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Kurzzusammenfassung

Die vorliegende Arbeit besteht aus zwei unabhängigen und eigenständigen Teilen.

Gegenstand des ersten Teils sind harmonische Abbildungen von super-Riemannschen

Flächen nach komplex-projektiven Räumen und projektiven Räumen bezüglich des Super-

schiefkörpers D. In beiden Fällen wird die Theorie der Gauß-Transformierten entwickelt

und der Begriff der Isotropie studiert, insbesondere mit Hinblick auf den Zusammenhang

zu holomorphen Differentialen auf der super-Riemannschen Fläche. Überdies geben wir

eine Definition für harmonische Abbildungen endlichen Typs für eine spezielle Klasse von

Abbildungen nach CPn|n+1 und erhalten so eine Klassifikation bestimmter harmonischer

super-Tori. Ferner untersuchen wir die Gleichungen, die von den unterliegenden Objek-

ten erfüllt werden und geben ein Beispiel eines harmonischen super-Torus in DP 2 dessen

unterliegende Abbildung nicht harmonisch ist.

Im zweiten Teil studieren wir einen klassischen Satz, der besagt, dass die Gruppe der

Automorphismen einer Mannigfaltigkeit, die eine G-Struktur endlichen Typs erhalten,

eine Lie-Gruppe bildet, im Kontext von Supermannigfaltigkeiten. Wir verallgemeinern

dieses Theorem auf die Kategorie der cs Mannigfaltigkeiten und illustrieren es anhand

einiger, sowohl klassische Objekte verallgemeinernder als auch genuin supergeometrischer,

Beispiele. Insbesondere ist es nötig eine neue Klasse von Supermannigfaltigkeiten einzuführen

- gemischte Supermannigfaltigkeiten.
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Abstract

This thesis consists of two independent and self-contained parts.

The first part is concerned with harmonic maps form super Riemann surfaces in complex

projective spaces and projective spaces associated with the super skew-field D. In both cases,

we develop the theory of Gauß transforms and study the notion of isotropy, in particular its

relation to holomorphic differentials on the super Riemann surface. Moreover, we give a

definition of finite type harmonic maps for a special class of maps into CPn|n+1 and thus

obtain a classification for certain harmonic super tori. Furthermore, we investigate the

equations satisfied by the underlying objects and give an example of a harmonic super torus

in DP 2 whose underlying map is not harmonic.

In the second part, we study a classical theorem stating that the group of automorphisms

of a manifold M preserving a G-structure of finite type is a Lie group in the context of

supermanifolds. We generalize this statement to the category of cs manifolds and give some

examples, some of which being generalizations of classical notions, others being particular

to the super case. Notably, we have to introduce a new class of supermanifolds which we

call mixed supermanifolds.
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1 Introduction

Harmonic maps and supergeometry

The purpose of this study is to prove some foundational results about harmonic maps in

supergeometry. More precisely, we study harmonic maps from a super Riemann surface

into complex projective spaces and in special cases into general complex Grassmannians.

Harmonic maps from Riemann surfaces into various target spaces are by now a classical

topic in differential geometry. Such maps occur naturally in surface theory, for instance.

The parametrization of a surface in R3 is minimal if and only if it is conformal and harmonic.

It has constant mean curvature if and only if its Gauß map is harmonic. We refer to [33]

for a treatment of these results. In the context of the anti-self-dual Yang-Mills equation,

such maps appear as a symmetry reduction from four to two dimensions [53]. Consequently,

a central problem is to develop techniques which allow for a classification and construction

of such maps. For a review of this broad subject, we refer the reader to the survey articles

[24, 25]. Closer to the specific subject of the present article are [11, 18, 56, 57].

Supergeometry is the extension of ordinary geometry which allows for commuting and anti-

commuting coordinate functions. Many notions, constructions, and results from differential

geometry carry over to the graded setting directly. In particular, there is a notion of

Riemannian supermanifolds. However, the Riemannian structure might be even or odd.

Another genuinely supergeometric notion is supersymmetry, the simplest instance of which

is the concept of a super Riemann surface. The complex analytic properties have been

studied in pioneering works in the 1980s, among others [2, 51], and more recently in [54, 55].

In this setting there exists a natural notion of harmonic maps from super Riemann

surfaces to Riemannian supermanifolds [20, 34, 36, 46] which are the central objects of this

article. In view of the plethora of results available in the non-graded setup, it is beyond

the scope of this thesis to give a comprehensive treatment. Instead, we will concentrate on

some selected aspects.

Gauß transform, isotropy and harmonic maps of finite type

In order to put our results into context, we first give a brief account on the relevant results

in the ungraded setting. The energy of a map f : Σ → M between a compact Riemann

surface and a Riemannian manifold is defined by

E(f) =

∫

Σ
〈dfC|TΣ(0,1) , dfC|TΣ(1,0)〉C,

where 〈−,−〉C denotes the complex bilinear extension of the given Riemannian structure to

TMC. Critical points are called harmonic maps and are characterized in a local complex
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coordinate z by

∇LC∂z̄ (dfC)(∂z) = 0,

where ∇LC denotes the pullback of the Levi-Civita connection. Due to a result of Koszul

and Malgrange [39], a complex vector bundle with connection (E,∇) on a Riemann surface

has a holomorphic structure such that the holomorphic sections are locally characterized by

∇∂z̄s = 0.

Using this result, harmonicity can be stated in a coordinate free manner. The map f is

harmonic if and only if (dfC)|TΣ(1,0) is a holomorphic section of (TΣ(1,0))∗ ⊗ TMC, where

the second factor is equipped with the Koszul-Malgrange structure. In particular, the

differential either vanishes identically or its zeros are isolated.

In the case M = CPn, the harmonic map equation is equivalent to

∇LC∂z̄ df (1,0)(∂z) = 0, (1.1)

where dfC = df (1,0) + df (0,1) according to the type decomposition on CPn. In view of the

isomorphism (TCPn)(1,0) ∼= Hom(γ, γ⊥), where γ is the tautological line bundle, if f is not

antiholomorphic, df (1,0)(∂z) defines a line in C1+n outside a discrete set of points. One

can always extend this to a give a new map f1 : Σ → CPn, the Gauß transform. If f is

not holomorphic, one can similarly produce a new map f−1 starting from df (1,0)(∂z̄). The

central observation is that f±1 are harmonic again [22, 26]. This process can be iterated

and gives the harmonic sequence

. . . , f−2, f−1, f, f1, f2, . . .

The harmonic map is called isotropic if this sequence is finite

f−l(f), . . . , f−2, f−1, f, f1, f2, . . . , fk(f),

which forces the leftmost (resp. rightmost) map to be holomorphic (resp. antiholomorphic).

Furthermore, the harmonic map is said to be full if ⊕ifi = Cn+1
Σ.

Theorem 1.2 ([22], [26, Thm. 6.9]). For every 0 ≤ r ≤ n+ 1 the assignment f 7→ fr gives

a bijective correspondence between full holomorphic maps f : Σ→ CPn and full isotropic

harmonic maps g : Σ→ CPn with l(g) = r. The inverse is given by g 7→ g−l(g).

For a Riemann sphere, any harmonic map is isotropic, so that this theorem accounts for

all full harmonic maps.

However, this is not necessarily the case for a torus T 2 = C/Ω. We shall especially be

interested in the case where the map is (n+ 1)-orthogonal, meaning that any consecutive
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n + 1 lines in the harmonic sequence are mutually orthogonal, and non-isotropic. The

harmonic sequence is in this situation infinite and in fact periodic, fk = fn+1+k.

Remark 1.3. In [6], harmonic maps of this type are called superconformal. In view of the

next section and the following material, this terminology would be very unfavourable in the

context of the present article.

The classification result for such maps is quite different in nature compared to the previous

result and is based on the notion of harmonic maps of finite type. This approach has been

developed and applied in a series of papers [5, 10, 28, 49]. The special situation we consider

was dealt with in the ungraded case in [6]. The case of general harmonic tori in CPn has

been settled in [8].

In order to explain this notion and the results, we need to back up and introduce new

objects. In the case at hand, the harmonic sequence determines a lift

f̃ : Σ→ SU(n+ 1)/T,

where T is a maximal torus. The relevant structure of the co-domain is the structure of a

(n+ 1)-symmetric space, i.e., it is equipped with an automorphism of order n+ 1, which

leads after complexification to a decomposition

psl(n+ 1) =

n⊕

i=0

Mi.

At this point, the only special property of these eigenspaces is the following. The pullback

of f̃ along p : C→ T 2 has a lift F : C→ SU(n+ 1) and it follows from the definition of the

Gauß transform, that the pullback of the Maurer-Cartan form along F takes the form

F ∗αz = Az,0 +Az,1, (1.4)

where Az,i takes values in Mi and Az,1 satisifes a non-degeneracy condition given in terms

of an invariant polynomial. This is actually a property of the map f̃ and such maps are

called primitive. The concept of finite type harmonic maps is to construct solutions to (1.4)

by solving two commuting ordinary differential equations. Then any of f , f̃ , or F is called

of finite type if it can be obtained from this construction. (This will be made more precise

in our situation in Section 6.4.4.)

These commuting ordinary differential equations are constructed from the real and

imaginary part of a complex vector field defined on

Λd = {
d∑

i=−d
ξiλ

i | ξ ∈ psl(n+ 1), ξ̄i = ξ−i}, Λd,τ = {ξ ∈ Λd | ξi ∈Mi},
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where d ≡ 1 (mod n+ 1). This is given by

Z(ξ) = [ξ,
1

2
ξd−1 + λξd]. (1.5)

Theorem 1.6 ([6, Section 3]). We have that:

(a) This defines two commuting vector fields: [Z, Z̄] = 0.

(b) Given any initial condition ξ0 ∈ Λd,τ , there is a unique ξ : C→ Λd,τ such that

ξ(0) = ξ0, ∂zξ = Z(ξ).

(c) For any such solution, the 1-form defined by βz = ξd + 1
2ξd−1 is flat and integrates to

a primitive map F : C→ SU(n+ 1) with F (0) = id.

The classification result is then:

Theorem 1.7 ([6, Cor. 4.7]). Any (n+ 1)-orthogonal and non-isotropic harmonic torus

T 2 → CPn is of finite type.

Summary of results

On a supermanifold of dimension (1|1) it makes sense to consider the square root of a

conformal structure – a superconformal structure. The local model is C1|1 with coordinates

z and ϑ together with

D = ∂ϑ − ϑ∂z, D2 =
1

2
[D,D] = −∂z.

Super Riemann surfaces are obtained by globalizing this notion. Notably, as usual in

supergeometry, to make the theory sufficiently rich, it is necessary to work in families of

super Riemann surfaces over a purely odd base B = (∗,Λ), where Λ is a complex Grassmann

algebra. The space of even lines in C1+n|m is CPn|m and similarly as in the ungraded case,

Equation (1.1), a map f : Σ→ CPn|m is harmonic if

∇LCD̄ df (1,0)(D) = 0. (1.8)

The construction of the Gauß transform parallels the ungraded case. The isomorphism

TCPn|m ∼= Hom(γ, γ⊥) shows that df (1,0)(D) defines an odd line in C1+n|m away from

points where the differential degenerates. Our analysis shows that one cannot hope to define

the Gauß transform in general. There are two caveats. Firstly, working over a purely odd

base B leads to technical restrictions. Secondly, working in (1|1) dimensions has the effect

that certain ideals are no longer automatically invertible as is the case of a single complex
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dimension. However, in favorable cases one can define the Gauß transform on a blow up:

Σ̃
f̃1 //

��

CPm−1|n+1

Σ

.

This blow up only modifies the odd directions of Σ, the underlying Riemann surface stays

untouched. Although the resulting supermanifold is not longer a super Riemann surface,

but only a parabolic super Riemann surface, the notion of harmonic maps is still defined.

