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K U R Z Z U S A M M E N FA S S U N G

Mit fortschreitendem Klimawandel wird der Erhalt des Artenreichtums immer
wichtiger. Nur bei genügend großem Genpool und breitgestreuten Bedürfnis-
sen der Arten an ihre Umgebung werden sich Spezies finden, die sich verän-
derten Umständen anpassen können. Um Biodiversität zu erhalten, muss aber
zunächst einmal verstanden werden, welches Vorgehen welche Folgen nach
sich zieht. Mathematische Modelle der Populationsdynamiken könnten ent-
sprechende Prognosen liefern. Es fehlt aber noch ein Modell, das dazu in der
Lage wäre, die Mechanismen, der alltäglich und experimentell beobachteten
Artenvielfalt wiederzugeben und zu erklären. Eine Kombination theoretis-
cher Modelle mit detaillierten Experimenten ist notwendig, um biologische
Prozesse in Modellen zu testen und die Vorhersagen mit den Auswirkungen
in der Wirklichkeit zu vergleichen.

In der vorliegenden Arbeit werden verschiedene Nahrungsnetze modelliert
und untersucht. Unter anderem werden Modelle zu Experimenten des zo-
ologischen Instituts der Universität zu Köln entwickelt und analysiert. Hier
weisen Simulationen der Laborsystemen eine gute Übereinstimmung der nu-
merischen Daten mit den experimentellen Ergebnissen auf. Mit Hilfe der Sim-
ulationen kann gezeigt werden, dass wenige Modellannahmen nötig sind um
langanhaltende Oszillationen der Populationsgrößen zu reproduzieren. Allerd-
ings zeichnet sich ebenfalls ab, dass ein Zusammenleben „zufällig zusammen
gewürfelter“ Arten über lange Zeiträume nicht sehr wahrscheinlich ist. Auch
größere Nahrungsnetzmodelle zeigen keine signifikante Abweichung von
diesen Beobachtungen und belegen wie außergewöhnlich und kompliziert die
natürliche Vielfalt ist. Um eine solche Koexistenz zufällig ausgewählter Arten
wie im Experiment regelmäßig zu erzeugen, müssten andere Prozesse oder
weitere Einschränkungen in die Modellannahmen eingehen. Eine andere Erk-
lärung für die beobachtete Koexistenz ist ein langsames Aussterben. In nu-
merischen Simulationen überleben Arten vergleichbare Zeitspannen wie im
Experiment bevor sie dann letzten Endes aussterben.

Interessanterweise kann festgestellt werden, dass dieselben mathematischen
Modelle auch ein Überleben mehrerer Arten im Gleichgewicht erlauben und
somit nicht dem sogenannten Konkurrenzausschlussprinzip folgen. Dieser
Gleichgewichtszustand ist allerdings fragiler gegenüber Änderungen der Nah-
rungszufuhr als die oszillierende Artenvielfalt. Insgesamt belegen die Un-
tersuchungen, dass Koexistenz eher oszillierende Populationsgrößen aufweist
und dass andererseits oszillierende Populationsgrößen ein Nahrungsnetz
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sowohl gegen demographisches Rauschen wie auch gegen Änderungen des
Lebensraums stabilisieren.

Diese Modellvorhersagen sind sicher nicht eins zu eins auf reale Ökosys-
teme übertragbar, aber bei der Regulierung von Tierbeständen sollte der stabil-
isierende Charakter von Fluktuationen bedacht werden.



A B S T R A C T

With progressive climate change, the preservation of biodiversity is becoming
increasingly important. Only if the gene pool is large enough and requirements
of species are diverse, there will be species that can adapt to the changing cir-
cumstances. To maintain biodiversity, we must understand the consequences
of the various strategies. Mathematical models of population dynamics could
provide prognoses. However, a model that would reproduce and explain the
mechanisms behind the diversity of species that we observe experimentally
and in nature is still needed. A combination of theoretical models with de-
tailed experiments is needed to test biological processes in models and com-
pare predictions with outcomes in reality.

In this thesis, several food webs are modeled and analyzed. Among others,
models are formulated of laboratory experiments performed in the Zoological
Institute of the University of Cologne. Numerical data of the simulations
is in good agreement with the real experimental results. Via numerical
simulations it can be demonstrated that few assumptions are necessary to
reproduce in a model the sustained oscillations of the population size that
experiments show. However, analysis indicates that species "thrown together
by chance" are not very likely to survive together over long periods. Even
larger food nets do not show significantly different outcomes and prove how
extraordinary and complicated natural diversity is. In order to produce such
a coexistence of randomly selected species—as the experiment does—models
require additional information about biological processes or restrictions on
the assumptions. Another explanation for the observed coexistence is a slow
extinction that takes longer than the observation time. Simulated species
survive a comparable period of time before they die out eventually.

Interestingly, it can be stated that the same models allow the survival of
several species in equilibrium and thus do not follow the so-called competitive
exclusion principle. This state of equilibrium is more fragile, however, to
changes in nutrient supply than the oscillating coexistence.

Overall, the studies show, that having a diverse system means that popula-
tion numbers are probably oscillating, and on the other hand oscillating popu-
lation numbers stabilize a food web both against demographic noise as well as
against changes of the habitat.

Model predictions can certainly not be converted at their face value into
policies for real ecosystems. But the stabilizing character of fluctuations should
be considered in the regulations of animal populations.
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1 I N T R O D U C T I O N

‘The highest function of ecology is understanding consequences.’

— Frank Herbert, Dune

Earth’s biosphere is a complicated worldwide interaction network of all
species. With growing human population and an increasing impact due to
fishing, managing livestock and fisheries management is an ever-growing
task [93]. Ecosystems suffer from the cumulative transformation of natural
habitats due to direct human influence but also from climate change, droughts,
temperature shifts, et cetera. These environmental variations change the
composition of species in an ecosystem, influence the population numbers
but more importantly, puts several species at imminent threat of extinction
and whole ecosystems to collapse. Understanding population dynamics and
predicting the evolution of food webs becomes more and more important.

What limits the number of species—the diversity—in a system? What is the
influence of a species on the biological diversity in its habitat? How stable is
the balance between the species? How severely does an ecological system react
to different external influences? Questions of this type are highly relevant both
from a fundamental and a social and economical point of view.

We depend on (and are part of) this system’s dynamics and development.
Exploitation of the oceans for fish, life stock management, extinction of crop
pollinators et cetera have direct impact on human life. The tolerance to
overfishing of fish stocks, for instance, can have major social and economical
consequences. Even more so with growing population pressure and climate
change. Understanding the mechanisms leading to a collapse of systems is
crucial for food security. If we want to preserve biodiversity we have to know
on which ground to make decisions. The question whether chaotic fluctuations
occur under realistic conditions and how this will affect the stability and
diversity of ecosystems is of obvious relevance.

Once the interactions between species and predator-prey-relations in a
food-net are understood, theoretical models predicting its behavior can be
developed. Since the classical works of Lotka [69] and Volterra [118] in
the 1920s, theoretical modeling has led to important and often surprising
contributions to the understanding of ecosystems. For example studies by
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Leibold [61] promoted the concept of keystone predators [83]. They predict
that predators play an important role in maintaining species diversity: only in
the presence of a common predator more than one species can survive in a
shared habitat on one trophic level. In the absence of predatory pressure one
species will suppress all others.

Various theoretical works indicate deterministic chaos in food webs [42, 74,
75, 102, 103]. On the one hand chaos leads to population fluctuations which
are unpredictable, even the smallest uncertainties in the initial situation cause
great effects in population levels. On the other hand, and somewhat contrary
to intuition, it might contribute to the stabilization of food webs. If population
numbers are confined to a chaotic attractor, they are bound from above as well
as from below and are thereby prevented from extinction: chaotic fluctuations
notwithstanding, the ecosystem is stable in the sense that it retains its original
form as a whole. This is also true for systems in which a coexistence of all
species in a stable stationary state is not possible.

We cannot hope to model and simulate all species in a natural habitat in
the minutest detail along with the complex web of their interactions, specific
parameters and movement. To tackle this complex system there are two
approaches, both with their own weaknesses and advantages. One way to
go is to concentrate on a few “most important” species or to “coarse grain”
and combine species into functional groups by their hunting behavior or role
in the ecosystem. The latter approach is taken for example by global models
of the oceanic ecosystem [16, 120] but has also been applied successfully on
smaller scale in niche models reproducing food web structures of lake systems
via Monte Carlo simulations [122].

The other route to take is first to study small food webs or motifs in the
interaction network [79]. This is a reasonable strategy, as we can assume, that
such communities exist in isolation for some timespan till interacting with
the environment. Moreover, the global development in a system certainly
depends on the underlying subsets. The collective behavior of coupled
dynamical systems in more complex systems is not always predictable, but
some rough generalizations are known [100]. Characteristics of and results
for small food webs generalize to larger webs [123] and can be interpreted
as webs for functional groups. The values characterizing the behavior and
growth of species are not easily all determined and vary inside natural
populations. By numerically simulating hundreds of food webs with slightly
different parameters we can get an idea of how likely particular configurations
will develop by chance under fixed assumptions and formulate general rules
regarding dynamics in communities of species.

In an analogous manner whole-ecosystem experiments will control and
observe a selection of parameters but not all. The problem with these
approaches is that species that are small in numbers can still have an important
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influence on the rest of the habitat and thus might incorrectly be overlooked
as insignificant. Certain mechanisms might not be observed this way.

Our paradigm are small microbial food webs. Well controlled laboratory
experiments in chemostats can provide a basis for such models. Chemostats
are closed containers with microbial species in water with constant food inflow
and overflow, controlled temperature and light. Such a food web in chemostat
offers maximal control of the species introduced as well as the environmental
parameters. Accordingly such a microbial aquatic food web is our minimal
model. It makes use of well-studied growth laws and established models
[14, 63], offers comparable hypothesis for experiments and is still variable
enough to deal with diverse questions. To address more general aspects of the
problem we increase the degree of complexity in our models: The structure of
a food web can be more or less complex, species might entertain stronger or
weaker interactions. The number of interdependent species in the web could
alter the stability of diversity as well as the number of levels.

The aim of this study is to look for robust mechanisms that guarantee
coexistence of several species and to identify classes of food webs with regard
to their stability and species diversity. Those classes can for example be
characterized by the topology of their inter-species relations, e.g. feeding on
products of metabolism of another species or competition on nutrients or via a
common predator.

�.� ������� �� ���� ������

Natural food webs manifest a complexity that fascinates and poses challenges
at the same time. With few ingredients, a relatively simple and small food
web of three species can exhibit various dynamical patterns from equilibrium
over limit cycles to chaotic attractors (as we will see in chapter 2). Chaotic
and non linear dynamical systems have been studied extensively in theoretical
physics, in the realm of laser physics, mechanical vibrations or socio-economic
problems. In the field of ecological models, the role of non-equilibrium
dynamics is not fully understood and still in development.

The present work results from a close cooperation with experimental biol-
ogists that aimed at an understanding of maintained diversity and sustained
oscillations in real world systems. This offered unique and exciting opportu-
nities but on the other hand such a collaboration involves uncertainties: The
availability of new data and the execution of new experiments cannot be con-
trolled and novel challenges arise. Theoretical models of practical laboratory
experiments were simulated numerically to compare to empirical data and the
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influences of species interactions1. With the many unknown parameters in
ecology and the natural variation, random sampling of parameters and numer-
ical simulations offer one way to explore dynamics and diversity of food webs
without restricting the analysis to explicit parameter values.

This dissertation mainly addresses three questions:

1. Which factors affect the stability of a food web or an ecosystem?

2. How does the composition of a food web or an ecosystem affect its
stability?

3. Are some species more important than others concerning food web
stability?Stability in this contexts refers to the persistence of species diversity in a sys-

tem, i.e. to the stability of the number of distinct species and to the resistance
to changes in the system’s parameters. A potential loss of species corresponds
to an unstable system, in a stable system the number of species stays constant.
The aim is to infer system properties that indicate strong or weak stability
against external perturbation. This would help deciding which species in a
food web are most important to protect and which habitat could be especially
prone to breakdown.

After reviewing the fundamentals of ecological models and diversity and
defining the required terms in section 1.2 and 1.3, chapter 2 investigates a
predator-prey model that simulates the life chemostat system of Becks et al.
[10]. In the experiment as well as in the model, chaotic population dynamics
occur over broad parameter ranges. The model reproduces experimental data
qualitatively with population abundances of apt orders of magnitude. The
system features a chaotic attractor that arises from the interplay of two dis-
tinct limit cycles. Demographic numerical simulations demonstrate that the
attractor in turn causes the mean extinction times of the food web to increase
exponentially with system size. In other words chaos stabilizes the populations
against demographic noise.

Chapter 3 reviews a theoretical model [47] and modifies it to describe the
processes in the chemostat experiment realized by Schieffer [94] and Arns
[7] in Cologne. The chapter addresses the feasibility of coexistence in non-
equilibrium as well as fixed population numbers. Although both types are
possible in numerical simulations, chaotic coexistence proves much more sta-
ble under changes of dilution rates. Not only does chaos (or fluctuations)

1 The numerical calculations here and in the following chapters were either performed with C++ or with
Mathematica Version 10 (Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL (2014)).
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support multi-species coexistence but it also stabilizes diversity better against
perturbations than stationary setups. On the other hand, numerical calcula-
tions show that high species richness is not a likely outcome under the general
assumptions of the model. Natural diversity needs additional explanations
and mechanisms.

Chapter 4 examines the impact of specialization and the excretion of
metabolic products on competitive microbial communities. A numerical study
of systems of 20 competitors was performed. The model features a common
good, excreted by producers, that can be utilized by generalists. Varying the
food web structure (the number of producers and generalists) and sampling
random species with fixed species interactions we draw the conclusions that
first, producers enable higher species richness and second, that specialists pro-
mote diversity.

Chapter 5 explores in a third model the consequences of the food web
structure on stability and diversity in systems. Starting with a substantially
larger number of species and multiple trophic levels, diversity still declines
over ecological time scales. On average, systems end up with three to four
species and four trophic levels above the resources. An investigation of
dynamical properties indicates the importance of non-equilibrium dynamics
for the maintenance of species richness in ecosystems.

Code for the simulations of each chapter can be found in the respective
appendices.

�.� ������������ �� ���������� ������

“We remembered the relationship between a food animal called a snowshoe rabbit and a
predatory cat called a lynx. The cat population always grew to follow the population of the
rabbits, and then overfeeding dumped the predators into famine times and severe die-back.”

— Frank Herbert, Chapterhouse Dune

Historically, the field of population dynamics developed not so much from
mathematical biology but from considerations mostly concerned with human
population in particular. Malthusian growth models—named after Robert
Malthus [72] and his influential essay "on the principle of population”—
assume exponential growth with a constant rate r

dP

dt

= rt , P(t) = P

0

e

rt (1.1)
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where t is the time and P

0

the initial population size. With positive growth
rate r the population grows indefinitely, if r is negative, population numbers
approach zero. Malthus assumed linear growth in food production and
accordingly predicted a future of famine and starvation for British society
when, in 50 years from then (1798) on, population numbers would have
overtaken food supply. Luckily for Great Britain, farming became more
efficient and society did not follow this simple growth model.

In 1838 Verhulst [115] published an equation incorporating the limitedcarrying capacity  of an environment to support a population.

dP

dt

= rP ·
✓

1 -
P



◆
, P(t) =

P

0

e

rt

 + P

0

(ert - 1)
(1.2)

This model predicts more realistic logistic growth where populations saturate
at the maximum value lim

t!1 P(t) =  when resources like food or space
get scarce.

During this period, theoretical ecological sciences started to evolve. Sprengel
[97] and von Liebig [119] developed and promoted, respectively, an agricultural
theory about plant growth and the optimal use of mineral fertilizer. They
formulated a principle stating that the growth of crops is controlled by the
scarcest resource.

In 1926 Volterra [117, 118] published the famous Lotka-Volterra equations
to explain fluctuations in the statistics of fish catches. He also discussed
potential application to plant parasites. Independently, Lotka [69] derived
the same type of predator-prey equations in 1925 after proposing them for
the description of autocatalytic chemical reactions in 1910. Volterra discussed
basic interactions of two or three species competing for food or feeding on
one another. These models predict stationary population numbers, damped
oscillations or ongoing oscillations in the case of the popular predator-prey
system.

Still nowadays population models are a measure to predict development of
food supply and to ensure it by managing livestocks, fisheries and ecosystems
in general.

�.�.� Food Web Models

In the life sciences, population dynamics study the size of populations of
species or groups of species in a mutual environment.

The definition of a biological species via genetic differences or reproduction
is not always well-defined. In the theoretical framework, we will define a
species in terms of its traits. Members of one species are distinguished from
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Figure 1: Reconstructions of fossil food webs and trophic levels from the Chengjiang and
Burgess Shale produced by Dunne et al. [22]. Species or taxa are represented by
spheres, connected by feeding links. The lowest level is composed of primary
producers (red), the top level contains predators (yellow). Food webs can
be simplified by gathering species by common feeding behavior into "trophic
species”.
S: number of species (nodes). L: number of trophic links. C: connectance; L/S2.
MaxTL: maximum trophic level of a species in the web.
http://dx.doi.org/10.1371/journal.pbio.0060102.g001

other species by properties like growth rate, the way they interact with other
individuals and the environment et cetera.

In natural ecological systems, several species live together, interacting with
each other. A food web represents the combined trophic (feeding) interactions
graphically. Arrows indicate directed feeding links or rather who eats
whom. Sometimes this is also referred to as the flow of energy or nutrients
through the web. Starting at the lowest level with producers (autotrophs) like
phytoplankton, algae and plants that convert light, mineral nutrients and gas
into organic matter. The next higher level would be consumers grazing on
the producers. These will be fed on by the next higher rank of predators and
so on. In a simple case, species with mutual predators and prey or resources
can be ordered into trophic levels. Inside each level several species compete
against each other for food but also in defense against predation pressure. If
we consider only one species per level (A eats B eats C) one might also call
this a food chain. In general natural ecosystems can be much more complex
and interconnected (see Figure 1).

To describe population numbers in ecological systems mathematically, we
treat the number of individuals of each species as a continuous quantity.
By neglecting the discrete nature of birth and death processes we implicitly
assume sufficiently large system sizes and numbers. This assumption breaks
of course down for small systems. Consequences from the discreteness in small
systems are discussed in chapter 2. Another approximation in this study is that
the aquatic communities are well mixed and that this process destroys spatial

http://dx.doi.org/10.1371/journal.pbio.0060102.g001
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information. Seasonal environmental fluctuations will not be considered, just
as age structure of the populations.

All changes in population numbers can then be incorporated into rate
equations. Growth and death rates determine the evolution and might depend
explicitly on the numbers of predators or the availability of nutrients or
implicitly on the abundance of competitors . In these systems—homogeneous
in time and space—this will result in coupled differential equations of first
order that do not depend on time explicitly.

One Species
To define the main ingredients we consider the Malthusian model of a single
population without external restrictions. With N we refer to the number of
individuals and with t to the time. (In other contexts we might as well
refer to a population density of, say, cells per liter. It can have advantages
to define equations independent of the total volume.) Characterizing mortality
and reproductivity by mortality rate m and birth rate µ, respectively, the rate
equations are

dN

dt

=bN - mN = (b - m)N = ↵N. (1.3)

Here the mortality rate specifies the ratio of the population dying in each unit
time, and the birth rate the ratio of reproducing or new individuals per time.
The net per capita change per time is then the combined rate ↵ = b - m. The
differential equation of first order for N is solved by an exponential

N(t) = N

0

e↵t (1.4)

Population numbers will either grow indefinitely if ↵ is positive or decline
when ↵ takes values below zero.

�������� ���� �������� �������� The next step is to take into account
nutrient dependence. A basic interaction of one consumer population growing
on a single resource can be described by the following equations.

dR

dt

=g - ✏µ(R)N

dN

dt

= (µ(R) - m) N

(1.5)

The concentration of resource R affects the concentration of consumers N and
vice versa. With g we denote the net growth of resource in a system without
consumers (for example production minus degradation). A mortality rate
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Figure 2: Types of functional response according to Holling [46]

of consumers m counteracts their growth or reproduction rate µ(R). Both,
mortality and growth, are described as rates per capita and time. Growth
should obviously depend on the availability of food. The resource intake
and consumer growth are related by the factor ✏ that describes the amount
of resource needed to yield one new consumer.

