual de-

mand curve contain labor and capital costs as well as proven reserves. With the main

competitors of Cameco active in Kazakhstan and Australia, we approximate the other

firms’ factor prices using values for these countries (e.g., ABS, 2014b, Agency of Kaza-

khstan of Statistics, 2014c, Australia, 2013). The global demand shifters Y cover the

global thermal capacity of nuclear power plants (International Atomic Energy Agency,

2013), changes in global uranium inventories (Nuclear Energy Agency, 2011) and market

quantities from military warhead recycling through, e.g., the “Megatons to Megawatts

Program” (Centrus, 2014).

Specification of the exploration function f is done by testing different functional forms

using available firm-level data as well as extended data sets on Canadian exploration

expenditures and discoveries (Nuclear Energy Agency, 2006). As no functional form

proved consistent with (i) increasing discoveries with increasing exploratory expendi-

tures, (ii) diminishing marginal productivity and (iii) the discovery decline condition,

we have to assume that the multiplicative error term in the discovery function is large.

Given the relatively low number of observations available, it makes it impossible to

accurately estimate the exploration function.

Therefore, we use a functional form that deviates from the theoretic relationship specified

in Equation (2.8). In the following, we use a simplified variant, given by χ̇ = f(B):

χ̇(t) = B(t)
0.4829
(11.1) ω(t). (2.33)
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The error term associated with exploration activities is given by ω. The value in brackets

below the exponent of the exploratory expenditures B represents the resulting t-value

for this model.

This specification satisfies the conditions (i) and (ii) but can not account for the

discovery-decline phenomenon (iii). The insignificance of the discovery-decline con-

dition could correspond to numerous global discoveries made in recent years (similar

results are obtained by Pesaran, 1990).

While quarterly data for exploration expenditures B are published by the firm (see also

Appendix A.3), the amount of proven reserves S and hence resource additions χ̇ are only

available on an annual basis. Therefore, we follow Little and Rubin (2002) and use the

exploration function f to impute the resource additions χ̇. By using a multiple imputa-

tion approach, we create fifty different time series for the amount of resource additions

χ̇ and hence, proven reserves S. Thus, we have 50 different data subsamples that are

identical except for S and χ̇. We estimate each subsample individually. Using quarterly

data from 2002 to 2012 yields 44 unique observations per variable and subsample.7

2.6 Empirical Results

Prior to comparing the estimates for Model 1 and Model 2, we first need to define the

interest rate r in the dynamic optimality condition Equation (2.32) of Model 2. We

test the Hotelling model using different interest rates. Following Halvorsen and Smith

(1991), we test constant discount rates (r = 0.01 to 0.25) as well as variable interest

rates that are proportional to actual real (2012) Canadian interest rates r̃ (r = r̃ · 0.25

to r̃ · 4). This results in a total of 41 different interest rate settings to be tested. Having

50 data subsamples and 41 different interest rates gives a total of 50 estimation results

for Model 1 (i.e., one result per individually estimated subsample) and 2050 estimation

results for Model 2 (i.e., one result for every combination of the 50 subsamples with

the 41 different interest rates). In order to make the estimation results as tractable as

possible as well as to illustrate the distribution of results appropriately, we present the

mean values of estimates together with their standard deviation.

Our test results indicate a rejection of the null hypothesis for both the constant discount

rate (see Table 2.3) and the variable interest rate calculations (see Table 2.4) at least at

the 5%-level (except for two cases, which are significant at the 10%-level). Within our

7Obtaining a larger sample size is often impossible in the mining industry. Hence, 40 to 50 observa-
tions can be considered standard in this respect (e.g., Ellis and Halvorsen, 2002).
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modeling approach, these results suggest that the firm’s behavior does not satisfy the

dynamic optimality condition.8

Table 2.3: Hausman test results for constant interest rates

Interest rate χ2 test statistic p-value

Mean Std. Dev. Mean Std. Dev.

0.01 900.037 1038.959 0.047∗∗ 0.191

0.02 1181.12 1966.562 0.013∗∗ 0.056

0.03 1051.912 1385.697 0.028∗∗ 0.112

0.04 979.57 1254.118 0.045∗∗ 0.191

0.05 1035.038 1269.951 0.052∗ 0.218

0.06 1064.868 1526.222 0.026∗∗ 0.154

0.07 1262.86 1876.377 0.033∗∗ 0.143

0.08 1025.725 1240.366 0.029∗∗ 0.157

0.09 1151.013 1608.189 0.046∗∗ 0.18

0.1 1112.523 1648.475 0.024∗∗ 0.154

0.11 1041.461 1240.148 0.02∗∗ 0.129

0.12 1045.752 1220.42 0.025∗∗ 0.141

0.13 1037.033 1255.913 0.043∗∗ 0.196

0.14 1097.268 1434.342 0∗∗∗ 0.001

0.15 2846.733 11971.337 0.018∗∗ 0.111

0.16 1193.924 1847.219 0.046∗∗ 0.21

0.17 1178.983 1453.245 0.002∗∗∗ 0.011

0.18 1110.566 1521.609 0.008∗∗∗ 0.054

0.19 1005.5 1233.742 0.024∗∗ 0.151

0.2 925.503 1168.636 0∗∗∗ 0.003

0.21 1049.172 1282.834 0.019∗∗ 0.12

0.22 945.77 1134.375 0.024∗∗ 0.152

0.23 939.674 1130.028 0.004∗∗∗ 0.024

0.24 954.936 1159.637 0.023∗∗ 0.151

0.25 1530.604 3029.573 0∗∗∗ 0

∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15

The critical value (CV) for p=0.01 is at 37.566

8In 326 models of the 2050 combinations of subsamples and interest rates, we find near-singular
matrices. This collinearity is not originating from a particular set of subsamples or interest rates, but
rather different combinations of them. Therefore, this statistical issue should be solely based on the
inappropriateness of certain interest rates for the rest of the data.
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Table 2.4: Hausman test results for proportional variations of the actual Canadian
interest rate r

Interest rate χ2 test statistic p-value

Mean Std. Dev. Mean Std. Dev.

r · 0.25 1682.839 5031.267 0.029∗∗ 0.151

r · 0.5 1141.45 186.521 0.015∗∗ 0.076

r · 0.75 973.025 194.366 0.08∗ 0.251

r · 1 1139.035 172.047 0.05∗ 0.213

r · 1.25 1073.7 203.451 0.026∗∗ 0.154

r · 1.5 1179.135 179.52 0.034∗∗ 0.152

r · 1.75 1044.678 217.54 0.053∗ 0.22

r · 2 1509.901 209.176 0.025∗∗ 0.148

r · 2.25 1049.269 261.291 0.022∗∗ 0.143

r · 2.5 1024.811 279.253 0.025∗∗ 0.147

r · 2.75 1056.235 163.517 0.041∗∗ 0.166

r · 3 1210.659 159.604 0∗∗∗ 0

r · 3.25 1307.49 180.983 0.046∗∗ 0.207

r · 3.5 2358.77 211.189 0.004∗∗∗ 0.023

r · 3.75 1110.498 233.241 0.018∗∗ 0.116

r · 4 1147.636 231.08 0.004∗∗∗ 0.028

∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15

The critical value (CV) for p=0.01 is at 37.566

Even though the null hypothesis is rejected, estimation results of Model 1 provide in-

formation on cost factors, market power and the shadow price of the resource in situ.

Table 2.5 gives the related mean values and standard deviations for coefficients, standard

errors and p-values.9,10

9Tables A.5, A.6, A.7 in Appendix A.3 provide quantiles and further descriptions of the distribution
of coefficient estimates, p-values and standard errors of the Model 1 estimation results.

10Note that γKK = −γLK = γLL = −γLK .



Chapter 2. A test of the theory of nonrenewable resources - Controlling for market
power and exploration 26

Table 2.5: Estimation results for Model 1

Parameter Estimate p-value Std. Error

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

α0 20.715 0.034 3.14E-32∗∗∗ 1.51E-31 0.105 7.41E-3

αQ 1.57E-8 1.92E-9 3.25E-5∗∗∗ 2.28E-5 2.82E-9 2.02E-10

αK = 1− αL 0.102 1.26E-5 1.36E-45∗∗∗ 4.13E-46 1.11E-4 1.88E-6

αE 2.116 0.092 9.23E-9∗∗∗ 1.49E-8 0.211 0.015

αS -0.204 0.134 0.174 0.219 0.116 0.039

γKK -4.72E-4 1.90E-4 0.237 0.161 3.49E-4 4.20E-5

γQQ 1.34E-8 2.46E-9 0.104+ 0.050 7.58E-9 5.80E-10

γEE 1.665 0.313 0.031∗∗ 0.059 0.606 0.090

γKQ = −γLQ -9.39E-9 1.56E-9 0.021∗∗ 0.023 3.47E-9 3.12E-10

γKE = −γLE 2.35E-3 6.44E-5 2.89E-8∗∗∗ 2.27E-8 2.59E-4 6.83E-6

γQE -1.93E-8 2.14E-9 5.68E-4∗∗∗ 4.14E-4 4.53E-9 4.36E-10

β0 -18.297 1.909 7.66E-4∗∗∗ 2.18E-3 3.910 0.270

β1 0.038 0.090 0.741 0.188 0.209 0.020

β2 0.112 0.017 1.11E-3∗∗∗ 8.78E-4 0.028 2.61E-3

β3 -8.98E-4 2.32E-4 0.318 0.133 8.45E-4 6.83E-5

β4 -1.84E-4 3.81E-5 0.011∗∗ 8.55E-3 6.13E-5 5.87E-6

τMFM 14.216 8.742 0.617 0.176 26.319 1.589

τCAP 93.717 17.295 0.324 0.096 91.125 4.263

%LAU 14.580 1.400 0.028∗∗ 0.014 6.012 0.123

%LKZ 10.609 1.984 0.076∗ 0.074 5.183 0.282

%KAU 25.376 3.004 0.049∗∗ 0.031 11.694 0.778

%KKZ 8.555 0.811 0.041∗∗ 0.025 3.809 0.205

τINV 10.713 0.101 3.66E-16∗∗∗ 8.69E-17 0.419 4.96E-3

%SAU 19.788 2.295 0.016∗∗ 8.31E-3 7.268 0.276

%SKZ -4.434 2.130 0.513 0.210 6.446 0.373

Observations 50×44

Adjusted R2 Eq. (2.18): mean 0.55 std. dev. 0.05, Eq. (2.21): mean 0.68 std. dev. 0.02,

Eq. (2.26): mean 0.02 std. dev. 0.22, Eq. (2.28): mean 0.55 std. Dev. 0.05
∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15

Given the logarithmic form in Equation (2.19) as well as the convergence point set at

the sample median, first-order coefficients for this equation represent the logarithmic

first-order partial derivatives of the cost function and, thus, the cost elasticities at the

sample median. Alternatively, the level-log specification of Equation (2.26) gives the

absolute change in prices P under a percentage change in the independent variables

(i.e., own quantity Q, the other firms factor prices V and global demand shifters Y ).
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A majority of coefficients are statistically significant at the 1%- and 5%-level. Fur-

thermore, the first-order coefficients for the cost function (2.19) follow intuition: costs

increase with higher costs for labor, capital, increased extraction and higher final output.

Larger reserves tend to result in lower extraction costs. This estimate is not statistically

significant at the 10%-level for all, but some subsamples. The mean p-value is at 0.238

with a standard deviation of 0.256. This illustrates that a considerable amount of sub-

samples give statically significant results also for the amount of reserves. With respect to

the inverse residual demand function in Equation (2.26), the coefficients for own quan-

tity is of the expected sign whereas the other coefficients have no clear interpretation

as they reflect direct and indirect effects due to adjustments made by competing firms

(Baker and Bresnahan, 1988). The estimated coefficients are of plausible magnitude.11

Apart from our main finding, that the firm seems to fail to optimize inter-temporally,

the estimation results for the cost function allow us to also highlight firm/industry

cost characteristics. First, processing of the good into the final output is much less cost

intensive as is the extraction of the resource: Increasing extraction E by 1% corresponds

to an average approximate increase in costs by 2.414%, whereas increasing output Q by

1% hardly changes costs. Second, increasing the reserves, i.e., the resource base, by 1%

through exploration results in an average approximate reduction in production costs of

0.188%.

The estimation results allow us to to directly calculate the market power mark-up in

Equation (2.23) from the difference in the market price of final output P and ∂CR/∂Q,

which equals the FMC if the firm optimally chooses its control variables. Note that the

FMC also include the price of the resource in situ.

Figure 2.1 illustrates the Lerner index calculated from our model.12 The mean value of

the Lerner index is given by the solid line, while the dark gray ribbon illustrates the

standard deviation from the mean values. The light gray ribbon captures all subsample

results. The graph clearly shows a substantial mark-up over marginal costs of approxi-

mately 0.5 for the first half of the last decade and a clearly decreasing trend towards zero

in the first half of 2012. Given that the mark-up corresponds to such a large share of

the final output price for most of the observations, it becomes apparent that firms may

optimize their output with respect to this mark-up rather than the optimal depletion of

the resource.

11Due to the logarithmic form of the restricted cost function, all α- and γ-coefficients represent per-
centage changes in the dependent variable with respect to changes in the corresponding independent
variables. Therefore, plausible magnitudes are single-digit. Under the level-log specification of the in-
verse residual demand curve, all β-, τ - and %-coefficients give level changes in the dependent variable,
i.e., P , with respect to percentage changes in the independent variables. As the price levels vary between
31.75 and 57.38 (see Table A.14), plausible coefficient magnitudes are in the lower half of the two-digit
spectrum.

12The Lerner index is given by (P − ∂CR/∂Q)/P .
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Figure 2.1: Lerner index

However, Figure 2.1 shows that the mean value of the Lerner index drops below zero in

five observations. This represents prices below FMC. The latter four points suggests

that shocks from the global financial crisis in 2008 and the shut down of several nuclear

power plants in the aftermath of the Fukushima nuclear disaster might be the source of

these results. We test these suggestions (see Appendix A.2) and find that there seems

to be no shock effect impacting global price setting at these observations. As for 2003

Q2, no immediate explanation for the negative value can be given.

Figure 2.2: Indexed shadow price of the resource in situ (2002 Q1=100)
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Further conclusions can be drawn from the development of the shadow price (i.e., the

scarcity rent) of the resource in situ. For this, we derive an index of scarcity, as done in

Halvorsen and Smith (1984), by computing an indexed version of the shadow price λ1

given in Equation (2.30). The value for the first quarter of 2002 is set at 100. Figure 2.2

shows a drastic increase in shadow price of the resource in situ and, thus, an increasing

scarcity of the resource. The solid line represents the mean value, the dark gray ribbon

gives the standard deviation and the light gray ribbon illustrates the minimum and

maximum values, similar to Figure 2.1. The nonexistence of ribbons at 2008 Q3 suggests

that there is a data issue of some sort as the source of the negative spike in the Lerner

index. The steep increase in the shadow price at the latter observations might be the

source of the negative Lerner index for 2012 Q2 and Q3. While the relative market

power mark-up is large at the beginning of the observations, the firm might have based

extraction decisions mainly on mark-ups originating from market power. However, for

the latter observations, the shadow price of the resource in situ increases steeply and the

firm fails to incorporate this development in their price setting. As the shadow price of

the resource in situ is a part of the FMC, this might explain the negative Lerner index.

2.7 Discussion and Conclusions

In this paper, we conduct an implicit price behavior test based on the methodology intro-

duced by Halvorsen and Smith (1991). We extend the literature on tests of Hotelling’s

theory by incorporating for the first time the concepts of market power, as introduced by

Ellis and Halvorsen (2002), and exploration, as in (Pindyck, 1978) into a single model.

Applying the test to a newly constructed data set for the uranium mining industry, we re-

ject the null hypothesis of the firm optimizing inter-temporally. This complements prior

research, which mostly failed to find evidence for the empirical validity of Hotelling’s

model.

Parameter estimates show that there exists a substantial mark-up over marginal costs

that does not account for the shadow price of the resource in situ for the earlier observa-

tions and lower and even negative mark-ups over marginal costs for later observations.

For the earlier observations, only a very small share of market prices can possibly rep-

resent resource user costs. This changes as the shadow price of the resource in situ

increases steeply over time. The negative mark-up illustrates that the firm fails to as-

sess the shadow price appropriately. Our results suggest that the hypothesis of Halvorsen

(2008) partly holds, i.e., that the shadow price of the resource in situ may be too small to

be considered in a firm’s decision-making process and that the mistake firms are making

by not optimizing inter-temporally optimal may be small. Nonetheless, we find that
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even as the shadow price increases steeply, firms fail to incorporate this development

appropriately in their price setting.

Furthermore, and as already stated by Halvorsen and Smith (1991), inadequacy of the

theoretical model could be another likely reason for the theory to be rejected. Possible

reasons for this inadequacy can be found in the assumptions made in the model. As we

assume a uniform price for the good, we omit issues of transaction costs and imperfect

information (also regarding foresight).

Similar to the tests previously performed in other analyzes, our results put the predictive

power of the theory for nonrenewable resources into question. However, regardless of

the (comparably) predictable uranium demand due to long nuclear reactor construction

times, uncertainty prevails in the market, e.g., as a result of unknown international

inventories. Therefore, relaxing the assumption regarding perfect foresight could be a

promising next step in testing the theory of nonrenewable resources.



Chapter 3

Models of endogenous production

capacity investment in spatial

oligopolistic markets

This paper introduces two different models of production capacity investment and supply

in spatial oligopolistic markets. In the models explored in the paper, players make

decisions about investment in production capacity and supplies to each market. Supplies

are constrained by the players’ production capacity and are therefore dependent on

both their existing capacities and the investment decision. Markets and players are

spatially dispersed which leads to asymmetry in the cost structures. Two different time

structures regarding players’ decisions are analyzed: In the ’open-loop’ model, which

represents a market based on long-term contracts, investment and supply decisions are

taken simultaneously (e.g. the product is sold at the moment the investment decision

is taken). In the ’closed-loop’ model, which represents a market based on spot markets,

players decide on supply, given observed prior investment decisions. For a two node-two

player Cournot electricity market setting, the paper presents an existence and uniqueness

result for the open-loop model and discusses criteria for investment and supply results for

the two models to coincide or differ. The paper concludes that closed-loop investments

and supplies are larger or equal than those resulting in the corresponding open-loop

model, leading to higher consumer surplus in the closed-loop model.

31
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3.1 Introduction

Spatial oligopolies are characterized by a small number of producers supplying regionally

separated markets. Next to the production costs, transportation costs and transporta-

tion constraints are important determinants in these markets. Resource markets, like

those for oil, gas and coal as well as electricity markets are the prototype examples of

spatial oligopolies as these markets typically feature a small number of large players and

are generally not fully competitive.

Because of its theoretical and empirical importance, spatial oligopolies have been studied

extensively in economic research. This includes empirical work analyzing market struc-

ture, trade flows and prices in resource markets, e.g., for steam coal markets (Haftendorn

and Holz, 2010, Kolstad and Abbey, 1984, Trüby and Paulus, 2012), metallurgical coal

markets (Graham et al., 1999, Trüby, 2013), natural gas markets (Gabriel et al., 2005,

Growitsch et al., 2013, Holz et al., 2008, Zhuang and Gabriel, 2008), wheat markets

(Kolstad and Burris, 1986), oil markets (Huppmann and Holz, 2012) or for iron ore

markets (Hecking and Panke, 2014) as well as for electricity markets (Jing-Yuan and

Smeers, 1999, Lise et al., 2006).

Previous work on spatial oligopolies has mostly ignored investment decisions, despite

the fact, as highlighted for instance in Huppmann (2013), that the capacity constraints

used in the analysis strongly impact the results. Huppmann (2013) therefore extends the

model to account for endogenous capacity expansion assuming simultaneous decisions

on supply and investment volumes by the players. This can be interpreted as pointed

out in Murphy and Smeers (2005) as a market organized along long-term contracts, i.e.,

at the moment the investment decision is taken the product is sold. This clearly is an

accurate description for some markets and may also serve as a good approximation to

other markets.

However, in recent years, there is a gradual shift away from long-term contracted trading

towards spot-market based trading in several important energy markets. Examples can

be found for resource markets, like the coking coal market or the market for liquified

natural gas. Electricity markets are also increasingly governed by a mix of long-term

and spot-market based trade.

The difference in market structure not only influences trade flows, prices and supply

decisions but also investment decisions. A priori it is not clear whether more spot-

market based trade will result in higher investment or not. First, long-term trade reduces

risk for investors and might therefore create a more stable environment for investments

which should lead to more investments than under spot-market based trade. Second, it

might also be argued that the inability of a producer to commit over a longer term to
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a production profile under spot-market based trade corresponds to a higher degree of

competition and therefore leads to higher investment than under long-term based trade.

With players anticipating this strategic effect, however, it is not clear how this will play

out and an easy ranking of the different market outcomes is not obvious.

In light of this debate, this paper analyzes the influence of different market structures

on investment decisions and market outcomes in deterministic spatial oligopolies. Two

market structures are considered: In the first model, the so-called open-loop Cournot

model, players decide simultaneously on their supplies and investments. This can be

interpreted as a market organized along long-term contracts. In the second model,

players play a two-stage game. In the first stage, players decide on their investment

level. In the second stage, having observed the investment decisions of all players, a

spot market game is played, i.e., players decide on their production levels. This type

of model is called a closed-loop Cournot model and can be interpreted as a market

organized along spot-market trade.

The effect on investment decisions and market outcome from moving from long-term con-

tract based trading towards spot-market based trading was first systematically analyzed

in Murphy and Smeers (2005). The authors look at a simplified one node electricity mar-

ket featuring two players, one being the peak-load and the other the base-load producer.

The authors provide conditions for divergence of open-loop and closed-loop model re-

sults and give existence and uniqueness criteria for the closed-loop model. Further, they

show that investments and supplies may be larger in the closed-loop model compared

to the open-loop model, leading to higher overall welfare in the closed-loop model.

A further line of research in this area is provided by Wogrin et al. (2013b), which provides

criteria for open-loop and closed-loop investment models to coincide showing results in

the spirit of Kreps and Scheinkmann (1983). Further, in Wogrin et al. (2013a), the

authors introduce mathematical programming solution methods to this type of model

for a one-node electricity market.

The above analyses only considered the case of one demand region. Lorenczik et al.

(2014) were the first to extend the oligopolistic capacity expansion model to a spatial

setting. In an application to the coking coal market, the authors model several demand

and supply nodes, considering also existing capacities available to the players. The

authors show that in a spatial application with non-generic data and existing capaci-

ties available to the players, equilibria are likely to deviate between the two modeling

approaches. They also provide a quantification of the magnitude of the divergence be-

tween closed-loop and open-loop model results with the difference being rather small for

welfare, but not for investments and supplies.
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Despite the contribution of Lorenczik et al. (2014), until now a systematic analytical

treatment for the spatial capacity investment problem is lacking. This paper attempts

to close in part this research gap by presenting an extension of the analysis presented

in Murphy and Smeers (2005) to the spatial setting. As in Murphy and Smeers (2005),

two players are modeled, one representing a peak-load producer, the other a base-load

producer. The analysis is extended from the one demand region case considered in

Murphy and Smeers (2005) to the spatial setting of two markets with player specific

transportation costs to each market. Further, and again in contrast to Murphy and

Smeers (2005), also existing capacities of the players are considered in the model. This

extension is particularly valuable as, as shown in the following, existing capacities may

be another reason not highlighted before for model results to be different between the

two models.

Altogether, the setup may be interpreted as a simple electricity market setting, where

the physical constraints on transport flows are approximated by transportation costs.

While the rather restrictive assumptions on the players’ cost structures, which are tai-

lored to the typical peak-load / base-load producer structure in electricity markets, are

probably to narrow to be applied to the important resource market case, the analy-

sis presented here may serve as a starting point for further investigations into resource

markets. Further, the setting may be applicable to other markets with pronounced and

predictable demand variation.

The analysis shows that the main findings of Murphy and Smeers (2005) can be extended

to the spatial setting: First, an existence and uniqueness result for the spatial open-loop

model is presented as well as closed-form solutions of the open-loop model can be derived.

Second, the paper presents general criteria for model results of the spatial open-loop and

closed-loop capacity expansion models to coincide respectively to diverge and identifies

overcapacity in the market through existing capacities as a new driver for model results

to diverge. Third, the paper provides a comparison of the open-loop and closed-loop

model results showing that investments and supplies may be larger in the closed-loop

model than in the open-loop model, leading to higher consumer surplus in the closed-loop

model in these settings.

The remainder of the paper is structured as follows: Section 3.2 describes the notation

used in this paper. Section 3.3 introduces the open-loop model and states the main

existence and uniqueness result. Section 3.4 presents the closed-loop model. Section 3.5

provides the main results regarding the comparison of open-loop and closed-loop models.

Section 3.6 concludes.
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3.2 General framework

A spatial, homogeneous good market consisting of two producers i = 1, 2 and two

demand regions j = 1, 2 is considered. Producers may own existing production capacity

cap0
i . They decide on both investment in new production capacity yi as well as on their

supplies to the two markets at times t = 1, ..., T . The supply from producer i to market

j at time t is given by xti,j . Total production of producer i at time t is hence given by∑
j x

t
i,j . It is limited by the producer’s capacity limit cap0

i + yi. Figure 3.1 illustrates

the spatial structure of the model.

 

i1 i2 

j1 j2 

Figure 3.1: Spatial structure of the model: The vertices i1, i2 represent the two pro-
ducers, j1, j2 represent the markets. The arrows indicate possible flows from producers

to markets.

Investment expenditures for producer i are given by Cinvi . The investment cost function

Cinvi is assumed to be linear. With ki denoting marginal investment costs, it is therefore

given by

Cinvi (yi) = ki · yi.

Newly-built capacity is assumed to produce at the same cost as existing capacity. The

variable cost function Cvar,ti is assumed to be linear. Variable costs are composed of

transportation costs τi,j per unit delivered from producer i to market j as well as variable

production costs vi. Both transportation costs and variable production costs are assumed

to be time independent. Total variable costs of producer i at time t therefore amount

to

Cvar,ti (xti) =
∑
j

xti,j · (τi,j + vi) =
∑
j

xti,j · δi,j ,

with xti = (xti,j)j denoting the production vector of producer i at time t.
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Market prices P tj in market j at time t are given by a linear inverse demand function,

i.e.,

P tj = atj − b ·
∑
i

xti,j .

with the slope b being independent of time and the same for both markets.

