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Abstract

Probing elementary symmetries and symmetry breaking tests our understanding of
the theory of strong forces, Quantum Chromodynamics. The presented study concen-
trates on the charge symmetry forbidden reaction dd → 4Heπ0. The aim is to provide
experimental results for comparison with predictions from Chiral Perturbation The-
ory (χPT ) to study effects induced by quark masses on the hadronic level, e.g., the
proton-neutron mass difference.

First calculations showed that in addition to the existing high-precision data from
TRIUMF and IUCF, more data are required for a precise determination of the param-
eters of χPT . These new data should comprise the measurement of the charge sym-
metry forbidden dd → 4Heπ0 reaction at sufficiently high energy, where the p-wave
contribution becomes important. A first measurement with the WASA-at-COSY ex-
periment at an excess energy of ε = 60 MeV was performed, but the results did not
allow for a decisive interpretation because of limited statistics.

This thesis reports on a second measurement of the dd → 4Heπ0 reaction at ε =

60 MeV using an improved WASA detector setup aiming at higher statistics. A sample
of 336± 43 event candidates have been extracted using a data set from an eight-week
long beamtime, and total and differential cross sections have been determined. The
angular distribution has been described with a function of the form dσ/dΩ = a +

b cos2 θ∗, where θ∗ is the scattering angle of the pion in the c.m. coordinate system.
The obtained parameters a and b and the total cross section are:

a =
(
1.75± 0.46(stat.)+0.31

−0.8 (syst.)
)

pb/sr ,

b =
(
13.6± 2.2(stat.)+0.9

−2.7(syst.)
)

pb/sr ,

σtot =
(
79.1± 7.3(stat.)+1.2

−10.5(syst.)± 8.1(norm.)± 2.0(lumi. syst.)
)

pb .

For this experiment a modified detector setup optimized for a time-of-flight mea-
surement of the forward going particles has been used. After detector calibration and
track reconstruction, signal events have been selected using a chain of cuts and a kine-
matic fit. For absolute normalization the integrated luminosity has been obtained us-
ing the dd → 3Henπ0 reaction. The final acceptance correction has been performed
using a Monte Carlo signal generator with the measured angular distribution.

The obtained differential cross section indicates the presence of higher partial waves
in the final state. A combined interpretation of these results with the other measure-
ments of the dd → 4Heπ0 reaction allowed to determine the square of the magnitude
of the p-wave amplitude |C|2 =

(
520± 290(stat.)+50

−430(syst.)
)

pb/
(
sr · (GeV/c)2

)
and

the real part of the s − d interference term <{A∗0A2} =
(
1670± 320(stat.)+80

−430(syst.)
)

pb/
(
sr · (GeV/c)2

)
neglecting any further initial and final state interactions. The result

shows that any theoretical attempt to describe the reaction has to include, in addition
to p-waves, also d-wave contributions.
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Zusammenfassung

Die Untersuchung elementarer Symmetrien und ihrer Brechung testet unser Ver-
ständnis der Theorie der starken Wechselwirkung, der Quantenchromodynamik. Die
vorliegende Doktorarbeit konzentriert sich auf die Reaktion dd → 4Heπ0, welche die
Ladungssymmetrie verletzt. Das Ziel ist es, die experimentellen Ergebnisse mit den
Vorhersagen der chiraler Störungstheorie (χPT ) zu vergleichen, um die Effekte von
Quarkmassen auf hadronischer Ebene zu untersuchen. Ein Beispiel ist der Einfluß auf
die Massendifferenz von Proton und Neutron.

Erste theoretische Rechnungen zeigten, dass zusätzlich zu den bestehenden Hoch-
präzisionsdaten von TRIUMF und IUCF weitere Daten für eine genaue Bestimmung
der χPT Parameter erforderlich sind. Diese neuen Daten zur Ladungssymmetrie ver-
letzenden dd → 4Heπ0 Reaktion müssen bei ausreichend hoher Energie gemessen
werden, da dort die Beiträge von p-Wellen wichtig werden. Eine erste Messung wurde
mit dem WASA-at-COSY Experiment bei einer Überschussenergie von ε = 60 MeV
durchgeführt, allerdings ließen die Ergebnisse wegen der begrenzten Statistik keine
endgültige Interpretation zu.

Diese Dissertation besckäftigt sich mit einer zweiten Messung der Reaktion dd →
4Heπ0 bei ε = 60 MeV mit einem verbesserten Aufbau des WASA-Detektors und
dem Ziel einer höheren Statistik. Aus den Daten einer acht Wochen langen Messung
wurden 336 ± 43 Eventkandidaten extrahiert. Dabei wurden der totale und differ-
entielle Wirkungsquerschnitt bestimmt und die Winkelverteilung mit der Funktion
dσ/dΩ = a + b cos2 θ∗ gefittet. Die dadurch erhaltenen Parameter a und b und der
totale Wirkungsquerschnitt ergeben sich zu:

a =
(
1.75± 0.46(stat.)+0.31

−0.8 (syst.)
)

pb/sr ,

b =
(
13.6± 2.2(stat.)+0.9

−2.7(syst.)
)

pb/sr ,

σtot =
(
79.1± 7.3(stat.)+1.2

−10.5(syst.)± 8.1(norm.)± 2.0(lumi. syst.)
)

pb .

Der modifizierte Detektoraufbau, welcher für die Messung verwendet wurde, ist
auf die Nutzung der Flugzeit für nach vorne emittierte Teilchen ausgelegt. Die Sig-
nalereignisse wurden nach erfolgter Detektorkalibrierung und Spurrekonstruktion mit-
tels eines kinematischen Fits und verschiedenen Analyseschnitten ausgewählt. Für
die absolute Normalisierung wurde die integrierte Luminosität mit der dd→ 3Henπ0

Reaktion bestimmt. Die endgültige Akzeptanzkorrektur wurde auf der Basis einer
Monte-Carlo Simulation durchgeführt, welche die gemessene Winkelverteilung berück-
sichtigt.

Der erhaltene differentielle Wirkungsquerschnitt zeigt das Vorhandensein von höhe-
ren Partialwellen im Endzustand. Eine gemeinsame Analyse dieser Ergebnisse mit
den anderen Messungen der dd→ 4Heπ0 Reaktion erlaubt die Bestimmung des Qua-
drats der p-Wellenamplitude |C|2 =

(
520± 290(stat.)+50

−430(syst.)
)

pb/
(
sr · (GeV/c)2

)
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und des Realteils des s−d Interferenzterms <{A∗0A2} =
(
1670± 320(stat.)+80

−430(syst.)
)

pb/
(
sr · (GeV/c)2

)
, ohne die Berücksichtigung von weiteren Anfangs- und Endzus-

tandswechselwirkungen. Das Ergebnis zeigt, dass jede theoretische Beschreibung der
Reaktion zusätzlich zu p-Wellen auch d-Wellen-Beiträge berücksichtigen muss.
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Chapter 1

Introduction

Why does the Universe exist as it is?

For decades a multitude of physicists have been trying to understand and describe the
structure of matter and basic interactions in Nature. Many mysteries of the existence
of our Universe have been solved by curiosity-driven studies, but a lot of fundamental
questions are still open.

Nowadays, we know that protons and neutrons, collectively called nucleons, form
nuclei. Together with electrons, they build all the stable elements in the visible Uni-
verse. Nucleons are not elementary particles, but they are built of quarks and gluons.
The basic constituents of protons and neutrons are the up (u) and down (d) quarks.
In the constituent quark model, the proton is made of two u and one d quark, while
the neutron comprises of one d and two u quarks. In units of the elementary charge
e, the charges of the u and d quarks are +2/3 and −1/3, respectively. Therefore, the
proton has a positive charge 1e, and the neutron is neutral. However, in addition to
the difference in charge, there is also a small difference in the u and d quark masses.
This tiny difference is vital for our very existence. In a world with equal masses of u
and d quarks, the proton-neutron mass difference would be based exclusively on elec-
tromagnetic effects. This would result in the proton being heavier than the neutron.
In such a world the proton, not the neutron, would have a finite lifetime, and stable
hydrogen atoms would not exist. Our whole universe would not exist in the way it is
now.

The importance of light quark mass effects has driven many theoretical and ex-
perimental studies. The goal is to describe the effects induced by quark masses in
hadronic reactions. It is to show that our understanding of the theory of strong inter-
action — Quantum Chromodynamics (QCD), and especially the calculations based on
it — is correct. The measurement of the dd → 4Heπ0 reaction provides an important
experimental input to the calculations which trace the proton-neutron mass difference
induced by the difference of u and d quark masses.

In this Chapter an introduction to the topic is given. Basic information about the
structure of matter, the origin of mass and the idea of isospin is discussed. A short de-
scription and the formalism of low energy hadron physics is described. In Chapter 2
the theoretical and experimental status of the selected charge symmetry breaking ob-
servables is presented. The experimental setup used in this measurement and the run
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conditions are described in Chapter 3. The basic data analysis procedure, including
the calibration of the detector and the tracking procedure as well as the Monte Carlo
simulations, is reported in Chapter 4. The selection of the dd → 4Heπ0 reaction is
described in Chapter 5. The luminosity determination is reported in Chapter 6. The
results are presented in Chapter 7. A discussion of these results and an outlook in
Chapter 8 complete the thesis.

1.1 Standard Model

1.1.1 Elementary Particles and Interactions

All the matter in the Universe is built of basic building blocks called elementary parti-
cles, interacting with each other by four fundamental forces, namely the gravitational,
electromagnetic, weak and strong force. Elementary particles and the interactions
between them (with the exception of the gravitational force) are described within a
quantum field theory called the Standard Model (SM). The schematic depiction of el-
ementary particles included in the SM is presented in Fig. 1.1.

FIGURE 1.1: Elementary particles included in the Standard Model. The
three generations of quarks and leptons are presented in the first three
columns, gauge bosons are in the fourth column, and the Higgs boson

in the fifth one. Source: [1].

The elementary particles building all matter are fermions, which means they have
a spin equal to 1

2~. They are divided in two groups — leptons and quarks. Within each
group there are three generations of pairs of particles. The first generation consists of
the most stable and lightest particles, while the less stable and heavier ones belong to
the higher generations.

Leptons are particles which do not interact via the strong force. For leptons, every
generation consists of one negatively charged particle, and one neutral partner, called
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neutrino. Therefore, we have: electron and electron neutrino (e, νe), muon and muon
neutrino (µ, νµ), tauon and tauon neutrino (τ, ντ ). Quarks interact strongly in addition
to the other interactions. They are carriers of one of three colour charges. Quarks
possess also an electric charge of +2/3 or −1/3 of the elementary charge e. The three
families of quarks ordered by mass are: up and down quark (u, d), strange and charm
quark (s, c), and bottom and top quark (b, t). In addition, every matter particle has an
antiparticle with identical mass.

The Standard Model describes the interactions as the result of the exchange of
force-carrier particles. These particles are the so-called gauge bosons and have a spin
of ~. The weakest interaction described in the SM is the weak force. It is described as
an exchange of W+, W−, and Z0 bosons. They couple to quarks and leptons. Because
of the large gauge bosons masses (MW = 80.4 GeV/c2, MZ = 91.2 GeV/c2), the weak
interaction has only a short range of about 10−18 m [2].

The exchange particles for the electromagnetic force are photons, which couple to
all particles with an electromagnetic charge. Photons are massless, therefore this in-
teraction has an infinite range. The theory of electromagnetic interactions — quantum
electrodynamics (QED) — is unified with the theory of weak forces in the so-called
Glashow-Weinberg-Salam model [3] (electroweak interactions).

The strongest of all four fundamental interactions is the strong force. It is carried
by eight massless gluons which couple to quarks and to themselves. The range of the
strong force is about the radius of a nucleon. In the theory of strong forces, Quan-
tum Chromodynamics (QCD), there are three types of strong charges, called colour
charges. A quark can carry one of three primary colours (red, blue and green), and its
antiquark carries the corresponding anticolour. Gluons carry one colour and one anti-
colour. All composite particles made of quarks, called hadrons, have zero net colour,
i.e., they are colour singlets. Particles built of quark and anti-quark are called mesons,
while particles consisting of three quarks are called baryons [4].

1.1.2 Color Confinement

The Standard Model is a quantum field theory based on the gauge invariance of the
group SU(3)C ×SU(2)×U(1). Quantum Chromodynamics is the SU(3)C component
of the Standard Model symmetry group. The remaining SU(2)×U(1) is the symmetry
group of the electroweak theory. For an introduction to quantum field theory see, e.g.,
[5, 6].

Most calculations in Quantum Field Theory are performed in an approximated
way using perturbative methods based on an expansion in powers of the coupling
constant. This method is applicable only in the limit of a small coupling constant
α � 1. The coupling constant determines the strength of the force exerted in an in-
teraction. The effective coupling constant varies with the energy scale. For QED it
grows with energy. At large distances, i.e, low four-momentum transferQ2, it is about
α ≈ 1/137, at the scale of the Z boson it is about α ≈ 1/128 [2]. At very high ener-
gies, where the Standard Model is no longer applicable, the coupling becomes large
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and eventually diverges. In QCD the self-coupling of gluons affects significantly this
so-called running of the coupling constant αs. The strong coupling becomes weak
for processes involving large four-momentum transfers. This phenomenon is called
asymptotic freedom. At the scale of the Z boson αs is about 0.12 [2]. At small four-
momentum transfers αs diverges.

One can introduce a QCD energy scale ΛQCD — the energy scale at which the
perturbatively-defined coupling constant αs would diverge. The effective strong cou-
pling constant can be presented then as:

αs(Q
2) =

2π

β0 log(Q2/Λ2
QCD)

, (1.1)

where β0 = 11 − 2/3nf , and nf is the number of quark flavours. The value of ΛQCD

can be determined experimentally by measuring the dependence of αs on the four-
momentum transfer Q2. The obtained value is about ΛQCD ≈ 250 MeV [7].

For the perturbative region, Q2 � Λ2
QCD, the quark and gluon degrees of free-

dom dominate. At low four-momentum transfer, below Λ2
QCD, quarks and gluons are

strongly confined. They cannot be observed as a free particles, but they form colour
neutral objects, called hadrons. The theoretical description of strong interaction in this
region, referred to as "strong QCD", relies on lattice gauge theory, phenomenological
models or effective field theories.

The strong coupling constant αs is one of the parameters of QCD. Like α, it has
to be extracted from measured observables by theoretical calculations [3]. The general
properties of the QCD and QED coupling constant are presented in Fig. 1.2.

FIGURE 1.2: Schematic behaviour of the coupling constants of QCD and
QED. In QED, for low four-momentum transfers Q2 the coupling con-
stant is small. It increases as a function of Q2 and at very high energy
it diverges. For QCD the coupling at small Q2 diverges and for high
Q2 it asymptotically goes to zero. Note that this picture shows only the
general behaviour for the coupling constant of QCD and QED and the

scale on the x-axis is different for these two curves. Source: [8].
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1.2 Origin of Mass

The Standard Model includes one additional particle - the recently discovered Higgs
boson [9, 10]. The discovery confirmed the theory of the Brout-Englert-Higgs mech-
anism [11–15]. This mechanism explains the generation of the intrinsic mass of the
gauge W and Z bosons. Elementary particles can couple to the quantum excitation of
the Higgs field (Higgs boson) and this endows them with an effective mass. The par-
ticles coupled to this field are quarks, leptons, W and Z bosons, and the Higgs boson
by itself.

The ordinary matter in the Universe is built of protons, neutrons and electrons, and
protons and neutrons are made of quarks and gluons. However, only a few percent of
the nucleon mass is coming from the intrinsic masses of the quarks themselves [16].
For example, for the proton (Mp = 938 MeV/c2) the intrinsic masses of u and d quarks
would contribute only about 10 MeV/c2 to its mass. All the rest has its origin in the
dynamics of the strong processes inside the nucleon [17, 18].

In the limit of massless quarks, the global chiral symmetry (SU(n)R × SU(n)L =

SU(n)V ×SU(n)A, where n is the number of quark flavours) of the QCD Langrangian
is not broken explicitly. It is broken spontaneously through the formation of a quark
condensate in the ground state to the isospin symmetry group SU(n)V . This quark
condensate is a fermionic condensate formed by quark-antiquark pairs [19]. Quarks
interact with this environment as though they had mass. One can imagine it as mass-
less quarks traveling at the speed of light which are slowed down by the interaction
with the quark condensate. Thus, they can be described as massive quarks in a free
environment [17]. The nonperturbative scale of the dynamical chiral symmetry break-
ing Λχ is about 1 GeV [2, 20]. Because of the small non-zero quark masses, the chiral
symmetry is also broken explicitly. For quarks with masses M > Λχ the explicit chiral
symmetry breaking dominates (c, b and t, the so-called "heavy" quarks). For M < Λχ

the spontaneous chiral symmetry breaking is dominating (u, d and s).
As a result of the spontaneous chiral symmetry breaking for vanishing quark

masses, according to the Goldstone theorem [21], massless Nambu-Goldstone bosons
should be observed. Their number is determined by the structure of the symmetry
group. For the SU(2)R × SU(2)L → SU(2)V symmetry (u, d quarks considered) there
are three Nambu-Goldstone bosons, one for each of the three generators of the sponta-
neously broken symmetry, corresponding to the three pions (π+, π0, π−). The sponta-
neously broken SU(3)R × SU(3)L symmetry (u, d and s quarks considered) has eight
generators, therefore there are eight Nambu-Goldstone bosons (π+, π0, π−, η8,K0, K̄0,
K+, K−). Because of the explicit chiral symmetry breaking caused by non-zero quark
masses, the Nambu-Goldstone bosons have also small finite masses [22].

The main origin of the ordinary mass is thus not the Higgs mechanism, but rather
is a consequence of the spontaneous breaking of chiral symmetry. For a popular intro-
duction to the topic see [16, 23]. Detailed information about the origin of mass can be
found in [17].
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1.3 Chiral Perturbation Theory

An analytic derivation of hadronic interactions from the fundamental QCD La-
grangian is still not achieved. However, what is known are the symmetry features
of the strong interaction. The chiral symmetry properties of QCD are the key compo-
nents of Chiral Perturbation Theory (χPT ) [24, 25], which is an effective field theory
(EFT) for low energy QCD.

The concept of an EFT can be presented as a theorem [25, 26] which states that, if
the calculations are based on the most general interaction consistent with the symme-
tries and symmetry-breaking patterns of the underlying fundamental theory (in our
case QCD), the results will be consistent with those of the underlying theory up to a
given order in perturbation theory. In χPT the dynamic degrees of freedom [27] are
not the fundamental quarks and gluons but the lightest pseudoscalar mesons identi-
fied as the Nambu-Goldstone bosons of the spontaneously broken chiral symmetry,
which are non-interacting in the chiral limit for vanishing momenta.

As χPT is built for low energy QCD, it takes explicitly into account the relevant
degrees of freedom, which are the states with M � Λχ, where Λχ is a hadronic scale
already mentioned in Sec. 1.2. Heavier excitations are integrated out from the action.
Only because the pseudoscalar octet is separated on the mass scale from the rest of the
hadronic spectrum, it is possible to construct this EFT.

The fields of the Nambu-Goldstone bosons are represented in the chiral La-
grangian by the unitary matrix U = exp(i

√
2Φ/f), where the most common form

of Φ is:

Φ =


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
2
η8

 , (1.2)

and f is the Nambu-Goldstone boson decay constant in the chiral limit.
At low energies, the interaction between Nambu-Goldstone bosons can be ex-

panded in powers of their momenta p, which are small compared to Λχ. Powers of
momenta correspond to powers of derivatives of the Nambu-Goldstone boson fields
in the χPT Lagrangian. The explicit chiral symmetry breaking is introduced in the χPT
Lagrangian via the quark mass matrixM. Therefore, in addition to the derivative ex-
pansion, the effective Lagrangian is expanded simultaneously in powers ofM, which
is possible since the quark masses are much smaller then Λχ. Below, the lowest order
effective chiral Lagrangian LχPT is presented. It shares the same symmetry patterns
with QCD: C, P, T, Lorentz invariance and, in particular, chiral symmetry. The first
term in LχPT represents the effective χPT Lagrangian for the limit of massless quarks.
The second term introduces the explicit chiral symmetry breaking [28].

LχPT =
f2

4
〈∂µU †∂µU〉+

f2B

2
〈U †M+M†U〉, (1.3)

where M is the quark mass matrix for p = 0. The constants B and f are not fixed
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by symmetry requirements alone. The physical meaning of the chiral coupling f at
the considered order is, that — in the chiral limit — it is the pion decay constant
(fπ ≈ 92.4 MeV). Also in the chiral limit, B is directly related to the chiral condensate:
〈0|q̄q|0〉 = −Bf2

π + O(Mq). Thus, B is the order parameter of spontaneous chiral
symmetry breaking. The value of B ≈ 1800 MeV has been extracted from the sum-
rule value 〈0|q̄q|0〉 = −(250 MeV)3 [29].

An effective field theory can be also introduced for mesonic resonances and
baryons [30, 31]. However, the fact that in the chiral limit baryon masses do not vanish
and that they are not small compared to Λχ complicates the chiral analysis of baryons
[27]. χPT has been successfully extended to pion production where typical momenta
are in the order of

√
mπM , whereM is the nucleon mass (for a review see [32]). A com-

plete description of the interactions in the baryonic sector based on χPT requires to fix
the strength of the hadronic operators either from experiment or from lattice QCD cal-
culations. For the πN interaction, at leading order the only parameters are the pion
mass and pion decay constant [33, 34], but for higher orders the number of unknown
parameters increases. The theory, however, can provide non-trivial links between the
different operators, which need to be fixed by experiment. Therefore, an investigation
of the basic symmetries of the strong interaction requires an joint effort of experiment
and theory.

