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1 Introduction

Risk management is of crucial importance for financial institutions. Identifying

and quantifying the risk related to financial instruments is essential to make eco-

nomically and strategically reasonable decisions. In particular, the knowledge of

potential losses of financial assets is substantial for properly allocating regulatory

and economic capital.

One of the major concerns of financial institutions’ risk management is credit

risk. Together with the probability of default (PD) and the exposure at default

(EAD), the credit risk of a financial asset is particularly determined by the loss

given default (LGD) respectively its counterpart, the recovery rate. The LGD is

defined as the percentage of the EAD the financial institution loses if a debtor

defaults.

According to Article 107 (1) of the Capital Requirement Regulation (CRR),

financial institutes shall apply either the Standardised Approach or the Internal

Ratings Based Approach (IRBA) to calculate their regulatory capital requirements

for credit risk. To implement the advanced IRBA requires financial institutes to

develop internal models for estimating PD, EAD, and LGD. One of the main

objectives of the IRBA, which was introduced by the banking regulation within

Basel II, the predecessor of the CRR, is to achieve risk-adjusted capital require-

ments (see Basel Committee on Banking Supervision (2003)). However, accurate

estimates of PD, EAD, and LGD are also beneficial for pricing financial instru-

ments and may lead to competitive advantages in general, as Gürtler and Hibbeln

(2013) mention.

For many years, research on credit risk was mainly focused on analyzing the
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PD. As a result, up to now, various elaborated methods for estimating the PD

have been established (for an overview see, e. g., Saunders and Allen (2002)). In

contrast, despite the importance of the LGD not only from the regulatory perspec-

tive, but also from the economic perspective, its detailed analysis for various asset

classes has just started with the announcement of Basel II. In the recent years,

several studies have analyzed and modeled the LGD. However, as yet, there are

doubts about which methods are suitable for estimating the LGD. In addition,

the typical drivers of the LGD have not yet been unambiguously identified.

In view of the key importance of the LGD for financial institutions’ credit risk

management, this thesis contributes to the recent literature on LGD research by

focusing on the modeling and estimation of the LGD. In particular, the main

attention is paid to the LGD of leasing contracts. The findings obtained in this

thesis are evaluated from a practical point of view and are discussed in the light

of the results of previous studies.

Several of the recently published studies that have addressed the modeling and

estimation of the LGD have focused on bonds (see, e. g., Frye (2005), Dwyer

and Korablev (2009), and Jankowitsch et al. (2014)). In addition, numerous re-

searchers have analyzed the LGD of loans (see, e. g., Caselli et al. (2008), Bastos

(2010), and Zhang and Thomas (2012)). However, despite the particular impor-

tance of the leasing business for economies like Germany, only a few studies have

investigated the LGD of leases (see, e. g., Laurent and Schmit (2005), De Lau-

rentis and Riani (2005), and Hartmann-Wendels and Honal (2010)). According

to the Federal Association of German Leasing Companies (BDL), about 50% of

the externally financed investments and nearly 25% of the total investments are

currently lease-financed in Germany.

Typically, loans and leases feature a higher seniority level than bonds. Moreover,

what is even more important for the calculation of the LGD, unlike bonds, loans

and leases are not tradeable in general. Therefore, it is generally not possible to
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apply the concept of market LGDs to loans or leases. For a financial asset, the

market LGD is calculated as one minus the ratio of the observed market price of

the asset soon after its default to the trading price at the time of default. For

loans and leases it is rather necessary to rely on the concept of workout LGDs.

Workout LGDs can basically be applied to all types of financial assets and are

calculated as one minus the ratio of the discounted cash flows after default to the

EAD.

In almost all empirical studies, the density function of workout LGDs is re-

ported to be bimodal with peaks around 0 and 1 (see, e. g., Hartmann-Wendels

and Honal (2010), Zhang and Thomas (2012), and Calabrese (2014)). This applies

in particular for both loans and leasing contracts. High concentrations of realized

LGDs around 0 and 1 imply that frequently the recovered amount of the EAD is

either quite high or fairly small. This unusual shape of the LGD density is par-

ticularly challenging from the econometric perspective, because, as Qi and Zhao

(2011) argue, it is at least questionable whether standard statistical methods such

as the ordinary least squares (OLS) linear regression are suitable for estimating

the LGD.

The bimodal nature of the LGD density represents one of the considerable

commonalities of loans and leases. Basically, also the drivers of the LGD might

be to some extent similar for loans and leasing contracts. Nevertheless, leases are

also characterized by some distinctive features. For the modeling and estimation

of leasing LGDs it is crucial to consider these specific characteristics of leases.

Any leasing contract is obligatory collateralized by its leased asset. In particular,

the fundamental characteristic of all leases is that the lessor retains the legal

owner of the leased asset. Therefore, repossession of the leased asset is easier

than foreclosure on the collateral for a secured loan, which is a key advantage

of the leasing business according to Eisfeldt and Rampini (2009). In particular,

different to the collateral realization for a secured loan, the lessor can retain any
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recovered value of the leased asset’s disposal. In fact, Schmit and Stuyck (2002)

observe lower LGDs for leases than for loans in general, which emphasizes that

leasing companies potentially enjoy a competitive advantage.

Taking into account the specific characteristics of leases is crucial for economic

reasons but also from the econometric perspective. With regard to defaulted

loans, it is frequently assumed that the LGD is bounded within the interval [0, 1]

(see, e. g., Dermine and de Carvalho (2006), Bastos (2010), and Calabrese (2014)).

This implies that independent from the course of the workout process, the lender

cannot recover respectively lose more than the EAD. While the predefinition of

the lower limit is justified for bank loans, it is not generally applicable to leases.

To be precise, when disposing the leased asset, the lessor, as the legal owner of

the leased asset, may in particular retain revenues which exceed the EAD. In

fact, LGDs smaller than 0 are a frequently observed phenomenon in the leasing

business (see, e. g., Schmit and Stuyck (2002), Laurent and Schmit (2005), and

Hartmann-Wendels and Honal (2010)). In addition, with regard to the upper limit

of the LGD, the assumption that the LGD does not exceed 1 is inappropriate for

both loans and leases. According to Article 5 (1) of the CRR, workout costs are

required to be included in the LGD calculation. However, if workout costs are

considered, the lender’s loss may exceed the EAD. Analyzing commercial real

estate loans, Johnston Ross and Shibut (2015) observe several LGDs above 1 and

thus highlight that capping the LGD at 1 might understate true losses. Regarding

leasing contracts, De Laurentis and Riani (2005) also stress the impact of workout

costs when determining the LGD. Studying Italian leasing contracts, the authors

find workout costs amounting to more than 5% of the EAD on average.
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1.1 Estimating the loss given default: an initial

literature review

The recent literature that addresses the modeling and estimation of the LGD

basically focuses on two different aspects of research. One major research stream

covers the analysis of different approaches for estimating the LGD. The other

main area of research concentrates on the examination of the drivers of the LGD.

As yet, numerous different methods for estimating the LGD have already been

investigated in the literature. Remarkably, also the basic ideas of the studied

methods differ occasionally.

A couple of studies aim on reproducing the LGD’s density function in order to

extrapolate accurate LGD estimations in this way. For this purpose, Calabrese

and Zenga (2010) model the LGD on the unit interval by a mixed random variable

and apply this concept to a dataset of defaulted Italian loans. Similar approaches

were also pursued by Hlawatsch and Ostrowski (2011) and Altman and Kalotay

(2014). Hlawatsch and Ostrowski (2011) suggest a mixture of two beta distribu-

tions to approximate the LGD distribution. The authors generate accurate LGD

estimations when employing their model to synthesized loan portfolios. Altman

and Kalotay (2014) present an approach based on the mixture of Gaussian distri-

butions and likewise report successful LGD predictions using Moody’s Ultimate

Recovery Database (MURD).

Several other surveys investigate the suitability of parametric and nonpara-

metric methods for estimating the LGD. It must be stressed that the obtained

findings do not always conform to the results of the mentioned studies which focus

on reproducing the LGD’s density function. Using MURD, Qi and Zhao (2011)

estimate the LGD by different parametric and nonparametric methods and ana-

lyze the results. They note that the nonparametric methods generally outperform

the parametric methods. In particular, the authors find regression trees to be a
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suitable nonparametric method to estimate the LGD. The predictions generated

by the regression trees are noticeably more accurate than those obtained by frac-

tional response regression, the best performing parametric method. They argue

that the good performance of the nonparametric methods is related to their ability

to model nonlinear relationships between the LGD and continuous explanatory

variables. Moreover, Qi and Zhao (2011) find no evidence for a correlation between

a model’s ability to reproduce the LGD distribution and its estimation accuracy.

They conclude that reproducing the LGD distribution is only of secondary im-

portance when modeling the LGD. Li et al. (2014) utilize the same dataset as

Qi and Zhao (2011) to further analyze the performance of some parametric meth-

ods for estimating the LGD, including recently proposed gamma regressions and

different transformation regressions such as inverse Gaussian regression. Their

results confirm the findings of the earlier study as they find none of the used

methods performing at least as good as the nonparametric methods investigated

by Qi and Zhao (2011). In another large study, Loterman et al. (2012) compare

several regression techniques for modeling and predicting the LGD using data of

six different banks. The results of their benchmarking study correspond to the

conclusions of Qi and Zhao (2011). They notice a clear trend that the nonlinear

methods, and in particular support vector machines and neural networks, perform

better than the linear methods. In this context Bastos (2010) conducts another

noteworthy study estimating the LGD of Portuguese bank loans by regression

trees and fractional response regression. While the latter was successfully used

in some earlier studies (see, e. g., Dermine and de Carvalho (2006) and Chalupka

and Kopecsni (2009)), he finds in line with the results obtained by Qi and Zhao

(2011) fractional response regression to be outperformed by the regression trees.

In fact, until now most of the methods that have been used for estimating

the LGD are so-called single-stage models. This means that the LGD is directly

modeled using a set of explanatory variables. Recently, some studies have pro-
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posed to predict the LGD by two-stage models. The basic idea of most two-stage

models is to split the observations ex ante according to a specific key feature.

In particular, the applied splitting criterion depends on the characteristics of the

used data. Leow and Mues (2012) introduce a two-stage approach to forecast the

LGD of mortgage loans. In a first step, they estimate the probability of a de-

faulted mortgage account undergoing repossession. In order to finally obtain an

estimated LGD, they subsequently calculate the loss in the event of repossession

using a haircut value. The latter is defined as the ratio of the forced sale price and

the market valuation of the repossessed property. Another two-stage model was

successfully implemented by Gürtler and Hibbeln (2013). Analyzing defaulted

private and commercial loans of a German bank, the authors find that recovered

and written off loans feature different characteristics. Hence, they first estimate

the probability that a loan will be recovered or written off. In a second step, they

predict the LGD for recovered and written off loans separately to combine these

predictions to a final LGD estimate using the probability-weighted average. A

similar approach was proposed by Johnston Ross and Shibut (2015) investigating

commercial real estate loans. The authors suggest to differentiate between loans

with zero and non-zero losses.

Recently, the fairly new concept of ensemble learning has been applied in dif-

ferent areas of credit risk research. The concept of ensemble learning provides

a complement to the development of single procedures for estimating the LGD,

as the basic idea of this approach is to combine predictions of several individual

models in order to generate more precise estimates in this way. Bastos (2013) fo-

cuses on analyzing different ensemble learning strategies for estimating the LGD

using MURD. He finds that in particular an ensemble learning strategy based on

regression trees exhibits a high predictive power in forecasting the LGD.

With regard to the methods that have already been successfully used to estimate

the LGD it is important to emphasize that proper LGD predictions have also been
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generated by OLS linear regression, although this may not be the best suited

method to forecast the LGD from the econometric point of view. Actually, some

studies show that the OLS linear regression is able to generate more accurate LGD

predictions than more advanced estimation techniques. Zhang and Thomas (2012)

estimate the LGD using various approaches, including some straight-forward two-

stage models, and compare the outcomes with the results produced by OLS linear

regression. Using a dataset of defaulted personal loans, the authors find that the

OLS linear regression achieves the best LGD estimates in general. In particular,

they find that the predictions of the OLS linear regression are more accurate

than those obtained by first identifying loans with an expected LGD of 0 or

1 and explicitly estimating the LGD value only if the value is expected to be

within the interval (0, 1). A similar result is obtained by Bellotti and Crook

(2012) when investigating the LGD of UK credit cards. They find OLS linear

regression outperforming several other methods, including various transformation

regressions.

Despite the wide range of different concepts for estimating the LGD that has

been analyzed, as yet, no single approach could be established, neither for loans

and particularly not for leases. This can probably be ascribed to the fact that the

findings of different studies are to some extent contradictory. In fact, up to now

the linear regression is the most commonly used method for estimating the LGD.

This thesis specifically addresses leasing contracts and examines which methods

are particularly suitable for estimating the LGD in this context. In particular,

this means that a method’s ability to forecasting the LGD is strictly discussed

against the background of the specific nature of the leasing business. Already

at this early stage it has to be stressed that some of the methods for predicting

the LGD which have been presented in the literature are not applicable to leases.

Based on the assumption that the LGD is bounded within the interval [0, 1], a

few studies focused particularly on methods generating estimates that are likewise
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restricted to a corresponding range of values. Beside some other approaches such

as inverse Gaussian regression, one of these methods is in particular the frequently

used fractional response regression. While restricting the LGD estimates to the

interval [0, 1], is generally already questionable from the regulatory perspective, for

leasing contracts such a restriction is basically inappropriate, because the specific

characteristics of leases would be neglected in this way. As highlighted previously,

a typical feature of defaulted leasing contracts is that its LGD certainly exceeds

both limits of the interval [0, 1].

Within this thesis, it is also explicitly analyzed under which circumstances,

methods generate proper LGD estimates. This investigation is of particular im-

portance because it might provide an explanation why the findings of recent stud-

ies are to some extent contradictory. For instance, the performance of a method

potentially depends on the scope and quality of the available information.

The second main area in LGD research, which covers the analysis of the drivers

of the LGD, contains in particular a large number of studies that dealt with loans

(see, e. g., Grunert and Weber (2009), Chalupka and Kopecsni (2009), and Khieu

et al. (2012)). By contrast, for leases the drivers of the LGD were rarely analyzed,

notable exceptions are Schmit and Stuyck (2002), Laurent and Schmit (2005), and

De Laurentis and Riani (2005).

Of course, when analyzing the drivers of the LGD for leases it is essential tak-

ing into account the specific characteristics of the leasing business. Nevertheless,

factors driving the LGD of loans are probably partly also drivers of the LGD for

leases. This assumption is reasonable, because loans and leases feature several

common characteristics and often serve the same market segments. Regarding

this, it should in particular be noted that, apart from the obligatory collateral-

ization of a leasing contract by the leased asset, the seniority level of loans and

leases is similar. Consequently, especially given the low number of studies that

have analyzed the drivers of the LGD explicitly for leases, it is useful to consider



1 Introduction 10

the findings of recent studies that have covered loans.

Previous studies that have dealt with loans focused in particular on the impact

of contract characteristics and customer characteristics on the LGD. In this re-

gard, several studies examined the relationship between the LGD and, e. g., the

customer type or the type of the loan. Moreover, in this context it was also ana-

lyzed to what extent the LGD depends on factors such as the creditworthiness of

the debtor or the length of the business relationship between the financial institute

and the customer.

Basically, all studies that have analyzed the LGD of loans emphasize that the

LGD tends to be lower if the loan is secured by collateral. Caselli et al. (2008) and

Grunert and Weber (2009) observe this correlation investigating defaulted loans

issued by Italian respectively German banks. Khieu et al. (2012) confirm this

finding using MURD. Moreover, among the other analyzed determinants, there

are also some factors that have frequently been identified as drivers of the LGD

of loans. Several authors note, e. g., that debtors with a poor creditworthiness

exhibit higher LGDs. This dependence is found by Grunert and Weber (2009)

in their study on German loans and the analysis of Portuguese loans by Bastos

(2010) reveals a similar result.

Nevertheless, for plenty of the analyzed factors the results of recent studies on

loans are quite controversial. As a result, apart from some exceptions, as yet, there

has been no general consensus concerning the key drivers of the LGD for loans.

The determinant with the most ambiguous results regarding its influence on the

LGD is probably the size of the loan. Bastos (2010) finds that large loans fea-

ture higher LGDs and a similar result is obtained by Hurt and Felsovalyi (1998)

investigating defaulted loans in Latin America. In contrast, e. g. Khieu et al.

(2012) observe no significant relationship between the LGD and the size of the

loan. Moreover, for corporate loans, Acharya et al. (2007) actually argue from a

theoretical point of view that large loans could also exhibit lower LGDs due to
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the high bargaining power of big corporates that typically take those large loans.

Beside the size of the loan, the results in the literature are also heterogeneous,

e. g. concerning the link between the LGD and factors such as the customer type

or the intensity of the business relationship between the financial institute and

the customer. Grunert and Weber (2009) note higher LGDs for large companies,

Khieu et al. (2012), however, do not confirm a significant correlation between the

LGD and the size of the borrowing company. With regard to the dependence of

the LGD on the intensity of the business relationship between the financial insti-

tute and the customer, Grunert and Weber (2009) and Chalupka and Kopecsni

(2009) obtain quite contradictory results, whereas Bastos (2010) finds no evi-

dence for such a dependency. While Grunert and Weber (2009) observe that an

intensive business relationship between the financial institute and the customer

leads to lower LGDs, Chalupka and Kopecsni (2009) note for Czech loans that

customers having a long business relationship with the financial institute feature

higher LGDs.

The few studies that covered leases concentrated in particular on the relation-

ship between the LGD and determinants which are associated with the collater-

alization of the leasing contract by the leased asset. The authors highlight unani-

mously that the LGD of leases depends on the type of the leased asset. Schmit and

Stuyck (2002) obtain this result investigating defaulted leasing contracts from 12

European financial institutions in six different countries. De Laurentis and Riani

(2005) and Hartmann-Wendels and Honal (2010) confirm this finding analyzing

Italian respectively German leases. Moreover, Schmit and Stuyck (2002) note that

the LGD of leases depends on the loan to value ratio and therefore on the age of

the contract at default relative to its term to maturity.

In order to identify the key drivers of the LGD specifically for leases, within

this thesis a comprehensive analysis of factors that potentially influence the LGD

of leasing contracts is conducted. Bearing in mind, in particular, the specific
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characteristics of the leasing business, this analysis considers numerous idiosyn-

cratic factors which include first of all determinants that are related to the leased

asset but also, e. g., contract characteristics and customer characteristics. More-

over, some macroeconomic factors are also taken into account within the analysis.

Especially with regard to leases, so far only very few studies investigated the in-

fluence of macroeconomic factors on the LGD and, in particular, the few existing

investigations on this topic were commonly not carried out within the context of

a general analysis of the key drivers of the LGD (see, e. g., Hartmann-Wendels

and Honal (2010)).

Moreover, bearing in mind that the findings of recent studies concerning the key

drivers of the LGD are at least controversial for loans, potential reasons for such

divergent outcomes are also discussed within this thesis. In particular, referring

to the results of the conducted analysis on leasing contracts, this discussion also

evaluates whether it is actually possible to determine the key drivers of the LGD

globally for the entire leasing business. For instance, the LGD and its drivers

potentially depend on a company’s organization of the workout process.

1.2 Contents and structure of the thesis

This thesis consists of three essays dealing with the modeling and estimation of

the LGD for leasing contracts. The workout LGDs are standardized calculated by

taking into account the regulatory requirements, which means in particular that

workout costs are incorporated. Basically, all models for estimating the LGD that

are introduced in this thesis meet crucial requirements of the CRR respectively

Basel II. This may involve, e. g., that LGD estimates that were carried out at the

execution of a contract are updated in case of default.

The first essay (Hartmann-Wendels, Miller, and Töws, 2014, Loss given default

for leasing: Parametric and nonparametric estimation) focuses on the methodolog-
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ical aspects of estimating the LGD and extends the related literature by comparing

different approaches for predicting the LGD of leasing contracts. Using a dataset

with a total of 14,322 defaulted leasing contracts provided by three major German

leasing companies for several parametric and nonparametric estimation methods

the quality of the LGD predictions is analyzed in-sample and out-of-sample. In

particular, with finite mixture models (FMMs), on the one hand, an approach aim-

ing on reproducing the LGD’s density function is implemented and, conversely,

with the model tree M5', which represents an extension of a classical regression

tree, in addition a method is used that does not require any assumptions concern-

ing the distribution of the underlying data. The results of the applied models are

benchmarked against the historical average and the outcomes generated by the so

far frequently used OLS linear regression.

The results stress that it is crucial to execute in-sample and out-of-sample

testing to reliably evaluate a model’s suitability for estimating the LGD. The

in-sample estimation accuracy of a model turns out to be only a weak indicator

for its out-of-sample estimation accuracy, and, in particular, a model operating

well in-sample does not necessarily perform well out-of-sample. Accounting for

the bimodal or rather multimodal nature of the LGD density, the FMMs produce

precise predictions in-sample. Out-of-sample, however, the estimates generated

by the FMMs are quite poor, although the LGD density is still properly repro-

duced. In contrast, by mainly outperforming a classical regression tree, the model

tree M5' achieves robust LGD estimates in-sample, but, in addition, generally

provides the most accurate LGD predictions out-of-sample. Moreover, while OLS

linear regression is particularly outperformed on datasets with a large number of

observations, the results show some indications that OLS linear regression might

be a suitable method for estimating the LGD given datasets containing only a

small number of observations. For all implemented methods, the quality of the

LGD predictions differs significantly between the analyzed companies, but in gen-
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eral the prediction accuracy improves by using additional information that are

only available at default of the contract.

The findings of the first essay emphasize that the quality of LGD estimates

essentially depends on the applied estimation method. Moreover, taking into ac-

count the improved estimation accuracy at default of the contract, the results ad-

ditionally suggest that a method’s ability to forecast the LGD is considerably de-

termined by the available set of information. Therefore, the second essay (Miller,

2015, Does the Economic Situation Affect the Loss Given Default of Leases?)

uses data from two different leasing companies to analyze the drivers of the LGD.

Bearing in mind that the results of the first essay point out significant differences

between the companies with regard to the accuracy of the LGD predictions that

could be achieved, it is particularly investigated whether and to what extent the

drivers of the LGD differ for the two lessors. In order to obtain an overview of the

drivers of the LGD which is as complete as possible, the analysis contains various

idiosyncratic factors and additionally several macroeconomic factors. Referring

to the specific characteristics of the leasing business, the considered idiosyncratic

factors include substantial information about the leased asset and also details,

e. g., about the contract structure and the customer. Based on an observation pe-

riod covering defaults between 2002 and 2009 for the macroeconomic factors, it is

also evaluated whether a potential impact on the LGD is stable over the economic

cycle. To ensure that the obtained findings are not biased by the use of a specific

estimation methods, the outcomes of two different estimation approaches, namely

OLS linear regression and a nonlinear regression spline model, are considered for

the analyzes. Moreover, in-sample and out-of-time testing is performed to validate

the results.

Showing some remarkable differences between the lessors studied, the results

point out that identifying the relevant drivers of the LGD individually for each

leasing company is substantial in order to develop an appropriate model for es-
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timating the LGD. In particular, the differences noted among the lessors refer

to both the set of idiosyncratic factors influencing the LGD and the determined

relationship between the LGD and macroeconomic factors. With regard to the

idiosyncratic factors the outcomes differ in detail between the leasing companies

investigated. Nonetheless, in summary the results support that the LGD of leases

generally depends in particular on determinants that are related to the leased as-

set. Moreover, there are also indications that contract characteristics significantly

influence the LGD of leases, whereas, e. g., details about the customer have only

a marginal impact. Referring to the relationship between the LGD and macroe-

conomic factors, the findings vary considerably depending on whether the LGD

estimates are carried out at the contract’s execution or its default. For both leas-

ing companies, the outcomes regarding the macroeconomic factors expose that the

economic situation at the point in time of contract’s execution drives the LGD.

In contrast, a relationship between the LGD and the economic situation at the

point in time of contract’s default is revealed only for one of the lessors studied.

The findings of the first two essays show that the quality of LGD predictions

depends on the used estimation method as well as on the available set of informa-

tion. Furthermore, the results of the second essay attest that the LGD of leases

generally depends on determinants that are related to the leased asset. How-

ever, the outcomes additionally emphasize significant differences between lessors,

in particular with regard to the factors driving the LGD. Therefore, in order

to obtain reliable LGD predictions, it is indispensable to calibrate a method for

estimating the LGD for each leasing company individually, taking into account

the company’s specific characteristics. Moreover, with the objective to forecast

the LGD as accurately as possible, developing advanced approaches for estimat-

ing the LGD which explicitly address the specific characteristics of the respective

company seems to be reasonable. In particular, when designing advanced models

for estimating the LGD of leases, it appears to be of crucial importance that these
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models consider the peculiarities of the leasing business.

Consequently, the third essay (Miller and Töws, 2016, Loss Given Default-

Adjusted Workout Processes for Leases) contributes to the related literature on

LGD research by using a dataset of a German lessor to develop an advanced

approach for estimating the LGD of leases that explicitly considers the specific

characteristics of the leasing business. Based on the economic consideration that

the revenues received during the workout process of defaulted leasing contracts

come from two different payment sources, the LGD is initially separated into two

distinct parts. On the one hand, the asset-related LGD (ALGD) includes all asset-

related payments, such as the asset’s liquidation proceeds and incurred liquidation

costs. In addition, the so-called miscellaneous LGD (MLGD) summarizes all

remaining revenues, such as customer payments and indirect workout costs. Based

on this separation of the LGD, subsequently, a multi-step model for estimating

the LGD of leasing contracts is designed. In a first step, the respective parts of the

LGD are estimated. Then, in a second step, a classification procedure is applied

to predict whether a contract’s LGD is expected to be below or above its ALGD,

because the evaluation of the data reveals that this feature is important in order

to distinguish the contracts. The implemented classification model in particular

includes the previously calculated estimates of ALGD and MLGD. Following the

classification, in a third step, two LGD estimates are generated for every contract,

each under the assumption that the contract’s LGD is below or above its ALGD.

The final LGD estimation for each contract is obtained as a linear combination of

these two estimated LGDs weighted with the contract’s classification probability.

To evaluate the performance of the introduced multi-step estimation model,

in-sample, out-of-sample and out-of-time testing is performed. The results prove

that LGD estimates for leases clearly benefit from developing advanced estimation

models that explicitly consider the peculiarities of the leasing business. Compared

to the benchmarking results of established estimation approaches, the predictions
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generated by the proposed multi-step estimation model are significantly more

accurate. Moreover, the developed multi-step model provides valuable interim

results that can be used as a decision support for actions to be taken during

the workout process. It turns out that the ALGD frequently exceeds the LGD

which implies that the collection of miscellaneous payments generates losses due

to incurred workout costs. Consequently, in case a contract’s LGD is expected to

be below its ALGD, the workout process should be restricted to the disposal of

the leased asset in order to improve the resulting LGD of the contract.



2 Loss given default for leasing:
Parametric and nonparametric
estimations

2.1 Introduction

The loss given default (LGD) and its counterpart, the recovery rate, which equals

one minus the LGD, are key variables in determining the credit risk of a financial

asset. Despite their importance, only a few studies focus on the theoretical and

empirical issues related to the estimation of recovery rates.

Accurate estimates of potential losses are essential to efficiently allocate regu-

latory and economic capital and to price the credit risk of financial instruments.

Proper management of recovery risk is even more important for lessors than for

banks because leases have a comparative advantage over bank loans with respect

to the lessor’s ability to benefit from higher recovery rates in the event of default.

In their empirical cross-country analysis, Schmit and Stuyck (2002) note that the

average recovery rate for defaulted automotive and real estate leasing contracts is

slightly higher than the recovery rates for senior secured loans in most countries

and much higher than the recovery rates for bonds. Moreover, the recovery time

for defaulted lease contracts is shorter than that for bank loans. Because the

lessor retains legal title to the leased asset, repossession of a leased asset is easier

than foreclosure on the collateral for a secured loan. Moreover, the lessor can

retain any recovered value in excess of the exposure at default. Repossessing used

assets and maximizing their return through disposal in secondary markets are
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aspects of normal leasing business and are not restricted to defaulted contracts.

Therefore, lessors have a good understanding of the secondary markets and of the

assets themselves. Because the lessor’s claims are effectively protected by legal

ownership, the high recoverability of the leased asset may compensate for the poor

creditworthiness of a lessee. Lasfer and Levis (1998) find empirical evidence for

the hypothesis that lower-rated and cash-constrained firms have a greater propen-

sity to become lessees. To leverage their potential lower credit risk, lessors must

be able to accurately estimate the recovery rates of defaulted contracts.

This paper compares the in-sample and out-of-sample accuracies of parametric

and nonparametric methods for estimating the LGD of defaulted leasing con-

tracts. Employing a large data set of 14,322 defaulted leasing contracts from

three major German lessors, we find in-sample accuracy to be a poor predictor

of out-of-sample accuracy. Methods such as the hybrid finite mixture models

(FMMs), which attempt to reproduce the LGD distribution, perform well for in-

sample estimation but yield poor results out-of-sample. Nonparametric models,

by contrast, are robust in the sense that they deliver fairly accurate estimations

in-sample, and they perform best out-of-sample. This result is important because

out-of-sample estimation has rarely been performed in other studies – with the

notable exceptions of Han and Jang (2013) and Qi and Zhao (2011) – although

out-of-sample accuracy is critical for proper risk management and is required for

regulatory purposes.

Analyzing estimation accuracy separately for each lessor, our results suggest

that the number of observations within a data set has an impact on the relative

performance of the estimation methods. Whereas sophisticated nonparametric

estimation techniques yield, by far, the best results for large data sets, simple

OLS regression performs fairly well for smaller data sets.

Finally, we find that estimation accuracy critically depends on the available

set of information. We estimate the LGD at two different points in time, at the
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execution of the contract and at the point of contractual default. This procedure

is of particular importance for leasing contracts because the loan-to-asset value

changes during the course of a leasing contract. Furthermore, the Basel II accord

requires financial institutions using the advanced internal ratings-based approach

(IRBA) to update their LGD estimates for defaulted exposure. To the best of our

knowledge, an analysis of this type of update has been neglected in the literature

thus far.

The remainder of our study is organized as follows. We review the related

literature in Section 2.2. Section 2.3 provides an overview of the data set, defines

the LGD measurement, and presents some descriptive statistics. In Section 2.4,

we introduce the methods used in this study. Section 2.5 reports the empirical

results, and Section 2.6 presents the conclusions of the study.

2.2 Literature review

There are two major challenges in estimating recovery rates for leases with respect

to defaulted bank loans or bonds. First, estimates of LGD on loans or bonds take

for granted that the recovery rate is bounded within the interval [0, 1], which

assumes that the bank cannot recover more than the outstanding amount (even

under the most favorable circumstances) and that the lender cannot lose more than

the outstanding amount (even under the least favorable circumstances). Although

the assumption of an upper boundary is justified for bank loans, it does not apply

to leasing contracts. As the legal owner of the leased asset, the lessor may retain

any value recovered by redeploying the leased asset, even if the recoveries exceed

the outstanding claim. In fact, there is some empirical evidence that recovery rates

greater than 100% are by no means rare. For example, Schmit and Stuyck (2002)

report that up to 59% of all defaulted contracts in their sample have a recovery

rate that exceeds 100%. Using a different data set, Laurent and Schmit (2005)
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find that recovery rates are greater than 100% in 45% of all defaulted contracts.

The lower boundary of the recovery rate rests on the implicit assumption of a

costless workout procedure. In fact, most empirical studies neglect workout costs

(presumably) because of data limitations. Only Grippa et al. (2005) account for

workout costs in their study of Italian bank loans and find that workout costs

average 2.3% of total operating expenses. The Basel II accord, however, requires

that workout costs are included in the LGD calculation. Thus, when workout costs

are incorporated, there is no reason to assume that workout recovery rates must

be non-negative. The second challenge in estimating recovery rates is the bimodal

nature of the density function, with high densities near 0 and 1. This property of

workout recovery rates is well documented in almost all empirical studies, whether

of bank loans or leasing contracts (e. g., Laurent and Schmit (2005)).

Because of the specific nature of the recovery rate density function, standard

econometric techniques, such as OLS regression, do not yield unbiased estimates.