Producers are assumed to maximize profits. Depending on the assumed time and infor-

mation structure, different model types arise:

� If investment and supply decisions are taken at the same time, an open-loop game

with capacity investments is obtained. This type of model is introduced in Section

3.3 and can basically be solved via the KKT conditions of the players’ optimization

problems. The model can be interpreted as representing a market organized around

long-term contracts.

� If investment and supply decisions are taken successively in time, a closed-loop

model is obtained. This model type is introduced in Section 3.4 and can be inter-

preted as representing a market organized around spot markets.

The relation of the closed-loop and the corresponding open-loop problem is at the core of

the analysis presented in Section 3.5. In order to facilitate the analysis, more structure

is added to the model, namely an extension of the base/peak producer cost structure

introduced in Murphy and Smeers (2005) is assumed in the following. In this set-

up, one producer, the base-load producer (denoted with subscript b) has a supply cost

advantage but an investment cost disadvantage compared to the other producer, the

peak-load producer (denoted with subscript p), i.e.,

xlow(j) · δp,j +Kp < xlow(j) · δb,j +Kb and

xhigh(j) · δb,j +Kb < xhigh(j) · δp,j +Kp

for levels of supply xlow(j) < LEVEL(j) < xhigh(j) and a supply threshold LEVEL(j).

This additional structure enables and facilitates the proofs in Section 3.5. It allows to

characterize when model results coincide respectively diverge between the two models as

well as to rank model results with respect to investment and supplies. The structure fits

well for one important market class, electricity markets. However, adding this structure

also comes at a price as for several important markets these assumptions might not be

appropriate, like for resource markets.
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3.3 The open-loop Cournot model: Simultaneous invest-

ment and supply decisions

In the open-loop Cournot model, producers simultaneously make their investment and

supply decision with the objective to maximize profits. In doing so, producers take into

account their capacity restrictions and their influence on price. In the Cournot case

considered here, the influence on price is given by
∂P tj
∂xti,j

= b for all i. Producer i solves

the optimization problem

max
xti,yi

[∑
t

∑
j∈J

P tj · xti,j −
∑
t

Cvar,ti (xti)− Cinvi (yi)
]

subject to

P tj = atj − b · (xti,j + xt−i,j), ∀j, t

cap0
i + yi −

∑
j

xti,j ≥ 0, ∀t (λti)

xti,j ≥ 0, ∀j

yi ≥ 0.

Note that producer i assumes in his optimization the supplies xt−i,j of the other producer

as given. The dual variable to the firm’s capacity constraint is given by λti.

Any solution to the above optimization problem satisfies the short-term Karush-Kuhn-

Tucker (KKT) conditions

0 ≤ δi,j − [atj − b · (xti,j + xt−i,j)] + b · xti,j + λti ⊥ xti,j ≥ 0, ∀j, t

0 ≤ cap0
i + yi −

∑
j

xti,j ⊥ λti ≥ 0, ∀t

as well as the long-term KKT condition

0 ≤ ki −
∑
t

λti ⊥ yi ≥ 0.

In equilibrium, the KKT conditions for both players have to hold simultaneously. Ex-

istence and uniqueness of the open-loop Cournot equilibrium can be proven using the

theory of variational inequalities (see Harker and Pang, 1990, for an overview of the

theory of variational inequalities).

Theorem 3.1. There exists an open-loop Cournot equilibrium and it is unique.

Proof. See Appendix B.1.
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Note that the KKT conditions are necessary and sufficient to solve the open-loop Cournot

model due to the quasi-concave objective function and the convexity of the restrictions.

Apart from the general existence and uniqueness result presented in Theorem 3.1, in the

present context it is possible to derive the closed-form solution of the open-loop Cournot

model. This is done in Appendix B.1 for the one-period case and a sketch is provided

of the derivation in the multi-period case.13

3.4 The closed-loop Cournot model: Successive investment

and supply decisions

In the closed-loop Cournot model, producers play a two-stage game. The timing is as

follows:

� In the first stage, producers simultaneously decide on their investments.

� In the second stage, producers choose their production and supplies, based on

observed investment decisions of the first stage.

This structure can be interpreted as a market organized along spot markets. An equi-

librium to this problem is subgame perfect and solving the model leads into the class of

EPECs, see e.g. the overviews presented in Ehrenmann (2004) or Gabriel et al. (2012)

for a general introduction to EPECs. The model is solved by backward induction, i.e.,

by first solving for the optimal solution of the second stage, the short-run problem.

3.4.1 The short-run problem

For a given investment vector y = (yi, y−i), the short-run problem of producer i is given

by

max
xti

[∑
t

∑
j∈J

P tj · xti,j −
∑
t

Cvar,ti (xti)
]

subject to

P tj = atj − b · (xti,j + xt−i,j), ∀j, t

cap0
i + yi −

∑
j

xti,j ≥ 0, (λti)

xti,j ≥ 0, ∀j.
13Note that the existence and uniqueness result holds under much weaker assumptions than the peak-

load / base-load producer setting analyzed here.
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In the short-run problem, producer i decides on his production and supplies while taking

the decisions of the other producer as given. Producer i also takes his capacity constraint

into account, the dual variable of which is given by λti. Further, Cournot behavior is

assumed. The corresponding KKT conditions to this problem are then given by

0 ≤ δi,j − [atj − b · (xti,j + xt−i,j)] + b · xti,j + λti ⊥ xti,j ≥ 0, ∀j, t

0 ≤ cap0
i + yi −

∑
j

xti,j ⊥ λti ≥ 0, ∀t.

In the short-run equilibrium, the KKT conditions of both players have to hold simultane-

ously. Let xti,j(y) or xti,j(yi, y−i) denote the short-run equilibrium for a given investment

vector y = (yi, y−i).

Lemma 3.2 provides a characterization of the short-run equilibrium. Note, however that

short-run equilibrium curve is typically non-differentiable and has jump points. This

feature was explored in detail in Murphy and Smeers (2005) for the one demand node

case and also applies to the two demand node case considered here. The further analysis

will abstract from these issues of differentiability.

Lemma 3.2. xti,j(yi, y−i) is unique for given (yi, y−i) as well as left and right differen-

tiable with respect to yk, k = i,−i.

Proof. See Appendix B.2.

3.4.2 The long-run problem

In the first stage of the closed-loop problem, the long-run problem, producer i chooses

his investment in order to maximize profits for a given investment strategy of the other

producer (y−i) under consideration of the resulting short-run equilibrium. The long-run

problem for producer i can be stated as

max
yi

[∑
t

∑
j∈J

P tj · xti,j(yi, y−i)−
∑
t

Cvar,ti (xti(yi, y−i))− Cinvi (yi)
]

subject to

P tj = atj − b · [xti,j(yi, y−i) + xt−i,j(yi, y−i)], ∀j, t

yi ≥ 0.
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Combining the short-run and the long-run problem, the following MPEC for producer i

is obtained, hereafter referred to as MPECi:

max
Ωi

[∑
t

∑
j∈J

P tj · xti,j −
∑
t

Cvar,ti (xti)− Cinvi (yi)
]

subject to

yi ≥ 0,

P tj = atj − b · (xti,j + xt−i,j), ∀j, t

0 ≤ δk,j − [atj − b · (xtk,j + xt−k,j)] + b · xtk,j + λtk ⊥ xtk,j ≥ 0, ∀j, t and k = i,−i

0 ≤ cap0
k + yk −

∑
j

xtk,j ⊥ λtk ≥ 0, ∀t and k = i,−i.

Producer i considers the investment y−i of the other producer as given and optimizes

over the choice set Ωi = {yi; (xtk,j , λ
t
k)k,j,t}. The first stage decision variable is separated

from the second stage (decision and dual) variables by a semicolon as the latter are

indirectly determined by the first stage choices.

Definition 3.3. An investment strategy (ỹi, ỹ−i) is a closed-loop equilibrium if for all

i, ỹi solves i’s MPEC problem MPECi given ỹ−i.

The problem of finding a closed-loop equilibrium is hence of EPEC type in the sense of

Gabriel et al. (2012).

3.5 Comparing the open-loop and the closed-loop invest-

ment model

In order to compare the open-loop and closed-loop model solutions, properties of the

short run curve xti,j(y) for a given time point t are analyzed. The following cases,

disregarding some of the symmetric cases, can be distinguished:

1. Both players produce and supply both markets, i.e., xti,j > 0 for all i, j

2. Player 1 supplies both markets, player 2 only market 1, i.e., xt1,1 > 0, xt1,2 > 0,

xt2,1 > 0 and xt2,2 = 0

3. Player 1 supplies both markets, player 2 none, i.e., xt1,1 > 0, xt1,2 > 0, xt2,1 = 0 and

xt2,2 = 0
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4. Player 1 supplies market 1, player 2 supplies market 2, i.e., xt1,1 > 0, xt1,2 = 0,

xt2,1 = 0 and xt2,2 > 0

5. Player 1 supplies market 1, player 2 does not supply, i.e., xt1,1 > 0, xt1,2 = 0,

xt2,1 = 0 and xt2,2 = 0

Each of the cases has the following sub-cases, the composite cases are referred to in the

obvious way by (1a) to (5d).

(a) Both players produce at full capacity

(b) Both players do not produce at full capacity

(c) Player 1 produces at full capacity, player 2 does not

(d) Player 1 does not produce at full capacity, player 2 does

In the further analysis, a different characterization of the solution to the closed-loop

problem is used. For this, let Bux
t
i,j(y) =

∂xti,j(y)

∂yu
, u = 1, 2. A closed-loop solution then

satisfies, abstracting from the problems of differentiability of the short run equilibrium

curve alluded to in the previous section,

0 ≤ −
∑
t

∑
j∈J

[atj − 2bxti,j(y)− bxt−i,j(y)− δti,j ] ·Bixti,j(y)

+
∑
t

∑
j∈J

bxti,j(y) ·Bixt−i,j(y) +Ki ⊥ yi ≥ 0. (3.1)

The following lemma characterizes Bux
t
i,j(y).

Lemma 3.4. For the cases described above it holds:

1. All produce and supply both markets

(1a)
∑

j B1x
t
1,j(y) = 1 and B2x

t
1,j(y) = 0∑

j B2x
t
2,j(y) = 1 and B1x

t
2,j(y) = 0

(1b) B1x
t
1,j(y) = 0 and B2x

t
1,j(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,j(y) = 0

(1c)
∑

j B1x
t
1,j(y) = 1 and

∑
j B2x

t
1,j(y) = 0

B2x
t
2,j(y) = 0 and

∑
j B1x

t
2,j(y) = −0.5

(1d) B1x
t
1,j(y) = 0 and

∑
j B2x

t
1,j(y) = −0.5∑

j B2x
t
2,j(y) = 1 and

∑
j B1x

t
2,j(y) = 0



Chapter 3. Models of endogenous production capacity investment in spatial oligopolistic
markets 42

2. Player 1 supplies both markets, player 2 only market 1

(2a)
∑

j B1x
t
1,j(y) = 1 and B2x

t
1,j(y) = 0

B2x
t
2,1(y) = 1 and B1x

t
2,1(y) = 0

B2x
t
2,2(y) = 0 and B1x

t
2,2(y) = 0

(2b) B1x
t
1,j(y) = 0 and B2x

t
1,j(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,j(y) = 0

(2c)
∑

j B1x
t
1,j(y) = 1 and

∑
j B2x

t
1,j(y) = 0

B2x
t
2,1(y) = 0 and B1x

t
2,1(y) = −0.5B1x

t
1,1

B2x
t
2,2(y) = 0 and B1x

t
2,2(y) = 0

(2d) B1x
t
1,j(y) = 0 and B2x

t
1,1(y) = −0.5 and B2x

t
1,2(y) = 0

B2x
t
2,1(y) = 1 and B1x

t
2,1(y) = 0

B2x
t
2,2(y) = 0 and B1x

t
2,2(y) = 0

3. Player 1 supplies both markets, player 2 none

(3a)
∑

j B1x
t
1,j(y) = 1 and B2x

t
1,j(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,j(y) = 0

(3b) B1x
t
1,j(y) = 0 and B2x

t
1,j(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,j(y) = 0

(3c)
∑

j B1x
t
1,j(y) = 1 and B2x

t
1,j(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,j(y) = 0

(3d) B1x
t
1,j(y) = 0 and B2x

t
1,j(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,j(y) = 0

4. Player 1 supplies market 1, player 2 supplies market 2

(4a) B1x
t
1,1(y) = 1 and B2x

t
1,1(y) = 0

B1x
t
1,2(y) = 0 and B2x

t
1,2(y) = 0

B2x
t
2,2(y) = 1 and B1x

t
2,2(y) = 0

B2x
t
2,1(y) = 0 and B1x

t
2,1(y) = 0

(4b) B1x
t
1,j(y) = 0 and B2x

t
1,j(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,j(y) = 0

(4c) B1x
t
1,1(y) = 1 and B2x

t
1,1(y) = 0

B1x
t
1,2(y) = 0 and B2x

t
1,2(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,j(y) = 0

(4d) B1x
t
1,j(y) = 0 and B2x

t
1,j(y) = 0

B2x
t
2,2(y) = 1 and B1x

t
2,2(y) = 0

B2x
t
2,1(y) = 0 and B1x

t
2,1(y) = 0
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5. Player 1 supplies market 1, player 2 none

(5a) B1x
t
1,1(y) = 1 and B2x

t
1,1(y) = 0

B2x
t
1,1(y) = 0 and B1x

t
1,2(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,2(y) = 0

(5b) B1x
t
1,j(y) = 0 and B2x

t
1,j(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,j(y) = 0

(5c) B1x
t
1,1(y) = 1 and B2x

t
1,1(y) = 0

B2x
t
1,1(y) = 0 and B1x

t
1,2(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,2(y) = 0

(5d) B1x
t
1,j(y) = 0 and B2x

t
1,j(y) = 0

B2x
t
2,j(y) = 0 and B1x

t
2,j(y) = 0

Proof. See Appendix B.2.

It is easy to see that when there are time points of type (2c) or (2d), then it is the

peak player that is not supplying to one market. This distinction can only be made due

to the special cost structure assumptions made on the players. From this and Lemma

3.4, the two main relations, summarized in the following theorem, between closed-loop

and open-loop solutions are derived. The theorem shows that the existence of time

points of types (1c), (1d), (2c) or (2d) leads to the solutions of the two model types

to fall apart. If not present, the two model results coincide. The theorem illustrates

that the solutions basically fall apart when one player can influence the decisions of

the other player through his own actions. Note that the cases (1c), (1d), (2c) or (2d)

also include the interesting case of markets with overcapacity. With one player having

existing overcapacity, open-loop and closed-loop model results may fall apart.

Theorem 3.5. a) When there is no time point of the closed-loop equilibrium of types

(1c), (1d), (2c) or (2d), then the closed-loop equilibrium is the same as the corresponding

open-loop equilibrium.

b) When there is a time point of the closed-loop equilibrium of types (1c), (1d), (2c)

or (2d), then the closed-loop equilibrium is different from the corresponding open-loop

equilibrium.
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Proof. Proof of part a): Applying Lemma 3.4 to Equation (3.1) it follows that

0 = −
∑
t

∑
j∈J

[atj − 2bxti,j(y)− bxt−i,j(y)− δti,j ] ·Bixti,j(y)

+
∑
t

∑
j∈J

bxti,j(y) ·Bixt−i,j(y)︸ ︷︷ ︸
=0

+Ki

= −
∑
t

∑
j∈J

[atj − 2bxti,j(y)− bxt−i,j(y)− δti,j ]︸ ︷︷ ︸
λti

·Bixti,j(y) +Ki

= −
∑
t

λti
∑
j∈J

Bix
t
i,j(y) +Ki

= −
∑
t

λti +Ki

which shows that the closed-loop equilibrium is the same as the corresponding open-loop

equilibrium.

Proof of part b): Applying Lemma 3.4 to Equation (3.1), it holds for the player whose

capacity is not fully used

0 = −
∑
t

λti,j +Ki +
∑

t∈(1c),(1d),(2c) or (2d)

∑
j∈J

bxti,j(y) ·Bixt−i,j(y)︸ ︷︷ ︸
<0

< −
∑
t

λti +Ki

which shows that the solutions fall apart. Similar reasoning applies for the other cases.

It further holds for both the open-loop and the closed-loop model that if the capacity is

binding for the peak player, it is also be binding for the base player. From this it follows

that for the closed-loop equilibrium

Kb >
∑
t

λtb and Kp =
∑
t

λtp

if there are time points of types (1c), (1d), (2c) or (2d). This relationship will be key

input in proving the following theorem comparing capacity investment in the open-loop

and closed-loop model, which shows that the existence of time points of types (1c),

(1d), (2c) or (2d) leads to investments being larger in the closed-loop model than in the

open-loop model. Moreover, in this case it holds that it is the base player who might

invest more in the closed-loop model and that overall supply is larger. In the case of

symmetric markets, consumer welfare is larger in the closed-loop model.
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Theorem 3.6. a) The capacity investment in a closed-loop equilibrium is at least as

large as the capacity investment in the corresponding open-loop equilibrium. It is larger

when there are time points of types (1c), (1d), (2c) or (2d).

b) The base capacity investment in the closed-loop equilibrium is at least as large as in

the open-loop equilibrium.

c) The supplies in the closed-loop model are at least as large as the supplies in the

open-loop model.

d) In case of symmetric markets, i.e., aj = a, overall consumer welfare in the closed-loop

model is at least as large as in the open-loop model.

Proof. Proof of part a): Let the superscripts c and o stand for the closed-loop and open-

loop equilibrium. The theorem is proven by contradiction distinguishing two cases.

Case 1: Suppose that yob+yop > ycb+ycp and yop > ycp. It suffices to show that
∑

t λ
t,c
p > Kp,

which yields the desired contradiction.

The long-term open-loop equilibrium condition yields
∑

t λ
t,o
p = Kp. It remains to be

shown that λt,cp > λt,0p for some t. For this let λt,op > 0 for some t. This implies

∑
j

xt,op,j − cap
0
p = yop > ycp ≥

∑
j

xt,cp,j − cap
0
p. (3.2)

Further, since the peak capacity is binding, also the base capacity is binding, i.e.,

∑
j

xt,ob,j − cap
0
b = yob .

Combining these two relations it follows

∑
j

xt,op,j−cap
0
p+
∑
j

xt,ob,j−cap
0
b = yop+yob > ycp+y

c
b ≥

∑
j

xt,cp,j−cap
0
p+
∑
j

xt,cb,j−cap
0
b . (3.3)

Adding Equations (3.2) and (3.3) and simplifying, it follows that

2
∑
j

xt,op,j +
∑
j

xt,ob,j > 2
∑
j

xt,cp,j +
∑
j

xt,cb,j

from which

λt,cp > λt,op

and hence the desired contradiction follows.

Case 2: Suppose that yob+yop > ycb+ycp and yob > ycb . It suffices to show that
∑

t λ
t,c
b > Kb,

which yields the desired contradiction.

The long-term open-loop equilibrium condition yields
∑

t λ
t,o
b = Kb. It remains to be
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shown that λt,cb > λt,ob for some t. For this let λt,ob > 0. From this it follows

∑
j

xt,ob,j − cap
0
b = yob > ycb ≥

∑
j

xt,cb,j − cap
0
b . (3.4)

Case 2.1: Let λt,op > 0. This implies

∑
j

xt,op,j − cap
0
p = yop.

Adding this to Equation (3.4) it follows

∑
j

xt,op,j−cap
0
p+
∑
j

xt,ob,j−cap
0
b = yop+yob > ycp+y

c
b ≥

∑
j

xt,cp,j−cap
0
p+
∑
j

xt,cb,j−cap
0
b . (3.5)

Adding Equations (3.4) and (3.5) and simplifying as above, the desired result again

follows.

Case 2.2: Let λt,op = 0. Adding the short-run open-loop equilibrium conditions for the

peak player, it follows

∑
j

δtp,j −
∑
j

atj + 2b
∑
j

xt,op,j + b
∑
j

xt,ob,j = 0

and for the closed-loop equilibrium

∑
j

δtp,j −
∑
j

atj + 2b
∑
j

xt,cp,j + b
∑
j

xt,cb,j + 2λt,cp = 0.

From this, it can be concluded that

2b
∑
j

xt,op,j + b
∑
j

xt,ob,j = −
∑
j

δtp,j +
∑
j

atj

≥ −
∑
j

δtp,j +
∑
j

atj − 2λt,cp

= 2b
∑
j

xt,cp,j + b
∑
j

xt,cb,j . (3.6)

Adding Equation (3.4) multiplied by 3b and Equation (3.6) and simplifying the desired

contradiction follows.

Proof of part b): Suppose that yop < ycp. Together with yop + yob < ycp + ycb it follows

2yop + yob < 2ycp + ycb . Let Kp =
∑

t′ λ
t′,c
p +

∑
t′′ λ

t′′,c
p where λt

′,c
p > 0 and λt

′′,c
p = 0. Since

λt
′,c
p > 0 implies λt

′,c
b > 0, it holds that

2
∑
j

xt
′,o
p,j −2cap0

p+
∑
j

xt
′,o
b,j −cap

0
b ≤ 2yop+y

o
b < 2ycp+y

c
b = 2

∑
j

xt
′,c
p,j−2cap0

p+
∑
j

xt
′,c
b,j −cap

0
b
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from which λt
′,o
p > λt

′,c
p follows. Therefore,

Kp =
∑
t′

λt
′,c
p +

∑
t′′

λt
′′,c
p <

∑
t′

λt
′,o
p +

∑
t′′

λt
′′,o
p = Kp,

a contradiction. Proof of part c): It holds that yob ≤ ycb and yop + yob < ycp + ycb .

Case 1: Suppose that λt,cp > 0. Then λt,cb > 0 and

∑
j

xt,op,j +
∑
j

xt,ob,j ≤ cap
0
p + yop + cap0

b + yob < cap0
p + ycp + cap0

b + ycb =
∑
j

xt,cp,j +
∑
j

xt,cb,j

from which the result follows.

Case 2: Suppose now that λt,cp = 0 and λt,cb > 0. It then holds at (xt,cp , ycb)∑
j

δtp,j −
∑
j

atj + 2b
∑
j

xtp,j + b(cap0
b + yb) = 0 (3.7)

∑
j

δtb,j −
∑
j

atj + b
∑
j

xtp,j + 2b(cap0
b + yb) + 2λsb = 0. (3.8)

Taking the derivative with respect to yb, it follows that
∑

j x
t
p,j + cap0

b + yb decreases as

yb decreases while both conditions (3.7) and (3.8) continue to hold. From this the claim

follows by distinguishing cases of the decrease of yb from ycb towards yob .

Proof of part d): The claim follows readily by adding up the two consumer surpluses of

the markets.

3.6 Conclusions

This paper presents two models of capacity investments in spatial markets. The first

model, the open-loop Cournot model, assumes that players decide simultaneously on in-

vestments and supplies. The second-model, the closed-loop Cournot model assumes that

supply decisions are made based on observed prior investment decisions. Both models

have real world interpretations; whereas the first model represents markets organized

along long-term contracts, the second model represents markets organized along spot

markets. This dichotomy between the two market structures is particularly apparent in

resource and electricity markets in which recently a shift away from long-term to more

spot-market based trading has been observed and a mix of differently traded products

exists.

In a simple electricity market setting several results are obtained: First, an existence

and uniqueness result for the open-loop case is derived. Second, the paper provides a
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comparison of open-loop and closed-loop model results presenting criteria for the results

of the two models to coincide respectively to diverge. The analysis shows the important

role of existing capacities in the model and the role they play for market outcomes to

coincide or diverge. And third, the paper shows that supplies and investments in the

closed-loop model may be larger than in the open-loop model under certain assumptions

regarding cost and demand structure, resulting in higher consumer welfare in the closed-

loop model in these cases.

Several promising research streams may be conducted based on the findings presented

here. First, further research needs to be directed towards investigating existence and

uniqueness in closed-loop capacity investment models. Previous analysis has shown that

in other closed-loop settings existence and uniqueness is highly parameter dependent

and moreover pure strategy equilibria may not exist. Second, also regarding effective

empirical programing and solution techniques more work needs to be conducted. Up to

now, only relatively small-scale closed-loop models have been solved successfully empir-

ically. Scaling these techniques up to generate effective solution strategies also for larger

models would be a significant contribution. Third, the cost and demand structure in the

analysis presented here is just one relevant case, particularly suited for electricity market

applications. More general cost and demand structures might need to be considered for

the important class of resource market applications.



Chapter 4

Modeling strategic investment

decisions in spatial markets

Markets for natural resources and commodities are often oligopolistic. In these markets,

production capacities are key for strategic interaction between the oligopolists. We an-

alyze how different market structures influence oligopolistic capacity investments and

thereby affect supply, prices and rents in spatial natural resource markets using math-

ematical programing models. The models comprise an investment period and a supply

period in which players compete in quantities. We compare three models, a perfect

competition and two Cournot models, in which the product is either traded through

long-term contracts or on spot markets in the supply period. Tractability and practical-

ity of the approach are demonstrated in an application to the international metallurgical

coal market. Results may vary substantially between the different models. The metal-

lurgical coal market has recently made progress in moving away from long-term contracts

and more towards spot market-based trade. Based on our results, we conclude that this

regime switch is likely to raise consumer rents but lower producer rents, while the effect

on total welfare is negligible.

4.1 Introduction

Markets for natural resources and commodities such as iron ore, copper ore, coal, oil

or gas are often highly concentrated and do not appear to be competitively organized

at first glance. In such markets, large companies run mines, rigs or gas wells and trade

their product globally. In the short term, marginal production costs and capacities are

given and determine the companies’ competitive position in the oligopolistic market.

49



Chapter 4. Modeling strategic investment decisions in spatial markets 50

However, in the longer term, companies can choose their capacity and consequently

alter their competitive position.

Investing in production capacity is a key managerial challenge and determining the

right amount of capacity is rarely trivial in oligopolistic markets. Suppliers have to take

competitors’ reactions into account not only when deciding on the best supply level but

also when choosing the best amount of capacity.

In this paper, we introduce three different models to address this capacity expansion

problem in oligopolistic natural resource markets under varying assumptions of market

structure and conduct. Moreover, we pursue the question as to how different market

structures influence capacity investments, supply, prices and rents. The models comprise

two periods: an investment period and a supply period in which players compete in

quantities. We explicitly account for the spatial structure of natural resource markets,

i.e., demand and supply regions are geographically separated and market participants

incur distance-dependent transportation costs.

