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1 Abstract 
The expression of a gene from transcription of the DNA into pre-messenger RNA (pre-

mRNA) over translation of messenger RNA (mRNA) into protein is constantly monitored 

for errors. This quality control is necessary to guarantee successful gene expression. One 

quality control mechanism important to this thesis is called nonsense-mediated mRNA 

decay (NMD). NMD is a cellular process that eliminates mRNA transcripts harboring 

premature translation termination codons (PTCs). Furthermore, NMD is known to 

regulate certain transcripts with long 3′ UTRs. However, some mRNA transcripts are 

known to evade NMD. The mechanism of NMD activation has been subjected to many 

studies whereas NMD evasion or suppression still remains rather elusive. It has 

previously been shown that the cytoplasmic poly(A)-binding protein (PABPC1) is able to 

suppress NMD of certain transcripts. In this study I show that PABPC1 is able to 

suppress NMD of a long 3′ UTR-carrying reporter when tethered immediately 

downstream of the termination codon. I further am able to show the importance of the 

interaction between PABPC1 and eIF4G for NMD suppression, whereas the interaction 

between PABPC1 and eRF3a seems dispensable. These results indicate an involvement 

of efficient translation termination and potentially ribosome recycling in NMD 

suppression. I am able to show that if PABPC1 is too far removed from the terminating 

ribosome NMD is activated. After showing the importance of PABPC1 recruitment 

directly downstream of a terminating ribosome in NMD suppression, I am further able to 

demonstrate several different methods by which PABPC1 can be recruited. Fold-back of 

the poly(A)-tail mediated by two interacting proteins on opposite ends of a 3′ UTR 

manages to bring PABPC1 bound to the poly(A)-tail into close proximity of the 

terminating ribosome and therefore suppress NMD. Furthermore, small PAM2 peptides 

that are known to interact with the MLLE domain of PABPC1 are able to strongly 

suppress NMD initiated by either a long 3′ UTR or an EJC. I am also able to show the 

NMD antagonizing power of recruited PABPC1 for the known endogenous NMD target β-

globin PTC39, which is responsible for the disease β-thalassemia. This shows the 

potential medical implications and application of suppressing NMD by recruiting 

PABPC1 into close proximity of a terminating ribosome.   
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2 Deutsche Zusammenfassung 
Die Expression eines Gens angefangen mit der Transkription der DNA in prä-Messenger 

RNA (prä-mRNA) über Translation von Messenger RNA (mRNA) in ein Protein ist ein 

stark überwachter Prozess. Diese Qualitätskontrolle ist notwendig, um fehlerfreie 

Genexpression zu gewährleisten. Ein wichtiger Mechanismus zur Qualitätssicherung ist 

Nonsense-mediated mRNA decay (NMD) genannt. NMD ist ein zellulärer Prozess, der 

mRNA-Transkripte die ein vorzeitiges Stoppcodon (PTC) beherbergen eliminiert. 

Weiterhin ist bekannt, dass NMD bestimmte Transkripte mit langen 3′ UTRs regulieren 

kann. Allerdings erkennt NMD nicht alle Transkripte und es sind einige mRNA-

Transkripte bekannt die sich NMD entziehen. Der Mechanismus der NMD-Aktivierung 

wurde bereits vielen Studien unterzogen, während der Mechanismus der NMD 

Umgehung oder Unterdrückung noch relativ unerforscht ist. Es wurde zuvor schon 

gezeigt, dass das zytoplasmatische Poly(A)-bindende Protein (PABPC1) imstande ist 

NMD bestimmter Transkripte zu unterdrücken. In dieser Studie zeige ich, dass PABPC1 

in der Lage ist, NMD eines langen 3′ UTR-tragenden Reporters zu unterdrücken, wenn es 

unmittelbar nach dem Terminationscodon gebunden ist. Ich bin weiter in der Lage, die 

Bedeutung der Interaktion zwischen PABPC1 und eIF4G in der NMD Unterdrückung zu 

zeigen, während die Interaktion zwischen PABPC1 und eRF3a hierfür entbehrlich 

erscheint. Diese Ergebnisse deuten auf eine Beteiligung von effizienter 

Translationstermination und Ribosom-Recycling in der Unterdrückung von NMD hin. 

Nachdem ich die Bedeutung der Rekrutierung von PABPC1 direkt hinter einem 

Terminationscodon in der Unterdrückung von NMD zeigen konnte, war es mir weiterhin 

möglich verschiedene Methoden zu zeigen, mit denen PABPC1 rekrutiert werden kann. 

Das Zurückfalten des Poly(A)-Schwanzes durch zwei interagierende Proteine an 

gegenüberliegenden Enden einer 3′ UTR ermöglicht es PABPC1, welches am Poly(A)-

Schwanz gebunden ist, in die Nähe des terminierenden Ribosoms zu bringen und somit 

NMD zu unterdrücken. Weiterhin zeige ich, dass kleine PAM2 Peptide, die mit der MLLE 

Domäne von PABPC1 interagieren, in der Lage sind NMD aktiviert durch entweder einer 

lange 3′ UTR oder eines EJC zu unterdrücken. Die PAM2 Peptide unterdrücken NMD 

durch die Rekrutierung von PABPC1  in die direkte Nähe des terminierenden Ribosoms. 

Außerdem bin ich in der Lage NMD des endogenen Transkripts β-Globin PTC39, welches 

für die Krankheit β-Thalassämie verantwortlich ist, durch die Rekrutierung von PABPC1 
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zu unterdrücken. Dies zeigt die potentiellen medizinischen Auswirkungen und mögliche 

Anwendung der NMD Unterdrückung durch PABPC1 auf. 
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3 Introduction 
Eukaryotic gene expression is a complex and highly regulated process. Messenger RNAs 

(mRNAs) are transcribed from DNA in the nucleus and serve as blueprints for protein 

synthesis before being degraded. Synthesis of mRNA starts in the nucleus in the form of 

a pre-mRNA (Moore, 2005; Moore and Proudfoot, 2009). Transcription from DNA to 

pre-mRNA is undertaken by RNA polymerase II (Pol II). Pre-mRNAs are subjected to co-

transcriptional 5′ end capping, splicing, 3′ end cleavage, and polyadenylation before the 

processed mRNA is exported to the cytoplasm. In the cytoplasm the mature mRNAs are 

translated into proteins by ribosomes and are eventually degraded. To ensure error-free 

gene expression, several quality control mechanisms exist in the living cell. One major 

quality control mechanism is called nonsense-mediated mRNA decay (NMD). NMD is 

responsible for recognizing and degrading mRNA transcripts with premature 

termination codons (PTCs) or other aberrant translation termination events. PTCs are 

known to arise through different mechanisms such as alternative splicing events, 

transcription errors, or due to mutations on the DNA level (Nicholson et al., 2010). 

Without NMD the aberrant transcripts could lead to the production of C-terminally 

truncated proteins with potential dominant-negative effects on the cell. In addition to 

the quality control function, NMD also regulates many so-called endogenous NMD 

targets. Thus, NMD is not only responsible for mRNA surveillance but also influences 

general gene expression. 

3.1 Poly(A)-binding proteins: A protein family regulating mRNA fate 

Poly(A)-binding proteins (PABPs) are a set of highly conserved proteins among 

eukaryotes. PABPs are RNA-binding proteins, specifically recognizing the poly(A)-tail of 

virtually all mRNAs in the cell. PABPs do not feature any catalytic or enzymatic activity 

themselves. However, they serve as interaction partner to a multitude of other proteins, 

which highlights the role of PABPs in many different cellular events such as translation, 

mRNA stability, or quality control.  

3.1.1 More than one PABP is present in human cells 

Metazoan cells express more than one PABP. Whereas there is more than one 

cytoplasmic PABP (PABPC), metazoan cells encode a single nuclear PABP (PABPN). 
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PABPCs and PABPN only share the ability to bind poly(A)-tails of RNAs but have no 

other common functions and they do not show any structural similarities. The most well 

researched PABPC is called cytoplasmic poly(A)-binding protein 1 (PABPC1) (Kuhn and 

Wahle, 2004). Even though PABPC1 is mostly localized in the cytoplasm, it was also 

found to be able to shuttle into the nucleus. PABPN1 is known to bind to the poly(A)-tail 

of mRNAs in the nucleus and is required for mRNA export into the cytoplasm (Apponi et 

al., 2010). Since both PABPC1 and PABPN1 are known to shuttle between the nucleus 

and the cytoplasm it is difficult to determine the exact time point when PABPC1 replaces 

PABPN1 on mRNA transcripts. Mammalian cells encode three additional PABPs besides 

PABPC1 and PABPN1. Two of these PABPs are restricted to the germ line and are called 

testis-specific PABP (tPABP, PABPC2/PABPC3) and embryonic PABP (ePABP, ePAB). 

The third PABP is termed PABP4 or inducible PABP (iPABP). These three PABPs share 

the same domain structure with PABPC1. An additional PABP termed PABPC5 or PABP5 

is also found in mammals. However, the function of PABP5 has not been addressed and 

remains subject of further research (Gray et al., 2015; Kuhn and Wahle, 2004). 

3.1.2 PABPC1 structure and interaction partners 

PABPC1 is a 636 amino acid long protein with a molecular weight of about 70kDa. The 

N-terminal region of PABPC1 is comprised of four RNA recognition motifs (RRMs) that 

are connected by short linker regions. PABPC1 also harbors a C-terminal region 

connected to the N-terminal region by an unstructured linker region that is proline- and 

glutamine-rich. PABPC1 has a high binding affinity for poly(A), however it does exhibit a 

lower binding affinity for poly(U) and poly(G) as well (Kuhn and Wahle, 2004). PABPC1 

requires at least 12 adenosines for a high affinity interaction and covers about 25 

nucleotides on a saturated stretch of poly(A) (Kuhn and Wahle, 2004). The interaction 

between PABPC1 and the poly(A)-tail is mediated via the RRMs 1 and 2 of PABPC1 (Deo 

et al., 1999). The major roles of PABPC1 are in mRNA translation and stability. An 

additional important characteristic of PABPC1, which is of interest in this work, lies in 

its ability to affect the nonsense-mediated mRNA decay pathway.  

PABPC1 can interact with a multitude of other proteins that can influence mRNA fate. 

The interaction with other proteins is mediated either by some of the four different 

RRMs or by the C-terminal region. One such important interaction partner of PABPC1 

that binds to the RRMs is eIF4G. eIF4G is part of the eIF4F complex and plays a vital role 

in mRNA circularization and translation initiation. It has been shown that eIF4G binds to 



  Introduction 

3 
 

RRM2 of PABPC1 and this interaction is also believed to enhance the binding affinity of 

PABPC1 for the poly(A)-tail (Kuhn and Wahle, 2004; Safaee et al., 2012).  

Another important interaction partner of PABPC1 is eRF3a, which plays a role in 

translation termination. eRF3a is known to interact with PABPC1 via a so called PABP-

interacting motif 2 (PAM2 motif). The C-terminal region of PABPC1 harbors a specific 

stretch termed Mademoiselle (MLLE) domain, which has been shown to specifically 

recognize PAM2 motifs of other proteins (Kozlov et al., 2004). The PAM2 motifs 

comprise only a stretch of about 12 amino acids. Essential amino acids in the PAM2 

motif for the interaction with the MLLE domain of PABPC1 are known to be EFxP. These 

three amino acids are mostly conserved among PAM2 motifs originating from different 

PABPC1-interacting proteins (Kozlov and Gehring, 2010). The PAM2 motif was first 

discovered in PABP-interacting protein 1 (Paip1), Paip2, and eRF3a (Kozlov et al., 2001). 

After the initial discovery of PAM2-containing proteins, many more proteins harboring 

PAM2 have been found (Albrecht and Lengauer, 2004; Kozlov et al., 2001). Interestingly, 

even though PAM2-containing proteins interact with PABPC1 in the same way, they play 

roles in different cellular processes. This also explains why PABPC1, even though not a 

catalytically active protein itself, can influence so many different aspects of an mRNA. 

The interaction between PABPC1 and eRF3a is very important as it has been shown to 

play a role in polypeptide release and ribosome recycling (Hoshino et al., 1999; Kozlov 

and Gehring, 2010; Uchida et al., 2002). In contrast, other PAM2-containing proteins like 

PAN3 and TOB1 are known to play a role in deadenylation. PABPC1 is known to recruit 

the PAN2-PAN3 deadenylase complex directly by interacting with the PAM2-harboring 

protein PAN3 (Siddiqui et al., 2007). The other major deadenylase complex, CCR4-NOT, 

can also be recruited by PABPC1. However, this interaction is not mediated directly by 

PABPC1. The CCR4-NOT complex is recruited to the mRNA through the interaction 

between TOB1 and PABPC1 via the PAM2 motif and MLLE domain, respectively 

(Ezzeddine et al., 2007). This shows that PABPC1 can interact with proteins that 

influence the mRNA fate by, for example, either stabilizing the mRNA or by promoting 

deadenylation. Furthermore, the PABPC1-interacting protein PAIP2 is a known 

repressor of translation by interfering with the ability of PABPC1 to interact with the 

poly(A)-tail  (Khaleghpour et al., 2001). It is interesting to note that PABPC1 can interact 

with a multitude of PAM2-containing proteins, although with only one at a time, which 

can give rise to potentially contradictory functions. The determinant for an interaction 
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preference between PABPC1 and the many PAM2-containing proteins is currently 

unknown.  

In summary, PABPC1 is able to interact with many different proteins and plays an 

important role in multiple cellular processes. It does not influence the fate of an mRNA 

with direct catalytic activity but does so by acting as a scaffolding protein. Interestingly, 

PABPC1 can interact with proteins both favoring mRNA stability as well as proteins that 

will eventually lead to the degradation of the mRNA.  

3.2 EJC-mediated NMD: deposition, factors, and pathway  

3.2.1 Characteristics of the EJC 

Pre-mRNAs undergo several co-transcriptional processing steps in the nucleus. One such 

processing step important for NMD is splicing. During splicing the introns of a pre-

mRNA are excised and the exons are subsequently joined. Furthermore, an exon-

junction complex (EJC) is deposited 20 to 24 nucleotides upstream of the splice site. 

NMD targets mRNAs that harbor a PTC 50 to 55 nucleotides upstream of the final exon-

exon junction and fails to do so for many mRNAs carrying a stop codon downstream of 

this critical border (Nagy and Maquat, 1998; Thermann et al., 1998; Zhang et al., 1998a; 

Zhang et al., 1998b). The core EJC complex consists of four proteins: the heterodimer 

MAGOH/Y14, eIF4A3, and Barentsz (BTZ). The EJC remains bound to the mature mRNA 

during export into the cytoplasm until it is displaced by a translating ribosome (Dostie 

and Dreyfuss, 2002; Le Hir et al., 2000; Lejeune et al., 2002). Although a translating 

ribosome is sufficient to remove an EJC from an mRNA, an additional protein named 

PYM is known to aid in the displacement of the EJC from the mRNA (Gehring et al., 

2009). The EJC binds RNA not by recognizing a specific RNA sequence, but does so via 

the eIF4A3 component of the EJC. eIF4A3 is an ATPase known to strongly bind RNA in an 

ATP-dependent manner. The reason why the EJC is able to stay on the mRNA during 

export as well as thereafter, is due to the partial inhibition of the ATPase activity of 

eIF4A3. This is achieved by the heterodimer Y14 and MAGOH that are able to lock the 

EJC onto the mRNA by stabilizing a closed formation of eIF4A3 (Andersen et al., 2006; 

Ballut et al., 2005; Bono et al., 2006; Mishler et al., 2008). Besides the four core EJC 

components mentioned above, there are several other known EJC factors that are not 

part of this core complex. One of these so called peripheral EJC components is the RNA-

binding protein with serine rich domain 1 (RNPS1). RNPS1 is known to function as a 
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general co-activator of splicing and is also able to communicate the position of the EJC 

on the mRNA to other factors of the NMD machinery, which are discussed in more detail 

later (Le Hir et al., 2000; Lykke-Andersen et al., 2001; Mayeda et al., 1999). Furthermore, 

the EJC serves as a binding platform for a multitude of other proteins involved in the 

NMD pathway (Chang et al., 2007). 

3.2.2 Central factors involved in NMD and their interplay  

There are many factors known to be involved in NMD with more factors most likely still 

unknown. Of all the factors involved in NMD arguably the most important one is the 

central NMD factor UPF1 (up-frameshift 1), which is involved in the pivotal stages of the 

NMD mechanism (Chang et al., 2007). UPF1 was first discovered in yeast more than 30 

years ago alongside UPF2 and UPF3 (Cui et al., 1995; Leeds et al., 1991; Leeds et al., 

1992). UPF1 has several different functions. It harbors a helicase domain which is able 

to unwind double stranded nucleic acids in a 5′ - 3′ directionality with the help of ATP 

hydrolysis. It has been shown that the helicase activity as well as the ability of UPF1 to 

bind RNA is essential for NMD (Mendell et al., 2002; Weng et al., 1996a, b). The ability of 

UPF1 to bind RNA directly is, according to the current model, necessary for the assembly 

of other NMD factors on UPF1. The RNA-binding ability of UPF1 is also mediated by its 

helicase domain (Bhattacharya et al., 2000; Cheng et al., 2007; Fairman-Williams et al., 

2010; Singleton et al., 2007). The first model of UPF1 recruitment to the NMD targeted 

mRNA proposed that the interaction between UPF1 and the release factor eRF3 (will be 

discussed in more detail later) at the terminating ribosome were responsible for this 

recruitment. This suggested that UPF1 recruitment is directly linked to active 

translation and that UPF1 is bound exclusively in close proximity of a termination codon. 

The complex formed by this interaction involved an additional protein called SMG1 

(discussed in more detail later) and the resulting complex was termed SURF-complex. 

(Kashima et al., 2006). However, it was more recently shown that UPF1 is able to bind 

over the whole 3′ UTR of an mRNA. UPF1 was additionally shown to also bind to other 

regions than the 3′ UTR of an mRNA, but the scanning and translating ribosome is able 

to displace UPF1. Displaced UPF1 is believed to increasingly bind to the 3′ UTR of a 

transcript as the ribosome stalls at the termination codon upstream of the 3′ UTR, 

unable to displace any UPF1 further downstream. This model further proposes that 

UPF1 occupancy of the 3′ UTR is responsible for NMD activation and not the direct 
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recruitment of UPF1 via the release factors eRF1 and eRF3 (Hurt et al., 2013; Kurosaki 

and Maquat, 2013; Zund et al., 2013).  