Renault and Scaillet (2004) apply a beta kernel estimator technique to estimate

the recovery rate density of defaulted bonds, but they find that it is difficult to

model its bimodality. Calabrese and Zenga (2010) extend this approach by con-

sidering the recovery rate as a mixed random variable obtained as a mixture of a

Bernoulli random variable and a continuous random variable on the unit interval

and then apply this new approach to a large data set of defaulted Italian loans.

Qi and Zhao (2011) compare fractional response regression to other parametric

and nonparametric modeling methods. They conclude that nonparametric meth-

ods – such as regression trees (RTs) and neural networks – perform better than

parametric methods when overfitting is properly controlled for. A similar result

is obtained by Bastos (2010), who compares the estimation accuracy of fractional

response to RTs and neural networks.

Despite the growing interest in the modeling of recovery rates, little empirical

evidence is available on this topic. Several studies (e. g., Altman and Ramayanam
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(2007), Friedman and Sandow (2005), and Frye (2005)) rely on the concept of

market recoveries, which are calculated as the ratio of the price for which a de-

faulted asset is traded some time after default to the price of that asset at the time

of default. Market recoveries are only available for bonds and loans issued by large

firms. Workout recoveries are used by Khieu et al. (2012), Dermine and Neto de

Carvalho (2005), and Friedman and Sandow (2005). However, Khieu et al. (2012)

find evidence that the post-default price of a loan is not a rational estimate of

actual recovery realization, i. e., it is biased and/or inefficient. According to Frye

(2005), many analysts prefer the discounted value of all cash flows as a more re-

liable measurement of defaulted assets because: (1) cash flows ultimately become

known with certainty, whereas the market price is derived from an uncertain fore-

cast of future cash flows; (2) the market for defaulted assets might be illiquid; (3)

the market price might be depressed; and (4) the asset holder might not account

for the asset on a market-value basis.

Schmit et al. (2003) analyze a data set consisting of 40,000 leasing contracts,

of which 140 are defaulted. Using bootstrap techniques, they conclude that the

credit risk of a leasing portfolio is rather low because of its high recovery rates.

Similar studies are conducted by Laurent and Schmit (2005) and Schmit (2004).

Schmit and Stuyck (2002) find considerable variation in the recovery rates of

37,000 defaulted leasing contracts of 12 leasing companies in six countries. Aver-

age recovery rates depend on the type of the leased asset, country, and contract

age. De Laurentis and Riani (2005) find empirical evidence that leasing recov-

ery rates are inversely correlated with the level of exposure at default. However,

recovery rates increase with the original asset value, contract age, and existence

of additional bank guarantees. Applying OLS regressions to forecast LGDs in

that study leads to rather poor results: the unit interval is divided into three

equal intervals, and only 31–67% of all contracts are correctly assigned in-sample.

With a finer partition of five intervals, the portion of correctly assigned contracts
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decreases even further. These results clearly indicate that more appropriate esti-

mation techniques are needed to accurately estimate recovery rates.

Our study differs from the LGD literature in several crucial aspects. First, we

calculate workout LGDs and consider workout costs. Second, we perform out-

of-sample testing at contract execution and default, which meets the Basel II

requirements for LGD validation. Third, by separately analyzing the data sets of

three lessors, we gain insight into the robustness of the estimation techniques.

2.3 Data set

This study uses data sets provided by three German leasing companies, which

shall be referred to herein as companies A, B, and C. All three companies use a

default definition consistent with the Basel II framework. According to Table 2.1,

the data set from lessor A contains 9,735 leasing contracts with 5,811 different

customers and default dates between 2002 and 2010. The data set from lessor B

contains 2,995 leasing contracts with 2,344 different lessees who defaulted between

1994 and 2009, with the majority of defaults occurring between 2001 and 2008.

The data set for leasing company C consists of 1,592 leasing contracts with 964

different lessees who defaulted between 2002 and 2009.

Company # Contracts # Lessees
A 9,735 5,811
B 2,995 2,344
C 1,592 964

Table 2.1: Numbers of contracts and lessees in the data sets of companies A–C in
descending order of the number of contracts.

For the defaulted contracts, we calculate the LGD as one minus the recovery

rate. The recovery rate is the ratio of the present value of cash inflows after

default to the exposure at default (EAD). For leasing contracts, the cash flows
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consist of the revenues obtained by redeploying the leased asset and other collat-

eral combined with other returns and less workout expenses. The cash flows are

discounted to the time of default using the term-related refinancing interest rate.1

The EAD is the sum of the present value of the outstanding minimum lease pay-

ments, compounded default lease payments, and the present residual value. All

values refer to the time of default. A contract is classified as defaulted when at

least one of the triggering events set out in the Basel II framework has occurred.

Before the data was collected, all three companies agreed to use identical defi-

nitions for all the elements that are entered into the LGD calculation, and for all

details of the leasing contract, lessee, and leased asset. Thus, for every contract,

we have detailed information about the type and date of payments that the lessor

received after the default event. Moreover, we incorporate expenses arising during

the workout into the LGD calculation, to meet Basel II requirements. Workout

costs are rarely considered in empirical studies.

The workouts have been completed for all the observed contracts. Gürtler and

Hibbeln (2013) recommend restricting the observation period of recovery cash

flows to avoid the under-representation of long workout processes, which might

result in an underestimation of LGDs. Because we do not see a similar problem

in our data, we do not truncate our observations based on that effect.

All three companies also provide a great deal of information about factors that

might influence the LGD, which we divide into four categories:

1. contract information;

2. customer information;

3. object information; and

4. additional information at default.

1Only a few studies (such as Gibilaro and Mattarocci (2007)) address risk-adjusted discounting.
We use the term related refinancing interest rate to discount cash flows at the time of default,
independently of the time span of the workout and the risk of each type of cash flow.
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Contract information is elementary information about the contract, such as its

type, e. g., whether it was a full payment lease, partial amortization, or hire-

purchase; its duration; its calculated residual value or prepayment rents; and in-

formation about collateralization and/or purchase options. Customer information

mainly identifies retail and non-retail customers. The category object information

consists of basic information about the object of the lease, including its type, ini-

tial value, and supplementary information, such as the asset depreciation range.

Whereas all the information in the first three groups is available from the moment

the contract is concluded, the last category consists of information that only be-

comes available after the contract has defaulted, such as the exposure at default

and the contract age at default.

Descriptive statistics

The LGD is clearly not restricted to the interval [0, 1]. As presented in Table 2.2

and Figure 2.1, negative LGDs are not only theoretically possible but also occur

frequently in the leasing business. Hartmann-Wendels and Honal (2010) argue

that such cases mainly occur if a defaulted contract with a rather low EAD yields

a high recovery from the sale of the asset. Because we incorporate the workout

expenses, LGDs greater than one are also feasible. Thus, we do not bound LGDs

within the [0, 1] interval, as is common for bank loans and as is done by Bastos

(2010), by Calabrese and Zenga (2010), and by Loterman et al. (2012).

Company Mean Std P5 P25 Median P75 P95
A 0.52 0.40 −0.11 0.19 0.52 0.88 1.05
B 0.35 0.42 −0.18 0.00 0.25 0.72 1.01
C 0.39 0.42 −0.23 0.03 0.32 0.77 1.03

Table 2.2: Loss given default (LGD) density information for companies A–C. Std is the
standard deviation and P5–P95 are the respective percentiles.

An LGD of 45%, as specified in the standard credit risk approach, is consider-
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ably higher than the median LGDs observed for companies B and C. In general,

we emphasize that the shape of the LGD distribution varies significantly among

these three companies. As presented in Figure 2.1, only the LGD distribution of

company C exhibits the frequently mentioned bimodal shape, whereas those of

companies A and B feature three maxima. These differences continue to prevail

when we account for differences in the leasing portfolio. Thus, we trace these vari-

ations back to differences in workout policies. Because the requirements for the

pooling of LGD data, set out in section 456 of the Basel II accord, are clearly vio-

lated, we construct individual estimation models to account for institution-specific

characteristics and differences in LGD profiles among the companies.

–.5 0 .5 1 1.5
LGD

A B C

Figure 2.1: Density of the realized loss given default (LGD) by company. The realized
LGD concentrates on the interval [−0.5, 1.5]. The figures describe a loss severity of
−50% on the left end, which indicates that 150% of the exposure at default (EAD) was
recovered. On the right end, the loss severity is 150%, indicating a loss of 150% of the
EAD. Consequently, a realized LGD of 0 or 1 indicates the following: in case of 0, full
coverage of the EAD (included workout costs); or, in case of 1, total loss of the EAD.

Previous studies on the LGD of defaulted leasing contracts consistently show

that the LGD distribution depends largely on the underlying asset type. We cat-

egorize the contracts according to the underlying asset using five classes: vehicles,

machinery, information and communications technology (ICT), equipment, and
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Asset type Company # Contracts Mean Std Median

Vehicles
A 4,578 0.44 0.35 0.45
B 1,111 0.26 0.31 0.27
C 599 0.28 0.37 0.21

Machinery
A 4,140 0.55 0.43 0.61
B 779 0.06 0.27 0.00
C 646 0.39 0.42 0.32

ICT
A 606 0.77 0.38 0.96
B 1,062 0.64 0.43 0.84
C 201 0.72 0.38 0.87

Equipment
A 353 0.61 0.44 0.74
B 26 0.26 0.44 0.09
C 26 0.38 0.41 0.15

Other
A 58 0.56 0.43 0.54
B 17 0.39 0.44 0.26
C 120 0.46 0.43 0.45

Table 2.3: Loss given default (LGD) density information by asset type for companies
A–C. For each asset type, # Contracts is the number of contracts containing this
type of asset, Mean is its mean, Std is its standard deviation, and Median is its
median. ICT is information and communications technology. The displayed asset
types vary in the numbers of their contracts and even further in the characteristics
of their realized LGD.

other. Table 2.3 summarizes the key statistical figures of the distributions for

each company. We can unambiguously rank the three companies with respect to

their mean LGD. Company B achieves the lowest average LGD for all asset types,

company C is second best, and company A bears the highest losses. Contracts in

ICT have the highest average LGD. Examining the median of ICT, we find that

companies A, B, and C retrieve only 4%, 16%, and 13% of the EAD, respectively,

in half of the cases. The key statistical figures for equipment and other assets are

seemingly less meaningful because of the small sample sizes for these classes, but

the trends are consistent across all three companies.

Figure 2.2 presents the LGD distributions for vehicles, machinery, and ICT for

each company. The shape of the LGD distributions differs tremendously with

respect to the different asset types. Whereas for ICT, the LGD density in Fig-
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–.5 0 .5 1 1.5
LGD

A B C

(a) Vehicles.

–.5 0 .5 1 1.5
LGD

A B C

(b) Machinery.

–.5 0 .5 1 1.5
LGD

A B C

(c) ICT.

Figure 2.2: Densities of realized loss given default (LGD) by company for the three
major asset types: vehicles, machinery, and information and communications technology
(ICT). Depending on the asset type, the realized LGD density appears in completely
different shapes. For machinery (Figure b), even the difference between companies is
enormous.

ure 2.2c is right-skewed toward high LGDs with only weak bimodality throughout

all of the companies, the density of machinery runs partly the opposite direction.

For machinery, in Figure 2.2b, we see a higher concentration around 0, but for

company A, larger LGDs again outweigh this effect. The LGD for contracts with

vehicles varies greatly from company to company. We observe a strong multi-

modality for all of the companies with an additional peak at approximately 0.5,

and most of the density lies in the lower LGD range.

2.4 Methods

This section describes the various approaches that we use to estimate the LGD

and its density. According to section 448 of the Basel II regulations, institutes

are required to base their estimations on a history of defaults and to consider all

relevant data, information, and methods. Furthermore, a bank using the advanced

IRBA must be able to break down its experience with respect to the probability

of default (PD), LGD, and the IRBA conversion factor. This breakdown is to be

based on the factors that are identified as drivers of the respective risk parameters.

The basic method used to identify these drivers is to partition the data ac-

cording to a certain attribute (e. g., the type of object). Differences in the means
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of the partitions are then captured by setting the inducing factor as the driver.

The average value is then the (naive) estimator of the LGD for the corresponding

subclass. As Gupton and Stein (2005) note, this traditional look-up table ap-

proach is static and backward-looking, even if considerable variation is observed

in the LGD distributions for different types of objects. An alternative method of

verifying the impact of potential factors and developing an estimation model is to

conduct a regression analysis. Linear regressions always estimate the (conditional)

expectation of the target variable, but this average is not a reasonable parameter

under mixed distributions, so it is not an adequate approach from a statistical

perspective. However, regression analyses for LGD estimation are successfully

implemented by Bellotti and Crook (2012) and by Zhang and Thomas (2012).

Table 2.2 reports the median LGDs as 52%, 25%, and 32% for companies A,

B, and C, respectively. Considering the LGD distribution in Figure 2.1, its het-

erogeneity suggests that the overall portfolio is composed of several subclasses,

which are less heterogeneous in terms of the LGD. This implies that each sub-

class has its own characteristic LGD distribution. We use FMMs to reveal these

unknown classes (cluster analysis), to fit a reasonable model to the data and to

classify the observations into these classes. Furthermore, we apply two different

regression/model tree algorithms to the data. These tree-based models also have

the basic function of dividing the portfolio into homogeneous partitions; by con-

trast to the FMMs, however, the number of subclasses is endogenously determined

rather than exogenously specified.

At the end of this section, we present an overview of how to select the ex-

planatory variables for tree-based methods. We also describe our methodology

for out-of-sample testing.
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2.4.1 Finite mixture models and classification

Modeling the probability density of realized LGDs as a mixed distribution allows

us to use different potential LGD drivers for different clusters and to capture

differences in the effects of these drivers on the LGD in various subclasses. We

adapt an approach originally proposed by Elbracht (2011). FMMs are described

by Frühwirth-Schnatter (2006).

The approach consists of three steps: (1) cluster the total data set into finite

classes by finite mixture distributions using all available information; (2) classify

the data set into the resulting classes using only the information available at the

execution or default of the contract by the k-nearest neighbors (kNN) or the

classification tree algorithm J4.8; and (3) perform OLS regressions for each class.

Step (1) can be adjusted between the two extremes of nonparametric and para-

metric modeling, thus providing a flexible method of data adaptation. We use

normal distributions to construct the mixing distributions. We estimate unknown

model parameters using the expectation maximization algorithm, which also pro-

vides a probabilistic classification of the observations. The accuracy of classifica-

tion step (2) can be measured for in-sample testing. However, in out-of-sample

testing, the goal is to classify observations that do not belong to any class initially

– because these objects are not part of the training sample used to form classes –

into exactly one of the given classes.

We compare two different approaches to classifying contracts into previously

established classes. The nonparametric kNN approach assigns an observation to

the class with the majority of its k nearest neighbors, whereas the distance between

observations is determined as the Euclidean distance. This approach is described

by Hastie et al. (2009). We also apply the tree algorithm J4.8 for classification.

The J4.8 algorithm generates pruned C4.5 revision 8 decision trees, as illustrated

by Witten et al. (2011) and originally implemented by Quinlan (1993). The
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decision tree is constructed by dividing the sample according to certain threshold

values. The optimal split in terms of maximized gain ratio is performed until

additional splits yield no further improvement, or a minimum of instances per

subset is reached. Every partition results in a node. To prevent overfitting, we

prune back the fully developed tree to a certain level. According to Quinlan

(1993), these deleted nodes shall not contribute to the classification accuracy of

unseen cases.

2.4.2 Regression and model trees

RTs are classified as nonparametric and nonlinear methods. Similar to other

regression methods, they can be applied to analyze the underlying data set and

to predict the (numeric) dependent variable. An essential difference between RTs

and parametric methods, such as linear or logistic regressions, is that ex ante no

assumption is made concerning the distribution of the underlying data, and no

functional relationship is specified.

These characteristics are particularly beneficial in case of LGD estimation be-

cause it is typically not possible to describe the distribution of the LGD suitably

with a single distribution, such as the normal distribution. In addition, the dis-

tribution of the LGD varies significantly according to the underlying data. Thus,

as described in Section 2.3, the LGD distributions of the three companies studied

here are all multimodal, although there are appreciable differences between com-

panies, such as the number of maxima. In particular, more types of distributions

are observed for bank loans (for an overview, see Dermine and Neto de Carvalho

(2005)).

The basic idea of regression and model trees is to partition the entire data set

into homogeneous subsets by a sequence of splits, which creates a tree consisting

of logical if-then conditions. Starting with the root node of the tree that contains

all instances of the underlying data, each leaf covers only a fraction of the data.
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In an RT, the prediction of the dependent variable is given by a constant for

all instances belonging to a leaf, typically defined as the average value of these

instances. Model trees are an extension of RTs in the sense that the target vari-

able of instances belonging to a leaf is estimated by a linear regression model.

Therefore, model trees are hybrid estimation methods combining RTs and linear

regression. Model trees are clearly applicable for LGD estimation because RTs

are successfully used in previous studies such as Bastos (2010) and Qi and Zhao

(2011). Linear regression models are also applied to analyze and predict LGDs,

and these models may deliver comparable or better results than those of more

complex models, as shown by Bellotti and Crook (2012) and Zhang and Thomas

(2012).

For our LGD estimation, we apply the M5' model tree algorithm and the cor-

responding RT algorithm that is introduced by Wang and Witten (1997) and

described by Witten et al. (2011). This algorithm is a reconstruction of Quinlan’s

M5 algorithm that was published in 1992. In the case of the M5' algorithm, the

underlying data set is divided step by step, each time using the binary split based

on the explanatory variables with the greatest expected reduction in the stan-

dard deviation. The constructed tree is subsequently pruned back to obtain an

appropriately sized tree to control overfitting, which can influence out-of-sample

performance negatively.

The resulting tree essentially depends on the explanatory variables used, par-

ticularly with respect to the M5' model tree algorithm; selecting appropriate vari-

ables is a complex issue because of ex ante relevance and effectiveness not always

being known. In the first step, we consider the potential application of a large

number of parameters. However, it might be preferable to include only a fraction

of the available variables, which we account for in the second step.

There are various algorithmic approaches for variable selection; two frequently

applicable greedy algorithms are forward selection and backward elimination. Bel-
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lotti and Crook (2012) use forward selection for their LGD estimations of retail

credit cards with OLS regression. However, forward selection has a significant

disadvantage neglecting variable interactions.

Instead of forward selection, we employ backward elimination, initiating all

available variables and step by step eliminating the variables without which the

best value in terms of the respective fit criterion is achieved. This procedure

continues until a stop condition is reached, or all the variables are eliminated.

A typical fit criterion for regression models is the F-score. However, the Akaike

information criterion (AIC) and Bayesian information criterion (BIC) are used for

forecasting, both of which are based on the log-likelihood function.

Analogous to the approximation of the AIC used by Bellotti and Crook (2012),

the BIC can be approximated by

BIC = n · ln(MSE) + p · ln(n), (2.1)

where n denotes the number of observations, p is the number of input variables,

and MSE is the mean squared error of the observations.

We use the BIC, which penalizes the complexity of the model more than the

AIC. This complexity is measured by the number of input variables. In addition

to the number of explanatory variables, regression and model trees offer another

complexity feature: the number of leaves in the computed tree. This aspect is

among those included by Gray and Fan (2008) when designing the TARGET RT

algorithm. The more leaves that are present in the computed tree, the greater

the risk is that a contract will be misclassified, which negatively influences the

estimation.

We find that the number of leaves is determined not only by the pruning proce-

dure but also by the input variables. Thus, we modify the BIC and penalize the
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size of the computed tree

BIC∗ = n · ln(MSE) + p · ln(n) + |T | · ln(n), (2.2)

where |T | denotes the number of leaves of the computed tree.

For BIC∗, lower values are preferred. As with our data, MSE ∈ (0, 1), n � p

and n � |T | holds; thus, we have BIC∗ < 0. We set the stop condition for

our backward elimination such that a variable in the i-th iteration can only be

eliminated if the BIC∗ value increased by an absolute value of at least one, which

implies that the following constraint must be fulfilled

BIC∗i−1 − BIC∗i ≥ 1. (2.3)

2.4.3 Out-of-sample testing

We calibrate our models on randomly divided training sets of 75% and validate

their performance on the remaining 25% of the total data set. Division and cali-

bration are repeated 25 times. The final results are averaged. Our out-of-sample

validation combines the advantages of k-fold cross validation and the approach of

splitting the data set into training and test sets, and is particularly suitable for

large data sets.

Bastos (2010) and Qi and Zhao (2011) employ k-fold cross validation – using

k = 10 – to evaluate the out-of-sample performance of their models. This method

relies on partitioning the data set randomly into k equal-sized subsets. While the

model is calibrated on k−1 subsets, the models predictive performance is validated

on the remaining subset. This procedure is performed k times, with each of the k

subsets used exactly once for validation. Therefore each observation contained in

the total data set is used exactly once for validation. By contrast, we draw the 25

divisions in training and test data randomly. With a small k in the k-fold cross
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validation there are fewer performance estimates, but the size of the subsets, and

therefore the amount of the total data set which is used for each validation, is

larger. As k increases, the number of performance estimates increases, however,

the size of the validation subset decreases rapidly. Given larger data sets, the data

can be split into some training and test sets. Here, the validation is restricted to

the unseen cases of the test set. Gürtler and Hibbeln (2013) randomly shuffle and

divide their data as 70% training and 30% validation. Consequently, our out-of-

sample validation combines the advantages of these two approaches. In particular

we make use of large test sets and still generate multiple estimations.

2.5 Results

We present both in-sample and out-of-sample results in terms of LGD estimation

– using different error measurements – and compare the results. These error

parameters reflect the performance of our methods. Naturally, a low parameter

outcome is preferable. We calculate the mean absolute error (MAE) and root

mean squared error (RMSE) for each applied method according to the following

definitions

MAE = 1
n

n∑
i=1
|LGDi − LGD∗i |, (2.4)

RMSE =
√√√√ 1
n

n∑
i=1

(LGDi − LGD∗i )2, (2.5)

where LGD denotes the realized LGD, LGD∗ is the predicted LGD, and n is the

number of observations.

In addition to these measurements we calculate the Theil inequality coefficient
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(TIC), presented by Theil (1966)

TIC =
1
n

n∑
i=1

(LGDi − LGD∗i )2√
1
n

n∑
i=1

LGD2
i +

√
1
n

n∑
i=1

(LGD∗i )2
. (2.6)

TIC sets the mean squared error relative to the sum of the average quadratic

realized and estimated LGD and thereby accounts for both the model’s goodness

of fit and robustness. The factor is bound to [0, 1] with TIC = 0 being the perfect

estimator. Theil finds that a useful forecast can be made up to TIC ≈ 0.15.

For a better interpretation of the results, we also show the results of the his-

torical average and two simple OLS regression models as benchmarks. We use

identical explanatory variables for OLS regression as for the M5' algorithm and

RT before applying the variable selection procedure. Similar to M5' and RT, we

further apply a backward elimination to the OLS regression according to the BIC

in Equation (2.1).

We estimate the LGD at two different points in time: once at the execution

of the contract and once at the time of default. Typically, more information is

available at default, which should theoretically yield better predictions.

The in-sample and out-of-sample results are evaluated by calculating the Janus

quotient introduced by Gadd and Wold (1964)

Janus =

√√√√√√√
1
n

n∑
i=1

(LGDi − LGD∗i,Oos)2

1
m

m∑
i=1

(LGDi − LGD∗i,Is)2
, (2.7)

with the in-sample estimation LGD∗Is in the denominator and the out-of-sample

estimation LGD∗Oos in the numerator. Janus = 1 for equally large prediction

errors for both estimations. A value close to 1 indicates a stable model and data

structure.

At the end of the chapter, we also provide quality features of the identified finite
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mixture distributions and the error rates of classification for robustness reasons,

and we interpret these results.

2.5.1 In-sample results

Beginning with the in-sample outcomes presented in Table 2.4, our models largely

produce better estimations with the additional information available at default.

Company A Company B Company C
Method Lv. MAE RMSE TIC Lv. MAE RMSE TIC Lv. MAE RMSE TIC
Hist. avg. 0.3418 0.4018 0.1381 0.3646 0.4205 0.1988 0.3662 0.4195 0.1822
At execution
OLS 0.3240 0.3868 0.1268 0.2706 0.3451 0.1235 0.3282 0.3889 0.1519
OLSBIC 0.3246 0.3874 0.1272 0.2719 0.3471 0.1251 0.3307 0.3909 0.1537
FMM3NN 0.2806 0.3713 0.1099 0.2209 0.3354 0.1044 0.2571 0.3601 0.1176
FMMJ4.8 0.2919 0.3916 0.1043 0.2589 0.3911 0.1192 0.3028 0.3914 0.1255
M5' 13 0.3142 0.3786 0.1209 1 0.2711 0.3459 0.1241 2 0.3272 0.3874 0.1504
M5'BIC∗ 17 0.3132 0.3774 0.1201 9 0.2640 0.3388 0.1185 9 0.3148 0.3751 0.1400
RT 34 0.3183 0.3817 0.1231 7 0.2726 0.3464 0.1248 9 0.3279 0.3871 0.1510
RTBIC∗ 26 0.3197 0.3829 0.1240 11 0.2687 0.3423 0.1217 7 0.3314 0.3898 0.1531

At default
OLS 0.3114 0.3761 0.1191 0.2692 0.3435 0.1211 0.3238 0.3858 0.1490
OLSBIC 0.3123 0.3768 0.1195 0.2709 0.3451 0.1234 0.3238 0.3858 0.1527
FMM3NN 0.2550 0.3468 0.0955 0.2148 0.3280 0.1001 0.2432 0.3437 0.1091
FMMJ4.8 0.2588 0.3594 0.0900 0.2408 0.3693 0.1056 0.2835 0.3723 0.1190
M5' 6 0.3014 0.3680 0.1134 2 0.2650 0.3399 0.1193 1 0.3274 0.3883 0.1513
M5'BIC∗ 12 0.2997 0.3666 0.1126 12 0.2539 0.3277 0.1101 3 0.3244 0.3858 0.1490
RT 49 0.3032 0.3689 0.1143 25 0.2642 0.3373 0.1181 13 0.3247 0.3844 0.1487
RTBIC∗ 39 0.3046 0.3699 0.1150 10 0.2674 0.3422 0.1215 7 0.3294 0.3886 0.1523

Table 2.4: In-sample estimation errors at the execution and default of contracts by
company. The best results are underlined for each company and type of error. Hist. avg.
is the historical average loss given default (LGD) used as estimation of the LGD. OLS
represents the ordinary least squares regression, and FMM is the finite mixture model
in combination with 3-nearest neighbors (3NN), or J4.8. OLS is also performed with
the variable selection BIC algorithm and the M5' algorithm and the RT are performed
with the variable selection BIC∗ algorithm. Lv. defines the number of leaves on the tree.
MAE is the mean absolute error defined in Equation (2.4) and RMSE is the root mean
squared error defined in Equation (2.5). TIC is the Theil inequality coefficient defined
in Equation (2.6). For MAE, RMSE, and TIC, lower outcomes are preferable.

Our results clearly show the superiority of the FMMs for in-sample testing. The

MAE, RMSE, and TIC of the FMM3NN are mostly far from their counterparts

of the other models and even farther from the historical averages. The OLS
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regressions are outperformed in all cases.

Upon closer inspection, we note a large gap between the MAE and RMSE of

the FMMs of approximately 10 percentage points, which is thus much larger than

for the OLS regressions and tree-based models. We discuss this effect in more

detail in Section 2.5.3. Our findings are consistent with Elbracht (2011) and with

the discrepancy between MAE and RMSE noted by Loterman et al. (2012).

Proceeding with the tree-based models, we determine that by application of the

variable selection procedures, M5'BIC∗ strictly outperforms all RT models and the

OLS regressions, except for company C at default. However, the variable selection

is beneficial because, without it, the algorithm partly divides the contracts into

only one or two classes, leading to estimation errors close to those of the OLS

regression models. Furthermore, by applying the variable selection, we observe

that more underlying contracts tend to be associated with more classes. Compared

to the FMMs, the M5' models yield significantly higher MAEs, but they are

somewhat competitive in terms of the RMSE.

The RTs tend to divide the contracts into significantly more classes than the

M5' models. Nonetheless, the results are predominantly worse than those for

the M5' models. The RTs, with all available explanatory variables RT and in

combination with variable selection RTBIC∗ , outperform the OLS regressions for

most companies. As expected, we notice that punishing the number of classes in

RTBIC∗ results in a model with fewer classes and thereby reduces the prediction

quality. Unlike the M5' algorithm, the RT can reduce its error only by increasing

the number of classes. Likewise, OLS regression performs better when using all

available variables.

The TIC of all considered models remains well below its values of the historical

average and mainly less than the value of OLS. Additionally, all of the values are

within the range of the suggested threshold value of TIC ≈ 0.15 or less, which

confirms that the methods used are worth being considered for estimating LGDs.
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2.5.2 Out-of-sample results

Most of the studies in this field report in-sample findings but not out-of-sample

results, although the latter are crucial for proper risk management and are required

for regulatory purposes. Certainly, our out-of-sample findings, summarized in

Table 2.5, differ significantly from the in-sample results. Accordingly, to evaluate

the method’s efficiency and robustness, out-of-sample testing is essential because

in-sample results can be misleading.

Company A Company B Company C
Method MAE RMSE TIC MAE RMSE TIC MAE RMSE TIC
Hist. avg. 0.3437 0.4022 0.1383 0.3657 0.4221 0.1999 0.3679 0.4200 0.1828
At execution
OLS 0.3257 0.3891 0.1282 0.2722 0.3469 0.1246 0.3348 0.3959 0.1576
OLSBIC 0.3262 0.3893 0.1285 0.2734 0.3479 0.1256 0.3369 0.3962 0.1583
FMM3NN 0.3539 0.4479 0.1600 0.2917 0.4178 0.1621 0.3593 0.4755 0.2056
FMMJ4.8 0.3424 0.4422 0.1544 0.2749 0.4004 0.1453 0.3313 0.4193 0.1720
M5' 0.3235 0.3879 0.1271 0.2723 0.3475 0.1250 0.3365 0.3957 0.1576
M5'BIC∗ 0.3215 0.3873 0.1264 0.2711 0.3467 0.1242 0.3384 0.4004 0.1607
RT 0.3245 0.3890 0.1280 0.2751 0.3490 0.1266 0.3386 0.3961 0.1587
RTBIC∗ 0.3243 0.3888 0.1278 0.2746 0.3480 0.1259 0.3386 0.3961 0.1595

At default
OLS 0.3132 0.3786 0.1206 0.2702 0.3447 0.1229 0.3319 0.3949 0.1560
OLSBIC 0.3143 0.3790 0.1209 0.2730 0.3494 0.1260 0.3334 0.3945 0.1565
FMM3NN 0.3204 0.4214 0.1410 0.2832 0.4085 0.1549 0.3345 0.4504 0.1870
FMMJ4.8 0.2958 0.3988 0.1253 0.2741 0.3996 0.1464 0.3297 0.4260 0.1732
M5' 0.3100 0.3767 0.1191 0.2678 0.3433 0.1220 0.3332 0.3951 0.1565
M5'BIC∗ 0.3069 0.3757 0.1178 0.2659 0.3428 0.1206 0.3341 0.3977 0.1579
RT 0.3136 0.3804 0.1216 0.2710 0.3462 0.1244 0.3370 0.3958 0.1583
RTBIC∗ 0.3142 0.3811 0.1220 0.2727 0.3474 0.1252 0.3384 0.3979 0.1598

Table 2.5: Out-of-sample estimation errors at the execution and default of contracts by
company. The best results are underlined for each company and type of error. Hist. avg.
is the historical average loss given default (LGD) used as estimation of the LGD. OLS
represents the ordinary least squares regression, and FMM is the finite mixture model
in combination with 3-nearest neighbors (3NN), or J4.8. OLS is also performed with
the variable selection BIC algorithm and the M5' algorithm and the RT are performed
with the variable selection BIC∗ algorithm. MAE is the mean absolute error defined
in Equation (2.4) and RMSE is the root mean squared error defined in Equation (2.5).
TIC is the Theil inequality coefficient defined in Equation (2.6). For MAE, RMSE, and
TIC, lower outcomes are preferable.
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Our findings indicate that, in general, M5'BIC∗ generates the best out-of-sample

results, although the performance seems to depend on the size of the underlying

data set. Consistent with the in-sample results, we observe predominately more

accurate estimations using the additional information available at default.

