
Calculation of phase equilibria of quantum
fluids at high pressure

Inaugural-Dissertation
zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln
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Abstract

The thermodynamic properties of liquids or compressed gases of light
atoms and molecules show deviations from classical predictions. These
light molecules does not obey the corresponding states principle. The
observed deviations are caused by so-called quantum effects.

The quantum effects are due to the two main reasons. First, the dis-
continuity of the energy levels at very high densities, when the motions
of particles are restricted (by the boundary conditions), and second, as a
result of the wave function symmetry effects, which occurs at very low tem-
perature (when only the number of particles allowed to share a quantum
state becomes important).

A quantum correction proposed by Deiters [53-54] is based on the as-
sumption that each molecule is restricted to a cubic cell with a size de-
pending on the free volume. This model is a straightforward and easy
method for prediction of thermodynamic properties of quantum fluids at
high densities. However, the cell model is not suitable at low densities
or high temperatures, and the cubic form of the cell (which is applied for
mathematical convenience) is not a realistic assumption.

In the present work the quantum effects are considered by means of
a more realistic “spherical cell model”. This quantum correction can be
applied to any van der Waals type equation of state. A correction function
has been developed to overcome the weaknesses of the cell model at low
density or high temperature limit. The corrections are applied to the
Deiters equation of state [50, 51, 52], and the phase equilibria for pure
quantum fluids and binary mixtures are calculated. Calculations have been
made for the pure fluids hydrogen, neon, methane, and nitrogen as well

9



as, for the binary mixtures neon–argon and neon–krypton. The results
of the spherical cell model for all cases show significant improvement in
comparison with the cubic cell model results.
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Zusammenfassung

Die thermodynamischen Eigenschaften von Flüssigkeiten oder komprim-
ierten Gasen, die aus leichten Atomen oder Molekülen bestehen, weisen Ab-
weichungen von den klassischen Vorhersagen auf. Diese Moleküle gehorchen
nicht dem Prinzip der korrespondierenden Zustände. Die beobachteten Ab-
weichungen werden von sogenannten Quanteneffekten verursacht.

Quanteneffekte lassen sich auf zwei Ursachen zurückführen: erstens auf
die Diskontinuität der Energieniveaus bei sehr hohen Dichten, wenn die Be-
wegungen der Moleküle eingeschränkt sind (durch Randbedingungen), und
zweitens auf Symmetrieeffekte der Wellenfunktionen, die bei sehr niedrigen
Temperaturen auftreten (wenn nur ist die Zahl der Moleküle wichtig, die
sich einen Quantenzustand teilen können).

Eine von Deiters [53-54] vorgeschlagene Quantenkorrektur beruht auf
der Annahme, jedes Molekül sei auf eine kubische Zelle beschränkt, deren
Größe vom freien Volumen abhängt. Dieses Modell ist eine direkte und
einfache Methode zur Abschätzung der thermodynamischen Eigenschaften
von Quantenfluiden bei hohen Dichten. Allerdings eignet sich das Modell
nicht für niedrige Dichte oder hohe Temperaturen, und die kubische Zel-
lengestalt (die nur wegen der mathematischen Einfachheit gewählt wurde)
ist keine realistische Annahme.

In dieser Arbeit werden Quanteneffekte mit Hilfe eines realistischeren
“sphärischen Zellenmodells” beschrieben. Diese Quantenkorrektur kann
auf jede Zustandsgleichung von Van-der-Waals-Typ angewandt werden.
Um die Schwäche der Zellenmodelle bei niedrigen Dichten oder hohen Tem-
peraturen auszugleichen wurde eine Korrekturfunktion entwickelt.

Die Korrekturen wurden auf die Zustandsgleichung von Deiters [50, 51,
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52] angewandt und damit Phasengleichgewichte reiner Quantenfluide und
binärer Mischungen berechnet. Es wurden Rechnungen durchgeführt für
die reinen Fluide Wasserstoff, Neon, Methan und Stickstoff sowie für die
binären Mischsysteme Neon–Argon und Neon–Krypton. Die unter Ver-
wendung des sphärischen Zellenmodells erzielten Resultate zeigen in allen
Fällen eine deutliche Verbesserung im Vergleich zum kubischen Zellenmod-
ell.
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Chapter 1

Introduction
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For the understanding of fundamentals of industrial processes such as de-
signing and optimizing of separation processes, purification processes to
obtain high purity compounds or mixtures of constant composition, etc.
the knowledge of phase equilibria is necessary.

For systems containing one or more substances, the representation of
phase equilibria can be obtained when the functional relation between tem-
perature, pressure, volume and phase composition is known.

One of the most useful methods for the calculation of phase equilibria
is based on equations of state. The equation of state method uses a ho-
mogeneous model for all fluid phases and is in principle applicable to pure
substances and mixtures.

A very powerful tool available to predict the properties of fluids and
fluid mixtures is the corresponding states principle. From this correspond-
ing states principle, and a knowledge of few reference systems, fluid prop-
erties can be predicted with a minimum information. The corresponding
states theory was first proposed by van der Waals, who derived it for his
equation of state.

The simple corresponding states theory is based on three assumptions:

1. The potential energy function is the same for all substances, and is a
function of the energy and distance characteristic parameters of the
substance.

2. The canonical partition function can be separated into two indepen-
dent parts, a translational part, and an internal part.

3. The translational part of the partition function can be evaluated
classically, and classical statistics (Boltzmann statistics) can be used.

When one or more of the above assumptions are not valid, deviations occur
in the simple corresponding states principle.

The first assumption that the potential is a universal function of the
two parameters (energy and distance) to characterize a molecule, is a good
approximation for simple molecules. For more complex molecules such as
polar and polyatomic fluids additional parameters are needed.

Assumption 2 may be in error for solids, and may have some error if
used for polyatomic fluids at high densities.
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The assumptions 1 and 2 must be obeyed completely by the monoatomic
and very simple molecules. In fact, the simple corresponding states is
closely obeyed by argon, krypton and xenon, however, very light molecules
H2, He, and Ne are exceptions. This deviation is due to the nonvalidity of
the third assumption because of the non negligible quantum effects. These
quantum effects can be due to either the discontinuity of the energy levels,
or the symmetry effects of the wave functions. The first category appears
when the motions of particles are restricted (by the boundary conditions)
and occur at high densities (when the intermolecular distances are compa-
rable with the de Broglie wavelength). The second category occurs at very
low temperature when the lowest energy levels are occupied and several
particles being in one orbital state. In this case, the Boltzmann statistics
is no longer applicable and Bose–Einstein or Fermi–Dirac statistics must
be applied. The term Λ∗

Λ∗ =
h

σ
√
mε

(1.1)

is a measure of the quantum effects. In this equation m is mass of the
particle, h is Planck’s constant, and ε and σ are characteristic parameters
for interaction energy and distance respectively. In the classical limit, the
term Λ∗ vanishes and the third assumption becomes valid. Table 1.1 shows
some atoms and molecules, and their corresponding Λ∗ [8].

Addition of quantum corrections to the equations of state can extend
their applicability to a wider range of temperatures, pressures, and a larger
variety of molecules.

Several attempts have been made to calculate the quantum effects on
equilibrium properties of fluids. Some of them have been based on the
virial expansion, and perturbation theory (see e.g., [58, 59]). This ap-
proach is good for weakly quantized fluids at low density, but hard sphere
perturbation series may not even converge at high density. Other attempts
have been based on the concept of restriction of translational motion of
molecules to a cell composed of the surrounding molecules, e.g., the quan-
tized Lennard–Jones–Devonshire cell theory of Hamann [60, 61], Levelt
and Hurst [62], and Hooper and Nordholm [63]. However, their results
are not good in the classical limit because they reduce to the unsuitable
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substance Λ∗

He 2.59
H2 1.72
Ne 0.58
N2 0.23
CH4 0.23
Ar 0.18
Kr 0.10
CF4 0.08
Xe 0.06
SF6 0.04
C(CH3) 0.05

Table 1.1: The measure of quantum effects for some substances.

equations of state in that limit.

A method proposed by Deiters [53, 54] which is based on the assump-
tion that each molecule is restricted to a cell with a size depending on the
free volume. Deiters approximated a cubic cell for computational conve-
nience. The results are applicable for any van der Waals type equation of
state (which is defined as an equation of state that its repulsion and at-
traction terms are separable). This model is a good method for prediction
of thermodynamic properties of quantum fluids at high densities. However,
the assumption of cubic cells is unrealistic, furthermore, the cell model is
not suitable at low densities or high temperatures.

The present work aims at developing a quantum correction that is ap-
plicable over the full range of fluid densities, and to overcome the over
simplifications of the cubic cell models.

The material of Chapter 2 introduces the concept of quantum mechan-
ics. Some models which are used throughout this work are presented.
Chapter 3 is a review in statistical mechanics, emphasizes the methods of
the canonical partition function and its factorization. The results of this
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chapter are used in of the following chapters. Chapter 4 contains a short
review in equations of state and mixing rules, with emphasise on an equa-
tion of state which is applied as a reference equation in the next chapter.
In Chapter 5, new correction functions are developed for van der Waals
type equations of state over a wide range of temperatures and densities.
In Chapter 6, the results of applying the new correction functions to the
equation of state are given.
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Chapter 2

Quantum Mechanics
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2.1 Introduction

To calculate the macroscopic properties of matter which are also called
bulk properties theoretically, we need to know about

1. the proper microstates to perform the averages.

2. the proper method for computing the average that corresponds to
the bulk property.

The mathematical solution of the formulas of quantum mechanics pro-
vide the microscopic or molecular energy values. From these energy levels,
the methods of statistical mechanics can be applied to calculate the ob-
servable or macroscopic properties of a system.
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2.2 Matter waves and the Schrödinger equa-

tion

Experiments, particularly scattering of electrons and atoms, show
that matter can not be completely localized on the microscopic scale [1]
. Each bit of matter is associated with a kind of field, Ψ, which has
a wavelike character. The wavelength of these waves is given by the de
Broglie equation in free space

Λ =
h

mv
(2.1)

where Λ is the de Broglie wavelength, h is Planck’s constant, m is the
mass, and v is the velocity of the particle. The behaviour of the par-
ticle is predictable only if the Ψ-waves are known. The entity | Ψ2 |
(more accurately, Ψ∗Ψ, where Ψ∗ is the complex conjugate of Ψ) is the
only entity connection between the macroscopic world and microscopic
world. A rigorous formalism of quantum mechanics was first developed by
Werner Heisenberg (1901-1976), an equivalent form discovered by Erwin
Schrödinger (1887-1961) independently.

The classical mechanical variables (x, y, z for coordinates, px, py and pz
for the momentum components, E for the total energy, etc.) are converted
into mathematical operators in quantum mechanics by a set of rules (x, y, z
for the coordinates, ~/i(∂/∂x), ~/i(∂/∂y) and ~/i(∂/∂z) for the momen-
tum components and −~/i(∂/∂t) for the energy, etc.). These operators act
on the wave function Ψ. The classical total energy is given by

1

2m
(p2
x + p2

y + p2
z) + V (x, y, z) = E (2.2)

By substitution of the operators and by insertion of the operand Ψ(x, y, z)
into Eqn. 2.2 it is converted into the time-dependent Schrödinger equation

− ~
2

2m

( ∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)
Ψ(x, y, z, t)+V (x, y, z)Ψ = −~

i

∂Ψ(x, y, z, t)

∂t
(2.3)
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2.3 The time-independent Schrödinger equa-

tion

The Eqn. 2.3 can be separated into two parts, one a function of x, y, z
and the other a function of t

Ψ = ψ(x, y, z) φ(t) (2.4)

Substitution of this equation into Eqn. 2.3 and dividing by ψ(x, y, z) φ(t)
gives

1

ψ

{
− ~

2

2m

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ + V (x, y, z)ψ

}
= −~

i

1

φ(t)

dφ(t)

dt
(2.5)

The right side of Eqn. 2.5 is a function of time and the left side is
a function of coordinates only. This equation is only valid if each side is
equal to some constant which is called E. Thus we obtain

dφ(t)

dt
= − i

~

Eφ(t) (2.6)

The Eqn. 2.6, which is only time dependent, has the solution

φ(t) = e−iEt/~ (2.7)

Equating the the left side of the Eqn. 2.5 to E, we obtain

− ~
2

2m

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ + V (x, y, z)ψ = Eψ (2.8)

Eqn. 2.8 is the time-independent Schrödinger equation for a single particle
of mass m. E has the same dimensions as V , and is the energy of the
system. If the potential energy is a function of the coordinates only, the
wave function is of the form

Ψ = e−iEt/~ ψ(x, y, z) (2.9)
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2.4 The symmetry of wave functions

In quantum mechanics we can not follow the exact path of a quantum
particle. If the particles are all identical, there is no way to distinguish
between the particles. A system of N identical particles is described by
a wave function ψ(1, 2, 3, ..., N). If we exchange two particles, there are
two possible cases for the wave function of the system: it must remain the
same (symmetric) or change its sign (antisymmetric) [6].