Similarly, one can discuss a Gauß transform associated with df (1,0)(D̄), possibly defined on a

different blow up. Again, these Gauß transforms are harmonic. Under suitable assumptions,

this process can be iterated to give the harmonic sequence

. . . , f̃−2, f̃−1, f̃ , f̃1, f̃2, . . . ,

which is defined on some blow up p : Σ̃→ Σ, and where f̃ = f ◦ p. The harmonic map is

called isotropic if this sequence is finite

f̃−l(f̃), . . . , f̃−2, f̃−1, f̃ , f̃1, f̃2, . . . , f̃k(f̃),

which forces the leftmost (resp. rightmost) map to be holomorphic (resp. antiholomorphic).

Furthermore, if one defines a harmonic map to be full if ⊕if̃i = C1+n|m
Σ̃, then we obtain the

following result. Here, the assumption that the ramification be invertible will be explained

later and ultimately stems from the two aforementioned caveats.

Theorem A (see Theorem 6.16). For a full isotropic harmonic map Σ̃→ CPn|m, we have

that |n+ 1−m| ≤ 1. For every 0 ≤ r ≤ n+ 1 +m, the assignment f 7→ fr gives a bijective

correspondence between full holomorphic maps f : Σ̃→ CPn|m with invertible ramification

and full isotropic harmonic maps g : Σ̃ → Mr with invertible ramification and l(g) = r.

Here, Mr = CPn|m if r is even and Mr = CPm−1|n+1 if r is odd. The inverse is given by

g 7→ g−l(g).

Unlike the ungraded case, in supergeometry there is another instance, where a similar

classification is available. This concerns harmonic maps into DPn – the projective space

associated with the super skew field D.

Theorem B (see Theorem 7.12). For every 0 ≤ r ≤ n + 1 the assignment f 7→ fr gives

a bijective correspondence between full holomorphic maps f : Σ̃ → DPn with invertible

ramification and full isotropic harmonic maps with invertible ramification g : Σ̃→ DPn such

that l(g) = r. The inverse is given by g 7→ g−l(g).

Moreover, we also study periodic harmonic sequences in CPn|n+1 and show that there is
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a notion of finite type. This is particularly suited to study harmonic super tori. Later we

will be more precise, but for now we use the loose notation Σ = C1|1/Ω and suppress B.

In this situation, we have again a lift f̃ : Σ→ PSU(n+ 1|n+ 1)/T and the latter space is

2(n+ 1)-symmetric with decomposition

psl(n+ 1|n+ 1) =
2n+1⊕

i=0

Mi.

Pulling back along C1|1 → Σ, one can find a framing F : C1|1 → PSU(n + 1|n + 1) of f̃

which will satisfy

F ∗αD = AD,0 +AD,1,

where AD,i has values in Mi. In order to define a vector field analogous to (1.5), there

are several issues to overcome which will be settled in Section 6.4. Firstly, note that, D

being odd, this vector field should be odd. Secondly, one crucial ingredient in the proof of

Theorem 1.7 is that Az,1 is semisimple which never holds for AD,1 :

A2
D,1 ∈ im(ad(AD,1)) ∩ ker(ad(AD,1)).

Moreover, we show that there are two invariants P1(f), P2(f) which are induced from two

pstC-invariant polynomials on M1 as opposed to one psl(n + 1)-invariant polynomial in

the ungraded case [6]. This leads to the additional assumption in our theorem compared

to Theorem 1.7. Also, an essential ingredient in Section 6.4.4 is the ellipticity of certain

operators. We are not aware of any general result on elliptic operators on super Riemann

surfaces, and the fact that we can apply analogous arguments as in the ungraded case relies

on special properties of the situation at hand. Then we have the following result.

Theorem C (see Theorem 6.49). Any harmonic super torus f : Σ→ CPn|n+1 with invertible

ramification and periodic harmonic sequence is of finite type if P1(f)/P2(f) is constant.

We also study the analogous situation for maps into DP 2n. It turns out that one cannot

expect a finite type classification as previously. We do not know how to overcome this

problem, however, our analysis still leads to the following result.

Theorem D (see Theorem 7.31). There is a harmonic super torus f : Σ → DP 2 with

invertible ramification and periodic harmonic sequence such that the underlying map T 2 →
CP 2 is not harmonic.

Relation to other work

Although the problem of developing the supersymmetric version of harmonic map theory

has already been posed in [52, Problem 14], there are only a few results available in the

literature. One of the first sources, where this problem has been taken up is [46].
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The paper by Khemar [36] lays the foundation for all the results based on the zero

curvature formulation (see Proposition 3.16). These are formulated therein for Lie groups

as co-domain, but works equally well in the setting of Lie supergroups. More recently, there

has been increasing interest in supersymmetric harmonic maps into CPn. Among others, see

[21]. In view of the dimensional restrictions which we obtain for the co-domain, these results

are largely independent of ours, though the methods are similar. Moreover, in work of Chen

et al., for instance [15], the ordinary harmonic map equation is coupled to a nonlinear Dirac

equation for a spinor. The underlying data of a supersymmetric harmonic map is similar

(Section 4), however, in our setup, the spinor is an odd quantity.

In the present treatment we focus on working in the general setup of an arbitrary super

Riemann surface whenever possible. From this point of view, the occurrence of parabolic

super Riemann surfaces is quite natural. For instance, in [36] only C1|1 is considered and in

[21] an additional boundary condition is imposed ([21, Equ. (11)]), which is however not

appropriate to define maps on the super sphere.

Outline

This work is structured as follows. In Section 2, we introduce all relevant notions from

supergeometry. Super Riemann surfaces are introduced in Section 3. Besides the basic

definitions and examples, this section also contains the construction of blow ups of certain

ideal sheaves which naturally appear in the context of the Gauß transform. Then we move

on to discuss generalities about harmonic maps in this setting in Section 4. In particular, we

derive the underlying equations. Section 5 contains a discussion of harmonic maps into Lie

supergroups formulated for the special case of U(n|m), i.e., the zero curvature formulation,

framings, and a discussion of the underlying map from the point of view of elliptic integrable

systems. Sections 6 and 7 on harmonic maps into CPn|m and DPn contain the main results.

In both cases, we first prove basic results about the Gauß transform, study isotropy, and give

basic examples. Then we go on to discuss harmonic maps with periodic harmonic sequences.

This leads to a finite type classification in the case of CPn|n+1. This is accompanied by a

detailed study of the case CP 1|2 and certain special maps into DPn. The pay-off of which

is a wealth of examples in the former case and an example of a supersymmetric harmonic

map whose underlying map is non-harmonic in the latter case.
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2 Supergeometry

2.1 Recollections on supergeometry

We start with introducing the most important concepts from supergeometry and our

conventions. As a general reference, we refer for instance to [13, 31] and for Lie supergroups

in particular to [4].

2.1.1 Supermanifolds

A real (resp. complex) super vector space is a Z/2-graded real (resp. complex) vector

space V = V0̄ ⊕ V1̄. A morphism is a grading preserving linear (resp. complex linear)

homomorphism. The parity reversed super vector space will be denoted by ΠV = V1̄ ⊕ V0̄.

The resulting category is closed symmetric monoidal with respect to the evident notion of

tensor product and internal hom object denoted by Hom(−,−).

We let A(V ) denote the locally ringed superspace over R (resp. C) given by the topological

space V0̄ together with the sheaf of superalgebras OV = C∞V0̄
⊗R ∧•V ∗1̄ (resp. HV0̄

⊗C ∧•V ∗1̄ ).

Here C∞V0̄
(−) denotes the sheaf of real smooth functions and HV0̄

(−) denotes the sheaf

of holomorphic functions. A smooth (resp. complex) supermanifold is a locally ringed

superspace over R (resp. C) with Hausdorff second countable base which is locally isomorphic

to some A(V ). A morphism of supermanifolds is a morphism of locally ringed superspaces.

The respective category of supermanifolds will be denoted by SMan and SManC. The sheaf of

ideals given by all nilpotent functions on a real or complex supermanifold M will be denoted

by JM . This gives rise to the underlying manifold iM : M0 → M with sheaf of functions

OM0 = OM/JM . A morphism of supermanifolds M1 → M2 is then given by the data of a

smooth map f0 : (M1)0 → (M2)0 and map of sheaves of superalgebras f ] : OM2 → (f0)∗OM1 .

2.1.2 Functor of points approach

Often, it is convenient to use the Yoneda embedding to study a supermanifold M through

its associated functor of points

SManop // Set, T 7→ SMan(T,M).

Usually, elements of SMan(T,M) will be referred to as T -valued points of M. This works

equally well in SManC.

2.1.3 Tangent bundles

The sections of the smooth (resp. holomorphic) tangent sheaf TM over U0 are given by

the real (resp. complex) linear derivations of OM |U0 . This forms a locally free sheaf of

OM -modules and can be used to build the vector bundle TM → M. Having this, for a

10



smooth supermanifold, besides the notion of an even Riemannian metric, there is also the

notion of an odd Riemannian metric. These have associated Levi-Civita connections. We

refer to [29, 31] and the references therein.

2.1.4 Lie supergroups

A smooth (resp. complex) Lie supergroup is a group object in the respective category of

supermanifolds. Given a subgroup H ⊂ G such that H0 ⊂ G0 is closed, there exists an

induced homogeneous manifold G/H. The projection is a principal H-bundle and has the

universal property for quotients.

2.1.5 The forgetful functor

Any complex super vector space V has an underlying real super vector space u(V ). This

assignment extends to a forgetful functor from complex supermanifolds to smooth super-

manifolds which we will denote by u(M). In the same way, a holomorphic vector bundle

E →M has an underlying complex vector bundle u(E)→ u(M). From now on, by abuse of

notation, we will suppress u(−) in the following and instead, in case of potential ambiguity,

we will emphasize which structure we consider in the situation at hand.

2.2 The supergroup U(n|m)

Let T be a real supermanifold and E = Cn|mT the trivial complex vector bundle of

rank (n|m) over T. The standard basis of Cn|m is denoted by {e1, . . . , en, ε1, . . . , εm}. A

homogeneous section f of End(E) = End(Cn|m)
T

satisfies for homogeneous a, b ∈ Γ(OT )

and homogeneous sections v and w of E

f(av + bw) = (−1)|a||f |af(v) + (−1)|b||f |bf(w).

With respect to the standard basis, f is represented by a matrix

(
f(e1), f(e2), . . . , f(εm)

)
=

(
A B

C D

)
, f(v) =

(
A (−1)|v|+1B

(−1)|v|C D.

)
v.

We introduce a super hermitian form on E, by setting

〈v, v′〉 =
n∑

k=1

fkf
′
k + i

m∑

l=1

(−1)|g
′
l|glg

′
l, v =

n∑

k=1

fkek +
m∑

l=1

glεl, v
′ =

n∑

k=1

f ′kek +
m∑

l=1

g′lεl.

Lemma 2.1. This assignment is non-degenerate, supersymmetric and sesquilinear.

11



Proof. We calculate

〈v, v′〉 =
n∑

k=1

fkf
′
k − i

m∑

l=1

(−1)|g
′
l|glg′l

=
n∑

k=1

(−1)|fk||f
′
k|f ′kfk − i

m∑

l=1

(−1)|g
′
l|(−1)|gl||g

′
l|g′lgl

= (−1)|v||v
′|(

n∑

k=1

f ′kfk − i
m∑

l=1

((−1)|g
′
l|(−1)|gl||g

′
l|(−1)|v||v

′|(−1)|gl|)(−1)|gl|g′lgl)

= (−1)|v||v
′|〈v′, v〉,

where we used |fk||f ′k| = |v||v′| and |gl| + |g′l| + |glg′l| = 1 + |v||v′|. And, moreover, for

homogeneous x we have

〈v, xv′〉 =
n∑

k=1

fk(xf
′
k) + i

m∑

l=1

(−1)|g
′
l|+|x|gl(xg

′
l)

= (−1)|v||x|x
n∑

k=1

fkf
′
k + i(−1)|v||x|

m∑

l=1

(−1)|g
′
l|glg

′
l

= (−1)|v||x|x〈v, v′〉.