1.4 Isospin

1.4.1 Isospin Multiplets

After the discovery of the neutron in 1932 by Chadwick [35], the similarity between
the proton p and the neutron n led to the idea of the existence of an approximate
symmetry. It was suggested that both may be treated as two states of the same par-
ticle, namely the nucleon N . This requires that neutron and proton have the same
mass. In fact, their masses are only approximately equal (mn = 939.57 MeV/c2,
mp = 938.28 MeV/c2 [2]). It was suggested that nucleons behave identically under the
strong interaction and that the only difference between these two states has its origin
in their charge content: isospin symmetry would be a good symmetry of the strong
interaction. A strong isospin quantum number was introduced, with the projection
coordinate T3 equal to +1/2 for protons and −1/2 for neutrons.

The symmetry group of the rotation operators in isospin space is a SU(2)V group
with operators represented as:

ÛT (α) = ÛT (α1, α2, α3) = e−i
1
2

(τ̂1α1+τ̂2α2+τ̂3α3) = e−i
1
2
αiτ̂i . (1.4)

The angles α = {α1, α2, α3} describe the rotations around three axes in the abstract
isospin space, and τi are the Pauli matrices.

The isospin multiplets can be introduced in the same way as the angular momen-
tum and spin multiplets. Each multiplet is (2T + 1) times degenerate. The nucleon
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isospin doublet |T, T3〉 consists of proton and neutron states with T = 1
2 :∣∣∣∣12 , 1

2

〉
≡ |p〉 ,∣∣∣∣12 ,−1

2

〉
≡ |n〉 .

(1.5)

The isospin triplet with T = 1 is realized in nature, e.g., for π mesons:

|1, 1〉 ≡
∣∣π+

〉
,

|1, 0〉 ≡
∣∣π0
〉
,

|1,−1〉 ≡
∣∣π−〉 . (1.6)

Let us now consider the isospin of the deuteron. Each deuteron consists of one
proton and one neutron and its wave function can be described in terms of the con-
stituent nucleons. Therefore, the third component of its isospin T3 equals to 0. The
first possibility is that the deuteron is an isospin singlet state |0, 0〉:

|0, 0〉 =
1√
2

(|p〉 |n〉 − |n〉 |p〉) . (1.7)

Another option is that the deuteron is the isospin state |1, 0〉 from the triplet:

|1, 1〉 = |p〉 |p〉 ,

|1, 0〉 =
1√
2

(|p〉 |n〉+ |n〉 |p〉) ,

|1,−1〉 = |n〉 |n〉 .

(1.8)

Because of isospin symmetry, all triplet states should have comparable energy. Thus,
if the deuteron was an isotriplet |1, 0〉, nn and pp bound states should have been ob-
served in nature. This is not the case. Therefore, the deuteron has to be the isospin sin-
glet state |0, 0〉. With similar arguments one can show that the nucleus of 4He (which
is build of two protons and two neutrons) is also an isosinglet state.

Within the Standard Model, the isospin symmetry of the proton and the neutron
can be reinterpreted as the isospin symmetry of the u and d quarks. Then the funda-
mental isospin doublet of the up and down quark states is:

|u〉 ≡
∣∣∣∣12 , 1

2

〉
,

|d〉 ≡
∣∣∣∣12 ,−1

2

〉
.

(1.9)

In the framework of the constituent quark model the proton and the neutron can be
represented as totally symmetric uud and udd states. The pion triplet can be presented
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as: ∣∣π+
〉
≡
∣∣ud̄〉 ,

|πo〉 ≡ 1√
2

(
|uū〉 −

∣∣dd̄〉) ,∣∣π−〉 ≡ |dū〉 .
(1.10)

1.4.2 Isospin Symmetry Violation

In the Standard Model there are two sources of isospin symmetry violation. The first
natural source is the charge difference of the different quarks. The charges of the
lightest quarks are Qu = 2/3e and Qd = −1/3e (convention: e > 0). In addition,
isospin symmetry is broken by the strong interaction because the quarks also have
slightly different masses [36, 37]. In order to study the effects caused by the quark mass
difference, these two sources of isospin symmetry breaking need to be disentangled.

The isospin symmetry breaking on the hadronic level manifests itself in several
static observables. One observable, which is important for our very existence, is the
proton-neutron mass difference ∆Mpn. As the quark mass difference, it has two ori-
gins: an electromagnetic and a strong one. If isospin symmetry was broken only be-
cause of the different charges of the lightest quarks, ∆Mpn would be a purely electro-
magnetic effect, with the result that the proton would be heavier then the neutron, and
that stable hydrogen atoms would not exist. However, nature shows that this is not
the case and that the proton as a stable particle (with a mean lifetime τp > 1032 yr) is
lighter then the neutron (τn ≈ 880 s). Thus, ∆Mpn has an additional contribution from
the strong interaction:

∆Mpn = ∆M strong
pn + ∆M em

pn . (1.11)

The electromagnetic part ∆M em
pn can be calculated based on QED considerations

and dispersion theory [38], where ∆M strong
pn can be obtained indirectly (∆M strong

pn =

∆Mpn −∆M em
pn ) [37, 39], from lattice QCD [40], or from χPT calculations. Chiral per-

turbation theory provides an interesting link between the static isospin breaking ob-
servable ∆M strong

pn and, at leading order, the dynamic isospin violating πN scattering
length [36].

In general, experimentally it is difficult to get access to quark mass effects in low
energy hadron physics, where the effect of the pion mass difference ∆π = Mπ±−Mπ0 ,
which is of electromagnetic origin, is by far dominant [41]. Therefore, any observables
where ∆π does not contribute are of interest. Here, charge symmetry breaking (CSB)
play a major role.

1.4.3 Charge Symmetry Violation

Charge symmetry is a special case of isospin symmetry. It is the invariance under the
rotation of an angle of 180◦ in isospin space around the T2 axis. The charge symmetry
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operator is:
ÛCS = e−

1
2
iπτ2 . (1.12)

The pion mass difference ∆π is invariant under this rotation and does not contribute to
charge symmetry observables. ÛCS transforms the π+ state into a π−, andmπ+ = mπ−

because of CPT symmetry. Simply speaking, charge symmetry is the symmetry under
interchange of the u and d quarks [42]:

ÛCS |u〉 = − |d〉 ,

ÛCS |d〉 = |u〉 .
(1.13)

Charge symmetry breaking (CSB) manifests itself in many phenomena like the differ-
ent scattering lengths in nn and pp systems after correcting for electromagnetic effects
[43], neutron–proton elastic scattering at intermediate energies [44], π − η mixing [45,
46], or the Nolen–Schiffer anomaly in the binding energy difference of 3H and 3He

[47, 48]. In 1977 Weinberg predicted an effect of CSB in πN scattering [36]: the differ-
ence in the scattering lengths for nπ0 and pπ0 should be huge (up to 30%) and directly
proportional to M strong

pn . However, the direct measurement of f(π0p) − f(π0n) in πN
scattering is practically impossible experimentally, because of the lack of π0 beams.
Thus, there was the suggestion [49, 50] to use NN induced pion production as an
alternative access to CSB pion–nucleon scattering. There have been three successful
experiments in which the corresponding CSB observables were measured:

• the forward-backward asymmetry Afb in the np→ dπ0 reaction [51],

• the total cross section of the reaction dd→ 4Heπ0 near the threshold [52],

• the total and differential cross section of the reaction dd → 4Heπ0 at an excess
energy of Q = 60 MeV [53].

The study presented in the thesis concentrates on a new measurement of the dd→
4Heπ0 reaction. In the next chapter the theoretical and experimental status of the CSB
reactions presented above is discussed.
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Chapter 2

Experimental and Theoretical Status

In this chapter a description of the experimental and theoretical status of three CSB
observables — the forward-backward asymmetry Afb in the np → dπ0 reaction and
the total and differential cross section of the reaction dd → 4Heπ0 near the threshold
— is presented. These observables provide an alternative access to CSB effects of the
pion–nucleon scattering.

2.1 Forward-Backward Asymmetry in np→ dπ0

The forward-backward asymmetry Afb of the np → dπ0 reaction was measured at
Canada’s National Laboratory for Particle and Nuclear Physics TRIUMF. A neutron
beam with an energy of 279.5 MeV was impinged on a proton target, corresponding
to an excess energy, ε, of about 2 MeV [51]. Afb is defined as:

Afb =

∫ π/2
0

[
dσ
dΩ (θ)− dσ

dΩ (θ − π)
]

sin θdθ∫ π/2
0

[
dσ
dΩ (θ) + dσ

dΩ (θ − π)
]

sin θdθ
, (2.1)

where θ is the emission angle of the deuteron in the center of mass frame. In Fig. 2.1
the scheme of the np→ dπ0 reaction in the c.m. system before and after an interchange
of u and d quarks is presented. The angle between the proton and deuteron before the
interchange is equal to θ, and afterwards it is equal to π − θ. Therefore, if the charge
symmetry is broken, the differential cross section is not symmetric and Afb 6= 0. The
experimentally obtained value is Afb = [17.2 ± 8(stat.) ± 5.5(syst.)] · 10−4 [51]. The
result has a quite big uncertainty: within two standard deviations of the statistical
uncertainty it is compatible with zero.

The first theoretical calculations of Afb based on a meson-exchange coupled-
channel formalism are presented in [54]. It was predicted that π − η mixing should
completely dominate this observable. The calculated asymmetry Afb = −28 · 10−4

is negative, contrary to the experimental result. First calculations based on χPT [49],
where the CSB effects were modeled by a charge symmetry violating π0N interaction,
lead to a value of Afb = 60 · 10−4 which is much larger than the one observed exper-
imentally. Both calculations were performed before the results appeared describing
mechanisms of isospin conserving pion production in the NN −−→ NNπ reactions in
χPT [55, 56]. These developments provided a good base for studying isospin violation
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FIGURE 2.1: Scheme of np → dπ0 reaction in the c.m. system, before
(left) and after (right) an interchange of u and d quarks.

effects and brought the total cross section and the angular distribution into agreement
with the experiment [50, 57]. It has been shown that at leading order (LO) Afb is di-
rectly proportional to M strong

pn , while the effect of π − η mixing is subleading. The
leading order diagram for the CSB s-wave amplitudes of the np → dπ0 reaction is
depicted in Fig. 2.2. From the experimental value of Afb, M

strong
pn was obtained as

∆M strong
np = 1.5± 0.8(exp.)± 0.5(th.) MeV . (2.2)

This value is in agreement with lattice predictions [40] and the indirect extraction from
∆M strong

pn = ∆Mpn −∆M em
pn [37, 39].

FIGURE 2.2: Leading order diagram for the CSB s-wave amplitudes of
the np → dπ0 reaction. The solid lines represent nucleons, the dashed
lines denote pions, the cross indicates the CSB vertex and the dot rep-

resents a leading order charge invariant vertex. Source [50].

2.2 Total and Differential Cross Section of dd→ 4Heπ0

2.2.1 dd→ 4Heπ0 Cross Section Close to Threshold

The total cross section of the dd → 4Heπ0 reaction was first measured at the In-
diana University Cyclotron Facility at two different beam energies. The results are
σ = 12.7 ± 2.2 pb and σ = 15.1 ± 3.1 pb at 228.5 MeV and 231.8 MeV beam energy
[52], respectively. In Fig. 2.3 the 4He missing mass for dd → 4HeX is presented. Each
spectrum shows a prominent signal on top of a continuous background. The spectra
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are described by a Gaussian peak and a continuum, presented as curves. The energy
dependence of these results are comparable with s-wave pion production.

FIGURE 2.3: Candidate events at the two deuteron bombarding ener-
gies 228.5 MeV and 231.8 MeV as a function of the 4He missing mass
for dd → 4HeX . The smooth curves show the reproduction of these

histograms with Gaussian peak and a continuum. Source [52].

2.2.2 Theory

When the charge symmetry operator acts on the particular hadronic states from the
dd→ 4Heπ0 reaction, one gets:

ÛCS |d〉 = |d〉 ,

ÛCS
∣∣4He

〉
=

∣∣4He
〉
,

ÛCS
∣∣π0
〉

= −
∣∣π0
〉
. (2.3)

The dd → 4Heπ0 reaction violates charge symmetry because the system 4Heπ0, odd
under charge symmetry, should not be produced from the dd system, which is even
under charge symmetry. Therefore, the total cross section is proportional to the CSB
amplitude |MCSB|2.

First calculations for the dd → 4Heπ0 reaction can be found in [58, 59]. In [58] a
simplified set of d and 4He wave functions and a plane-wave approximation for the
initial dd state were used. The ordering scheme of χPT was used to classify and iden-
tify different contributions. At leading order, there is only the contribution from πN

re-scattering; no next-to-leading order contribution is identified. It occurred that the
formally leading πN re-scattering term is suppressed due to selection rules in spin
and isospin space. The contributions from next-to-next-to-leading order (NNLO) di-
agrams were too small to account for the observed cross section. It was shown that
better agreement could only be obtained if short-range pion emission was taken into
account.

More reliable calculations were performed in [59], where realistic two- and three-
nucleon interactions in a χPT calculation were used. This allowed a proper treatment
of the effects of the deuteron-deuteron interaction in the initial state and to use a re-
alistic 4He bound-state wave function. The contribution of the leading order term
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for the s-wave channel is confirmed to be suppressed. The contributions at NNLO
individually give results of the same order as the experimental cross section. This
demonstrates the significant influence of the initial-state interaction. A complete cal-
culation to NNLO — including pion loops and CSB in the initial state — is still under
investigation.

The effects of initial-state Coulomb interactions were investigated in [60] using a
simplified set of d and 4He wave functions and a plane-wave approximation for the
initial dd state. It was shown that the cross sections for dd→ 4Heπ0 can be significantly
enhanced by the soft photon exchange.

Furthermore, [61] shows that using parameters consistent with the CSB induced
difference between the strong pp and nn scattering one can provide significant con-
straints on the calculated amplitude for the dd→ 4Heπ0 reaction. However, the result
is very sensitive to the choice of the nuclear potential model, which demonstrates that
a simultaneous analysis of the NN scattering length and the dd → 4Heπ0 reaction is
needed.

There is one more important test for the theoretical description of the CSB ob-
servables. At NNLO the first counter term enters the s-wave pion production with
unknown strength D̄. In addition, the isospin violating πNN coupling constant β1

contributes. The reaction dd → 4Heπ0 near threshold can be used together with the
forward-backward asymmetry in np → dπ0 to NNLO to fix D̄ and β1 (the required
evaluation of the transition operator to one loop is in progress). Once the parameters
are fixed, the p-wave contribution can be predicted parameter-free to leading and next-
to-leading order, which will provide an important cross-check for the χPT predictions
[62].

In Fig. 2.4 some formally leading operators for p-wave pion production are pre-
sented. The coupling strengths are given by the leading CSB πN amplitude (Fig. 2.4 a)
and the leading CSB πNN vertex (Fig. 2.4 b and 2.4 c). However, as for the s-wave
pion production, the contribution of diagram (a) is suppressed as a consequence of
selection rules. Therefore, p-wave pion production provides direct access to the CSB
πNN coupling constant β1. A measurement of the p-wave contribution in dd→ 4Heπ0

is therefore complementary to the np → dπ0 measurement from [51] which is mostly
sensitive to the leading isospin violating πN amplitude [62].

In addition, higher partial waves are predicted to be sensitive to the CSB
NN −−→ N∆ transition potential which is difficult to access in other reactions. This
potential is known in chiral perturbation theory in LO. Therefore, the measurement of
higher partial waves provides an additional non-trivial test of the understanding of
isospin violation in hadronic reactions [53].

2.2.3 Charge Symmetry Breaking with WASA-at-COSY

The investigation of higher partial waves of the pion production in the dd → 4Heπ0

reaction at ε = 60 MeV is one of the main goals of the WASA-at-COSY experiment.
The program started with the measurement of the isospin conserving dd → 3Henπ0
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FIGURE 2.4: Formally leading operators for p-wave pion production in
dd → 4Heπ0. The crosses indicate the occurrence of CSB, the dots rep-
resent a leading order charge invariant vertex. The dashed lines denote
pions, the single solid lines denote nucleons and the double solid lines

denote a ∆. Source [63].

reaction, which provides important experimental input for calculations of the initial-
state interactions. As a next step, a first measurement of dd→ 4Heπ0 was performed.

Measurement of the dd→ 3Henπ0 Reaction

The theoretical control over the initial-state interactions is one of the biggest challenges
in the calculation describing the dd → 4Heπ0 reaction. Therefore, as an experimental
input, high accuracy wave functions for dd → 4N in low partial waves at relatively
high energy are needed. Therefore, the first part of the CSB program was the measure-
ment of the isospin symmetry conserving reaction dd → 3Henπ0 [64], as this reaction
partially shares the same partial waves in the initial state with dd→ 4Heπ0.

The analysis was performed using data collected during a one-week run in
November 2007, at a beam momentum of pd = 1.2 GeV/c (Ed = 350 MeV), which
is the same energy as the dd → 4Heπ0 run. The goal was to measure the total and
differential cross section of the dd → 3Henπ0 reaction in order to provide first experi-
mental data on the dd initial state for s and p partial waves.

As a result the total cross section of the dd→ 3Henπ0 reaction was obtained:

σtot = (2.89± 0.01(stat.)± 0.06(syst.)± 0.29(norm.)) µb. (2.4)

The differential distributions have been compared to a quasi-free reaction model and
a partial-wave expansion for the three-body reaction limited to at most one p-wave in
the final state, both added incoherently. The contribution of the quasi-free processes is
about 1.11 µb of the σtot, which is in agreement with model predictions. The conclu-
sion from the partial wave decomposition was that p-wave contributions in the final
state are significant, but that there are no significant contributions from higher partial
waves [64].
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First dd→ 4Heπ0 Measurement with WASA-at-COSY

In June 2008 a first two-week long high-luminosity run dedicated to the measurement
of the dd→ 4Heπ0 reaction took place. The main goal of this experiment was to obtain
the total cross section at pd = 1.2 GeV/c (Ed = 350 MeV) [53]. In Fig. 2.5 the final miss-
ing mass plot is presented. On a flat, broad background coming from double radiative
capture dd → 4Heγγ, two significant peaks are visible. The first, coming from the
signal reaction dd→ 4Heπ0, is located at mπ = 135 MeV. The second one corresponds
to misidentified events from the background reaction dd → 3Henπ0, which is shifted
because of the 3He − n binding energy. The data have been fitted with Monte Carlo
filtered distributions for all three contributions. For the dd → 4Heγγ channel a ho-
mogeneous 3-body phase-space distribution has been assumed, for the dd → 3Henπ0

contribution the obtained model from [64] has been used, and the contribution of the
dd → 4Heπ0 reaction is based on the 2-body phase-space. The obtained total cross
section is equal to [53]:

σ
4Heπ0

tot = (118± 18(stat.)± 13(syst.)± 8(ext.)) pb. (2.5)

Dividing out the phase space in initial and final state, the result can be compared with
the values measured close to threshold (see Fig. 2.6). A constant value could indicate
dominating s-wave, but one has to keep in mind that the energy dependence of the
4He formation in the final state is not included here. In addition, a first result for
the angular distribution was obtained. Fig. 2.7 shows the extracted differential cross
section as a function of cos θ∗ (θ∗ is the polar angle of the π0 in the c.m. system). Due to
identical particles in the initial state the angular distribution must be symmetric with
respect to 0. Taking into account the statistical uncertainty, the result is not decisive in
identifying contributions from higher partial waves [53].

The measurement described in this thesis is the next stage of the WASA-at-COSY
program. The goal is to obtain the differential cross section with better statistics and
improved accuracy. An eight-week long run with a modified detector setup was car-
ried out in spring 2014. The aim of the detector modification and description of the
experimental conditions are presented in Sec. 3.2.
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FIGURE 2.5: Missing mass plot for the reaction dd → 4HeX at pd =
1.2 GeV/c. The different contributions fitted to the spectrum are dou-
ble radiative capture dd → 4Heγγ (green dashed), the reaction dd →
3Henπ0 (blue dotted, added) and the sum of all contributions includ-

ing the signal (red solid). Source [53].

FIGURE 2.6: Energy dependence of the dd → 4Heπ0 reaction ampli-
tude squared |A|2. In the absence of initial- and final-state interactions
a constant amplitude would indicate that only s-wave is contributing.
The red full circle corresponds to the total cross section given in 2.5.

Source [53].
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FIGURE 2.7: Differential cross section of dd→ 4Heπ0 at pd = 1.2 GeV/c.
The error bars show the statistical uncertainties. In the first bin an ad-
ditional systematic uncertainty has been added. The blue dashed line
represents the total cross section assuming an isotropic distribution, the
solid red curve shows the fit with the Legendre polynomials P0 and P2.

Source [53].
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Experiment

The experiment described in this thesis was performed at the Institute for Nuclear
Physics at the Forschungszentrum Jülich located in Germany. The following setup
was used:

• Detector: modified version of the Wide Angle Shower Apparatus (WASA).

• Target: deuteron pellets, provided by the WASA pellet target system.

• Beam: high intensity deuteron beam with a momentum of pd = 1.2 GeV/c (Ed =

350 MeV), provided by the Cooler Synchrotron COSY.

COSY is described in Sec. 3.1, the WASA detector system together with the pel-
let target and the trigger system is presented in Sec. 3.2, and the run conditions are
summarized in Sec. 3.3.