Additional to UPF1, there are two more UPF proteins termed UPF2 and UPF3. Together 

these proteins form the central set of NMD factors (Cui et al., 1995). An important role of 

UPF2 is to regulate the helicase activity of UPF1. UPF2 is able to do so by directly 

interacting with UPF1, causing conformational changes in UPF1, which results in the 

activation of the UPF1 helicase activity (Chakrabarti et al., 2011; Chamieh et al., 2008). 

UPF2 is further able to directly interact with UPF3, therefore providing a physical link 

between UPF1 and UPF3 (Chamieh et al., 2008). It is worth mentioning that higher 

eukaryotes contain two paralogs of UPF3, namely UPF3a and UPF3b (Lykke-Andersen et 

al., 2000; Serin et al., 2001). Besides both paralogs displaying some cross-regulation, 

UPF3b has been shown to be the dominant of the two paralogs (Kunz et al., 2006). 

UPF3b is able to directly interact with the EJC via a so called EJC-binding motif (EBM) in 

its C-terminal region (Buchwald et al., 2010; Chamieh et al., 2008; Gehring et al., 2003). 

This interaction provides a molecular link between UPF1 and the EJC complex and was 

proposed to play an important role during NMD (Chamieh et al., 2008). However, it has 

also been shown that UPF3b plays a role in EJC-independent NMD (Metze et al., 2013). 

As a result, the exact function of UPF3b in NMD remains subject of further research.  

3.2.3 Phosphorylation of UPF1 regulates NMD activity 

Besides the UPF proteins, the NMD machinery consists of several SMG (suppressor with 

morphogenetic effect on genitalia) proteins. In humans, the proteins SMG1 and SMG5-7 

have been shown to be part of the NMD core machinery (Denning et al., 2001; Ohnishi et 

al., 2003; Yamashita et al., 2001). Phosphorylation of UPF1 is known to be catalyzed by 

SMG1, a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family 

(Denning et al., 2001; Grimson et al., 2004; Yamashita et al., 2001). SMG1 is able to 

phosphorylate SQ and TQ motifs in the N- and C-terminal regions of UPF1 (Chakrabarti 

et al., 2014; Page et al., 1999; Yamashita et al., 2001). These phosphorylation sites of 

UPF1 act as binding platforms for other SMG proteins in the NMD pathway (Fukuhara et 

al., 2005). Specifically, SMG6 and SMG5/7 are able to interact with phosphorylated 

UPF1. Furthermore, it is important to note that SMG5 and SMG7 form a heterodimer and 

SMG5 alone is unable to interact with phosphorylated UPF1. SMG5 is therefore believed 

to offer additional binding strength between SMG7 and phosphorylated UPF1 

(Chakrabarti et al., 2014; Jonas et al., 2013; Obsil and Obsilova, 2011; Okada-Katsuhata 
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et al., 2012). The SMG proteins are known to activate two different pathways of mRNA 

degradation: exonucleolytic degradation via SMG5/7 and endonucleolytic degradation 

via SMG6 (Nicholson and Muhlemann, 2010). 

3.2.4 Exonucleolytic degradation via SMG5/7 

It has previously been shown that SMG7 is able to position-independently activate 

degradation of the NMD-targeted mRNA via XRN1 and DCP2 (Unterholzner and 

Izaurralde, 2004). XRN1 is a known 5′ - 3′ exoribonuclease and DCP2 is part of the 

decapping complex responsible for the removal of the 5′ cap structure before mRNA 

degradation (Ghosh and Jacobson, 2010). SMG7 is unable to initiate exonucleolytic 

degradation by directly recruiting XRN1 or DCP2. Instead, SMG7 interacts with POP2, 

the catalytic subunit of the CCR4-NOT complex, which is part of the deadenylation 

machinery in the cell (Loh et al., 2013). This recruitment of the CCR4-NOT complex via 

SMG7 initiates deadenylation of the transcript, followed by the recruitment of XRN1 and 

DCP2 as a result of deadenylation. This provides a link between UPF1 and 

phosphorylation-mediated activation of the SMG5/7-initiated exonuceolytic decay 

pathway. Furthermore, since SMG5/7 is known to interact and recruit part of the 

deadenlyation machinery, it is also feasible that the mRNA targeted by NMD can be 

degraded not only via XRN1-mediated 5′ - 3′ degradation but also in a 3′ - 5′ direction 

via the exosome.  

3.2.5 Endonucleolytic degradation via SMG6 

An additional degradation pathway of NMD targets was found when knockdown of the 

exonucleolytic machinery failed to stabilize NMD-targeted reporter mRNA levels in flies. 

At the same time, PTC-mediated endonucleolytic cleavage was found to occur on these 

targets (Gatfield and Izaurralde, 2004). It was then found that SMG6 is responsible for 

cleaving the target in close proximity of the PTC via its catalytically active PIN domain 

leading to degradation of the NMD target (Eberle et al., 2009; Gatfield and Izaurralde, 

2004; Glavan et al., 2006; Huntzinger et al., 2008). Similar to the heterodimer SMG5/7, 

SMG6 is recruited via a phospho-dependent interaction with UPF1. Additionally, SMG6 

can also interact with UPF1 in a phospho-independent manner (Chakrabarti et al., 2014; 

Okada-Katsuhata et al., 2012).  

Since NMD exhibits two different degradation pathways, it is of interest to examine the 

interplay between the two pathways. Recent information gathered through high-
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throughput sequencing experiments suggests that the SMG6-mediated endocleavage 

pathway is the major of the two NMD degradation pathways (Lykke-Andersen et al., 

2014; Schmidt et al., 2015). Even though SMG6-mediated degradation is most likely the 

more prominent of the two NMD degradation pathways, there seems to be a connection 

between SMG6- and SMG5/7-mediated degradation. It has been shown that knocking 

down either SMG6 or SMG5/7 alone is not enough to sufficiently inhibit NMD. Instead, 

both pathways need to be impaired simultaneously to achieve complete NMD inhibition 

(Jonas et al., 2013). These findings seem to indicate that inactivating one NMD pathway 

will result in the upregulation of the other, thereby ensuring effective NMD even when 

one pathway is compromised. It is still unknown, however, whether or not both 

pathways are able to act independently, or are able to affect each other either directly or 

indirectly through other proteins. For an activation overview of both degradation 

pathways see Figure 1. 
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Figure 1: NMD is able to activate two different degradation pathways: exonucleolytic and 

endonucleolytic.  

(Top) During normal translation termination PABPC1 interacts with ribosome-bound proteins to initiate 

translation termination. (Middle) During EJC- or long 3′-UTR-mediated NMD activation the terminating 

ribosome is too far removed from poly(A)-bound PABPC1, which results in inefficient translation 

termination and ultimately NMD activation. (Bottom) Both exonucleolytic and endonucleolytic decay 

pathways are activated by UPF1 interacting with the terminating ribosome, followed by SMG5/7- or 

SMG6-mediated degradation. 
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3.3 EJC-independent activation of NMD 

Critical criteria for NMD activation due to an EJC downstream of a PTC have been 

discussed in the previous sections. However, adding to the complexity of the NMD 

mechanism in general is the fact that NMD can also be activated without an EJC 

downstream of a termination codon. It has been shown that a reporter carrying an 

intron downstream of a PTC was degraded via NMD even after knocking down the core 

EJC component eIF4A3. A second experiment in the same study showed that a reporter 

without an intron downstream of a PTC was unaffected by an eIF4A3 knockdown and 

still degraded via NMD (Buhler et al., 2006). These results showed that NMD can in fact 

be activated without an EJC downstream of a stop codon. 

3.3.1 NMD activation due to a long 3′ UTR  

It has been proposed that the length of a 3′ UTR can be responsible for activation of NMD 

independently of an EJC downstream of the termination codon (Singh et al., 2008). 

Complementing these results are a set of reporter constructs harboring the 3′ UTRs of 

SMG5, UPF3b, or the heterologous GFP coding sequence as 3′ UTRs in separate 

triosephosphate isomerase (TPI) reporters for which active degradation via NMD has 

been shown (Boehm et al., 2014). The fact that the 3′ UTRs of the NMD factors SMG5 and 

UPF3b can elicit NMD indicates a self-regulatory mechanism of NMD. Furthermore, 

taking into account that a rather arbitrary sequence, in this case the heterologous GFP 

coding sequence, is actively targeted by NMD suggests that the mere length of a 3′ UTR is 

the determining factor for whether or not NMD is activated in the absence of an EJC 

downstream of a termination codon. In contrast, another study has recently shown that 

not all long 3′ UTRs are actually targeted for degradation via NMD (Toma et al., 2015). 

This study showed that several reporters contained certain NMD-inhibiting cis elements 

located within the first 200 nucleotides of the 3′ UTR. These cis elements were shown to 

be A/U rich and were able to inhibit NMD in a positional dependent manner. This was 

made evident by the fact that these 200 nucleotide A/U rich elements were able to 

suppress NMD when inserted directly downstream of a termination codon of otherwise 

NMD targeted reporters. Furthermore, there seems to be a second pathway of NMD 

evasion of long 3′ UTR reporters. Another set of mRNAs showed no NMD inhibiting 

effects of the first 600 nucleotides of a long 3′ UTR, however the full length 3′ UTR was 

able to suppress NMD. Taken together these results suggest that there are at least two 

pathways responsible for NMD inhibition of a long 3′ UTR.  
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As discussed earlier when describing the central NMD factor UPF1, the position of UPF1 

on the 3′ UTR can also influence the fate of an mRNA. Since UPF1 occupation of a 3′ UTR 

can differ from transcript to transcript, it is feasible why some mRNAs are targeted by 

NMD whereas others are not. Taken together, these results are an indication that the 

mere length of a 3′ UTR is not the determining feature for NMD activation. 

3.3.2 The faux 3′ UTR model in yeast 

Another model predating the findings in the previous section is termed the faux 3′ UTR 

model in yeast (Amrani et al., 2004). This model is based on the fact that a transcript 

harboring a PTC inevitably contains an elongated 3′ UTR. The model states that with 

increasing length of the 3′ UTR the interaction between the poly(A)-binding protein (in 

yeast called Pab1) and the terminating ribosome is becoming less efficient. Due to this 

inefficient or completely absent interaction between the ribosome at the termination 

codon and Pab1, the translation termination event is believed to be compromised and as 

a result NMD is activated. Furthermore, tethering Pab1 directly downstream of a PTC so 

that Pab1 is upstream of the long 3′ UTR is able to antagonize NMD. This is believed to 

be because of the re-established translation termination due to proximity of Pab1 to the 

ribosome. Since yeast lack EJCs in general, it is believed that NMD targets in yeast are 

exclusively recognized based on 3′ UTR length (Muhlrad and Parker, 1999). This model 

was the first to implicate 3′ UTR length as a result of translation termination in NMD.  

3.4 The link between translation and NMD 

3.4.1 Translation initiation 

To fully understand the link between NMD and translation, it is necessary to take a 

separate look at translation initiation as well as translation termination events. 

Translation initiation is the step-wise process in which a ribosome is assembled on a 

mature mRNA in the cytoplasm in order to start translating the mRNA into protein. 

Several eukaryotic initiation factors (eIFs) play a pivotal role in the complex process of 

translation initiation. The first step in translation initiation is the recognition of the 5′ 

m7G (methyl-7-guanosine) cap structure on the cytoplasmic mRNA by the eIF4F 

complex (Jackson et al., 2010). The eIF4F complex is comprised of the cap-binding 

protein eIF4E, the scaffolding protein eIF4G, and the DEAD-box helicase eIF4A. This 

complex is essential for translation initiation as it is responsible for the recruitment of 
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the small ribosomal subunit (Sonenberg and Dever, 2003). Additionally, eIF4G is 

responsible for the interaction between the cap-bound eIF4F complex and the 

cytoplasmic poly(A)-binding protein that is bound to the 3′ poly(A)-tail of mRNAs 

(Imataka et al., 1998). This interaction between 5′-bound eIF4G and 3′-bound PABPC1 

was shown to give rise to a circularized form of the mRNA, which is believed to facilitate 

recycling of terminating ribosomes as well as enhance translation initiation (Amrani et 

al., 2008; Kahvejian et al., 2005; Wells et al., 1998). Before the complete 80S ribosome 

can be assembled on the mRNA, the 43S pre-initiation complex (PIC) is assembled on the 

mRNA by interacting with the eIF4F complex. This 43S PIC consists of several eIFs and 

the 40S ribosomal subunit (Jackson et al., 2010). An important function of the helicase 

component eIF4A of the eIF4F complex is believed to be the scanning of the 5′ UTR in a 

5′ to 3′ directionality. This action is hypothesized to clear the mRNA 5′ UTR of any 

unwanted secondary structures or bound proteins to free a space for the 43S PIC-

binding to the mRNA (Pestova and Kolupaeva, 2002). Scanning of the 43S PIC 

commences until an AUG start codon is decoded by the initiator methionine tRNA. After 

recognition of the start codon, the remaining eIFs are released from the mRNA, the 60S 

ribosomal subunit is able to join the PIC to form the complete 80S ribosome, and the 

elongation process is starting (Jackson et al., 2010). 

3.4.2 Proper translation termination 

Protein synthesis does not only require translation initiation but also efficient 

translation termination. Translation termination ensures that ribosomes are being freed 

from the mRNA to start another round of translation as well as the proper release of a 

finished polypeptide chain. A simplified overview of translation termination can be seen 

in figure 2. The translating ribosome stops the active translation process when 

encountering a stop codon (UAA, UAG, and UGA) in the ribosomal A-site. The 

termination process requires two important proteins: eukaryotic release factor 1 (eRF1) 

and eukaryotic release factor 3 (eRF3). The eRF3 protein, a GTPase, exists as two 

paralogs called eRF3a and eRF3b in mammalian cells. It has been shown that in human 

cells eRF3a is the main factor implicated in translation termination (Chauvin et al., 2005; 

Hoshino et al., 1998; Hoshino et al., 1989). The direct involvement of eRF3 in translation 

termination has been shown by eRF3 being required for eRF1 stability in the cell 

(Chauvin et al., 2005; Janzen and Geballe, 2004). Structurally, eRF1 mimics a tRNA and 

can therefore decode stop codons by binding in the ribosomal A-site (Chavatte et al., 
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2001; Frolova et al., 1999). After binding the ribosomal A-site, eRF1 promotes 

hydrolysis of the synthesized polypeptide chain via its GGQ motif. This process is 

supplemented by eRF3 as the hydrolytic activity of eRF1 is stimulated by GTP hydrolysis 

of eRF3. This stimulation is co-dependent, as eRF3 has an inherently low GTP 

hydrolyzing activity that is stimulated in turn by the formation of a quaternary complex 

consisting of GTP, eRF1, eRF3 and the ribosome (Alkalaeva et al., 2006; Frolova et al., 

1996; Frolova et al., 1999; Salas-Marco and Bedwell, 2004; Song et al., 2000; 

Zhouravleva et al., 1995). After the peptide is successfully released, the ribosome 

remains bound to the mRNA. To free up the termination codon for any approaching 

upstream ribosomes, the ribosome at the termination codon needs to be removed and 

potentially recycled for another round of translation. The stalled ribosome is dissociated 

from the mRNA by the ATP-binding cassette subunit family E member 1 (ABCE1) 

ATPase. The process of ribosome splitting involves ATP hydrolysis by ABCE1. The exact 

mechanism by which the ribosome is removed and recycled via ABCE1 is currently 

unknown. However, several key steps have been elucidated. An important requirement 

for ribosome splitting by ABCE1 is the interaction with eRF1 after eRF3 dissociates from 

eRF1 (Pisarev et al., 2010). Additionally, ABCE1 is also known to interact with the 

ribosome directly (Barthelme et al., 2011; Becker et al., 2012). The process of ribosome 

removal and recycling is an important mechanism of translation termination as a whole, 

as it ensures continuous use of the recycled ribosomes as well as an increase in mRNA 

survivability. An additional factor important for translation termination is PABPC1, 

which is known to interact with eIF4G (Safaee et al., 2012; Tarun and Sachs, 1996). As 

mentioned above, this interaction mediates the closed loop formation of the mRNA, 

which is believed to facilitate ribosome recycling and translation termination in general 

by bringing the 5′ end and the 3′ end of the mRNA into close proximity (Amrani et al., 

2008; Kahvejian et al., 2005; Wells et al., 1998). Additionally, PABPC1 is also known to 

be a potent interaction partner of eRF3. This interaction plays a vital role in translation 

termination as it allows for efficient polypeptide release as well as ribosome recycling 

(Hoshino et al., 1999; Kozlov and Gehring, 2010; Uchida et al., 2002). 
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Figure 2: Steps during normal translation termination.  

(A) After translation initiation, the ribosomes translate along the ORF until it encounters a termination 

codon. PABPC1 interacts with eIF4G of the eIF4F complex resulting in a circularized mRNA. (B) Once the 

ribosome stalls at a termination codon it binds the two release factors eRF1 and eRF3a. Poly(A)-bound 

PABPC1 is able to interact with eRF3a bound to eRF1 at the ribosome, signaling a proper translation 

termination event. (C) As a result of a proper translation termination, the finished protein is released from 

the ribosome and the latter is removed from the mRNA, opening up the termination codon for any 

subsequent approaching ribosome. 

3.4.3 Steps in aberrant translation termination and the link to NMD 

Not all termination events are created equal and although some similarities between 

normal and aberrant translation termination events exist, there are several significant 

differences that can lead to the activation of NMD. The most important similarity is that 
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a PTC, just like a normal termination codon (NTC), enters the A-site of the ribosome. 

However, the subsequent steps are different. An indication for a significant difference 

between ribosomes encountering a PTC and an NTC can be seen by ribosomal profiles. 

Toeprinting assays have shown that there are no signals for ribosomes encountering an 

NTC unless eRF1 is removed. In stark contrast to this are the toeprinting signals 

generated for a PTC-carrying mRNA. In this case, typical signals for a stalled ribosome 

with an occupied A-site are shown independently of eRF1 (Amrani et al., 2004). An 

additional indication for an aberrant translation termination event is shown by 

toeprinting assays for the well-known NMD target β-globin NS39, which carries a PTC at 

amino acid position 39. In this case, toeprinting assays show signals for a stalled 

ribosome for β-globin NS39, whereas the signals for β-globin wildtype mRNA are normal 

(Peixeiro et al., 2012). All these results point towards errors during translation 

termination that ultimately result in the ribosomes being stuck on the mRNA. Without 

the removal of the ribosome from the mRNA, the degradation of the mRNA is initiated. 