The first model assumes markets to be contestable; hence investment follows competi-

tive logic. Solving this model yields the same result as would be given by a perfectly

competitive market. The second model assumes the product to be sold through long-

term contracts under imperfect competition. Even though supply takes place in period

two, the supply and investment decisions are made simultaneously in period one. The

long-term contract that is fulfilled in period two determines the level of capacity invest-

ment in period one. Any production capacity that is different from the one needed to

produce the quantity of the best-supply equilibrium in period two reduces the respec-

tive players profits and is not a Nash equilibrium. The outcome is termed ’open-loop

Cournot equilibrium’ and corresponds to the result of a static one-period Cournot game

(accounting for investment costs). The third model assumes that investment and supply

decisions are made consecutively: In period one, when investment takes place, none of

the oligopolists can commit to their future output decision in period two (unlike in the

open-loop case). In period two, when the market clears, the investment cost spent in

the first period is sunk and the players base their output decision solely on production

cost. The resulting equilibrium is termed ’closed-loop Cournot equilibrium’ and may

differ from the open-loop outcome.

Intuitively, the lack of commitment in the closed-loop game and therefore the repeated

interaction of the oligopolists would suggest a higher degree of competition and thus

lower prices and higher market volumes than in the open-loop equilibrium. However, the

players anticipate this strategic effect and make their investment decisions accordingly.

How prices and volumes rank compared to the open-loop game is parameter-dependent

and requires a numerical analysis. As discussed for instance in Fudenberg and Tirole
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(1991) in a more general context, each player in the closed-loop model has a strategic

incentive to deviate from his first period open-loop action as he can thereby influence

the other players’ second period action. Applying this general economic framework to

the capacity expansion problem examined in this paper, indeed tends to lead to higher

investment and supply levels in the closed-loop model and hence to lower prices.

Computing open-loop games is relatively well understood, and existence and uniqueness

of the equilibrium can be guaranteed under certain conditions (see, e.g., Harker, 1984,

1986, Takayama and Judge, 1964, 1971). The open-loop Cournot model can be solved

via the Karush-Kuhn-Tucker conditions as a mixed complementarity problem (MCP).

Oligopolistic spatial equilibrium models have been widely deployed in analyzing resource

markets, without taking investments decisions into account, e.g., for steam coal markets

(Haftendorn and Holz, 2010, Kolstad and Abbey, 1984, Trüby and Paulus, 2012), met-

allurgical coal markets (Graham et al., 1999, Trüby, 2013), natural gas markets (Gabriel

et al., 2005, Growitsch et al., 2013, Holz et al., 2008, Zhuang and Gabriel, 2008), wheat

markets (Kolstad and Burris, 1986), oil markets (Huppmann and Holz, 2012) or for iron

ore markets (Hecking and Panke, 2014). Investments in additional production capacity

have been analyzed for example in Huppmann (2013) with investment and production

decisions being made simultaneously and therefore implicitly assuming a market struc-

ture with long-term contracts.

Closed-loop models are computationally challenging due to their non-linear nature. De-

pending on the problem this can be resolved. Gabriel and Leuthold (2010) for instance

model an electricity market with a Stackelberg leader using linearization to guarantee

a globally optimal solution. Closed-loop models in energy market analysis have pri-

marily been used to study restructured electricity markets (e.g., Daxhelet and Smeers,

2007, Shanbhag et al., 2011, Yao et al., 2008, 2007). Murphy and Smeers (2005) and

Wogrin et al. (2013a,b) have analyzed the implications of closed- and open-loop model-

ing on market output and social welfare as well as characterized conditions under which

closed- and open-loop model results coincide.

Our two-stage model consists of multiple players on both, the first and second stage (in-

vestment in period one and supply in period two), and therefore existence and unique-

ness of (pure strategy) equilibria cannot be guaranteed. The closed-loop model, which

is formulated as an Equilibrium Problem with Equilibrium Constraints (EPEC), is im-

plemented using a diagonalization approach (see, e.g., Gabriel et al., 2012). In doing

so, we reduce the solution of the EPEC to the solution of a series of Mathematical Pro-

grams with Equilibrium Constraints (MPEC). Concerning the solution of the MPECs
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we implement two algorithms, grid search along the investment decisions of the individ-

ual players and a Mixed Integer Linear Program reformulation following Wogrin et al.

(2013a).

We demonstrate the tractability and practicality of our investment models in an appli-

cation to the international metallurgical (or coking) coal trade. Metallurgical coal is,

due to its special chemical properties, a key input in the process of steel-making. The

market for this rare coal variety is characterized by a spatial oligopoly with producers

mainly located in Australia, the United States and Canada competing against each other

and providing the bulk of the traded coal (Bowden, 2012, Trüby, 2013). The players

hold existing mining capacity and can invest into new capacity. Investment and mining

costs differ regionally. Key uncertainties in this market are demand evolution and price

responsiveness of demand. We therefore compute sensitivities for these parameters to

demonstrate the robustness of our results.

Our findings are generally in line with previous results found in the literature on two-

period games with players choosing capacity and output, i.e., we find that prices and

supply levels in the closed-loop game fall between those in the perfect competition and

the open-loop game (see, e.g., Murphy and Smeers, 2005). If investment costs are low

compared to variable costs of supply, the strategic effect of the two-stage optimiza-

tion in the closed-loop game diminishes. With investment costs approaching zero, the

closed-loop result converges to the open-loop result. Hence, the closed-loop model is

particularly useful for capital-intensive natural resource industries in which the product

is traded on spot markets.

The numerical results for supply levels, prices and rents in the metallurgical coal market

analysis differ markedly between the three models. Consistent with actual industry in-

vestment pipelines, our model suggests that the bulk of the future capacity investment

comes from companies operating in Australia followed by Canadian and US firms. Start-

ing in 2010, the metallurgical coal market has undergone a paradigm shift, moving away

from long-term contracts and more towards a spot market-based trade – with similar

tendencies being observed in other commodity markets such as the iron ore trade. In

light of our findings, this effect is detrimental to the companies’ profits but beneficial to

consumer rents. The effect on welfare is negligible: Gains in consumer rents and losses

in producers’ profits are of almost equal magnitude.

The contribution of this paper is threefold: First, by extending the multi-stage in-

vestment approach to the case of spatial markets, we introduce a novel feature to the

literature on Cournot capacity expansion games. Second, we outline how our modeling

approach can be implemented and solved to analyze capacity investments in natural

resource markets. We thereby extend previous research on natural resource markets,
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which has typically assumed capacities to be given. Finally, we illustrate and discuss

the model properties on the basis of a real-world application to the international met-

allurgical coal trade and draw conclusions for this market. In doing so, we also take

into account existing capacities of the players and hence incorporate a feature which

to our knowledge has been ignored in previous work on multi-stage Cournot capacity

expansion games. By comparing open- and closed-loop model results, we illustrate pos-

sible consequences of the ongoing regime switch from long-term contracts to a more

spot market-based trade in the international metallurgical coal market. Our analysis in

particular allows for the first quantification of the magnitude of the divergence between

open- and closed-loop model results in a real-world application.

The remainder of the paper is structured as follows: Section 4.2 describes the models

developed in this paper and Section 4.3 provides details about their implementation.

The data is outlined in Section 4.4, results are presented in Section 4.5. Section 4.6

discusses computational issues and Section 4.7 concludes.

4.2 The Model

We introduce three different approaches to the capacity expansion problem – two open-

loop models and a closed-loop model. In the open-loop models, all players decide simul-

taneously on their investment and production levels, whereas in the closed-loop model

all players first decide on their investment levels simultaneously and then, based on ob-

served investment levels, they simultaneously decide on their production levels. The two

open-loop models vary in their underlying market structure: one model assumes perfect

competition, the other model assumes Cournot competition with a competitive fringe.

The closed-loop model also assumes Cournot competition with a competitive fringe.

While similar open-loop models have previously been studied, the introduced closed-loop

model varies from existing closed-loop models by taking into account also the spatial

structure of the market as well as considering existing capacities of the players.

4.2.1 General Setting and Notations

Table 4.1 summarizes the most relevant nomenclature used throughout this section.

Additional symbols are explained where necessary. We assume a spatial, homogeneous

good market consisting of producers i ∈ I, production facilities m ∈ M and demand

regions j ∈ J . Each producer i owns production facilities m ∈ Mi ⊂ M . Furthermore,

we assume that Mi ∩Mj = ∅ for i 6= j, i.e., production facilities are exclusively owned
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by one producer. Producers decide on both their investment in production facilities as

well as on their supply levels.

As in equilibrium added capacities are fully utilized, no stock constraint for new capaci-

ties is modeled. Therefore we implicitly assume that mines will be exhausted after their

depreciation period (see Section 4.4).

The supply from production facility m to market j is given by xm,j . Total production of

production facility m is hence given by
∑

j xm,j . It is limited by the facilities’ capacity

cap0
m + ym, where cap0

m is the initial production capacity and ym denotes the capacity

investment. Capacity investments ym are non-negative and limited by ymaxm . The upper

bound on capacity expansion is chosen sufficiently high not to impose restrictions on

economically favorable investments but is rather used to ease the solution algorithm

(the upper limit restricts the solution space of the non-linear MPEC and enables the

equidistant separation of investments in the case of the line search, see Section 4.3).

Capacity investments in an existing production facility (i.e., cap0
m 6= 0) can be inter-

preted as capacity expansions, and investments in the case of cap0
m = 0 as newly built

production facilities.

Investment expenditures for facility m are given by Cinvm . We assume that Cinvm is a

linear function in the investment level ym, with km denoting marginal investment costs,

i.e.,

Cinvm (ym) = km · ym.

Variable costs Cvarm are specific to the production facility m. They are composed of

transportation costs τm,j per unit delivered from m to market j as well as the variable

production costs vm. We assume that vm is a linear function in the total production of

the facility. Total variable costs of facility m therefore amount to

Cvarm (xm) =
∑
j

(xm,j · τm,j) + vm(
∑
j

xm,j),

with xm = (xm,j)j denoting the production vector of facility m.

Market prices Pj in market j are given by a linear inverse demand function, i.e.,

Pj = aj − bj ·
∑
m

xm,j .
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Table 4.1: Model sets, parameters and variables

Abbreviation Description

Model sets
m ∈M Production facilities
j ∈ J Markets
i ∈ I Players
Model parameters
km Marginal investment costs [US$ per unit per year]
vm Variable production costs [US$ per unit]
τm,j Transportation costs [US$ per unit]
aj Reservation price [US$ per unit]
bj Linear slope of demand function
cap0m Initial production capacity [units per year]
ymax
m Maximum capacity expansion [units per year]

Model variables
Cvar

m Total variable production costs [US$]
Cinv

m Investment expenditures [US$]
xm,j Supply [units]
Pj Market price [US$ per unit]
ym Capacity investments [units per year]

4.2.2 Model 1: The Open-Loop Perfect Competition Model

In the open-loop perfect competition model (in the following simply termed ‘perfect

competition model’), each producer i ∈ I solves the optimization problem

max
xm,ym:m∈Mi

∑
m∈Mi

(∑
j∈J

Pj · xm,j − Cvarm (xm)
)
−
∑
m∈Mi

Cinvm (ym)

subject to

Pj = aj − bj · (Xi,j +X−i,j), ∀j

cap0
m + ym −

∑
j

xm,j ≥ 0, ∀m ∈Mi (λm)

ymaxm − ym ≥ 0, ∀m ∈Mi (θm)

xm,j ≥ 0, ∀m ∈Mi, j

ym ≥ 0, ∀m ∈Mi

while taking the supplies X−i,j of the other producers (−i) as given. Here and in the

following, we use the abbreviation XI1,j =
∑

i∈I1
∑

m∈Mi
xm,j for some I1 ⊂ I.

Hence, in the perfect competition model, each producer simultaneously makes his (“long-

term”) investment and (“short-term”) production decisions in order to maximize profits.

In doing so, each producer takes capacity restrictions into account. However, players do

not take into account their influence on price.
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Any solution to the above optimization problem has to satisfy the short-term Karush-

Kuhn-Tucker (KKT) conditions

0 ≤ ∂Cvarm (xm)

∂xm,j
− [aj − bj · (Xi,j +X−i,j)] + λm ⊥ xm,j ≥ 0, ∀i,m ∈Mi, j

0 ≤ cap0
m + ym −

∑
j

xm,j ⊥ λm ≥ 0, ∀i,m ∈Mi

as well as the long-term KKT conditions

0 ≤ km − λm + θm ⊥ ym ≥ 0, ∀i,m ∈Mi

0 ≤ ymaxm − ym ⊥ θm ≥ 0, ∀i,m ∈Mi.

In equilibrium, all KKT conditions have to hold simultaneously. Uniqueness of the

solution is guaranteed due to the quasi-concave objective function and the convexity

of the restrictions. The derived KKT conditions are thus necessary and sufficient for

obtaining the solution.

4.2.3 Model 2: The Open-Loop Cournot Model with Competitive

Fringe

In the open-loop Cournot model with competitive fringe (in the following simply termed

‘open-loop model’), each producer i ∈ I solves an optimization problem identical to

the one for the perfect competition model described above. However, each producer

may take additionally into account his influence on price which is represented by the

conjectural variation parameter ψi, where
∂Pj
∂xm,j

= ψi · bj for all m ∈ Mi. Cournot

behavior with a competitive fringe can then be represented as ψi = 1 for the Cournot

players and ψi = 0 for the competitive fringe.14

Any solution to the open-loop Cournot model with competitive fringe then satisfies the

short-term Karush-Kuhn-Tucker (KKT) conditions

0 ≤ ∂Cvarm (xm)

∂xm,j
− [aj − bj · (Xi,j +X−i,j)] + ψi · bj ·Xi,j + λm ⊥ xm,j ≥ 0,

∀i,m ∈Mi, j

0 ≤ cap0
m + ym −

∑
j

xm,j ⊥ λm ≥ 0, ∀i,m ∈Mi

14The perfect competition model also follows from this specification by setting ψi = 0 for all i.
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as well as the long-term KKT conditions

0 ≤ km − λm + θm ⊥ ym ≥ 0, ∀i,m ∈Mi

0 ≤ ymaxm − ym ⊥ θm ≥ 0, ∀i,m ∈Mi.

In equilibrium, the KKT conditions of both the Cournot players and the competitive

fringe have to hold simultaneously. As in the perfect competition case, uniqueness of the

solution is guaranteed due to the quasi-concave objective function and the convexity of

the restrictions. The derived KKT conditions are therefore again necessary and sufficient

for obtaining the solution.

4.2.4 Model 3: The Closed-Loop Model

In the closed-loop model, producers play a two-stage game: In the first stage, oligopolis-

tic producers l (l ∈ L ⊂ I) decide on their investment levels. In the second stage, they

choose, based on observed investment decisions of the other oligopolistic producers, their

production and supply levels. In addition, in the second stage, a further player, the com-

petitive fringe (F ), makes his supply decisions. The competitive fringe is not allowed

to invest in either stage.15 As opposed to the oligopolistic producers, the competitive

fringe is a price taker.

4.2.4.1 The Second Stage Problem

For a given investment vector (yl, y−l) of the oligopolistic producers, let the second stage

problem of producer i be given by

max
xm,j :m∈Mi

∑
m∈Mi

(∑
j∈J

Pj · xm,j − Cvarm (xm)
)

subject to

Pj = aj − bj · (Xi,j +X−i,j), ∀j

cap0
m + ym −

∑
j

xm,j ≥ 0, ∀m ∈Mi (λm)

xm,j ≥ 0, ∀m ∈Mi, j.

15In our application to the metallurgical coal market, this restriction also holds true for the player in
the perfect competition model corresponding to the competitive fringe in the closed-loop model as well as
for the competitive fringe in the Cournot open-loop model. For better readability, the model descriptions
in the preceding two subsections are slightly more general, i.e., allowing potentially all players to invest.
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As in the open-loop model, producer i decides on his supplies while taking the supplies

of the other producers (−i) as given. A producer’s influence on price is again assumed

to be represented by a conjectural variation parameter ψi, which is equal to one for the

oligopolistic producers and zero for the competitive fringe. Note that the competitive

fringe may not invest and therefore ym = 0 for the fringe. The corresponding KKT

conditions to this problem are then given by

0 ≤ ∂Cvarm (xm)

∂xm,j
− [aj − bj · (Xi,j +X−i,j)] + ψi · bj ·Xi,j + λm ⊥ xm,j ≥ 0,

∀m ∈Mi, j

0 ≤ cap0
m + ym −

∑
j

xm,j ⊥ λm ≥ 0, ∀m ∈Mi.

In the second stage equilibrium, the KKT conditions of all producers have to hold

simultaneously. In the following, let x̃m,j(yl, y−l) denote the second stage production

equilibrium for a given investment vector (yl, y−l).

4.2.4.2 The First Stage Problem

The first stage problem for oligopolistic producer l ∈ L is given by

max
ym:m∈Ml

∑
m∈Ml

(∑
j∈J

P̃j · x̃m,j(yl, y−l)− Cvarm (x̃m(yl, y−l)
)
−
∑
m∈Ml

Cinvm (ym)

subject to

P̃j = aj − bj · (X̃l,j(yl, y−l) + X̃−l,j(yl, y−l) + X̃F,j(yl, y−l)), ∀j

ymaxm − ym ≥ 0, ∀m ∈Ml

ym ≥ 0, ∀m ∈Ml,

i.e., producer l chooses his investment levels in order to maximize profits for a given

investment strategy of the other oligopolistic producers (y−l) under consideration of the

resulting second stage equilibrium outcome.

Combining the second stage and the first stage problem, we obtain the following MPEC

for producer l, hereafter referred to as MPECl:

max
Ωl

∑
m∈Ml

(∑
j∈J

(aj − bj · (Xl,j +X−l,j +XF,j)) · xm,j − Cvarm (xm)
)
−
∑
m∈Ml

Cinvm (ym)



Chapter 4. Modeling strategic investment decisions in spatial markets 59

subject to

ymaxm − ym ≥ 0, ∀m ∈Ml

ym ≥ 0, ∀m ∈Ml

0 ≤ ∂Cvarm (xm)

∂xm,j
− [aj − bj · (Xi,j +X−i,j)] + ψi · bj ·Xi,j + λm ⊥ xm,j ≥ 0,

∀i,m ∈Mi, j

0 ≤ cap0
m + ym −

∑
j

xm,j ⊥ λm ≥ 0, ∀i,m ∈Mi

given the investment vector (y−l) of the other oligopolistic producers. Here, Ωl is given

by

Ωl = {(ym)m∈Ml
; (xm,j , λm)m∈M,j∈J}.16

An investment strategy (ỹl, ỹ−l) is a closed-loop equilibrium if for all l ∈ L, ỹl solves l’s

MPEC problem MPECl given ỹ−l. The problem of finding a closed-loop equilibrium is

hence of EPEC type (Gabriel et al., 2012), and therefore existence and uniqueness of

equilibria typically is non-trivial and parameter dependent.

4.2.5 Discussion of the Models and Equilibrium Concepts

Closed-loop strategies allow players to condition their actions on actions taken in pre-

vious time periods; in open-loop strategies, this is not possible. Thus, equilibria in the

closed-loop model are by definition subgame perfect, whereas open-loop equilibria are

typically merely dynamically (time) consistent. The latter is a weaker equilibrium con-

cept than subgame perfection. It requires only that no player has an incentive at any

time to deviate from the strategy he announced at the beginning of the game, “given

that no player has deviated in the past and no agent expects a future deviation” (Karp

and Newbery, 1992). Therefore, with subgame perfect equilibria requiring actions to be

optimal in every subgame of the game, i.e., requiring that no player has an incentive to

deviate from his strategy regardless of any deviation in the past, an equilibrium of the

open-loop model may fail to be an equilibrium in the closed-loop game.17

Fudenberg and Tirole (1991) and the literature cited therein generally address the issue of

diverging results of open-loop models in comparison to closed-loop models and provide

intuition for the divergence: In the closed-loop model, in contrast to the open-loop

model, a player’s influence via its own actions in the first stage on the other players’

16Note that the first stage decision variable is separated from the second stage decision variables by a
semicolon. The latter are indirectly determined by the choice of the first stage decision variable.

17See Selten (1965) for the first formalization of the concept of subgame perfect equilibria and, e.g.,
Karp and Newbery (1989) for a general account on dynamic consistency.
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actions in the second stage is taken into account. Applying this intuition to the special

case of the capacity expansion problem, Murphy and Smeers (2005) show that in the

closed-loop equilibrium, marginal investment costs may be higher than the sum of the

short-term marginal value implied by the KKT conditions. In particular, they note that

“the difference between the two characterizes the value for the player of being able to

manipulate the short-term market by its first stage investments.” This may lead to higher

investments and supplies and hence lower prices in the closed-loop model compared to

the open-loop model.

The existing literature on the subject, in particular the above mentioned Murphy and

Smeers (2005) as well as Wogrin et al. (2013b), provides general properties of closed-loop

and open-loop models and conditions for diverging and non-diverging results between

the two models, assuming simplified settings (e.g., ignoring existing capacities). We

conjecture that in a spatial application with non-generic data and existing capacities

available to the players, equilibria are likely to deviate between the two modeling ap-

proaches, which is confirmed by our application to the metallurgical coal market (see

Sections 4.4 and 4.5). Analytical analysis is no longer available in this setting due to

increased complexity and thus makes a numerical analysis necessary. The numerical

approach is also suitable to address an issue which to our knowledge has not yet been

comprehensively touched upon in previous literature: a quantification of the magnitude

of the divergence between closed-loop and open-loop model results.

4.3 Implementation

4.3.1 Model 1: The Open-Loop Model

Both open-loop models introduced in Section 4.2, i.e., the open-loop perfect competi-

tion model and the open-loop Cournot competition model with competitive fringe, are

implemented as mixed complementarity problems (MCP).

4.3.2 Model 2: The Closed-Loop Model

We solve the closed-loop model using diagonalization (see for instance Gabriel et al.,

2012):

1. Set starting values for the investment decisions y0
l of all oligopolistic producers

l ∈ L, a convergence criterion ε, a maximum number of iterations N and a learning

rate R
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2. n = 1

3. Set ynl = yn−1
l

4. Do for all l ∈ L

(a) Fix the investment decisions yn−l of −l

(b) Solve player l’s MPEC problem MPECl to obtain an optimal investment level

yl

(c) Set ynl equal to R · yl + (1−R) · ynl

5. If |ynl − y
n−1
l | < ε for all producers l ∈ L: quit

6. If n = N : quit

7. n = n+ 1 and go back to step 3

Diagonalization thus reduces the closed-loop problem to a series of MPEC problems.

Concerning the solution of the MPECs, we implement two procedures: grid search along

the investment decision yl and a reformulation of the MPEC as a Mixed Integer Linear

Program (MILP).

Both approaches differ with respect to the simplification of the decision variables: With

grid search we discretize the investment decision which is reasonable for many investment

choices in real life. Thus, solving the MPEC problem reduces to solving a series of MCP

problems with the choice of production volumes remaining continuous. On the contrary,

in the MILP approach we discretize the production decisions but retain a continuous

choice of investments in new capacity. The discretization may result in missing the global

optimal solution.18 As both approaches result in very similar outcomes (see Section 4.6)

we are confident that our obtained results are valid.

Implementing both the grid search and MILP reformulation allows for the comparison

of the computer run-times of the two models, with grid search typically being faster for

reasonable grid sizes (see Section 4.6 for details on this issue).

4.3.2.1 Grid Search

When applying grid search along the investment decision yl, MPECl simplifies to a

sequence of complementarity problems. In our implementation, the grid width in the

grid search is the same for all producers; the number of steps for a producer is thus

dependent on his capacity expansion limit.

18A third way of approaching the non-linearities in the model might be using the strong duality
theorem to linearize the original MPEC as described in Ruiz and Conejo (2009).
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4.3.2.2 MILP Reformulation

In addition to grid search, we implement a MILP reformulation of the MPEC. Non-

linearities arise in the MPEC due to the complementarity constraints and the non-

linear term in the objective function. The former are replaced by their corresponding

disjunctive constraints (see Fortuny-Amat and McCarl, 1981), e.g., we replace

0 ≤ cap0
m + ym −

∑
j

xm,j ⊥ λm ≥ 0

by

Mλbλm ≥ λm

Mλ(1− bλm) ≥ cap0
m + ym −

∑
j

xm,j

for some suitably large constant Mλ and binary variables bλm.

For the discretization of the non-linear term in the objective function, we proceed fol-

lowing Pereira et al. (2005) using a binary expansion of the supply variable. The binary

expansion of xm,j is given by

xm,j = x+ ∆x

∑
k

2kbxk,m,j ,

where x is the lower bound, ∆x the stepsize, k the number of discretization intervals

and bxk,m,j binary variables. Substituting Pj · x + ∆x
∑

k 2kzxk,m,j for Pj · xm,j , we have

to impose the additional constraints

0 ≤ zxk,m,j ≤Mxbxk,m,j

0 ≤ Pj − zxk,m,j ≤Mx(1− bxk,m,j)

for some suitably large constant Mx.

4.4 Data Set

The models are parametrized with data for the international metallurgical coal market

(see Table 4.1 and Appendix C.1). Yet, as the structure of the international metallurgical

coal trade is (from a modeling perspective) similar to that of other commodities, the

model could easily be calibrated with data for other markets.



Chapter 4. Modeling strategic investment decisions in spatial markets 63

Metallurgical coal is used in steel-making to produce the coke needed for steel production

in blast furnaces and as a source of energy in the process of steel-making. Metallurgical

coal is distinct from thermal coal, which is typically used to generate electricity or heat.

Currently around 70% of the global steel production crucially relies on metallurgical

coal as an input.19

International trade of metallurgical coal amounted to 250 million tonnes (Mt) in 2012.20

International trade is predominantly seaborne, using dry bulk vessels. Up until 2010,

metallurgical coal was almost exclusively traded through long-term contracts. Since

then, the market has begun to move away from this system towards more spot market-

based trading. While the share of spot market activity has increased rapidly, a substan-

tial amount of metallurgical coal is still traded through long-term contracts.