Non-degeneracy is readily seen.

Lemma 2.2. The adjoint with respect to 〈−,−〉 of the homogeneous endomorphism given

by the matrix

M =

(
A B

C D

)
,

is given by

M∗ =

(
A∗ iC∗

iB∗ D∗

)
.

Proof. For instance, for the upper right corner we find

iM̄lk = 〈Mek, εl〉
= 〈ek,M∗εl〉
= (M∗)kl.

The other cases are similar.

The general linear group Gl(n|m) is the open subsupermanifold of End(Cn|m) given by

the invertible endomorphisms. In particular, this endows Gl(n|m) with a natural complex

structure. The preimage of 1n|m under the submersion A 7→ AA∗ onto the linear subspace

12



of End(Cn|m) given by endomorphisms satisfying B∗ = B yields the unitary group U(n|m).

The T -valued points are given by even endomorphisms f which are unitary in the sense that

〈f(x), f(y)〉 = 〈x, y〉.

Equivalently, f∗f = 1n|m. If we represent such f as above by a matrix

(
A B

C D

)
,

then the condition reads

A∗A− iC∗C = 1n, A
∗B + iC∗D = 0, B∗B + iD∗D = i 1m.

Similarly, for an odd T -valued point the condition is f∗f = i 1n|m. The Lie superalgebra

u(n|m) is by definition the Lie superalgebra of left-invariant vector fields on U(n|m). If we

denote by µ the multiplication on U(n|m), then left-invariance means for a derivation

(I ⊗X) ◦ µ] = µ] ◦X.

The bracket is given by the supercommutator of vector fields. Elements can be represented

by anti-hermitian matrices f∗ = −f :

u(n|m) = {
(

A B

−iB∗ D

)
| A ∈ u(n), D ∈ u(m), B ∈ Hom(Cm,Cn)}

Then the bracket is given by the supercommutator of linear endomorphisms. This defines a

real form of End(Cn|m) and U(n|m) is a real form of the complex Lie supergroup Gl(n|m).

The adu(n|m)-invariant metric given by the super trace (X,Y ) = −str(XY ), where

str

(
A B

C D

)
= tr(A)− tr(D),

induces a pseudo-Riemannian metric on U(n|m).

The Berezinian of a matrix defines a group homomorphism

Ber: U(n|m) // U(1),

(
A B

C D

)
7→ det(A−BD−1C)det(D)−1.

This assignment is to be understood to be a definition on the level of functor of points.

That is, a T -valued point of U(n|m) is mapped to the T -valued point of U(1) as indicated.

The kernel of this group homomorphism is the special unitary supergroup SU(n|m) with

13



Lie superalgebra

su(n|m) = {A ∈ u(n|m) | str(A) = 0}.

This group has a nontrivial center given by multiples of the identity if n = m. The quotient by

this subgroup is the projective special unitary supergroup PSU(n|n) with Lie superalgebra

psu(n|n) = su(n|n)/〈i · id〉.

These construction pass to the complexfication and in this way one obtains the Lie superal-

gebras sl(n|m) and psl(n|n).

Left translation gives a trivialization

TU(n|m) // u(n|m)
U(n|m) (2.3)

and hence the Maurer-Cartan form α ∈ Ω1(TU(n|m), u(n|m)). This connection is flat:

dα+
1

2
[α ∧ α] = 0.

Under the trivialization (2.3), the Levi-Civita connection takes the form d+ 1
2α (cf. [31,

Cor. 1]).

Example 2.4. Consider a homogeneous section f of Cn|mT such that i∗T (f) is nowhere

vanishing, where iT : T0 → T is the canonical inclusion. In particular, 〈f, f〉 is invertible.

Equivalently, f spans a locally free OT -module. In this situation we have a projection onto

the line l spanned by f, which is given by the formula

πl(a) = (−1)(|f |+|a|)|f | 〈f, a〉
〈f, f〉f.

Then we have

πl(πl(a)) = (−1)(|f |+|a|)|f |πl(
〈f, a〉
〈f, f〉f)

= πl(a),

〈πl(a), a′〉 = (−1)(|a|+|f |)|f |
( 〈f, a〉
〈f, f〉

)
〈f, a′〉

=
〈a, f〉
〈f, f〉〈f, a

′〉

= 〈a, (−1)(|f |+|a′|)|f | 〈f, a′〉
〈f, f〉 f〉

= 〈a, πl(a′)〉,
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and πl − πl⊥ = 2πl − id is a T -valued point of U(n|m). Similar considerations apply

to construct the projection onto arbitrary subbundles F of Cn|mT . Since (πl − πl⊥)∗ =

(πl − πl⊥)−1, it actually takes values in SU(n|m).

2.3 The supergroup Q(n)

A super division algebra is a superalgebra such that any nonzero homogeneous element is

invertible (cf. [19]). The super divison algebra D over C is defined by

D := C[j]/(ji = ij, j2 = 1),

where j is odd. A T -valued point of D will be written in the form a+ bj. Throughout, Dn

will be considered as a left D-module. Left multiplication by j is denoted by Jn and we have

Jn =

(
0 1n

1n 0

)
.

In particular, Jn is unitary. The subgroup of U(n|n) given by all matrices which graded

commute with Jn is denoted by Q(n). On T -valued points, these are unitary endomorphisms

whose representing matrix have the form

(
A B

−B A

)
.

In particular,

Ber

(
A B

−B A

)
= det(1 + 1/2[A−1B,A−1B]) = 1,

so that Q(n) ⊂ SU(n|n). On the infinitesimal level, we obtain

q(n) = {
(
A B

−B A

)
| A ∈ u(n), B = iB∗}.

There are odd analogues of the super trace and the Berezinian. The former gives rise to the

subalgebra

sq(n) = {
(
A B

−B A

)
| A ∈ u(n), B = iB∗, otr

(
A B

−B A

)
= tr(B) = 0}.

The latter is defined by

odet : Q(n) // C0|1,

(
A B

−B A

)
7→ tr(ln(1 +A−1B)),
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where we use the formal definition ln(1 + Z) =
∑

n(−1)n+1Zn/n. This is again understood

to be a definition on the level of T -valued points. The sum converges since B is odd. The

kernel is the subgroup SQ(n), which has a non-trivial center spanned by the identity. The

quotient by this subgroup gives the projective special queer Lie supergroup PSQ(n).

In the case n = 2, we can write an even X ∈ q(2) in the form x · id1|1 + ξJ̃ and we will

often use the shorthand x+ ξJ̃ , where

J̃ =

(
0 1

−1 0

)
.

For later reference we collect some facts concerning subbundles V ⊂ DnT which are

invariant under the left action of D.

Lemma 2.5. Consider a rank one D-subbundle V ⊆ DnT . If the bundle is trivial then there

is an even trivializing section v which satisfies 〈v, Jnv〉 = 0. This generator is unique up to

left multiplication by an even invertible element (a+ bj) such that b̄ = −ibā/a.

Proof. Starting with any even trivializing section w, one can take v = (1 + 〈w,Jnw〉
2〈w,w〉 Jn)w.

Given such v, then

〈(a+ bJn)v, (a− bJn)Jnv〉 = (−āb+ b̄ai)〈v, v〉

vanishes if and only if b̄ = −ib ā/a.

Definition 2.6. An even trivializing section v which satisfies (v, Jnv) = 0 is called isotropic.

Example 2.7. We consider an even isotropic generator l of the D-submodule L ⊆ DnT We

have that

πLv =
〈l, v〉
〈l, l〉 l + (−1)1+|v| 〈Jnl, v〉

〈Jnl, Jnl〉
Jnl.

Now we use J∗n = iJn to compute

πLJnv =
〈l, Jnv〉
〈l, l〉 l + (−1)|v|

〈Jnl, Jnv〉
〈Jnl, Jnl〉

Jnl

=
〈Jnl, v〉
〈Jnl, Jnl〉

l + (−1)|v|
〈l, v〉
〈l, l〉 Jnl

= JnπLv.

Moreover, (πL− πL⊥)∗ = (πL− πL⊥)−1 and so πL− πL⊥ defines a T -valued point of SQ(n).

By similar methods the projection onto an arbitrary Jn-invariant subbundle F can be shown

to commute with Jn.
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2.4 The Grassmannians Grk|l(Cn|m)

The Grassmannian Grk|l(Cn|m) is the supermanifold which classifies (k|l)-subbundles of

the trivial bundle Cn|m. For convenience, we give a detailed treatment of the homogeneous

geometry. As a smooth supermanifold we define

Grk|l(Cn|m) = U(n|m)/U(k|l)× U(n− k|m− l).

As usual, we will use the notation CPn|m = Gr1|0(C1+n|m). This comes with a tautological

flag γ = [Ck|l] ⊂ Cn|m
Grk|l(Cn|m). Here the square brackets denote the bundle associated

with the U(k|l) × U(n − k|m − l) representation where the first factor acts through the

tautological representation and the second factor acts trivially. The last isomorphism is

given by

[Ck|l] // Cn|mGrk|l(Cn|m), [g, v] 7→ ([g], g(v)).

Pullback of this flag sets up the bijective correspondence between smooth maps into

Grk|l(Cn|m) and rank (k|l) subbundles of the trivial rank (n|m) bundle. The tautological

bundle has a connection coming from the inclusion into the trivial bundle. That is, for a

local complex derivation X and a local section of ρ, we set

∇γX(ρ) = πγX(ρ).

Similarly, γ⊥ is endowed with an analogous connection.

As concerns the tangent bundle we obtain as a U(k|l)× U(n− k|m− l) representation

T[id]Grk|l(Cn|m) ∼= Hom(Ck|l,Cn−k|m−l),

and using left translation thus

TGrk|l(Cn|m) ∼= Hom(γ, γ⊥).

From this we obtain a U(n|m)-invariant almost complex structure on Grk|l(Cn|m). In view

of the Newlander-Nirenberg theorem for supermanifolds [44], a proof of the integrability

can be obtained along the lines of [38, Prop. X.6.5]. On local sections we have

TGrk|l(Cn|m)(1,0)
∼= // Hom(γ, γ⊥), Z 7→ πγ⊥Z(ρ),

where ρ is a local section of γ. The connections on γ and γ⊥ induce a connection on

Hom(γ, γ⊥) given for local section F and ρ by

(∇LCX F )(ρ) = πγ⊥X(F (ρ))− (−1)|X||F |F (πγX(ρ)).
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In particular, this connection preserves the type decomposition of TGrk|l(Cn|m)C. This is

the Levi-Civita connection of the underlying metric of the hermitian structure determined

on homogeneous local sections F and G by

〈F,G〉Grk|l(Cn|m) = str(F ∗G).

We should point out that the underlying metric is only definite in the case k = 0 or l = 0.

Given a map f : M → Grk|l(Cn|m) from a complex manifold into Grk|l(Cn|m), the com-

plexified differential dfC decomposes into two summands according to the type composition

of Grk|l(Cn|m) :

dfC = df (1,0) + df (0,1).

We have then the following.

Proposition 2.8. The following are equivalent.

(a) The map f is holomorphic.

(b) df (1,0)|TM(0,1) = 0.

(c) For any local section ρ of γ and any section Z̄ of TM (0,1), we have

πf∗(γ⊥)Z̄(ρ) = 0.

(d) The subbundle f∗(γ) ⊂ Cn|mM is holomorphic.

Proof. The map is holomorphic if and only if df is complex linear which is equivalent to (b)

for the same reasons as in the ungraded setting. Parts (b) and (c) are equivalent in view

of the isomorphism (2.4). Part (c) is equivalent to the statement that smooth sections ρ

of f∗(γ) are closed under applying sections Z̄ of TM (0,1) which is equivalent to define a

holomorphic subbundle of the trivial bundle.