����� �� ���������� �������� Obviously the system’s population dy-
namics depend on how effective species process nutrients or handle prey.
Holling [46] characterized three major types of predation by their functional
response (or growth rate function) µ(R). The simplest assumption (Holling’s
type I) is a linear dependence on food density. Holling’s type II and III as-
sume a limited ability to process resources and to reproduce and are thereby
saturating to a maximal growth rate for high resource concentrations. Type II
grows linearly with low resource concentration, type III (sigmoidal functional
response) follows a more than linearly increasing function (see Fig. 2). Monod
[80] set up an equation similar to Holling’s type II to model growth kinet-
ics that were found in empirical studies on microbes in aquatic environment.
Monod’s equation or Holling’s type II is the typical choice for µ(R) in the
context of bacterial and microbial growth [14, 63].

µ = µ

max

R



R

+ R

(1.6)

The specific growth rate µ is bounded by a maximal growth rate µ

max

. When
resource concentration amounts to 

R

, organisms grow at half the maximal
rate (half saturation constant).
Two Species: Predator Prey Systems
By introducing predators feeding on prey we can expand the model to multiple
trophic levels and describe more complex food webs. Simple predator prey
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left: Trajectories in phase space for several initial configurations, the gray cycle
corresponds to the trajectories in the right panel
right: Numbers of predator and prey evolving over time for initial conditions
(N, P) = (220, 50)

models have been discussed by Volterra [118] and similar equations were
independently studied by Lotka [69]. A population of predators is modeled
to feed on a prey population and to multiply correspondingly. For the well-
known Lotka-Volterra equations the Malthusian system is extended.

dN

dt

= ↵

1

N - �

1

PN = (↵
1

- �

1

P) N

dP

dt

= �

2

PN - ↵

2

P = (�
2

N - ↵

2

) P

(1.7)

The reproduction rate of the prey species is still assumed to be linear and
without predators, prey would obey the exponential growth of a single-species
system (1.4). The number of predators in the system P grows with the
number of prey N which in turn decreases. The rate equations feature linear
functional response and predators are subject to a constant death process. In
this system, there are two equilibrium states. Trivially, if both species are
extinct (N = P = 0) the situation will remain this way. The other solution
is a coexistence fixed point in phase space (N = ↵

2

�

2

, P = ↵

1

�

1

). If initial
conditions differ from these configurations we see trajectories evolving along
a closed orbit (limit cycle) in phase space around the second fixed point (see
Fig. 3) and initial population numbers determine the cycle the system will
follow. Population numbers oscillate with a fixed frequency around the fixed
point. Inspite of the simple equations, some biological observations agree with
this prediction, e.g. the famous field observations of lynx and snow shoe hares
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Figure 4: A schematic illustration of a chemostat experiment. Nutrient medium is
pumped into a vessel containing a community of microbial organisms. This
leads to an overflow from the vessel at the same rate and causes dilution in the
mixture.

[24] and laboratory Paramecium-Didinium data [70]. Interestingly this particular
system features a constant of motion

G = �

2

N - ↵

2

lnN + �

1

P - ↵

1

lnP (1.8)

accounting for properties allowing analytical treatment. Due to its neutral pop-
ulation cycles, such systems can easily be pushed to extinction by decreasing
the system size and increasing stochastic noise (see e.g. Dobrinevski and Frey
[21], McKane and Newman [78], Parker and Kamenev [85]). In other predator-
prey systems noise can produce complex spatio-temporal structures and with
long-lived population oscillations [20].

A more realistic model is the popular Rosenzweig Mac Arthur model [91]
incorporating a carrying capacity similar to Verhulst’s equation (1.2)

dN

dt

= rN ·
✓

1 -
N

K

◆
-

NP

N + K

dP

dt

= �

NP

N + K

- �P

(1.9)

�.�.� Chemostat Experiments

Microbial food webs are a convenient system to study population growth.
High reproduction rates allow observations of several generations during a
span of days. The system can be modified so as to model other kinds of food
webs. Communities of bacteria or phytoplankton and bacterivorous ciliates
can act as models for food webs of higher animals and vertebrates. At the
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same time the experimental setup is transparent enough to be understood
qualitatively and quantitatively. Well controlled experiments on microbial
growth can be performed in a chemostat Such an installation is shown in
schematic form in Figure 4. Here, an aquatic community of microorganisms—
bacteria, ciliates, algae—is cultured in a vessel in dissolved nutrients. Constant
inflow from a reservoir provides nutrient medium and at the same time dilutes
the system.

One Species: Consumer with Resource
As an example let us first assume a single bacterial strain and a resource
and adapt equation (1.5). An important parameter characterizing this setup
is the dilution rate per time, D, at which fresh medium of concentration R

0

is
pumped into the vessel. This results in an effective mortality rate m = D + d

where d represents the loss rate per capita from any other process as death
or predation. Let us assume death rates are negligibly small in comparison to
dilution. This yields the following system of equations.

dR

dt

= (R
0

- R) ·D - ✏µ(R) ·N

dN

dt

= (µ(R) - D) ·N
(1.10)

With this in our simple case of one bacterial consumer feeding on a resource
the population of bacteria would typically grow until an equilibrium is met.
Assuming a Holling’s type II growth rate (1.6) yields the fixed point values.

dR

dt

= 0

dN

dt

= 0

9
>=

>;
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D = µ(R⇤)
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⇤ =
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- R

⇤

✏

(1.6))
R

⇤ =
kD

µ

max

- D

N

⇤ =
R

0

- R

⇤

✏

(1.11)

Obviously this result is only reasonable if nutrient concentration R

⇤ is positive,
i.e. if µ

max

> D. This statement simply corresponds to the requirement of
the maximal growth rate being greater than dilution.

This basic building block can be employed to describe competing species.
Dependance on several resources has to be included by choosing the appropri-
ate growth rates.
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Two Species: Predator Prey
Of course this experimental model can also be used to study predator prey
systems by selecting appropriate microorganisms.The corresponding version
in chemostat with Holling’s type II functional response reads

dR

dt

= (R
0

- R) ·D - ✏µ(R) ·N

dN

dt

= N · (µ(R) - D) - �(N) ·P

dP

dt

= (��(N) - D) ·P

(1.12)

with a newly introduced functional response of predator growth depending
on the prey concentration. A loss in prey numbers accompanies the growth
of predator population P. Again a conversion � accounts for the number of
predator organisms resulting from the loss of one prey individual.

More Species and More Resources: Competition
These models can easily be expanded to food webs of higher complexity.
Consider, for example a community of n planktonic species grazing on k

resources. Population abundances N

i

grow depending on the availability of
the resources. The availability of a resource j on the other hand, R

j

, depends
on the consumption of resources by the plankton.
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i
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, . . . R

k

) - m

i

) i = 1, . . . n
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) j = 1, . . . k

(1.13)

Specific mortality and growth rates are denoted by m

i

and µ

i

(R
1

, . . . R

k

)
respectively. A constant turnover rate D supplies fresh resources from a
reservoir with concentration S

j

of resource j. The content of resource j in
species i amounts to c

ji

.
Now we are faced with a new concept: The growth rates µ

i

(R
1

, . . . R

k

)
are determined by several nutrients and further considerations are necessary
to decide on the functional response. Assume that we know how a species will
respond to a single nutrient R

j

(provided all else is sufficiently supplied). For
microorganisms we will describe this by a function µ

i

(R
j

) of the Holling’s
type II . Is there a way to combine the nutrient-specific growth-rates µ

i

(R
j

)
into a general growth-rate-function dependent on all nutrients µ

i

(R
1

, . . . R

k

)?
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This will depend on the way how the nutrients are utilized by the organisms.
Nutrients can act as heterologous (=essential) in an organism. Perfectlyessential means that for the species considered no resource can be replaced by
any one or more of the other resources. Other chemicals might be replaceable
(homologous) because they fulfill similar functions or can be converted into one
another [62, 126].

For example; Huisman and Weissing [47–49] simulate a system of an
aquatic phytoplankton with perfectly essential resources. We will discuss this
particular case in more detail later.

�.� ��������� �� ������� �����������
For the conservation of biodiversity, we have to identify mechanisms maintain-
ing and promoting species richness in natural habitats. Mathematical models
can predict consequences of management strategies. The term diversity can re-
fer to different quantities depending on context and author. Sometimes speciesabundances—the number of individuals per species— and their evenness are
included and scientists calculate a weighted average. In this thesis, species rich-ness and species diversity both, will be synonymous to the number of species
in a system independent of the individual population numbers.

�.�.� Competitive Exclusion and Chaotic Coexistence

Several resources limit the growth of organisms in nature: Mineral nutrients,
gas, light and water are essential for survival and production. In the 19th
century Sprengel [97] developed the nowadays so called Liebig’s law of theminimum. The idea was promoted lateron by Justus von Liebig[119].

"(. . . ) denn fest steht der Satz: eine Pflanze, die 9 oder 10 Stoffe zur
Nahrung bedarf, kann niemals ihre höchste Ausbildung erreichen,
sobald von einem einzigen dieser Stoffe nicht die erforderliche
Menge vorhanden ist." — Sprengel [97]

This concept was based on the knowledge from agricultural science, that plants
depend on a number of nutrients to grow. It states, that plants will grow not
according to the total amount of resources, but that they are limited by the
nutrient shortest in supply—the limiting factor. In other words some nutrients
cannot be replaced and oversupply of one nutrient can not make up for the
shortage of another.

Now consider several species limited by a number of resource. TheCompetitive Exclusion Principle was formulated in 1904 by Grinnell [36] for
such systems relying on field observations.
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"Two species of approximately the same food habits are not likely
to remain long evenly balanced in numbers in the same region.
One will crowd out the other" — Grinnell [36]

Gause [29] elaborated this idea based on laboratory experiments with two
Paramecium species. He let the two species evolve in a constant environment
providing a constant flow of food and fresh water. His claim was, that with
constant ecological and environmental factors two species cannot compete for
the same resource and coexist. He could show however, that the two species
could coexist when he varied the supply of food and water. A more general
formulation is that two species cannot inhabit an identical ecological niche at
the same time: In a constant environment one will always outgrow the other.

This principle entails discussions about the Paradox of the Plankton:

“The problem that is presented by the phytoplankton is essentially
how it is possible for a number of species to coexist in a relatively
isotropic or unstructured environment all competing for the same
sorts of materials.” — Hutchinson [50]

While Gause could demonstrate the principle to hold true in laboratory with
two species of Paramecium or yeast, everyday experience as well as data from
microcosm and mesocosm experiments show different results. Soil bacterial
communities competing for a few easily digestible nutrients exhibit a high
diversity [25]. Although phytoplankton growth is assumed to be limited
only by nitrate, phosphate, light and carbon (because all other elements are
abundant in natural waters), several thousand species can be observed in the
surface layers of the world’s oceans in a relatively constant environment and
little spatial structure [18, 101]. In the group of Benincà et al. [12] containers
with 90 liters of water, along with sediment, detritus and the microscopic
life therein were isolated from the Baltic sea. The interactions of bacteria,
phytoplankton, herbivorous and predatory zooplankton and detritivores were
studied over eight years in their complex aquatic habitat. Contrary to the
predictions of the Competitive Exclusion Principle, the number of surviving
species exceeded the number of assumedly essential nutrients (phosphor,
nitrogen, carbon, light) by far.

Candidates to resolve the Paradox include chaotic advection in hydrody-
namical flows, external perturbation as an ever-changing environment, spatial
variation and migration. But those hypothesis cannot provide explanations
for the observed coexistence in well-controlled laboratory conditions and well
mixed chemostats [7, 94].

At first, theoreticians supported the Competitive Exclusion Principle by
mathematical proofs. These proofs, however, relied on linear growth rates
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functions and searched for coexistence at stationary densities [64, 66, 71, 89,
118]. Later it has been demonstrated under more general assumptions that at
fixed densities a coexistence of n species on k < n resources is impossible
[77]. Nevertheless if one considers models with nonlinear growth rates and
non equilibrium dynamics, coexistence of n species on k < n resources actually
becomes feasible [3, 4, 54, 58, 77, 125]. Koch [58] gave numerical indication
via simulations of 2-species coexistence on one resource on a periodic orbit.
Analytically this coexistence was proven for two species by McGehee and
Armstrong [77]. A proof for n species coexisting on one resource was provided
by Zicarelli [125] and expanded by Kaplan and Yorke [54] to more limiting
factors. Gross et al. [38] proved the existence of chaotic parameter regions
generically in food chains of length greater than three.

Altogether this suggests one way out of the Paradox. Namely, that a con-
stant environment is not a sufficient condition for competitive exclusion, but
that non-stationary population numbers make coexistence possible. The princi-
ple cannot be generalized to dynamical systems and one should consider non
equilibrium dynamics to account for diversity. Theoretically, non equilibrium
systems may allow communities with more species than limiting resources to
coexist. These dynamics are bounded and can either evolve towards a periodiclimit cycle or they can be chaotic and follow a chaotic attractor, i.e. a lower
dimensional complex structure embedded in the phase space of population
numbers. To feature bounded chaotic solutions, autonomous differential equa-
tions of first order of continuous functions have to be at least three dimensional
according to the Poincare-Bendixson theorem [98]. So when the system’s di-
mension exceeds three, population dynamics can become more complex and
even chaotic.

This leaves the question whether biological systems commonly undergo
chaotic dynamics. Or whether this explanation for biodiversity and the
Paradox of Plankton is merely academic.

Experiments have shown hints of sustained oscillations in short time series
of small laboratory food webs [23, 27, 53, 110]. In cultures of cannibalizing
developmental stages of the flour beetle Tribolium, the mortality was changed
artificially to observe crossovers from stable fixed points to chaos that had
been predicted theoretically[17, 19, 44, 56]. Graham et al. [35] cultivated a
community of nitrifying bacteria and protozoa in wastewater bioreactors for
207 days reporting strongly fluctuating population numbers.

Too short observation times and slow transient behavior could be a reason
that exclusion does not take place during the experiments. But in the before
mentioned long term experiment by Benincà et al. [12] species abundances
of ten aquatic functional groups and the detritus pool were counted twice a
week and the nutrient concentration was measured. This resulted in a total of
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690 data points per functional group, demonstrating strong erratic fluctuations
in the population numbers. The duration of this experiment and sustained
species richness and oscillations are a clear sign that no ’slow exclusion’ is tak-
ing place. The study by Benincà et al. [12] reported that the forecast period was
limited to 15 to 30 days which might indicate deterministic chaos. However,
this impressive study is not without shortcomings. By gathering species into
functional groups single-species information are lost. Measuring twice a week
might disguise important dynamics and a lack of an external control parame-
ter prevents a clear decision.

A combination of experimental results and model calculations can provide
more confidence and an understanding of underlying mechanisms. Bifurcation
analyses numerically confirmed chaotic dynamics for biologically relevant
parameter values in models of two-prey-one-predator food webs in microbial
chemostat systems [59, 114]. An actual microbial food web of this structure
was examined by Becks and Arndt [8, 9], Becks et al. [10]. Bacterial strains –
Pedobacter and Brevundimonas – have been placed in diluted nutrient medium
together with a ciliate preying upon both. An externally controlled dilution
rate determines the nutrient supply for the bacteria and at the same time acts as
an effective mortality rate via overflow. And indeed by altering this parameter
the population dynamics could clearly be tuned from equilibrium to periodic
orbits to chaos and back in time series of 30 - 60 days duration.

Numerical simulations of plankton systems demonstrate longterm coexis-
tence for particular parameter configurations as well.

Huisman and Weissing [47] demonstrated via numerical simulations of equa-
tions (1.13), that for perfectly essential resources, non-equilibrium dynamics
with more species than resources are possible. In the model multiple phyto-
plankton species survive on a few abiotic resources in a constant environment.
Population numbers of all species can show strong sustained oscillations de-
pendent on the parameter values. Huisman and Weissing provide specific
parameter configurations that enabled oscillating coexistence of six species on
three resources and chaotic resilience of twelve species on five nutrients. De-
terministic chaos was indicated by bifurcation analyses.

It is still not clear, however, whether this specific numerical model should
be treated as an exception and oddity or whether it reflects processes in real
biological systems. An experiment testing this prediction was performed at
the Institute for General Ecology at the University of Cologne by Schieffer [94]
and Arns [7] that will be presented and modeled theoretically in this thesis. In
the experiment up to six bacterial strains were cultivated in a common nutrient
medium containing three essential resources. The choice of bacteria was just
influenced by their ability to feed on a certain nutrient medium. Over the
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period of the experiment (30 - 50 days) all strains survived with fluctuating
population numbers supporting the thesis of chaotic coexistence.

�.�.� Stochastic Fluctuations and Demographic Noise

Ecological systems are subject to ‘intrinsic’ and ‘extrinsic’ noise sources.
Extrinsic noise could for instance be changes in temperature, fluctuations in
nutrient supply and migration from external habitats. Intrinsic noise – also
called demographic noise – is caused by the discrete unit steps at which
population sizes change and take place even in perfectly isolated systems. Even
if differential equations predict infinite survival, with demographic noise a
population might die out. In the simplest case the discrete system population
numbers have to take values of zero or one when the continuous system
takes real number in between. Another case where discreteness can induce
significant differences is a stationary coexistence in the deterministic equations.
If the continuous approximation abundances evolve towards a non-integer
stable fixed point, discontinuity forces the numbers to jump "too far". The
fixed point cannot be realized. Now the numbers have again to evolve back
towards the fixed point. For this reason the discrete system is forced to
fluctuate around the stable point. Those fluctuations may transfigure otherwise
regular dynamics to behave randomly or induce periodicity [30, 109]. Such
a type of effective randomness is particularly important for systems with
small population sizes. Nevertheless, even in very large systems demographic
noise can cause qualitative and strong effects [78]. For the food webs under
consideration, the main question is how demographic noise will interfere with
deterministic chaotic fluctuations present and influence stability. The discrete
nature of the food-web’s dynamics is captured in the master equations of the
system. These can be simulated and analyzed numerically in terms of the
so-called Gillespie algorithm [31, 32]. From these simulations one can extract
extinction rates in different dynamic regimes as will be done in chapter 2.

�.�.� Verification of Chaos

There are numerous ways to demonstrate chaos in dynamical systems. Prin-
cipal approaches include bifurcation diagrams, the identification of Lyapunov
exponents, or the analysis of Poincaré sections. Detecting deterministic chaos
in experiments is more difficult. Populations are always subject to intrinsic
demographic fluctuations, at levels which depend on the size of the popula-
tion and the underlying deterministic dynamics. One needs to exclude these
mechanisms, rather than deterministic chaos, as a primary cause of fluctua-
tions in the system. In the majority of cases the series of data are too short to
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construct bifurcation diagrams or to reliably estimate Lyapunov exponents. A
better approach is to search for parameter-dependent controllable crossovers
from stationary to chaotic behavior. In this way, chaotic and stochastic fluctu-
ations, respectively can be discriminated from each other. Model calculations
can give confirmation if experimental data demonstrates qualitative changes in
time-series.
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Surprise? Who’s talking about surprise? Chaos is no surprise. It has predictable
characteristics. For one thing, it carries away order and strengthens the forces at the
extremes.

— Frank Herbert, Dune
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Figure 5: A predator P feeds on two prey species N

1,2 competing for a mutual food
source C. Bold arrows represent stronger energy flow, indirect influence via
competition is depicted by a dashed link.

We examine a mathematical model of a simple food web consisting of two
prey populations competing for nutrients and one predator population. In
this model a control parameter triggers a bifurcation that initiates a transition
to chaos. Chaos might alter the evolution of a system unpredictable during
little time and induce wild fluctuations. Still, with the evolution of a chaotic
attractor it can stabilize the system by bounding the population numbers in a
region in phase space.