3.1 Cooler Synchrotron COSY

The COSY facility is presented schematically in Fig. 3.1. It consists of ion sources
for polarized and unpolarized beam, the injector cyclotron JULIC (Jülich Isochronous
Cyclotron), injection and extraction lines, and the COSY ring. Experiments can be
performed using either the internal beam of COSY or an extracted beam at external
target stations. The circumference of the COSY ring is 184 m. The straight sections are
40 m long and the arcs are 52 m long [65, 66].

The accelerator facility can provide polarized and unpolarized beams of protons
and deuterons. First H− (D−) ions provided by an ion source are pre-accelerated to
a momentum of 0.29 GeV/c (0.54 GeV/c) in the injector cyclotron JULIC. Then, the
electrons are stripped off using a carbon foil. Finally, the protons or deuterons are
injected into the COSY ring, stored, and accelerated further to the desired momentum
(0.295 GeV/c - 3.7 GeV/c). The part of the cycle when the particles are stored for a
certain time is called "flat top". To start a new cycle, at the end of the flat top, the
dipole magnets are ramped down and the beam is dumped [66].

In order to reduce the phase space volume of the beam, two cooling mecha-
nisms can be used. Electron cooling [67] is used for the low momentum range, up
to 600 MeV/c. For momenta above 1.5 GeV/c stochastic cooling [68] is available. In
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addition to cooling, a barrier bucket cavity [69] can be used to compensate the mean
energy loss in the beam caused by beam-target interactions. This is especially im-
portant for target densities of about 1015 atoms/cm2 as with the WASA target (see
Sec. 3.2.1). For unpolarized protons or deuterons the maximum number of particles
in the beam is about 1010 − 1011, while for polarized beams it is about one order of
magnitude smaller. This corresponds to typical luminosities of 1031 to 1032 cm−2s−1

achieved with the WASA target system [70].

3.2 WASA Detector System

The Wide Angle Shower Apparatus (WASA) was originally installed at the CELSIUS
storage ring in Uppsala, Sweden [72]. In 2005, WASA was moved to Jülich, Germany,
and assembled at the COSY ring in the form which is described in [71]. It was operat-
ing in Jüich from 2006 to 2014.

The WASA facility was designed to study the production and decays of light
mesons. It allows to identify and fully reconstruct both charged and neutral parti-
cles. It has a geometrical acceptance close to 4π and can handle high luminosities,
up to 1032 cm−2s−1 [71]. The detector setup consists of three major parts, namely, the
pellet target system, the Forward Detector (FD), and the Central Detector (CD). The
beampipe goes through the whole detector setup and crosses perpendicularly the pel-
let target tube in the middle of the Central Detector.

At the end of 2013 the detector setup was modified. A sketch of WASA is presented
in Fig. 3.2 (modified version) and Fig. 3.3 (original version).

The reason for the modification was the experiences gained during the first mea-
surement of the dd → 4Heπ0 reaction, (see Sec. 2.2.3), which was performed with the
original setup (for details see [73]). The main goal was to add a time-of-flight measure-
ment of forward going particles to the so-far energy-loss based particle reconstruction.
Thus, all the detectors between the Forward Proportional Chamber and the Forward
Veto Hodoscope were removed (see the comparison between Fig. 3.2 and Fig. 3.3).
This allows the slow 4He from the dd → 4Heπ0 reaction to reach the last layer of the
Forward Veto Hodoscope, instead of being stopped in the first scintillator layer af-
ter the Forward Proportional Chamber. The analysis of the time-of-flight information
allows for

• a better separation of the dd→ 4Heπ0 and dd→ 3Henπ0 reactions,

• an independent method for detector calibration (so far, the calibration of the
energy deposit in the thin plastic scintillators was based only on the correlation
of the energy loss in the different layers),

• and a more accurate kinetic energy reconstruction of 4He and 3He.

In the following section the modified WASA facility is described in more details.
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FIGURE 3.1: Schematic view of the COSY facility. The ion sources,
the injector cyclotron, the injection and extraction lines, and the COSY
ring are visible. The position of the WASA detector setup is marked.

Adapted from [71].
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50 cm
Electromagnetic calorimeter (SEC)

Solenoid

COSY

beam

Pellet line

Thin plastic scintillllators

Tracking detectors

TOF detector (FVH)

FPC

FWC

MDC

PSB

FIGURE 3.2: Schematic side view of the WASA detector setup. The For-
ward Detector consists of two layers of the Forward Window Counter
(FWC), four planes of the Forward Proportional Chamber (FPC) and
one layer of the Forward Veto Hodoscope (FVH). In the Central De-
tector a tracking detector, called Mini Drift Chamber (MDC), is sur-
rounded by the Plastic Scintillator Barrel (PSB), the solenoid, and the
Scintillator Electromagnetic Calorimeter (SEC). The most outer part of
the Central Detector is the iron yoke (marked in red). The COSY beam

enters the detector setup from the left side. Adapted from [71].

50 cm
 Electromagnetic calorimeter

Solenoid

COSY

beam

Pellet line

Range hodoscopes

Thin plactic scintillators

Tracking detectors

TOF detectors

FIGURE 3.3: Previous WASA detector setup as described in [71]. All the
detectors between the Forward Proportional Chamber and the Forward

Veto Hodoscope were removed during the modification in 2013.

3.2.1 Pellet Target

The pellet target system can provide frozen pellets of hydrogen and deuterium with a
diameter between 25 − 35 µm, a frequency about 5 − 12 kHz, and a velocity about
60 m/s at the interaction point. The achievable effective target thickness is about
1015 atoms/cm2, which is necessary to obtain luminosities as high as 1032 cm−2s−1.
The spread of the pellet stream at the interaction point is about 2 − 4 mm [71, 74].
Detailed information about the system can be found in [74–79].

The layout of the pellet target system is shown in Fig. 3.4. In the pellet generator,
hydrogen or deuterium gas is liquefied in a heat exchanger. Then, it is pressed through
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a glass nozzle. The temperature of hydrogen is about 15 K and of deuterium is about
20 K, while the pressure of both is kept at a level of 600 mbar [79]. The jet of liquid
hydrogen or deuterium is then broken up in droplets using a vibrating nozzle. The
droplets pass through the droplet chamber, where the pressure is slightly below the
triple point value (20 mbar for hydrogen and 60 mbar for deuterium), to reach a 7 cm
long vacuum-injection capillary where their surfaces freeze by evaporation. Then,
they cool down further and freeze to solid spheres in the skimmer chamber, because
of a pressure reduction up to 10−3 [77, 80]. The stream of pellets is collimated passing
through a skimmer. Then, it reaches a 2 m long pipe which leads to the scattering
chamber. At the interaction region the beampipe crosses the pellet target tube. After
that, the pellets are directed to a beam dump where pumps remove the gas from the
evaporating pellets.

 

600 mbar 

Cold head 

 

Droplet chamber 

Vacuum injection 

Skimmer 

H / D2 2 He 

 

COSY beam 

-31×10  mbar  

 

Liquid jet nozzle
T=15 K ; 20 K20 mbar /

60 mbar

-61×10  mbar

-41×10  mbar Beam dump

FIGURE 3.4: Scheme of the pellet target system. The main components
and information about the pressure and the temperature values in the

particular parts of the system are marked. Source: [79].

3.2.2 Forward Detector

The purpose of the Forward Detector (FD) is the detection and identification of
charged recoil particles like protons, deutrons, and helium nuclei with polar angles
between 3◦ and 18◦. It consists of two layers of thin plastic scintillators (the Forward
Window Counter (FWC)), four layers of a straw tube detector (the Forward Propor-
tional Chamber (FPC)), and one layer of the time-of-flight (ToF) detector — the For-
ward Veto Hodoscope (FVH). In the following these FD components are discussed.
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Forward Window Counter

The two layers of the FWC are located just after the exit window of the scattering
chamber. While the second layer is perpendicular to the beam direction, the first one
is titled by 20◦ to fit to the shape of the exit window. Each layer is built of 3 mm thick
plastic scintillators made of BC408. Both layers consist of 24 elements. One layer is
rotated with respect to the other one by half of an element, resulting in an effective
granularity of 48 elements. A sketch of the detector is presented in Fig. 3.5. More
details on the FWC can be found in [81].

Plastic scintillators consist of scintillating molecules or atoms suspended in an or-
ganic material to form a polymerizing structure. Charged particles passing through
a scintillator cause an excitation of the atoms or molecules, which produces a flash of
light when going back into the ground state. The light is usually detected by pho-
tomultipliers. Plastic scintillators can be produced in almost any geometry. Char-
acterized by a fast rise time they can provide excellent timing information used for
time-of-flight [82].

The FWC plays an important role in the trigger logic, reducing the background
caused by secondary interactions in the beam-pipe or in the flange at the exit of the
scattering chamber. Events with time-coincident hits in geometrically overlapping
elements in both layers will trigger the data acquisition. In addition, in the presented
experiment, the FWC is also used to separate 3He and 4He isotopes from protons
and deuterons, by introducing a high threshold for the energy deposit in the trigger.
For the off-line analysis the detector provides timing information of charged particles
used to measure time-of-flight. It can also be used for particle identification by means
of methods based on a correlation between energy losses in different detector layers
(dE-dE) or a correlation between time-of-flight and energy losses (ToF-dE).

FIGURE 3.5: Sketch of the two layers of the Forward Window Counter.
The scintillator layers and the scattering window are separated in an

explosion view. Source: [81].
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Forward Proportional Chamber

Behind the FWC the Forward Proportional Chamber is located, which is composed of
4 planes. Each plane consists of 4 staggered layers of 122 straws of 8 mm diameter.
All planes are oriented perpendicularly to the beam direction. They are rotated by
−45, +45, 0 and 90 degree, respectively (see Fig. 3.6). The drift tubes are made of
aluminized Mylar foil with a central sense wire made of stainless steel [83]. A mixture
of 80% Ar, as a proportional gas, and 20% C2H6, as a quenching gas, is used [84].

The principle of the particle detection in a straw tube tracker is the following: every
straw tube is a proportional drift tube, with the central steel wire as anode and the
Mylar foil as cathode. When a charged particle crosses the straw it ionizes the gas.
The primary electrons from the gas ionization are accelerated in the strong electrical
field in the vicinity of the wire and they move towards the anode. The intensity of the
field is E ∝ r−1, where r is a distance from the wire. If the primary electrons gain a
sufficient amount of energy they ionize further gas atoms by colliding with them. This
releases additional electrons which accelerate and collide with further atoms, releasing
more electrons. It leads to an electron avalanche. The resulting cascade of electrons
eventually reaches the anode and induces a current. While the ion cloud slowly drifts
to the cathode, the signal induced by electrons is very fast and can be used for precise
reconstruction of the trajectory of a traversing particle [82].

The purpose of the FPC is to provide the azimuthal and polar direction of particles
coming from the interaction region. The precision of the scattering angles measured
with the FPC is below 0.2◦ [83–85].

(A) (B)

FIGURE 3.6: Schematic view of the Forward Proportional Chamber.
Adapted from [86]. A: Three dimensional view of four modules of FPC.
The system of coordinates is marked. B: The single FPC module in a

frame. Source: [79].
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Forward Veto Hodoscope

The Forward Veto Hodoscope is the most forward layer of the FD. It consists of 24 bars
of the plastic scintillator EJ200. The elements are 12 cm wide and 20 mm thick. 22 of
them are mounted vertically, 2 additional ones are located horizontally at the back side
of the detector for calibration purposes. Each bar has photomultipliers at both ends.
The three outer bars on each side are 190 cm long, the others are 260 cm long. Because
of the beam pipe the central element is divided in two parts, above and below the
pipe. A schematic view of the FVH is presented in Fig. 3.7. More information about
the FVH can be found in [81, 87].

Due to the two-sided readout the location of the hit along a detector element can be
also reconstructed by measuring the time difference of both signals. Together with the
FWC detector, it is used to measure the time-of-flight of outgoing particles from the
interaction region. The energy loss information from the FVH can be used for particle
identification.

FIGURE 3.7: Schematic view of the Forward Veto Hodoscope. Adapted
from [87].

3.2.3 Central Detector

The Central Detector surrounding the interaction point is designed for the detection
and identification of meson decay products, namely, photons, electrons, muons and
charged pions in the polar angular range between 20◦ and 169◦ and with full cover-
age of the azimuthal angle. It consists of the Mini Drift Chamber (MDC), the Plastic
Scintillator Barrel (PSB) (thin plastic scintillators arranged as a cylinder surface), the
Superconducting Solenoid (SCS) providing the magnetic field surrounded by the iron
yoke, and the Scintillator Electromagnetic Calorimeter (SEC).
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The Central Detector is crossed by the beampipe and the pellet target tube. In the
interaction region, the beampipe is made of beryllium and has a radius of 30 mm and
a wall thickness of 1.2 mm [71].

Since the measurement presented in the thesis does not require any charged parti-
cle detection in the Central Detector, the Superconducting Solenoid had been switched
off. In the solenoidal field the transverse component of the particle momentum due to
betatron oscillations causes a phase space mixing between x and y components of the
COSY beam (rotation of the beam). As the acceptance of the COSY ring is not sym-
metric in x-axis, it is easier to reach higher beam currents with a switched-off solenoid.
In the current measurement also the Mini Drift Chamber was not used as no charged
particles were to be detected and the magnetic field was off. However, for complete-
ness the description of these two components of the Central Detector is included in
this section.

Mini Drift Chamber

The Mini Drift Chamber is the innermost part of the CD. This tracking detector con-
sists of 1738 straw tubes arranged in 17 cylindrical layers. In order to get three-
dimensional information about the trajectory of the particles, nine layers consist of
straws parallel to the beam axis, and the other eight consist of tubes tilted by an angle
in the range between 6◦− 9◦ with respect to the beam axis. Each straw tube is made of
25µm thin aluminized mylar foil and a sensing wire made of 20µm gold-plated tung-
sten. The tubes are filled with a mixture of argon and ethane in the proportion 8:2. A
schematic view of the MDC surrounded by the Plastic Scintillator Barrel is presented
in Fig. 3.8. A detailed description of the MDC can be found in [88].

The purpose of the MDC is the three-dimensional track reconstruction of charged
particles in the polar angular range of 24◦ − 159◦. The momentum vector of charged
particles is determined from the curvature of the track in the magnetic field.

FIGURE 3.8: Schematic view of the Mini Drift Chamber (brown) sur-
rounded by the Plastic Scintillator Barrel (blue). Source [79].
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Plastic Scintillator Barrel

The Plastic Scintillator Barrel surrounds the MDC. It consists of three parts, the cylin-
drical central one and the two end caps which are shown in Fig. 3.9. Such a struc-
ture allows a nearly 4π coverage. The PSB is build of 146 plastic scintillator elements
(BC408) with a thickness of 8 mm. The central part consists of 50 strips with a length
of 55 cm and width of 3.8 cm. Two of them are split in half to provide space for the pel-
let tube. Each element overlaps with the neighboring ones to increase the geometrical
acceptance. Every end cap is build of 48 trapezoidal elements. The front end cap is
flat and has a hole for the beampipe with diameter of 19 cm, while the rear cap forms
a conical surface with the beampipe hole with a diameter of 12 cm. All scintillators
are connected via light guides with photomultipliers located outside the iron yoke to
shield them from the magnetic field. More information on the PSB can be found in [88,
89].

The information from the PSB is used to discriminate between neutral and charged
particles on the trigger level as well as in the off-line analysis. The energy loss mea-
sured in the PSB is used to identify charged particles, together with the momentum
measured in the MDC or the energy deposit in the electromagnetic calorimeter.

x

y

10 cm

x

y

10 cm

FIGURE 3.9: Sketch of the forward, central and backward part of the
Plastic Scintillator Barrel. In the end caps the beampipe holes are visi-

ble. Source [71].

Superconducting Solenoid

In order to measure the momenta of charged particles using the information from
the MDC, an axial magnetic field is needed. It is provided by the Superconducting
Solenoid, which is able to produce magnetic fields up to 1.5 T. A map of such a mag-
netic field is presented in Fig. 3.10 The coil is operated at a temperature of 4.5 K pro-
vided by a liquid helium cooling system. The magnetic flux is closed by a five ton iron
yoke. It shields the readout electronics and photomultipliers from the inner magnetic
field and provides the support for the calorimeter. A detailed description of the SCS
can be found in [90].
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FIGURE 3.10: Map of the magnetic field produced by the Superconduct-
ing Solenoid. Border contours are indicated by lines with the labels A –
H to describe field density: A = 0.10 T, B = 0.25 T, C = 0.50 T, D = 0.75 T,

E = 1.00 T, F = 1.20 T, G = 1.30 T, H = 1.50 T. Source [90].

Scintillating Electromagnetic Calorimeter

The Scintillating Electromagnetic Calorimeter is the most outer layer of the Central
Detector. It consists of 1012 sodium-doped CsI crystals supported by the iron yoke,
organized in 24 rings. The crystal length varies from 20 cm in the backward region
to 30 cm in the central part and 25 cm in the front one. Each crystal is connected to
a photomultiplier outside the iron yoke via a light guide. The SEC covers a polar
angular range of 20◦ − 169◦. A schematic view of the SEC is presented in Fig. 3.11.

The calorimeter is used to measure the energy of outgoing photons, electrons and
pions. For the purpose of this thesis, the SEC was only used for photons from the π0

decay. More details about this detector can be found in [71, 91, 92].
If a photon enters a scintillating crystal it starts an electromagnetic shower. The

shower is dominated by pair production and bremsstrahlung. The created light is
collected by photomultipliers and converted into an electric signal.

The scintillation mechanism in inorganic materials can be described by the band
structure in the crystals. A particle crossing through a crystal can excite an electron
from the valence band into the conduction band. In the conduction band electrons
move freely. They can recombine with a hole or create a bound state with a hole called
exciton. The excitation energy level is slightly below the conduction band. The exciton
migrates in the crystal for some time. Then, it deexcites in a collision with a phonon
or recombines emitting a photon with the excitation energy, which can be detected.
Additionally, a dopant can be introduced in the lattice of the scintillating crystal. It
creates an additional energy level between the valence and the conduction band and
increases the probability of exciton recombination at room temperature [82].

3.2.4 Data Acquisition System

The Data Acquisition System (DAQ) processes signals from the detectors and makes
them available for data analysis. The hierarchical structure of the WASA DAQ system
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FIGURE 3.11: Schematic picture of the Scintillating Electromagnetic
Calorimeter. The forward part is marked in yellow, the central part

in white, and the backward part in red. Source [71].

is presented in Fig. 3.12. It is designed to handle high event rates (of about 10 kHz)
when running at high luminosity [93, 94].

The signals from the straw tubes and photomultipliers are sent to front-end elec-
tronics (preamplifiers, splitters, discriminators). The signal from the front-end elec-
tronics is then sent to the digitalization modules. The evaluation of the digitized
signals is done by a Field-Programmable Gate Array (FPGA). In these modules the
whole digitalization system consists of 14 crates equipped with QDCs (Charge-to-
Digital Converter) and TDCs (Time-to-Digital Converter). They continuously sample
the data stream, and store the detected signals in a FIFO (First In First Out) buffer.
Signal selection and evaluation in the FPGAs start when the trigger arrives, using a
pre-defined time window. The memory of the digitalization modules is large enough
to store the history of data and avoid a separate delay of the signals. A synchroniza-
tion system synchronizes the time signal of the trigger and the modules and assigns
event numbers. When a trigger is sent by the synchronization system to the individual
crates, the leading edge of the signal is used as a reference time in the crates to assign
a time stamp relative to the trigger to all stored signals. The final data are transfered to
a readout computer farm. There, an event builder collects the data streams and writes
it to disk [93].

3.2.5 Trigger

In general, the WASA trigger is based on the information from the scintillating detec-
tors in the Forward as well as in the Central Detector. This includes hit multiplicities,
time coincidences, and geometrical overlap between the detector elements. From the
calorimeter the cluster multiplicity, the energy of the cluster and the total energy sum
in the calorimeter can be used. The cluster type (charged or neutral) can be deter-
mined by including the information from the PSB. Several trigger conditions can be
logically combined to optimize the selection of the data sample [95, 96].
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FIGURE 3.12: Structure of the DAQ system of the WASA detector. Fig-
ure adapted from [93].

For the dd→ 4Heπ0 reaction the main trigger was:

fwHea1 & fwHeb1 & seln1

meaning the following:

1. fwHea1 & fwHeb1 - a high threshold (corresponding to a high energy deposit)
was required for signals from at least one element of the first and the second
layer of Forward Window Counter AND

2. seln1 - at least one cluster originating from a neutral particles (i.e., no geomet-
rical overlap with a PSB hit) in the Central Detector.

For the first trigger requirement, the high thresholds in FWC1 and FWC2 (first and
second layer of FWC, respectively) were adjusted at the beginning of the beamtime
such that the dd → 3Hen reaction used for the calibration purposes (see Sec. 4.3),
the signal reaction dd → 4Heπ0, and the dd → 3Henπ0 reaction used for luminosity
determination (see Chapter 6) were included in the trigger. In Fig. 3.13 an example
spectrum of the energy loss in QDC channels is presented for element 13 of FWC1. In
the plot, the high trigger threshold is marked with a green line. The prominent peak
around channel 5000 originates from 3He from dd → 3Hen. The energy losses of 3He

and 4He from dd→ 3Henπ0 and dd→ 4Heπ0 are above that peak.