Concerning the FMMs, we first note that the in-sample favorable FMM3NN is

now outperformed by all of the other models and also partly by the historical

averages. This outcome is unexpected because the in-sample results are good

and sturdy. The FMMJ4.8 generates isolated good MAE values but the RMSE

and TIC values are worse than their counterparts from the tree-based models and

OLS regressions. As we did in-sample, we continue to note a large gap between

the MAE and RMSE for both FMMs; furthermore, the TIC values exceed the

suggested value of 0.15 by several times.

Our results clearly demonstrate that by application of the variable selection

procedure, the model tree M5'BIC∗ is the best choice for companies A and B. For

these two companies, applying the variable selection procedure to the model tree

algorithm is beneficial without exception. Whereas both model tree methods out-

perform the RT models, M5'BIC∗ also generates consistently better MAE, RMSE,

and TIC values than both OLS regressions. For company C, we obtain a slightly

different picture. Considering the performance measures in total, the OLS regres-

sion – particularly using all available explanatory variables – is favorable now. At

the very least, at execution, the M5' algorithm generates equally good or even

slightly better RMSE and TIC values as the OLS regressions. However, the re-

sults of the M5'BIC∗ and both RT models are worse for company C. Consistent

with the in-sample results, we find that the variable selection procedure almost

throughout worsens the results of the OLS regression and RT for all companies.

The out-of-sample results suggest to some extent a link between the numbers of

observations and the relative performances of the estimation methods considered.

Containing the LGD data from three different companies, our data set provides
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us with a particularly good opportunity to analyze this relationship in greater

detail. Bearing in mind the ranking of the data set sizes, company A delivered

the largest number of observations (9,735), followed by company B (2,995) and

company C (1,592).

First of all, we note that the TIC exceeds the suggested value of 0.15 for all

of the methods in the case of company C. For companies A and B, TIC values

remain well below 0.15, at least with respect to the tree-based models and the

OLS regressions. This finding indicates that the prediction accuracy in general

becomes weaker if the underlying data set contains fewer observations. Further-

more, we note that the performances of the model trees relative to the regression

model OLS improve with an increasing data set size. At default of the contracts,

M5' performs 0.51% worse than OLS for company C concerning the MAE. But,

for company B, M5' performs 0.89% better than OLS and the improvement in-

creases to 1.02% for company A. Analogously, this tendency applies to the RMSE.

At execution of the contract the relative performance improves with an increas-

ing sample size only regarding the MAE. Actually, for M5'BIC∗ , the estimation

accuracy relative to OLS improves throughout monotonically with an increasing

sample size. Moreover, the link between the performance relative to OLS and the

number of observations included in the underlying data set is even more distinc-

tive for M5'BIC∗ . At default M5'BIC∗ performs 0.66% worse than OLS for company

C concerning the MAE, but 1.59% (2.01%) better than OLS for company B (A).

With respect to the RT models we cannot establish an unambiguous link be-

tween the performances relative to OLS and the sample size. Compared with

OLS, the performances of RT and RTBIC∗ improve with an increasing data set

size only with regard to the MAE. Whereas, regarding the RMSE the results

of RT deteriorate relative to OLS with an increasing data set size at default of

the contract and RTBIC∗ obtains the relatively worst outcomes at execution and

default of the contract on the data set of company B. Also concerning the FMMs
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and OLSBIC we could not identify a link between the performances relative to

OLS and the number of observations contained in the underlying data set. Both

FMMs and OLSBIC obtain relative to OLS the worst results almost throughout

for company B.

We further compare the results for each of the random divisions of the respective

data set used for out-of-sample testing. The findings support the link between the

performances of M5' and particularly M5'BIC∗ relative to OLS and the sample size.

For company C, M5'BIC∗ yields better results than OLS on only about 5 partitions.

With an increasing sample size, M5'BIC∗ performs better than OLS significantly

more often, to be precise, for company B on at least 60% of the divisions and for

company A on more than 90%. Actually, at execution of the contract, M5'BIC∗

yields throughout better MAE values than OLS for company A.

Although there might be several factors influencing the estimation accuracy of

the models, such as idiosyncratic firm characteristics, we find the sample size to be

of particular importance. We apply an additional test to confirm the link between

estimation accuracy and sample size. Pooling the three data sets generates a large

sample that contains 14,322 contracts (100%). We randomly draw 7,161 contracts

(50%) out of the large sample to generate a medium sized sample. For a small

sample, we randomly draw 1,432 contracts (10%) out of the large sample. We

repeat these random drawings ten times, leaving us with a total of 21 data sets.

Again, for out-of-sample testing we split the data sets randomly into 75% training

sample and 25% test sample. This step is also done ten times. We showed before,

that the M5'BIC∗ seems to be particularly sensible to small sample sizes. Also,

bearing in mind that M5'BIC∗ and the regression model OLS perform best for

companies A and B, respectively for company C, we focus on testing the impact

of sample size for these two models. All results are averaged with respect to the

sample size.

We see in Table 2.6 that both methods perform better on larger data sets. Un-
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100% (large) 50% (medium) 10% (small)
Method MAE RMSE MAE RMSE MAE RMSE
At execution
OLS 0.3327 0.3977 0.3311 0.3943 0.3359 0.4012
M5'BIC∗ 0.3186 0.3877 0.3194 0.3869 0.3323 0.4002

At default
OLS 0.3316 0.3964 0.3285 0.3943 0.3334 0.4001
M5'BIC∗ 0.3069 0.3783 0.3098 0.3814 0.3285 0.3998

Table 2.6: Out-of-sample estimation errors at the execution and default of contracts by
sample size. The sample sizes are 100% (large), 50% (medium), and 10% (small) of
all contracts. OLS is the ordinary least squares regression without variable selection
and M5'BIC∗ is the M5' algorithm with the variable selection BIC∗ algorithm. MAE is
the mean absolute error defined in Equation (2.4) and RMSE is the root mean squared
error defined in Equation (2.5). For MAE and RMSE lower outcomes are preferable.

like OLS regression, the estimation accuracy of M5'BIC∗ increases almost mono-

tonically with increasing sample size. In particular, the degree of accuracy im-

provement is clearly higher for the M5'BIC∗ . The M5'BIC∗ performs consistently

better than OLS regression. The improvement of M5'BIC∗ over OLS regression

increases with increasing sample size. At default of the contract M5'BIC∗ performs

1.5% better than OLS regression on small data sets concerning the MAE. The

improvement increases to 5.7% and 7.4% on medium sized and large data sets.

With regard to the RMSE the improvement over OLS regression is 0.1% (2.8%,

4.6%) for small (medium, large) data sets.

Furthermore, we compare the results of M5'BIC∗ and OLS regression for each

of the 210 randomly drawn subsamples. We find that M5'BIC∗ outperforms OLS

regression in all drawings on large and medium sized data sets, whereas OLS re-

gression achieves better results on small samples in 28% of the drawings concerning

the MAE and in over 40% concerning the RMSE.

We conclude that the M5'BIC∗ should be based on an adequately large data set

to process the information more efficiently than the OLS regression. Moreover,

the performed test confirms the link between prediction accuracy and sample size.



2 Loss given default for leasing: Parametric and nonparametric estimations 44

Considering that the data set of company C contains the fewest observations, and

the M5'BIC∗ improves with additional observations, we conclude that the M5'BIC∗

in general is the best choice for out-of-sample predictions.

At first glance, the differences between the values of the accuracy measurements

of the sophisticated estimation methods compared to OLS regression without

variable selection seem to be negligible in most cases and are consistent with the

results of Zhang and Thomas (2012). This finding raises the question as to whether

it is worth the effort to implement more demanding estimation methods. For a

more illustrative interpretation of our results, we use the average aggregated EAD

of our test sample, which is e 133,671,554 (e 34,762,061) for company A (B) to

estimate the total loss for the test sample. Using the M5'BIC∗ yields an estimation

that is in expectation up to e 220,000 more accurate than the OLS regression for

company B and for company A, the estimation is even up to e 1,340,000 more

accurate. Thus, improvements of an even few percentage points matter in terms

of the parameter outcomes.

Our results indicate that in-sample results are an insufficient indicator of a

method’s out-of-sample performance. In particular, for the in-sample outper-

forming FMM3NN, the results are obviously misleading because the out-of-sample

predictions are worst. Hence, we study the stability of our models using the Janus

quotient, as shown in Table 2.7. According to the Janus quotient, we can partition

our methods into stable and unstable methods. A Janus quotient close to 1 indi-

cates a stable model and data structure, which holds for the tree-based models,

the OLS regressions, and the historical averages mainly with quotients less than

1.05. Exclusively taking into account the stable models, we observe more or less

the same order concerning the estimation accuracy in-sample and out-of-sample.

In particular, the M5'BIC∗ performs in-sample conspicuously better than the other

stable methods for companies A and B. This finding remains valid for the out-

of-sample results without exception, only the advantage is smaller. As expected,
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Company A Company B Company C
Method Exec. Dflt Exec. Dflt Exec. Dflt
Hist. avg. 1.0011 1.0011 1.0037 1.0037 1.0013 1.0013
OLS 1.0059 1.0066 1.0052 1.0035 1.0180 1.0236
OLSBIC 1.0049 1.0058 1.0023 1.0125 1.0136 1.0226
FMM3NN 1.2062 1.2151 1.2456 1.2453 1.3202 1.3105
FMMJ4.8 1.1291 1.1095 1.0238 1.0818 1.0713 1.1442
M5' 1.0246 1.0236 1.0046 1.0100 1.0214 1.0175
M5'BIC∗ 1.0262 1.0248 1.0233 1.0461 1.0674 1.0308
RT 1.0191 1.0312 1.0075 1.0264 1.0232 1.0297
RTBIC∗ 1.0154 1.0303 1.0167 1.0152 1.0162 1.0239

Table 2.7: Janus quotient for in-sample and out-of-sample estimations of loss given
default (LGD) for each method and company at execution (Exec.) and default (Dflt)
of contracts. The quotient is calculated according to Equation (2.7) and is constant for
the historical average. A Janus quotient greater than 1 indicates that the error for the
out-of-sample estimation is greater than the error for the in-sample estimation. OLS
represents the ordinary least squares regression, FMM is the finite mixture model in
combination with 3-nearest neighbors (3NN), or J4.8. OLS is also performed with the
variable selection BIC algorithm and the M5' algorithm and the RT are performed with
the variable selection BIC∗ algorithm.

for the FMMs, a Janus quotient that is mainly considerably greater than 1 indi-

cates that these models are unstable. For the FMM3NN, the quotient consistently

exceeds 1.20. Hence, if out-of-sample testing is impossible, e. g. due to an insuf-

ficiently large data set, the in-sample results can be used as a prime indicator of

the out-of-sample performance for stable methods, but this relationship obviously

does not apply for unstable methods.

2.5.3 Validation and interpretation

To analyze the models’ performances in detail and to elaborate on the several

steps of FMMs, we present some key figures of our methods in this section.

FMMs produce accurate in-sample results by aiming to reproduce the distribu-

tion density. This relationship is true for both of our FMMs and is independent of

the choice of the classification method in step (2). Figure 2.3a displays the realized
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LGD

Realized LGD OLS FMM3NN

(a) In-sample LGD density.

–.5 0 .5 1 1.5
LGD

Realized LGD OLS FMM3NN

(b) Out-of-sample LGD density.

Figure 2.3: Densities of realized loss given default (LGD), LGD estimated by ordinary
least squares (OLS) regression without variable selection, and LGD estimated by finite
mixture combined with 3-nearest neighbors (FMM3NN) for company B. The in-sample
approximation of the realized LGD distribution by FMM is already good (Figure a)
and it even improves in the out-of-sample estimation (Figure b). OLS regression, by
contrast, is visibly only slightly changing and is not necessarily improving from in-sample
to out-of-sample estimation.

and estimated LGDs for company B. Whereas OLS regression is not capable of

properly accounting for the multimodality of the realized LGD distribution, the

FMM’s estimation is a good approximation. However, such density representa-

tions could be misleading because they are not capable of showing the deviation

of an estimate from its realized value. This effect becomes particularly clear when

we consider the out-of-sample results of the FMMs. For misclassified observations

during either the clustering or classification process, the RMSE increases rapidly,

while the approximation of the density remains accurate (Figure 2.3b).

The effect can also be observed regarding the scatter plots in Figure 2.4. For

both OLS regression and FMM, the in-sample estimation of LGD is rather concen-

trated around the diagonal in Figures 2.4a and 2.4b. Out-of-sample, we notice for

OLS regression in Figure 2.4c that the LGD estimates are thinned out uniformly,

which leaves most of its density close to the diagonal. The FMM, by contrast,

retains a relatively large amount of its estimates that are far from the diagonal,

thus far from the realized value of the LGD. These large deviations consequently

result in a larger RMSE. The MAE remains at an acceptable level because most
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(a) In-sample: realized LGD versus es-
timated LGD by OLS regression.
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(b) In-sample: realized LGD versus es-
timated LGD by FMM3NN.
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(c) Out-of-sample: realized LGD versus
estimated LGD by OLS regression.

–.
5

0
.5

1
1.

5
E

st
im

at
ed

 L
G

D

–.5 0 .5 1 1.5
Realized LGD

(d) Out-of-sample: realized LGD versus
estimated LGD by FMM3NN.

Figure 2.4: In-sample and out-of-sample: realized loss given default (LGD) versus es-
timated LGD by ordinary least squares (OLS) regression without variable selection
(Figures a and c) and finite mixture combined with 3-nearest neighbors (FMM3NN)
(Figures b and d) for company B. Each figure has a simple diagonal line to illustrate
the deviation.

of the density stays on the diagonal.

We analyze the quality of FMMs by examining the density of the a posteriori

probability of belonging to a certain class, as proposed by Grün and Leisch (2007).

The classification becomes more unambiguous as the probability approaches one,

which indicates the quality of the adaptation.

For mixing distributions with two clusters, the average in-sample probability

that observations are classified into a particular class is at least 88%, whereas the

median is close to one. Poorer performance is observed with three clusters because

of the larger overlap caused by additional clusters, resulting in lower classification
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Company A Company B Company C
Method Exec. Dflt Exec. Dflt Exec. Dflt
3NN 0.2176 0.1925 0.2018 0.1834 0.1943 0.1808
J4.8 0.3740 0.3371 0.3693 0.3085 0.2833 0.2634

Table 2.8: In-sample classification errors for the 3-nearest neighbors (3NN) and J4.8
methods at execution (Exec.) and default (Dflt) of the contracts. Given the clustering of
the finite mixture model in step (1) (see Section 2.4.1), a contract is classified incorrectly
if the classification algorithm (3NN or J4.8) in step (2) assigns this contract to a different
cluster. The classification error is then the relative number of falsely assigned contracts.

probabilities. However, three-quarters of all observations are classified during the

clustering process in step (1), with a minimum probability of 58%.

Validating the classification methods is even more important than validating

the clustering in step (1) of the procedure. Although clustering works well for

all of the companies, classifying the observations with the information available

at the contract execution and default is critical. By reviewing the classification

errors of our classification methods, we analyze the performance of these meth-

ods. Thus, we can assess the percentage of incorrectly assigned observations.

This process only works in-sample because, for unseen cases the true class is un-

known. Table 2.8 demonstrates an improvement when we compare classification

errors at the execution and default of the contract for both methods. The 3NN

approach clearly results in a more accurate classification, which is attributable

to the 2-clustered mixing distribution. J4.8 distinguishes among three clusters.

These clusters naturally overlap to a significant extent, which results in higher

classification errors. The errors are in line with the MAE and RMSE in Table 2.4.

The number of mixing distributions is an exogenous parameter. Our model

with three mixing normal distributions constantly produces the smallest AIC and

BIC. However, the lower classification error in step (2) might suggest a model

with two mixing normal distributions. In terms of MAE and RMSE, neither the

parameters, such as the AIC and BIC of the mixing models, nor the in-sample

classification error is a consistently good performance indicator for the composed
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method. Our results in Section 2.5.2 show that the in-sample classification error

and out-of-sample MAE and RMSE do not behave proportionally. By contrast,

AIC and BIC work well with the out-of-sample results of the FMMJ4.8.

Overall, the large difference between the MAE and RMSE arises from the entire

procedure of FMMs, which are focused on accurately mapping the LGD density.

Out-of-sample in particular, the classification is problematic, which becomes obvi-

ous in Figure 2.4d, as a large number of estimations is far from the realized value.

Therefore, reproduction results in comparatively robust MAEs, but the RMSE

rises quadratically and penalizes these outliers.

Reproducing the LGD distribution to yield accurate estimations is proposed

by Hlawatsch and Ostrowski (2011). Qi and Zhao (2011), however, conclude

that mapping the density is only of minor importance for precisely predicting the

LGD. Using transformation regressions under different parameters, they cannot

establish a link between the ability to map the density properly and the estimation

accuracy, neither in-sample nor out-of-sample. To some extent the results of the

FMMs support this conclusion. Nonetheless, there is a significant difference. For

instance, the FMM3NN generates accurate predictions in-sample and only performs

worse out-of-sample. This finding suggests that the FMM3NN adapts well to the

training data by reproducing the density, but it also indicates that overfitting

might be a severe problem.

With regard to out-of-sample predictions, a high level of adaptation to the

underlying training data is only reasonable if the training and test data are ex-

ceedingly homogeneous. Given inhomogeneous data sets, a good adaptation to

the training data basically involves potential overfitting. This relationship is also

supported by the results of the model trees. The data set of company C contains

notably fewer observations than those of companies A and B. Moreover, the TIC

for company C exceeds the suggested value of 0.15 out-of-sample for all of the

methods. Thus, it can reasonably be concluded that the training and test data
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are comparatively inhomogeneous. M5'BIC∗ performs strictly better than M5' for

all three companies in-sample; in other words, the M5'BIC∗ attains a superior

adjustment to the underlying data set. Out-of-sample, however, M5'BIC∗ yields

better results only for companies A and B whereas M5' is beneficial for company

C. Hence, given inhomogeneous training and test data, the superior adaptation

to the training data is not transferred into sturdy out-of-sample predictions.

For the FMMs, the classification is obviously of prime importance, and out-

of-sample in particular, it is problematic. However, classification is also relevant

for the tree-based models because the observations are also partitioned into dif-

ferent classes. Certainly, by contrast to the FMMs, the tree-based models use

more classes.2 This increased number of classes indicates that in case of the M5'

models, the different classes considerably overlap with one another. For the RTs,

the classes are spread over the entire observation interval. In-sample, the number

of misclassified contracts is manageable for both the tree-based models and the

FMMs. As a result, the latter method mainly yields accurate in-sample estima-

tions (Figure 2.4b), whereas the predictions of the tree-based models, particularly

in terms of the MAE, are not as accurate. Naturally, it is more difficult to clas-

sify unseen observations correctly. This fact also holds for the tree-based models,

although the out-of-sample predictions are significantly better than those of the

FMMs. However, based on the tree model’s class structure, a misclassified con-

tract tends to be placed into an adjacent class; thus, the resulting error remains

low. By contrast, the classes of the FMMs are largely disjointed; thus, the error

for a misclassified observation tends to be more significant.

2.6 Conclusion

We use contracts of three leasing companies separately to evaluate various models

in-sample and out-of-sample at two different points in time. Our findings prove
2The number of classes is chosen by the algorithm and is not defined ex ante.



2 Loss given default for leasing: Parametric and nonparametric estimations 51

that out-of-sample testing is essential for evaluating a model for LGD estimation.

In-sample results might be significantly misleading when estimating out-of-sample

LGDs, which are crucial for proper risk management and are required for regula-

tory purposes.

FMMs account for the multimodality of the LGD density. Combined with the

classification algorithm 3NN, this method achieves the lowest in-sample MAE,

RMSE, and TIC values. In particular, it outperforms the historical average and

the OLS regressions, which were used as benchmarks. Along with the FMMs, the

model tree with variable selection M5'BIC∗ yields the best results for in-sample

estimation.

Out-of-sample, a clear trend can be observed that model trees and particularly

M5'BIC∗ generate the best results. Compared with OLS regression the performance

of M5'BIC∗ improves notably with an increasing data set size. We confirm this

result by applying an additional test, in which we eliminate idiosyncratic features

by pooling the three data sets. Furthermore, for the company with the fewest

observations, the TIC values indicate that all applied methods have difficulties

predicting the LGD of unseen contracts accurately. As opposed to in-sample

results, FMMs now are outperformed even by the OLS regression; in particular,

FMM3NN performs worst.

The Janus quotient determines the stability of our models, dividing them into

stable and unstable methods. In particular, the in-sample results of unstable

methods, namely the FMMs, cannot be used as indicators for out-of-sample esti-

mation errors.



3 Does the Economic Situation
Affect the Loss Given Default
of Leases?

3.1 Introduction

One of the elementary components of risk management in financial institutes is

the quantification of credit risk. The knowledge of the expected loss of a financial

asset is essential for a proper allocation of regulatory and economic capital. Beside

the probability of default (PD) and the exposure at default (EAD), the credit

risk is in particular determined by the loss given default (LGD) respectively its

counterpart, the recovery rate. The LGD represents the fraction of the EAD that

a financial institute looses if a debtor defaults.

According to the Basel II accord and the Capital Requirement Regulation

(CRR), financial institutes may choose between the Standardised Approach and

the Internal Ratings Based Approach (IRBA) in order to calculate their capital

requirements for credit risk. To implement the advanced IRBA, it is necessary

to develop internal models for the estimation of PD, EAD, and LGD which are

in line with the regulatory framework. Despite the importance of the LGD es-

timation, previously the academic literature mainly dealt with the calculation of

the PD. Just in the recent past, several studies have addressed the estimation of

the LGD. However, the majority of these studies focused on bonds and partly

on loans, whereas only a few studies covered the LGD of leasing contracts (see,

e. g., Schmit and Stuyck (2002), Laurent and Schmit (2005), De Laurentis and Ri-
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ani (2005), Hartmann-Wendels and Honal (2010), and Hartmann-Wendels et al.

(2014)). Although loans and leases have similar characteristics, there exist some

crucial differences. A specific characteristic of leasing contracts is that the lessor

keeps the legal ownership of the leased asset during the entire contract period.

This permits the leasing company to repossess and dispose the leased asset if a

debtor defaults. In particular, the lessor can retain all returns from disposing the

leased asset. Therefore, leasing companies benefit from comparatively low LGDs.

Especially in the light of the regulatory requirements, one crucial aspect of LGD

research should be the dependency between the LGD and the economic situation.

According to section 468 of the Basel II framework, LGD estimations must reflect

economic downturn conditions wherever necessary to capture the relevant risks.

Moreover, from a practical point of view, the substantial influence of the economic

situation on credit risk in general became particularly evident during the financial

crisis. Serious losses, which led to difficulties in several financial institutes, clearly

demonstrated that credit risk is significantly higher during a recession. However,

the number of empirical studies that dealt with the influence of the economic

conditions on the LGD of loans or leases is limited. As already stated by Bruche

and González-Aguado (2010), for the PD time-variations are taken for granted,

whereas the LGD is often assumed to be constant over time.

The existing literature that addressed the LGD of loans and leasing contracts

has primarily either investigated different estimations methods for the LGD or

analyzed the factors that influence the LGD. In order to identify the key drivers of

the LGD, most studies focused on analyzing the relationship between the LGD and

idiosyncratic factors, such as contract characteristics and customer characteristics

(see, e. g., De Laurentis and Riani (2005), Grunert and Weber (2009), Bastos

(2010), Gibilaro and Mattarocci (2011), and Khieu et al. (2012)). Notably, the

findings of the studies are different on some factors and these differences cannot

be solely attributed to differences between loans and leases. Studying Portuguese
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loans, Bastos (2010) found, e. g., that the LGD increases with an increasing size

of the loan. On the other hand, Thorburn (2000) could not identify a significant

relationship between the LGD and the size of the loan when analyzing Swedish

data. Furthermore, Chalupka and Kopecsni (2009), investigated Czech loans and

found, e. g., a positive relationship between the LGD and the EAD. In contrast,

both Gibilaro and Mattarocci (2011) for bank transactions and Elbracht (2011)

for leases observed a negative link between the LGD and the EAD.

Incorporating macroeconomic factors in the analysis of the drivers of the LGD

has been less common so far. In fact, sporadically a single macroeconomic factor

was taken into account, but in particular the influence of the economic situation

as a whole was not considered. On the other hand, in the recent past, some

studies on loans concentrated specifically on the relationship between the LGD

and the economic situation, but paid only little attention to the influence of the

idiosyncratic factors on the LGD. Araten et al. (2004) and Emery (2008) both

observed that LGDs are on average higher during recessions and lower during

expansions. Moreover, e. g., Caselli et al. (2008) and Leow et al. (2014) studied the

relationship between the LGD and various macroeconomic factors. The authors

found that the LGD of loans depends among others on the growth rate of the gross

domestic product and the level of interest. Nevertheless, relating to leases, studies

that dealt with the relationship between the economic situation and the LGD are

extremely rare. It is important to consider that for leases, the relationship between

the LGD and macroeconomic factors might be different than to loans, as the lessor

keeps the legal ownership of the leased asset. The corresponding disposal of the

leased asset during the workout generates an additional source of payments which

can be particularly influenced by the lessor. Early studies by Schmit and Stuyck

(2002) and Laurent and Schmit (2005) actually argued that the LGD of European

leasing contracts is essentially independent on the economic situation. However,

a recent study by Hartmann-Wendels and Honal (2010) exclusively considered a
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set of macroeconomic factors and found evidence that the LGD of German leases

indeed depends on the economic cycle.

To the best of our knowledge, so far no study examined at once the influence of

the economic situation on the LGD and its idiosyncratic key drivers with regard

to leasing contracts. In order to fill this gap, this paper analyzes the influence of

the economic situation, modeled by various macroeconomic factors, on the LGD

of defaulted leases while simultaneously taking into account essential idiosyncratic

factors. As the LGD undoubtedly depends on idiosyncratic factors, it is crucial to

identify and incorporate the idiosyncratic key drivers of the LGD when analyzing

the relationship between the LGD and the economic situation. Considering ex-

clusively macroeconomic factors and neglecting these idiosyncratic drivers of the

LGD may result in an overestimation respectively underestimation of the depen-

dency of the LGD on the economic situation. Consequently, such models may

prove to be unreliable.

The data we use for our study are provided by two German leasing companies

and cover a wide range of economic conditions including the impact of the recent

financial crisis. Bearing in mind the observed differences in the existing literature

concerning the relationship between the LGD and some idiosyncratic factors, the

separate analysis of two lessors is of particular interest. In line with the Basel II

framework, we estimate the LGD at two different points in time, once at execution

of the contract and additionally at default of the contract. To validate our results

we perform in-sample and out-of-time testing. Although out-of-time testing is of

major importance from a practical point of view and is mandatory to meet the

regulatory requirements, it has rarely been done by other studies (e. g., Bastos

(2010) and Bellotti and Crook (2012)).

The detailed analysis of the relationship between the LGD and macroeconomic

factors over a long observation period across different economic conditions is par-

ticularly essential for the proper calculation of a downturn LGD. Several studies,
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e. g., Hartmann-Wendels and Honal (2010), Bellotti and Crook (2012), and Leow

et al. (2014), proposed to use macroeconomic stress tests for calculating a down-

turn LGD. Assuming that the LGD is higher during an economic downturn, the

LGD is modeled depending on macroeconomic factors. The downturn LGD is

then obtained by the use of unfavorable realizations of the macroeconomic fac-

tors. However, this approach requires a stable relationship between the LGD and

the macroeconomic factors, which in particular consists during a downturn period.

Ex ante it is generally unknown whether this condition is satisfied.

To ensure that our results are not caused by a specific estimation method, we

conduct our analysis with both a linear and a nonlinear model. Selecting a suitable

method for estimating the LGD is principally challenging due to the characteristic

density function of the LGD. The LGD of loans and leases is typically bimodal re-

spectively multimodal distributed with high concentrations near zero and one and

in some cases additionally around zero point five (see, e. g., Laurent and Schmit

(2005), Bastos (2010), Hartmann-Wendels and Honal (2010), Qi and Zhao (2011),

Zhang and Thomas (2012), and Hartmann-Wendels et al. (2014)). It means that

predominately either low recoveries or nearly complete recoveries occur. Further-

more, especially with regard to loans it is often assumed that the LGD is bounded

within the interval [0,1] (see, e. g., Bastos (2010)). This implies that the lender

cannot recover respectively lose more than the outstanding debt. However, the

LGD of leases exceeds both limits certainly (see, e. g., Laurent and Schmit (2005)

and Hartmann-Wendels and Honal (2010)). In addition to the linear regression

that was successfully used for predicting the LGD, e. g., by Bellotti and Crook

(2012) and Zhang and Thomas (2012), previous studies applied various advanced

methods for the estimation of the LGD (see, e. g., Bastos (2010), Qi and Zhao

(2011), Loterman et al. (2012), and Hartmann-Wendels et al. (2014)). As it has

been noted, reproducing the LGD distribution is only of secondary importance

for estimating the LGD. Comparing different estimation methods, Qi and Zhao
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(2011) rather concluded that the outcomes differ depending on whether linear

or nonlinear relationships between the LGD and the explanatory variables are

established. Similar was stated by Loterman et al. (2012). Therefore, it seems

to be particularly reasonable to use both a linear and a nonlinear model for our

analysis.

Summarized, our study makes the following crucial contributions to the exist-

ing literature. First, we analyze the influence of macroeconomic factors on the

LGD while simultaneously taking into account essential idiosyncratic factors, by

which we meet the requirements of the Basel II accord. In particular, we analyze

under which circumstances the consideration of macroeconomic factors could lead

to significantly better estimations of the LGD. We find that the benefit of using

macroeconomic factors for the LGD estimation of leases crucially depends on the

point in time the estimates are carried out. In particular at execution of the con-

tract we observe a clear link between the LGD and the economic situation. Second,

we study the relationship between the LGD and idiosyncratic factors to identify

its idiosyncratic key drivers. By separately analyzing data from two lessors with

both a linear and a nonlinear model we obtain insight why the observed effects of

idiosyncratic factors on the LGD are partly inconsistent in the existing literature.

Our results show that the idiosyncratic key drivers of the LGD substantially differ

between the investigated leasing companies. However, we observe that the LGD

generally depends more on object characteristics and contract characteristics than

on customer characteristics.

The remainder of this study is structured as follows. Section 3.2 contains an

overview of the data used in this study, describes the factors that potentially

influence the LGD, and introduces some descriptive statistics. In Section 3.3 we

discuss the methods used in this study. Section 3.4 comprises the analysis of the

in-sample results, followed by a discussion of the out-of-time results in Section

3.5. Finally, in Section 3.6 we present the conclusion of our study.
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3.2 Data

This study uses data originally provided by three major German leasing compa-

nies. In our analysis, however, we only consider two lessors, as we noted inconsis-

tencies regarding the default dates for the third dataset. According to Table 3.1,

the remaining datasets contain 2,908 defaulted leasing contracts of 2,270 different

lessees for lessor A and 9,171 defaulted leasing contracts of 5,430 different cus-

tomers for company B. For both companies the datasets consider leases that have

defaulted between 2002 and 2009. The dates of execution of the leasing contracts

are between 1995 and 2009.3 Consequently, the datasets of both companies meet

the requirements set out in section 472 and 473 of the Basel II accord. Accord-

ing to this the historical data the LGD estimation is based on has to cover an

observation period of seven years respectively five years in case of retail contracts.

Company #Contracts #Lessees ∅ LGD σ(LGD) Min. LGD Max. LGD
A 2,908 2,270 0.3518 0.4192 -0.4955 1.3359
B 9,171 5,430 0.5041 0.3996 -0.4948 1.4866

Table 3.1: Number of contracts and lessees in the datasets of the companies A and B.
In addition loss given default (LGD) density information for both companies: average
LGD, standard deviation of the LGD, minimum LGD and maximum LGD.

Concerning the general availability of data, it has to be stated that even major

companies suffer difficulties in providing data sufficient for an adequate LGD

estimation. Only in the recent years financial institutions started to establish

detailed loss databases, due to the increasing regulatory requirements. For this

reason, datasets for LGD estimation including a long timespan are rare. With

regard to our datasets we emphasize that our observation period does not only

meet the requirements of the Basel II accord but in particular cover two crises

that have had a significant impact on the German economy. Firstly this is the

Dotcom crisis in 2000. The Dotcom crisis was triggered by the bursting of a

3The observation period ends at the end of the year 2009 because for the following years, no
further data have been provided.
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speculative bubble in March 2000 and led to recessionary tendencies in Germany.