The experimental analogue is an aquatic system in a chemostat where
similar dynamics where shown by Becks et al. [10] in Cologne. In nature such
an ecosystem is exposed to different perturbations like seasonal fluctuations
and stochasticity - meaning demographic noise. Interactions of the Lotka-
Volterra type can easily be pushed to extinction by demographic noise [84].

In our cooperation with the group of Hartmut Arndt1, we aimed at finding
a general catalogue of techniques to approach such a system and to analyze

1 Zoological Institute, University of Cologne

21
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its features. We address the question, how stable an attractor is when
encountering perturbations, we characterize the stability of a chaotic attractor
and we ask whether a food web will persist if ruled by deterministic chaos
rather than by regular limit cycles or Lotka-Volterra-like dynamics.

Parts of the following chapter are borrowed from [37]2. For a first
characterization of the dynamics in this model I fall back upon parts of my
diploma thesis. Starting from there, I expose the implications for generic
ecological food webs, identify the deterministic chaos via the largest Lyapunov
exponent and I calculate the mean extinction times of the food web numerically
for the subsequent interpretation3.

�.� ������������
Ecological networks can show various different dynamics. As experiments
confirmed they can also be ruled by deterministic chaos [10, 12, 17]. In
that case the abundances of the species are restricted to a chaotic attractor
undergoing large fluctuations but secure from extinction. To understand the
effect of chaotic dynamics in ecological systems one can resort to a model of a
small predator-prey-system. Our paradigm is an aquatic microbial community
comprising two prey and a predator species. The three microscopic species are
cultivated in a solution of nutrients in water in a chemostat (Fig. 7). They are
constantly provided with fresh water and food.

Two bacterial strains (in experiments Brevundimonas, Pedobacter) compete for
food. A ciliate (Tetrahymena pyriformis) acts as common predator. A more
(less) efficient usage of food and being more (less) preferred by the predator
can balance each other out and lead to a coexistence of the two strains (Fig.
6). Starting at the upmost position with many predators we can imagine the
following cycle: First the less preferred species can take advantage of that fact
and will grow. At the same time the number of predators decreases when the
preferential food is getting sparse. With the now reduced feeding pressure the
fast growing competitor will flourish. And finally the predator can reproduce
again and we end up at our initial condition.

Experiments on this community have shown equilibrium, periodic and
chaotic oscillations of population numbers [10]. The type of dynamics depends
on the inflow of dissolved nutrients into the chemostat. This inflow—or
dilution—drives the systems dynamics and acts as control parameter.

A minimal model was formulated considering the grazing of bacteria and
the predation of the ciliate. The rate equations are assumed to follow ordinary

2 I have performed the numerical simulations and the analysis, created the graphics and composed the
manuscript.

3 For numerical implementation see Appendix A
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Figure 6: A predator feeds on two prey species. It prefers the prey that is faster growing.
This compensation enables the depicted cycle. In the experiment this is realized
by the bacterivorous ciliate Tetrahymena pyriformis (gray) and two strains of
bacteria - preferred fast growing Pedobacter (depicted by spheres) and slow
growing Brevundimonas (rod like).

Holling’s type II growth. With inserting the experimentally determined specific
parameters the model outcome is indeed qualitatively consistent with the
experimental results.

Numerical simulations of the different species concentrations undergo
periodic oscillations or stay constant in an equilibrium, a regime of chaotic
population dynamics is formed over a wide range of intermediate dilution
strengths. This parameter window is bounded by two regimes of periodic
coexistence (stable limit cycles). Chaotic trajectories stick to a structure (chaoticattractor) in phase space that seems to interpolate between the two distinct
periodic dynamics. With this attractor stable coexistence of all three species
is possible. An additional stability against perturbations is provided in the
sense, that species abundances might react with huge fluctuations but settle
quickly back onto the attractor manifold. The food web in its structure and
composition remains unchanged. The same mechanism helps to stabilize
against the destabilizing effects of migration and supports persistence.

In small systems finite numbers and discrete birth and death processes
produce fluctuations (demographic noise) and can push species towards
extinction that would persist in larger systems. In Lotka-Volterra systems the
mean time to extinction grows polynomially with population size[84, 85]. In
this chaotic system we can confirm the attractor’s protective properties: The
mean time to extinction in this case scales exponentially with system size.
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This study discusses and quantitatively models the conceptual mechanisms
promoting chaotic multi-species coexistence in a two-prey one-predator model
system motivated by the experiment of Becks et al. [10]. As previous
studies suggest [28, 60, 103, 114] the system shows periodic and chaotic
coexistence. An attractor evolves that topologically bears resemblance to
Gilpin’s classification of Vance’s model [34, 57, 113]. The principles behind
the formation of the attractor manifold may be summarized as follows: our
system is governed by an important control parameter—the external dilution
rate which acts as a paradigm for the availability of resources that the species
consume. Both in the regime of low and high resource availability, the system
builds up limit cycles controlling the population size. The two cycles at high
and low dilution rate are topologically distinct, in a manner to be discussed
below. The wide range of intermediate parameter strength is governed by
a ‘competition’ between the two cycle regimes, and this will be shown to
lead to the formation of a chaotic attractor interpolating between the limiting
dynamics.

The suggestion that chaotic attractors may emerge from the competition
between parametrically separated limit cycles is one main result of the present
chapter. Fixed points and limit cycles for different parameter regimes are a
generic feature of predator-prey systems and their interplay might suggest a
generic mechanism promoting the transition to chaos. Below, the predictions
derived for our current specific model will be shown to be in good agreement
with the experiment Becks et al. [10] where population numbers in chemostat
experiments could be tuned from stationary to periodic or chaotic and back
depending on the applied dilution rate.

Another outcome is the confirmation of the protecting properties of chaos.
Although fluctuations strongly suppress population numbers the chaotic
attractor actually protects them exponentially against extinction.

�.� �������
The system we consider models an aquatic well-mixed microbial community
established in a chemostat. Prey populations compete with each other for
nutrients but also via a common predator.

In the experiments under consideration two bacterial strains live on soluble
organic matter, while a bacterivorous ciliate feeds upon the two different
bacterial strains. The competition is characterized by a trade-off: one bacterial
strain is preferred by the predator but grows faster. The other strain is less-
preferred but slow-growing. At a rate D fresh nutrient solution flows into the
chemostat vessel of constant volume. Via the overflow, a mixture of microbes
and nutrients leaves the system and thereby dilutes the community inside the
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chemostat. By tuning this dilution or turnover rate we will test the behavioral
range of the system (Fig. 7). The following differential equations describe the
temporal behavior of the concentrations in the system in the way proposed in
Bohannan and Lenski [14] and Levin [64].
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For one specific microbial community and nutrient solution the dilution rate is
the only variable left. All other parameters define biological properties of the
species. The parameter values are chosen to model the specific experiments
determined by Becks et al. [10] and Nomdedeu et al. [82] (see Table 1).

�.� ����������� �������
Numerical integration of Eq. 2.1 shows that the population numbers perform
dynamical patterns depending on the strength of dilution. They can be
organized into a few general groups: stationary, periodic and chaotic dynamics.
Without predator only one prey species will survive, the other will quickly
go extinct while in the presence of a predator two species coexist. More
interestingly, all three species can coexist. The dilution values corresponding
to qualitative changes in the dynamics are summarized in Table 1.

Table 1: Model parameters measured in experiments by Becks et al. [10] and Nomdedeu
et al. [82] and critical dilution values (numerical results up to 4 digits)
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Figure 8: Bifurcation diagram for the nutrient concentration with varying dilution rate.
Critical values a – c refer to Table 1

The regimes of different dynamics can be described in several ways. Figure
8 encodes the relevant structures in terms of a bifurcation diagram. In the
bifurcation diagram all extremal values of the long-term dynamics of one
quantity (presently nutrient concentration C) are plotted with respect to the
bifurcation parameter (here the dilution rate D); a line represents a shifting
fixed point; two lines mean that the population number is oscillating between
those two extrema; four indicate periodic dynamics with two maxima and two
minima et cetera. The diagram clearly shows different regimes, and transitions
between them.

A chaotic dynamical system can be characterized by its Lyapunov exponents
[111]. They measure wether small perturbations of initial conditions will grow
exponentially over time into major deviations between trajectories or wether
they will shrink. If the maximal exponent is strictly positive and the system
folds back and is bounded (as is here the case) this is considered to be a
definition of deterministic chaos. Mathematically stable—i.e. convergent—
systems show negative Lyapunov exponents. Plot 9 demonstrates that the
system features negative largest Lyapunov exponents except for a clearly
positive range between dilutions of about D = 0.04 per day and D = 0.05.
This is the regime where trajectories show irregular dynamics and fill up an
attractor manifold (cp. Fig. 12).

However, before discussing these patterns, we note that an alternative way
to encode system information is in terms of its fixed point structure: fixed
points of the differential equations 2.1, i.e. configurations (C, N

1

, N
2

, P)
where d

t

C = d

t

N

i

= d

t

P = 0, can be found numerically. Depending
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Figure 10: Fixed points migrating through phase space with growing dilution. Dilution
rate D is colour-coded from weak (purple, D = 0.001h-1) to strong dilution
(orange, D = 0.07h-1)
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on the parameter values of the system different fixed points are realized and
shown in Figure 10. We denote the different multiple-species fixed points as

• X

+0+: predator feeds only on prey 1
• X

0++: predator feeds only on prey 2
• X

+++
1,2 : the two different 3-species equilibria

To investigate the stability properties of these stationary configurations we de-
termine the eigenvalues of the Jacobian of the linearized system. Eigenvalues
with non-zero imaginary parts correspond to a spiral point (or focus), three real
eigenvalues imply nodes. If all three eigenvalues possess negative real parts
the focus or node, respectively, is stable while positive real parts correspond to
unstable directions.

Here, we restrict ourselves to a discussion of the fixed points relevant to the
attractor formation (Fig. 11):

• D < a: stable 2-species coexistence X

+0+

• D = a: stable 3-species equilibrium X

+++
1

emerges from X

+0+ (Fig. 10)
and X

+0+ looses stability.
• D = b: the 3-species equilibrium X

+++
1

becomes a saddle, i.e. looses
stability

• c 6 D 6 d: stable 2-species coexistence X

0++

• D > d: no stable fixed point
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In the parameter window without stable fixed points, b < D < c, the
population numbers oscillate periodically or chaotically. Two foci are of
particular interest to the formation of the chaotic attractor: at the lower end
of the window (D = b) a 3-species focus X

+++
1

looses stability; at the other
end (D = c) a 2-species focus X

0++ becomes stable.
Simulating the dynamics numerically, we learn that the foci evolve into

limit cycles (of 3 or 2 species respectively) when entering the window of fixed-
point-instability from the respective ends. In-between, the influences overlap
and enable dynamical 3-species coexistence (Fig. 12 A-C). A trajectory starting
near the central saddle focus X

+++
1

circles outwards in the corresponding
unstable plane. In the proximity of X

0++ the trajectory leaves that plane
to orbit around X

0++ until it enters again the region of influence of X

+++
1

.
Starting at D = b with increasing dilution cycles of higher order develop via
period-doubling until no periodicity occurs anymore and a chaotic attractor
determines the dynamics.

The bifurcation diagram in Figure 8 substantiates this range of dynamical
behavior. For weak and strong dilution the system is in equilibrium (one point).
At D = b the Hopf-bifurcation leads to chaotic dynamics via consecutive
period-doublings: a stable cycle (two points) and cycles of higher order (more
points) arise. This oscillating or chaotic regime ends with the 2-species focus
turning stable for D > c. When dilution exceeds D = d this node grows
unstable as well and all species are washed out.

Figure 12 A-C shows a plot of the ensuing dynamical patterns in phase
space: for small dilution rates a limit cycle around an unstable fixed point
governs the dynamics. For strong dilution rates the trajectories follow a 2-
species limit cycle. In the intermediate regime a chaotic attractor appears
interpolating between those dynamics. Visual inspection suggests the attractor
to have the topology of the well known Rössler attractor [92]. However, we
have not been able to identify the Rössler differential equations as a limiting
case of our model equations and therefore cannot say with certainty that the
identification holds. Attractors of this topology have been shown to exist in
other mathematical three dimensional predator-prey models by Gilpin [34].

In finite systems, fluctuations due to the discreteness of population
numbers—demographic noise—drive populations into extinction that deter-
ministically would survive. These events will occur at random at a certain
rate or probability. In the well-known Lotka-Volterra system the mean time to
extinction scales polynomially with population size. Stochasticity was taken
into account in numerical Monte-Carlo simulations of the model following the
established Gillespie Algorithm [31, 32]. In each iteration step the rates or prob-
abilities of the birth and death processes µ = 1, . . . 6 of all three species a

µ

and the total rate for “any event” a

0

=
P

a

µ

were calculated. The time ⌧ until
the next occurrence of an event was calculated from the Poisson-distribution
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Figure 12: A-C: Phase space diagrams of days 50 to 100, demonstrating the changes in
population dynamics by increasing dilution rate. Inset the corresponding time
series of days 0 to 50. A: stable limit cycles at D = 0.031 h-1; B: chaotic
attractor at intermediate dilution rates, as an example D = 0.047 h-1; C:
stable limit cycles at D = 0.05 h-1;D-F: Time-series data from Becks et al. [10]. Open circles, abundances
of Pedobacter (preferred prey); filled circles, abundances of Brevundimonas
(less-preferred prey); filled box, numbers of Tetrahymena pyriformis (predator);D: D = 0.01875 h-1, E: D = 0.02083 h-1, F: D = 0.0375 h-1
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P

1

(⌧) = a

0

exp(-a

0

⌧). A birth or death processes µ was generated accord-
ing to the probability densities a

µ

/a

0

such that events follow the probability
density

P(⌧, µ) = a

µ

exp(-a

0

⌧). (2.3)

This was done for a set of dilution rates and system sizes starting at 0.2 ml to
exclude extreme finite size effects and ranging up to 1.45 ml. For each dilution
rate the system started from an initial state on the deterministic attractor
with concentrations of the order 100 predatory organisms, and 10

6 and 10

5

bacteria respectively. Population numbers evolved several times until one of
the species went extinct or a maximum time was reached and the mean time
to extinction was calculated. As Figure 13 shows, the mean time to extinction
scale exponentially with population size. Similar structures were observed
for other dilution rates. The remaining points show exponential behavior
with coefficients of determination above 95%. As expected the attractor
indeed protects populations exponentially as opposed to the marginally stable
generalized Lotka-Volterra model analyzed by Parker and Kamenev [84].

The differential equations above have been modeled to describe the chemo-
stat experiments of Becks et al. [10]. Without any parameter fitting the data
indeed shows qualitative agreement with the dynamical patterns of Figure 12D-F: at weak dilution the three species show periodic behavior as with a limit
cycle, increasing the dilution leads to strongly fluctuating aperiodic dynamics
in all three species and at even stronger dilution the fast-growing preferred
prey and the predator coexist in stable equilibrium. In the model, the slow-
growing strain goes extinct for strong dilution. In the experiment, population
abundances do not vanish completely but drop by a factor of 50. A reason for
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this deviation might be that small areas in the chemostat do not mix well —
thereby protecting some bacteria from being washed out by dilution.

�.� ����������
Population sizes in small ecological networks can show strong fluctuations
even if stochastic effects and/or exterior causes are ruled out by high
population numbers and constant environmental conditions, respectively
[10, 12]. Under such conditions, chaotic dynamics remain as the dominant
source of fluctuations. On general grounds one expects chaos to act as a
source of fluctuations and of stability against extinction at the same time.
Large fluctuations are a hallmark of chaotic dynamics, and stability follows if
a chaotic attractor manifold sitting in the bulk of the phase space of population
numbers prevents those population numbers from escaping to the boundaries
of extinction.

We here studied a predator-prey system that is minimal in the sense that
a chaotic attractor manifold is generated out of the interplay of only three
species. Via a mechanism that is arguably universal chaos arises due to the
parameter-controlled competition of two limit cycles governing the regime of
extremely high and low net resource availability. The system addressed has
been realized in experiments [10], and in our numerical analysis parameters
were chosen to describe the bacterial species Pedobacter, Brevundimonas and
the ciliate Tetrahymena pyriformis involved in that work. Our results are in
qualitative agreement with experimental observation.

The beneficial character of chaos was demonstrated in the sense, that the
chaotic attractor makes the system less prone to extinction by demographic
noise. The mean time to extinction scales exponentially with system size rather
than polynomially as in non-chaotic systems.

The perhaps most important observation of the present study is that chaos
appears to present itself as an emergent feature when distinct limit cycles get
‘tuned’ into each other upon variation of a parameter. Limit cycles are an
abundant motif in dynamical equations or at least in few-variable sub-sectors
of these equations. For example, in the solution of a complex equation, a
limit cycle may be transiently realized in the behavior of few of its variables.
Upon changing parametric conditions, the patterns of such cycles change, and
the present work demonstrates how this may be accompanied by the onset
of chaos. Perhaps, then, chaos is a transient phenomenon more frequently
realized than one may naively think, and this would entail consequences
for both the strength of fluctuations and the stability of food web dynamics.
Further work will be required to address these questions in generality.





3 S E N S I T I V I T Y O F C O M P E T I T I V E
C H A O S A N D E Q U I L I B R I U M

‘Growth is limited by that necessity which is present in the least amount. And, naturally,
the least favorable condition controls the growth rate.’

— Frank Herbert, Dune
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Figure 14: Model set-up: Six competing bacterial strains (blue) with three nutrients
(green) in chemostat.

Mechanisms maintaining biodiversity in defiance of competition are not
yet fully understood but crucial for the preservation of wildlife and flora.
Numerical simulations of theoretical models including nonlinear species
interactions can feature species oscillations and chaos. In principle these
models allow non-equilibrium coexistence of more species than the number
of available resources with indications for chaos [47–49]. The occurence of
chaos has been demonstrated in laboratory experiments on microorganisms
and beetles [10, 17]. Questions I want to discuss here are

1. How likely is such a chaotic coexistence?

2. Does this happen in a biological context?

3. If so, what is the sensitivity of that multi-species-coexistence?

35
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An experiment by Schieffer [94] and Arns [7] aimed to verify the potential of
oscillations supporting diversity in a well-controlled chemostat setup. Without
any external disturbances an oscillating long term coexistence of up to six
bacterial strains was recorded.

In this chapter, the conceptual framework of Huisman and Weissing [47]
is adapted to the experiment to substantiate the data theoretically. The
new model predicts indeed potentially high diversity over broad parameter
regimes for substantial time spans of thousands of generations in a setup
with oscillations. A stationary coexistence can be implemented as well but
is highly sensitiv to parameter variation. This highlights the importance of
oscillations for conserving diversity and the danger of guidelines considering
mainly stationary situations.

Parts of the results discussed in this chapter can be found in Arndt et al.
[6]. The adaptation of the model, its description, numerical implementation
and analysis were created by me as well as the corresponding graphics if
not stated otherwise1. The experiments were composed and analyzed by the
collaborators.

�.� ������������
The search for a generic trigger of biodiversity and for ways to preserve it
is a long standing topic of research [50, 68, 105]. In natural ecosystems a
species richness is observed that is at odds with the original competition
theory [18, 68]. Classically it is assumed that in equilibrium the number
of coexisting competitors is limited by the number of resources [40, 41].
And although various mechanisms are suggested to promote multi species
coexistence (e.g. global diversity with locally relatively uniform patches,
interspecific competition and scattering, alternative resources in spatially
structured habitats) a definite confirmation of the actual processes does not
exist [65, 106]. Other interpretations of observed diversity rely on micro-
evolution and eco-evolutionary dynamics [52, 95]. Occurrences of chaotic
and non equilibrium dynamics have been observed in competition models
(e.g. Armstrong and McGehee [5], Gilpin [33], May and Leonard [76], Smale
[96]). And those intrinsically nonlinear dynamics habe been suspected by
theoreticians to be a cause for diversity [4, 5, 47–49, 125].

