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Summary 

Reducing conditions in soils alter a variety of biogeochemical processes that affects the 

mobility of nutrients and pollutants, the emission of greenhouse gases, and the formation 

of redoximorphic features. Hence, a precise characterization and monitoring of reducing 

conditions is important for land use management and risk assessment. Conventionally, 

platinum (Pt) electrodes are used to measure the redox potential (EH) for delineation of the 

soil redox status. In combination with a data-logger system the EH can be monitored at 

high temporal resolution but with the shortcoming of cost-intensive technical equipment. 

Alternatively, the Indicator of Reduction In Soils (IRIS) method can be used to delineate 

soil reducing conditions that consists of synthesized iron (FeIII) oxides coated onto white 

polyvinyl chloride (PVC) bars. The bars are installed for a period of 30 days in the soil and 

visually assessed for the effects of reduction by the depletion of the FeIII oxide coating. 

Currently, a differentiation into redox classes of oxidizing (EH > 300 mV; oxygen (O2) is 

present in the soil), weakly reducing (EH 300 to 100 mV; manganese (MnIII,IV) oxide reduc-

tion), and moderately reducing (EH 100 to –100 mV; FeIII oxide reduction) soil conditions 

can only be achieved by Pt electrodes.  

The objectives of this thesis are to investigate the temporal and spatial distribution of 

the EH by different monitoring approaches. Automated Pt electrode measurements on 

hourly basis (2011 to 2014) were compared with measurements on a weekly basis (1990 

to 1993) to query the benefit of high temporal resolution EH monitoring. Additionally, the 

IRIS method was adopted by coating MnIII,IV oxides onto white PVC bars (in the following 

referred to as ‘Mn and Fe redox bars’) and evaluated for their potential to differentiate into 

weakly and moderately reducing soil conditions in field and laboratory experiments. An 

important characteristic of MnIII,IV and FeIII oxides is their functioning as a sorbent for ele-

ments in soil solution. Therefore, the oxide coatings of previously field-installed redox bars 

were extracted and analyzed to investigate the element sorption behavior. Finally, long-

term groundwater data (1997 to 2012) was analyzed to assess trends of the water table 

(WT) depth development along a 17 km2 sized mesotrophic fen, which is relevant for the 

onset of reduction and with impact on the soil redox status. All field-experiments were 

conducted at different study sites in North-West Germany.  

Daily EH readings by Pt electrodes were sufficient to equally derive trends of the redox 

class distribution over time compared with hourly measurements but a loss of information 

occurred when weekly or monthly EH readings were performed. Since fluctuations up to 

540 mV were measured within a day, hourly readings were essential to identify biogeo-
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chemical processes. Besides EH measurements by Pt electrodes, it was possible to facili-

tate a durable MnIII,IV oxide coating  onto white PVC bars enabling to monitor the soil redox 

status. Laboratory experiments at defined EH-pH conditions went along with MnIII,IV oxide 

dissolution under weakly reducing conditions. The capillary fringe above the groundwater 

surface was identified as a hot spot for MnIII,IV oxide reduction with minor FeIII oxide re-

moval. Hence, the simultaneous application of Mn and Fe redox bars enabled to differen-

tiate zones of weakly and moderately reducing soil conditions. It was found that the pres-

ence of ferrous Fe2+ (reductant) in soil solution mediated an abiotic redox reaction with the 

formation of durable FeIII oxide coatings along Mn redox bars. Subsequently, MnIII,IV oxides 

(oxidant) transformed to manganous Mn2+ being removed from the PVC surface. The Fe 

precipitates and the remaining MnIII,IV oxide coating differed remarkably in color enabling 

to quantify the percentage area of these patterns over time. Thereby, temporally and spa-

tially diverse pathways of FeIII oxide forming processes can be studied. Selective chemical 

extraction of these oxide coatings along Mn redox bars verified a preferential sorption of 

cationic elements (e.g. copper, lead, zinc) to the surface of MnIII,IV oxides, whereas the 

positively charged surface of in situ formed FeIII oxides were enriched in elements having 

an oxyanionic character (e.g. arsenic, molybdenum, phosphorus, vanadium). Moreover, in 

situ formed FeIII oxides (‘field’-Fe oxides) revealed higher element loadings compared with 

synthesized FeIII oxides along Fe redox bars (‘lab’-Fe oxides). In accordance with this find-

ing, field-Fe oxides were solely composed of short-range ordered minerals exhibiting a 

higher sorption capacity. The WT depth was the main driver for the above-mentioned pro-

cesses and controlled the (i) EH dynamics, (ii) oxide removal along Mn and Fe redox bars, 

and (iii) element relocation into the topsoil by capillary rise. In this regard, WT depth read-

ings along a mesotrophic fen indicated a lowering by on average 20 cm at 39 out of 46 

monitoring wells. A meteorological forecast of the climatic water balance until the year 

2100 indicated that the development of decreasing WT depths will be intensified. Obvi-

ously, this will have impact on the soil redox status and associated biogeochemical pro-

cesses within the top soil.  

Overall, monitoring by Mn and Fe redox bars improves the understanding of the spatial 

and temporal distribution of soil reducing conditions but does not capture the ‘true’ dynamic 

nature that can be determined by Pt electrodes. A continuous monitoring of the soil redox 

status by Pt electrodes or redox bars over decadal time scales is important to evaluate the 

impact of climate change on biogeochemical processes in waterlogged soils.
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 Zusammenfassung 

Reduzierende Bedingungen in Böden beeinflussen eine Vielzahl von biogeochemi-

schen Prozessen, welche für die Mobilität von Nähr- und Schadstoffen, die Emission von 

Klimagasen und die Entstehung von redoximorphen Merkmalen verantwortlich sind. Eine 

präzise Charakterisierung des Redox-Milieus ist daher wichtig für eine adäquate Landbe-

wirtschaftung und Risikobewertung. Konventionell werden Platin (Pt)-Elektroden zur Mes-

sung des Redoxpotentiales (EH) verwendet. In Kombination mit einem Datenlogger kann 

der EH-Wert zeitlich hochauflösend gemessen werden, allerdings wird dafür kosteninten-

sive Technik benötigt. Eine kostengünstige Alternative zum Nachweis reduzierender Be-

dingungen ist die Indicator of Reduction In Soils (IRIS)-Methode. Dabei werden weiße Po-

lyvinylchlorid-Stäbe mit synthetisierten Eisen (FeIII)-Oxiden beschichtet und für 30 Tage im 

Boden installiert. Durch die reduktive Auflösung der Oxidbeschichtung können die Entfär-

bungsmuster quantifiziert werden. Derzeit ist es nur durch den Einsatz von Pt-Elektroden 

möglich, die Redoxklassen von oxidierenden (EH > 300 mV; Sauerstoff (O2) ist vorhanden), 

schwach (EH 300 bis 100 mV; Mangan (MnIII,IV)-Oxid Reduktion) und mäßig reduzierenden 

(EH 100 bis –100 mV; FeIII-Oxid Reduktion) Bedingungen in Böden zu unterscheiden. 

Das Ziel dieser Arbeit ist es, die zeitliche und räumliche Verteilung des EH in Böden 

durch verschiedene Monitoring-Verfahren zu untersuchen. Um die Vorteile von hochauf-

lösenden EH-Messungen mit Pt-Elektroden zu bewerten, wurde ein stündliches Messinter-

val (2011 bis 2014) mit einem wöchentlichen (1990 bis 1993) verglichen. Weiterhin wurde 

die IRIS-Methode durch die Verwendung von MnIII,IV-Oxiden adaptiert und die Differenzie-

rung von schwach und mäßig reduzierenden Bedingungen in Gelände- und Laborstudien 

evaluiert (im Folgenden als „Mn und Fe Redox-Stäbe“ bezeichnet). Die Sorption von Ele-

menten aus der Bodenlösung an die Oberflächen von MnIII,IV- und FeIII-Oxiden ist eine 

wichtige Eigenschaft dieser Minerale. Um dies weitergehend zu untersuchen, wurde die 

Oxidbeschichtung von im Vorfeld installierten Redox-Stäben extrahiert und auf die Ele-

mentzusammensetzung hin analysiert. Abschließend wurden Langzeitmessungen (1997 

bis 2012) des Grundwasserflurabstandes in einem 17 km2 großen Niedermoor-Einzugs-

gebiet ausgewertet, um Trends im Pegelverlauf zu prognostizieren, welche eine beson-

dere Relevanz für das Redox-Milieu haben. Alle Geländeuntersuchungen wurden in Nord-

westdeutschland durchgeführt. 

Stündliche und tägliche Messungen des EH-Wertes mittels Pt-Elektroden waren ausrei-

chend, um Trends in der Redoxklassen-Verteilung über die Zeit abzuleiten. Wöchentliche 

und monatliche Messungen führen jedoch zu einem Informationsverlust. Da Tages-
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schwankungen von 540 mV gemessen wurden, ist es empfehlenswert auf stündlicher Ba-

sis zu messen, um biogeochemische Prozesse zu identifizieren. Mangan-Oxid beschich-

tete PVC-Stäbe dienten ebenfalls zum Nachweis reduzierender Bedingungen. Laborstu-

dien unter definierten EH-pH Bedingungen gingen mit einer Reduktion der MnIII,IV-Oxide 

unter schwach reduzierenden Bedingungen einher. Geländeuntersuchungen haben ge-

zeigt, dass besonders der Kapillarsaum oberhalb der Grundwasseroberfläche ein „hot 

spot“ der MnIII,IV-Oxid Reduktion war, bei nur geringer FeIII-Oxid Entfärbung. Der simultane 

Einsatz von Mn und Fe Redox-Stäben ermöglicht es daher, schwach und mäßig reduzie-

rende Bedingungen in Böden zu differenzieren. Die Gegenwart von Fe2+ (Reduktant) in 

der Bodenlösung verursachte eine abiotische Redoxreaktion mit der Bildung von FeIII-Oxi-

den entlang der Mn Redox-Stäbe. Als Folge werden die MnIII,IV-Oxide (Oxidant) zu Mn2+ 

reduziert und gehen in Lösung. Die MnIII,IV- und FeIII-Oxide unterschieden sich deutlich in 

der Farbe, welches weitergehende Studien zur räumlichen und zeitlichen FeIII-Oxid Bil-

dung ermöglicht. Durch den Einsatz einer selektiven Extraktionsmethode der Oxidbe-

schichtung konnte darüber hinaus nachgewiesen werden, dass MnIII,IV-Oxide präferentiell 

kationische Elemente aus der Bodenlösung sorbieren (bspw. Kupfer, Blei und Zink), wo-

hingegen anionische Elemente (bspw. Arsen, Molybdän, Phosphor, Vanadium) mit der 

positiv geladenen Oberfläche der in situ gebildeten FeIII-Oxide assoziiert sind. Die sorbier-

ten Elementgehalte an den in situ gebildeten FeIII-Oxiden („Gelände Fe-Oxide“) überstieg 

die der synthetisierten FeIII-Oxide („Labor Fe-Oxide“). In Übereinstimmung mit diesem Be-

fund waren die Gelände Fe-Oxide ausschließlich geringkristalliner Natur mit höheren 

Sorptionskapazitäten. Der Grundwasserflurabstand war der wichtigste Einflussfaktor für 

die genannten Prozesse und steuerte die (i) EH-Dynamik, (ii) Oxidentfärbung an den Mn 

und Fe Redox-Stäben und (iii) Bodenlösungskonzentrationen bestimmter Elemente, die 

durch kapillaren Aufstieg in den Oberboden verlagert werden. In diesem Zusammenhang 

hat das Absinken des mittleren Grundwasserflurabstandes von 20 cm an 39 von 46 Pegeln 

des Niedermoor-Standortes eine besondere Bedeutung auf die biogeochemischen Pro-

zesse im Oberboden.  

Mangan und Fe Redox-Stäbe verbessern das Verständnis der räumlichen und zeitli-

chen Verteilung von reduzierenden Bedingungen in Böden. Die Entfärbungsmuster spie-

geln jedoch nicht die „wahre“ Redox-Dynamik wieder, wie sie mit Pt-Elektroden bestimmt 

werden kann. Ein Langzeit-Monitoring reduzierender Bedingungen durch Pt-Elektroden 

oder Redox-Stäbe ist sinnvoll, um bspw. den Einfluss des Klimawandels auf biogeoche-

mische Prozesse in grundwasserbeeinflussten Böden zu beurteilen. 
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Figures 
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Figure 3.S1 XRD random powder pattern of birnessite showing typical broad basal plane 
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Reducing conditions in soils 

Reducing conditions are widespread in terrestrial ecosystems and relate to soils that are 

temporarily or permanently water saturated (Ponnamperuma 1972). Suitable habitats to 

achieve reducing conditions are located in wetlands with low elevation and near-surface 

groundwater (Reddy and DeLaune 2008). The general term of “wetland” can be differen-

tiated into more precise land classifications such as marshes, swamps, bogs, and fens. 

Wetlands play a unique role in regulating biogeochemical cycles as a critical feature of the 

global landscape. It is estimated that 6% of the Earth’s land surface can be classified as 

wetland (Reddy and DeLaune 2008) illustrating the importance and all-round distribution 

of reducing conditions in soils. 

The onset of reduction is the most important chemical change within soils (Ponnamperuma 

et al. 1967). Reduction, which is the gain or acceptance of an electron (e–), and oxidation, 

which is the loss or donation of an electron, regulate many biogeochemical reactions in 

surface environments. Further, reduction-oxidation (redox) reactions always occur to-

gether and involve the transfer of electrons and protons (H+) between the participating 

redox couples as shown by equation [1]: 

𝑂𝑥 + 𝑚𝐻+ +  𝑛𝑒− ↔ 𝑅𝑒𝑑 [Eq. 1], 

where Ox is the oxidized species, m and n is the number of H+ and e– involved in the 

reaction, and Red is the reduced species (DeLaune and Reddy 2005). During the transfer 

of electrons from a Red species (electron donor or reductant) to an Ox species (electron 

acceptor or oxidant), the oxidation number of the former compound is increased whereas 

the oxidation number of the latter compound is decreased. A prominent redox reaction is 

the process of carbon (C) fixation and oxygen (O2) production by plants during photosyn-

thesis. It can be expressed by the overall reaction  

𝐶𝑂2 + 𝐻2𝑂 = 𝐶𝐻2𝑂 + 𝑂2 [Eq. 2], 

where CH2O idealizes a carbohydrate. Carbon occurring in the soil organic matter (SOM) 

pool is the primary source of electrons and the most important electron donor. The SOM 

pool is continuously replenished by new inputs of roots, microbes, and dead plant matter 

and is important for microorganisms to obtain energy. However, to use the energy by the 

oxidation of SOM and by releasing carbon dioxide (CO2), electron transfer to an acceptor 

is a prerequisite because free electrons do not exist in chemical reactions. If O2 is availa-

ble, it is used as terminal electron acceptor because it is most energy-efficient for hetero-

trophic microorganisms to reduce O2 to water in the process of aerobic respiration (Glinski 

and Stepniewski 1985; Strawn et al. 2015). Soils are an open and porous system com-

posed of solids, liquids, and gases and are in a continuous exchange of matter and energy 
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with the surrounding spheres. Flooding or other events cause water-saturation that ham-

pers the replenishment of O2 from the atmosphere, because O2 diffusion rates through 

water-filled pores are slowed-down 3 · 105 times (Zausig et al. 1993) compared to air-filled 

pores. Hence, the availability of O2 is in a transient state and not constant over time. De-

pending on various other external factors such as microbial population, soil temperature, 

organic amendments, CO2 concentrations, bulk density and aggregate size, pH, and the 

presence of trace metals and pesticides (Glinski and Stepniewski 1985), the rate of O2 

exhaustion varies significantly between different soil types. A decrease to one-hundredth 

of the initial O2 concentration was reported within 75 minutes after soil samples were wa-

ter-saturated, which renders this process very dynamic (Scott and Evans 1955).  

The redox status under which O2 is present is termed “aerobic” or “oxidizing” and charac-

terized by low electron availability, whereas the absence of O2 is termed “anaerobic” or 

“reducing” with corresponding high electron availability (Essington 2015). Once the O2 is 

depleted in the soil, obligate and facultative anaerobe microorganisms start using various 

other electron acceptors. The order is given by thermodynamics. Sequentially, pentavalent 

nitrogen (NV) in nitrate (NO3
–), tri- and tetravalent manganese (MnIII,IV) in Mn oxides, triva-

lent iron (FeIII) in Fe oxides, hexavalent sulfur (SVI) in sulfate (SO4
2–), and tetravalent car-

bon (CIV) in carbon dioxide (CO2), are reduced to their counterparts nitrous oxide (N2O), 

elemental nitrogen (N2), or ammonium (NH4
+), manganous Mn2+, ferrous Fe2+, hydrogen 

sulfide (H2S) and methane (CH4) (Kirk 2004; Reddy and DeLaune 2008) (see Fig. 1.1 for 

illustration).   

To quantify the reduction (or oxidation) intensity, the redox potential (EH) scale in units of 

electrochemical energy (in V or mV) is used (DeLaune and Reddy 2005). It is a measure 

of the ability of elements to accept or donate electrons (Strawn et al. 2015). The EH can 

be measured by connecting an inert platinum (Pt) electrode (‘working electrode’) with a 

‘reference electrode’. When using the standard hydrogen electrode (SHE) as a reference 

electrode, which is composed of 

 a Pt electrode,  

 immersed into a 1 M H+ containing solution (= pH 0),  

 having a hydrogen gas (H2) partial pressure of 1013 hPa,  

 and a system temperature of 298.15 K (= 25 °C),  

a standard reference is obtained with the reversible half-reaction of  

𝐻2 = 2𝐻+ + 2𝑒−    [Eq. 3]. 
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The standard electrode potential (E0) of the SHE serves as a reference base for any other 

chemical reaction and is per definition E0 = 0 mV (Reddy and DeLaune 2008). Assuming 

the SHE connected to the Pt electrode and immersed into a solution containing the 

Fe(OH)3–Fe2+ redox couple (at unit activity and equilibrium is attained), electrons start to 

flow and the measured EH refers to the standard state potentials (Reddy and DeLaune 

2008) of the involved species with the overall reaction of 

𝐹𝑒(𝑂𝐻)3 + 3𝐻+ + 𝑒− = 𝐹𝑒2+ + 3𝐻2𝑂      E0 = 800 mV    [Eq. 4]. 

A relationship between redox potentials in soils and the participating oxidized and reduced 

species is derived by the Nernst equation (Strawn et al. 2015) with 

𝐸𝐻 = 𝐸0 −
59

𝑛
𝑙𝑜𝑔

(𝑅𝑒𝑑)

(𝑂𝑥)
−

𝑚

𝑛
59𝑝𝐻      [Eq. 5]. 

Equation [5] reveals that a pH increase goes along with an EH decrease. In nature, all 

redox reactions comprise the transfer of protons between the participating redox couples 

as demonstrated in equation [4]; one mol Fe(OH)3 reduction consumes 3 mol of H+. A 

predicted change of –59 mV per pH unit occurs, which is also included in equation [5] 

(called ‘Nernst factor’). It is commonly used to adjust EH data to pH 7 and remove pH 

variability between soils for the purpose of comparability (Bohn 1971). However, this value 

has little theoretical or experimental justification because EH-pH slopes vary depending on 

the chemical system from –6 to –256 mV per pH unit (Fiedler et al. 2007). In soils, EH 

ranges between 800 and –300 mV (Reddy and DeLaune 2008).  

Analogous to the pH value, which describes the H+ activity and is defined in terms of “mol 

H+ L–1”, the pe value can be used to describe the electron activity. Both parameters can 

be considered to do thermodynamic work (Essington 2015; James and Brose 2012), even 

though the pe is not defined with “mol e– L–1”. Such as pH, pe values range several orders 

of magnitude but unlike pH, it can have negative values (Essington 2015). Plotting of 

pe+pH data within a stability diagram enables to assess how redox conditions in soils alter 

the speciation of elements under consideration. A relation between pe and the SHE po-

tential can be obtained by the expression  

𝐸𝐻 =
𝑅𝑇𝑙𝑛10

𝐹
𝑝𝑒 [Eq. 6], 

with R being the natural gas constant (8.3145 J mol–1 K–1), T being the temperature in Kel-

vin (25 °C = 298.15 K), F being the Faraday constant (96,484.56 C mol–1). Substitution for 

F and R in equation [6] yields 

𝐸𝐻 = 59.16𝑝𝑒 [Eq. 7], 
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with EH being expressed in mV. Hence, redox relationships and the abundance of elec-

trons within the soil environment can be described either by the pe (electron activity) or 

the EH (electrode potential) (Lindsay 1979). It should be noted that EH can be measured 

directly within the soil as a cell potential and with respect to the SHE potential, whereas 

pe values for redox systems can only be calculated in terms of E0 data or by conversion 

from EH data. Reddy and DeLaune (2008) state that from a practical point of view the 

application of EH is simpler with a wider applicability compared with the concept of pe. 

However, Lindsay (1979) encourages the use of pe+pH instead of EH, because it partitions 

the H+ ions into those involved in the redox reaction and those related with the acid-base 

concept, which simplifies the theoretical use of redox reactions. 

 

Figure 1.1  The illustration to the left shows the principle of EH measurements performed in an 

oxidizing (EH > 300 mV) and in a strongly reducing (EH < –100 mV) soil environment 

with the corresponding distribution of electron acceptors (O2, MnO2, FeOOH, SO4
2–) 

and their reduced equivalent (H2O, Mn2+, Fe2+, S2–) in the surrounding of the Pt tip. 

The graph to the right displays the relative concentration of electron acceptors as a 

function of time (and depth) after a flooding event; prerequisite is an unlimited supply 

of electron donors as food source. The subsequent order of oxidized and reduced 

species in the graph is related to the ‘sequential reduction sequence’ occurring in soils 

(adapted from Fiedler et al. 2007; Reddy and DeLaune 2008; Strawn et al. 2015). 
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The redox status of a soil is important and related to various fields of environmental issues 

regarding the release of greenhouse gases (Yu and Patrick 2004), metal mobility 

(Hindersmann and Mansfeldt 2014), nutrient availability (Peretyazhko and Sposito 2005), 

and pedogenesis (Bouma 1983). Hence, the assessment and characterization of reducing 

conditions is important for scientists, stakeholders and practitioners dealing with the 

abovementioned topics. According to the sequential use of prominent electron acceptors 

(Fig. 1.1), redox classes of 

 oxidizing (EH > 300 mV; O2 is present in the soil), 

 weakly reducing (EH 300 to 100 mV; NO3
– and MnIII,IV oxide reduction), 

 moderately reducing (EH 100 to –100 mV; FeIII oxide reduction), and 

 strongly reducing (EH < –100 mV; SO4
2– and CO2 reduction) 

can be deduced (Reddy and DeLaune 2008). This classification will be applied in the fol-

lowing thesis (please note that the classification in Chapter 2 is slightly different and ob-

tained from Zhi-Guang 1985). It is more precise than, for instance, the classification ac-

cording to the National Committee for Hydric Soils (2015; NTCHS). One feature of the 

NTCHS concept to characterize whether a soil is reduced is based on the empirical stability 

line for the Fe3+–Fe2+ redox couple defined by the equation  

𝐸𝐻 = 595 − (60𝑝𝐻)    [Eq. 8]. 

If the measured soil EH is underneath the EH-pH stability line of equation [8] for at least 14 

consecutive days, the soil can be considered reducing and defined as ‘hydric soil’ (NTCHS 

2015). However, it seems reasonable to use a more precise classification because various 

geochemical processes are induced within a distinct redox class. Figure 1.2 attributes find-

ings of environmental relevance linked to either weakly, moderately, or strongly reducing 

soil conditions (please note the overlapping areas and keep in mind that these processes 

are not separated by a sharp EH boundary). Under weakly reducing conditions, the reduc-

tive dissolution of MnIII,IV oxides with the subsequent release of potentially sorbed, hazard-

ous elements such as cobalt (Co) and molybdenum (Mo) (Fig. 1.2) is enhanced. However, 

moderately reducing soil conditions favor the reduction of arsenic (As)-hosting FeIII oxides 

and increase the As availability in soil solution. Both oxides are important interfaces and 

scavengers for pollutants as well as nutrients (Komárek et al. 2013; Smedley and 

Kinniburgh 2002). Besides the effect of EH and pH on metal-hosting oxides, numerous 

trace elements are directly influenced by electron transfer reactions that alters their toxicity 

and sorption characteristics e.g. chromium (CrIII and CrVI), As (AsIII and AsV), antimony 

(SbIII and SbV), and selenium (Se0, Se–II, SeIV, SeVI) (Essington 2015). Furthermore, soil 

reducing conditions alter denitrification and the formation of the potent greenhouse gas 
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nitrous oxide (N2O) under weakly reducing conditions, whereas the formation of CH4 is 

achieved by and restricted to strongly reducing conditions (Yu and Patrick 2004). Hence, 

a binary classification of oxidizing or reducing by the Fe3+–Fe2+ stability line [Eq. 8] is too 

simplified. It would be more appropriate to differentiate redox classes as illustrated in 

Fig. 1.2. Overall, a comprehensive understanding of the recording, monitoring, and inter-

pretation of reducing conditions in soils is crucial, especially in distinguishing the zones of 

weakly and moderately reducing conditions.  

 

Figure 1.2  Biogeochemical processes associated to the onset of weakly, moderately and strongly 

reducing soil conditions. The literature overview integrates laboratory and field exper-

iments in the subsequent order (please see indices) from: 1Yu and Patrick 2004; 
2Shrestha et al. 2014; 3Rennert and Mansfeldt 2005; 4Matern and Mansfeldt 2015; 
5Hindersmann and Mansfeldt 2014; 6Dalkmann et al. 2013; 7Schuth et al. 2015; 8Mans-

feldt and Overesch 2013; 9Peretyazhko and Sposito 2005; 10Schieber 2011; 11Morse 

et al. 1999; 12Picek et al. 2000. 

Methods to characterize reducing conditions in soils 

Several methods are available to identify, characterize, and sometimes monitor soil reduc-

ing conditions. A simple field method comprises the use of dyes that react with Fe2+ in soil 

solution to color compounds. It is common to use 2,2’ dipyridyl (Childs 1981) or potassium 

ferrocyanide (Ringrose-Voase and Humphreys 1993). Although it is a simple method, 

harmful chemicals are a prerequisite and it provides only a snapshot of the in situ reducing 

conditions. Moreover, the redox status can only be classified in terms of FeIII reduction by 

the presence of Fe2+. A differentiation of redox classes is therefore not possible (Table 

1.1).  
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Table 1.1 Comparison of available methods to characterize soil reducing conditions. The abbre-

viations for the distinct categories indicate: Y = yes, NA = not applicable, N = no. 

 Dyes1 Pt electrodes2 TEAPs3 OXC4 Fe nail5 SPP6 IRIS7 

Harmful chemicals Y N Y Y N N N 
Expensive N Y Y Y N N N 
Self-manufacturing NA Y NA NA Y Y Y 
Lab equipment Y N Y Y N Y Y 
Monitoring N Y Y Y Y Y Y 
Redox classes N Y Y Y N N N 

1 (Childs 1981; Ringrose-Voase and Humphreys 1993) 
2 (Gillespie 1920; Ponnamperuma 1972) 
3 Terminal electron-accepting processes (Chapelle et al. 1995) 
4 Oxidative capacity (Scott and Morgan 1990) 
5 (Owens et al. 2008) 
6 Striated polymer plates (Fakih et al. 2008) 
7 Indicator of Reduction in Soils (Jenkinson and Franzmeier 2006) 

As previously mentioned, inert metal electrodes can be used to determine the oxidation-

reduction status of a soil. Classically, a Pt tipped electrode is used in combination with a 

reference electrode, e.g. silver/silver chloride (Ag/AgCl) but a calomel (Hg/Hg2Cl2) elec-

trode can also be used (Fiedler et al. 2007). Previous studies demonstrated that Pt elec-

trodes (Mansfeldt 1993) and the reference electrode (Farrell et al. 1991) can be self-man-

ufactured. Together with data logger equipment, monitoring on high temporal scale is pos-

sible and a differentiation of redox classes can be achieved (Table 1.1). The first EH mon-

itoring campaign using Pt electrodes was initiated in the 1920s (Gillespie 1920). Despite 

the long history and several successful applications in environmental sciences (Patrick 

and Turner 1968; Rezanezhad et al. 2014; Yu et al. 2001), this method comprises some 

restrictions that have to be kept in mind (see Whitfield (1974) for a detailed discussion): 

 the redox couple (e.g. Fe3+–Fe2+) must be electroactive and the electron transfer 

rapid and reversible, 

 species concentrations in soil solution must be greater than around 10–5 M (Bohn 

1971),  

 species adsorption onto the Pt tip surface has to be avoided because it alters the 

measured electrode potential, and most importantly, 

  redox reactions must be in chemical equilibrium.  

These prerequisites must be fulfilled for Nernstian behavior. However, in most cases it 

cannot be achieved under natural conditions. The fact that most redox reactions are bio-

logically mediated with enzyme and cellular based processes make the recording and in-

terpretation of EH data very complicated. Though, EH as a master variable is important to 

predict the speciation and mobility of elements and a continuous recording is useful to 

understand redox related processes (Strawn et al. 2015).  
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Another approach to characterize the redox status is called terminal electron-accepting 

processes (TEAPs), which involves simultaneous measurements of concentrations by 

electron acceptors (e.g. dissolved O2, NO3
–, SO4

2–), intermediate products (dissolved H2), 

and reduced species (e.g. Fe2+, dissolved H2S) along a redox gradient (Chapelle et al. 

1995). It was applied for groundwater systems and provides a better understanding of 

redox processes on the large scale, contrary to pedological systems, where the focus of 

interest is in a smaller vertical and horizontal scale. Another approach is based on the 

concept of oxidative capacity (OXC), which integrates the major oxidized and reduced 

species to a single conservative parameter after defining an electron reference level (e.g. 

HS–) (Scott and Morgan 1990). Both, TEAPs and OXC, comprise intensive water and soil 

analyses, which restricts the use of both approaches as an easy to handle field method 

for characterizing the soil redox status. Other available tools to infer the O2 concentration 

comprise the use of polished Fe nails (Owens et al. 2008) or to install striated polymer 

plates (SPP; dimension of 2 · 2 cm) coated with synthesized ferrihydrite into the topsoil 

(Fakih et al. 2008). A differentiation of redox classes is not possible using either the former 

or the latter method and additionally, the latter one comprises the use of a handheld X-ray 

fluorescence (XRF) pistol to evaluate depletion of the FeIII oxide coating and deduce re-

ducing conditions that might not be available to many users.  

A method to test whether a soil is in a reduced state uses white polyvinyl chloride (PVC) 

bars with a coating of synthesized FeIII oxides (comparable to the use of SPP). The method 

is called Indicator of Reduction In Soils (IRIS) (Jenkinson and Franzmeier 2006). The FeIII 

oxide coating acts as an electron acceptor and reveals the white PVC underneath by the 

removal of the oxide coating under reducing conditions. The depletion can be digitally an-

alyzed or visually assessed to delineate the in situ distribution of soil reducing conditions. 