The second significant crisis is the financial crisis, beginning in the second half of

2007. The financial crisis began with the subprime crisis in the summer of 2007,

and developed into a global economic crisis in 2008. In the course of the financial

crisis, there were recessions in many industrial countries, including in Germany. In

particular, it should be noted that even the supposedly short observation period of

considered contract defaults covers an entire economic cycle. This is sufficient to

analyze whether there is a stable relationship between the LGD and the economic

situation.

The default definition both companies use meet the requirements of the Basel

II accord. Moreover, the workout of all defaulted contracts is completed and we

calculated the LGD as one minus the workout recovery rate. The recovery rate is

the ratio of the recovery amount to the EAD. Corresponding to the requirements

of the Basel II accord, we calculated the recovery amount as the sum of all cash

inflows, discounted to the time of default using the term-related refinancing inter-

est rate, reduced by the expenses incurred during the workout. The EAD is given

by the sum of the present value of the outstanding minimum lease payments, com-

pounded lease payments, and the present value of the calculated residual value.

In particular, both companies use identical definitions for the data which entered

into the LGD calculation.

As shown in Table 3.1, the average realized LGD of the two companies differs

significantly. Company A realizes on average a LGD of 35.18%, whereas the

average LGD of company B is 50.41%. This significant difference in the average

LGD cannot be attributed to a different field of activity, as both companies offer

a wide range of leasing objects and make contracts with both retail and non-retail

customers. Although the average LGD differs, we observe uniformly for both

companies that the LGDs of the individual contracts scatter strongly over the

interval [−0.5,1.5]. This can be also recognized by means of the LGD distribution,



3 Does the Economic Situation Affect the Loss Given Default of Leases? 60

D
en

si
ty

-.5 .50 1 1.5
LGD

Company A Company B

Figure 3.1: Density of the realized loss given default (LGD) for company A and B. The
realized LGD concentrates on the interval [−0.5,1.5]. The figure describes a loss severity
of −50% (−0.5) on the left end, which indicates that 150% of the exposure at default
(EAD) was recovered. On the right end, the loss severity is 150% (1.5), indicating a
loss of 150% of the EAD.

illustrated in Figure 3.1. For both companies the LGD distribution exhibits a

multimodal shape. However, there are differences in the LGD distribution of the

two companies. For company A we basically observe the frequently mentioned two

maxima around zero and one, while company B features a third maximum around

zero point five. In addition, we note that several of the realized LGDs exceed the

interval [0,1]. Negative LGDs for leasing contracts have been also observed, e. g.,

by Laurent and Schmit (2005) and Hartmann-Wendels and Honal (2010). The

latter cited that negative LGDs in particular result from contracts with a rather

small EAD that yield high recoveries from the disposal of the leased asset. LGDs

greater than one can occur as we consider workout expenses.

With regard to the apparent differences in the LGD profiles among the two

companies, we do not pool the LGD data. In fact, in line with the regulatory

requirements, we construct individual estimation models for both companies to

account for institution specific characteristics.
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3.2.1 Fluctuations of the LGD

To get a first impression of the evolution of the LGD over time, we analyze the

fluctuations of the average LGD of contracts that have been executed or defaulted

in a year, presented in Table 3.2.

Company A Company B
Executed contracts Defaulted contracts Executed contracts Defaulted contracts

Year #Contracts ∅ LGD #Contracts ∅ LGD #Contracts ∅ LGD #Contracts ∅ LGD
1995 2 0.5155
1996 10 0.2355 4 0.4519
1997 19 0.3119 10 0.4525
1998 71 0.3150 101 0.5426
1999 169 0.3777 318 0.4776
2000 362 0.2971 671 0.5228
2001 627 0.2681 981 0.4864
2002 453 0.2820 363 0.2932 1,140 0.4692 1,115 0.5281
2003 333 0.3001 666 0.3197 1,133 0.4527 1,128 0.5161
2004 394 0.4688 570 0.3183 1,046 0.4408 1,167 0.4638
2005 274 0.4931 572 0.3725 953 0.5266 1,041 0.4258
2006 123 0.5056 419 0.3765 1,074 0.5478 1,057 0.4731
2007 66 0.6205 266 0.4601 969 0.5430 789 0.5172
2008 5 0.4665 46 0.6450 607 0.5825 1,268 0.5481
2009 2 -0.0598 6 -0.1218 112 0.6457 1,606 0.5381

Table 3.2: Number of executed respectively defaulted contracts and related average
loss given default (LGD), by year and company. All of the executed contracts listed
defaulted later between 2002 and 2009.

We first examine the evolution of the average LGD according to the year of

execution. Measured by the total number of observations, the majority of the

contracts was executed between 1998 and 2007 for company A and between 1999

and 2008 for company B. It should be noted that contracts executed during the

last year of the observation period are possibly underrepresented, because we

only consider contracts with completed workout. With respect to the remaining

periods, we observe in particular for company A significant differences in the

average LGD for each year. Here, the LGD varies between 26.81% in 2001 and

62.05% in 2007, while company B realized the lowest average LGD in 2004 with

44.08% and the highest average LGD of 58.25% in 2008. If we additionally

consider for company B the year 2009 with an average LGD of 64.57%, the scatter

of the average LGDs becomes more apparent, but still not as pronounced as for

company A.
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We note that the evolution of the average LGDs differs partly for both com-

panies. Around the Dotcom crisis in 2000, we observe higher LGDs for contracts

signed in 1999 (2000) for company A (B). Furthermore, we notice that the average

LGDs are comparatively low subsequent to the Dotcom crisis for both compa-

nies, but increase significantly particularly in the years before the financial crisis.

However, for company A the increase of the average LGD is more pronounced

and starts already in 2004 while company B realized higher average LGDs only

from 2005 onwards. Moreover, we observe that the average LGD continuously

increased during the financial crisis for company B.

We further continue analyzing the evolution of the average LGDs with regard to

the year of default. The number of all defaulted contracts is distributed over the

entire observation period for company B, while for company A the majority of the

contracts defaulted between 2002 and 2008. As at execution of the contracts, for

company A we observe significant differences in the average LGD for the individual

years. In the period from 2002 to 2008, the average LGD varies between 29.32%

and 64.50%. However, in contrast to the execution of the contracts, this wide

spread results almost exclusively by a significant increase of the averge LGD in

the years 2007 and especially 2008. For company B, the average LGD fluctuates

moderately between 42.58% in 2005 and 54.81% in 2008.

At default of the contracts we observe notable differences in the evolution of

the average LGDs for both companies, in particular during the financial crisis.

At first glance the average LGD started to increase in 2007 for both companies,

although the change is more pronounced for company A. In fact, for company

A the average LGD already exceeded the previous highest value considerably in

2007. In 2008, the average LGD then continued to increase significantly by almost

20%. Company B, however, realized higher LGDs than before the financial crisis

only from 2008 onwards, and the LGDs exceeded the highest pre-crisis values by

at most 2%.
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3.2.2 Workout Characteristics

In the preceding sections we have seen that the realized LGD differs significantly

for the two companies. Company A exhibits on average about 15% lower LGDs

than company B and additionally, the average LGDs of company A are subjected

to noticeable higher fluctuations over time. In the following, we examine the

revenues of the lessors during the workout to reveal possible structural differences

between the two companies. Table 3.3 presents the share of the revenues from

disposing the leased asset respectively the payments made by the lessee in relation

to the total payments the lessor receives during the workout. We focus on these

two sources of revenues, because commonly they represent the major portion of the

income the leasing company receives during the workout. Moreover, in contrast to

the revenues from disposing the leased asset respectively the payments made by

the lessee, other sources of revenues, such as guarantees, are typically associated

with considerable costs for the lessor.

Company A Company B
Share of asset resale Share of customer payments Share of asset resale Share of customer payments

Year of default ∅ σ ∅ σ ∅ σ ∅ σ

2002 0.4297 0.3854 0.4977 0.3934 0.6849 0.4278 0.1155 0.2627
2003 0.5746 0.3879 0.3566 0.3788 0.7314 0.4025 0.1187 0.2648
2004 0.5582 0.3943 0.3758 0.3879 0.7628 0.3749 0.1219 0.2578
2005 0.5411 0.4188 0.3708 0.4051 0.7617 0.3727 0.1144 0.2445
2006 0.5888 0.4085 0.3471 0.3867 0.7506 0.3857 0.1105 0.2467
2007 0.6083 0.4186 0.2243 0.3302 0.6964 0.4300 0.1000 0.2530
2008 0.5318 0.4774 0.0986 0.2536 0.7242 0.4066 0.1006 0.2380
2009 0.5683 0.4788 0.0284 0.0440 0.6778 0.4093 0.1567 0.2861

Table 3.3: Average share and standard deviation of the inflows from disposing the leased
asset respectively through customer payments in relation to the total inflows received
during the workout, by company and year of default. The inflows by the customer
include direct payments by the customer and inflows from the dispose of additional
collateral.

In general, the revenues from disposing the leased asset represent a substantially

higher proportion of the total payments for company B compared to company A.

The share of the inflows from disposing the leased asset amounts on average around

70% for company B, whereas for company A the proportion averages around 55%.

In contrast, the payments made by the lessee are significantly higher for company



3 Does the Economic Situation Affect the Loss Given Default of Leases? 64

A, representing partially more than 35% of the total payments received during

the workout. For company B, the share of the lessee payments amounts just

over 10%. This composition of the essential inflows the lessors retain during the

workout suggests that company A cooperates closer with the lessee and manages

the workout more actively.

Considering the development of the recoveries over time, it is noticeable that the

proportion of the revenues from disposing the leased asset is relatively constant

for both companies. This indicates that the inflows from the realization of the

leased asset are only minor affected by the economic situation. In fact, the leas-

ing companies are able to obtain adequate revenues also during downturns due

to their good knowledge of the secondary markets. This argumentation is also

supported by the fact that the LGD, which is based exclusively on the returns

from disposing the leased asset, increases only slightly in the wake of the financial

crisis. In contrast, with regard to the evolution of the payments made by the

lessee, we note significant differences between the two companies. For company B

the comparatively low proportion of payments made by the lessee remains largely

constant over time, whereas for company A the share of the lessee payments de-

pends considerably on the economic situation. In the wake of the financial crisis,

the proportion of the payments made by the lessee starts to decline in 2007 by

more than 10% for company A. One possible explanation for the observed decline

is the typically decreasing order situation during an economic downturn. Conse-

quently, the lessee obtains less inflows which complicates paying the lessor. As

the share of the inflows from disposing the leased asset does not increase during

the financial crisis, company A apparently tries to compensate the lack of lessee’s

payments by other sources of revenues, such as guarantees. However, these other

revenues are typically associated with considerable costs for the lessor, such as

legal costs, which leads to significant higher LGDs, as discussed in Section 3.2.1.
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3.2.3 Explanatory Idiosyncratic Factors

Concerning the leasing contracts, both companies provided a great deal of spe-

cific information about factors that might influence the LGD. We have classified

these idiosyncratic factors into four groups: (1) object characteristics, (2) con-

tract characteristics, (3) customer characteristics, and (4) additional information

at default. In the following we discuss the importance of the individual factors

(variable definitions see appendix in Section 3.7) in terms of the potential impact

on the LGD. In particular, we take reference to the results of existing empirical

studies.

Previous studies, e. g., Schmit and Stuyck (2002), De Laurentis and Riani

(2005), and Hartmann-Wendels and Honal (2010), have shown that the LGD of

leasing contracts essentially depends on the type of the leased asset. As the legal

owner of the leased asset, the lessor can dispose the leased asset if the contract

defaults. Laurent and Schmit (2005) and Hartmann-Wendels and Honal (2010)

pointed out that the value of machines is relatively stable over time while liquid

secondary markets exist for vehicles. Both indicate comparatively low LGDs. In

contrast, information and communication technology (ICT) facilities are charac-

terized by a rapid loss of value, which has a negative effect on the LGD. For our

study, we distinguish between vehicles, machinery, ICT, equipment, and other

objects.

The original value, which can be considered as an indicator of the contract

volume, could also effect the LGD. With regard to loans, the evidence on the link

between loan size and LGD is different, which possibly can be traced back to the

consideration of different credit classes. Whereas among others, Thorburn (2000)

and Khieu et al. (2012) could not observe any significant association between the

size of a loan and the LGD, Bastos (2010) and Dermine and de Carvalho (2006)

have found a positive relationship between these variables. The latter argued that

banks possibly delay the foreclosure of larger loans, which finally results in higher
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LGDs. In contrast, Acharya et al. (2007) have determined a negative relation

between the debt size and the LGD, which they attributed to the fact that high

debts are particularly taken by large borrowers that have a higher bargaining

power in bankruptcy. Based on leasing contracts, De Laurentis and Riani (2005)

have also found that the original value is negatively related to the LGD. A reason

for this outcome might be that the lessor monitors a lessee with a higher contract

volume more closely.

Another factor we consider is whether the procured leased asset has already

been used. A used object may lose excessively fast in value, e. g. by unpredictable

arising damage. This entails a lower income from the asset resale and therefore a

higher LGD.

In terms of contract characteristics, we consider the potential impact of the con-

tract type on the LGD. We distinguish full pay-out lease contracts, partial amorti-

zation contracts, hire-purchase contracts and other types of contracts. Compared

to partial amortization contracts, full pay-out contracts are characterized by a

more favorable loan to value ratio for the lessor because the return of capital is

constant during the term to maturity while for partial amortization contracts the

majority of the lessee’s payments occur at maturity. For hire-purchase contracts

the transfer of ownership of the leased asset to the lessee at maturity is obligatory.

As Elbracht (2011) pointed out, this may affect a more careful handling of the

leased asset by the lessee which results in lower LGDs.

Further, we take into account the information whether the lessee has a purchase

option. To the best of our knowledge the influence of this factor on the LGD has

not been studied so far. However, we only have the appropriate information for

company B.

With respect to loans, Grunert and Weber (2009) and Bastos (2010) have found

that a poor creditworthiness of the debtor implies a higher LGD. As we have

no direct information about the creditworthiness of the lessees, we consider the
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interest rate implicit in the lease. In addition to the available interest rate level

at execution of the contract and the term to maturity, the interest rate implicit

in the lease includes, in particular, the risk premium. Therefore a high interest

rate implicit in the lease is more likely assigned to a riskier lessee.

Furthermore we consider the term to maturity of the lease as a factor potentially

influencing the LGD. De Laurentis and Riani (2005) have exhibited that the LGD

of leasing contracts decreases with an increasing term to maturity. However, it

should be noted that the studies of Schmit and Stuyck (2002) and Schmit et al.

(2003) showed evidence that for vehicle leasing, a short term to maturity indicates

slightly lower LGDs.

We also include the ratio of rent prepayments to the original value of the leased

asset, which can be considered as an indicator of the proportion of the contract

volume that is already paid at the beginning of the contract period. Rent prepay-

ments have a positive effect on the loan to value ratio and Elbracht (2011) has

empirically shown that the LGD decreases with the existence of rent prepayments.

Moreover, we take into account the potential impact of the calculated residual

value on the LGD whereas we explicitly look at the ratio of the calculated residual

value to the original value of the leased asset. This ratio can be considered as a

broad indicator of the proportion of the outstanding payments at default of the

contract, which can be covered by the disposal of the leased asset. Theoretically,

the LGD should decrease with an increase of this ratio.

De Laurentis and Riani (2005) have shown that the presence of buy-back agree-

ments with asset suppliers imply significantly lower LGDs. However, we consider

this factor only for company B, as we do not have the appropriate information for

company A.

Previous studies on loans, e. g., Caselli et al. (2008), Grunert and Weber (2009),

and Khieu et al. (2012), have shown that the existence of collateral typically im-

plies lower LGDs. Compared to loans, leases are already secured by the underlying
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leased asset, nevertheless, we take this factor into account as the results of El-

bracht (2011) indicated that also the LGD of leases potentially decreases with the

existence of additional collateral.

With regard to the customer characteristics, we distinguish among retail and

non-retail customers. In studying the LGD, this distinction has been rarely consid-

ered by now. Nonetheless, the distinction among retail and non-retail customers

could influence the LGD, e. g. the study of Grunert and Weber (2009) on loans

attested higher LGDs to large companies.

In addition we use the information whether the contract is a subsequent contract

as an indicator of the existence of a longterm contractual relationship between the

leasing company and the lessee. To the best of our knowledge, this aspect has

not been considered in terms of leasing so far. For loans, Grunert and Weber

(2009) have outlined that the existence of a longterm contractual relationship is

significant and leads to lower LGDs, but this result is not generally confirmed by

other studies.

After default of the contract, we obtain information about the EAD. This could

influence the LGD, although the empirical evidence is mixed. Elbracht (2011) for

leases and Gibilaro and Mattarocci (2011) for bank transactions have both found

that the LGD decreases with an increasing EAD. They argued that the lender

monitors the recovery process more closely if the potential losses are high. On

the other hand, it should be considered that a high EAD, which also significantly

exceeds the potential selling value of the leased asset, is more difficult to compen-

sate for the debtor, which consequently could lead to a higher LGD. Laurent and

Schmit (2005) cited a similar argument, moreover Chalupka and Kopecsni (2009)

empirically observed increasing LGDs with increasing EADs for loans.

In addition to the absolute EAD, we also take into account the ratio of the

EAD to the original value of the leased asset. In contrast to the absolute EAD,

this ratio is an indicator of the proportion of the initial contract volume the lessee
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has already paid. Zhang and Thomas (2012) have found that the LGD of loans

increases if the ratio of EAD to loan size increases. We expect the same for leasing

contracts.

Moreover, the relative contract age, defined as the term between execution and

default of the contract relative to the term to maturity of the contract, could

influence the LGD. De Laurentis and Mattei (2009) argued theoretically that the

LGD should decrease with an increasing relative contract age because the loan

to value ratio develops beneficial for the leasing company. This explanation is

consistent with the assumed relation between the LGD and the ratio of the EAD

to the original value of the leased asset. Empirically, however, the results of Schmit

and Stuyck (2002), Schmit et al. (2003), and Elbracht (2011) have shown that at

least no linear relationship between the relative contract age and the LGD can be

established.

In case of company B, we have information on whether the leasing company

has transferred the monitoring of the lease to another company. Such contracts

may show a divergent structure of the LGDs.

Finally, after default of the contract, we replace the ratio of the calculated

residual value to the original value of the leased asset by the ratio of the calculated

residual value to the EAD. The latter should be a more precise indicator of the

proportion of the outstanding payments after the default of the contract, which

can be covered by the disposal of the leased asset.

3.2.4 Explanatory Macroeconomic Factors

As we have seen in Section 3.2.1, the average LGD for each year varies consid-

erably over time. This is an indication that the LGD does not only depend on

idiosyncratic factors but in particular on the economic situation. Therefore it is

obvious to use macroeconomic factors for the estimation of the LGD in addition

to the mentioned idiosyncratic factors (variable definitions see appendix in Sec-
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tion 3.7). These macroeconomic factors map the respective economic situation at

execution and default of the contract.

The first macroeconomic factor we use for explaining the LGD is the growth

rate of the gross domestic product in comparison to the preceding quarter. The

growth rate of the gross domestic product is the most common way to represent

the economic situation. If the economic environment is represented just by the

growth rate of the gross domestic product, we intuitively expect that the LGD is

higher in periods of a low growth rate. In particular the manufacturing sector has

to face the impact of a poor order situation in those times of economic downturn.

Hence, there are only low inflows available the lessee can use to repay the debt.

This results in a higher default risk and moreover, in lower LGDs in case of default,

because during the workout the lessee is only able to make small payments. Some

empirical studies, e. g., Araten et al. (2004) and Emery (2008), have observed that

LGDs are on average higher during economic downturns. However, the empirical

evidence about the relationship between the growth rate of the gross domestic

product and the LGD is comparatively weak. Although the expected relationship

could be observed by Khieu et al. (2012) on loans, e. g., Caselli et al. (2008)

pointed out that other macroeconomic factors than the growth rate of the gross

domestic product may be more suitable for explaining the LGD.

Another factor we use to depict the economic development is the index of the

business climate monthly provided by the Ifo Institute for Economic Research. If

the economic situation is mapped solely by the business climate, we likewise expect

an inverse relationship between the LGD and the business climate. In addition,

the Ifo Institute for Economic Research also publishes monthly the index of the

business expectations. This index has been already used by Hartmann-Wendels

and Honal (2010), it provides information about the expected future development

of the economic situation. Those information are relevant both at execution and

default of the contract. In terms of the default of the contract, it should be noted
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that the workout typically lasts multiple months and therefore positive business

expectations could indicate lower LGDs.

Furthermore, we consider the potential influence of the growth rate of the gross

fixed asset investments on the LGD. This factor was also used in the study by

Hartmann-Wendels and Honal (2010). The growth rate of the gross fixed as-

set investments provides in particular information about whether a contract was

executed during an investment boom.

Finally, we also take into account the level of lending rates, which can be con-

sidered as an general indicator for financing costs. Leow et al. (2014) have found

that the level of interest rates has substantial influence on the LGD of mortgage

loans. Because no public available time series of the lending rates covers the entire

observation period, we use the monthly yield on domestic bearer bonds. For the

period from January 2003 until December 2009, the latter are correlated almost

90% with the interest rates on loans to non-financial corporations.
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Figure 3.2: Evolution of the macroeconomic factors in the period from 01/1998 to
12/2009. GDP represents the growth rate of the gross domestic product in compar-
ison to the preceding quarter, ASSETINVESTMENT stands for the growth rate of
the gross fixed asset investments in comparison to the preceding quarter. INTEREST-
RATELEVEL is defined as the monthly average of the yield to maturity for domestic
bearer bonds. These variables are given in percent. IFO-INDEX represents the monthly
collected index business climate of the Ifo Institute for Economic Research and IFO-
EXPECTATION stands for the monthly collected index business expectations of the
Ifo Institute for Economic Research. These variables are given as an index value.

It is unavoidable that the considered macroeconomic factors are correlated to
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some degree. However, considering the evolution of the macroeconomic factors

over time, shown in Figure 3.2, we still note differences between the individual

factors. Hence, the different macroeconomic factors map different aspects of the

economy. Consequently, as also Leow et al. (2014) have annotated, it is not

sensible to remove some of the macroeconomic factors ex ante because important

information would be lost. Instead, we consider in the following principally the

influence of the macroeconomic factors on the LGD as a whole.

Nevertheless, a brief discussion of the evolution of the macroeconomic factors

during the observation period is sensible. Moreover, analyzing particularly the

growth rate of the gross domestic product we are able to identify the different

phases of the economic cycles. Despite some differences, we recognize that the

evolution of the growth rate of the gross domestic product, the index of the busi-

ness climate, the index of the business expectations and the growth rate of the

gross fixed asset investments is largely similar. Taking into account seasonal dif-

ferences for the growth rate of the gross fixed asset investments, the years before

the Dotcom crisis are characterized by a moderate increase of the gross domestic

product and the gross fixed asset investments. The index of the business climate

and the index of the business expectations also increase just before the Dotcom

crisis, however, it should be noted that particularly compared to the growth rate

of the gross domestic product both indices are generally much more volatile. The

Dotcom crisis in 2000 led to a mild recession in Germany. We notice a signifi-

cant decrease of all four mentioned factors. Partially even a decline of the gross

domestic product and the gross fixed asset investments is observable. In 2003,

particularly the index of the business situation and the index of the business ex-

pectations show first signs of a recovery. However, only from 2005 we observe a

marked expansion of the economy. A notable rise of all four factors clearly in-

dicates a period of good economic conditions. Subsequently, during the financial

crisis, which led to a distinctive recession, we note considerable differences between
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the four factors. While the gross domestic product grew even at the beginning of

the financial crisis before declining since the 2nd quarter of 2008, the index of the

business situation and the index of the business expectations dropped already in

the 3rd quarter of 2007. Furthermore, we recognize that the growth rate of the

gross fixed asset investments experienced a first slump in the 2nd quarter of 2007,

but that followed once more an upturn and a general decline of the gross fixed

asset investments is observable from the 2nd quarter of 2008. Generally, we note

that all four mentioned factors show at least first signs of recovery in the 2nd half

of 2009.

Compared to the evolution of the mentioned macroeconomic factors, the shape

of the yield curve is quite different. At the beginning of the observation period the

level of interest rates decreased, but in advance to the Dotcom crisis this trend

turned from the 2nd quarter of 1999. An increase respectively a high level of

interest rates of about 5% can be observed throughout the Dotcom crisis until

mid-2002. Thereafter, the level of interest rates decreased steadily, reaching the

lowest level of the observation period at the end of the 3rd quarter 2005. This

low level of interest rates coincided basically with the beginning of the significant

increase of the gross fixed asset investments. In the following, the interest rate

level rose again, particularly also at the beginning of the financial crisis. Only from

end of 2008 on, the level of interest rates started to decline markedly. However,

the lowest pre-crisis level was not reached until the end of 2009.

3.3 Methods

Qi and Zhao (2011) have suggested that especially taking into account nonlinear

relationships between the LGD and the explanatory variables contributes to more

accurate LGD estimations. Furthermore, in line with the results of Hartmann-

Wendels et al. (2014), the authors found that a methods ability to reproduce
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the LGD distribution does not necessarily lead to accurate LGD estimations.

Therefore, in this study we focus in particular on the application of a linear

as well as a nonlinear method to estimate the LGD. First, we apply a linear

regression model, as it has been successfully used to estimate the LGD, e. g., by

Bellotti and Crook (2012) and Zhang and Thomas (2012). The second method

we apply is a regression spline model, which is essentially a nonlinear extension of

the linear regression model. We focus on these two methods, because they do not

differ in model-specific particularities, but notably in the fact that the regression

spline model is able to depict nonlinear relationships between the LGD and the

continuous explanatory variables.

The quite comparable outcomes of both models allow us to analyze the extent

to which the assumed influences of the individual factors on the LGD differ in

the linear and the nonlinear model. In particular, we are able to verify whether

a general relationship between the LGD and the economic situation exists, which

is not driven by a respective model. This verification is important, because the

findings of Qi and Zhao (2011) may indicate that linear and nonlinear methods

concentrate on different information. Additionally, we obtain particular insight

whether the consideration of nonlinear effects actually implies a higher estimation

accuracy.

The linear regression model, which we use to estimate the LGD is given by

LGD = c+
k∑

i=1
aixi +

m∑
i=k+1

aixi + ε, (3.1)

where c denotes the constant, a1, . . . , am are the regression coefficients, x1, . . . , xm

are the explanatory variables which represent the factors that might influence the

LGD, and ε is the error term. Thereby the explanatory variables x1, . . . , xk are

dummy variables whereas xk+1, . . . , xm represent continuous variables. Following

the observation in Section 3.2 that the realized LGDs are not bounded within
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[0,1], the linear regression and the regression spline model described below provide

unbounded estimates of the LGD.

Subsequent to the explanation of the regression splines, this section also presents

an overview of the performance measurements we use to evaluate the results of

the different models. In addition, we describe our methodology for out-of-time

testing.

3.3.1 Regression Splines

The application of regression splines allows depicting nonlinear relationships be-

tween the LGD and the continuous explanatory variables. For this study we use

a model that was introduced by Royston and Sauerbrei (2007).

Generally, a spline of order p is a continuous function that is piecewise defined

by polynomials of order p. Here, the points where two polynomials are connected

are called knots. This means the range of values of a continuous explanatory

variable is divided into intervals and within each interval, the respective influence

of the explanatory variable on the LGD is modeled. Consequently, unlike as in the

linear regression model, it is not implicitly assumed that the relationship between

the explanatory variable and the LGD is identical over the whole range of values.

For a continuous explanatory variable xi, i ∈ {k + 1, . . . ,m} with corresponding

knots κv, v = 1, . . . , d, the spline of order p is defined as follows

LGD (xi) = ci +
p∑

s=1
aisx

s
i +

d∑
v=1

bivmax (0, xi − κiv)p + εi, (3.2)

where ci is the constant, ais and biv denote the regression coefficients and εi is

the error term. For the estimation of the LGD we use exclusively linear splines

of order p = 1. Hence, we focus on changes in the relationship between the

LGD and an explanatory variable across the range of values. We find that linear

splines represent a good tradeoff between an adequate consideration of nonlinear
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relationships and concurrently limiting potential overfitting. The results of Qi

and Zhao (2011) and Hartmann-Wendels et al. (2014) indicate that the latter is a

common concern of complex models, which may negatively affect the forecasting

accuracy. Accordingly, the relationship between a continuous explanatory variable

and the LGD is only modeled by a spline, if this nonlinear model provides a

significantly better fit than a linear model. Otherwise the variable is depicted

linearly as in the linear regression model.4 That way the regression spline model

forms a nonlinear extension of the linear regression.

Let xk+1, . . . , xl and xl+1, . . . , xm be the continuous explanatory variables that

are considered linearly respectively nonlinearly. Then the regression spline model,

which we use for estimating the LGD is given by

LGD = c+
k∑

i=1
aixi +

l∑
i=k+1

aixi +
m∑

i=l+1
LGD (xi) + ε. (3.3)

A close look at the equations (3.1) and (3.3) clarifies the extending character

of the regression spline model compared to the linear regression.

3.3.2 Performance Measurements

We evaluate the estimation results of the different models by means of various

performance measurements. In fact, we use the mean absolute error (MAE), the

root mean squared error (RMSE), and the area under the regression error char-

acteristic curve (REC Area). In-sample we also compute the adjusted coefficient

of determination (R2).

We calculate the MAE and the RMSE using the following definitions

4To avoid excessive complexity, we deviate from the recommendations of Royston and Sauerbrei
(2007) and change the value of alpha, by which the statistical significance of modeling a
variable nonlinearly instead of linearly is tested, to 0.01.
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MAE = 1
n

n∑
j=1
|LGDj − LGD∗j |, (3.4)

RMSE =
√√√√ 1
n

n∑
j=1

(
LGDj − LGD∗j

)2
, (3.5)

where LGD and LGD∗ denote the realized respectively the predicted LGD and

n is the number of observation. For both measures a low parameter outcome is

preferable, because this implies a smaller difference between the realized and the

predicted LGD.

Regression error characteristic (REC) curves were introduced by Bi and Bennett

(2003) as a generalization of receiver operating characteristic curves to regression

problems. The REC curve plots the error tolerance δ on the x-axis versus the

accuracy of the regression model acc(δ) on the y-axis. The accuracy acc(δ) for a

given tolerance δ is defined as the percentage of observations whose estimates are

within this tolerance. We calculate the accuracy acc(δ) according the following

definition

acc(δ) =
#
{

LGD∗ : |LGD∗j − LGDj| ≤ δ, j = 1, . . . , n
}

n
. (3.6)

The REC Area provides a measure to evaluate the performance of a regression

model. The larger the REC Area, the more accurate the estimates in total over

all observations.

The adjusted R2, we additionally calculate for the in-sample estimations mea-

sures the proportion of the variance that can be explained by the model. Conse-

quently a higher outcome is preferable.
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3.3.3 Out-of-time Testing

In the recent past, numerous studies have performed out-of-sample testing, but

still very few studies, e. g., Bastos (2010) and Bellotti and Crook (2012), have con-

ducted out-of-time tests. However, from a practical point of view in particular a

method’s ability to forecast the LGD of future contracts on the basis of historical

data is of major importance. Moreover, with the implementation of out-of-time

testing we meet the requirements of the Basel II accord. Because our observa-

tion period includes different economic situations, the out-of-time results provide

insight on how the respective models perform in different circumstances. This is

particularly important with regard to the macroeconomic factors. The relation-

ship between the LGD and the explanatory variables might change according to

movements in the economic environment.

Model fitting Predictions at execution Predictions at default
Up to year #Contracts Year #Contracts Year #Contracts

Company A
2004 517 2005 274 2005 572
2005 1,119 2006 123 2006 419
2006 1,696 2007-2009 73 2007-2009 318

Company B

2004 3,379 2005 953 2005 1,041
2005 4,400 2006 1,074 2006 1,057
2006 5,336 2007 969 2007 789
2007 6,124 2008-2009 719 2008 1,268
2008 7,237 2009 1,606

Table 3.4: Number of contracts with completed workout at the end of year t that are
used for model fitting. Additionally, number of loss given default (LGD) estimations
carried out at execution respectively default of the contract in year t + 1. Sorted by
company and year.