For particles with an integral spin (e.g., the He-4 nucleus, photons, ...),
which are called bosons, the wave function is symmetric. For particles with
half-integral spin (e.g., electrons, ... ), which are called fermions, the wave
function is antisymmetric.

2.5 The particle in a cubic box

We consider a particle in a three dimensional cubic box with edges
of length R0 (see Fig. 2.1), where the potential energy function can be
expressed as follows

V (x, y, z) =

{
0 for < x, y, z < R0

∞ elsewhere

The wave function must be zero outside the box because the particle can
not have infinite energy.

The Schrödinger equation for this system is

− ~
2

2m

(∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
= Eψ (2.10)

We assume that ψ is the product of three functions, each dependent upon
only one variable.

ψ(x, y, z) = X(x)Y (y)Z(z) (2.11)

Substituting this expression into 2.10 and dividing by X(x)Y (y)Z(z), we
have

~
2

2m

1

X(x)

d2X(x)

dx2
+
~

2

2m

1

Y (y)

d2Y (y)

dy2
+
~

2

2m

1

Z(z)

d2Z(z)

dz2
= −E (2.12)
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Each of the three parts in the left side of Eqn. 2.12 must be equal to a
constant. Since the Eqn. 2.12 must be valid for all values of the three
independent variables x, y,and z,

d2X(x)

dx2
+

2m

~
2
ExX(x) = 0

d2Y (y)

dy2
+

2m

~
2
EyY (y) = 0

d2Z(z)

dz2
+

2m

~
2
EzZ(z) = 0 (2.13)

where Ex + Ey + Ez = E.

Now we have three separated ordinary differential equations. This is
possible because the fact that V (x, y, z) is a sum of terms each dependent
upon only one of the three space variables. According to the usual
postulates, ψ and its partial derivatives must be continuous, finite and
single valued for all values of x, y and z, and ψ must be “square integrable”,

Figure 2.1: Potential energy model for Eqn. 2.5 .
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or ∫ ∞
−∞

ψ∗ψ dxdydz = 1 (2.14)

it means that ψ∗ψ is normalized. If the potential “walls” are infinite (an
idealization), then X(x), Y (y) and Z(z) must vanish at the boundaries.
Then we can obtain the eigenvalues and eigenfunctions

X(x) =

√
2

R0

sin
nxπx

R0

0 6 x 6 R0 (2.15)

Ex =
n2
x~

2π2

2mR2
0

(2.16)

we therefore, obtain from 2.11

ψ =

√
8

R0

sin
nxπx

R0

sin
nyπy

R0

sin
nzπz

R0

(2.17)

where nx, ny and nz are independent and may have the values 1, 2, 3, 4,
... and

E =
(n2

x + n2
y + n2

z)~
2π2

2mR2
0

(2.18)

or

E =
(n2

x + n2
y + n2

z)h
2

8mR2
0

(2.19)

2.6 The particle in a spherical box

The particle in a cubic box has simple wave functions and energy
eigenvalues. The problem of the particle in a spherical container is similar
to the problem of the particle in a cubic box, and the matter waves form
resonant, standing wave pattern inside the box, but there is considerable
high mathematical complexity because of the spherical geometry.
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2.6.1 Solving the Schrödinger equation

We assume that a particle of mass m moving in a spherical cell where
the potential field, V (r) is of the following form

V (r) =

{
0 for r < R0

∞ for r ≥ R0

where R0 is the radius of the spherical cell.

The time-independent Schrödinger equation for this model is

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+

2m

~
2

(E − V (r))ψ = 0 (2.20)

which
r =

√
x2 + y2 + z2 (2.21)

The boundary conditions are

1. ψ(r ≤ R0) remains finite

2. ψ(R0) = 0

There is no way to break up Eqn. 2.20 into three ordinary differential
equations involving the Cartesian coordinates, therefore, we use a spheri-
cal coordinate system. The relationship between these two systems is as
follows

x = r sin θ cosφ

y = r sin θ sinφ (2.22)

z = r cos θ

By substituting these conversion relations, Eqn. 2.20 becomes

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
+

2m

~
2

(E−V (r))ψ = 0

(2.23)
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This equation is Helmholtz’ equation, and we can write it in the following
form

1

r

∂2

∂r2
(rψ) +

1

r2 sin θ

(
∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin θ

∂2ψ

∂φ2

)
+ k2ψ = 0 (2.24)

where

k2 =
2m(E − V (r))

~
2

=
2mE

~
2

(2.25)

We assume that the equation can be separated into two parts, one a func-
tion of r (radial part) and the other a function of θ and φ (angular part)

ψ = R(r)Y (θ, φ) (2.26)

If we substitute Eqn. 2.26 in Eqn. 2.24 and divide by ψ = RY , we find

1

R

1

r

d2

dr2
(rR) +

1

r2

1

Y sin θ

(
∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin θ

∂2Y

∂φ2

)
+ k2 = 0 (2.27)

and we have
1

R

1

r

d2

dr2
(rR) + k2 − λ

r2
= 0 (2.28)

where λ is a constant

1

Y sin θ

(
∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin θ

∂2Y

∂φ2

)
= −λ (2.29)

If k2 6= 0, we change to the dimensionless radial coordinate ρ = kr, and
obtain

d2R

dρ2
+

2

ρ

dR

dρ
+

(
1− λ

ρ2

)
R = 0 (2.30)

The Bessel equation has the form

d2R

dρ2
+

1

ρ

dR

dρ
+

(
1− m2

ρ2

)
R = 0 (2.31)

It can be seen that Eqn. 2.30 is almost a Bessel equation.
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2.6.2 Solving the Bessel equation

To convert Eqn. 2.30 to the Bessel equation, we make the substitution
[3]

R =
1
√
ρ
S (2.32)

After substituting this equation into Eqn. 2.30, we obtain

d2S

dρ2
+

1

ρ

dS

dρ
+

(
1− λ+ 1/4

ρ2

)
S = 0 (2.33)

this equation has the solution

S = A Jβ(ρ) +B Nβ(ρ) (2.34)

and
β =

√
λ+ 1/4 (2.35)

or

R = A
1√
kr

Jβ(kr) +B
1√
kr

Nβ(kr) (2.36)

which N is the Neumann function.

ψ =

{
A

1√
kr

Jβ(kr) +B
1√
kr

Nβ(kr)

}
Y (θ, φ) (2.37)

The boundary condition that the angular function Y (θ, φ) be everywhere
single valued and finite leads to

λ = l(l + 1) (2.38)

Y = Y m
l (θ, φ) (2.39)

then,
β =

√
l2 + l + 1/4 = l + 1/2 , l = 0, 1, 2, . . . (2.40)

These Y m
l are called spherical harmonics. The first few spherical harmonics

are listed in [App. C].
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Now we try to solve the φ dependent part of Y (θ, φ)

Y (θ, φ) = Θ(θ) Φ(φ) (2.41)

The term Φ depends only on φ. This can be true only if this term is equal
to a constant (−m2).

1

Φ

d2Φ

dφ2
= −m2 (2.42)

therefore

Φ(φ) = A eimφ (2.43)

As the boundary condition dictates that Φ should be single valued, m
must be an integer in physical applications to insure that the eigenfunctions
Φα(sin(αφ), cos(αφ)) be single valued, then

m = 0,±1,±2, . . . (2.44)

for each l , we have 2l + 1 degenerate levels due to different values of m:
for l = 0 ,m = 0
for l = 1 ,m = 0,±1
for l = 2 ,m = 0, ±1, ±2
...
After using the boundary conditions, we obtain

ψ =
{
A jl(kr) +B nl(kr)

}
Y m
l (θ, φ) (2.45)

where spherical Bessel and Neumann functions are defined respectively by

jl(x) =

√
π

2x
Jl+1/2(x) (2.46)

nl(x) =

√
π

2x
Nl+1/2(x). (2.47)

These functions give the radial dependence of spherical waves. The spher-
ical Bessel and Neumann functions can also be expressed in terms of sines

29



and cosines and inverse powers of x [3]. Here we expand the first term of
Bessel function into series with respect to powers of x [App. A].

j0(x) =

√
π

2x
J1/2(x) =

√
π

2

∞∑
r=0

(−1)r

r!Γ(1/2 + r + 1)

(
x

2

)2r

(2.48)

Using the recursion relation of the Gamma function [App. B] , we find

Γ(1/2 + r + 1) =
(2r + 1)!

22r+1r!

√
π (2.49)

Substituting Eqn. 2.49 into Eqn. 2.48, we obtain

j0(x) =
∞∑
r=0

(−1)r

(2r + 1)!
x2r =

sin(x)

x
(Taylor series for sin(x)) (2.50)

Using a recursion relation for the Bessel function and series solution we
can find jl(x) as follows

jl(x) = (−x)l
(

1

x

d

dx

)l(
sin(x)

x

)
(2.51)

nl(x) can be calculated by the same way

nl(x) = −(−x)l
(

1

x

d

dx

)l(
cos(x)

x

)
(2.52)

We can easily calculate jl(x) Fig. 2.2 and nl(x) for small l

j0(x) =
sin(x)

x

j1(x) =
sin(x)

x2
− cos(x)

x
(2.53)

j2(x) =
( 3

x3
− 1

x

)
sin(x)

... (2.54)
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and

n0(x) =
cos(x)

x

n1(x) = −sin(x)

x
− cos(x)

x2
(2.55)

n2(x) = − 3

x2
sin(x)−

( 3

x3
− 1

x

)
cos(x)

... (2.56)

The spherical Neumann function is rejected because it diverges at the origin
(x = 0), therefore we have

R = A jl

(√2mE

~

r
)

(2.57)

0 2 4 6 8 10
−0.5

0

0.5

1

Figure 2.2: Bessel j functions.

To satisfy the boundary condition ψ(R0) = 0 for all angles, we require√
2mEl,n

~

R0 = j∗l,n (2.58)
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and

El,n =
~

2(kl,nR0)2

2mR2
0

=
~

2(j∗l,n)2

2mR2
0

(2.59)

or
kl,nR0 = j∗l,n (2.60)

where j∗l,n denotes the roots of the jl that jl(j
∗
l,n) = 0, and the n index shows

the nth zero of jl. The inclusion of this boundary condition quantizes the
energy E. The smallest j∗l,n is the first zero of j0

j0(x) =
sin(x)

x
for j∗0,1 = π (2.61)

Emin =
π2
~

2

2mR2
0

=
h2

8mR2
0

(2.62)

for l = 0

Emin =
n2h2

8mR2
0

(2.63)

asymptotic behaviour of the jl for x→∞ is

lim
x→∞

jl(x) =
1

x
cos
(
x− (l + 1) π/2

)
(2.64)

The functions jl(x) have an infinite number of real zeros. The first zeros
for different ls are obtained from [5]

j∗l,1 ' (l + 1/2) + 1.85575(l + 1/2)1/3 + 1.03315(l + 1/2)−1/3

−0.00397(l + 1/2)−1 − 0.0908(l + 1/2)−5/3 + . . . (2.65)

where v = (l + 1/2).
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Chapter 3

Statistical Thermodynamics
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3.1 Introduction

In the previous section we showed how the quantum states or microstates
can be calculated from quantum mechanics rules. However, quantum me-
chanics cannot supply the macroscopic properties such pressure, heat ca-
pacity, viscosity, entropy, Helmholtz free energy etc. A realistic view of a
macroscopic system is that the system makes a very rapid random transi-
tions among its quantum states. A macroscopic measurement senses only
an average of the properties of the quantum states. Statistical mechanics
shows the way of averaging among the quantum states.