Key players in this market are large mining companies such as BHP-Billiton, Anglo-

American, Glencore and Rio Tinto. These companies produce mainly in Australia and,

together with Peabody Energy’s Australian operations, control more than 50% of the

global export capacity. In addition, adding to this the market share of the Canadian

Teck consortium and the two key metallurgical coal exporters from the United States,

Walter Energy and Xcoal, results in almost three quarters of the global export capacity,

marketed by an oligopoly of eight companies. For the sake of simplicity and computa-

tional tractability, we aggregate these players’ existing mines into one mining operation

per player. Smaller exporters from Australia, the United States, Russia, New Zealand,

Indonesia and South Africa are aggregated into three players: one Cournot player from

Australia (AUS6), one Cournot player from the United States (USA1) and one com-

petitive fringe player that comprises all other regions (Fringe). This results in eleven

asymmetric players who differ with respect to their existing production capacity and the

associated production and transport costs (see Table 4.2).21

We assume that the three players representing the smaller exporters, i.e., USA1, AUS6

and Fringe, cannot invest in additional capacity. Hence, only the largest eight companies

can endogenously expand their supply capacity. The investment decision, made in period

one, is based on the players’ capacities and costs in 2011. We consider one investment

cycle with capacities becoming available after six years (i.e., in 2017) serving one demand

period. Investment costs per tonne of annual production capacity (tpa) are broken down

into equal annual payments based on an annuity calculation using an interest rate of

10% and a depreciation time of 10 years. The profitability of investments is evaluated

based on the comparison of annuity and profits in the considered production period.

We therefore assume that returns are constant over the years of production. Note that

19See WCA (2011).
20See IEA (2013a).
21Data on capacities and costs are taken from Trüby (2013).
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Table 4.2: Existing Capacity, Variable and Investment Costs

Players Existing
Capacity
[Mtpa]

Variable
Costs
[US$/t]

Investment
Costs
[US$/tpa]

Max.
Investment
[Mtpa]

USA1 38 122.0 - -
USA2 9 122.1 98.2 50
USA3 11 141.0 98.0 50
AUS1 54 118.3 218.1 50
AUS2 11 118.4 218.0 50
AUS3 17 118.5 217.9 50
AUS4 10 118.6 217.8 50
AUS5 12 118.0 218.2 50
AUS6 18 118.1 - -
CAN 26 105.0 161.0 20
Fringe 26 78.0 - -

production cost of new mines correspond to the production cost of the respective player’s

existing mine.

The two largest importers of metallurgical coal are Europe and Japan, followed by India,

China and Korea. These key importers account for more than 80% of the trade. We

aggregate these and the remaining smaller countries into two demand regions: Europe-

Atlantic and Asia-Pacific.22 The former also includes the Mediterranean’s neighboring

countries and importers from the Atlantic shores of the Americas. The latter includes

importers with coastlines on the Pacific or the Indian Ocean. Exporters from the United

States have a transport cost advantage in the Europe-Atlantic region, while Canadian

and Australian exporters are located closer to the consumers in the Asia-Pacific region

(see Table C.1 in Appendix C.1). We assume the inverse import demand function for

metallurgical coal to be linear. The function can be specified using a reference price and

a corresponding reference quantity in combination with a point-elasticity eta.
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Figure 4.1: Demand functions for Europe-Atlantic (left) and Asia-Pacific regions (right)
with varying elasticity

22Our approach covers 100% of the global seaborne metallurgical coal imports and exports (based on
data from 2011).
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4.5 Results

In practice, investors in production capacity face demand evolution as a key uncertainty.

Accounting for this uncertainty, we run sensitivities in which we vary the point-elasticity

parameter eta across the range -0.2 to -0.5 (see Figure 4.1).23 This bandwidth is gen-

erally considered reasonable in the metallurgical coal market (see Trüby, 2013, and the

literature cited therein). Furthermore, we vary the reference demand quantity (see Ta-

ble C.2 in Appendix C.1) from 60% to 140% to account for different demand evolution

trajectories. The presentation of the results is structured around the variation of these

demand parameters followed by a general discussion of the findings.

4.5.1 Variation of Demand Elasticity

Decreasing the point elasticity parameter eta results in a flatter gradient of the linear

demand function (see Figure 4.1). A decreasing eta (i.e., a more negative eta) expresses

an increasing price responsiveness of consumers which, ceteris paribus, limits the extent

to which the oligopolists can exploit their market power. Consequently, with decreasing

eta, average prices achieved in the imperfect competition cases (open-loop and closed-

loop) are decreasing while total production is increasing (Figure 4.2). Note that in the

perfect competition case, the aggregate supply and the aggregate demand curves inter-

sect below the reference point resulting in an increase in production with decreasing eta

and, correspondingly, with increasing marginal costs, an increase in production results

in an increase in price. In the two Cournot models with imperfect competition the

oligopolistic mark-up on marginal costs leads to market prices exceeding the reference

price.
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Figure 4.2: Total production (left) and average market price (right) for varying demand
elasticity

23For eta smaller than -0.4, closed-loop model runs did not converge. Therefore, the results presented
in this section only comprise the range -0.2 to -0.4. For a discussion on computational issues, see Section
4.6.
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A variation of eta impacts the investment trends differently in the three cases (Figure

4.3). However, the capacity expansion investments need to be interpreted in concert

with the corresponding utilization of the existing capacity. Intuitively, one would expect

investment into additional capacity to be highest in the perfect competition case. Yet,

in our setup, the investment level in the perfectly competitive case falls between the

two cases with imperfect competition. This effect stems from the significant amount of

existing capacities which – with the exception of some very high-cost capacities – are

utilized before additional production capacity is built. Murphy and Smeers (2005) show

that in their model which does not account for existing capacities, investment levels are

indeed highest under perfect competition.
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Figure 4.3: Capacity investments (left) and idle capacity (right) for varying demand
elasticity
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Figure 4.4: Capacity investments for the closed-loop (left) and open-loop model (right)
(eta = −0.3)

Of particular interest is the ranking of the closed-loop and open-loop case in terms of

capacity expansion and capacity withholding. Note that withholding (or idle capacity),

here and in the following, concerns only exiting capacities. Each player exhausts existing

capacities before investing in additional capacities. Newly built capacities are always

fully utilized in equilibrium as otherwise players could increase their profit by reducing

investments. Investments in the open-loop case are strictly lower than in the closed-loop

case independent of the elasticity while less capacity is withheld in the open-loop case.

However, the investment behavior of individual players may differ from the aggregate

industry behavior; as can be seen in Figure 4.4 two players from the United States invest
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more in the open-loop model than in the closed-loop model contrary to what the rest of

the industry does.

To get an intuition for the investment behavior in the open-loop case, suppose that there

are two players, an incumbent with infinite existing capacity and an entrant without

any capacity.24 Both players face the same production cost while investment costs

are non-zero. Under these assumptions, the incumbent has no incentive to invest in

additional capacity as his capacity endowment is sufficient to produce the Nash-Cournot-

output. Contrarily, the entrant builds as much capacity as is required to produce the

amount needed in equilibrium (marginal revenue equals the sum of marginal production

and investment cost). Similarly, in our application to the metallurgical coal market

with heterogeneous cost structures, investment primarily comes from the players with

relatively small existing capacity, while larger players withhold capacity in period two

when the market clears.

The investment level is higher in the closed-loop case compared to the open-loop case

as the capacity expansion in the first period can be used strategically to influence the

supply decisions of the other players in the second period. Despite the bi-level structure

of this game, no player has a first mover advantage as investment decisions are taken

simultaneously by all players. The production decision is based on realized investments

and investment costs are considered as being sunk. This way, the choice of capacity

investments can only influence other players’ production decisions.

To get an intuition for the investment behavior in the closed-loop case, again suppose

for a moment that there are two players, an incumbent with infinite existing capacity

and an entrant without any capacity. Both players face the same production cost while

investment costs are non-zero (if investment costs were zero the result would converge

to the open-loop case). As there is no long-term contract, the entrant’s investment cost

is sunk in period two and his production decision is solely based on the production

costs. Therefore, the entrant’s desired production, given sufficient capacity, is higher

compared to a situation where investment costs feature in the first-order-condition (as

in the open-loop case). At the same time, the incumbent’s reaction would be to reduce

his production. Anticipating this, the entrant has an incentive to build a higher capacity

level than in the open-loop case. This way, the entrant can influence the incumbent’s

output decision in period two by his choice of capacity in period one. An analytical

solution of this game becomes non-trivial when more than one player makes subsequent

investment and supply decisions as these decisions mutually influence each other. Yet,

this little example is useful to provide a better understanding of why the closed-loop

24This and the following intuition for the deviations in the closed-loop case are presented in an ana-
lytical example in more detail in Appendix C.2.
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case features higher investment levels but also higher withholding of existing capacities

than the open-loop case.

In both models of imperfect competition, capacity is exclusively withheld by the two

largest players in the market, one producing in Australia and the other one in the United

States. Capacity expansion and withholding are following opposing trends in our models

of imperfect competition, i.e., the open-loop model exhibits a lower level of investment

but also a lower level of unused capacity while the higher investment levels in the closed-

loop model come with a higher level of idle capacity. Thus, it is a-priori unclear how the

two models would rank in terms of total supply and market prices. A numerical solution

of our models yields that supply is higher in the closed-loop case than in the open-loop

case. Consequently, market prices are lower in the closed-loop case. This result is in

line with the findings of Murphy and Smeers (2005).

Industry profits, consumer rent and social welfare are depicted in Figure 4.5. Indus-

try profits decrease with decreasing eta and so does consumer rent (a higher price-

responsiveness of consumers limits market power exploitation but also potential con-

sumer rent). The existence of profits in the perfect competition model is due to capacity

restrictions of existing mines and limited expansion potential for new mines. Social wel-

fare is similar in all three models: in a perfectly competitive market welfare is slightly

higher than in the Cournot models. Welfare is lowest in the open-loop case (Figure 4.6).

Thus, the different underlying assumptions concerning the prevailing market structure

in the international metallurgical coal trade (long-term contracts versus spot market)

primarily influences the surplus distribution rather than its sum: in the open-loop case

in which the product is traded through long-term contracts, companies can earn higher

profits, while consumer surplus is higher in markets with spot market-based trade.
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Figure 4.5: Accumulated profits (left) and consumer rent (right) with varying demand
elasticity
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Figure 4.6: Overall welfare (left) and welfare differences (right)

4.5.2 Variation of Reference Demand

For the variation of reference demand, the point elasticity eta has been fixed to a value

of -0.3; thus the case of 100% reference demand corresponds to the depicted results of

the previous subsection with the same demand elasticity. Variations of the reference

demand results in a shift of the demand curve to the right for values larger than 100%

and a shift to the left for values lower than 100%.

As in the previous subsection, supply is highest under perfect competition and lowest

in the open-loop case for any demand variation (Figure 4.7). Accordingly, prices are

highest in the open-loop case followed by the closed-loop and the perfect competition

cases. As one would expect, supply and average prices increase with increasing demand.
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Figure 4.7: Total production (left) and average market price (right) for varying reference
demand

For low reference demand levels, the existing capacities of small players are almost

sufficiently high to produce the quantities needed for their best-supply response in period

two. Therefore, the results in the open-loop and closed-loop cases almost coincide at 60%

reference demand as investment activity is low. Investments in additional production

capacity are increasing monotonously with growing reference demand (Figure 4.8). As

with the variation of the demand elasticity, investments are consistently lower in the

open-loop case than in the closed-loop case. For low demand levels, investments in the

competitive model are below those in the models with imperfect competition as existing

capacities are sufficient to serve demand rendering investments unprofitable. In the
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Cournot models, investment into additional production capacity is still profitable for

small players as they can count on players with large existing capacities to withhold

some output.
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Figure 4.8: Capacity investments (left) and idle capacity (right) for varying reference
demand

For high demand levels, investments under perfectly competitive conduct exceed those

even in the closed-loop model. The order of idle capacity is similar to the case of varying

demand elasticity: idle capacity is highest in the closed-loop model followed by the open-

loop case (both due to strategic considerations) and the perfect competition model (due

to market prices below the marginal costs of costlier capacities).

With increasing demand, profits as well as consumer rents increase (Figure 4.9). Again,

results for the open-loop and closed-loop cases almost coincide if reference demand is

very low as investments play a minor role. In the case of high reference demand, profits

in the open-loop model exceed those in the closed-loop model. Results for consumer

rents are vice versa. Total welfare turns out to be quite similar for all three models

with the highest welfare occurring in the perfectly competitive model followed by the

closed-loop and open-loop models (Figure 4.10).
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4.5.3 Summary

Asymmetric existing capacities are an important driver of our results. While welfare is

highest in the perfect competition case, investment levels in this case fall between the

two Cournot models as existing capacities are sufficient to absorb additional demand.

Profits are highest in the open-loop case followed by the closed-loop and perfect com-

petition models. Moving away from long-term contracts towards a spot market-based

trade reduces profits of all players, however, companies with large existing capacities

are affected to a larger degree: the two large firms (one from Australia and one from

the United States) who are responsible for the withholding of capacity in the Cournot

models together receive 23% of the industry profits in the open-loop case but see their

share of profits diminished to 17% in the closed-loop case.

In our modeling setup the competitive fringe has no strategic relevance. Fringe players

neither invest nor withhold, i.e., they always produce to capacity. In essence, the fringe

determines the residual demand that the oligopolists optimize against but it does not

introduce any sort of first-mover vs. follower relationship.

The magnitude of result deviations between the different models, and thus the implica-

tions for market participants are quite significant. The models of imperfect competition

differ, for instance, in capacity expansions between 19% and up to 33% (low and high

demand elasticity, respectively).

Even though social welfare differs only slightly between the open-loop and closed-loop

models in our calculations for the metallurgical coal market, the difference may be higher

for other markets with different model parameters. In addition, the surplus distribution

between consumer rent and profits differs significantly and has policy implications since

– in natural resource markets – production and consumption take place in different

countries.
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4.6 Computational Issues

Equilibria in a closed-loop model, if any exist, do not necessarily have to be unique.

Therefore, we perform a robustness check for our closed-loop results by using different

starting values for capacity investments. Starting values are randomly drawn from a

reasonable range of possible investments, with the maximum investment of each player

as given in Table 4.2. Limiting the range of possible investments drastically reduces

computer run-times and increases the probability of finding equilibria. In addition,

calculations are made with starting values set to zero and to the open-loop results. The

algorithm terminates if overall adjustments of investments δ are less than ε = 0.1 Mtpa

compared to the previous iteration. We use a learning rate parameter R for the adoption

rate of new investments in order to avoid cycling behavior. The learning rate parameter

is randomly set between 0.6 and 1.0 (see Gabriel et al., 2012). Calculations have been

done on a 16 core server with 96 GB RAM and 2,67 GHz using CPLEX 12.2.

Table 4.3 shows calculation statistics when using the MILP version of our model (see

Subsection 4.3.2.2). We perform six runs per parameter setting using random starting

values. Most runs converged to an equilibrium before the maximum number of itera-

tions was reached. With increasing demand elasticity, the algorithm had difficulties to

converge. In the case of eta = −0.4, only every third run converged to an equilibrium;

for eta < −0.4, no equilibrium could be found at all. Using either zero investments

or open-loop results as starting values, a closed-loop equilibrium was found, except for

eta < −0.4.
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Figure 4.11 illustrates the iterative solution process for a single model run for eta = −0.5

using random starting values. The model run did not converge to an equilibrium.25 After

initial adjustments of investments in the first iterations, investments start to cycle in

a rather small range. Total investments from iteration 5 to 10 vary between 89 Mtpa

and 97 Mtpa. This range is typical for all runs regardless of the starting values. The

maximum range for a single player’s investment deviations is 3 Mtpa. Thus, even if

no equilibrium is reached, analyzing the solution process may hint to possible market

developments.
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Figure 4.11: Course of investments of single players during solution process (eta = −0.5)

Using zero investments or open-loop equilibrium results as starting values led to a sig-

nificant reduction of computer run-times compared to random starting values. This is

probably due to the rather large range of random starting values and the (comparably)

rather small equilibrium investments. Thus, starting from zero investments in most

cases is closer to the equilibrium values than starting with random values. In summary,

using reasonable starting values can support the solution process significantly.

If the algorithm converged, model results were identical for all runs with the same

parameters concerning demand level and demand elasticity. Thus, even if the existence

of multiple equilibria cannot be excluded, equilibria appear to be stable.

Calculations using the MILP version of our model usually took several hours to converge

to an equilibrium. Applying the grid search approach (see Subsection 4.3.2.1) reduced

computer run-times significantly. The conceptional difference between both approaches

lies in the simplification of the decision variables: With grid search we discretize the

investment decision. On the contrary, in the MILP approach we discretize the production

decisions but retain a continuous choice of investments in new capacity.

The same calculations as in the MILP version have been done using grid search with

investment steps of 0.1 Mtpa and the same convergence criterion as in the MILP version

(ε = 0.1 Mtpa). The model was implemented in GAMS using GUSS (see Bussieck et al.,

2012).

25In our iterative approach, convergence depends on the choice of (an arbitrarily small) ε.
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Applying grid search, the solution process took only several minutes to converge. Thus,

reducing the optimization process from a series of computationally challenging MPECs

to comparably easy-to-solve complementarity problems reduced overall computer run-

time significantly. As for the MILP version, all model runs converged to the same

equilibrium (for eta ≥ −0.4) or did not converge at all (for eta < −0.4). Aggregated

absolute deviations of investments between the MILP and the grid search version of

our model vary between 0.3% and 3.7%. Thus, in our parameter setting, only minor

differences in the results occurred.

4.7 Conclusions

We presented three investment models for oligopolistic spatial markets. Our approach

accounts for different degrees of competition and as to whether the product is sold

through long-term contracts or on spot markets. The models are particularly suited for

the analysis of investments in markets for natural resources and minerals. We applied

the models to the international metallurgical coal trade, which features characteristics

similar to those of other commodity markets.

Results may differ substantially between the different models. The closed-loop model,

which is computationally challenging, is particularly well suited for when the product is

traded on a spot market and the investment expenditure is large compared to produc-

tion costs. The open-loop model is appropriate for markets with perfect competition

or imperfectly competitive markets on which the product is traded through long-term

contracts. Moreover, the open-loop model approximates the closed-loop outcome when

investment costs are minor.

Over the last several years, progress has been made in the metallurgical coal and iron

ore markets to move away from long-term contracts and introduce spot markets in

commodity trade. Similarly, efforts are being made to introduce spot market-based

pricing between European natural gas importers and the Russian gas exporting giant

Gazprom. Our results suggest that moving away from long-term contracts in oligopolistic

markets is likely to stimulate additional investment and consequently reduce profits and

increase consumer rents. The overall effect on welfare is negligible. However, in natural

resource markets, export revenues and consumer rents from imports are typically accrued

in different legislations. Hence, policy makers from exporting and importing countries

are likely to have differing views on how commodity trade should be organized.

Further research is needed to improve methods for solving complex two-stage problems.

In addition, further research could apply the models presented here to other oligopolistic
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mining industries such as the copper or iron ore trade. Given that static pricing models

tend to give unsatisfactory results for the oil market, in which variable costs are low

but capital expenditure is very high, the closed-loop approach may provide interesting

insights into oligopolistic pricing when accounting for investments in capacity.





Chapter 5

The future of nuclear power in

France: an analysis of the costs of

phasing-out

Nuclear power is an important pillar in electricity generation in France. However,

France’s nuclear power plant fleet is ageing, and the possibility of reducing its share

in power generation or even a complete phase-out has been increasingly discussed. Our

research therefore focuses on three questions: First, what are the costs of phasing-out

nuclear power in France under different scenarios? Second, who has to bear these costs,

i.e., how much of the costs will be passed on to the rest of the European power system?

And third, what effect does the uncertainty regarding future nuclear policy in France

have on system costs? Applying a stochastic optimization model for the European elec-

tricity system, we show that additional system costs in France of a nuclear phase-out

amount up to 76 billion e 2010. Additional costs are mostly borne by the French power

system. Surprisingly, we find that the costs of uncertainty are rather limited. Based

on our results, we conclude that a commitment regarding nuclear policy reform is only

mildly beneficial in terms of system costs.

5.1 Introduction

Nuclear power is an important technology in the global electricity system, comprising

a share of 13% of global power generation (IEA, 2012). Its contribution to electricity

generation is currently substantially higher in OECD countries (21% versus 4% in non-

OECD countries; IEA, 2012) where nuclear power has been widely deployed since the
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1960s in an effort to reduce the import dependency on fossil fuels, diversify the power

mix and reduce power system costs.

A key feature of nuclear power is that its electricity generation is virtually carbon-free.

Therefore, nuclear power is thought to play a key role in mitigating climate change

(IEA, 2012, 2013b). Despite its potential to contribute to the de-carbonization of the

power sector, nuclear power is a politically sensitive topic in many countries due to the

inherent risk of nuclear accidents and subsequent environmental catastrophes.

The public resentment towards nuclear power has been strongly aggravated in the af-

termath of the Fukushima-Daiichi accident, especially in Japan and Europe. Politicians

in Japan and Germany reacted rapidly and introduced moratoria on the operation of

nuclear power plants in their countries. While discussions about a complete phase-out

of nuclear power are still ongoing in Japan, the governments of Germany and Switzer-

land have already decided to fully abolish the use of nuclear energy by 2022 and 2035,

respectively. Nuclear policy was a major topic in the French presidential elections in

spring 2012, and several other countries such as Italy, Belgium and the United Kingdom

have participated in lively public debates on the future of nuclear power.

With only four nuclear power plants currently under construction and more than 10 GW

of existing nuclear plants set to retire in the coming decade (IEA, 2012), nuclear power

is losing its share in the European power sector. Maintaining the current level of nuclear

power generation, let alone increasing its share in order to reduce the carbon intensity of

the power sector, would require several firm investment decisions for new plants by the

end of the decade given the long construction time for such plants. Nuclear investments

are comparably capital intensive due to the large size of the power station, with the

specific investment cost ranging between 3000 to 5000e /kW – roughly three times more

than a typical coal-fired plant and about four times more than a combined-cycle gas

turbine (CCGT). Building a nuclear power plant is a long-term investment with the

expected lifetime of a station ranging between 50 and 60 years. The capital-intensity of

nuclear investments typically requires either a larger cash-flow per output (price spread)

or a longer amortization period than an investment in a coal or gas-fired plant. While

the former is basically a market risk that all investors in liberalized power markets face,

the latter is closely related to political uncertainty. In order to earn money, nuclear

power plant operators need to run their plant – and generate cash-flows – for decades.

What if nuclear policy mandates a sudden phase-out?

We focus on France in the following as France faces several additional challenges and

particularities related to nuclear power. First, nuclear power contributes to roughly 75%

of the electricity generation in France, the highest share of nuclear power in electricity

generation in the world. Second, most (37 out of 58) French nuclear power plants were
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built in the time period between 1975 and 1985. Thus, these plants will reach the end

of their lifetime between 2025 and 2035 and will need to be either replaced by new

plants or retro-fitted via investments in order to prolong their lifetime. Finally, France

faces the political challenge of keeping CO2 emissions from power generation low while

public resentment towards nuclear power grows and renewable energies are still too

costly and variable to replace base-load technologies on a large scale. Public resentment

and recent political debates, such as the one in the presidential elections of 2012, have

introduced political uncertainty toward future nuclear policy in France, which could

impede investments in nuclear technology and raise system costs.

In our analysis, we focus on three main research questions: First, what are the costs of

a nuclear phase-out in France? To this end, we look at two possible phase-out paths

(an immediate phase-out and an extended phase-out over 15 years) as well as examine

the effect of lifetime prolongations of existing nuclear power plants. Second, who picks

up the bill of a nuclear phase-out in France, i.e., will some of the costs be passed down

from the French to the rest of the European power system? And third, what is the

effect of political uncertainty regarding future French nuclear policy on nuclear power

investments and system costs?

In order to address these questions, we apply a stochastic linear programing model of the

European power system. The model allows for the calculation of the least-cost dispatch

of power plants and investment in new generation technologies across Europe, accounting

for power exchange between the individual regions. Additionally, our approach allows us

to model uncertainty regarding future nuclear policy in France, i.e., investment decisions

are made without knowing if and when a future government mandates a nuclear phase-

out.

We investigate different scenarios of nuclear policy in France. To answer the first two

research questions, we compute deterministic benchmark scenarios in which we iden-

tify the cost and necessary modifications of the system under perfect foresight, i.e., all

investors know what will happen in the future and when. These scenarios are comple-

mented by three stochastic cases that vary in the probability (high, low and medium)

of a phase-out decision in the time up to 2050. In these scenarios, the investors in nu-

clear power have information about the probability of a nuclear phase-out at any given

time. The uncertainty about future nuclear policy leads to different investment decisions

and system costs compared to the deterministic cases, allowing us to answer our third

research question.

The findings of our analysis are manifold: We find that complying with a phase-out of

nuclear power leads to higher system costs in France. The additional costs of a nuclear
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phase-out depend strongly on how the phase-out policy is designed, totaling a maxi-

mum of 76 billion e 2010
26 (which is roughly 2.5% of GDP in France in 2012).27 Costs

are generally highest if the phase-out is immediate, i.e., nuclear plants are required to

shut down immediately after the decision is made, not allowing for a transitory period.

Regarding our second research question, we find that the costs of a nuclear phase-out

are mainly borne by the French power generators. A phase-out reduces infra-marginal

rents in the French system as base-load plants with low marginal costs that have fully

recovered their investment expenditure are replaced by plants with higher marginal costs

(or imports), while the price-setting plants are hardly affected. Neighboring countries

are also affected by a French phase-out. A French phase-out leads to higher conven-

tional power production and stronger investments in conventional power plants in the

rest of Europe. Concerning the third research question, we find that costs of uncertainty

are rather small in the scenarios, reaching a maximum of 6 billion e 2010. The costs of

uncertainty are mitigated by allowing for lifetime-prolonging investments. Moreover,

costs of uncertainty may be mitigated if phase-out policies allow for a transitory period.

Political uncertainty typically reduces investments in nuclear power; yet find that ad-

ditional lifetime-prolonging investments are a rational choice under uncertainty. Such

investments are not as capital-intensive and are therefore to a lesser degree exposed to

the risk of a phase-out harming the economic viability of the investment.

Our analysis bears relevant implications for policy makers who are often confronted with

demands for long-term commitments. In addition to in most cases being unrealistic and

probably even undesirable from an information-theoretic point of view as it would require

the neglecting of future information, our analysis shows that at least in our application

a lack of commitment does not come at a high cost.28

The paper is structured as follows: Section 5.2 provides an overview of the related

literature. Section 5.3 describes the applied approach; Section 5.4 explains the most

important technical and political assumptions. Scenario results for France and the rest

of Europe are discussed in Section 5.5. Section 5.6 concludes.