The exact mechanism by which this degradation is initiated is still unknown. However, a 

current model suggests a possible mechanism that could be responsible for the 

degradation of a PTC-carrying transcript (Singh et al., 2008). This model suggests that a 

stalled ribosome at a PTC is still able to bind the release factors eRF1 and eRF3 in the 

same manner as when a ribosome encounters an NTC. The major difference, however, is 

in the interaction partner of eRF3. It has been shown that the central NMD factor UPF1 is 

able to interact with eRF3, however, the interaction between eRF3 and PABPC1 is 

normally favored (Kashima et al., 2006; Singh et al., 2008). The fact that UPF1 is able to 

interact with eRF3, which plays a vital role in translation termination, suggests that 

there might be a competition between PABPC1 and UPF1 for eRF3 binding. In case of a 

PTC, just like the faux 3′ UTR model in yeast suggests, the ribosome is further removed 

from the poly(A)-tail and therefore PABPC1. This could lead to an inefficient interaction 

between PABPC1 and eRF3, which would allow for the less favored interaction between 

3′ UTR-populated UPF1 and ribosome-bound eRF3 to occur more readily. In turn, this 

would allow UPF1 to recruit other NMD factors and eventually initiate NMD. Supporting 

this competition model is an experiment that shows when increasing amounts of 

PABPC1 are added to an in vitro reaction, the interaction between UPF1 and eRF3 can be 

prevented (Singh et al., 2008). Furthermore, reporter mRNAs carrying different PTCs  at 

various 5′ and 3′ positions show gradually less efficient NMD depending on the location 
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of the PTC (Eberle et al., 2008). Interestingly, in this set of data a PTC close to the start 

codon is able to evade NMD. This observation provides further evidence for the 

importance of the physical distance of PABPC1 from the terminating ribosome. In case of 

a PTC close to the start codon, the ribosome would stall close to the translation initiation 

site. Due to the closed loop form of the mRNA, PABPC1 would be in close proximity of 

the terminating ribosome due to its interaction with eIF4G. Furthermore, the discussed 

study uses a reporter with complementary RNA sequences in the 3′ UTR. On the one 

hand, the complementary sequences are positioned close to the PTC and on the other 

just upstream of the poly(A)-tail. Due to the complementary sequences interacting with 

each other, the 3′ UTR folds back the poly(A)-tail. This again brings PABPC1 bound to 

the poly(A)-tail into close proximity of the terminating ribosome and subsequent 

interaction with eRF3 can signal a normal translation termination event (Eberle et al., 

2008).  

These results show a possible model of NMD activation of a PTC by physically enlarging 

the distance between the terminating ribosome and poly(A)-bound PABPC1. Further 

research has to be performed to illuminate additional factors and intricacies of this 

mechanism.  

3.4.4 Active translation is necessary for NMD 

Early models of NMD stated that NMD was limited to the first or pioneer round of 

translation. This was believed to be the case because mRNA with cap-binding protein 80 

(CBP80) attached was targeted by NMD (Ishigaki et al., 2001). CBP80 is part of the 

nuclear cap binding complex that is added during transcription and stays on the mRNA 

until after the mRNA is exported into the cytoplasm and replaced by the eIF4F complex 

(Izaurralde et al., 1994; Lewis and Izaurralde, 1997; Sonenberg and Dever, 2003). Later 

studies refuted the notion that NMD is limited to the pioneer round of translation as it 

was shown, that NMD is also able to degrade mRNAs bound by eIF4E, which is part of 

the eIF4F complex (Durand and Lykke-Andersen, 2013; Rufener and Muhlemann, 2013). 

Furthermore, it has been shown that active translation is mandatory for the activation of 

NMD. Several experiments have highlighted this requirement. For example, structures in 

the 5′ UTR of an mRNA that are able to block ribosomal translation have been implicated 

in NMD inhibition (Belgrader et al., 1993). Another set of experiments established that 

protein synthesis inhibitors like cycloheximide, anisomycin, emetine, pactamycin, and 

puromycin are able to efficiently block NMD activation of a T-cell receptor mRNA 
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harboring a PTC (Carter et al., 1995). These examples highlight the need for active 

translation in order for NMD to be activated on an NMD-targeted mRNA.  

3.5 Additional NMD targets present in the cell 

There are several other classes of NMD substrates in the cell (Figure 3). One example are 

mRNAs for so called selenoproteins. Selenoproteins are a class of polypeptides that 

incorporate the unusual amino acid selenocysteine (Sec). The reason why selenoprotein 

coding transcripts can be targeted by NMD is because the UAG stop codon triplet can 

under specific circumstances also encode for Sec. Previous work showed that the 

stability of selenoprotein transcripts rely on the selenium concentration in the cell. 

Under low selenium conditions the transcript can be degraded via NMD since not 

enough Sec is present in the cell to be incorporated into the polypeptide. As a result the 

UAG codon is treated as a premature termination codon (Bermano et al., 1995; Berry et 

al., 1993; Hadley and Sunde, 2001; Lee et al., 1989).  

However, selenoprotein-coding mRNAs are not the only additional NMD target. 

Furthermore, transcripts containing an upstream open reading frame (uORF) can be 

targeted by NMD. A transcript harboring a uORF still contains a regular ORF 

downstream of the uORF. Since the uORF contains a stop codon, there will still be EJCs 

present in the regular ORF as the ribosome cannot translate the ORF. In this case, a 

uORF-containing transcript will be targeted and degraded by the NMD machinery 

(Mendell et al., 2004). Interestingly however, not all uORF transcript are targeted by 

NMD (Stockklausner et al., 2006). This indicates that even though a transcript harboring 

a uORF can be targeted by NMD, a uORF cannot generally be considered as an NMD 

activator.  

Additionally, certain genes can regulate their own expression levels by means of 

alternative splicing (Sureau et al., 2001). Alternative splicing leads to different mRNA 

transcript isoforms depending on which splice sites are utilized (Brett et al., 2000). 

Alternatively spliced pre-mRNAs can harbor a PTC, for example due to intron inclusion, 

which would result in the degradation of the transcript via NMD (Lewis et al., 2003).  
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Figure 3: Additional NMD substrates in the cell.  

 

Last but not least, long non-coding RNAs (lncRNAs) can be targeted by NMD as well. As 

discussed earlier, NMD requires active translation to degrade mRNAs. However, 

lncRNAs are believed to be untranslated as the name non-coding already implies. 

Therefore, it was surprising to see that the lncRNA growth arrest factor 5 (GAS5) was 

upregulated under UPF1 knockdown conditions (Tani et al., 2013). Later studies 

showed, however, that lncRNAs can actually be translated contrary to what was earlier 

believed (Chew et al., 2013). This could explain why some lncRNAs are targeted by NMD. 

These examples listed here show that NMD is not only a quality control mechanism in 

the cell but the role of NMD is more complex and broader than simply quality control.  
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3.6 Physiological implications of NMD 

3.6.1 Importance of NMD factors on cell viability 

NMD factors do not only play a vital role in the degradation of faulty mRNA transcripts 

but several factors also seem to be important for cell viability. It has been shown that 

multiple NMD factors are essential for embryonic development in mice (Hwang and 

Maquat, 2011). For example, knocking out the central NMD factor Upf1 in mice causes 

failure of embryonic development in early stages. After uterine implantation, mouse 

embryos lacking Upf1 die due to apoptosis. Additionally, homozygous deletion of Upf1 in 

ES cell lines could not be established and Upf1 null cells have never been observed 

(Medghalchi et al., 2001). Besides Upf1, Upf2 and Smg1 have also been implicated in cell 

survivability in mice. Upf2 deficient mice die in utero between embryonic day 3.5 and 

embryonic day 7.5, whereas Smg1 deficient mice die before embryonic day 12 (McIlwain 

et al., 2010; Weischenfeldt et al., 2008). Smg6 has also recently been shown to play a role 

in early development as Smg6 knockout mice have displayed embryonic lethality at the 

blastocyst stage (Li et al., 2015). 

These results show the important functions of several NMD factors besides their role in 

mRNA degradation during development and on cell viability. This makes studying the 

function of individual NMD factors difficult as many carry a role in cell survivability and 

knockout experiments are simply not viable. Using inducible systems where the NMD 

factors could be depleted at a later stage could help study the function of these proteins.  

3.6.2 NMD and genetic disorders 

Many inherited genetic disorders as well as cancers are caused by nonsense or 

frameshift mutations that lead to PTC-carrying transcripts. Over 2400 genetic disorders 

result from a nonsense mutation. Furthermore, a recent study suggests that about 11% 

of human genetic disorders are due to nonsense mutations (Culbertson, 1999; Mort et 

al., 2008; Peltz et al., 2013).  NMD is able to modify clinical phenotypes by degrading 

PTC-containing transcripts. This ensures that the cell does not express any C-terminally 

truncated proteins with potential dominant negative effects. One example showcasing 

this protective side of NMD can be seen in erythrocytes. Individuals suffering from the 

blood disorder called β-thalassemia have in many cases nonsense mutations in the first 

or second exon of the β-globin gene. These mutations result in a PTC in the β-globin 

mRNA transcript, which is recognized and therefore degraded by NMD. In heterozygous 
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individuals with one functional allele of the β-globin gene, the levels of truncated protein 

are kept very low by NMD and enough functional protein is synthesized from the wild 

type allele, ensuring that the individuals remain symptom free. Nonsense mutations in 

the final exon of β-globin are however not recognized by NMD as they lack an EJC 

downstream of the PTC. As a result, the transcript evades NMD and heterozygous 

individuals present an intermediate from of the disease called thalassemia intermedia 

(Hall and Thein, 1994).  

Although NMD can certainly be beneficial as seen in the example of β-thalassemia, there 

are physiological conditions that are worsened by NMD. NMD is not beneficial in cases 

where a truncated version of the protein would lead to a less severe medical condition of 

a genetic disorder. A specific example would be Duchenne muscular dystrophy (DMD). A 

nonsense mutation in the dystrophin gene leads to a PTC-carrying transcript which 

activates NMD. This leads to a severe form of DMD. However, there are other known 

mutations in the dystrophin gene that evade NMD and produce a C-terminally truncated 

version of the protein. This C-terminally truncated protein is known to be partially 

functional and results in a less severe form of DMD called Becker muscular dystrophy 

(BMD) (Kerr et al., 2001). These examples show that although NMD has a protective 

function in the cell, it is not always favorable to activate NMD. In some cases it would be 

in the patients’ interests to subdue NMD in order to increase levels of partially 

functional C-terminally truncated proteins.  

3.6.3 Treatment of physiological conditions resulting from NMD 

As described above it can be beneficial to deactivate NMD for certain transcripts to 

lessen clinical manifestations of a disease. There are two ways in which NMD can either 

directly or indirectly lead to a more severe form of a genetic disorder: directly, by 

degrading a transcript leading to an otherwise beneficial truncated protein, or indirectly 

by transcripts that escape NMD where a dominant negative effect protein will be 

expressed and active NMD would be beneficial. It would be of interest to generally 

stabilize a transcript that is targeted by NMD but would produce a favorable medical 

condition if it escaped NMD. Since blocking the NMD machinery in general could do 

more harm than good as many dominant-negative proteins could hypothetically be 

expressed, a potential read-through approach at PTCs is the more favorable approach 

(Kerem, 2004). Administering a drug that would potentially lead to read-through at a 

certain PTC could theoretically be used as treatment (Peltz et al., 2013). At first, 
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aminoglycosides were used to achieve translational read-through. In patients with cystic 

fibrosis or DMD the use of aminoglycosides was shown to be successful in increasing the 

respective protein levels. However, the aminoglycosides administered had severe side 

effects in patients such as renal failure, which limits the usage of aminoglycosides in 

humans (Kovesi et al., 1998). An alternative drug instead of aminoglycosides was 

proposed with the drug Ataluren. It has been proposed that Ataluren only selectively 

promotes read-through and does not affect translation termination at normal stop 

codons (Welch et al., 2007). The mechanism by which Ataluren acts has recently been 

challenged and the future of this drug remains to be seen as more clinical trials need to 

be carried out (Auld et al., 2009; McElroy et al., 2013). Generally, a treatment where 

specific NMD-targeted transcripts could be altered in a way that they evade NMD, 

coupled with efficient read-through drugs with minimal side effects could prove to be a 

favorable approach to treat genetic disorders caused by nonsense mutations.  

3.7 Aim of this thesis 

Nonsense-mediated mRNA decay plays a pivotal role in mRNA surveillance by targeting 

aberrant mRNA transcripts. Furthermore, NMD is also able to regulate endogenous 

mRNAs of non-aberrant nature. The factors involved in NMD as well as the mechanism 

of activation and the degradation pathways have been subjected to many studies. In 

contrast, the mechanism by which certain transcripts are able to escape NMD and 

important proteins involved in this process remain elusive.  

One protein that was previously shown to be able to suppress NMD is PABPC1. In this 

thesis I aim to elucidate the role of PABPC1 during NMD suppression. I further aim to 

characterize potential important and necessary interaction partners of PABPC1 involved 

in the suppression of NMD. After identifying other proteins and interactors of PABPC1, I 

aim to shed light on the potential mechanism by which PABPC1 is able to antagonize 

NMD. 

After elucidating the potential pathway, I further explore several different methods of 

suppressing NMD by recruiting PABPC1 to the correct position of an NMD-targeted 

substrate. Since NMD is implicated in regulating the clinical phenotype of many diseases 

I try to modulate disease associated transcripts with PABPC1 to discuss a potential 

outlook of NMD suppression via PABPC1 in a medical environment.  
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Combining these results I try to elucidate a part of the NMD suppression mechanism and 

factors involved as well as show multiple routes to achieve the antagonizing NMD effect.  
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4 Results 
NMD as an mRNA quality control mechanism targets a multitude of transcripts in the 

organism. Two of the main NMD target classes are degraded either due to an EJC 

downstream of a terminating ribosome or due to characteristics of certain 3′ UTRs. The 

mechanism by which some NMD targets are able to evade NMD is currently not fully 

understood. It is known that NMD of certain transcripts can be suppressed by PABPC1. 

Here, I aim to elucidate the role of PABPC1 in NMD suppression and propose a 

mechanism by which PABPC1 achieves this.   

4.1 PABPC1 is able to antagonize long 3′ UTR-mediated NMD 

PABPC1 plays an essential role in gene expression. It is required for mRNA 

circularization, thereby facilitating ribosome recycling, and for suppressing NMD at 

normal translation termination codons (Behm-Ansmant et al., 2007; Wells et al., 1998). 

Tandem tethering assays have previously shown that PABPC1 is able to suppress NMD 

when tethered upstream of an NMD-activating factor (Ivanov et al., 2008). However, the 

mechanism by which PABPC1 is able to antagonize NMD is not well understood. In light 

of this, I started investigating NMD suppression of long 3′ UTR-mediated NMD targets. It 

has previously been shown that the mRNA encoding for the NMD factor SMG5 

undergoes NMD due to its 3′ UTR (Singh et al., 2008). To study how PABPC1 can 

suppress NMD I used a triosephosphate-isomerase (TPI) reporter construct harboring 

the first 1037 nucleotides of the 3′ UTR of SMG5 downstream of 4MS2 binding sites, 

which are located directly downstream of the stop codon (Figure 4A). This reporter has 

been shown to be degraded due to the SMG5 3′ UTR (Boehm et al., 2014). Co-expressing 

and thereby tethering MS2V5-tagged PABPC1 to the reporter increased the steady-state 

mRNA levels by a factor of about four compared to the negative control MS2V5-GST 

(Figure 4B). The stabilization seen in this experiment suggests that PABPC1 is able to 

antagonize NMD induced by a long 3′ UTR.  
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Figure 4: PABPC1 stabilizes an NMD-targeted long 3′ UTR-containing reporter mRNA  

(A) Schematic representation of the TPI reporter carrying 4MS2-binding sites upstream of a shortened 

version of the SMG5 3′ UTR. The TPI ORF is represented as white boxes and introns are shown as lines 

connecting the boxes. (B) Northern blot of total RNA extracted from HeLa cells showing the stabilizing 

effect of MS2V5-PABPC1 when tethered to the reporter mRNA (left). Quantification of the northern blot 

with standard deviation represented as black bars (middle). Protein expression was detected by western 

blotting with anti-V5 and anti-GFP antibody (right). 

4.1.1 Increased reporter abundance is a consequence of PABPC1-mediated NMD 

suppression 

As mentioned in the introduction, PABPC1 is known to have a positive effect on general 

mRNA stability. I made use of two control reporters (Figure 5) to exclude the possibility 

that the stabilization effect observed when PABPC1 is tethered to the NMD reporter is 

not a general stabilization effect but instead is a consequence of NMD suppression. To 

this end, I used a reporter for which the NTC was mutated and a new stop codon appears 

downstream of the 4MS2 sites (Figure 5). This reporter is called TPI-∆ter-4MS2-SMG5. A 

lack of reporter stabilization was expected since the translating ribosome should 

displace the tethered PABPC1. Furthermore, the other reporter carried the 4MS2 

tethering sites downstream of the SMG5 3′ UTR instead of upstream and was called TPI-
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SMG5-4MS2 (Figure 5). Tethering PABPC1 to this reporter should fail to stabilize the 

transcript as PABPC1 is too far removed from the terminating ribosome. 

 

 
Figure 5: Schematic representation of TPI control reporters  

 

MS2V5-tagged PABPC1 tethered to the TPI-∆ter-4MS2-SMG5 reporter failed to 

antagonize NMD (Figure 6A). The same held true when MS2V5-PABPC1 was tethered to 

the reporter carrying the 4MS2 sites downstream of the SMG5 3′ UTR (Figure 6B). In 

both cases the reporter mRNA abundance was unchanged compared to the negative 

control. I performed an additional experiment to exclude any trans effects of PABPC1 on 

the initially used reporter construct. To this end, I co-expressed FLAG-tagged PABPC1 

with the TPI-4MS2-SMG5 reporter (Figure 6C). In this scenario FLAG-PABPC1 should 

not be directly tethered to the reporter as it carried a FLAG-tag and not an MS2V5-tag 

and should therefore fail to stabilize the reporter. The results of the northern blot 

showed that PABPC1 was unable to suppress NMD of the reporter in trans and only 

caused a slight increase in reporter levels (Figure 6C). This slight increase of about 1.5 

fold was negligible compared to MS2V5-PABPC1 tethered to the same reporter 

construct. Western blots for all three experiments showed that PABPC1 is expressed and 

therefore excluded the lack of PABPC1 expression as the reason for failing to suppress 

NMD (Figure 6). Combining the results obtained so far shows that PABPC1 is able to 

antagonize NMD activated by a long 3′ UTR specifically when tethered downstream and 

in close proximity of terminating ribosomes. 
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Figure 6: PABPC1 stabilization of a long 3′ UTR-carrying NMD reporter is position and tethering 

specific  

(A) Northern blot showing the stabilizing effect of MS2V5-PABPC1 tethered to the reporter mRNA. 