Numerical simulations suggest that nonlinear interactions of competitive
species can result in oscillating and chaotic dynamics which in turn would
allow longterm coexistence of more species than limiting resources [47].
Continuing chaotic or dampened oscillations of population numbers without

1 For numerical implementation see Appendix B
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Figure 15: Numerical simulations show oscillating coexistence of six species on three
essential resources. Exemplary time series simulated for parameters taken
from Huisman and Weissing [47].

external perturbation have indeed been observed in such diverse real world
systems as developmental stages in insects[17], rotifers grazing on algae[27],
two bacteria and one ciliate predator [10] and mixed communities [12, 35].
First evidence of nonlinear dynamics as a driver of multi species coexistence
is provided by the experimental study Schieffer [94]. We modified the
model of Huisman and Weissing [47] with reasonable parameter values to
portray the microbial food web. Our model analysis accompanies this notion
and demonstrates that the theoretical predictions can actually apply to this
particular system. It shows that such non equilibrium coexistence can be
expected to develop and to be much more resilient than stationary coexistence.

�.� ��� ����� �� ������� & ��������

Let us first review the original model by Huisman and Weissing [47–49].
They simulate a system of an aquatic phytoplankton with perfectly essential
resources. A community of n planktonic species feeds on k resources
that cannot be replaced with one another. Population abundances N

i

grow depending on the availability of the resources. The availability of a
resource j on the other hand, R

j

, depends on the consumption of resources
by the plankton. Specific mortality and growth rates are denoted by m

i

and µ

i

(R
1

, . . . R

k

) respectively. A constant turnover rate D supplies fresh
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resources from a reservoir with concentrations S

j

of each resource. The content
of resource j in species i amounts to c

ji

.

dN

i

dt

=N

i

(µ
i
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, . . . R
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) - m

i

) i = 1, . . . n
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=D(S
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i

µ

i

(R
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, . . . R

k

) j = 1, . . . k

(3.1)

The growth rates µ

i

were assumed to follow Holling’s type II functional
response (1.6) and to be limited by the scarcest resource obeying the Law ofthe Minimum. Under optimal conditions species i could grow with maximal
growth rate r

i

. The response to the concentration of nutrient k is determined
by the half saturation constant K

ki

.

µ

i

(R
1

, . . . R

k

) = r

i

min
✓

R

1

K

1i

+ R

1

, . . .

R

k

K

ki

+ R

k

◆
(3.2)

Huisman and Weissing [47] demonstrated via numerical simulations, that for
perfectly essential resources non-equilibrium dynamics with more species than
resources are possible. They provide specific parameter configurations that
enabled oscillating coexistence of up to twelve species on three resources (see
Fig. 15 for six species).

�.� ������� �����������

�.�.� The Experiment

An experimental realization of the Huisman-Weissing model was investigated
in chemostat by Arns [7], Schieffer [94]. Up to six different heterotrophic bac-
terial species were growing with three nutrients (carbon, nitrogen and phos-
phor). Combinations of Bacillus subtilis, Pedobacter sp., Corynebacterium glutam-
icum, Azotobacter vinelandii, Escherichia coli, and an undetermined eubacterium
were inoculated into replicated one-stage chemostats (for more detail see Becks
and Arndt [8, 9], Becks et al. [10]). The rate of dilution and nutrient supply was
in all experiments set to D = 0.75d-1. The nutrient medium contained glu-
cose, supplying 20 mg carbon per liter, moreover 7 mg nitrogen l-1 and 0.77

mg phosphor l-1.
Regardless of the initial number of species, this diversity was conserved in

the chemostat from the beginning of the experiment till its finish (Fig. 16,B). Although a chemostat approach provides well controlled conditions and
prevents external stimulus the population numbers were still highly fluctuat-
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Figure 16: Comparison of population dynamics in systems with up to six bacteria.A: Time series from simulations of the competition model with two to six
coexisting bacteria.B: Time series from the laboratory experiment, adapted from Schieffer [94]
andArns [7].

ing. Positive Lyapunov exponents of all microbial dynamics indicate chaos
[111]. Time delay reconstructions do not show point attractors (corresponding
to damped oscillations into a stationary point) but do suggest chaotic attrac-
tors. There is no visible pattern in the time series in Figure 16 and trajectories of
initially very similar replicate experiments diverged quickly and substantially.
Altogether, deterministic chaos would explain for all of these findings granted
that the size of the data sets does not permit an unambiguous statement.

�.�.� The Model

For a mathematical description of the experiment, we referred to Huisman and
Weissing [47] (see equations (3.1), (3.2)). Our model depicts an aquatic commu-
nity of six bacterial strains competing for three essential solute nutrients (here:
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diversity

systems of the real world is still lacking. Here we show for a real world system and a 
corresponding mathematical model that six competing species coexist at oscillating abundances 
for only three limiting resources.  

An important additional result of our experiments was that the same carbon supply 
(glucose) led to an about eightfold increase in abundances and production of particulate organic 
matter when increasing the number of coexisting bacteria species (Fig. 4). These experimental 
results confirm Tilman's predictions on the relation between diversity and ecosystem productivity 
(Tilman et al. 1997) and our model calculations, though not in the same functional manner 
(polynomial curve fitting for experimental results vs logarithmic curve fitting for our model 
results as in Tilman´s model). The increase in productivity can be explained by the 
complementarity effect due to differing traits of the various taxa (van Ruijven & Berendse 2005), 
which was also realized in the model assumptions. Our experiments clearly showed this 
phenomenon under well-controlled conditions with an exact and well defined number of species 
(experiments were stopped when any contamination occurred). For high species richness, the 
productivity should theoretically approach a maximum value in a given environment (Tilman et 
al. 1997). Field observations (Reinthaler & Herndl 2005) and experiments with bulk bacteria 
(Bell et al. 2005) indeed supported this thesis.  The fact that in our experiments carbon 
production did not approach a satiation might be due to the low number of species (six) and 
might have changed towards a point of satiation, when much more species would have been 
inoculated. However, such experimental systems are very difficult to handle under well-
controlled chemostat conditions.  

Theoreticians stressed the principal importance of non-linear species interactions as a 
fundamental factor causing species richness (Armstrong & McGehee 1980, Huisman & Weissing 
1999, 2001). Our experimental results give evidence that temporal fluctuation of abundances of 

Fig. 4. Experimental and theoretical changes of bacterial total cell numbers (A) and 

production (B) in chemostat systems with increasing numbers of coexisting bacteria 

species. Closed diamonds show results of the replicated chemostat experiments (see 
Fig. 2, A-J). Open diamonds indicate model results of the total abundance for all 
coexisting sets.
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Figure 17: Total biomass (population numbers of all bacteria combined) with increasing
of coexisting species.
Orange disks mark total abundances in all possible sets of coexisting numerical
species (orange line: logarithmic fit),
green crosses indicate data from replicated experiments (green line: exponen-
tial fit).

glucose, nitrate, phosphate) in a chemostat of constant volume. At a constant
rate D fresh nutrient solution flows into the system diluting the chemostat and
acting as a death process. Additional mortality was neglected, so all mortality
rates are m

i

= D. With population concentrations N

i

and resource concentra-
tions R

X

the following differential equations describe the change in the system
during a time step dt:

dN

i

dt

=N

i

(µ
i

(R
C

, R
N

, R
P

) - D)

i =1, . . . n

dR

X

dt

=D(S
X

- R

X

) -
nX

i=1

c

Xi

N

i

µ

i

(R
C

, R
N

, R
P

)

X =C, N, P

(3.3)

In our model R

C

, R

N

, R

P

correspond to R

1

, R

2

, R

3

in the model of Huisman
and Weissing [47]. By S

X

we denote the concentrations of the corresponding
resource (carbon, phosphor and nitrogen) in the nutrient medium.

Yield y

Xi

(the part of resource uptake converted into biomass) and ✏

Xi

(content of resource X per bacterium of type i) result in a conversion of

c

Xi

=
✏

Xi

y

Xi

.
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������������ ������ �� �������� ��������� The nutrients in this set
up are assumed to act heterologous. Here, carbon cannot substitute for nitrogen
or phosphor in the biological processes and vice versa.

µ

i

(R
C

, R
N

, R
P

) =µ

i,max

min

✓
R

C

K

Ci

+ R

C

,
R

N

K

Ni

+ R

N

,
R

P

K

Pi

+ R

P

◆

In this framework growth is limited by the scarcest nutrient. The individual
specific growth rates for each nutrient follow Holling’s typ II eq. (1.6). They
saturate at a maximal rate µ

i,max

for optimal conditions and reach half
maximum value at half saturation concentration K

Xi

.

����������� �� ��� ���������� To study chaotic coexistence we rescale
a model system of Huisman and Weissing [47]. The minimal necessary
changes to match the experimental set-up were adjustments of the resource
concentrations, maximal growth rates and the carbon content per cell. The
original simulations for chaotic dynamics assumed a dilution of 0.25d-1 and
maximal growth rates of µ

i,max

= 1d-1. A rescaling of time t ! t

3

and
thereby D = 0.75d-1 adjusts the rates to the experiment. The resulting
growth rates µ

i,max

= 3d-1 agree with the measured rates (see Table 3).
Moreover, the experiments demand concentrations of the nutrient medium of

S

C

= 20

mg C

l

, S

N

= 7

mg N

l

, S

P

= 0.77

mg P

l

instead of the values of the Huisman-Weissing model S

1

= S

2

= S

3

= 10.
Therefore we rescale

c

Xi

= S

X

c

ji

S

j

K

Xi

= S

X

K

ji

S

j

X = C, N, P j = 1, 2, 3 (3.4)

and obtain new values for our half saturation constants

) K =

0

BB@

2 1.5 0.5 1.4 0.4 1.3

0.175 0.7 0.525 0.14 0.707 0.385

0.05775 0.01925 0.077 0.0847 0.0539 0.07315

1

CCA .

(3.5)
With cell diameters in the experiment ranging from 0.25 µm to 2.5 µm and as-
sumed spherical cell shape, the individual cell volume ranged between 0.001 µm3
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and 1 µm3. Average carbon content was assumed to be 0.35 pg C/µm3 [13],
thus the average carbon content per cell should be of the order

✏

C

= Vol · 0.35 pg C µm-3 ⇡ 10

-13 – 10

-10

mg C
ind

. (3.6)

In compliance with the C:N:P ratio, ✏

N

and ✏

N

take corresponding values.2

✏

N

⇡ 9 g N
77 g C

✏

C

✏

P

⇡ 1 g P
77 g C

✏

C

(3.7)

After additionally rescaling by a factor of 10

9, the conversion and the
resulting population abundances take values of realistic magnitude and the
new conversion reads

c = 10

-9

0

BB@

0.2 0.4 0.3 0.1 0.02 0.8

0.105 0.07 0.14 0.105 0.21 0.245

0.0154 0.01155 0.0077 0.01925 0.00385 0.0154

1

CCA

(3.8)

For the contour plot, dilution rates were varied between 0 per day and 3

per day. Time series of 400 days (Fig. 18) and 4000 days (Fig. 19) were
simulated with this set of parameters. At each moment in time the number of
surviving species (at least one cell per liter) was monitored and color coded.
For the dynamics (Fig. 16, A) exemplary time series starting with subsets of
the six species were simulated. To compare the overall abundance (Fig. 17) all
possible combinations of coexisting species (at least 1000 days) are tested at
a dilution rate of 0.75d

-1. For each case the total abundance and production
are averaged for 100 days and plotted against the number of species. We are
not aware of analytical solutions. Instead, we employ numerical integration.

2 The so-called Redfield Ratio originally describes the ratio of carbon and nitrogen to phosphor in marine
plankton. Redfield [86] analyzed this ratio empirically for samples from all oceanic regions and found
molar ratios of C

106

to N

16

to P

1

. Recent findings vary between C

163

: N

22

: P

6.6 in the global
oceans [73] and C

192

: N

20

: P

1

in small freshwater lakes [99] (translating to approximate ratios in
mass of 10 : 1.5 : 1 to 77 : 9 : 1, respectively).
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Table 2: Definitions of quantities and parameters of the model.

������ ���������� ����

X=C,N P Resource (carbon, nitrogen, phosphor)

R

X

Resource concentration mgX l

-1

S

X

Resource concentration in nutrient medium mgX l

-1

N

i

No of cells of species i per liter ind
i

l

-1

D Dilution rate d-1

y

Xi

Yield (converted X per uptake of X) mgX mgX-1

✏

Xi

Content of X per cell of species i mgX ind-1

i

c

Xi

Uptake of X per cell of species i mgX ind-1

i

µ

i,max

Maximal growthrate d-1

K

Xi

Half saturation mgX l-1

Table 3: Maximal growth rates per day in chemostats in the experiments Arns [7] and
Schieffer [94] (rounded to two digital places)

Pedobacter sp. 2.13

Bacillus subtilis 2.96

Corynebacterium glutamicum 3.27

Escherichia coli 3.42

Azotobacter vinelandii 3.51

undetermined eubacterium 3.27

�.�.� Results

The Huisman-Weissing model [47] was designed to capture the dynamics of
a set of competing planktonic algae. The experimental setup we consider
here, on the other hand, consists of up to six bacteria species competing for
three resources (glucose, nitrate and phosphate). A required rescaling of
parameters values yields a chemostat model relevant to the experimentally
monitored species and circumstances. The abundances and properties of the
model species fixed by this rescaling are surprisingly well within the ranges of
the bacterial strains used in the experiments (see Fig. 16 and Fig. 17). Note,
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Figure 18: A: Largest Lyapunov exponents of the competitive coexistence of six species
depending on the dilution rate.B: Analysis of the sensitivity of the number of survivors on the dilution rate.
For strong dilution (D > 2.75d-1) all species go extinct after a transition
time of about 100 days, for dilution rates smaller than 1.08d-1 coexistence of
all six species is possible. For D < 1.08d-1 Lyapunov exponents are positive
and indicate chaotic dynamics.
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Figure 19: Analysis of the sensitivity of the number of survivors on the dilution rate for
4000 days.
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Table 4: Parameter values for model outputs in figures 18, 16, 17 and 19.

��������� ����� ����

D 0.75 d

-1

S

C

20 mgC l

-1

S

N

7 mgN l

-1

S

P

0.77 mgP l

-1

N

1

(t = 0) 15 10

9 cells l

-1

N

2

(t = 0) 30 10

9 cells l

-1

N

3

(t = 0) 10 10

9 cells l

-1

N

4

(t = 0) 5 10

9 cells l

-1

N

5

(t = 0) 5 10

9 cells l

-1

N

6

(t = 0) 1 10

9 cells l

-1

µ

i,max

3 d

-1

however, that while for the laboratory set up consecutive species were added
to the initial community and coexisted, such a succession of coexistence was
not found in the model. For instance, from the pool of six model species that
coexist in the final community, only two 4-species combinations persist in a
system without the others. Neither of those two groups contain a subset of
three that can coexist on their own. Moreover, the two-species coexistence will
not show oscillations in the theoretical model, while experimental results show
at least some variation.

The ability of the six-bacteria coexistence to withstand perturbations was
tested in the theoretical framework. Time series data of the simulations point
to a resilience to changes in dilution rates but to a sensitivity to changes in
the initial concentrations. Contourplot 18 depicts the diversity in the system
and shows extinction of all species for strong dilution (D > 2.75d

-1) after a
transition period. On the other hand a coexistence of all species for more than
a year is possible at dilution rates D < 1.08d

-1. Actually, in these model
species would even survive at least ten years (Fig. 19). An examination of the
largest Lyapunov exponents in Figure 18 displays positive values and indicates
deterministic chaos for the same range of dilution rates. Astonishingly, this
model exhibits a coexistence of all six bacterial strains for at least 75 to 100

days for reasonable dilution. Ecologically, such a transitional coexistence for
three months is a significant phenomenon that has been neglected in diversity
theories. This implies, that not only do theoretical models permit chaotic
coexistence in biologically realistic models but that it is a generic substantial
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mean for diversity. It provides stability against perturbations of the nutrient
supply and against fluctuations in environmental influences. Thereby an
explanation is found for ecological diversity in much broader parameter ranges
and more variable systems and communities than previously thought [47].

�.� ����������� �����������

Actually, there is another theoretical configuration for potential 6-species
coexistence. We can artificially construct a system of six species coexisting on
three resources even in equilibrium. This should astonish, as we established
in the introduction, that exactly this should not be possible. The reason for
this discrepancy appears to be in the restrictions of the mathematical models
in McGehee and Armstrong [77].

First we can reduce the number of parameters by rescaling time and resource
concentration.

⌧ = Dt, ⌫

i,max

=
µ

i,max

D

r

j

=
R

j

S

j

, 

ij

=
K

ij

S

j

, c̃

ij

=
c

ij

S

j

(3.9)

With this the differential equations become

dN

i

dt

= (⌫
i

(r) - 1) N

i

i = 1, . . . 6

dr

j

dt

= 1 - r

j

-
nX

i=1

c̃

ij

N

i

⌫

i

(r) j = 1, . . . 3

⌫

i

(r) = ⌫

i,max

min
j

�
r

j



ij

+ r

j

�
(3.10)

Now consider a fixed point. Derivatives must vanish and the first equation
determines the resource concentrations in equilibrium:

0 = (⌫
i

(r) - 1) N

i

i = 1, . . . 6

N

i

6=0) 1 = ⌫

i

(r) = ⌫

i,max

min
j

�
r

j



ij

+ r

j

�
j = 1, . . . 3

(3.11)

Via these six equations the three resource concentrations are overdetermined.
There have to be at least two species i

1

, i

2

limited by the same resource r

j

1

.
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In other words, there have to be i

1

6= i

2

and one j

1

that minimizes both of the
following expressions at the same time.
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(3.12)

This can be established by a community of the following configuration
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By this we construct two groups of three species each, that feature cyclic
competition advantages in the distinct groups. If one species is best at utilizing
the first resource the second is best in handling the second resource and so on.
Set maximal growth rates ⌫

i

= 4, ↵

K

= 0.1, �
K

= 0.075, �
K

= 0.025, initial
inoculations N

i

(t = 0) = 1 and efficiencies given by

c̃ =

0

BB@

0.01 0.02 0.03 0.02 0.01 0.03

0.03 0.01 0.02 0.01 0.03 0.02

0.02 0.03 0.01 0.03 0.02 0.01

1

CCA . (3.13 a)

And indeed in this configuration all six species evolve towards a stable fixed
point. In fact they behave identical, although defined by distinct sets of
parameters (see Fig 20 A).

Let us examine this fixed point and its stability a bit further. By adjusting
the initial densities to N

i

(t = 0) = 0.1 + 0.01i, (i = 1..6) the different
species spread and approach different fixed densities (Fig 20 B). If one species
differs even more from the others — for example change N

1

(t = 0) = 0.3 —
population densities fluctuate (Fig 20 C). Rescaling back to different nutrient
concentrations in the supply will separate the species with respect to their
limiting resource (Fig 20 D). The coexistence of this setup is quite robust against
small changes of c̃ and N

i

(t = 0). The exact dynamical properties (fixed
point, limit cycle, etc.) may change but it is easy to preserve six surviving
species.
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Figure 20: Population dynamics for certain realizations of the Huisman-Weissing model
with parameters (3.13)

Now we want to modify the model to a biologically more realistic setup.
Rescale population densities to cells per liter and assume dilution rate and
nutrient concentration according to the experiment. Species parameters should
describe bacterial strains that would live in this environment. Consider species
characterized by the same c̃ as in the chaotic model community (3.8) but with
new values for the half-concentration

 =

0

BB@

5 7 9 10 13 15

.5 .5 1.5 2 3 .25

0.01 0.02 0.03 0.04 0.05 0.06

1

CCA (3.14)

These are biologically reasonable and all species of this community coexist
at fixed densities at a dilution of 0.75 per day in the simulated experimental
setup . In contrast to chaotic existence, the equilibrium coexistence is much less
sensitive regarding a change in the initial conditions over orders of magnitude.
Again we analyze sensitivity by counting the survivors over a period of 4000

days for dilution rates ranging from D = 0 to 3. A species is accepted as ’alive’
if at least one cell per liter is present. (Admittedly, a chemostat contains rarely
more than 200 ml, so this is maybe a bit optimistic.) Results are portrayed in
Figure 21.
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�.�.� Results
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Figure 21: Analysis of the sensitivity of the diversity in community (3.13) on the dilution
rate. If dilution is D = 0.75, all species survive. Otherwise population
numbers decrease and after a transient time of 200 days all are extinct.