The more depleted the coating is, after 30 days of being installed, the more reducing the 

soil environment is where the bars were installed. This approach has a major advantage 

due to the simple implementation and the use of low cost equipment, it does not include 

the use of harmful chemicals, and it enables monitoring of soil reducing conditions up to 

50 cm depth (whereas polished Fe nails and SPP are restricted to a small vertical profile).  

Overall, monitoring of redox classes can only be achieved by the use of Pt electrodes for 

the soil environment. It is apparent by this brief literature review that there is an emerging 

need for improved methods to monitor the redox status of a soil.  

Manganese and iron oxides in the soil environment 

Manganese is considered to be a micronutrient and therefore an essential element for 

plants, animals, and human beings (Strawn et al. 2015). Its content in the lithosphere is 
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about 900 mg kg–1, whereas contents in soils range from 20 to 3,000 mg kg–1 with on av-

erage 600 mg kg–1 (Lindsay 1979). Manganese forms hydrated oxides with three oxidation 

states of MnII, MnIII, MnIV (Lindsay 1979). Birnessite (δ-MnO2) is a prominent example in 

soils. Contrary to pure chemical systems with well known E0 values, the redox chemistry 

of MnIII,IV oxides is particularly complicated due to a (i) broad-range from micro- to macro-

crystalline phases, (ii) non-uniform stoichiometric formula (e.g. MnO1.2-2.0), (iii) incorpora-

tion of ions into the crystal lattice (e.g. Al3+ and PO4
3–), and (iv) co-precipitation with SOM 

or clay minerals (Brümmer 1974). Furthermore, (v) the presence of Mn2+ in soil solution is 

also driven by de-/sorption processes from carbonates, sulfides, and phosphates 

(Brümmer 1974), leading only to a qualitative interpretation of measured EH data to predict 

Mn2+ concentrations in soil solution (Bohn 1970). Besides the reductive dissolution (elec-

tron promoted) of MnIII,IV oxides, proton- and ligand-promoted reactions also play an im-

portant role with the fastest dissolution rates occurring for electron transfer reactions and 

the slowest for proton-promoted reactions (Martin 2005). Manganese oxides are involved 

in many soil chemical processes such as metal ion sorption (Loganathan and Burau 1973) 

and related redox reactions with metal ions. They are powerful oxidizers (next to O2) and 

known to oxidize CoII to CoIII, CrIII to CrVI, and AsIII to AsV (summarized by Negra et al. 

(2005)). Finally, they serve as terminal electron acceptors for microbial and root mediated 

respiration of SOM (Tebo et al. 2005) and their pigmenting power enables classification of 

soils (IUSS Working Group WRB 2014). In a study by Canfield et al. (1993), it is estimated 

that one atom of Mn is 100 to 300 times oxidized and reduced before ultimately being 

buried into Danish coastal sediments, demonstrating the active role and catalytic reactions 

of these important soil constituents.  

Iron oxides are the most abundant metallic oxides in the soils environment (Schwertmann 

and Taylor 1989). Such as Mn, Fe is essential for all organisms and thus considered a 

micronutrient (Strawn et al. 2015). The content of the lithosphere is about 51,000 mg kg–1 

with a wide range for soils of 7,000 to 550,000 mg kg–1 and on average 38,000 mg kg–1 

(Lindsay 1979). In soils, 16 Fe mineral phases are known and characterized at present, 

most of them occurring in the trivalent state (ferric Fe or FeIII) (Cornell and Schwertmann 

2003). Various forms of oxides, hydroxides, and oxyhydroxides exist but they will be col-

lectively referred to as ‘FeIII oxide’ in this thesis (analogous to ‘MnIII,IV oxide’). The broad 

variety and pathways of FeIII oxide formation under natural conditions makes it complicated 

to apply thermodynamic concepts for the prediction of a distinct species (see previous 

paragraph; bullet points i to v). Owing to their high crystallization energy, they form minute 

crystals in natural environments that results in high specific surface areas of > 100 m2 g–1 

(Cornell and Schwertmann 2003). This renders them effective sorbents and scavengers 
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for toxic trace metals (e.g. As; Smedley and Kinniburgh 2002), nutrients (e.g. P; 

Peretyazhko and Sposito 2005), organic pollutants (e.g. glyphosate; Piccolo et al. 1994), 

and dissolved organic carbon (DOC; e.g. humic or fulvic acids; Zhou et al. 2001). Even at 

low concentrations, their pigmenting power determines the color of many soils which is 

important for soil classification (IUSS Working Group WRB 2014; Schwertmann and Taylor 

1989). 

As already outlined in the previous chapters, an outstanding feature of both elements (Mn 

and Fe) is their ability to function as an electron acceptor under soil reducing conditions. 

When the soil EH decreases towards 300 to 100 mV, MnIII,IV oxides start to reductively 

dissolve before FeIII oxides according to the sequential reduction sequence 

(Ponnamperuma 1972). This can be explained by the higher electrode potential of MnIII,IV 

oxides [Eq. 9], compared with short-range ordered [Eq. 10] and more crystalline [Eq. 11] 

FeIII oxides. As long as MnIII,IV oxides are present, the soil EH remains at the potential of 

the redox couple and only decreases to the next redox couple when the oxidant is depleted 

(= the soil is not ‘poised’ anymore by the redox couple; Strawn et al. 2015).  

𝑀𝑛𝑂2 + 2𝑒− + 4𝐻+    = 𝑀𝑛2+ + 2𝐻2𝑂          E0 = 520 mV (at pH 7)  [Eq. 9] 

𝐹𝑒(𝑂𝐻)3 + 𝑒− + 3𝐻+ = 𝐹𝑒2+ + 2𝐻2𝑂          E0 = –71 mV (at pH 7)    [Eq. 10] 

𝐹𝑒𝑂𝑂𝐻 + 𝑒− + 3𝐻+    = 𝐹𝑒2+ + 2𝐻2𝑂         E0 = –230 mV (at pH 7)   [Eq. 11] 

Besides the redox behavior, there are other mineralogical differences between MnIII,IV and 

FeIII oxides. For instance, the point of zero charge (PZC) of birnessite (pH 1.5 to 2.8) com-

pared with ferrihydrite (pH 7 to 9) and goethite (pH 7.5 to 9), as well as the active surface 

area that is in the range of 100 to 200 m2 g–1 compared with 20 to 100 and up to 400 m2 

g–1 differs significantly for the distinct minerals, respectively (Strawn et al. 2015). Finally, 

birnessite (darkish-brown), ferrihydrite (reddish) and goethite (yellowish) can be differenti-

ated by their color. 

The distribution of MnIII,IV and FeIII oxides in the soil profile is an important characteristic to 

classify soils. The reductive dissolution and translocations favors the development of re-

doximorphic features, e.g. by gleyic (water saturation due to groundwater) or stagnic (wa-

ter saturation due to stagnant water) color patterns. According to the World Reference 

Base for Soil Resources, four of 32 reference soil groups can be classified by the presence 

of redoximorphic features (IUSS Working Group WRB 2014). The extent of these soil 

groups captures 1,085 million ha (Mha) and makes up 7.75% of the Earth’s land surface, 

which illustrates the importance and all-round distribution of reducing conditions in soils 

(Kirk 2004). 
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Scope of the thesis 

As previously outlined, various biogeochemical processes are induced by the onset of re-

duction and the EH, in addition to the pH, is considered to be a master variable in soils. 

The EH dynamics render a characterization of the soil redox status and an interpretation 

of the data challenging for scientists. Numerous publications deal with measurements of 

the EH. Most of them are related to medical health issues, where EH is used to characterize 

processes in cells or the plasm, but there is also an emerging number of studies in soil 

sciences. Whereas the number of studies in soil sciences were below 50 articles per year 

in 2003, it exponentially increased to 260 articles in 2015 (Fig. 1.3). Most of these articles 

monitor the EH by the use of Pt electrodes but other simple and robust field methods for 

monitoring are desired, particularly to differentiate weakly and moderately reducing condi-

tions.  

 

Figure 1.3  Literature overview of peer-reviewed articles dealing with EH measurements for the 

period from 1945 to 2015. The data displays matches for all disciplines (Physical Sci-

ences and Engineering, Life Sciences, Health Sciences, Social Sciences and Human-

ities; n = 214,174) and soil science (n = 3,057) in particular using the keyword ‘redox 

potential’. (source: http://www.sciencedirect.com/) 

This thesis aims to enhance the knowledge of the temporal and spatial distribution of re-

ducing conditions in soils by the use of different approaches. Besides the recording of the 

EH using Pt electrodes, Fe oxide-coated PVC bars (IRIS method) were manufactured and 

used in field-experiments to characterize the soil redox status. Analogous to the IRIS 
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method, a birnessite-type MnIII,IV oxide was synthesized in the laboratory and coated onto 

white PVC bars. Henceforth, the term redox bars is introduced and accounts for the use 

of both, Mn and Fe oxide-coated PVC bars. Especially the use of Mn redox bars is a nov-

elty, because a documentation to manufacture these bars was missing in literature and a 

comparison with Fe redox bars is not available. Using both oxide coatings for monitoring 

purposes in the field might enable to differentiate between weakly and moderately reduc-

ing soil conditions. To bridge this scientific gap and improve this monitoring approach is of 

utmost importance, because a differentiation into redox classes is only possible by the use 

of Pt electrodes at present. Another pioneering aspect of this thesis is to investigate the 

sorption behavior of elements in soil solution to these man-made minerals, by extracting 

and analyzing the oxide coating of previously field-installed redox bars. This aspect has 

environmental relevance, as in situ techniques to collect freshly formed mineral phases 

and determine element sorption behavior are scarce in literature. Finally, as the water table 

(WT) depth is one of the main drivers to stimulate the onset of reduction, long-term ground-

water data was evaluated using a versatile and robust geostatistical algorithm called ‘Sea-

sonal and Trend decomposition using Loess’ (STL) to assess increasing or decreasing 

trends in groundwater level. This issue is not directly associated to the monitoring of soil 

reducing conditions but the results have an impact on redox induced processes, as the 

groundwater surface can be considered as an interface between aerobic (oxidizing) and 

anaerobic (reducing) conditions.  

The objectives of this thesis are as follows: 

a) Comparison of the EH dynamics between two monitoring campaigns (1990 

to 1993; 2011 to 2014) using permanently installed Pt electrodes  

b) Manufacturing and evaluation of Mn redox bars 

c) Monitoring and differentiation into weakly and moderately reducing soil con-

ditions by Mn and Fe redox bars 

d) Investigation of selective element sorption to the oxide coating of redox bars 

e) Evaluation of the WT depth development under the aspect of climate 

change 

Study areas and project implementation 

Figure 1.4 shows the geographical position of study sites in north-west Germany. All study 

sites are characterized by near-surface and strongly fluctuating WT depths. Prior to this 

thesis, the study sites Speicherkoog (Chapter 2; Mansfeldt 1993, 2003, 2004; Mansfeldt 

and Blume 2002) and Lavesum (Chapter 3, 4, and 5; Mansfeldt and Overesch 2013; 
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Mansfeldt et al. 2012; Schuth et al. 2015) were studied intensively for the effects of differ-

ent redox conditions on the speciation of As, soil solution composition, and pathways of 

FeIII oxide formation. These investigation showed that variations from oxidizing to strongly 

reducing conditions occur on an annual basis, rendering these study sites very suitable for 

the planned objectives a) to d). Previous reports and management strategies for the study 

site Bastauwiesen (Chapter 6) were conducted by the organization Biologische Station 

Minden-Lübbecke e.V., who also provided the data for the groundwater monitoring cam-

paign. The final objective e) was conducted at this study site.  

 

Figure 1.4  Location of study sites in Germany where field-experiments were conducted 

(includes data from gadm.org). 
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Abstract 

As revealed by an earlier study, young diked marsh soils on the west coast of Schleswig-

Holstein (Germany) are characterized by pronounced redox potential (EH) dynamics. Since 

soil forming processes occur over a short period of time in these man-made environments, 

the impact of pedogenesis on EH was examined by comparing the EH dynamics measured 

from November 1989 to October 1993 (weekly measurements) with those measured from 

November 2010 to October 2014 (hourly measurements) at the same study site in Polder 

Speicherkoog, Northern Germany. In addition, the necessity for high resolution EH meas-

urements was assessed as well as the impact of climate change on EH. Redox potentials 

were determined in both monitoring campaigns with permanently installed platinum elec-

trodes at 10, 30, 60, 100, and 150 cm soil depths. Soil properties were determined in 

November 1989 and in August 2013. In 24 years of soil formation, bulk density was demon-

strated to increase by 28.5% and 33.3% in 10 and 20 cm depths, respectively, and the 

sulfide-bearing Protothionic horizon lowered from 105 to 135 cm below surface level. Over-

all, EH dynamics were similar at all soil depths during both study periods with topsoil com-

paction not affecting EH. Annual alterations of EH were primarily driven by the variable 

climatic water balance (CWB) and by the corresponding water table (WT) fluctuations. 

These fluctuations resulted in occasional aeration of the subsoil and subsequent oxidation 

of sulfides. A forecast of CWB to 2100 predicts an intensified WT drawdown by elevated 

evapotranspiration rates that should amplify sulfide oxidation. To deduce the soil redox 

status on a seasonal or annual scale, readings taken at daily intervals are sufficient. To 

identify biogeochemical processes, it is necessary to monitor EH on an hourly basis be-

cause increases in EH values of up to 540 mV have been observed within a 24 hour period 

in temporarily waterlogged horizons.  

Key words: marsh soil, monitoring, redox potential (EH), pedogenesis, soil heterogeneity 
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Introduction 

Determination of the oxidation–reduction (redox) status of a soil and identification of dom-

inant redox processes is of great concern and has been practiced for more than 80 years 

(Gillespie, 1920). Spatial and temporal distributions of reducing conditions in the field can 

be assessed by installation in the soil of an inert metal electrode (e.g., platinum, Pt) and a 

reference electrode (e.g., silver/silver chloride, Ag/AgCl). The potential difference between 

the electrodes can then be determined using a potentiometer to produce readings in mV 

(Patrick et al., 1996). This reading is called the redox potential (EH) and is a classic meas-

ure of reducing soil conditions that affects processes resulting in the release of potent 

greenhouse gases, controls the mobility of nutrients and pollutants, and alters soil for-

mation. Hence, knowledge of the EH dynamics in temporarily water saturated soils is im-

portant for stakeholders and practitioners, e.g., dealing with the reconstruction of wetlands 

or to assess associated biogeochemical processes. 

Various studies have already dealt with in situ monitoring of EH in field applications, with 

installation times of up to five years and at various monitoring frequency intervals ranging 

from hourly to monthly (DeLaune et al., 1983; Faulkner and Patrick, 1992; Austin and Hud-

dleston, 1999; Fiedler, 2000; Teichert et al., 2000; Mansfeldt, 2003). However, none of 

these studies integrated the impact of pedogenesis on EH development. The intensity and 

development of EH depends on various time-dependent and external conditions (Glinski 

and Stepniewski, 1985). Since these properties (e.g., soil moisture) vary significantly in 

space and time, the investigation of reducing conditions in soils is a challenge for scientists 

worldwide. Redox potential measurements using Pt electrodes are at best interpreted as 

‘‘semi-quantitative expressions of mixed potentials in a non-equilibrium environment’’ 

(Austin and Huddleston, 1999) and therefore, the use of EH classes over the use of nu-

merical values is encouraged. Soils that undergo frequent changes from oxidizing (EH > 

400 mV) via weakly reducing (EH 400 to 200 mV) and moderately reducing (EH 200 to          

–100 mV) to strongly reducing (EH < –100 mV) soil conditions, and vice versa, are located 

within diked marshes (Mansfeldt, 1993, 2003, 2004). In these unique man-made environ-

ments, soil-forming processes can be studied over years to decades due to special fea-

tures of the parent material (Schroeder and Brümmer, 1969). This contrasts to many other 

soil environments, e.g., highly weathered soils in tropical regions with low rates of soil 

formation (Pillans, 1997). Diking and drainage of near-surface groundwater plays a crucial 

role for pedogenetic processes in marshes (Kuntze, 1986). These processes comprise (1) 

compaction and (2) desalination of the topsoil, (3) mineralization of ‘‘marine’’ derived or-

ganic matter, and (4) soil acidification by oxidation of sulfide-bearing minerals that is con-
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comitant with the (5) dissolution of carbonate minerals (Brümmer et al., 1971; Müller-Ahl-

ten, 1994a, 1994b; Mansfeldt and Blume, 2002). It is expected that climate change will 

affect these pedogenetic processes and soil properties, but few attempts have been made 

to evaluate consequences for coastal marsh soils (Blume and Müller-Thomsen, 2007). 

Technical progress in monitoring soil EH has evolved enormously over the last two dec-

ades of data acquisition, especially since electrodes for continuous monitoring of soil EH 

have become commercially available to the public (Vorenhout et al., 2004). In remote ar-

eas (as typified by the present study site), data transmission via General Packet Radio 

Service (GPRS) to a web-based server together with less expensive data storage enables 

the study of EH interaction with meteorological and hydrological parameters. As a further 

advantage, technical improvements with regard to sampling frequency of EH measure-

ments have made tremendous advancements towards the minute interval (Shoemaker et 

al., 2013). However, little is known about the benefit and advantage of gathering infor-

mation by performing EH measurements at a high (e.g., hourly or daily) monitoring fre-

quency interval compared with measurements at a low (e.g., weekly or monthly) monitor-

ing frequency interval.  

In this study, manual EH readings taken on a weekly basis from November 1989 to October 

1993 (referred to as hydrological years 1990 to 1993) were compared with automated EH 

readings taken on an hourly basis from November 2010 to October 2014 (referred to as 

hydrological years 2011 to 2014) at Polder Speicherkoog in Schleswig-Holstein, Northern 

Germany. Each set of readings was obtained from permanently installed Pt electrodes. 

Soil chemical and physical properties were measured during both monitoring campaigns. 

The objectives were (1) to assess the impact of pedogenesis (i.e., 24 years of soil for-

mation) on the EH dynamics; (2) to examine the benefit of EH measurements on a high 

frequency basis; and (3) to address the impact of climate change using a forecast of the 

climatic water balance (CWB) to the year 2100 to evaluate future scenarios for soil pedo-

genesis and EH dynamics in these coastal marsh areas. 

Materials and methods 

Study site 

The monitoring campaign was carried out at Polder Speicherkoog, situated 30 km north of 

the river Elbe in Schleswig-Holstein, Northern Germany (54°8‘1‘‘ N, 8°58‘28‘‘ E; 0.5 

m.a.s.l.). The Polder is part of the Meldorf Bight and was diked in 1978. The monitoring 

station is 3 km from the shoreline and belongs to a non-cultivated field embedded in an 
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agrarian landscape. At the study site, the typical vegetation consists of willow bushes (Sa-

lix ssp.), elder bushes (Sambucus nigra), and fireweed (Epilobium angustifolium) (Mans-

feldt, 2003). The EH monitoring was performed in a soil developed from calcareous marine 

deposits originating from the Dunkirk transgression between 0 to 100 AD (Hoffmann, 

1991). According to FAO (IUSS Working Group WRB, 2014) the soil is a Calcaric Gleysol 

(Eutric). 

Data collection and soil properties 1990 to 1993 

Detailed information about the monitoring campaign from November 1989 to October 1993 

is presented in Mansfeldt (1993, 2003). Briefly, the monitoring campaign was based on 

the following approach: EH was monitored in quintuplicate with permanently installed Pt 

electrodes at 10, 30, 60, 100, and 150 cm depths on a weekly basis. The Pt electrodes 

were self-made with a Pt wire (2 mm diameter, 20 mm length) welded on a copper (Cu) 

wire and connected to a Cu lead. The electrode body was embedded into an acrylic tube 

(8 mm diameter, variable length, depending on the measurement depth) and coated with 

a ceramic jacket at the Pt and Cu wire section to prevent intrusion of water (Pfisterer and 

Gribbohm, 1989). The Pt electrode cables were labeled at the end and fed into a water-

proof container in which EH readings were taken manually by connecting a portable pH 

meter to the Cu wire with the support of an alligator clip (Mansfeldt, 2003). The water table 

(WT) depth was measured concomitantly with EH readings on a weekly basis, within a 200 

cm (50 mm diameter) perforated polyvinyl chloride pipe. 

A few meters adjacent to the monitoring plot, disturbed and undisturbed soil samples were 

taken in November 1989 from an excavated soil profile to determine soil physical and 

chemical properties as follows: soil pH was measured potentiometrically using a glass 

electrode in a 0.01 mol L–1 calcium chloride (CaCl2) solution in twofold repetition. Undis-

turbed soil samples were taken with steel cylinders (100 cm3), weighed after saturation 

within a water bath and weighed again after incubation at 105°C for 24 h to determine soil 

porosity (pore soil volume per total soil volume) and bulk density (mass of dry soil per unit 

bulk volume) in eightfold repetition. The grain size distribution was obtained by the sieve 

and settling method. Total carbon (TC) was determined by dry combustion of the material 

at 1,200°C (TR 3600 Deltronik). Inorganic carbon (IC) was determined by adding perchlo-

ric acid (HClO4; 15%) to the samples, which were preheated to 60°C within the same an-

alyzer to detect CO2 by Coulomb electrochemical titration. Organic Carbon (OC) was cal-

culated as the difference between TC and IC. Iron oxides (Fed) were extracted using dithi-

onite-citrate-bicarbonate (DCB) and the solution analyzed for total iron (Fe) concentrations 

via flame atomic absorption spectroscopy (Mansfeldt, 1994, 2003). Reduced inorganic sul-

fur (S) was determined on fresh material immediately postsampling as chromium-reducible 
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S using a distillation apparatus according to Wieder et al. (1985). Each of these parame-

ters were determined in twofold repetition. 

Data collection and soil properties 2011 to 2014 

The study site was located 10 meters adjacent to that of the initial monitoring campaign. 

All instruments were installed within a 2 · 2 m plot in March 2010. Readings were stored 

in a data logger (enviLog Maxi, ecoTech, Bonn, Germany) and transmitted at 8 h intervals 

to a web-based server via GPRS/Internet. Monitoring operations were carried out as fol-

lows: soil EH was measured with permanently installed Pt electrodes (ecoTech, Bonn, Ger-

many) in threefold repetition at 10, 30, 60, 100, and 150 cm monitoring depths. An Ag/AgCl 

electrode (ecoTech, Bonn, Germany; 3 M KCl internal electrolyte) was placed in a salt 

bridge to act as the reference electrode in the middle of the measuring plot around which 

the working electrodes were placed in a stellar configuration. This configuration of the 

electrodes is nearly the same as that implemented by the initial campaign over 1990 to 

1993, with the exception of the smaller-sized Pt tip (1 mm diameter, 10 mm length). The 

electrode potential was adjusted by adding +207 mV (deviation of the reference electrode 

against the standard hydrogen electrode) to calculate the EH. The WT depth was deter-

mined in a 2.0-m perforated polyvinyl chloride tube using a relative pressure sensor 

(PDLR, ecoTech, Bonn, Germany). All measurements and calculations were performed 

on an hourly basis and converted to daily, weekly, monthly and annual averages or sums. 

XLSTAT-Pro (Addinsoft V.2014.1.05.) software was used to statistically analyze the da-

taset. 

In August 2013, 24 years after the initial monitoring campaign, disturbed and undisturbed 

soil samples were taken to evaluate changes in the most important soil chemical and phys-

ical properties. The soil pH was measured potentiometrically using a glass electrode in a 

0.01 mol L–1 CaCl2 solution mixed 5:1 with soil (v/v). In addition, undisturbed soil samples 

were taken with 250 cm3 steel cylinders in eightfold repetition per observation depth and 

saturated in a water bath in the laboratory, and then weighed before and after drying at 

105°C for 24 h to calculate the soil bulk density and porosity. Grain size distribution was 

determined by the sieve and settling method, TC was measured by dry combustion with a 

CNS analyzer (Vario EL cube, Elementar, Hanau, Germany), IC was measured by dry 

combustion after adding hydrochloric acid (HCl), and OC determined from the difference 

between TC and IC. Iron oxides of homogenized and air-dried samples were extracted 

using dithionite-citrate-bicarbonate (DCB) (Mehra and Jackson, 1960). The extracts were 

measured afterwards via flame atomic absorption spectroscopy (iCE 3000 series, Thermo 

Scientific, Waltham, USA). Reduced inorganic S was determined as mentioned above. 
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Replicates of measurements for each parameter were equal to the period from 1990 to 

1993. 

Climatic water balance and forecast 

For both measuring campaigns, precipitation and meteorological data were taken as a 

daily sum or mean value from the weather station Cuxhaven (15 km southwards) (Ger-

man Meteorological Service, 2009; Potsdam Institute for Climate Impact Research, 

2013). 

The Haude formula was used to calculate rates of evapotranspiration in mm d–1 accord-

ing to: 

𝑃𝐸𝑇𝐻𝑎𝑢𝑑𝑒 = 𝑓 ∙ 𝑒𝑠 (1 −
𝐹

100
)    [1],  

with f being a plant specific coefficient for grassland (Loepmeier, 1994); es is the water 

vapor saturation deficit (hPa) for air at 14:00 CET; and F is the relative humidity (%). The 

vapor pressure deficit was calculated using the maximum air temperature (T), which is 

assumed to be equal to the air temperature at 14:00 CET, according to: 

𝑒𝑠 = 6.11 ∙ 𝑒
(17.62𝑇)

(243.12+𝑇)      [2].  

The climatic water balance (CWB) was calculated as the difference between the monthly 

sums of precipitation and PETHaude. A forecast of air temperature, relative humidity, and 

precipitation to 2100, based on the regional climate model STAR (Orlowsky et al., 2008; 

German Meteorological Service, 2009; Potsdam Institute for Climate Impact Research, 

2013) was used to evaluate the possible occurrence of changes, e.g., towards drier sum-

mers. Based on the data, the CWB was calculated in the same manner as previously 

described. Scenarios account for the Representative Concentration Pathways (RCPs) 2.6 

and 8.5 that describe the possible range of radiative forcing with 2.6 and 8.5 W m–2 pro-

posed by the Intergovernmental Panel on Climate Change.  

Results 

Soil properties 

No significant change of pH values was identified between the two monitoring campaigns 

(as evident by the two-tailed t-test at the 5% significance level) and a slightly alkaline soil 

reaction indicates that calcareous material is still present at the study site (Table 2.1). 
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Compared with the 1990 to 1993 monitoring campaign, the bulk density increased at 

depths of 10 and 20 cm by 28.5% and 33.3%, respectively, but remained constant in the 

subsoil. Accompanying the changes of bulk density, the porosity decreased in these 

depths from 0.651 cm3 cm–3 to 0.533 cm3 cm–3 and from 0.649 cm3 cm–3 to 0.513 cm3 cm–

3, respectively (Table 2.1). The porosity decreased slightly at 30 cm, but no change of bulk 

density and porosity occurred at 60, 100, and 150 cm depths. Clay contents were similar 

in the topsoil (10 and 20 cm) and the bottom of the soil profile but differed at 30 and 60 cm 

depths. The OC content gradually decreased from the top 26.5 (28.6) g OC kg–1 soil to the 

bottom 3.7 (2.0) g OC kg–1 soil of the soil profile in 1989 (2013), whereas the IC content 

gradually increased from the top 3.0 (2.1) g IC kg–1 soil to the bottom 4.7 (5.7) g IC kg–1 

soil of the soil profile. These findings demonstrate that over 24 years of soil formation 

(1989 to 2013), the OC and IC content remained stable over time (Table 2.1). However, 

the OC and clay contents were found to be subject to small-scale variations. This is cor-

roborated by the results obtained from the steel cylinders placed at 60 cm depth during 

soil sampling in August 2013. A small clay lens originating from a mid-Holocene marine 

transgression was found to be 2 cm thick and contained elevated OC and clay contents 

(7.4 g kg–1 and 200 g kg–1, respectively) compared with respective values from the sur-

rounding sandy soil in the steel cylinder (2.7 g kg–1 and 70 g kg–1) and with the values for 

100 cm depth (2.6 g kg–1 and 60 g kg–1) (Fig. 2.1, Table 2.1). 

 

Figure 2.1 Soil core taken in August 2013 at 60 cm depth. The dashed white line indicates a clay 

lens originating from mid-Holocene marine transgression. 

The DCB-extractable Fe contents were highest in the topsoil and decreased towards the 

bottom of the soil profile. Depth-dependent differences of Fed contents between the two 

monitoring campaigns are likely to be the result of variations in clay content as indicated 
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by the strong correlation between Fed and clay (r = 0.86, p = 0.002, n = 8), since the oxidic 

Fe fraction of a soil correlates with the clay content (Cornell and Schwertmann, 2003).  

Climatic water balance and water table depth 

Mean annual air temperatures of 8.8°C and precipitation of 805 mm during the reference 

period from 1961 to 1990, together with cool summers and mild winters, characterize the 

climate of the Polder Speicherkoog. The CWB ranged between 285 mm and 663 mm dur-

ing both monitoring campaigns with an above average dry year in 1992 and an above 

average rainfall year in 1993 for the earlier monitoring campaign. Also, 2014 can be con-

sidered as a dry year with significantly higher evapotranspiration rates compared with the 

reference period (Table 2.2).  

Table 2.2 Annual sums of precipitation, evapotranspiration, climatic water balance and mean 

annual water table depth of the monitoring campaigns during the hydrological years 

1990 to 1993 and 2011 to 2014 (hydrological year is from November, 1 to October, 

31). In addition, normal climatic conditions for the periods from 1961 to 1990 and 2071 

to 2100 are presented for comparison. The future scenarios account for an anthropo-

genic radiative forcing of 2.6 W m–2 and 8.5 W m–2. 

Year Precipitation PETHaude
a CWBb WTc depth 

 (mm year–1) (cm below ground) 

1961 to 1990 805 269 536 (325d/209e) – 
1990 831 295 535 –75 
1991 797 293 503 –69 
1992 657 372 285 –102 
1993 952 289 663 –92 
2011 833 310 523 –68 
2012 871 285 586 –67 
2013 778 258 520 –73 
2014 752 356 396 –91 

2071 to 2100 (RCP2.6f) 860 321 539 (348/191) – 
2071 to 2100 (RCP8.5g) 755 394 361 (274/87) – 

a Evapotranspiration according to Haude 
b Climatic water balance 
c Water table 
d Hydrological winter (November, 1 to April, 30) 
e Hydrological summer (May, 1 to October, 31) 
f Representative Concentration Pathways with a radiative forcing of 2.6 W m–2 
g Representative Concentration Pathways with a radiative forcing of 8.5 W m–2 

According to the climate projection from 2071 to 2100 under the RCP2.6 scenario, the 

annual CWB remains constant compared with the 30-year reference period from 1961 to 

1990, with a slight shift towards drier summers (May to October) (Table 2.2). This devel-

opment is intensified under the RCP8.5 scenario with a CWB of only 361 mm y–1, due to 

a lowering of annual precipitation and enhanced evapotranspiration rates. A decrease of 

the CWB under this scenario has to be highlighted during the hydrological summer. 