Quantification of the northern blot with standard deviation is represented with black bars. Protein 

expression was detected with anti-V5 and anti-GFP antibodies (Asterisk represents unspecific bands). (B) 

Northern blotting result of tethering MS2V5-PABPC1 to the TPI-SMG5-4MS2 reporter. Quantification and 

standard deviation is shown with black bars. Protein expression was detected with anti-V5 and anti-GFP 

antibody. (C) Northern blot showing trans effects of co-expressed FLAG-PABPC1 alongside the TPI-4MS2-

SMG5 reporter. Quantification and standard deviation are represented with black bars. Protein expression 

was detected using anti-FLAG and anti-GFP antibodies (Asterisk represents unspecific bands).  
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4.2 Interaction partners of PABPC1 necessary for NMD suppression 

4.2.1 The interaction between PABPC1 and eRF3a is not required for NMD 

suppression 

Current data suggest that PABPC1 competes with the central NMD factor UPF1 for 

eRF3a binding (Singh et al., 2008). It is suggested that UPF1 outcompetes PABPC1 for 

eRF3a binding when a ribosome is stalling at a termination codon upstream of a long 3′ 

UTR. This is speculated to be due to the large physical distance between poly(A)-tail 

bound PABPC1 and ribosome bound eRF3a. To elucidate which domains and interaction 

partners of PABPC1 play a role in the NMD suppression effect, I created several PABPC1 

mutants (Figure 7). It is known that PABPC1 interacts with the PAM2 motifs of eRF3a via 

its own C-terminal domain called MLLE (Mademoiselle) (Kozlov and Gehring, 2010). 

Therefore, I first made use of two PABPC1 mutants: PABPC1 MLLEMut, which carries a 

mutation of the MLLE motif to GAAR, and the PABPC1RRM1234 mutant, which lacks the 

entire C-terminal region (Figure 7). 

 

 
Figure 7: Schematic representation of the PABPC1 mutants used in this work 
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Surprisingly, tethering these two PABPC1 mutants to the TPI-4MS2-SMG5 reporter 

mRNA still led to an increase of about 3.5-fold in mRNA abundance (Figure 8A, lanes 3 

and 5). Next, I tested two additional PABPC1 mutants with impaired PAM2 interaction. 

The first mutant contained two additional point mutations (E564R and F567A) that are 

also known to play a role in PAM2 interaction (Kozlov et al., 2004).  

 

 
Figure 8: Interaction between PABPC1 and eIF4G necessary to suppress NMD  

(A) Northern blot showing the stabilizing effect of the MS2V5-PABPC1 mutants when tethered to the 

reporter mRNA. Quantification of the northern blot with standard deviation is represented with black 

bars. (B) Protein expression was detected by western blotting with anti-V5 and anti-GFP antibodies.  

 

This mutant was termed PABPC1 MLLEMut2 and the additional two point mutations 

ensure that the lack of NMD suppression is not due to any residual binding between 
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PABPC1 and eRF3a due to the lack of these two additional mutations in PABPC1 

MLLEMut (Figure 7). The second additional mutant termed PABPC11-496 is similar to 

PABPC1 RRM1234, but carries extra C-terminal amino acids (Figure 7). This mutant was 

used to show that only the lack of the C-terminal region containing the MLLE domain is 

implicated in the lack of NMD suppression and not the linker region.  

 

 
Figure 9: Additional PABPC1 mutants show that the interaction with eRF3a is dispensable for NMD 

suppression  

(A) Northern blot showing stabilization effect of additional PABPC1 mutants tethered to the reporter 

mRNA. Quantification and standard deviation is shown with black bars. (B) Protein expression was 

detected with anti-V5 and anti-GFP antibodies.  

 

Tethering these mutants to the SMG5 3′ UTR reporter also led to an increase in reporter 

mRNA abundance similar to PABPC1 wild-type tethering (Figure 9A). Western blots 

confirmed the expression of the tethered proteins (Figure 8B and figure 9B). These 



  Results 

30 
 

results were unexpected since PABPC1 mutants, which are unable to interact with 

eRF3a should not be able to compete with UPF1 for eRF3a binding at the stalling 

ribosome. This means that no stabilization of the SMG5 3′ UTR carrying reporter mRNA 

should have been observed, as NMD should have been initiated via the UPF1-eRF3a 

interaction. However, I clearly observed an increase in reporter mRNA upon tethering of 

the PABPC1 mutants unable to interact with eRF3a. This suggests that PABPC1 does not 

require the interaction with eRF3a to suppress NMD of a long 3′ UTR reporter mRNA 

when tethered downstream of the termination codon. Furthermore, these results also 

suggest that a direct competition for eRF3a binding between PABPC1 and UPF1 is not 

responsible for activating or suppressing NMD.  

4.2.2 PABPC1 needs the interaction with eIF4G to antagonize NMD 

Since I could rule out the interaction between eRF3a and PABPC1 as the determining 

factor of long 3′ UTR NMD suppression by PABPC1, I looked at the interaction with 

eIF4G next. The reasoning behind this was that the interaction between eIF4G and 

PABPC1 plays a pivotal role in mRNA circularization as well as efficient expression of 

polyadenylated mRNAs (Amrani et al., 2008; Wells et al., 1998). To abolish the 

interaction between eIF4G and PABPC1 I made use of two point mutations in PABPC1 at 

amino acid positions 161 and 165 (Figure 7, PABPC1M161A/D165K)  known to abolish the 

interaction with eIF4G (Kahvejian et al., 2005; Safaee et al., 2012). Interestingly, 

tethering the PABPC1M161A/D165K double mutant to the reporter carrying the SMG5 3′ 

UTR no longer inhibited the degradation of the reporter via NMD (Figure 8A, lane 4). I 

made use of an additional double mutant of PABPC1 harboring both the MLLE mutation 

as well as the M161A/D165K double mutations (Figure 7). Co-expressing and therefore 

tethering this mutant to the SMG5 3′ UTR reporter did not lead to any increase in 

reporter levels either (Figure 8A, lane 6). These results show that the interaction 

between PABPC1 and eIF4G is mandatory for PABPC1 to suppress NMD. In conclusion, I 

have shown here that PABPC1 and UPF1 competition for eRF3a binding does not seem 

to be a determining factor for NMD suppression. However, the interaction between 

PABPC1 and eIF4G is essential for NMD suppression by PABPC1. These results 

potentially implicate mRNA circularization and ribosome recycling in NMD suppression 

as the PABPC1-eIF4G interaction is known to play a role in both these processes.  
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4.3 PABPC1 does not affect EJC-mediated NMD 

So far I examined the ability of PABPC1 to antagonize NMD of a long 3′ UTR-carrying 

reporter as well as the importance of the interaction between PABPC1 and both eRF3a 

and eIF4G in this process. As mentioned earlier, NMD is not only restricted to long 3′ 

UTR-mediated NMD, but is also activated by the presence of an EJC downstream of the 

terminating ribosome. To gain further insight into NMD suppression by PABPC1 I next 

took a closer look at the ability of PABPC1 to antagonize EJC-mediated NMD. To this end, 

I used two reporter constructs harboring a MINX intron either downstream or upstream 

of the 4MS2 binding sites of the TPI-4MS2-SMG5 reporter (Figure 10A). The MINX intron 

is a short synthetic intron carrying adenoviral splice sites. During pre-mRNA processing 

the MINX intron is spliced and a site-specific EJC is deposited onto the reporter mRNA. 

The presence of this EJC downstream of the termination codon will lead to the activation 

of NMD. Strikingly, neither PABPC1 wild-type nor any of the PABPC1 mutants were able 

to suppress EJC-mediated NMD (Figure 10). When tethering PABPC1 upstream of the 

MINX intron I observed an increase in mRNA levels of about 1.5 fold (Figure 10B, lane 

2). The minimal level of stabilization of the reporter transcript was clearly decreased 

compared to NMD suppression of the 3′ UTR SMG5 reporter mRNA. Tethering PABPC1 

and the PABPC1 mutants to the reporter harboring the MINX intron upstream of the 

4MS2 tethering sites did not lead to any increase in reporter mRNA abundance either 

(Figure 10C). Western blot analysis showed that all MS2V5 fusion proteins were 

expressed and thus expression problems could be ruled out as an explanation for the 

decrease in reporter stabilization (Figure 10D). These results indicate that the presence 

of PABPC1 either upstream of downstream of an intron is unable to antagonize EJC-

mediated NMD. PABPC1 seems to play a role in the regulation of long 3′ UTR-containing 

transcripts but not EJC-targeted mRNAs. From these results I can conclude that PABPC1 

is mainly able to regulate NMD of long 3′ UTR-targeted transcripts.  
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Figure 10: PABPC1 is unable to antagonize EJC-mediated NMD  

(A) Schematic representation of MINX-containing reporters. MINX ORF is shown as a dark gray box and 

the MINX intron as lines connecting the ORF. (B) Northern blot showing the effect of the MS2V5-PABPC1 

mutants when tethered upstream of an intron. Quantification with standard deviation is represented with 

black bars. (C) Northern blot showing tethering effect of MS2V5-PABPC1 mutants tethered downstream of 

an intron. Quantification and standard deviation is shown with black bars. (D) Protein expression was 

detected with anti-V5 and anti-GFP antibodies.  

4.4 eRF3a requires the interaction with  PABPC1 for NMD suppression  

So far I have investigated the ability of PABPC1 to suppress NMD. I have shown that 

PABPC1 requires the interaction with eIF4G but not eRF3a to suppress NMD of a long 3′ 

UTR reporter. To gain further insight into the role of eRF3a in this mechanism, I tethered 

eRF3a directly to the TPI-4MS2-SMG5 reporter (Figure 11A). Tethering eRF3a to the 

NMD-targeted reporter suppressed NMD and increased mRNA reporter abundance by a 

factor of four (Figure 11A, lane 2). This result is surprising as I showed earlier that 
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PABPC1 does not require the interaction with eRF3a to suppress NMD. Therefore, to 

examine the significance of the interaction between eRF3a and PABPC1 in this scenario, 

I used a point mutant of eRF3a (eRF3a F76A) in the tethering assay. The phenylalanine 

at position 76 has been shown to be essential for the interaction between eRF3a and 

PABPC1 (Kononenko et al., 2010; Kozlov and Gehring, 2010; Osawa et al., 2012). When 

tethering eRF3a F76A to the reporter and comparing the mRNA abundance to tethered 

eRF3a, I could observe that the eRF3a F76A mutant had lost the ability to suppress NMD 

(Figure 11A, lane 3). The western blot showed the expression of the eRF3a mutant, 

making sure that the lack of reporter stabilization is not due to lower expression levels 

of eRF3a F76A (Figure 11A). Furthermore, I used the two control reporter mRNAs 

depicted in figure 5 to ensure the specificity of the observed effects. Tethering MS2V5-

eRF3a to either the reporter with the termination codon downstream of the 4MS2 sites 

or with the 4MS2 sites downstream of the SMG5 3′ UTR only marginally increased 

reporter levels (Figure 11B and C), confirming the specificity of the tethering assay.  

These results show that eRF3a can suppress NMD. However, eRF3a needs the 

interaction with PABPC1 to do so. Combining the results of this section with previous 

ones points to a linear mechanistic cascade with eRF3a at the terminating ribosome 

interacting with PABPC1, which in turn interacts with eIF4G. This hypothesis of a linear 

cascade is strengthened by the individual observation that eRF3a needs to interact with 

PABPC1, whereas PABPC1 only requires the interaction with eIF4G in order to suppress 

NMD.   
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Figure 11: eRF3a requires the interaction with PABPC1 to suppress NMD  

(A) Northern blot showing NMD antagonizing effect of MS2V5-eRF3a and MS2V5-eRF3a F76A. 

Quantification and standard deviation are indicated with black bars. Protein expression has been checked 

with anti-V5 and anti-GFP antibody. (B) Stabilizing effect of MS2V5-eRF3a when tethered to a reporter 

with the termination codon downstream of the 4MS2 binding sites. Quantification with standard deviation 

is represented with black bars and protein expression was checked with anti-V5 and anti-GFP antibody 

(Asterisk represents unspecific bands). (C) Northern blot showing stabilization effect of MS2V5-eRF3a on 

a reporter carrying 4MS2 binding sites downstream of the SMG5 3′ UTR. Quantification and standard 

deviation are shown with black bars and proteins were detected with anti-V5 and anti-GFP antibodies 

(Asterisk represents unspecific bands).  
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4.5 eIF4G antagonizes NMD independently of PABPC1 

Up to this point I could establish a linear cascade of protein interactions involved in 

NMD suppression with PABPC1 at its center. Having looked at eRF3a more specifically in 

the previous section, I next aimed to investigate the role of eIF4G and the importance of 

the interaction with PABPC1 further. To this end, I made use of an MS2V5-tagged 83 

amino acid truncated version of eIF4G (Figure 12, eIF4G ∆N83). Tethering MS2V5-eIF4G 

∆N83 to the TPI-4MS2-SMG5 reporter led to an increase in mRNA reporter abundance 

by a factor of three (Figure 13A, lane 2). A truncated version of eIF4G where the C-

terminal region was shortened, ranging only to amino acid 1089 (Figure 12, eIF4G 84-

1089) was still able to suppress NMD of the reporter (Figure 13A, lane 4). To establish 

the importance of the interaction between eIF4G ∆N83 and PABPC1 in NMD 

suppression, I made use of an N- and C-terminally truncated version of eIF4G, lacking 

the region responsible for PABPC1 interaction (Figure 12, eIF4G 206-1089). 

Surprisingly, tethering MS2V5-eIF4G 206-1089 to the TPI-4MS2-SMG5 reporter still led 

to an increase in reporter levels, albeit to a lesser degree compared to full length eIF4G 

(Figure 13A, lane 3). Furthermore, a shortened version of eIF4G carrying a 

KRERK/AAAAA mutation at position 187-191 (Figure 12, eIF4G 84-1089 KRERK), which 

was reported to no longer interact with PABPC1 (Wakiyama et al., 2000) was also still 

able to suppress NMD (Figure 13A, lane 5).  

 

 
Figure 12: Schematic representation of eIF4G domain structure and mutants 
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Figure 13: Interaction between eIF4G and PABPC1 is dispensable for NMD suppression  

(A) Stabilizing effect of MS2V5-eIF4G mutants when tethered to the TPI-4MS2-SMG5 reporter. 

Quantification with standard deviation is represented with black bars. (B) Western blot showing protein 

expression visualized with anti-V5 and anti-GFP antibodies (Asterisk represents unspecific bands). (C) 

Stabilization of the TPI-4MS2-SMG5 reporter mRNA when tethering MS2V5-eIF4G 84-294, which is only 

able to interact with PABPC1. Quantification shows standard deviation and is represented as black bars. 

Protein expression was shown with anit-V5 antibody. 

 

Furthermore, I tested the specificity of the eIF4G ∆N83 stabilization effect by tethering 

MS2V5-eIF4G ∆N83 to the reporters depicted in figure 5. Tethering MS2V5-eIF4G ∆N83 

to either the TPI-∆ter-4MS2-SMG5 or the TPI-SMG-4MS2 reporter did not cause any 

mRNA reporter stabilization (Figure 14A and B), thereby confirming the specificity of 

tethering effect in Figure 13A. Moreover, I made use of an additional eIF4G deletion 

mutant (eIF4G 84-294), which only contains the interaction site for PABPC1. This short 

form of eIF4G was able to suppress NMD of the TPI-4MS2-SMG5 reporter, which could 

be seen by a fivefold increase in reporter mRNA (Figure 13C). This result suggests that 

eIF4G is able to suppress NMD without any other factors but PABPC1, which is made 

evident by this short version of eIF4G unable to interact with any other protein but 

PABPC1. 

 



  Results 

37 
 

 
 Figure 14: Stabilization effect of eIF4G is specific  

(A) Stabilization effect of MS2V5-eIF4G on the TPI-∆ter-4MS2-SMG5 reporter. Quantification shows 

standard deviation and is represented as black bars. (B) Northern blot showing stabilization effect of 

MS2V5-eIF4G on TPI-SMG5-4MS2 reporter. Quantification and standard deviation are shown with black 

bars. (C) Protein expression of eIF4G (A and B) was detected with anti-V5 and anti-GFP antibodies 

(Asterisk represents unspecific bands).  

 

These results show that eIF4G is able to suppress NMD of a long 3′ UTR without 

interacting with PABPC1. However, the eIF4G deletion mutant lacking the N-terminal 

PABPC1 binding shows a slightly diminished stabilization effect. I could also show, that 

eIF4G does not require any other proteins besides PABPC1 as the small fragment from 

amino acid 84 to 294 is sufficient to suppress NMD. In conclusion, these results indicate 

that the interaction between eIF4G and PABPC1is not necessary but does favorably 

enhance NMD suppression by eIF4G.  
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4.6 PABPC1 acts as a general suppressor of long 3′ UTR-mediated NMD 

So far I have established that PABPC1, eRF3a, and eIF4G are able to suppress NMD of a 

reporter carrying the long 3′ UTR of SMG5 and have shown the dependencies of these 

proteins amongst each other. Our lab identified several other endogenous long 3′ UTR 

containing mRNAs that are subjected to NMD (unpublished data). To ensure that 

PABPC1 is able to suppress other endogenous NMD targets and is not limited to the 

SMG5 3′ UTR reporter, I used two tethering reporters containing the 3′ UTR of PDRG1 

and SURF6 downstream of 4MS2 binding sites (Figure 15A).  

 

 
 

Figure 15: PABPC1 and eRF3a are able to suppress multiple long 3′ UTR-mediated NMD targets  
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(A) Schematic representation of the two reporters harboring either the PDRG1 or SURF 3′ UTR. (B) 

Stabilizing effect of MS2V5-PABPC1 and MS2V5-eRF3a when tethered to the indicated reporter mRNA. 