3.3 Run Summary

The data were collected in an eight-week long run between 17.02.2014 and 21.04.2014.
A deuteron beam at a kinetic energy of Ekin = 0.350 GeV (pd = 1.2 GeV/c) was scat-
tered on deuterium pellets.
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FIGURE 3.13: Energy loss for element 13 of FWC1. The high trigger
threshold is marked with a green dashed line. The prominent peak
around channel 5000 originates from 3He from the dd→ 3Hen reaction.
the energy losses of 3He and 4He from dd → 3Henπ0 and dd → 4Heπ0

are above that peak.

The typical accelerator cycle was 50 s long, while the effective time of data taking
was 41 s. The time structure of the cycle is presented in Tab 3.1.

TABLE 3.1: Beam cycle structure.

Time in cycle [s] Action

0 Start of cycle
2.5 High voltage of MDC and FPC switched on
5 Barrier bucket switched on
5.5 Pellet target and DAQ switched on
46.5 Pellet target and HV switched off
48 WASA DAQ switched off
49 Barrier bucket switched off
50 End of cycle

The pellet rate and the beam current as a function of time in one example cycle
is presented in the left panel of Fig. 3.14. On a longer time scale the pellet rate was
varying between 1500 − 11000 Hz, but was not changing significantly within a cycle.
The number of deuterons in the flat top (right after injection and acceleration) was
between 1.9 − 2.5 · 1010. While interacting with the target, the beam current dropped
by 50 − 80%. In the right panel of Fig. 3.14 the ratio of incoming to accepted triggers
during the cycle is shown, representing the efficiency of the data acquisition system.
The ratio grows from about 85% at the beginning of the cycle, to about 100% at the
end. It is caused by the fact that due to the dropping beam current the luminosity was
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highest at the beginning of cycle. With very high luminosities the data acquisition sys-
tem cannot process all trigger events because of the dead time linked to the conversion
time of the analog-to-digital converters and the readout and storage times.
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FIGURE 3.14: Left: Pellet rate (black) and the beam intensity (red) dur-
ing one beam cycle. Right: The ratio of incoming to accepted triggers

as a function of the time during one beam cycle.

The beamtime was planned for 65 days (9 weeks) with one week reserved for main-
tenance purposes. However, only 41 days (989 hours) of measurement could be used
for the analysis purposes, which gives 71% of time originally dedicated to data collec-
tion. The given times were calculated without subtracting the time at the beginning
and the end of the cycle when the DAQ system was switched off (see Tab. 3.1).

One reason for the significantly reduced effective beam time was an initial problem
with the deuteron pellet target. The gas purifier for cleaning the deuterium gas from
other residual gases had a leak, and, thus, impurities could enter the target system
causing nozzle blocking by frozen gas. Several target regenerations, nozzle changes
and a careful examination of the purifier took almost the first two weeks of the beam-
time. First stable run conditions were achieved on 28.02.2014.

Another problem that occurred during the beamtime was caused by a dropping
gain of the photomultipliers connected to FWC and FVH. It was most probably caused
by a degeneration of the photomultipliers which were working for a long time with
high particle rates. With dropping gain, the effective trigger thresholds were rising.
Therefore, the thresholds had to be adjusted several times during the beamtime. How-
ever, as the online monitoring spectra did not show the position dependence of the
detector response, for some elements and ranges of scattering angles, events from the
calibration reaction dd → 3Hen dropped below the trigger threshold (see next chap-
ter).

In addition to the adjustment of the trigger thresholds, in the middle of the run,
the high voltages of FWC and FVH were increased to achieve a higher and a more uni-
form gain. This divided the beamtime in two major parts. The overall gain drop was
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between 5-25% for different FWC and FVH elements for every part of the beamtime.
For a detailed description of these effects on the detector calibration see Sec. 4.3.1 and
Sec. 4.3.2.

The rest of detector components were operating smoothly. In Tab. 3.2 a summary
of the whole beamtime is given.

TABLE 3.2: Main properties of the beamtime.

Beam momentum 1.2 GeV/c
Beam kinetic energy 0.350 GeV
Deuterons in flat top 1.9− 2.5 · 1010

Cycle length 50 s
Pellet rate 1500− 11000 Hz
Run numbers 41715− 44960
Run numbers for part 1 41785− 42949 (1164 runs)
Run numbers for part 2 42973− 44958 (1985 runs)
Effective time of measurement 41 days (989 hours)
Integrated luminosity (35.4± 3.6(norm.)± 0.9(syst.)) pb−1
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Chapter 4

Data Analysis and Simulations

The goal of the first step of the data analysis is to reconstruct straight tracks of parti-
cles in the Forward Detector together with their kinetic energy and to obtain neutral
pion candidates in the Central Detector. This information is essential for the next step
of the analysis, namely to extract the signal reaction candidates (Chapter 5), and to
determine the integrated luminosity (Chapter 6).

First, a calibration of the detector has to be performed. This step is largely based
on Monte Carlo simulations. It is also crucial that the simulated detector response
matches precisely the data.

In this chapter, the analysis software is described in Sec. 4.1. The track recon-
struction procedure for particles in the Forward and Central Detector is presented in
Sec. 4.2. The detector calibration is discussed in Sec. 4.3 together with the obtained
resolutions of the kinematic observables. The efficiency of the Forward Proportional
Chamber is described in Sec. 4.4. The chapter is closed with Sec. 4.5, where the match-
ing of the simulated detector response to the data is discussed.

4.1 Analysis Software

4.1.1 RootSorter

The analysis, both for data and simulations, is performed using the RootSorter frame-
work [97]. It is based on ROOT [98] and uses object-oriented programming techniques
to allow modular software development and easy adaptation to individual needs.

In the first step of the event reconstruction, the data are stored in so-called banks,
which holds the time and energy information from each single detector element. Ev-
ery sub-detector is stored in a dedicated bank. The hit information for the experimen-
tal data is stored in a structure called HitBankRaw, from which it is copied to the
HitBank after calibration. The simulation output is stored in HitBankMC. In order to
match the Monte Carlo sample with the real experimental data, the simulated data are
smeared to reproduce the experimental resolution and also copied to the HitBank.
Therefore, after this step, simulated and experimental data are processed identically
during the next steps of the analysis.
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4.1.2 WASA Monte Carlo

The detector simulation is done using the WASA Monte Carlo (WMC) software which
is based on GEANT3 (Geometry And Tracking) [99]. The geometry and the material
types of the WASA detector setup are implemented, and the propagation of particles
going through the detector is simulated. Any interactions with active and passive
detector components — like energy losses, multiple scattering, secondary particle de-
cays, and photon conversion — are included. Light propagation in the scintillators,
electronic noise, the response of the photomultipliers, and the drift of the electrons in
the straw tube detectors are not simulated. The match between the simulations and
the detector response is obtained by an additional smearing of the simulated observ-
ables. The parameters used for smearing are defined and applied during analysis. The
smearing procedure is described in Sec. 4.5.

The WMC software can process particle four-vectors from external or internal
event generators. For simulating the signal reaction dd→ 4Heπ0 and the main sources
of background, external generators have been used. The internal generator, which
generates a chosen type of single particles in a defined kinetic energy, azimuthal and
polar angular range, has been used for the purpose of error parametrization and ki-
netic energy reconstruction. The WMC output is similar to the experimental data for-
mat, and is also processed by the same analysis software used for experimental data.

4.1.3 Event Generator

The PLUTO software package is used as an external event generator. This software,
originally designed for the HADES experiment [100] at GSI, was developed for sim-
ulations of hadronic and heavy ion interactions [101]. Later it was adapted to other
reaction channels. The PLUTO generator uses the ROOT [98] environment and it
generates energy-momentum four vectors for all intermediate and final particles for
a defined reaction. In general, a phase-space distribution is generated using the
TGenPhaseSpace class [102], but in addition several different basic reactions with
inhomogeneous and anisotropic angular distributions can be provided. More compli-
cated models may be implemented by the user, too.

For analysis and detector calibration, Monte Carlo samples of various hadronic re-
actions were needed. The dd → 3Henπ0 generator is based on a model obtained in
the previous WASA experiment [64]. This model contains two different contributions
added incoherently, namely the quasi-free reaction d(pnspec)→ 3Heπ0nspec and a par-
tial wave expansion for the three-body reaction limited to at most one p-wave in the
final state. In the quasi-free contribution, only the proton from one of the deuterons
participates in the reaction. The neutron is a spectator, and does not take part in the
momentum transfer. It leaves the reaction region with the sum of its initial momen-
tum and the Fermi momentum at the moment of interaction. A sketch of the quasi-free
reaction mechanism is presented in Fig. 4.1.
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The second contribution is the partial wave expansion of the three-body reaction.
The different contributions from all partial waves and interference terms up to at most
one p-wave in the final state had been obtained by a fit to data [63]. Both contributions
are added such that the generated dd → 3Henπ0 sample contains 40% of the quasi-
free production mechanism (20% with nsp from the target and 20% with nsp from the
beam) and 60% of the partial wave decomposition model [64].

FIGURE 4.1: Sketch of the quasi-free dd→ 3Henπ0 reaction mechanism.
Source [63].

The dd → 4Heγγ reaction at pd = 1.2 GeV/c needed to describe another back-
ground contribution to the signal reaction has been simulated with an uniform 3-body
phase space distribution. The dd → 4Heπ0 reaction has been simulated differently at
different steps of the analysis: first, using a 2-body phase-space distribution, and then
with the angular distribution obtained from the experiment (see Sec. 7.2).

In addition, the dd → 3Hen reaction has been generated for calibration purposes.
This generator is based on the measured total and differential cross sections pre-
sented in [103] for dd → 3Hen for the momentum range of 1.1 GeV/c − 2.5 GeV/c
and dd −−→ tp for the beam momenta range of 1.09 GeV/c− 1.78 GeV/c. The differen-
tial cross section has been interpolated to a beam momentum of pd = 1.2 GeV/c and
included in the generator. For a detailed description see [63].

4.2 Track Reconstruction

In this section it is described how the individual detector hits have been combined
to a particle track and how the direction of the particles has been extracted. The hits
are tested against every detector threshold and time coincidences before they are pro-
cessed. For the FVH hits also the readout from both sides of the bar is required.

In order to describe the direction and the kinematics of a particle in the detector, a
right-handed coordinate system with the origin in the interaction point is introduced.
The z-axis is defined as the beam axis, the y-axis is introduced upwards along the
pellet beam tube, and the x-axis points outwards of the COSY ring in the horizontal
plane. Both Cartesian (x, y, z) and spherical (r, θ, φ) systems of coordinates can be
used, where θ is the polar (scattering) angle and φ is the azimuthal angle.
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For charged particles registered in the Forward Detector the tracking algorithm is
described in Sec. 4.2.1. For particles detected in the Central Detector the reconstruction
procedure is presented in Sec. 4.2.2.

4.2.1 Forward Detector

Since the forward part of the detector setup was modified for the purpose of this ex-
periment, a new track reconstruction procedure has been developed.

The track reconstruction is based on hits from FWC, FPC and FVH. The tracks
of the outgoing particles are straight as there was no magnetic field in the Forward
Detector. The algorithm has the following steps:

1. The geometrical overlap between hits in the first (FWC1) and second layer
(FWC2) of the Forward Window Counter is checked. The granularity of the
FWC layers is 24 elements each, but because one layer is rotated by a half of an
element, the effective granularity is 48 elements covering 7.5◦ of the azimuthal
angle φ. If overlapping elements are identified the algorithm moves the next
step.

2. The geometrical overlap between the φ range from the FWC elements and the
hits in the FVH is checked. If this requirement is fulfilled the algorithm proceeds
to the next step.

3. The information from the Forward Proportional Chamber is used. It is checked
if the φ angle extracted from FPC is consistent with the φ range of the saved track
candidate from the FWC geometry within 2σ of the FPC φ resolution obtained
from the Monte Carlo simulations.

4. Finally, the geometrical overlap between the FPC and the FVH is tested for track
candidates that fulfilled all previous requirements. For each FVH bar the possi-
ble range of polar θ and azimuthal angle φ is calculated. If the θ and φ ranges
match the values from FPC within 2σ, the track is saved as final.

The illustration of the track reconstruction procedure is presented in Fig. 4.2.
All of the reconstructed tracks are saved for further analysis. In Fig. 4.3 the distri-

butions of the track multiplicities after each step of the algorithm are presented. The
histograms are for a Monte Carlo sample of 4He particles from the dd → 4Heπ0 re-
action at pd = 1.2 GeV/c. In pink, the contribution of candidates that pass the first
condition but do not hit any of the FVH elements is presented. It means that these
particles are stopped in the air or other insensitive material between FWC and FVH.

The angular information is obtained from the FPC as follows. Let us name the four
FPC planes as U, V, X, Y. Every one of these planes consists of 4 layers of tubes. Hits
from different layers with geometrical overlap create so-called clusters. Every charged
particle going through the FPC should produce, in the ideal case, four overlapping
clusters: one from every plane. However, no detector is perfect. Sometimes less than
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FWC FPC FVH

beam

track

FIGURE 4.2: Ilustration of the track reconstruction procedure. The el-
ements which define the track (red line) are marked in yellow. The

detector components are not in scale. Source [104].

four matching clusters originate from one track, and sometimes there are more clusters
because of electronic noise or artifacts in the cluster reconstruction. The algorithm
accepts tracks with at least three matching clusters. The crossing point of all matching
wires defines the azimuthal and polar angle of the track, assuming that it comes from
the interaction point.

4.2.2 Central Detector

The track reconstruction in the Central Detector has been performed with the standard
WASA procedure [105]. This method uses the information from the Mini Drift Cham-
ber, the Plastic Scintillator Barrel and the Scintillating Electromagnetic Calorimeter.
The aim is to identify those clusters from each of these detectors which belong to the
same particle and connect them to a track.

For this analysis only the information from PSB and SEC has been used as no
charged particles had to be identified. A neutral particle is defined as a cluster in
SEC with no matching cluster in PSB.

In the final state of the reaction dd → 4Heπ0, a neutral pion decays into two pho-
tons. Therefore, one of the main trigger conditions required one or more neutral par-
ticle clusters in the Central Detector. The main background channels, described in
Sec. 5, contain a π0 or an n. However, as the efficiency of the neutron detection in the
Central Detector is quite small, we did not aim at a neutron trigger. In the analysis the
neutron is handled as an unmeasured particle.

When a photon enters the SEC it produces an electromagnetic shower which
spreads over a group of neighboring crystals. To obtain the energy deposited by the
particle, the energy from the whole cluster has to be summed up. The cluster find-
ing routine starts from the first crystal which has an energy deposit of at least 5 MeV.
Then, the deposited energy of each neighboring element is checked. If it is equal or
larger than 2 MeV and the time difference between the hit in this crystal and the hit in
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FIGURE 4.3: Distributions of the track multiplicities after every of step
of the tracking algorithm described in Sec. 4.2 for the Monte Carlo sam-
ple of 4He from the dd → 4Heπ0 reaction at pd = 1.2 GeV/c. The mul-
tiplicities are given in percentage of the number of events used to test
the algorithm. In pink the contribution of the candidates that pass the

first condition but do not hit any of the FVH elements is indicated.

the reference one is smaller than 20 ns, the element is added to the cluster. It is a recur-
sive procedure: For each newly added crystal the requirements for its neighbors are
checked. The sum of the deposited energy in one cluster is required to be larger than
20 MeV. This condition filters out a large amount of low-energy noise while allowing
nearly every photon from a π0 decay to be reconstructed. The time information of the
whole cluster is taken from the element with the highest energy deposit. The position
of the cluster ~R is taken as the weighted average of the positions of the front surfaces
of the crystals in the cluster ~r:

~R =

∑
iwi~ri∑
iwi

, (4.1)
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where the vector ~ri begins in the interaction point and ends in the middle of the surface
of the SEC element. The weights are defined as:

wi = max

(
0,W0 + ln

dEi∑
i dEi

)
, (4.2)

where dEi is the deposited energy in the element i from the cluster and W0 is a con-
stant. For the WASA calorimeter a value of W0 = 5 gives the best results for the
position resolution.

The requirement for a neutral particle candidate in CD is the absence of a match-
ing PSB cluster. If there are any hits in overlapping PSB bars, the energy deposit dE
and the time difference dt is checked. If dE > 0.5 MeV and dt < 10 ns, the hits are
clustered. A cluster may only be formed by a single hit or by two hits. The cluster
time is defined as the average of the hits. The energy of the cluster is taken from the
element with the largest energy deposit.

4.3 Detector Calibration

In this part of the thesis the calibration of the Forward and Central Detectors is pre-
sented.

In the Forward Detector the energy loss of a particle in the FWC layers and the
time-of-flight between FWC and FVH have to be calibrated. This means that the mea-
sured energy deposits have to be converted from QDC units to MeV and the measured
times from TDC units to ns. First, the ToF calibration is performed. It is described in
Sec. 4.3.1. In the next step, the energy losses are calibrated, making use of the obtained
time-of-flight calibration (see Sec. 4.3.2). The parameters of both calibrations are not
stable in time, mainly because of the dropping gain of the photomultipliers discussed
in Sec. 3.3. This effect has to be corrected by applying run-by-run and rate-dependent
corrections. This is shown at the end of the next two sections. The calibrated dE and
ToF information is used to reconstruct the kinetic energy of outgoing 3He and 4He

particles, which is presented in Sec. 4.3.3.
For the Central Detector, calibration is needed to obtain the energies and the direc-

tion of the photons from the π0 decay. This procedure is presented in Sec. 4.3.4.

4.3.1 Time-of-flight in the Forward Detector

From every element of FWC and FVH the time relative to the trigger is saved in TDC
units. In order to determine the time-of-flight, which is a difference between these
time readouts, in physical units, the gain and the offset have to be calibrated for every
detector element. The gain is defined by the binning of the TDCs — one channel
corresponds to a time of 0.094 97 ns. The offset has to be adjusted for each channel
separately. These time offsets are due to different propagation delays of the signals in
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the detector, in the cables and in the electronic modules. In addition, due to different
light propagation times, a correction based on the scattering angle has to be applied.

For the time-of-flight calibration, the reference reaction dd → 3Hen is used. This
reaction is a two-body reaction, so for a fixed polar angle θ, the outgoing 3He has a
fixed kinetic energy, and as a consequence, ToF and energy losses are well defined.
The dd → 3Hen events have been selected with the main trigger conditions and the
additional requirement of exactly one forward track. In Fig. 4.4 the time-of-flight ver-
sus the energy losses in the FWC1 are presented for the selected events. The prominent
peak around QDC channel 4600 and time-of-flight of about 20 ns originates from 3He

from dd → 3Hen. From Monte Carlo simulations we know the ToF of 3He from this
reaction between FWC and FVH.

FIGURE 4.4: Time-of-flight versus energy losses in the FWC1 for the
selected dd → 3Hen events. The prominent peak around QDC channel
4600 and time-of-flight of about 20 ns originates from 3He from dd →
3Hen. The plot is made for element 13 of FWC1 and the angular range

of 3◦ − 6◦.

The calibration is a multi-step procedure. In the first step, the relative offsets be-
tween FWC1 and FWC2 elements are adjusted. Then, an absolute ToF calibration is
determined as a function of a Forward Veto Hodoscope element. In the following step,
the θ dependence of the calibration is corrected. Finally, the stability of the calibration
is checked with respect to running time, rate and run number. All steps are described
below.

One of the difficulties of the time-of-flight calibration is caused by the different
geometry of the FWC and the FVH. The first detector consists of wedge shaped ele-
ments, while the second one is build of vertical bars. Therefore, for different ranges of
the polar angle the configuration of the overlapping FWC and FVH elements changes.
In addition, not all of the FVH elements are covered by every angular bin. In the
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calibration, all possible combinations of overlapping elements are used to obtain the
offset corrections.

Adjustment of the FWC Offsets

In order to fix the relative offsets between the FWC1 and FWC2 elements, the 3He

from the dd → 3Hen reaction in a very small θ interval between 5◦ and 6◦ has been
used. This was done to have a precisely defined ToF, since the first FWC layer is tilted
with respect to the second one and the distance between the layers changes with θ.
The relative offsets from cables and electronics do not depend on the scattering angle.
In a later step, a precise θ-dependent correction includes, e.g., also effects from light
propagation.

The ToF between FWC1 and FWC2 is measured for each pair of overlapping ele-
ments. In the left panel of Fig. 4.5 one can see that the measured time difference varies
for every element combination. The correction for every FWC1 and FWC2 element
can be calculated using the following set of 48 equations:

ToF1,1 + δ1
FWC1 + δ1

FWC2 = 0

ToF1,2 + δ1
FWC1 + δ2

FWC2 = 0

ToF2,2 + δ2
FWC1 + δ2

FWC2 = 0

· · ·

ToF24,24 + δ24
FWC1 + δ24

FWC2 = 0

ToF24,1 + δ24
FWC1 + δ1

FWC2 = 0

, (4.3)

where ToFi,j is the time-of-flight between element i from FWC1 layer and element j
from FWC2 layer, δiFWC1 is the correction one has to apply to element i of FWC1 and
δjFWC2 is the correction one has to apply to element j of FWC2. The values for ToFi,j

are obtained from a Gaussian fit of the ToF peaks. Since in this step, only the relative
adjustment is done, the sum of time-of-flight and the correction terms is equal to an
arbitrary value taken as zero: ToFi,j+δiFWC1 +δjFWC2 = 0. This equation is solved using
an overall χ2 fit. The result is applied to the measured time information and presented
in Fig. 4.5.

Adjustment of the FVH Offsets

In this step the relative offsets of the FVH elements are adjusted as well as a first
iteration of the absolute ToF calibration is performed. The 3He time-of-flight between
FWC1 and FVH as well as FWC2 and FVH is obtained from simulations for six polar
angular bins. The same is done for data for every element of the FVH. Since the time-
of-flight changes with θ — for larger polar angles it is longer — 3◦ wide bins have been
used to have well defined ToF.