5.2 Literature Overview

Several recent scientific publications have analysed nuclear policy and nuclear phase-

out scenarios for different countries. For instance, Kannan and Turton (2012) analyze

26e 2010 denotes real Euros based on 2010 values.
27An absolute labelling of such cost figures is difficult as it would require an assessment of the risk-costs

of nuclear power plant operation, for which there is no reliable data available.
28Under asymmetric information, similar reasoning applies. As shown by Höffler and Wambach (2013)

in an application to infrastructure investments, regulators face a trade-off between early commitment
and the aim to elicit information in later stages of the game.
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options for the Swiss power system to replace nuclear power. They find that in the

short-term, newly built gas-fired capacity can meet electricity demand cost-effectively,

in the medium and long-term nuclear power is the most cost effective solution. Park

et al. (2013) show that a Sustainable Society scenario, which focuses on demand man-

agement and renewable electricity, improves energy security and reduces more emissions

at affordable cost in Korea as compared to two scenarios which focus on nuclear ex-

pansion. Hong et al. (2013) use a multi-criteria decision-making analysis to assess the

potential impacts of four different energy policy pathways in Japan. Taking into ac-

count economic, environmental and social criteria, they find that a nuclear-free pathway

for Japan is the worst option to pursue. Fürsch et al. (2012a) analyze costs of a nu-

clear phase-out in Germany. They find that in a scenario similar to the actual German

phase-out plan, these costs amount to 16 billion e for the German power sector.

Several studies analyzing nuclear and energy policy in France have been published:

RTE (2011) identifies the risks of an imbalance between electricity demand and supply

within a timeframe up to 2030. The authors apply a probability-based simulation model

and compare scenarios with different shares of nuclear generation in the electricity mix;

however, none with a full phase-out from nuclear power.

CAS (2012) analyzes four different scenarios for nuclear power plant operation in France

ranging from an immediate exit from nuclear generation to a continued use of the tech-

nology. In summary, the authors calculate the cost of an immediate exit from nuclear

power to amount to about 100 billion e in the timeframe between 2010 and 2030.

CDC (2012) assesses all costs of nuclear power generation in France presenting past,

present and future costs. Concerning future costs of nuclear, the study compares four

scenarios with different assumptions regarding nuclear power generation in France.

UFE (2011) analyzes different possible policy choices based on climate, social, economic

and financial criteria. The authors compare three scenarios with different shares of

nuclear generation in the period up to 2030. In a scenario with 20% nuclear generation,

the authors calculate a required investment expenditure of 434 billion e .

As we show in the following, our results are generally in line with previous results pre-

sented in the literature. A difference in the magnitude of the results can be explained

by the different scenario assumptions, research focus and methodology applied. Our

approach contributes to the existing stream of literature in at least three ways: First,

our scenario definition is novel to the literature since it systematically highlights the

effects of different phase-out periods and lifetime prolongations. Second, we draw atten-

tion to the distribution of costs between the French and the European power system.
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And third, we incorporate a new type of uncertainty into the literature, namely polit-

ical uncertainty regarding nuclear policy, and rigorously analyze its effect on costs and

investment behavior.

5.3 Methodology

Previous research on uncertainty in energy markets has focused primarily on uncertainty

with respect to demand evolution (e.g., Gardner, 1996, Gardner and Rogers, 1999), fuel

and CO2 price development (e.g., Patino-Echeverri et al., 2009, Roques et al., 2006),

portfolio and risk management (e.g., Gröwe-Kuska et al., 2003, Morales et al., 2009)

and renewables expansion, both regarding short-term (e.g., Nagl et al., 2012, Sun et al.,

2008, Swider and Weber, 2006) and long-term uncertainties (e.g., Fürsch et al., 2012b).

Our approach, in contrast, focuses on long-term uncertainties associated with nuclear

policy in France. In doing so, we employ a stochastic linear programing model of the

European power system. Given a set of input parameters and constraints, the model cal-

culates dispatch and investment decisions in such a way that residual electricity demand

is satisfied and total expected discounted system costs in the European power system

are minimized.29 Uncertainty enters the model in the form of whether or not there is a

nuclear phase-out decision in France at a particular point in time.30

Incorporating uncertainty in a deterministic investment and dispatch model typically

influences model results. Informally speaking, while in the deterministic setting the

social planner has perfect foresight and can optimally adjust decisions according to his

single view of the world, in the multistage stochastic setting the social planner has to

make decisions taking several different states of the world into account. This usually

leads to deviations from the deterministically-optimal decisions and thus to increasing

costs. In our analysis, we quantify these deviations and interpret their implications.

The timeframe of our analysis is up to 2050 in five-year steps. In order to derive consis-

tent investment decisions throughout the outlook period, the optimization is extended to

2070. The dispatch in each modeled year is represented by three representative days per

season consisting of six time-slices taking into account load and renewable generation.

Investments take place on an annual granularity.

29Residual demand refers to the demand met by conventional generation. It is equivalent to total
demand minus generation from renewables (RES-E).

30The model is a stochastic extension of the deterministic linear programing model DIME and its
successor DIMENSION. Bartels (2009) and Richter (2011) provide detailed descriptions of DIME and
DIMENSION including all model equations. The deterministic model has been successfully applied in
electricity market modeling, as for instance in Jägemann et al. (2013) in the modeling of renewable and
carbon policies or in the modeling of flexibility options in Bertsch et al. (2015). The stochastic extension
is straightforward and implemented as discussed in Shapiro et al. (2009).
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Nuclear phase-out decisions in France (denoted “D” in Figure 5.1) can occur in every

five-year time interval between 2015 and 2035 (mimicking the legislative period of the

French government). We assume that no phase-out decision can be made after 2035

in order to have consistent and comparable results for the time period up to 2050.

Moreover, this simplification also helps to reduce computer runtime.31 We thus consider

four states, denoted by State 1 (phase-out decision between 2015 and 2020) to State 4

(phase-out decision between 2030 and 2035), in which a phase-out from nuclear power

in France occurs as well as an additional state without a phase-out, denoted by State 5.

Obviously, we do not allow for investments in nuclear power in France after a phase-out

decision has been made.

2010 2015

D

2020 2025

E

2030 2035 2040 2045 2050

D E

D E

D E

State 5

State 4

State 3

State 2

State 1

2010 2015
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2020 2025 2030 2035 2040 2045 2050

D E

D E
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1

Figure 5.1: Scenario trees for an extended and an immediate exit from nuclear power
in France

The benchmark scenarios (denoted by “exit 2020”, “exit 2025”, “exit 2030”, “exit 2035”

and “no exit” in Table 5.1) are deterministic cases in which we identify the costs and

necessary modifications of the system under perfect foresight, i.e., all investors know

what will happen in the future and when. These scenarios are complemented by three

stochastic cases that vary in the probability of a phase-out decision during the time up

to 2050 (denoted by “high prob”, “low prob” and “medium prob” in Table 5.1).

31The model is implemented in GAMS and solved using CPLEX. Solving the model on an Intel(R)
Xeon(R) (2 processors, each 2.67 GHz) with 96.0 GB RAM takes on average (depending on the scenario
setting) between 12 and 24 hours.
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We perform two sensitivity analyses: The first deals with the form of the phase-out

decision, i.e., whether the phase-out/exit (denoted by “E” in Figure 5.1) takes place

immediately after the decision or over an extended period of 15 years (see Figure 5.1).

The second sensitivity analysis introduces the possibility of a prolongation of lifetimes of

existing nuclear power plants in France. In the sensitivity analysis, lifetimes of existing

French nuclear power plants can be prolonged beyond their license period of 40 years.

In order to fulfill the required safety standards for a lifetime prolongation, significant

investments have to be made. Previous studies have estimated additional costs for a

prolongation of nuclear power plant lifetimes by another 20 years in France to amount

to 55 billion e (Lundgren and Patel, 2012). Based on these figures, we estimate nuclear

retrofit costs in France to amount to 870 e 2010/kW. By way of comparison, the German

government in 2010 assumed retrofit costs for existing nuclear power plants in Germany

of 500 e /kW for a lifetime prolongation of 20 years (Prognos, 2010).

We use the following abbreviations for our model runs: “15y w/o prolongation” indi-

cates the upper scenario tree without the option for prolongation of existing nuclear

power plants in France; “15y prolongation” indicates that we allow for prolongation.

Abbreviations for the lower scenario tree are defined analogously.

Table 5.1: Probabilities of the different states in the model runs

State 1 State 2 State 3 State 4 State 5
high prob 0.05 0.05 0.05 0.05 0.80

medium prob 0.125 0.125 0.125 0.125 0.5
low prob 0.2 0.2 0.2 0.2 0.2
exit 2020 1 0 0 0 0
exit 2025 0 1 0 0 0
exit 2030 0 0 1 0 0
exit 2035 0 0 0 1 0

no exit 0 0 0 0 1

5.4 Data and Assumptions

The main parameter assumptions entering the model are demand development, fossil fuel

and CO2 prices, technical and economic parameters of the power plants (in particular,

investment and retrofit costs) as well as the development of renewable power deployment.

The presentation of data in this section is based on the assumptions in Fürsch et al.

(2012a) and Prognos (2010).
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5.4.1 Electricity demand

We assume a slightly increasing electricity demand in France, rising to 543 TWhel in

2030 and decreasing moderately decrease to 522 TWhel in 2050, predominantly driven

by the uptake of energy efficiency measures (see Table 5.2). Concerning the rest of

Europe, we assume moderate growth rates of on average 0.9% p.a. between 2010 and

2050, resulting in a net electricity demand in the modeled regions (excluding France) of

3089 TWhel in 2050.32

Table 5.2: Net electricity demand in TWhel in France and Europe (excluding France)

2010 2020 2030 2040 2050
France 501 513 543 533 522

Europe (excl. France) 2161 2455 2666 2871 3089

5.4.2 Fuel and CO2 prices

Fuel prices for power plants are based on international market prices plus transportation

costs to the power plants (see Table 5.3). Prices for hard coal and natural gas are

assumed to increase in the long run up to 14.2 e 2010/MWhth and 31.6 e 2010/MWhth,

respectively.

CO2 prices are assumed to be the same in all model runs and states. They are assumed

to increase in the long run up to 75.1 e 2010/t CO2 in 2050 from 23.9 e 2010/t CO2 in

2020.

Table 5.3: Fuel costs in e 2010/MWhth and CO2 prices in e 2010/t CO2

2010 2020 2030 2040 2050
Coal 11.0 10.1 10.9 11.9 14.2

Natural gas 17.0 23.1 25.9 28.8 31.6
Oil 39.0 47.6 58.0 69.0 81.4

CO2 14.0 23.9 41.3 58.7 75.1

5.4.3 Technical and economic parameters for power plants

We assume the introduction of several new or improved conventional technologies as

well as decreasing investment costs over time due to learning effects (see Table 5.4).

32The modeled regions cover France, the United Kingdom, Spain, Portugal, Italy, Germany, Austria,
Switzerland, Belgium, the Netherlands, Poland, the Czech Republic and Denmark-West.
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Table 5.4: Specific investment costs for thermal power plants in e 2010/kW

2020 2030 2040 2050
Nuclear 3,000 3,000 3,000 3,000

Coal 1,300 1,300 1,300 1,300
Coal (innovative) 2,250 1,875 1,700 1,650

CCGT 950 950 950 950
OCGT 400 400 400 400

IGCC-CCS - 2,039 1,986 1,782
CCGT-CCS - 1,173 1,133 1,020

Coal-CCS - 1,848 1,800 1,752
Coal -CCS (innovative) - 2,423 2,263 2,102

5.4.4 Development of RES-E

RES-E development is treated exogenously in our analysis and is not optimized over

time within the model. We assume a strong expansion of RES-E generation in France,

reaching 277 TWh in 2050 up from 152 TWh in 2020 and 85 TWh in 2010 (see Table

5.5). This expansion is driven mainly by photovoltaics and wind power technologies.

RES-E development is assumed to be the same in all model runs and states.

For the other European countries, we assume a continuous increase of RES-E generation

within the coming decades. This development is driven by an increased deployment of

wind farms, mainly in Denmark, the United Kingdom, Poland and the Netherlands.

Electricity generation from photovoltaics increases primarily in Southern Europe, and

geothermal energy is assumed to play an important role for electricity generation only

in Italy because of its potential for high enthalpic resources. In 2050, RES-E generation

in the European countries accounted for in this analysis (excluding France) is assumed

to amount to 1616 TWh compared to approximately 797 TWh in 2020.

Table 5.5: Development of RES-E generation in France in TWh

2010 2020 2030 2040 2050
Hydro 53 56 56 56 56

Wind onshore 14 47 94 104 100
Wind offshore 0 25 35 40 66
Photovoltaics 1 6 19 28 35

Biomass + Waste 17 17 17 17 17
Geothermal 0 1 3 3 3

Total 85 152 224 247 277

5.5 Results and Discussion

In Subsections 5.5.1 and 5.5.2, we present the deterministic costs of a phase-out from

nuclear power in France and the effect on costs across the rest of the European power
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system. Subsection 5.5.1 specifically deals with the costs of prohibiting the prolonga-

tion of lifetimes of existing nuclear power plants in France. Furthermore, in Subsection

5.5.2, we look at the cost differences between a deterministic phase-out scenario (i.e.,

“exit 2020” to “exit 2035”) and a deterministic scenario with nuclear power available in

France until 2050 (i.e., “no exit”). These values reflect the costs of having to substitute

nuclear power plants in France with other conventional fossil-fueled power technologies

in France and Europe under perfect foresight. In Subsection 5.5.3, in order to bet-

ter assess the effects of uncertainty on costs, we analyze the impact of uncertainty on

investment behavior in nuclear power plants in France. Subsection 5.5.4 explores the

effect of uncertainty on system costs. Costs of uncertainty are given in our analysis by

comparing a stochastic scenario state to the corresponding deterministic scenario (e.g.,

cost differences between State 3 in model run “high prob” and the deterministic model

run “exit 2030”). These costs reflect the inefficiency that is arising in the system due to

political uncertainty.

5.5.1 The cost of prohibiting the prolongation of nuclear power plant

lifetimes in France

The costs of prohibiting lifetime prolongations for existing nuclear power plants in France

are significant. In a scenario without phase-out, these costs amount to 19 billion e 2010

and are mainly driven by higher investment costs as well as higher import costs/lower

export revenues (see Figure 5.2).33 The former is due to the lack of comparably low-

cost nuclear lifetime prolongations which, if available, would reduce investment needs

in newly built capacity, particularly newly built base-load capacity (e.g., nuclear), in

the intermediate term in France. Note that not all nuclear capacity reaching the end

of its licensing period is replaced by newly built (nuclear or other fossil fuel) capacity

in France in the scenario without lifetime prolongations. Therefore, power generation

in France is lower than in the scenario allowing for lifetime prolongations, resulting in

lower exports and higher imports.

Additional system costs in the European power system (including France) amount to 20

billion e 2010 and are, as seen in the previous results, of the same magnitude as additional

costs in France. This reveals that costs are hardly passed from the French to the rest

of the European system, i.e., France has to accept the financial burden of prohibiting

lifetime prolongations. European costs are mainly driven by higher investment costs

(primarily due to higher investment costs in France) and, in addition, by higher variable

33Costs refer to the discounted costs for the whole power system and for the French power system,
accumulated over the time horizon up to 2050. A discount rate of 10% has been assumed.
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costs due to an increased utilization of conventional power plants in the rest of Europe

(see middle bar in Figure 5.2).
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Figure 5.2: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Deterministic cost difference – w/o prolongation

vs. prolongation

5.5.2 The deterministic costs of a nuclear phase-out in France

The French power system can adapt to a phase-out from nuclear power at the expense of

higher system costs in France and Europe (see Figures 5.3 to 5.6). The cost differences in

this subsection reflect the costs of having to substitute (cost competitive) nuclear power

plants in France with other conventional fossil-fueled power technologies in France and

Europe under perfect foresight.

Additional (deterministic) costs in France of a phase-out can be significant, amounting

to 76 billion e 2010 in a scenario with an immediate nuclear phase-out in 2020 compared

to a scenario without nuclear phase-out and the possibility of prolonging the lifetime of

existing nuclear plants (see Figure 5.6).

Deterministic cost differences in France are mainly driven by higher variable costs due

to increased utilization of existing and newly built fossil-fueled power plants as well as a

reduction in export revenues/higher import costs. The latter is due to lower exports and

higher imports (in particular, from Germany) as not all phased-out nuclear generation

is replaced by other generation technologies within France. Investment costs are lower

in phase-out scenarios without prolongation opportunities due to the non-availability of

nuclear power plant investments. Nuclear power plants, with comparably high invest-

ment costs, are in part replaced by other fossil-fueled power plants. Investment costs are

typically higher in phase-out scenarios with prolongation opportunities, indicating that
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Figure 5.3: Accumulated (discounted) system cost differences differentiated by cost cat-
egories in bn e 2010 (2010-2050): Deterministic cost difference – 15y w/o prolongation
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Figure 5.4: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Deterministic cost difference – 15y prolongation

nuclear capacity is prolonged even though it has to be replaced by newly built (fossil

fuel) capacities after the phase-out.

Additional (deterministic) costs in the European system (including France) of a French

nuclear phase-out are incurred to a large extent by the French power system, with only a

small fraction being passed onto the rest of the power system (see Figures 5.3 to 5.6).34

Additional costs in the European system are mainly driven by higher variable costs

due to the non-availability of low-cost nuclear power in France. Conventional fossil-

fueled power plants are utilized more often in France and the rest of Europe leading to

higher CO2 emissions in the European power system. Total investment costs in Europe

34In the figures shown in this subsection as well as the following, we refrain from showing the cost
components for Europe excl. France for better readability since the cost components follow a similar
pattern to the one displayed in Figure 5.2. For the stochastic cases, data may be found in Appendix D.
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Figure 5.5: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Deterministic cost difference – 0y w/o prolongation
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Figure 5.6: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Deterministic cost difference – 0y prolongation

follow a similar pattern as the one described above for the French system, i.e., total

investment costs are typically lower in the case of no prolongation opportunities and

higher otherwise.

We find that deterministic cost differences in France and Europe follow two main pat-

terns: First, they are clearly higher under an immediate phase-out (see Figures 5.5 and

5.6) compared to a scenario with a prolonged phase-out (see Figures 5.3 and 5.4). Sec-

ond, the later the phase-out occurs, the stronger the reduction in system cost differences

will be. The first point bears a clear policy implication: Policy makers are well-advised

to opt for extended phase-out periods if a phase-out is to be introduced. Additional

costs are substantially lower in this case.
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5.5.3 Investment in nuclear power under uncertainty

We observe significant deviations from deterministically socially-optimal investments

under uncertainty. Intuitively speaking, one would expect over-investment in nuclear

power and under-investment in alternative base-load technologies under uncertainty in

states with an early phase-out. Analogously, intuition suggests that uncertainty leads

to under-investment in nuclear power in states with either no or a late phase-out. How-

ever, deviations from this intuition are possible due to the possibility of prolonging the

lifetimes of existing nuclear power plants in certain model runs. Obviously, the high

number of model runs computed does not allow for a discussion of all arising patterns.

Figures 5.7 to 5.10 therefore illustrate the typical investment patterns that may arise

and that help to clarify the system cost effects described in the next subsection.

Uncertainty may lower investments in new nuclear capacity in 2025 for scenario states

with either no or a late nuclear phase-out (i.e., States 4 or 5) under a setting with no

possible lifetime prolongations. In the example presented in Figure 5.7, this in turn leads

to catch-up effects after 2030 once the uncertainty (in the model) has been resolved. The

level of this effect is correlated to the probability of a phase-out occuring, i.e., investments

in 2025 are lower in the model run “high prob” than in “low prob”, followed by a more

pronounced catch-up effect in “high prob” than in “low prob”.

Figure 5.7: Investment in nuclear power in France in GW: 15y w/o prolongation

Allowing for lifetime prolongations, a greater amount of existing nuclear capacity may be

prolonged under uncertainty in scenario states with either no or a late nuclear phase-out

(see State 5 in Figure 5.8). Less nuclear capacity is typically retrofitted under uncertainty

in scenario states with an early phase-out (see State 3 in Figure 5.8). The investments in

2020 are basically retrofit investments in existing nuclear capacity, with 1.6 GW being

newly-built capacity. Here, the nuclear power plant Flamanville is assumed to be online

in the model. New nuclear power plants are only built in State 5 after 2040. Remarkably,

the increase in retrofit investments in 2020 in State 5 appears to have no effect on new

nuclear power plant investments or retrofit investments thereafter.
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Figure 5.8: Investment in nuclear power in France in GW: 15y prolongation

Investment levels may be much higher under uncertainty than what is considered to be

deterministically socially optimal. In State 4 in Figure 5.9, investment levels at the so-

cial optimum under uncertainty are between investments in the model runs “exit 2035”

and “no exit”.35 Investments in the “low prob” model run thus amount to 11.4 GW

in 2025 and 22.3 GW in 2030 compared to no investment in “exit 2035”. The max-

imum difference in State 5 is achieved in the years 2025 and 2030, at which time we

see no investments in nuclear power plants in France in “high prob” compared to the

deterministically socially-optimal levels of 14.3 GW in 2025 and 22.0 GW in 2030 in

“no exit”.

Figure 5.9: Investment in nuclear power in France in GW: 0y w/o prolongation

Figure 5.10 illustrates investment patterns under uncertainty with prolongation oppor-

tunities. Allowing for the prolongation of existing nuclear capacity, more capacity life-

times are prolonged in State 3 in the “low prob” case due to the high investment levels

in “no exit”. However, with higher probability of phasing-out, even less capacity is

prolonged in State 3 in “high prob” than in “exit 2030”.

35Higher investment levels in 2030 compared to the “no exit” level are again due to catch-up effects.
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Figure 5.10: Investment in nuclear power in France in GW: 0y prolongation

5.5.4 Costs of uncertainty

Costs of uncertainty are given by comparing a stochastic scenario state to the corre-

sponding deterministic scenario. Due to the large number of calculations performed,

we only show selected results in this subsection. Cost figures for all model runs can be

found in Appendix D.

Costs of uncertainty in France and Europe are rather small in most model runs and

states. In fact, costs can amount to 6 billion e 2010 in a setting with a high probability

of a phase-out and no possibility of prolongation for existing nuclear power plants (see

model run “high prob” in Figure 5.11).

Costs of uncertainty in France in the case of no phase-out from nuclear power and a

setting without prolongation opportunities are to a large extent driven by a change in the

trade balance (i.e., lower export revenues and higher import costs) and lower investment

costs (see Figures 5.11 and 5.12). The effect concerning variable costs is not unique:

While variable costs are higher under uncertainty in model run “high prob” in Figure

5.11, they are lower in “low prob” and “medium prob”.

Costs of uncertainty in France follow two main patterns: First, costs are typically lower

in scenarios with an extended phase-out period of 15 years than in scenarios with an

immediate phase-out from nuclear power (compare Figures 5.11 and 5.12). Second, costs

of uncertainty typically increase with increasing probability of a phase-out in states with

either no or a late phase-out (see Figure 5.11). Similarly, costs of uncertainty increase

with decreasing probability of phasing-out in states with an early phase-out (see Figure

5.13).

Costs of uncertainty for the European power system (including France) follow similar

patterns. Costs are typically lower in scenarios with an extended phase-out period.

Additional costs are mainly caused by higher variable costs under uncertainty in the

case of either no or a late phase-out without the possibility of lifetime prolongations (see
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Figure 5.11: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Cost of uncertainty – 0y w/o prolongation – State
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Figure 5.12: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Cost of uncertainty – 15y w/o prolongation – State

5

Figures 5.11 and 5.12). When allowing for prolongation, the effect concerning variable

and investment costs is ambiguous. For instance, investment costs may be higher in the

case of an early phase-out (see Figure 5.14) due to over-investment in nuclear power

plants in France, as illustrated in Figure 5.10. However, lower investment costs are also

possible in the case of an early phase-out (see Figure 5.13) due to fewer prolongations

of existing nuclear power plant lifetimes under uncertainty.
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Figure 5.13: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Cost of uncertainty – 15y prolongation – State 2
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Figure 5.14: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Cost of uncertainty – 0y prolongation – State 3

5.6 Conclusion and Policy Implications

This paper provides a model-based analysis of the possible future role of nuclear power

in France. We have investigated different scenarios of nuclear policy in France, both

under perfect foresight and under uncertainty. We have shown that a phase-out from

nuclear power in France leads to higher system costs in the power sector. These costs

are mainly borne by the French system, and the cost effects for the rest of the European

power system are rather limited.

Our finding that extended phase-out periods lead to lower costs is in line with the exam-

ples of Belgium and Switzerland as these countries have opted for extended phase-out

periods. Furthermore, our analysis suggests that the costs of uncertainty are surprisingly
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low when compared to the costs of phasing out. Further, supported by information the-

oretic arguments, this finding presents a strong case, at least in this application, against

a long-term commitment by policy makers to future nuclear policy.

Further research could address the full costs of nuclear power operation. Such an analysis

should include an investigation of the risk-costs of nuclear power plant operation. A

further promising research avenue may be the investigation of the possible additional

burden of a phase-out for different consumer groups in France and Europe. Bearing in

mind that most of the heating in France is electricity based, rising wholesale prices for

electricity as a result of increasing system costs in France are of particular political and

social relevance. We emphasize that our analysis could also be applied to other forms

of political uncertainty such as government intervention in the market through support

schemes for renewables, capacity markets or the introduction/extension of CO2 cap-and-

trade schemes.
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A.1 Econometric Appendix

Wald test of perfect competition

As proposed by Ellis and Halvorsen (2002), we test our results regarding market power

exertion against a null hypothesis of perfectly competitive price-taking behavior. Within

our framework, perfect competition corresponds to β0 = β1 = β2 = β3 = β4 = 0. We

test the rejection of this null hypothesis using a Wald test. The resulting mean of the

test statistic is found to be 36.492 (std. dev. 4.701). With a critical value 15.09, we

reject the hypothesis of perfectly competitive behavior at the 1%-level.