For our out-of-time testing we adopt the walk-forward approach used by Gup-

ton and Stein (2005). We fit the models each with the data of all contracts whose

workout is completed by the end of year t and predict the LGD for all contracts

that have been executed respectively defaulted in the subsequent year t+ 1. Con-

sequently, the number of contracts that are used to fit the models increase by

time, which is also shown in Table 3.4. In order to ensure an adequate data base
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for fitting the models and to cover different macroeconomic conditions, we first

estimate the LGD for the year 2005. In particular with regard to company A, we

have to consider the decreasing number of observations at the end of the observa-

tion period that are additionally concentrated on certain times of the respective

years. As set out in Table 3.4, we therefore aggregate the LGD estimations for

the years 2007 to 2009 for company A and for company B we summarize the LGD

estimations at execution of the contract for the years 2008 and 2009.

3.4 In-sample Analysis

In this section we analyze the in-sample results of our models for estimating

the LGD. For both companies we have estimated the LGD with the nonlinear

regression spline model and the linear regression. In each case we first performed

the estimates once only using the idiosyncratic factors presented in Section 3.2.3

as explanatory variables and then with the additional use of the macroeconomic

factors described in Section 3.2.4. We also considered the macroeconomic factors

with lags, but as the results are generally slightly worse, they are not listed here.

Since we are particularly interested in forecasting the LGD, we do not consider

the macroeconomic factors with leads.

The in-sample performance measurements, presented in Table 3.5, consistently

show that the additional use of macroeconomic factors leads to better estimations

of the LGD, irrespective which estimation method is used. Accordingly, our out-

comes are in line with the findings of, e. g., Bellotti and Crook (2012). Moreover,

considering the specification of each model, illustrated in Table 3.6 and Table 3.7,

we recognize that the macroeconomic factors provide additional information with-

out having essential influence on the significance and effect of the idiosyncratic

factors.

Bearing in mind the mentioned distinctive differences between the companies,
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Company A Company B
Adj. R2 MAE RMSE REC Area Adj. R2 MAE RMSE REC Area

Linear Regression

At execution FIRM 0.3260 0.2699 0.3432 0.7305 0.0733 0.3211 0.3843 0.6791
FIRM+MACRO 0.3350 0.2677 0.3406 0.7328 0.0797 0.3197 0.3829 0.6806

At default FIRM 0.3462 0.2648 0.3378 0.7356 0.1312 0.3061 0.3720 0.6941
FIRM+MACRO 0.3494 0.2640 0.3367 0.7365 0.1381 0.3040 0.3704 0.6963

Regression Spline

At execution FIRM 0.3321 0.2676 0.3415 0.7328 0.0813 0.3190 0.3826 0.6813
FIRM+MACRO 0.3433 0.2651 0.3384 0.7354 0.0912 0.3160 0.3803 0.6842

At default FIRM 0.3577 0.2603 0.3343 0.7402 0.1459 0.3012 0.3687 0.6991
FIRM+MACRO 0.3612 0.2601 0.3334 0.7403 0.1614 0.2972 0.3652 0.7031

Table 3.5: In-sample performance measurements at execution and default of the con-
tracts by company. The estimates were carried out each with the nonlinear regression
spline model and the linear regression model. FIRM represents that only idiosyncratic
factors were used as explanatory variables, FIRM+MACRO implies that additionally
macroeconomic factors were added, in each case the better result is underlined. R2

represents the adjusted coefficient of determination. REC Area is defined as the area
under the regression error characteristic curve, MAE is the mean absolute error, and
RMSE is the root mean squared error. For R2 and REC Area higher, for MAE and
RMSE lower outcomes are preferable.

which are notably reflected in much more precise estimates of the LGD for com-

pany A, it is striking that the adding of the macroeconomic factors consistently

has a positive effect on the LGD estimation for both companies. Unexpectedly,

however, a close look on the adjusted R2 reveals that it increases with the addi-

tion of the macroeconomic factors partly by more than 10% for company B, but

maximally around 3.5% for company A. This observation can obviously not be

attributed to the volatility of the realized LGDs over time. But it should be taken

into account that the models for company A comprise more than twice as high

adjusted R2 than those for company B. This suggests that for company B the

idiosyncratic factors can explain only a small part of the volatility of the LGDs

and therefore additional factors are necessary.

Furthermore, comparing the results at execution and default of the contracts,

we observe a noticeable higher value of the macroeconomic factors at execution of

the contracts for company A. This result could be expected, since the fluctuations

of the realized LGDs, analyzed in Section 3.2.1, are lower at default of the contract,

which may be an indication of a reduced dependence on the economic situation.
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Company A Company B
Regression Spline Linear Regression Regression Spline Linear Regression

Variable FIRM FIRM+MACRO FIRM FIRM+MACRO FIRM FIRM+MACRO FIRM FIRM+MACRO

O
bj

ec
t

VEHICLE -0.1835** -0.1857** -0.1730* -0.1687* -0.1442** -0.1398** -0.1463** -0.1456**
(0.0892) (0.0885) (0.0896) (0.0890) (0.0598) (0.0596) (0.0600) (0.0599)

MACHINERY -0.2705*** -0.2719*** -0.2844*** -0.2895*** -0.0310 -0.0229 -0.0340 -0.0298
(0.0871) (0.0866) (0.0876) (0.0871) (0.0596) (0.0593) (0.0598) (0.0596)

ICT 0.1609* 0.1652* 0.2079** 0.2010** 0.1265** 0.1314** 0.1334** 0.1322**
(0.0875) (0.0869) (0.0875) (0.0869) (0.0618) (0.0615) (0.0621) (0.0619)

EQUIPMENT -0.1617 -0.1776 -0.1757 -0.1820* -0.0151 -0.0054 -0.0118 -0.0055
(0.1106) (0.1098) (0.1111) (0.1104) (0.0626) (0.0624) (0.0629) (0.0627)

ORIGINALVALUE 1.0000*** 1.0000*** -0.0000*** -0.0000*** 1.0000*** 1.0000*** -0.0000** -0.0000**
(0.1633) (0.1441) (0.0000) (0.0000) (0.1591) (0.1485) (0.0000) (0.0000)

USED -0.0410 -0.0413 -0.0365 -0.0364 0.0183 0.0119 0.0196 0.0150
(0.0304) (0.0302) (0.0306) (0.0304) (0.0121) (0.0122) (0.0121) (0.0122)

C
on

tra
ct

FULLPAYOUT -0.0079 0.0065 0.0091 0.0114 -0.0055 -0.0043 0.0061 0.0018
(0.0314) (0.0314) (0.0314) (0.0312) (0.0268) (0.0267) (0.0268) (0.0268)

PARTIALAMORTISATION 0.0322 0.0166 0.0325 0.0165 -0.0035 -0.0008 0.0083 0.0057
(0.0251) (0.0251) (0.0252) (0.0253) (0.0217) (0.0216) (0.0217) (0.0217)

HIREPURCHASE -0.0567** -0.0387 -0.0593** -0.0445* -0.0969*** -0.0918*** -0.0901*** -0.0934***
(0.0266) (0.0266) (0.0268) (0.0267) (0.0231) (0.0231) (0.0230) (0.0231)

PURCHASEOPTION 0.0522** 0.0472* 0.0571** 0.0568**
(0.0245) (0.0244) (0.0246) (0.0245)

INTEREST -0.0247*** 0.0605*** -0.0267*** 0.0583** 1.0000*** 1.0000*** 0.0070*** 0.0059***
(0.0080) (0.0231) (0.0080) (0.0232) (0.1308) (0.1526) (0.0015) (0.0015)

MATURITY 0.0003 -0.0002 -0.0000 -0.0006 0.0006* 0.0002 0.0001 -0.0003
(0.0005) (0.0005) (0.0005) (0.0005) (0.0004) (0.0004) (0.0004) (0.0004)

PRETOVALUE -0.0214 -0.0326 -0.0085 -0.0137 -0.3998*** -0.3432*** -0.3476*** -0.3097***
(0.0908) (0.0902) (0.0912) (0.0907) (0.0627) (0.0627) (0.0618) (0.0618)

RESIDUALTOVALUE 0.0055 0.0005 0.0202 0.0206 -0.0300 -0.0304 -0.0507 -0.0629
(0.0719) (0.0715) (0.0722) (0.0719) (0.0391) (0.0392) (0.0391) (0.0392)

BUYBACK -0.1463*** -0.1520*** -0.1608*** -0.1623***
(0.0217) (0.0216) (0.0218) (0.0217)

COLLATERAL -0.0625*** -0.0553*** -0.0672*** -0.0621*** -0.0039 -0.0039 -0.0058 -0.0065

C
us

to
m

er

(0.0156) (0.0155) (0.0156) (0.0156) (0.0093) (0.0093) (0.0093) (0.0096)

RETAIL 0.0360 0.0456 0.0471 0.0562 -0.0135 -0.0122 -0.0073 -0.0069
(0.0464) (0.0461) (0.0466) (0.0463) (0.0091) (0.0090) (0.0090) (0.0090)

EXTENSION 0.0265 0.0286 0.0241 0.0313 -0.0526* -0.0660** -0.0786** -0.0889***
(0.0296) (0.0295) (0.0298) (0.0296) (0.0306) (0.0305) (0.0305) (0.0305)

M
ac

ro
ec

on
om

ic

GDP -0.0223 -0.0228 -0.0006 -0.0054
(0.0148) (0.0149) (0.0091) (0.0089)

IFO-INDEX -0.0013 -0.0018 1.0000*** 0.0082***
(0.0028) (0.0028) (0.1102) (0.0011)

IFO-EXPECTATION 0.0056** 0.0060** 1.0000*** -0.0077***
(0.0027) (0.0027) (0.1660) (0.0014)

ASSETINVESTMENT 0.0112** 0.0105* 0.0039 0.0027
(0.0057) (0.0057) (0.0029) (0.0029)

INTERESTRATELEVEL -0.0993*** -0.0974*** 1.0000*** 0.0048
(0.0246) (0.0247) (0.2150) (0.0066)

CONSTANT 0.6409 0.2449 0.5673 0.2459 0.3896 1.6884 0.5580 0.5156
(0.0955) (0.2074) (0.0950) (0.2046) (0.0748) (0.3250) (0.0700) (0.1257)

Table 3.6: In-sample coefficient estimates at execution of the contracts. The estimates
were carried out for both companies each with the nonlinear regression spline model and
the linear regression model. FIRM represents that only idiosyncratic factors were used as
explanatory variables, FIRM+MACRO implies that additionally macroeconomic factors
were added. In brackets the standard errors are reported. Coefficients printed in bold
show that the the corresponding variables were considered nonlinear. * (**, ***) stands
for the statistical significance at 10% (5%, 1%) of the respective variable. Particularly
surprising respectively new results are shown in grey shading.



3 Does the Economic Situation Affect the Loss Given Default of Leases? 82

Company A Company B
Regression Spline Linear Regression Regression Spline Linear Regression

Variable FIRM FIRM+MACRO FIRM FIRM+MACRO FIRM FIRM+MACRO FIRM FIRM+MACRO

O
bj

ec
t

VEHICLE -0.1952** -0.1778** -0.1723** -0.1627* -0.1420** -0.1361** -0.1439** -0.1423**
(0.0867) (0.0865) (0.0870) (0.0869) (0.0577) (0.0572) (0.0581) (0.0579)

MACHINERY -0.2702*** -0.2594*** -0.2927*** -0.2872*** 0.0045 0.0120 -0.0129 -0.0103
(0.0857) (0.0856) (0.0863) (0.0862) (0.0575) (0.0570) (0.0579) (0.0577)

ICT 0.1746** 0.1921** 0.1996** 0.2066** 0.1758*** 0.1797*** 0.1578*** 0.1589**
(0.0858) (0.0858) (0.0862) (0.0861) (0.0597) (0.0592) (0.0601) (0.0599)

EQUIPMENT -0.1683 -0.1550 -0.1893* -0.1739 0.0191 0.0253 0.0103 0.0129
(0.1088) (0.1087) (0.1095) (0.1094) (0.0604) (0.0599) (0.0609) (0.0607)

ORIGINALVALUE 1.0000*** 1.0000*** -0.0000** -0.0000** 1.0000*** 1.0000*** 0.0000 0.0000
(0.2376) (0.1626) (0.0000) (0.0000) (0.2156) (0.2213) (0.0000) (0.0000)

USED -0.0443 -0.0432 -0.0395 -0.0390 0.0274** 0.0225* 0.0240** 0.0189
(0.0297) (0.0297) (0.0299) (0.0299) (0.0117) (0.0117) (0.0118) (0.0118)

C
on

tra
ct

FULLPAYOUT 0.0048 0.0077 0.0136 0.0104 0.0114 0.0244 0.0228 0.0266
(0.0309) (0.0310) (0.0309) (0.0308) (0.0258) (0.0256) (0.0259) (0.0258)

PARTIALAMORTISATION 0.0173 0.0088 0.0225 0.0149 0.0131 0.0187 0.0284 0.0313
(0.0224) (0.0225) (0.0225) (0.0226) (0.0210) (0.0208) (0.0210) (0.0210)

HIREPURCHASE -0.0371 -0.0371 -0.0482* -0.0492* -0.0542** -0.0363 -0.0546** -0.0458**
(0.0258) (0.0258) (0.0258) (0.0258) (0.0221) (0.0220) (0.0220) (0.0221)

PURCHASEOPTION 0.0501** 0.0467** 0.0489** 0.0536**
(0.0221) (0.0235) (0.0238) (0.0237)

INTEREST -0.0068 0.0097 -0.0062 0.0093 1.0000*** 1.0000*** 0.0043*** 0.0041***
(0.0083) (0.0101) (0.0084) (0.0101) (0.1664) (0.1602) (0.0014) (0.0014)

MATURITY 0.0005 0.0004 0.0002 -0.0000 1.0000*** 1.0000*** 0.0004 0.0001
(0.0005) (0.0005) (0.0005) (0.0005) (0.2170) (0.2318) (0.0003) (0.0003)

PRETOVALUE 0.0983 0.1021 0.1056 0.1059 -0.0748 -0.0121 -0.1243** -0.0807
(0.0911) (0.0909) (0.0913) (0.0911) (0.0623) (0.0620) (0.0606) (0.0607)

BUYBACK -0.1552*** -0.1591*** -0.1585*** -0.1606***
(0.0210) (0.0209) (0.0211) (0.0211)

COLLATERAL -0.0714*** -0.0673*** -0.0764*** -0.0739*** -0.0009 -0.0021 0.0034 0.0036

C
us

to
m

er

(0.0154) (0.0155) (0.0154) (0.0155) (0.0090) (0.0090) (0.0090) (0.0090)

RETAIL 0.0382 0.0391 0.0415 0.0430 -0.0010 -0.0000 0.0064 0.0083
(0.0455) (0.0454) (0.0458) (0.0457) (0.0088) (0.0087) (0.0088) (0.0088)

EXTENSION 0.0478 0.0396 0.0885*** 0.0850*** -0.0840*** -0.0988*** -0.1286*** -0.1425***
(0.0327) (0.0327) (0.0317) (0.0316) (0.0310) (0.0308) (0.0292) (0.0293)

A
fte

r
D

ef
au

lt

EAD 1.0000*** 0.0000 0.0000 0.0000 1.0000*** 1.0000*** -0.0000 -0.0000
(0.2093) (0.0000) (0.0000) (0.0000) (0.1950) (0.2073) (0.0000) (0.0000)

EADTOVALUE 1.0000*** 1.0000*** 0.1731*** 0.1654*** 1.0000*** 1.0000*** 0.3349*** 0.3472***
(0.1375) (0.1004) (0.0284) (0.0285) (0.0437) (0.0425) (0.0158) (0.0161)

CONTRACTAGE 1.0000*** 1.0000*** -0.0096 -0.0234 1.0000*** 1.0000*** 0.2022*** 0.2144***
(0.2376) (0.2694) (0.0358) (0.0363) (0.0664) (0.0635) (0.0209) (0.0211)

SOLD -0.0016 -0.0098 -0.0174 -0.0206*
(0.0114) (0.0114) (0.0112) (0.0112)

RESIDUALTOEAD 0.0081 0.0050 0.0056 0.0046 -0.0880*** -0.0824*** -0.0916*** -0.0902***
(0.0067) (0.0067) (0.0066) (0.0065) (0.0204) (0.0202) (0.0203) (0.0202)

M
ac

ro
ec

on
om

ic

GDP -0.0422** -0.0455** 1.0000*** 0.0503***
(0.0185) (0.0187) (0.0886) (0.0076)

IFO-INDEX 0.0080*** 0.0074*** 0.0012 0.0040***
(0.0021) (0.0021) (0.0011) (0.0010)

IFO-EXPECTATION -0.0037 -0.0028 1.0000*** -0.0105***
(0.0028) (0.0028) (0.1051) (0.0013)

ASSETINVESTMENT 0.0019 0.0020 -0.0104*** -0.0108***
(0.0052) (0.0053) (0.0028) (0.0027)

INTERESTRATELEVEL -0.0235 -0.0278* 1.0000**** 0.0032
(0.0149) (0.0150) (0.1671) (0.0077)

CONSTANT 0.5665 0.0537 0.3622 -0.0263 -0.3169 -0.0922 0.1783 0.7990
(0.1071) (0.2281) (0.0095) (0.2237) (0.0867) (0.1388) (0.0711) (0.1152)

Table 3.7: In-sample coefficient estimates at default of the contracts. The estimates were
carried out for both companies each with the nonlinear regression spline model and the
linear regression model. FIRM represents that only idiosyncratic factors were used as
explanatory variables, FIRM+MACRO implies that additionally macroeconomic factors
were added. In brackets the standard errors are reported. Coefficients printed in bold
show that the the corresponding variables were considered nonlinear. * (**, ***) stands
for the statistical significance at 10% (5%, 1%) of the respective variable. Particularly
surprising respectively new results are shown in grey shading.
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Unexpectedly, however, for company B at contract default only the adjusted R2

increases less than at execution of the contract, but not the other performance

measures. With regard to the realized LGDs, we already observed that these vary

only marginally over time (see Section 3.2.1).

Beyond, we observe that in-sample the nonlinear regression spline model achieves

a higher estimation accuracy than the linear regression. In particular, we note

that the regression spline model mostly benefits more from the addition of the

macroeconomic factors. A possible reason for this outcome, discussed by Miller

and Töws (2014), is that the relation between continuous explanatory variables

and the LGD cannot be adequately recognized linearly but nonlinearly. As already

Leow et al. (2014) mentioned, this might apply especially to the macroeconomic

factors.

3.4.1 Analysis of the Idiosyncratic Factors

Referring to Table 3.6 and Table 3.7, we analyze in detail the influence of the

idiosyncratic factors on the LGD. We find that the LGD generally depends in

particular on object characteristics and contract characteristics. Customer char-

acteristics, however, have only little effect on the LGD. Moreover, the additional

information only available at default of the contract also contain significant drivers

of the LGD. The importance of these additional information at default for the

LGD estimation can be already seen by means of the improved performance mea-

surements at default, displayed in Table 3.5.

With a few exceptions the documented effects of the significant idiosyncratic

factors on the LGD are traceable and consistent with our expectations as well as

with the results of previous studies. Nevertheless, we note that the relevant id-

iosyncratic drivers of the LGD as well as their impact on the LGD differ markedly

between the two companies and in some cases also between the used estimation

method. This observation is particularly interesting with regard to the partly



3 Does the Economic Situation Affect the Loss Given Default of Leases? 84

differing results on some factors of prior studies. Therefore, we conclude that

the different results mentioned in the literature can possibly be attributed to the

used data or applied estimation method. In this context, it should be particu-

larly emphasized that the addition of the macroeconomic factors only marginally

influences the significance and the effect of the idiosyncratic factors on the LGD.

In line with our expectations, object characteristics have substantial influence

on the LGD. In particular, we can confirm the object type of the leased asset as

one of the key drivers of the LGD, observing low LGDs for vehicles and machinery

respectively high LGDs for ICT facilities. In addition, the original value of the

leased asset is also identified as a key driver of the LGD.

In terms of contract characteristics, we find that some of these factors are also

important drivers of the LGD. With regard to the contract type we observe, as

expected, lower LGDs for hire-purchase contracts, but surprisingly the distinction

between full pay-out lease contracts and partial amortization contracts has no

significant effect on the LGD. Furthermore, we have to pay particular attention

to the results concerning the interest rate implicit in the lease. For company B

we observe the assumed relationship that the LGD increases with an increasing

interest rate implicit in the lease. Interestingly, for company A the interest rate

implicit in the lease is significant only at execution of the contract and contrary

to our expectations the respective coefficients indicate decreasing LGDs with an

increasing interest rate implicit in the lease. One possible reason might be in turn

that a lessor monitors contracts with a high interest rate implicit in the lease more

closely, because the high interest rate implicit in the lease is an indicator for a

riskier lessee. However, different to the other significant variables, the sign of the

corresponding coefficient changes for the interest rate implicit in the lease in the

models including the macroeconomic factors. The reason might be that in partic-

ular the macroeconomic variable which represents the level of interest significantly

influences the LGD in these models. We observe that a high level of interest rates
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implies lower LGDs. Therefore, in the model without the macroeconomic factors,

the decrease of the LGD with an increase of the interest rate implicit in the lease

may not be the result of a better monitoring of a risky lessee, but rather an indi-

cator that contracts which are signed despite a high level of interest exhibit lower

LGDs. If both the level of interest and the interest rate implicit in the lease are

considered, we observe lower LGDs with a high level of interest and on the other

hand, as expected, decreasing LGDs with an increasing interest rate implicit in

the lease. Referring to the other contract characteristics our results confirm that

both the existence of buy-back guarantees as well as the existence of additional

collateral may significantly reduce the LGD. The latter result applies particularly

to company A and supports the findings obtained in Section 3.2.2. Moreover, be-

ing the first study to consider the information whether the lessee has a purchase

option, we observe slightly higher LGDs for contracts with a purchase option.

In general, customer characteristics have only little effect on the LGD. Interest-

ingly, however, our results indicate that the existence of a longterm contractual

relationship does not necessarily lead to lower LGDs, as stated by some prior

studies on loans.

In turn, the additional information we obtain at default of the contract contain

significant drivers of the LGD. We identify the ratio of the EAD to the original

value of the leased asset as the most important driver of the LGD in this category.

In line with our expectations we consistently observe a significant increasing LGD

when the ratio of EAD to loan size increases. Additionally, at least if considered

nonlinearly, the EAD and the relative contract age also effect the LGD. Concerning

the first time studied information whether the leasing company has transferred

the monitoring of the lease to another company, we do not find a remarkable

relationship to the LGD.

In conclusion, our results enable us to identify some of the studied idiosyncratic

factors as common key drivers of the LGD. Nevertheless, our findings emphasize
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that the relevant drivers of the LGD and their impact on the LGD depend in

particular on the investigated company and partially also on the used estimation

method. With this result, we provide in particular an explanation for the partly

inconsistent results in the literature.

Firstly, it should be noted that, e. g., the ratio of rent prepayments to the orig-

inal value of the leased asset and the ratio of the calculated residual value to

the EAD are relevant drivers only for company B, whereas the LGD for com-

pany A crucially depends on whether additional collateral is available. Moreover,

we observe several times that an idiosyncratic factor is a driver of the LGD for

both companies, but its influence on the LGD is different for both lessors. We

already addressed this issue regarding the interest rate implicit in the lease and

the information whether a contract is a subsequent contract, and we note similar,

e. g. concerning the original value of the leased asset, the EAD and the relative

contract age. For instance, the LGD of company A increases with an increasing

EAD, while the opposite holds for company B.

Further, comparing explicitly the outcomes for the linear regression and the

nonlinear regression spline models, it is noteworthy that some of the continuous

variables are only significant if considered nonlinearly. This applies, e. g., to the

EAD, the relative contract age, the term to maturity and partly also to the original

value of the leased asset. On the other hand, we state that for company A at

default of the contract, e. g., the information whether a contract is a subsequent

contract is only significant if the calculation of the LGD is performed using the

linear regression.

Summarized, our results supply an explanation for the partly inconsistent re-

sults regarding some factors in the literature. In view of our findings, it is abso-

lutely essential that each company calibrates its applied LGD estimation method

individually on their specific dataset.
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3.4.2 Analysis of the Macroeconomic Factors

With regard to the analysis of the effect of the macroeconomic factors on the LGD,

it should be taken into account that an independent interpretation of each factor

could be misleading. Only the joint examination of the significant macroeconomic

factors models the influence of the economic situation on the LGD as a whole.

The significant macroeconomic factors are partially different for the nonlinear

regression spline model and the linear regression model. However, the overall

influence of the macroeconomic factors, presented in Figure 3.3, is not driven by

the respective model.

At execution of the contracts, we observe a clear link between the economic sit-

uation and the LGD, which is even more distinctive for company A. In particular,

this means that we can connect changes of the LGD to special events such as the

Dotcom crisis and the financial crisis. At default of the contracts, however, we

recognize only for company A a slight link between the economic situation and

the LGD, but not for company B.

Beginning with the detailed analysis at execution of the contract, we notice that

for company A for both models the significant variables are IFO-EXPECTATION,

ASSETINVESTMENT and INTERESTRATELEVEL. These variables are con-

sidered linearly in each case. In detail, a positive sign of each respective coefficient

indicates that LGDs are higher during periods with high business expectations and

growth of gross fixed asset investments while a negative sign of the corresponding

coefficient states that the LGD decreases if the level of interest rate increases. The

combined effect of these variables on the LGD, displayed in Figure 3.3a, clearly

outlines that contracts executed during periods of relatively good economic con-

ditions realize higher LGDs, whereas the LGDs turn out to be comparatively low

during the Dotcom crisis and the financial crisis. Based on the observation period,

periods of good economic conditions are the years before the Dotcom crisis in 2000

and particularly before the financial crisis beginning at the end of 2007. Conse-
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Figure 3.3: Influence of the economic situation represented by the aggregate impact of
the significant macroeconomic factors in the respective model at execution and default
of the contracts for both companies.

quently the increasing realized LGDs observed in 1999 and from 2004 to 2007

(see Table 3.2) can be traced back to the economic conditions at that time. One

potential explanation for the possibly unexpected observed relationship could be

that in times of economic upturn, particularly the manufacturing sector is enticed

to invest because their capacities are temporarily fully stretched. In contrast, in-

vestments which are carried out in a weak economy may suggest a stable business

environment with stable order situation and therefore stable inflows. This has a

positive effect on the LGD in case of a default, as the lessor can expect payments

by the lessee during the workout. Obviously, towards the end of the observation

period we have to consider the lower number of observations, nevertheless we are

convinced that our findings for the financial crisis are reliable as they correspond

to the results for the Dotcom crisis. Basically, our observed relationship between
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the LGD and the economic situation corresponds in particular to the procycli-

cal character of the lending activity in the banking sector. As, e. g., Borio et al.

(2001) and Mérõ et al. (2002) point out, typically risk is underestimated in times

of good economic conditions and overestimated during recessions. During an eco-

nomic upturn also high-risk loans are granted, their potential losses, however,

materialize only in the following downturn. Besides, we observe in general that

the macroeconomic factors explain variations of 30% of the LGD over the time,

which represents a large part of the observed variability of the realized LGDs.

For company B at execution of the contract the joint influence of the macroe-

conomic factors on the LGD, displayed in Figure 3.3b, has to some extent the

same structure as for company A. We recognize that the fluctuations of the LGD

being explained by the macroeconomic factors are inferior for company B, but

this corresponds to the changes of the realized LGDs over time for this company,

outlined in Section 3.2.1. In contrast to company A, for the time of the Dotcom

crisis no clear link between the economic situation and the LGD can be estab-

lished. However, again corresponding to the procyclical character of the lending

activity in the banking sector, in turn we observe lower LGDs from the begin-

ning of 2002 and significantly increasing LGDs during the subsequent economic

upturn, whereby the increase of the LGDs starts a little later than for company

A. In the linear regression model the economic situation is represented by the

variables IFO-INDEX and IFO-EXPECTATION. The sign of the respective coef-

ficient suggests higher LGDs during times of good business climate, but otherwise

lower LGDs in periods of high business expectations. In the nonlinear regression

spline model also the INTERESTRATELEVEL is significant. Furthermore the

influences of the variables are more sophisticated due to their nonlinear consider-

ation. We note that for both business climate as well as for business expectations

high or low expressions imply higher LGDs. The same applies to the level of inter-

est rates, in particular the lowest LGDs are experienced at interests around 4%,
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which roughly corresponds to the average over the observation period. This gener-

ally means the lowest LGDs are realized in quiet periods, which are characterized

by neither boom nor downturn. This applies, e. g., to the year 2004.

Continuing with the analysis at default of the contract, we note that partly other

macroeconomic factors are significant than at execution of the contract. For com-

pany A the linearly considered variables GDP and IFO-INDEX are significant in

both models. The respective signs of the corresponding coefficients imply that

on the one hand the LGD decreases with an increasing growth rate of the gross

domestic product, but on the other hand that LGDs are higher during times of

good business situation. In the linear regression model the variable INTERE-

STRATELEVEL is also significant, the corresponding coefficient indicates that

LGDs increase with an increasing level of interest rate. Considering the impact of

the economic situation on the LGD as a whole, displayed in Figure 3.3c, we find

that in contrast to the execution of the contract, only a portion of the variation of

the realized LGDs can be explained by the macroeconomic factors. Between early

2002 and late 2005 the development of the economic situation suggests generally

rising LGDs. It should be noted that the values of the individual macroeconomic

factors show only small fluctuations in this period (see Figure 3.2). In particular

the increased realized LGDs in 2005 cannot be traced back directly to changes in

the economic situation. What we do observe is that increasing realized LGDs in

2007 and 2008, within the context of the financial crisis, can be at least partially

explained by the macroeconomic factors. Of course we have to consider again the

lower number of observations towards the end of the observation period. However,

the observed connection is commonly comprehensible, because a typical feature

of crises is a decrease in the order situation, which complicates the repayment of

the outstanding debt. This seems to be particularly evident for company A (see

Section 3.2.2).

For company B at default of the contract in both models four macroeconomic
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factors are significant. In the linear regression model the LGD increases both

with an increasing growth rate of the gross domestic product and an improv-

ing business climate. On the contrary, with an increasing growth of gross fixed

asset investments and improving business expectations, the LGD decreases. In

the nonlinear regression spline model the variables GDP, IFO-EXPECTATION

and ASSETINVESTMENT are significant, too. The relationship between these

variables and the LGD is essentially the same as in the linear model, only the

influence of the two first-mentioned is more sophisticated because of their non-

linear consideration. Furthermore the level of interest rate is significant in the

nonlinear model and we observe again that LGDs are higher during periods of

either high and low interests. If we analyze the impact of the economic situation

on the LGD as a whole, displayed in Figure 3.3d, we cannot see a clear structure.

In particular it is not possible to clearly identify periods of higher or lower LGDs.

Quite contrary to company A, for company B the joint influence of the macroeco-

nomic factors on the LGD is extremely volatile over the entire observation period.

Thereby, the linear (nonlinear) model reduces fluctuations of the realized LGDs

up to 15% (25%) to changes in the economic situation. This outcome is unex-

pected since we observed significant lower fluctuations in the realized LGDs over

time (see Table 3.2). Even during the financial crisis both models suggest both

particularly high as well as particularly low LGDs, depending on changes in the

macroeconomic factors. As can be also seen on basis of the improvement of the

estimation accuracy, outlined in Table 3.5, the additional macroeconomic factors

are apparently identified as drivers of the LGD. But with regard to the relatively

low R2 it should be considered that the reason might be a minor expressiveness

of the idiosyncratic factors. The detailed analysis of the influence of the macroe-

conomic factors on the LGD outlines that a direct relationship between the LGD

and the general economic situation is certaily not apparent.
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3.5 Out-of-time Analysis

In this section we analyze and discuss the out-of-time results of our models for

estimating the LGD. Analogous to the procedure of the in-sample testing, for

both companies we have estimated the LGD with the nonlinear regression spline

model and the linear regression. Again, we have performed the estimates once

using only idiosyncratic factors and once with additionally taking into account

macroeconomic factors. To avoid excessive complexity and possibly preventing

potential overfitting which can influence the out-of-time performance negatively,

for each model we only consider the explanatory variables that were at least

significant at 10% in-sample (see Table 3.6 and Table 3.7).