Finally, there is a totally geodesic embedding Grk|l(Cn|m)→ U(n|m) which is given on

T -valued points by

V 7→ (πV − πV ⊥) = 2πV − 1.

Remark 2.9. As smooth supermanifolds, the Grassmannians are split

Grk|l(Cn|m) ∼= (Grk(Cn)×Grl(Cm),∧•[Hom(Ck,Cm)⊕Hom(Cl,Cn)]∗).

However, for instance the complex supermanifold Gr1|1(C2|2) is non-split [42, Chapter 4 §3
Example 16].
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2.5 The projective spaces DP n

Now we shall discuss certain submanifolds of Gr1|1(Ck+1|k+1). The projective space DPn

is the supermanifold of (1|1)-planes in Dn+1 = Cn+1|n+1 which are invariant under Jn+1.

These supermanifolds have been introduced by Manin (cf. [40, 42]). This parallels very

much the discussion of the previous section. As a smooth supermanifold we define

DPn = Q(1 + n)/Q(1)×Q(n).

We have a tautological flag γD = [D1] ⊂ D1+n
DPn . Again, the square brackets mean the

bundle associated with the indicated Q(1)×Q(n) representation. Pullback of this flag sets

up the bijective correspondence between smooth maps into DPn and rank (1|1) subbundles

of the trivial rank (n+ 1|n+ 1) bundle which are invariant under Jn+1. In view of Example

2.7, the tautological bundle has a connection similarly defined as in Section 2.4. The tangent

bundle is of the form

TDPn ∼= HomD(γD, γ
⊥
D ).

From this we obtain a Q(1 + n)-invariant almost complex structure, which is integrable

since the inclusion into Gr1|1(C1+n|1+n) respects the almost complex structures. Then on

local sections we have

(TDPn)(1,0) ∼= HomD(γD, γ
⊥
D ), Z 7→ πγ⊥D

Z(ρ),

where ρ is a local section of γD. Again, this connection preserves the type decomposition.

There is an odd hermitian metric on HomD(γD, γ
⊥
D ), given for homogeneous local sections

F and G by

〈F,G〉DPn = otr(F ∗G).

Notice that the super trace vanishes identically. The Levi-Civita connection is given by

(∇LCX F )(ρ) = πγ⊥D
X(F (ρ))− (−1)|X||F |F (πγDX(ρ)),

where ρ is a local section of γD. From Proposition 2.8 and the above discussion, we can

conclude for a map f : M → DPn from a complex manifold M :

Proposition 2.10. The following are equivalent.

(a) The map f is holomorphic.

(b) df (1,0)|TM(0,1) = 0.

(c) For any local section ρ of γ and any section of Z̄, we have

πf∗(γ⊥D )Z̄(ρ) = 0.
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(d) The subbundle f∗(γD) ⊂ Dn+1
M is holomorphic.

There is again a totally geodesic embedding DPn → Q(1 + n) which is given on T -valued

points by

V 7→ (πV − πV ⊥) = 2πV − 1.

Remark 2.11. The split model for the underlying smooth supermanifold is

DPn ∼= (CPn,∧•[Hom(C,Cn]∗).

However, as a complex supermanifold DPn is non-split for n ≥ 2 (cf. [47]).

3 Super Riemann surfaces

Most of the objects we have introduced so far are a rather direct generalization of ungraded

differential geometric notions. In contrast, super Riemann surfaces, which form the central

objects of this article, are not of this sort but truly supergeometric in nature. As a general

reference, especially for the material presented in Sections 3.1, 3.2, we refer to [43, 55]. For

parabolic super Riemann surfaces (see Section 3.4) we also point out [54].

3.1 Basics

Let Λ be a complex Grassmann algebra and B := Spec(Λ) = (pt,Λ) the associated complex

supermanifold. A B-family of supermanifolds is a complex supermanifold M together with

a holomorphic submersion π : M → B. The relative tangent bundle TM/B is defined to

be the kernel of TM → π∗TB. Its dimension is the relative dimension of M over B. Given

another complex Grassmann algebra Λ′ with associated supermanifold B′ and any morphism

f : B′ → B, then M → B can be pulled back along f to give a family M ′ → B′.

Definition 3.1. A super Riemann surface over B is a B-family π : Σ → B of complex

supermanifolds of relative dimension 1|1 together with a totally non-integrable holomorphic

subbundle D ⊆ TΣ/B of rank 0|1.

The condition means that the Lie bracket of vector fields induces an isomorphism of

holomorphic vector bundles

D⊗D // (TΣ/B)/D, X ⊗ Y 7→ [X,Y ] mod D.

Using that the Berezinian behaves well with respect to short exact sequences, one obtains

for the holomorphic cotangent bundle

Ber(Σ) = Ber(TΣ∗)
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∼= Ber(D−1)⊗ Ber(D−2)

= D−1.

Consequently, the complexified Berezinian of the underlying smooth manifold is

BerR(Σ)⊗ C = Ber(TΣ∗)⊗C Ber(TΣ∗)

= (D⊗ D̄)−1.

In order to make sense of component fields in subsequent sections, it is useful to introduce

the notion of an underlying even manifold [34].

Definition 3.2. Let Σ be a super Riemann surface over B. An underlying even manifold

is a complex supermanifold |Σ| of dimension (1|0) over B with |Σ|0 = Σ0 together with an

embedding ιB : |Σ| → Σ of complex supermanifolds over B such that the pullback along

pt→ B is the canonical inclusion Σ0 → Σ.

Remark 3.3. If B = pt, then there is a unique underlying even manifold given by the

standard embedding ipt : Σ0 → Σ. For general B, there always exists such an embedding

which is however not unique [34].

3.2 Examples of super Riemann surfaces

We now discuss the most relevant examples of super Riemann surfaces.

3.2.1 The superconformal plane

We consider C1|1
B = C1|1 × B together with the distribution generated by D = ∂ϑ − ϑ∂z.

A local superconformal coordinate system on a super Riemann surface is an isomorphism

(z, ϑ) : U → C1|1
B of super Riemann surfaces over B. Locally such always exist. Unless

specified otherwise, in the following, when working in local coordinates, we will always

tacitly assume that the coordinates are superconformal. A change of such superconformal

coordinates takes the special form

z̃ = u(z)− ϑη(z)
√
u′(z), ϑ̃ = η(z) + ϑ

√
u′(z) + η′(z)η(z).

Under such a coordinate change, we have

D = fD̃, f = Dϑ̃ =
√
u′(z) + η′(z)η(z)− ϑη′(z).

For later use, we note at this point, that if we want (Dϑ̃)n to be a fixed invertible function,

then any other superconformal coordinate system (z̃′, ϑ̃′) which achieves this is obtained
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from (z̃, ϑ̃) by a combination of superconformal translations and rotations in the following

way. There is an nth root of unity
√
ω and a point (z0, η0) : B → C1|1, such that

z̃′ = (ωu(z)−√ωη(z)η0 + z0)− ϑ(
√
ωη(z) + η0)

√
ωu′(z)−√ωη′(z)η0,

ϑ̃′ = (
√
ωη(z) + η0) + ϑ

√
ωu′(z) + ωη′(z)η(z).

Remark 3.4. Finally, we remark that locally up to superconformal change of coordinates

in the co-domain all underlying even manifolds are equivalent to the standard embedding

C1|0 ×B → C1|1 ×B.

3.2.2 Split super Riemann surfaces

There is a super Riemann surface associated to any Riemann surface Σ0 together with a

choice of spin structure, i.e., a holomorphic line bundle L which satisfies L2 ∼= TΣ∗. For the

complex supermanifold Σ = (Σ0,∧•L), L the sheaf of holomorphic sections of L, we have

TΣ ∼= OΣ ⊗OΣ0
(TΣ0 ⊕ L∗).

As vector bundle, we define D = OΣ ⊗OΣ0
L∗, and the inclusion D→ TΣ is induced by

L∗
4 // L∗ ⊕ L∗

∼= // (L⊗ TΣ0)⊕ L∗ ⊂ TΣ.

Pullback along B → pt yields the split family ΣB = Σ × B → B. Split super Riemann

surfaces come with a choice of an underlying even manifold

ιB = (iΣ ×B) : |ΣB| = Σ0 ×B // Σ×B = ΣB.

Morphisms from split super Riemann surfaces can be understood in terms of more

elementary objects on |ΣB|. For this, we consider a supermanifold M with connection ∇M .
The complexified structural morphism

f ] : f−1
0 OM,C // OΣ,C ∼= (OΣ0,C ⊕ (L⊕ L̄)⊕ (L⊗ L̄))⊗C (OB ⊗ C)

commutes with complex conjugation and thus is equivalently given by the components

f̃ ] : f0
−1OM,C // OΣ0,C ⊗C (OB ⊗ C) = O|ΣB |,C ,

X : f0
−1OM,C // L⊗C (OB ⊗ C) = ι∗B(D∗),

F : f0
−1OM,C // (L⊗ L̄)⊗C (OB ⊗ C) = ι∗B(D⊗ D̄)∗.
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In the following, dfC refers to the complexified differential and we use the type decompo-

sition D⊗ C ∼= D⊕ D̄.

Proposition 3.5. In the situation above, we have in local superconformal coordinates.

(a) f̃ ] is a real algebra morphism and f̃ ] = (f ◦ ιB)].

(b) X(D) defines an odd complex derivation along f̃ ] and X(D) = ι∗B(dfC(D)).

(c) F̃ (D, D̄) = F (D, D̄)− (∇Md(−))(X(D), X̄(D̄)) defines an even complex derivation

along f̃ ] and F̃ (D, D̄) = ι∗B(∇MD dfC(D̄)).

This sets up a bijection between the set of morphisms ΣB →M and triples (f̃ , X, F̃ ), where

f̃ : |ΣB| →M, X ∈ Γ(ι∗B(D∗)⊗C f̃
∗Π(TMC))0̄, F̃ ∈ Γ(ι∗B(D⊗ D̄)∗ ⊗C f̃

∗(TMC))0̄.

Proof. This is proved in [36, Section 1].

3.2.3 Genus 0

In order to obtain a superization of the Riemann sphere, we consider two copies of Ui =

C1|1 ×B which are glued along

(U1 − 0)|U1∩U2−0
// (U2 − 0)|U1∩U2−0, ψ](z, ϑ) = (1/z, ϑ/z).

On U2 we let D be generated by ∂ϑ + ϑ∂z. Then we have z̃ = 1/z, ϑ̃ = ϑ/z and compute

∂ϑ =
∂ϑ̃

∂ϑ
∂ϑ̃ +

∂z̃

∂ϑ
∂z̃

= 1/z ∂ϑ̃,

∂z =
∂ϑ̃

∂z
∂ϑ̃ +

∂z̃

∂z
∂z̃

= −ϑ/z2∂ϑ̃ − 1/z2∂z̃

= −1/z(ϑ̃∂ϑ̃ + z̃∂z̃).

Hence

∂ϑ + ϑ∂z = z̃∂ϑ̃ − ϑ̃(ϑ̃∂ϑ̃ + z̃∂z̃)

= z̃(∂ϑ̃ − ϑ̃∂z̃).

So on U1 we take D to be generated by ∂ϑ−ϑ∂z. This way we obtain a split super Riemann

Σ ∼= CP 1|1 ×B and D ∼= OCP 1|1 ⊗OCP1 O(1). From this we can conclude Γ(D−k) = 0 for all
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k ≥ 1. One can show that all compact genus 0 super Riemann surface are isomorphic to

this one.

3.2.4 Genus 1

There are four different superizations of a torus corresponding to the four different spin

structures. Recall that the parity of a spin structure is defined to be parity of the number

of global holomorphic sections. There is one odd spin structure, in which cases the super

tori are constructed as follows. We look at the group structure on C1|1
B which is given on

T -valued points by

(z, ϑ) · (z′, ϑ′) = (z + z′ − ϑϑ′, ϑ+ ϑ′).