Typically for all years, in spring (April to May) the WT decreased because of the partial 

negative CWB when evapotranspiration exceeded precipitation but increased in early fall 
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(October to November) when the water demand of the vegetation declined and evapotran-

spiration decreased (Fig. 2.2). This annual pattern caused seasonal fluctuations of the WT 

depth from –10 cm in the winter to –200 cm below ground in the summer. The annual cycle 

of enhanced evapotranspiration (data not shown) from 1990 to 1993 is similar to the de-

velopment from 2011 to 2014, but the CWB varied significantly for individual months be-

tween both periods. For instance, the dry summer of 1992 with a CWB of –81 mm in June 

(Fig. 2.2a) differed remarkably from the moist and mild conditions with 63 mm in June 2013 

(Fig. 2.2c). The impact of water deficiency indicated by the long-lasting dry period from 

June to September 1992 favored a more intense WT drawdown that remained at lower 

than –200 cm below ground for a 4-month period (Fig. 2.2b). In contrast, the mean WT 

depth remained at –126 cm below ground for the corresponding period in 2013 (Fig. 2.2d). 

 

Figure 2.2 Dynamics of the monthly climatic water balance (CWB) and water table (WT) depth 

during the hydrological years 1990 to 1993 (a and b) and 2011 to 2014 (c and d). The 

dashed lines (b and d) indicate the EH recording depths at 10, 30, 60, 100 and 150 cm 

depths and the shaded areas indicate the period from November to April (grey) and 

from May to October (white) of each hydrological year. 

Soil redox potentials 

Figures 2.3a to 2.3e illustrate the EH dynamics during the initial campaign. Mean EH values 

ranged from 547 mV at 10 cm to –84 mV at 150 cm (Fig. 2.3, Table 2.3). The soil was 

oxidized at the 10 cm monitoring depth throughout the study period (EH > 400 mV). Varia-

tions of EH occurred at 30 cm with distinct patterns characteristic of oxidizing soil conditions 

in the summer, to weakly reducing soil conditions in the winter (Fig. 2.3b).  
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Figure 2.3 Dynamics of redox potentials (EH) during the hydrological years 1990 to 1993 (a to e) 

and 2011 to 2014 (f to j) at 10, 30, 60, 100 and 150 cm depths, respectively. The 

dashed lines indicate the redox classes of oxidizing (> 400 mV), weakly reducing 

(400 mV to 200 mV), moderately reducing (200 mV to –100 mV), and strongly reducing 

(< –100 mV) soil conditions according to Zhi-Guang (1985). The EH dynamics are pre-

sented as monthly means with the corresponding standard deviation for measure-

ments in quintuplicate on weekly basis for the initial monitoring campaign and in tripli-

cate on hourly basis for the latter. 

This pattern was even more pronounced at monitoring depths of 60 cm and 100 cm on an 

annual basis. At 100 cm (150 cm), the redox status was at moderately (strongly) reducing 

soil conditions for 80% (71%) of the time, but increased in the summer of 1992 to weakly 

reducing conditions (Fig. 2.3d, e, Table 2.3). From 2011 to 2014, mean EH values were in 

the range of 573 mV to –184 mV (Table 2.3). Oxidizing soil conditions prevailed at 10 cm 

depth throughout the study period and annual EH fluctuations at 30, 60, and 100 cm mon-

itoring depths approximate the fluctuations of the initial monitoring campaign. A high stand-

ard deviation revealed differences of the EH readings between individual electrodes from 

November 2010 to April 2011 at 60 cm depth (Fig. 2.3h) with differences ranging from 

strongly to weakly reducing soil conditions. Strongly reducing soil conditions prevailed 

throughout the study period at 150 cm. The standard deviations were significantly lower at 
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10 and 150 cm depths compared to the soil depths at 30, 60, and 100 cm, respectively 

(Table 2.3). Overall, the soil profile can be separated into an oxidized horizon (10 cm), a 

predominantly oxidized horizon with seasonal reducing conditions (30 cm), an intermittent 

reduced horizon with strong seasonal variations (60 and 100 cm), and a permanently re-

duced horizon (150 cm). The EH data for both monitoring campaigns were very similar at 

a monitoring depth of 10 cm (Table 2.3) in accordance with the EH dynamics (Fig. 2.3a, f, 

Table 2.3). Although the mean EH and the standard deviation were very similar at 60 cm 

during both campaigns (Table 2.3), the monthly standard deviation was different and more 

pronounced during the hydrologic winters from 2011 to 2014 (Fig. 2.3c, h). During the 

initial campaign, EH at 30 cm and 100 cm depths remained at a lower level, expressed by 

differences in mean EH values of 430 mV to 573 mV and 116 mV to 341 mV, respectively 

(Table 2.3). Until June 1992, EH levels at 150 cm were identical for both monitoring cam-

paigns with an EH of –161 mV to –184 mV. However, the EH increase in June 1992 resulted 

in significant differences for the selected statistical parameters (Fig. 2.3e, j, Table 2.3; 

proven by the two-tailed t-test at the 5% significance level). 

Temporal resolution of redox potential measurements 

To assess the possible necessity and benefit resulting from high-resolution EH measure-

ments, the following program of investigation was undertaken. For the campaign from 

2011 to 2014, hourly EH readings were compared with those obtained at a daily, weekly, 

and monthly interval by examining their redox class distribution. Arbitrarily, for the daily 

data, the EH measured at 8 am of each day was chosen, for the weekly data, the EH meas-

ured at 8 am of each Monday of the week, and for the monthly data the EH measured at 8 

am of each first Monday of the month. Since EH fluctuations are subject to different time 

scales (Fiedler et al., 2007), the dataset was analyzed for the total period (hydrologic years 

2011 to 2014), a seasonal period (hydrologic summer 2011) and an event-based period 

(July and August 2012) (Fig. 2.4). For the total, seasonal, and event-based periods, no 

significant differences in the redox class distribution were apparent between hourly and 

daily measurement intervals across all depths. This was also valid at 10, 30, and 150 cm 

monitoring depths when weekly and monthly readings are given additional consideration. 

In contrast, at 60 and 100 cm, the redox class distribution differed between the hourly and 

daily interval, and the weekly and monthly interval. A lowering of the measurement interval 

resulted in a faulty description of the redox class distribution, considering hourly readings 

as the ‘true’ representation of the EH dynamics for the corresponding periods. 
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Figure 2.4 Comparison of the redox class distribution on an hourly, daily, weekly and monthly 

basis measurement intervals (columns) for the EH recorded at depths of 10, 30, 60, 

100 and 150 cm (lines) for the total (hydrological year 2011 to 2014), seasonal (hydro-

logical summer 2011), and event-based (July and August 2012) time-scale. The pie 

charts display the percentage of oxidizing (> 400 mV; white), weakly reducing (400 mV 

to 200 mV; light grey), moderately reducing (200 mV to –100 mV; grey), and strongly 

reducing (< –100 mV; black) soil conditions according to Zhi-Guang (1985). 

To obtain an insight into the temporal variability of the EH, we checked for the whole study 

period the EH of the single electrodes in the 60-cm depth which revealed the largest oscil-

lations in EH. Figure 2.5 displays such an example of the EH dynamics by illustrating the 

response of the Pt electrode to aeration as a function of declining WT. EH started to rise 

from –90 mV at 1 am towards 450 mV at 12 am and over a 24 h period achieved a range 

of 540 mV. The EH increase for this period amounts to 22.5 mV h–1 exemplifying short-

term fluctuations. 

Discussion  

Comparison of EH data and soil properties 

Despite the fact that EH measurements are subject to several limitations (Ponnamperuma, 

1972), numerous publications have already demonstrated the linkage to abiotic processes, 

such as aeration (Mansfeldt, 2003) as well as the specific impact of redox classes on dis-

tinct soil processes (Yu et al., 2001). The maximum WT rise (data not shown) was above 

the 10 cm monitoring depth during both monitoring campaigns, but did not facilitate reduc-

ing conditions. It was not possible to assess any impact of the capillary fringe on stimulat-

ing the onset of reducing conditions in the topsoil. Hence, oxygen (O2) replenishment via 

diffusion from the atmosphere was demonstrated as sufficient and exceeded O2 consump-

tion (Fig. 2.3a, f). Diking (in 1978) and drainage favored a lowering of WT depths within 

the Polder Speicherkoog that subsequently conformed to unsaturated soil conditions in 
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the topsoil. An increase of the bulk density, with a decrease of the air-filled porosity at 10, 

20, and 30 cm depths (Table 2.1) verified the process of compaction from 1989 onwards. 

Reszkowska et al. (2011) concluded that a decrease of the air-filled porosity, along with a 

decrease of the air-conductivity, hampers aeration of the soil. These conditions lead to 

lowered pathways for gas transport with existing O2 consumption mediated by existing 

microbial and root-based mechanisms. However, no assessment was made of any impact 

on EH development at these depths or on the subsoil (i.e., at depths of 60, 100, and 150 

cm). The annual EH pattern, with reducing soil conditions in the winter and oxidizing soil 

conditions in the summer is evident for both study periods at 30, 60, and 100 cm monitoring 

depths and is related to phases of water saturation caused by the setting of the WT. To 

achieve oxidizing conditions, it takes on average 4, 10, and 11 d after the WT declined 

underneath the corresponding EH measurement depth in 30, 60, and 100 cm depth for the 

study period from 2011 to 2014.  

 

Figure 2.5  Redox potential (EH) dynamics for a single platinum electrode at 60 cm depth on an 

hourly basis for a 24 h period on August 24, 2011. The dashed lines indicate the redox 

classes of oxidizing (> 400 mV), weakly reducing (400 mV to 200 mV), moderately 

reducing (200 mV to –100 mV), and strongly reducing (< –100 mV) soil conditions 

according to Zhi-Guang (1985). 
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Furthermore, the position of the WT to facilitate oxidizing conditions in these measurement 

depths was at –33, –75, and –137 cm below ground, respectively. Both results indicate 

that it takes longer to facilitate oxidizing soil conditions with decreasing soil depth because 

of microbial and root mediated O2 consumption during the transport from the atmosphere 

to the Pt electrode. Besides this biotic process, gas transport over a longer distance 

through a porous system will take more time than over a shorter distance, which is also 

reflected by the data. The absence of EH fluctuations at 100 cm depth from June 1990 to 

May 1992 can be explained by this process (Fig. 2.3d), even though the WT was below 

this depth for a short period (Fig. 2.2b). It has not been possible to assess the relationship 

between a response of the Pt electrode to aeration and the setting of the WT for the period 

from 1990 to 1993 because of the coarse measurement interval. In contrast to the period 

from 2011 to 2014, in which strongly reducing conditions continuously occurred at 150 cm 

depths, there was a significant increase of EH, especially during July to September 1992, 

but also during July to October 1993 (Fig. 2.3e, Table 2.3). Such a change in the redox 

conditions of the subsoil should have influenced black colored Fe(II) sulfide minerals 

(FeS). The presence of these minerals is a heritage of the Wadden Sea and originates 

from sulfate (SO4
2–) reduction. Sulfate is abundant in interstitial seawater and with divalent 

Fe forms various FeS minerals, giving the former Wadden Sea sediments the typical black 

coloring. These minerals are very sensitive to oxidation. Aeration of deeper soil horizons 

is associated with the construction of dikes from 1978 and the corresponding drainage for 

agricultural purposes and with declining WT in the summer time. Consideration of these 

processes has led to the following proposed sequence of events: (1) O2 diffusion into 

deeper soil depths, (2) oxidation of insoluble black-colored sulfide to soluble SO4
2–, (3) 

translocation of SO4
2– downwards to the WT and its subsequent removal via groundwater 

from the soil profile, and (4) change of color leaving greyish soil particles behind. Whereas 

the sulfide-bearing Protothionic soil horizon (IUSS Working Group WRB, 2014) (Gr horizon 

according to the German soil classification; AG Boden, 2005) was closer to the soil surface 

before diking and drainage, i.e., at –105 cm below ground in November 1989 (11 years 

after diking), this has declined to –135 cm in August 2013 (35 years after diking). This 

observation corresponds to a FeS oxidation rate of 1.3 cm y–1. A reduction of monosulfidic 

S at a depth of 150 cm from 275 mg S2–-S kg–1 (1989) to 112 mg S2–-S kg–1 (2013) also 

underlines these pedogenetic processes of diminishing FeS concentrations as a result of 

prolonged periods of aeration. Under reducing conditions, major discrepancies between 

monthly EH measurements for individual Pt electrodes were evident at 60 cm from 2011 to 

2014, contrary to the former campaign where the standard deviation was less pronounced 

(Fig. 2.3c, h). It is assumed that the clay lens in Fig. 2.1 is responsible for this pattern. 

Higher OC and clay contents presumably caused stronger reducing conditions around the 
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Pt electrode (as a result of higher microbial activity and soil moisture), supporting the as-

sumption that one out of three Pt tips dips into the clay lens and, in general, causes strongly 

reducing soil conditions (Fig. 2.3h). In this regard, a continuous placement of Pt electrodes 

in the soil is encouraged because frequent manual installation and de-installation of elec-

trodes, even when care is taken that the electrodes are placed at the same monitoring 

depth, can lead to measurements reflecting soil heterogeneity which will be reflected over 

time. 

Measurement interval of redox potential 

Various studies have demonstrated the variability of EH over small distances (Yang et al., 

2006). In addition, redox conditions are known to be heterogeneous on a temporal scale 

and therefore manual measurements performed over discrete time intervals may not be 

able to capture the ‘true’ redox dynamic. During the hydrological summers from 2011 to 

2014, EH increases at 60 and 100 cm depths occurred regularly, but with annual differ-

ences. The significance of temporal variation was particularly noticeable in August 2012 

when the sharp decrease from 480 mV to 250 mV at 100 cm (Fig. 2.3i) was observed to 

be followed by a steep increase to 600 mV. Such variations in the EH regime could easily 

be overlooked if only monthly readings are obtained. Even when weekly measurements 

are made, information about the temporal distribution between weakly and moderately re-

ducing soil conditions would be lost at monitoring depths of 60 and 100 cm where WT 

fluctuations were present (Fig. 2.4). This indicates that these time intervals are not suffi-

cient to derive trends of redox class distribution. Careful consideration should therefore be 

given to establishing a precise moment for measurement in the monitoring program (e.g., 

for sampling of soil solution). Nevertheless, even daily EH readings can be subject to short-

comings. Characterization of the soil redox status in the field at 7 am (40 mV) compared 

with 8 pm (420 mV) (Fig. 2.5), will lead to a faulty and misleading interpretation of the in 

situ biogeochemical conditions. 

Redox potential measurements and implications for marsh soil development 

The presence of sulfide minerals might alter the EH reading by pushing the measured EH 

values to more negative potentials when PtS is formed along the electrode tip surface 

(Whitfield, 1974). This theoretical limitation must be rejected for the study site, because 

sulfate-reducing bacteria require a readily available carbon source (e.g., acetate as an 

electron donor), which was only present during the period of deposition of marine sedi-

ments and is no longer available at these depths. Hence, the diminishing of sulfide con-

centrations is a non-reversible process, even though SO4
2– was detected at 150 cm depth 

at concentrations of up to 650 mg L–1 (Mansfeldt, 2004). It is assumed that elemental sulfur 
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(S0) formed during FeS oxidation at first remains at the mineral surface whilst soluble Fe2+ 

is subsequently leached into soil solution (Nordstrom, 1982). The measured EH displays 

potentials driven by the redox couple FeS-S0 (Whitfield, 1974). In this regard, a lowering 

of the FeS-containing Gr horizon from 105 to 135 cm might offer an explanation for why 

the mean EH values from 1990 to 1993 (Fig. 2.3d) remain constantly below the EH values 

from 2011 to 2014 at the 100 cm monitoring depth (Fig. 2.3i). The only proof of this as-

sumption would be to continue monitoring of the EH development at 150 cm to assess 

whether or not the EH is altered by the decreasing Protothionic soil horizon over the next 

few years to decades. The CWB forecast indicates that this process is likely to occur be-

cause the precipitation pattern and the PETHaude indicate drier summers. The intensified 

WT drawdown would concur with prolonged periods of aeration in previously water-satu-

rated soil environments (Dorau et al., 2015). Picek et al. (2000) demonstrated in laboratory 

soil incubation experiments that a change from reducing to oxidizing soil conditions results 

in elevated OC mineralization rates and enhanced CO2 evolution, demonstrating the need 

to assess whether similar results are attained under field conditions during extended peri-

ods of aeration in the future. This process is not relevant for the study site by low OC 

contents but of relevance for other settings such as fens and bogs. Continuous monitoring 

of EH by the use of permanently installed Pt electrodes is therefore of utmost importance 

in linking a change of environmental conditions to EH development and vice versa. 

Conclusions 

A comprehensive understanding of biogeochemical processes in soils implies knowledge 

of the redox status. Soil chemical (OC content, FeS, pH) and physical properties (bulk 

density, porosity) have to be considered as a transient state within dynamic marsh eco-

systems. As evident by this study, a linkage to EH dynamics can only be achieved when 

Pt electrodes are placed permanently in the soil to differentiate whether variations of the 

EH dynamics are either caused by the re-installation of the electrodes or by changes of soil 

properties. Redox potential measurements on an hourly and daily basis described the re-

dox class distribution equally well during the study period from 2011 to 2014, but a loss of 

information occurred when weekly and monthly readings were performed. The findings 

demonstrate the need to measure EH on an hourly basis, because fluctuations across three 

redox classes within 24 h were apparent. According to meteorological forecasts, enhanced 

evapotranspiration rates favor an intensified water table drawdown during the hydrological 

summer, which also results in prolonged periods of aeration and therefore extends the 
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timeframe and extent for oxidizing soil conditions. This favors and accelerates topsoil com-

paction in marsh ecosystems and has implications for metastable minerals sensitive to 

oxidation. 
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Abstract 

Identification of reducing conditions in soils is of concern not only for pedogenesis but also 

for nutrient and pollutant dynamics. We manufactured manganese (Mn) oxide–coated pol-

yvinyl chloride bars and proved their suitability for the identification of reducing soil condi-

tions. Birnessite was synthesized and coated onto white polyvinyl chloride bars. The dark 

brown coatings were homogenous and durable. As revealed by microcosm devices with 

adjusted redox potentials (EH), under oxidizing conditions (EH ~450 mV at pH 7) there was 

no Mn-oxide removal. Reductive dissolution of Mn-oxides, which is expressed by the re-

moval of the coatings, started under weakly reducing conditions (EH ~175 mV) and was 

more intensive under moderately reducing conditions (~80 mV). According to thermody-

namics, the removal of Mn-oxide coatings (225 mm2 d–1) exceeded the removal of iron 

(Fe)-oxide coatings (118 mm2 d–1) in soil column experiments. This was confirmed in a soil 

with a shallow and strongly fluctuating water table where both types of redox bars were 

inserted. Consequently, it was possible to identify reducing conditions in soils using Mn-

oxide–coated bars. We recommend this methodology for short-term monitoring because 

tri- and tetravalent Mn is the preferred electron acceptor compared with trivalent Fe, and 

this additionally offers the possibility of distinguishing between weakly and moderately re-

ducing conditions. If dissolved Fe2+ is abundant in soils, the possibility of nonenzymatic 

reduction of Mn has to be taken into account. 
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Introduction 

Reduction (i.e., the gain, or acceptance, of an electron) and oxidation (i.e., the loss, or 

donation, of an electron) are important chemical reactions in soil environments. Because 

free electrons do not exist in chemical reactions, reduction–oxidation (redox) reactions 

always occur together.  

The most important source of electrons in soils is reduced carbon (C) occurring in the soil 

organic matter. Metabolizing plant roots and microorganisms enzymatically oxidize the re-

duced C forms. Electrons released during the oxidation of C are transferred to elemental 

oxygen (O, which occurs as the dioxygen molecule O2), which, in turn, is reduced to water 

(H2O). Hence, O2 acts as the terminal electron acceptor. Soil redox conditions under which 

O2 is available are termed “aerobic” or “oxidizing” and are characterized by low electron 

availability. The O2 pool of soils is continuously replenished by O2 diffusion through soil 

pores as long as they are filled with air. When filled with water, the O2 diffusion is extremely 

slow, and, depending on metabolic activity, the soil O2 pool is more or less rapidly ex-

hausted. Soil redox conditions under which O2 partial pressure is low or O2 is absent are 

termed “anaerobic” or “reducing” and are characterized by high electron availability. Under 

reducing soil conditions, elements other than O are used as terminal electron acceptors, 

including pentavalent nitrogen (NV) in nitrate, tri and tetravalent manganese (MnIII,IV) in Mn-

oxides, trivalent iron (FeIII) in Fe-oxides, hexavalent sulfur (SVI) in sulfate, and tetravalent 

C (CIV) in carbon dioxide (CO2). Although some overlap may occur, the use of the different 

electron acceptors is a stepwise one and is known as the “sequential reduction sequence” 

(Ottow, 2011; Ponnamperuma, 1972). Redox conditions of soils are classically assessed 

by measuring the redox potential (EH). According to the preferential electron acceptor in 

use, a more precise classification of the different redox conditions (at pH 7) can be de-

duced and is used in the following text (e.g., Reddy and DeLaune, 2008): “oxidizing,” 

where the EH is > 300 mV and O2 is predominant; “weakly reducing,” where EH ranges 

from 300 to 100 mV and nitrate and MnIII,IV are reduced; “moderately reducing,” where EH 

ranges from 100 to –100 mV and FeIII is reduced; and “strongly reducing,” where the EH is 

less than –100 mV and sulfate and CO2 are reduced.  

In their oxidized species, Fe and Mn occur as strongly colored oxides in soils, whereas 

under reducing conditions these oxides are reductively dissolved, liberating their water-

soluble reduced counterparts, ferrous Fe (Fe2+) and manganous Mn (Mn2+). Typically, re-

peated changes in oxidation and reduction are reflected in special patterns of soil color, 

which are called “redoximorphic features.” The occurrence of redoximorphic features is 
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used in many national and international soil classification systems to infer reducing condi-

tions in soils (e.g., Ad-hoc-AG Boden, 2005; Isbell, 2002; IUSS Working Group, 2006; Soil 

Survey Staff, 2010). However, because soil color does not necessarily reflect the current 

redox conditions in soils (e.g., due to the intrinsic color of parent materials of soil formation, 

higher content of organic matter, or preservation of relict redox conditions), methods of 

recording reducing conditions in soils are necessary. Both oxides are important not only 

for the genesis and classification of soils but also for the chemistry of many elements. For 

instance, Fe-oxides act as a strong adsorbent for toxic (semi)metals (e.g., arsenic) (Bow-

ell, 1994) or for nutrients (e.g., phosphate) (Peretyazhko and Sposito, 2005), and, by their 

reductive dissolution, the adsorbed compounds may be released. Despite the low abun-

dance of Mn-oxides in soils, their oxidizing power and their function as an adsorbent ren-

ders them important soil constituents (Crowther et al., 1983; Kay et al., 2001; Manceau et 

al., 2002). Furthermore, the range of weakly reducing conditions is the range of formation 

of the potent greenhouse gas nitrous oxide (N2O) (Yu and Patrick, 2004). In this regard, a 

comprehensive understanding of the monitoring and interpretation of reducing conditions 

in soils is crucial, especially for distinguishing the zones of weakly and moderately reduc-

ing conditions.  

Several field methods are available to identify reducing soil conditions, including the use 

of dyes (Childs, 1981), the determination of the EH (Fiedler et al., 2007; Patrick et al., 

1996), the terminal electron-accepting processes approach (Gao et al., 2002), and the 

concept of oxidative capacity (Gao et al., 2002). Although these methods have their own 

merits, they also have significant disadvantages because, for example, they provide only 

snap-shots and require laborious sampling and intensive chemical analyses or the use of 

expensive equipment. A new field method of identifying reducing conditions in soils, called 

the Indicator of Reduction in Soils (IRIS), was introduced by Jenkinson (2002) and Jen-

kinson and Franzmeier (2006) and adapted by Rabenhorst and Burch (2006) and Casten-

son and Rabenhorst (2006). Synthesized Fe-oxides are coated on polyvinyl chloride (PVC) 

tubes, which are inserted for a distinct period in the soil. If O2 is depleted due to water 

saturation, the FeIII on the PVC tube is reduced to soluble Fe2+. After removing the tubes 

from the soil, they can be visually assessed for the effects of reduction due to the depletion 

of the oxide coating. Striated polymer plates coated with ferrihydrite are also in use (Fakih 

et al., 2008). Meanwhile, the IRIS technique is one of three methods within the framework 

of the Hydric Soil Technical Standard for proving the presence of reducing soil conditions 

(National Technical Committee for Hydric Soils, 2007). 

Stiles et al. (2010) introduced PVC tubes coated with synthesized Mn-oxides, called the 

Manganese Indicator of Reduction in Soils (MIRIS). The results indicate that MIRIS tubes 
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are a suitable tool in alkaline soil environments (pH > 8), inhibiting Fe reduction, or at 

locations where the installation time is not sufficient to remove the Fe-oxide coating. The 

advantages of Mn oxides as an alternative electron acceptor are their suitability for appli-

cation in alkaline soils, their good contrast with the white PVC surface, and the shorter 

time interval when Mn reduction takes place. However, the manufacture of MIRIS tubes 

has some general restrictions regarding the abrasion of the coating and the synthesis of 

the Mn-oxides (McKenzie, 1971; Stiles et al., 2010). Currently available methods for syn-

thesizing birnessite [(Na, Ca, MnII)Mn7O4∙2.8H2O)], a common Mn-oxide of soils, in the 

laboratory are time consuming and have some disadvantages such as high temperatures 

(60–400 °C), long reaction times (up to 90 d), and the use of strong acids and bases in 

closed systems (Ching et al., 1997; Ma et al., 1999; McKenzie, 1971; Zhang et al., 2012), 

which effectively limits the MIRIS technology. Recently, Händel et al. (2013) introduced a 

new method to synthesize birnessite in the laboratory. This method is simple, fast, and 

reliable. We adopted this method and manufactured birnessite-coated PVC bars to indi-

cate reduction in soils (called “Mn-oxide-coated redox bars”). The objectives of this study 

are (i) to report on how to manufacture Mn-oxide-coated redox bars and test their durabil-

ity, (ii) to adopt the bars in microcosm experiments under defined redox conditions to eval-

uate Mn reduction, (iii) to validate the rate of depletion for Mn-oxide- and Fe-oxide-coated 

bars in laboratory soil column experiments, and (iv) to prove the application in field exper-

iments. 

Materials and Methods 

Synthesis of Birnessite and Fe-Oxides 

Birnessite was synthesized according to Händel et al. (2013). Briefly, we added 1 mL of 

sodium lactate (C3H5O3Na, 50%) to 100 mL of 63.3 mmol L–1 KMnO4 solution. The sus-

pension was stirred for 2 h, centrifuged for 15 min at 5300 g, washed five times with de-

ionized water to remove residual salts, and freeze dried for storage. X-ray powder diffrac-

tion pattern was recorded using X-ray diffraction (XRD) (X’Pert PRO MPD theta–theta, 

PANalytical) with cobalt Ka radiation. The XRD pattern (Supplemental Fig. 3.S1) is very 

similar to the synthesized material described by Händel et al. (2013). By following the 

above-mentioned procedure, 621 mg of the very fine-grained material should be obtained. 

However, during the removal of salts via centrifugation, washing the suspension, and de-

canting the supernatant, the turbidity between each step increased, and loss of birnessite 

in suspension occurred. Hence, 100 mL KMnO4 yielded 437 mg of birnessite, which is two 

thirds of the mass reported by Händel et al. (2013). To minimize the loss of birnessite, we 

recommend centrifuging the suspension with a larger centrifugal force.  
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Iron-oxide-coated bars were used to compare the oxide removal with that of Mn-oxide-

coated bars. We synthesized ferrihydrite by titrating a 0.5 mol L–1 solution of FeCl3 to pH 12 

with 1 mol L–1 KOH. The suspension was stored for 7 d in an opaque glass bottle until the 

desired goethite content of 30 to 40% was obtained via mineralogical alteration 

(Rabenhorst and Burch, 2006). The Fe-oxides were applied to the PVC bars in the same 

manner as the Mn-oxides (see below). It is possible to use a hot-air gun for a few seconds 

to dry the coating lengthwise or to air-dry the bars overnight. To validate the recommended 

ratio between ferrihydrite and goethite, acid-oxalate extraction to determine the quantity of 

ferrihydrite (Schwertmann, 1964) and dithionite-citrate-bicarbonate (DCB) extraction to de-

termine the total Fe content were performed (Mehra and Jackson, 1960). The Feo/Fed was 

0.76, indicating that the major fraction was short-range ordered and oxalate-extractable 

ferrihydrite, whereas goethite represents a minor fraction.  

Applying the Birnessite onto the Bars  

Before the Mn-oxides were applied to the white PVC bar (21 mm diameter) (Co. Kun-

ststoffe Jansen GmbH), the freeze-dried powder was pulverized in an agate mortar for 

2 min because some larger aggregates (< 10 mm) were visible after the drying process. 

Roughening of the PVC surface is an important step and improved when fine sandpaper 

(400 grit) is used. This leads to a better adherence of the Mn-oxide coating than when the 

surface is roughened with coarse sandpaper (< 100 grit). If the PVC surface is not well 

sanded, hydrophobicity, similar to the lotus effect, is observed. Hence, it is fundamental to 

roughening the PVC surface as long as the original smooth surface is not visible anymore. 

The powder was suspended with a ratio of 100 mg birnessite to 1 mL deionized water, 

which resulted in the desired viscosity. It is advisable to dip the soft foam brush into the 

suspension, wrap it around the bar, and facilitate a lengthwise coating with pressure. In 

our experience, a used foam performed better than a new one. Rubbing along the PVC 

surface should be performed for at least 30 s until the residual water of the suspension at 

the foam brush evaporates or diffuses inside the foam, leaving the Mn-oxide particles be-

hind. Facilitating the coating with pressure will enhance the contrast and the durability of 

the Mn-oxide coating. We recommend drying the coating by moving a hot-air gun (300 °C, 

300 L min–1) (Mannesmann) lengthwise (45 s for a 50-cm coated surface and 5 cm dis-

tance to the PVC) without drying a single spot too long to prevent mineralogical alteration 

of Mn-oxide. We could not assess a change of crystallinity as long as the surface temper-

ature was < 200 °C (Supplemental Fig. 3.S2). With 437 mg of Mn-oxides, 0.17 m2 of PVC 

bars can be coated.  
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Checking the Adherence of Birnessite onto the PVC Bars  

To test the durability of the Mn-oxide coating, one redox bar was set in a water bath with 

deionized water of 6 cm depth for 10 d, and one bar was set in acidified hydroxylamine 

hydrochloride (AAH) solution (0.1 mol L–1 HONH2·HCl in 0.01 mol L–1 HNO3 [pH 2]) for 

5 min. Additionally, we wiped a finger along the coated bar and classified the adherence 

of the Mn-oxides into categories from 1 (paint wipes off when applying slight pressure) to 

5 (paint does not wipe off when applying firm pressure) as classified by Rabenhorst and 

Burch (2006).  