3.2 The microcanonical ensemble

We focus first on a closed system of given volume, given energy and given
number of particles. The parameters U , V , and N are the only constraints
of the system. The external constraints imposed on the system specify the
permissible quantum states. As the transitions between quantum states are
due to the random processes, it is reasonable to suppose that a macroscopic
system samples every permissible quantum state with equal probability.

The assumption of equal probability of all permissible microstates is
the fundamental postulate of statistical mechanics. If some external con-
straint is removed, the number of permissible microstates increases. Tran-
sitions occur to these newly available states and the number of microstates
increases to the maximum permitted by the imposed constraints.

The entropy also increases to the maximum permitted by the imposed
constraints. Therefore the entropy can be derived from the number of mi-
crostates consistent with the imposed macroscopic constraints [9]. Since
the entropy is additive (extensive) but the number of microstates is mul-
tiplicative we must identify the entropy with the logarithm of the number
of available microstates.Thus

S = kB ln Ω (3.1)

where S is the entropy, Ω is the number of microstates and kB is Boltz-
mann’s constant; it is chosen in agreement with the Kelvin scale of tem-
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perature 1/T = ∂S/∂U where U is the internal energy of the system.
Calculating the logarithm of the number of states available to the system
we can obtain S as a function of the constraints the internal energy vol-
ume and the amount of substance of the system. This is the microcanonical
formalism. of statistical mechanics. From the other point of view, we can
consider an ensemble which is composed of members with the same values
of N , V , and U . The microcanonical ensemble is a collection of these
members (replicas) of the actual system Fig. 3.1 .

At instant t, the members are distributed over the Ω possible quantum
states. Each member fluctuates among the possible states independently.

Figure 3.1: The microcanonical ensemble.

For other constraints there are other kinds of ensembles. Some exam-
ples are:

1. The canonical ensemble with (N, V, T ) fixed .

2. The grand canonical ensemble with (µ, V, T ) fixed where µ is chemical
potential.
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3. The isobaric–isothermal ensemble with (N, p, T ) fixed .

3.3 The canonical ensemble

The microcanonical formalism is only useful for a few highly idealized
models. We remove the limitation of energy value to consider a system in
contact with a thermal reservoir (rather than an isolated system). The sta-
tistical mechanics of a system in contact with a thermal reservoir is called
“canonical formalism”. All energy values are available to the system. In
contrast to the microcanonical formalism each state does not have the same
probability. The problem in the canonical formalism is the determination
of the probability distribution of the system among its microstates. The
system plus the reservoir constitute a closed system, therefore the principle
of equal probability applies. A thermal reservoir is defined as a reversible
heat source. It is so large that any heat transfer does not change the tem-
perature of the reservoir. It can be shown [9] that the probability of a
subsystem being in state j is fj.

fj =
Ωres(Etot − Ej)

Ωtot(Etot)
(3.2)

Here Etot and Ωtot are the total energy and the total number of states of
the system plus reservior, respectively. The quantity Ωtot(Etot−Ej) is the
number of states available to the reservoir when the subsystem is in the
jth state. Using Eqn. 3.1 we obtain

fj =

exp

(
k−1

B Sres(Etot − Ej)
)

exp

(
k−1

B Stot(Etot)

) (3.3)

Using additivity of entropy the denominator can be shown as

Stot(Etot) = S(U) + Sres(Etot − U) (3.4)
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where U is the average value of the energy of subsystem.If we expand
Sres(Etot − Ej) around the equilibrium point (Etot − U) we obtain

Sres(Etot − Ej) = Sres(Etot − U + U − Ej)
= Sres(Etot − U) + (U − Ej)/T (3.5)

The upper order terms in the expansion are zero (because of the definition
of a reservoir). Applying Eqns. 3.4 and 3.5 into Eqn. 3.3 we obtain

fj = e(1/kBT )(U−TS(U))e−(1/kBT )Ej (3.6)

(U − TS(U)) is the Helmholtz energy of the system. We let

β =
1

kBT
(3.7)

to obtain the fundamental result for the probability fj of the subsystem
being in the state j.

fj = eβAe−βEj (3.8)

The eβA plays the role of a state-independent normalization factor in Eqn.
3.8 ∑

j

fj = eβA
∑
j

e−βEj = 1 (3.9)

or
e−βA = Q (3.10)

where Q is the “canonical partition function” and is defined as

Q =
∑
j

e−βEj (3.11)

Given a list of all states j of the system, and their energies Ej, we can
calculate the partition function. The partition function is a function of
temperature (or β) and the parameters (V,N1, N2, . . .) that determine the
energy levels. Finally the Helmholtz energy of the system can be obtained
by

A = −kBT lnQ (3.12)

The probability of occupation of the jth state can be written as

e−βEj∑
i e−βEi

(3.13)
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3.4 Thermodynamic properties

The ensemble average of any dynamical property of system can be obtained
using Eqn. 3.13. A dynamical property is a property whose value is deter-
mined by the quantum states of the system, fj, or classically a property
which is defined as a function of the phase space coordinates and time.
Examples are pressure and energy.

The average energy is then expected to be

U =
∑
j

Ejfj =

∑
j Eje

−βEj∑
i e−βEi

(3.14)

or

U = −
(
∂lnQ

∂β

)
N,V

(3.15)

The observed pressure of the system is

p =
∑
j

pjfj (3.16)

The pressure in the state j is

pj = −
(
∂Ej
∂V

)
N

(3.17)

therefore

p =
1

β

(
∂lnQ

∂V

)
N,β

(3.18)

Equation 3.18 is the equation of state in statistical mechanics. The ther-
modynamic properties [8] in terms of the canonical partition function are
summarized in table 3.1.

3.5 Factorization of canonical partition

function

We consider a system composed of N distinguishable “elements”. An
element is a noninteracting excitation mode of the system. For an ideal gas
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the “elements” refer to the excitations of the individual molecules while
for a strongly interacting systems the elements may be vibrational modes
or electromagnetic modes. The energy of the system is a sum over the
energies of the elements which are independent and noninteracting. The
energy of the ith element in its jth state is εij. Then the canonical partition
function is

Q =
∑

j,j′,j′′,...

e−β(ε1j+ε2j′+ε3j′′+...)

=
∑

j,j′,j′′,...

e−βε1je−βε2j′e−βε3j′′ . . .

=
∑
j

e−βε1j
∑
j′

e−βε2j′
∑
j′′

e−βε3j′′ . . .

= q1 q2 q3 . . . (3.19)

where the qi is the partition function of the ith element

qi =
∑
j

e−βεij (3.20)

Furthermore the Helmholtz energy is additive over elements

−βA = lnQ = ln q1 + ln q2 + . . . (3.21)

The molecules of a gas have different excitation modes, three transla-
tional modes, vibrational modes, rotational modes, electronic modes, and
modes of excitation of the nucleus. It is assumed that these modes are
independent then the partition function is as follows

Q = Qtrans Qvib Qrot Qelect Qnucl (3.22)

Another assumption is that the Hamiltonian operator can be sepa-
rated into two independent parts. One involving the center of mass modes
(translational modes) and the other involving the intramolecular modes
(vibration, rotation, etc.). This yields two independent sets of quantum
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states, one for translation and the other for internal modes, respectively.
Then the canonical partition function can be separated into two parts

Q = Qtrans(N, V, T ) Qint(N, T ) (3.23)

The Qint part is independent of volume because it contains the intramolec-
ular degrees of freedom. This assumption requires that Qint has the same
value for a dense fluid or an ideal gas. This assumption is exact in the
ideal gas limit. It also holds for monoatomic fluids for all densities, be-
cause electronic energy is the only intramolecular interaction. For normal
liquid densities (up to the triple point) the effect of density on the elec-
tronic wave function is negligible [8]. Polyatomic molecules have rotational
and vibrational modes. At high densities particularly in the liquid state
these internal modes may be affected by density. However, it is common
to assume that Qint is independent of density.

3.6 Translational partition function for an

ideal gas

We apply the general results of the previous sections to an ideal gas.
An ideal gas is a gas dilute enough that intermolecular interactions can
be neglected (unless such interactions make no contribution to the energy,
like collisions of hard mass points). A monatomic ideal gas has translation,
electronic and nucleur degrees of freedom and the electronic and nucleur
Hamiltonians are separable. To evaluate the translational partition func-
tion, we can use energy eigenvalues of the particle in a cubic box Eqn.
2.19.

qtrans =
∞∑

nx,nx,nx=1

e−βεnx,ny,nz

=
∞∑

nx=1

exp

(
−βh

2n2
x

8mR2
0

) ∞∑
ny=1

exp

(
−
βh2n2

y

8mR2
0

) ∞∑
nz=1

exp

(
−βh

2n2
z

8mR2
0

)

=

( ∞∑
nx=1

exp−βh
2n2

x

8mR2
0

)3

(3.24)
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At high temperature limit, nx, ny, and nz are very large (O(1010)), when
the dimensions of container is of the order of (10 cm), it can be shown
that the terms of the summations differ very little from each other and
we can assume the terms vary continuously. The difference between the
arguments of the exponential in going from nx to nx + 1 is called ∆ and is
given by

∆ =
βh2(nx + 1)2

8mR2
0

− βh2n2
x

8mR2
0

=
βh2(2nx + 1)

8mR2
0

(3.25)

At room temperature, for m = 10−22 g and a = 10 cm this difference is

∆ ≈ (2nx + 1)× 10−20 (3.26)

Thus the summation in Eqn. 3.24 may be replaced by an integral.

qtrans(V, T ) =

(∫ ∞
0

e−βh
2n2/8mR2

0dn

)3

=
(2πmkT

h2

)3/2

V (3.27)

where V = R3
0.

The factor (h2/2πmkT )1/2 has a dimension of length and is denoted by
Λ. Then

qtrans =
V

Λ3
(3.28)

The kinetic energy of an ideal gas can be calculated by

ε̄trans = kT 2
(∂ln qtrans

∂T

)
(3.29)

and

ε̄trans =
3

2
kT (3.30)

Since εtrans = p2/2m, the average momentum is (mkT )1/2 thus Λ is h/p,
which is defined in Sec. 2.2 as de Broglie wavelength of the particle. The
classical statistics is valid only if Λ3/V � 1. It means that the thermal
de Broglie wavelength must be small compared to the dimensions of the
container or quantum effects decrease as de Broglie wavelength becomes
small.
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To calculate the canonical partition function, if we evaluate Q as qN ,
and then calculate the Helmholtz energy A, we obtain a non–extensive
Helmholtz energy. To identify Q as qN it it is assumed that the particles
are distinguishable, like a set of billiard balls. In quantum mechanics
non-localized particles of one species are indistinguishable (Sec. 2.4). It
means the particle are identical and that their wave functions must be
antisymmetric or symmetric on interchanging any two of the particles.
This behavior has no classical analogue. Now we need only a classical
solution. It has done by recognizing qN is the partition function of a set
of distinguishable particles. By division by N ! which is all permutations
of the “labels” among the N distinguishable particles, we can obtain the
partition function for indistinguishable particles.

Q =
( 1

N !

)
qNtrans (3.31)

At very low temperature some errors can occur when division by N !
is done to count the states. We consider a model system of two identical
particles, each of which can exist in one of two states (Fig. 3.2).