There is a right-invariant superconformal structure on C1|1
B generated by ∂ϑ − ϑ∂z. The

right translations

S = R(1,0), T = R(τ,δ),

where (τ, δ) : B → H× C0|1, generate a group Z⊕ Z of superconformal automorphisms and

the quotient

Στ,δ = C1|1
B /〈S, T 〉

exists and inherits a superconformal structure. In addition to the even parameter τ , this

family has an an odd parameter δ which causes these families to be non-split in general. In

fact, we have

Γ(OΣτ,δ) = {a+ αϑ | a, α ∈ Λ, δα = 0}.

Moreover, D transforms trivially under R(1,0) and R(τ,δ) so that D is trivial and we have

Γ(Dk) = Γ(OΣτ,δ) for any k ∈ Z. In particular, these families are non-isomorphic in general.

Still, for any δ there is a smooth isomorphism

Στ,0
//

!!

Στ,δ

}}
B

,

which is the identity when restricted along pt→ B. One way to see this, though not very

explicit, is the following. For any smooth supermanifold M , it is known that M ∼= Πi∗(TM)1̄

as supermanifolds under M0, where i : M0 → M. In the case at hand, since the tangent

bundle is trivial, there exists an isomorphism ψ : Στ,δ → (C0|1
(Στ,δ)0

)×B. Composing with

(π(C0|1
(Στ,δ)0

)×B, πΣ ◦ ψ−1) : (C0|1
(Στ,δ)0

)×B // (C0|1
(Στ,δ)0

)×B

gives an isomorphism over B. The co-domain of ψ stays unchanged when pulled back

along B → pt → B, but the left hand side becomes Στ,0, and the resulting isomorphism
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Στ,δ
∼= (C0|1

(Στ,δ)0
)×B ∼= Στ,0 has the desired properties.

There are three even spin structures. The resulting super tori are split and can be

constructed as follows. They are quotients of C1|1
B by the group of automorphisms generated

by S = cε1 ◦ R(1,0) and T = cε2 ◦ R(τ,0) where c is the group automorphism c(z, ϑ) =

(z,−ϑ) and (ε1, ε2) ∈ {(0, 1), (1, 1), (1, 0)}. This makes use of the fact that c is also an

automorphism of the superconformal structure on C1|1
B . The resulting super Riemann

surface Σ = (Σ0,∧•L⊗ Λ) is split and L is an even spin structure on Στ . The holomorphic

line bundle L does not have non-trivial global sections, so that Γ(OΣ) = Γ(OT 2⊕L)⊗Λ = Λ.

Also D is nontrivial and does not have global holomorphic sections, however D⊗2 is always

trivial, and hence

Γ((D∗)⊗2k) = Λ.

If we choose a universal covering p : C1|1
B → Σ of a super torus then we will always identify

sections of D⊗2k with holomorphic functions by means of the trivialization induced by p.

For later use, we note the following property.

Proposition 3.6. Let Σ be a super torus associated with (τ, δ) or ((ε1, ε2), τ) as above with

universal covering p : C1|1
B → Σ. Given an even section of D⊗2l of the form s = (x+ϑξ)D⊗2l,

where x is invertible and ξδ = 0 or ξ = 0 in the respective cases, there is a superconformal

isomorphism of C1|1
B which descends to a torus Σ′

C1|1
B

//

��

C1|1
B

��
Σ′ // Σ

such that s pulls back to 1 ·D⊗2l.

Proof. In the case of split tori the section is constant, so that one can scale the superconformal

plane suitably. (The coordinate change for scalings is similar to that for rotations (cf. Section

3.2.1).)

The argument is similar in the non-split case, but less trivial since then the function

s = (x+ ϑξ)D⊗2l, where δξ = 0, is in general non-constant. We look at the superconformal

change of coordinates

f : C1|1
B

// C1|1
B , (z̃, ϑ̃) = f(z, ϑ) = (az − ϑcz√a, cz + ϑ

√
a),

where a is an even invertible constant and c is an odd constant such that cδ = 0. This has

the effect that FD̃ = D, with F =
√
a− ϑc, and thus leads to

x+ ϑξ = F−2l =
1

al
+ ϑ

(2l)c

al+ 1/2
.
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Now we only need to see that such resulting f descends to Σ′ → Σ for a suitable torus Σ′.

I.e., for suitable (τ ′, δ′) and (κ′, η′)

R(τ,δ) ◦ f = f ◦R(τ ′,δ′), R(1,0) ◦ f = f ◦R(κ′,η′).

The ansatz cδ′ = 0 leads to the following. First equation, left hand side:

Rτ,δ(az − ϑcz
√
a, cz + ϑ

√
a) = (az − ϑcz√a+ τ − (cz + ϑ

√
a)δ, cz + ϑ

√
a+ δ)

= (az − ϑcz√a+ τ − ϑ√aδ, cz + ϑ
√
a+ δ).

First equation, right hand side:

f(z + τ ′ − ϑδ′, ϑ+ δ′) = (a(z + τ ′ − ϑδ′)− (ϑ+ δ′)c(z + τ ′)
√
a, c(z + τ ′) + (ϑ+ δ′)

√
a)

= (az − ϑcz√a+ (aτ ′ − ϑ(aδ′ + cτ ′
√
a)), cz + ϑ

√
a+ (cτ ′ + δ′

√
a)).

This yields τ ′ = τ/a, δ′ = (1/
√
a)(δ − cτ ′). Similarly, the second equation yields

κ′ = 1/a, η′ = (1/
√
a)(−c/a).

Thus setting T ′ = R(τ ′,δ′), S
′ = R(κ′,η′), we can define Σ′ = C1|1

B /〈S′, T ′〉.

3.3 Points, Divisors, Infinitesimal Neighbourhoods

A point of Σ/B is a section P of the projection π : Σ→ B. It determines an ideal IP ⊂ OΣ

which in superconformal coordinates (z, ϑ) : U → C1|1 is generated by (z− z0−ϑϑ0, ϑ−ϑ0),

where (z0, ϑ0) = (z, ϑ) ◦ P. Using the superconformal coordinate transformation z̃ =

z − z0 + ϑϑ0, ϑ̃ = ϑ− ϑ0, one can always assume (z0, ϑ0) = (0, 0).

A generalization is the notion of an infinitesimal neighbourhood of a point given by IP .

A subsheaf of ideals JP ⊂ OΣ is called infinitesimal neighbourhood if it is isomorphic to

IP away from P and if there are superconformal coordinates on U containing P such that

(JP )|U is given by (zk, ϑzl) for some weights (k, l), where k, l ≥ 0. Conversely, this gives a

construction of such ideals:

(JP )(V0) =




OΣ(V0), if P0 /∈ V0,

{f ∈ OΣ(V0) | resVV ∩Uf ∈ (zk, ϑzl)}, if P0 ∈ V0.

Notice that in the case l ≥ k we have (zk, ϑzl) = (zk) and the integer k is well-defined.

(Though l is certainly not.) In the other cases we have:

Lemma 3.7. The property k > l is well-defined and in this case the pair (k, l) is well-defined.

Proof. Suppose (za, ϑzb) = (z̃m, ϑ̃z̃n). We show that m > n implies a > b. For, suppose
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a ≤ b. Then (za, ϑzb) = (za). Reducing modulo all nilpotents shows a = m. Moreover,

ϑ̃z̃n = gza. Again, applying D̃ = uD, u a unit, implies n ≥ a. A contradiction. Now,

suppose (za, ϑzb) = (z̃m, ϑ̃z̃n), where a > b and m > n. Setting all nilpotents equal to zero,

we obtain (za0) = (z̃m0 ) which implies a = m. Then we have ϑzb = xz̃a + yϑ̃z̃n. Applying

D = uD̃, u a unit, and then reducing modulo all nilpotents shows that b ≥ n and the same

argument shows n ≥ b.

A superconformal coordinate system (z, ϑ) such that (JP )|U = (zk, ϑzl) is called compati-

ble.

Lemma 3.8. Two compatible coordinate systems determine the same 0|1-dimensional

submanifold: if (zk, ϑzl) = (z̃k, ϑ̃zl), then (z) = (z̃) and (z, ϑ) = (z̃, ϑ̃).

Proof. The statement is clear in the case k ≤ l. Now we assume k > l. We have

z̃k = azk + bϑzl, ϑ̃z̃l = czk + dϑzl,

and since k > l we can assume in addition that a, b, c and d only depend on z. On the

other hand

z̃ = u− ϑη
√
u′, ϑ̃ = η + ϑ

√
u′ + ηη′

and hence

z̃k = uk − ϑ(kuk−1η
√
u′), ϑ̃z̃l = ηul + ϑ

√
u′ + ηη′ul.

Comparing coefficients yields uk = azk, ηul = czk. That is

u = a1/kz, η = a−l/kczk−l.

Hence

z̃ = a1/kz − ϑca−l/kzk−l
√
u′

= z(a1/k − ϑca−l/kzk−l−1
√
u′).

This implies (z) = (z̃) and from this the claim follows.

3.4 Blow ups of JP and parabolic structures

We now construct the blow up of an ideal of the form JP . This parallels the construction of

the blow up of a coherent sheaf of ideals in ordinary algebraic geometry. A reference for blow

ups of points is [54]. To the author’s knowledge, blow ups of infinitesimal neighbourhoods

as discussed here have so far not appeared in the literature, which is why we give the details

here.
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3.4.1 Construction

Let P be a point and JP an infinitesimal neighbourhood of weight (k, l). Now assume that

k > l. We set n = k − l > 0. The blow up of Σ along JP is defined as follows. Locally

on some open neighbourhood U ⊆ Σ we choose compatible superconformal coordinates

(z, ϑ) : U → C1|1 such that IP = (z, ϑ), JP = (zk, ϑzl). We set Σ̃0 = Σ0. The supermanifold

Σ̃/B is covered by Σ − P and U , i.e. (OΣ̃)|Σ0−P0 = OΣ−P and (OΣ̃)|U0 = OU and the

transition function is

(OU )|U−P // (OΣ−P )|U−P , (z, ϑ) 7→ (z, z−nϑ).

This comes with a projection p : Σ̃→ Σ which is defined to be the identity on Σ̃−P = Σ−P
and by p](z) = z, p](ϑ) = znϑ on U. We have that p∗(IP ) = IZ̃ for a 0|1-dimensional

submanifold Z̃, and by construction

p∗(JP ) = I⊗k
Z̃

is locally free of rank (1|0). The universal property of Σ̃→ Σ is captured in the following.

Proposition 3.9. Given a point P on Σ and an infinitesimal neighbourhood JP , there is

a supermanifold p : Σ̃→ Σ such that p∗(JP ) is locally free of rank (1|0) and which has the

following universal property: if f : X → Σ is any holomorphic map, then f factors through

p : Σ̃→ Σ if and only if f∗(JP ) is locally free of rank (1|0). In this case the lift is unique.

In particular, Σ̃→ Σ is unique up to unique isomorphism.

Proof. We have already proved the first part. Now for the factorization property, assume

that the map factors through p, i.e. f = p ◦ f̃ , then f∗(JP ) = f̃∗(IZ̃) and thus is locally

free of rank (1|0). Conversely, we shrink the U we used to construct Σ̃ such that f∗(JP ) is

locally free on f−1(U). We write s = f ](z), and η = f ](ϑ). A general generator of f∗(JP ) is

of the form ask + bη, but then sk is also a generator. Since it is locally free we have an a

such that

slη = ask.