The out-of-time results support the in-sample findings in many aspects. At

execution of the contract both companies yield more accurate LGD estimations

by incorporating macroeconomic factors, irrespective which estimation method is

used. However, in line with the in-sample findings, we observe differences between

the two companies as company A benefits more from the use of the macroeconomic

factors. Moreover, at default of the contract we notice that exclusively company A

yields more accurate LGD estimations by including macroeconomic factors while

the opposite holds for company B. Analogous to the in-sample results, we note

that even for company A the benefit of including macroeconomic factors is less

pronounced at default of the contract than at its execution.

3.5.1 Results at Execution of the Contract

The out-of-time performance measurements at execution of the contract are pre-

sented in Table 3.8. The outcomes show that incorporating macroeconomic fac-

tors generally improves the LGD estimation for both companies, irrespective of

whether the estimates are obtained by the linear regression or the nonlinear re-

gression spline model.
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Company A Company B
Linear Regression Regression Spline Linear Regression Regression Spline

Year FIRM FIRM+MACRO FIRM FIRM+MACRO Year FIRM FIRM+MACRO FIRM FIRM+MACRO
MAE

2005
0.2939 0.2717 0.2932 0.2698

2005
0.3468 0.3461 0.3457 0.3470

RMSE 0.3555 0.3408 0.3555 0.3408 0.4094 0.4089 0.4085 0.4087
REC Area 0.7080 0.7307 0.7020 0.7324 0.6538 0.6545 0.6549 0.6535

MAE
2006

0.2806 0.2679 0.2806 0.2640
2006

0.3407 0.3362 0.3399 0.3412
RMSE 0.3484 0.3369 0.3484 0.3334 0.4032 0.4005 0.4023 0.4033
REC Area 0.7236 0.7238 0.7236 0.7238 0.6599 0.6644 0.6606 0.6594

MAE
2007-2009

0.5195 0.5048 0.5099 0.4962
2007

0.3095 0.2992 0.3089 0.2989
RMSE 0.5804 0.5638 0.5695 0.5562 0.3689 0.3629 0.3688 0.3627
REC Area 0.4877 0.5022 0.4971 0.5110 0.6911 0.7014 0.6916 0.7016

MAE
2008-2009

0.3126 0.3031 0.3088 0.3008
RMSE 0.3726 0.3663 0.3689 0.3641
REC Area 0.6885 0.6891 0.6921 0.7003

Table 3.8: Out-of-time performance measurements at execution of the contract by com-
pany and forecast period. The estimates were carried out each with the nonlinear
regression spline model and the linear regression model. FIRM represents that only
idiosyncratic factors were used as explanatory variables, FIRM+MACRO implies that
additionally macroeconomic factors were included, in each case the better result is un-
derlined. REC Area is defined as the area under the regression error characteristic
curve, MAE is the mean absolute error, and RMSE is the root mean squared error. For
the REC Area higher, for MAE and RMSE lower outcomes are preferable.

Upon closer inspection, the outcomes for company A clearly demonstrate that

the respective models using macroeconomic factors yield throughout more accu-

rate LGD estimations for all forecast periods. Consequently, at execution of the

contract the out-of-time results for company A confirm the in-sample findings,

discussed in Section 3.4, that the additional use of macroeconomic factors leads

to better estimations of the LGD. In particular considering the poor predictions

for the last forecast period, which includes the financial crisis, one may argue that

these results are biased due to the low number of observations. However, it should

be borne in mind that the respective training sample already includes information

about the Dotcom crisis and according to the in-sample results the relationship

between the LGD and the economic situation is similar for the Dotcom crisis

and the financial crisis. Consequently, although the estimation accuracy is poor

for this forecast period, improved predictions by using macroeconomic factor are

quite comprehensible. Basically, by assuming an identical relationship between

the LGD and the explanatory variables over the entire observation period, com-

paratively poor estimates for the final forecast period are indeed surprising, as

most training data are available for this period. On the other hand, it should be
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considered that the few estimations carried out for this period focus on the year

2007. The observations in 2007 exhibit significantly higher LGDs than those of

the previous years which are used for model fitting (see Table 3.2). On average,

basically all models underestimate the LGD in particular for the period 2007-2009.

However, this underestimation of the LGD is minor if macroeconomic factors are

considered.

With regard to the outcomes for company B we recognize that the inclusion

of the macroeconomic factors is overall less beneficial than for company A. The

linear model achieves a higher estimation accuracy in all forecast periods by in-

corporating the macroeconomic factors, however, a distinct advantage over the

respective model without macroeconomic factors can only be obtained in the last

two periods. In addition, the nonlinear regression spline model only benefits by

the inclusion of the macroeconomic factors from the year 2007 onwards. One

reason for the use of the macroeconomic factors being clearly beneficial only in

the last two forecast periods might be the requirement of more training data

for an adequate model fitting, because, as stated in Section 3.4, the models for

company B feature a significant lower coefficient of determination than those for

company A. Still, altogether the out-of-time results at execution of the contract

confirm also for company B largely the in-sample observed benefit of considering

macroeconomic factors for estimating the LGD.

Analyzing the performance measurements for both companies, we observe that

the LGD estimations for company B are less accurate in the early forecast periods.

Nevertheless, in contrast to company A the quality of the estimations remains

stable in the later periods. This can be explained, among other reasons, by the

fact that for company B the level of the LGD increased only moderately in the

last years of the observation period.

Besides, we have seen that the nonlinear regression spline model achieves a

higher estimation accuracy than the linear regression in-sample. Out-of-time we
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again observe this tendency for company A, however, it is mainly reflected in the

models that incorporate macroeconomic factors. Furthermore, for company B,

out-of-time a slight advantage of the nonlinear model over the linear model only

exists from the forecast period 2007 onwards. One possible explanation might

be in turn the rising number of training data over time. As Hartmann-Wendels

et al. (2014) have shown, more complex models, as the nonlinear regression spline

model, typically yield better results in-sample. However, those complex models

might require more training data to achieve an adequate model fitting, which is

necessary to perform accurate out-of-time.

3.5.2 Results at Default of the Contract

The out-of-time performance measurements at default of the contract are shown

in Table 3.9. In contrast to the execution of the contract the results differ signifi-

cantly between both companies. While for company A both methods again yield

more accurate LGD estimations by incorporating the macroeconomic factors, the

opposite holds for company B.

A closer study of the outcomes for company A shows that particularly the

LGD estimations performed by the nonlinear regression spline model benefit from

the inclusion of macroeconomic factors for all forecast periods. The predictions

of the linear regression improve consistently less. In particular, for the linear

regression the benefit of using macroeconomic factors decreases towards the end

of the observation period. This is a possible indication that a linear estimation

model for the LGD can hardly consider the serious changes of the macroeconomic

factors that occurred in the wake of the financial crisis (see Section 3.2.4). In this

situation it seems to be more reasonable to extrapolate the training data with a

nonlinear model.

Comparing the out-of-time results for company A at execution and default of

the contract, we recognize that the improvement of the estimation accuracy by in-
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Company A Company B
Linear Regression Regression Spline Linear Regression Regression Spline

Year FIRM FIRM+MACRO FIRM FIRM+MACRO Year FIRM FIRM+MACRO FIRM FIRM+MACRO
MAE

2005
0.2958 0.2941 0.2965 0.2893

2005
0.3064 0.3120 0.3018 0.2985

RMSE 0.3731 0.3708 0.3701 0.3648 0.3680 0.3738 0.3661 0.3674
REC Area 0.7058 0.7076 0.7047 0.7119 0.6711 0.6715 0.6973 0.7021

MAE
2006

0.2634 0.2603 0.2667 0.2617
2006

0.3179 0.3212 0.3167 0.3209
RMSE 0.3291 0.3294 0.3328 0.3328 0.3770 0.3827 0.3778 0.3784
REC Area 0.7378 0.7409 0.7179 0.7396 0.6826 0.6794 0.6846 0.6802

MAE
2007-2009

0.3321 0.3319 0.3334 0.3229
2007

0.3634 0.3641 0.3646 0.3647
RMSE 0.4105 0.4112 0.4285 0.4208 0.4352 0.4392 0.4573 0.4567
REC Area 0.6702 0.6706 0.6733 0.6836 0.6404 0.6395 0.6418 0.6414

MAE
2008

0.3410 0.3444 0.3411 0.3558
RMSE 0.4073 0.4109 0.4085 0.4258
REC Area 0.6595 0.6561 0.6595 0.6453

MAE
2009

0.3213 0.3241 0.3184 0.3649
RMSE 0.3838 0.3893 0.3825 0.4396
REC Area 0.6792 0.6764 0.6820 0.6365

Table 3.9: Out-of-time performance measurements at default of the contract by company
and forecast period. The estimates were carried out each with the nonlinear regression
spline model and the linear regression model. FIRM represents that only idiosyncratic
factors were used as explanatory variables, FIRM+MACRO implies that additionally
macroeconomic factors were included, in each case the better result is underlined. REC
Area is defined as the area under the regression error characteristic curve, MAE is the
mean absolute error, and RMSE is the root mean squared error. For the REC Area
higher, for MAE and RMSE lower outcomes are preferable.

corporating macroeconomic factors is significantly more pronounced at execution

of the contract. This observation is in line with the in-sample results. Moreover,

it is noticeable that at default of the contract the improvement of the estimation

accuracy by the inclusion of macroeconomic factors is mainly reflected by the out-

comes of the MAE and the REC Area and only partially by the outcomes of the

RMSE. One explanation for this observation is provided by the respective REC

curves, displayed in Figure 3.4. In particular the shape of the REC curves for the

forecast periods 2006 and 2007-2009, presented in Figure 3.4b and Figure 3.4c,

shows that the proportion of observations with minor deviations between the real-

ized and the predicted LGD is higher if macroeconomic factors are incorporated.

This increasing proportion of observations with minor deviations between the re-

alized and the predicted LGD is characteristic if the LGD estimation benefits from

the use of macroeconomic factors. This feature is also observed at execution of the

contract for both companies. However, in contrast to the situation at execution

of the contract, the REC curves of the models that use macroeconomic factors

undercut the respective REC curves of the models without macroeconomic factors
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(c) Forecast period: 2007-2009

Figure 3.4: Regression error characteristic (REC) curves of the out-of-time loss given
default (LGD) estimations at default of the contract for company A by forecast period.
The estimates were carried out each with the nonlinear regression spline model and the
linear regression model. FIRM represents that only idiosyncratic factors were used as
explanatory variables, FIRM+MACRO implies that additionally macroeconomic factors
were included.

with increasing error tolerance at default of the contract for company A. This im-

plies a higher proportion of observations with substantial deviations between the

realized and the predicted LGD for the models that incorporate macroeconomic

factors. For this reason, the difference between the models with and without

macroeconomic factors is less in terms of the RMSE compared to the MAE, be-
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cause the RMSE penalizes in particular large deviations between the realized and

the predicted LGD.

Analogously to the out-of-time results at execution of the contract, for company

A at default of the contract the nonlinear regression spline model primary achieves

a higher estimation accuracy than the linear regression if macroeconomic factors

are considered. This might be another indication that the relationship between

the LGD and the macroeconomic explanatory variables is nonlinear for company

A. In-sample, however, the nonlinear model consistently performs better than the

respective linear model.

For company B the out-of-time outcomes at default of the contract show a com-

pletely different picture than for company A. In contrast to the out-of-time esti-

mation at execution of the contract, the consideration of macroeconomic factors

does not lead to more accurate estimations of the LGD at default. In particular, it

should be highlighted that this finding holds for all forecast periods. Consequently,

the different results for both companies are consistent and are not the outcome

of, e. g., biased data at the end of the observation period. The linear regression

yields consistently better predictions without incorporating the macroeconomic

factors. For the nonlinear regression spline model the inclusion of the macroe-

conomic factors worsens the LGD estimation particularly towards the end of the

observation period. Even a simple historical average provides more accurate esti-

mations than the regression spline model which considers macroeconomic factors

for these forecast periods.

At first glance, for company B the out-of-time results seem to contradict the

in-sample results, because the latter also indicate an improvement of the estima-

tion accuracy by considering macroeconomic factors at default of the contract.

An explanation is provided by the analysis of the effect of the macroeconomic

factors on the LGD, discussed in Section 3.4.2. While a clear link between the

economic situation and the LGD can be observed for both companies at execution



3 Does the Economic Situation Affect the Loss Given Default of Leases? 99

of the contract, this applies only for company A at default of the contract. In

contrast, for company B the influence of the macroeconomic factors on the LGD is

extremely volatile at default of the contract and does not follow a clear structure.

In particular, it is not possible to connect changes of the LGD directly to the

impact of the financial crisis. In other words, although in-sample a higher estima-

tion accuracy is achieved by the inclusion of the macroeconomic factors, a direct

relationship between the LGD and the economic situation cannot be established.

Consequently, it can be assumed that the relationship between the LGD and the

macroeconomic explanatory variables is not identical over the entire observation

period. This implies that extrapolating the training data is hardly possible, es-

pecially towards the end of the observation period when serious changes of the

macroeconomic factors occurred in the wake of the financial crisis. In this regard,

it should also be borne in mind that the serious changes of the macroeconomic

factors are only reflected by moderate changes of the level of the LGD (see Ta-

ble 3.2). The negative influence of the inclusion of the macroeconomic factors on

the estimation accuracy especially towards the end of the observation period is

more pronounced for the nonlinear regression spline model, because this model

achieves a higher adaption to the training data and it can be assumed that it

attaches more importance to the serious changes of the macroeconomic factors.

3.5.3 Interpretation and Implications

The out-of-time results, which are of major importance from a practical point of

view, suggest that the benefit of considering macroeconomic factors for estimat-

ing the LGD depends on whether the estimates are performed at execution or

default of the contract. In particular, we observe significant differences between

the results of the two companies. We find that generally both companies yield

more accurate estimates by incorporating macroeconomic factors at execution of

the contract, although the advantage is more pronounced for company A. In con-
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trast, at default of the contract exclusively company A benefits by the inclusion

of the macroeconomic factors. In this section we point out differences between

the companies and analyze why the economic situation affects the LGD more

for company A. In addition, we deduce practical implications from our results.

On the one hand we address the organization of the workout process and on the

other hand we state crucial aspects that have to be taken into account in order

to calculate a downturn LGD.

The improvement of the estimation accuracy at execution of the contract by

incorporating macroeconomic factors apparently shows that the level of the LGD

depends significantly on the time of the investment. It should be noted that

the customer makes the investment decision mainly independent from the leasing

company, as investment decisions are usually very complex and depend on several

aspects. Referring to the in-sample results, set out in Section 3.4.2, we observe

increasing LGDs for leases that are signed during an economic upturn. This

relationship is particularly evident for the years before the financial crisis. As

mentioned earlier, in times of economic upturn particularly the manufacturing

sector is enticed to invest because their capacities are temporarily fully stretched.

However, if the economic situation deteriorates, the order situation regresses. The

resulting lower inflows might in particular not cover the lease payments of the

investment made during the preceding economic upturn. Furthermore, the in-

sample results indicate that the leases which are signed in times of a weak economy

generally realize relatively low LGDs, even though the highest LGDs for company

B are observed in 2009. Strictly speaking, the results point out that the level of the

LGD during an economic downturn remains at least stable or even decreases. As

stated above, investments which are carried out in a weak economy may suggest

a stable business environment with stable order situation and therefore stable

inflows. Consequently, it is likely that the lessee obtains inflows also in the event

of default and hence is able to repay at least a portion of the debt to the lessor.
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Payments by the lessee to the lessor are particularly important for company A.

As shown in Table 3.3, for company A, the payments by the lessee represent a

substantially higher proportion of the total payments the lessor receives during

the workout than for company B. Possibly for this reason, the dependence of the

LGD on the economy is more pronounced for company A.

Considering the outcomes at default of the contract, the inclusion of the macroe-

conomic factors leads to more accurate LGD estimations only for company A. As

both companies are subjected to the same economic conditions, this indicates

structural differences between the companies that might be related to the orga-

nization of the workout process. As shown in Table 3.1, company A exhibits on

average about 15% lower LGDs than company B. Moreover, as mentioned earlier,

for company A the payments by the lessee represent generally a higher proportion

of the total payments the lessor receives during the workout. Combined with the

finding that the existence of collateral is more important for company A, this

indicates that lessor A monitores the workout more actively.

With regard to the composition of the recovery, it has been outlined in Sec-

tion 3.2.2 that the proportion of the revenue from disposing the leased asset

fluctuates only slightly over the observation period for both companies. This

suggests that due to their knowledge of the secondary markets, both lessors are

able to achieve reasonable revenues also during crises. In contrast, with respect

to the evolution of the lessee payments, we observe significant differences between

the two companies. For company B the proportion of the lessee payments is com-

paratively limited, but it is largely constant over time. For this reason we note

only a slight increase of the LGD during the prolonged financial crisis for com-

pany B. For company A, however, we observe that the proportion of the lessee

payments is more volatile and obviously depends considerably on the economic

situation. While these payments represent a significant proportion of the total

recovery in general, the share decreases significantly during the financial crisis.
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The generally high proportion of lessee payments might be an outcome of an ac-

tive workout management by the lessor, e. g., by calculating a new payment plan

in the event of default of the lessee. However, as outlined, if the economic situa-

tion deteriorates, typically the order situation regresses. Consequently, despite an

active management of the workout, during an economic downturn no surpassing

lessee payments can be achieved. This explanation particularly corresponds to the

in-sample findings in Section 3.4.2 that the LGD of company A increases in the

wake of the financial crisis. In summary, it can be noted that the active workout

management generally helps company A to achieve on average lower LGDs than

company B, but it also contributes to greater dependency of the LGD on the

economic situation.

Our out-of-time results show that the consideration of macroeconomic factors

does not necessarily lead to more accurate LGD estimations. In fact, as the

outcomes for company B at default of the contract show, it is likewise possible

that the estimates become inaccurate. According to the in-sample results, this is

because no clear relationship between the LGD and the economic situation exists.

With regard to the development of an estimation model for the LGD this implies

that leasing companies have to analyze individually to which extent a relationship

between the LGD and the economic situation exists. Our findings suggest that this

relationship depends in particular on the organization of the workout process. An

active management of the workout seems to contribute to lower LGDs in general,

however the level of the LGD depends more on the economic situation.

Moreover, our findings are of crucial importance with regard to the calculation

of a downturn LGD. Several studies, e. g., Hartmann-Wendels and Honal (2010),

Bellotti and Crook (2012), and Leow et al. (2014), have used macroeconomic

stress tests to calculate a downturn LGD. Here, the LGD is modeled depending

on macroeconomic factors. The downturn LGD is then obtained by the use of

unfavorable realizations of the macroeconomic factors, e. g., the worst observed
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realization of the past 25 years. As Hartmann-Wendels and Honal (2010) cite, a

prerequisite for this approach is a stable relationship between the LGD and the

macroeconomic factors, which in particular consists during a downturn period.

This requirement is obviously not satisfied for company B at default of the con-

tract. While the in-sample results already point out that no stable relationship

between the LGD and the macroeconomic factors exists, out-of-time we notice

that the estimates are worse in particular during the financial crisis. One reason

is that the macroeconomic factors vary strongly during the financial crisis, but

these variations cannot be transfered equally to the level of the LGD. Instead of

using macroeconomic stress tests to calculate a downturn LGD, for company B

at default of the contract it is more appropriate to utilize a worst case scenario

approach as mentioned by Chalupka and Kopecsni (2009). Before the financial

crisis began in 2007, the contracts defaulted in 2002 realized the highest average

LGD, which was about 4% higher than the overall average LGD up to 2007. Ac-

cordingly a downturn LGD can be calculated by adding 4% to the LGD estimates

obtained by a model which exclusively uses idiosyncratic explanatory variables.

3.6 Conclusion

In this study we have analyzed the influence of macroeconomic factors on the

LGD of defaulted leasing contracts while simultaneously taking into account id-

iosyncratic factors. The data we have used for our analysis are provided by two

German leasing companies. With defaults between 2002 and 2009, the observa-

tion period covers a wide range of economic conditions including the impact of the

recent financial crisis. We have estimated the LGD at execution and default of

the contract both with a linear regression and a nonlinear regression spline model.

To validate our results we have performed in-sample and out-of-time testing. The

latter is of major importance from a practical point of view and is mandatory to

meet the regulatory requirements.
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We find that the relevance of macroeconomic factors for the LGD estimation

depends in particular on whether the estimates are performed at execution or

default of the contract. At execution of the contract, for both companies a clear

link between the economic situation and the LGD can be established, irrespective

which estimation method is used. The in-sample results show that changes in the

level of the LGD are directly connected with special events, such as the financial

crisis. Consistently, out-of-time the respective models which use macroeconomic

factors yield throughout more accurate LGD estimations.

At default of the contract, the in-sample outcomes indicate only for company

A a slight link between the LGD and the economic environment. This finding

is confirmed by the results of our out-of-time tests. We observe that out-of-

time the consideration of macroeconomic factors generally leads to more accurate

LGD estimations for company A, whereas the opposite holds for company B. In

particular, we state that the respective results are again not driven by the applied

estimation method.

We find that the general dependency between the LGD and the macroeconomic

factors at execution of the contract is only limitedly connected to the leasing com-

pany. We rather observe that the LGD is directly linked to the time of investment.

In contrast, at default of the contract the influence of the economic situation on

the LGD depends essentially on the organization of the workout process and thus

differs between the leasing companies. Our findings are of crucial importance,

especially with regard to the calculation of a downturn LGD. At least the results

of macroeconomic stress tests could be misleading, because a stable relationship

between the LGD and macroeconomic factors does not necessarily exist.

In addition, we have studied the relationship between the LGD and various

idiosyncratic factors to identify the key drivers of the LGD. We find that the

relevant drivers of the LGD and their impact on the LGD depend in particular

on the investigated company and partially also on the used estimation method.
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Nevertheless, some idiosyncratic factors can be identified as key drivers of the

LGD. In general, we observe that the LGD depends more on object characteris-

tics and contract characteristics than on customer characteristics. Moreover, the

additional information at default of the contract contribute to the explanation of

the LGD. The most significant driver of the LGD is the object type of the leased

asset. We observe low LGDs especially for vehicles, whereas ICT facilities feature

high LGDs. Additionally, the LGD depends on the original value of the leased as-

set. Our results further show that hire-purchase contracts generally realize lower

LGDs. Besides, we find that an increasing ratio of the EAD to the original value

of the leased asset throughout increases the LGD. Beyond this, the key drivers

of the LGD differ markedly between the analyzed companies. Among others, the

LGD of company A depends substantially on the existence of additional collat-

eral, while the presence of buy-back agreements significantly reduces the LGD of

company B.

We therefore conclude that the different results of previous studies on some

factors are in particular the result of differences in the used datasets and methods.

Contrary to our work, most of these studies used only data from one company

or pooled data from different companies. Although there exist some common

idiosyncratic key drivers of the LGD, our results clearly outline that the calibration

of an estimation method has to be done by each company individually.

However, our study also provides evidence whether the consideration of non-

linear relationships between the LGD and the explanatory variables contributes

to more accurate LGD estimations. In-sample we observe that the nonlinear re-

gression spline model consistently achieves a higher estimation accuracy than the

linear regression. Furthermore, the out-of-time results show that the detailed

mapping of the dependencies between the LGD and the explanatory variables by

the nonlinear regression spline model may also improve the forecast of the LGD.

However, an advantage of the nonlinear model is not guaranteed, in particular to
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achieve more accurate LGD forecasts than the linear model, the nonlinear model

requires at least a definite relationship between the LGD and the explanatory

variables and additionally sufficient training data.

3.7 Appendix

Variable definitions
Idiosyncratic factors
Object characteristics
VEHICLE A dummy variable equal to one if the leased asset is a vehicle
MACHINERY A dummy variable equal to one if the leased asset is a machine
ICT A dummy variable equal to one if the leased asset belongs to the ICT area
EQUIPMENT A dummy variable equal to one if the leased asset is an item of equipment
ORIGINALVALUE The original value of the leased asset in euros
USED A dummy variable equal to one if the procured leased asset has been used already
Contract characteristics
FULLPAYOUT A dummy variable equal to one if the contract type is a full pay-out lease contract
PARTIALAMORTISATION A dummy variable equal to one if the contract type is a partial amortisation contract
HIREPURCHASE A dummy variable equal to one if the contract type is a hire-purchase contract
PURCHASEOPTION A dummy variable equal to one if the customer has a contractually agreed purchase option
INTEREST The interest rate of the contract in percent
MATURITY The maturity of the contract in month
PRETOVALUE The prepayment rent (possible zero) divided by the original value of the leased asset
RESIDUALTOVALUE The calculated residual value of the leased asset (possible zero) divided by its original value
BUYBACK A dummy variable equal to one if the supplier commits to buy back the leased object in case of a contract disturbance
COLLATERAL A dummy variable equal to one if the contract is secured by an additional collateral
Customer characteristics
RETAIL A dummy variable equal to one if the customer is allocated to the retail business
EXTENSION A dummy variable equal to one if the contract is a subsequent contract
Additional information at default
EAD The outstanding exposure at default in euros
EADTOVALUE The outstanding exposure at default divided by the original value of the leased asset
CONTRACTAGE The term between execution and default of the contract divided by the term to maturity of the contract
SOLD A dummy variable equal to one if the monitoring of the contract was ceded to another company
RESIDUALTOEAD The calculated residual value of the leased asset (possible zero) divided by the outstanding exposure at default

Macroeconomic factors
GDP Growth rate of the gross domestic product in comparison to the preceding quarter - seasonally adjusted values using Census-X12-Arima
IFO-INDEX Monthly collected index business climate of the Ifo Institute for Economic Research
IFO-EXPECTATION Monthly collected index business expectations of the Ifo Institute for Economic Research
ASSETINVESTMENT Growth rate of the gross fixed asset investments in comparison to the preceding quarter - seasonally adjusted values using Census-X12-Arima
INTERESTRATELEVEL Monthly average of the yield to maturity for domestic bearer bonds



4 Loss Given Default-Adjusted
Workout Processes for Leases

4.1 Introduction

Credit risk modeling is an essential assignment of risk management in financial

institutions. One of the major drivers of credit risk is the loss given default (LGD).

The knowledge of potential losses is crucial for an efficient allocation of regulatory

and economic capital and also for credit risk pricing. Pursuant to Article 107 (1)

of the Capital Requirement Regulation (CRR), financial institutions shall apply

either the Standardised Approach or the Internal Ratings Based Approach (IRBA)

in order to calculate their regulatory capital requirements for credit risk. When

implementing the advanced IRBA, it is mandatory to develop internal models

for estimating the probability of default (PD), exposure at default (EAD), and

LGD. One of the main objectives of the IRBA is to achieve risk-adjusted capital

requirements (see Basel Committee on Banking Supervision (2003)). Accurate

forecasts of PD, EAD, and LGD may result in competitive advantages for the

applying financial institution in general, as is indicated by Gürtler and Hibbeln

(2013).

While the procedure for calculating the PD might be almost identical for loans

and leases, models for estimating the LGD should consider specific characteristics

of leasing contracts. The analysis of the leasing business is particularly impor-

tant considering that a high amount of externally financed investments and total

investments in European economies are financed by leasing, e. g. 50% and 25%,
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respectively, in 2015 in Germany. In contrast to loans, the collateralization of

a lease by its leased asset is obligatory. In particular, being the legal owner of

the leased asset, the lessor can retain any recovered value of the leased asset’s

disposal. Thus, unlike in the case of loans, the lessor has legal access to this

additional source of payments in the event that a contract defaults. Eisfeldt and

Rampini (2009) argue that the main benefit of leasing is that repossession of a

leased asset is easier than foreclosure on the collateral of a secured loan. During

the workout process of a defaulted loan, the lender receives payments exclusively

from the debtor and the liquidation of collateral. These incomes also occur during

the workout process of leases. Consequently, considering the additional incomes

from disposing of the leased asset, the cash flows of the leasing workout process

consist of two parts. One part comprises the asset-related cash flows, the other

part comprises all remaining cash flows. Han and Jang (2013), Töws (2014), and

Frontczak and Rostek (2015) argue that the level of LGD crucially depends on

the actions taken during the workout process. Hence, the specific features of the

workout process of leases should be taken into account when estimating LGD.

In the recent literature various advanced approaches for estimating the LGD

have been analyzed. Bastos (2010), Hartmann-Wendels et al. (2014), and Yao

et al. (2015) find that complex models are able to generate robust and precise

LGD predictions in principle. Nevertheless, either for loans or leases, no single

estimation approach has been established yet. Remarkably, the majority of the

estimation approaches introduced so far has in common that the LGD is regarded

as a holistic measure of risk. With regard to the LGD of loans, such an approach is

reasonable. However, according to the specific characteristics of leasing contracts,

the LGD of leases typically consists of cash flows from two distinct sources. Thus,

a holistic approach to estimate the LGD of leases might be inappropriate.

Therefore, we present a new approach to forecasting leasing LGDs. In our study,

we consider the specific characteristics of leases and, consequently, we suggest an
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economically motivated separation of the LGD into an asset-related part and a

miscellaneous part. The required information about the breakdown of the cash

flows is compulsory for institutes using the IRBA according to Article 181 CRR.

Coming from different payment sources, both parts should be driven by different

factors.

While our approach is explicitly designed to estimate leasing LGDs, the basic

idea can be adjusted in general to estimate the LGD of other instruments such as

collateralized loans and in particular mortgages. The only requirement is that the

considered instruments include cash flows obtained during the workout process

from distinct payment sources.

In the course of this paper, we describe the development of a multi-step estima-

tion model, which is built upon the economic composition of the LGD of leasing

contracts. Estimating the asset-related and miscellaneous parts, we derive an es-

timation of the overall LGD. Our easily traceable model results in a significant

advantage in terms of estimation accuracy.

Moreover, the estimated asset-related and miscellaneous LGD can be used to

support decisions concerning the accomplishment of the workout process. In fact,

the separation of LGD has extensive practical implications for handling a defaulted

contract’s workout process. The derived shares of LGD are indicators for the

success of both the asset’s disposal and the effort of collecting further payments.

Consequently, we find that our inferred suggestions for the actions to be taken

by the lessor during the workout process lead to significant improvements in the

resulting LGD value of the respective contracts.

For our study, we use a real-life dataset provided by a major German lessor. The

data is of high quality with regard to details, which is particularly important in

our approach. We compare the performance of our procedure to that of traditional

holistic methods for LGD estimation carried out, e. g., by ordinary least squares

(OLS) regression. In particular, to measure the accuracy and robustness of the
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models, we use in-sample, out-of-sample, and out-of-time validation. Moreover,

considering the economic context and the obtained estimation errors, we discuss

theoretical and practical advantages or disadvantages of each step in our approach.

4.2 Related literature

The linear regression has so far been the most frequently used method for esti-

mating the LGD in the existing literature on LGD research. Nevertheless, when

regarding the specific features of the LGD distribution, linear regression seems to

be at least econometrically inappropriate for the estimation task. Typically, the

workout LGD of loans and leases, calculated from discounted cash flows after the

default of the customer, is bimodally or even multimodally distributed (compare

Laurent and Schmit (2005), Zhang and Thomas (2012), Hartmann-Wendels et al.

(2014), and Li et al. (2014)). This unusual shape of the density suggests that LGD

estimation requires the use of advanced methods. These methods should be able

to approximate the complex relationships between the available information and

the LGD as precisely as possible in order to produce accurate and comprehensible

estimations.

Against this theoretical and practical background, a number of different meth-

ods have already been investigated in the literature. In particular, the relevant

studies examine the models’ suitability and predictive accuracy for LGD estima-

tion.

Several studies focus on reproducing the LGD’s density function in order to

extrapolate accurate estimations in this manner. For this purpose, Calabrese

and Zenga (2010) use a mixed random variable to model LGD on the unit inter-

val. They apply their concept to a large set of defaulted Italian loans. Altman

and Kalotay (2014) adopt a similar approach based on the mixture of Gaussian

distributions. They report successful estimations using Moody’s Ultimate Recov-
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ery Database (MURD). Hartmann-Wendels et al. (2014) also apply an approach

based on finite mixture models in order to estimate the LGD of leases. How-

ever, out-of-sample, their approach performs poorly. The authors conclude that

reproducing the LGD density is only of secondary importance to the estimation

accuracy.

Further studies examine the suitability of various parametric and nonparametric

methods for LGD estimation. Applying several regression techniques to the data

of six different banks, Loterman et al. (2012) conclude that nonlinear methods

perform better than linear methods. Qi and Zhao (2011) obtain a similar result.

They compare different parametric and nonparametric methods using MURD.