There are four probable ways for classical particles which are distin-
guishable. It can be divided by 2! to obtain the number of ways for
indistinguishable particles. If the particles are fermions, only one particle
is permitted to occupy a state, therefore, there is only one permissible way
for the system. For bosons, of which any number of particles are permitted
to occupy an orbital state, there are three different ways for the system.
At sufficiently high temperature where many orbitals are available for the
particles of a gas, the probability of two particles being in the same orbital
is very small. For temperatures above about 20 K assumption of dividing
by N ! is valid. When temperature is much lower than this, it is necessary
to consider the probability of several particles being in one orbital state
and Bose–Einstein or Fermi–Dirac statistics must be used. Application of
quantum statistics is necessary to study of electrons, photons, and liquid
helium [7].

Using the assumption in Sec. 3.6 that the partition function can be
separated into a translational part and an internal part, and using Eqn.
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Figure 3.2: Comparison of the probable ways for distribution of two classical
particles, fermions, and bosones .

3.31 we obtain

Q =
(qtransqint)

N

N !
(3.32)

qtrans is the only part that contributes to pressure. Substituting Eqns. 3.27
and 3.31 into the equations of Table 3.1 gives the translational contribution
to the thermodynamic properties Table (3.2).
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Table 3.1: Thermodynamic properties in terms of
the canonical partition function.

partition function Q =
∑

j exp
(
−Ej
kBT

)

internal energy U = kBT
2
(
∂lnQ
∂T

)
N,V

pressure p = kBT
(
∂lnQ
∂V

)
N,T

enthalpy H = kBT
2
(
∂lnQ
∂T

)
N,V

+ kBTV
(
∂lnQ
∂V

)
N,T

heat capacity in constant V CV =
(
∂U
∂T

)
N,V

heat capacity in constant p Cp =
(
∂H
∂T

)
N,p

entropy S = kB lnQ+
(
U
T

)

Helmholtz free energy A = −kBT lnQ

Gibbs free energy G = −kBT lnQ+ kBTV
(
∂lnQ
∂V

)
N,T

chemical potential µ = −kBT
(
∂lnQ
∂Nα

)
T,V,Nβ 6=α
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Table 3.2: Translational contribution to thermodynamic properties .

internal energy Utrans = 3
2
NkBT

pressure p = ptrans = NkBT
V

enthalpy Htrans = 5
2
NkBT

heat capacity in constant V CV,trans = 3
2
NkB

heat capacity in constant p Cp,trans = 5
2
NkB

entropy Strans = NkB ln
(
Λ−3 V

N

)
+ 5

2
NkB

Helmholtz free energy Atrans = −NkBT ln
(
Λ−3 V

N

)
−NkBT

Gibbs free energy Gtrans = −NkBT ln
(
Λ−3 V

N

)
chemical potential µtrans = −kBT ln

(
Λ−3 V

N

)
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Chapter 4

Equations of State
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4.1 The van der Waals Equation of State

The equation of state for a ideal gas, pV = NRT is only valid when a gas
is highly dilute, but even at atmospheric pressure this ideal gas law has
appreciable deviations.

The van der Waals equation of state was the first equation which can
predict both vapor and liquid phases. According to van der Waals’ assump-
tions the actual volume available for molecules in a container with volume
V is (V − b) where b is called covolume and denotes the finite diameter
of a molecule. On the other hand, intermolecular attraction decreases the
pressure. He assumed that the attraction part is proportional to the num-
ber of molecules in a volume unit and inversely proportional to volume.
The correction proposed by van der Waals for intermolecular attractions
was −a/V 2

m. It can be assumed that the corrected volume and corrected
pressure should obey the ideal gas law(

p+
a

V 2
m

)
(Vm − b) = RT (4.1)

where T is temperature, p is pressure Vm is molar volume and R is the gas
constant. This equation can be written as an equation for pressure which
contains two terms correspond to repulsive and attractive contributions to
pressure:

p =
RT

(Vm − b)
− a

V 2
m

(4.2)

Separating the repulsive and attractive terms in equation of states is quite
valuable for the representation of fluid properties. The a and b parameters
in the van der Waals equation can be obtained from the critical properties
of the fluid. The critical point conditions are

∂p

∂Vm

=
∂2p

∂V 2
m

= 0 (4.3)

The values of a and b at the critical point can be calculated by

ac =
27

64

R2T 2
c

p2
c

(4.4)
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bc =
1

8

RTc
pc

(4.5)

On the other hand the van der Waals equation can be rewritten as
a cubic polynomial with respect to volume. Therefore, it can be solved
analytically for the volume e.g. by means of Cardono’s formulas. The
most important features of the van der Waals equation are:

1. The constants a and b are valid for both gas and liquid phases.

2. The equation can predict the vapor–liquid critical point

However, the van der Waals equation of state is only a crude approxi-
mation. It can not predict the pV T data of fluid phases accurately.

4.2 Van der Waals type equations

Many researchers tried to improve the van der Waals equation. In 1881,
Clausius [29] replaced the volume in van der Waals attractive term by
(Vm + c).

p =
RT

(Vm − b)
− a

(Vm + c)2
(4.6)

In 1899, Berthelot [30] assumed a temperature dependent attractive pa-
rameter aT = a/T .

The techniques used in the improvement of the van der Waals type
equation concentrated in two areas:

1. Modification of the p(Vm) functional form to improvement the pre-
diction of volumetric properties

2. Introducing a temperature dependent attractive parameter to control
the vapor pressure predictions.

Examples of the first category are the equations of Redlich–Kwong
(RK) [10] , Peng–Robinson (PR), [12], Schmidt–Wenzel (SW) [15] , Clau-
sius (C) [29]. The Soave form of the Redlich–Kwong equation (SRK) [11],
and Stryjek–Vera (SV) [21] are examples of the second category.
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4.2.1 Attractive Term

It is adequate to use an extended form of the van der Waals equation of
state. One of these extended forms which can be used for the currently
popular cubic equation is [32]:

p =
RT

(Vm − b)
− a

(V 2
m + ubVm + wb2)

(4.7)

The denominator of the second term in Eqn. 4.7 is a quadratic expression
in volume, (V 2

m +ubVm +wb2) which replaces the V 2
m term in the attractive

term of the van der Waals Eqn. 4.2. When u = w = 0, Eqn. 4.7 can be
reduced to the Eqn. 4.2. In Redlich–Kwong (RK) equation u = 1 and
w = 0, and in its various forms, the Peng–Robinson (PR) equation u = 2
and w = −1, the Heyen equation [14] u + w = 1, the Schmidt–Wenzel
(SW) [15] u+ w = 1, etc.

The most general form for a cubic equation of state has the form [35].

p =
RT

(Vm − b)
− a(Vm − η)

(Vm − b)(V 2
m + δVm + ε)

(4.8)

This equation has five adjustable parameters b, a, η, δ and ε which can be
temperature dependent [34] .

The temperature dependence of the a parameter plays an important
role in calculating the vapor pressure. Wilson [36] was first one who intro-
duced a general form for temperature dependence of a parameters.

a = acα (4.9)

where ac is the value of a at the critical point and α is

α = TR[1 + (1.57 + 1.62ω)(T−1
R )] (4.10)

where TR = T/Tc is the reduced temperature and ω is the acentric factor
and represents the geometric shape of the molecule. For monatomic gases
ω is almost equal to zero. It increases with the size and polarity of a
molecule [34]. The values of acentric factor are tabulated in various sources
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([37, 38, 39, 40]). Soave proposed a simple and accurate expression for the
temperature dependence of α:

α = [1 +mT
1/2
R ]2 (4.11)

where m is a quadratic function of the acentric factor. Many investigators
used the Soave’s function ( Peng and Robinson Schmidt and Wenzel, Patel
and Teja [18], Adachi et al. [19, 20] Watson et al. [41] and others). They
changed only the m(ω) function to put it into their own equations of state.

Some of the modifications of the attractive term of the van der Waals
equation are tabulated in 4.1.

4.2.2 Repulsive Term

The other way to modify the van der Waals equation of state is adjusting
the repulsive term. Adachi et al. [19] evaluated 16 three–parameter equa-
tions of states for the representation of saturation properties and the high
density region. The repulsive terms proposed by Scott [27], Guggenheim
[25], Carnahan–Starling [26] were combined with the attractive parts of
Redlich–Kwong, Clausius, Peng–Robinson and Harmens–Knapp to obtain
the expression for the equations.

The cubic equations of states need at least three adjustable parameters
which at least one of them should be temperature dependent [34].

Some of the modifications of the repulsive term of the van der Waals
equation are tabulated in 4.3.

4.3 Generalized van der Waals–type equa-

tion of state

Many researchers tried to show the contributions of the repulsion and at-
traction forces to thermodynamic properties of fluids. It can be theoreti-
cally shown ([42, 43, 44]) that the pressure equation can be separated into
two parts, the repulsive and attractive terms for some model intermolecu-
lar potentials. The repulsive part of van der waals equation is very crude
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Table 4.1: Modifications to the attractive parts of the van der Waals Equation
.

Equation Attractive Term (patt)

Redlich–Kwong (RK)(1949) [10] a
T 0.5Vm(Vm+b)

Soave (SRK)(1972) [11] a(T )
Vm(Vm+b)

Peng–Robinson (PR)(1976) [12] a(T )
[Vm(Vm+b)+b(Vm−b)]

Fuller (1976) [13] a(T )
Vm(Vm+cb)

Heyen(1980)(Sandler,1994) [14] a(T )
[V 2

m+(b(T )+c)Vm−b(T )c]

Schmidt–Wenzel (SW)(1980) [15] a(T )
(V 2

m+ubVm+wb2)

Harmens–Knapp (1980) [16] a(T )
(V 2

m+Vmcb−(c−1)b2)

Kubic (1982) [17] a(T )
(Vm+c)2

Patel–Teja (PT)(1982) [18] a(T )
[Vm(Vm+b)+c(Vm−b)]

Adachi et al. (1983) [19] a(T )
(Vm−b2)(Vm+b3)

Stryjek–Vera (SV)(1986a) [21] a(T )
(V 2

m+2bVm−b2)

Yu–Lu (1987) [22] a(T )
Vm(Vm+c)+b(3Vm+c)

Trebble–Bishnoi (TB)(1987) [23] a(T )
V 2

m+(b+c)Vm−(bc+d2)

Schwartzentruber–Renon (1989) [24] a(T )
(Vm+c)(Vm+2c+b)]
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Table 4.2: Comparison of saturated vapor pressures and liquid and vapor vol-
umes using some cubic EOS. [34] , δ(x) = (100/N)

∑
| xcali − x

exp
i | /xexpi .

Model δ(psat) δ(Vliq) δ(Vvap)

Soave 1.5 17.2 3.1

Peng–Robinson 1.3 8.2 2.7

Fuller 1.3 2.0 2.8

Schmidt–Wenzel 1.0 7.9 2.6

Harmens–Knapp 1.5 6.6 3.0

Heyen 5.0 1.9 7.2

Patel–Teja 1.3 7.5 2.6

Kubic 3.5 7.4 15.9

Adachi 1.1 7.4 2.5

Trebble and Bishnoi 2.0 3.0 3.1

Yu–Lu 1.3 3.3 2.2
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estimation, therefore, better expressions have been proposed to be used as
reference terms in equations of state. Carnahan and Starling proposed an
expression for the nonspherical hard convex bodies, Boubĺık and Nezbeda
a more general form of this expression.

Deiters [50, 51] developed a generalized van der Waals equation of state.
This equation is a semiempirical equation of state which has been developed
for non–polar and weakly polar fluids. The square well model is used as
the intermolecular pair potential. The equation involves corrections for
nonspherical molecules, soft repulsion potential, and three–body effects.
This equation of state covers the total fluid range with good accuracy
and has only three adjustable parameters determined from Tc, pc, and
vc. The compressibility factor varies between 0.29 and 0.21, therefore it
covers the experimentally observed range (for nonpolar and moderately

Table 4.3: Modifications to the repulsion parts of the van der Waals
Equation.(1)ξ = 0.74048V 0

m/Vm, V 0
m is the close–packed volume, and α is a non-

sphericity parameter .