Then it is clear that on p−1(U) we have to set

f̃ ](z̃) = s, f̃ ](ϑ̃) = a,

and on the complementary part Σ− P we are forced to use the map given by f. This shows

existence and uniqueness.
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3.4.2 Lifting the superconformal structure to a parabolic structure

Consider a blow up p : Σ̃ → Σ. Near P it is defined by p](z) = z̃ and p](ϑ) = z̃nϑ̃. We

calculate that

∂ϑ − ϑ∂z = 1/zn∂ϑ̃ − znϑ̃∂z̃ = 1/z̃n(∂ϑ̃ − z̃2nϑ̃∂z̃).

So we see that D lifts to a distribution D̃. However, this is not a superconformal structure,

rather

D̃2 ∼= (T Σ̃/B)/D⊗ O(−2nZ̃),

i.e., the square D̃2 vanishes along Z̃ to order 2n. (Here O(−2nZ̃) denotes the line bundle

determined by I⊗2n
Z̃

.) Following [54, Section 3.3], we call such a structure parabolic of order

2n. For our purpose, a parabolic super Riemann surfaces will be the blow up of some ideal

JP on a super Riemann surface. This is not the most general case (cf. Loc. cit), but

sufficient in our case. These blow ups can be viewed as special punctures on the super

Riemann surface. As such they lead to additional moduli parameter. For further discussion

we also refer to [30, 55].

3.5 Holomorphic sections of vector bundles and their regularity

On Σ/B we consider a holomorphic vector bundle E of rank n|m and an even non-zero

holomorphic section s ∈ Γ(E), where E denotes the sheaf of holomorphic sections. Consider a

point p ∈ Σ0 such that sred(p) = 0. We choose a neighbourhood U of p on which the bundle

is trivial and a local trivialization E|U ∼= 〈s1, . . . , sn|p1, . . . pm〉 in which we have s =
∑
fisi+∑

gipi. We say that the zero is regular if the ideal (fi, gi) is an infinitesimal neighbourhood

of a point P : (fi, gi) = JP . This is independent of the chosen local trivialization of the

vector bundle. The goal is to find a line bundle L with a section OΣ → L and a diagram

OΣ
f 7→fs //

��

E,

L

s
>>

where s is nowhere vanishing. If k ≤ l, the vanishing ideal of s defines a line bundle and,

using the notation from the previous sections, one can use L⊗k, where L = IZ . The proof of

this is similar to the case k > l which we treat now. In this case the vanishing ideal defines

a line bundle only after passing to a blow up Σ̃ of Σ. We now show that we can construct

such an extension on Σ̃.

We set n = k − l > 0. Let p : Σ̃→ Σ be the blow up of JP . We set Z = p−1(P ). We have

seen that this defines a line bundle L (strictly speaking an isomorphism class). If Z is given

by {z = 0}, then L is defined by the patching (OU )|U−Z → (OΣ̃)|U−Z , f 7→ z−1f. There is

an arrow OΣ̃ → L⊗k given by f 7→ zkf on U and the identity away from U. The section

29



s determines a section p∗(s) of Ẽ = p∗E = OΣ̃ ⊗p−1OΣ
p−1E. We want to define s̃ in the

diagram

OΣ̃

f 7→fp∗(s)//

��

Ẽ

L⊗k

s̃

>> .

On Σ̃− Z we need commutativity of

OΣ̃|Σ−Z //

=

��

Ẽ|Σ−Z

L⊗k|Σ−Z = OΣ̃|Σ−Z

s̃

77
.

To extend this to U , we notice that in view of the definition of the structure sheaf of Σ̃,

we have p∗(s)|U = zk t̃ for some non-vanishing t̃ ∈ Γ(Ẽ|U ). The extension is then given by

f 7→ t̃. By the definition of the transition function of L⊗n, we see that on U we can use

OU //

zk

��

Ẽ|U

L⊗k|U = OU

t̃

99 .

To summarize, we have proved the following.

Proposition 3.10. Given a holomorphic section s of a vector bundle E over the super

Riemann surface Σ/B. If the zeros of s are regular, then there exists a blow p : Σ̃→ Σ, a

holomorphic line bundle L on Σ̃ with a holomorphic section f and an extension of p∗(s) to

a nowhere vanishing holomorphic section s̃ of L∗ ⊗ p∗E : s̃(f) = p∗s.

Remark 3.11. Since we are working over a Grassmann algebra, not every zero is regular

although over B = pt all zeros are regular.

3.6 Connections on super Riemann surfaces

3.6.1 Koszul-Malgrange holomorphic structures

Let E → Σ/B be a complex vector bundle, E its sheaf of sections. A connection on E

is a complex linear map E→ Ω1
Σ/B,C ⊗C E which satisfies the Leibniz rule. Here, Ω1

Σ/B,C
denotes the sheaf of complex 1-forms (TΣ/B)∗ ⊗ C. The curvature of the connection is the

endomorphism-valued two-form given by

R(X,Y ) = ∇X∇Y − (−1)|X||Y |∇Y∇X −∇[X,Y ].
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Definition 3.12. A connection is called partially flat if in local superconformal coordinates

R(D,D) = R(D2, D) = R(D̄, D̄) = R(D̄2, D̄) = 0.

Lemma 3.13. (a) Let ∇ be a connection on E → Σ/B. Then any (smooth) splitting

of the inclusion D→ TΣ determines a unique partially flat connection ∇̃ such that

∇|D⊕D̄ = ∇̃|D⊕D̄.

(b) Consider a complex vector bundle E → Σ/B with partially flat connection ∇. Then

there is a unique holomorphic structure on E such that its holomorphic sections are

locally characterized by ∇D̄s = 0.

Proof. Part (a) is clear. For (b) we refer to [50].

Theorem 3.14 (Koszul-Malgrange structure for super Riemann surfaces). Let E be a

complex vector bundle on the super Riemann surface Σ with connection ∇. Then E admits

a unique holomorphic structure such that the holomorphic sections are locally characterized

by ∇D̄s = 0.

Proof. We can choose a smooth splitting of TΣ/B → D⊗2 and then apply Lemma 3.13.

For later reference, we note at this point the following.

Proposition 3.15. Let Σ/B be a super Riemann surface with underlying even supermanifold

ιB : |Σ| → Σ. Let s be an even section of a vector bundle E → Σ/B with connection ∇.
Then s = 0 if and only if locally

ι∗B(s) = 0, ι∗B(∇Ds) = 0, ι∗B(∇D̄s) = 0, ι∗B(∇D∇D̄s) = 0.

Proof. The problem is local, so we may suppose that Σ = C1|1 × B and |Σ| = C1|0 × B
with the standard embedding. The vector bundle is trivial which allows us to write

s = s0 + ϑsϑ + ϑ̄sϑ̄ + ϑϑ̄sϑϑ̄ where the components are sections of i∗B(E). The first equation

says that s0 = 0. Now we have ∇Ds = Ds+AD(s) for some odd endomorphism AD. Hence

0 = ι∗B(Ds+AD(s))

= sϑ + ι∗B(AD)(ι∗Bs)

= sϑ.

Similarly, sϑ̄ = 0. Finally,

0 = ι∗B((D +AD)∇D̄(s))

= ι∗B(D∇D̄(s)) + (ι∗BAD)(ι∗B(∇D̄s))
= ι∗B(DD̄s) + ι∗B(D(AD̄s))
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= −sϑϑ̄ + ι∗B(DAD̄(s)−AD̄(Ds))

= −sϑϑ̄.

3.6.2 Flat g-valued 1-forms

For later reference we will also give a short review of g-valued 1-forms on C1|1
B , where g is a

Lie superalgebra. The curvature of such a form α is given by

dα+
1

2
[α ∧ α].

The key point is that, in presence of a superconformal structure, flatness is encoded in a

single equation as in the case of an ordinary Riemann surface if the connection is partially

flat. We decompose the complexified form according to D ⊗ C ∼= D ⊕ D̄ and obtain the

two maps αD, αD̄ = αD : C1|1
B → ΠgC. The most important facts are summarized in the

following.

Proposition 3.16. We have that:

(a) A partially flat connection is flat if and only if DαD̄ + D̄αD + [αD, αD̄] = 0.

(b) If α is flat, then there is a unique map F : C1|1
B → G, F (0) = 1, such that F−1dF = α.

(c) For a flat connection α, we have that αz = −(DαD + α2
D).

Proof. This is proved in [36, Thm. 5].

Remark 3.17. Here and in the following we make use of the shorthand α2
D = 1

2 [αD, αD].

4 Generalities on harmonic maps

On a compact super Riemann surface the objects which can be integrated are sections of the

Berezinian BerC(Σ/B) (cf. [55]). Hence, given a map f : Σ/B →M into a supermanifold

with even or odd Riemann metric, we can define the energy

E(f) =

∫

Σ/B
〈dfC|D, dfC|D̄〉C ∈ Γ(OB).

Here 〈−,−〉C denotes the complex bilinear extension of the Riemannian structure on M. Crit-

ical points are called harmonic maps. Sometimes, we will add the adjective “supersymmetric”

to distinguish such maps from ordinary harmonic maps from a Riemann surface into a
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Riemannian manifold. The resulting Euler-Lagrange equation reads in local superconformal

coordinates (cf. [36, Sect. 2])

∇LCD̄ (dfC(D)) = 0.

(Here, the connection is understood to be the pullback of the Levi-Civita connection on M

along f.) In other words, the differential dfC|D is a holomorphic section of D∗ ⊗ (f∗TMC),

where the second tensor factor is equipped with the Koszul-Malgrange holomorphic structure.

In this respect, supersymmetric harmonic maps behave formally exactly the same way as in

the ungraded setting (cf. [11]).

We now compute the underlying equation in local superconformal coordinates. Using

that the Levi Civita connection is torsion-free, we find:

∇LCD̄ ∇LCD̄ dfC(D) = (
1

2
R(D̄, D̄)−∇LC∂̄ )(dfC(D)),

and

∇LCD̄ ∇LCD ∇LCD̄ dfC(D) = (R(D̄,D)−∇LCD ∇LCD̄ )(∇LCD̄ dfC(D))

= R(D̄,D)(∇LCD̄ dfC(D))−∇LCD (
1

2
R(D̄, D̄)−∇LC∂̄ )(dfC(D))

= R(D̄,D)(∇LCD̄ dfC(D))− 1

2
(∇LCD R)(D̄, D̄)(dfC(D))

− 1

2
R(∇LCD dfC(D̄), D̄)(dfC(D)) +

1

2
R(D̄,∇LCD dfC(D̄))(dfC(D))

− 1

2
R(D̄, D̄)(∇LCD dfC(D)) +∇LCD ∇LCD dfC(∂̄)

= R(D̄,D)(∇LCD̄ dfC(D))− 1

2
(∇LCD R)(D̄, D̄)(dfC(D))

−R(∇LCD dfC(D̄), D̄)(dfC(D)) +
1

2
(R(D̄, D̄)(dfC(∂)) +R(D,D)(dfC(∂̄)))

−∇LC∂ dfC(∂̄).

Given an underlying even supermanifold ιB : |Σ| → Σ, then in view of Proposition 3.15, we

find that the harmonic map equation is equivalent to:

ι∗B(∇LCD̄ dfC(D)) = 0,

ι∗B((
1

2
R(D̄, D̄)−∇LC∂̄ )dfC(D)) = 0,

ι∗B(−1

2
(∇LCD R)(D̄, D̄)(dfC(D))+

1

2
(R(D̄, D̄)(dfC(∂))+R(D,D)(dfC(∂̄)))−∇LC∂ dfC(∂̄)) = 0.

For a split super Riemann surface, we can conclude now:

Proposition 4.1. Let ΣB = Σ×B be a split super Riemann surface and M a supermanifold

with Riemannian structure. Harmonic maps f : ΣB →M are in one to one correspondence
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with pairs

f̃ : |ΣB| →M, X ∈ Γ(ι∗B(D∗)⊗C f̃
∗(TMC))0̄,

locally, setting ψ = X(D), subject to

∇LC∂̄ ψ =
1

2
R(ψ̄, ψ̄)ψ, (4.2)

∇LC∂̄ df̃C(∂) =
1

2
(R(ψ̄, ψ̄)(df̃C(∂)) +R(ψ,ψ)(df̃C(∂̄))− (∇ψR)(ψ̄, ψ̄)ψ). (4.3)

Proof. This follows from the above computation together with Proposition 3.5.