The abundances in the equilibrium model community are comparable to the
population numbers in chaotic coexistence (Fig. 16 and 21).

As the sensitivity analysis shows, a strip of dilution rates permits 6-species
coexistence, but if dilution is tuned beyond that range extinction sets in around
day 200. In comparison to the analysis of the chaotic coexistence in Fig. 19,
the main difference is that longterm coexistence is only possible for one specific
dilution rate D = 0.75d-1. The chaotic setup could survive for any dilution
less than D = 1.08 d-1.

�.� ����������� ��������
As we have seen, the system can exhibit various diverse dynamics depending
on the specific system and the species parameters. Two exemplary sets of
parameters demonstrate coexistence for significant periods of time for different
community setups; either at fixed population numbers or performing chaotic
dynamics. At the same time we have seen, that this coexistence can be sensitive
to parameters changes.

For a more general statement on wether such species compositions might
likely be combined by chance, we need a more rigorous test of the parameter
space. We take a statistical viewpoint and simulate random communities.
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�.�.� Methods

Assume a range for parameters that is biologically reasonable. And assume of
the thousands of bacterial strains that exist, six were to end up by chance in
one small habitat. What is the probability that all survive? How likely is the
survival of a subset?

To this end we simulated the six-species three-resources model with random
parameter values. Values were sampled from a uniform distribution on a
biologically reasonable interval (Table 5, [62, 114]).

Table 5: Parameter ranges for statistical model analysis (Fig. 22)

��������� �����

conversion c

Ci

10

-11 - 10

-9

mgC
ind

i

conversion c

Ni

10

-12 - 10

-10

mgN
ind

i

conversion c

Pi

10

-13 - 10

-11

mgP
ind

i

maximal growth rate µ

imax

2.7 - 17 d-1

half saturation constant K

Ci

10

-4 - 10

mgX

l

�.�.� Results

For random parameter configurations the number of surviving species is
monitored for 1000 days. The average diversity in a system of six species
is depicted in Figure 22 in the panel A. Averaging over all simulations
yields a probability distribution clearly favoring single-species and two-species
coexistence. As time evolves, the number of species declines as one would
expect. Because a slow dilution corresponds to low mortality rates, the
sensitivity analysis indicates a positive dependence. The influence of time
and dilution appears to be marginal if one excludes too small dilution and too
short times. That means that the parameter ranges are not too restricting and
therefore it is sufficient to study the distribution for a specific dilution rate.
A probability distribution P(n

fin

) of the number of surviving species was
calculated for a sample of 500 simulations with dilution D = 0.75 d-1 at
t = 400 days (Fig. 22, B-C). The distribution indicates strong preference of
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single-species food webs. About three out of ten food webs consist of at least
two competitors, only four out of 100 webs contain three competitors. In less
than one food web out of 100 four or more species coexist at day 400.
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Figure 22: Distribution of species richness in a web of six competitorsA: Mean species richness for different dilution rates and points in timeB: Distribution of species richness at day t = 400, dilution D = 0.75d-1C: Cumulative distribution at day t = 400, dilution D = 0.75d-1

�.� ����������

Our model compares well to results of the experiment and therefore seems
suited to describe the system’s processes. The order of magnitude of species
concentrations, coexistence and the dynamical characteristics in the numerical
population dynamics at D = 0.75

d-1 are consistent with the experimental
time series data (Figure 16).

������������ In a chemostat, productivity is defined as the total biomass
per volume times dilution rate. Simulations show an interdependence of
diversity and total biomass (or ecosystem productivity) that can be fitted by
a logarithmic curve (Figure 17). Strikingly, this is compatible with theoretical
results derived in Tilman et al. [107] in spite of the different approach. The
model in Tilman et al. [107] introduces random plants into a habitat, lets
one species replace the others and compares the total biomass with the initial
diversity. In contrast we observe the total biomass of coexisting species.

In the model in Tilman et al. [107] each species is characterized by a value
R

⇤ which refers to the remaining resource concentration a monoculture would
spare of the supply S. These values are drawn from a uniform distribution
on the interval [R⇤

min

, R⇤
max

]. In competition for a single resource the best
competitor displaces all the others in the course of time. In this setup the
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relation of average total biomass in the final monocultural equilibrium and
original species richness n was calculated to follow

B(n) / S - R

⇤
min

-
R

⇤
max

- R

⇤
min

n + 1

.

Numerical sampling of more complex models (more resources, a spatially
heterogeneous habitat) yield similar results and concur with greenhouse and
field experiments (for a review see Tilman et al. [108]). Average total biomass
increases with the initial diversity but decelerates and might approach a
maximum. Upper and lower bounds of the productivity increase as well.
Positive relations between diversity and productivity were demonstrated in
experiments. Studies on european grasslands suggest a log-linear relationship
[43]. The approach of a maximal value was supported by field observations
[88] and experiments with bulk bacteria [11]. van Ruijven and Berendse [112]
report positive dependence between plant species richness and productivity
in field experiments and propose complementary effects of differing species
explain the increase.

The study of Schieffer [94] was the first laboratory experiments with
well-defined diversity investigating this effect in well-controlled chemostat
conditions.

Although Tilman’s study relies on a final stationary monoculture the non
equilibrium multi-species communities in our model show a comparable
logarithmic biomass increase (Figure 17).

��������� We give evidence that in a laboratory experiment and in the
corresponding model simulations six species can compete for as few as three
resources and still coexist. We reason that diversity is associated with non
equilibrium or chaotic dynamics. Unfortunately, the experiments Schieffer [94]
and Arns [7] result in time series that are too short for a clear identification
of wether oscillations are inherently chaotic, oscillating in multiple cycles or
subject to demographic noise. So further comparison to model output is not
possible in that respect.

In the mathematical model we demonstrate chaotic as well as stable
coexistence of up to six competitors for biologically reasonable parameter
configurations. Rate equations of food web models typically possesses
nonlinear properties. Therefore chaotic dynamics are possible and indeed for
rare combinations of parameter values we see exactly that. But we could also
show equilibrium coexistence in the model and slow extinction over ecological
timescales. This means the range of possibilities of coexistence is broader than
often assumed.
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��������� Now let us consider the sensitivity of diversity. For the laboratory
experiment, ’random’ bacteria were chosen and successively added to the ini-
tial set of two. No preferences were imposed, apart from their suitability for
the nutrient medium and the process of microscopic identification. All subsets
that were tested in experiments coexisted as well. It is highly unlikely that only
one perfect species combination enables coexistence and exactly that one was
chosen by mere chance for the experiment. We have to assume that in nature
this a generic feature.

In the model, the number of distinct species stays constant over broad
parameter ranges if we insert our set of six ’chaotic coexistors’. This is
an indication and confirmation of the stabilizing properties of chaos we
established in the previous chapter for a predator-prey food web. In the chaotic
community, a modification of dilution rates does not easily disturb coexistence.
Diversity appears to be almost dilution-independent for about 100 days. After
a very short timespan the dynamical pattern is quickly established and then
sustained.

For our ’equilibrium coexistors’ diversity things look different. Their situ-
ation depends much stronger on the optimal dilution. A perturbation of the
dilution rate or the food supply would kick the system out of its delicate coex-
istence.

All things considered, it can be inferred that non linear interactions and dy-
namics are robust mechanisms promoting diversity intrinsically, notwithstand-
ing a stationary environment. Coexistence at fixed population densities does
provide additional possibilities for species richness. But for stable diversity,
chaotic coexistence is much more favorable and beneficial

��� ������ �� ���� � ������� ������? Apparently, a habitat can support
more species than it provides resources. Mathematical models confirm non-
equilibrium as well as equilibrium coexistence. Although more often than not,
only one or two species survive a reasonable time span.

Multi-species coexistence is in principle possible but is not the typical result
in our proposed scenario. This will only happen for rare combinations of
parameters that have to be finely tuned. To end up in a system of (oscillating)
multi-species coexistence by introducing random species into a habitat is not
very likely.

In most cases we do not see oscillating dynamics at all. Multiple species only
coexist during a transitional phase that can be shorter or longer. In fact when
we simulate and calculate probabilities of one, two or three species coexisting
after a certain time span, we find that mostly only one or two species coexist.
The probability of survival of more than three species is almost vanishingly



54 ����������� �� ����������� ����� ��� �����������

small. This suggests that there have to be additional mechanisms ensuring
diversity in natural food webs.

Then again, we have to consider the long transient times our model features.
With survivals up to 200 days a community of bacteria in nature would have
survived a season and environmental factors would change anyways. A setup
of six random species coexist in the experiment by Schieffer [94]. This rules out
coevolutionary effects and might be a sign for fluctuating transient survival.

In general, on the other hand, during long transient times, the species might
be able to adapt and evolve [104]. Thus the model might not be applicable to
predict long term behavior for natural microbial food webs as such. But the
statement should still hold, that diversity is less exotic than expected by the
competitive exclusion principle and that fluctuations will stabilize populations.

Ecosystem functioning is typically dependent on small organisms [18, 101].
If we desire to conserve natural resources and habitats in an age of extinction
we need to understand functions and sources of species richness [81]. The
mathematical model does not only agree qualitatively with experimental
results, but even hints that intrinsic sustained oscillations could be more
ubiquitous than expected and could stabilize species richness. In addition
to spatial heterogeneity and niche diversity, non equilibrium dynamics are an
important driver of biological diversity as well and have to be accounted for.



4 I N T E R P L AY O F C O M P E T I T I O N ,
C O O P E R AT I O N A N D
S P E C I A L I S AT I O N

“You can’t just boss bacteria around like that," said the younger Mrs. Hempstock. "They
don’t like it."

— Neil Gaiman, The Ocean at the End of the Lane

Figure 23: Model set-up: Six competing bacterial strains (blue) with two nutrients
(green) in chemostat. Bold arrows indicate possible consumption, dashed
arrows represent the production of the second nutrient as byproduct of
digestion/consumption

According to the competitive exclusion principle the number of species in
a system at long term cannot exceed the number of provided resources in
a constant environment [64, 66, 71, 77, 89, 118]. In nature, on the other hand,
thousands of different plankton species coexist feeding on essentially a handful
of resources [18, 25, 101]. Moreover, experiments show somewhat ambiguous
results, but there are hints, that species coexist with wildly fluctuating numbers
[10, 17, 19, 27]. This seeming contradiction is resolved by the mathematical
proofs, that the Competitive Exclusion Principle in general holds only true in
equilibrium [3, 4, 54, 58, 77, 125]. Numerical simulations demonstrate, that
biodiversity can actually persist when population abundances fluctuate [47].
The question remains, which mechanisms might in fact promote diversity.
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�.� ������������

In previous chapters we considered simple predator-prey interaction and com-
petition for mutual resources. But natural interaction webs of microorganisms
can be complex. In a natural habitat, typically a consortium of bacteria grows
on a mixture of substrates. Those substrates can be substitutable (homologous)
or serve different physiological functions (heterologous). Species might even
produce a secondary substrate that can be utilized by other species. This sec-
ondary production creates a cooperative or commensalistic character in the
competition. The influence of excretion on the coexistence of mixed cultures in
mixed substrates is of practical biological interest for cultivation set ups. The
same mechanisms might apply for food webs of higher cooperating species. In
a stationary system the possibility of coexistence is significantly enhanced, if a
substitutable substrate is excreted [45, 87].

The goal of this study is to analyze requirements on such competing
consortia that help promote multi species coexistence and diversity. Our
paradigm is a model of several competing species that are introduced into a
chemostat and grow on a mixed substrate. Some species excrete a resource that
serves as a common good for other members of the community. An analysis
of numerical simulations allows predictions for non equilibrium situations.

We set up small isolated model systems without external disturbances. Our
models represent aquatic microbial communities. They are supposed to be
well mixed and population numbers typically amount to at least 10

2 (ciliates)
or 10

5 (bacteria) individuals per milliliter [10, 94]. We can therefore describe
the populations by differential equations of continuous functions.

It is not feasible to measure each and every property. We probably do not
even know all mechanisms taking place in the real world. Furthermore natural
individuals of one species are not exactly identical. Organisms will all differ
slightly from each other in traits as for example size, fitness and their ability
to prey or to process food. There is always a certain variation in a population
[1, 15, 116, 121, 124].

As many model-parameters are not easily determined in experiments (or
not at all) we try to tackle the task with statistical analysis. That means
parameter values are generated according to a random uniform distribution in
biological bounds. For each structure of interactions we run simulations with
random parameter configurations and look for structure- and time-dependent
properties.
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�.� �������

�.�.� Statistical Approach

We analyze a model of small aquatic food webs with nutrients, bacteria and
other microbes in small tanks. To gain insight into these structures we pursue
a statistical approach: The starting point is the numerical implementation of
food webs with a given web of species interaction, growth functions et cetera.
We consider different aquatic microbial communities where each species is
defined by parameters determining its attributes. A whole distribution of
parameter combinations is then randomly generated (within biological bounds)
and tested according to its temporal evolution. Individual systems evolve
numerically for some time in simulations and the outcome is monitored.
Specifically, we deduce probabilities for the survival of a given number of
species over distributions of network parameters at fixed network topology.

�.�.� Model

In the setup for this chapter, a community of microorganisms competes for two
nutrient sources. An example could be bacterial strains feeding on two carbon
sources or sugars. (For examples see Zinn et al. [126].) We assume bacteria
could specialize on the use of one of the sources (specialist) or they use both
(generalist). In the latter case the two nutrients act homologous: Bacteria can
survive on each of them if the other is not present. In the chemostat setup
simulated in this chapter, one of the carbon sources is continually introduced
into the system; the other resource is excreted as a metabolic product by
particular species (producers)[26, 87]. Some species (not necessarily the same)
can profit from this common good.

���������� ������ �� ��� ��������� With just one nutrient j, species
i should grow according to a well-established Holling’s type II function (1.6).
In optimal conditions, the function approaches the maximal specific growth
µ

ji,max

, for a nutrient concentration of 

ji

, it grows at half the optimal rate.
This sets first constraints.

µ

i

(0, C
2

) =
µ

2i,max

C

2



2i

+ C

2

, µ

i

(C
1

, 0) =
µ

1i,max

C

1



1i

+ C

1

A combined growth rate of species i on two homologous nutrients should
approach but not exceed the solitary maximal growth rates in a surplus
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situation. With the µ

1i,max

maximal growth on nutrient j this requirement
reads

µ

i

(C
1

, C
2

) 6 max (µ
1i,max

, µ

2i,max

) (4.1)

A functional response that obeys those necessary boundary conditions is
provided in the analysis of functional response for homologous nutrients by
Lendenmann et al. [62]. With µ

i,max

= max(µ
ji,max

, µ
ji,max

) labeling
the maximal growth rate of species i, the specific growth according to the
respective uptake of nutrients j by species i should amount to
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ji
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· µ

ji,max

C

j



ji

µ

i,max

+
P

j

µ

ji,max

C

j



ji

. (4.2)

And the total growth of species i feeding on both resources is given by the
sum

µ
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1
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) = µ
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) + µ

2i

(C
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). (4.3)

��������� ����� The interactions of the chemostat system are now
incorporated in the following rate equations.
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(4.4)
Nutrients are processed with a specific efficiency ✏

ji

(which is equivalent to
the inverse of the bacteria yield per nutrient uptake). And the carbon release
of species i during metabolism in form of C

2

is determined by ⇢

i

. For fixed
initial community size or diversity n, we can study systems where one, two, up
to n generalists are introduced. Generalists can grow not only on C

1

but also
on C

2

. This property is taken into account by positive entries in the second
row of the maximal growth rates matrix µ

max

. The remaining species are
implemented as specialists. The number of producers p can also range from 0

up to n. The ability to excrete C

2

is reflected by non zero entries in ⇢.
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Table 6: Quantities and (ranges of) parameter values for the simulations to match the
experiments in Arns [7], Schieffer [94].

������ ���������� ������

n total number of species introduced
g number of generalists
p total number of producing species
p

g

number of producing generalists
N

i

population abundance of species i per
liter

C

j

concentration of resource j in µg C
l

D turnover rate 0.75 l

-1

µ

ji,max

specific mortality rate of species i on
nutrient j

1 – 6

S

1

supply concentration of resource C

1

18.75

µg C
l

✏

ji

efficiency, i.e. uptake of resource j per
growth of species i

1

0.1 – 1

0.49

µg C
ind

i



ji

half-saturation constant for resource j of
species i

0.002 – 0.02 µg C

⇢

i

productivity, i.e. excretion of C

2

per
uptake of C

1

for species i

0.2 – 0.5 µg C
µg C

������ �������� A food web or interaction set up is characterized by
the total number of species n, the number of producers p, the number of
generalists g and the number of producing generalists p

g

. And with

0 6 g 6 n

0 6 p 6 n

min(g, p) 6 p

g

6 max(0, p - n + g)

(4.5)

this results in a catalogue of more than O(n2) different communities to
compare.

Numerical simulations of the system are executed to perform a statistical
analysis. For maximal growth rates, saturation constants and efficiencies
biological bounds were established [82, 114] (see Table 6). Random values are
generated according to this variance for interaction setups with varied number
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Figure 24: Probability distribution of the diversity for t = 0 to t = 1000 days in systems
with initially 10 species.B: Density plot of the same data with mean diversity inset as gray disks.

of specialists1. The number of surviving species, or final diversity n

fin

(t), is
monitored over 100 random parameter configurations after some time span
t. By averaging we obtain the probability distribution P(n

fin

)(t) and the
average number of survivors hn

fin

i(t).

�.� �������

Numerical simulations generate mean diversity distributions for a huge
number of community configurations at different points in time. To gain a
first intuition for the time scales in the system we "coarse grain" to the level of
initial community size. We can study the number of survivors in a system
of 10 competitors over a time of 1000 days in figure 24. A fast decline
of diversity over the first 100 days from the initial 10 strains of bacteria
is readily identifiable. The distribution quickly broadens and shifts towards
smaller numbers. In the course of time it slowly peaks up again around the
coexistence of two or the survival of a single species.

To understand the impact of structural community properties in more detail
we restrict our analysis to a fixed time span of 500 days. Numerical results
show a large variance for different community structures (see figure 25). The
average probability peaks at one or two survivors and drops to P(4) ⇡ 2%
and P(n

fin

6 4) ⇡ 2%, respectively, for 4 survivors. The bulk of simulations
is well described by the total system average and does not depend crucially

1 For numerical implementation see Appendix C
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Figure 25: Diversity distributions in systems of 20 species at day t = 500. The
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Figure 26: Probability distribution for g = 4 in systems of 20 species at day t = 500,
averaged over the number of producing generalists p

g

. The number of
producers p is constant along red lines.
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Figure 27: Mean diversity hn
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i in systems of 20 species at day t = 500.A: For g = 4 generalists large points indicate an average of hn
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i over the
number of producing generalists p

g

. A least square fit is depicted by an orange
line.B: Numerical results of the mean diversity (gray points) and a least square fit
to the mean diversity as a function of g and p (orange).

on the number of generalists g. Only if the systems contains no generalists,
P(n

fin

) exhibits a sharp peak for n

fin

= 1 survivors.
We investigate the impact of the community structure and implicit interac-

tions by gathering systems according to the number of producers p. Figure
26 illustrates the diversity distributions at a fixed point in time after t = 500

days for systems with p ranging from 0 to n = 20. If less than half of the
species produce the secondary resource the most probable outcome after 500

days will be a single species. For a higher number of producers the diversity
distribution flips and typical systems contain two or more species.

Now consider a particular subset of the data with g = 4 generalists and
the mean diversity hn

fin

i =
P

n

fin

P(n
fin

). As Figure 26 suggests, this
quantity shows a strong dependence on the number of producers p and a
linear dependence can approximate the behavior satisfactorily (Fig. 27, A).
If we break down details of the community structure even further another
substructure is revealed. If we exclude g = 0 and fix the number of
producing species p, the mean final diversity n

fin

increases when the number
of producing generalists g is reduced.