Laboratory Experiment at Fixed Redox Conditions in Soil Suspensions  

To validate the reductive dissolution behavior of the Mn-oxide-coated redox bars, experi-

ments were performed at a fixed EH using a microcosm reactor. This device was adapted 

from Patrick et al. (1973) and allows the EH to be controlled. The EH can be regulated by 

adding N2 or filtered ambient air. Our modified system was presented in detail in Mansfeldt 

and Overesch (2013). Therefore, 1.2 kg of air-dried arable topsoil (< 2 mm; Ap horizon; 

pH in CaCl2–extract 6.2; 19.1 g kg–1 organic C; loamy sand) and 6 L of deionized water 

were continuously stirred in a sealed glass vessel at 20 to 22 °C. The Mn-oxide-coated 

bars were screwed into the plastic lid and protruded into the soil suspension. Three micro-

cosms were incubated for 8 d. One microcosm was adjusted to oxidizing conditions 

(~450 mV, O2 is present), the second to weakly reducing conditions (~175 mV, O2 be-

comes exhausted and Mn reduction takes place), and the third to moderately reducing 

conditions (~80 mV, no O2 present and slight Fe reduction takes place). After the incuba-

tion period, the redox bars were removed and visually inspected for Mn-oxide removal.  

Laboratory Column Experiment  

For the soil column experiment, we used the same arable topsoil as in the microcosm 

experiment. Four PVC columns (220-mm height) were filled with the soil up to 200 mm, 

resulting in a bulk density of 1.5 Mg m‒3. Then, four Mn-oxide- or Fe-oxide-coated redox 

bars of 220 mm length were pushed into each column. The columns were placed in a 

water bath having a water level of 100 mm. By using this experimental setup, we wanted 

to validate the hypothesis that Mn is preferentially reduced compared with Fe. The adjust-

ment of the water table (WT) to the middle of the soil column should separate the redox 

bars into an aerobic (upper 100 mm; O2 enters the pores via diffusion) and an anaerobic 

part (lower 100 mm; pores are water saturated and O2 content is low) with a transition 

zone caused by the capillary fringe. We placed the water bath in a climate chamber (KB400 

incubator, Binder) and incubated it at 24 °C to stimulate microbial activity. Before inserting 

the bars into the soil columns, we predrilled a hole to reduce abrasion. After 7, 14, 21, and 
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28 d of incubation, two Mn-oxide-coated and two Fe-oxide-coated bars were carefully re-

moved from the columns. A picture was taken of each 120° section, and the distorted 

images were cropped together and analyzed for the depleted area. This was performed 

using an image retouching and editing tool (GIMP v.2.8.4). Binary images were made by 

using the threshold tool to separate the PVC bars into depleted and nondepleted areas 

(Rabenhorst, 2010). Afterward, the bars were reinserted into the soil columns to prevent 

enhanced O2 diffusion. They were not considered for further analysis.  

Field Application  

Field application of the Mn- and Fe-oxide-coated bars was performed at a site with shallow 

and strongly fluctuating WTs in Lavesum, North Rhine-Westphalia, Germany (51°48.898 

N, 007°12.997 E). The soil is a Haplic Gleysol (Petrogleyic) according to the WRB system 

(IUSS Working Group, 2006), which developed from Holocene fluvial material showing 

loamy texture overlaying glaciofluvial sands. Because of glaciofluvial processes, a micro-

relief developed with height differences varying from 47.6 to 49.0 m asl. More site and soil 

data are presented by Mansfeldt and Overesch (2013) and Mansfeldt et al. (2012). To 

validate the hypothesis that reducing conditions are induced by water-filled pores and 

therefore affect depletion patterns along redox bars, we chose three plots at which to insert 

the bars: an elevated dry plot, an intermediate plot where the WT was shallow but the plot 

was not flooded, and a periodically flooded plot on lower terrain. The WT was measured 

in a groundwater well (PDLR 70, EcoTech) at the intermediate plot. We assumed the WT 

depths of the dry and flooded plots by extrapolating the measured data to the soil level at 

the site using a digital elevation model derived by airborne laser scanning (GEOBASIS 

NRW). The accuracy of the data is ±10 mm in height. Water table depth and soil temper-

ature (temperature lance with RS 485 interface, UIT) were recorded every 10 min during 

the study period from 19 Mar. to 20 Apr. 2013. We assumed that soil temperature was the 

same for all plots. To minimize abrasion and loss of oxide coatings from the surface due 

to scratching, a push probe with a soil auger of the same length and width was predrilled 

into the soil. The PVC bars were cut to 600 mm length with the lower 500 mm coated and 

were carefully inserted without rotating to a depth of 500 mm. We cautiously removed the 

bars from the soil by digging a hole close by and gently pushing the bars to the side. 

Adhering soil material was removed from the PVC surface with tap water. The redox bars 

were stored dry afterward.  
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Results and Discussion 

Manufacturing 

Figure 3.1 presents three Mn-oxide-coated bars. Bar A shows the appearance just after 

manufacture. The color was dark brown (mean RGB of 98, 78, and 55 derived from image 

analysis). 

 

Figure 3.1  Manganese-oxide-coated redox bars without any treatment after manufacturing (A), 

with the lower 6-cm set in deionized water for 10 d (B), and with the lower 6-cm set in 

0.1 mol L−1 hydroxylamine hydrochloride/0.01 mol L−1 nitric acid solution for 5 min (C). 

The Mn-oxide-coated bars showed a homogenous coating, which is important for further 

analysis. When the coated bars were dried, the durability of the coating was excellent, 

which corresponds to category 5 of the classification introduced by Rabenhorst and Burch 

(2006) (i.e., paint does not wipe off when applying firm pressure). Furthermore, when ex-

posed to water, the Mn-oxides were not removed by dissolution or displacement (Fig. 

3.1B). No depletion was visible, nor was the darkness or brightness changed after 10 d of 

storage in water. Manganese oxides can be dissolved by chemical reductants. In the pro-

tocol of Chao (1972), an AAH solution is used to selectively extract Mn-oxides from soils 
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and sediments. Only 5 min after setting the bar into this solution, the Mn-oxides were com-

pletely dissolved, leaving the white PVC surface behind (Fig. 3.1C). The simple removal 

of Mn-oxides is resource friendly because the redox bars can be used several times after 

field installation. Hence, the consumption of material can be reduced during monitoring 

campaigns.  

Microcosm Experiment  

Figure 3.2 and Supplemental Fig. 3.S3 present the results of the EH measurements in the 

microcosms. To achieve and maintain the desired EH range, air had to be pumped from 

time to time to adjust the microcosm to oxidizing conditions. To the microcosm adjusted to 

weakly reducing conditions, air (when the EH dropped too much) or N2 (when the EH in-

creased too much) was continuously added, which explains the saw-tooth pattern of the 

EH. The microcosm adjusted to moderately reducing conditions received only N2 and was 

characterized by a continuous decrease of EH. Figure 3.3 illustrates the bars before and 

after the microcosm experiment. The hypothesis that no reductive dissolution of Mn-oxides 

takes place when the EH is in an oxidizing range can be confirmed by the appearance of 

the Mn-oxide-coated bar presented in Fig. 3.3A: the brightness did not change, nor were 

any depletion patterns visible. In contrast, a change in brightness occurred under weakly 

reducing conditions because the brownish birnessite became a little transparent, showing 

the white PVC surface (Fig. 3.3B). We assume that under weakly reducing conditions the 

O2 partial pressure continuously decreased to zero and that under low O2 contents facul-

tative living microorganisms had already oxidized the organic matter by using the synthe-

sized birnessite as an electron acceptor according to, for example,  

CH3COO– + 4MnO2 + 3H2O → 4Mn2+ + 2HCO3
– + 7OH–  [1]  

where acetate represents the electron donator.  

As shown by Gotoh and Patrick (1972), the transformation of Mn-oxides at pH 6.0 to 8.0 

takes place at EH of 200 to 300 mV. Under stronger reducing conditions, the transformation 

of Mn-oxides to Mn2+ is accelerated. This coincides with the appearance of bar C (Fig. 3.3) 

because the coating became more transparent due to an intensified reduction of Mn under 

moderately reducing conditions. Furthermore, the intensified reduction under moderately 

reducing conditions is reflected by the increased pH because reduction is a proton-con-

suming process (Eq. [1] and Fig. 3.2b). 
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Figure 3.2  Development of the redox potential (EH) (a) and the pH (b) in microcosm experiments 

adjusted to oxidizing (~450 mV), weakly reducing (~175 mV), and moderately reducing 

(~80 mV) conditions during the course of 8 d. The dashed line in (a) indicates the 

boundary between oxidizing and weakly reducing conditions and between weakly and 

moderately reducing conditions. 

Soil Column Experiment 

Table 3.1 shows the results of the soil column experiment. After 7 d, the mean depletion 

of areas of the Mn-oxide-coated bars was nearly identical above and below the WT at 

about 55%. Hence, no difference due to the level of the WT was visible. In contrast, the 

depletion patterns along the Fe-oxide-coated bars reflected the level of the WT because 

only 6.1% of the Fe-oxides was removed above the WT, whereas 30.8% was removed 

below the WT. After 14 d, the Mn-oxide coatings were nearly completely dissolved apart 

from a thin zone on the upper parts of the bars where O2 could have entered. 
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Figure 3.3  Manganese-oxide-coated redox bars before microcosm experiment and after 8 d of 

incubation under oxidizing (~450 mV) (A), weakly reducing (~175 mV) (B), and mod-

erately reducing (~80 mV) (C) conditions. The height of the water table in the glass 

vessel was evident for both experiments run in the absence of O2 and separated the 

bars into those that were not depleted and those that were partly depleted (at 4 cm 

benchmark scale) (B and C). 

The removal of Fe-oxide coating after the second week was twice that in the first week, 

with 18.4% above and 59.8% below the WT after the second week, and increased pro-

gressively to 31.3% above and 71.2% below the WT after the fourth week. Overall, the 

percentage removal of Mn-oxide coating exceeded that of Fe-oxide coating. These results 

are in accordance with the stability of the applied minerals. Due to the capillary rise, pores 

were water-filled in the upper part of the soil column; this prevented O2 diffusion signifi-

cantly. Oxygen diffusion coefficients vary between 10‒2 cm2 s‒1 for dry aggregates and   

10‒6 cm2 s‒1 for water-filled pores (Smith, 1980). Hence, water-filled pores reduce the O2 

transport by four orders of magnitude, which supports the reductive dissolution of Mn-

oxides in the upper part of the soil column. The lower removal of Fe-oxides reflected the 

fact that reducing conditions were not sufficient to reductively dissolve ferrihydrite and goe-

thite in this part of the soil column.  
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Like Mn reduction, the reductive dissolution of Fe-oxides is microbially mediated and may 

be expressed as:  

CH3COO– + 8Fe(OH)3 → 8Fe2+ + 2HCO3
– + 15OH– + 5H2O  [2] 

where acetate represents the electron donor. However, Mn reduction is thermodynamically 

favorable (free energy yield is 94.5 kJ mol–1 for Mn reduction vs. 24.3 kJ mol–1 for Fe re-

duction per mol of organic matter when CH2O is the electron donator), and soil bacteria 

show an enzymatic preference for MnIII,IV compared with FeIII (Lovley, 1991; Zehnder and 

Stumm, 1988). Hence, there is little overlap between the zone of Mn reduction and that of 

Fe, which was also shown in a field study (Mansfeldt, 2004). 

Jenkinson and Franzmeier (2006) introduced the parameter “rate of depletion” to quantify 

and compare the oxide removal along IRIS tubes. The depletion of the oxide coating (mm2) 

is divided by the surface area of the PVC bar in contact with the soil (mm2) and multiplied 

by 100. This quotient is divided by the number of days the bar has been installed. The rate 

of depletion after 4 wk under the ambient conditions totaled 225 mm2 d‒1 for Mn-oxide- 

and 118 mm2 d‒1 for Fe-oxide-coated bars.  

Field Application 

Figure 3.4 illustrates the redox bars used during the field monitoring. The mean WT depth 

for the dry plot was –70.7 cm below the soil surface (“–” indicates below and “+” above the 

soil surface), with values varying between –76.9 and –64.6 cm (Fig. 3.5). These extrapo-

lated values are in consistent with observations made during the monitoring because no 

groundwater was visible in the hole when the redox bars were retrieved. Consequently, 

the bars were not affected by groundwater during the study period, which is consistent 

with the appearance of the bars (Fig. 3.4A). No differences could be observed along the 

Mn-oxide- and Fe-oxide-coated bars from either abrasion due to inserting the bars in the 

soil or reductive dissolution. Consequently, we assume that the redox bars were in an 

oxidizing environment during the study. When assessing the suitability of Mn-oxide-coated 

redox bars for the identification of reducing conditions in soils, it is important to note that, 

besides the EH, the pH also controls the solubility of Mn and Fe in soils. Manganese is 

more soluble under moderately acidic conditions between pH 5 and 6 than Fe (Gotoh and 

Patrick, 1972; Gotoh and Patrick, 1974). This is exactly the pH range of the site under 

investigation (Mansfeldt and Overesch, 2013). Lack of any dissolution patterns of the Mn-

oxide coating indicates, however, that there was no proton-induced dissolution of the Mn-

oxides during the 4 wk of insertion. Whether Mn-oxide-coated bars can be used in envi-

ronments that are more acidic remains unanswered.  
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Figure 3.4  Field application of Mn- and Fe-oxide–coated redox bars inserted in a dry (A), an in-

termediate (B), and a periodically flooded (C) soil environment. 

 

Figure 3.5  Soil temperature at 2 and 20 cm depth and water table depth for a dry (dry), an inter-

mediate (wet), and a periodically flooded (flooded) soil environment. Water table 

depths for the dry and flooded plots were extrapolated. 
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The depletion patterns along the Mn-oxide-coated bar in the intermediate plot were con-

sistent with the level of the WT (Fig. 3.4B). During the course of the study, the mean WT 

was –20.7 cm (range, –26.9 to –14.6 cm) (Fig. 3.5). The depletion patterns started at 

7.5 cm (Fig. 3.4B; see benchmark), which is slightly higher than the WT. Elevated soil 

water contents in the capillary fringe presumably minimized the O2 diffusion and enhanced 

the reductive dissolution of Mn-oxides. At first sight, we expected that the light brown coat-

ings below 7.5 cm would be partially depleted Mn-oxides showing the white PVC surface 

underneath. However, treatment of the lower part of the bar with AAH solution did not 

cause any observed dissolution of the coating. To validate whether the coating consisted 

of Fe-oxides, we scraped 10 cm2 of oxide coatings off the PVC bar shown in Fig. 3.4B 

(Mn) and treated the plastic chips with DCB. The solution was measured for Mn and Fe 

using inductively coupled plasma–mass spectrometry. We extracted 0.57 mg of DCB-sol-

uble Fe but only 0.011 mg of Mn, which indicated the presence of Fe-oxide coatings. What 

could be the reason for the accumulation of the Fe-oxides? As outlined by Mansfeldt et al. 

(2012), Fe2+ is abundant in the shallow groundwater at this site and is relocated upward in 

the soil profile by capillary rise. An oxidation of Fe2+ by O2 and subsequent formation of 

Fe-oxides could be possible on the near-surface part of the bars. Another reaction, espe-

cially in the lower part of the bars, could be:  

MnO2 + 2Fe2+ + 4H2O → Mn2+ + 2Fe(OH)3 + 2H+  [3] 

In this reaction, Fe2+ is the reductant and is oxidized to Fe3+, which hydrolyzes and forms 

Fe-oxides along the Mn-oxide coating. In turn, the birnessite is dissolved and releases 

water-soluble Mn2+ from the PVC surface. Golden et al. (1986) confirmed this process in 

laboratory experiments. The Fe-oxide coating in the intermediate plot showed little trans-

parency below 25 cm (Fig. 3.4B), which is related to the mean WT depth and indicates the 

occurrence of FeIII reduction and hence moderately reducing conditions. Because FeIII re-

duction occurs only in the absence of O2, the presence of Fe-oxide coatings in the adjacent 

Mn-oxide-coated bar (5 cm, Fig. 3.4B) can only be explained by Eq. [3]; that is, by an 

abiotic process as outlined above.  

The mean WT depth of the flooded plot was –0.7 cm (range, –6.9 to +5.4 cm) (Fig. 3.5). 

Neither Mn- nor Fe-oxide removal was visible at the top of the bar (0–2 cm for Mn and 0–

4 cm for Fe), which can be attributed to poor soil contact or elevated O2 content (Fig. 3.4C). 

From 2 to 10 cm and from 4 to 10 cm, respectively, complete removal of the Mn-oxide 

coating and nearly complete removal of the Fe-oxide coating occurred. We associated this 

with the high amount of organic C present there and with it a potentially high microbial 

activity. In general, because the reduction of FeIII and MnIII,IV is associated with microbial 

activity, an increase in temperature will increase the reduction rate (Vaughan et al., 2009). 
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Whether the complete oxide removal was associated with increased soil temperatures at 

the end of the study period is speculative (Fig. 3.5). Below 10 cm, light brown coatings on 

the Mn-oxide-coated bar appeared. As shown by AAH and DCB extraction, the coatings 

on the Mn-oxide-coated redox bars consisted mainly of Fe-oxides, and we assume that 

the same abiotic process happened here. 

Conclusions 

Identification of reducing conditions in soils by Mn-oxide-coated redox bars is possible. 

The described procedure is easy to perform, and the coatings are homogenous and dura-

ble. Furthermore, the MnIII,IV of the coatings is bioavailable and acts as an electron accep-

tor, resulting in a dissimilatory reductive dissolution of the coatings. Because Mn-oxides 

are reduced at higher EH compared with Fe-oxides, we recommend the use of Mn-oxide-

coated redox bars (i) for short-term monitoring (e.g., on a weekly basis) or (ii) in soil envi-

ronments where reducing conditions are too short or where only weakly reducing condi-

tions are achieved and hence are not sufficient to remove the Fe-oxide coatings from the 

bar’s surface. Such settings include soils having perched WTs. Overall, identification of 

the temporal and spatial distribution of reducing conditions and differentiation between 

weakly and moderately reducing conditions in soils can be improved by using Mn-oxide-

coated redox bars together with the established IRIS technique. However, care must be 

taken in the interpretation of the process responsible for Mn reduction (i.e., enzymatic vs. 

nonenzymatic reduction) when reductants like Fe2+ are present. 
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Supplemental Material 

The supplemental material presents a XRD pattern of the synthesized birnessite before 

and after incubation at 180 °C for 24 h. An EH–pH diagram of the microcosm experiment 

is shown. A video clip is presented explaining the preparation of birnessite and the coating 

of the redox bars. 

 

 

Figure 3.S1 XRD random powder pattern of birnessite showing typical broad basal plane peaks at 

around 7.4 Å and 3.6 Å (Co radiation) as well as the non-basal plane peak at around 

2.4 Å indicating turbostratic disorder (Manceau et al., 2013, Villalobos et al., 2006). 
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Figure 3.S2 XRD random powder pattern of birnessite incubated at 180 °C for 24 h (upper diffrac-

togram) and at room temperature (lower diffractogram) showing typical broad basal 

plane peaks at around 7.4 Å and 3.6 Å (Co radiation) as well as the non-basal plane 

peak at around 2.4 Å indicating turbostratic disorder (Manceau et al., 2013; Villalobos 

et al., 2006). No mineralogical transformation caused by temperature can be as-

sessed. *impurity caused by sample preparation 
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Figure 3.S3 EH-pH diagram including the thermodynamic stability line for birnessite* (MnO2/Mn2+-

system; EH = 1.23 – 0.03 · log 10–4 [Mn2+] – 0.118 · pH) and ferrihydrite** 

(Fe(OH)3/Fe2+-system; EH = 1.06 – 0.06 · log 10–4 [Fe2+] – 0.177 · pH) at 298.15 K, 

0.101 MPa and 10–4 M ion activity (Brümmer, 1974). The data from the microcosm 

experiments under oxidizing, weakly reducing and moderately reducing soil conditions 

are plotted as boxes into the diagram. Care must be taken in the interpretation of the 

diagram, because reaction rates and kinetic pathways are not considered and the as-

sumption of chemical equilibrium is not attained under natural conditions. 
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Abstract 

Characterization of the soil redox status is important for pedogenesis but simple field meth-

ods for monitoring are limited. Recently, we introduced manganese (MnIII,IV) oxide-coated 

redox bars as an indicator for reducing conditions in soils. In this study, we compared these 

redox bars with well-established iron (FeIII) oxide-coated bars. For a 5-month monitoring 

period, we quantified the monthly oxide removal along three wetland plots with different 

variations in water table. Preferential dissolution of the Mn oxide coating exceeded the Fe 

oxide removal by two to five times that is coherent with the thermodynamic stability of the 

minerals. Enhanced removal of Mn oxide coatings in the capillary fringe compared to minor 

depletion of Fe oxides enables to differentiate weakly (300 to 100 mV, range of MnIII,IV 

reduction) and moderately (100 to −100 mV, range of FeIII reduction) reducing conditions. 

Processes that occur under weakly reducing soil conditions, e.g. denitrification and trace 

metal mobilization associated with the reductive dissolution of Mn oxides, can be identified 

when Mn oxide removal along redox bars occurs but the Fe oxide coating remains stable. 

Simultaneous use of Mn and Fe redox bars results in a better temporal and spatial char-

acterization of the soil redox status. 

 

Keywords: Redox bars, Iron oxide, Manganese oxide, Monitoring, Soil reducing conditions, 

Microsites 

Abbreviations: EH = redox potential, WT = water table, CWB = climatic water balance 
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Introduction 

The characterization of the temporal and spatial extent of reducing conditions in soils is a 

challenge for scientists worldwide. The intensity of soil reducing conditions, expressed as 

the redox potential (EH), is a geochemical master variable and affects the mobility of nutri-

ents and pollutants, the release of potent greenhouse gases and alters soil formation. Soil 

reducing conditions are induced when the microbial and root mediated oxygen (O2) con-

sumption exceeds the O2 supply via diffusion from the atmosphere. Under these condi-

tions, the soil milieu is termed anaerobic. The replenishment of O2 is highest when the soil 

pores are filled with air and is negatively correlated with increasing soil water content 

(Smith 1980). Consequently, the onset of soil reducing conditions is related to soils af-

fected by groundwater, soils having water logging due to perched water tables and soils 

influenced by flooding and irrigation events (Ponnamperuma 1972). Currently, 32 refer-

ence soil groups are established by the IUSS Working Group (IUSS Working Group WRB 

2006). Four of these soil groups are identified due to the presence of reducing conditions, 

which include Gleysols, Planosols, Plinthosols and Stagnosols. In total, 1.085 billion ha, 

which make up 7.75% of the Earth’s land surface, are covered with soils showing distinct 

redoximorphic features (IUSS Working Group WRB 2006; Kirk 2004; Reddy and DeLaune 

2008). This illustrates the importance and all-round distribution of reduction in soils, and 

consequently, the need to easily quantify and monitor reducing conditions. 

The prevalence of reducing soil conditions stimulates facultative and obligate anaerobe 

microorganisms to utilize selectively the following electron acceptors according to their 

free energy yields (ΔG0; in kJ per mol organic matter when formaldehyde (CH2O) repre-

sents the electron donor): oxygen (O2; −125 kJ mol−1), pentavalent nitrogen in nitrate 

(NO3
−, −119 kJ mol−1), manganese oxides (e.g., MnO2, −94.5 kJ mol−1), iron oxides (e.g. 

FeOOH, −24.3 kJ mol−1), sulfate (SO4
2−, −18 kJ mol−1), and carbon dioxide (CO2, 

−17.4 kJ mol−1) (Schlesinger and Emily 2013). According to the electron acceptor in use, 

different redox zones or classes can be classified into oxidizing (EH > 300 mV; O2 and 

NO3
− are consumed), weakly reducing (EH ranges from 300 to 100 mV; Mn oxides are 

consumed), moderately reducing (EH ranges from 100 to −100 mV; Fe oxides are con-

sumed), and strongly reducing soil conditions (EH < −100 mV; SO4
2− and CO2 are con-

sumed) (Reddy and DeLaune 2008). This sequence is a stepwise one and known as the 

sequential reduction sequence (Ottow 2011). 

Manganese and Fe are abundant in the soils environment and play a major role as soil 

constituents. In their oxidized form, manganic Mn (MnIII,IV) and ferric Fe (FeIII) are not water 

soluble, immobile and, due to their pigmenting power, easy to identify in oximorphic soil 
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horizons. However, under the absence of O2 the minerals participate in reversible electron 

transfer reactions and may be liberated into soil solution under weakly reducing soil con-

ditions as manganous Mn (Mn2+) and under moderately reducing soil conditions as ferrous 

Fe (Fe2+). Translocation and lack of both oxides characterize soil horizons as reductomor-

phic. The Mn and Fe chemistry of Gleysols (gleyic color pattern) is affected by water sat-

uration due to the presence of groundwater, whereas Planosols, Plinthosols and Stag-

nosols show Mn and Fe reduction because of temporary waterlogging (stagnic color pat-

tern) due to stagnant water. Methods to infer the redox status of the soil contain the use 

of (i) platinum (Pt) electrodes (Fiedler et al. 2007; Patrick et al. 1996), (ii) dyes (Childs 

1981; Ringrose-Voase and Humphreys 1993), (iii) the terminal electron-accepting pro-

cesses approach (Chapelle et al. 1995) (TEAPs), (iv) the concept of oxidative capacity 

(Scott and Morgan 1990), (v) striated polymer plates (Fakih et al. 2008 ) and (vi) iron metal 

rods (Owens et al. 2008 ). One has to keep in mind that each method contains various 

advantages and disadvantages and that the detection of soil reducing conditions cannot 

exclusively be attributed to one method. Considerations should be made if field monitoring 

is required (i, v, vi), avoidance of laboratory analysis (i, ii,vi), expensive (i) or low priced (ii, 

v, vi) equipment, if the focus of interest is in a larger hydrological (iii) or smaller pedological 

scale (i, ii, v, vi), if self-manufacturing is possible (v, vi) and differentiation of redox zones 

is desired (i, iii, iv). Jenkinson and Franzmeier (2006) introduced Fe oxide-coated tubes 

for assessing the redox status of a soil. Synthesized Fe oxides, consisting of ferrihydrite 

and goethite, are coated onto white polyvinyl chloride (PVC) tubes and installed into the 

soil. After a distinct time the tubes are removed from the soil and the depletion patterns 

are digitally analyzed or visually assessed. The reductive dissolution of the oxide coating 

approximates the in situ soil redox status and can be quantitatively interpreted for moni-

toring issues. In 2010, Mn oxide-coated tubes to further investigate reducing soil conditions 

were introduced (Stiles et al. 2010). However, the synthesis of Mn oxides and the manu-

facturing of the tubes were tedious, and documentation for manufacturing was missing, 

thus restricting this method as a diagnostic tool for reducing soil conditions. Dorau and 

Mansfeldt (2015) documented a useable method to apply Mn oxides to PVC bars to assess 

less strongly reducing soil conditions. The differentiation between redox zones seems rea-

sonable, because Mn oxides are preferential and at higher EH reduced compared to Fe 

oxides, as confirmed in laboratory experiments (Dorau and Mansfeldt 2015). The applica-

tion of Mn oxide-coated redox bars together with Fe oxide-coated redox bars (henceforth, 

named Mn and Fe redox bars or redox bars in general) might bridge the gap to differentiate 

between weakly reducing (Mn reduction takes place) and moderately reducing (Fe reduc-

tion takes place) conditions in the field to better assess certain redox zones. 



Comparison of manganese and iron oxide-coated redox bars for characterization of the 
redox status in wetland soils  65 
 
To improve the understanding of the temporal and spatial extent of reducing conditions in 

soils, Mn and Fe redox bars were tested in an intermittent wetland. The objectives of this 

research paper are (i) to monitor and discuss the Mn and Fe oxide removal along redox 

bars at a groundwater-influenced study site and (ii) examine the conditions that lead to 

different dissolution patterns along Mn redox bars. 

Materials and Methods 

Study Site 

The monitoring site is within the Münsterland Cretaceous Basin in the district of Reckling-

hausen, North Rhine-Westphalia, Germany (51°48′59″ N, 7°12′59″ E). Shallow water table 

depths (< 1 m) prevail along the grassland site, and glaciofluvial processes resulted in a 

micro-relief (47.6 to 49.0 m asl). The relief favors the separation into elevated dry sites and 

flooded sites in lower terrain where water is periodically ponding. Hence, variations in the 

soil hydrologic regime and soil properties render this site very suitable for investigations 

using Mn and Fe redox bars. The soil types can be classified according to WRB as Haplic 

Gleysol (Petrogleyic) for the elevated and predominantly aerobic plot (named plot A), Hap-

lic Gleysol (Hyperhumic) for the intermediate plot (B) and Mollic Gleysol for the flooded 

plot (C) (Table 4.1). The distance between the sites was approximately 100 m, and the 

dominant plant species at all plots was velvet grass (Holcus lanatus), which is an indicator 

plant for hydric soils and adapted to frequent phases of water saturation. However, more 

specialized plants were found at plot A (e.g. field meadow foxtail (Alopecurus pratensis)), 

B (blue rush (Juncus inflexus)), and C (common sedge (Carex nigra)). 

Table 4.1  Selected soil properties of the predominantly aerobic (A), intermediate (B), and flooded 

(C) plot 

plot Depth pH Soil texture CECa BSb Corg
c N S Fe Mn 

  (CaCl2)  (mmolc kg−1) (%) (g kg−1) 

A 
0 to 20 4.6 Silt loam 73.5 90 46.1 3.82 0.72 97.0 1.27 

20 to 50 4.9 Loamy sand 50.9 95 7.11 0.47 0.27 73.5 1.11 
B 0 to 50 4.9 Loamy sand 83.0 82 72.6 4.53 1.47 12.3 0.05 

C 
0 to 15 4.4 Silt loam 234 78 146 10.8 3.74 21.1 0.16 

15 to 50 4.4 Silt loam 181 84 95.6 4.56 2.27 23.6 0.30 

a effective cation exchange capacity 
b base saturation 
c organic carbon 

Soil Characterization 

We took disturbed soil samples from an excavation pit for diagnostic horizons for plots A, 

B, and C. The samples were oven dried at 40 °C, sieved < 2 mm, and subsamples were 

pulverized in a mixer mill (MM400, Retsch, Haan, Germany) to determine total element 
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concentrations. The soil pH was measured potentiometrically using a glass electrode in a 

0.01 mol L–1 CaCl2 solution mixed 5:1 with soil (v/v). Organic carbon (Corg), nitrogen (N), 

and sulphur (S) were measured by dry combustion with a CNS analyzer (vario EL cube, 

Elementar, Hanau, Germany). Cation exchange capacity (CEC) was determined by per-

colating 2.5 g of soil sample using 1 M NH4Cl solution, and bases were measured in the 

percolate using flame atomic absorption spectroscopy (F-AAS) (iCE 3000 series, Thermo 

Scientific, Waltham, USA). 