First, the time-of-flight between FWC1 and FVH for 3He from dd→ 3Hen has been
fitted with a Gaussian function. For every angular bin the difference between the ToF
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FIGURE 4.5: Time-of-flight between every pair of the overlapping ele-
ments of FWC1 and FWC2 (48 effective elements) for 3He from dd →
3Hen in the angular range of 5◦ − 6◦. The right plot shows the status

after and the left one before the adjustment.

peak positions from the fit for data and Monte Carlo simulation have been obtained.
Since the offsets calculated for one FVH element should be the same independently on
the angular bin, finally the average of the obtained values has been used. Therefore,
for each FVH element one offset has been calculated. In this way also the absolute
calibration of the time-of-flight between FWC1 and FVH has been performed.

Having the relative offsets for the FVH and FWC elements adjusted, only one gen-
eral correction has to be applied for the absolute calibration of the time-of-flight be-
tween FWC2 and FVH. It has been determined as an average from the differences
between the ToF peak position from data and simulation for all FVH elements and θ

angles. In Fig. 4.6 the 3He time-of-flight between FWC1 and FVH is presented before
(left panel) and after (right panel) the adjustment procedure. The plot refers to the
angular range of 6◦ − 9◦, which is covered by the FHV elements 6 through 17.

Correction for the Polar Angle

After the relative offsets of the FVH and FWC elements have been adjusted, the next
step of the absolute calibration is performed. The difference between the time of im-
pact and the detector response depends of the distance of the hit from the photomulti-
plier. Therefore, the difference between the calibrated ToF and the one obtained from
the simulation is checked for every FWC1 and FWC2 element for eighteen θ bins, 1◦

wide (see Fig. 4.7). For every element of the FWC a bin-wise θ-dependent correction
is calculated. A parabolic interpolation between the bins is applied to avoid disconti-
nuities at the bin edges.

The impact of the calibration steps is illustrated in Fig. 4.8, where the ToF of 3He

from dd→ 3Hen is presented for three stages: after adjusting the relative FWC offsets,
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6th FWC element. The actual correction for the particular polar angle is

calculated with parabolic interpolation between the points.

after adjusting the relative FVH offsets and the first iteration of the absolute calibra-
tion, and after the angular-dependent correction as a function of the FWC element.
The plot shows one example combination: the 1st element of FWC1 and the 9th ele-
ment of FVH in the angular range of 6◦ − 9◦. The value obtained from simulation is
presented as a green line.
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FIGURE 4.8: Time-of-flight of 3He from the dd → 3Hen reaction be-
tween FWC1 and FVH for three stages of the calibration: after adjusting
the relative FWC offsets (black), after adjusting the relative FVH offsets
and the first iteration of the absolute calibration (blue), and after the
angular-dependent correction as a function of the FWC element (red).
The plot shows one example combination: the 1st element of FWC1
and the 9th element of FVH in the angular range of 6◦ − 9◦. The value

obtained from simulation is presented as a green line.

Rate and Run-Dependent Corrections

When checking the stability of the calibration as a function of time, a significant rate
dependence has been observed. High rates have an impact on the scintillators, the
photomultiplier responses and the readout electronics. Therefore, for every element of
FWC and FVH a count-rate-dependent correction has been introduced. Fig. 4.9 shows
the ToF(FWC1-FVH) versus count-rate of particles for element 7 of FVH, element 23
of FWC and the angular bin 6◦ − 9◦. The count-rate is taken for the minimum bias
trigger (No. 17), which was set for elastic and quasi-elastic scattering events requiring
one hit in the forward end cap of the PSB and one hit in the central barrel of the PSB.
The fitted dependence is marked with a red line. The ToF peak position of 3He from
the dd → 3Hen reaction is also presented as a function of the run number before and
after the rate-dependent correction for the same combination of elements. As one can
see, the rate correction makes the calibration more stable. Nevertheless, a remaining
run-wise dependence is still visible, thus, an additional time shift depending on the
run number, had to be applied.

For some combinations of the FWC and FVH elements for particular angular bins
the run-wise correction is not possible because of a lost dd → 3Hen peak caused by
the dropping gain in the 1st part of the beamtime. For the 2nd part of the beamtime
a linear run-wise dependence is observed, while for the 1st one it is more random.
Therefore, the correction is determined only for the 2nd part of the dataset in the fol-
lowing way.
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FIGURE 4.9: Rate-dependence of the ToF calibration. Left: Time-of-
flight of 3He from the dd → 3Hen reaction between FWC1 and FVH as
a function of the count-rate of the minimum bias trigger for the element
7 of FVH, the element 23 of FWC and the angular range of 6◦ − 9◦. The
line shows the fitted correction function. Right: Position of the time-of-
flight peak as a function of the run number before (red) and after (black)
rate-dependent correction for the same combination of elements. The
green line indicates the value obtained from Monte Carlo simulation.

The time-of-flight peak position of 3He from dd → 3Hen is plotted for every com-
bination of the FWC element, the FVH element and the polar angle bin as a function
of the run number. The dependence is fitted with a linear function. In order to de-
termine one correction for every element of FWC and FVH, but using the full angular
information, for every possible combination of elements and angular bin the following
equation is used:

δiFWC(r) + δjFVH(r) = δi,jToF(FWC-FVH)(binθ, r) , (4.4)

where δiFWC(r) is the correction one has to apply to element i of FWC depending on
the run number r, δjFVH(r) is the correction one has to apply to element j of FVHa also
depending on the run number r, and δi,jToF(FWC-FVH)(binθ, r) is the difference between
the time-of-flight from data and simulations for element i from FWC, for the element
j from FVH, for the polar angle bin binθ, and the run number r. In total a set of 375
equations with 66 variables has been solved using an overall χ2 fit. The result has been
applied to the measured time information and presented in the right panel of Fig. 4.10.

The ToF variation can be caused by the observed gain drop, as this increases the
effective height of the trigger thresholds. It is more significant for the 1st part of the
beamtime, when some of the gains of photomultipliers were set quite low in compar-
ison to the others. With low gains, walk effects get more significant. For the 2nd part
of the beamtime, the photomultipliers were set to work in a higher gain range by in-
creasing the high voltage. As a result, the overall ToF resolution is different for the



48 Chapter 4. Data Analysis and Simulations

Run number
42000 42500

T
o

F
(F

W
C

1
F

V
H

) 
p

e
a

k
 p

o
s

. 
[n

s
]

20

20.5

21

21.5

22

22.5

Data before correction

Data after correction

Value from simulations

Run number
43000 43500 44000 44500

T
o

F
(F

W
C

1
F

V
H

) 
p

e
a

k
 p

o
s

. 
[n

s
]

20

20.5

21

21.5

22

22.5

Data before correction

Data after correction

Value from simulations

FIGURE 4.10: Run-dependence of the ToF calibration for the 1st and the
2nd part of the beamtime. Left: Position of the time-of-flight peak of
3He from the dd → 3Hen reaction between FWC1 and FVH as a func-
tion of the run number before (red) and after (black) the rate-dependent
correction for the 1st part of the beamtime. Right: Dependence between
the ToF peak position and the run number before (red) and after (black)
the rate- and run-dependent correction for the 2nd part of the beam-
time. Both pictures are done for the same combination of the detec-
tor elements: element 10 of FVH, element 19 of FWC1 and the angular
range of 6◦−9◦. The green line indicates the value obtained from Monte

Carlo simulation.
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different parts of the beamtime. Therefore, the whole data analysis was performed for
both parts separately.

The ToF resolution for the 1st and the 2nd part of the beamtime, as a function of the
polar angle is presented in Fig. 4.11. The resolution is defined as one standard devia-
tion of the fitted Gaussian function to the ToF peak from the dd → 3Hen reaction for
all runs from the corresponding part of the beamtime. One can see that the resolutions
are similar, but slightly smaller for the 2nd part of the beamtime.

4.3.2 Energy Loss in the Forward Window Counters

For the energy loss calibration, only the gain has to be adjusted. The offset correction
is done by an automatic pedestal subtraction, performed by the FPGA units in the
QDCs. Because of the dropping gains, a run-dependent correction has to be applied
also for the energy loss calibration. As for the time-of-flight, this is done separately for
the 1st and the 2nd part of the beamtime.

Determination of the Calibration Function

The energy loss calibration is based on the ToF calibration. For every FWC element, the
dependence between time-of-flight and energy loss, dE[GeV] = f (ToF[ns]), is obtained
for a simulated sample of 3He with kinetic energies of 0 < Ekin < 0.5 GeV and polar
angles of 0◦ < θ < 18◦. It is fitted with a 3rd order polynomial for six θ bins. As an
example, one angular bin, 6◦−9◦, is presented in Fig. 4.12. For data the ToF can now be
recalculated to the expected energy losses in physical units (GeV) using the function
dE[GeV] = f (ToF[ns]) obtained before. As a result, the energy loss in QCD channels
versus the energy loss in GeV can be plotted for data. From this, a dE calibration
function dE[GeV] = f (dE[channel]) is deduced.

This has to be done as a function of the scattering angle, since the larger the angle is,
the longer is the path length of a particle in the detector layer. For every FWC element
and θ bin, the correlations between dE in QDC channels and dE in physical units are
fitted with a linear function, using a two-dimensional χ2 fit procedure based on the
TMinuit [106] ROOT class. An example fit is presented in the right panel of Fig. 4.12.
A linear interpolation between the θ bins has been applied to avoid discontinuities
at the bin edges. In the first step, the calibration function for every FWC element is
determined using the first runs from every part of the beamtime. This is the basis for
the following run-dependent correction.

Run-dependent Correction

The energy loss calibration is also affected by the observed drop in gain. The effect
is shown in the left panel of Fig. 4.13. A plot of ToF between FWC1 and FVH versus
the energy loss in the FWC1 is presented for a run from the end of the 2nd part of the
beamtime (run 44900) for the angular bin 3◦ − 6◦. Furthermore, the function describ-
ing the ToF(dE) dependence for the initial calibration runs is shown. One can see a
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FIGURE 4.12: Left: Dependence between the time-of-flight and the en-
ergy loss obtained from simulated 3He in the Forward Detector for the
angular bin 6◦ − 9◦. The curve shows the fitted 3rd order polynomial.
Right: Dependence between energy loss in QCD channels and GeV for
the 2nd element of the FWC1 and the angular bin 6◦ − 9◦ for data. The

linear calibration function fitted to this spectrum is marked in red.

significant displacement in the data from the last runs with respect to the data from
the first runs.

In order to correct this effect, for every run the ratio between the obtained energy
loss, and the reference energy loss that a particle should have based on its ToF (calcu-
lated from dE[GeV] = f (ToF[ns])) is checked. For a stable calibration, this ratio should
have a Gaussian distribution and should be centered at one. While this is true for
the first 15 runs from each part of the beamtime, used to determine the calibration
functions, for subsequent runs, the Gaussian distribution is shifted towards numbers
smaller than one. In the right panel of Fig. 4.13 this ratio is presented for a run from
the beginning and end of the 2nd part of the beamtime. A change of about 10% is
visible. The plot is done for the angular bin 3◦ − 6◦ for element 20 of FWC1. Track-
ing the position of the ratio for every run allows to determine a correction factor. In
Fig. 4.14 this correction factor is shown for element 20 of FWC1 and element 15 of
FWC1, for which the gain drop is the most significant. The correction factors studied
for all FWC elements are between 1/0.9−1/0.75 for the last runs of the beamtime part.
For applying this correction, a 3rd order polynomial has been fitted to the histograms.

Using the final calibration, the relative resolution of the energy loss is determined
as a function of the polar angle. It is presented in Fig. 4.15 for both parts of the beam-
time. The resolution defined as one standard deviation of the Gaussian fit is about
7%− 9%.
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part of the beamtime. In red the fitted 3rd order polynomial is drawn.

Both plots are done for the polar angle bin 6◦ − 9◦.
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FIGURE 4.15: Left: Resolution of the energy loss in the FWC1 as a func-
tion of the polar angle bin. Right: Resolution for the FWC2 as a function
of the polar angle bin. The resolutions for the 1st part of the beamtime
are presented in black, for the 2nd one, in red. One angular bin is 3◦

wide.

4.3.3 Kinetic Energy Reconstruction

In this section the procedure of the kinetic energy reconstruction of the outgoing 3He

and 4He in the Forward Detector is described. A particle passing through the detector
looses its energy in every active detector layer (i.e., FWC and FVH) but also in several
layers of insensitive material (i.e., exit window, detector wrapping foil, layers of FPC
and air). Therefore, the kinetic energy cannot be simply calculated as the sum of the
energy losses from FWC and FVH. Instead, it has to be reconstructed from the energy
loss pattern using a method based on Monte Carlo simulations.

The procedure uses the correlations of energy loss in the FWC and time-of-flight
versus kinetic energy, respectively, obtained from a Monte Carlo simulation. In a first
step, these dependencies are parametrized with analytical functions: a 4th order poly-
nomial for dE(Ekin), and the sum of an exponential function and a 3rd order poly-
nomial for ToF(Ekin). This has to be done separately for 4He and 3He, because for the
same initial kinetic energy the energy loss patterns for these particles are different.
There is also an angular dependence which has to be taken into account: the larger
the polar angle is, the longer the path is the particle travels through the detector, and
the larger the energy losses in the FWC and time-of-flight are. Therefore, the dE(Ekin)

and ToF(Ekin) parametrizations are done for different θ bins, each 3◦ wide. The simu-
lated sample of 4He and 3He used for this procedure covers the kinetic energy range of
the helium ejectiles from dd→ 4Heπ0 and dd→ 3Henπ0 at pd = 1.2 GeV/c. In Fig. 4.16
the parametrization of the deposited energy in the FWC layers and the time-of-flight
as a function of the initial kinetic energy is presented for 4He. The plots show the
angular range of 6◦ − 9◦.
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FIGURE 4.16: Parametrization of the deposited energy in the FWC lay-
ers (bottom row) and the time-of-flight (upper row) for 4He as a func-
tion of the initial kinetic energy. The fitted functions are shown in red.
In case of the energy loss a 4th order polynomial is fitted, in case of the
time-of-flight the sum of a 3rd order polynomial and an exponential
function. Plots are made for particles in the angular range of 6◦ − 9◦.

In order to calculate the kinetic energy, for every event a χ2 function is defined:

χ2 =
n∑
i=1

(dEmeasi − dE(Ekin)i)
2

σ2
i

+
m∑
j=1

(
ToFmeasj − ToF(Ekin)j

)2
σ2
j

, (4.5)

where n is the number of FD layers (= 2) and m refers to the number of time-of-flight
combinations (= 2). The numerator in Eq. 4.5 is the square of the difference between
the measured energy loss dEmeas or time-of-flight ToFmeas, and the expected values
of dE(Ekin) or ToF(Ekin) from the parametrization. In the denominator the squared
uncertainty of the energy deposit or time-of-flight is taken as a function of scattering
angle from Fig. 4.11 and 4.15. The value of Ekin for which the χ2 function has a global
minimum is taken as the most probable value of the initial kinetic energy. A linear
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interpolation between the angular bins is applied to avoid discontinuities between the
bins. Fig. 4.17 shows the χ2 distribution using the dd → 4Heπ0 and dd → 3Henπ0

simulations, and a data sample which contains mostly 3He. The plots are normalized
to the same height. To choose only events with a well reconstructed kinetic energy, a
loose cut on a minimal χ2 of 30 is applied later in the analysis.

In Fig. 4.18 the difference between the reconstructed Ekin and the true value from
the Monte Carlo simulation is presented for 3He from dd → 3Henπ0 and 4He from
dd → 4Heπ0. The simulated dE and ToF resolutions were tuned to match the experi-
mental ones (see Sec. 4.5). From the plots, one can see that the distribution is centered
at zero, with a root mean square of about 0.003 GeV, what can be taken as a error of
the kinetic energy reconstruction.
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FIGURE 4.17: χ2 distribution obtained from the Ekin reconstruction
procedure for data (black points) and simulations (red histogram) for
3He (left) and 4He (right). The data set consists mostly of 3He. In green,

the cut applied in the further analysis is shown.

4.3.4 Scintillator Electromagnetic Calorimeter

The Scintillator Electromagnetic Calorimeter is used to obtain the four-vectors of the
photons from the π0 decay. The SEC crystals are pre-calibrated using cosmic muons
and radiative sources [91]. A calibration is done by adjusting the invariant mass of two
photons to the π0 mass, for all two-photon combinations.

To get an enhanced sample of photons from the π0 decay, events with exactly two
neutral particles in the Central Detector are selected (see Sec. 4.2.2). For every pair of
photons the invariant mass Mγγ can be calculated having their energies E1, E2 and
the open angle θ12 between their momenta vectors:

Mγγ =
√

2E1E2 (1− cos θ12) . (4.6)
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FIGURE 4.18: Difference between the reconstructed Ekin and the true
value from the Monte Carlo simulation for 3He from dd→ 3Henπ0 (left)

and 4He from dd→ 4Heπ0 (right).

In the calibration procedure, this invariant mass Mγγ is assigned to the crystals with
the largest energy deposit in each cluster. The gain for these elements is then adjusted
based on the ratio between the invariant mass and the π0 mass mπ0 = 0.1349 GeV/c2.
As one crystal can be combined with all other crystals, the calibration of each crystal
is not independent from the others. Therefore, this procedure is repeated iteratively
until the invariant mass distributions for all SEC modules are centered at the mass
of π0, and the result is stable. The parameters for the SEC calibration are taken from
[107].

In the left panel of Fig. 4.19 the invariant mass of two photons is shown for about
1/3 of all runs. The green line represents the value of the π0 mass mπ0 . The invariant
mass as a function of the SEC element is presented in the right panel of Fig. 4.19. The
red line indicates mπ0 . One can see that Mγγ is well centered at the mass of neutral
pion. The SEC elements with high numbers correspond to the forward part of the Cen-
tral Detector, where the background is large and — due to kinematics — the number
of pions is lower.

4.4 Efficiency of the Forward Proportional Chamber

Besides the kinetic energy also the direction of a particle has to be determined. For
this the Forward Proportional Chamber is used. As mentioned earlier, the individual
planes are not 100% efficient. For reconstruction, only 3 out of four planes are required.
However, the overall detection efficiency has to be determined and corrected for.

This has been done in the following way. The efficiency of, for example, the plane
U (see Sec. 4.2.1), is a ratio of the number of reconstructed tracks with a cluster in
all four planes to the number of all reconstructed tracks without requiring plane U.
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FIGURE 4.19: Left: Invariant mass of two photons for about 1/3 of all
runs. The sample is dominated by π0 from the dd → 3Henπ0 reaction.
The green dashed line indicates the mass of neutral pion. Right: The
same but as a function of the element of the Scintillator Electromagnetic
Calorimeter. The SEC elements with high numbers correspond to the
forward part of the Central Detector, where the background is large
and — due to kinematics — the number of pions is lower. The red line

indicates the mass of π0.

The efficiencies for the other FPC planes are calculated similarly. The efficiency plots
are shown in Fig. 4.20. On the x-axis the position of the cluster along the axis per-
pendicular to the tubes in the considered module is presented. Zero corresponds to
the position at the beam pipe. One can see that for the first two planes the efficiency is
about 96%, and it drops to about 90% in the last two. The dip around zero corresponds
to the beam pipe.

The overall efficiency for three out of four planes is shown in Fig. 4.24 belonging
to the next section as a function of the x and y coordinates of the track. The black
circle corresponds to the maximum angle of the FPC acceptance. The overall efficiency
within this acceptance region is about 97%.

4.5 Matching Simulations and Data

While the Monte Carlo package is able to simulate energy losses and other interactions
of particles with matter, any threshold effects by the scintillator processes, the light
propagation, or the readout electronics are not included. This has to be added in the
analysis of the Monte Carlo output. Matching the resolutions in simulation and data is
achieved by an additional smearing of the simulated observables. For the time readout
and the energy loss resolutions this is discussed in Sec. 4.5.1, 4.5.2, 4.5.3. The efficiency
of the FPC has also to be matched between the simulations and data. This is shown in
Sec. 4.5.4. In addition, as a last adjustment, a cut on the kinetic energy distribution of
3He and 4He is introduced for data (see Sec. 4.5.5).
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FIGURE 4.20: Efficiency of the FPC planes used for the tracking in the
Forward Detector as a function of the position of the cluster along the
axis perpendicular to the straw tubes. Plots are made using detected

3He particles.

A mismatch between the simulated and experimental energy resolution of dE and
ToF can affect the selection of 3He and 4He candidates and, as a result, the acceptance
of the simulated reactions. In addition, for the kinematic fit described in Sec. 5.2, a
precise parameterization of the resolutions is essential, which can be obtained only
from simulations.