The authors argue that nonparametric methods can generate more accurate LGD

estimations due to their ability to model nonlinear relationships between the LGD

and continuous explanatory variables. In particular, they find regression trees to

be a suitable nonparametric method for estimating LGD. Bastos (2010) obtains a

similar outcome when he uses regression trees on Portuguese bank loans. Likewise,

Hartmann-Wendels et al. (2014) successfully apply model trees to estimate the

LGD of German leases.

Recently, some studies have applied ensemble learning techniques to estimate

LGD. These are an extension of the analysis of single procedures. Bastos (2013)

improves the estimation accuracy significantly by using regression trees in an

ensemble approach on MURD. On a set of leases, Töws (2014) finds that random

forests achieve higher coefficients of determination than does linear regression.

In addition to single-stage models, some studies implement two-stage models

to forecast LGD. Typically, these models split the observations ex ante according

to a specific key feature. To predict the LGD of mortgage loans, Leow and Mues

(2012) first estimate the probability of mortgage accounts undergoing repossession.

Then, they calculate the loss in the event of repossession using a certain haircut

value. The latter is the ratio of the forced sale price and the valuation of the
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repossessed property. Concerning the LGD of leases, Töws (2014) successfully

introduces a two-stage approach. He distinguishes between recovered and written

off contracts and then estimates the respective LGD.

Although the findings of several studies show that complex models can generate

more accurate LGD estimations than standard econometric techniques such as the

linear regression, the results of Qi and Zhao (2011) and Hartmann-Wendels et al.

(2014) indicate that overfitting is a common concern of complex models. Hence, as

overfitting may negatively affect forecasting accuracy, a prerequisite for advanced

models to perform well is the existence of a correspondingly large database, both

in terms of observations and associated information. The lack of data and issues

with controlling overfitting are presumably the reasons why linear regression has

been the most frequently used method for estimating the LGD in the literature

so far. Moreover, some studies also demonstrate the practical suitability of the

linear regression. Zhang and Thomas (2012) apply linear regression and survival

analysis to a dataset of defaulted personal loans from the UK. They find that

linear regression generates the best LGD estimates in general and outperforms

more advanced estimation techniques. Bellotti and Crook (2012) obtain a similar

result when estimating the LGD of UK credit cards.

The approach for predicting the LGD of leasing contracts we present in this

study differs in crucial aspects from the majority of the advanced estimation

methods discussed in the literature. We introduce an estimation approach that

is explicitly based on economic considerations. In particular, by applying an

economic separation of the LGD, we consider the LGD a composed measure of

risk.
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4.3 Dataset

The dataset consists of 1,493 defaulted leasing contracts with 907 lessees from

a large German leasing company. The key figures of the dataset are shown in

Table 4.1. The contracts were executed between 1996 and 2009. Their default

occurred between 2002 and 2009. The default status of any contract was deter-

mined by the default events outlined in Section 452 of Basel II. These events

correspond to Article 178 (1) of the CRR. The associated EAD of the contracts

ranges between e 216 and e 1,620,114 with an average of e 53,025 per contract.

This corresponds to an average ratio of EAD to the lessor’s calculated contract

value of 60%. The average LGD amounts to 35%. LGD and its distribution will

be discussed in detail in following section.

LGD EAD (in e )
# Contracts # Lessees Mean Median Std Mean Median Std

1,493 907 0.35 0.30 0.48 53,025 20,955 120,845

Table 4.1: Numbers of contracts and lessees as well as loss given default (LGD) and
exposure at default (EAD) key figures of the dataset. Std is the standard deviation.

All contracts defaulted without recovering and were finally written off. The

contracts default after an average of 50% of their maturity. That is approximately

2.5 years after the execution of the average contract. The mean workout lasts

about two years. The workout of all contracts has been completed. The last of

these was completed in 2010. Further data has not been provided.

Our data is extremely valuable with respect to its high level of detail, particu-

larly regarding the workout process. The breakdown of cash inflows and outflows

during the workout process is of particular importance for the derivation and

economic interpretation of the approach we present in this study. The carefully

documented costs concerning the disposal of the leased asset and the collection

of overdue payments, allow a precise and economically meaningful separation of

asset-related and miscellaneous revenues. In general, Schneider et al. (2010) find
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that rating and industry of the customer already explain 50% of the variance in

LGD. Beside customer specific information our data also comprises details with

regard to the contract, the leased asset as well as additional information on the

contract’s default. These are for instance the distinction between customer types,

type of contract, e. g. full pay-out lease contract, asset class, e. g. vehicle, and

default reason, e. g. insolvency.

Before any separation or estimation of the LGD, we briefly discuss its calcu-

lation. The LGD is defined as the portion of EAD that could not have been

recovered in the case of a contract’s default. Its counterpart is the recovery rate

(RR). The workout RR is the ratio of the amount recovered and EAD, which is

equivalent to 1 − LGD. In line with Article 5 (2) CRR, we use the term-related

refinancing interest rate to discount all incurred cash flows (CF) and workout

costs (WC) to the time of default. The EAD is the present value of the defaulted

contract’s outstanding exposure, calculated as the sum of outstanding payments

at the time of default.

The detailed breakdown of incoming and outgoing cash flows during each con-

tract’s workout enables us to determine LGD very precisely. Formally, we calculate

the LGD as

LGD = 1− CF−WC
EAD = 1− RR. (4.1)

Beyond the pure determination of LGD, we calculate component LGDs. The

asset-related LGD (ALGD) summarizes all asset-related payments, such as the

asset’s liquidation proceeds and incurred liquidation costs. We call the remaining

part of the LGD miscellaneous LGD (MLGD). The MLGD comprises revenues

from capital services, such as interest rates and customer payments, the costs of

collateral, such as recovery costs and maintenance costs, and proceeds of collateral,

other indirect costs, and other payments. Both component LGDs refer to the

overall EAD. However, they differ particularly in terms of the lessor’s influence

on the respective cash flows. While repossession of the leased asset as well as
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its disposal is entirely in the responsibility of the lessor, miscellaneous cash flows

depend on several factors outside his/her control. For instance, if the defaulted

lessee goes through an insolvency proceeding, the insolvency estate is distributed

pro rata between all relevant creditors. Basically, the MLGD of a leasing contract

is the equivalent of a loan’s LGD.

We derive the two component LGDs from Equation (4.1) by identifying the asset

proceeds (AP) within the incoming cash flows and the related asset liquidation

costs (LC) within the workout costs. This splitting results in

LGD = 1− (CFM + AP)− (WCM + LC)
EAD

= 1− AP− LC
EAD − CFM −WCM

EAD (4.2)

= 1− ARR −MRR,

with CFM and WCM denoting the remaining miscellaneous incoming cash flows

and workout costs respectively.

Subsequently, we derive the asset-related RR (ARR) and the miscellaneous RR

(MRR). As usual, we obtain the LGD as the counterpart of the RR

ALGD = 1− ARR, MLGD = 1−MRR. (4.3)

In terms of ALGD and MLGD, the LGD then is calculated as

LGD = ALGD + MLGD− 1. (4.4)

Descriptive statistics

In contrast to various studies, we do not restrict LGD to the unit interval, such

as is done by Chalupka and Kopecsni (2009), Bastos (2010), and Zhang and
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Thomas (2012). For leases, LGDs outside the unit interval are frequently observed.

Hartmann-Wendels and Honal (2010) argue that LGDs less than 0 may occur in

cases where the asset disposal covers more than the amount of EAD. Additionally,

incorporating workout costs may cause the LGD to rise beyond 1. Table 4.2

provides a brief overview of the LGDs’ distribution parameters. The overall LGD

averages near 35%, and we observe an average ALGD of 69% and MLGD of 65%.

The standard deviation of ALGD is notably lower than that of MLGD and LGD.

Minimum and maximum of ALGD and MLGD are consequently higher than those

of the LGD.

Part of LGD Mean Std Min. P25 Median P75 Max.

ALGD 0.69 0.41 −0.99 0.41 0.98 1.00 2.03
MLGD 0.65 0.51 −1.04 0.22 0.89 1.01 2.68
LGD 0.35 0.48 −1.36 0.00 0.30 0.76 1.50

Table 4.2: Distribution parameters of the loss given default (LGD). Std is the standard
deviation, Min. is the minimum, and Max. is the maximum LGD value. P25 and
P75 are the respective quartiles. ALGD is the asset-related LGD and MLGD is the
miscellaneous LGD. We derive both partial LGDs from Equation (4.3).

We find that the ratio of asset value at default to EAD is 54% on average.

Although, the lower quartile of ALGD is quite high, for more than 10% of the

contracts the asset value even exceeds EAD. For these contracts, ARR is higher

than 1. While the default value of the leased asset is not an explicit part of the

EAD, this value qualifies for incoming cash flow during the workout process in the

case of asset disposal. In the same way as any other cash income, the disposed

asset value reduces the LGD. Moreover, in contrast to the liquidation of a loan’s

collateral, the lessor, as the legal owner of the leased asset, can keep any surpluses

from disposing of the leased asset even if the resulting ARR exceeds 1.

For a lessor’s internal risk management, determination of ALGD is useful. If

interpreted as a stand-alone parameter, ALGD is theoretically an upper limit to

the LGD. This is true if the MLGD does not exceed a value of 1, which implies the
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ALGD ≥ LGD ALGD < LGD

Figure 4.1: Densities of the two classes of the loss given default (LGD), after separating
the contracts according to their relationship of LGD to asset-related LGD (ALGD).
The full amount of the exposure at default (EAD) is recovered in the case of 0. −1
defines an EAD recovery of 200% while an LGD value of 1 signifies the loss of 100% of
the EAD.

success of the workout process. Therefore, depending on the amount of ALGD,

the lessor can determine whether the asset sales proceeds already cover the EAD

or if further workout actions should be taken to collect overdue payments.

Frontczak and Rostek (2015) argue that knowledge of the effect of disposal

efficiency and related costs on the LGD may affect a lender’s disposal policy.

Consequently, it would be useful for the lessor to know ex ante whether the MLGD

will exceed 1. If it does, the lender loses more than the full amount of EAD.

Strictly speaking, MLGDs > 1 indicate that the incurred collection costs will

exceed the payments collected. In such cases, even if the asset sales proceeds cover

only a small portion of EAD, the workout should be restricted to the disposal of

the leased asset because collecting further payments is inefficient from an economic

standpoint.

Theoretically, it is also possible that the ALGD exceeds 1. Nevertheless, in our

data we find that asset sales proceeds exceed the incurred disposal costs in 99%

of all cases. This outcome could have been expected, because leasing companies

are experts in disposing of their leased assets. Hence, the disposal is economically
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Figure 4.2: Densities of the shares of the loss given default (LGD), asset-related LGD
(ALGD), and miscellaneous LGD (MLGD). The full amount of the exposure at default
(EAD) is lost in the case of 1. −1 defines an EAD recovery of 200% while an LGD value
of 2 signifies the loss of 200% of the EAD.

reasonable in almost any case. Interestingly, for about 35% of the examined

contracts, the MLGD exceeds 1. This implies that the ALGD as an upper limit

of the LGD holds for only about 65% in practice. Nevertheless, as can be seen in

Figure 4.1, this upper limit is an important feature in distinguishing the contracts.

More precisely, categorizing the contracts according to this upper limit leads to

LGD distributions that are, to a large extent, disjointed. The realized LGDs of

the contracts that satisfy ALGD ≥ LGD concentrate around 0 with a mean of

0.20. In contrast, for contracts with ALGD exceeding the LGD, LGDs are located,

in particular, around 0.5 and 1 with a mean of 0.59.

Figure 4.2 visualizes the density of the calculated overall LGD of the underlying

dataset. In addition, ALGD and MLGD densities are plotted. Both overall LGD

and MLGD exhibit a pronounced bimodal shape, with concentrations around

an LGD level of 0 and 1. The LGD’s mean of 0.35 in Table 4.2 indicates that

the overall LGD is rather small in most cases. Its median of 0.30 confirms this

finding. ALGD and MLGD, however, have more density around 1. From the
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perspective of a regular lender, a high ALGD is of less concern than a high MLGD.

Because the asset’s fair value is not included in the EAD, the cash inflow from

the asset’s disposal has an unexpected reducing effect on the LGD. In contrast,

the cash inflows considered by MLGD are fully accounted for in the EAD. A high

MLGD reflects a poor outcome from the workout process. However, the ALGD

is important to lessors because revenues from disposing of the leased asset in the

case of default are a substantial aspect of a lessor’s business model.

To be precise, the average revenue from disposal of the leased asset amounts

to e 15,322 per contract. The miscellaneous payments during the workout pro-

cess add up to e 13,616 on average per contract. This allocation of cash inflows

emphasizes the importance of both sources of revenues for a leasing company. It

confirms that the workout process of defaulted leases is quite different from that of

loans. Consequently, for leasing contracts it is essential to consider both ALGD

and MLGD when estimating the overall LGD. This entails that especially the

prediction of leasing LGDs benefits from a large amount of information. Based on

the findings of Schneider et al. (2010) particularly customer specific information

are important to explain the MLGD. Additionally, to estimate the ALGD, natu-

rally, information on the leased asset is crucial. We note that the share of revenues

from disposing of the leased asset is indeed slightly higher on average than the

remaining share. However, in particular for less valuable assets, the traditional

payments collection during the workout process are substantial.

In Table 4.2 we observe higher standard deviations of MLGD and LGD com-

pared to ALGD. Thus, the latter is less volatile, Miller (2015) noting much the

same. Therefore, ALGD might be easier to estimate. In addition, Table 4.3 dis-

plays the key figures of the realized LGD, ALGD, and MLGD values over the

default years of the observation period. At this level of aggregation, ALGD is

still less volatile than MLGD and LGD in a year by year comparison. Concerning

LGD, we observe rather small fluctuations during the period of 2003 to 2008. It
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LGD ALGD MLGD
Year Mean Std Mean Std Mean Std
2002 0.3723 0.5283 0.7386 0.4076 0.6337 0.5652
2003 0.2995 0.4597 0.6978 0.4360 0.6017 0.5344
2004 0.3068 0.4341 0.6637 0.4267 0.6431 0.5302
2005 0.3245 0.4516 0.6640 0.4505 0.6604 0.4603
2006 0.3218 0.4557 0.6506 0.4218 0.6712 0.4750
2007 0.3303 0.4225 0.6503 0.4221 0.6799 0.4555
2008 0.3413 0.4218 0.6167 0.3968 0.7247 0.4062
2009 0.3999 0.4179 0.6654 0.2914 0.7345 0.3826

Table 4.3: Distribution parameters of the loss given default (LGD) for each default
year. Std is the standard deviation. ALGD is the asset-related LGD and MLGD is the
miscellaneous LGD. We derive both parts of the LGD from Equation (4.3).

is only for the years 2002 and 2009 that the realized LGD is, in comparison, no-

ticeably higher on average. In particular, the higher average LGD in 2009 might

be a result of the global financial crisis. Regarding ALGD, the means fluctuate

around 65%. However, we find it interesting that ALGD does not increase un-

usually in 2009. This finding indicates that the fluctuations of ALGD are driven

by each year’s asset disposals but are not driven by the economy. Apparently,

ALGD does not increase during the financial crisis. We attribute this effect to the

lessor’s excellent knowledge of secondary markets. Obviously, there is a difference

in the course of MLGD. It also fluctuates only rarely between the years 2002 and

2007. However, we observe a marked but manageable increase in 2008 and 2009,

which might be a result of the financial crisis.

The evolution of the three LGD ratios supports our hypothesis that ALGD

might be easier to estimate for the lessor than MLGD or LGD. However, we

find no empirical evidence, that the economy, accounting, e. g., for gross domestic

product and unemployment rate, has an impact on ALGD. The economy might

influence MLGD and LGD slightly. Nevertheless, the potential effect seems to be

minor. Moreover, Miller (2015) shows that the LGD estimation at the default of

a lease benefits only slightly, if at all, from considering the economic situation.
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Consequently, we do not include macroeconomic factors in our approach. In fact,

for the estimation of the LGD ratios we focus on contract related factors, such as

the type of the leased asset, the customer, and the reason for default.

4.4 Methods

In contrast to recent studies on LGD estimation, we do not focus on the compar-

ison of very complex or even black box methods, such as support vector machines

or neural networks. Instead, we develop an economically based and consistent

technique for estimating LGDs. Rather than regarding LGD as a holistic mea-

sure of risk, we separate the LGD into an asset-related part and a miscellaneous

part and, hence, taking into account the specific characteristics of leases. In or-

der to provide evidence that the increase in estimation accuracy does not arise

solely from particularly suitable methods but from sophisticated economic con-

sideration, we essentially apply two distinct methods to our proposed multi-step

approach. These are OLS and as an advanced estimation method, the tree algo-

rithm random forest (RF). Throughout the study, we set the traditional direct

estimation of LGD by OLS and RF as a benchmark to compare the performance

of our multi-step estimation model and to measure the improvement.

As OLS is a common estimation method, we will only give a brief overview of

the RF model. The RF tree algorithm was constructed by Breiman (2001). It

has many similarities to regular regression and classification trees. These trees

subsequently divide the initial dataset according to a series of if-then conditions.

At every node of the tree, the best split is performed according to an appropriate

split criterion, e. g., the greatest expected reduction in standard deviation. Each

contract terminates in one leaf of the final tree. Each leaf’s estimation value then is

the average value of the contracts of the respective leaf. In terms of classification,

the contracts’ realized class in each leaf determines the leaf’s class estimation.
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RF differs from regular regression trees in three important ways. First, instead

of building only one tree, a series of trees and, thus, a forest is built. Second, each

tree is calibrated with a random sample of the dataset. Third, at each node the

available set of splitting variables is a random sample of all available variables.

The final estimation of a contract is the average of the single tree estimations.

For classification, the majority vote determines a contract’s class. We use the RF

standard parameters suggested by Breiman (2001). For classification, these are
√
m randomly chosen variables for each split and m/3 variables for regression out

of a total of m variables. The size of the forest is fixed at 1,000 trees, as proposed

by Hastie et al. (2009).

Beside the frequently used OLS, numerous studies have shown that tree-based

algorithms are particularly well suited to estimating LGD. While Bastos (2010)

and Hartmann-Wendels et al. (2014) find that regression and model trees generate

robust and accurate LGD estimations, Töws (2014) reports similar outcomes for

RFs explicitly.

4.4.1 Direct estimation

To begin with, we take a look at direct estimation methods. Direct estimation

is easy to implement and, therefore, the most elementary and common method

for estimating LGD. In this study, direct estimation by OLS and RF serves as a

useful benchmark when we compare it to the respective multi-step model by mea-

suring the models’ performance improvements. The left-hand side of Figure 4.3

visualizes a simplified direct estimation method. In general, the method uses a

set of variables to produce estimations of the LGD.

Using OLS, we model the LGD dependent on the available and relevant variables

(VAR) in a linear combination

LGD = α +
m∑

i=1
βi · VARi + ε, (4.5)
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Figure 4.3: Procedure of the developed models. Our approach consists of three consecu-
tive parts. Equations (4.5), (4.7), and (4.8) used at the model’s steps are explained in
detail in the following paragraph. Direct estimation determines the loss given default
(LGD∗) according to Equation (4.5) using the variables available, both in an ordinary
least squares (OLS) and in a random forest (RF) regression model. In the LGD de-
composition, we divide the realized LGD into an asset-related LGD (ALGD) and a
miscellaneous LGD (MLGD). Then again, using the available variables, two OLS or
RF models are calibrated to estimate ALGD∗ and MLGD∗. Subsequently, the contracts
of our dataset are classified into two classes. An RF classification model uses the avail-
able variables including ALGD and MLGD and their estimated values to perform the
classification of Equation (4.7). It aims to assign AL∗ = 0 correctly to contracts with
an ALGD exceeding its LGD, and AL∗ = 1 in case ALGD falls short of LGD. Based
on these two disjoint datasets, we calibrate an OLS or RF model on each to estimate
the two LGD∗AL∗ . Using the linear combination of Equation (4.8), we calculate the final
LGD estimation by weighting LGD∗AL∗ with their classification probabilities p and 1−p.

with α the regression’s constant, βi the slope coefficient of variable VARi, ε the

residual, and m the number of included variables. For RF regression, we train

a forest based on the same information set, estimating the dependent variable

directly.

The advantage of direct estimation is the plain analysis of the influence of the

independent variables. In the case of OLS, the significance and slope of single

influencing factors are fairly easy to measure and have economic interpretations.

The importance measure of RF allows for similar conclusions. However, from a

methodological perspective, OLS comes with a major disadvantage. It only models

linear relationships between dependent and independent variables. This means

that it is not possible to consider many latent influences and changes of influences

according to independent variable values. Although, OLS has been successfully

used for estimating LGD, e. g., by Bellotti and Crook (2012) and Zhang and



4 Loss Given Default-Adjusted Workout Processes for Leases 124

Thomas (2012), RF should, theoretically, be much more suited to the estimation

task. In particular, the latter can consider nonlinear dependencies between the

LGD and its explanatory variables by generating homogeneous subsets of the data.

Still, both methods can only process the plain information available.

4.4.2 Loss given default decomposition

From an economic point of view, the LGD is a linear combination of cash flows

relative to EAD. With leasing contracts, this relationship plays a particularly

important role because, unlike with loans, the cash flows are typically issued

from very different sources. Observing the cash flows in detail, we attempt to

provide additional information to the estimation of LGD by breaking down the

LGD to ALGD and MLGD. Equations (4.2) and (4.3) provide the necessary

mathematical steps of this calculation. Figure 4.3 outlines the procedure of the

LGD decomposition. Similar to LGD, neither ALGD nor MLGD are available at

the time of contract’s default. Therefore, the idea is that, instead of estimating

LGD directly, we estimate ALGD and MLGD and combine these parameters to

form a new LGD estimation. Again, for estimating ALGD and MLGD, we apply

OLS and RF models. In principle, any other method could be utilized.

From a mathematical and economic perspective, the separate estimation is rea-

sonable in three ways. First, asset-related cash flows obviously depend on influ-

encing factors different than those applying to miscellaneous cash flows. Indeed,

a simple OLS regression finds that both partial LGD ratios are driven by the type

of the contract and the asset’s acquisition value. In addition, ALGD is signifi-

cantly influenced by the asset class, term to default, collateral, and assessment

basis. MLGD on the other hand is additionally influenced by the relative contract

age, type of customer, and the default reason. Second, according to the different

density shapes outlined in Figure 4.2, the estimation of the two LGDs might vary

in its accuracy. In particular, the markedly lower standard deviation of ALGD
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compared to MLGD highlighted in Table 4.2, indicates that the estimations of

ALGD might be significantly more precise. Third, both of these estimated com-

ponents of the LGD provide decision support concerning the actions that should

be taken during the workout process in order to achieve LGDs which are as low

as possible. The last argument is particularly important from an economic point

of view.

The gain of information by estimating ALGD and MLGD may be used in dif-

ferent ways to enhance the accuracy of LGD estimation. Theoretically, the LGD

can be calculated reversely by using Equation (4.4)

LGD∗ = α · ALGD∗ + β ·MLGD∗ − ε, (4.6)

where LGD∗, ALGD∗, and MLGD∗ are the estimated LGD, ALGD, and MLGD,

respectively. α and β are slope coefficients and ε is the constant. In the theoretical

calculation, these three parameters are set to 1. However, for practical purposes it

might be suitable to set up an OLS regression to find the optimal values for these

parameters. Nevertheless, one major disadvantage of this procedure is that the

full estimation error of both estimated ALGD and MLGD enters the estimated

LGD. Consequently, we do not pursue this approach any further.

4.4.3 Loss given default classification

Instead of deriving an LGD estimation from ALGD∗ and MLGD∗, we use the

estimated values to classify the contracts into two classes. In Section 4.3, we show

that the ALGD is a theoretical upper boundary to the LGD. By generating a

dummy variable

AL =


0 if ALGD ≥ LGD

1 if ALGD < LGD,
(4.7)
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we identify contracts, which realize an LGD exceeding their ALGD. According to

Figure 4.1 this categorization leads to a largely disjointed separation of the con-

tracts in terms of the LGD distributions. Moreover, the two resulting distributions

of the LGD feature less distinctive bimodal shapes than the LGD distribution of

all contracts, illustrated in Figure 4.2. Consequently, we expect that estimating

LGD separately in each class is easier than estimating LGD without this separa-

tion. On account of this, we calibrate an RF classification model with AL as the

dependent variable to predict whether a contract’s LGD is expected to be below

or above its ALGD. This model uses the relevant and available information at

contract’s default. Expanding this information set, we additionally use ALGD

and MLGD determined according to Equation (4.3) to calibrate the classification

model. For predictive classification, we consequently use the respective estimates

of ALGD and MLGD from Section 4.4.2, as is indicated by the right-hand side of

Figure 4.3.

Theoretically, it is possible to classify the contracts directly by using only the es-

timates of ALGD and MLGD. However, in this case, the estimation error of these

estimates would directly impact the classification accuracy negatively. Therefore,

we do not rely on these two ratios but rather calibrate a classification model using

a set of information.

For each contract, we obtain the classification probability p of the respective

contract in class 0, and its estimated class AL∗. Based on the contracts of these

two classes, we calibrate two separate LGD regression models. In the estima-

tion step, every contract receives exactly two LGD estimations, one from each of

the two models calibrated. Finally, we calculate the estimated LGD in a linear

combination

LGD∗ = p · LGD∗AL∗=0 + (1− p) · LGD∗AL∗=1, (4.8)

using the classification probability p to weight the single LGD estimates.
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The additional classification step enriches the overall LGD estimation by inter-

preting ALGD as an upper limit to the LGD. Economically, the classification of a

contract indicates, which actions the lessor should take during its workout process.

In particular, if the LGD is likely to exceed its ALGD, the lessor should consider

restricting the workout process to the disposal of the leased asset, because, in this

case, the miscellaneous workout costs are expected to exceed the miscellaneous

cash inflows. Considering that MLGD > 1 for about 35% of the contracts of

the studied lessor, the proper implementation of the workout process such as we

suggest, would lower its realized LGD. In case all workout decisions are followed

as proposed by our model, this reduction would amount to nearly 10% reducing

the mean realized LGD to 0.32. Considering the portfolio EAD (see Table 4.1),

this reduction of the LGD would lead to lower losses to the leasing company of

about e 2,250,000.

4.4.4 Validation techniques

In order to validate the estimation accuracy and to verify the robustness of the

methods used, we apply three fundamentally different validation techniques out-

lined in Figure 4.4. Beside common in-sample and out-of-sample validation, we

also use out-of-time validation. The last simulates an estimation scenario that is

as close to reality as possible. In the course of the study, we are estimating dif-

ferent parameters, such as LGD, ALGD, and MLGD. Furthermore, we perform a

classification to predict whether the ALGD is greater or less than the LGD. Since

the following validation techniques apply to all of these parameters, we will use a

uniform synonym and call them dependent variables.

For the in-sample model calibration, all observations and available information

at the time of contracts’ default are used. The estimation of the dependent variable

is then carried out on the same data. Consequently, the estimation accuracy is

expected to be relatively high. On the one hand, this effect is based on the
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Figure 4.4: Each validation approach divides the total dataset into x% training set to
calibrate the estimation model, and (1 − x)% validation set. Out-of-sample, we divide
the data randomly 1,000 times. In the case of out-of-time validation, the data is divided
by the contracts’ year of default. The first model is then calibrated on contracts that
default in the first year and validated on contracts that default in the following year.

particularly large dataset used for the model’s calibration. On the other hand,

when estimating the dependent variable, each combination of information that

occurs in the validation set is already known to the model. One problem, however,

is that a high in-sample estimation accuracy frequently results from the overfitting

of the model to the underlying data. In fact, in reality, most validation sets consist

of unknown observations and combinations of information.

Therefore, it is reasonable, and for the estimation of LGD, it is required by the

regulator, that the estimation model be calibrated on a sample of the data. Article

179 (1)(d) CRR states that this sample shall be sufficient to provide the performing

institution with confidence in the accuracy and robustness of its estimates.

For out-of-sample validation, these samples can be implemented by k-fold cross-

validation. While earlier studies on LGD estimation used this method frequently,

Kohavi (1995) employs different validation methods, such as cross-validation,

leave-one-out, and random subsampling. The last divides the data into training

and validation sets and is run l times. In their recent study, Hartmann-Wendels

et al. (2014) use random subsampling to validate their regression results. Dividing

the data into 75% training and 25% validation sets, they repeat the procedure 25

times. Yao et al. (2015) perform a similar out-of-sample validation using 70% and
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30% randomly chosen observations as training and validation sets respectively.

Their procedure is repeated 100 times.

We produce randomly drawn subsamples of 75% for the training set without

returning the observations. The remaining 25% form the validation set. On each

training set, an estimation model is calibrated. Subsequently, we estimate the

dependent variable for the corresponding validation set. We perform this step

1,000 times and average the resulting performance measures. The estimation er-

ror obtained out-of-sample is usually greater than that of in-sample validation.

However, the error reflects a much more realistic allocation of the model’s predic-

tive accuracy.

The final step in validating the predictive accuracy of estimation models is out-

of-time validation. In the recent literature on LGD, models are rarely validated

out-of-time due to special requirements to the underlying data. In particular,

a comprehensive dataset and time information are necessary. For out-of-time

validation, Gupton and Stein (2005) propose a growing window, subsequently

using observations prior to a fixed year for the training set. The following year

serves as the validation set. Most recently, Altman and Kalotay (2014) conduct

an out-of-sample, out-of-time simulation experiment. They calibrate a model on

observations prior to 2002 and randomly draw 100 observations from the period

between 2002 and 2011 for the validation set. This step is repeated 50,000 times.

However, we are convinced that an adequate and realistic out-of-time estimation

model should be built upon the available historical data and should forecast the

forthcoming period. Considering a period of several years for the validation set,

as proposed by Altman and Kalotay (2014), might dilute specific characteristics

of single years. Hence, the estimation model would produce out-of-time results

that might be too optimistic.

Employing the method of Gupton and Stein (2005), we divide our dataset ac-

cording to the contracts’ time of default. To calibrate a solid first model, built
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2002 2003 2004 2005 2006 2007 2008 2009
# Contracts 575 191 116 116 144 122 127 102

Table 4.4: Year of default and frequency of contracts.

upon a sufficiently large dataset, we use the contracts that defaulted in 2002.

Table 4.4 shows that a total of 575 contracts defaulted in the first year of the

observation period.5 The trained model is then validated on those 191 contracts

which defaulted in the following year – in this case, 2003. Calibrating the next

model, we expand the training set by one year. By doing so, the first two years

are used for the model’s calibration. Subsequently, further models are build by

expanding the training set. Validation is always performed on the contracts of

the year following the training period. Consequently, the final model is based on

the contracts that have defaulted between 2002 and 2008. This model’s predictive

accuracy is validated by contracts that defaulted in 2009. Finally, we weight the

outcomes of each year with the relevant number of observations.

4.4.5 Performance measurements

In order to compare the results of our different estimation models, we use four per-

formance measurements. These are: mean absolute error (MAE); mean squared

error (MSE); normalized area under the regression error characteristic curve (NA-

REC); and Theil inequality coefficient (TIC). Each of these performance measure-

ments focuses on the evaluation of specific aspects of the estimation.

MAE and MSE are common measures to evaluate the performance of estima-

tion methods. With LGD and LGD∗ denoting the realized and estimated LGD,

respectively, and n being the number of observations, we calculate MAE and MSE

5The large amount of defaults in 2002 arises from an inaccuracy in the default date provided.
Some of these contracts may have defaulted before 2002 but were uniformly assigned to
this specific first default year. However, this inaccuracy has no impact on the out-of-time
validation.
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according to the following definition

MAE = 1
n

n∑
j=1
|LGDj − LGD∗j |, (4.9)

MSE = 1
n

n∑
j=1

(
LGDj − LGD∗j

)2
. (4.10)

MSE punishes larger deviations between predicted and realized values harder. In

general, a low parameter outcome is preferable for both measurements.

NAREC can be used to evaluate the performance of regression models in total.

This measure is based on the regression error characteristic (REC) curve developed

by Bi and Bennett (2003) as a generalization of receiver operating characteristic

curves for regression problems. The REC curve draws the error tolerance δ against

the models accuracy acc(δ). The latter computes as

acc(δ) =
#
{

LGD∗ : |LGD∗j − LGDj| = εj ≤ δ, j = 1, . . . , n
}

n
. (4.11)

It specifies the percentage of observations whose estimates do not exceed the error

tolerance. NAREC is defined as the area under the REC curve (AUC) normalized

to the interval [0, 1]

AUC =
∫ ∞

0
εp(ε) dε, (4.12)

with ε the error of the model regarded as random variable and p(ε) the cor-

responding probability density function. A higher outcome of NAREC implies

more accurate estimations produced by the estimation model in total.