Field Monitoring 

The manufacturing of redox bars is presented in detail for Mn redox bars in Dorau and 

Mansfeldt (2015), and for Fe redox bars in Jenkinson and Franzmeier (2006) and 

Rabenhorst and Castenson (2005). Redox bars were 60 cm in length (50 cm coated sur-

face, Ø 21 mm) and we installed three Mn and three Fe redox bars per month and per plot 

at the predominant aerobic, the intermediate and the flooded plot. The dimension of the 

plots was 1 · 1 m. Installation and removal of the redox bars was on a monthly basis from 

March to July 2013. Water table (WT) depth was measured in a groundwater well (PDLR 

70, EcoTech, Bonn, Germany) at the intermediate plot. Data was extrapolated to the aer-

obic and the flooded plot using a digital elevation model derived by airborne laser scanning 

(±10 mm data accuracy in height, GEOBASIS NRW). Soil temperature was recorded at 

the intermediate plot as well and assumed to be the same at all plots (temperature lance 

with RS 485 interface, UIT, Dresden, Germany). Precipitation and air temperature data 

were taken from a free access weather station, 6 km east of the study site in the city of 

Dülmen (51°49′04″ N, 07°18′40″ E). We determined the climatic water balance as the dif-

ference between precipitation and calculated potential evapotranspiration (PET) on a 

monthly basis. To calculate PET we used the Haude formula (PETHaude) with monthly co-

efficients for grass, which is suitable for the estimation of monthly sums but inaccurate for 

daily values (Bormann et al. 1996). 

Digital Analysis of Redox Bars 

We quantified the oxide removal of Mn and Fe redox bars for the upper (0 to 25 cm) and 

the lower (25 to 50 cm) part using digital image analysis. The analysis procedure contained 

the following steps: (i) we obtained four images of 90° sections of each redox bar, (ii) 

cropped the distorted images together, and (iii) created a binary image by means of a user-

defined threshold (GIMP v.2.8.4). The threshold was adjusted to correlate best with visual 

depletion patterns. Only minor difficulties to quantify the oxide removal along Fe redox 

bars into depleted and non-depleted areas arose (Rabenhorst 2010). We had to adapt the 
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quantification of the oxide removal along Mn redox bars, since Fe precipitates mimic par-

tially depleted Mn oxides, but actually indicate that no Mn remained. An efficient way to 

verify if Fe precipitated without chemical analysis is to hold a portable XRF analyzer with 

small observation spot (2 mm diameter, 40 s runtime with small, medium, and large filter; 

Niton XL3, Thermo Scientific, Waltham, USA) along the Mn redox bars’ surface. When the 

XRF signal indicated Fe, no Mn (or in negligible traces) remained at the PVC surface. This 

was confirmed by inductively coupled plasma mass spectrometry (ICP-MS) (XSeries 2, 

Thermo Scientific, Waltham, USA) measurements for various Mn redox bars used in the 

monitoring campaign (e.g. a XRF signal of 6.3 g kg–1 Fe equaled 0.57 mg DCB-soluble Fe 

and only 0.011 mg Mn for a 10 cm2 oxide coating area). Exclusively for Mn redox bars, 

using coloring as a hint and XRF for verification, areas and boundaries of Fe precipitation 

were sketched and managed as total Mn oxide removal. Because the color of in situ pre-

cipitated Fe oxides differed remarkably compared to the remaining Mn oxide coatings, 

digital analysis enables to differentiate areas of Mn oxides and Fe precipitates. X-ray fluo-

rescence is therefore not an essential methodology to quantify the oxide removal. 

Results and Discussion 

Climatic Water Balance, Water Table Depth and Soil Temperature 

Figure 4.1a shows the monthly sums of precipitation, potential evapotranspiration 

(PETHaude) and the climatic water balance (CWB) and Fig. 4.1b, the dynamics of the WT 

depth for the aerobic (A), intermediate (B) and flooded (C) plot on an hourly basis as well 

as the development of soil temperature as monthly mean. The PETHaude steadily increased 

from 20.9 mm in March to 76.2 mm in July as the water demand of the atmosphere rises 

(Fig. 4.1a). When the intake of precipitation was low, the climatic water balance became 

negative in March, April, May and July. The water balance turned positive in June when 

100 mm of precipitation fell. This month was untypically wet with 65% more rainfall com-

pared to the period from 2005 to 2012. The groundwater level varied from −77 (”−” indi-

cates below soil surface) to −23 cm (mean − 56 cm) for the aerobic plot, −52 to +1 cm 

(−32 cm) for the intermediate, and −34 to +19 cm (−13.9 cm) for the flooded plot (Fig. 

4.1b). Diurnal WT fluctuations of 6 cm become apparent by mid-May because of the en-

hanced root water uptake by daytime. The development of the WT responded rapidly to 

the precipitation event on 01.06.2013 with 48.7 mm, which was about 50% of the monthly 

sum. 
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Figure 4.1  Monthly sums of precipitation, evapotranspiration and calculated climatic water bal-

ance (a) and development of soil temperature and water table depth for a predomi-

nantly aerobic (A, grey solid), an intermediate (B, black dotted), and a  periodically 

flooded (C, black solid) soil environment (b) from March to July 2013. Water table 

depth was measured at plot B and extrapolated to plots A and C using a digital eleva-

tion model, and soil temperature was measured at plot B and assumed to be the same 

for the other plots. 

At the beginning of the study period, soil temperatures were low in 25 cm depth (3.8 °C) 

and steadily increased by the end of the study period in July (16.8 °C) with a mean soil 

temperature of 12.0 °C during the course of the study (Fig. 4.1b). 

Oxide Removal along Redox Bars 

Table 4.2 displays the oxide removal along Mn and Fe redox bars from 0 to 25 cm and 25 

to 50 cm respectively. Due to the low WT at plot A (Fig. 4.1b), aerobic conditions prevailed 

in this soil, which is expressed by the marginal Mn and Fe oxide removal along the redox 

bars throughout the study period (Table 4.2). The Mn oxide removal ranged from 0 to 50% 

for the upper part and 0 to 10% for the lower part, and 0 to 15% and 0 to 3% for Fe redox 

bars, respectively. At the intermediate plot, near-surface groundwater intensified the re-

ductive dissolution of the Mn and Fe oxide coating with variations from 6 to 73% and 83 to 

100% for the top and bottom of Mn redox bars. Corresponding values were 2 to 30% and 

22 to 86% for the Fe redox bars. The WT at the flooded plot was constantly above 25 cm 

below ground. Hence, the depleted area exceeded the oxide removal of the aerobic plots 
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significantly. Values for Mn redox bars ranged from 32 to 95% and complete removal, and 

for Fe redox bars ranged from 8 to 63% and 10 to 96%.  

In general, depletion of the coating was more intense in the subsoil because capillary rise 

from shallow groundwater favored elevated water contents, and hence the onset of anaer-

obiosis. This pattern was reversed in the higher elevation plot (A) in June. Then, the de-

pletion of the oxide coating along Mn (Fe) redox bars was 5% (3%) at the bottom, signifi-

cantly lower compared to 50% (15%) at the top, respectively. High precipitation, which 

favored elevated water contents in the topsoil, and elevated soil temperatures and Corg 

contents in the topsoil, might be responsible for this reversal (Table 4.1). These results are 

similar with data from Rabenhorst and Castenson (2005). When the soil was water satu-

rated, they found greater Fe oxide removal along IRIS tubes in surface horizons with higher 

amounts of C at temperatures between 8 and 20 °C compared to 2 and 8 °C. Beyond 

these findings, oxide removal along Mn redox bars was favorable by the factor of 2 to 5 

compared to Fe redox bars throughout the study period and across all plots. This is in 

accordance with the thermodynamic stability of the applied minerals as outlined by Dorau 

and Mansfeldt (2015). 

Table 4.2 Mean oxide removal for the upper (0 to 25 cm) and lower (25 to 50 cm) part of Mn and 

Fe oxide-coated redox bars installed in triplicate at a predominantly aerobic (A), inter-

mediate (B) and periodically flooded (C) soil environment with the corresponding 

standard deviation. 

 March April May June July 
Redox 

bar 
Plot depth oxide removal (%) 

Mn 

A 
0 to 25 0.1 ±0.1% 1.7 ±2.1% 2.4 ±1.3% 50.5 ±14% 0.6 ±1.7% 

25 to 50 0.1 ±2.0% 3.4 ±4.7% 2.1 ±1.2% 5.3 ±4.8% 10.7 ±1.0% 

B 
0 to 25 44.6 ±4.2% 6.5 ±1.1% 12.9 ±5.0% 73.0 ±10% 10.1 ±2.7% 

25 to 50 98.4 ±0.2% 93.0 ±0.3% 95.4 ±0.4% 100.0 ±0.1% 83.2 ±0.5% 

C 
0 to 25 93.6 ±3.1% 93.7 ±2.5% 55.6 ±8.7% 95.1 ±2.1% 32.4 ±4.8% 

25 to 50 100.0 ±2.0% 100.0 ±0.5% 100.0 ±0.4% 100.0 ±0.3% 100.0 ±0.1% 

Fe 

A 
0 to 25 0.1 ±0.1% 0.5 ±1.1% 0.2 ±0.1% 15.7 ±5.3% 2.6 ±0.1% 

25 to 50 0.1 ±0.1% 0.2 ±0.1% 3.6 ±0.1% 3.4 ±1.9% 2.0 ±1.0% 

B 
0 to 25 18.1 ±0.1% 14.2 ±1.1% 2.0 ±1.5% 30.6 ±8.9% 7.5 ±0.1% 

25 to 50 86.0 ±2.4% 78.3 ±1.3% 28.3 ±3.7% 22.8 ±4.0% 51.4 ±3.2% 

C 
0 to 25 63.1 ±3.2% 40.3 ±2.5% 8.0 ±5.0% 58.6 ±4.7% 22.6 ±2.9% 

25 to 50 96.9 ±3.1% 66.0 ±2.3% 44.1 ±4.3% 10.2 ±1.0% 80.3 ±3.6% 

Interestingly, the Fe oxide removal steadily declined for plots B and C from March to June 

(Table 4.2). Jenkinson and Franzmeier (2006) found similar results, and attributed this to 

a nutrient decrease for microbes, which limited microbial activity, and hence, conditions to 

sufficiently reduce trivalent Fe along the coating. The data of the decreasing Fe oxide 

removal supports this assumption and highlights the importance of Corg turnover when de-

lineating the temporal and spatial distribution of soil reducing conditions. Manganese redox 

bars did not reflect this turnover related decline. The complete removal of the Mn oxide 
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coating at the flooded plot (Table 4.2) indicated that the installation time of 30 days does 

not yield the desired spatial resolution to delineate reducing conditions at study sites with 

high Corg content (Table 4.1) and permanent water saturation. Elevated soil water contents 

and temperatures in the topsoil favored a more pronounced standard deviation in June, 

indicating that hotspots of reduction were distributed heterogeneously in the soil profile. 

However, as the standard deviation was below 5% (Table 4.2) for most of the time during 

the study period, the delineation of soil reducing conditions using redox bars in triplicate is 

possible.  

Environmental Conditions Favoring Oxide Removal 

The impact of environmental conditions, which induce the oxide removal along redox bars, 

is difficult to distinguish for various reasons. Time-independent parameters affecting the 

onset of reducing conditions and, therefore, depletion patterns of the oxide coating, include 

soil pH, texture and Corg inventory, whereas time-dependent boundary conditions include 

soil water content, WT depth, soil temperature, Corg flux and microbial activity. On the one 

hand, the O2 diffusion coefficient can be defined as a steady-state condition because the 

replenishment is primarily driven by the texture, the pore sizes and the connectivity of the 

pores. On the other hand, this variable is in a transient state because it is affected by the 

time-variable parameters of soil water content and microbial activity. Figure 4.2 shows the 

relationship between the period of water saturation and the oxide removal of Mn and Fe 

redox bars used in the monitoring campaign, whereby water saturation is defined as the 

period when the WT was within 0 to 25 cm for the topsoil and 25 to 50 cm for the subsoil. 

Both regression lines indicate that longer periods of water saturation favor higher rates of 

oxide removal. When water saturation prevails for 15 days of the installation time, Mn oxide 

removal (45%) is favorable by four times compared to Fe oxide removal (11%) (Table 4.2). 
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Figure 4.2  Relationship between the period of water saturation and the oxide removal of Mn (○) 

and Fe (■) oxide-coated redox bars. Period of water saturation is defined as the time 

when the water table was in contact with the upper part (0 to 25 cm) and the lower part 

(25 to 50 cm) of the redox bar, and correlated with the corresponding oxide removal 

for Mn and Fe redox bars installed during the 5-month monitoring period.  

Jenkinson and Franzmeier (2006) proposed the term Upper Depletion Depth (UDD) to 

delineate where reduction increased significantly along Fe redox bars. According to our 

data, there was good agreement between the UDD and the maximum rise of the WT for 

Mn redox bars (Fig. 4.3a), whereas the UDD along Fe redox bars corresponds with the 

mean WT (Fig. 4.3b). Hence, the onset of weakly reducing soil conditions in the capillary 

fringe, where soil pores are not fully water saturated but soil water contents are close to 

saturation, plays an important role and is assessable using Mn redox bars. The differenti-

ation between weakly and moderately reducing soil conditions in these settings is therefore 

possible using Mn and Fe redox bars simultaneously rather than using one sole type of 

redox bar. Because the oxide removal of Mn oxide was rapid and favorable, especially at 

plots B and C, we recommend the usage of Mn redox bars on a weekly or biweekly basis 

(Dorau and Mansfeldt 2015). Further research should focus on relating the percentage Mn 

oxide removal during field application with EH measurements. For instance, Castenson 

and Rabenhorst (2006) evaluated the Fe oxide removal along Fe redox bars and found 

that the soil was reducing with respect to the thermodynamic stability line of Fe when 30% 

of Fe oxide loss occurred.  
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Figure 4.3  Examples of Mn (a) and Fe (b) oxide-coated redox bars installed at a predominantly 

aerobic (A), intermediate (B) and periodically flooded (C) soil environment from March 

to July 2013. The blue line indicates the mean water table depth during the installation 

time of 30 days and the dotted white line the upper depletion depth. Where there is no 

line, the water table was below the redox bar or the upper depletion depth was not 

apparent.  

Typical depletion patterns along redox bars 

Figure 4.4 summarizes important characteristics observed along Mn redox bars removed 

after one month of installation. Differences in the color indicate the presence of the original 

Mn oxide coating (solid black box) beside freshly formed Fe oxides (dashed black box) 

and spots where the white PVC (dotted black box) is visible at very short scale, i.e. < 1 cm 

(Fig. 4.4a). The in situ precipitated Fe oxides along the PVC surface of the Mn redox bar 

originate from ferrous Fe2+ in soil solution, which is abundant in the shallow groundwater 

at the study site (Mansfeldt and Overesch 2013), and further reacts with the Mn oxide 

coating according to MnO2 + 2Fe2+ + 4H2O → Mn2+ + 2Fe(OH)3 + 2H+ [1]. From the edge 

to the center of a depletion spot, a gradient of oxidizing (EH > 300 mV; Mn oxides remain 

stable), weakly reducing (EH 300 to 100 mV; Mn oxides are reduced and Fe oxides remain 

stable), and moderately reducing soil conditions (EH 100 to −100 mV; Fe oxides are re-

duced) can be derived. These patterns highlight that EH must vary significantly at short 

distances by at least three redox ranges under field conditions. Quantification of zones 

where Mn oxide reduction occurs but Fe oxides remain stable are relevant to delineate hot 
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spots of nitrous oxide emission (Yu and Patrick 2004) and assess the risk of trace metal 

mobilization potentially bound to the surface of Mn oxides due to the reductive dissolution 

of the sorbent (Della Puppa et al. 2013) under weakly reducing soil conditions.  

 

Figure 4.4  Examples of depletion patterns observed at Mn and Fe redox bars during the monitor-

ing campaign: a) Coexistence of areas with complete oxide removal (white, dotted 

box), Fe oxide precipitation (light brown, dashed box) and Mn oxide persistence (dark 

brown, solid box) along 0 to 25 cm at one Mn redox bar installed in June, b) linear 

depletion patterns of Mn oxide removal caused by root exudates, c) borehole photo 

where a Fe (left) and a Mn redox bar (right) were installed at plot A in June, d) linear 

patterns of Mn oxide coatings in an anaerobic soil environment, e) cross-section of 

aerenchyma (Carex nigra), f) formation of FeS along Fe redox bars at plot C in July. 

Jenkinson and Franzmeier (2006) assessed linear depletion patterns along Fe oxide-

coated tubes caused by roots as organic matter source. We observed a mesh of linear Mn 

oxide depletion (Fig. 4.4b) on a redox bar placed in a borehole with a network of fine roots 
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(Fig. 4.4c, right borehole). Like Fe, Mn is a micronutrient for plants but far less abundant 

in the soil of plot A with 1.27 g Mn and 97.0 g Fe kg−1 soil (Table 4.1). Higher densities of 

fine roots in the Mn bar borehole (Fig. 4.4c, right) compared to the Fe bar borehole (Fig. 

4.4c, left) indicate that fine root growth was favored because of the supplemental micro-

nutrient in form of the Mn oxide coating.  

Phytosiderophores (PS) are metal chelating compounds released by plant roots to selec-

tively mobilize Fe and other micronutrients from the soil when plant stress due to nutrient 

deficiency occurs (Römheld 1991). This was shown in a laboratory experiment using cal-

careous soil material, where root exudates barely increased the amounts of Cu < Fe < Zn 

< Mn in the designated order by a factor of 20 (Treeby et al. 1989). However, as indicated 

by the depletion pattern along Mn redox bars (Fig. 4.4b) and the absence of patterns along 

Fe redox bars, we assume that PS are responsible for selective Mn mobilization also under 

acid soil conditions present at the study site (pH 4.6, Table 4.1). In addition to this, it is 

known that plant roots radiate O2 from the atmosphere towards the growing plant roots to 

oxygenate the immediate surroundings. The O2 rich zones vary up to ~1 mm (Bezbaruah 

and Zhang 2004). Figure 4.4d gives an example of a Mn redox bar installed at plot B in 

June. We collected roots from the distinct depth and analyzed cross-sections of it (VHX-

5000, Keyence, Osaka, Japan). Aerenchyma inside the plant roots (Fig. 4.4e; Carex nigra) 

promote the transfer of O2 from the atmosphere, e.g. to detoxify the rhizosphere by oxida-

tion of Mn2+ or other phytotoxins (Wheeler et al. 1985). The linear Mn oxide coatings clearly 

follow the root path, whereas reducing conditions and lack of O2 facilitated complete or 

partial dissolution of the Mn oxide coating in the surroundings. The pattern is contrary to 

the described EH gradient in Fig. 4.4a with decreasing O2 contents and intensified reduc-

tion in the center of the spot. Overall, the formation of dissolution patterns of the Mn oxide 

coating caused by plant roots is possible and reported previously for Fe redox bars (Jen-

kinson and Franzmeier 2006).  

Dark pigments along Fe redox bars indicate that SO4
2− must have been reduced to S2− to 

form iron monosulfide (FeS) coatings (Fig. 4.4f). Rabenhorst et al. (2010) discussed this 

process and demonstrated that the use of Fe oxide-coated tubes enables quantitative es-

timation of S2− concentrations in marsh pore waters. We assume that the formation of dark 

coatings occurred from the reaction of gaseous hydrogen sulfide (H2S) with the Fe hydrox-

ide surface according to 2Fe(OH)3(s) + 3H2S(g) → 2FeS(s) + 1/8S8(s) + 6H2O [2] (Davydov 

et al. 1998) rather than precipitation of S2– from soil solution. This assumption is reasona-

ble because (i) the FeS coatings in Fig. 4.4f (5 to 15 cm) were above the mean WT               

(–25 cm) in July at plot C and at points where no soil material adhered and the coating did 

not have contact with the soil directly. Furthermore, (ii) water droplets were found at the 
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Fe redox bar that might originate from water condensation above the WT and simultane-

ous precipitation of H2S along the Fe oxide coating. Finally, (iii) organoleptic assessment 

of the Fe redox bar directly after retrieval revealed the unique H2S smell. The soil pH of 

4.4 at plot C (Table 4.1) would certainly push the species from S2– to HS– (pKa 12.9) and 

further to H2S (pKa 7.0).  

Conclusions 

Characterization of the spatial and temporal distribution of soil reducing conditions is chal-

lenging but possible using MnIII,IV and FeIII oxide-coated redox bars. In environments where 

soil hydrologic properties vary at field scale and water table fluctuations are present, Mn 

redox bars showed two to five times enhanced oxide removal compared to Fe redox bars, 

in accordance with the thermodynamic stability of the applied minerals. Especially in the 

capillary fringe, Mn reduction was favorable compared to only minor depletion patterns 

along Fe redox bars. The spatial variability of EH in soils from oxidizing to strongly reducing 

soil conditions at very short scale (< 1 cm) was apparent as FeIII oxide precipitation coin-

cided with regions of Mn oxide reduction, indicating weakly reducing conditions persisted 

under ambient field conditions. Areas of Fe precipitates differed remarkably because of 

differences in color, and were closely related to parts along the bar where the Mn oxide 

coating remained, and parts where neither Mn nor Fe oxide remained. Hence, differentia-

tion between the redox ranges of weakly (MnIII,IV oxide reduction) and moderately (FeIII 

oxide reduction) reducing soil conditions is possible, but care must be taken when reduct-

ants like Fe2+ are abundant in soil solution. To delineate the soil redox status, the use of 

each of three Mn and Fe redox bars yielded good results, as evidenced by a low standard 

deviation of the percentage oxide removal (< 5%). However, when soil temperatures are 

high and changes of soil water content rapidly a surplus of up to five redox bars seems 

reasonable. 
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Abstract 

Purpose When studying redox conditions in soils with manganese (Mn) and iron (Fe) ox-

ide-coated redox bars, we observed the formation of Fe oxides along the Mn oxide coating 

and assumed sorption of other elements from soil solution to oxide surface. The objective 

of this study was to investigate the formation of Fe oxides along Mn redox bars and to 

analyze element sorption from soil solution to either Mn or Fe oxide along redox bar coat-

ings. 

Materials and methods We protruded Mn redox bars into solutions with defined Fe2+ con-

centrations and removed the bars at distinct time intervals. The Mn oxide coating and po-

tential Fe oxides were extracted using dithionite-citrate-bicarbonate (DCB). To investigate 

in situ element sorption behavior, we used previously field-installed redox bars, protruding 

these Mn redox bars into acidified hydroxylamine hydrochloride (AAH) to selectively ex-

tract Mn oxide and afterwards into DCB to dissolve the remaining Fe oxide coating. This 

two-step extraction procedure enabled the differentiation of elements bonded to either Mn 

or Fe oxide. Additionally, we analyzed the redox bar coatings at a very small scale 

(< 1 mm2) via energy-dispersive X-ray spectroscopy (EDX). 

Results and discussion Iron oxides precipitated along the Mn oxide coating at low concen-

trations of 0.05 mg Fe2+ L−1, but did not trigger a color change. Although a change in color 

did occur instantaneously at 500 mg Fe2+ L−1, it is expected that Fe2+ concentrations are 

significantly lower under field conditions because ferrous Fe auto-oxidized within the arti-

ficial setup. Whereas Mn oxide sorbed cationic elements from the soil solution in the order 

Cu > Pb > Zn, Fe oxide preferentially sorbed oxyanions with As > P > Mo > V, respectively. 

“Field”-Fe oxides precipitating along the Mn redox bars sorbed elevated levels of As and 

P compared with the action of synthesized “lab”-Fe oxides along Fe redox bars, a finding 

which we attribute to short-range-ordered Fe phases with elevated sorption capacity. 

Conclusions Besides providing information regarding the monitoring of soil redox status, 

the developed sequential two-step extraction procedure enables the differentiation of the 

selective sorption of elements in the soil solution to the coating of Mn and Fe redox bars. 

The collection of Fe oxides formed naturally along the Mn redox bar coatings further ena-

bles the investigation of temporally and spatially diverse Fe oxide-forming processes. 

 

Keywords Ferrous iron, Iron oxide, Manganese oxide, Metal element sorption, Redox 

conditions 
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Introduction 

The characterization of soil redox status is of great importance because different pedoge-

netic responses are triggered under oxidizing or reducing soil conditions. In soil environ-

ments in which oxygen (O2) is scarce (e.g., due to groundwater or perched water tables), 

manganese (MnIII,IV) and iron (FeIII) oxides are important soil constituents because both 

minerals participate in reversible electron transfer reactions and are able to take up elec-

trons released by the microbially mediated oxidation of reduced carbon (C) occurring in 

the soil organic matter pool (Ottow 2011). Whereas the transformation of MnIII,IV oxide to 

Mn2+ takes place at redox potentials (EH) as high as 500 mV at pH 5 (Gotoh and Patrick 

1972), critical EH values for FeIII reduction have been recorded at 300 mV (Gotoh and 

Patrick 1974). Overall, a lowering of EH will result in enhanced Mn and Fe reduction rates 

(Atta et al. 1996) and furthermore, to the potential mobilization of trace elements bonded 

to the oxide surface.  

One tool developed to test whether a soil is in a reduced state is the Indicator of Reduction 

in Soils (IRIS) (Jenkinson and Franzmeier 2006), in which synthesized Fe oxides consist-

ing of ferrihydrite and goethite are coated on polyvinyl chloride (PVC) bars and installed in 

the soil for a defined period. In the absence of O2, the coating reductively dissolves, with 

the depletion patterns visually assessed to delineate soil reducing conditions. Dorau and 

Mansfeldt (2015) adapted this method, coating PVC bars with synthesized Mn oxide con-

sisting of birnessite (hereafter referred to as Mn and Fe redox bars or redox bars in gen-

eral). Field monitoring of soil redox status was performed at a study site characterized by 

elevated concentrations of Fe and arsenic (As) in the groundwater, originating from the 

weathering of fossil bog Fe (Mansfeldt and Overesch 2013). The manganese redox bars 

proved their better suitability for the identification of reducing soil conditions, with oxide 

removal two to five times greater than that achieved using Fe redox bars (Dorau et al. 

2015). Furthermore, sections of the Mn redox bar surfaces differed remarkably in color 

from the original dark brown Mn oxide coating. Chemical extraction using dithionite-citrate-

bicarbonate(DCB) (Mehra and Jackson 1960) combined with elemental analysis of a pre-

viously installed bar revealed precipitated Fe to be the cause for this change in color. The 

presence of Fe2+ in soil solution mediates a non-enzymatic redox reaction that favors the 

dissolution of the Mn oxide coating. According to the reaction  

MnO2 + 2Fe2+ + 4H2O → Mn2+ + 2Fe(OH)3 + 2H+        [1] 

Fe2+ acts as a reductant that is oxidized to Fe3+ and hydrolyzes along the Mn oxide coating. 

In turn, Mn2+ is released from the surface, with in situ formed Fe oxides remaining as a 

durable coating (Dorau and Mansfeldt 2015). Along with the precipitated Fe oxides, we 
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also hypothesized that As and other elements would be detectable in the extracts. Thus 

far, no study has investigated the sorption behavior of distinct elements to either the Mn 

or Fe oxide coating on redox bars.  

In aerobic soil environments, MnIII,IV and FeIII (hydr)oxides are known to sorb and minimize 

the solubility of a variety of elements, for example, As (Manning and Goldberg 1997; Nes-

bitt et al. 1998), chromium (Cr) (Ajouyed et al. 2010; Bradl 2004; Rai et al. 1989; Zachara 

et al. 1987), copper (Cu) (Abd-Elfattah and Wada 1981), molybdenum (Mo) (Hooda 2010), 

nickel (Ni) (Arai 2008), phosphorus (P) (Peretyazhko and Sposito 2005), lead (Pb) (Abd-

Elfattah and Wada 1981; Hooda 2010), vanadium (V) (Hooda 2010), and zinc (Zn) (Rob-

erts et al. 2002; Scheinost et al. 2002). Variations in the mineral structure of birnessite (a 

common Mn oxide in soils), as well as ferrihydrite and goethite (prominent Fe oxides in 

soils), cause bonding mechanisms to differ between less reversible inner-sphere surface 

complexes and rather weakly bonded outer sphere surface complexes, with soil pH alter-

ing the element-specific pH adsorption edge (Bradl 2004). The linkage between the liber-

ation of distinct trace metals into the soil solution under weakly reducing (MnIII,IV reduction; 

EH 400 to 200 mV at pH 7) and moderately reducing soil conditions (FeIII reduction; EH 200 

to −100 mV at pH 7) was recently shown in microcosm experiments (Hindersmann and 

Mansfeldt 2014). These findings also highlighted that Mn and Fe oxides selectively sorb 

distinct trace metals from soil solution. However, it should be noted that (i) the EH controls 

the speciation of some trace elements via electron transfer reactions (e.g., As) (Smedley 

and Kinniburgh 2002; Mansfeldt and Overesch 2013), (ii) dissolved organic matter (DOM) 

is able to sequester certain trace metals (e.g., Pb) (Adriano 2001), and (iii) sulfide (S2−) in 

soil solution forms sparingly soluble trace metal-sulfide phases (e.g., CdS, PbS, and ZnS) 

(Morse and Luther 1999). Hence, various soil processes and properties alter the mobili-

zation of trace metals and a universal concept is impossible to apply. Moreover, infor-

mation regarding the in situ soil-surface chemistry of Mn and Fe oxides is difficult to obtain 

because major restrictions prevail when separating pure oxides from bulk soil. Rennert et 

al. (2013) developed a device with which to collect freshly precipitated Fe oxides without 

producing physical or chemical artifacts during sampling. Issues related to soil-mineral 

formation, e.g., redox-induced Fe oxide aging (Thompson et al. 2006) or interactions be-

tween Fe oxides and DOM, can be studied by applying microscopic and spectroscopic 

techniques (Rennert et al. 2013).  

The objectives of this article were (i) to improve the understanding of Fe precipitation and 

the formation of Fe oxide along Mn redox bars, (ii) to investigate the sorption of various 

elements from the soil solution to either Mn or Fe oxide along the redox bar coating, using 
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a selective chemical extraction procedure, and (iii) to analyze the Mn and Fe oxide coat-

ings at a very small scale via energy-dispersive X-ray spectroscopy (EDX). 

Materials and Methods 

Study site 

The monitoring site is in the district of Recklinghausen, North Rhine-Westphalia, Germany 

(51° 48′ 59″ N, 7° 12′ 59″ E). Water table (WT) depths across the study site range from 

ponding surface water to 1 m below ground at small scale, reflecting the action of glacio-

fluvial processes that produced a micro-relief (47.6 to 49.0 m asl) segregating elevated dry 

sites from flooded sites in lower terrain. 

Field monitoring 

The manufacturing process for the Mn redox bars is presented in detail in Dorau and 

Mansfeldt (2015) and that for the Fe redox bars in Jenkinson and Franzmeier (2006) and 

Castenson and Rabenhorst (2006). Three Mn and three Fe redox bars 60 cm in length 

and with the lower 50 cm coated, were installed in a flooded plot in lower terrain where 

water was periodically ponding. At this site, Fe oxide formation was favorable because 

Fe2+ was abundant in the soil solution (plot C in Dorau and Mansfeldt 2015); we also as-

sumed that the potential sorption of distinct elements to the oxide coating would be detect-

able by the selected analytical methods. We removed the redox bars on a monthly basis 

from March to July 2013. Environmental monitoring comprised measurement of WT depths 

(PDLR 70, EcoTech, Bonn, Germany); soil temperature (temperature lance with RS 485 

interface, UIT, Dresden, Germany); and oxide removal along redox bars. A detailed de-

scription of soil properties and site specific characteristics is presented in Mansfeldt et al. 