Quantification with standard deviation is represented with black bars and protein expression was checked 

with anti-V5 antibody. (C) Stabilization of the reporter mRNA when tethering MS2V5-PABPC1 and 

MS2V5-eRF3a to the SURF6 3′ UTR-containing reporter. Quantification shows standard deviation and is 

represented as black bars. Protein expression was shown with anit-V5 antibody. 

 

As expected, both PABPC1 and eRF3a were able to antagonize degradation via NMD of 

both reporter constructs (Figure 15B and C). Tethering both proteins to each reporter 

stabilized the mRNA about three-fold compared to a negative GST-control (Figure 15B 

and C). These results indicate that PABPC1 and eRF3a are not only able to stabilize a 

reporter containing the SMG5 3′ UTR but also reporter constructs carrying the 3′ UTRs 

of PDRG1 and SURF6. All three of these endogenous mRNAs are known to be degraded 

via NMD due to their 3′ UTR length or composition. This suggests that NMD suppression 

by both PABPC1 and eRF3a is a general phenomenon that can act on different substrate 

mRNAs targeted by NMD due to their 3′ UTR.  

4.7 NMD inhibition by PTBP1 and other proteins known to interact with 

PABPC1 

Since I established that long 3′ UTR-mediated NMD can be suppressed by PABPC1, I next 

wanted to test whether or not there are other proteins that can suppress 3′ UTR-

mediated NMD. Therefore, I first looked at polypyrimidine tract binding protein 1 

(PTBP1). It has previously been reported that PTBP1 is able to protect certain long 3′ 

UTR-containing mRNAs from degradation via NMD (Ge et al., 2016). It is suggested that 

PTPB1 bound to the 3′UTR downstream but in close proximity of a termination codon 

blocks UPF1 from binding and thereby suppresses NMD (Ge et al., 2016). Here, I 

employed PTBP1 in a tethering assay to suppress NMD of the TPI-4MS2-SMG5 reporter 

mRNA (Figure 16A). Tethering MS2V5-PTBP1 to this reporter suppressed NMD to the 

same extent as PABPC1, about 3.5 fold (Figure 16A). Since PTBP1 is no known 

interaction partner of PABPC1, it seems possible to suppress NMD simply by blocking 

UPF1 binding in close proximity of the termination codon without the help of PABPC1. 

Another explanation for the NMD suppression effect by PTBP1 is that one PTBP1 protein 

is known to bind the mRNA 3′ UTR at several different places simultaneously (Ge et al., 

2016). PTBP1 bound downstream of a stop codon could also interact with the 3′ UTR 
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closer to the poly(A)-tail. This double interaction could potentially compact the mRNA 

and the poly(A)-tail closer to the stop codon. That way PABPC1 would be in closer 

proximity to the terminating ribosome and could potentially suppress NMD.  

As a next step, I wanted to test whether proteins that are known to indirectly interact 

with PABPC1 are able to suppress NMD when recruited downstream of a termination 

codon of an NMD-targeted reporter. To this end I tethered eRF1 to the same reporter 

(Figure 16B). Eukaryotic release factor 1 does not directly interact with PABPC1 but 

does so indirectly by interacting with eRF3a instead (Zhouravleva et al., 1995). Tethered 

eRF1 was able to stabilize the reporter mRNA about seven to eight fold (Figure 16B). 

Astonishingly, eRF1 is able to strongly suppress NMD, even though the protein does not 

directly interact with PABPC1. This effect seems rather surprising as the magnitude of 

increased mRNA levels is much greater compared to tethering PABPC1 alone. 

 

 
Figure 16: NMD suppression by PTBP1 and eRF1  

(A) Northern blot showing NMD suppression of the TPI-4MS2-SMG5 reporter by tethering PTBP1. 

Quantification showing standard deviation is represented with black bars. Protein expression was tested 
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for with anti-V5 antibody. (B) Northern blot showing antagonizing effect on NMD by tethering eRF1 to the 

TPI-4MS2-SMG5 reporter. Quantification with standard deviation is represented with black bars and 

protein expression was checked with anti-V5 antibody.  

 

These results show two additional ways of suppressing NMD. Surprisingly, PTBP1 is 

able to suppress NMD without the need for PABPC1 as the two proteins are no known 

interaction partners. However, the mechanism by which PTBP1 suppresses NMD seems 

to be different from PABPC1 as PTBP1 more likely inhibits UPF1 binding to the 

transcript, whereas PABPC1 potentially inhibits NMD by efficient translation 

termination and ribosome recycling. Furthermore, eRF1 is able to inhibit NMD although 

it only indirectly interacts with PABPC1 via eRF3a. This shows that PABPC1 can 

suppress NMD even when recruited through indirect interactions.  

4.8 Peptide-mediated fold-back of the poly(A)-tail stabilizes NMD-targeted 

mRNA 

Up to this point I have recruited PABPC1 directly downstream of a terminating 

ribosome, or recruited PABPC1 via a direct or indirect interaction partner to suppress 

NMD. It has previously been shown that NMD can also be suppressed by employing 

complementary RNA-mediated fold-back of the poly(A)-tail into close proximity of a 

termination codon (Eberle et al., 2008). By using this fold-back approach, PABPC1 is 

brought close to a terminating ribosome and can antagonize NMD. Here, I want to test 

whether NMD can be suppressed by employing fold-back of the poly(A)-tail mediated by 

tethered proteins.  

4.8.1 eRF3a and eRF1 suppress NMD by folding back the poly(A)-tail 

To this end, I used a TPI reporter containing 4MS2 binding sites 5′ of, and 4boxB binding 

sites 3′ of the SMG5 3′ UTR (Figure 17A). First, I tethered eRF3a F76A and eRF1, two 

known interaction partners, to this reporter and achieved a stabilization of the mRNA of 

about 1.5-fold (Figure 17B, lane 3). The F76A point mutant of eRF3a was used to avoid 

recruitment of PABPC1 via eRF3a itself. The observed effect albeit small is promising 

that NMD can be suppressed by protein-mediated fold-back of the poly(A)-tail. However, 

a potential drawback of using two endogenous proteins as mediators for fold-back is 

that they can interact with other proteins, which might have an effect on NMD 

suppression.  
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Figure 17: PABPC1-interacting proteins fold back the poly(A)-tail to suppress NMD  

(A) Schematic representation of the tandem tethering reporter harboring 4MS2/4boxB tethering sites 

downstream of TPI. The SMG5 3′ UTR is enclosed by the two tethering sites of the reporter. (B) Northern 

blot showing NMD suppression by using a tandem tethering approach on opposite ends of the 3′ UTR. 

Quantification with standard deviation is represented with black bars and protein expression was shown 

with anti-V5 antibody.  

4.8.2 Heterodimer formation of synthetic peptides suppresses NMD by folding 

back the poly(A)-tail 

Next, I tethered small, artificial peptides, which are able to interact and therefore fold 

back the poly(A)-tail in close proximity of the termination codon, 5′ and 3′ of a 3′ UTR. 

To achieve this, I made us of synthetic 45aa to 50aa coiled-coil peptides called SYNZIPs 

(Thompson et al., 2012). These SYNZIPs can form heterodimers and can potentially be 

used to fold back the poly(A)-tail into close proximity of a termination codon. In this 

study, I made use of SYNZIP 1 (45aa), SYNZIP 2 (50aa), and SYNZIP 14 (47aa). SYNZIP 2 

is able to interact with both SYNZIP 1 and 14, whereas SYNZIP 1 and 14 are unable to 

interact, thereby serving as a negative control (Figure 18B). I employed a tethering 

reporter with 4PP7 binding sites 5′ of, and 4MS2 binding sites 3′ of the SMG5 3′ UTR 

(Figure 18A). Tethering SYNZIPs 1 and 2 to the aforementioned reporter mRNA led to an 

about 3.5 fold increase of mRNA reporter levels (Figure 18C, lanes 4 and 5). The 

observed effect was specific as SYNZIPS 1 and 14, which do not form a heterodimer, 

were unable to antagonize degradation of the reporter (Figure 18C, lane 6). These 

results show that small, artificial peptides are able to suppress NMD by folding the 
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poly(A)-tail so that PABPC1 is in close proximity of the termination codon. This shows 

further, that PABPC1 is able to strongly counteract NMD even when recruited indirectly 

into the vicinity of a termination ribosome. 
 

 
Figure 18: Synthetic SYNZIP peptides antagonize NMD by folding back the poly(A)-tail  

(A) Schematic representation of the tandem tethering reporters harboring 4PP7/4MS2 tethering sites 

downstream of TPI. The SMG5 3′ UTR is enclosed by the two tethering sites. (B) Representation of the 

synthetic SYNZIP proteins and their interaction patterns. (C) Northern blot showing NMD suppression by 

tandem tethering of synthetic SYNZIPs. Quantification is represented as black bars with standard 

deviation indicated. V5 antibody was used to check protein expression. 
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4.9 PAM2 motifs are sufficient to antagonize NMD 

As mentioned in the introduction, PABPC1 contains a well-conserved 70 amino acid 

domain termed MLLE in its C-terminal region (Kozlov et al., 2001). It has been shown 

that this MLLE domain specifically recognizes a small peptide sequence called PAM2 

motif (Kozlov et al., 2004). Initially, three different proteins were identified carrying a 

PAM2 motif: PAIP1 (PABP-interacting protein 1), PAIP2, and eRF3 (Kozlov et al., 2001). 

Interestingly, eRF3 is different compared to other PAM2-containing proteins since it 

carries two overlapping PAM2 motifs (Kozlov et al., 2004). Other PAM2-containing 

proteins have been identified based on sequence homology (Kozlov and Gehring, 2010). 

Since PABPC1 strongly interacts with proteins harboring a PAM2 motif I made use of 

isolated PAM2 motifs of several proteins to recruit PABPC1 to an NMD-targeted reporter 

(Figure 19).  

 

 
Figure 19: Amino acid make up of PAM2 motifs  

Essential amino acids for interaction with PABPC1 are highlighted as gray boxes. Numbers left and right of 

the amino acid sequences refer to the amino acid position of the PAM2 motif in the respective proteins. 

The red colored amino acid indicates a mutation. 

4.9.1 PABPC1 recruitment via PAM2 motifs efficiently antagonizes NMD 

In this experiment I used a FLAG-tagged version of the TPI-4MS2-SMG5 reporter that 

allows for detection of changed expression levels due to tethered proteins by western 

blotting. Tethering the MS2V5-tagged overlapping N- and C- terminal eRF3a PAM2 motif 

to a FLAG-TPI-4MS2-SMG5 reporter mRNA stabilized the reporter about fivefold (Figure 

20, lane 2). As a negative control, I used the PAM2 motif of eRF3a F76A, as it should be 

unable to interact with PABPC1 (Kononenko et al., 2010; Kozlov and Gehring, 2010; 

Osawa et al., 2012). Tethering MS2V5-eRF3a F76A PAM2 to the reporter mRNA still 
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stabilized the mRNA, however, to a much smaller extent compared to eRF3a containing 

both PAM2 motifs (Figure 20, lane 3).  

 

 
Figure 20: PAM2 motifs are sufficient to suppress 3′ UTR-mediated NMD  

Northern blot indicating mRNA abundance after tethering several PAM2 motifs to the reporter. 

Quantification with standard deviation is represented with black bars.  

 

Similarly, tethering the N- and C-terminal PAM2 motifs of eRF3a separately to the NMD-

targeted reporter increased the reporter mRNA levels also about fivefold (Figure 20, 

lanes 4 and 5). The PAM2 motifs of NF-X1, Ataxin2, and PAIP2 also increased the 

reporter mRNA levels by five to eight fold upon tethering (Figure 20, lanes 8, 9, and 10). 

Surprisingly, not all PAM2 motifs behaved as expected. Tethering MS2V5-tagged TOB1 

and PAN3 PAM2 motifs to the reporter did not lead to an increase in mRNA levels of 

about fivefold similar to the other PAM2 motifs. Instead, tethering these two PAM2 

motifs led to an increase of about the same magnitude as when tethering the eRF3a 

F76A PAM2 motif (Figure 20, lanes 6 and 7). This result was surprising since all the 
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PAM2 motifs share the crucial residues for interaction with PABPC1 (residues 

highlighted in gray boxes in Figure 19). Interestingly, PAIP2 PAM2 was able to stabilize 

the reporter mRNA more strongly than the other PAM2 motifs. The reason behind these 

different stabilization patterns was unknown at the time and subject to further research 

discussed in section 4.9.3.  

4.9.2 Tethering PAM2 motifs has no negative effect on translation of the reporter 

transcript 

Given the strong increase in mRNA levels upon tethering PAM2 motifs to the reporter I 

wanted to check the effect on translation to ensure that NMD is not inhibited due to the 

lack of active translation in the system. To this end, I employed the N-terminal FLAG-tag 

of the TPI reporter to quantify protein expression compared to FLAG-emGFP, which was 

transfected as control for protein expression (Figure 21).  

 

 
Figure 21: Translation of the reporter is not negatively affected by PAM2 motif tethering  
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Western blot of PAM2 motifs visualized with a V5 antibody. Anti-FLAG antibody was used to show FLAG-

emGFP (transfection control) and FLAG-TPI protein levels. Quantification of protein levels are 

represented with black bars and standard deviation as indicated.  

 

The protein levels upon tethering were increased by a maximum of two fold for the 

tethered PAM2 motifs (Figure 21). The PAM2 motifs that lacked a stabilization of the 

reporter mRNA showed the least change in reporter expression compared to the 

negative control GST (Figure 21). This result ensures that the expression of the reporter 

transcript is not negatively altered and the stabilization effect of the PAM2 motifs is in 

fact due to inhibiting NMD.  

4.9.3 Not all PAM2 motifs show the expected interaction with PABPC1 

To ensure that the observed increase in reporter mRNA is due to the interaction of the 

tethered PAM2 motifs with PABPC1 I conducted a co-immunoprecipitation experiment. 

FLAG-emGFP-tagged versions of the PAM2 motifs used in the tethering assay were 

transfected and subjected to a FLAG pulldown. I used an antibody against endogenous 

PABPC1 to check for interactions between PAM2 motifs and PABPC1. The strongest 

interaction was observed for the overlapping eRF3a PAM2 motifs (Figure 22, lane 2, IP 

panel).  

 
Figure 22: PAM2 motifs show different interaction strength with PABPC1 

Co-immunoprecipitation (left: input, right: IP) of FLAG-emGFP and endogenous PABPC1 visualized with 

anti-PABP antibody. Anti-GFP antibody was used to visualize co-transfected loading control. 

 

As expected, eRF3a F76A PAM2 pulled out significantly less endogenous PABPC1 (Figure 

22, lane 3, IP panel). The residual interaction between eRF3a F76A and endogenous 

PABPC1 can be attributed to the second phenylalanine still present in this mutant. A 

strong interaction between eRF3a –N PAM2, eRF3a –C PAM2, Ataxin2 PAM2, PAIP2 

PAM2, and endogenous PABPC1 was observed (Figure 22, lanes 4, 5, 6, and 7, IP panel). 
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NF-X1 PAM2 and TOB1 PAM2 pulled out less endogenous PABPC1, whereas PAN3 PAM2 

did not interact with endogenous PABPC1 at all (Figure 22, lanes 8, 10, and 9, IP panel). 

These results explain the only weak NMD-inhibiting effect by the tethered PAM2 motifs 

of TOB1, PAN3, and the negative control eRF3a F76A PAM2. It is surprising however 

that some PAM2 motifs are unable to interact with PABPC1 even though the essential 

amino acids for the interaction with PABPC1 are present.  

4.9.4 NMD suppression by PAM2 motifs is a specific tethering effect 

To make sure that the observed stabilization effects of the PAM2 motifs are position 

specific tethering effects, I made use of the control reporters described in figure 5. 

Additionally, I used a TPI-SMG5 reporter without any tethering sites to test for trans 

effects (Figure 23A).  

 

 
Figure 23: NMD suppression by PAM2 motifs is a specific tethering effect  

(A) Additional control reporter mRNA harboring no MS2 sites. (B) Protein expression is shown with anti-

V5 antibody. (C, D, E, F) Northern blot indicating mRNA levels of different reporters upon tethering GST 

(negative control) and several PAM2 motifs to the reporter. Quantifications with standard deviation are 

shown as black bars.  
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For this experiment I only used the PAM2 motifs of eRF3a, Ataxin2, and PAIP2 as these 

showed the strongest NMD inhibition and these were used in subsequent experiments. 

First, I tethered the PAM2 motifs to the standard TPI-4MS2-SMG5 tethering reporter for 

a direct comparison against the negative control reporters (Figure 23C). Tethering 

eRF3a PAM2 motif to the reporter showed the smallest increase of reporter mRNA 

abundance by about four fold compared to the negative control (Figure 23C, lane 2). 

Both the PAM2 motifs of Ataxin2 and PAIP2 showed a stronger stabilization of the 

reporter transcript by about six fold (Figure 23C, lanes 3 and 4). Expressing the MS2V5-

tagged PAM2 motifs alongside a TPI-SMG5 reporter without any tethering sites did not 

lead to any increase in reporter levels compared to the negative control (Figure 23D). 

This indicates, that the PAM2 NMD suppression effects are specific tethering effects and 

the PAM2 motifs do not act in trans. The reporter construct for which the termination 

codon was moved downstream of the 4MS2-binding sites still showed a moderate 

increase in mRNA abundance of about 1.5 to 2.5 fold upon tethering of the PAM2 motifs 

(Figure 23E). This increase in mRNA abundance, even though much less compared to the 

reporter with the termination codon upstream of the 4MS2-binding sites, is unexpected. 

A possibly explanation for the observed effect could be that the tethered PAM2 motifs 

might lead to steric blocking of the ribosome by recruiting PABPC1. Less efficient 

displacements of the tethered proteins from the reporter by the ribosome could lead to 

the slight increase in mRNA abundance observed here. The final control reporter used 

here has the 4MS2 binding sites moved downstream of the SMG5 3′ UTR. Tethering the 

PAM2 motifs to this reporter gave a small increase in reporter levels of about 1.5 fold 

when tethering Ataxin2 PAM2 and PAIP2 PAM2, and no increase when tethering eRF3a 

PAM2 (Figure 23F lanes 3, 4, and 2 respectively). The small increase observed for some 

of the control reporters is significantly less than compared to the TPI-4MS2-SMG5 

reporter, showing that the PAM2 tethering effects are specific to tethering and not due 

to expression of the PAM2 motifs in trans.  

4.9.5 EJC-factor mediated NMD is antagonized by PAM2 motifs 

Previously, I showed that PABPC1 is unable to suppress NMD mediated by an EJC. 