Equation Repulsive Term (prep)

Guggenheim (1965) [25] RT
Vm(Vm−b)4

Carnahan–Starling (1969) [26] RT (V 3
m+bV 2

m+b2Vm−b3)
Vm(Vm−b)3

Scott et al. (1971) [27] RT (Vm+b)
Vm(Vm−b)

Boubĺık–Nezbeda(1)(1981) [28] RT (1+(3α−2)ξ+(3α2−3α+1)ξ2−α2ξ3)
Vm(1−ξ)3
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polar substances). It has the form:

p =
RT

b
ρ

[
1 + cc0

4ξ − 2ξ2

(1− ξ)3

]
− Ra

b
ρ2 T̃ + λρ

Y

[
exp(

Y

T̃ + λρ
)− 1

]
I1 (4.12)

with

ρ =
b

Vm
, ξ =

π
√

2

6
ρ , T̃ =

cT

a
, c0 = 0.06887

y = f 2 − c−5.5f(1− f) +
(

1− 0.65

c

)
(1− f)2 (4.14)

f = exp
(
cc0

3ξ2 − 4ξ

(1− ξ)2

)
(4.15)

λ = −0.06911c , γ = 1− 0.0697816(c− 1)2

I1(ρ) =
γ2

c2

5∑
0

hi(i+ 1)γiρi. (4.17)

The hi are listed in Table 4.4.

The three adjustable parameters are: the potential well depth a, the
covolume b, and the number of additional degrees of freedom c.

4.4 Mixtures

Equations of state can be used for mixtures if we have a satisfactory way to
obtain their parameters for mixtures. Using mixing and combining rules
we can calculate the properties of mixture from the properties of pure
components.
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Table 4.4: Polynomial coefficients of I1(ρ) .

i hi

0 7.0794046

1 12.08351455

2 -53.6059

3 143.6681

4 -181.1554682

5 78.5739255

4.4.1 Mixing rules

The most widely used method to extend equation of state to nonpolar
mixtures is the “classical one fluid” method proposed by van der Waals
in 1980. He assumed that the properties of a mixture are averages of the
properties of the pure components. The simplest function for the attractive
parameter is

a =
∑∑

xixjaij (4.18)

where the cross term aij is related to the pure terms aii and ajj by

aij = (aiiajj)
1/2(1− kij) (4.19)

kij is an adjustable parameter. the covolume b is usually expressed by a
linear mixing rule

b =
∑

xibi (4.20)

However many authors use a quadratic form for b.

aij = (aiiajj)
1/2(1− kij) (4.21)

The classical quadratic mixing rules are adequate for nonpolar and weakly
polar components. Adachi and Sugie [45]; Panagiotopoulos and Reid [46];
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Stryjek and Vera [21, 47]; Schwartzentruber et al. [48]; and Sandoval et al.
[49]; have proposed modifications for the van der Waals mixing rules by
introducing a composition–dependent term for a and leaving b parameter
unchanged. Some examples are summarized in Table 4.5

Table 4.5: Composition–dependent mixing rules .

Author aij in Eqn. 4.19

Adachi–Sugie [45] (aiiajj)
1/2(1− lij +mij(xi − xj))

Panagiotopoulos–Reid [46] (aiiajj)
1/2(1− kij + (kij − kji)xi))

Stryjek–Vera [47] (aiiajj)
1/2(1− xikij − xjkji)

Stryjek–Vera [21] (aiiajj)
1/2

[
1− kijkji

xikij+xjkji

]
Schwartzentruber [48] (aiiajj)

1/2

[
1− kij − lij mijxi−mjixjmijxi+mjixj

(xi + xj)

]
kij = kji; lij = −lji; mji = 1−mij ; k11 = l11 = 0

Sandoval [49] (aiiajj)
1/2(1− (kijxi + kjixj)

−0.5(kij + kji)(1− xi − xj))

A different approach was proposed by Deiters [56]. He introduced den-
sity dependence into the van der Waals mixing rules for simple fluids by
applying a variable exponent δ for nonequiform particle distribution in
mixtures

εσδ =
∑∑

xixkεikσ
δ
ik (4.22)
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σδ =
∑∑

xixkσ
δ
ik (4.23)

where
δ = 3(1− ξ2) (4.24)

The exponent can be obtained by integration of radial distribution function
of rigid–sphere mixtures. This mixing rules improve calculations of phase
equilibria in cryogenic mixtures, espetially near critical points. In 1987
Deiters [57] extended his mixing rules to nonspherical molecules.
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Chapter 5

Development of new quantum
corrections
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5.1 Cubic cell model

In 1983, Deiters [53, 54] proposed a very useful and simple model to
calculate the quantum effects in fluid phase of light molecules and atoms.
The quantum correction can be applied in any classical equation of state
which is separable into a repulsive and an attractive part. Therefore, all
van der Waals type equations of state in Sec. 4.2 can be used to calculate
the quantum effect.

This model presents a straightforward method for quantum corrections
on translational partition function by using the “particle in a cubic box”
energy spectrum. It was shown in Sec. 2.5 that translational motions of a
particle in a cubic box are restricted, and the energy of this particle are
discontinuous. Translational motions of molecules in a fluid under high
pressure are also restricted. Each molecule is affected by the repulsive po-
tentials of its neighbours which increase with increasing density, therefore,
the translational energy is no longer continuous. At high densities the
translational energy states are not closely spaced and the assumption used
in Sec. 3.6 to calculate the translational partition function by integration
(Eqn. 3.27) is no longer valid.

It was assumed that each molecule is restricted in a cubic cell by the
repulsion of its neighbour molecules (Fig. 5.1). The eigenvalues of a particle
in a cubic box of length R0 were used

E =
(n2

x + n2
y + n2

z)h
2

8mR2
0

(5.1)

It was assumed that the cell length R0 is related to the free volume,

R0 = 2
3

√
Vf

N
(5.2)

where Vf is the free volume, N stands for the number of molecules and the
factor 2 accounts for cell overlapping.

The energy levels of Eqn. 5.1 and also Eqn. 3.20 were used to calculate
the partition function of a molecule.

qtrans =
[∑

j

exp (− j2h2

8mkTR2
0

)
]3

=
[∑

j

exp (−π
4
j2y2)

]3
(5.3)
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Figure 5.1: Cubic cell model.

In this equation y is reduced wavelength and is defined as

y =
Λ

R0

(5.4)

where Λ is thermal de Broglie wavelength,

Λ =

√
h2

2πmkT
. (5.5)

The quantum mechanical partition function was obtained from the molec-
ular partition function using Sec. 3.6 and Eqns. 3.23 and 3.32 and the
assumption that there are N/8 distinct cells available for each molecule.

Qqu =
1

N !

(N
8
qtrans

)N
Qint = Qcl

[
y
∑
j

exp
(
− π

4
y2j2

)]3N

. (5.6)
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This correction function is expanded into a power series in y

ln
[
y
∑
j

exp
(
− π

4
y2j2

)]
=
∑
i

riy
i (5.7)

for which the coefficients ri are shown in Table 5.1

Table 5.1: Expansion coefficients of Deiters quantum correction function.
i ri i ri

0 0 7 8.6632912449
1 -0.49995174927 8 -8.7278378272
2 -0.12867273248 9 5.7423465620
3 0.026360453309 10 -2.4445076274
4 -0.55253407160 11 0.64896811633
5 2.2409938208 12 -0.097758376489
6 -5.5702015921 13 0.006387718839

The cubic cell model is a good and straightforward method for pre-
diction of thermodynamic properties of quantum fluids at high densities.
However, the cell model is not suitable at low densities or high temper-
atures and overestimates the quantum effects. Furthermore, assuming a
cubic form for the cell is unrealistic.

5.2 Spherical cell model

To remove the weaknesses of the cubic cell model we applied a more
realistic model by assuming a spherical symmetric cell. We assumed that
molecules of a high density fluid are confined in a approximately spherical
cell formed by the repulsive potentials of its neighbouring molecules (cf.
Fig. 5.2).

In (1997) Kohlbruch [64] used the same model for the calculation of
quantum corrections on equations of state. However, some very coarse
approximations and assumptions used in solving the equations, introduced
some uncertainties and led on some instances even to unrealistic results.
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Similar to the previous section, the one-particle partition function can
be calculated by obtaining the energy eigenvalues of the present model.
However, the spherical geometry of this model involves considerable math-
ematical complexity.

Figure 5.2: Spherical cell model.

The Schrödinger equation is solved in Sec. 2.6.1 for a particle in a
spherical cell to obtain the energy spectrum. The potential energy function
is assumed to be

V (r) =

{
0 for r < R0

∞ for r ≥ R0

where R0 is the spherical cell radius which is related to the free volume Vf

with the following relations

4

3
πR3

0 = g
Vf

N
(5.8)

where the factor g accounts for cell overlapping.
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According to calculations in Sec. 2.6.1 the energy eigenvalues are as
follows

El =
~

2(j∗l,n)2

2mR2
0

(5.9)

where j∗l,n denotes the nth roots of the jl, and jl is

jl(x) = (−x)l
(

1

x

d

dx

)l(
sin(x)

x

)
. (5.10)

We wish to compute the set of the first n zeros of the Bessel function
for various integer orders l. A computer program in C was developed to
calculate the j∗l,n set considering the following items

1. Eqn. 5.11, which gives the first zeros of jls with the different ls,

j∗l,1 ' (l + 1/2) + 1.85575(l + 1/2)1/3 + 1.03315(l + 1/2)−1/3

−0.00397(l + 1/2)−1 − 0.0908(l + 1/2)−5/3 + . . . (5.11)

where v = (l + 1/2),

2. The nth zero for the spherical bessel function j0.

j0(x) =
sin(x)

x
(5.12)

j∗0,n = nπ (5.13)

3. the recursion relation between successive spherical Bessel j functions,

jl+1(x) =
2l + 1

x
jl(x)− jl−1(x) (5.14)

4. the fast 1-dimensional “regula falsi” iteration program which is used
to solve a function in an interval containing only one zero. and finally,
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5. a function which is used as an approximate increment. This function
can be added to the previous zero to make an interval which the next
zero is certainly situated inside the interval,

incr(n, l) =
1

n+ 1

√
l +

(
0.1197

(n+ 1)3
− 0.11576

(n+ 1)2
+

0.01559

n+ 1
+ .0007748

)
l + 5.0 (5.15)

In other words, if we have computed a zero j∗l,k−1, then the interval in which
to search for the next zero, j∗l,k is from (j∗l,k−1 + δ) to (j∗l,k + incr) where δ
is a small number which is added to j∗l,k−1 to make sure that the previous
zero is not situated in the interval.

The zeros are calculated for l ≤ 300 and n ≤ 300, and are used to
calculate the partition function.

5.3 Calculation of the partition function

Obtaining the molecular partition function (Sec. 3.6 and Eqns. 3.23 and
3.32), the quantum mechanical partition function can be calculated

qtrans =
∑
l

∑
n

(2l + 1) exp
( −~2j2

l,n

2mkTR2
0

)
(5.16)

Introducing the thermal de Broglie wavelength Eqn. 5.5, and reduced wave-
length y, Eqn. 5.4, to Eqn. 5.16 we obtain

qtrans =
∑
l

∑
n

(2l + 1) exp
(
− 1

4π
y2j2

l,n

)
(5.17)

where (2l+1) term is the degeneracy, because for each l there exist (2l+1)
degenerate levels (with the same eigenvalue but different eigenfunctions)
caused by solution of the spherical harmonics Y m

l (θ, φ) (Page 29 and App.
C).
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The partition function of a classical real gas is

Qcl =
1

N !