�.� ����������

We compare probability distributions of species diversity to identify properties
that are beneficial for multi species coexistence. Communities of ten and
twenty species were simulated and yield consistent conclusions. Typically only
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one or two species show sustained longterm survival up to 1000 days. This
is in agreement with the Competitive Exclusion Principle. We can expect a
fast growing specialist consuming the primary carbon source and the fittest
generalist surviving by resorting to the excreted secondary source.

Population dynamics feature a transient behavior and extinction takes
hundreds of days to progress. The distribution of species diversity is examined
after 500 days. This time span is relevant in biological context, because
seasonal variations would have perturbed a real world system by that time
anyway. With a probability of 16% three or more species persist till that date
and in two out of 100 random systems, at least four species coexist longer
than one year. Non equilibrium dynamics and transients delay competitive
exclusion significantly.

Now, let us focus on the impact of species interactions in the context of
diversity: As expected, the more species excrete secondary resource, the less
species go extinct. Another dependence that might at first glance appear
counter-intuitive can be deduced. Interestingly, a producing specialist is more
beneficial for the whole community than a producing generalist.

Apparently, the optimal situation for high diversity in this particular setup
is characterized by a large number of specialists, that excrete the secondary
nutrient source and few generalists that can profit thereof. In this case
the majority of systems supports a community of more than two species
until day 500. Excretion of one intermediate metabolic substance permits
the coexistence of two species. Long transient periods and non-equilibrium
dynamics extend the possible and typical diversity even to three or four
species during reasonable time spans. It is likely that in natural habitats
bacteria will grow in a more diverse environment with multiple homologous
nutrient sources. With more complex nutrients arises the possibility of more
intermediate products that can be consumed as common goods. Together
with specialization and natural circumstances preventing stationary states, this
accounts for more variety than the Competitive Exclusion Principle predicts.





5 I M PA C T O F N E T W O R K
S T R U C T U R E A N D C O M P L E X I T Y

All you really need to know for the moment is that the universe is a lot more complicated than
you might think, even if you start from a position of thinking it’s pretty damn complicated
in the first place.

— Douglas Adams, Mostly Harmless

Figure 28: We consider food webs of several distinct trophic levels. The base consists of
nutrients (red), followed by consumers (yellow) to top predators (purple).

�.� ������������
In the preceding chapters I established the difficulty of maintaining a diverse
system in several simple set ups with at most one predator. The aim of this
chapter is to substantiate this notion in conceptual food webs of larger com-
plexity.
Natural food webs can be of arbitrary complexity and typically do not comply
to exact trophic levels. A predator can hunt smaller predators but can also feed
on their prey. To keep the theoretical system manageable we assume distincttrophic levels. On each level we introduce a certain number of species. The level
in the food web defines the parameter range of properties of all species therein.
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We will see, that increasing the number of trophic levels and the initial
number of species in a food web does not substantially alter the situation. If
random species enter a food web of fixed structure, the typical situation will
still be that of a small number of species persisting with the majority of species
disappearing.

�.� �������

����� ����������� A model to realize higher complexity is a microbial
food web of multiple trophic levels in chemostat. Let this arrangement consist
of ` levels with L

1

to L

`

different species on level 1 to `, respectively. The
lowest level consists of nutrient sources that are utilized by primary consumers
(second level) that are grazed upon by species from the next level and so on.
These interactions can be simulated by the following differential equations

dN

i,j

dt

= growth
i,j(Ni,j, N

i-1

) - loss
i,j(Ni

, N
i+1

) (5.1)

i = 1, . . . ` (5.2)

j = 1, . . . L

i

(5.3)

where N

i,j is the population density of species j in level i. Resource densities
are labeled by N

1,j, the turnover rate is again D. Each species feeds on the
next lower level and thus the growth depends on the species densities of the
level below, N

i-1

. Predation of the next upper level N
i+1

will add to the loss
term. Species of the same level will affect the loss indirectly via the mutual
predators.

���������� ������ �� �������� ��������� Assume organisms do
not need one prey in particular but could survive on any one of them.
Similarly, the nutrients are presumed to contain mixtures of chemicals and
primary consumers can use the nutrients substitutably. To model growth onhomologous resources we demand simple Holling’s type II for growth in a
monoculture on a single resource (1.6).
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(5.4)



�.� ������� 67

For the combined growth rate on multiple resources (or several prey species)
we employ the model established in Lendenmann et al. [62].

µ(R) =
µ

max
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(5.5)

This equation meets the boundary conditions

µ(R = 0) = 0, µ(R
s

! 1) ! max
s

�
µ
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. (5.6)

It was tested for several microbial mixed culture chemostat experiments and
proved to describe experimental results well. By rewriting equation (5.5) and
defining new growth parameters, the expression can be simplified:
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s

(5.7)

Now we can formulate our growth terms for species in level i. Let us recall
that level i = 1 contains the resources, that are pumped into the system at
dilution rate D in the same manner as in previous chapters. For all consumer
levels i > 1 the formula (5.7) applies.
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(5.8)

With this, the growth rate of species j on level i is determined by all population
densities in level i - 1. Top predators die at a fixed rate or leave the vessel
being washed out by dilution. All other levels suffer predation or grazing
from the next higher level. Accordingly, the loss term reads
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Figure 29: Probability density functions for Lognormal functions with various mean
values and different variances.
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(5.9)

Now each food web is characterized by the initial configuration {L
1

, . . . L

`

}.
We will distinguish food webs by the number of initial levels `, the number of
nutrients L

1

and the total sum of initial species n

in

=
P

`

i=2

L

i

. Food webs
are simulated over 230 days and final species richness per level and in total
(n

fin

) is observed.

������ �������� The evolution of natural species is characterized by a
number of properties, e.g. their ability to handle versatile food, the handling
rate, their protection against predators. Parameters related to those properties
are not always easy to determine and sometimes their measurement might
not be feasible at all. Moreover, a population might feature an internal
variance that we mathematically can treat as individual species modeling
microevolution.

For the random sampling of parameters this study makes use of lognormaldistributions. A lognormal distribution is the probability distribution
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of a random variable whose logarithm has a normal distribution. Such
distributions are generated as products of a series of independent positive
random variables when the Central Limit Theorem applies. With many
X

1

, X
2

, . . . X

n

independent positive random variables, their product T

n

=Q
n

i=1

X

i

tends to be lognormal, ie. ln T

n

=
P

n

i=1

ln X

i

approaches a normal
distribution for large n ! 1. The corresponding probability density functions
are of the form

f(x) =

8
><

>:

1p
2⇡�x

exp
⇣

-
(ln(x) - µ)2

2�

2

⌘
x > 0

0 x 6 0

(5.10)

where µ and �

2 refer to the mean and variance, respectively, of the corre-
sponding normal distribution. The distributions are skewed with the median
e

µ determined by µ and � changing the skewness (see Figure 29). The mean
m and variance v of the lognormal distribution are given by

m = e

µ+ �

2

2

v = e

2µ+�

2

(e�

2

- 1) (5.11)

Often natural effects are multiplicative and variance in biological systems
obeys lognormal distributions. They appear, for example, in the size and
weight of organs and organisms, in human age distributions, blood pressure
and in disease latency periods, in word lengths as well as species abundances,
growth of bacteria and fungi and in pollutants in food webs [51, 55, 67]. It
is reasonable to assume that growth rates and other properties of our model
species are influenced by multiple multiplicative variables. Therefore they can
be presumed to be approximated by a lognormal distribution.

Now, random species can be sampled according to Table 7 for a food
web layout {L

1

, . . . L

`

} (` 2 {4, 6, 8})1. The values here are chosen to be
more universally applicable than in the previous chapters, generally assuming
faster reproduction and feeding in the lower levels. The units of time do
not necessarily translate directly into days and population numbers can be
scaled to other concentrations. Food web layouts with ` 2 {4, 6} are chosen
such that the initial number of species is n

in

= 45. For food webs with
` = 8 trophic levels only layouts with n

in

= 105 initial species are sampled
(Table 8). Species population numbers N are observed over 230 days for 500

random food webs per layout.

1 For numerical implementation see Appendix D
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Table 7: Parameter ranges for lognormal distribution

��������� ������ ���� ��������

death rate on level i death
i,j 0.1 D i

-1

0.01 D

2

i

-2

maximal growth rate on level i µ

i,j max

10 D i

-1

10 D

2

i

-2

growth parameter b

i,j,s 5 i

-1

10 i

-2

Table 8: Food web configurations simulated for this analysis with ` levels and L

i

species
introduced in level i. The number of nutrients is L

1

2 {3, 4}.

L

2

L

3

L

4

L

5

L

6

L

7

L

8

` = 4

5 15 25

15 15 15

25 15 5

` = 6

3 6 9 12 15

9 9 9 9 9

15 12 9 6 3

` = 8 15 15 15 15 15 15 15

�.� �������
Probability distributions were calculated for the final compositions—level-wise
and for the whole community with either three or four nutrients (Tables 10,11).
The resulting skewed distributions are depicted in Figures 30 A - C with
averages denoted by vertical lines. The average food web in these layouts
contains 3.5 species after the observation time.

To untangle different influences, we distinguish systems by the quantity of
nutrient sources. There is a slight increase for three nutrient sources which
becomes more apparent if we compare the species diversity averaged over the
initial system layout (Table 9).

The average number of species in all of the levels takes values between zero
and two (Fig. 30 D). On average, most species live in the third trophic level,
while primary producers (level 2) act as a bottleneck for nutrient flow in the
system with relatively low species richness compared to level 3. The number
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Let us analyze the diverse systems a bit further.  

discussion:
Even with more than twice as many initial species 

and 8 initial trophic levels, 
The mean species diversity does not exceed 4. 
Rarely do systems feature more than 4 levels 
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Figure 30: A, B, C: Distributions of the final diversity at day 230 in food web layouts of
either three or four nutrients and four, six or eight levels. Lines indicate the
mean diversity.D: Mean diversity per trophic level.E, F: Dynamical properties of the 300 most and least diverse food web
configurations, respectively.
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of initial trophic levels does not change the average number of species per level
significantly. In extremely rare cases (0.04%) three species survive in level 5
till day 230 but in the majority of simulations (more than 96%) not even one
species persists on level 5 (if three nutrients are provided, otherwise extinction
of level 5 is even more common).

Additional simulations of 105 initial species on 8 initial trophic levels
substantiate these results. On average, the diversity on the final day of
observation still does not exceed four species in a food web. Levels 7 and
8 are empty and do not sustain species for the simulation period. The mean
diversity per trophic level in appears to be robust under changes of the initial
number of trophic levels or the initial number of species in a food web.

Population dynamics for systems of highest and lowest diversity are
portrayed in Figure 30 (E, F). 10% of all 3000 configurations with the
highest and lowest diversity, respectively, were examined with respect to their
dynamical properties. Dynamics were characterized by the frequency of the
time series. The count of distinct local maxima per period gives a measurement
of the complexity of the dynamics.

Table 9: Averages of the total species richness over food webs of length ` and with L

1

nutrients

���� ��� ������ ������ ��
���������

���� ��������� hn
fin

i

` = 4, 6 L

1

= 3, 4 3.50396

` = 4, 6 L

1

= 3 3.59032

` = 4, 6 L

1

= 4 3.41581

` = 8 L

1

= 3 3.86373
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Table 10: Probabilities to find n

i,fin

final survivors on level i in food webs of 4 or 6

initial levels if three nutrients are provided.

i = 2 i = 3 i = 4 i = 5 i = 6

P(n
i,fin

= 0) 0.00200401 0. 0.460254 0.951236 0.999332

P(n
i,fin

= 1) 0.873747 0.611222 0.356045 0.0400802 0.000668

P(n
i,fin

= 2) 0.110888 0.258517 0.132265 0.0086840 0.

P(n
i,fin

= 3) 0.0133601 0.0928524 0.0467602 0. 0.

P(n
i,fin

= 4) 0. 0.0320641 0.00467602 0. 0.

P(n
i,fin

= 5) 0. 0.0040080 0. 0. 0.

P(n
i,fin

= 6) 0. 0.0006680 0. 0. 0.

P(n
i,fin

= 7) 0. 0.0006680 0. 0. 0.

P(n
i,fin

> 8) 0. 0. 0. 0. 0.

hn
i,fin

i 1.1356 1.56379 0.779559 0.0574482 0.000668

Table 11: Probabilities to find n

i,fin

final survivors on level i in food webs of 4 or 6

initial levels if four nutrients are provided.

i = 2 i = 3 i = 4 i = 5 i = 6

P(n
i,fin

= 0) 0.0132316 0.00305344 0.589313 0.991349 1.

P(n
i,fin

= 1) 0.849873 0.539949 0.279898 0.00712468 0.

P(n
i,fin

= 2) 0.116539 0.300254 0.0951654 0.00101781 0.

P(n
i,fin

= 3) 0.0193384 0.123155 0.026972 0.00050890 0.

P(n
i,fin

= 4) 0.00101781 0.0239186 0.00712468 0. 0.

P(n
i,fin

= 5) 0. 0.00916031 0.00152672 0. 0.

P(n
i,fin

= 6) 0. 0.00050890 0. 0. 0.

P(n
i,fin

> 7) 0. 0. 0. 0. 0.

hn
i,fin

i 1.14064 1.62272 0.581474 0.0121704 0.

�.� ����������
As we have seen in previous chapters, most randomly induced species die
out in the main fraction of systems. This still holds true with the perfectly
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homologous resources modeled here. Increasing the complexity does not
change the fact, that in the end apart from three to four survivors all introduced
species are extinct.

Interestingly, additional alternative nutrient sources do not promote diver-
sity, but quite the contrary, total diversity is higher in systems with three in-
stead of four assumed resources. This supports the view, that over-fertilization
can endanger ecosystems rather than help [90].

Even with more than twice as many initial species and 8 initial trophic levels,
the diversity does not exceed four species in the average food web. Rarely,
systems maintain more than four levels.

Altogether, this model validates the notion, that we cannot explain ever-
present long food chains and complex food webs by mere chance encounters of
species. To yield longer trophic chains, additional phenomena have to be taken
into account. Constant migration and mutation could—via trial and error—
lead to more complex systems over generations. Maybe a combination of those
phenomena is needed to understand (high) diversity. For instance, Allhoff et al.
[2] study eco-evolutionary food webs, where species are characterized by body
size, preferred prey body mass and width of the prey body mass spectrum. In
that model new species emerge via evolution and die according to ecological
interactions giving rise to webs of higher complexity. Theoretically, long-term
diversity appears to be unlikely although reality proves the opposite.

One important message from this analysis is the impact of dynamical
properties. In exceptional cases, up to 12 species can survive in coexistence for
more than half a year. In these systems of higher diversity, the species richness
is mostly due to a surplus of species in levels > 3. The dynamics in diverse
systems oscillates at higher frequency and harbors more complex dynamics.
Species richness in the simulated food webs is typically not characterized
by stationary population numbers. High species diversity is maintained by
dynamics of high diversity.



6 S U M M A R Y

Mathematical analysis and computer modelling are revealing to us that the shapes and
processes we encounter in nature - the way that plants grow, the way that mountains erode
or rivers flow, the way that snowflakes or islands achieve their shapes, the way that light
plays on a surface, the way the milk folds and spins into your coffee as you stir it, the
way that laughter sweeps through a crowd of people - all these things in their seemingly
magical complexity can be described by the interaction of mathematical processes that are,
if anything, even more magical in their simplicity. Shapes that we think of as random are
in fact the products of complex shifting webs of numbers obeying simple rules. The very
word ‘natural’ that we have often taken to mean ‘unstructured’ in fact describes shapes
and processes that appear so unfathomably complex that we cannot consciously perceive the
simple natural laws at work. They can all be described by numbers.

— Douglas Adams, Dirk Gently’s Holistic Detective Agency

The relevance of biodiversity for the stability of ecosystems is an issue that
has been controversial in environmental sciences for decades. Theoretical mod-
els indicate that chaotic population dynamics go along with high species rich-
ness. Chaos can create diversity or, to be more precisely, maintain it. Numerical
simulations and analysis demonstrated chaos in realistic food web models. Ex-
periments have shown chaos in real food webs and natural ecosystems prove
biodiversity in real world. This thesis inquires into the relation between chaos
and diversity in natural food webs.

We could convince ourselves that in a microbial food web of three species
chaotic dynamics are not only observed in experiments but that simple
interaction rules can indeed reproduce similar time series. The chaotic attractor
in this model emerges from an interplay of distinct periodic cycles. This makes
one suspect, that chaos should arise commonly when periodic sub patterns
merge. Extinction times in this food web scale exponentially with the system
size. This scaling behavior proves the stabilizing role of chaos in ecological
context.

A model could be modified to match the processes in another experiment
of six bacterial species. We could reproduce the sustained oscillations that the
experimentalists measured. Simple competition on three essential resources is
enough to account for them. The same model would also allow stationary
coexistence at fixed population numbers for different (biologically feasible)

75
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parameters. However, sensitivity analysis indicates that chaotic coexistence
is less prone to extinction when the nutrient supply changes. So we must
assume, that if we are faced with diversity in a food web, the dynamics are
very likely to be intrinsically oscillating. On the other hand, if population
dynamics are fluctuating this might mean that the system is more likely to
persist than a stationary setup. Statistical analysis of numerical simulations
indicate that probabilities are low that a group of species ends up in one
habitat by chance and will live happily ever after. The divergence of theoretical
predictions from natural observations might be due to assumptions being
too general. The model might lack mechanisms that are present in natural
interactions. Also, long transitions and slow extinction together with evolution
and natural selection in populations could explain biological persistence of
species richness.

Cooperation was introduced in the form of a metabolic byproduct into a
theoretical model. Excretion is a common mechanism where species are able
to profit from byproducts of others. Cooperation can promote and maintain
higher species numbers. The model confirms the idea that specialists play
an important role in the extinction behavior of competitive systems and that
incorporating the niche concept might be a valuable strategy in understanding
and maybe even conserving high biodiversity.

To investigate more complex setups a model of multiple trophic levels and a
15-fold increase of species was simulated. The postulated setup generated reg-
ularly non-equilibrium dynamics. Nevertheless, the average species richness
does not approach particularly high values that would justify to call the system
diverse. Modeling natural diversity might require still larger food webs. As
Gross et al. [39] demonstrated, food webs can undergo transitions where vari-
ability in link strengths induces stability in small webs but acts destabilizing
in larger webs.

Overall, this thesis was able to demonstrate that simple models can describe
mechanisms in real world food webs in a satisfactory manner and that we
can find models that permit coexistence of diverse species on few resources
but that those parameter combinations are rare. Equilibrium coexistence of
numerous competitive species is not impossible, albeit not as likely to emerge
or to persist as chaotic coexistence.

We have yet to answer whether nature "found" the right species combina-
tions by millions of years of trial and error or wether ecosystems have to be
considered open with external disturbances keeping the system in transient to
equilibrium. The open questions remain of whether coexistence nowadays is
the result of a long-term optimization process? Are biological systems open
systems? Is a seasonal shake-up inevitable to grant species richness main-
tained?
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To answer those questions one should simulate larger food nets or integrate
evolution, adaption, migration or the influence of trade-off functions. (Trade-
off functions incorporate disadvantages that species suffer in exchange for
favorable properties.) Rigorously modeling populations and their dynamics
with explicit variance in the characterizing traits would certainly be interesting
and promising. But comparative studies of theory and experiment would
require experimental data of population dynamics and the change in the
population composition and shifts in the distribution of properties with high
resolution in time. The interesting aspect of this thesis was the combination
of experiments with applied modeling and comparative analysis as a mean to
enhance understanding of ecological mechanisms. Experiments with a high
resolution in time and species are needed together with theoretical models to
explicitly investigate the impact of intrinsic dynamics on diversity in larger
food webs.