Polynomial representation of β(t)

We estimate the Model 1 system of equations with five different polynomial representa-

tions of the time-varying mark-up. The specifications are as follows:

� Scalar representation: β(t) = β0

� Linear representation: β(t) = β0 + β1T
� Quadratic representation: β(t) = β0 + β1T + β2T

2

� Cubic representation: β(t) = β0 + β1T + β2T
2 + β3T

3

� Biquadratic representation: β(t) = β0 + β1T + β2T
2 + β3T

3 + β4T
4

The estimation for the first four models are given in Table A.1 (scalar representation),

Table A.2 (linear representation), Table A.3 (quadratic representation), Table A.4 (cubic

representation) and Table 2.5 (biquadratic representation).

The results clearly show that the polynomial in β(t) is only statistically significant for

higher order approximations. Apart from that, almost all other estimates are relatively

robust for different specifications. Therefore, we use the biquadratic specification as it

reflects a higher order Taylor-approximation to the actual β(t)-function.
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Table A.1: Scalar repr.: Estimation results for model without dynamic optimality
condition

Parameter Estimate p-value Std. Error

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

α0 20.719 0.034 7.35E-38∗∗∗ 4.01E-37 0.103 7.31E-3

αQ 3.03E-8 3.20E-9 7.10E-10∗∗∗ 4.47E-10 2.98E-9 2.51E-10

αK = 1− αL 0.102 1.32E-5 2.96E-54∗∗∗ 1.37E-54 1.08E-4 1.99E-6

αE 2.144 0.100 2.53E-10∗∗∗ 7.34E-10 0.186 0.019

αS -0.187 0.136 0.195 0.228 0.114 0.038

γKK -6.43E-4 2.78E-4 0.133+ 0.141 3.39E-4 3.73E-5

γQQ 3.47E-8 2.72E-9 9.30E-4∗∗∗ 6.76E-4 8.96E-9 8.34E-10

γEE 1.208 0.266 0.077∗ 0.096 0.591 0.105

γKQ = −γLQ -8.70E-9 2.74E-9 0.198 0.119 6.06E-9 5.78E-10

γKE = −γLE 2.33E-3 6.35E-5 9.04E-10∗∗∗ 1.23E-9 2.30E-4 9.38E-6

γQE -4.17E-8 4.20E-9 3.50E-7∗∗∗ 2.33E-7 5.84E-9 5.03E-10

β0 5.276 4.253 0.199 0.233 2.725 0.221

τMFM 26.427 8.941 0.567 0.124 44.715 2.824

τCAP 70.925 40.873 0.633 0.169 139.993 8.118

%LAU 18.112 1.778 0.028∗∗ 0.012 7.622 0.336

%LKZ -9.679 4.604 0.279 0.200 7.603 0.408

%KAU 32.773 2.439 0.100+ 0.032 18.950 1.059

%KKZ 3.032 0.680 0.602 0.090 5.715 0.352

τINV 10.810 0.079 3.25E-16∗∗∗ 5.74E-16 0.508 0.030

%SAU 39.729 1.781 1.24E-3∗∗∗ 9.36E-4 10.627 0.638

%SKZ -7.900 2.813 0.392 0.183 8.634 0.481

Observations 50×44

Adjusted R2 Eq. (2.18): mean 0.54 std. dev. 0.05, Eq. (2.21): mean 0.62 std. dev. 0.1,

Eq. (2.26): mean 0.27 std. dev. 0.22, Eq. (2.28): mean 0.54 std. Dev. 0.05
∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15
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Table A.2: Linear repr.: Estimation results for model without dynamic optimality
condition

Parameter Estimate p-value Std. Error

Mean std. dev. Mean std. dev. Mean std. dev.

α0 20.720 0.033 1.93E-36∗∗∗ 1.04E-35 0.103 7.22E-3

αQ 2.92E-8 5.37E-9 1.06E-7∗∗∗ 1.44E-7 3.57E-9 3.84E-10

αK = 1− αL 0.102 1.52E-5 3.97E-52∗∗∗ 1.70E-52 1.09E-4 2.00E-6

αE 2.134 0.090 7.05E-10∗∗∗ 1.78E-9 0.194 0.016

αS -0.187 0.136 0.190 0.221 0.114 0.038

γKK -6.41E-4 2.73E-4 0.135+ 0.144 3.40E-4 3.71E-5

γQQ 3.25E-8 6.57E-9 5.59E-3∗∗∗ 4.72E-3 1.01E-8 1.11E-9

γEE 1.244 0.291 0.073∗ 0.091 0.596 0.103

γKQ = −γLQ -8.09E-9 3.94E-9 0.273 0.173 6.26E-9 8.94E-10

γKE = −γLE 2.32E-3 6.09E-5 2.53E-9∗∗∗ 2.51E-9 2.38E-4 6.49E-6

γQE -4.01E-8 7.36E-9 6.99E-6∗∗∗ 7.42E-6 6.56E-9 7.76E-10

β0 3.991 6.864 0.341 0.324 3.419 0.337

β1 -0.073 0.151 0.511 0.222 0.204 0.022

τMFM 26.308 8.868 0.565 0.127 44.434 3.545

τCAP 74.217 43.037 0.624 0.169 141.053 9.315

%LAU 17.868 1.996 0.031∗∗ 0.013 7.598 0.387

%LKZ -9.040 6.017 0.328 0.239 7.570 0.480

%KAU 31.976 2.402 0.116+ 0.028 19.422 1.500

%KKZ 4.100 1.983 0.525 0.211 6.110 0.401

τINV 10.769 0.103 1.45E-15∗∗∗ 2.76E-15 0.515 0.034

%SAU 39.095 2.419 1.44E-3∗∗∗ 1.21E-3 10.546 0.792

%SKZ -7.759 2.689 0.418 0.178 9.069 0.586

Observations 50×44

Adjusted R2 Eq. (2.18): mean 0.54 std. dev. 0.05, Eq. (2.21): mean 0.62 std. dev. 0.1,

Eq. (2.26): mean 0.27 std. dev. 0.22, Eq. (2.28): mean 0.54 std. dev. 0.05
∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15
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Table A.3: Quadratic repr.: Estimation results for model without dynamic optimality
condition

Parameter Estimate p-value Std. Error

Mean std. dev. Mean std. dev. Mean std. dev.

α0 20.729 0.037 7.48E-35∗∗∗ 4.25E-34 0.105 7.40E-3

αQ 2.27E-8 3.73E-9 1.52E-8∗∗∗ 3.73E-8 2.42E-9 2.61E-10

αK = 1− αL 0.102 1.89E-5 7.29E-50∗∗∗ 2.60E-50 1.11E-4 1.93E-6

αE 1.894 0.130 9.09E-9∗∗∗ 2.04E-8 0.197 0.020

αS -0.214 0.149 0.197 0.275 0.116 0.041

γKK -4.94E-4 1.89E-4 0.214 0.163 3.46E-4 3.97E-5

γQQ 2.78E-8 3.92E-9 4.98E-4∗∗∗ 4.51E-4 6.50E-9 6.49E-10

γEE 1.556 0.316 0.046∗∗ 0.090 0.616 0.096

γKQ = −γLQ -8.33E-9 1.38E-9 0.043∗∗ 0.036 3.62E-9 4.06E-10

γKE = −γLE 2.10E-3 9.00E-5 1.70E-8∗∗∗ 9.03E-9 2.37E-4 1.13E-5

γQE -2.66E-8 3.34E-9 5.85E-6∗∗∗ 4.45E-6 4.35E-9 5.27E-10

β0 -7.353 4.180 0.109+ 0.227 2.718 0.390

β1 0.099 0.149 0.577 0.292 0.158 0.023

β2 0.048 8.32E-3 5.33E-4∗∗∗ 8.43E-4 0.011 1.32E-3

τMFM 37.310 15.355 0.271 0.157 30.708 2.457

τCAP 71.237 18.597 0.508 0.119 104.568 6.159

%LAU 13.218 1.714 0.042∗∗ 0.037 5.824 0.373

%LKZ 2.280 4.014 0.530 0.237 5.575 0.348

%KAU 37.954 3.371 0.011∗∗ 6.59E-3 13.294 1.016

%KKZ 8.187 1.531 0.092∗ 0.075 4.328 0.307

τINV 10.577 0.172 2.49E-16∗∗∗ 5.99E-16 0.433 0.028

%SAU 21.975 3.417 0.016∗∗ 0.047 7.459 0.517

%SKZ -9.784 2.305 0.180 0.117 6.643 0.465

Observations 50×44

Adjusted R2 Eq. (2.18): mean 0.54 std. dev. 0.05, Eq. (2.21): mean 0.62 std. dev. 0.1,

Eq. (2.26): mean 0.27 std. dev. 0.22, Eq. (2.28): mean 0.54 std. dev. 0.05
∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15
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Table A.4: Cubic repr.: Estimation results for model without dynamic optimality con-
dition

Parameter Estimate p-value Std. Error

Mean std. dev. Mean std. dev. Mean std. dev.

α0 20.722 0.036 1.58E-33∗∗∗ 8.58E-33 0.105 7.50E-3

αQ 2.36E-8 4.19E-9 9.80E-8∗∗∗ 3.76E-7 2.68E-9 3.10E-10

αK = 1− αL 0.102 2.00E-5 8.78E-48∗∗∗ 2.81E-48 1.10E-4 1.84E-6

αE 1.910 0.129 1.30E-8∗∗∗ 2.78E-8 0.198 0.020

αS -0.215 0.149 0.189 0.271 0.116 0.041

γKK -4.79E-4 1.85E-4 0.228 0.169 3.46E-4 3.97E-5

γQQ 2.79E-8 4.26E-9 1.37E-3∗∗∗ 1.05E-3 7.24E-9 8.20E-10

γEE 1.549 0.308 0.045∗∗ 0.082 0.616 0.096

γKQ = −γLQ -8.05E-9 1.52E-9 0.072∗ 0.063 3.96E-9 5.42E-10

γKE = −γLE 2.13E-3 9.26E-5 2.53E-8∗∗∗ 1.36E-8 2.39E-4 1.16E-5

γQE -2.80E-8 3.97E-9 1.14E-5∗∗∗ 8.09E-6 4.75E-9 7.02E-10

β0 -6.516 4.643 0.126+ 0.234 2.969 0.439

β1 0.219 0.172 0.392 0.250 0.209 0.033

β2 0.047 8.44E-3 4.30E-3∗∗∗ 6.84E-3 0.014 1.81E-3

β3 -5.09E-4 2.71E-4 0.581 0.171 8.99E-4 1.09E-4

τMFM 38.888 15.631 0.265 0.133 31.737 2.967

τCAP 71.533 21.270 0.517 0.135 106.829 7.661

%LAU 14.204 1.694 0.048∗∗ 0.036 6.491 0.376

%LKZ 1.615 4.604 0.564 0.254 5.994 0.507

%KAU 36.335 3.637 0.020∗∗ 0.011 14.085 1.316

%KKZ 7.150 1.544 0.152 0.109 4.505 0.375

τINV 10.644 0.187 1.63E-15∗∗∗ 5.33E-15 0.440 0.034

%SAU 22.509 3.909 0.026∗∗ 0.080 8.187 0.561

%SKZ -9.100 2.692 0.238 0.157 6.994 0.586

Observations 50×44

Adjusted R2 Eq. (2.18): mean 0.54 std. dev. 0.05, Eq. (2.21): mean 0.62 std. dev. 0.1,

Eq. (2.26): mean 0.27 std. dev. 0.22, Eq. (2.28): mean 0.54 std. dev. 0.05
∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15
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Additional tables for the estimation results of Model 1

Table A.5: Estimation results for model without dynamic optimality condition: coeffi-
cients

Parameter Estimate

Min 25%-quantile Mean 75%-quantile Max

α0 20.651 20.695 20.715 20.734 20.865

αQ 1.26E-8 1.41E-8 1.57E-8 1.69E-8 2.13E-8

αK = 1− αL 0.102 0.102 0.102 0.102 0.102

αE 1.906 2.062 2.116 2.173 2.314

αS -0.512 -0.252 -0.204 -0.126 0.083

γKK -1.07E-3 -6.04E-4 -4.72E-4 -3.49E-4 -1.26E-4

γQQ 1.00E-8 1.14E-8 1.34E-8 1.48E-8 2.09E-8

γEE 0.700 1.526 1.665 1.890 2.284

γKQ = −γLQ -1.29E-8 -9.95E-9 -9.39E-9 -8.45E-9 -5.81E-9

γKE = −γLE 2.12E-3 2.31E-3 2.35E-3 2.39E-3 2.47E-3

γQE -2.57E-8 -2.04E-8 -1.93E-8 -1.80E-8 -1.62E-8

β0 -21.208 -19.674 -18.297 -17.390 -12.319

β1 -0.171 -0.014 0.038 0.093 0.212

β2 0.090 0.098 0.112 0.116 0.158

β3 -1.34E-3 -1.07E-3 -8.98E-4 -7.60E-4 -2.79E-4

β4 -2.87E-4 -1.92E-4 -1.84E-4 -1.56E-4 -1.37E-4

τMFM -2.020 8.774 14.216 17.448 42.922

τCAP 49.882 84.249 93.717 103.215 127.432

%LAU 12.322 13.657 14.580 15.169 17.976

%LKZ 5.684 9.059 10.609 12.322 13.639

%KAU 19.332 23.716 25.376 26.697 33.292

%KKZ 5.916 8.167 8.555 9.143 9.918

τINV 10.490 10.642 10.713 10.771 10.968

%SAU 15.600 18.387 19.788 21.273 26.506

%SKZ -9.671 -6.181 -4.434 -2.917 0.379

Observations 50×44
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Table A.6: Estimation results for model without dynamic optimality condition: coeffi-
cients

Parameter p-value

Min 25%-quantile Mean 75%-quantile Max

α0 6.29E-34 2.91E-33 3.14E-32 1.08E-32 1.07E-30

αQ 1.98E-6 1.58E-5 3.25E-5 4.46E-5 8.68E-5

αK = 1− αL 4.72E-46 1.02E-45 1.36E-45 1.66E-45 2.41E-45

αE 8.55E-10 2.54E-9 9.23E-9 9.64E-9 9.57E-8

αS 1.36E-4 0.020 0.174 0.234 0.956

γKK 0.026 0.104 0.237 0.300 0.712

γQQ 0.020 0.065 0.104 0.142 0.248

γEE 7.03E-4 4.72E-3 0.031 0.023 0.326

γKQ = −γLQ 1.18E-3 8.75E-3 0.021 0.025 0.137

γKE = −γLE 9.33E-9 1.61E-8 2.89E-8 3.21E-8 1.55E-7

γQE 5.47E-5 2.38E-4 5.68E-4 7.31E-4 1.90E-3

β0 8.94E-6 3.80E-5 7.66E-4 4.32E-4 0.013

β1 0.365 0.626 0.741 0.907 0.994

β2 5.35E-5 4.29E-4 1.11E-3 1.56E-3 5.05E-3

β3 0.146 0.221 0.318 0.365 0.735

β4 4.20E-4 4.05E-3 0.011 0.015 0.041

τMFM 0.150 0.530 0.617 0.727 0.933

τCAP 0.172 0.260 0.324 0.357 0.591

%LAU 7.60E-3 0.020 0.028 0.033 0.062

%LKZ 9.64E-3 0.022 0.076 0.112 0.330

%KAU 9.17E-3 0.032 0.049 0.049 0.144

%KKZ 0.012 0.025 0.041 0.046 0.134

τINV 1.84E-16 3.03E-16 3.66E-16 4.11E-16 6.38E-16

%SAU 3.37E-3 9.07E-3 0.016 0.020 0.040

%SKZ 0.136 0.341 0.513 0.666 0.999

Observations 50×44
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Table A.7: Estimation results for model without dynamic optimality condition: coeffi-
cients

Parameter Std. Error

Min 25%-quantile Mean 75%-quantile Max

α0 0.093 0.101 0.105 0.108 0.138

αQ 2.54E-9 2.66E-9 2.82E-9 3.00E-9 3.30E-9

αK = 1− αL 1.06E-4 1.10E-4 1.11E-4 1.13E-4 1.15E-4

αE 0.184 0.200 0.211 0.218 0.261

αS 0.060 0.085 0.116 0.132 0.259

γKK 2.83E-4 3.11E-4 3.49E-4 3.83E-4 4.44E-4

γQQ 6.72E-9 7.09E-9 7.58E-9 8.07E-9 8.94E-9

γEE 0.468 0.534 0.606 0.687 0.840

γKQ = −γLQ 3.04E-9 3.20E-9 3.47E-9 3.72E-9 4.30E-9

γKE = −γLE 2.43E-4 2.54E-4 2.59E-4 2.64E-4 2.72E-4

γQE 3.90E-9 4.18E-9 4.53E-9 4.89E-9 5.59E-9

β0 3.533 3.687 3.910 4.129 4.536

β1 0.183 0.192 0.209 0.225 0.258

β2 0.024 0.026 0.028 0.030 0.034

β3 7.56E-4 7.93E-4 8.45E-4 8.99E-4 1.02E-3

β4 5.30E-5 5.63E-5 6.13E-5 6.60E-5 7.53E-5

τMFM 23.666 24.987 26.319 27.623 30.055

τCAP 84.385 87.785 91.125 94.147 101.531

%LAU 5.753 5.935 6.012 6.051 6.356

%LKZ 4.739 4.957 5.183 5.387 5.898

%KAU 10.394 11.055 11.694 12.230 13.659

%KKZ 3.481 3.639 3.809 3.948 4.356

τINV 0.410 0.415 0.419 0.422 0.431

%SAU 6.883 7.054 7.268 7.457 8.009

%SKZ 5.828 6.146 6.446 6.724 7.362

Observations 50×44

A.2 Robustness Checks

Estimation without higher order transformations of exogenous variables

as instrumental variables

As discussed in Section 2.4, our system of equations will be nonlinear in endogenous vari-

ables due to transformations of the endogenous variables (e.g., interactions with other

variables and squaring). To address potential endogeneity issues, we follow Wooldridge
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(2002) (Chapter 9.5) and use a set of squared and higher-order transformations of ex-

ogenous variables. To test our choice of variables, we estimate Model 1 and Model 2

with a reduced set of instrumental variables. Instead of using lnQ3, lnQ4, lnS3, lnS4,

lnP 3, lnP 4, T , T 2, as well as the exogenous variables already used in our estimation

equations, we use the exogenous variables already used in our estimation equations, as

well as T , T 2. The estimation results are given in Tables A.8, A.9 and A.10.

Table A.8: Simplified instruments: Estimation results for model without dynamic op-
timality condition

Parameter Estimate p-value Std. Error

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

α0 20.620 0.045 9.78E-31∗∗∗ 3.10E-30 0.126 0.010

αQ 2.58E-8 1.47E-9 2.47E-3∗∗∗ 7.55E-4 7.34E-9 1.71E-10

αK = 1− αL 0.102 3.10E-6 1.26E-44∗∗∗ 6.00E-45 1.25E-4 3.14E-6

αE 2.473 0.170 3.05E-7∗∗∗ 1.04E-6 0.291 0.031

αS -0.134 0.264 0.293 0.312 0.154 0.057

γKK -2.41E-4 2.13E-4 0.588 0.245 4.26E-4 4.27E-5

γQQ 4.82E-8 2.44E-9 6.12E-3∗∗∗ 2.30E-3 1.55E-8 3.42E-10

γEE 2.667 0.688 0.043∗∗ 0.041 1.110 0.148

γKQ = −γLQ -3.64E-8 1.40E-9 2.82E-4∗∗∗ 7.38E-5 8.17E-9 2.05E-10

γKE = −γLE 2.83E-3 9.84E-5 2.07E-7∗∗∗ 1.39E-7 3.55E-4 9.94E-6

γQE -1.56E-8 1.12E-9 0.104+ 0.026 9.05E-9 3.02E-10

β0 -5.547 1.514 0.545 0.107 8.955 0.207

β1 0.927 0.097 0.122+ 0.028 0.567 0.020

β2 0.131 0.019 0.017∗∗ 9.94E-3 0.047 1.61E-3

β3 7.44E-3 3.74E-4 1.21E-3∗∗∗ 3.19E-4 1.95E-3 5.06E-5

β4 1.00E-4 4.12E-5 0.352 0.181 1.02E-4 3.02E-6

τMFM -44.119 13.153 0.570 0.118 75.759 3.626

τCAP 281.212 53.205 0.269 0.083 241.570 10.473

%LAU 19.536 1.396 0.135+ 0.026 12.442 0.525

%LKZ -31.898 3.518 0.044∗∗ 0.015 14.613 0.556

%KAU 106.437 8.349 0.038∗∗ 8.41E-3 47.374 1.901

%KKZ -0.874 2.442 0.874 0.101 11.755 0.491

τINV 10.264 0.205 1.77E-10∗∗∗ 1.72E-10 0.822 0.039

%SAU 13.419 5.194 0.458 0.113 17.881 0.790

%SKZ 0.025 2.372 0.921 0.072 17.088 0.592

Observations 50×44

Adjusted R2 Eq. (2.18): mean 0.47 std. dev. 0.08, Eq. (2.21): mean 0.43 std. dev. 0.07,

Eq. (2.26): mean 0.57 std. dev. 0.04, Eq. (2.28): mean 0.47 std. Dev. 0.08
∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15
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Table A.9: Simplified instruments: Hausman test results for constant interest rates

Interest rate χ2 test statistic p-value

Mean Std. Dev. Mean Std. Dev.

0.01 1684.117 5006.961 0.018∗∗ 0.094

0.02 2438.72 10266.476 0.022∗∗ 0.128

0.03 2723.209 10845.397 0.054∗ 0.222

0.04 1553.409 4537.783 0.03∗∗ 0.167

0.05 721.678 2178.448 0.076∗ 0.253

0.06 1544.614 6129.165 0.041∗∗ 0.181

0.07 529.064 1133.182 0.057∗ 0.232

0.08 685.74 1673.32 0.057∗ 0.231

0.09 545.404 869.724 0.057∗ 0.23

0.1 571.335 893.317 0.026∗∗ 0.149

0.11 443.77 694.349 0.022∗∗ 0.12

0.12 429.996 623.075 0.035∗∗ 0.139

0.13 462.302 601.057 0.009∗∗∗ 0.047

0.14 386.714 481.56 0.041∗∗ 0.174

0.15 399.879 537.441 0.037∗∗ 0.161

0.16 444.773 802.049 0.033∗∗ 0.169

0.17 1208.095 4948.531 0.03∗∗ 0.169

0.18 519.925 1117.688 0∗∗∗ 0

0.19 431.879 617.551 0∗∗∗ 0

0.2 569.918 1132.179 0∗∗∗ 0

0.21 503.458 979.483 0∗∗∗ 0

0.22 816.422 2648.744 0∗∗∗ 0

0.23 689.117 1424.815 0∗∗∗ 0

0.24 1376.555 5656.499 0.008∗∗∗ 0.045

0.25 356.417 508.363 0.033∗∗ 0.138

∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15

The critical value (CV) for p=0.01 is at 37.566
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Table A.10: Simplified instruments: Hausman test results for proportional variations
of the actual canadian interest rate r

Interest rate χ2 test statistic p-value

Mean Std. Dev. Mean Std. Dev.

r · 0.25 2806.53 9795.993 0.017∗∗ 0.101

r · 0.5 4210.452 123.101 0.032∗∗ 0.147

r · 0.75 1783.073 105.781 0.037∗∗ 0.169

r · 1 854.059 100.271 0.049∗∗ 0.186

r · 1.25 1135.411 96.706 0.04∗∗ 0.178

r · 1.5 537.023 98.237 0.029∗∗ 0.167

r · 1.75 524.807 99.078 0.028∗∗ 0.166

r · 2 502.346 104.862 0.027∗∗ 0.156

r · 2.25 479.99 96.347 0.021∗∗ 0.125

r · 2.5 425.095 96.835 0.042∗∗ 0.175

r · 2.75 399.722 98.238 0.013∗∗ 0.053

r · 3 373.576 104.687 0.033∗∗ 0.169

r · 3.25 420.606 108.966 0.038∗∗ 0.173

r · 3.5 868.896 105.875 0.002∗∗∗ 0.01

r · 3.75 507.577 131.428 0∗∗∗ 0

r · 4 443.043 109.229 0∗∗∗ 0

∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15

The critical value (CV) for p=0.01 is at 37.566

As can be clearly seen from Tables A.9 and A.10 the results of the Hausman tests

are robust. However, while we find that most coefficient estimates are robust, we find

implausible results for %LKZ . A statistically significant negative estimate would mean

that with increasing labor costs, as a supply shifter, would lead to lower prices. This

however is economically implausible and hence, illustrates biased estimates and the

importance of using higher order instruments.36

Estimation with dummy variables controlling for potential shocks

The observation period used within our estimation, includes two time periods that might

have potential impact on the global uranium market. First, the global financial crisis

of 2008 might have led to a demand reducing shocks. Second, the Fukushima nuclear

disaster and the subsequent shut down of several nuclear power plants could have had

an impact on market price setting. To test whether such effects are observable in the

36We find that out of the 2050 estimates of Model 2 (50 subsamples times 41 different interest rates)
631 face near singular matrices during estimation, exceeding the number of near singular matrices in
our main model by far.
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data, we replace the inverse residual demand function, as given in Equation (2.25), with

the following equation:

P = β lnQ+
∑
k

%k lnVk +
∑
l

τl lnYl +
3∑
i=1

δiDi. (2.25′)

Equation (2.25′) includes three time dummy variables to capture the above mentioned

potential shocks. The definition of the dummy variables is based on the findings of

spikes in Figure 2.1. D1 equals one for the third quarter of 2008 and zero for any other

time step. D2 equals one for the first quarter of 2012 and zero for any other time step.