4.5.1 Resolution of the Time Readout

The resolution of the simulated time readout from FWC and FVH is adjusted on the hit
level. The time readout from every hit in the layer is smeared by adding a value ran-
domly taken from a Gaussian distribution with the mean equal to 0 and the standard
deviation which has to be tuned. To obtain the width of the Gaussian distributions, a
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sample of 3He from the dd → 3Hen reaction has been used. From data, one can ob-
tain the width of three different time-of-flight distributions: between FWC1 and FVH,
between FWC2 and FVH, and between FWC1 and FWC2. These resolutions are deter-
mined as one standard deviation of the Gaussian function fitted to the 3He ToF peak
from data. The ToF resolution σ2

ToF is linked to the resolution of the individual time
readout σ2

t from every separate layer:
σ2

ToF(FWC1-FWC2) = σ2
t(FWC1) + σ2

t(FWC2)

σ2
ToF(FWC1-FVH) = σ2

t(FWC1) + σ2
t(FVH)

σ2
ToF(FWC2-FVH) = σ2

t(FWC2) + σ2
t(FVH)

. (4.7)

From this set of equations the individual resolution for every layer can be obtained.
As the time readout depends on the polar angle — due to the different time a par-
ticle travels through the detector, different light collection efficiencies, and different
electronics’ response — the smearing procedure has to be angular dependent using a
linear interpolation between certain angular bins. In the left panel of Fig. 4.21 the val-
ues obtained from Eq. 4.7 are presented. The width of the Gaussian smearing function
is obtained as the square root of the difference of the squared time resolution from
data and simulations. The comparison between the ToF(FWC1-FVH) resolution for
data and for simulation after applying the smearing is shown in the right panel of
Fig. 4.21. The agreement for the ToF(FWC2-FVH) resolution is similar.

4.5.2 Energy Losses in the FWC

The adjustment of the resolution of the simulated energy losses is done similarly to
the ToF. The correction factor is randomly taken from a Gaussian distribution with a
mean value equal to 1 and a standard deviation which has to be tuned. The relative
resolution of the energy losses is determined in data and simulations using 3He from
the dd → 3Hen reaction. The square root of the difference between the squared reso-
lution of the data and the squared resolution of the simulation is taken as the width of
the smearing distribution. The comparison of the resolutions in data and simulation
is presented in Fig. 4.22 for FWC1 and FWC2 for the 1st part of the beamtime. For
the 2nd part of the beamtime the agreement is similar. An angular dependence is also
included in the smearing process.

4.5.3 Energy Losses in SEC

The simulated energy deposit of the photons in the SEC have to be smeared to describe
correctly the width of the invariant mass distribution of the two photons from the π0

decay. For this, a sample with one FD track and two CD neutral clusters matching
the dd → 3Henπ0 reaction hypothesis was chosen according to the selection criteria
described in Sec. 5.2.
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FIGURE 4.21: Left: Time readout resolutions for FVH (blue), FWC1
(black), and FWC2 (red) as a function of the polar angle bin for data.
Right: Comparison of the resolution of ToF(FWC1-FVH) for data
(black) and for simulation (red) after applying the smearing correction
as a function of the angular bin. Plots are done for all runs from the 1st

part of the beamtime using 3He from the dd→ 3Hen reaction.
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FIGURE 4.22: Comparison of the resolution of the energy losses from
data (black) and simulations (red) as a function of polar angle bins. Left:
Comparison for FWC1. Right: Comparison for FWC2. One angular bin
is 3◦ wide. Plots are done for all runs from the 1st part of the beamtime.

In the case of the SEC, two individual Gaussian smearings are used: a constant
relative smearing and an energy-dependent smearing which refers to the statistical
fluctuations of the conversion of scintillation light to photoelectrons in the photomul-
tiplier. Tunning these two contributions allows to change the response of the SEC
and, thus, the width of the invariant mass spectra. In addition, a correction factor for
shower losses is applied to match the position of the invariant mass peak. The result
of the tuning is given in Fig. 4.23 where the invariant mass of two photons is presented
for data and simulation of the dd→ 3Henπ0 reaction.
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FIGURE 4.23: Left: Invariant mass of two photons for a sample with
one FD track and two CD neutral clusters matching the dd → 3Henπ0

reaction hypothesis from the kinematic fit in the best way. Right: In-
variant mass of two photons for the dd → 3Henπ0 reaction simulation.
Both spectra are fitted with the sum of a Novosybirsk function and a 4th
order polynomial shown in red. The background estimation is shown
with a blue line. The green line indicates the mass of π0. Plots are made

for the 1st part of the beamtime.

The peak is fitted with a Novosybirsk function and a 4th order polynomial to de-
scribe the background. The Novosybirsk function has the following form:

f(x) = A · exp

[
−1

2

(
ln qx
d

)2

+ d2

]
, (4.8)

where

qx = 1 +
x− x0

σ
· sinh(d

√
ln 4)√

ln 4
. (4.9)

Here A is the amplitude of the signal, x0 is the peak position, σ is FWHM/2.35 and d

is the asymmetry parameter. This function takes into account the tail towards lower
invariant masses resulting from the energy response of the calorimeter [108]. The ob-
tained parameters for data and simulation are presented in Tab. 4.1. There is a good
agreement for the peak position and width. However, there is a difference in the asym-
metry parameters. The matching of the shape of the spectra is significantly improved
after the four-vectors obtained in the kinematic fit are used and the cut on the cumu-
lative probability distribution is applied. Using the obtained adjustment parameters,
the final missing mass spectra for the dd → 4HeX reaction (see Sec. 5.4) in the region
of the π0 peak are well described.
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TABLE 4.1: Comparison of the fit parameters of Mγγ for data and sim-
ulation.

Parameter Data Simulation

1st part of the beamtime
Peak position x0 134.64(6) MeV 134.71(9) MeV
FWHM 35.77(2) MeV 36.18(1) MeV
Assym. param. d −0.249(6) −0.061(2)

2nd part of the beamtime
Peak position x0 134.51(6) MeV 134.45(8) MeV
FWHM 36.77(2) MeV 36.25(1) MeV
Assym. param. d −0.247(6) −0.061(2)

4.5.4 FPC Efficiency

In Sec. 4.2.1 the track reconstruction in the Forward Detector has been described.
The algorithm requires the matching of clusters from at least three FPC planes out
of four (U, V, X, Y). The efficiency of every module has been determined for data (see
Fig. 4.20). However, what matters in the tracking procedure, is the overall probability
for three out of four planes. In the upper row of Fig. 4.24 this probability is shown
for data and simulation for the dd → 3Henπ0 reaction as a function of the x and y
coordinates of the track. As they differ slightly, a correction map has been introduced,
dividing the probability for data by the probability for simulation. This is shown in the
lower row of Fig. 4.24. The black circle corresponds to the maximum angle of the FD
acceptance θ = 18◦. A zoomed correction map is shown in the right bottom panel to
visualize better the asymmetry. The correction factor has been applied to all simulated
forward going particles in the analysis.

4.5.5 Comparison of Kinetic Energy

When comparing the ToF information for the data and simulation, the data sample
consists of more events with higher ToF than the simulation. Fig. 4.25 shows the
ToF(FWC1-FVH) for 3He from dd → 3Henπ0 for the scattering angle between 3◦ − 6◦.
The selection (described in Sec. 5.2) is based on a cut on the complementary cumu-
lative probability distribution for the kinematic fit. One can see that the tail for data
(black markers) extends beyond the simulation (red line). The difference may orig-
inate, for example, in a slightly too thick detector wrapping in the simulations or a
mismatch in the air temperature. The effect is not big (note the logarithmic scale),
however, a further cut on the kinetic energy is applied to match data and simulation.
It is defined as presented in the right panel of Fig. 4.26. For comparison, the same
spectrum is shown for the selected data in the right left. The time-of-flight of 3He after
applying the cut is presented in Fig. 4.25 with the blue points. The cut on the 3He

kinetic energy is applied only for the analysis of the dd → 3Henπ0 reaction, i.e., the
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FIGURE 4.24: FPC efficiency for data and simulation. In the upper row
the probability that three out of four FPC planes fired is presented for
simulations and data as a function of the x and y coordinates of the
track. The obtained correction factors for simulations are presented in
the lower row. The black circle corresponds to the maximum angle of
the FPC acceptance θ = 18◦. The right bottom plot is zoomed to see the

asymmetry of the correction.

luminosity calculation. It is not used in the analysis optimized for the signal reaction
selection and its cross section determination in order not to remove good candidates
for the dd→ 4Heπ0 events.

The cut on the 4He kinetic energy is applied separately. This cut is defined using a
simulation of the dd→ 4Heπ0 reaction. In Fig. 4.27 one can see the distribution of Ekin
vs θ for the simulated 4He from the dd → 4Heπ0 reaction and for data after applying
the two-dimensional cut on the cumulative probability distribution for the kinematic
fit (see Sec. 5.3).
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FIGURE 4.25: Time-of-flight for 3He from the dd→ 3Henπ0 reaction for
data before the Ekin cut defined in Fig. 4.26 (black) and after this cut
(blue). The simulated response is drawn with a red line. The plot is

made for a polar angle between 3◦ and 6◦.

FIGURE 4.26: Kinetic energy versus polar angle of 3He. Left: Data with
the applied Ekin cut indicated with a red line. The selection of the data
sample was optimized for the dd → 3Henπ0 reaction. Right: The same
for the simulation of the dd → 3Henπ0 reaction. The cut for Ekin is

defined with a red line.
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FIGURE 4.27: Kinetic energy versus polar angle of 4He. Left: Data with
the applied Ekin cut indicated with a red line. The selection of the data
sample was optimized for the dd → 4Heπ0 reaction. Right: The same
for the simulation of the dd → 4Heπ0 reaction. The cut for Ekin is de-

fined with a red line.
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Chapter 5

Selection of Signal Events

The general strategy for the analysis of the dd→ 4Heπ0 reaction is the following. First,
the dd → 4Heπ0 event candidates are selected using a chain of cuts and a kinematic
fit. This is described in this chapter. Afterwards, the number of signal events as a
function of the scattering angle θ∗ of the outgoing π0 in the c.m. coordinate system is
obtained by a missing mass analysis. The whole analysis is performed separately for
the 1st and the 2nd part of the beamtime. Finally, the results are combined.

For absolute normalization the integrated luminosity is determined using the dd→
3Henπ0 reaction, which is described in Chapter 6. In the next step of the analysis,
presented in Chapter 7, the acceptance correction is performed. Since the angular
distribution of the dd → 4Heπ0 reaction is not known a priori, first a 2-body phase
space generator is used. The extracted differential cross section is then used as input
in a new event generator, and the analysis is repeated.

In this chapter, it is described how to extract events from the signal reaction, based on
the reconstructed four-vectors of the π0 candidates in the Central Detector and the 4He

and 3He particles in the Forward Detector. Besides the signal reaction dd → 4Heπ0,
the other main channels are: dd→ pndπ0, dd→ pnpnπ0, dd→ tpπ0, dd→ 4Heγγ, and
dd→ 3Henπ0. The first three reactions have a neutral pion in the final state, but no 3He

or 4He. Therefore, they can be separated easily from the other three reactions either
in the analysis, or already on the trigger level by requiring a high energy deposit in
the FWC which cuts events with protons or deuterons in the final state (see Sec. 3.2.5).
More challenging is the suppression of the dd → 3Henπ0 reaction, since 3He and 4He

have similar energy losses in the FWC and time-of-flights. Furthermore, the cross
section of the dd → 3Henπ0 reaction is about five orders of magnitude larger than
the signal cross section. The double radiative capture dd → 4Heγγ is an irreducible
physics background.

In a first step, a preselection with basic cuts is performed to reduce the size of the
data files (see Sec. 5.1). Then, a kinematic fit is performed. A general description of
this method is presented in Sec. 5.2. In a next step, the final selection cuts are defined
and optimized in Sec. 5.3.
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The final signal extraction is done using the missing mass method. The mass M of
a missing particle X in the reaction dd→ 4HeX can be written as:

M =
√

(Ein − E4He)
2 − (~pin − ~p4He)

2 , (5.1)

where Ein and ~pin are the sum of the deuteron energies and momenta from beam and
target. E4He and ~p4He are the energy and momentum of the outgoing 4He particle. For
events from the signal reaction, the missing mass should correspond to the π0 mass.
A fit of the missing mass spectra with all known contributions is performed with the
aim of extracting the number of signal events. This is described in Sec. 5.4.

5.1 Preselection

In Fig. 5.1 the status of the data before the selection of the dd → 4Heπ0 events is
presented. The calibrated energy loss versus time-of-flight is shown for the angular
range of 6◦− 9◦ for the first 15 runs of the beamtime. The reactions containing 3He are
marked. The 4He from the dd → 4Heπ0 reaction events should be located above the
3He from the dd→ 3Henπ0 reaction.
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FIGURE 5.1: Calibrated energy losses versus time-of-flight. The islands
of the three reactions containing 3He in the final state are visible, namely
dd → 3Hen, dd → 3Henγ, and dd → 3Henπ0. The 4He from the dd →
4Heπ0 reaction events should be located above the 3He from the dd →
3Henπ0 reaction. The plot is made for θ between 6◦ − 9◦ for the first 15

runs of the beamtime.

To enhance the fraction of signal valid events and to decrease the time of the anal-
ysis, an event preselection is performed. At least two neutral clusters in the Central
Detector are required, together with the condition of at least one track in the Forward
Detector. The track reconstruction conditions are weaker than described in Sec. 4.2,
and are based only on a geometrical overlap between the FWC and the FVH.
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In addition, for every pair of neutral clusters in the CD a minimal opening angle of
30◦ between the clusters is required to suppress satellite clusters, where one particle
generates more than one cluster. Furthermore, more refined off-line cuts on the energy
losses in the FWC are applied: for every element of FWC1 and FWC2 the energy losses
of 3He from the dd→ 3Hen reaction are fitted with a Gaussian function. The cut value
is taken as the peak position minus five standard deviations, for every angular bin, 3◦

wide. The final cut for the element is taken as the lowest value from all the six angular
bins. The cuts are defined using the last 50 runs from every part of the beamtime, when
the effect from the dropping gain of the photomultipliers was the largest. In Fig. 5.2
the energy losses in every FWC1 element are presented together with the applied cuts
for the 2nd part of the beamtime.

All conditions of the preselection are presented in Tab. 5.1.

TABLE 5.1: Preselection conditions.

Central Detector

Type of clusters neutral
Number of clusters ≥ 2
Total energy in cluster ≥ 20 MeV
Time difference between clusters ≤ 20s
Opening angle between clusters ≥ 30◦

Forward Detector

Number of tracks ≥ 1
dE in FWC see Fig. 5.2
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angles. The plot is made for the last 50 runs from the 2nd part of the

beamtime.
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5.2 Kinematic Fit

The purpose of the kinematic fit is to improve the precision of the measured kinematic
variables (i.e., the kinetic energy Ekin, polar θ and azimuthal φ angles) and to serve
as a selection criterion for background reduction. The idea is to vary the measured
variables within an uncertainty range until certain kinematic constraints are fulfilled.
The main constraint is the overall momentum and energy conservation. In addition,
a constraint on the invariant mass of two photons from the π0 decay can be applied.
This constraint is optional. In case of the analysis of the signal reaction, it is not used,
in order not to artificially enhance the peak from π0 events.

The kinematic fit is a least square fit which minimizes a χ2 function:

χ2 =

n∑
i=1

(
vmeas
i − vfit

i

σi

)2

, (5.2)

where vmeas
i are the measured kinematic variables, σi are the uncertainties of this vari-

ables, and vfit
i are the fit parameters, which are found by minimizing the χ2 function

with constraints such as the energy and momentum conservation. The minimization
is based on the Lagrange multiplier technique [70].

In the analysis, three different kinematic fits are performed.

1. The dd → 4Heγγ hypothesis is tested to improve the description of the signal
reaction and separate it from the main background. This hypothesis describes
both the double radiative capture and the signal. No constraint on the invariant
mass of the two photons is used, to avoid artificial enhancement of the π0 peak.

2. The hypothesis of the dd→ 3Henγγ reaction is fitted to identify the contribution
from the dd→ 3Henπ0 reaction and to separate it from the signal. No constraint
on the two photon invariant mass is used.

3. Finally, also the dd → 3Henγγ hypothesis with the constraint on the π0 mass
is tested. It is used for luminosity determination, which is based on the dd →
3Henπ0 reaction.

In all cases shown above, the variables linked to beam and target are fixed in the
fit. As an output from the kinematic fit, the minimal value of χ2

min is given. The as-
sumption of a χ2 fit is that the uncertainties of all kinematic variables have a Gaussian
shape. In this case, the distribution of χ2

min for a true hypothesis should match a gen-
uine χ2 distribution for a particular number of degrees of freedom. Instead of using
the χ2

min distribution, also the complementary cumulative distribution can be used. In
this thesis, following the nomenclature used in [2], it is called p-value. The p-value is
the probability that, under the assumption of the null hypothesis, a χ2 value equal or
larger than the observed one was obtained:

p(N,χ2
min) =

1

2
N
2 Γ
(
N
2

) ∫ ∞
χ2
min

e−
t
2
t
N
2 −1

dt . (5.3)
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Γ is the Gamma function, N is the number of degrees of freedom. For the true hypoth-
esis, the p-value has a uniform distribution between 0 and 1. The number of degrees
of freedom for the fitted hypothesis is equal to:

Nhyp = 4 + nc − u . (5.4)

The "4" is related to the overall energy and momentum conservation. The nc stands
for the number of additional constraints and u is a number of unmeasured variables.
In case of the dd→ 4Heγγ hypothesis, one has four degrees of freedom.

Ndd→4Heγγ = 4 + 0− 0 = 4 . (5.5)

For the dd → 3Henγγ reaction with no Mγγ constraint, the number of degrees of
freedom is equal to one:

Ndd→3Henγγ = 4 + 0− 3 = 1 . (5.6)

The number of unmeasured variables is equal to 3 because the four-vector of the neu-
tron is not measured and a constraint that the mass of the unmeasured particle is equal
to the neutron mass is used (u = 4− 1 = 3). For the hypothesis of dd→ 3Henγγ with
the constraint on the mass of neutral pion, we have nc = 1, therefore:

Ndd→3Henπ0 = 4 + 1− 3 = 2 . (5.7)

5.2.1 Error Parametrization

To get a proper result from the fit, the measurement errors of the variables have to
be determined. In our case, the uncertainties of φ, θ and Ekin have to be obtained for
all types of particles in the final state of the tested reactions. The error parametriza-
tion is based on simulations (after the simulation output has been matched to data,
see Sec. 4.5). The reconstructed values of the kinematic variables from the detector
simulation are compared with the true values from the generator. For each event the
following differences are calculated:

∆Ekin = Etruekin − Ereckin ,

∆θ = θtrue − θrec ,

∆φ = φtrue − φrec .

(5.8)

All distributions from Eq. 5.8 are fitted with a Gaussian function. The uncertainty
is taken as the standard deviation from the fit. The parametrization is obtained as
a function of the kinetic energy Ekin and the θ angle, since all calculated errors may
depend on these variables. There is no dependence on the azimuthal angle φ because
of the rotational symmetry of WASA.
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For the parametrization, 3He and 4He tracks have been generated in a polar angular
range between 2◦ and 18◦, and in a kinetic energy range of 0.15−0.22 GeV for 4He and
0.13 − 0.22 GeV for 3He. For reach 0.01 GeV wide Ekin bin and each 1◦ wide θ bin,
σEkin , σθ and σφ have been obtained. For the photons the parametrization is obtained
in 0.01 GeV bins of Ekin in a range of 0.02− 0.2 GeV and in a θ range of 20◦ − 170◦ for
10◦ wide bins.

In Fig. 5.4 the error parametrization for 4He is presented, the parametrization for
3He is shown in Fig. 5.3, and for γ in Fig. 5.5. In the analysis, uncertainties for the fit
are taken from these two-dimensional histograms.
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FIGURE 5.3: The Ekin, θ and φ error parametrization for 3He.

5.2.2 Results

The fit has been performed on the preselected data set. If more than one track can-
didate in the FD is registered, or more than two photon candidates in the CD, all
possible combinations are separately fitted. Finally, the combination with the smallest
χ2 is taken.

From the kinematic fit new corrected four-vectors are obtained. They fulfill the
overall momentum and energy conservation, which has been set as a fit constraint.
The minimal χ2 value provides the information on how much the measured values are
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FIGURE 5.4: The Ekin, θ and φ error parametrization for 4He.

corrected relative to the uncertainties. The performance of the fit can be also described
using the p-value defined in Eq. 5.3.

The plots representing the χ2 and p-value for all tested hypotheses are shown: for
dd→ 3Henγγ in Fig. 5.6, for dd→ 3Henπ0 in Fig. 5.7, and for dd→ 4Heγγ in Fig. 5.8.
The χ2 distributions are normalized to the same height for the data and simulations.
The p-value histograms are normalized to the same height at a p-value of 0.3. One
can see that the discrepancy between data and simulation is largest in Fig. 5.8. This is
because the data sample is still dominated by the dd→ 3Henπ0 reaction by four orders
of magnitude. For the other two histograms, the agreement gets worse for higher χ2

values, because the measurement uncertainties do not follow a Gaussian distribution,
but have longer tails. Therefore, the region of high χ2 values and low p-values are
more populated. Nevertheless, the p-value of the dd → 3Henγγ hypothesis with and
without mass constraint is flat in the region of 0.1 − 1 (note the logarithmic scale). In
the Fig. 5.7 the cut used for the luminosity determination is marked as a green dashed
line.

The fitted kinematic variables are used in the further steps of the analysis. In addi-
tion, cuts on the p-value distributions are defined to reduce the amount of background
for the dd→ 4Heπ0 reaction (Sec. 5.3) and for the luminosity determination (Sec. 6).
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FIGURE 5.5: The Ekin, θ and φ error parametrization for γ.
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FIGURE 5.6: Left: χ2 distribution for the kinematic fit of the dd →
3Henγγ hypothesis. Right: p-value distribution for the kinematic fit
of the dd → 3Henγγ hypothesis. In both plots the data (black points)
are dominated by the dd → 3Henπ0 reaction. The simulation (red line)

is performed for the dd→ 3Henπ0 reaction.
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FIGURE 5.8: Left: χ2 distribution for the kinematic fit of the dd →
4Heγγ hypothesis. Right: p-value distribution for the kinematic fit of
the dd → 4Heγγ hypothesis. The data (black points) are dominated by
the dd → 3Henπ0 reaction. The simulation (red line) is performed for

the dd→ 4Heπ0 reaction.