(Vf
Λ3

)N
Qint (5.18)

where Qint contains the contributions of the attractive potential and inner
degrees of freedom. For the cell model we obtain

Qqu =
1

N !
(
N

g
q)N Qint (5.19)

substituting the Eqns. 5.8, 5.17 and 5.18 in the Eqn. 5.19, we obtain

Qqu = Qcl

[
3

4π
y3
∑
l

∑
n

(2l + 1)exp
(
− 1

4π
y2(j∗l,n)2

)]N
= Qcl q

′N (5.20)

using j∗l,n obtained from the C program in Sec. (5.2), the term in the
square brackets, q′,can be calculated numerically and its logarithm can be
expanded into the power series in y. The results are shown in Table 5.2.

ln q′ = ln

[
3

4π
y3
∑
l

∑
n

(2l + 1)exp
(
− 1

4π
y2j2

l,n

)]
=

i=13∑
i=1

riy
i (5.21)

The ri coefficients are shown in Table 5.3
The expression

∑13
i=1 riy

i of this work are compared with the same ex-
pression from the cubic cell model (Table 5.1) and the results of Kohlbruch
[64] in Fig. 5.3.

The expression
∑13

i=1 riy
i must vanish at y = 0 which is the classical

limit.

5.4 Thermodynamic properties

From the quantum corrected canonical partition function, The Helmholtz
free energy of the system can be calculated. The quantum corrected

66



Table 5.2: The quantum correction to the partition function, ln q′ (see Eqn.
5.20) as a function of the reduced wavelength y.

y ln q’ y ln q’
0.100000 -0.076248 0.540000 -0.445342
0.120000 -0.091805 0.560000 -0.463604
0.140000 -0.107468 0.580000 -0.482010
0.160000 -0.123237 0.600000 -0.500564
0.180000 -0.139116 0.620000 -0.519268
0.200000 -0.155104 0.640000 -0.538123
0.220000 -0.171204 0.660000 -0.557132
0.240000 -0.187417 0.680000 -0.576299
0.260000 -0.203745 0.700000 -0.595624
0.280000 -0.220189 0.720000 -0.615112
0.300000 -0.236751 0.740000 -0.634764
0.320000 -0.253433 0.760000 -0.654583
0.340000 -0.270236 0.780000 -0.674573
0.360000 -0.287162 0.800000 -0.694735
0.380000 -0.304213 0.820000 -0.715073
0.400000 -0.321390 0.840000 -0.735591
0.420000 -0.338697 0.860000 -0.756289
0.440000 -0.356133 0.880000 -0.777173
0.460000 -0.373702 0.900000 -0.798245
0.480000 -0.391406 0.920000 -0.819509
0.500000 -0.409245 0.940000 -0.840967
0.520000 -0.427224 0.960000 -0.862624
0.540000 -0.445342 0.980000 -0.884482
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Table 5.3: Expansion coefficients of quantum correction function based on the
spherical cell model

i ri i ri

0 0 7 3.115526848
1 -0.7563398333 8 -0.8260182969
2 -0.0167642267 9 1.092423845
3 -0.6393742663 10 -0.5892323173
4 1.475145308 11 -5.552969409
5 -0.8803506078 12 7.524010628
6 -2.117627725 13 -2.735233166

0 0.2 0.4 0.6 0.8 1
y

−1

−0.8

−0.6

−0.4

−0.2

0

S

Figure 5.3: Series expansion
∑13

i=1 riy
i based on the spherical cell model (solid

line), cubic cell model (long–dashed line), and
∑10

i=1 riy
i in Kohlbruch’s result

(dashed line.)

Helmholtz free energy, and a van der Waals type equation of state which
can be separated into repulsive and attractive parts

p = prep + patt (5.22)

68



can be readily used to calculate the quantum effects in the equation of
state.

Using Eqn. 3.12 and canonical partition function Eqn. 5.20 obtained in
Sec. 5.3, the Helmholtz free energy can be obtained as

Aqu = −kT lnQqu = Acl −RT
i=13∑
i=1

riy
i (5.23)

and

pqu = −
(∂Aqu

∂Vm

)
T

= pcl − prep

13∑
i=1

iriy
i. (5.24)

5.5 Low density and high temperature cor-

rections

At low densities or high temperatures the cell model is not suitable
for description of fluids, because the molecules are not totally restricted to
their hypothetical cells.

The cell walls act as a barrier for the particle contained in the cell. In
Sec. 2.6.1, the potential energy was assumed to be infinite for
r ≥ R0; however, there exist no infinite potentials in nature. We therefore
propose to use cell walls of finite height, which allow a particle to escape
from its cell. If a particle has less energy than the energy barrier, the
cell walls can be considered as an infinite potential barrier for the particle,
under such conditions the particle has not enough energy to run out of
the cell, neglecting the tunnel effect. They can be considered as quantum
particles. At higher temperature, some molecules have more energy than
the potential energy barrier and are no longer quantum particles, they can
freely move and leave the cell. Decreasing the density produces the same
effect. At lower densities, the repulsion potential energy, which is the cell
energy barrier, decreases. The number of classical particles increases with
increasing temperature and decreasing density.

The Boltzmann distribution can be used to calculate the number of free
particles which have more energy than the barrier energy of the cell. The
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Boltzmann distribution is a classical distribution function for distribution
of an amount of energy between identical particles. The probability that
an entity has an energy between E and E+dE is given by the Boltzmann
probability distribution function

P (E) = Ce(−E/kBT ) (5.25)

where C is normalization constant, assuming that an entity can have an
energy between zero and infinity, C = 1/kT . Then, the number of classi-
cal particles (n) which have more energy than a given energy E0 (energy
barrier), is obtained as

n =
N

kBT
exp
(
− E

kBT

)
(5.26)

In order to correct the translational partition function at high temper-
ature and low density limit, it is separated into two parts, a classical, and
a quantum part

Qtotal = Qcl,n Qqu,(N−n) Qint (5.27)

where Qcl,n is partition function for n classical particles, and Qqu,(N−n) is
partition function for (N − n) quantum particles. Using Stirling’s approx-
imation, (for N large)

lnN ! = N lnN −N (5.28)

and substituting Eqns. 5.8 and 5.5, Eqn. 5.18 can be written as

Qcl,n =
1

n!

( Vf

Λ3

)n
Qint,n

= en
( Vf

nΛ3

)n
Qint,n = en

(4π

3g

1

y3

)n
Qint,n (5.29)

and Qqu for (N − n) quantum particle can be obtained as

Qqu,(N−n) =
1

(N − n)!

((N − n)

g
qtrans

)(N−n)

Qint,(N−n)

= e(N−n)(
qtrans

g
)(N−n)Qint,(N−n) (5.30)
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Substituting Eqns. 5.29 and 5.30 into Eqn. 5.27, the total translational
partition function is calculated

Qtotal =
(4π

3g

e

y3

)n
(
e qtrans

g
)(N−n)

(3g

4π

y3

e

)N
Qcl (5.31)

finally

Qtotal =
( 3

4π
y3qtrans

)(N−n)

Qcl (5.32)

where

y =
k1Λ

(Vf/N)1/3
. (5.33)

and k1 = (4π/3g)1/3. The free volume is obtained by an equation of state
(Eqn. 4.12) proposed by Deiters [50, 51]

Vf = V exp

(
cc0

3ξ2 − 4ξ

(1− ξ)2

)
(5.34)

Applying Eqns. 5.5 and 5.34 into Eqn. 5.33,

y2(T, ρ, σ) =
h2k

2/3
1

2πmkT
ρ2/3

[
exp

(
− cc0

3ξ2 − 4ξ

(1− ξ)2

)]2/3

(5.35)

for y = y0

kBT
∗
ref =

h2k
2/3
1

2πmy2
0

ρ2/3 exp
(
− 2

3
cc0

3ξ2 − 4ξ

(1− ξ)2

)
= Eref (5.36)

We choose the energy Eref as the barrier energy of the cell.

Eref

kBT
=
y2(ρ, T, σ)

y2
0

(5.37)

The number of classical particles can be obtained by integrating Eqn.
5.26

n =
N

kBT

∫ ∞
Eref

exp
(
− E

kBT

)
dE (5.38)
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and

n =
N

kBT

(
− kT exp

(
− E

kBT

))∣∣∣∣∞
E0

(5.39)

n = Nexp
(
− Eref

kBT

)
(5.40)

or equivalently

n = Nexp
(
− y2(ρ, T, σ)

y2
0

)
(5.41)

Substituting Eqn. 5.41 into the logarithm of Eqn. 5.31 yields

lnQtotal = (N − n) ln
( 3

4π
y3qtrans

)
+ lnQcl (5.42)

lnQtotal = N
(

1− exp
(
− y2(ρ, T, σ)

y2
0

))
ln(

3

4π
y3qtrans) + lnQcl (5.43)

and

lnQtotal = N
(

1− exp
(
− y2(ρ, T, σ)

y2
0

)) i=13∑
i=1

riy
i + lnQcl (5.44)

finally, defining α = 1/y2
0 and Xi(y) =

∑i=13
i=1 riy

i

lnQtotal = N(1− e−αy
2

)Xi(y) + lnQcl. (5.45)
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Chapter 6

Results and discussion
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Using the ThermoC package [55], calculations of fluid phase coexis-
tence curves, pressure isotherms, and critical parameters have been done.
ThermoC is a modular program package for the calculation of arbitrary
thermodynamic properties of pure fluid and binary fluid mixtures with
any equation of state or mixing rule. Calculation of all kinds of fluid phase
equilibria and solid–fluid phase equilibria are possible by ThermoC pack-
age. (App. D )

The ThermoC program package has been extended to calculate the fluid
phase equilibria of quantum fluids using the new spherical cell model and
high temperature and low density limit corrections.

The Deiters equation of state [50, 51], which is introduced in Sec. 4.3,
has been applied to demonstrate the new quantum corrections. This equa-
tion of state gives a very good results for classical gases.

6.1 Expansion coefficients ri

The expansion coefficients of quantum correction function for the spherical
cell model (ri) which are calculated in Sec. 5.3, are tabulated in Table 5.3.
Addition of the high temperature and low density limit correction function
to the (

∑13
i=1 riy

i) expression leads to a curve which shows less quantum
effect at high temperature or low density limit (y → 0) than the expression
without the corrections. Increasing α (which is defined as 1/y2

0 and is a
measure of the potential energy barrier of the cell), the quantum effects for
the smaller values of y are decreased. In Fig. 6.1, the (

∑13
i=1 riy

i) expression

is compared with ((1− e−αy
2
)
∑i=13

i=1 riy
i) for the different values of α.

The same correction function can be applied for the expansion coeffi-
cients (ri) for the cubic cell model (Table 5.1) and shows same effects (Fig.
6.2).

Comparison between Xis for the cubic and the spherical cell model
shows that in the spherical model, calculated quantum effects are larger
than in the cubic model (Fig. 6.3 .)

74



0 0.2 0.4 0.6 0.8 1
y

−1

−0.8

−0.6

−0.4

−0.2

0

S

Figure 6.1: Comparison of Xi(y) from spherical cell model (solid line), with (1 −
e−αy

2
)Xi(y) expressions for the different αs, α = 1 (dotted line), α = 5 (dashed line),

α = 10 (long dashed), α = 15 (dot-dashed), and α = 25 (circle-line).
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Figure 6.2: Comparison of Xi(y) from cubic cell model (solid line), with (1 −
e−αy

2
)Xi(y) expressions for the different αs, α = 1 (dotted line), α = 5 (dashed line),

α = 10 (long dashed), α = 15 (dot-dashed), and α = 25 (circle-line).
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Figure 6.3: Xi(y) (solid line) and (1 − e−αy
2
)Xi(y) with α = 15 (dot-dashed) for

spherical cell model are compared with Xi(y) (long dashed) and (1 − e−αy
2
)Xi(y for

the same value of α (dotted line) in the cubic cell model.