We should be in awe for nature producing so easily something that needs
so much fine tuning in our mathematical models. The theoretical findings
suggest not to take biodiversity as much for granted as long as we are not
able to reproduce it even in small scale without fiddling with the specific
properties of the theoretical organisms. Changing the composition of species
in an ecosystem and altering their environment poses a major threat to that
community. General results from simulations of simplified interactions and
species models might not necessarily translate directly to real life situations
and convey practical directions. But at least it seems reasonable to recommend
that ecosystem regulations should allow strong fluctuations of population
numbers. As we have seen, non-equilibrium oscillations can stabilize the
diversity in a habitat and wildlife management should bear in mind that fixed
densities can endanger a food net instead of stabilizing it by balancing species
out.





Appendices: Code
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ClearAll["Global‘⇤ "];
C0 = 3;
\[Epsilon] = 2*10^(-6);
\[Beta] = (1/4000);
\[Mu]max1 = 0.15;
\[Mu]max2 = 0.172;
Ks1 = 0.0274;
Ks2 = 0.002;
\[Phi]max1 = 150*\[Beta];
\[Phi]max2 = 400*\[Beta];
KN1 = 422000*\[Epsilon];
KN2 = 400000*\[Epsilon];
n0 = {0, 1, 1, 1};

fc = (C0 - c)*d - \[Mu]max1*c*n1/(Ks1 + c) - \[Mu]max2*c*
n2/(Ks2 + c);

fn1 = \[Mu]max1*c*n1/(Ks1 + c) - \[Phi]max1*p*n1/(KN1 + n1) - d*n1;
fn2 = \[Mu]max2*c*n2/(Ks2 + c) - \[Phi]max2*p*n2/(KN2 + n2) - d*n2;
fp = \[Phi]max1*p*n1/(KN1 + n1) + \[Phi]max2*p*n2/(KN2 + n2) - d*p;

vars := {c, n1, n2, p}
a = {ca[t], n1a[t], n2a[t], pa[t]};
b = {cb[t], n1b[t], n2b[t], pb[t]};

Put["Attraktor-Lyapunov"]
(⇤discre te steps⇤)
steps = 100;
tin = 0; tfin = 10000;
tstep = 1;
(⇤accuracy⇤)
acc = 12;

lcedata = {};

Timing[For[j = 0, j <= steps, j++,
sweep = 0.001 + 0.1*j/steps;
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d = sweep;
(⇤ d i f f e r e n t i a l equations for two t r a j e c t o r i e s⇤)

da = {fc, fn1, fn2, fp} /. Array[vars[[#]] -> a[[#]] &, 4];
db = {fc, fn1, fn2, fp} /. Array[vars[[#]] -> b[[#]] &, 4];
(⇤ i n i t i a l conditions⇤)
a0 = n0;
a0 = Evaluate[(a /.

NDSolve[{D[a, t] == da, a == a0 /. {t -> 0}}, {a}, {t, 0,
30000}, MaxSteps -> \[Infinity]][[1]]) /. t -> 30000];

dx0 = 10^-5;
b0 = a0 + Join[Array[0 &, 3], {dx0}];

d0 = Norm[a0 - b0];(⇤ i n i t i a l distance⇤)
sum = 0;
Monitor[For[i = 1, i < tfin/tstep, i++,

sdeq = {D[a, t] == da, D[b, t] == db, a == a0 /. {t -> 0},
b == b0 /. {t -> 0}};

sol =
NDSolve[sdeq, {a, b}, {t, 0, tstep}, MaxSteps -> Infinity,

Method -> "Adams", PrecisionGoal -> acc, AccuracyGoal -> acc];

aa[t_] = a /. sol[[1]]; bb[t_] = b /. sol[[1]];

d1 = Norm[aa[tstep] - bb[tstep]];
sum += Log[d1/d0];
dlce = sum/(tstep*i);

\[Delta] = (aa[tstep] - bb[tstep])*(d0/d1);
a0 = aa[tstep]; b0 = a0 + \[Delta];
i = i++]

AppendTo[lcedata, {sweep, dlce}];
{sweep, dlce} >>> "Attraktor-Lyapunov"
, {sweep, i}]]]

ListPlot[{lcedata}, Frame -> True, Axes -> True,
PlotRange -> {All, .005}, Joined -> True,
FrameLabel -> {"sweep", "LCE"},
FrameStyle -> Directive["Helvetica", 17], AxesOrigin -> {0, 0},
Mesh -> All, PlotTheme -> " Scientif ic "]

Show[ListPlot[Sort[ReadList["Attraktor-Lyapunov-2"]],
PlotStyle -> PointSize[Medium],
PlotRange -> {{0.035, 0.05}, {-0.006, 0.006}}, Mesh -> All],

ListPlot[ReadList["Attraktor-Lyapunov-1"],
PlotStyle -> Directive[PointSize[Large], Orange], PlotRange -> All,
Mesh -> All]]
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#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <sstream>
#include <cstring>
#include <sstream>
#include <cstring>
#include " gsl/gsl_rng .h"
#include " gsl/gsl_randist .h"

using namespace std;

int runs=100;
int data1=0,data2=0,datap=0;

double Tmax=20000;
double Vol;

int iter;
int noreac=8;
double mu1, mu2,phi1,phi2;
double r1,r2;
int m;
int P[3]; / / populations ( pred , prey1 , prey2 )

in each step of i t e ra t ion
int dN;
double C,dC; / / concentration nutrient
double T,step,avT1,avT2,avTp; / / time T
double d;
/ / d i f f e r en t di lut ionrates
double Rate[7];
double start[7][4];

/ / parameter values
double C0= 3;
double mumax1=0.15;
double mumax2=0.172;
double phimax1=150;
double phimax2=400;
double beta=0.00025;
double eps=0.000002;
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double KN1=422000;
double KN2=400000;
double Ks1=0.0274;
double Ks2=0.002;

/ / Hollingfunction
double holling(double sat, double x, double h){

double r=(sat*x)/(x+h);
return r;

}

/ / / / Random Number Generator a la GSL. . .
gsl_rng * myRNG = gsl_rng_alloc(gsl_rng_mt19937);

/ / RN between 0 and 1
/ / generate random number r01!=0
double r01 (void) {

double r=0;
while (r==0)
{

r=gsl_ran_flat(myRNG, 0, 1);
}
return r;

}

/ / filename
string filename (double a, double b, string c){

stringstream out;
out<<"Data/average_first-passage_"<<a<<"_"<<b<<"_"<<c<<"_"<<2016<<"_"<<1<<"_"

<<4<<" . dat";
string name=out.str();
out.str(std::string());
return name;

}

/ / s tochast ic step
void dynamics (double d) {

mu1=holling(mumax1, C, Ks1*Vol);
mu2=holling(mumax2, C, Ks2*Vol);
phi1=holling(phimax1, P[1], KN1*Vol);
phi2=holling(phimax2, P[2], KN2*Vol);

/ / reaction probab i l i t i e s
double A[noreac];
A[0]=(C0*Vol)*d; / /⇤ -> C
A[1]=C*d+eps*mu1*P[1]+eps*mu2*P[2]; / /C -> ⇤
A[2]=mu1*P[1]; / /N1 -> 2 N1
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A[3]=P[1]*d + phi1*P[0]; / /N1 -> ⇤
A[4]=mu2*P[2]; / /N2 -> 2 N2
A[5]=P[2]*d + phi2*P[0]; / /N2 -> ⇤
A[6]=beta*phi1*P[0] + beta*phi2*P[0]; / /P -> 2P
A[7]=P[0]*d; / /P -> ⇤

/ / choose timestep
double a0=0;
for (int i=2; i<noreac;i++){a0=a0+A[i];}
double r1=r01(); / / generate random number r1
step=-log(r1)/a0; / / solve eq1 -> timestep
T=T+step/24; / /new time ( days )

/ / choose reaction
double r2=r01(); / / generate random number r2
m=2;
double aux=A[m];
while (aux<r2*a0) {

m++;
aux=aux+A[m];

}

/ / reaction m
if(m==2){P[1]++;}
if(m==3){P[1]--;}
if(m==4){P[2]++;}
if(m==5){P[2]--;}
if(m==6){P[0]++;}
if(m==7){P[0]--;}
/ / evolve C
dC=step*A[0]- step*A[1];
C=max(C+dC,0.);

}

/ / main
int main (int argc, char * const argv[]) {

gsl_rng_set(myRNG, time(0));
cout<<" laeuft "<<endl;

/ / d i f f e r en t di lut ionrates
Rate[0]=0.030;

start[0][0]=119;
start[0][1]=1001092;
start[0][2]=15041;
start[0][3]=0;

Rate[1]=0.035;
start[1][0]=58;
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start[1][1]=1244249;
start[1][2]=17675;
start[1][3]=0;

Rate[2]=0.040;
start[2][0]=56;
start[2][1]=1214966;
start[2][2]=54047;
start[2][3]=0;

Rate[3]=0.042;
start[3][0]=70;
start[3][1]=1169799;
start[3][2]=41116;
start[3][3]=0;

Rate[4]=0.045;
start[4][0]=78;
start[4][1]=1124403;
start[4][2]=55507;
start[4][3]=0;

Rate[5]=0.050;
start[5][0]=146;
start[5][1]=0;
start[5][2]=568852;
start[5][3]=0;

Rate[6]=0.055;
start[6][0]=246;
start[6][1]=0;
start[6][2]=488888;
start[6][3]=0;

for (int j=6; j>=6; j--) {
d=Rate[j];

ofstream output;
output.open(filename(d,0," ").c_str(), ios::app);
output.precision(5);
ofstream T1output;
T1output.open(filename(d,0,"prey1").c_str(), ios::app);
T1output.precision(5);
ofstream T2output;
T2output.open(filename(d,0,"prey2").c_str(), ios::app);
T2output.precision(5);
ofstream Tpoutput;
Tpoutput.open(filename(d,0,"pred").c_str(), ios::app);
Tpoutput.precision(5);

for (int i=5; i<15; i++) {
Vol=0.1 * i; / / volume in ml
time_t rawtime;
struct tm * timeinfo;
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time (rawtime);timeinfo = localtime (rawtime);
cout<<asctime(timeinfo)<<" "<<d<<" "<<Vol<<endl;

avT1=0.0;
avT2=0.0;
avTp=0.0;
data1=0;
data2=0;
datap=0;
for (int k=0; k<runs; k++) {

C=start[j][3]*Vol; / / i n i t i a l values
P[1]=round(start[j][1]*Vol);
P[2]=round(start[j][2]*Vol);
P[0]=round(start[j][0]*Vol);
T=0.0;
while ( ( (P[1]>0) || (j>=5) ) (P[2] > 0) (P[0] > 0) ( T<Tmax )

) {
dynamics(d); }

if ( (T<Tmax) (P[1]==0) (j<5) ){
avT1=avT1+T;
T1output<<d<<"\t "<<Vol<<"\t "<<T<<endl;
data1=data1+1; }

if ( (T<Tmax) (P[2]==0) ){
avT2=avT2+T;
T2output<<d<<"\t "<<Vol<<"\t "<<T<<endl;
data2=data2+1; }

if ( (T<Tmax) (P[0]==0) ){
avTp=avTp+T;
Tpoutput<<d<<"\t "<<Vol<<"\t "<<T<<endl;
datap=datap+1;}

}
if (data1>0){avT1=avT1/data1;}
if (data2>0){avT2=avT2/data2;}
if (datap>0){avTp=avTp/datap;}

output<<d<<"\t "<<Vol<<"\t "<<avT1<<"\t "<<avT2<<"\t "<<avTp<<"
\t . .\ t "<<data1<<"\t "<<data2<<"\t "<<datap<<endl;

}
output.close();
T1output.close();
T2output.close();
Tpoutput.close();

}
gsl_rng_free(myRNG);
return 0;

}
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Clear["Global‘⇤ "];

fx[d_] := (C0 - x)*d - \[Mu]max1*
x*(C0 - x - y - z)/(Ks1 + x) - \[Mu]max2*x*y/(Ks2 + x);

fy[d_] := \[Mu]max2*x*y/(Ks2 + x) - \[Phi]max2*z*y/(KN2 + y) - d*y;
fz[d_] := \[Phi]max1*

z*(C0 - x - y - z)/(KN1 + (C0 - x - y - z)) + \[Phi]max2*z*
y/(KN2 + y) - d*z;

C0 = 3;
\[Epsilon] = 2*10^(-6);
\[Beta] = (1/4000);
\[Mu]max1 = 0.15;
Ks1 = 0.0274;
\[Mu]max2 = 0.172;
Ks2 = 0.002;
\[Phi]max1 = 150*\[Beta];
KN1 = 422000*\[Epsilon];
\[Phi]max2 = 400*\[Beta];
KN2 = 400000*\[Epsilon];

fixpt[d_] := NSolve[{fx[d] == 0, fy[d] == 0, fz[d] == 0}, {x, y, z}]

eqx[d_] := x’[t] == (fx[d] /. {x -> x[t], y -> y[t], z -> z[t]})
eqy[d_] := y’[t] == (fy[d] /. {x -> x[t], y -> y[t], z -> z[t]})
eqz[d_] := z’[t] == (fz[d] /. {x -> x[t], y -> y[t], z -> z[t]})

eqns[d_] := {eqx[d], eqy[d], eqz[d], x[0] == x0[[1]], y[0] == x0[[2]],
z[0] == x0[[3]]}

vars := {x, y, z}

sol[d_] :=
NDSolve[eqns[d], vars, {t, 0, 20000}, MaxSteps -> \[Infinity]]

list = {};
For [i = 1, i <= Length[fixpt[0.043]], i++,

If[(x /. fixpt[0.043][[i]]) >=
0 && (x + y + z <= 3 /.
fixpt[0.043][[i]]) && (y /. fixpt[0.043][[i]]) >=
0 && (z /. fixpt[0.043][[i]]) >= 0, {AppendTo[
list, {x, y, z} /. fixpt[0.043][[i]]]}]]

x0 = list[[3]] + {0, 0.15, 0};

pts = Quiet[Flatten[Table[iterate[d], {d, 0.02, 0.06, 0.00001}], 1]];

sol[d_] :=
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NDSolve[eqns[d], vars, {t, 2000, 20000}, MaxSteps -> \[Infinity]]
iterate =

Compile[{d}, {fsol = sol[d];
Map[{d, #} &,
FindMaxValue[x[t] /. fsol, {t, #, # + 500}] & /@

Table[i, {i, 4000, 10000, 100}]]}];

pts = Quiet[Flatten[Table[iterate[d], {d, 0.01, 0.1, 0.00001}], 1]];

ListPlot[pts,
PlotStyle ->
Table[{PointSize[0.001], Darker[Green]}, {i, 1, Length[pts]}],

Frame -> True, AxesOrigin -> {0, 0},
FrameLabel -> {Style["d", Italic], Style["c", Italic]},
ImageSize -> 800, PlotRange -> {All, {0, 2}}]





B S E N S I T I V I T Y O F C O M P E T I T I V E
C H A O S A N D E Q U I L I B R I U M
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ClearAll["Global‘⇤ "];(⇤ six bac t e r ia l strains feeding on glucose , \
phosphate , ni trate⇤)
S = {20, 7, 0.77};
(⇤resource concentration in nutrient medium [mgC per l i t e r , mgN per \
l i t e r , mgP per l i t e r ]⇤)
(⇤sweep in experiment 0.75 per day⇤)

m[i_, j_, R_] := (max[[i]]*R[[j]])/(k[[j, i]] + R[[j]])
µ[i_, R_] := Min[Table[m[i, j, R], {j, 1, 3}]]
n = Array[ToExpression[StringJoin["n", ToString[#], " [ t ] "]] &, 6];
R = Array[ToExpression[StringJoin["R", ToString[#], " [ t ] "]] &, 3];
dn := Array[n[[#]]*(µ[#, R] - sweep) &, 6]
dR := Array[ sweep*(S[[#]] - R[[#]]) - Sum[c[[#, i]]*µ[i, R]*n[[i]], {i, 1, 6}] &,

3]
vars := {n, R};
k = {20, 7, 0.77}*
({{1, 0.75, 0.25, 0.7, 0.2, 0.65},{0.25, 1, 0.75, 0.2, 1.01, 0.55}, {0.75, 0.25, 1,

1.1, 0.7, 0.95}}/10);
max = 3*{1, 1, 1, 1, 1, 1};
c = 10^(-9)*{20, 7, 0.77}*
({{.10, .20, .15, .05, .01, .40},{.15, .10, .20, .15, .30, .35},{.20, .15, .10,

.25, .05, .20}})/10;
eqns := {D[n, t] == dn, D[R, t] == dR, n == 10^(9)*n0 /. {t -> 0},

R == S /. {t -> 0}};
parsol :=
ParametricNDSolve[eqns, vars, {t, 0, 4000}, {sweep},
MaxSteps -> \[Infinity]];
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n0 := {0.11, 0.12, 0.13, 0.1, 0.1, 0.1, S[[1]], S[[2]], S[[3]]};
sweep = 0.25;
S = {10, 10, 10};
k = {{1, 0.75, 0.25, 0.7, 0.2, 0.65}, {0.25, 1, 0.75, 0.2, 1.01, 0.55}, {0.75,

0.25, 1, 1.1, 0.7, 0.95}};
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c = {{0.1, 0.2, 0.15, 0.05, 0.01, 0.4}, {0.15, 0.1, 0.2, 0.15, 0.3, 0.35}, {0.2,
0.15, 0.1, 0.25, 0.05, 0.2}};

r = {1, 1, 1, 1, 1, 1};

�.� ���� ���������

ticks1 = Table[{50*k, 50*k, {0, .01}}, {k, 5}];
ticks2 = Table[{10^(10)*k, NumberForm[10.^(10)*k, 10], {0, .01}}, {k,

5}];
i = 0;
Do[n0 = start; i++;
plot = Plot[Evaluate[n[0.75] /. parsol], {t, 0, 200},

PlotRange -> All, PlotStyle -> Thick, Axes -> True,
AspectRatio -> 1/3, TicksStyle -> Thin,
Ticks -> {ticks1, ticks2},
LabelStyle -> Directive[FontSize -> 15, FontFamily -> "Helvetica"],

AxesStyle -> Directive[Medium, Plain, Arrowheads[{0, 0.03}]],
AxesLabel -> {"days", " species abundances per l i t e r "},
ImageSize -> 500];

Export[StringJoin["species-oscillations-dynamics", ToString[i],
" . pdf"], plot],

{start, {{15, 0, 0, 0, 0, 0}, {15, 30, 0, 0, 0, 0}, {15, 30, 10, 0, 0, 0}, {15,
30, 10, 5, 0, 0}, {15, 30, 10, 5, 5, 0}, {15, 30, 10, 5, 5, 1}}}]
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n0 = {15, 30, 10, 5, 5, 1};
dmax = 3;
it = 300;
Tmin = 0; Tmax = 400;
Put["species-oscillations-survivor-400"];
"chop to 1" >>> "species-oscillations-survivor-400"
Do[{d, T, LengthWhile[Sort[Flatten[n[d] /. parsol /. t -> T], Greater], # > 1 &]}

>>> "species-oscillations-survivor-400",
{d, 0, dmax, dmax/it}, {T, Tmin, Tmax, Tmax/it}]

Tmin = 400; Tmax = 4000;
Put["species-oscillations-survivor-4000"];
"chop to 1" >>> "species-oscillations-survivor-4000"
Do[{d, T, LengthWhile[ Sort[Flatten[n[d] /. parsol /. t -> T], Greater], # > 1 &]}

>>> "species-oscillations-survivor-4000", {d, 0, dmax, dmax/it}, {T, Tmin,
Tmax, Tmax/it}]
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(⇤ c o l l e c t a l l 2-species-sets ,3-species-sets ,4-species-sets etc ⇤)
(⇤ \
time average ⇤)

totalabundance = {{"number of species ", " total abundance"}};
biomass = {{"number of species ", " total biomass"}};
productivity = {{"number of species ", "productivity"}};
xx = {15, 30, 10, 5, 5, 1};
Do[n0 = xx*start;
parsol = ParametricNDSolve[eqns, vars, {t, 0, 1000}, {sweep}, MaxSteps -> \[

Infinity]];
AppendTo[totalabundance, {Count[Evaluate[n[0.75] /. parsol /. t -> 1000], x_ /; x