TIC was introduced by Theil (1966) and sets the mean squared error in relation

to the sum of the quadratic realized and estimated LGD. It aims to quantify the
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goodness of fit and robustness of a model. We use

TIC =
1
n

n∑
i=1

(LGDi − LGD∗i )2√
1
n

n∑
i=1

(LGD∗i )2 +
√

1
n

n∑
i=1

LGD2
i

, (4.13)

to calculate the TIC. A low parameter outcome is preferable.

To measure the performance of classification methods, we use the classifica-

tion error. It is the ratio of misclassified cases to all cases, which is the relative

frequency of misclassification. We calculate the classification error (CE) as

CE = 1
k

k∑
i=1

I(AL∗i 6= ALi) = Misclassified cases
All classified cases , (4.14)

where ALi is the realized class of case i defined in Equation (4.7), AL∗ is the

estimated class, I is the indicator function, and k is the number of classified

cases.

4.5 Results

In order to reliably compare the results of the applied models, we use a consistent

set of explanatory variables listed in Table 4.5. The performance results for the

three different validation techniques are contained in Tables 4.6–4.8. The remain-

der of the results section is arranged as follows: We discuss the LGD estimation

results and models’ performance of the in-sample, out-of-sample, and out-of-time

validation in Sections 4.5.1–4.5.3. Section 4.5.4 gives a detailed explanation of

the single steps of our model’s performance. Finally, Section 4.5.5 interprets the

results and puts them into perspective by comparing these with the results of the

relevant recent literature.
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Variable Description

Asset class Class of asset, e. g., vehicle, information technology equipment, or machinery
Acquisition value Acquisition value of the leased asset in e
Assessment basis Lessor’s calculated contract value
Calc. residual value Residual asset value calculated at the execution of the contract
Contract type Type of contract, e. g., full payout lease or sale and lease back
Collateral Dummy for provided collateral beside the leased asset
Retail Dummy to distinguish between retail and non-retail customers
Term to default Term between execution and default of the contract in years
Rel. contract age Ratio of term between execution and default to maturity of the contract
Default reason Default trigger, e. g., 90 days past due or insolvency
EAD Outstanding exposure at the default of the contract

ALGD/ALGD∗ Asset-related loss give default respectively estimated asset-related loss given default
MLGD/MLGD∗ Miscellaneous loss give default respectively estimated miscellaneous loss given default

Table 4.5: Consistent set of variables used for regression and classification. Asset-related
loss given default (ALGD) and miscellaneous loss given default (MLGD) and their
estimates are additionally used in the classification step of our model in Figure 4.3.

4.5.1 In-sample validation

The in-sample results that we present in Table 4.6 show that RF produces more

accurate estimates than OLS throughout the performance measurements. Irre-

spective of whether the direct or the multi-step approach is used, the RF model

strictly outperforms both OLS models. In particular, the exceptionally low errors

in terms of MAE and MSE indicate a close adaptation of RF to the training data.

Method MAE MSE NAREC TIC
Direct estimation
OLS 0.3436 0.1821 0.6593 0.1835
RF 0.1484 0.0362 0.8325 0.0340

Multi-step estimation
OLS 0.2757 0.1184 0.7252 0.1159
RF 0.0671 0.0095 0.8849 0.0084

Table 4.6: In-sample loss given default (LGD) estimation results. The methods used
are ordinary least squares (OLS) and random forest (RF) regression. The determined
performance measurements are mean absolute error (MAE), mean squared error (MSE),
normalized regression error characteristic curve area (NAREC), and Theil inequality
coefficient (TIC). These are calculated according to Equations (4.9), (4.10), (4.11), and
(4.13) respectively. Comparing the direct estimation with the multi-step estimation
approach, we underline the better results per method used.

In general, the multi-step approach is beneficial for both methods. We observe
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that the multi-step model has a distinct advantage over direct estimation. Ac-

cording to the additional information presented in Section 4.5.4, we attribute this

outcome to the almost perfect classification. Upon closer inspection, we further

note that the classification error of RF is half that of OLS. Consequently, the

reduction in estimation error from the direct approach to the multi-step approach

is even larger for RF than for OLS.

Additionally, the estimation results of ALGD and MLGD, presented in Ta-

ble 4.9, show that estimating ALGD is easier than estimating MLGD. This con-

firms our expectations outlined in Section 4.3. Again, we note that RF has a

markedly higher estimation accuracy than OLS. Consequently, the advantage of

RF when forecasting ALGD and MLGD improves the classification accuracy.

4.5.2 Out-of-sample validation

The out-of-sample results that we report in Table 4.7 mostly confirm the findings

of the in-sample validation. However, the performance gaps between the models

are now less pronounced. In particular, the benefit of RF turns out to be less

distinctive.

Method MAE MSE NAREC TIC
Direct estimation
OLS 0.3505 0.1894 0.6538 0.1907
RF 0.3272 0.1722 0.6768 0.1725

Multi-step estimation
OLS 0.3387 0.1777 0.6655 0.1782
RF 0.3233 0.1772 0.6813 0.1708

Table 4.7: Out-of-sample loss given default (LGD) estimation results. The methods used
are ordinary least squares (OLS) and random forest (RF) regression. The determined
performance measurements are mean absolute error (MAE), mean squared error (MSE),
normalized regression error characteristic curve area (NAREC), and Theil inequality
coefficient (TIC). These are calculated according to Equations (4.9), (4.10), (4.11), and
(4.13) respectively. Comparing the direct to the multi-step estimation approach, we
underline the better results per method used.
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Considering the out-of-sample outcomes more closely, we again note that the

RF models strictly outperform both OLS models. Moreover, in line with the in-

sample results, we find that the multi-step approach is beneficial for both methods

out-of-sample. With OLS, the multi-step approach notably outperforms direct

estimation for all applied performance measurements. With RF, the multi-step

approach is also advantageous in terms of MAE, NAREC, and TIC, but not

concerning MSE.

Although, out-of-sample each multi-step approach has a notable advantage over

the respective direct estimation model, this advantage is not, in absolute terms,

as significant as in-sample. The reason for this is that the classification error in

Table 4.10 increases similarly for RF and OLS in the out-of-sample validation com-

pared with in-sample. Surprisingly, the classification error does indeed increase

slightly more for RF. Consequently, in contrast to the in-sample results, out-of-

sample the improvement of using the multi-step approach is more distinctive for

OLS than for RF.

Typically, an increased classification error particularly affects the MSE. Com-

pared to MAE, NAREC, and TIC, the MSE penalizes large deviations of estimates

from their realized value stronger. Consequently, for the multi-step approach even

a small number of falsely classified observations might increase the MSE signifi-

cantly. That might be the case, even if the estimates are more accurate in general

compared to direct estimation. Interestingly, we observe this effect only for RF

but not for OLS. Apparently, OLS corrects for the bias of incorrectly classified

contracts by estimating conditional expectations.

Again, as in-sample, we note more accurate estimations of ALGD than of

MLGD. Moreover, Table 4.9 shows that RF once more produces lower errors than

OLS. However, in line with the estimation of the overall LGD, out-of-sample the

advantage of RF over OLS is less pronounced than in-sample.
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4.5.3 Out-of-time validation

Our results of the most realistic scenario, the out-of-time validation, are presented

in Table 4.8. Concerning the multi-step approach, we find that the outcomes

confirm our in-sample and out-of-sample findings. However, the results differ

concerning the direct estimation models.

Method MAE MSE NAREC TIC
Direct estimation
OLS 0.3451 0.1876 0.6632 0.1959
RF 0.3457 0.1830 0.6605 0.2003

Multi-step estimation
OLS 0.3372 0.1778 0.6694 0.1897
RF 0.3412 0.1858 0.6611 0.1963

Table 4.8: Out-of-time loss given default (LGD) estimation results. The methods used
are ordinary least squares (OLS) and random forest (RF) regression. The determined
performance measurements are mean absolute error (MAE), mean squared error (MSE),
normalized regression error characteristic curve area (NAREC), and Theil inequality
coefficient (TIC). These are calculated according to Equations (4.9), (4.10), (4.11), and
(4.13) respectively. Comparing the direct to the multi-step estimation approach, we
underline the better results per method used.

Considering these, we find RF to be no longer strictly advantageous. Instead,

we rather observe better outcomes for OLS in terms of MAE, NAREC, and TIC.

We attribute this finding to the overly good adaptation of RF to the training data,

which becomes obvious when we look at the in-sample accuracy discussed in Sec-

tion 4.5.1. Therefore, RF seems to experience difficulties with validation sets that

differ significantly from the training sets. Related literature frequently observes

relatively poor out-of-sample estimates and, in particular, poor out-of-time esti-

mates of complex models with an excellent in-sample performance compared to

OLS. Hartmann-Wendels et al. (2014) address this phenomenon concerning finite

mixture models and Töws (2014) observes similar results in particular for RF.

A closer examination of the out-of-time outcomes shows that the multi-step ap-

proach still has a general advantage over direct estimation. Being most accurate
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out-of-time, the multi-step approach with OLS clearly outperforms the respec-

tive direct estimation, independently of the applied performance measurement.

However, the advantage of the OLS multi-step model over its direct estimation is

slightly smaller than out-of-sample. This result could have been expected because

classification is even more difficult out-of-time. The reason for this is that valida-

tion data might differ significantly from training data. This effect is documented

by the somewhat increased classification error in Table 4.10.

Analyzing the outcomes of the multi-step approach and direct estimation with

RF, we observe many similarities to the out-of-sample approach. As in the out-

of-sample validation, the multi-step approach with RF outperforms the respec-

tive direct model in terms of MAE, NAREC, and TIC. However, the multi-step

approach produces a higher MSE. With respect to the classification errors in

Table 4.10, we attribute the latter again to a small number of falsely classified

observations. As mentioned above, such false classifications result in a rather

large deviation of predicted LGD from realized LGD. By improving the estima-

tion accuracy using the multi-step approach, RF achieves better MAE and MSE

values than direct OLS. Nevertheless, when we compare the results of both multi-

step models, OLS remains advantageous throughout. Moreover, in line with the

out-of-sample findings, the benefit of using the multi-step approach is again more

distinctive for OLS than for RF.

The estimation of ALGD and MLGD conforms to our expectations. We still

note that ALGD estimation is more accurate than that of MLGD. On closer in-

spection of the results presented in Table 4.9, we see that RF again produces at

least slightly lower out-of-time errors than OLS when estimating MLGD. How-

ever, in contrast to the in-sample and out-of-sample findings, OLS becomes some-

what advantageous when estimating ALGD. We attribute these comparatively

inaccurate estimates of RF to its general difficulties in forecasting unseen obser-

vations from future periods. These results might also play a part in the advantage
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of the multi-step approach over the direct model being smaller when we use RF

instead of OLS.

4.5.4 Further estimation and classification

Calculating separate LGD ratios and classifying the contracts increases the com-

plexity of the estimation process from a methodological perspective. Recent stud-

ies show that greater complexity might negatively influence estimation accuracy

(see, e. g., Qi and Zhao (2011)). However, in previous sections we have shown that

our multi-step approach is clearly advantageous compared to direct estimation.

We attribute this to the fact that our approach is based on economic considera-

tions. Nevertheless, the accuracy of the final LGD estimation in our multi-step

approach crucially depends on the estimation and classification accuracy in each

step.

In-sample Out-of-sample Out-of-time
Method MAE MSE MAE MSE MAE MSE
ALGD estimation
OLS 0.2884 0.1385 0.2945 0.1455 0.3097 0.1583
RF 0.1256 0.0298 0.2739 0.1385 0.3101 0.1588

MLGD estimation
OLS 0.3758 0.2227 0.3829 0.2310 0.3836 0.2211
RF 0.1629 0.0452 0.3557 0.2103 0.3780 0.2186

Table 4.9: Asset-related loss given default (ALGD) and miscellaneous loss given default
(MLGD) estimation results. The realized ALGD and MLGD are calculated according
to Equation (4.3). The methods used are ordinary least squares (OLS) and random
forest (RF) regression. The determined performance measurements are mean abso-
lute error (MAE) and mean squared error (MSE). These are calculated according to
Equations (4.9) and (4.10) respectively. The table summarizes the results of the three
validation techniques: in-sample, out-of-sample, and out-of-time.

We first analyze the estimations of ALGD and MLGD, outlined in Table 4.9.

Moreover, comparing the results of ALGD with those of direct LGD estimation,

shown in Tables 4.6–4.8, we find that the estimates of ALGD are significantly more

accurate than those of LGD. Additionally, in particular, in-sample and out-of-



4 Loss Given Default-Adjusted Workout Processes for Leases 139

Method In-sample Out-of-sample Out-of-time
OLS 0.0248 0.2191 0.2484
RF 0.0100 0.2215 0.2364

Table 4.10: Classification results of classifying according to Equation (4.7). The classifi-
cation error is calculated according to Equation (4.14). We use random forest classifica-
tion in each case. The incorporated estimates of asset-related loss given default (ALGD)
and miscellaneous loss given default (MLGD) from step one of our approach are esti-
mated by ordinary least squares (OLS) and random forest (RF) regression. The table
summarizes the results of the three validation techniques: in-sample, out-of-sample, and
out-of-time.

sample, the results of MLGD are only slightly worse than their LGD counterparts.

This small difference seems to play a part in our multi-step approach having an

advantage over direct estimation. As regards direct estimation, we further observe

that RF outperforms OLS both in-sample and out-of-sample regarding ALGD

and MLGD. This effect is particularly evident in-sample. Out-of-sample the

advantage of RF over OLS is less pronounced because the level of the estimation

error increases significantly for RF, but remains stable for OLS. Consequently, RF

benefits more from using the multi-step approach in-sample than OLS, whereas

out-of-sample the opposite holds. Moreover, out-of-time, the above-mentioned

difficulties of RF in forecasting unseen observations result in slightly more accurate

MLGD estimations than OLS, but worse ALGD predictions.

The second crucial aspect of generating accurate LGD estimations with our

multi-step approach is the classification. After estimating ALGD and MLGD

with OLS or RF in the first step, classification is performed by random forest

classification. Because the estimates of ALGD and MLGD are used to classify the

contracts, we report the classification results labeled OLS and RF in Table 4.10.

We find that the classification error varies significantly according to the validation

technique. As expected, the classification is very precise in-sample but at about 20

times this rate out-of-sample and out-of-time. Nevertheless, classification remains

sufficiently accurate as the multi-step approach still yields more accurate LGD
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predictions than direct estimation. However, the advantage is not as pronounced

as in-sample. In general, it should be noted that despite the advantage of our

multi-step approach over direct estimation, the concrete accuracy of the final LGD

estimation depends on the applied method. For instance, if OLS generates better

direct estimates than RF, its multi-step approach also produces more accurate

results than that of RF.

Classification accuracy is important not only from a methodological perspective

but also from an economic point of view. Based on the outcome of the classification

the lessor might decide to restrict the workout process to the disposal of the

leased asset. However, a false restriction results in waiving additional payment

collection during the workout process and negatively affects the realized LGD.

While classification is almost perfect in-sample, we see in Table 4.10 that out-of-

sample and out-of-time classification is less reliable. Here, the classification errors

are about 22% and 24%, respectively. False classification typically arises from

classification probabilities near 50%, indicating that classification is ambiguous.

These are probably cases in which a lessor does not restrict the workout process to

the asset’s disposal, although our classification would suggest this. To address such

ambiguous cases, we present in Table 4.11 the classification results for contracts

with a classification probability of below 25% or above 75%. As expected, we

note that the classification error decreases consistently. In particular, regarding

OLS we note significantly lower classification errors of about 13% out-of-sample

and 17% out-of-time. Consequently, for these contracts the classification is clearly

more reliable and seems to be suitable for practical use.

Finally, in order to make the comparison process most transparent, we want

to elaborate on the direct regression of LGD with OLS. The direct in-sample

estimation achieves an adjusted R2 of 0.15, which is comparable to Bellotti and

Crook (2012) with 0.13. The main drivers are the class of the leased asset, the

term to default, and the type of the contract. Out-of-sample, pseudo R2 amounts
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Method In-sample Out-of-sample Out-of-time
OLS 0.0000 0.1336 0.1726
RF 0.0000 0.1745 0.2089

Table 4.11: Classification results of classifying according to Equation (4.7), considering
exclusively classification probabilities below 25% or above 75%. The classification error
is calculated according to Equation (4.14). We use random forest classification in each
case. The incorporated estimates of asset-related loss given default (ALGD) and mis-
cellaneous loss given default (MLGD) from step one of our approach are estimated by
ordinary least squares (OLS) and random forest (RF) regression. The table summarizes
the results of the three validation techniques: in-sample, out-of-sample, and out-of-time.

to 0.15 on average. In this model, the LGD is additionally significantly influenced

by the lessee’s default reason. Standard errors are marginally higher compared

to the in-sample regression. In the out-of-time regression pseudo R2 increases to

0.17 on average. The estimation is additionally positively driven in the case of

retail customers. Again, standard errors increase slightly.

4.5.5 Interpretation

The previously discussed results clearly show the benefit of our multi-step ap-

proach compared to direct LGD estimation in terms of the applied performance

measurements. While the chosen measurements are convenient for a precise com-

parison of the models, the scatter plots in Figure 4.5 provide an additional visual

proof of our findings. In particular, the figures allow a more detailed analysis than

the aggregated measures MAE, MSE, or NAREC. In these figures, the perfect

estimation of LGD would be located on the diagonal through the plot’s origin.

We draw two diagonal lines to frame a 0.5-wide interval around the perfect esti-

mation. The interval contains all estimates that are close to the realized LGD.

These are displayed as solid points.

The scatter plots in Figure 4.5 refer to OLS, but the outcomes are similar

concerning RF. According to Figure 4.5a, in-sample direct estimation produces

a large number of accurate estimates. Nevertheless, the multi-step estimation in
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Figure 4.5: Visual comparison of realized and estimated loss given default (LGD). Fig-
ures a, c, and e display direct ordinary least squares (OLS) estimations in the in-sample,
out-of-sample, and out-of-time validation respectively. Out-of-sample we randomly
choose and display one run out of 1,000. Out-of-time we plot estimates and realiza-
tions of LGD of one year. Figures b, d, and f show the counterparts of the multi-step
approach. The simple diagonal lines frame a 0.5-wide interval to highlight estimates
close to their realized value. Additionally, these points are solid, whereas points outside
the interval and, thus, far from their realized LGD are hollow.
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Figure 4.5b generates a larger number of accurate estimates on the whole range

of realized LGD values. In particular, due to a downward shift in estimation, it is

visibly better than direct estimation for realized LGDs smaller than 0. Regarding

the out-of-sample estimates in Figures 4.5c and 4.5d, we also note that the multi-

step approach is again more accurate than direct estimation. To be precise, we

observe a significantly higher concentration of estimates within the drawn interval

for the multi-step model than in the case of direct estimation. This observation

is particularly true for realized LGDs larger than about 0.3. Moreover, again the

multi-step estimates generally tend to converge toward their realized value. The

outcomes of the out-of-time validation in Figures 4.5e and 4.5f show a similar

picture to that of in-sample and out-of-sample. Compared to direct estimation

the predictions of the multi-step approach move closer to the diagonal lines from

outside the interval. The increased number of estimates within the drawn interval

indicates notably precise predictions for realized LGDs larger than 0.5.

For all three validation techniques the scatter plots in Figure 4.5 confirm that

the estimates of the multi-step approach tend to converge toward their realized

value. Therefore, the results of our performance measurements should not be

affected by outliers.

Our results in Section 4.5 and the scatter plots in Figure 4.5 clearly show that

the proposed multi-step approach outperforms direct estimation of the LGD. To

evaluate the results in the context of related literature, we summarize the results

of several studies in Table 4.12. Yao et al. (2015) argue that it is hard to compare

empirical results when using different data and information sets. Nevertheless,

they compare absolute values of R2 from selected literature on LGD prediction

performance. Instead of using absolute values we propose examining the improve-

ment of the estimation accuracy of a model compared to OLS. Almost all related

studies use the latter as a benchmark. For comparison, we focus on MAE, MSE,

and root mean squared error (RMSE). More precisely, in Table 4.12 we present
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the maximal improvement of a study’s best model compared to OLS regarding the

respective performance measurement for out-of-sample and out-of-time validation.

Studies Data Best technique ∆MAE ∆MSE ∆RMSE

Out-of-sample validation
Bastos (2010) SME loans RT 6.96

Loterman et al. (2012) Four types of loans SVM and NN 5.0
Zhang and Thomas (2012) Personal loans OLS 3.7
Bastos (2013) Loans and bonds RT ensemble 28.0 25.0
Hartmann-Wendels et al. (2014) Leases Model tree 5.5 0.8
This study Leases Multi-step approach 7.8 6.5

Out-of-time validation
Bastos (2010) SME loans RT 6.76

This study Leases Multi-step approach 2.3 6.2

Table 4.12: Performance improvements in loss given default (LGD) estimation litera-
ture. The table reports the maximal percentage improvement of a study’s best model
compared to direct ordinary least squares (OLS) regression. The error measurements
are: mean absolute error (MAE); mean squared error (MSE); and root MSE (RMSE).
The techniques are: regression tree (RT); support vector machine (SVM); and neural
network (NN).

Across the performance measurements, the authors primarily achieve improve-

ments in the range from 2% to 10%. One major exception is Bastos (2013) with

improvements around 25%. This exceptional improvement in estimation accuracy

might be due to specific characteristics of the data used. The most frequently

reported performance measurement in the literature is MAE. Out-of-sample our

multi-step approach clearly achieves the highest MAE improvement among the

studies considered, except for Bastos (2013). Concerning MSE or RMSE, Bastos

(2010), in particular, reports a promising increase in estimation accuracy using

regression trees. However, instead of OLS, he uses the historical average as bench-

mark. This outcome should be treated with caution. According to the results of

Hartmann-Wendels et al. (2014), OLS performs at least 3 percentage points bet-

ter than the historical average in terms of RMSE. Yashkir and Yashkir (2013)

find a similar deviation. Therefore, comparing the regression tree results of Bastos

(2010) with OLS, the improvement would probably not exceed 4%. Consequently,

our multi-step approach also obtains competitive results in terms of MSE and

6Bastos (2010) uses the historical average as benchmark. Hence, the value reported is the
performance increase of RT compared to the historical average.
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RMSE.

Currently, several studies report out-of-sample errors, but out-of-time results

are still scarce. Hence, concerning the latter, we can hardly evaluate our multi-step

approach. Nevertheless, when we consider the benchmark used by Bastos (2010),

our multi-step approach seems to generate good out-of-time results. Moreover,

we emphasize that our multi-step approach can indeed perform better than direct

OLS out-of-time. As our results of the direct estimation with RF indicate, it is

not common for complex models that perform well out-of-sample also to produce

stable and accurate out-of-time estimates.

In addition to the comparison with direct estimation methods, we compare our

approach to an existing multi-step model. We apply the methodology introduced

by Bellotti and Crook (2012) to our dataset. In the first step, they use a logistic

regression to classify the data according to the contracts’ LGD into three classes:

(1) LGD < 0, (2) 0 < LGD < 1, and (3) 1 < LGD. The second step calibrates

an OLS linear regression model to data of the second class. The LGD estimate

then is set to 0 for contracts of class (1), to LGD∗ from the OLS prediction model

for class (2), and to 1 for class (3) contracts. Gürtler and Hibbeln (2013) pick

up this method and improve it by accounting for pit falls of LGD estimation and

additional explanatory factors, such as the contracts’ recovery from default.

Using the same explanatory factors established on our dataset within this study,

we find that the estimation approach of Bellotti and Crook (2012) is inferior

throughout our three validation methods. For most performance measurements

the results are even worse compared to OLS direct estimation.

While the proposed multi-step approach, in general, is able to generate more

precise estimates than direct OLS, according to Table 4.12 the improvement of

advanced estimation methods compared to direct OLS appears to be rather small

in general. However, in order to evaluate the economic benefit of the increased

estimation accuracy by implementing advanced estimation approaches it is essen-



4 Loss Given Default-Adjusted Workout Processes for Leases 146

tial to consider the value of the underlying portfolio. Referring to the mean EAD

of the employed dataset presented in Table 4.1 and the out-of-time results shown

in Table 4.8, our multi-step approach with OLS predicts the loss of a contract on

average by e 420 more accurate than direct OLS. Consequently, particularly by

taking into account that the value of the entire portfolio considerably exceeds the

exposure of the studied subportfolio including exclusively defaulted contracts, the

economic benefit by the improved estimation accuracy is crucial. Obviously, the

difference between the proposed multi-step approach and other advanced estima-

tion methods is not as pronounced, however the gap is still economically relevant.

Moreover, unlike other advanced estimation methods, our multi-step model ad-

ditionally provides decision support concerning the actions that should be taken

during the workout process.

4.6 Conclusion

The development of an appropriate and dynamic model for estimating LGD re-

quires the consideration of mathematical aspects and economic factors. For de-

faulted leasing contracts, we argue that detailed consideration of the revenues

during the workout process is a key driver for improving LGD forecasting accu-

racy. Instead of the traditional holistic consideration of LGD, we separate LGD

into asset-related and miscellaneous parts. This separation is economically rea-

sonable because, typically, cash flows have different sources. To account for the

different revenues at the time of contracts’ default, we estimate an ALGD and a

MLGD.

Leasing companies are experts in evaluating and disposing of their leased as-

sets. The estimation of the ALGD takes this expertise into account. Moreover,

together with the estimated MLGD, it provides decision support for actions to

be taken during the workout process. We show that ALGD is theoretically an
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upper boundary to the LGD. Likewise, the estimation of MLGD yields economic

value. Its value indicates whether the effort of collecting overdue payments during

the workout process will be rewarding or rather unprofitable considering incurred

workout costs. Consequently, we present a guideline for organizing the work-

out process, i. e., if workout costs are expected to exceed collected payments, the

workout process should be restricted to the disposal of the leased asset.

This finding is particularly interesting because cash flows from the asset’s dis-

posal are positive in 99% of the cases, net of disposal costs. However, for 35%

of the contracts, the collection of miscellaneous payments turns out to generate

losses due to the incurred costs. We find that following our suggestion to restrict

the workout process to the asset’s disposal would, in general, significantly reduce

the average LGD. With our data, the reduction of the average LGD amounts to

10% or e 2,250,000 in absolute losses.

Based on the sophisticated economic separation of the LGD, we introduce a

new multi-step LGD estimation approach. We apply our approach to a real-life

dataset of a German leasing company and perform in-sample, out-of-sample, and

out-of-time validation. While the approach supports the workout process, we find

that the separation of LGD is very beneficial for its estimation accuracy. We

apply OLS and RF regression to our approach. With both methods, we note a

significant increase in estimation accuracy compared to the benchmarking results

of the respective direct estimation. The proposed multi-step approach is more

complex than direct estimation. However, the increase in complexity does not lead

to overfitting, which is a common concern of advanced LGD estimation models.

Nonetheless, the interpretability of the variables’ influence might suffer slightly.

However, to put it in Bastos (2013) words, it is often the case that simplicity has

to be sacrificed in order to achieve a higher degree of precision.
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This thesis includes three essays dealing with the modeling and estimation of the

LGD for leasing contracts. The first essay focuses on the methodological aspects

of estimating the LGD and compares different estimation approaches in order to

investigate which methods are particularly suitable to predict the LGD of leases.

Motivated by insights gained in the first study, the second essay analyzes the

factors driving the LGD of leasing contracts and examines whether and to what

extent the key drivers are different for the individual leasing companies. Based

on the findings of the first two studies, the third essay introduces an advanced

approach for estimating the LGD of leases that explicitly considers the specific

characteristics of the leasing business.

Basically, there are many different methods that can be used to estimate the

LGD. By comparing the outcomes of several estimation approaches, the first essay

demonstrates that the quality of LGD estimates varies significantly depending

on the used method. Moreover, it turns out to be indispensable to consider

and interpret the results of different validation techniques in order to reliably

evaluate which methods are particularly suitable to predict the LGD of leasing

contracts. Specifically, it is exposed that in-sample results might be significantly

misleading when estimating out-of-sample LGDs, which are crucial for proper risk

management and are required for regulatory purposes.

Among the analyzed estimation methods, FMMs appear to be a less suited

concept to predict the LGD of leases. Although the FMMs are able to repro-

duce the multimodality of the LGD density more properly than other applied

approaches, in particular the out-of-sample estimations generated by the FMMs
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are quite poor. This observation basically supports the thesis that reproducing

the LGD density is only of minor importance for precisely predicting the LGD.

In fact, by generally providing the most accurate out-of-sample results of the ap-

proaches employed, a nonparametric method, namely the model tree M5', turns

out to be particularly suitable to predict the LGD of leasing contracts. Unlike

parametric methods, nonparametric methods make no assumptions concerning

the distribution of the underlying data. This feature is obviously highly beneficial

when estimating the LGD. Nevertheless, the results stress that the applicability of

an estimation method depends on the lessor’s specific characteristics and should

be considered in each individual case. For example, if a lessor’s database only

contains a small number of observations it appears to be practical to predict the

LGD by OLS linear regression.

Actually, the findings of the first study also reveal that the quality of LGD pre-

dictions depends not exclusively on the applied estimation method. The results

illustrate that the prediction accuracy differs fundamentally between the studied

leasing companies and is in particular determined by the used set of information.

On this account, the second essay employs data from two lessors to analyze which

determinants are driving the LGD of leases. Consistent with the findings of the

first study, it turns out that the factors identified as drivers of the LGD are at

least to some extent different for the considered leasing companies. In particu-

lar, the differences noted among the lessors refer to both the set of idiosyncratic

factors driving the LGD and the determined relationship between the LGD and

macroeconomic factors. The confirmation that the factors influencing the LGD

vary depending on the analyzed company is especially important with regard to

the heterogeneous results concerning the drivers of the LGD in the literature.

Nevertheless, although it is crucial to analyze the potential drivers of the LGD

individually for each lessor, the results affirm that the LGD of leasing contracts

generally depends on factors that are related to the leased asset, such as, in par-
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ticular, the type of the leased asset. Yet, it is also shown that, e. g., the contract

structure has an impact on the LGD of leases. Moreover, the results expose that

the estimation accuracy might be improved if in addition to idiosyncratic factors

also macroeconomic factors are considered. Although the relationship between

LGD and macroeconomic conditions depends on the characteristics of the leas-

ing company and in particular its organization of the workout process, especially

the estimates carried out at contract’s execution benefit from including macroe-

conomic factors.

In summary, the results of the first two studies corroborate that the quality

of LGD predictions generally depends on both the applied estimation method

and the considered set of explanatory factors. However, due to the different

nature of leasing companies, it is worthwhile to select the explanatory factors and

also the estimation method individually for each lessor according to its specific

characteristics. Nonetheless, the results of the second study likewise point out that

across different lessors the LGD of leasing contracts generally depends on factors

that are related to the leased asset. Hence, to further improve the prediction

of leasing LGDs, it appears to be logical to develop advanced LGD estimation

approaches which explicitly consider the peculiarities of the leasing business.

The third essay addresses this issue and uses data from a large German lessor

to evolve such an advanced model for estimating the LGD of leases that expressly

takes into account specific characteristics of the leasing business. Motivated by

the economic consideration that the revenues received during the workout pro-

cess of a defaulted leasing contract come from two distinct payment sources, the

LGD is separated into an asset-related and a miscellaneous part. Based upon

this economic separation of the LGD into ALGD and MLGD, a multi-step LGD

estimation model for leases is developed and its performance is evaluated using

in-sample, out-of-sample and out-of-time testing. The results confirm the hypoth-

esis that the prediction of leasing LGDs can be improved by the development of
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advanced estimation models that explicitly consider the peculiarities of the leas-

ing business. Compared to the results of established estimation approaches, the

predictions generated by the introduced multi-step estimation model are consid-

erably more accurate. In particular, there is no evidence that the proposed and

economically motivated multi-step estimation model is liable to overfitting, which

is a common concern of advanced LGD estimation approaches. Moreover, also

unlike other advanced estimation approaches, the developed multi-step LGD es-

timation model provides valuable interim results that can be used as a decision

support for actions to be taken during the workout process of a defaulted leasing

contract.
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