The underlying map is harmonic if and only if ∇LC
∂̄
df̃C(∂) = 0. If the co-domain is purely

even, then the right hand side of (4.3) vanishes after restriction along pt → B. However,

this is not necessarily the case if the co-domain is a supermanifold. In particular, it is then

natural question, if coupled solutions to these equations, i.e., such that the underlying map

is not harmonic, exist. We will construct an example in Section 7.4.4.

One should point out the structural similarity to the equations for Dirac harmonic maps

[14] in which the tension field of a map is coupled to a spinor. The difference to the situation

at hand is that in our situation ψ is an odd quantity. For instance, for the curvature R we

do not necessarily have R(ψ,ψ) = 0. For a discussion of the analogous problem of finding

truly coupled solutions in this context see [35].

Remark 4.4. These component equations have been derived in [36] as well in the case

Σ = C1|1
B and M an ordinary Riemannian manifold.

5 Harmonic maps into U(n|m)

5.1 Zero curvature representation

Since the Levi-Civita connection on U(n|m) is given by d+ 1
2α, where α is the Maurer-Cartan

form, a map f : Σ→ U(n|m) is harmonic if and only if

D̄αD +
1

2
[αD̄, αD] = 0.

Let α|D⊗C = α′ + α′′ be the type decomposition. As in Lemma 3.13, in presence of a

splitting of the inclusion D→ TΣ/B, any connection defined on D extends to a partially

flat connection. The following result is to be understood by using this construction. We

have the following characterization of harmonicity.

Lemma 5.1. We have

DαD̄ +
1

2
[αD, αD̄] = 0
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if and only if the loop of connections determined by

Aλ =
1− λ

2
α′ +

1− λ−1

2
α′′

is flat for all λ ∈ S1.

Proof. See [36, Thm. 6].

5.2 Harmonic maps and framings

Recall from Section 2.4 that there is the totally geodesic embedding ι : Grk|l(Cn|m) →
U(n|m), V 7→ πV − πV ⊥ . It follows that the problem of harmonic maps into Grassmannians

is reduced to the problem of harmonic maps into U(n|m). However, it is also convenient

to study harmonic maps Σ → Grk|l(Cn|m) via framings. We will write G = U(n|m),

K = U(k|l)× U(n− k|m− l). By a framing, we mean a lift in the commutative diagram

G

p

��

c

""
Σ

ϕ //

ϕ̃
==

G/K
ι // G,

where p is the projection and c = ι ◦ p. On the level of Lie superalgebras ι induces an

AdK-invariant decomposition g = k ⊕ p. If we denote the projection onto the respective

summand by a subscript k or p, then for the Maurer-Cartan form α we obtain

Ad(g−1)c∗α = (−2)αp.

Setting β = ϕ∗ι∗α and β̃ = ϕ̃∗α, we also have

β = ϕ̃∗c∗α

= (−2)Ad(ϕ̃)β̃p.

We also extend the projections onto m and p linearly to the projections onto mC and pC on

the complexification gC. Starting from the harmonic map equation

D̄βD = −1

2
[βD̄, βD],

we can now compute both sides in terms of β̃ and obtain

D̄βD = (−2)Ad(ϕ̃)[β̃D̄, β̃p,D] + (−2)Adϕ̃(D̄β̃p,D), −1

2
[βD̄, βD] = (−2)Ad(ϕ̃)[βp,D̄, βp,D].
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So, finally, the harmonic map equation in terms of the framing ϕ̃ reads

D̄β̃p,D = −[β̃k,D̄, β̃p,D].

5.3 Supersymmetric harmonic maps and elliptic integrable systems

In view of the discussion in Section 4, it is natural to study how supersymmetric harmonic

maps relate to harmonic maps. In the case of a Lie group as co-domain, as was observed

by Khemar [36], the underlying map of a supersymmetric harmonic map is a solution to a

special instance of a broad class of integrable equations, the elliptic integrable systems. For

a comprehensive treatment of those, we refer to [36, 37]. We give a brief account on such

and also compute the equations for the underlying map in this setup.

5.3.1 Basics on elliptic integrable systems

Let g be a Lie (super)algebra with an automorphism τ of order k′. We write k′ = 2k or

k′ = 2k + 1. After complexification, there is a decomposition into the eigenspaces of τ

gC =
⊕

l∈Z/k′
gl,

where gl corresponds to the eigenvalue e
2πil
k′ . The mth elliptic equation is the flatness of the

loop of g-valued 1-forms on C1|1
B determined by

αλ,D =
m∑

i=0

λiαD,i, λ ∈ S1,

where αi is a section of D∗ ⊗ gi.

There are three cases. We put m1 = 0 and for k′ > 1 set mk′ = k, if k′ = 2k, and

mk′ = k + 1, if k′ = 2k + 1. Then the cases are primitive if m < mk′ , determined if

mk′ ≤ m ≤ k′ − 1, and underdetermined if m ≥ k′. Now let ιB : |C1|1
B | = C1|0

B → C1|1
B denote

the standard underlying manifold. The mth elliptic equation on |C1|1
B | is the flatness of

m∑

i=0

λiαi, λ ∈ S1,

where now αi is a section of (T(|C1|1
B |/B)(1,0))∗ ⊗ gi.

Remark 5.2. Originally, the notion of an elliptic integrable system was formulated by

Khemar in the ungraded setting [37]. We have only made the straightforward necessary

adaptions to the supersymmetric setting.

We have the following basic observation [36].
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Lemma 5.3. Consider a supersymmetric solution to the mth elliptic integrable system

αλ,D. Then βz := ι∗Bαλ,z is a solution to the (2m)th elliptic system on |C1|1
B |.

Proof. This follows form the fact that flatness in the supersymmetric sense of αλ,D implies

flatness of αλ,z in the non-super sense. The doubling m 7→ 2m is a result of αλ,z =

−(Dαλ,D + α2
λ,D).

Remark 5.4. For supersymmetric harmonic map into a Lie supergroup we have k′ = 1,

m = 1. Thus the underlying map has k′ = 1, m = 2. As Khemar shows [37, p. 46], this

underdetermined system is equivalent to the system with k′ = 3 and m = 2 where one

considers g3 together with the cyclic permutation. This is in contrast with the ordinary

harmonic map equation. There k′ = 1, m = 1 and this underdetermined system is equivalent

to the system with k′ = 2 and m = 1 where on g2 one considers the automorphism given by

cyclic permutation.

Now, for a supersymmetric harmonic map into a symmetric space, we have for the pullback

of the Maurer-Cartan form of a framing the equations

DαD̄ + D̄αD + [αD, αD̄] = 0, D̄αp,D = −[αk,D̄, αp,D].

These are equivalent to the flatness of αλ,D = αk,D + λαp,D, λ ∈ S1. Consequently, the

underlying map is related to the second system of a symmetric pair, k′ = 2. This underde-

termined system is in turn equivalent to the second system associated to the 4-symmetric

space g2, (a, b) 7→ (b, τ(a)).

5.3.2 The underlying map of a supersymmetric harmonic map in terms of a

framing

We now compute the equation for the underlying map of a supersymmetric harmonic map

in terms of a framing. This provides an alternative point of view on the equations derived

in Section 4. We have

αp,z = −(Dαp,D + [αk,D, αp,D]), αk,z = −(α2
p,D + (Dαk,D + α2

k,D)).

Then we compute

D̄(−Dαp,D) = DD̄αp,D

= −D[αk,D̄, αp,D]

= −[Dαk,D̄, αp,D] + [αk,D̄, Dαp,D].
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Therefore,

−∂̄(−Dαp,D) = −[D̄Dαk,D̄, αp,D]− [Dαk,D̄, D̄αp,D] + [D̄αk,D̄, Dαp,D]− [αk,D̄, D̄Dαp,D]

= [DD̄αk,D̄, αp,D] + [Dαk,D̄, [αk,D̄, αp,D]] + [D̄αk,D̄, Dαp,D]− [αk,D̄, D[αk,D̄, αp,D]]

= [DD̄αk,D̄, αp,D] +D[α2
k,D̄, αp,D] + [D̄αk,D̄, Dαp,D]

= D[D̄αk,D̄ + α2
k,D̄, αp,D],

D̄[αk,D, αp,D] = [D̄αk,D, αp,D] + [αk,D, [αk,D̄, αp,D]],

−∂̄[αk,D, αp,D] = [D̄D̄αk,D, αp,D] + [D̄αk,D, D̄αp,D] + [D̄αk,D, [αk,D̄, αp,D]]− [αk,D, D̄[αk,D̄, αp,D]]

= [D̄2αk,D, αp,D]− [αk,D, D̄[αk,D̄, αp,D]]

= [D̄2αk,D, αp,D]− [αk,D, [D̄αk,D̄, αp,D]]− [αk,D, [α
2
k,D̄, αp,D]]

= [D̄2αk,D, αp,D]− [[αk,D, D̄αk,D̄ + α2
k,D̄], αp,D]− [D̄αk,D̄ + α2

k,D̄, [αk,D, αp,D]].

Putting things together, we obtain

D̄D̄αp,z = −[D̄αk,D̄ + α2
k,D̄, αp,z] + [D(D̄αk,D̄ + α2

k,D̄), αp,D]− [D̄2αk,D, αp,D] + [[αk,D, D̄αk,D̄ + α2
k,D̄], αp,D]

= −[D̄αk,D̄ + α2
k,D̄, αp,z] + [D(D̄αk,D̄ + α2

k,D̄)− D̄2αk,D + [αk,D, D̄αk,D̄ + α2
k,D̄], αp,D].

We have

D̄2αk,D = −(D̄Dαk,D̄ + D̄[αk,D, αk,D̄] + D̄[αp,D, αp,D̄]),

so we conclude

D(D̄αk,D̄ + α2
k,D̄)− D̄2αk,D + [αk,D, D̄αk,D̄ + α2

k,D̄] = Dα2
k,D̄ + [D̄αk,D, αk,D̄] + [D̄αp,D, αp,D̄]

− [αp,D, D̄αp,D̄] + [αk,D, α
2
k,D̄]

= [Dαk,D̄ + D̄αk,D, αk,D̄]− [[αk,D̄, αp,D], αp,D̄]

− [αp,D, D̄αp,D̄] + [αk,D, α
2
k,D̄]

= −[[αp,D, αp,D̄], αk,D̄]− [[αk,D̄, αp,D], αp,D̄]

− [αp,D, D̄αp,D̄]

= [αp,D, αp,z̄].

Finally, we obtain

D̄D̄αp,z = −[D̄αk,D̄ + α2
k,D̄, αp,z]− [αp,z̄, α

2
p,D]

= [αk,z̄, αp,z] + [α2
p,D̄, αp,z] + [α2

p,D, αp,z̄].
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Hence:

∂̄αp,z = −[αk,z̄, αp,z]− ([α2
p,D̄, αp,z] + [α2

p,D, αp,z̄]).

In particular, due to the second summand the underlying map needs not be harmonic.

6 Harmonic maps into Grk|l(Cn|m) and the special case CP n|m

The aim of this section is to prove supersymmetric versions of by now classic results on

harmonic maps into Grassmannians. There are in principle many ways to present the

material. For our purposes, it is convenient to follow the exposition in [12]. For alternative

approaches we refer at least to [16, 26]. Throughout, Σ → B denotes a connected super

Riemann surface.