6.2 Pure fluids

6.2.1 Neon

Quantum corrected equation of state

The coexistence curve has been calculated for neon using the Deiters equa-
tion of state with the new quantum correction functions. Fig. 6.4 shows
the results of the Deiters equation of state without quantum corrections,
and with cubic cell model correction functions, and compares with exper-
imental data.

The results of new model are in an excellent agreement with experiment,
and an improvement in comparison with cubic cell model is observed.

On the other hand, the vapor–liquid coexistence curve of the new model
is compared with the simulation results.
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Figure 6.4: Densities of coexisting phases of neon. Comparison of Deiters equation of
state with the cubic cell model results (long-dashed line), without quantum corrections
(dashed line), with spherical cell model for α = 9 (solid line), and experiment (•))

Global simulations

Global simulation [68] uses the ab initio potential interactions in computer
simulations to obtain fluid phase properties without using any empirical
parameters.

Cybulski and Toczylowski [70] reported an ab initio potential for neon
using the CCSD(T) level of theory and several correlation consistent basis
sets. Results of the aug-cc-pVQZ (avqz) and the aug-cc-pV5Z (av5z) basis
sets were extrapolated by (1/X3) method to obtain the basis set limit
(av45z) of the interaction energies [65][App. E].

The potential data have been fitted using the analytical representation
of Korona et. al. [69]

φ(R) = Ae−αR+βR2

+
8∑

n=3

f2n(R, b)
C2n

R2n
(6.1)

where A,α, β and b denote adjustable parameters, C2n denotes a dispersion
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coefficient, and f2n is the damping function of Tang and Toennies [71]

f2n(R, b) = 1− e−bR
2n∑
k=0

(bR)k

k!
(6.2)

Gibbs ensemble Monte Carlo simulations [66] were performed to calcu-
late the vapor–liquid phase equilibria of neon [65]. Effects of three-body
interactions were taken into account using Axilrod–Teller [67] (AT) triple-
dipole potential. Results of the simulation show that addition of the AT
potential to the total energy leads to a better agreement with experimen-
tal data; however, there are still large descrepancies especially in the liquid
branch which are mainly due to the quantum effects.

Results of the simulations, Deiters equation of state with and without
quantum corrections, and experimental data are shown in Figs. 6.5 and
6.6.
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Figure 6.5: Densities of coexisting phases of neon. Comparison of Deiters equation of
state with the cubic cell model results (long-dashed line), without quantum corrections
(dashed line), with spherical cell model for α = 9 (solid line), experiment (•) and GEMC
simulation results with the av45z plus AT potentials (�)

Addition of AT potential to the total energy makes a better agreement
with experiment and the results are very close to the Deiters equation
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Figure 6.6: Comparison of vapor pressures for neon: Deiters equation of state without
quantum corrections (dashed line), with spherical cell model for α = 9 (solid line),
experiment (•) and GEMC simulation results with the av45z plus AT potentials (�)

of state without quantum corrections. It shows that deviations from the
experimental data are caused by quantum effects and can be corrected by
inclusion of the new quantum corrections.

6.2.2 Hydrogen

Hydrogen shows more pronounced quantum effects than neon (Tabel 1.1).
The coexistence curve of hydrogen has been calcuated using Deiters equa-
tion of state with the new quantum corrections, and the results have been
compared with the experiment, and the Deiters equation of state with cu-
bic cell model quantum corrections. As seen in Figs. 6.7 and 6.8 the results
of cubic cell model improves the result but there are still large discrepan-
cies in the liquid branch, the new model improves the results and leads to
a good agreement with experiment.

The vapor pressure curve of hydrogen is shown in Fig. 6.9. Comparison
between the new and the old model shows that the new model improves
the results especially at lower temperatures.
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Figure 6.7: Densities of coexisting phases of hydrogen. Comparison of Deiters equa-
tion of state with the cubic cell model results (long-dashed line), with spherical cell
model for α = 50 (solid line), and experiment (•))
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Figure 6.8: Densities of coexisting phases of hydrogen. Comparison of Deiters equa-
tion of state with the cubic cell model results (long-dashed line), without quantum
corrections (dashed line), with spherical cell model for α = 50 (solid line), and experi-
ment (•))
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Figure 6.9: Comparison of vapor pressures for hydrogen , for Deiters equation of state
with the cubic cell model results (long-dashed line), with spherical cell model for α = 50
(solid line), and experiment (•)

6.2.3 Methane

The vapor–liquid coexistence curve for methane shows rather small quan-
tum effects (Table 1.1). The cubic cell corrections produce a good agree-
ment with experimental data; however, in the liquid branch there exist
some deviations. It is shown in Fig. 6.10 that results of the new model
have an excellent agreement with the experimental data. The results of
the spherical cell model with high temperature and low density corrections
are not distinguishable from the experimental results. The vapor pressure
results of both models, (as shown in Fig. 6.11) are in a very good agreement
with the experimental vapor pressures.
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Figure 6.10: Densities of coexisting phases of methane. Comparison of Deiters equa-
tion of state with the cubic cell model results (dotted line), with spherical cell model
for α = 100 (long-dashed line), and experiment (solid line))
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Figure 6.11: Comparison of vapor pressures of methane, Deiters equation of state
with the cubic cell model results (dotted line), with spherical cell model for α = 100
(long-dashed line), and experiment (solid line))
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6.2.4 Nitrogen

In the case of nitrogen (such as methane), results of the cubic cell model
are in a good agreement with the experiment. However, the results of the
new model are in excellent agreement with the experimental data. The
vapor–liquid coexistence curve and the vapor pressure data are shown in
Figs. 6.12 and 6.13. The α parameter in this case is in the range of 300±20,
which is three times the α in the case of methane. It is probably due to the
higher repulsive potentials between nitrogen molecules than the methane
molecules.
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Figure 6.12: Densities of coexisting phases of nitrogen. Comparison of Deiters
equation of state with the cubic cell model results (dashed line), with spherical cell
model for α = 300 (�), and experiment (solid line).
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Figure 6.13: Comparison of vapor pressures of nitrogen, Deiters equation of state
with the cubic cell model results (dashed line), with spherical cell model for α = 300
(�), and experiment (solid line)).

6.3 Binary mixtures

A density-dependent mixing rule proposed by Deiters [56] was used for the
calculation of fluid phase equilibria of binary mixtures of quantum fluids.
The mixing rules are obtained by introducing a variable exponent into the
van der Waals mixing rules to account for the non-equiform particle distri-
bution in mixtures of unlike molecules (Sec. 4.4.1). The vapor–liquid co-
existence curves for the binary mixtures of neon–argon, and neon–krypton
for several different isotherms have been calculated.

6.3.1 Neon–Argon

The p–x–y phase equilibria of the neon–argon system have been calculated
for 95.82 K, 101.94 K, 110.78 K, 121.36 K, and 129.93 K isotherms.

As seen in Fig. 6.14, at 95.82 K isotherm, the results of the new model
are in better agreement with experimental data than the old model. The
best results were obtained with α = 120.
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For the isotherm at 101.94 K, which is shown in Fig. 6.15 the results
of the new model are in excellent agreement with experiment, and show
significant improvements in comparison with the cubic cell model.It was
found that α = 95 gives the best results at this isotherm.

At 110.78 K isotherm, the old model has good results, however the new
model improves the results in the right branch of the isotherm which are
shown in Fig. 6.16. α = 45 gives the best results.

The next two isotherms for the neon–argon mixtures are at 121.36 K,
and 129.93 K, which are shown in Figs. 6.17 and 6.18 respectively. The
new model shows improvements in both isotherms in the right (liquid)
branch in comparison with the old model. The calculated pressures near
the critical region are in better agreement with experimental data than
with the old model. The α parameter at 121.36 K isotherm is 10, but in
the case of 129.93 K isotherm, the α parameter is nearly zero which means
that quantum effects calculated by the spherical cell model is nearly zero.
It can be seen in Fig. 6.18 that old model overestimates the quantum effects
at this isotherm, but the new model overcomes this deficiency.
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Figure 6.14: The Ne-Ar system at 95.82 K. Comparison of the new model with
α = 120 (solid line), the old model (long-dashed) , and experiment (•)
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Figure 6.15: The Ne-Ar system at 101.94 K Comparison of the new model withα = 95
(solid line), the old model (long-dashed), and experiment (•)
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Figure 6.16: The Ne-Ar system at 110.78 K Comparison of the equation of state
without quantum corrections (dot-dashed), new model with α = 45 (solid line), the old
model (long-dashed), and experiment (•)
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Figure 6.17: The Ne-Ar system at 121.36 K Comparison of the new model with α = 10
(solid line), the old model (long-dashed), and experiment (•)
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Figure 6.18: The Ne-Ar system at 129.93 K Comparison of the new model with α = 0
(solid line), the old model (long-dashed), and experiment (•)
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6.3.2 Neon–Krypton

The p–x–y phase equilibria of the neon–krypton system have been calcu-
lated at three isotherms 133.15 K, 166.15 K, and 178.15 K.

The results are shown in Figs. 6.19, 6.20, and 6.21. An improvement is
seen in the liquid branch of the first isotherm, 133.15 K by the new model,
in comparison with the old model.

In the other two isotherms, the results of the new model show a bet-
ter agreement with experiment. The α parameter is zero for these two
isotherms. As the neon–argon case, the new model corrects the overesti-
mation of the old model at higher temperatures.
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Figure 6.19: The Ne-Kr system at 133.15 K. Comparison of the new model with
α = 10 (solid line), the old model (long-dashed), and experiment (•-line)

The results show that the new model leads to a better agreement with
the experiment than the cubic cell model.
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Figure 6.20: The Ne-Kr system at 166.15 K. Comparison of the new model with α = 0
(solid line), the old model (long-dashed), and experiment (•-line)
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Figure 6.21: The Ne-Kr system at 178.15 K. Comparison of the new model with α = 0
(solid line), the old model (long-dashed), and experiment (•-line)
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Chapter 7

Conclusion
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The spherical cell model was used to calculate the translational energy
eigenvalues of the system. The discontinuous energy spectrum was used
to calculate the translational partition function for a molecule. Using sta-
tistical mechanical relations, the quantum corrected canonical partition
function was calculated. A quantum correction function was obtained with
a simple analytical form, which is applicable to any van der Waals type
equation of state.

The new correction function was obtained to remove the weaknesses
of the older cell model in the high temperature and low density limit. It
is a function of temperature, molar mass, and the distance characteristic
parameter (σ). It contains a physically meaningful adjustable parameter,
(y0), which can be considered as “reference reduced wavelength”.

The correction functions were applied to the Deiters equation of state
which has resonably good results in the classical limit.

The quantum effects in fluid phase equilibria of several pure systems
namely, neon, hydrogen, nitrogen, and methane and two binary mixtures,
neon–argon, and neon krypton were studied. The results are in a very good
agreement with experiment.

A comprehensive investigation on predictions of phase equilibria for
pure neon including simulations was reported. Inclusion of correction func-
tions to the equation of state leads to an excellent agreement with exper-
iment. On the other hand, the results of the simulations with accurate
potentials show deviations from experiment. The results of the equation
of state with and without quantum corrections suggest that the discrepan-
cies in simulation results are due to quantum effects.

Fluid phase equilibria of the binary mixtures of neon–argon, and neon
krypton were obtained for several isotherms using Deiters equation of state
and a density dependent mixing theory. The results of the new model show
good agreement with experiment. The addition of the high-temperature
limit correction function to the cell model results removes the deficiencies
of the cell model.
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Appendix A

Series solution of the Bessel
equation
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The Bessel equation has the form ([3])

d2u

dx2
+

1

x

du

dx
+

(
1− m2

x2

)
u = 0. (A.1)

Expanding around the regular singular point x = 0 we obtain [3]

u(x) = xα[1 +
∞∑
1

ujx
j]. (A.2)

Substitution of A.2 in the A.1, and multyplying by x2, we obtain

xα[α(α− 1) +
∞∑
1

(α + j)(α + j − 1)ujx
j]

+xα[α +
∞∑
1

(α + j)ujx
j]

+xα[x2 +
∞∑
1

ujx
j+2 −m2 −m2ujx

j] = 0 (A.3)

After equating coefficients of successive powers of x we obtain

α(α− 1) + α−m2 = 0, α = ±m, (A.4)

[α(α + 1) + α + 1−m2]u1 = 0, (A.5)

[(α + 2)(α + 1) + α + 2−m2]u2 + 1 = 0, (A.6)

...