D3 equals one for the second quarter of 2012 and zero for any other time step. The

estimation results are given in Tables A.11, A.12 and A.13.
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Table A.11: Shock dummy variables: Estimation results for model without dynamic
optimality condition

Parameter Estimate p-value Std. Error

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

α0 20.710 0.034 6.11E-28∗∗∗ 2.26E-27 0.107 7.60E-3

αQ 9.96E-9 2.11E-9 0.032∗∗ 0.104 3.65E-9 1.74E-10

αK = 1− αL 0.102 1.30E-5 4.71E-39∗∗∗ 1.46E-39 1.14E-4 2.22E-6

αE 2.141 0.102 7.02E-8∗∗∗ 7.51E-8 0.224 0.017

αS -0.188 0.144 0.238 0.256 0.119 0.041

γKK -5.10E-4 2.00E-4 0.212 0.149 3.51E-4 4.28E-5

γQQ 4.72E-9 2.74E-9 0.643 0.137 1.03E-8 6.48E-10

γEE 1.683 0.299 0.031∗∗ 0.051 0.616 0.089

γKQ = −γLQ -1.01E-8 8.82E-10 0.026∗∗ 9.66E-3 4.07E-9 2.95E-10

γKE = −γLE 2.36E-3 7.63E-5 2.53E-7∗∗∗ 1.41E-7 2.75E-4 7.96E-6

γQE -9.62E-9 1.94E-9 0.178 0.099 6.59E-9 4.73E-10

β0 -25.179 2.065 2.78E-4∗∗∗ 3.57E-4 5.116 0.262

β1 -0.256 0.146 0.336 0.222 0.224 0.016

β2 0.128 0.024 9.95E-3∗∗∗ 0.038 0.038 2.79E-3

β3 -7.12E-5 4.44E-4 0.784 0.171 8.99E-4 5.35E-5

β4 -2.26E-4 5.15E-5 0.036∗∗ 0.108 8.66E-5 6.41E-6

τMFM -32.149 20.166 0.455 0.146 38.613 2.475

τCAP 114.394 42.163 0.448 0.140 140.722 4.889

%LAU 15.328 1.576 0.040∗∗ 0.013 6.753 0.279

%LKZ 10.536 2.609 0.146+ 0.120 6.451 0.460

%KAU 24.879 5.490 0.249 0.146 20.145 0.838

%KKZ 13.239 1.112 0.017∗∗ 6.36E-3 4.944 0.371

τINV 10.490 0.152 1.44E-11∗∗∗ 9.75E-11 0.486 0.040

%SAU 18.266 2.181 0.054∗ 0.023 8.580 0.598

%SKZ -0.295 2.846 0.853 0.153 8.592 0.448

δ1 -7.866 4.733 0.454 0.133 10.942 1.023

δ2 7.383 5.645 0.613 0.102 17.296 1.149

δ3 -25.681 7.019 0.222 0.118 19.515 1.615

Observations 50×44

Adjusted R2 Eq. (2.18): mean 0.54 std. dev. 0.05, Eq. (2.21): mean 0.62 std. dev. 0.1,

Eq. (2.26): mean 0.27 std. dev. 0.22, Eq. (2.28): mean 0.54 std. dev. 0.05
∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15
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Table A.12: Shock dummy variables: Hausman test results for constant interest rates

Interest rate χ2 test statistic p-value

Mean Std. Dev. Mean Std. Dev.

0.01 737.217 1149.548 0.103+ 0.28

0.02 674.936 1181.231 0.067∗ 0.234

0.03 810.951 1295.165 0.104+ 0.302

0.04 765.694 1271.562 0.104+ 0.239

0.05 951.724 2030.274 0.084∗ 0.261

0.06 950.824 1549.972 0.067∗ 0.241

0.07 1105.71 2070.77 0.094∗ 0.282

0.08 813.206 1301.175 0.061∗ 0.211

0.09 868.01 1303.886 0.044∗∗ 0.187

0.1 940.62 1464.42 0.078∗ 0.251

0.11 832.355 1211.427 0.06∗ 0.223

0.12 937.656 1677.771 0.047∗∗ 0.191

0.13 993.898 1716.678 0.064∗ 0.241

0.14 782.812 1308.535 0.049∗∗ 0.191

0.15 804.457 1407.83 0.05∗ 0.189

0.16 5234.076 27117.246 0.083∗ 0.271

0.17 763.876 1175.537 0.064∗ 0.223

0.18 937.014 1621.986 0.05∗ 0.211

0.19 704.424 1186.1 0.05∗ 0.21

0.2 681.163 1157.198 0.077∗ 0.258

0.21 776.816 1303.854 0.064∗ 0.221

0.22 727.61 1183.675 0.074∗ 0.249

0.23 671.346 1104.346 0.046∗∗ 0.188

0.24 638.071 1084.896 0.051∗ 0.186

0.25 755.862 1307.389 0.045∗∗ 0.175

∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15

The critical value (CV) for p=0.01 is at 37.566



Appendix A. Supplementary Material for Chapter 2 114

Table A.13: Shock dummy variables: Hausman test results for proportional variations
of the actual Canadian interest rate r

Interest rate χ2 test statistic p-value

Mean Std. Dev. Mean Std. Dev.

r · 0.25 710.523 1143.932 0.072∗ 0.216

r · 0.5 655.868 56.58 0.065∗ 0.205

r · 0.75 1325.145 50.632 0.102+ 0.25

r · 1 1217.06 64.829 0.047∗∗ 0.19

r · 1.25 924.326 135.989 0.067∗ 0.242

r · 1.5 863.447 102.821 0.064∗ 0.235

r · 1.75 864.167 100.167 0.049∗∗ 0.196

r · 2 1225.145 133.792 0.052∗ 0.192

r · 2.25 844.23 132.805 0.068∗ 0.244

r · 2.5 983.449 111.341 0.067∗ 0.248

r · 2.75 871.569 120.222 0.072∗ 0.243

r · 3 796.647 110.794 0.037∗∗ 0.166

r · 3.25 1068.129 127.346 0.081∗ 0.264

r · 3.5 804.02 127.107 0.103+ 0.266

r · 3.75 777.663 120.227 0.05∗ 0.211

r · 4 703.321 123.534 0.051∗ 0.21

∗∗∗ p < 0.01,∗∗ p < 0.05,∗ p < 0.1,+ p < 0.15

The critical value (CV) for p=0.01 is at 37.566

Again, Tables A.12 and A.13 illustrate the results of the Hausman tests to be robust

even under the alternative specification of the inverse residual demand curve. Further,

we find all coefficient estimates to be robust. Noticeably, no dummy variable coefficient

is statistically significant. Therefore, showing that shock effects on the world market

should not be the factors explaining the negative Lerner index at these points in time.37

A.3 Data Appendix

Summary Statistics

Quantity of uranium extracted, E

Extraction volumes are taken from Cameco (2012b). Missing statements for the fourth

quarter of the years 2008-2012 are calculated using first to third quarter values from

37Out of the 2050 estimates of Model 2 (50 subsamples times 41 different interest rates) 723 models
had near singularity issues during estimation, exceeding the number of near singular matrices in our
main model by far.
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Table A.14: Summary Statistics

Series Mean Maximum Minimum Std. Dev. Observations

B 1.274332 4.070614 0.264269 1.029772 44
lnCR 20.84144 22.94147 19.08893 1.150019 44
lnE 0.022724 1.175044 -1.206911 0.460854 44
lnP 3.333787 4.049799 2.470928 0.520859 44
lnQ -0.054477 0.807969 -1.11201 0.278829 44
lnS -0.042334 1.299977 -5.909206 0.665293 50×44
lnWK 0.00044 0.662086 -0.359989 0.223815 44
lnWL 0.00641 0.294694 -0.570092 0.203949 44
MK 0.102294 0.103997 0.099066 0.001333 44
P 31.75191 57.38593 11.83343 14.49644 44
r̄ 0.033211 0.048234 0.012374 0.009906 44
T 0 21.5 -21.5 12.58251 44
lnVKAU -0.041982 0.134903 -0.29417 0.13467 44
lnVKKZ 0.137492 0.61845 -0.446492 0.315771 44
lnVLAU 0.061223 0.502522 -0.432324 0.258745 44
lnVLKZ -0.085882 0.288374 -0.742886 0.301522 44
lnVSAU -0.044462 0.217286 -0.318706 0.222694 44
lnVSKZ -0.049702 0.18477 -0.298063 0.124974 44
lnYCAP -0.003819 0.012031 -0.031199 0.00964 44
lnYINV 2.98131 3.926857 2.093219 0.502895 44
lnYMFM 0.001745 0.054552 -0.029454 0.027657 44

Cameco (2012b) and annual values from Cameco (2012a).

Quantity of final output, Q

Sales volumes are taken from Cameco (2012b). Missing statements for the fourth quarter

of the years 2008-2012 are calculated using first to third quarter values from Cameco

(2012b) and annual values from Cameco (2012a).

Exploration expenditures, B

Exploration expenditures are given in Cameco (2012b). Quarterly expenditures are di-

rectly stated for the 4th quarter of the following years: 2008, 2009, 2010, 2011, 2012.

Using information on annual exploration expenditures (Cameco, 2012a), quarterly values

are calculated. In Cameco (2012b) and Cameco (2012a), monetary values are expressed

in Canadian dollar. Real (2012) values are calculated using the U.S. Consumer price in-

dex (CPI) (U.S. Department of Labor, 2013) (converted to quarterly values by weighting

by the number of days per month) and Canadian to U.S. dollar exchange rates. Ex-

change rates are expressed in Cameco (2012b). Missing data for the 4th quarter 2002

are substituted with data from Bank of Canada (2014a).



Appendix A. Supplementary Material for Chapter 2 116

Additional exploration expenditure information for Canada used for estimating the ex-

ploration function, f , is taken from Nuclear Energy Agency (2006). Nominal values are

converted to real (2012) values using Canadian Consumer Price Indices (OECD, 2013).

State of the technology, T

The state of the technology is expressed as a mean-adjusted linear trend.

Market price of final output, P

Data for the first three quarters of each year are taken from Cameco (2012b) using

information on average realized prices. The market price for the final quarter of each

year is calculated from annual data (Cameco, 2012b) weighted by sales volumes. Nominal

values given in Canadian dollar are converted to real (2012) U.S. dollar using Canadian

to U.S. dollar exchange rates (Bank of Canada, 2014a, Cameco, 2012b) and Canadian

Consumer Price Indices (OECD, 2013).

Market price of reproducible input labor, WL

The market price of reproducible input labor in Canada is based on two data sources.

Average weekly wage rates for Saskatchewan for forestry, fishing, mining, quarrying, oil

and gas (North American Industry Classification System) (Statistics Canada, 2013a)

are converted using Canadian to U.S. dollar exchange rates (Bank of Canada, 2014a,

Cameco, 2012b) and U.S. Consumer Price Indices (OECD, 2013). Supplementary ben-

efits are received by calculating the share of supplementary benefits in monthly wages

from Statistics Canada (2012) and scaling the converted average weekly wage rates ac-

cordingly.

Quantity of labor, XL

Annual data for direct employment in uranium mining operations in Canada is taken

from Nuclear Energy Agency (2011). Data for Cameco are obtained by scaling total

numbers using ownership shares for mining operations and assuming an equal distribu-

tion of changes among seasons.
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Market price of reproducible input capital, WK

Following Ellis and Halvorsen (2002), we calculate the price of capital as the product

of the producer price index (PPI, for the mining industry if available), the sum of the

depreciation rate (assumed to be at 10%) and the real rate of interest. We derive market

prices for capital for Canada using the Machinery and Equipment Price Index (MEPI)

for mines, quarries and oil wells (Statistics Canada, 2013b) as well as real interest rates

calculated from data for selected Canadian 10-year bond yields (Bank of Canada, 2014b)

and Canadian consumer price indices (OECD, 2013).

Quantity of capital, XK

Quantity of capital is derived via the perpetual inventory method. Year-end net value

of property for the year 1996 as well as quarterly capital expenditures are taken from

Cameco (2012a) and Cameco (2012b). Depreciation rates are assumed to be 10% and

the producer price index is the Machinery and Equipment Price Index (MEPI) for mines,

quarries and oil wells (Statistics Canada, 2013b). Exchange rates are from ABS (2014a)

and X-RATES (2014).

Proven reserves, S

There are numerous classification schemes for uranium reserves and resources. We utilize

definitions used by Nuclear Energy Agency (2011) and Cameco (2012a) and focus on

proven reserves. Cameco (2012a) covers annual data for uranium reserves and resources.

Quarterly values are imputed as described in Section 2.5.

Recycling of military warheads, YMFM

Annual data for the “Megatons to Megawatts” quantities are given by Centrus (2014).

We assume an equal distribution of quantities among quarters.

Global thermal capacity of nuclear power plants, YCAP

Global thermal capacity of nuclear power plants are calculated from plant characteristics,

and commissioning and decommissioning dates taken from International Atomic Energy

Agency (2013).
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Global inventories, YINV

Inventory data is, generally speaking, not publicly available. Nuclear Energy Agency

(2011) includes graphical information on global uranium production and demand from

1945 (i.e., approximately ten years prior to the commissioning of the first nuclear reactor)

up to 2011. The difference between total production and demand approximates global

uranium inventories. Quarterly values are obtained from annual data from Nuclear

Energy Agency (2011) using cubic splines.

Australian market prices for capital, VKAU

Australian capital prices are obtained using PPI for the (coal) mining industry from ABS

(2014d). Real (2012) rate of interest results from data for Commonwealth Government

10-year bonds (Reserve Bank of Australia, 2014) and inflation rates are calculated using

ABS (2014c).

Kazakh market prices for capital, VKKZ

Capital prices for Kazakhstan are based on the general PPI data from UNECE (2014).

Using the Kazakh corporate bonds index KASE BY (KASE, 2014b) and CPI data from

UNECE (2014), real (2012) interest rates are calculated.

Australian market prices for labor, VLAU

Data for Australian mining operations is taken from ABS (2014b). In order to convert

the data to real (2012) U.S. dollar values, exchange rates from ABS (2014a) are used for

January 2002 to March 2012. April 2012 to December 2012 are covered by X-RATES

(2014). Both time series are weighted for quarterly values and adjusted using ABS

(2014c).

Kazakh market prices for labor, VLKZ

Kazakh mining industry monthly wage data for the years 2008 to 2012 is obtained from

the Agency of Kazakhstan of Statistics (2014a). As sector-specific data is unavailable

for years prior to 2008, we approximate mining wage data using changes in average wage

statistics (Agency of Kazakhstan of Statistics, 2014c). Correlation between both series
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is shown via OLS estimation for overlapping observations (values in brackets represent

t-values):

avg. wage mining industry = −1.128× 104

(−1.951)
+ 1.993

(27.924)
avg. wage.

Assuming strong correlation between GDP and wage growth (Warner et al., 2006, e.g.)

and further decreasing unemployment with growth in GDP, we approximate mining sec-

tor wage data for Kazakhstan using Kazakh labor statistics for changes in unemployment

(Agency of Kazakhstan of Statistics, 2014b). Again, correlation between both series is

shown via OLS estimation for overlapping observations (values in brackets represent

t-values):

avg. wage mining industry = 4.901× 105

(32.64)
−671.36
(−25.91)

unemployed population in thousands.

Real (2012) values are obtained by conversion using KASE (2014a) and UNECE (2014).

Australian proven reserves, VSAU

Australian annual data is taken from Australia (2013). Quarterly values are assumed to

be identical to annual values.

Kazakh proven reserves, VSKZ

Rempel et al. (2013) include annual data on Kazakh uranium reserves. Quarterly values

are assumed to be identical to annual values.

Canadian interest rate, r̃

See Market price of reproducible input capital.
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B.1 The open-loop model

B.1.1 Solving the general open-loop Cournot model

Proof of Theorem 3.1. The problem can be rewritten as a variational inequality (VI).

For this define

xtj = (xt1,j , x
t
2,j), G

t
i,j(x

t
j) = δi,j − [atj − b · (xti,j + xt−i,j)] + b · xti,j

xt = (xt1, x
t
2), Gti(x

t) = (Gti,1(xt1), Gti,2(xt2))

Gt(xt) = (Gt1(xt), Gt2(xt))

x = (x1, ..., xT ), G(x) = (G1(x1), ..., GT (xT ))

y = (y1, y2), k = (k1, k2), F (y, x) = (k,G(x)).

and let Z denote the set of feasible (y, x).

G(x) is strictly monotone, as

[Gt(xt,1)−Gt(xt,2)](xt,1 − xt,2)ᵀ

=
∑
j

b(xt,11,j − x
t,2
1,j , x

t,1
2,j − x

t,2
2,j)

(
2 1

1 2

)
(xt,11,j − x

t,2
1,j , x

t,1
2,j − x

t,2
2,j)

ᵀ > 0

for xt,1 6= xt,2. Similarly, F (y, x) is monotone, as

[F (y1, x1)− F (y2, x2)]

(
y1 − y2

x1 − x2

)

= (0, 0, G(y1, x1)−G(y2, x2))


y1

1 − y2
1

y1
2 − y2

2

x1 − x2


= (G(y1, x1)−G(y2, x2))(x1 − x2) ≥ 0

and > 0 when x1 6= x2.

The open-loop problem can now be stated in terms of a VI as follows:

Find (y∗, x∗) with cap0
i + y∗i −

∑
j x

t∗
i,j ≥ 0, xt∗i,j ≥ 0 satisfying

F (y∗, x∗)(y − y∗, x− x∗)ᵀ ≥ 0

for all (y, x) with cap0
i + yi −

∑
j x

t
i,j ≥ 0, xti,j ≥ 0.

As 0 ≤ xti,j ≤
atj
b and yi ≤ 2 max

atj
b , the VI is defined over a convex and bounded set.

From this together with the continuity of F , existence follows from the general theory
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on VIs. Uniqueness in x is guaranteed by the monotonicity of G(x) and uniqueness in y

follows since yi = maxt

(∑
j x

t
i,j − cap0

i

)
.

B.1.2 Solving the one-period open-loop Cournot model with no given

capacities to the players

In the one-period open-loop Cournot model with no given capacities available to the

players, the short-term KKT conditions simplify to

0 ≤ δi,j − [aj − b · (xi,j + x−i,j)] + b · xi,j + λi ⊥ xi,j ≥ 0, ∀i, j

0 ≤ yi −
∑
j

xi,j ⊥ λi ≥ 0, ∀i.

The long-term KKT conditions are given by

0 ≤ ki − λi ⊥ yi ≥ 0, ∀i.

From the long-term KKT condition it follows that in the one-period case all capacity is

fully utilized. Closed-form solutions are obtained by distinguishing the following cases,

leaving aside symmetric cases:

� Both players produce and supply both markets, i.e., xij > 0 for all i, j:

When solving the resulting system of equations, it follows

xi,j =
aj + δ−i,j − 2δi,j + k−i − 2ki

3b
.

� Player 1 supplies both markets, player 2 only market 1, i.e., x1,1 > 0, x1,2 > 0,

x2,1 > 0 and x2,2 = 0:

When solving the resulting system of equations, it follows

x1,2 =
a2 − δ1,2 − k1

2b
and x2,2 = 0,

xi,1 =
a1 + δ−i,1 − 2δi,1 + k−i − 2ki

3b
.

� Player 1 supplies both markets, player 2 none, i.e., x1,1 > 0, x1,2 > 0, x2,1 = 0 and

x2,2 = 0:

When solving the resulting system of equations, it follows

x1,j =
aj − δ1,j − k1

2b
,

x2,j = 0.
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� Player 1 supplies market 1, player 2 supplies market 2, i.e., x1,1 > 0, x1,2 = 0,

x2,1 = 0 and x2,2 > 0:

When solving the resulting system of equations, it follows

x1,1 =
a1 − δ1,1 − k1

2b
and x1,2 = 0,

x2,2 =
a2 − δ2,2 − k2

2b
and x2,1 = 0.

� Player 1 supplies market 1, player 2 none, i.e., x1,1 > 0, x1,2 = 0, x2,1 = 0 and

x2,2 = 0:

When solving the resulting system of equations, it follows

x1,1 =
a1 − δ1,1 − k1

2b
and x1,2 = 0,

x2,j = 0.

� No player supplies, i.e., xi,j = 0 for all i, j.

B.1.3 Solving the multi-period open-loop Cournot model

In the multi-period open-loop Cournot model with no existing capacity available to the

players, time points in which the capacity constraint is binding, termed TB, have to be

distinguished from those in which it is not binding. Any solution to the optimization

problem then satisfies the short-term Karush-Kuhn-Tucker (KKT) conditions

0 ≤ δi,j − [atj − b · (xti,j + xt−i,j)] + b · xti,j + λti ⊥ xti,j ≥ 0, ∀i, j, t ∈ TB

0 ≤ δi,j − [atj − b · (xti,j + xt−i,j)] + b · xti,j ⊥ xti,j ≥ 0, ∀i, j, t /∈ TB

0 = yi −
∑
j

xti,j , ∀i, t ∈ TB

0 ≤ yi −
∑
j

xti,j ⊥ λti ≥ 0, ∀i, t /∈ TB

as well as the long-term KKT conditions

0 ≤ ki −
∑
t∈TB

λti ⊥ yi ≥ 0, ∀i.

Again, it is possible to obtain closed-form solutions for the multi-period open-loop

Cournot model using similar case analysis as for the one-period model. See Wogrin

et al. (2013b) for additional technicalities of this procedure.
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B.2 Comparing the open-loop and closed-loop Cournot

model

Proof of Lemma 3.2. The xti,j(y) are unique for all y as for a given investment vector

y the second stage problem is just a series of spatial, single stage Cournot games. The

xti,j(y) are continuous in y from which right and left-differentiability in the components

follows.

Proof of Lemma 3.4. The claim follows by taking derivatives in the following cases:

1. Both players produce and supply both markets, i.e., xti,j > 0 for all i, j

(1a) Both players produce at full capacity, i.e.,

0 < xt1,1 + xt1,2 = cap0
1 + y1 and λt1 ≥ 0 : δt1,1 − at1 + 2b · xt1,1 + b · xt2,1 + λt1 = 0

δt1,2 − at2 + 2b · xt1,2 + b · xt2,2 + λt1 = 0

0 < xt2,1 + xt2,2 = cap0
2 + y2 and λt2 ≥ 0 : δt2,1 − at1 + 2b · xt2,1 + b · xt1,1 + λt2 = 0

δt2,2 − at2 + 2b · xt2,2 + b · xt1,2 + λt2 = 0

(1b) Both players do not produce at full capacity, i.e.,

0 < xt1,1 + xt1,2 < cap0
1 + y1 ⇒ λt1 = 0 : δt1,1 − at1 + 2b · xt1,1 + b · xt2,1 = 0

δt1,2 − at2 + 2b · xt1,2 + b · xt2,2 = 0

0 < xt2,1 + xt2,2 < cap0
2 + y2 ⇒ λt2 = 0 : δt2,1 − at1 + 2b · xt2,1 + b · xt1,1 = 0

δt2,2 − at2 + 2b · xt2,2 + b · xt1,2 = 0

(1c) Player 1 produces at full capacity, player 2 does not, i.e.,

0 < xt1,1 + xt1,2 = cap0
1 + y1 and λt1 ≥ 0 : δt1,1 − at1 + 2b · xt1,1 + b · xt2,1 + λt1 = 0

δt1,2 − at2 + 2b · xt1,2 + b · xt2,2 + λt1 = 0

0 < xt2,1 + xt2,2 < cap0
2 + y2 ⇒ λt2 = 0 : δt2,1 − at1 + 2b · xt2,1 + b · xt1,1 = 0

δt2,2 − at2 + 2b · xt2,2 + b · xt1,2 = 0
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(1d) Player 1 does not produce at full capacity, player 2 does, i.e.,

0 < xt1,1 + xt1,2 < cap0
1 + y1 ⇒ λt1 = 0 : δt1,1 − at1 + 2b · xt1,1 + b · xt2,1 = 0

δt1,2 − at2 + 2b · xt1,2 + b · xt2,2 = 0

0 < xt2,1 + xt2,2 = cap0
2 + y2 and λt2 ≥ 0 : δt2,1 − at1 + 2b · xt2,1 + b · xt1,1 + λt2 = 0

δt2,2 − at2 + 2b · xt2,2 + b · xt1,2 + λt2 = 0

2. Player 1 supplies both markets, player 2 only market 1, i.e., xt1,1 > 0, xt1,2 > 0,

xt2,1 > 0 and xt2,2 = 0

(2a) Both players produce at full capacity, i.e.,

0 < xt1,1 + xt1,2 = cap0
1 + y1 and λt1 ≥ 0 : δt1,1 − at1 + 2b · xt1,1 + b · xt2,1 + λt1 = 0

δt1,2 − at2 + 2b · xt1,2 + λt1 = 0

0 < xt2,1 = cap0
2 + y2 and λt2 ≥ 0 : δt2,1 − at1 + 2b · xt2,1 + b · xt1,1 + λt2 = 0

δt2,2 − at2 + b · xt1,2 + λt2 ≥ 0

(2b) Both players do not produce at full capacity, i.e.,

0 < xt1,1 + xt1,2 < cap0
1 + y1 ⇒ λt1 = 0 : δt1,1 − at1 + 2b · xt1,1 + b · xt2,1 = 0

δt1,2 − at2 + 2b · xt1,2 = 0

0 < xt2,1 < cap0
2 + y2 ⇒ λt2 = 0 : δt2,1 − at1 + 2b · xt2,1 + b · xt1,1 = 0

δt2,2 − at2 + b · xt1,2 ≥ 0

(2c) Player 1 produces at full capacity, player 2 does not, i.e.,

0 < xt1,1 + xt1,2 = cap0
1 + y1 and λt1 ≥ 0 : δt1,1 − at1 + 2b · xt1,1 + b · xt2,1 + λt1 = 0

δt1,2 − at2 + 2b · xt1,2 + λt1 = 0

0 < xt2,1 < cap0
2 + y2 ⇒ λt2 = 0 : δt2,1 − at1 + 2b · xt2,1 + b · xt1,1 = 0

δt2,2 − at2 + b · xt1,2 ≥ 0

(2d) Player 1 does not produce at full capacity, player 2 does, i.e.,

0 < xt1,1 + xt1,2 < cap0
1 + y1 ⇒ λt1 = 0 : δt1,1 − at1 + 2b · xt1,1 + b · xt2,1 = 0

δt1,2 − at2 + 2b · xt1,2 = 0

0 < xt2,1 = cap0
2 + y2 and λt2 ≥ 0 : δt2,1 − at1 + 2b · xt2,1 + b · xt1,1 + λt2 = 0