(2012). 

Elemental analysis 

Disturbed soil samples were taken from an excavation pit at the designated plot from 0 to 

25 cm and from 25 to 50 cm depth. Soil sampling was not carried out genetically based on 

soil horizons but followed the analytical procedure of elements bonded to the upper (0 to 

25 cm) and lower (25 to 50 cm) sections of redox bar coatings. The obtained soil samples 

were oven dried at 40 °C, sieved < 2 mm, and homogenized, with subsamples then pul-

verized in a mixer mill (MM400, Retsch, Haan, Germany) to determine total element con-

centrations. Pseudo-total concentrations of As, Cr, Cu, Mo, Ni, Pb, V, and Zn were meas-

ured via inductively coupled plasma mass spectrometry (ICP-MS) (XSeries 2, Thermo Sci-

entific, Waltham, USA), and those of Fe, Mn, and P via optical emission spectroscopy 

(ICP-OES) (ULTIMA 2, Horiba Scientific, Unterhaching, Germany) in an inverse aqua regia 
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digestion solution (2 mL concentrated HCl and 6 mL concentrated HNO3, 200 mg sample 

weight). 

Fe precipitation along Mn redox bars 

As outlined in Dorau and Mansfeldt (2015), the presence of Fe2+ in the soil solution is 

responsible for the non-enzymatic reductive dissolution of the Mn oxide coating. To prove 

the reaction kinetics of this abiotic process and to investigate possible color changes, we 

protruded three Mn redox bars of 8 cm length into 20-mL solutions containing 0.05, 5, and 

500 mg Fe2+ L−1, removing one bar from each solution after 1, 15, and 30 days. The con-

centration of 5 mg Fe2+ L−1 approximates the upper limit of divalent Fe found in the soil 

solution at the study site (Mansfeldt and Overesch 2013), while the 30-day limit is equal to 

the installation time of redox bars during monitoring. Additionally, we performed a run with 

100 mg Fe2+ L−1 at shorter intervals of 1, 2, 4, 8, 16, and 24 h. After removing the redox 

bars from the solutions and prior to their dry storage, we rinsed the bars with deionized 

water to remove any adhering solution containing Fe2+. As the pH of the FeCl2 solution 

varied depending on the Fe2+ concentration, all solutions were standardized to the pH con-

ditions found at the study site (pH 4.5), with sodium hydroxide (0.1 M NaOH) and nitric 

acid (0.1 M HNO3) used to increase and decrease solutions to the desired pH, respectively. 

After removing the redox bars, the pH of the solution was measured again. To establish 

whether Fe precipitated along the Mn oxide coating, we protruded the bars into 50 mL vials 

and performed a DCB extraction (Mehra and Jackson 1960). This extracting agent simul-

taneously dissolves both Mn and Fe oxides in soils. Afterwards the solution was analyzed 

for total Mn and Fe concentrations via flame atomic absorption spectroscopy (F-AAS) (iCE 

3000 series, Thermo Scientific,Waltham, USA). The experiment was performed in dupli-

cate repetition. 

Sorption characteristics of redox bars for various elements 

We performed a two-step extraction procedure to differentiate elements sorbed to either 

Mn or Fe oxide along the redox bar surface. In this analysis, we first cut two Mn and two 

Fe redox bars (the 50-cm coated surface) per month into 8.33-cm PVC sections. We in-

vestigated the elemental composition of the redox bar coating for both the topsoil (0 to 

25 cm; upper three sections) and subsoil (25 to 50 cm; lower three sections), along with 

soil characterization. For this purpose, redox bar sections were protruded for 10 min into 

50-mL vials 10 cm in height (2.5 cm Ø) and containing 25 mL of extracting agent; the 

complete surface of each section was in contact with the solution. To investigate elements 

bonded to Mn oxide, we used acidified hydroxylamine hydrochloride solution (AAH; 0.1 M 

HONH2·HCl in 0.01 M HNO3, pH 2), which selectively extracts Mn oxides in soils (Chao 
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1972) and dissolves the Mn oxide coating within minutes (Dorau and Mansfeldt 2015). The 

residual Fe oxide coating and elements bonded to it were extracted using DCB (Mehra 

and Jackson 1960). Manganese redox bars were thus sequentially treated with AAH and 

DCB, and Fe redox bars only with DCB. Total concentrations of As, Cr, Cu, Mo, Ni, Pb, V, 

and Zn were determined via ICP-MS, and those of Fe, Mn, and P via ICP-OES; these 

values were then converted to extractable element contents. To characterize the sorption 

behavior of elements bonded to either Mn or Fe oxide, we calculated the quotient between 

the mean AAH-extractable (assumed to bond to Mn oxide) and DCB-extractable element 

contents (assumed to bond to Fe oxide) exclusively for Mn redox bars. The final dataset 

also included two replicates each for the top and bottom of the Mn redox bars for the 5-

month period (n = 20). 

EDX analysis of redox bars 

We used a scanning electron microscope (SEM) (NEON 40, Zeiss, Jena, Germany) at 

15 keV accelerating voltage equipped with an EDX detector (Dry Cool, Oxford instruments, 

Abingdon, UK) to analyze the element contents of redox bar coatings at a very small scale 

(∼1 mm2). This approach was employed in order to address a scaling problem, because 

chemical extraction integrated the elemental content of 16,493 mm2, equal to 25 cm of 

coated PVC surface, according to the employed methodological setup. In contrast, for 

SEM investigations, smaller sample dimensions are required and thus the bars were pre-

pared in the following way: Each previously field-installed Mn and Fe redox bar served as 

an example, and was first cut lengthwise into 1-cm sections and then crosswise to obtain 

plastic chips ∼4 mm in height. We also analyzed an uncoated PVC chip as a reference in 

order to exclude any elements incorporated into the plastic material. For SEM investiga-

tions, sample surfaces must be electrically conductive and hence the plastic chips were 

coated with a 15-nm-thick layer of C prior to analysis (K950X, EMITECH, Ashford, UK). 

Results and Discussion 

Fe precipitation along Mn redox bars 

Figure 5.1 shows the DCB-extractable Fe contents recorded along Mn redox bars pro-

truded into solutions of different Fe2+ concentration (a) and the corresponding pH values 

of these solutions (b) at distinct time intervals, and Fig. 5.2 illustrates the corresponding 

color of the Mn oxide coatings after removing the Mn redox bars from the Fe2+-containing 

solutions. A steady increase in DCB-extractable Fe content was observed in the experi-

ment with the 100 mg Fe2+ L−1 solution, which reached a steady state and stagnated after 

24 h of reaction. These findings indicate the fast reaction kinetics of Fe2+ (reductant) with 
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the Mn oxide coating (oxidant), and are coherent with data published by Golden et al. 

(1986). The latter authors reported increased Mn2+ concentrations in the solution phase 

resulting from the reduction of MnIII,IV oxides in the presence of Fe2+, also proposing that 

Fe2+ oxidized to Fe3+ in turn hydrolyzes in a further step to form FeIII oxides according to 

Eq. (1).  

 

Figure 5.1  Dithionite-citrate-bicarbonate (DCB) extractable Fe content of Mn redox bars in dupli-

cate protruded into FeCl2-solution containing 0.05 (black squares), 5 (black circles), 

100 (white squares), and 500 (white circles) mg Fe2+ L−1 at defined time intervals (a), 

and pH of the corresponding solutions after bar removal (b). Error bars represent the 

standard deviation. 

Presumably, the pseudomorphic Fe precipitates are composed of ferrihydrite or feroxyhite, 

which progressively transform into goethite (Golden et al. 1986). As the oxidation of ferrous 

Fe is a proton-producing process, pH values at 100 and 500 mg Fe2+ L−1 fell rapidly from 

pH 4.5 at the beginning of the experiment to pH 3.1 and 2.9, respectively, at the end of the 

experiment (Fig. 5.1b). The release of H+ due to the adsorption of Fe2+ and Fe3+ is also 

partly responsible for the pH drop. No decrease and only an insignificant pH decline oc-

curred at 0.05 and 5 mg Fe2+ L−1, respectively. Although according to Le Chatelier’s prin-

ciple, low pH values in a system tend to push the reaction to the left side of Eq. (1), with 

the formation of Fe oxides along Mn redox bars thus more favorable at sites with neutral 

soil, this was not the case in the present study. Elevated concentrations of Fe2+ in a solu-

tion resulted in enhanced Fe oxide formation along the Mn oxide coating, with 23, 63, 

2000, and 3100 μg DCB-extractable Fe recorded at 0.05, 5, 100, and 500 mg Fe2+ L−1, 

respectively (Fig. 5.1a). At 5 mg Fe2+ L−1, which approximates concentrations found in the 

soil solution at the study site (Mansfeldt and Overesch 2013), oxidation and hydrolysis of 

Fe along the Mn oxide coating obviously occurred (63 μg Fe could be extracted by DCB) 

but without favoring a change in coating color (Fig. 5.2).  
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Figure 5.2  Images of Mn redox bars protruded into FeCl2-solutions of varying Fe2+ concentration 

after defined time intervals. 

Indeed, concentrations of at least 500 mg Fe2+ L−1 were necessary to obtain a significant 

change in the color of the original dark brown Mn oxide coating to a light orange Fe oxide 

coating (Fig. 5.2). After a protruding time of 30 days in the 500 mg Fe2+ L−1 solution, only 

a minor Mn content of 73 μg remained along the 8-cm long redox bar, a figure which is 

significantly lower than the average of 740 μg Mn present directly after bar manufacture. 

Due to the non-uniform application procedure, Mn contents ranged from 500 to 2200 μg 

Mn. Assuming 500 μg Mn to be the upper and 2200 μg Mn to be the lower limit, Fe2+ 

contents of 1020 to 4470 μg Fe2+ (according to Eq. (1)) would have been required to com-

pletely dissolve the Mn oxide coating, which corresponds to 51 to 224 mg Fe2+ L−1. Ac-

cording to the stoichiometric calculation, a change of color should have occurred below 

500 mg Fe2+ L−1; indeed, field observations highlighted that Fe oxides formed at signifi-

cantly lower concentrations (see Fig. 5.3).  
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Figure 5.3  Image of a Mn redox bar before (a) and after (b) protrusion into acidified hydroxylamine 

hydrochloride (AAH) solution for 10 min 

What might be the reason for this discrepancy? Under natural conditions, the capillary rise 

of Fe2+-rich shallow groundwater ensured a constant supply of the reductant into the top-

soil for a period of 30 days, considerably different from the artificial setup in the laboratory, 

in which Fe2+ concentrations in the solution were presumably auto-oxidized (by O2) within 

24 h. This pH-dependent step has been reported to take place from < 1 min to hours 

(Kosman 2013) and provides the most suitable explanation of the observed incongruity.  

Another important observation made during the experiment was that tri- and tetravalent 

manganese as an oxidant for Fe2+ is an essential precursor to the formation of a durable 

Fe oxide coating along the PVC surface. This assumption is interesting, because we nei-

ther observed Fe precipitates along uncoated PVC bars protruded into solutions of various 

Fe2+ concentrations, nor along uncoated PVC bars installed during the monitoring cam-

paign.  
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Extractable element contents along redox bars 

Figure 5.3 shows an Mn redox bar before and after protrusion into AAH solution for 10 min. 

The original dark brown Mn oxide coating (Fig. 5.3a) dissolved instantaneously, showing 

the white PVC surface underneath (Fig. 5.3b). Boundaries of the remaining Fe oxides were 

easy to identify. Hence, it is possible to differentiate and analyze elements potentially 

bonded to either Mn or Fe oxide along the Mn redox bar surface using a selective chemical 

extraction procedure.  

Figure 5.4 illustrates the mean contents of various elements bonded to synthesized Mn 

oxides (AAH-extractable; Fig. 5.4a), to Fe oxides naturally precipitated along Mn redox 

bars (DCB-extractable; Fig. 5.4b), and elements bonded to synthesized Fe oxides along 

Fe redox bars (DCB-extractable; Fig. 5.4c). For reasons of simplicity and further discus-

sion, in situ formed Fe oxides are termed “field”-Fe oxides, and those used for the manu-

facture of Fe redox bars as “lab”-Fe oxides. Along Mn redox bars, Mn was the major AAH-

extractable element, at 1.84 μM. In accordance with the percentage oxide removal deter-

mined via digital analysis (Dorau et al. 2015), the highest levels of Mn were found in July 

(10.38 μM) when the WT was low, favoring aerobic conditions and no reductive dissolution 

of the coating, and lowest in June (0.02 μM) when reducing conditions were intensified. 

Iron was the main adsorbate for Mn oxide, followed by elements in the following order: Zn 

> P > Cr > Cu > As > V > Pb > Ni > Mo (Fig. 5.4a). A positive and highly significant 

relationship between Mn and element content was found for Pb (r = 0.751***), V (r = 

0.730***), and Mo (r = 0.682***), while a weaker relationship was found for Zn (r = 0.401*); 

no statistically significant relationship was present for the other elements (Table 5.1).  

Table 5.1  Spearman correlation coefficient (r) (n = 20) between various elements and both acid-

ified hydroxylamine hydrochloride (AHH) extractable Mn and dithionite-citrate-bicar-

bonate (DCB) extractable Fe content along Mn and Fe redox bars. 

Redox 
bars 

   As Cr Cu Mo Ni P Pb V Zn 

Mn 

AAH Mn 
r -0.143 0.060 0.190 0.682 0.283 -0.027 0.751 0.730 0.401 

p 0.548 0.801 0.421 <0.001 0.227 0.910 <0.001 <0.001 0.080 

DCB Fe 
r 0.941 -0.046 0.056 -0.138 0.361 0.789 0.179 -0.174 0.117 

p <0.001 0.845 0.814 0.560 0.117 <0.001 0.450 0.462 0.622 

Fe DCB Fe 
r 0.678 0.309 -0.215 0.523 0.920 0.819 0.218 0.749 0.663 

p <0.001 0.183 0.361 0.017 <0.001 <0.001 0.356 <0.001 <0.001 

The sink function of Mn oxides has been reported for Pb (McKenzie 1980), Mo (Barling 

and Anbar 2004), Zn (Komárek et al. 2013), and V (Takematsu et al. 1985; Yin et al. 2015). 

Matern and Mansfeldt (2015) demonstrated the strong effect of molybdate (MoO4
2−) ad-

sorption onto the surface of a synthetic birnessite. The synthesis of birnessite in this latter 
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study is equivalent to the procedure employed here for the manufacture of the Mn redox 

bars, with the correlation indicating the coherence between laboratory batch experiments 

(Matern and Mansfeldt 2015) and the present field experiments. Manganese oxides have 

been also identified as the most efficient stabilizing agent for Cu, Co, Cd, and Zn (Komárek 

et al. 2013). However, concurrency of sorption sites along the Mn oxide coating and the 

presence of DOM are only two possible factors that could result in weak correlation with 

Cu and Zn (Table 5.1). Han et al. (2006) confirmed the presence of competitive adsorption 

and found a decrease in Cu adsorption in the presence of Pb ions. When retrieving the 

redox bars from the soil, organoleptic assessment revealed the unique smell of H2S; metal 

precipitation with S2− is therefore an additional process that may cause inconsistent sorp-

tion of elements from the soil solution to the redox bar coatings. However, the stronger 

correlation between Mn oxide and Pb compared to that between Mn oxide and Cu (Ta-

ble 5.1) indicates a stronger affinity for Pb sorption onto Mn oxide surfaces. These results 

are in agreement with data by Feng et al. (2007).  

Visual assessment of Mn redox bars revealed zones of field-Fe oxides along the PVC 

surface, an observation in agreement with the content of the DCB extracts. Indeed, Fe 

was the main DCB-extractable element, at 4.97 μM (Fig. 5.4b). The content of adsorbate 

bonded to Fe oxide followed the order P > As > Mn > Zn > V > Cr > Ni > Pb > Mo > Cu 

(Fig. 4b). Among these elements, As (r = 0.941***) and P (r = 0.789***) exhibited a strong 

relationship with extractable Fe (Table 5.1), with both elements showing very strong sorp-

tion characteristics probably forming an inner-sphere bidentate binuclear complex (Man-

ning and Goldberg 1997) with the FeIII oxide surface. The DCB-extractable element com-

position of lab-Fe oxides (Fig. 5.4c) revealed similar sorption behavior to that of field-Fe 

oxides (Fig. 5.4b). Nevertheless, the iron content of 5.90 μM was slightly higher than the 

4.97 μM Fe found along Mn redox bars, with minor differences also occurring in the order 

of adsorbate content: P > As > Zn > V > Mn > Cr > Ni > Mo > Pb > Cu (Fig. 5.4c). Nickel 

(r = 0.920***), P (r = 0.819***), V (r = 0.749***), As (r = 0.678***), and Zn (r = 0.663***) 

were strongly correlated, Mo (r = 0.523*) was slightly less correlated, and no statistically 

significant correlation was recorded for Cr, Cu, and Pb with Fe content along Fe redox 

bars (Table 5.1). The adsorption of Ni, Zn (Brümmer et al. 1988), V (Peacock and Sherman 

2004), P (Strauss et al. 1997), As (Giménez et al. 2007), and Mo (Goldberg et al. 2009) to 

the surface of goethite minerals has been reported previously. The consistency of the ap-

plied Fe oxide minerals in the suspension used for Fe redox bar manufacture might explain 

the stronger correlation between many elements and lab-Fe oxides compared to field-Fe 

oxides. We characterized the initial Fe oxide suspension using both an oxalate (Feo) and 

a DCB (Fed) extraction. Whereas the former selectively extracts short-range-ordered and 
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nano-crystalline Fe phases (e.g., ferrihydrite, but also nano-goethite), the latter extracts all 

Fe oxides from soils. The Fe oxide suspension possessed a Feo/Fed ratio of 0.76, indicat-

ing that 76% was ferrihydrite and 24% goethite that remained stable when applied to the 

PVC bars (Rabenhorst et al. 2008). The defined goethite and ferrihydrite content of lab-Fe 

oxides is therefore a unique characteristic. Whereas the synthesis of Fe oxides is wide-

spread and commonly adapted in the laboratory, the mechanisms involved in their for-

mation under natural conditions are complex and diverse, leading to a broad range of in 

situ formed Fe oxides (Jolivet et al. 2004). 

 

Figure 5.4  Acidified hydroxylamine hydrochloride (AAH) and dithionite-citrate-bicarbonate (DCB) 

extractable mean content of elements bonded to Mn oxide along Mn redox bars (a), to 

Fe oxides along Mn redox bars (b), and to Fe oxides along Fe redox bars (c). The 

averaged element contents include data covering the period from March to July for the 

top and bottom of Mn and Fe redox bars in duplicate (n = 20). Error bars represent the 

standard deviation. 

At the study site, most of the in situ formed FeIII oxides were composed of ferrihydrite 

(Mansfeldt et al. 2012). The key factor altering oxide form and crystallinity is the rate of 
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Fe2+ contribution to the initial nuclei and the rate of Fe2+ oxidation (Cornell and Schwert-

mann 2003; Wang et al. 2013a). Boundary conditions leading to characteristic pathways 

of Fe oxide formation include pH, concentration of Fe3+, and temperature. Due to the pres-

ence of variable WT depths and water content changes in the capillary fringe, the hydraulic 

gradient varies and the supply of Fe2+ into the topsoil is not constant. Hence, the formation 

of FeIII via redox reaction with the Mn oxide coating will also vary. Furthermore, soil tem-

perature at the study site increased from 3.8 °C in March to 16.8 °C in July at 25-cm depth 

(Dorau and Mansfeldt 2015). It thus seems reasonable that variations in the mineral struc-

ture and further in the sorption capacity of field-Fe oxides resulted in the observed reduc-

tion in statistical correlation compared with the constant conditions experienced by lab-Fe 

oxides along Fe redox bars (Table 5.1). 

Preference for element sorption to Mn or Fe oxides 

We categorized quotients of mean AAH- to DCB-extractable element contents above 1.5 

as indicating element preference for bonding to Mn oxide, values between 1.5 and 0.5 as 

indicating similar sorption behavior toward Mn and Fe oxides, and values below 0.5 as 

indicating a preference for bonding to Fe oxides (Table 5.2).  

Table 5.2  Quotient between AAH-extractable and DCB-extractable element contents indicating 

element preference for sorption to Mn or “field”-Fe oxides along Mn redox bars. The 

averaged contents on a molar basis include data covering the period from March to 

July for the top and bottom of Mn redox bars in duplicate (n = 20), with the correspond-

ing standard deviation. 

As Cr Cu Mo Ni P Pb V Zn 

0.02 
±0.02 

0.94 
±0.87 

19.7 
±30.4 

0.16 
±0.16 

0.72 
±0.26 

0.04 
±0.09 

3.6 
±5.42 

0.23 
±0.30 

2.9 
±2.74 

Manganese oxide was found to sorb 19.7 times more Cu and was associated with slightly 

elevated Pb (3.6) and Zn (2.9) content compared to field-Fe oxides, a result in agreement 

with numerous studies in the literature (reviewed by Komárek et al. 2013). Whereas chro-

mium (0.94) and Ni (0.72) sorbed equally to Mn and Fe oxide surfaces, preferential sorp-

tion to Fe oxides was evident in the following order: As (0.02), P (0.04), Mo (0.16), and V 

(0.23). The latter elements occur as oxyanions in the soil solution under the assumed EH-

pH conditions of 400 mV (Mn and Fe oxides remain stable and play the role of adsorbents) 

and pH 4.5 (the soil pH at the study site). The high point of zero charge (PZC) of ferrihydrite 

(pH 7.9) and goethite (pH 9.7) favors functional group protonation under the acidic soil 

conditions present at the study site, in contrast to birnessite (pH 2.6). This enables oxyan-

ions in the soil solution to be electrostatically bonded, e.g., to positively charged OH groups 

(Cornell and Schwertmann 2003; Bradl 2004). Although only a limited number of studies 
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have dealt with the role of Mn oxides as stabilizing amendments, successful element im-

mobilization has been reported for Cu, Pb, and Zn (Della Puppa et al. 2013; Komárek et 

al. 2013), a finding that we can verify here in the sorption behavior of these predominantly 

cationic elements. Our results suggest that differences in the characteristics of the Mn and 

Fe oxide coatings (e.g., PZC, cation exchange capacity, and specific surface area) lead to 

selective sorption behavior for dissolved elements present in the soil solution to the redox 

bar coatings under field conditions. 

Sorption capacities: field-Fe oxides versus lab-Fe oxides 

The crystallinity of Fe oxides in soil varies widely from short-range-ordered to long-range-

ordered phases due to changes in geochemical conditions in an open system, a process 

that is especially relevant for soils with changing redox conditions. This phenomenon was 

previously shown via an artificial setup in which biweekly soil redox oscillations from 200 

to 700 mV led to an increase in Fe oxide crystallinity (Thompson et al. 2006). As these 

oxides are important interfaces for the sorption of dissolved elements in the soil solution, 

sorption capacity is also a function of crystallinity (Wang et al. 2013b).  

Assuming ferrihydrite (Fe5HO8·4H2O) with a corresponding specific surface area of 

200 m2 g−1 (Cornell and Schwertmann 2003) to be the major Fe oxide along the Mn redox 

bar coating, the recorded DCB-extractable Fe contents of 1.97 to 17.05 μM Fe are equal 

to a total surface area of 0.19 to 1.64 m2. Exclusively for Fe redox bars, the goethite 

(FeOOH) content of 24% in the initial Fe oxide suspension is considered to have a total 

surface area of 50 m2 g−1 (Cornell and Schwertmann 2003), with the remaining 74% being 

ferrihydrite. This assumption yields total surface areas for lab-Fe oxides along Fe redox 

bars in the range of 0.12 to 0.90 m2. Figure 5.5 shows the development of element loading 

for As (Fig. 5.5a) and P (Fig. 5.5b) on a hypothetical Fe oxide surface from March to July 

along Mn and Fe redox bars. These two elements are known to strongly sorb onto Fe 

oxides, and here were associated with the strongest correlation between DCB extractable 

field- and lab-Fe oxides (Table 5.1); hence, the two are suitable for the comparison of 

element loading between naturally formed and synthesized Fe oxides. Element loading 

under natural conditions can be considered “actual” sorption (AS). In contrast to this, po-

tential sorption (PS) can be derived from laboratory batch experiments and is equivalent 

to the sorption capacity of a distinct mineral for an adsorbent. The AS values of As and P 

with respect to the Fe oxide surface varied throughout the study period, but were, in gen-

eral, lower at the top than at the bottom of redox bars (Fig. 5.5a, b), a finding which we 

attribute to elevated As and P concentrations in the capillary fringe (Mansfeldt and 

Overesch 2013). Increased levels of As and P in the topsoil (Table 5.3) seem to play a 

minor role regarding sorption to the redox bar coating. Besides this, the top and bottom of 
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field-Fe oxides sorbed on average 0.69 μM As m−2 and 2.29 μM P m−2, levels significantly 

higher than the 0.38 and 1.04 μM As and P m−2, respectively, sorbed by lab-Fe oxides 

(Fig. 5.5a, b). Since goethite has lower sorption capacities for H2AsO4
− and H2PO4

− m−2 

oxide surface (1.33 and 2.5 μM) compared to ferrihydrite (15.5 and 3.1 μM) (Borggaard 

1983; Strauss et al. 1997; Raven et al. 1998; Giménez et al. 2007), we assume that in situ-

formed Fe oxide phases are solely short-range-ordered. Considering the AS values rec-

orded at the top and bottom of redox bars, field-Fe oxides sorbed on average 1.8 times 

more As and 2.2 times more P compared to lab-Fe oxides.  

 

Figure 5.5  Element loading of field-Fe oxides along Mn redox bars (open symbols) and of lab-Fe 

oxides along Fe redox bars (solid symbols) with As (a) and P (b) for the top (white 

squares, black squares) and bottom (white circles, black circles) sections of previously 

installed redox bars, for the period from March to July. Dithionite-citrate-bicarbonate 

(DCB) extractable Fe contents were transformed to Fe oxide surfaces by assuming a 

ferrihydrite-(FH) formula of Fe5HO8·4H2O and a goethite-(GT) formula of FeOOH with 

a corresponding surface area of 200 (50) m2 g−1 FH (GT). We assume that field-Fe 

oxides are solely composed of FH while lab-Fe oxides are composed of 76% FH and 

24% GT. The corresponding As and P contents are transformed to molarities.  

It should be noted that the development of monthly element loading onto field- and lab-Fe 

oxides varied in magnitude, likely due to variations in As and P concentrations in the soil 

solution (Fig. 5.5). Mansfeldt et al. (2012) previously found high δ57Fe values in the topsoil 

at the study site, caused by the rapid precipitation of ferrihydrite when Fe2+ was exposed 

to O2. These findings underline the previous assumption and also that the goethite content 

of lab-Fe oxides seems to be responsible for the lower AS. Finally, a number of discrep-

ancies were observed because the AS of field-Fe oxides with P (Fig. 5.5b) generally ex-

ceeded that with As (Fig. 5.5a). This contradicts the PS data reported in the literature, in 

which the adsorption capacity of ferrihydrite for As (Raven et al. 1998) is reported to ex-

ceed that for P (Borggaard 1983). Hence, differences are apparent between the PS results 

derived in laboratory batch experiments using synthesized minerals and those obtained in 
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the present study via the use of naturally formed minerals. Nevertheless, the AS values of 

field- and lab-Fe oxides are below the PS values reported in the literature, which supports 

the validity of studying the in situ sorption behavior of elements in wet soils using redox 

bars. 

Table 5.3 Selected element content of the soil profile in which the redox bars were installed. 

Depth Fe Mn As Cr Cu Mo Ni P Pb V Zn 
cm (g kg−1) (mg kg−1) 

0 to 25 47 160 111 52 159 0.7 14.0 1,184 78 115 159 
25 to 50 23 300 30 19 29 0.3 7.3 619 3.9 45 29 

Energy-dispersive X-ray spectroscopy of redox bars  

Figure 5.6 shows typical color patterns observed on redox bars of the original Mn oxide 

coating (A), Fe precipitates (B), and complete oxide removal (C) along Mn redox bars (a), 

as well as of the partial depletion of Fe oxides (D), and the original Fe oxide coating (E) 

on Fe redox bars (b). The former color pattern displays an EH gradient ranging from oxi-

dizing soil conditions (MnIII,IV oxides remain stable, A) at the edge to strongly reducing soil 

conditions (MnIII,IV and FeIII oxides are reduced, C) in the center. The partial depletion of 

Fe oxides (D) was often observed in combination with pale yellow zones reflecting the 

preferential dissolution of ferrihydrite over goethite (Rabenhorst et al. 2008). Energy-dis-

persive X-ray spectroscopy of the uncoated PVC chip revealed 11% O, 81% Cl, and no 

incorporation of Mn and Fe within the plastic material (Table 5.4). As Cl is the major com-

ponent of the polymer material and the penetration depth of the emitted electrons is ap-

proximately 15 μm, we analyzed the Cl content of samples A to E, with background values 

ranging from 35 to 71%.  

Table 5.4  Spectrum of selected elements along Mn and Fe redox bars analyzed via EDX. Sam-

ple letters A to E refer to the rectangles in Figure 5.6. 

sample O Cl Mn Fe 
 (%) 

Blank 11 81 0 0 
A 33 54 10 3 
B 37 47 1 15 
C 27 71 0 2 
D 37 53 0 8 
E 39 35 0 26 
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Figure 5.6  Detailed image of a Mn (a) and Fe (b) redox bar previously installed in June. The 

rectangles (A to E) denote areas used for EDX point measurements 

Hence, the oxide coating clearly attenuated the Cl signal. Chemical extraction already re-

vealed that Fe oxides are precipitated along the Mn oxide coating without triggering a 

change in color, a finding further confirmed at spot A (Fig. 5.6a) with 3% Fe and 10% Mn. 

The higher Fe content at spot B (15% Fe) favored a change in color accompanied by 

complete dissolution of remaining Mn oxides (Table 5.4). To the center of the depletion 

spot, Fe content further decreased to 2%. Soil-reducing conditions intensified reductive 

dissolution of the Fe oxide coating at spot D with only 8% Fe, compared to 26% Fe at spot 

E, where oxidizing conditions prevailed. Hence, EDX enabled the determination of element 

distribution along the Mn and Fe redox bars at very small scale (< 1 mm2). 

Conclusions 

The presented selective chemical extraction procedure enables the study of the in situ 

sorption behavior of elements to either Mn or Fe oxide-coated redox bars. Both the labor-

atory experiments and field observations highlight the importance of Mn oxide as a pre-

cursor favoring the likelihood of oxidizing ferrous Fe from the soil solution. Whereas the 

Mn oxide coating showed preferential sorption behavior for cationic elements (Cu, Zn, and 

Pb), the Fe oxide coating was enriched in As, P, Mo, and V. The latter elements occur as 

oxyanions in the soil solution and show a bonding preference for positively charged Fe 

oxide surfaces as favored at the study site (pH 4.5). Arsenic as a pollutant and P as a 

nutrient exhibited strong correlation with DCB-extractable Fe oxides along redox bars. 