5.3 Main Cuts of the Signal Selection

In this section the main cuts for the selection of the signal reaction are presented.
For every event the dd → 4Heγγ hypothesis has been fitted. If there is more than

one track in the FD or more than two neutral clusters in the CD, the combination with
the smallest χ2 is chosen. For this combination, the dd → 3Henγγ hypothesis is also
fitted. If in case of the dd → 3Henγγ hypothesis the fit does not converge, the event
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is anyhow saved, setting the p-value to zero for this hypothesis. For the sample with
a fitted dd → 4Heγγ hypothesis, a loose cut on the χ2 distribution from the kinetic
energy reconstruction of 4He is applied: χ2 < 30 (see Fig. 4.17). In addition, θ and
Ekin of 3He and 4He from the simulations of the signal and background reactions have
also been compared (see Fig. 5.9). In the analysis a cut on θ < 9◦ is applied. A cut on
Ekin has been tested, but was later discarded, as it did not improve the background
reduction with respect to the cut on the p-value from the kinematic fit.
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4Heπ0 (red) reaction and 3He from the simulation of the dd → 3Henπ0

reaction (black) for the angular bin 6◦ − 9◦. Right: Polar angle of the
same particles. The cut applied in the analysis is marked with a green

dashed line. Plots are normalized to the same height.

A significant reduction of the dd → 3Henπ0 background is only possible using a
cut on the two-dimensional p-value distribution from the kinematic fits. In Fig. 5.10
the p-value for the dd → 4Heγγ hypothesis versus the p-value for the dd → 3Henγγ
hypothesis is plotted for data and simulations of the dd → 4Heπ0 and dd → 3Henπ0

reactions. The dd → 4Heπ0 events form a uniform distribution for the dd → 4Heγγ
hypothesis are located in the low p-value region for the dd → 3Henγγ hypothesis.
The events from the dd → 4Heγγ reaction have the same signature. The situation
is opposite for the dd → 3Henπ0 reaction. The final cut is based on Monte Carlo
simulations and is indicated with a red line.

For optimization purposes, the cut has been varied in the horizontal and vertical
direction, as it is shown in the bottom row of Fig. 5.10. For every combination of
a horizontal and vertical cut the missing mass for the dd → 4HeX reaction is fitted
with the Monte Carlo templates consisting of the signal and background contribu-
tions, i.e., dd → 4Heπ0, dd → 3Henπ0 and dd → 4Heγγ. This fit is described in detail
in the following Sec. 5.4. The missing mass plots have been obtained using the parti-
cles four-vectors from the kinematic fit with the dd → 4Heγγ hypothesis. For every
cut definition, the statistical significance R of the signal is calculated in the region
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FIGURE 5.10: Two-dimensional distributions of the p-value from the
kinematic fits of the dd→ 4Heγγ hypothesis and the dd→ 3Henγγ hy-
pothesis. In the upper row, the distributions for the dd → 4Heπ0 and
dd → 3Henπ0 simulations are presented. In the bottom row, the distri-
butions for data are plotted. The final two-dimensional cut applied in
the analysis is presented with a red line. The cut variations in the hor-
izontal and vertical directions used in the studies of systematic effects

are marked with blue lines.

of the π0 peak 0.11− 0.15 GeV/c2 using the formula:

R =
S√
S +B

, (5.9)

where S is the number of signal events and B is the number of background events.
In Fig. 5.11 the significance is shown for a variation of the cut for the 1st and the 2nd
part of the beamtime. The final cut maximizes the significance for both parts of the
beamtime. The varied vertical cuts are numbered from 0 to 20 from the most restrictive
to the loosest one and the varied horizontal cuts are numbered from 0 to 20 from the
loosest to the most restrictive one (see Fig. 5.10).
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FIGURE 5.11: Statistical significance of the π0 mass peak in the spectra
of missing mass for the dd → 4HeX reaction for different p-value cuts.
The variation of the cut is presented in Fig. 5.10. Left: Distribution for
the 1st part of the beamtime. Right: Distribution for the 2nd part of
the beamtime. The black dots indicate the significances for the final cut

which is shown in Fig. 5.10 with a red line.

5.4 Missing Mass Fit

The four-momenta obtained from the kinematic fit with the dd → 4Heγγ hypothesis
are used to calculate the missing mass for the reaction dd→ 4HeX . In this section, the
missing mass spectra are fitted with Monte Carlo templates to obtain the number of
the registered signal events.

To determine the angular distribution, the spectra are obtained as a function of the
scattering angle θ∗ of the outgoing particle X in the c.m. coordinate system. The data
are divided into four angular bins within the detector acceptance (−0.9 ≤ cos θ∗ ≤ 0.4):

• bin 1: −0.9 ≤ cos θ∗ < −0.6,

• bin 2: −0.6 ≤ cos θ∗ < −0.3,

• bin 3: −0.3 ≤ cos θ∗ < 0,

• bin 4: 0 ≤ cos θ∗ ≤ 0.4.

The widths of bins have been chosen to have a similar number of events and a
visible π0 mass peak in each bin. In Fig. 5.12 cos θ∗ versus the missing mass is shown;
the angular bins are marked with red lines.

Fig. 5.13 shows the missing mass spectra for the whole cos θ∗ region of −0.9 ≤
cos θ∗0.4. The π0 mass peak is visible on top of a broad background. The spectra
are fitted with a linear combination of the simulated signal reaction and background
originating from dd → 3Henπ0 and dd → 4Heγγ. Other sources of background have
been already eliminated by the trigger requirements (Sec. 3.2.5), the preselection cuts
(Sec. 5.1), and the dd→ 4Heπ0 extraction cuts (Sec. 5.3).
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FIGURE 5.12: cos θ∗ of outgoing particle X in the c.m. coordinate sys-
tem versus the missing mass for dd → 4HeX . Four angular bins are
defined. The plot is made for all data from both parts of the beamtime.

To obtain the individual templates, high-statistics samples have been generated
from Monte Carlo simulations, i.e., 108 dd → 3Henπ0 events, 2.5 · 106 dd → 4Heγγ
events, and 2.5 · 106 dd → 4Heπ0 events. For each cos θ∗ bin, an independent fit of
the Monte Carlo templates to the data is performed, with the constraint that the sum
of fitted templates have to fit the missing mass spectra for all angular bins together
(Fig. 5.13). The fit has been performed separately for the 1st and the 2nd part of
the beamtime. The missing mass distribution for every angular bin is presented in
Fig. 5.14 and Fig. 5.15. In order to determine the number of signal events, the back-
ground contributions have been subtracted in the peak region 0.11− 0.15 GeV/c2.
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FIGURE 5.13: Missing mass for the dd → 4HeX reaction for −0.9 ≤
cos θ∗ ≤ 0.4 for the 1st (left) and the 2nd (right) part of the beamtime.
The spectra are fitted with a linear combination of the simulated signal
and background reactions: dd→ 4Heγγ (green line), plus dd→ 3Henπ0

(blue line), plus dd → 4Heπ0 generated with 2-body phase space (red
line).
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FIGURE 5.14: Missing mass for the dd→ 4HeX reaction for every cos θ∗

bin for the 1st part of the beamtime. The fitted Monte Carlo template is
the same as presented in Fig. 5.13.
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FIGURE 5.15: Missing mass for the dd→ 4HeX reaction for every cos θ∗

bin for the 2nd part of the beamtime. The fitted Monte Carlo template
is the same as presented in Fig. 5.13.
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Chapter 6

Luminosity Determination

This chapter shows how the integrated luminosity has been determined. From the
measurement of a reaction with a known cross section σ, which was registered to-
gether with the signal during the same data collection period, one can obtain the inte-
grated luminosity L in the following way:

L =
N

ε · σ
, (6.1)

where ε describes acceptance times cut efficiencies, and N stands for the number of
events.

In this thesis, the integrated luminosity has been calculated from the dd→ 3Henπ0

reaction which was measured previously with WASA at pd = 1.2 GeV/c [64]. The
analysis of this reaction is presented in Sec. 6.1. Systematical effects are discussed in
Sec. 6.2.

6.1 Analysis of the dd→ 3Henπ0 Reaction

The dd → 3Henπ0 reaction was included in the main trigger described in Sec. 3.2.5.
The dropping gain of the photomultipliers did not cause any loss in efficiency for this
reaction because the effective trigger thresholds stayed far below the energy losses of
the 3He originating from it.

The luminosity has been determined separately for the 1st and the 2nd part of the
beamtime. For the preselected data, a kinematic fit has been applied for the dd →
3Henπ0 hypothesis. If there was more than one good track in the FD and more than
two photon candidates, the combination with the smallest χ2 was chosen. In addition,
two more requirements have been defined:

• The χ2 of theEkin reconstruction has to be< 30. It is a loose cut to remove events
with badly reconstructed Ekin (see Fig. 4.17).

• The p-value from the kinematic fit should be > 0.5 (see Fig. 5.7). This value
has been determined after checking the influence of the probability cut on the
luminosity (see Sec. 6.2). It is possible to use such a very tight cut, due to the
large statistics.
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The reaction is fully described by four independent variables based on the Jacobi
momenta ~q and ~p. ~q is the π0 momentum in the c.m. system, while ~p is the momentum
of 3He in the rest frame of the 3He− n subsystem. These variables are:

• cos θp - the cosine of the polar angle between the beam direction and ~p in the
overall c.m. system.

• cos θq - the cosine of the polar angle between the beam direction and ~q in the
overall c.m. system.

• M3Hen - the invariant mass of the 3He-neutron system.

• ϕ - the angle between the projections of ~q and ~p onto the x-y plane.

In Fig. 6.1 the kinematic spectra with the integral normalized to 1 are presented for
data and simulation for the 1st part of the beamtime. The agreement between data
and simulation is similar as in [63, 64]. The small discrepancy for the invariant mass
of 3Hen can be linked to effects which are not implemented in the model as, e.g., final-
state interaction or the presence of resonances. The agreement for the spectra obtained
for the 2nd part of the beamtime is similar.

Since the agreement between data and model was shown to be good, the ac-
ceptance and cut efficiency is calculated using the simulation. 108 events of the
dd → 3Henπ0 reaction were generated. The number of events, in acceptance of the
detector, which survived the selection cuts has been divided by the number of gener-
ated events. The luminosity is obtained from Eq. 6.1 using the total cross section of
dd→ 3Henπ0: σtot = (2.89± 0.01(stat.)± 0.06(syst.)± 0.29(norm.)) µb. In Tab. 6.1 the
results for the 1st and the 2nd part of the beamtime are presented. The error shown in
the table stems from the error on the dd → 3Henπ0 cross section. The statistical error
is negligible (about 0.03%).

TABLE 6.1: Results of the luminosity calculation for the 1st and the 2nd
part of the beamtime.

1st part 2nd part

Number of dd→ 3Henπ0 ev. 5545240 6777114
Acceptance · Cut efficiency 12% 12%
Integrated luminosity (16.1± 1.6(norm.)) pb−1 (19.6± 2.0(norm.)) pb−1

6.2 Systematic Effects

In order to study systematic effects, the cut on the p-value of the kinematic fit and on
the χ2 distribution from the kinetic energy reconstruction are varied in a wide range:
0.05 − 0.8 for the p-value cut, and 20 − 110 for the χ2 cut. Following the method
described in [109], the difference between the final value of the integrated luminosity
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FIGURE 6.1: Kinematic variables cosθp , cosθq , M 3Hen, ϕ describing the
dd → 3Henπ0 reaction (for the definition see text). The black point
represents data, the red histograms present the simulation. The plots

show data for the 1st part of the beamtime.

and the values with varied cuts is checked. It has to be decided if this difference is
significant, but what does this mean?

Let us assume that the value ar is measured with statistical uncertainty σr. This
is our reference value. The selection cut in the analysis is varied to make it tighter,
and the value av ± σv is obtained for a subset of the reference data. It is also possible
that the cut is looser, i.e., that the reference result comes from a subset of the data with
the varied cut. Now, the difference ∆ = |ar − av| is considered. It has to be checked
whether this difference can be explained by statistics only.

It can be shown (see [109]) that the statistical error on ∆ is σ2
∆ =

∣∣σ2
v − σ2

r

∣∣. Com-
paring the difference ∆ to σ∆, one can judge how significant it is in comparison to its
statistical uncertainty. Here, the following criterion has been chosen: if the ratio of
∆/σ∆ is larger than 3, then the cut is subject to a systematic uncertainty.

The ratio between ∆ and σ∆ has been checked for every variation of the cut. All
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differences ∆ turned out to be significant. This is linked to the fact that the statisti-
cal uncertainty of the calculated luminosity is already very small. Therefore, all cuts
should be considered as the origin of a systematic error. In Fig. 6.2 the difference
between the reference luminosity Lr and the luminosity Lv for different cuts on the
p-value from the kinematic fit and the value of χ2 of kinetic energy reconstruction
is shown. The behaviour of this difference is similar for both parts of the beamtime.
Based on this distributions, a p-value cut on 0.5 has been selected to obtain the aver-
aged cross section together with the systematic error. For every type of cut, the maxi-
mal positive and negative deviations from the reference value are taken as systematic
uncertainties. These uncertainties are added according to the formula:

σ(syst.)+/− =

√(
∆Ekin

+/−

)2
+
(

∆kFit
+/−

)2
, (6.2)

where ∆Ekin is the maximal deviation from the reference value for the cut on the value
of χ2 of Ekin reconstruction, ∆kFit is the maximal deviation from the reference value
for the cut on the p-value from the kinematic fit, and +/− refers to the positive or
negative deviation. The obtained values of the luminosity including the systematic
uncertainties are:

L1 = (16.1± 0.4(syst.)± 1.6(norm.)) pb−1 , (6.3a)

L2 = (19.6± 0.5(syst.)± 2.0(norm.)) pb−1 . (6.3b)
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FIGURE 6.2: Difference between the reference luminosity Lr and the
luminosity Lv for different cuts on the p-value from the kinematic fit
and the value of χ2 of the kinetic energy reconstruction (black points).
The reference values are marked with a red line. Zero is marked with a
green dashed line. The left plot is made for the 1st part of the beamtime

and the right plot for the 2nd one.
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Chapter 7

Results

In this chapter the results of the analysis are presented. Having the number of reg-
istered signal events N and the integrated luminosity L, the missing information to
obtain the total and differential cross sections is the combined acceptance and effi-
ciency (ε).

Since the angular distribution from the previous measurement of dd → 4Heπ0

is not decisive in identifying contributions of higher partial waves [53], the follow-
ing strategy is used. First, the acceptance correction is done using a 2-body phase
space generator. From this analysis, a first result for the differential cross section is
determined. This is presented in Sec. 7.1. Based on that, a new signal generator is
constructed using the correct angular distribution. With this, the final values for the
total and differential cross section are determined. The results from both parts of the
beamtime are combined together in a last step. These results are presented in Sec. 7.2.

7.1 Results with the Phase Space Generator

As our goal is to obtain the angular distribution, the cross section within every angular
bin has to be determined. This is done using the following formula:

dσ
dΩ

=
1

L · ε
· ∆N

2π ·∆ cos θ∗
, (7.1)

where L is the integrated luminosity, ∆N is the number of signal events in a particular
angular bin ∆ cos θ∗, and ε is the acceptance times the cut efficiencies which is deter-
mined using a Monte Carlo sample. The number of events in each angular bin after
all analysis cuts is divided by the number of generated events in this bin.

The angular distributions for the 1st and the 2nd part of the beamtime are pre-
sented in Fig. 7.1. In this plot only the statistical uncertainties are shown. The study
of the systematic effects is presented in the following section.

7.1.1 Systematic Effects

In the course of the analysis the following potential systematic effects have been ob-
served.
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FIGURE 7.1: Angular distribution for the 1st (left) and the 2nd (right)
part of the beamtime obtained with the 2-body phase space generator
of the signal. In the plot only the statistical uncertainties are presented.

In the missing mass spectra, the background originating from misidentified dd →
3Henπ0 events is slightly shifted in comparison to the simulation. The largest effect
is visible for forward angles. The reason of this shift can be attributed systematic
differences in the simulated detector response for 4He and 3He. The limited statistics
after all cuts does not allow to study the reason of this effect in detail. To compensate
the mismatch, an angular dependent scaling factor is introduced for the missing mass
of the dd → 3Henπ0 background. It is included in the fit as a free parameter. The
obtained factors for the angular bins defined above (from backward to forward) are:
1.005, 0.996, 0.991, 0.972 for the 1st part of the beamtime, and 1.003, 0.988,0.981, 0.980
for the 2nd part of the beamtime. No additional systematic error is assigned to this
effect, since the resulting fit describes the shape of the background in the region of the
π0 mass peak.

Another systematic effect is linked to a mismatch in the missing mass region below
0.11 GeV/c2 in the most backward angular bin. The fit shows that this region is dom-
inated by the dd → 4Heγγ reaction, which has been simulated using 3-body phase
space. This model does not provide a perfect description. However, the dominating
background from the dd → 3Henπ0 reaction at higher missing masses does not allow
to describe all contributions precisely enough to verify more advanced models. There
is the possibility of addressing this problem with an improved dd→ 3Henπ0 subtrac-
tion using the energy loss information from the FVH. However, this was not a part of
this thesis and is planned as a separate project in the next stage of the data analysis.
The final fit excludes the missing mass range below 0.11 GeV/c2. Nevertheless, in or-
der to estimate the size of a possible systematic effect, the fit in the first angular bin has
also been performed in the full range, but with a modified template. The dd→ 4Heγγ
contribution has been multiplied by the function f(x) = 1

2 tanh(ax+ b) + 1
2 to describe

the data in the range 0 − 0.11 GeV/c2 of the missing mass. This function has been
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chosen because it describes a smooth step between zero and one at x = b. Therefore,
it diminishes the dd→ 4Heγγ template at missing masses smaller than ∼ 0.11 GeV/c2

and does not change it above this value. In Fig. 7.2 the missing mass distribution for
the most backward angular bin fitted with the modified Monte Carlo template is pre-
sented. The differences in cross section of −3% for the 1st part of the beamtime and
−1.5% for the 2nd one are included in the systematic uncertainties.
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FIGURE 7.2: Missing mass for the dd → 4HeX reaction for the most
backward angular bin −0.9 ≤ cos θ∗ < −0.6 fitted with the low
mass region included with the modified Monte Carlo template, where
the dd → 4Heγγ contribution is multiplied by the function f(x) =

1
2 tanh(ax+ b) + 1

2 .

Further tests of the systematic effects follow the method described in Sec. 6.2. The
selection cuts applied in the analysis have been varied to check the influence on the
differential cross section in every angular bin. The p-value cut of the kinematic fit
has been varied in the regions presented in Fig. 5.10. Fixing the horizontal cut, the
vertical cut has been shifted in steps of 0.01, and vice versa. For each shift, the dif-
ferential cross section in every cos θ∗ bin is calculated, and the difference ∆ between
the reference value and the varied one is obtained. This difference is compared to its
statistical uncertainty calculated with the formula σ2

∆ =
∣∣σ2
v − σ2

r

∣∣, where σv/r is the
statistical uncertainty of the varied or reference result. If the ratio is larger than 3, ∆

is considered in the estimation of the systematic uncertainty. In Fig. 7.3 an example
plot of the differential cross section for different cut variations is presented for the first
angular bin. The points marked in red indicate those variations, which are statistically
significant. Similarly, the systematic effects associated with the χ2 cut from the kinetic
energy fit as well as the cut on the polar angle of outgoing particles in the FD have
been checked. The χ2 cut has been varied from 20 to 110 in steps of 10, while the θ
cut was shifted first to 9 > θ > 3, and than to 2 < θ < 8. In both cases, no significant
statistical shift has been observed.
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FIGURE 7.3: Example of differential cross section for the 1st angular bin
−0.9 ≤ cos θ∗ < −0.6 for the variation of the p-value cut. The points

marked in red indicate variations, which are statistically significant.

The obtained systematic uncertainties for every bin are included in the angular
distribution presented in Fig. 7.4 belonging to the next section.

7.1.2 Fit of Angular Distribution

The aim of the analysis is to identify contributions from higher partial waves. Taking
into account only terms that contribute to the unpolarized intensity up to order p2

π0 —
according to [110] — the unpolarized differential cross section of dd→ 4Heπ0 has the
form:

p

pπ0

dσ
dΩ

=
2

3

(
|A0|2 + 2p2

π0<{A∗0A2}P2(cos θ∗) + |C|2p2
π0 sin2 θ∗

)
, (7.2)

where A0 is the s-wave amplitude, A2 is the d-wave amplitude, and C is the p-wave
amplitude. The momentum of the pion in the c.m. system is pπ0 , and the incident
deuteron momentum in the c.m. system is p. In [110] formula 7.2 is obtained for the
dd −−→ 4Heη reaction, but it is also valid for the dd → 4Heπ0 reaction, since the JPC

quantum numbers (J – angular momentum, P – parity, C – charge conjugation) are
the same for π0 and η. Due to the presence of the identical particles in the initial state,
odd and even partial waves do not interfere, and the angular distribution is symmetric
with respect to cos θ∗ = 0. Ordering the terms with respect to cos2 θ∗, the differential
cross section can be written as:

dσ
dΩ

= a+ b cos2 θ∗ , (7.3)

where

a =
pπ0

p

2

3

(
|A0|2 − p2

π0<{A∗0A2}+ |C|2p2
π0

)
, (7.4a)

b =
pπ0

p

(
2p2
π0<{A∗0A2} −

2

3
|C|2p2

π0

)
. (7.4b)
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The p-wave and s−d interference terms contribute to the quadratic term and to the
constant term. Even though from an unpolarized measurement one cannot directly
disentangle the partial waves, some constraints can still be obtained. Any non-flat
angular distribution is an indication of higher partial waves. The parameter b can be
positive only if a d-wave contribution is present.