However, tethering PAM2 motifs gave rise to even more mRNA reporter abundance due 

to NMD suppression when tethered upstream of the NMD-inducing 3′ UTR of SMG5. 

Specifically, the PAM2 motif of PAIP2 showed the strongest increase in reporter levels. 

Since the PAIP2 PAM2 has such a strong effect, I wanted to examine whether the PAM2 
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motif of PAIP2 is able to antagonize NMD mediated by EJC factors. To this end, I used a 

β-globin wildtype reporter harboring 4MS2 and 4PP7 tethering sites in tandem (Figure 

24A).  

 

 
Figure 24: Antagonizing NMD initiated by tethered EJC factors  

(A) Schematic of a β-globin reporter mRNA harboring 4MS2 sites upstream of 4PP7 sites. (B) Reporter 

mRNA abundance after tethering RNPS1 downstream of GST (negative control) or PAM2 motif of PAIP2 

shown in a northern blot. Quantification with standard deviation is represented with black bars. Protein 

expression is shown with anti-V5 antibody. (C) Levels of reporter mRNA when tethering BTZ downstream 

of GST (negative control) or downstream of PAIP2-PAM2. Black bars represent quantification with 

standard deviation and protein expression was checked with anti-V5 antibody.  
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This reporter allows for the dual tethering of two proteins in a specific orientation. I first 

made use of an auxiliary component of the EJC termed RNPS1. Tethering MS2V5-PAIP2 

PAM2 upstream of PP7∆FGV5-RNPS1 led to an about six fold increase in reporter mRNA 

levels (Figure 24B, lane 2). Tethering the PAIP2 PAM2 motif upstream of the EJC core 

component BTZ gave rise to an even greater stabilization of the reporter by about eight 

fold (Figure 24C, lane 2). The strong NMD suppression effects observed here were 

unexpected as tethering PABPC1 directly upstream of the MINX intron did not lead to 

any NMD suppression. In contrast, I observe here that recruiting PABPC1 indirectly via a 

PAM2 motif upstream of an EJC factor can substantially increase mRNA reporter levels 

by antagonizing NMD.  

4.9.6 PAM2 motifs suppress NMD of an intron-carrying reporter 

In the previous section I explored the ability of PAM2 motifs being able to suppress NMD 

initiated by the EJC-components RNPS1 and BTZ. I have shown previously that PABPC1 

is unable to suppress NMD of a MINX intron-carrying reporter (Figure 10). Since 

tethering PAM2 motifs upstream of EJC components were able to antagonize NMD, I next 

wanted to test the ability of PAM2 motifs to suppress EJC-mediated NMD. To this end, I 

made use of the TPI-4MS2-MINX-SMG5 reporter described in figure 10A. I observed a 

five to six fold increase in reporter mRNA abundance upon tethering MS2V5-tagged 

eRF3a PAM2, Ataxin2 PAM2, and PAIP2 PAM2 motifs upstream of the MINX intron 

(Figure 25).  

 

 
Figure 25: EJC-mediated NMD suppression of PAM2 motifs  

Northern blot showing reporter mRNA abundance upon tethering PAM2 motifs upstream of a MINX 

intron. Quantifications with standard deviation are shown as black bars. Protein expression is shown with 

anti-V5 antibody.  
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These results are surprising as tethering PABPC1 directly to the aforementioned 

reporter does not have any effect. However, recruiting PABPC1 through a small PAM2 

motif leads to a significant increase in mRNA abundance. The reason for this discrepancy 

in the observed effect between tethering PABPC1 directly and recruiting PABPC1 

through a PAM2 motif is currently unknown and subject to further research.  

4.10 PABPC1 suppresses NMD of the β-globin PTC39 mRNA  

Human β-globin carrying a PTC at position 39 has been identified in patients suffering 

from β-thalassemia and is a well-known NMD target (Baserga and Benz, 1988; Pergolizzi 

et al., 1981; Thermann et al., 1998). Here, I made use of a reporter carrying 4MS2 

binding sites directly after the PTC at position 39. The remainder of the β-globin DNA 

was cloned after the 4MS2 binding sites (Figure 26A).  

 
Figure 26: NMD-mediated degradation of β-globin PTC39 is suppressed by tethering PABPC1 and 

PAM2 motifs immediately downstream of PTC39 

(A) Reporter mRNA schematic showing location of 4MS tethering sites immediately downstream of the 

PTC at position 39 and upstream of the remainder of β-globin. (B) Northern blot showing mRNA reporter 
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levels after tethering PABPC1 and two PAM2 motifs to the reporter. Quantification and standard deviation 

are shown with black bars. Protein expression was tested with anti-V5 antibody.  

 

This setup allows tethering of NMD suppressing factors in a close to endogenous setting, 

namely downstream of a PTC where a ribosome stalls and upstream of an EJC that 

recruits NMD factors, thereby initiating NMD. I observed here that tethering MS2V5-

PABPC1 to this reporter led to an increase in mRNA reporter abundance by about three 

fold (Figure 26B, lane 2). This stabilizing effect is contrary to what I observed previously 

as PABPC1 was unable to suppress NMD of a reporter carrying a MINX intron. The same 

magnitude of stabilization was observed when tethering the PAM2 motifs of eRF3a and 

PAIP2 to the reporter (Figure 26B, lanes 3 and 4). I can show here that PABPC1 either 

tethered directly or recruited indirectly via PAM2 motifs upstream of an EJC has the 

capability to suppress NMD of an endogenous NMD target. These results are intriguing 

as they show that a well-known NMD-target which has a clinical manifestation could 

potentially be suppressed or inhibited by directly or indirectly recruiting PABPC1 

upstream of the EJC.  
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5 Discussion 
Nonsense-mediated mRNA decay has been researched in great detail over the last 

decades. The molecular process including the activation of NMD as well as the 

physiological function of this pathway have been subjected to many studies elucidating 

the intricacies of this quality control mechanism. In contrast, the mechanism by which 

NMD is suppressed is only poorly understood. It has previously been shown that PABPs 

are involved in the regulation and suppression of NMD in different organisms.  

In yeast, NMD is believed to solely be initiated by the length of the 3′ UTR. The so-called 

faux 3′ UTR model states that a termination codon in yeast is recognized as premature 

by a specific set of proteins that mark the transcript for degradation by influencing 

translation termination (Amrani et al., 2004). According to this model, terminating 

ribosomes at regular stop codons will interact with Pab1 bound to the poly(A)-tail, 

resulting in proper translation termination. A PTC increases the length of the 3′ UTR, 

which causes inefficient or slow communication between the terminating ribosome and 

Pab1. Thus, NMD factors assemble on the transcript, which subsequently initiate the 

rapid degradation of the mRNA (Amrani et al., 2004; Amrani et al., 2006).  

In flies, the faux 3′ UTR model holds only partially true. Pabpc1 was shown to suppress 

transcripts with unusually long 3′ UTRs in flies. Transcripts with regular stop codons 

can be targeted by NMD when the 3′ UTR length is artificially increased. However, not all 

unusually long 3′ UTR containing transcripts are targeted by NMD (Behm-Ansmant et al., 

2007). This suggests that some 3′ UTRs have certain elements that help them avoid 

degradation via NMD.  

In contrast, human NMD is more complex as it can be activated by multiple signals and 

degradation is achieved by multiple decay pathways involving exo- and endonucleolytic 

degradation (Hwang and Maquat, 2011). The two ways in which human NMD can be 

activated are either EJC-dependent or EJC-independent. The former harbors a stop 

codon upstream of a spliced intron resulting in the EJC deposition on the mRNA, 

whereas the latter is activated due to a long 3′ UTR (Schweingruber et al., 2013).  

The inhibiting properties of PABPC1 have been studied in other organisms as well as in 

human cells. However, studying PABPC1 in the latter proofs more difficult as PABPC1 is 

involved in multiple mechanisms vital to cell survival and can therefore not simply be 

depleted. Nonetheless, a role for PABPC1 has been described in human NMD 
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suppression. In this thesis, I propose an updated mechanism on the importance and role 

of PABPC1 in NMD suppression. Furthermore, I illuminate several different methods by 

which NMD can be antagonized.  

5.1 NMD suppression of long 3′ UTR substrates 

5.1.1 PABPC1 is a general suppressor of long 3′ UTR mediated NMD 

Other organisms have displayed an NMD-inhibiting function of PABP on unnatural 3′ 

UTR substrates. Here, I show that PABPC1 is capable of suppressing NMD of a TPI 

reporter targeted by NMD due to a long 3′ UTR. To this end, I used a shortened version 

of the SMG5 3′ UTR, which has previously been reported to be subjected to NMD (Boehm 

et al., 2014; Singh et al., 2008). Tethering PABPC1 directly downstream of the 

termination codon leads to a stabilization of the reporter mRNA. To ensure that this 

NMD suppression effect is not limited to the SMG5 3′ UTR but rather a general NMD 

inhibition effect applicable to all 3′ UTR targeted mRNAs, I made use of two additional 3′ 

UTRs: PDRG1 and SURF6. Both PDRG1 and SURF6 are endogenous NMD targets, which 

have been identified in a transcriptome-wide screen and were shown to be degraded by 

NMD due to their 3′ UTR (unpublished data, Gehring lab). I was able to suppress the 

degradation of a TPI reporter carrying either the PDRG1 or SURF6 3′ UTR by tethering 

PABPC1 just downstream of the termination codon. I used several control reporters to 

confirm the suppression effect is due to directly tethering of PABPC1 downstream of the 

termination codon and not due to trans effects. Furthermore, our lab has used siRNA 

mediated depletion of UPF1, UPF2, and SMG6 to show that PABPC1 acts as a suppressor 

in the canonical NMD pathway (Fatscher et al., 2014). Additionally, half-life 

measurements showed that upon PABPC1-tethering to the NMD-targeted substrates the 

half-life was increased, indicating efficient NMD suppression (Fatscher et al., 2014). 

Besides SMG6-mediated endocleavage, future research needs to address whether all 

other NMD executing pathways, including the SMG5/SMG7 mediated exonucleolytic 

degradation, are suppressed by PABPC1 as well.  

5.1.2 Implication of translation termination in NMD suppression by PABPC1 

As mentioned above, it is believed that translation termination is implicated in NMD 

suppression in yeast. In this thesis, I utilized the essential translation termination factor 

eRF3a, (Chauvin et al., 2005; Janzen and Geballe, 2004). A current model suggests that 
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the determining factor whether or not a long 3′ UTR mRNA is targeted by NMD is the 

competition between UPF1 and PABPC1 for eRF3a-binding at the terminating ribosome 

(Singh et al., 2008). According to this model, a normal 3′ UTR has a short distance 

between the terminating ribosome and PABPC1. Therefore, PABPC1 is able to efficiently 

interact with the ribosome, resulting in normal translation termination. In contrast, a 

long 3′ UTR allows UPF1 to interact with the terminating ribosome instead due to 

PABPC1 being further removed from the termination codon and, as a result, activate 

NMD. To confirm this model, I made use of a PABPC1 mutant unable to interact with 

eRF3a. Contrary to what the competition model implies, the eRF3a-binding deficient 

PABPC1 mutant was still able to efficiently suppress NMD just like wildtype PABPC1. 

This indicates that the competition between UPF1 and PABPC1 for eRF3a-binding is not 

the sole determinant for NMD activation or inhibition. Interestingly, tethering eRF3a to 

the NMD-targeted reporter still suppresses degradation. At first, this was surprising in 

light of the previous results as PABPC1 does not require eRF3a for NMD suppression. To 

gain further insight into the importance of the eRF3a-PABPC1 interaction in NMD 

suppression, I made use of an eRF3a point mutant unable to interact with PABPC1. Upon 

tethering eRF3a F76A to the reporter, eRF3a loses its ability to suppress NMD. This 

result points to a linear cascade from the terminating ribosome over eRF3a to PABPC1 

in order to achieve NMD suppression. Knowing that translation termination is involved 

in NMD suppression by PABPs in other organisms and mRNA circularization plays a role 

in translation termination I looked at the potential involvement of eIF4G in antagonizing 

NMD next. Since eIF4G acts as an intermediator between PABPC1 and the translation 

initiation complex, resulting in mRNA circularization, I next employed a PABPC1 mutant 

unable to interact with eIF4G (Amrani et al., 2008; Kahvejian et al., 2005; Wells et al., 

1998). Surprisingly, tethering this PABCP1 mutant did no longer suppress NMD. This 

shows that PABPC1 requires the interaction with eIF4G to antagonize NMD. Since the 

interaction between PABPC1 and eIF4G is believed to mediate the circularization of the 

mRNA as well as facilitate ribosome recycling, combining these results points to proper 

translation termination as well as mRNA circularization as important factors in NMD 

suppression (Model in figure 27).  
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Figure 27: Model of NMD suppression by PABPC1  

(A) Due to a large physical distance between PABPC1 and the terminating ribosome resulting from a PTC 

or a long 3′ UTR, PABPC1 is unable to efficiently interact with the release factors bound to the stalling 

ribosome. Instead, UPF1 can interact with the release factors, thereby recruiting other NMD factors, which 

in turn initiate degradation of the transcript. (B) In order for PABPC1 to suppress NMD activated because 

of the large physical distance between poly(A)-bound PABPC1 and the stalling ribosome, PABPC1 needs to 

be recruited into close proximity of the terminating ribosome. By recruiting PABPC1 immediately 

downstream of the stalling ribosome, it can interact efficiently with the release factors, thereby promoting 

proper translation termination and as a result suppress NMD. 
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I also saw that an eIF4G mutant unable to interact with PABPC1 is still able to suppress 

NMD, although to a lesser extent. This could be explained due to eIF4G being able to 

form a closed looped mRNA when tethered directly downstream of the stop codon, 

thereby circumventing the need of interacting with PABPC1. However, since the mutant 

unable to interact with PABPC1 showed less increase in mRNA abundance, it seems that 

the interaction between eIF4G and PABPC1 is favorable for NMD suppression.  

5.1.3 Protein-mediated NMD inhibition 

Other studies have shown that the mere length of a 3′ UTR is not the determining factor 

for whether or not NMD is activated (Toma et al., 2015). Instead the composition of the 

3′ UTR and potential proteins bound to the 3′ UTR are believed to play a role in whether 

or not NMD is activated. There seem to be at least two different mechanisms by which 

some endogenous mRNAs with long 3′ UTRs are able to evade NMD (Toma et al., 2015). 

Firstly, a 200 nucleotide A/U-rich region immediately downstream of a termination 

codon has been shown to be responsible for NMD suppression (Toma et al., 2015). This 

region could potentially be bound by an as of yet unknown protein or proteins, which 

are either able to block NMD by disrupting the interaction of eRF3a with UPF1, or by 

potentially interacting with PABPC1 directly. Secondly, some mRNAs with a long 3′ UTR 

evade NMD but due to a different, unknown mechanism. In this case, the first 600 

nucleotides of a long 3′ UTR known to evade NMD were not enough to suppress NMD, 

indicating an alternative mechanism of NMD suppression (Toma et al., 2015). 

An example of a protein bound to the 3′ UTR of some transcripts is PTBP1. This protein 

has multiple functions in, for example, splicing, 3′ end processing, and mRNA stability 

(Castelo-Branco et al., 2004; Knoch et al., 2004; Wagner and Garcia-Blanco, 2001). It has 

been shown that PTBP1 bound closely downstream of a termination codon of a long 3′ 

UTR-mediated NMD substrate can suppress NMD (Ge et al., 2016). Transcriptome-wide 

analysis showed that PTBP1 preferentially binds close to termination codons. Ge et al. 

further identify several endogenous NMD targets protected by PTBP1 from degradation. 

The publication describes that PTBP1 binds preferentially to CU-rich regions and that a 

single PTBP1 protein has multiple RNA-interaction sites. Therefore it could be feasible 

that PTBP1 bound to the mRNA could compact the 3′ UTR by binding stretches of the 3′ 

UTR further apart. By doing so PABPC1 would be brought into closer proximity of the 

terminating ribosome, which could lead to NMD suppression. I show here, that tethering 

PTBP1 downstream of a stop codon, but upstream of the SMG5 3′ UTR strongly 
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suppresses NMD. The mechanism of compacting the 3′ UTR discussed above could be 

responsible for NMD suppression by PTBP1 in this scenario. Another possibility would 

be that PTBP1 antagonizes NMD by blocking UPF1 from binding to the 3′ UTR. This 

function of PTBP1 goes hand in hand with recent findings about UPF1-mediated NMD 

activation of long 3′ UTR substrates. It has first been proposed that UPF1 occupancy on a 

long 3′ UTR is the determining factor of NMD activation. This is supported by the fact 

that UPF1 populates the 3′ UTR of many transcripts (Hurt et al., 2013; Kurosaki and 

Maquat, 2013; Zund et al., 2013). However, it has recently been challenged that the mere 

occupancy of UPF1 on the 3′ UTR is responsible for NMD activation, but instead the 

phosphorylation state of UPF1 determines if NMD is activated or not (Kurosaki et al., 

2014). The degree of phosphorylation and occupancy of UPF1 might differ from 

transcript to transcript depending on the composition of the 3′ UTR or on other proteins 

with a stronger binding affinity for the 3′ UTR, thereby prohibiting UPF1 from 

interacting with the mRNA. This would explain why some long 3′ UTRs are subjected to 

degradation via NMD whereas others are immune. The exact determinant that regulates 

phosphorylation of 3′ UTR-bound UPF1 and thereby initiates NMD remains elusive. 

5.1.4 Peptide-mediated fold-back of the poly(A)-tail 

It has previously been reported that an NMD-targeted reporter harboring a PTC can be 

stabilized by introducing two complementary RNA stretches 5′ and 3′ of the 3′ UTR 

(Eberle et al., 2008). The publication shows that the two complementary RNA stretches 

interact and thereby fold back the poly(A)-tail into close proximity of the termination 

codon. This effectively brings PABPC1 into close proximity of the terminating ribosome 

and can suppress NMD. I here show that it is possible to suppress NMD by indirectly 

recruiting PABPC1 close to a termination codon by peptide-mediated fold-back of the 

poly(A)-tail. The peptide-mediated fold-back of the poly(A)-tail suggests a possible NMD 

evasion mechanism in the cell by cis-acting proteins. Contrary to a single protein like 

PTBP1 binding the mRNA multiple times and thereby potentially looping PABPC1 closer 

to the termination codon, I show that two heterodimer-forming proteins can potentially 

recruit PABPC1 indirectly. This heterodimer formation has the potential to fold back the 

poly(A)-tail, thereby bringing PABPC1 into close proximity of the terminating ribosome. 