[(α + j)(α + j − 1) + α + j −m2]uj + uj−2 = 0. (A.7)

Using Eqns. A.4, Eqn. A.5 can be written as

(2α + 1) = 0 (A.8)
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therefore u1 = 0 for all values of α except for α = 1/2, but we can take
u1 = 0 even for α = 1/2. Therefore, the recursion relation A.7 becomes

u1 = u3 = u5 = . . . = u2n+1 = . . . = 0. (A.9)

Using α2 = m2, Eqn. A.7 can be rewritten in the form

u2j = −
u2(j−1)

(2j + α)2 −m2
= −

u2(j−1)

4j(j + α)
. (A.10)

After applying Eqn. A.10 repeatedly and decreasing u2(j−1) to u0, we
obtain

u2j = (−1)2 u2(j−2)

4j(j − 1)(j + α)(j + α− 1)

=
(−1)jΓ(1 + α)

22jj!Γ(j + α + 1)
u0, (A.11)

where Γ is the gamma function and u0 = 1. Substituting Eqns. A.9 and
A.11 into A.2 we find two solutions.

ux =


xm
∑∞

0
Γ(m+1)(−1)r

22rr!Γ(r+m+1)x
2r

x−m
∑∞

0
Γ(−m+1)(−1)r

22rr!Γ(r−m+1)x
2r

Multiplying by 2∓m/Γ(∓m+1) we obtain the conventionally defined Bessel
functions:

Jm(x) = (
x

2
)m

∞∑
0

(−1)r

r!Γ(r +m+ 1)
(
x

2
)2r, (A.12)

J−m(x) = (
x

2
)−m

∞∑
0

(−1)r

r!Γ(r −m+ 1)
(
x

2
)2r. (A.13)

The denominator of Eqn. A.13 is infinite for negative integer arguments
of the gamma function:

Γ(r −m+ 1) =∞, r −m+ 1 = 0,−1,−2, . . . ,

r = m− 1,m− 2, . . . , 0. (A.14)

Changing the dummy summation index we obtain

J−m(x) = (−1)mJm(x), m = 0, 1, 2, . . . (A.15)
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Appendix B

Gamma function; recursion
relations

97



The values of the following integral can be found easily for α > 0, ([2])∫ ∞
0

e−αxdx = −1

a
e−αx

∞
0

=
1

α
. (B.1)

After differentiating both side of this equation repeatedly with respect to
α [2] ∫ ∞

0

xe−αxdx =
1

α2
,∫ ∞

0

x2e−αxdx =
2

α3
,∫ ∞

0

x3e−αxdx =
3!

α4
.

or in general form ∫ ∞
0

xne−αxdx =
n!

αn+1
(B.5)

for α = 1, we get ∫ ∞
0

xne−xdx = n! (B.6)

For nonnegative n the followig integral is called the gamma Γ function.

Γ(n) =

∫ ∞
0

xn−1e−xdx = (n− 1)!, n > 0. (B.7)

and

Γ(n+ 1) =

∫ ∞
0

xne−xdx = n! n > −1. (B.8)

Integrating B.8 by parts, calling xn = u,and e−xdx = dv

Γ(n+ 1) = −xne−x
∞

0

−
∫ ∞

0

(−e−x)nxn−1dx

= n

∫ ∞
0

xn−1e−xdx = nΓ(n). (B.9)

The equation
Γ(n+ 1) = nΓ(n) (B.10)

is called the recursion relation for the Γ function.
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Appendix C

Spherical harmonics
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The explicit formulas for spherical harmonics [4] are

Y m
l (θ, φ) =



(−1)m
√

2l+1
2

(l−m)!
(l+m)!P

m
l (cos θ)eimφ√

2π
, m ≥ 0,√

2l+1
2

(l−|m|)!
(l+|m|)!P

|m|
l (cos θ)eimφ√

2π
, m < 0,

l = 0, 1, 2, . . . , m = −l,−l + 1, . . . , l − 1, l.

and

Pm
l =

(1− x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l

=
(−1)m(l +m)!

2ll!(l −m)!

1

(1− x2)m/2
dl−m

dxl−m
(x2 − 1)l. (C.1)

The low order spherical harmonics from the above equations are as
follows:
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For l = 0

Y 0
0 (θ, φ) =

1√
4π

For l = 1

Y 1
1 (θ, φ) = −

√
3

8π
sin θeiφ

Y 0
1 (θ, φ) =

√
3

4π
cos θ

Y −1
1 (θ, φ) =

√
3

8π
sin θe−iφ

For l = 2

Y 2
2 (θ, φ) =

1

4

√
15

2π
sin2 θe2iφ

Y 1
2 (θ, φ) = −

√
15

8π
sin θ cos θeiφ

Y 0
2 (θ, φ) =

1

2

√
5

4π
(3 cos2 θ − 1)eiφ

Y −1
2 (θ, φ) =

√
15

8π
sin θ cos θe−iφ

Y −2
2 (θ, φ) =

1

4

√
15

2π
sin2 θe−2iφ

For l = 3

Y 3
3 (θ, φ) = −1

4

√
35

4π
sin3 θe3iφ
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Y 2
3 (θ, φ) =

1

4

√
105

2π
sin2 θ cos θe2iφ

Y 1
3 (θ, φ) = −1

4

√
21

4π
sin θ(5 cos2 θ − 1)eiφ

Y 0
3 (θ, φ) = −1

2

√
7

4π
(5 cos2 θ − 3)eiφ

Y −1
3 (θ, φ) =

1

4

√
21

4π
sin θ(5 cos2 θ − 1)e−iφ

Y −2
3 (θ, φ) =

1

4

√
105

2π
sin2 θ cos θe−2iφ

Y −3
3 (θ, φ) =

1

4

√
35

4π
sin3 θe−3iφ
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Appendix D

ThermoC package
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ThermoC [55] is a program package for the calculation of thermodynamic
properties of pure fluid and binary fluid mixtures including phase equilib-
ria, with arbitrary equations of state (EOS) and mixing rules. This package
is able to administrate a large number of equations of state The package
programs can be divided into three classes:

1. main programs, which are independent of the equations of state and
the models used; and calculate the properties,

2. model-dependent subroutines, containing equations of state or mix-
ing rules,

3. model-independent subroutines, containing universal thermodynamic
relations, mathematical codes which are used by main programs.

By linking the model-independent programs with the model-dependent
code, executable programs for a thermodynamic model are obtained.

The program package contains the following directories:

program package directories

bin: executables
ideal: caloric properties of the perfect gas
include: header files
lib: object file archives
main: main programs
models: model-specific subroutines
solid: sublimation or melting curve data
thsub: model-independent subroutines
spinodal1 spinodals
math: mathematical subroutines

The following main programs are available for pure substances:
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programs for pure compounds
bfmgr1: maintains data base files (pure compounds)
check1: consistency test for user-supplied

subroutine moduies
ffe1: vapour pressure curve of a pure fluid
reduc1: reads experimental data of pure fluids, calculates

EOS parameters, and writes them to a data base file
sfe1: sublimation pressure curve of a pure fluid
vir1: virial coefficients
xth1: thermodynamic properties of a single phase

The following main programs are available for binary mixtures:

programs for binary mixtures

bfmgr2: maintains data base files (binary mixtures)
crit2: critical curves of binary mixtures
ffe2: VLE, LLE, for binary mixtures
mix2-Hp: temperature and volume change upon

isenthalpic-isobaric
mixing of two pure fluids

mix2-HS: temperature and volume change upon
isenthalpic-isentropic
mixing of two pure fluids

reduc2: EOS parameter estimation for binary mixtures
sfe2: SLE, SGE for binary mixtures
spinodal2: spinodals of binary mixtures
xth2: single phase properties of binary mixtures

(including excess properties)

List of equations of state in thermoc package:
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programs for binary mixtures
CSRK Carnahan–Starling repulsion + Redlich–Kwong attraction
CSvdW Carnahan–Starling repulsion + van der Waals attraction
D1 Deiters
D1A Deiters with chain association
D1-qu Deiters EOS + new quantum correction
IUPAC-N2 IUPAC reference equation for nitrogen
IUPAC-CO2 IUPAC reference equation for carbon dioxide
IUPAC-CH4 IUPAC reference equation for methane
Mxw2RK soft sphere repulsion + Redlich–Kwong attraction
Mxw2vdW soft sphere repulsion + van der Waals attraction
Nicolas Nicolas (BWR-type equation for the Lennard–Jones fluid
PR Peng–Robinson
RK Redlich–Kwong
RKS Redlich–Kwong–Soave
SL Sanchez–Lacombe
SPHCT Simplified Perturbed Hard Chain
TBS Trebble–Bishnoi–Salim
vdW van der Waals
YKD4vdW Yelash–Kraska–Deiters quartic + van der Waals attraction
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Appendix E

Simulation

107



Table E.1:
ab initio potentials (µEh) for the neon dimer.

R (Å) avqz av5z av45z

2.250 3635.34 3502.53 3363.19

2.500 854.25 787.66 717.80

2.750 81.52 50.78 18.53

3.000 -91.51 -107.72 -124.73

3.075 -102.80 -116.27 -130.40

3.100 -104.59 -117.34 -130.72

3.125 -105.50 -117.63 -130.36

3.250 -102.22 -111.79 -121.83

3.500 -79.24 -85.35 -91.76

3.750 -56.11 -59.92 -63.92

4.000 -38.87 -41.19 -43.62

4.500 -18.96 -19.84 -20.76

5.000 -9.78 -10.20 -10.64

Table E.2: Parameters of fitting for the neoen–neon potentials.

Parameter avtz+(332) av5z av45z

A (Eh) 78.52 68.59 75.40

α (a−1
0 ) 2.13371 2.09504 2.16774

β (a−2
0 ) -.035 -.040 -.027

b (a−1
0 ) 1.88 1.65 1.86

C6 (Eha
6
0) 6.96 6.01 6.08

C8 (Eha
8
0) 49.87 9.80 114.08

C10 (Eha
10
0 ) 2393.96 6832.96 2008.32
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Table E.3:
GEMC simulation results of neon using the av45z plus AT potentials.

T/K ρ/kgm−3 U/Jmol−1 p/MPa µ/Jmol−1 H/Jmol−1

27(g) 5.0(4) -10(9) 0.053(4) -2175(17) 208(3)
27(l) 1294(4) -1796(7) 0.17(32) -1849(103) -1794(8)
30(g) 13(1) -29(3) 0.15(2) -2241(23) 206(5)
30(l) 1234(10) -1692(17) -0.002(458) -2127(93) -1693(19)
32(g) 21(3) -45(7) 0.26(3) -2304(29) 196(11)
32(l) 1188(7) -1614(11) 0.31(16) -2285(61) -1609(12)
35(g) 40(3) -78(6) 0.50(3) -2407(17) 172(9)
35(l) 1126(7) -1513(10) 0.64(16) -2385(39) -1502(9)
37(g) 62(6) -116(11) 0.75(6) -2473(18) 130(16)
37(l) 1080(4) -1440(7) 0.77(20) -2484(26) -1426(6)
40(g) 97(4) -173(7) 1.18(3) -2608(7) 73(13)
40(l) 997(12) -1320(19) 1.22(27) -2603(14) -1296(18)
42(g) 155(4) -267(7) 1.67(3) -2676(5) -49(10)
42(l) 938(17) -1237(23) 1.82(36) -2708(29) -1199(24)
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