In Fig. 7.4 the angular distribution from the 1st and the 2nd part of the beamtime is
fitted simultaneously with the function described in Eq. 7.3. For the fit the systematic
and statistical uncertainties are added quadratically and presented in the plot.
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FIGURE 7.4: Differential cross section fitted simultaneously for the 1st
and the 2nd part of the beamtime with the function a + b cos2 θ∗. The
acceptance correction has been performed with the dd→ 4Heπ0 phase-
space model. The obtained parameters a and b are presented in Eq. 7.5.
The χ2/NDF for the fit is 4.3/6. The parameters are used in the new
dd → 4Heπ0 generator. For the fit the systematic and statistical uncer-

tainties are added quadratically.

The obtained values for a and b are:

a = (1.69± 0.47) pb/sr, (7.5a)

b = (12.3± 2.8) pb/sr. (7.5b)

These values (without the error) are used to set up an improved event generator.

7.2 Results with the New Event Generator

This section describes the final results obtained using the more realistic model includ-
ing higher partial waves. The data from the 1st and the 2nd part of the beamtime
have been fitted separately as described in Sec. 5.4, and the sum of both is presented
in Fig. 7.5 and Fig. 7.6. The numbers of signal events extracted for every angular bin
and every part of the beamtime are presented in Tab. 7.1.
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FIGURE 7.5: Missing mass for the dd → 4HeX reaction for every an-
gular bin for all data. The spectra are fitted with a linear combination
of the simulated signal and background reactions: dd → 4Heγγ (green

line), plus dd→ 3Henπ0 (blue line), plus dd→ 4Heπ0 (red line).

TABLE 7.1: Number of signal events in every angular bin.

Bin number Signal events [counts]

1st part 2nd part
1 63.2± 12 91.6± 13.5
2 45.2± 10.3 42.5± 10.7
3 17.6± 9.3 36± 10.3
4 12.9± 8.5 27.1± 9.9

In the ideal case of a perfect resolution, the acceptance times cut efficiencies as a
function of cos θ∗ should be the same both for the phase space and the improved gen-
erator. However, in reality there is a migration between the angular bins: an event
originating from one bin is measured in another one due to the limited detector res-
olution. The size of this effect depends on the shape of the angular distribution. In
Fig. 7.7 the acceptance times cut efficiency as a function of cos θ∗ for both generators is
presented. The final value of ε for every angular bin is shown in Tab. 7.2.
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FIGURE 7.6: Missing mass for the dd → 4HeX reaction for −0.9 ≤
cos θ∗ ≤ 0.4 for all data. The fitted Monte Carlo template is the same as

in Fig. 7.5.
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FIGURE 7.7: Comparison of the acceptance times cut efficiencies for the
dd → 4Heπ0 reaction for the new (red line) and the old (black line)
generator as a function of cos θ∗ for the 1st (left) and the 2nd (right) part

of the beamtime.

TABLE 7.2: Signal acceptance times cut efficiencies for every angular
bin for the 1st and the 2nd part of the beamtime.

Bin number Acceptance times cut eff. [%]

1st part 2nd part
1 24.3 24.4
2 28.5 28.6
3 30.2 30.1
4 24.3 24.0



92 Chapter 7. Results

The differential cross section has been determined separately for the 1st and the
2nd part of the beamtime. The combined differential cross section dσ

dΩ comb for every
angular bin and for the whole angular range within detector acceptance has been ob-
tained as a weighted average:

dσ
dΩ comb

=

1
σ2
1
· dσ

dΩ 1
+ 1

σ2
2
· dσ

dΩ 2

1
σ2
1

+ 1
σ2
1

, (7.6)

where the weights are based on the statistical uncertainties of the differential cross
sections for the particular cos θ∗ bin. The variance of the weighted mean is:

σ2
comb =

1

σ−2
1 + σ−2

2

. (7.7)

The final results are:

dσ
dΩ

(−0.9 ≤ cos θ∗ < −0.6) =
(
9.4± 1.1(stat.)+0.5

−1.8(syst.)
)

pb/sr, (7.8a)

dσ
dΩ

(−0.6 ≤ cos θ∗ < −0.3) =
(
4.5± 0.7(stat.)+0.1

−1.7(syst.)
)

pb/sr, (7.8b)

dσ
dΩ

(−0.3 ≤ cos θ∗ < 0) =
(
2.64± 0.69(stat.)+0.25

−0.83(syst.)
)

pb/sr, (7.8c)

dσ
dΩ

(0 ≤ cos θ∗ ≤ 0.4) =
(
1.82± 0.6(stat.)+0.29

−0.62)(syst.)
)

pb/sr. (7.8d)

The systematic effects associated with this combined result have been checked by
varying the cuts as in Sec. 7.1.1. Fig. 7.8 shows the differential cross sections for every
angular bin together with their statistical and systematical uncertainties as presented
in Eq. 7.8. In Fig. 7.9 the systematic uncertainties associated with every type of cut are
shown for all four angular bins. For all cross sections there are two additional common
systematic uncertainties originating in the luminosity determination: an uncertainty
of 10% coming from the error of the dd → 3Henπ0 cross section (marked as "norm.")
and an uncertainty of 2.5% determined in Chapter 6 by varying the cuts used in the
luminosity analysis (marked as "lumi. syst."). Integrating the differential results, the
cross section σacc within the detector acceptance (−0.9 ≤ cos θ∗ ≤ 0.4) equals to:

σacc =
(
36.1± 3.2(stat.)+0.1

−5.9(syst.)± 3.7(norm.)± 0.9(lumi. syst.)
)

pb . (7.9)

To obtain the total cross section the angular distributions have been fitted simul-
taneously for both parts of the beamtime with the function from Eq. 7.3. Then, the
function is integrated in the range from −1 to 1 and multiplied by 2π to obtain the
total cross section.

Also for this result systematic effects are determined from the variation of the cuts.
A separate angular distribution has been determined and fitted for each of these vari-
ations. In this way, also the systematical uncertainties for the parameters a and b de-
scribing the differential cross section are extracted. In Fig. 7.10 the total cross section
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FIGURE 7.8: Differential cross sections for every angular bin. The sta-
tistical uncertainties are presented with a red line. The green area indi-

cates the systematic uncertainties.

and parameters a and b are presented for different cuts. Furthermore, the variation of
the fitted function to the angular distribution is shown. Every green curve shows the
fit for a varied cut. The reference fit for the set of cuts used in the analysis is drawn
with a dashed red curve. The individual contributions to the overall systematic un-
certainty of the total cross section and the parameters a and b have been added as√∑

i σ
2
i , where σi is the maximal deviation from the reference value for a single type

of cut.
In Fig. 7.11 the final angular distribution is presented. The obtained results are the

following:

a =
(
1.75± 0.46(stat.)+0.31

−0.8 (syst.)
)

pb/sr , (7.10a)

b =
(
13.6± 2.2(stat.)+0.9

−2.7(syst.)
)

pb/sr . (7.10b)

σtot =
(
79.1± 7.3(stat.)+1.2

−10.5(syst.)± 8.1(norm.)± 2.0(lumi. syst.)
)

pb . (7.11)

The systematic uncertainties connected to the variation of the cuts and the change in
the range of the missing mass fit are marked as "syst.". Both parameters a and b have
common systematic uncertainties of 10% from external normalization and 2% from
luminosity determination.

Fig. 7.11 shows that the angular distribution is not measured in the whole range of
cos θ∗. This is linked to the drop in acceptance (see Fig. 7.7) caused by two effects: the
4He particles escaping through the hole for the beam pipe (forward and backward go-
ing particles in c.m.) and very slow 4He particles (Ekin / 0.15 MeV) not reaching the
FVH layer (affecting the acceptance above cos θ∗ = 0.5). However, as the angular dis-
tribution has to be symmetric with respect to cos θ∗ = 0, the reconstructed differential
cross section in the range −0.5 < cos θ∗ < 0 is sufficient to describe the result.
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FIGURE 7.9: Systematic uncertainties for the combined differential
cross sections for every angular bin. The variation of every cut applied
in the analysis has been checked, i.e, the horizontal and vertical p-value
cut, the χ2 cut from theEkin reconstruction procedure and the polar an-
gle cut. The red points represent the combined differential cross section
with the statistical uncertainties, and the green area shows the system-

atic uncertainties.
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FIGURE 7.10: Check of the systematic effects on the total cross sec-
tion and the fit parameters of the angular distribution. The total cross
section σ, and the parameters a and b of the angular distribution fit,
a+ b cos2 θ∗, are presented as a function of the cut variation, where A is
the variation of the horizontal p-value cut (see Fig. 5.10), B is the vari-
ation of the vertical p-value cut (see Fig. 5.10), C refers to the change
in the range of the missing mass fit (see Fig. 7.2), D is the variation of
the χ2 cut from the Ekin reconstruction, E refers to the change in the
polar angle cut. The bottom right plot shows the angular distribution
from the 1st (red points) and the 2nd (blue points) part of the beam-
time, with parabolic functions fitted simultaneously for the cuts used
in the analysis (red dashed curve) and for all cut variations (green solid

curves).
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FIGURE 7.11: Final angular distribution. The data points from the 1st
part of the beamtime are marked in red and from the 2nd one in blue.
The result of the simultaneous fit is shown with a red dashed curve. In
the plot only the statistical uncertainties are presented. The obtained
parameters a and b are presented in Eq. 7.10. The χ2/NDF for the fit is

4.2/6.
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Chapter 8

Discussion and Outlook

A sample of 336± 43 event candidates of the dd→ 4Heπ0 reaction has been extracted
using a data set from an eight-week long beamtime with the WASA-at-COSY exper-
iment. The total and differential cross sections have been determined. Following a
theoretical description of the shape of the angular distribution as presented in [110],
the differential cross section has been fitted with the function dσ/dΩ = a + b cos2 θ∗.
The obtained fit parameters are:

a =
(
1.75± 0.46(stat.)+0.31

−0.8 (syst.)
)

pb/sr , (8.1a)

b =
(
13.6± 2.2(stat.)+0.9

−2.7(syst.)
)

pb/sr . (8.1b)

Both parameters have common systematic uncertainties of 10% from external nor-
malization and 2% from luminosity determination. The total cross section has been
obtained as the integral over cos θ∗ from the presented fit of the angular distribution:

σtot =
(
79.1± 7.3(stat.)+1.2

−10.5(syst.)± 8.1(norm.)± 2.0(lumi. syst.)
)

pb . (8.2)

The statistical uncertainties for the parameters a and b as well as for the total cross
section are of similar size as the systematical effects estimated by the variation of the
selection cuts and the uncertainty of the luminosity determination.

In the previous measurement with WASA-at-COSY these cross sections have also
been determined, however with lower statistics [53] (see Sec. 2.2.3). In Fig. 8.1 the
results from this thesis (red points) and the previous measurement (black points) are
compared. The presented differential cross section from this thesis is the combined
result from the two parts of the beamtime using a weighted average with statistical
weights, as shown in Eq. 7.6. The error bars indicate the statistical uncertainties, while
the systematical uncertainties are marked in green. The red dashed curve represents
the final fit of the angular distribution obtained simultaneously for both parts of the
beamtime. The error bars of the points from the previous measurement include only
the statistical uncertainties - only in the first bin an additional systematic uncertainty
is added (see [53]). From this comparison one can see that the tendency of the shape
of the differential cross section has been confirmed by this measurement. However,
the current measurement is slightly below the previous result: for the first and second
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bin the agreement is below one standard deviation of presented uncertainties, for the
third and fourth bin it is about 2 standard deviations.

FIGURE 8.1: Comparison between the angular distribution obtained
in this thesis (red points) and the previous WASA measurement of
dd → 4Heπ0 (black points). The error bars of the data points from this
thesis show the statistical uncertainties. The systematical uncertainties
are marked in green. The red dashed curve represents the final fit of
the angular distribution obtained simultaneously for both parts of the
beamtime. The error bars of the points from the previous measurement
show the statistical uncertainties only, except for the 1st bin where an

additional systematic uncertainty is added.

To compare the total cross sections, the fit of the angular distribution from [53]
containing higher partial waves (a+b cos2 θ∗) has been integrated in the range of−1 <

cos θ∗ < 1. The obtained result is:

σ
prev
tot = (123± 30(stat.)± 12(norm.)± 8.6(ext.)) pb , (8.3)

where "norm." stands for the systematic error of the luminosity determination and
"ext." for the error from the normalization to external data. The agreement between
this result and the cross section obtained in the thesis is at the level of one standard
deviation of the presented uncertainties.

8.1 Common Interpretation with the Other Measurements

From an unpolarized measurement, the different partial waves cannot be directly dis-
entangled, as both p-wave and s−d interference terms contribute to the quadratic term
and to the constant term. However, some constraints can be obtained. First of all, any
non-flat angular distribution is an indication of higher partial waves. The obtained
result shows that the parameter b of the angular distribution significantly differs from
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zero. The positive value for the parameter b indicates that a d-wave contribution is
essential for interpreting the data (see Eq. 7.4b).

Further conclusions can be drawn when adding the information from the measure-
ment close to threshold [52]. Fig. 8.2 shows the energy dependence of p

pπ0
σtot which

describes the reaction amplitudes as defined in [110]. The previous experiment with
WASA-at-COSY is also included.

FIGURE 8.2: World data on the unpolarised dd → 4Heπ0 total cross
section. p

pπ0
σtot is shown as a function of η = pπ0/mπ0 . The red curve

indicates the d0 +d1η
2 fit, from which the magnitude of the s-wave and

p-wave can be directly obtained like in Eq. 8.5 assuming the absence
of initial- and final-state interactions and energy dependence of partial
wave amplitudes. The black points show the results from [52], the green
point indicates the previous WASA measurement [53] and the red point

shows the result from this thesis.

As shown in Sec. 7.1.2, to order p2
π0 , only three partial wave amplitudes con-

tribute to the unpolarised cross section: s–wave (A0), p-wave (C) and d-wave (A2).
An anisotropy in the differential cross section can be caused by either p–wave or an
s− d interference:

p

pπ0

dσ
dΩ

=
2

3

(
|A0|2 + 2p2

π0<{A∗0A2}P2(cos θ∗) + |C|2p2
π0 sin2 θ∗

)
, (8.4)

where pπ0 is the momentum of pion in the c.m. system and p is the momentum in
the c.m. system of the incident deutron. Integrating this equation over dΩ we obtain
the formula describing the connection between the total cross section and the reaction
amplitudes:

p

pπ0

σtot =
8π

3
|A0|2 +

16π

9
m2
π0 |C|2η2 , (8.5)

where η = pπ0/mπ0 . As the interference term does not contribute to the total cross
section, fitting p

pπ0
σtot(η) with a function of the form d0 + d1η

2 one can directly obtain
the square of the magnitude of the s-wave and p-wave amplitudes. However, one has
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to keep in mind that the energy dependence of the partial wave amplitudes and the
formation of the 4He in the final state are not included here which also might have an
influence. The fit is presented in Fig. 8.2 as a red curve. The obtained values are:

|A0|2 = (32.7± 4.5) pb/sr , (8.6a)

|C|2 = (690± 560) pb/
(
sr · (GeV/c)2

)
. (8.6b)

With the present status of the dd → 4Heπ0 measurements, |C|2 obtained from the
fit has a large uncertainty. On the other hand, the value of |A0|2 can be well deter-
mined, since it is mostly constrained by the first two points in Fig. 8.2 describing the
measurement close to threshold, where s-wave is dominating.

Taking this value of |A0|2 and fixing it in the fit of the angular distribution deter-
mined in this thesis, one can obtain |C|2 and also <{A∗0A2}:

p

pπ0

dσ
dΩ

=
2

3

(
|A0|2fixed − p

2
π0<{A∗0A2}+ |C|2p2

π0

)
+

(
2p2
π0<{A∗0A2} −

2

3
|C|2p2

π0

)
cos2 θ∗.

(8.7)
The refitted angular distribution with the fixed |A0|2 is presented in Fig. 8.3.

FIGURE 8.3: Fit of the angular distribution with the fixed s-wave con-
tribution from the world data. The data points from the 1st part of the
beamtime are marked in red and from the 2nd one in blue. The result
of the simultaneous fit is shown with a red dashed curve. The obtained
|C|2 and <{A∗

0A2} parameters are presented in Eq. 8.8. The χ2/NDF for
the fit is 4.2/6.

The obtained values of |C|2 and <{A∗0A2} are:

<{A∗0A2} =
(
1670± 320(stat.)+80

−430(syst.)
)

pb/
(
sr · (GeV/c)2

)
, (8.8a)

|C|2 =
(
520± 290(stat.)+50

−430(syst.)
)

pb/
(
sr · (GeV/c)2

)
. (8.8b)
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The systematical uncertainties obtained by the variation of the selection cuts and the
change in the range of the missing mass fit are marked as "syst.".

The parameters |C|2 and <{A∗0A2} are strongly correlated, with a correlation co-
efficient of 0.87. Therefore, a proper presentation has to account for this correlation.
Fig. 8.4 shows a correlation plot with the confidence regions for both variables. The
center point marked with a cross shows the best-fit values. The contours correspond
to the 68.3%, 90%, 95% and 99% confidence regions. The plot shows only |C|2 > 0,
since the square of the magnitude of the amplitude is not allowed to be negative.

In addition, the central values for |C|2 and<{A∗0A2} are also affected by the overall
systematic uncertainties for luminosity (described as "lumi.") and the fixed value for
|A0|2 (marked as "fix."). Both cause a correlated displacement of the center of the
ellipses shown in Fig. 8.4. Taking into account the fact that they are correlated, the
individual systematic uncertainties are:

∆ (<{A∗0A2})fix = ±120 pb/
(
sr · (GeV/c)2

)
, ∆

(
|C|2

)
fix = ±350 pb/

(
sr · (GeV/c)2

)
,

∆ (<{A∗0A2})lumi = ±260 pb/
(
sr · (GeV/c)2

)
, ∆

(
|C|2

)
lumi = ±320 pb/

(
sr · (GeV/c)2

)
.

In Fig. 8.4 the possible systematic shifts of the center of the ellipses due to these
effects are marked with red (lumi.) and blue (fix.) lines. These lines correspond to a
displacement of ±∆.
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FIGURE 8.4: Correlation plot with the confidence regions for the param-
eters |C|2 and <{A∗

0A2}. The center point marked with the cross shows
the best-fit values. The contours corresponding to the 68.3%, 90%, 95%
and 99% confidence regions for normally distributed data are shown.
The red and blue lines show the systematic shift of the ellipses due to
the overall systematic uncertainties for luminosity (lumi.) and the fixed

value for |A0|2 (fix.), respectively.
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8.2 Future Plans

Besides statistics, the uncertainties of <{A∗0A2} and |C|2 have their main origin in the
systematic effects from the selection cuts and the missing mass fit. A possible improve-
ment may be achieved by including the energy loss information from the Forward
Veto Hodoscope.

Using the correlation between the energy loss in the FVH and the time-of-flight an
additional selection cut can be defined. According to earlier feasibility studies [73],
this can further reduce the dd → 3Henπ0 background and even remove it completely.
It may allow to verify more advanced models of the double radiative capture and
reduce the mismatch in the missing mass range below 0.11 GeV/c2 in the most back-
ward angular bin of dd → 4Heπ0. Applying only the ToF-dE(FVH) correlation cut
and releasing the p-value cut from the kinematic fit, the statistics of the dd → 4Heπ0

events could possibly be increased by a factor of two, while the background from
dd→ 3Henπ0 could still be effectively reduced.

The improvement, however, strongly depends on the resolution of the energy in-
formation from the FVH, which has not been used in any WASA experiment so far.
Therefore, a precise and thorough energy calibration of the plastic scintillator bars of
FVH with two sided readout is required.

8.3 Final Conclusions

This measurement of the charge symmetry breaking dd→ 4Heπ0 reaction at an excess
energy of 60 MeV shows the necessity to include higher partial waves in the theoreti-
cal calculations. Already the energy dependence of the total cross section of the world
data set for the unpolarised measurement of dd → 4Heπ0 suggests the presence of
higher partial waves. After fixing the square of the magnitude of the s-wave ampli-
tude |A0|2 from the fit of this dependence, the square of the magnitude of the p-wave
amplitude |C|2 and the real part of the s− d interference term <{A∗0A2} have been de-
termined assuming that only terms to order p2

π0 contribute to the reaction amplitudes.
The obtained s − d interference term <{A∗0A2} is significantly different from zero

(about three standard deviations). In comparison to <{A∗0A2} the square of the mag-
nitude of the p-wave amplitude is small and consistent with zero within uncertainties.

The d-wave contribution manifests itself predominantly in the interference term
<{A∗0A2} of the differential cross section. The direct contribution via the |A2|2 term in
the total cross section or the cos4 θ∗ term in the differential distribution is of the order
of p4

π0 and, therefore, is suppressed by the factor 1/p2
π0 ≈ 50 at ε = 60 MeV.

The parameter-free prediction of the p-wave contribution, which can be calculated
within chiral perturbation theory in leading and next-to-leading order, should give
a value compatible with the measurement. However, since the differential cross sec-
tion is dominated by the interference term <{A∗0A2}, any attempt to fully describe the
reaction has to include also d-wave contributions.
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