Here, I made use of three synthetic peptides to simply fold back the poly(A)-tail and 

therefore suppressing NMD. Since I used synthetic peptides with no other known 

interaction partners in the cell, I can show that the folding mechanism is sufficient and 
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no additional proteins need to be recruited to suppress NMD in this case. Recent studies 

have also shown evidence for a multitude of previously undiscovered RNA-binding 

proteins (RBPs) some of which are likely to bind to distinct 3′ UTRs (Baltz et al., 2012; 

Castello et al., 2012). It is possible that some RBPs are able to form hetero- or 

homodimers while interacting with opposite ends of a 3′ UTR. This dimer formation 

could potentially fold the poly(A)-tail in a way that would bring PABPC1 into close 

proximity of the termination codon. As a proof of principle for this theory I used the two 

endogenously expressed proteins eRF3a F76A and eRF1 tethered to opposite ends of the 

TPI-4MS2-SMG5-4boxB reporter to successfully suppress NMD. By making use of the 

eRF3a F76A mutant unable to interact with PABPC1 directly I ensure that the 

stabilization effect is in fact due to the looping of the poly(A)-tail and not due to 

recruiting PABPC1 directly. 

5.1.5 PAM2 motifs strongly suppress long 3′ UTR-triggered NMD 

Comparing all NMD suppression methods explored in this thesis, the strongest effect 

was observed when PAM2 motifs were tethered to an NMD reporter construct. 

Specifically, the 15 amino acid PAM2 motif of PAIP2 showcased the strongest 

suppression of NMD induced by the SMG5 3′ UTR. The results obtained by tethering 

PAM2 motifs to the NMD reporter were unexpected. For instance, recruiting PABPC1 via 

the PAIP2 PAM2 motif to the SMG5 3′ UTR reporter gives a threefold higher mRNA 

abundance compared to tethering PABPC1 directly. Currently there is no explanation as 

to why this difference in NMD suppression strength is occurring. The PAM2 motif used is 

not believed to recruit any other factors besides PABPC1. A possible theory as to why I 

observe a much stronger stabilization compared to tethered PABPC1 wildtype could be 

that the MLLE domain of PABPC1 is blocked when PABPC1 is recruited to the reporter 

via a tethered PAM2 motif. In principle, when PABPC1 is tethered by itself it could 

theoretically still interact with other PAM2 carrying proteins, which might have an 

additional effect on PABPC1 or NMD suppression.  
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Figure 28: Different approaches to recruit PABPC1 in order to suppress long  3′ UTR-mediated 

NMD 

(A) PABPC1 can suppress NMD activated by a long 3′ UTR when directly recruited downstream of the 

terminating ribosome. (B) Recruiting artificial proteins that can heterodimerize to opposite ends of a long 

3′ UTR can mediate fold-back of the poly(A)-tail. As a result, PABPC1 bound to the poly(A)-tail is brought 

into close proximity of the terminating ribosome and can antagonize NMD. (C) Recruiting short PAM2 

peptides downstream of a termination codon efficiently brings PABPC1 indirectly close to the termination 

codon and therefore to the stalling ribosome.  

 

Occupying the MLLE domain of PABPC1 when it is recruited via a PAM2 motif would 

remove the possibility of other PAM2-carrying proteins to interact with this particular 

PABPC1. In other words, PABPC1 tethered directly could still interact with a PAM2-
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containing protein, which could possibly reduce the NMD-inhibiting effect of PABPC1. It 

was also surprising to see that not all PAM2 motifs have the same effect on NMD 

suppression. For example, the TOB1 and PAN3 PAM2 motifs did not stabilize the SMG5 

3′ UTR reporter construct. The most likely explanation for this is the weak interaction of 

these two PAM2 motifs with endogenous PABPC1. This is puzzling as the 15 amino acid 

long PAM2 motifs of these two proteins contain all three of the crucial amino acids of a 

PAM2 motif required for the interaction with PABPC1. The reason why these two PAM2 

motifs are unable to interact with endogenous PABPC1 is currently not known. Figure 

28 shows an overview of the different methods employed in this thesis to suppress NMD 

activated by a long 3′ UTR. 

5.2 EJC-activated NMD is antagonized by PAM2 peptides 

So far I could show that PABPC1 can inhibit NMD activated due to a 3′ UTR when 

recruited to the terminating ribosome by various mechanisms. As mentioned previously 

however, NMD in humans can also be activated by a 3′ UTR-located EJC. Surprisingly, 

PABPC1 is unable to suppress NMD activated by a MINX intron when tethered directly 

downstream or upstream of the intron (Figure 10). I expected PABPC1 to suppress NMD 

activated by an EJC, as others have previously shown that PABPC1 tethered upstream of 

the EJC factor Y14 can suppress NMD (Ivanov et al., 2008). The results presented here as 

well as previously shown results suggest that NMD activated by an EJC seems much 

stronger compared to NMD activated by a 3′ UTR and cannot be antagonized by PABPC1 

(Boehm et al., 2014). The mechanism behind this inability of PABPC1 to suppress EJC-

initiated NMD is currently unknown. A possible explanation could be that NMD activated 

by an EJC employs a different pathway including different additional proteins, which 

PABPC1 is unable to suppress.  

After I was able to show that recruiting PABPC1 via PAM2 motifs is both sufficient and 

very strong in suppressing NMD activated by a 3′ UTR, I examined the effects of tethered 

PAM2 motifs on EJC-mediated NMD. To this end, I first made use of the two EJC 

components RNPS1 and BTZ. In a tandem tethering assay I was able to show that 

tethering the PAM2 motif of PAIP2 is able to strongly suppress NMD activated by either 

RNPS1 or BTZ (Figure 24). This result is comparable to the NMD inhibition effect of 

tethered PABPC1 observed by Ivanov et al. in 2008. Since I was able to suppress NMD 

initiated by EJC factors by recruiting PABPC1 to the reporter via tethered PAIP2 PAM2, I 
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next wanted to study the effect a tethered PAM2 motif would have when tethered 

upstream of a complete EJC. To achieve this, I again employed the TPI-4MS2-MINX-

SMG5 reporter described earlier. Tethering the PAM2 motifs that exhibited the strongest 

suppression effect of a 3′ UTR-targeted reporter, namely eRF3a PAM2, Ataxin2 PAM2, 

and PAIP2 PAM2, upstream of the MINX intron strongly suppressed NMD of the reporter 

(Figure 25).  

 

 
Figure 29: PAM2 peptide-mediated recruitment of PABPC1 is able to suppress EJC-activated NMD 

(A) PABPC1 can suppress NMD of an EJC-carrying substrate when recruited via PAM2 peptides directly 

downstream of the terminating ribosome and upstream of the EJC. (B) NMD activated by an EJC deposited 

due to an intron in the 3′ UTR can be suppressed by PAM2 peptide-mediated recruitment of PABPC1 in 

between the terminating ribosome and the EJC.  
 

Astoundingly, the EJC deposited during splicing of the MINX intron that inhibited 

tethered PABPC1 from suppressing NMD is unable to do the same when PABPC1 is 

recruited via a tethered PAM2 motif. This result indicates that recruiting PABPC1 

indirectly is somehow able to more efficiently antagonize EJC-mediated NMD. The exact 

inhibition mechanism is currently unknown. The fact that PABPC1 is unable to interact 

with any other PAM2-containing protein in this scenario might be part of the reason. 
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Since there are many PAM2-containing proteins that can have a multitude of different 

effects it is feasible that PABPC1 has an as of now unknown interaction partner that 

suppresses its ability to antagonize EJC-mediated NMD. Nevertheless, the ability to 

suppress NMD activated by either a 3′ UTR or an EJC opens up the way for potential 

medical uses which are discussed in the following section. An overview of the EJC-

activated NMD substrates suppressed by PAM2 peptide-mediated recruitment of 

PABPC1 can be seen in figure 29. 

5.3 Medical implications of NMD inhibition and potential therapeutic 

approaches 

Many inherited diseases as well as cancers are caused by frameshift or nonsense 

mutations which lead to transcripts carrying PTCs. A recent study has shown that 11% 

of all described gene lesions causing human inherited disease are caused by nonsense 

mutations that additionally account for 20% of disease-associated single-basepair 

substitutions (Culbertson, 1999; Mort et al., 2008). NMD can act as a beneficial modifier 

of a medical phenotype by altering the levels of potentially harmful C-terminally 

truncated proteins (Bhuvanagiri et al., 2010). An example for such a beneficial effect of 

NMD can be observed for β-thalassemia. This genetic disease is caused by nonsense 

mutations in the first or second exon of the β-globin gene. NMD acts as a beneficial 

modifier by degrading transcripts with such a mutation in the cell. As a result, only low 

levels of the mutant β-globin mRNA is present in the cell and heterozygous individuals 

are usually asymptomatic because the normal allele produces enough β-globin mRNA. 

However, NMD is not always protective and active NMD can lead to a more severe form 

of a disease. In DMD some mutations are known to escape NMD and produce a C-

terminally truncated version of the dystrophin protein that is partially functional. These 

mutations lead to a clinically less severe form of the disease termed Becker muscular 

dystrophy (Kerr et al., 2001). This is an example of how active NMD leads to a more 

severe form of the disease as the transcripts evading NMD result in a clinically less 

severe form of muscular dystrophy.  

Here, I made use of a β-globin reporter carrying a PTC at position 39 to address the 

potential medical implications of suppressing NMD by recruiting PABPC1 to an 

endogenous NMD target (Figure 26). The reporter carries 4MS2 sites directly 

downstream of the PTC39 to allow the recruitment of PABPC1 between the PTC and the 
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downstream EJC. I could show that tethering PABPC1 directly or recruiting PABPC1 via 

tethered PAM2 motifs results in NMD suppression of the reporter. This shows how NMD 

of endogenous targets could potentially be suppressed by PABPC1.  

Many inherited diseases are caused by frameshift or nonsense mutations leading to 

transcripts carrying a PTC. These transcripts activate NMD due to one or more EJCs 

downstream of the termination codon. We have shown here several different methods of 

inhibiting NMD. These results provide new possibilities for specifically inhibiting the 

degradation of endogenous NMD targets. It seems that recruiting PABPC1 in close 

proximity of a termination codon via a small PAM2 peptide is enough to inhibit both 3′ 

UTR and EJC mediated NMD. The specific mechanism by which PAM2 motifs are able to 

suppress NMD even more efficiently than directly tethered PABPC1 remains unclear and 

needs to be subjected to further research.  

The methodology described in this work shows how NMD suppression is theoretically 

feasible by recruiting PABPC1 to an NMD-targeted substrate. However, a limitation of 

the approach described here is that endogenous NMD targets do not have any tethering 

sites and PABPC1 can therefore not be recruited this way. To achieve target specific 

recruiting of PABPC1 to an endogenous NMD substrate, the approach described herein 

could be combined with a recently described technique of NMD inhibition via antisense 

oligonucleotides (ASOs) (Nomakuchi et al., 2015). The approach described by 

Nomakuchi et al. utilizes ASOs specifically targeting a region downstream of a stop 

codon of an mRNA where an EJC would be deposited on the mRNA. The ASOs bind the 

mRNA at the same site where an EJC would usually be placed and therefore block the EJC 

from being deposited onto the mRNA. Due to the absence of the 3′ UTR-located EJC, the 

stop codon is not recognized as aberrant and the otherwise NMD-targeted reporter is 

stabilized. Joining ASOs with a small PAM2 peptide would allow specific recruitment of 

PABPC1 to a PTC, potentially stabilizing the mRNA even further. This approach would 

open up a new way of specifically stabilizing endogenous mRNAs targeted for 

degradation by NMD in various genetic diseases. 

Stabilizing an NMD substrate in this way would however still lead to only a truncated 

version of the protein. Since this could potentially cause an even more severe form of a 

genetic disorder it is not enough to simply inhibit NMD in cases where the truncated 

protein is known to have a dominant-negative effect. In these cases, translational read-

through at a PTC is further needed to translate the mRNA into a full-length protein. 
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Translational read-through at PTCs could potentially be achieved by using a certain drug 

that results in read-through and, therefore, could be used to treat diseases (Peltz et al., 

2013). One example used to achieve read-through are aminoglycosides (Hermann, 

2007). Aminoglycosides used in cell culture to treat cystic fibrosis were successful and 

were used in clinical trials in patients suffering from cystic fibrosis and DMD (Bedwell et 

al., 1997; Kovesi et al., 1998). Albeit being successful in principle as the administration 

of aminoglycosides lead to an increase in protein levels in the patients the widespread 

usage of the drug is limited due to adverse side-effects after prolonged usage. It is 

therefore necessary to find other drugs to promote translational read-through without 

adverse side-effects.  

5.4 Concluding remarks 

In conclusion, I was able to add to the current model of NMD inhibition by PABPC1. I 

showed that the competition model for long 3′ UTR-mediated NMD between PABPC1 

and UPF1 for eRF3a binding is not the main determining factor for NMD suppression. 

Instead, I was able to provide evidence that potentially implicates efficient translation 

termination, ribosome recycling, and circularization of the mRNA in NMD suppression 

by PABPC1. Furthermore, I showed multiple mechanisms by which NMD of not only a 

long 3′ UTR-activated reporter but also of an EJC-activated reporter can be suppressed. 

PABPC1 does not need to be directly recruited downstream of the terminating ribosome 

but is also able to suppress NMD by indirect recruitment either via other proteins, or by 

protein-mediated fold-back of the poly(A)-tail. Additionally, short PAM2 peptides are 

sufficient to strongly suppress NMD by recruiting PABPC1 to the reporter transcript. I 

discussed possible medical implications of the findings presented here and describe a 

potential application to target endogenous NMD substrates in the cell without the need 

for tethering sites. Even though I was able to show the potential involvement of 

translation termination, ribosome recycling, and mRNA circularization play an 

important role in NMD inhibition via PABPC1, the exact mechanism by which PABPC1 

suppresses NMD is still unknown and subject to future studies.  
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6 Material and Methods 

6.1 Molecular biology 

6.1.1 Mammalian expression plasmids 

The pCI-neo expression vector (Promega) was modified for protein expression in 

mammalian cell culture. To this end, pCI-neo contained different N-terminal tags such as 

FLAG, V5, FLAG-emGFP, MS2V5, PP7∆FGV5, and λNV5. The plasmid harbored a CMV 

immediate-early enhancer/promoter region just upstream of the multiple cloning site to 

activate transgene expression. 

6.2 Molecular cloning 

The reporter plasmids as well as all deletion and point mutations used in this work were 

generated by PCR mutagenesis. PCR cleanup of intermediate steps were performed 

using the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel). Ligations were 

performed by combining cut vector DNA with insert DNA in a 1:5 ratio. The ligation 

reaction was kept on ice for 30 minutes before a 2 hour incubation period at RT. All 

ligation reactions were performed with the T4 DNA ligase (Promega).   

6.2.1 Transformation 

Newly cloned plasmid DNA was transformed into E. coli XL-1 blue bacteria. To this end, 

100 μl of chemically competent bacteria was added to the ligation reaction and kept on 

ice for 30 minutes. The mixture was heat shocked at 42°C for 1 minute and placed on ice 

for an additional minute. 400 μl LB medium was added to the reaction tube and the 

samples were pre-grown in a 37°C shaker. After 2 hours, the bacteria were pelleted by 

centrifugation at 12,000g for 2 minutes and the supernatant was aspirated. The pellet was 

resuspended in 100 μl LB medium, plated on an ampicillin containing agar plate, and 

incubated at 37°C overnight.  

The same steps were performed for plasmid DNA re-transformation, except that 100 μl 

bacteria were added to 1 μl plasmid DNA to be re-transformed. 
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6.2.2 Plasmid preparation 

A single bacterial colony from transformations was picked and grown either in 5 ml LB + 

ampicillin (100 μg/ml) (for minipreps) or in 100 ml LB + ampicillin (100 μg/ml) (for 

midipreps) at 37°C overnight. The bacteria were pelleted the next day and a mini-prep 

using the ZR Plasmid Mini-prep kit (Zymo Research) or a midi-prep using the NucleoBond 

Xtra Midiprep kit (Macherey-Nagel) was performed. All molecular cloning results were 

verified by Sanger sequencing (GATC Biotech). 

6.3 Cell culture 

6.3.1 Cell lines 

Mammalian cell culture experiments were performed in HeLa Tet-Off (HTO) cells 

(Clontech). The cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) 

GlutaMAX (Gibco), supplemented with 1x penicillin/streptomycin and 9% fetal bovine 

serum (FBS) at 37°C and 5% CO2. The cells were passaged every 2-3 days (at 

approximately 90% confluency) by trypsinization. 

6.3.2 Plasmid DNA transfection 

Plasmid DNA was transfected using calciumphosphate precipitation. The cells were 

seeded 24 hours prior to transfection to achieve ~60% confluency on the day of 

transfection (see the following table for concentrations). The medium was changed 1-2 

hours before transfection. The transfection mix was prepared with the plasmid DNA 

diluted in Ultra Pure water (Biochrom). CaCl2 was added to the diluted plasmid DNA mix 

for a final concentration of 250 mM. An equal volume of 2x BBS was added to the 

plasmid DNA/CaCl2 solution and vortexed vigorously. After 15 minutes incubation at 

room temperature (RT) the transfection mixture was added to the cells. The DMEM 

medium was changed to following day to remove any calcium-phosphate precipitates. 

The cells were harvested the following day.  
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           Transfection overview 

 6-well plate 6cm dish 

Number of cells 240,000 650,000 

Volume of medium (ml) 2 4 

Volume of H2O + plasmid DNA (μl) 90 180 

Volume of CaCl2 (μl) 10 20 

Volume of 2x BBS (μl) 100 200 

Total volume (μl) 200 400 

 
2x BBS  
50 mM  BES (N, N-bis(Hydroxyethyl)-2-Aminoethansolfonate)  
1.5 mM  Na2HPO4  

280 mM  NaCl  
adjust pH to 6.96 

6.4 Immunoprecipitation 

6.4.1 Transfection of HTO cells 

HTO cells were seeded in 6cm dishes and transfected as described in chapter 6.3. 1500 ng 

plasmid DNA expressing FLAGemGFP-tagged proteins were transfected for endogenous 

protein pull-down assays. 1500 ng FLAG-tagged proteins were co-transfected with 500 

ng plasmid DNA expressing V5-tagged proteins, and 300 ng mVenus plasmid DNA 

(mVenus used as transfection control) in precipitation assays with non-endogenous 

proteins. The cells were harvested 48 hours after transfection. 