δt2,2 − at2 + b · xt1,2 + λt2 ≥ 0
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3. Player 1 supplies both markets, player 2 none, i.e., xt1,1 > 0, xt1,2 > 0, xt2,1 = 0 and

xt2,2 = 0

(3a) Player 1 produces at full capacity, player 2 does at zero, i.e.,

0 < xt1,1 + xt1,2 = cap0
1 + y1 and λt1 ≥ 0 : δt1,1 − at1 + 2b · xt1,1 + λt1 = 0

δt1,2 − at2 + 2b · xt1,2 + λt1 = 0

0 = cap0
2 + y2 and λt2 ≥ 0 : δt2,1 − at1 + b · xt1,1 + λt2 ≥ 0

δt2,2 − at2 + b · xt1,2 + λt2 ≥ 0

(3b) Both players do not produce at full capacity, i.e.,

0 < xt1,1 + xt1,2 < cap0
1 + y1 ⇒ λt1 = 0 : δt1,1 − at1 + 2b · xt1,1 = 0

δt1,2 − at2 + 2b · xt1,2 = 0

0 < cap0
2 + y2 ⇒ λt2 = 0 : δt2,1 − at1 + b · xt1,1 ≥ 0

δt2,2 − at2 + b · xt1,2 ≥ 0

(3c) Player 1 produces at full capacity, player 2 does not, i.e.,

0 < xt1,1 + xt1,2 = cap0
1 + y1 and λt1 ≥ 0 : δt1,1 − at1 + 2b · xt1,1 + λt1 = 0

δt1,2 − at2 + 2b · xt1,2 + λt1 = 0

0 < cap0
2 + y2 ⇒ λt2 = 0 : δt2,1 − at1 + b · xt1,1 ≥ 0

δt2,2 − at2 + b · xt1,2 ≥ 0

(3d) Player 1 does not produce at full capacity, player 2 does at zero, i.e.,

0 < xt1,1 + xt1,2 < cap0
1 + y1 ⇒ λt1 = 0 : δt1,1 − at1 + 2b · xt1,1 = 0

δt1,2 − at2 + 2b · xt1,2 = 0

0 = cap0
2 + y2 and λt2 ≥ 0 : δt2,1 − at1 + b · xt1,1 + λt2 ≥ 0

δt2,2 − at2 + b · xt1,2 + λt2 ≥ 0

4. Player 1 supplies market 1, player 2 supplies market 2, i.e., xt1,1 > 0, xt1,2 = 0,

xt2,1 = 0 and xt2,2 > 0
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(4a) Both players produce at full capacity, i.e.,

0 < xt1,1 = cap0
1 + y1 and λt1 ≥ 0 : δt1,1 − at1 + 2b · xt1,1 + λt1 = 0

δt1,2 − at2 + b · xt2,2 + λt1 ≥ 0

0 < xt2,2 = cap0
2 + y2 and λt2 ≥ 0 : δt2,1 − at1 + b · xt1,1 + λt2 ≥ 0

δt2,2 − at2 + 2b · xt2,2 + λt2 = 0

(4b) Both players do not produce at full capacity, i.e.,

0 < xt1,1 < cap0
1 + y1 ⇒ λt1 = 0 : δt1,1 − at1 + 2b · xt1,1 = 0

δt1,2 − at2 + b · xt2,2 ≥ 0

0 < xt2,2 < cap0
2 + y2 ⇒ λt2 = 0 : δt2,1 − at1 + b · xt1,1 ≥ 0

δt2,2 − at2 + 2b · xt2,2 = 0

(4c) Player 1 produces at full capacity, player 2 does not, i.e.,

0 < xt1,1 = cap0
1 + y1 and λt1 ≥ 0 : δt1,1 − at1 + 2b · xt1,1 + λt1 = 0

δt1,2 − at2 + b · xt2,2 + λt1 ≥ 0

0 < xt2,2 < cap0
2 + y2 ⇒ λt2 = 0 : δt2,1 − at1 + b · xt1,1 ≥ 0

δt2,2 − at2 + 2b · xt2,2 = 0

(4d) Player 1 does not produce at full capacity, player 2 does, i.e.,

0 < xt1,1 < cap0
1 + y1 ⇒ λt1 = 0 : δt1,1 − at1 + 2b · xt1,1 = 0

δt1,2 − at2 + b · xt2,2 ≥ 0

0 < xt2,2 = cap0
2 + y2 and λt2 ≥ 0 : δt2,1 − at1 + b · xt1,1 + λt2 ≥ 0

δt2,2 − at2 + 2b · xt2,2 + λt2 = 0

5. Player 1 supplies market 1, player 2 does not supply, i.e., xt1,1 > 0, xt1,2 = 0,

xt2,1 = 0 and xt2,2 = 0

(5a) Both players produce at full capacity, i.e.,

0 < xt1,1 = cap0
1 + y1 and λt1 ≥ 0 : δt1,1 − at1 + 2b · xt1,1 + λt1 = 0

δt1,2 − at2 + λt1 ≥ 0

0 = cap0
2 + y2 and λt2 ≥ 0 : δt2,1 − at1 + b · xt1,1 + λt2 ≥ 0

δt2,2 − at2 + λt2 ≥ 0
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(5b) Both players do not produce at full capacity, i.e.,

0 < xt1,1 < cap0
1 + y1 ⇒ λt1 = 0 : δt1,1 − at1 + 2b · xt1,1 = 0

δt1,2 − at2 ≥ 0

0 < cap0
2 + y2 ⇒ λt2 = 0 : δt2,1 − at1 + b · xt1,1 ≥ 0

δt2,2 − at2 ≥ 0

(5c) Player 1 produces at full capacity, player 2 does not, i.e.,

0 < xt1,1 = cap0
1 + y1 and λt1 ≥ 0 : δt1,1 − at1 + 2b · xt1,1 + λt1 = 0

δt1,2 − at2 + λt1 ≥ 0

0 < cap0
2 + y2 ⇒ λt2 = 0 : δt2,1 − at1 + b · xt1,1 ≥ 0

δt2,2 − at2 ≥ 0

(5d) Player 1 does not produce at full capacity, player 2 does, i.e.,

0 < xt1,1 < cap0
1 + y1 ⇒ λt1 = 0 : δt1,1 − at1 + 2b · xt1,1 = 0

δt1,2 − at2 ≥ 0

0 = cap0
2 + y2 and λt2 ≥ 0 : δt2,1 − at1 + b · xt1,1 + λt2 ≥ 0

δt2,2 − at2 + λt2 ≥ 0
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C.1 Data Appendix

Table C.1: Distance

from to distance [Nautical miles]

United States Europe-Atlantic 3,387
Asia-Pacific 10,978

Australia Europe-Atlantic 11,626
Asia-Pacific 3,731

Canada Europe-Atlantic 8,840
Asia-Pacific 4,227

Fringe Europe-Atlantic 5,018
Asia-Pacific 3,037

Table C.2: Reference Demand and Reference Price

Market Reference Demand [Mt] Reference Price [US$/t]

Europe-Atlantic 96 180
Asia-Pacific 179 180

C.2 An analytical example

We provide an intuition for the results presented in this paper by solving analytically a

simplified model consisting of one market and two players. Player I is the incumbent

in the market and has infinite existing capacity. Player E is the entrant to the market

owning no existing capacity. The entrant can invest at cost k per unit, whereas the

incumbent may not invest. Both players produce at variable production costs c and

there are no transportation costs to the market. There is only one time period and the

inverse residual demand curve for this period is given by P = a− (xI + xE).

We solve both the open-loop and the closed-loop model for this simplified setting and

show that there is an incentive for the players in the closed-loop model to deviate from

their open-loop equilibrium quantities.38

38We restrict our attention to parameter settings in which both players produce. This restriction is
adequate for the objective at hand, namely to provide intuition for the main results in the paper.
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The open-loop model

In the open-loop model, the entrant’s optimization problem is given by

max
xE ,yE

P · xE − c · xE − k · yE

subject to

yE − xE ≥ 0 (λE),

xE ≥ 0,

yE ≥ 0.

From the corresponding KKT conditions, it is easy to see that in an open-loop equilib-

rium the capacity of the entrant is fully utilized, i.e., yE = xE . Therefore the optimiza-

tion problem may be simplified to

max
xE≥0

P · xE − (c+ k) · xE .

Taking the derivative with respect to xE , we obtain the first order condition

a− 2xE − xI − (c+ k) = 0

from which we obtain the entrant’s reaction curve

xE =
a− (c+ k)− xI

2
.

The incumbent faces a different optimization problem, as he may not invest but has

infinite existing capacity. The incumbent’s optimization problem is hence given by

max
xI≥0

P · xI − c · xI

which yields, when taking the derivative with respect to xI , the first order condition

a− 2xI − xE − c = 0.

The first order condition can be solved for xI to obtain the incumbent’s reaction curve

xI =
a− c− xE

2
.
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Solving the system of equations consisting of the two reaction curves for the players’

supply quantities, we obtain

xI =
a− c+ k

3

and

xE =
a− c− 2k

3
,

which is the solution to the open-loop model if the non-negativity conditions for xI and

xE are fulfilled.

The closed-loop model

In order to solve the closed-loop model we use backward induction. For this let yE

denote the first stage investment volume of the entrant. The entrant’s second stage

optimization problem is then given by

max
xE≥0

P · xE − c · xE

subject to

yE − xE ≥ 0 (λE).

The Lagrangian to this optimization problem is given by

L = P · xE − c · xE + λE · (yE − xE)

from which the KKT conditions follow:

xE =
a− (c+ λE)− xI

2
,

0 ≤ λE ⊥ yE − xE ≥ 0.

The incumbent faces the optimization problem

max
xI≥0

P · xI − c · xI

which yields, as in the open-loop model, the reaction curve

xI =
a− c− xE

2
.

By inserting this in the above KKT condition we obtain the expression

xE =
a− c− 2λE

3
.
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The first stage optimization problem of the entrant is then given by

max
yE≥0

P · xE − c · xE − k · yE

subject to

xE =
a− c− 2λE

3
0 ≤ λE ⊥ yE − xE ≥ 0,

xI =
a− c− xE

2
.

Consider the case in which the capacity of the entrant is fully utilized, i.e., xE = yE . In

this case the optimization problem may be simplified to

max
yE≥0

P · yE − (c+ k) · yE

subject to

a− c
3
− yE ≥ 0 (µE),

xI =
a− c− yE

2
.

The Lagrangian to this optimization problem is given by

L =

[
a−

(
yE +

a− c− yE
2

)]
· yE − (c+ k) · yE + µE ·

(
a− c

3
− yE

)
from which the KKT conditions follow:

yE =
a− c− 2k − 2µE

2
,

0 ≤ µE ⊥
a− c

3
− yE ≥ 0.

In case of µE > 0, we obtain

yE = xE = xI =
a− c

3

and λE = 0.39

This is indeed a solution in case

µE =
a− c− 2k − 2yE

2
=
a− c

6
− k > 0.

39This is also the limiting case for xE < yE .
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In case of µE = 0, we obtain

yE = xE =
a− c− 2k

2

and

xI =
a− c+ 2k

4
.

which is a solution if

λE =
a− c− 3yE

2
≥ 0

and

yE ≤
a− c

3
.

Conclusion

These simple calculations show that the investment in the closed-loop model is higher

than in the open-loop model for the entrant as

a− c− 2k

2
≥ a− c− 2k

3

and
a− c

3
≥ a− c− 2k

3
.

We conclude that there is an incentive for the players in the closed-loop game to deviate

from the open-loop equilibrium. Further investigation of the above considered cases also

shows that the total supply is higher and prices are lower in the closed-loop model than

in the open-loop model.
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D.1 Data Appendix

Table D.1: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Cost of uncertainty – 15y prolongation

State
Prob-
ability

Region
Invest
Costs

Fixed
O&M
Costs

Var.
Costs

Trade Balance
(Import Costs -

Export Revenues)

Net
Difference

S1 low Fr 0.2 -0.1 -1.3 1.1 -0.2
S1 low EU excl. Fr 0.2 -0.1 1.2 -1.1 0.2
S1 low EU incl. Fr 0.4 -0.2 -0.2 0.0 0.1
S1 medium Fr 0.2 -0.1 -1.4 1.2 -0.1
S1 medium EU excl. Fr 0.2 -0.1 1.3 -1.2 0.2
S1 medium EU incl. Fr 0.4 -0.2 -0.1 0.0 0.1
S1 high Fr 0.1 -0.1 -1.1 0.9 -0.1
S1 high EU excl. Fr 0.2 -0.1 0.9 -0.9 0.2
S1 high EU incl. Fr 0.3 -0.1 -0.1 0.0 0.0
S2 low Fr -1.0 -0.4 0.7 1.2 0.5
S2 low EU excl. Fr 0.1 -0.2 1.4 -1.3 0.0
S2 low EU incl. Fr -1.0 -0.6 2.1 0.0 0.5
S2 medium Fr -0.7 -0.3 0.5 0.8 0.3
S2 medium EU excl. Fr 0.0 -0.1 1.0 -0.8 0.0
S2 medium EU incl. Fr -0.7 -0.4 1.5 0.0 0.3
S2 high Fr -0.4 -0.1 0.4 0.3 0.1
S2 high EU excl. Fr 0.0 -0.1 0.4 -0.3 0.0
S2 high EU incl. Fr -0.4 -0.2 0.8 0.0 0.2
S3 low Fr -1.0 -0.5 0.1 1.6 0.2
S3 low EU excl. Fr 0.1 0.0 1.7 -1.6 0.2
S3 low EU incl. Fr -0.9 -0.5 1.8 0.0 0.4
S3 medium Fr -0.6 -0.3 0.0 1.1 0.1
S3 medium EU excl. Fr -0.1 0.0 1.3 -1.1 0.2
S3 medium EU incl. Fr -0.7 -0.4 1.4 0.0 0.3
S3 high Fr -0.4 -0.2 0.2 0.5 0.1
S3 high EU excl. Fr 0.0 0.0 0.5 -0.4 0.0
S3 high EU incl. Fr -0.4 -0.2 0.8 0.0 0.2
S4 low Fr 0.0 0.0 0.0 0.0 0.0
S4 low EU excl. Fr 0.1 0.0 -0.1 0.0 0.0
S4 low EU incl. Fr 0.1 0.0 -0.1 0.0 0.0
S4 medium Fr 0.3 0.2 -0.1 -0.3 0.1
S4 medium EU excl. Fr 0.0 0.0 -0.4 0.3 -0.1
S4 medium EU incl. Fr 0.3 0.2 -0.5 0.0 0.0
S4 high Fr 0.5 0.4 0.1 -0.8 0.2
S4 high EU excl. Fr 0.0 0.0 -1.1 0.8 -0.2
S4 high EU incl. Fr 0.6 0.4 -1.0 0.0 0.0
S5 low Fr 0.0 0.0 0.0 0.0 0.0
S5 low EU excl. Fr 0.1 0.0 -0.1 0.0 0.0
S5 low EU incl. Fr 0.1 0.0 -0.1 0.0 0.0
S5 medium Fr 0.3 0.2 -0.1 -0.3 0.1
S5 medium EU excl. Fr -0.1 0.0 -0.4 0.3 -0.1
S5 medium EU incl. Fr 0.2 0.2 -0.5 0.0 0.0
S5 high Fr 0.5 0.4 0.1 -0.8 0.2
S5 high EU excl. Fr 0.0 0.0 -1.1 0.8 -0.2
S5 high EU incl. Fr 0.6 0.4 -1.0 0.0 0.0
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Table D.2: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Cost of uncertainty – 0y prolongation

State
Prob-
ability

Region
Invest
Costs

Fixed
O&M
Costs

Var.
Costs

Trade Balance
(Import Costs -

Export Revenues)

Net
Difference

S1 low Fr 0.4 -0.2 0.2 -0.3 0.1
S1 low EU excl. Fr 0.3 -0.2 0.0 0.2 0.3
S1 low EU incl. Fr 0.6 -0.4 0.1 0.0 0.4
S1 medium Fr 0.2 -0.2 0.4 -0.3 0.1
S1 medium EU excl. Fr 0.2 -0.2 -0.1 0.2 0.2
S1 medium EU incl. Fr 0.4 -0.4 0.3 0.0 0.3
S1 high Fr 0.0 0.0 0.6 -0.7 -0.1
S1 high EU excl. Fr 0.1 -0.2 -0.4 0.7 0.1
S1 high EU incl. Fr 0.1 -0.2 0.2 0.0 0.1
S2 low Fr 1.8 0.4 -1.0 -1.0 0.2
S2 low EU excl. Fr -0.2 -0.1 -0.5 0.9 0.1
S2 low EU incl. Fr 1.6 0.3 -1.5 0.0 0.3
S2 medium Fr 1.5 0.3 -0.8 -0.9 0.2
S2 medium EU excl. Fr -0.2 -0.1 -0.5 0.8 0.0
S2 medium EU incl. Fr 1.2 0.3 -1.3 0.0 0.2
S2 high Fr 1.4 0.4 -0.5 -1.1 0.3
S2 high EU excl. Fr -0.2 -0.1 -0.8 1.1 0.0
S2 high EU incl. Fr 1.2 0.3 -1.3 0.0 0.2
S3 low Fr 1.8 0.6 0.7 -2.5 0.6
S3 low EU excl. Fr -1.2 -0.3 -1.1 2.5 -0.1
S3 low EU incl. Fr 0.6 0.3 -0.3 0.0 0.5
S3 medium Fr 1.5 0.4 0.8 -2.1 0.6
S3 medium EU excl. Fr -0.9 -0.3 -1.1 2.1 -0.2
S3 medium EU incl. Fr 0.5 0.2 -0.2 0.0 0.4
S3 high Fr 1.3 0.4 1.1 -2.1 0.7
S3 high EU excl. Fr -0.7 -0.2 -1.5 2.1 -0.2
S3 high EU incl. Fr 0.6 0.3 -0.4 0.0 0.4
S4 low Fr 0.6 0.2 0.5 -1.0 0.3
S4 low EU excl. Fr -0.4 -0.1 -0.5 1.0 -0.1
S4 low EU incl. Fr 0.2 0.1 0.0 0.0 0.3
S4 medium Fr 0.4 0.0 0.8 -0.8 0.4
S4 medium EU excl. Fr -0.3 -0.1 -0.6 0.8 -0.1
S4 medium EU incl. Fr 0.1 0.0 0.1 0.0 0.3
S4 high Fr 0.4 0.1 1.2 -1.1 0.6
S4 high EU excl. Fr 0.0 0.0 -1.4 1.1 -0.3
S4 high EU incl. Fr 0.3 0.1 -0.2 0.0 0.3
S5 low Fr -0.3 -0.2 0.4 0.1 0.1
S5 low EU excl. Fr 0.1 0.0 0.0 -0.1 0.0
S5 low EU incl. Fr -0.2 -0.1 0.4 0.0 0.1
S5 medium Fr -0.5 -0.3 0.7 0.4 0.3
S5 medium EU excl. Fr 0.3 0.1 -0.2 -0.4 -0.1
S5 medium EU incl. Fr -0.2 -0.2 0.5 0.0 0.2
S5 high Fr -0.5 -0.3 1.1 0.2 0.5
S5 high EU excl. Fr 0.6 0.2 -1.0 -0.1 -0.2
S5 high EU incl. Fr 0.1 0.0 0.1 0.1 0.2
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Table D.3: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Cost of uncertainty – 15y w/o prolongation

State
Prob-
ability

Region
Invest
Costs

Fixed
O&M
Costs

Var.
Costs

Trade Balance
(Import Costs -

Export Revenues)

Net
Difference

S1 low Fr 0.1 0.0 0.2 -0.2 0.0
S1 low EU excl. Fr 0.1 -0.1 -0.3 0.2 0.0
S1 low EU incl. Fr 0.2 -0.1 -0.1 0.0 0.0
S1 medium Fr 0.0 0.0 0.1 -0.1 0.0
S1 medium EU excl. Fr 0.1 0.0 -0.1 0.1 0.0
S1 medium EU incl. Fr 0.1 0.0 0.0 0.0 0.0
S1 high Fr 0.0 0.0 0.0 0.0 0.0
S1 high EU excl. Fr 0.0 0.0 0.0 0.0 0.0
S1 high EU incl. Fr 0.0 0.0 0.0 0.0 0.0
S2 low Fr 0.1 0.0 0.2 -0.3 0.0
S2 low EU excl. Fr 0.0 -0.1 -0.2 0.3 0.1
S2 low EU incl. Fr 0.1 -0.1 0.0 0.0 0.0
S2 medium Fr 0.0 0.0 0.1 -0.1 0.0
S2 medium EU excl. Fr 0.0 0.0 0.0 0.1 0.0
S2 medium EU incl. Fr 0.0 0.0 0.0 0.0 0.0
S2 high Fr 0.0 0.0 0.0 -0.1 0.0
S2 high EU excl. Fr 0.0 0.0 0.0 0.1 0.0
S2 high EU incl. Fr 0.0 0.0 0.1 0.0 0.0
S3 low Fr 2.6 0.3 -0.8 -2.5 -0.4
S3 low EU excl. Fr -0.2 0.1 -2.2 2.5 0.2
S3 low EU incl. Fr 2.4 0.3 -2.9 0.0 -0.2
S3 medium Fr 2.2 0.3 -0.6 -2.2 -0.4
S3 medium EU excl. Fr -0.1 0.1 -2.0 2.2 0.2
S3 medium EU incl. Fr 2.1 0.3 -2.6 0.0 -0.2
S3 high Fr 1.6 0.2 -0.5 -1.6 -0.3
S3 high EU excl. Fr 0.0 0.1 -1.5 1.6 0.2
S3 high EU incl. Fr 1.6 0.3 -2.0 0.0 -0.2
S4 low Fr 1.4 0.2 0.0 -1.6 0.0
S4 low EU excl. Fr -0.8 -0.2 -0.7 1.6 -0.1
S4 low EU incl. Fr 0.5 0.0 -0.6 0.0 -0.1
S4 medium Fr 0.9 0.2 -0.1 -0.9 0.1
S4 medium EU excl. Fr -0.6 -0.1 -0.3 0.9 -0.1
S4 medium EU incl. Fr 0.3 0.0 -0.4 0.0 -0.1
S4 high Fr 0.1 0.0 -0.2 0.2 0.1
S4 high EU excl. Fr -0.3 -0.1 0.4 -0.1 -0.1
S4 high EU incl. Fr -0.1 0.0 0.2 0.0 0.0
S5 low Fr -0.1 0.0 -0.1 0.3 0.0
S5 low EU excl. Fr 0.1 0.0 0.2 -0.3 0.0
S5 low EU incl. Fr -0.1 0.0 0.1 0.0 0.0
S5 medium Fr -0.5 -0.1 -0.2 0.8 0.1
S5 medium EU excl. Fr 0.2 0.1 0.5 -0.8 0.0
S5 medium EU incl. Fr -0.3 0.0 0.3 0.0 0.0
S5 high Fr -1.2 -0.2 -0.3 1.8 0.1
S5 high EU excl. Fr 0.6 0.2 1.0 -1.8 0.0
S5 high EU incl. Fr -0.6 0.0 0.6 0.0 0.1
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Table D.4: Accumulated (discounted) system cost differences differentiated by cost
categories in bn e 2010 (2010-2050): Cost of uncertainty – 0y w/o prolongation

State
Prob-
ability

Region
Invest
Costs

Fixed
O&M
Costs

Var.
Costs

Trade Balance
(Import Costs -

Export Revenues)

Net
Difference

S1 low Fr 0.0 0.0 0.6 -0.7 -0.1
S1 low EU excl. Fr 0.1 -0.2 -0.4 0.6 0.1
S1 low EU incl. Fr 0.1 -0.2 0.2 0.0 0.1
S1 medium Fr 0.0 0.0 0.5 -0.5 0.0
S1 medium EU excl. Fr 0.0 -0.2 -0.3 0.5 0.1
S1 medium EU incl. Fr 0.0 -0.2 0.2 0.0 0.1
S1 high Fr 0.0 0.0 0.3 -0.4 0.0
S1 high EU excl. Fr 0.0 -0.2 -0.1 0.4 0.1
S1 high EU incl. Fr 0.0 -0.1 0.2 0.0 0.0
S2 low Fr 0.0 0.0 0.0 -0.1 0.0
S2 low EU excl. Fr 0.0 0.0 0.0 0.1 0.0
S2 low EU incl. Fr 0.0 0.0 0.0 0.0 0.0
S2 medium Fr 0.0 0.0 0.0 0.0 0.0
S2 medium EU excl. Fr 0.0 0.0 -0.1 0.0 0.0
S2 medium EU incl. Fr 0.0 0.0 -0.1 0.0 0.0
S2 high Fr 0.0 0.0 -0.1 0.1 0.0
S2 high EU excl. Fr 0.0 0.0 0.0 -0.1 0.0
S2 high EU incl. Fr 0.0 0.0 0.0 0.0 0.0
S3 low Fr 9.0 1.0 -0.9 -5.4 3.7
S3 low EU excl. Fr -0.1 0.3 -5.3 5.5 0.3
S3 low EU incl. Fr 8.9 1.3 -6.2 0.0 4.0
S3 medium Fr 5.8 0.8 -1.0 -3.3 2.2
S3 medium EU excl. Fr -0.2 0.2 -3.3 3.3 0.0
S3 medium EU incl. Fr 5.6 0.9 -4.4 0.0 2.2
S3 high Fr 0.0 0.0 0.0 0.1 0.0
S3 high EU excl. Fr 0.0 0.0 0.0 -0.1 0.0
S3 high EU incl. Fr 0.0 0.0 -0.1 0.0 0.0
S4 low Fr 15.5 1.2 -4.1 -7.6 5.0
S4 low EU excl. Fr -1.0 0.1 -6.5 7.7 0.3
S4 low EU incl. Fr 14.5 1.3 -10.6 0.0 5.2
S4 medium Fr 11.8 0.7 -4.6 -3.7 4.3
S4 medium EU excl. Fr -0.4 0.1 -3.4 3.7 0.1
S4 medium EU incl. Fr 11.4 0.9 -8.0 0.0 4.4
S4 high Fr -0.8 -0.3 -0.7 1.9 0.1
S4 high EU excl. Fr 0.4 0.2 1.3 -1.9 0.0
S4 high EU incl. Fr -0.3 -0.1 0.6 0.0 0.1
S5 low Fr -1.4 -0.2 -0.4 2.2 0.2
S5 low EU excl. Fr 0.6 0.2 1.4 -2.1 0.0
S5 low EU incl. Fr -0.8 0.0 1.0 0.0 0.2
S5 medium Fr -3.6 -0.7 -0.7 6.1 1.1
S5 medium EU excl. Fr 1.2 0.3 4.5 -6.1 -0.2
S5 medium EU incl. Fr -2.5 -0.4 3.7 0.0 0.9
S5 high Fr -9.3 -1.3 6.8 10.1 6.4
S5 high EU excl. Fr 1.5 0.2 7.9 -10.1 -0.5
S5 high EU incl. Fr -7.7 -1.1 14.7 0.0 5.8
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