Field-Fe oxides precipitated along Mn redox bars sorbed 1.8 (2.2) times more As (P) than 

did synthesized lab-Fe oxides along Fe redox bars, indicating that naturally precipitated 
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oxides have a higher sorption capacity due to their lower crystallinity. In general, various 

elements showed distinct affinities for bonding to either Mn or Fe oxides, with EDX spec-

troscopy enabling the analysis of the oxide coating at a very small scale (< 1 mm2). Besides 

the characterization of soil redox status, Mn and Fe redox bars can be an additional tool 

with which to study and monitor the element sorption behavior of nutrients and pollutants 

in wet soils.  
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Highlights 

 Wetland restoration management has to be validated under the aspect of climate 

change 

 We studied 15 years of water table (WT) depth development at 46 monitoring wells 

 84% of WTs declined according to the trend line despite re-wetting measures 

 Climate projection until 2100 indicates drier summers, which will intensify WT draw-

down 

Abstract 

Wetland restoration management is an important tool for stakeholders and practitioners to 

mitigate climate change and preserve ecological functioning. Various approaches to mod-

ifying the water management of a catchment for restoration purposes exist and were per-

formed in a preservation area in northwest Germany. To validate the effect of the re-wet-

ting practice, a monitoring network of 46 wells was established and monthly readings were 

taken from 1997 onwards. A declining trend in water table depth was present at 39 wells 

and equaled on average a lowering of 20 cm during the study period from 1997 to 2012. 

So far, half of the trend lines are above 40 cm below ground, which is an indicator of an 

effective re-wetting practice, but they will decline below this threshold until 2032 according 

to linear regression analysis. The progress of water table depths might be accelerated by 

climate change. According to the meteorological forecast, air temperatures will rise and 

the annual precipitation pattern will change. Thus, the climatic water balance tends toward 

more negative values in the summer and positive values in the winter, favoring an earlier 

and more intense water table draw-down. Because root water extraction from shallow 

groundwater is limited to a certain depth, the forecast of water table depth development 

according to the recent trend depicts a worst-case scenario. Nevertheless, the results em-

phasize that restoration management should be validated and has to be adapted in certain 

ways when mitigating the impact of climate change.  

Keywords: restoration management, wetlands, climate change, monitoring, shallow 

groundwater 

Abbreviations: WT – water table; CWB – climatic water balance; RCP – representative 

concentration pathways 
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Introduction 

Wetlands are important and complex ecosystems and globally account for 800 million ha, 

which is equal to 6% of the Earth's land surface (Reddy and DeLaune, 2008). They can 

serve as sinks, sources, or transformers of contaminants, filter nutrients from atmospheric 

deposition, contain mechanisms to regulate floods, and sustain and promote endangered 

species because of their biological productivity. The physical, chemical, and biological pro-

cesses in wetlands control their functioning. Wetlands are usually located in landscapes 

with low elevation and shallow water tables (WTs). Hence, important characteristics are 

seasonal or permanent water saturation, which favors anaerobic soil conditions. In the 

absence of oxygen, many microbially mediated processes are slowed down. As a result, 

organic carbon (Corg) accumulates, which makes wetlands important terrestrial carbon 

pools. Different types of wetlands can be classified according to their position in the land-

scape and other characteristic features. Fens are one of the dominant wetland types world-

wide with an extent of 148 million ha (21.8% of all wetlands) (Kirk, 2004). Together with 

bogs, the estimated carbon stocks account for 455 Pg, which is one third of the soil carbon 

pool (Laine et al., 1996).  

Protection and restoration management 

To protect and conserve wetlands around the world, the international treaty known as the 

Ramsar Convention was signed 1971 in Iran and currently has 168 contracting parties. 

Since then, numerous projects have evolved to stop the loss of wetlands in central Europe 

due to drainage and intensification of agriculture (Brülisauer and Klötzli, 1998). Price et al. 

(2003) summarize various approaches to modifying the water management of a catchment 

for restoration purposes. The general approaches include (i) blocking or refilling of ditches, 

(ii) minimizing surface-runoff using terraces or bunds, (iii) hydrological buffer-zones, (iv) 

re-modeling of the surface, and (v) minimizing water loss via evapotranspiration by micro-

climate modifications. To reduce the effects of drainage, measures to achieve ecological 

restoration have to be adapted. Besides the restoration measures, a network of wells to 

monitor the development of WT depths is essential to verify the success of the restoration 

strategy and re-wetting goals.  

Impacts of wetlands on climate change 

Drainage and aeration of formerly undisturbed wetlands contribute carbon fluxes to the 

atmosphere via oxidation of organic matter and gaseous loss of carbon dioxide (CO2) 

(Maljanen et al., 2010). Further, the transformation into arable land leads to the emission 

of nitrous oxide (N2O) from organic soils, which accounts for an estimated 25% of the 
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national anthropogenic N2O emission in Finland (Kasimir-Klemedtsson et al., 1997). How-

ever, simultaneously enhanced activity of methane-oxidizing bacteria in the aerated part 

of the soil profile due to drainage and oxidation will reduce the emission of methane (CH4) 

being released to the atmosphere. Carbon dioxide, N2O, and CH4 are by far the most im-

portant greenhouse gases (GHGs) and have a significant impact on the global warming 

potential (GWP) (Yu and Patrick, 2004). Because of complex feedback mechanisms on 

different time-scales, the source–sink function of the soil and atmosphere for the three 

GHGs is difficult to obtain. Freeman et al. (1992) measured fluxes of CO2, CH4, and N2O 

from soil columns packed with peat monoliths while subsequently lowering the WT height. 

They found maximum increases in CO2 and N2O fluxes of 146% (646–

1590 mg CO2 m−2 d−1) and 936% (0.11–1.14 mg N2O m−2 d−1), respectively, and a de-

crease in CH4 of −80% (230–45 mg CH4 m−2 d−1). Moore and Knowles (1989) verified this 

process, where lowering of the WT height resulted in a linear increase of CO2 production 

and a logarithmic decrease in CH4 evolution. 

Climate change 

Recently, Koirala et al. (2014) demonstrated the important role of capillary flux from 

groundwater in the representation of land surface models. According to their results, global 

mean evapotranspiration increases by 9% when considering water flux to the atmosphere 

by capillary rise from shallow groundwater, with the largest impact occurring in the semi-

arid regions during the dry season (25%) and minimal impact in humid and high-latitude 

regions. On the other hand, enhanced evapotranspiration rates due to climate change 

would alter the WT drawdown in the summer time (Laine et al., 1996; Manabe and Weth-

erald, 1986) because the atmospheric boundary condition, as well as the soil texture, de-

termines the depth to which plant roots can extract water from the groundwater surface. 

Overall, long-term developments of WT depths are of interest because the boundary be-

tween aerobic and anaerobic zones within wetlands might shift toward oxidizing conditions 

in formerly water-saturated environments.  

The primary aim of the study is to assess (i) the impact of wetland restoration and man-

agement on the WT depth development of a formerly drained meadow fen in western Ger-

many. Restoration started in 1997 and WT depth monitoring was performed from 1997 

onward on a monthly basis at 46 groundwater wells along the study site. Based on precip-

itation and reference evapotranspiration, we calculated the climatic water balance (CWB) 

to address (ii) the influence of the ambient meteorology on WT fluctuations. According to 

the trend line derived by linear regression of WT data for each monitoring well, increasing, 

constant, or decreasing WT depths under the recent hydrological situation were evaluated. 

We used a climate projection until 2100 to give an outlook of the future development of 
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WT depths and to discuss the (iii) impact and vulnerability to climate change when restor-

ing formerly drained wetlands. 

Materials and methods 

Study site 

The conservation area Bastauwiesen is a mesotrophic meadow fen which extends 

10.5 km eastwards and 1.4–2.1 km southwards in the district of Minden-Luebbecke, North 

Rhine-Westphalia (latitude 52°18′ N, longitude 8°47′ E). The setting is within the glacial 

valley of the River Weser and the basement is composed of Pleistocene sandy to gravel 

deposits underlying Holocene glaciofluvial calcareous material showing loamy texture un-

derlying peat of variable heights. A decrease of the peat occurs from 4 m thickness in the 

west to non-coverage in the east and to the edges of the conservation area, which is co-

herent with a decline of the relief from 50 m asl in the west to 45.3 m in the east (Fig. 6.1). 

Analogous to the relief is the main flow direction of the channelized River Bastau in the 

south of the conservation area and a smaller trench running parallel through the study site 

100 m northwards. The channels collect interflow from the southwards-located Wiehenge-

birge and from numerous rectangular shaped ditches, constructed from 1958 to 1960 to 

intensify agriculture as a result of land consolidation acts. Before that, 90% of the area 

was managed as intensive grassland and the peat was exploited as fossil fuel. Mean an-

nual precipitation and air temperatures of 688 mm and 9.3 °C characterize the climate as 

moderate sub-Atlantic with mild winters and relatively cool summers. 

Restoration acts and WT depth monitoring 

In 1988, the study site became a natural conservation area to protect several endangered 

flora and fauna species. Former agricultural land was bought by public authorities and 

changed into extensively managed grassland. Besides this, drain pipes in the fields were 

destroyed by deep plowing, artificial subsidence was performed by excavation and decom-

missioned ditches were refilled with the excavated material, numerous concrete weirs 

(Fig. 6.1) were established to alter the flow characteristics, and hardwood was cleared to 

facilitate a land cover of pasture and meadow with sedges. For management purposes, 

four plots were established (I–IV, Fig. 6.1) where WT depths were recorded on a monthly 

basis in 200-cm perforated polyvinyl chloride pipes (Ø 2.7 cm). Monitoring of WT depths 

started in December 1999 at plot II, in November 2000 at plot III, and in April 1997 at plot 

IV, in 10, 24, and 12 monitoring wells, respectively, using an acoustic water level indicator 

(Nordmeyer, Peine, Germany). So far, management plans for plot I exist but monitoring 

and restoration are not possible because public authorities have not been able to achieve 
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the acquisition of connected parcels. The restoration measures and the WT depth moni-

toring started simultaneously for plot II and IV but the restoration measures started with a 

delay of three years prior to the recording of WT depth for plot III. 

 

Figure 6.1  Map of the study site showing the boundaries of the plots (blue line), the locations of 

the groundwater monitoring wells (red dots), and concrete weir (blue dots). 

Meteorological parameters 

To relate the response and variations of WT depth to meteorological parameters, we cal-

culated the climatic water balance (CWB) as the difference between precipitation and cal-

culated potential evapotranspiration using the Haude formula (PETHaude) 

𝑃𝐸𝑇𝐻𝑎𝑢𝑑𝑒 = 𝑓 ∙ 𝑒𝑠 ∙ (1 −
𝐹

100
)    [Eq. 1]. 

PETHaude is the evapotranspiration after Haude (mm day−1), f is the Haude factor for single 

months for a distinct vegetation (Table 6.1), F is the relative humidity (%) and es is the 

water vapor saturation deficit (hPa) for air at 14:00 CET. We used the Haude factor for 

grass (Löpmeier, 1994), which is most applicable to the study site because it approximates 

the predominantly occurring plant community, and data of air temperature (°C), relative 

humidity , and precipitation (mm) on an hourly basis were taken from a free access weather 

station in Rahden-Varl (Deutscher Wetterdienst, 2009). The vapor pressure deficit (es) was 

calculated using the mean air temperature (T) according to 

𝑒𝑠 = 6.11 ∙ 𝑒
(17.62∙𝑇)

(243.12+𝑇)   [Eq. 2]. 
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Table 6.1 Haude factor for grass on monthly basis. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0.20 0.20 0.21 0.29 0.29 0.28 0.26 0.25 0.23 0.22 0.20 0.20 

Statistical analysis 

To analyze seasonal or long-term patterns of WT depths, we decomposed the time series 

of each monitoring well by applying the “Seasonal-Trend decomposition procedure based 

on Loess (STL)” within the statistical language R. The method consists of various smooth-

ing operations and decomposes the time series into a trend, and a seasonal, and a residual 

component (Cleveland et al., 1990). The STL method uses the locally weighted regression 

(LOESS) technique and is specifically suitable to detect nonlinear patterns in long-term 

trends. We chose window widths of 7 for the seasonal component and a default value for 

the trend (Cleveland et al., 1990; Shamsudduha et al., 2009). Afterwards, we applied a 

linear fit for each smoothed STL trend line to assess whether the WT depths (i) declined, 

(ii) increased, or (iii) remained constant during the course of 13 years for plot II, 12 years 

for plot III, and 15 years for plot IV. The classification was done according to the slope of 

the linear regression model (f(x) = mx + b), whereas a slope of m > 0.00025 indicates an 

increase of WT depth and hence a successful restoration practice, m ≤ 0.00025 to 

−0.00025 indicates a stable position of WT without any trend, and m < −0.00025 indicates 

a decrease of WT and hence a lack of success of re-wetting. We categorized these classes 

because a slope of 0.00025 to −0.00025 equals a WT increase/decrease of less than 

±5 cm from 1997 to 2012 that is insignificant. Additionally, we analyzed the individual 

months within the time series of each well using the Mann–Kendall (MK) trend test within 

the Addinsoft software XLSTAT-time to make conclusions about the duration characteris-

tics (hydroperiod) when the WT is underneath a certain depth. The MK trend test is a rank-

based non-parametric test and has proven its reliability in detecting monotonic trends in 

many hydro-meteorological time-series (Yue et al., 2002). To accelerate a return of the 

previous hydrological conditions, it is necessary that the sphagnum moss recovers, and 

the WT should be > −40 cm below ground (Schouwenaars, 1988; Shantz and Price, 2006). 

Other authors suggest that the WT at the ditches surrounding the site of interest should 

be between 30 and 50 cm (Tiemeyer et al., 2006). We used > −40 cm below ground as a 

threshold to assess the potential for a successful recovery in terms of effective re-wetting 

practice. Additionally, we forecast the duration needed for each linear fit of the STL line by 

solving the slope equation for f(x) = −40 cm below ground. The result should emphasize 

the duration when the trend line is deeper than 40 cm below ground. Because the CWB is 
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one of the main drivers altering the development of WT depths, we determined the coeffi-

cient of correlation between each well as the dependent variable and CWB as the inde-

pendent variable. 

Forecast of climatic development 

To assess the development of WT depths in the Bastauwiesen under the aspect of climate 

change, we used the forecasts of air temperature, precipitation, and CWB until 2100. Un-

der financial promotion by the European Institute of Innovation and Technology (EIT), the 

project “Climate Impact Expert System” was introduced in 2012 by the Potsdam Institute 

for Climate Impact Research (PIK) and the WetterOnline Meteorologische Dienstleistung 

GmbH (Bonn, Germany). In this project, climate scenarios are presented to support dis-

cussions on how to mitigate climate change. The scenarios were calculated using the re-

gional climate model STAR (DWD, 2009; Orlowsky et al., 2008; PIK, 2013) and account 

the Representative Concentration Pathways (RCPs) 2.6 and 8.5. Both scenarios describe 

future anthropogenic GHG emissions and the possible range of radiative forcing with 2.6 

and 8.5 W m−2, proposed by the Intergovernmental Panel on Climate Change (IPCC). 

Results and discussion 

Climatic water balance and water table depths 

During the study period from 1997 to 2012, mean annual precipitation was 697 mm, air 

temperature was 10.1 °C, PETHaude was 281 mm, and the CWB varied between 163 and 

734 mm. Significant differences occurred between years, as indicated by the moist and 

relatively cool year in 2002 with 966 mm of precipitation and 231 mm of PETHaude compared 

to the above-average warm and dry year of 2003 with 519 and 332 mm respectively. The 

CWB was positive 85% of the time (Fig. 6.2a), because precipitation exceeded PETHaude 

on a monthly basis. The CWB became partly negative (white dots in Fig. 6.2a) only from 

April to September of each year, with the lowest value occurring in August 2003 (−53 mm). 
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Figure 6.2  Precipitation, potential evapotranspiration (PET), and climatic water balance (CWB) 

(a) calculated as the difference between reference evapotranspiration according to 

Haude and precipitation on a monthly basis and examples of a declining (b), constant 

(c), and increasing (d) water table (WT) between 1997 and 2012. The solid blue line 

indicates the trend derived by STL analysis and the dashed blue line the linear fit of 

the corresponding STL trend. Roman letters indicate the plots while Arabic numerals 

indicate the wells of each plot. The red dashed line marks 40 cm below ground, which 

is an indicator of an effective re-wetting practice. 

In general, increasing evapotranspiration from April to September of each year (light gray 

bars in the background of Fig. 6.2) promotes a decrease of the WT depth. Fig. 6.2b–d 

shows examples of the WT depth development for each plot. For all wells along the study 

site (n = 46), the WT depth varied between −1.2 m below ground in the summertime (light 

gray bars) and near surface groundwater or periodically ponding groundwater of maximum 

0.2 m above ground (white bars) in the wintertime. Especially from April to August of each 

year, a major mechanism responsible for WT drawdown is root water uptake by plant roots 

from shallow groundwater (Price and Maloney, 1994). Due to the close connection be-

tween the phreatic and vadose zones (within 0.5 m below ground depending on the tex-

ture), water loss by evapotranspiration is primarily driven by extraction from groundwater 
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(Shah et al., 2007). The atmospheric boundary condition controlled by evapotranspiration 

influences the depth of WT drawdown in shallow and intermittent wetlands (Radcliffe and 

Simunek, 2010). Hence, distinct patterns of annual WT fluctuations with very shallow 

groundwater in 2002 and low WT depths in 2003 can be derived and arise for well II/4 and 

IV/2 (Fig. 6.2b and c). 

Relationship between WT depths and climate forcing 

To investigate the influence of climate change on groundwater resources and WT depth 

development it is essential to assess the dependency on atmospheric forcing. A simplified 

assumption can be derived by the water balance equation, where the gain of water by 

precipitation and run-off into the catchment equals the loss by evapotranspiration, run-off 

out of the catchment, and changes of the storage term. We correlated the CWB as the 

difference between precipitation and PETHaude and the corresponding WT depth for each 

well on a monthly basis. We had to neglect the storage term and run-off into and out of the 

catchment because of lacking data. It is therefore not possible to compute the relative 

magnitude of these flows between plot II, III and IV, although these flows will bias the 

relationship between the CWB and WT depths. Fig. 6.3 shows two examples of moderate 

and weak correlation plots for wells II/9 (Fig. 6.3a) and IV/10 (Fig. 6.3b). As the CWB 

changes to positive values, the WT depths tend to increase, whereas negative values favor 

a decrease. For all wells along the study site, the correlation is statistically significant (p 

< 0.001). Hence, the risk of falsely rejecting the null hypothesis that a decrease of the 

CWB, which might be due to enhanced PETHaude or reduced precipitation rates, will favor 

a decrease of WT depth is less than 0.1%. The coefficient of determination is better for 

wells along plot II having a mean r2 of 0.58 with variations between 0.48 and 0.65. A decline 

is observable for plot III with r2 = 0.52 and a range of 0.43 to 0.58 and for plot IV with r2 = 

0.45 and a range of 0.38 to 0.51.  
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Figure 6.3  Correlation between water table (WT) depth and climatic water balance (CWB) for 

wells II/9 (a) and IV/10 (b) at the study site. 

Hence, a decline occurs from the west to the east of the study site, which follows the 

decline of the relief and accompanies a decrease of the peat coverage. We assume that 

the specific yield (Sy), which is termed the ‘water storage coefficient’ (Price, 1996) and is 

equivalent to the gradient of the regression line of a change in water storage per unit area 

versus a change in WT (Price et al., 2003), is responsible for this pattern. The peat cover-

age in the west retains water after precipitation events whereas the lower Sy in the east, 

where peat excavation was intensified, leads to weaker statistical relationships. However, 

there is an uncertainty whether differences in the Sy or surface run-off is responsible for 

this pattern. Holden et al. (2011) measured WT and rainfall dynamics at 20 min intervals 

along an undisturbed, drained, and restored blanket peat and attributed differences (e.g., 

1 mm of rainfall induces a X mm rise in WT) to the Sy. Water table fluctuations were re-

ported to be more variable in the order drained > blocked > intact. Even though differences 

between the sites were evident, they stated that their conclusions about the Sy should be 

treated with caution, since they are not a direct measure. A differentiation for the Bastau-

wiesen is therefore not possible because of lacking data (surface run-off) or because of 

the temporal resolution of monthly WT depth readings (Sy). 

Meteorological forecast 

During the reference period from 1980 to 2010, mean annual air-temperature was 9.4 °C 

and annual precipitation was 694 mm. Air-temperatures will rise to 10.1 °C (12.6) for the 

RCP2.6 (RCP8.5) scenario for the period from 2070 to 2100 and will be accompanied with 

no change (decrease) in the amount of precipitation to 700 (605) mm. The precipitation 

pattern will also change with 5.4% (−13.3%) more (less) rainfall in the summer months 
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from April to September with a slight (moderate) decrease of −3.7% (−10.8%) in the winter 

months from October to March. The divergence between the two projections accounts 

especially for precipitation, since it varies more in space and time and the prediction is 

prone to error because of short-scale variations due to natural (volcanic and solar) forcing. 

Anthropogenic forcing, which is primarily responsible for the steady increase in air-tem-

perature, is therefore easier to predict and less susceptible to variations. However, long-

term data of precipitation is a useful indicator to assess the likelihood of changes in the 

hydrological cycle (Allen and Ingram, 2002). Besides these constraints, both RCP scenar-

ios of the CWB indicate that the Bastauwiesen will become drier from April to August in 

the range of −29 (−42) to −65 (−85) mm compared with the reference period from 1980 to 

2010. A decrease of the annual CWB by −25 mm would favor a lowering of the WT by 

−8.9 cm (Fig. 6.3a) or −6.2 cm (Fig. 6.3b). The influence of climate change becomes more 

evident when comparing characteristic days classified by the German Meteorological Ser-

vice. The extremes between mild winters and warmer summers will be enhanced by a 

decrease of Frosttage (daily min. < 0 °C) from on average 64 days during the reference 

period from 1980 to 2010 to 55 (29) during the RCP2.6 (RCP8.5) scenario from 2070 to 

2100. On the contrary, heiße Tage (daily max. ≥ 30 °C) will rise from 6 to 8 (20) and Som-

mertage (daily max. ≥ 25 °C) from 29 to 36 (67).  

Forecast of WT depth development 

At first sight, the restoration management seems to be successful because the trend line 

of WT depths at 7 out of 10 monitoring wells at plot II, 9 out of 24 wells at plot III, and 8 out 

of 12 wells at plot IV are above 40 cm below ground (Table 6.2). Taking into account the 

slope of the trend line, 9 out of 10 wells at plot II and nearly all of the monitoring wells at 

plot III indicate a decline of WT depths and hence a trend contrary to that desired since 

1997 when restoration management started. Plot IV is the exception, with only 7 declining, 

4 intermediate, and 1 increasing STL trend lines (Table 6.2).  

All of the average WT depths will be 40 cm below ground according to the linear fit of the 

STL analysis until 2032 under the ambient meteorological forcing. The position of the trend 

line in 1997 and 2012 highlights this process and indicates a lowering of the average WT 

position along all wells at plot II from −0.12 to −0.32 cm and at plot III from −0.19 to 

−0.42 cm with no clear trend at plot IV (Fig. 6.4a and b).  
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Table 6.2  Selected statistical data for long-term water table depth monitoring of three designated 

plots along the study site. 

Plot Since 
Total num-
ber of wells 

WTtrend
a WTtrend

b WTslope
c WTslope

d WTslope
e 

II Dec 1999 10 7/10 3/10 9/10 1/10 0/10 
III Nov 2000 24 9/24 15/24 23/24 1/24 0/24 
IV Apr 1997 12 8/12 4/12 7/12 4/12 1/12 

a Number of wells for which the linear fit of the STL line is above −40 cm below ground 
b Number of wells for which the linear fit of the STL line is below −40 cm below ground 
c Number of wells for which the slope of the STL line declines  
d Number of wells for which the slope of the STL line is intermediate  
e Number of wells for which the slope of the STL line increases 

 

Figure 6.4  Mean water table (WT) depth according to the position of the linear fit by the STL trend 

line for monitoring wells at plot II (blue), plot III (red), and plot IV (black) in the past 

(1997; a), at present (2012; b), and according to the forecast (2055; c). The black 

dashed line and the solid line indicate 0.4 and 1 m below ground, respectively. 

When forecasting the development under the ambient meteorological conditions, WT po-

sitions are assumed to be on average −0.83, −1.00, and −0.60 m below ground in 2055 at 

plots II, III, and IV, respectively (Fig. 6.4c). Drier summers and mild winters would certainly 

push the WT development in this direction but, because soil water extraction by plant roots 

is limited to a certain depth, Fig. 6.4c presents a worst-case scenario. Taking into account 
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the seasonal component derived by the STL analysis procedure (Fig. 6.S1 in the supple-

mental material shows three examples), we observed an increasing seasonality along 42 

out of 46 monitoring wells from 2007 to 2012 and 18 out of 46 monitoring wells even show 

an increase of the seasonal component from 2003 onwards. Only 1 out of 46 monitoring 

wells shows a decreasing seasonal component and 3 out of 46 neither an increase nor a 

decrease. These findings highlight that differences between mean WT depths in the sum-

mer- and wintertime might drift apart in the future. Figure 6.5 underlines these findings. It 

is evident that WT depth development shows a strong seasonality and more than 40% of 

all wells show a significant decrease in July. Furthermore, one out of five wells shows a 

decreasing trend in April and June, which further indicates an extension of the hydroperiod 

for some monitoring wells. 

 

Figure 6.5  Mean frequency distribution histogram of water table (WT) depths for monitoring wells 

(n = 46) on monthly basis. The white rectangles denote the relative fraction of moni-

toring wells that show a significant decreasing trend within the individual months of the 

time series. Verification of a decreasing trend was evaluated using the Mann–Kendall 

trend test on the 5% probability scale. 

Best management practices 

Obviously, recent trends in groundwater data indicate that the development is contradict-

ing to the re-wetting goals. The process of enhanced seasonality with an extension of the 
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hydroperiod might be accelerated and proceed in the future when the CWB changes to-

ward drier summers as predicted by the meteorological forecast. It is therefore advisable 

to validate the restoration management and adapt it in certain ways to mitigate the impact 

of climate change. Martinez-Martinez et al. (2014) modelled the impact of wetland areas 

(50, 100, 250, and 500 ha), depths (15, 30, 61, and 91 cm), and wetland placement on 

streamflow characteristics using the Soil and Water Assessment Tool (SWAT). Increasing 

the wetland area (250 and 500 ha), rather than depth, resulted in greater streamflow re-

duction while the smallest area (50 ha) had negligible impacts on average daily stream-

flow. Hence, a best management practice (BMP) for the Bastauwiesen would be to (a) 

connect the recently separated plots II (192 ha), III (181 ha), and IV (79 ha), which would 

result in a size of > 500 ha. Enhancing the amount of water that is retained within the 

Bastauwiesen is desired to minimize the WT draw-down at the beginning of the vegetation 

period (March to May of each year). The (b) removal of levees along the channelized river 

Bastau would result in more frequent flooding and support an additional water supply for 

plot II, III, and IV. Finally, (c) considering the Water Framework Directive (WFD) as a major 

EU policy to enhance the water quality standards of various member states, synergy ef-

fects and incentives for wetland restoration that include the construction of meanders, ox-

bows, and riparian zones might be accomplished (Verhoeven, 2014). 

Conclusions 

In this study, we analyzed time series data (1997–2012) of WT depth development along 

a formerly drained mesotrophic fen in Northern Germany by applying the seasonal trend 

decomposition (STL) procedure. The impact of wetland restoration is contradicting to the 

re-wetting goals because 84% of all monitoring wells (n = 46) along the study site Bastau-

wiesen show a decreasing trend. The development of WT depths indicates a lowering by 

20 cm within the monitoring period according to the trend lines. Especially under a chang-

ing climate with drier summers, the transformation of previously drained and arable land 

back to the previous non-anthropogenic situation based on the re-wetting goals (e.g. which 

plants should develop) is difficult to achieve. It is very likely that the proposed meteorolog-

ical forecast with a decrease of the CWB for both RCP scenarios favors an extension of 

the hydroperiod and increases the seasonality of annual WT depth development. To derive 

certain patterns of the individual plots, a density of one monitoring well per 0.103 km2 

yielded good results with a monthly measuring interval. A higher temporal resolution on 

hourly basis is recommended to differentiate plot specific properties such as the specific 

yield. We showed that restoration management is important but has to be validated con-

tinuously to guarantee success, especially under the aspect of climate change. 
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Supplemental Material 

 

Figure 6.S1 Results of the STL analysis for well II/3, IV/3, and IV/4 with the raw data (a to c), the 

seasonal component (d to f), the trend component (g to i), and the remainder (j to l). 

Please note the increase (d), neither an increase nor a decrease (e), and the decrease 

(f) of the seasonal component starting from 2003 to 2012. 
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Discussion  

The previous chapters showed results of the temporal and spatial EH variability monitored 

by Pt electrodes (Chapter 2) and introduced the simultaneous application of Mn and Fe 

redox bars as an alternative approach to monitor and characterize the soil redox status 

(Chapter 3 to 5). A characterization of the soil redox status is mandatory as climate change 

likely affects the position of the WT depth development (Chapter 6) with implications to 

biogeochemical processes. The formulated Objectives a) to e) are summarized and illus-

trated in Fig. 7.1, which major findings will be discussed in the following.  

 

Figure 7.1 Illustration and major results for the formulated objectives within this thesis: a) Com-

parison of the EH dynamics between two monitoring campaigns (1990 to 1993; 2011 

to 2014) using permanently installed Pt electrodes; b) Manufacturing and evaluation 

of Mn redox bars; c) Monitoring and differentiation into weakly and moderately reduc-

ing soil conditions by Mn and Fe redox bars; d) Investigation of selective element sorp-

tion to the oxide coating of redox bars; e) Evaluation of the WT depth development 

under the aspect of climate change. 
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Objective a) 

Comparison of the EH dynamics between two monitoring campaigns (1990 to 1993; 

2011 to 2014) using permanently installed Pt electrodes  

A unique characteristic of the study site Speicherkoog during the former (1990 to 1993) 

and during the latter (2011 to 2014) monitoring campaign was the wide range of fluctuation 

in the WT level. Near-surface groundwater and WT depths of –200 cm below ground were 

recorded for both periods (Fig 2.1). The relationship between the period of water saturation 

and EH was shown for groundwater (Cogger et al. 1992; Mansfeldt 2003), perched-water 

(Vepraskas and Wilding 1983), flooding (Shrestha et al. 2014), and irrigation (Meek and 

Grass 1975). All results had in common that an extension of the period of water saturation 

favored the onset of reduction and were therefore negatively correlated with EH. Obviously, 

this has an impact on the stability of MnIII,IV and FeIII oxides. The EH-pH diagram in Fig. 7.2 

displays the mean EH values in 60 and 100 cm during the hydrological summer and winter 

at Polder Speicherkoog for the period from 2011 to 2014. Whereas oxidizing soil conditions 

(MnIII,IV and FeIII oxides remain stable) at a mean WT depth of –110 cm below ground 

prevailed in the summer, weakly (MnIII,IV oxide reduction) and moderately (FeIII oxide re-

duction) reducing soil conditions at a mean WT depth of –39 cm below ground were meas-

ured during winter. Hence, the annual fluctuating WT with the subsequent onset of either 

reduction or aeration changed the depths in 60 and 100 cm from a potential source for 

Mn2+ and Fe2+ in the winter to a potential sink by re-oxidation of these reduced species 

(e.g. to MnO2 and Fe5HO8·4H2O) in the summer. These differences were not apparent for 

the EH observation depths in 10 and 30 cm (continuous sink) and 150 cm (continuous 

source) between the hydrologic summer and winter from 2011 to 2014. Additionally, a shift 

of the redox class distribution towards oxidizing soil conditions (calculated from EH data in 

Fig. 2.3) was evident on the decadal scale between 1990 to 1993 and 2011 to 2014 in 60 

(+18%), and 100 (+84%) cm, which extended the period to be a potential sink for manga-

nous Mn and ferrous Fe in these depths. It is obvious that a delineation of these trends 

are important with implications for agricultural practice (aeration status) and soil formation 

(development of redoximorphic features).  