6.4.2 Preparation of cell lysates 

Confluent cells were washed once with PBS (Gibco) and scraped off the cell culture dish in 

500 μl PBS. The cell suspension was transferred to a 1.5 ml reaction tube (Sarstedt) and 

centrifuged for five minutes at 2000g. PBS was aspirated, followed by resuspension of 

the cell pellet in 400 μl IP lysis buffer (1x TBS, 0.5% Triton X-100 (Sigma-Aldrich), 50 

μg/ml RNase A (Applichem), protease inhibitor (Sigma-Aldrich, #P2714-1BTL, diluted 

1:200)). The lysate was frozen over night at -20°C.  

6.4.3 Co-immunoprecipitation 

Co-immunoprecipitation experiments were performed with anti-FLAG (M2) magnetic 

beads (Sigma-Aldrich) to analyze the interaction of proteins extracted from cell lysates. 

The cell lysates (preparation described in chapter 6.4.2) were centrifuged for 10 

minutes at 12,000g. 40 μl of the supernatant was transferred to a new reaction tube 
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containing 8 μl 6x SDS loading buffer and saved as input. 12 μl anti-FLAG (M2) magnetic 

beads were washed once with 800 μl IP wash buffer (1x TBS, 0.5% Triton X-100). The 

remaining supernatant (~360 μl) was added to the washed anti-FLAG (M2) magnetic 

beads and rotated in an overhead shaker at 4°C for at least 2 hours or overnight. The 

magnetic beads were washed three times for 5 minutes each with 800 μl IP wash buffer 

(described above) at 4°C in the overhead shaker. The remaining IP wash buffer was 

aspirated and the proteins were eluted in 50 μl 1x SDS loading buffer. 15 μl input and 15 μl 

IP were loaded onto SDS-polyacrylamide gels for further analysis.  

6.4.4 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-polyacrylamide gels were cast in the BioRad Mini-Protean gel system using 1mm 

combs with either 10 or 15 wells. The polyacrylamide gel mixes were prepared 

according to the table below. The gels were loaded with input, IP (described in chapter 

6.4.3), and 1.5 μl PageRuler prestained protein ladder (ThermoFisher) and run in 1x 

SDS-running buffer (25 mM Tris-HCl, 20 mM Glycine, 0.1% SDS) in vertical 

electrophoresis chambers at 200V.  

 
            SDS-PAGE mixes 

 Stack gel (4 ml) Separating gel (10 ml) 

Acrylamide concentration - 10% 12% 

MW range (kDa) - 16-70 14-60 

30% Acrylamide mix 

(37.5:1 Rotiphorese Gel, Roth) 
0.67 ml 3.3 ml 4 ml 

1.5 M Tris pH 8.8 - 2.5 ml 2.5 ml 

1 M Tris pH 6.8 0.5 ml - - 

H2O 2.4 ml 4.1 ml 3.4 ml 

10% SDS 40 μl 100 μl 100 μl 

10% Ammonium Persulfate 80 μl 120 μul 120 μl 

TEMED (Roth) 10 μl 14 μl 14 μl 

 Volumes are for 2 gels 

 

6.4.5 Western blot analysis 

After SDS-PAGE the gel was blotted on a Hybond-ECL nitrocellulose membrane (GE 

Healthcare) for 60 to 120 minutes at 11V using the semi-dry TransBlot SD system (BioRad) 

and 1x transfer buffer. After blotting, the membrane was incubated in 5% blocking solution 

(5% milk in 1x TBS, 0.2% Tween) for one hour at RT. The membrane was incubated with the 
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primary antibody (in 1x TBS, 0.2% Tween) at 4°C overnight. The next day the membrane 

was washed 3x with 1x TBST (1x TBS, 0.2% Tween) for 5 minutes each followed by 

incubation with an HRP-conjugated secondary antibody (in 1x TBS, 0.2% Tween). The 

washing step was repeated before visualization with the Western Lightning Plus ECL 

reagent (PerkinElmer) on the myECL Imager (ThermoScientific). 

6.5 Northern blot analysis 

6.5.1 Transfection of HTO cells 

HTO cells were seeded in 6 well plates and transfected as described in chapter 6.3. I 

used 800 ng plasmid DNA expressing MS2V5-, PP7∆FGV5-, or λNV5-tagged proteins. 500 

ng plasmid DNA expressing β-globin wild-type or 1500 ng lacZ (serving as internal 

transfection control) and 300 ng mVenus plasmid DNA (mVenus used as transfection 

control) were used in each transfection. Additionally, 2000 ng reporter plasmid was 

transfected in each well. The cells were harvested 48 hours after transfection. 

6.5.2 Harvesting cells 

Two days after transfection the cells were washed once with 1x PBS and transferred to a 

fume hood. Here, 1 ml peqGOLD TriFast lysis reagent (Peqlab) was added to each well 

and incubated for 5 to 10 minutes. Next, the peqGOLD TriFast lysis reagent containing 

the cell lysates were transferred to new 1.5 ml reaction tubes. 

6.5.3 RNA extraction 

Total RNA was extracted by first adding 100 μl 1-Bromo-3-chloropropane (Sigma-

Aldrich) to the reaction tubes containing the peqGOLD Trifast, followed by vigorous 

mixing of the contents and a 15 minute incubation period at RT. The tubes were next 

centrifuged at 12,000g at 4°C for 15 minutes. The aqueous phase (approximately 400 μl) 

was transferred to a new reaction tube containing 500 μl 2-propanol (Roth) and the 

remainder frozen at -20°C until being used for protein extraction. The mixture was 

vortexed and incubated on ice for 15 minutes, followed by centrifugation at 12,000g at 

4°C for 15 minutes. The supernatant was discarded and the resulting pellet washed 

twice with 75% EtOH by centrifuging at 12,000g at 4°C for 10 minutes each. The pellet 

was air dried and resuspended in 20 μl Ultra Pure H2O (Biochrom) by shaking the 

reaction tubes for 15 minutes at 65°C. The resulting RNA-H2O mixture was stored at -

20°C until further use. 
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6.5.4 Northern blotting 

To analyze the RNA, 4 μl of each extracted RNA sample was added to 16 μl northern 

sample buffer (15 ml formamide (deionized, Roth), 6 ml formaldehyde (37%, Roth), 3 ml 

10x MOPS buffer (41,2 g 3-(N-morpholino)propanesulfonic acid in 800 ml autoclaved 

100 mM sodium acetate (10,886 g NaOAc), adjust pH 7.0 and add 20 ml autoclaved 0.5 M 

EDTA pH 8.0, total volume 1 L), 1 drop EtBr) and incubated at 65°C for 15 minutes. After 

the incubation, 2 μl RNA-loadingbuffer (50% Glycerol, 1 mM EDTA, 0,25% 

Bromophenolblue) was added to each sample. The samples were loaded onto an agarose 

gel (2,63 g agarose (SeaKem LE Agarose), 175 ml H2O, 50 ml 10x MOPS, 25 ml filtered 

37% formaldeyhde (Roth)) and run at 33V overnight. 

The following day, the gel was washed on a shaker for 15 minutes in H2O, changing the 

water once. Next, the gel was incubated in 50 mM NaOH for 5 minutes, followed by 40 

minute incubation in 20x SSC (175,32 g Sodium Chloride, 88,2 3g Trisodium-Citrate, pH 

7.0, total volume 1 L). The gel was transferred onto a Roti-Nylon 0.2 membrane (Roth) 

with a capillary transfer for 4 hours. Next, the membrane was UV crosslinked at 0.120 J 

on both sides. The membrane was then prehybridized for 1 hour in approximately 15 ml 

Church buffer (0.5 M Na2HPO4, 1 mM EDTA, 7% SDS, pH 7.2) at 65°C in a hybridization 

oven. Afterwards, the radioactively labeled probe (for transcription reaction see table 

below) was added to the membrane and incubated at 65°C in the hybridization oven 

over night.  

The next day, the membrane was washed twice with wash buffer 1 (2x SSC, 0.1% SDS) 

and twice with wash buffer 2 (0.2x SSC, 0.1% SDS) for 15 minutes each in the 65°C 

hybridization oven. The membrane was then air dried for 40 minutes, wrapped in saran 

wrap, and exposed on a phosphoscreen for 2 – 4 hours. Signals were quantified using a 

Typhoon FLA 7000 (GE Healthcare) and analyzed with ImageQuant (GE Healthcare).  
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                 Transcription reaction for northern probe targeting  

   exon 3 of β-globin 

Ingredients Volume 

10x Transcription buffer 2 μl 

H2O (RNase-free) 4 μl 

0.1 M DTT 0.5 μl 

10 mM ATP 1.2 μl 

10 mM CTP 1.2 μl 

10 mM UTP 1.2 μl 

RNasin (40 U/μl, NEB) 0.7 μl 

SP6 RNA-polymerase 1.2 μl 

Linearized plasmid DNA 

(BamHI cut β-globin) 
3 μl 

α-32P-GTP 5 μl 

Incubate 40 minutes at 40°C 

DNaseI (RNase-free, 1 U/μl, 

NEB) 
1,5 μl 

Incubate 20 minutes at 37°C 

Add 28 μl H2O to the reaction and purify the 

labelled transcripts using Mini Quick-spin columns 

(Roche). After purification, add 25 μl radioactively 

labelled transcript to 25 ml Church buffer. 

 

6.5.5 Protein extraction 

The remaining interphase and organic phase saved in chapter 6.5.3 was used to extract 

proteins. First, 300 μl 100% EtOH was added to the reaction tube and vortexed. The 

mixture was incubated for 5 minutes at RT. Next, the DNA was pelleted at 2,000g at 4°C 

for 5 minutes. 500 μl of the supernatant was added to 2 ml reaction tubes containing 

acetone (Roth), vortexed, and incubated for 10 minutes at RT. The proteins were then 

pelleted by centrifugation at 12,000g at 4°C for 10 minutes. The supernatant was 

discarded and the protein pellet was washed twice with 1 ml 0.3 M guanidine 

hydrochloride in 95% EtOH by incubation for 20 minutes at RT followed by 

centrifugation at 12,000g at 4°C for 5 minutes. A final washing step was performed with 

1 ml 100% EtOH. The pellet was air dried for 30 minutes, followed by resuspension in 

200 μl 1% SDS at 35°C and shaking at 800 rpm. 50 μl of the resuspended protein was 
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mixed with 10 μl 6x SDS-loading buffer and frozen at -20°C. SDS-PAGE and western 

blotting of the extracted proteins was performed as described in 6.4.4 and 6.4.5 using 18 

μl of the extracted proteins. 
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7 Appendix 

7.1 List of Antibodies 

Antibody Company Species Dilution 

FLAG (F7425) Sigma Rabbit 1:3000 

V5 (18870) QED Bioscience Rabbit 1:3000 

GFP (ab290) Abcam Rabbit 1:3000 

PABPC1 (#4992) Cell Signaling Technology Rabbit 1:3000 

Rabbit-HRP Jackson ImmunoResearch Mouse 1:10000 

7.2 List of Primers 

Primer Sequence 
globin_2.exon_Xho_as TTTTCTCGAGCACTTTCTTGCCATGA 

globin_2.exon_Xho_se TTTTCTCGAGGGTGCCTTTAGTGATGGC 

globin_3'UTR_Xho_se TTTTCTCGAGGGTTCCTTTGTTCCCTAAGTC 

globin_3'UTR_SalNot_as TTTTTTTGCGGCCGCCCGGGTCGACATTGCAATGAAAATAAATGTTTTTTATTAG 

PABPC1_M161A_as AATACTTTGCGATCATTTAGGAGTGCTCCATTCATTTTTTCAATAGCT 

PABPC1_M161A/D165K_as CGTCCAACAAATACTTTGCGTTTATTTAGGAGTGCTCCATTCATTTTTTCAATAGCT 

PABPC1_1170_Not_as TTTTTTTGCGGCCGCTTATCGTACACTTGCCATTCTCT 

MLLE_mut_se GCTGGTAAAATCACTGGCGGCGCCGCCCGCATTGATAATTCAGAACTTCTTCAC 

PABPC1_580_ter_Not_as TTTTTTTGCGGCCGCTTAAFCCAGCAAGAGTAGGGTG 

PABPC1_1438_as CGCTGTGTTGACATGACTC 

GST_Xho_se TTTTCTCGAGTCCCCTATACTAGGTTATTGGAA 

SYNZIP1_Xho_se TTTTCTCGAGGGAGGCGGAAATCTGG 

SYNZIP1_UAA_Not_as TTTTTTGCGGCCGCTTATTCTTCAATCTTTTTGCGTAAG 

SYNZIP2_Xho_se TTTTCTCGAGGGCGGAGGCGCCCGT 

SYNZIP2_UAA_Not_as TTTTTTGCGGCCGCTTACTGCTCATGGGACGC 

SYNZIP2_Xho_se TTTTCTCGAGGGTGGAGGCAATGACC 

SYNZIP2_UAA_Not_as TTTTTTGCGGCCGCTTAGGACTGCAGTTCCTGCTT 

PTBP1_Xho_se TTTTCTCGAGATGGACGGCATTGTCC 

PTBP1_Not_as TTTTTTGCGGCCGCCTAGATGGTGGACTTGGAGAA 

MS2_se GCTTCTAACTTTACTCAGTTCGTTC 

PP7_se AAGACCATTGTGCTGAGTGT 

eRF3a_PAM2-N_se TTTTCTCGAGGCCTTCAGCCGGCAACTCAACGTCAACGCCAAGCCCTTCGTGCCCAACGT 
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eRF3a_PAM2-N_as TTTTTTGCGGCCGCTTACTCGGCGGCGTGGACGTTGGGCACGAAGGGCTTGGCGTTGACG 

eRF3a_PAM2-C_se TTTTCTCGAGGCCAAGCCCTTCGTGCCCAACGTCCACGCCGCCGAGTTCGTGCCGTCCTT 

eRF3a_PAM2-C_as TTTTTTGCGGCCGCTTACGGGCCCCGCAGGAAGGACGGCACGAACTCGGCGGCGTGGACG 

eRF3a-PAM2(both)_se TTTTCTCGAGGCCTTCAGCCGGCAACTCAACGTCA 

eRF3a-PAM2(both)_as TTTTTTGCGGCCGCTTACGGGCCCCGCAGGAAGGA 

eRF3a_F76A_as GTGGACGTTGGGCACGGCGGGCTTGGCGTTGACG 

Tob1_PAM2_se TTTTCTCGAGCAGAAAACCTCTGCTCTTTCTCCTAATGCCAAGGAATTTATTTTTCCTAA 

Tob1_PAM2_as TTTTTTGCGGCCGCTTATTGACCCTGCATATTAGGAAAAATAAATTCCTTGGCATTAGGA 

PAN3_PAM2_se TTTTCTCGAGAACAATTTACAGACACCAAATCCTACTGCAAGCGAGTTTATTCCTAAAGG 

PAN3_PAM2_as TTTTTTGCGGCCGCTTAGGAGGTTGATCCTCCTTTAGGAATAAACTCGCTTGCAGTAGGA 

NFX-1_PAM2_se TTTTCTCGAGTCAGGTACTTTTAAATTCAATACAGATGCTGCTGAATTCATTCCTCAGGA 

NFX-1_PAM2_as TTTTTTGCGGCCGCTTAAGAATTTTTTTTCTCCTGAGGAATGAATTCAGCAGCATCTGTA 

PAIP2_PAM2_se TTTTCTCGAGGTGGTCAAGAGCAATCTGAATCCAAATGCAAAGGAGTTTGTTCCTGGGGT 

PAIP2_PAM2_as TTTTTTGCGGCCGCTTAATTTCCGTACTTCACCCCAGGAACAAACTCCTTTGCATTTGGA 

PAIP2_PAM2_EFxP/AAxA_as TTTTTTGCGGCCGCTTAATTTCCGTACTTCACCCCGGCAACAGCGGCCTTTGCATTTGGA 

PAIP2_PAM2_EFxP/AAxA_se TTTTCTCGAGGTGGTCAAGAGCAATCTGAATCCAAATGCAAAGGCCGCTGTTGCCGGGGT 

Ataxin2_PAM2_as TTTTTTGCGGCCGCTTATGGCTGAGAGAAGGAACGTGGGTTGAACTCCTTTGCATTGGGA 

Ataxin2_PAM2_se TTTTCTCGAGGTTAGGAAATCAACATTGAATCCCAATGCAAAGGAGTTCAACCCACGTTC 

eIF4G_84_Xho_se TTTTCTCGAGGGATCCCAAGTAATGATGATC 

eIF4G_Not_as TTTTTTTGCGGCCGCTTAGTTGTGGTCAGACTCCTCC 

eIF4G_928_Xho_se TTTTCTCGAGCCATATCGCCTCTCTCCA 

eIF4G_3384Not_as TTTTTTTGCGGCCGCTTATTGAAGGGCTGAGAAGCG 

eIF4G_294_Not_as TTTTTTTGCGGCCGCTTACCCAGGAATAGAGAGGACTG 

eIF4G_181-185_KRERK_as ATCTCGAATTCGGATCGTGGCGGCGGCGGCGGCGGGAGCAATCTGGGGT 

eIF4G_DelN205_Xho_se TTTTCTCGAGGGGGCCCGCACTGCCT 

eIF4G_MIF4G(1089)_Not_as TTTTTTTGCGGCCGCTTATCCAGGTGCAAAGAGCTG 

PDRG1_Xho_se TTTTCTCGAGGTCATCTTGAAAGGATGAGACTC 

PDRG1_SalNot_as TTTTTTTGCGGCCGCCCGGGTCGACGACTTCACGGCAGTTCATAC 

SURF6_Xho_se TTTTCTCGAGCTGGTCTGAGTCTTTCCCA 

SURF6_SalNot_as TTTTTTTGCGGCCGCCCGGGTCGACCCATATGCCACTAAAATTCACC 

SMG5_3UTR_Xho_se TTTTCTCGAGTTGGTTGATACTGACCCCCA 

SMG5_3UTR_short_SalNot_as TTTTTTTGCGGCCGCCCGGGTCGACAGATATTCACCTCAACACTCCA 

mVenus_Nhe/Xho_as TTTTCTCGAGTGATGCGCTAGCCTTGTACAGCTCGTCCATGC 

pCI-se2 GGTGTCCACTCCCAGTTCA 

pCI-as2 TGCATTCTAGTTGTGGTTTGTC 
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