> 1], Sum[((Evaluate[Integrate[n[0.75] /. parsol, {t, 900, 1000}]]/100)[[k
]]), {k, 1, 6}]}];

AppendTo[biomass, {Count[Evaluate[n[0.75] /. parsol /. t -> 1000], x_ /; x > 1],
Sum[c[[1, k]]*((Evaluate[Integrate[n[0.75] /. parsol, {t, 900, 1000}]]/100)[[
k]]), {k, 1, 6}]}];

AppendTo[productivity, {Count[Evaluate[n[0.75] /. parsol /. t -> 1000], x_ /; x >
1], 0.75*Sum[ c[[1, k]]*((Evaluate[Integrate[n[0.75] /. parsol, {t, 900,
1000}]]/100)[[k]]), {k, 1, 6}]}],

{start, Tuples[{0, 1}, 6]}]
Do[Export[StringJoin[list, " . xls "], ToExpression[list]],
{list, {"totalabundance", "biomass", "productivity"}}]
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Put["species-oscillations-LLE"]
n0 = {15, 30, 10, 5, 5, 1};
acc = 12; steps = 30; tfin = 40; tstep = .1;

na = Array[ToExpression[StringJoin["na", ToString[#], " [ t ] "]] &, 6];
Ra = Array[ToExpression[StringJoin["Ra", ToString[#], " [ t ] "]] &, 3];
a = Join[na, Ra];

nb = Array[ToExpression[StringJoin["nb", ToString[#], " [ t ] "]] &, 6];
Rb = Array[ToExpression[StringJoin["Rb", ToString[#], " [ t ] "]] &, 3];
b = Join[nb, Rb];
For[j = 0, j <= steps, j++,
sweep = 0.001 + j*(3.5 - 0.001)/steps;

(⇤ d i f f e r e n t i a l equations for one tra jectory⇤)
da = Join[Array[na[[#]]*(µ[#, Ra] - sweep) &, 6], Array[sweep*(S[[#]] - Ra[[#]]) -

Sum[c[[#, i]]*µ[i, Ra]*na[[i]], {i, 1, 6}] &, 3]];

(⇤same d i f f e r e n t i a l equations for a second tra jectory⇤)
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db = Join[Array[nb[[#]]*(µ[#, Rb] - sweep) &, 6], Array[sweep*(S[[#]] - Rb[[#]]) -
Sum[c[[#, i]]*µ[i, Rb]*nb[[i]], {i, 1, 6}] &, 3]];

(⇤ i n i t i a l conditions⇤)
a0 = Join[n0, S];
a0 = Evaluate[(a /. NDSolve[{D[a, t] == da, a == a0 /. {t -> 0}}, {a}, {t, 0,

1000}][[1]]) /. t -> 1000];
dx0 = 10^-5;
b0 = a0 + Join[{dx0}, Array[0 &, 8]];

(⇤ i n i t i a l distance⇤)
d0 = Norm[a0 - b0];
sum = 0;
For[i = 1, i < tfin/tstep, i++,
sdeq = {D[a, t] == da, D[b, t] == db, a == a0 /. {t -> 0}, b == b0 /. {t ->

0}};
sol = NDSolve[sdeq, {a, b}, {t, 0, tstep}, MaxSteps -> Infinity, Method -> "

Adams", PrecisionGoal -> acc, AccuracyGoal -> acc];
aa[t_] = a /. sol[[1]];
bb[t_] = b /. sol[[1]];

d1 = Norm[aa[tstep] - bb[tstep]];
sum += Log[d1/d0];
dlle = sum/(tstep*i);
� = (aa[tstep] - bb[tstep])*(d0/d1);
a0 = aa[tstep];
b0 = a0 + �;
i = i++];

{sweep, dlle} >>> "species-oscillations-LLE"
]
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SeedRandom[1];
n0 = {1, 1, 1, 1, 1, 1};
Put["Huisman-coex-stat ist ik-var-1"]; (⇤ Distribution at day 400⇤)
Quiet[Do[aux = {}; Do[

max = RandomReal[{2.7, 17}, 6];
k = RandomReal[{10^(-4), 10}, {3, 6}];
c = {RandomReal[{10^(-11), 10^(-9)}, 6], RandomReal[{10^(-12), 10^(-10)},

6], RandomReal[{10^(-13), 10^(-11)}, 6]};
AppendTo[aux, LengthWhile[Sort[Flatten[n[d] /. parsol /. t -> T], Greater

], #1 > 1 & ]], {1000}];
PutAppend[{d, T, aux}, "Huisman-coex-stat ist ik-var-1"]; ,
{d, {0.75}}, {T, {400}}]]

it = 300;

Put["Huisman-coex-s tat is t ik "]; (⇤ Contourplot⇤)
Quiet[Do[aux = {}; Do[
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max = RandomReal[{2.7, 17}, 6];
k = RandomReal[{10^(-4), 10}, {3, 6}];
c = {RandomReal[{10^(-11), 10^(-9)}, 6], RandomReal[{10^(-12), 10^(-10)},

6], RandomReal[{10^(-13), 10^(-11)}, 6]};
AppendTo[aux, LengthWhile[Sort[Flatten[n[d] /. parsol /. t -> T],

Greater], #1 > 1 & ]], {100}];
PutAppend[{d, T, Mean[aux]}, "Huisman-coex-s tat is t ik "]; ,
{d, 0, 3, 3/20}, {T, 0, 4000, 4000/it}]]





C I N T E R P L AY O F C O M P E T I T I O N ,
C O O P E R AT I O N A N D S P E C I A L I S AT I O N
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ClearAll["Global‘⇤ "];
total = 10; tmax = 1000; imax = 100;
Vol = 1; c0 := 18.75*Vol
muhom[i_, j_, c_] := (max[[i, j]]*c)/k[[i, j]]
mumax[j_] := Max[max[[1, j]], max[[2, j]]] µpart1[j_, c1_, c2_] := (mumax[j]*muhom

[1, j, c1])/(mumax[j] + muhom[1, j, c1] +
muhom[2, j, c2]); µpart2[j_, c1_, c2_] := (mumax[j]*muhom[2, j, c2])/(

mumax[j] + muhom[1, j, c1] + muhom[2, j, c2]);
(⇤parameter in mu g carbon⇤)
sweep = .75;
n = Array[ToExpression[StringJoin["n", ToString[#], " [ t ] "]] &, total];
dnt = Array[ToExpression[StringJoin["n", ToString[#], " ’ [ t ] "]] &, total];
dn := Array[n[[#]]*(µpart1[#, c1, c2] + µpart2[#, c1, c2] - sweep) &, total]
dc1 := (c0 - c1)*sweep - Sum[ µpart1[i, c1, c2]*✏[[1, i]]*n[[i]], {i, 1, total}]

; (⇤primary carbon source⇤)

dc2 := Sum[ prod[[i]]*µpart1[i, c1, c2]*✏[[1, i]]*n[[i]], {i, 1, total}]
- Sum[ µpart2[i, c1, c2]*✏[[2, i]]*n[[i]], {i, 1, total}] - sweep*c2 ; (⇤

secondary carbon source⇤)

rule = {c1 -> c1[t], c2 -> c2[t]};
eqn := Array[dnt[[#]] == (dn[[#]] /. rule) &, {total}];
eqc1 := c1’[t] == (dc1 /. rule);
eqc2 := c2’[t] == (dc2 /. rule);
vars := Join[ Array[ToExpression[StringJoin["n", ToString[#]]] &, total], {c1, c2

}];
eqns := {eqn, eqc1, eqc2, Join[Array[ ToExpression[StringJoin["n", ToString[#], "

[0]==n0[ [ ", ToString[#], " ] ] "]] &,total], {c1[0] == c00, c2[0] == 0}]}

sol := NDSolve[eqns, vars, {t, 0, tmax}, MaxSteps -> \[Infinity]]

n0 := Array[1 &, total]*Vol; c00 = c0*Vol;
(⇤✏ = rec iprocal yield , ✏ [ [ i , j ] ] = (µg carbon \
uptake of Subscript [C, i ] by bacter ia j ) / (µg carbon ut i l i z ed for \
reproduction bacter ia of j ) ⇤)
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list2 = {};
list3 = {};
Do[

Do[
s = total - g;
maxsetup = (Array[1 &, {2, total}] -

Normal[SparseArray[Table[{2, i} -> 1, {i, g + 1, total}]]]);

For[producers = 0, producers <= total, producers++,
For[prodgen = Min[g, producers], prodgen >= Max[producers - s, 0], prodgen--,
prodspecialists = producers - prodgen;
prodsetup = Join[Array[1 &, prodgen], Array[0 &, g - prodgen], Array[1 &,

prodspecialists], Array[0 &, s - prodspecialists]];
list = {};
For[i = 0, i < imax, i++,
✏ = 1/RandomReal[{0.1, 0.49}, {2, total}];
prod = Table[RandomReal[{0.2, 0.5}], {i, 1, total}]*prodsetup;
max = RandomReal[{1, 6}, {2, total}]*maxsetup;
k = RandomReal[{0.002, 0.02}, {2, total}]*Vol;
AppendTo[list, Count[Chop[Evaluate[n /. sol /. t -> T]], _?Positive, 2]];
];

AppendTo[list2, BinCounts[list, {-0.5, total + 0.5, 1}]/imax];
list = {};
]]
,{g, 0, total - 1, 2}];

AppendTo[list3, Mean[list2]];
list2 = {}
,{T, 0, tmax, 20}]
filename =

NotebookDirectory[] <> FileBaseName[NotebookFileName[]] <> "-" <>
ToString[tmax] <> "timeevolution of distribution " <> "days" <>
"-" <> ToString[imax] <> "runs" <> " . xls ";

Export[filename, list3]
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Do[
s = total - g;

export = {};
maxsetup = (Array[1 &, {2, total}] - Normal[SparseArray[Table[{2, i} -> 1, {i, g +

1, total}]]]);
AppendTo[export, Join[{"producing generalists ", "producing specialists ", "

producing species ", "-"},
Array["cases with " <> ToString[#] <> " survivors" &, {total + 1}, 0]]];
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For[producers = 0, producers <= total, producers++,
For[prodgen = Min[g, producers], prodgen >= Max[producers - s, 0],
prodgen--,
prodspecialists = producers - prodgen;
prodsetup =

Join[Array[1 &, prodgen], Array[0 &, g - prodgen],
Array[1 &, prodspecialists], Array[0 &, s - prodspecialists]];

list = {};
For[i = 0, i < imax, i++,
✏ = 1/RandomReal[{0.1, 0.49}, {2, total}];
prod = Table[RandomReal[{0.2, 0.5}], {i, 1, total}]*prodsetup;
max = RandomReal[{1, 6}, {2, total}]*maxsetup;
k = RandomReal[{0.002, 0.02}, {2, total}]*Vol;
AppendTo[list, Count[Chop[Evaluate[n /. sol /. t -> tmax]], _?Positive, 2]];
];
count = BinCounts[list, {-0.5, total + 0.5, 1}];
AppendTo[export, Join[{prodgen, prodspecialists, prodgen + prodspecialists, "-"

}, count/imax]]
]];

Export[filename, export],
{g, 6, total - 1}]





D I M PA C T O F N E T W O R K
S T R U C T U R E A N D C O M P L E X I T Y

ClearAll["Global‘⇤ "];
vert[mean_, var_] :=
LogNormalDistribution[\[Mu], \[Sigma]] /. \[Mu] ->

Log[mean] - \[Sigma]^2/2 /. \[Sigma] -> Sqrt[Log[1 + var/mean^2]]
(⇤carbon sources , phytoplankton , zooplankton , etc , auxi l l iary l eve l⇤)

nooflevels := Length[speciesperlevel];
vars := Table[

Table[ToExpression[StringJoin["s", ToString[i], ToString[j]]], {j,
speciesperlevel[[i]]}], {i, nooflevels}];

n := Table[
Table[ToExpression[

StringJoin["s", ToString[i], ToString[j], " [ t ] "]], {j,
speciesperlevel[[i]]}], {i, nooflevels}];

(⇤ for species , i e . noof leve ls > levelno > 2⇤)
growth[levelno_, speciesno_] :=

Piecewise[{{r0[[speciesno]]*sweep, levelno == 1}},
n[[levelno, speciesno]]*mumax[[levelno, speciesno]]*
(Sum[b[[levelno, speciesno, i]]*n[[levelno - 1, i]],

{i, 1, speciesperlevel[[levelno - 1]]}]/
(1 + Sum[b[[levelno, speciesno, i]]*n[[levelno - 1, i]],

{i, 1, speciesperlevel[[levelno - 1]]}]))]
loss[levelno_, speciesno_] :=

Piecewise[{{n[[levelno, speciesno]]*(sweep +
death[[levelno, speciesno]]),
levelno == nooflevels}}, n[[levelno, speciesno]]*

(sweep + death[[levelno, speciesno]] +
Sum[growth[levelno + 1, i],

{i, 1, speciesperlevel[[levelno + 1]]}]/
Sum[n[[levelno, l]],

{l, 1, speciesperlevel[[levelno]]}])]ds := Table[
Table[growth[l, j] - loss[l, j], {j, speciesperlevel[[l]]}], {l, 1,
nooflevels}]

diffs := Table[
Table[ToExpression[

StringJoin["s", ToString[i], ToString[j], " ’ [ t ] "]], {j,
speciesperlevel[[i]]}], {i, nooflevels}];

eqns := Join[{diffs == ds}, {n == n0} /. t -> 0]
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r0 := Table[i, {i, speciesperlevel[[1]]}];
n0 := Prepend[

Table[Table[1/i, {j, speciesperlevel[[i]]}], {i, 2, nooflevels}],
r0];

colors = (("DefaultPlotStyle " /. (Method /.
Charting‘ResolvePlotTheme[" Scientif ic ", SmoothHistogram])) /.

Directive[x_, __] :> x);

itmax = 500;
speciesperlevel = {3, 3, 6, 9, 12, 15};
seed = 1; SeedRandom[seed];
sweep = 1.;
Tmax = 230;
Tmin = 30;
Tstep = (Tmax - Tmin)/sweep/50;

SetDirectory[NotebookDirectory[]];
date = DateString["ISODate"];
Do[fname =

"GeneralPlanktonSystem" <> " " <> date <> " " <>
ToString[speciesperlevel] <> " " <> ToString[i];

ToExpression["fname" <> ToString[i] <> "=fname"], {i, 1, 8}]
Do[ToExpression["data" <> ToString[i] <> " ={} "], {i, 1, 8}]
Do[ToExpression[

"PutAppend[{Seed, seed} ,fname" <> ToString[i] <> " ] "], {i, 1, 8}]
PutAppend["death ( rate ) ", fname1];
PutAppend["mumax (maximal growth rate ) ", fname2];
PutAppend["b", fname3];
PutAppend["N[Block [ { t=Tmax} ,Chop[(n/.sol ) ] ] ] , i . e . N[Tmax] ", fname4];
PutAppend[

"N[Chop[ Integrate [n/.sol , { t , .9⇤Tmax,Tmax}]/0 .1 ] ] , i . e . average <N>",
fname5];

PutAppend[
"N[LengthWhile[Block [ { t=Tmax} , Sort [Chop[ Flatten [n/.sol ] ] , Greater]] ,#\

>0&]], i . e . number of non-extinct species ", fname6];
PutAppend[" discrete N_i", fname7];
PutAppend["survivors per level ", fname8];

style = Join[Table[Green, {speciesperlevel[[1]]}],
Flatten[Table[
colors[[i]], {i, 2, nooflevels}, {j, speciesperlevel[[i]]}]]];

style2 = Flatten[
Table[colors[[i]], {i, 2, nooflevels}, {j, speciesperlevel[[i]]}]];

legend = SwatchLegend[Prepend[colors[[2 ;; nooflevels]], Green],
Table[StringJoin["s", ToString[i], " i "], {i, 1, nooflevels}],
LegendMarkers -> Graphics[{EdgeForm[Black], Rectangle[]}],
LegendLabel -> " colors ",
LegendFunction -> (Framed[#, RoundingRadius -> 5] &),
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LegendMargins -> 5];

averagesurvive = {};
counterrors = 0;
Do[

Print[DateString[DateString["DateTimeShort"]]];
Monitor[

Do[
death =
Prepend[Table[

Table[RandomVariate[vert[sweep*.1/i, sweep^2*.1/i^2]], {j,
speciesperlevel[[i]]}], {i, 2, nooflevels}],

Table[0, {j, speciesperlevel[[1]]}]];
mumax =
Prepend[Table[

Table[RandomVariate[vert[sweep*10/i, sweep^2*10/i^2]], {j,
speciesperlevel[[i]]}], {i, 2, nooflevels}],

Table[0, {j, speciesperlevel[[1]]}]];
b = Prepend[

Table[Table[
Table[RandomVariate[vert[5/i, 10/i^2]], {k,

speciesperlevel[[i - 1]]}], {j, speciesperlevel[[i]]}], {i,
2, nooflevels}], Table[0, {speciesperlevel[[1]]}]];

AppendTo[data1, death]; AppendTo[data2, mumax]; AppendTo[data3, b];
sol =
NDSolve[{eqns}, Flatten[vars], {t, 0, Tmax},

MaxSteps -> \[Infinity], MaxStepSize -> 10^(-3)];
av = Chop[Integrate[n /. sol, {t, .6*Tmax, Tmax}]/(.4*Tmax)];
If[Block[{t = Tmax}, MemberQ[Chop[(n /. sol)], _?Negative, 3]] ||

MatchQ[j, _?Positive],
Do[ToExpression[

"AppendTo[data" <> ToString[i] <> " , Integrationerror ] "], {i, 4,
8}]; counterrors = counterrors + 1

,

Export[" Plots/" <> "GeneralPlanktonSystem" <> " " <> date <>
" " <> ToString[speciesperlevel] <> "-4-" <> ToString[it] <>
" . pdf", Plot[Evaluate[n[[-1]] /. sol], {t, 0, Tmax},
PlotRange -> Full,
PlotStyle -> style[[-speciesperlevel[[-1]] ;; -1]],
PlotLegends -> None, ImageSize -> Medium]];

Export[
" Plots/" <> "GeneralPlanktonSystem" <> " " <> date <> " " <>
ToString[speciesperlevel] <> "-all-" <> ToString[it] <> " . pdf",
Plot[Evaluate[n /. sol], {t, 0, Tmax}, PlotRange -> Full,
PlotStyle -> style2, PlotLegends -> None, ImageSize -> Medium]];

AppendTo[data4, N[Block[{t = Tmax}, Chop[(n /. sol)]]]];
AppendTo[data5,
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N[Chop[Integrate[n /. sol, {t, .9*Tmax, Tmax}]/0.1]]];
AppendTo[data6,
N[LengthWhile[

Block[{t = Tmax},
Sort[Chop[Flatten[n /. sol]], Greater]], # > 0 &]]];

AppendTo[data7,
Table[Flatten[

Table[Evaluate[{t, n[[l, k]]} /. {t -> T} /. sol], {T, Tmin,
Tmax, Tstep}], 1], {l, 1, Length[speciesperlevel]}, {k, 1,

speciesperlevel[[l]]}]];
AppendTo[data8, Map[Count[#, n_ /; n > 0] &, av, {2}]];
AppendTo[averagesurvive, Map[Count[#, n_ /; n > 0] &, av, {2}]]
];

Do[ToExpression[
"PutAppend[data" <> ToString[i] <> " [ [ j ] ] ,fname" <>
ToString[i] <> " ] "], {i, 1, 8}, {j, 1,

Length[ToExpression["data" <> ToString[i]]]}];
Do[ToExpression["data" <> ToString[i] <> " ={} "], {i, 1, 8}];
, {it, itmax}]
, it]

Print[DateString[DateString["DateTimeShort"]]];
, {1}]

Mean[averagesurvive] // N
GraphicsRow[Table[Histogram[averagesurvive[[All, 1, i]]], {i, 2, 4}]]

Print[ToString[counterrors] <> " Fehler"]
NotebookSave[]
Print[averagesurvive]
averagesurvive = {};
counterrors = 0;
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