An exclusive discussion of the EH development solely based on the fluctuation of the WT 

is not meaningful because other external parameters (e.g. soil temperature) and soil prop-

erties (e.g. SOM, pH, soil mineralogy) affect the EH. For instance, bacteria in water satu-

rated soil environments are the principal dynamic agent influencing the EH (Fiedler et al. 

2007) but the microbial activity depends not only on the soil temperature but also on the 

pH. To make it even more complicated, the direct or indirect impact on the EH development 

acts on different time-scales. Changes of the WT depth can be instantaneously within 
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minutes to hours, whereas soil temperature and SOM content change more slowly. The 

interaction of these factors alters the EH development and has an impact on MnIII,IV and 

FeIII oxide reduction rates. 

 

Figure 7.2 EH-pH diagram with the stability region of water (white area), with common EH and pH 

values measured in natural waters (dashed line; modified from (Essington 2015), and 

with the redox classes (at pH 7) of oxidizing (EH > 400 mV), weakly reducing (EH 400 

to 200 mV), moderately reducing (EH 200 to –100 mV), and strongly reducing (EH           

< –100 mV) soil conditions. The diagram also includes the mean EH values of Polder 

Speicherkoog recorded during the hydrologic winter (open symbols; November to April 

of each year) and summer (solid symbols; May to October of each year) in 60 

(squares) and 100 (circles) cm during the study period from 2011 to 2014. 

Various studies demonstrated the relationship between soil temperature and EH. Meek and 

Grass (1975) reported that a 5 °C increase in soil temperature went along with a 50 mV 

decrease. Clay et al. (1990) and Farrell et al. (1991) also observed this on a daily basis. 

Typically, temperature maxima followed EH minima with diurnal variations by 30 to 50 mV 

demonstrating an inverse relationship of EH with soil temperature. It was hypothesized that 

either temperature induced changes of the microbial activity or root respiration was re-

sponsible for this pattern (Fiedler 2000). At Polder Speicherkoog, diurnal EH variations 

were also observed with up to 100 mV and the diurnal EH amplitude was enhanced in 10 

and 20 cm compared with 30, 60, and 100 cm (data not shown). This finding leads to the 

assumption that root respiration is responsible because the distribution of roots is denser 
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in the topsoil than in the subsoil. However, EH fluctuations up to 5 mV were also found in 

150 cm that cannot be explained by this process because roots are absent and soil tem-

peratures remained constant throughout the year. In this regard, a process not considered 

so far is the temperature dependence of the internal electrolyte solution (3 M KCl) within 

the Ag/AgCl reference electrode. Approximately, a 1 °C increase goes along with a 1 mV 

decrease (Galster 1991). Diurnal EH patterns might therefore be a mixture of biologically 

mediated processes and remnants of technical constraints. However, daily EH variations 

of 5 mV have no impact on the reduction of MnIII,IV and FeIII oxides and readings more 

precise than ±10 mV (Mueller et al. 1985) little significance. Other authors proposed that 

even EH variations up to ±40 to 50 mV (McKenzie et al. 1960; Pfisterer and Gribbohm 

1989) have little informative value. Therefore, the use of redox classes is encouraged over 

the use of numerical values (Chapter 2). A direct comparison of soil temperatures between 

both monitoring periods was not possible at Polder Speicherkoog because soil tempera-

tures were monitored exclusively for the period during 2011 to 2014. However, considering 

the forecast of rising air temperatures it can be expected that soil temperatures are also 

prone to increase in the future. Houle et al. (2012) estimated the soil temperature devel-

opment until 2100 at three forested sites in Quebec and computed an increase between 

1.9 and 3.3 °C for the period from 2070 to 2099. The increase during the growing season 

was up to 5 °C. Without doubt, a 5 °C increase has impact on MnIII,IV and FeIII oxide reduc-

tion rates and is likely to affect the EH development because O2 is exhausted more rapidly 

in the soil during water logging.  

Apart from the impact of the WT depth and soil temperature on the EH dynamics, the re-

duced C in the SOM pool is the primary electron donor in the soils environment and alters 

the EH development. Its content is not stable over time and in a transient state. Wetlands 

are suitable habitats and net accumulators of SOM over decadal to millennial timescales 

because decomposition is impeded by flooding and water saturation (Schlesinger and 

Emily 2013). However, under aerobe conditions SOM degradation is accelerated and 

forms by various intermediate products heterogeneous, polyfunctional organic molecules 

defined as humic substances (HS) (Strawn et al. 2015). Humic substances are redox ac-

tive due to a variety of functional units (Piepenbrock et al. 2014) with E0 values between 

+150 to –300 mV at pH 7 (Aeschbacher et al. 2011), enabling to donate or accept electrons 

depending on the soil milieu. The process is called electron shuttling and plays a key role 

in many biogeochemical redox reactions. Piepenbrock et al. (2014) demonstrated that HS 

contributed significantly to biogenic FeIII oxide reduction in marine sediments. The process 

was of importance for short-range-ordered FeIII oxides (e.g. ferrihydrite) but not accounta-

ble for more crystalline oxide minerals (e.g. goethite). The relevance of electron shuttling 
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by HS must be further investigated to verify or falsify this process to be important to alter 

the EH dynamics under field conditions. In 24-years of soil formation at Polder Speicher-

koog, the SOM content remained at a similar level (Table 2.1) but simultaneous to long-

term EH monitoring, changes of the SOM inventory (quantity and quality) over time are 

essential because of the dependency and interaction of both parameters.  

Redox potential measurements by Pt electrodes are micro-aggregate dependent and sus-

ceptible to changes in the soil mineralogy. A major difference in terms of the mineralogical 

composition between the two monitoring campaigns was the lowering of the sulfide-bear-

ing Protothionic soil horizon from 105 to 135 cm (illustrated in Fig. 7.1a). A diminishing of 

monosulfidic S contents in 150 cm from 275 (in 1989) to 112 mg S2–-S kg–1 (in 2013) 

underlined this finding. The sulfide was associated with Fe to form monosulfidic Fe miner-

als (FeS), which were highly unstable and rapidly oxidized in the presence of O2 

(Nordstrom 1982). Lower EH readings from 1990 to 1993 (minimum EH –207 mV) com-

pared with the period from 2011 to 2014 (82 mV) in 100 cm depth were likely due to FeS 

being oxidized to the metastable S0 and further to SO4
2–. This has impact on the measured 

EH and is characteristic of the FeS-S0 redox couple (Whitfield 1974). At present, the dis-

tance between the EH observation depth in 100 cm to the sulfide-bearing horizon in 135 

cm indicates that this process is not important but must be considered relevant for the 

monitoring period from 1990 to 1993.  

Oxidation of reduced species (e.g. Mn2+, Fe2+, and S2–) is a proton-producing process with 

impact on the pH of the soil solution. The reverse process was shown during the micro-

cosm experiment in Chapter 3 (Fig. 3.2), where a lowering of the EH from 300 mV to 80 mV 

resulted in a pH increase from pH 6.8 to 7.8 because reduction is a proton-consuming 

process. Rezanezhad et al. (2014) installed pH microelectrodes in an automated soil col-

umn experiment with a variable WT and found differences of one pH unit over the course 

of the experiment. For simplicity and in most applications, the soil pH is portrayed as a 

state variable and inherent of temporal changes but obviously, fluctuations in the range of 

one pH unit have impact on biogeochemical processes. The only attempt to monitor pH 

simultaneous to EH readings was performed by Unger et al. (2008). However, their auto-

mated system detected erroneous readings with pH values in the range from negative 

values to greater than 14 and without any relationship to EH. Time-resolved in situ pH 

measurements would certainly help to understand the temporal and spatial variability of 

EH. Especially to answer questions related to diurnal EH variability under oxidizing soil con-

ditions. In this regard, measuring the EH for the O2/H2O system depends more on pH (a 

change of 59 mV per pH unit) and to a lesser extent on O2 partial pressure (a change of 

15 mV per tenfold change in O2 pressure) (Glinski and Stepniewski 1985).  
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Objective b)  

Manufacturing and evaluation of Mn redox bars 

A central aspect of this thesis was to adapt and improve the already established IRIS 

method that solely comprises Fe redox bars. A broad range of peer-reviewed scientific 

articles (Castenson and Rabenhorst 2006; Jenkinson and Franzmeier 2006; Rabenhorst 

2010, 2012; Rabenhorst and Burch 2006; Rabenhorst et al. 2008; Rabenhorst et al. 2010) 

have demonstrated the effectiveness and acceptance of this methodology in the scientific 

community. Moreover, this approach entered the framework of the US Hydric Soil Tech-

nical Standard as a means of proving reducing conditions and to classify land categories. 

In the following, emphasis is given to the (i) synthesis of MnIII,IV oxides, (ii) manufacturing 

of Mn redox bars and (iii) field-installation for monitoring purposes.  

(i) Synthesis of minerals  

The idea to manufacture Mn redox bars evolved by a new method to synthesize birnessite 

under ambient pressure and temperature (Händel et al. 2013), which was in contrast to 

older methods that required high temperatures (60 to 400 °C), long reaction times (up to 

90 days), and strong acids and bases in closed systems (Ching et al. 1997; Ma et al. 1999; 

McKenzie 1971). As a major advantage, it was possible to synthesize birnessite within 

three working days (one day for the washing procedure and two days for the freeze-drying 

step) and in sufficient contents (typically one batch within an 800 mL beaker yielded 3.5 g) 

to start experimenting on how to coat white PVC bars. To summarize it, differences for the 

synthesis between MnIII,IV and FeIII oxides account for the mineralogical alteration (none 

vs. at least 7 days), storage of the minerals (freeze dried powder vs. minerals in suspen-

sion), and the crystallite size (8 to 11 nm vs. several hundred nm), respectively. Synthe-

sized MnIII,IV oxides did not transform into more crystalline phases by a rearrangement of 

the crystal lattice because mineralogical alteration did not proceed after the freeze-drying 

process. This is an important issue for users who manufacture redox bars at multiple times. 

Even slight changes of the MnIII,IV oxide properties impact their function as electron accep-

tor (e.g. by alteration of the crystallite size) and might affect depletion patterns along the 

PVC surface. This was different to the synthesis of FeIII oxides due to the short half-life of 

the suspension. Preparation of the FeIII oxide suspension was achieved by titrating a 

1 M KOH solution to a 0.5 M FeCl3 solution (Rabenhorst and Burch 2006). The original 

FeCl3 solution was very acidic but FeIII oxides started to precipitate above pH 4. At this 

point, the formed minerals consisted of pure 2-line ferrihydrite (slightly modified by 

Schwertmann and Cornell (2000)). The crystallite size of newly formed ferrihydrite was 

estimated to be 1 nm (Rabenhorst et al. 2008) that demonstrated poor adhesion to the 
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PVC surface and hence little durability (Rabenhorst and Burch 2006). Rabenhorst and 

Burch (2006) verified that 30 to 40% goethite content must be present to facilitate a durable 

FeIII oxide coating. This can be achieved by titrating the FeIII oxide suspension to pH 12 by 

a 1 M KOH solution to progressively transform ferrihydrite into goethite. The goethite min-

erals had a lath-shaped habitus with 20 to 50 nm in width and several hundred nm in length 

and were therefore considerably larger than ferrihydrite and birnessite. They formed a re-

inforcing network that locked the remaining ferrihydrite minerals together (Rabenhorst et 

al. 2008). It is obvious that the mineralogical composition has effect on the depletion pat-

terns along Fe redox bars because ferrihydrite is reduced at higher EH (E0 = –71 mV at pH 

7) than goethite (E0 = –230 mV at pH 7). The mineralogical transformation can be slowed 

down when the paint was stored at 5 °C but cannot be completely stopped. Therefore, Fe 

redox bars manufactured from a distinct suspension must be manufactured within a narrow 

period of time to guarantee uniform mineral characteristics, a problem not associated with 

the manufacturing of Mn redox bars.  

(ii) Manufacturing 

Besides the mineral composition, the content of MnIII,IV and FeIII oxides applied to the PVC 

surface was also important to compare depletion patterns along redox bars manufactured 

by individual users. Jenkinson (2002) recommended Fe redox bars having a double coat-

ing whereas Rabenhorst et al. (2010) used Fe redox bars with a single coat. Obviously, 

twice as much FeIII oxide applied to the PVC surface of redox bars required longer instal-

lation times in the soil to achieve the same depletion patterns compared with a single 

coating under soil reducing conditions. Manganese redox bars manufactured in Chapter 3 

and used in Chapter 4 and 5 comprised a single MnIII,IV oxide coating but for some PVC 

bars, pale brownish areas were likely due to an inhomogeneous roughening practice. If 

the appearance of the coating was uneven, a second MnIII,IV oxide coat was applied. A 

sufficient roughening practice was very important for a good adherence of the MnIII,IV ox-

ides to the PVC surface, otherwise a lotus-effect was observed. As stated, “it is fundamen-

tal to roughening the PVC surface as long as the original smooth surface is not visible 

anymore” (Chapter 3). There were no further information about the bonding mechanism to 

the PVC surface but the analogy of MnIII,IV oxides that remained in the perforated PVC 

surface to silt that remained in the finger ridges seems appropriate. Universal procedures 

(e.g. by sand blasting, coating techniques) to reproducible apply a defined coating to the 

PVC surface are desired (e.g. defined by µM Mn or Fe cm–2 PVC surface) and subject to 

further research. 
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(iii) Field-Installation  

So far, all monitoring applications used PVC pipes or tubes for the installation of Fe redox 

bars (Bryant et al. 2008; Jenkinson and Franzmeier 2006; Rabenhorst and Burch 2006). 

To minimize loss of the oxide coating, an uncoated PVC pipe, having the same dimen-

sions, was installed in advance, removed from the soil, and carefully replaced by the 

coated pipe (Bryant et al. 2008). Alternatively a soil probe or auger was used for the push 

probe (Jenkinson and Franzmeier 2006). The problem of using hollow PVC materials is 

that O2 from the atmosphere is potentially transferred to the end of the tube or pipe anal-

ogous to aerenchyma inside plant roots. To circumvent this problem, redox bars manufac-

tured within this thesis were composed of solid PVC bars that did not promote the transfer 

of O2 into a formerly reducing soil environment. It is encouraged to sharpen the PVC bar 

at one side to minimize a collapsing of the borehole during installation.  

Objective c) 

Monitoring and differentiation into weakly and moderately reducing soil conditions by 

Mn and Fe redox bars  

(i) Monitoring 

Chapter 4 demonstrated that Mn and Fe redox bars were capable of characterizing the 

soil redox status with two to five times enhanced MnIII,IV oxide over FeIII oxide removal. A 

finding in accordance with the thermodynamic properties of the applied minerals. Manga-

nese oxide removal was especially favorable in the capillary fringe where the soil pores 

were not fully water saturated but high water contents prevailed. The period of water sat-

uration was the main trigger to stimulate the onset of reduction and was negatively corre-

lated with EH (Mansfeldt 2003) and with the percentage oxide removal along redox bars 

(Fig. 4.2). Hence, as longer water saturation prevailed as more reducing the soil environ-

ment was and as more MnIII,IV and FeIII oxide removal occurred showing the white PVC 

underneath. Hindersmann and Mansfeldt (2014) demonstrated in microcosm experiments 

that water saturation must prevail for 160 h at 7 °C, 10 h at 15 °C, and 7 h at 25 °C to 

achieve weakly reducing soil conditions, and Vaughan et al. (2009) showed that water 

saturation must prevail for at least  480 h at 1.0 to 3.9 °C and for 48 h at > 9 °C to achieve 

moderately reducing soil conditions. Hence, suitable conditions to reductively dissolve 

MnIII,IV oxides (e.g. birnessite) and FeIII oxides (e.g. ferrihydrite) were accelerated at higher 

soil temperatures. These findings were important for the understanding of depletion pat-

terns along Mn and Fe redox bars. Elevated soil temperature intensified and low temper-

ature hampered the impact by the period of water saturation for the onset of reduction and 
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subsequently for depletion patterns along redox bars. For instance, high precipitation in 

June along with elevated soil temperatures (15.5 °C) favored oxide removal of Mn redox 

bars from plot A with up to 50% in the topsoil (0 to 25 cm) and only minor depletion in the 

subsoil. In contrast, no oxide removal was observed in the top of the Mn and Fe redox bar 

from March to May when soil temperatures were lower.  

Generally, MnIII,IV oxide removal was highest at plot C (periodically flooded) and ranged 

between 32.4% and complete removal in the topsoil and entire removal of the oxide coat-

ing for the subsoil throughout the study period (Table 4.2). The complete MnIII,IV oxide 

removal at plot C indicated that the installation time of 30 days was too long for an ade-

quate characterization of the soil redox status in predominantly water saturated soil envi-

ronments. Hence, weekly monitoring of the soil redox status by Mn redox bars is encour-

aged, which contributes to a better temporal understanding of soil reducing conditions. 

Though, characterization of the EH dynamics that occured within 24 h from moderately 

reducing towards oxidizing soil conditions (Fig. 2.5) cannot be assessed by either Mn or 

Fe redox bars. Despite this shortcoming, the use of redox bars over Pt electrodes had 

some advantages: redox bars reflected the distribution of soil reducing conditions over the 

complete bars length that represented a continuum (Fig. 7.2b) whereas EH readings by 

Pt electrodes reflected discrete point measurements (Fig. 7.2a). This renders Pt elec-

trodes more susceptible to soil heterogeneity and to a misinterpretation of EH data when 

the Pt tip dipped into a soil aggregate assuming reducing conditions in an already aerobic 

soil environment. The susceptibility to microsite variability was underlined by the active 

surface area because electron transfer reactions occured along 329 cm2 at redox bars (50 

cm length, 21 mm Ø) compared with 0.16 cm2 at the tip of Pt electrodes (0.5 cm length, 5 

mm Ø).  

Overall, the oxide removal along Mn and Fe redox bars was coherent with environmental 

boundary conditions (e.g. setting of the WT depth, soil temperature) and soil properties 

(SOM content), a prerequisite to characterize the temporal and spatial distribution of the 

soil redox status. The simultaneous use of Mn and Fe redox bars is especially helpful at 

study sites where soils do not develop redoximorphic features. Reasons for the absence 

of gleyic or stagnic color patterns are (i) low Fe contents and failure to develop concretions 

and mottles, (ii) low contents of SOM and lack of a readily available electron donor, (iii) 

low chroma in color, (iv) alkaline soil horizons preventing FeIII oxide reduction, and (v) the 

presence of redox buffers (e.g. NO3
–) that prevent the utilization of MnIII,IV and FeIII oxides 

as terminal electron acceptors.  
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(ii) Weakly and moderately reducing soil conditions 

Initially, Jenkinson and Franzmeier (2006) noticed darker brown areas along previously 

field-installed Fe redox bars, which they attributed to a re-deposition of FeIII oxides while 

the bar was in the soil. Indeed, the remaining FeIII oxide coating along Fe redox bars in-

stalled at plot C in June differed slightly after an installation time of 30 days compared with 

the original FeIII oxide coating (Fig. 4.3b). The differences were only marginal restricting a 

quantification by image analysis. When we started working with Mn redox bars, we noticed 

areas along the MnIII,IV oxide coating that differed significantly in color after 30 days of 

installation. These zones were verified by X-ray fluorescence spectroscopy and element 

analysis by inductively coupled plasma mass spectrometry as precipitated FeIII oxides 

(Chapter 4) and later on by energy-dispersive X-ray spectroscopy (Chapter 5; Fig. 5.6). 

Because of remarkable differences in color, zones along Mn redox bars of remaining 

MnIII,IV oxide coatings (Fig. 7.3b), FeIII oxide precipitates (Fig. 7.3c), and complete oxide 

removal (Fig. 7.3d) can be more easily differentiated by image and retouching tools (e.g. 

GIMP v.2.8.4). Consequently, a differentiation and quantification of zones along redox bars 

affected by oxidizing (EH > 300 mV; MnIII,IV and FeIII oxides remain stable), weakly reducing 

(EH 300 to 100 mV; MnIII,IV oxides are reduced and FeIII oxides remain stable), and moder-

ately reducing soil conditions (EH 100 to −100 mV; FeIII oxides are reduced) was possible. 

These zones were very small in scale (< 10 mm) and emphasized that EH varied consid-

erably at short distances by three redox classes. Obviously, placement of the Pt electrode 

tip into the center of an aggregate (EH < –100 mV) or in the outside (EH > 300 mV) alters 

the EH reading significantly (illustrated in Fig. 7.1c). 

 

Figure 7.3 Detailed image of a previously field-installed Mn redox bars (a), percentage area of 

MnIII,IV oxide removal (b), FeIII oxide formation (c), and complete oxide removal (d). 

A monitoring of weakly and moderately reducing soil conditions is therefore possible but 

the applicability and reproducibility must be standardized. In this regard, two constraints 

are mentioned: first of all, a uniform application procedure is important because a variable 

thickness (= content) of MnIII,IV oxides is responsible whether or not the white PVC shines 
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underneath or is completely visible under soil reducing conditions (analogue to the poise 

of a system at which a change of EH occurs). Further, a color change by the reaction with 

Fe2+ from soil solution is altered because a surplus of oxidant (MnIII,IV oxide) retards a color 

change towards brownish FeIII oxides by the reaction with the reductant (ferrous Fe2+) (see 

Chapter 5, Eq. [1]). Secondly, image analysis must progress in tandem with coating pro-

cedures. It is desirable to develop a user interface based on digital analysis, which allows 

the assessment of the depletion patterns in a reproducible, cost-efficient and fast manner. 

The application of a line-scan camera mounted on a rail is encouraged. Disadvantages of 

a handheld camera can be compensated by this approach because of a constant distance 

to the redox bar, defined illumination when mounted inside a dark chamber, and a length-

wise pixel re-composition afterwards that counteracts shading-effects by the three dimen-

sional object.  

Objective d) 

Investigation of selective element sorption to the oxide coating of redox bars 

As outlined in the introduction, MnIII,IV and FeIII oxides are important soil constituents and 

besides the contribution as electron acceptors under anaerobic respiration, they act as 

scavenger for nutrients (Peretyazhko and Sposito 2005) and trace metals (Della Puppa et 

al. 2013) in the soils environment. The element content sorbed to the oxide coating de-

pended on two factors: first, the element concentration in soil solution itself, and second, 

available sorption sites by the oxide surface. The availability of sorption sites was positively 

correlated with the contents of oxides applied to redox bars and hence, a depletion of the 

oxide coating under soil reducing conditions decreased the sorption capacity for elements 

in soil solution (e.g. defined as µM As m–2 oxide surface). Subsequently, redox bars were 

non-equivalent to suction cups for the monitoring of total element concentrations in soil 

solution because (i) both factors were difficult to differentiate and (ii) suction cups gather 

soil solution from the bulk soil whereas the sorption of elements to the oxide surface took 

place at the pore scale. Besides this restriction, Mn redox bars enabled to investigate tem-

porally and spatially diverse FeIII oxide-forming processes by the collection of in situ pre-

cipitated FeIII oxides. The percentage area of FeIII oxide formation can be quantified and 

monitored over time that approximated the depth-dependent distribution of ferrous Fe2+ in 

soil solution (Fig. 4.4a and Fig. 7.3c). Rabenhorst et al. (2010) used Fe redox bars to 

document and measure semi-quantitatively S2– concentrations in marsh soil pore water 

that was in conformity to the approach to collect FeIII oxides naturally formed along Mn 

redox bars. A major disadvantage of the former approach is the requirement of a scanner 

in the field because FeS formed along the FeIII oxide coating was meta-stable and rapidly 
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oxidized within minutes (example shown in Fig. 4.4f). In contrast, FeIII oxides along Mn 

redox bars remained stable over time and the oxide patterns can be digitally analyzed in 

the laboratory without pressure of time. For a precise terminology and to differentiate be-

tween in situ formed FeIII oxides along Mn redox bars and synthesized FeIII oxides in the 

laboratory, it was reasonable to use the terms “field”- and “lab”- FeIII oxides, respectively.  

A unique feature of the study site where redox bars were installed were elevated As con-

tents of 111 mg kg–1 in the topsoil (Table 5.3) originating from the weathering of fossil bog 

Fe in shallow groundwater that was relocated upwards by capillary rise in the summertime 

(Mansfeldt and Overesch 2013). The As contents exceeded by far background values for 

topsoil in Germany and considering sand loess as parent material with 7 mg As kg–1 soil 

(Utermann et al. 2008), as well as trigger values for the pathway soil  plant by 

50 mg As kg–1 (BBodSchV 1999). The vast majority of As (> 95%) was associated with 

poorly- and well-crystallized FeIII oxides (Mansfeldt and Overesch 2013) as revealed by 

the sequential extraction procedure according to Wenzel et al. (2001). Hence, a competi-

tion with other soil constituents for As adsorption was neglible at the study site and it can 

be expected that As sorption along “field”- and “lab”-FeIII oxides occured. Indeed, selective 

extraction of either MnIII,IV or FeIII oxide coatings along previously field-installed Mn redox 

bars revealed that As (and elements such as P, Mo, and V) was enriched along FeIII oxides 

compared with MnIII,IV oxides (Table 5.2). This finding was in agreement with various stud-

ies in literature (e.g. Bowell 1994; Goldberg et al. 1998; Peacock and Sherman 2004; 

Peretyazhko and Sposito 2005). Because FeIII oxides exhibit a high point of zero charge 

along with low pH values of 4.5 present at the study site, favorable sorption of oxyanions 

to the protonated functional groups occurred. It is assumed that sorption of oxyanions to 

“field”- and “lab”-FeIII oxides gets neglible as closer the soil pH shifts towards the point of 

zero charge from FeIII oxides, which needs to be tested in further field experiments. Be-

sides minor differences in color, both types of FeIII oxides possessed different Feo/Fed ra-

tios with a constant value of 0.76 for “lab”- and > 0.99 for “field”-FeIII oxides throughout the 

study period. Hence, variations of the mineralogy were evident in terms of crystallinity that 

alters the sorption capacity of a mineral (Wang et al. 2013) and was further proven by 

elevated element loadings of As and P to “field”- over “lab”-FeIII oxides (Fig. 5.5). Changing 

redox conditions renders Gleysols natural laboratories to study the mineral (trans)for-

mation of FeIII oxides (Mansfeldt et al. 2012) with redox bars as a supplemental tool to 

study and monitor the element sorption behavior (Fig. 7.1d).  
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Objective e) 

Evaluation of the WT depth development under the aspect of climate change 

The position of the WT was responsible for the EH dynamics, altered the depletion of the 

MnIII,IV and FeIII oxide coating along redox bars by the onset of reduction, and triggered the 

element relocation into the topsoil by capillary rise and subsequent sorption to the remain-

ing oxide coating (Fig. 7.1a, b, c, d). Enduring periods of water saturation went along with 

peat accumulation in wetlands over centuries (Reddy and DeLaune 2008), whereas peak 

values of CO2 release by microbial oxidation of SOM occured during WT draw-down 

(Rezanezhad et al. 2014) that might counteract accumulation rates. Hence, a temporal or 

permanent dislocation of the WT has impact on many biogeochemical processes. For in-

stance, Leppelt et al. (2014) identified the WT as the main driver to stimulate N2O release 

from organic soils and demonstrated that anthropogenic management by drainage ac-

counts for 85% of N2O emissions in Europe. The authors emphasized the reduction po-

tential of N2O emission when re-wetting measures of formerly drained wetlands were per-

formed. Obviously, there is a potential for wetland restoration in Europe because 80% of 

the original wetland area was lost due to conversion to agricultural uses in the past millen-

nium (Verhoeven 2014). One example of a wetland restoration management was dis-

cussed in Chapter 6 and its success evaluated by analyzing time series data of WT depth 

readings from 1997 to 2012. Application of a trend decomposition procedure revealed de-

creasing trends at 84% of all monitoring wells (n = 46; Fig. 6.1) that equaled a lowering of 

the WT depth by 20 cm according to the position of the trend line. Hence, the WT depth 

development is contradicting to the re-wetting goals. It is expected that rising air tempera-

tures and variable precipitation patterns alter the climatic water balance towards more 

negative values in the summer and positive in the winter that favors an earlier and more 

intense WT draw-down. This development is already verifiable by the STL procedure be-

cause an increase of the seasonal component was detected along 42 out of 46 monitoring 

wells from 2007 to 2012 (exemplified in Fig. 6.S1d). These results imply for the future 

development that the position of the WT depth during summer- and wintertime might drift 

apart. Seasonal WT fluctuations were also observed at the study site Speicherkoog (Chap-

ter 2) and Lavesum (Chapter 4) with WT fluctuations from ponding water in winter up to 

200 cm below ground in summer.  

Quantification of the oxide removal along Mn and Fe redox bars was also indicative to 

deliver information of the WT depth and can be used to depict trends over time. Jenkinson 

and Franzmeier (2006) proposed the term upper depletion depth (UDD) to indicate en-

hanced removal of FeIII oxide coatings. In Fig. 4.3b, the UDD along Fe redox bars corre-

lated well with the mean WT depth demonstrating only minor FeIII oxide removal above the 



 
Comprehensive discussion  134 
 
groundwater surface. In contrast, the UDD along Mn redox bars correlated better with the 

maximum rose of the WT during the installation time of Mn redox bars with enhanced 

MnIII,IV oxide removal in the capillary fringe (illustrated in Fig. 7.1b). Furthermore, depth- 

and time-dependent MnIII,IV oxide removal gives insight about potential N transformation 

pathways because the reductive dissolution of MnIII,IV oxides under weakly reducing soil 

conditions is the range of N2O formation by denitrification processes (Yu and Patrick 2004; 

Yu et al. 2001). The formation of N2O is very variable in space and time as verified by 

Shrestha et al. (2014) by measuring N2O concentrations and EH along a river floodplain 

during a flood pulse. In their study, the EH decreased rapidly from oxidizing to weakly re-

ducing soil conditions during the flood event and increased again after the peak discharge 

within 48 hours. The authors characterized the drying phase after the flood as “hot mo-

ments” because N2O emission increased from 17 to 40 mg N-N2O kg–1 day–1. Short-term 

monitoring by Mn redox bars on a weekly basis certainly helps to delineate potential hot 

spots of N2O emission but further studies are required to link the percentage oxide removal 

under weakly reducing soil conditions with N2O measurements. 
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