6.1 The Gauß transform

Let f : Σ → Grk|l(Cn|m) be harmonic. From now on we will tacitly identify f with the

subbundle f∗(γ) ⊂ Cn+1|m
Σ which it defines. The type decomposition of TGrk|l(Cn|m)C

induces a decomposition of the complexified differential dfC = df (1,0) + df (0,1). In local

superconformal coordinates and for a local section of the bundle f, we have that df (1,0)(D)

is given by (cf. Section 2.4)

Af,f⊥,D : f // f⊥, Af,f⊥,D(ρ) = πf⊥Dρ.

Similarly, df (1,0)(D̄) is given by

Af,f⊥,D̄ : f // f⊥, Af,f⊥,D̄(ρ) = πf⊥D̄ρ.

More generally, following [12], a decomposition into orthogonal subbundles ⊕li=1ϕi = Cn|mΣ

leads in a local superconformal coordinate to the second fundamental forms

Aϕi,ϕj ,D : ϕi // ϕj , Aϕi,ϕj ,D(ρ) = πϕjDρ,

Aϕi,ϕj ,D̄ : ϕi // ϕj , Aϕi,ϕj ,D̄(ρ) = πϕjD̄ρ.

The inclusion into the trivial bundle induces a hermitian metric 〈−,−〉ϕi and a compatible

connection ∇ϕi on each ϕi. Then we have

Aϕi,ϕj ,D = −A∗ϕj ,ϕiD̄. (6.1)

Remark 6.2. The second fundamental forms are actually sections of D∗ ⊗ Hom(ϕi, ϕj).

For our purposes it is however always sufficient to work in local superconformal coordinates.
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We have the following basic characterization of harmonic maps.

Lemma 6.3. (a) The map f is holomorphic (resp. antiholomorphic) if and only if

Af,f⊥,D̄ (resp. Af,f⊥,D) vanishes.

(b) The map f is harmonic if and only if

Af,f⊥,D ◦ ∇fD̄ = −∇f⊥
D̄
◦Af,f⊥,D,

i.e., Af,f⊥,D is a holomorphic section of Hom(f, f⊥) equipped with its Koszul-Malgrange

structure. Equivalently, Af⊥,f,D̄ is an antiholomorphic section of Hom(f⊥, f). In par-

ticular, f is harmonic if and only if f⊥ is harmonic.

Proof. The first part is a reformulation of Proposition 2.8. By definition, f is harmonic if and

only if ∇LC
D̄

(dfC(D)) = 0. Since (TCPn|m)(1,0) and (TCPn|m)(0,1) are parallel with respect

to the Levi-Civita connection (cf. Section 2.4), this is equivalent to ∇LC
D̄
df (1,0)(D) = 0 and

∇LC
D̄
df (0,1)(D) = 0 and the latter is the complex conjugate of the former. The last claim

follows from (6.1).

The fundamental insight is that one can make use of the holomorphicity of Af,f⊥,D to

produce a new harmonic map from f. Since it is this case we are mainly interested in, we

now specialize to CPn|m. (See also the remark below.) We assume that the zeros of Af,f⊥,D

are regular (cf. Section 3.5). In this case, due to holomorphicity, the zeros are isolated. Now

we make use of Proposition 3.10 and obtain a blow up p̃ : Σ̃→ Σ and a line bundle L on Σ̃

such that p̃∗Af,f⊥,D extends to a nowhere vanishing holomorphic section of

L⊗ p̃∗Hom(f, f⊥) = L⊗Hom(f̃ , f̃⊥),

where we set f̃ = f ◦ p̃. Hence, by means of the (non-holomorphic) inclusion

f̃⊥ ⊂ Cn+1|m
Σ̃,

we obtain a nowhere vanishing odd inclusion of the line bundle L∗ ⊗ f̃ into the trivial

bundle. This defines a new map, the Gauß transform, f̃1 : Σ̃→ CPm−1|n+1. Under similar

assumptions we also obtain f̂−1 : Σ̂ → CPm−1|n+1 from Af,f⊥,D̄, where p̂ : Σ̂ → Σ is a

possibly different blow up and f̂ = f ◦ p̂.

Remark 6.4. The analogous construction, “filling out the zeros” of a holomorphic section

of a bundle Hom(E,F ), is available in the ungraded setting for all Grassmannians [12, Prop.

2.2]. The proof makes use of the Plücker embedding to reduce the general case effectively

to the above case. There is no Plücker embedding for the super Grassmannians (cf. [48])

and we do not know if in the graded setting such a generalization is feasible or not.
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From this discussion, it is evident that we need to extend the notion of harmonic maps

to parabolic super Riemann surfaces.

Definition 6.5. A map g : Σ̃ → CPn|m is called harmonic if away from the degeneracy

locus ∇LC
D̄

(dg(1,0)(D)) = 0.

Remark 6.6. As concerns the theory of harmonic maps, the main difference between

super Riemann surfaces and parabolic super Riemann surfaces is the non-existence of

a Koszul-Malgrange structure on complex vector bundles with connection in the latter

case. This is due to the fact that there is no associated partially flat connection along the

degeneracy locus Z of the superconformal structure. For the same reason, a zero curvature

representation is not available. However, these structures exist on the complement Σ̃− Z,
which turns out to be enough for our purposes. The above definition is then equivalent to

g|Σ̃−Z being harmonic.

We will now prove the central theorem, which is a supersymmetric generalization of the

analogous statement in the non-graded case [22, 23, 26].

Theorem 6.7. Let f : Σ→ CPn|m be a harmonic map such that the zeros of Af,f⊥,D and

Af,f⊥,D̄ are regular. Then the Gauß transforms f̃1, f̂−1 exist on possibly different blow ups

p̃ : Σ̃→ Σ, and p̂ : Σ̂→ Σ. They are harmonic and, moreover, (f̃1)−1 and (f̂−1)1 exist on Σ̃

resp. Σ̂ and coincide with f̃ = f ◦ p̃ and f̂ = f ◦ p̂ respectively.

Proof. The case f̂−1 being similar, we only prove that f̃1 is harmonic. For this, we can work

in a local superconformal coordinate away from the degeneracy locus. We can follow the

reasoning in [12, Prop. 2.3]. Let R denote the orthogonal complement of f̃ ⊕ f̃1. By the

definition of f̃1 and R, clearly Af̃ ,R,D = 0. This implies that Af̃ ,f̃⊥,D is holomorphic if and

only if Af̃ ,f̃1,D
is holomorphic. Now we show that f̃ being harmonic implies Af̃1,R,D̄

= 0.

To see this, we pick a local trivializing section ρ of f̃ which is holomorphic in the Koszul-

Malgrange structure. Then harmonicity implies ∇f̃⊥
D̄
Af̃ ,f̃⊥,D(ρ) = 0, which proves the

desired equality since Af̃ ,f̃⊥,D(ρ) spans f̃1 outside a discrete set. This implies that Af̃ ,f̃1,D

is holomorphic if and only if Af̃+R,f̃1,D
is holomorphic, which is equivalent to f̃1 being

harmonic. The last statement follows from Af̃1,R,D̄
= 0 and the fact that for local trivializing

sections ρ̃1 of f̃1 and ρ̃ of f̃ :

〈ρ̃, Af̃1,f̃ ,D̄
(ρ̃1)〉f̃ = −〈Af̃ ,f̃1,D

(ρ̃), ρ̃1〉f̃1
.

6.2 Isotropic harmonic maps

We now define and study the class of full isotropic harmonic maps and arrive at an analogous

result as in [26, Thm 6.9]. We show that, as in the non-graded setting, such are characterized
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by the vanishing of a series of holomorphic differentials. A genuine feature in the graded

setting is that the two parameters (n+ 1|m) for the co-domain CPn|m are restricted by the

property |n + 1 −m| ≤ 1. Σ denotes a connected super Riemann surface and Σ̃ denotes

a connected parabolic super Riemann surface with degeneracy locus Z. For the following

it will be convenient to introduce a slightly different perspective on the harmonic map

equation (cf. [26]). On CPn|m we have the following exact sequence

0 // γ∗ ⊗ γ // γ∗ ⊗ Cn+1|m π // γ∗ ⊗ γ⊥ // 0.

The first bundle has a canonical section, the identity, which henceforth gives a canonical

section Φ of γ∗ ⊗ Cn+1|m. For a map f : Σ̃→ CPn|m, we will freely identify f∗Φ and Φ.

We equip this bundle with the tensor product of the canonical and the flat connection,

denoted by ∇H . Then, if V is a section of f∗ ⊗ Cn+1|m and ρ is local trivializing section of

f, we have that

(∇HDV )(ρ) = DV (ρ)− (−1)|V |V (πρDρ).

This connection is compatible with the hermitian metric defined for local sections F and G

by

〈F,G〉 = str(F ∗G).

We start with a general observation:

Lemma 6.8. Consider a smooth map f : Σ̃→ CPn|m. For any section V of f∗ ⊗ Cn+1|m

(∇HD∇HD̄ +∇HD̄∇HD)V = κ1V.

Moreover, κ1 = −(|∇HDΦ|2 + |∇H
D̄

Φ|2).

Proof. This follows from the fact that the curvature of the tensor product of connections is

the difference of the curvatures of these connections and the flat connection has no curvature.

The equality for κ1 follows from a direct calculation.

Lemma 6.9. We have:

(a) ∇HDΦ is perpendicular to Φ and projects to Af,f⊥,D under π.

(b) The map f is harmonic if and only if π(∇H
D̄
∇HDΦ) = 0. In fact, f is harmonic if and

only if

∇HD̄∇HDΦ + 〈∇HDΦ,∇HDΦ〉Φ = 0.

Proof. Part (a) follows from the local calculation (∇HDf∗Φ)(ρ) = πf⊥Dρ. Part (b) is a

reformulation of Lemma 6.3 (b).
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Definition 6.10. A smooth map f : Σ̃→ CPn|m is isotropic if in any local superconformal

coordinate and for any local section ρ of f and all k ≥ 0 :

〈Φ(ρ), Dk∇HDΦ(ρ)〉C1+n|m = 0.

Equivalently, locally

〈(∇HD̄)αΦ, (∇HD)βΦ〉 = 0, α, β ≥ 1.

Definition 6.11. A map ϕ : Σ̃→ CPn|m is full if, except for at a discrete set of points, we

have

span{x∗(∇HD̄)kΦ, x∗Φ, x∗(∇HD)lΦ | k, l ≥ 0} = C1+n|m,

where x : pt→ Σ̃.

Remark 6.12. Our definition of fullness is strictly stronger than the convention used in

[26]. Therein, a map is defined to be full if it does not factor through a strictly smaller

complex projective space. Real analyticity of harmonic maps can be used to show that

this notion of fullness implies ours. The converse is clear and holds in our situation as

well. Thus, weakening our hypothesis would require to study the analytic properties of

supersymmetric harmonic maps. This is not within the scope of this article.

We will now study the interplay between fullness, isotropy, and the harmonic map equation.

We seek an analogue of [26, Thm. 6.9], however, in view of our slightly different setup, we

cannot directly appeal to the results in [26].

Lemma 6.13. Let f : Σ̃→ CPn|m be a full isotropic and harmonic map such that f±1 exist

on Σ̃. Then f±1 are full and isotropic.

Proof. We indicate the line of argument in the case f1. For details, we refer to [26, Prop.

5.9]. We will work in a local superconformal coordinate chart. In local coordinates we have

Φf1(ρ1) = ∇HDΦf (ρ). Any of (∇Hf1D )kΦf1 is a linear combination of Dk∇HfD Φf (ρ), k ≥ 0,

while, in view of the second part of Theorem 6.7, any of (∇Hf1
D̄

)kΦf1 is a linear combination

of D̄kΦf (ρ) and Φf (ρ). These are orthogonal in view of isotropy of f. This also implies that

f1 is full again.

We call a full isotropic and harmonic map 1-regular if each of f1 or f−1 either exists on

Σ̃ or it is antiholomorphic respectively holomorphic. Notice that if p : Σ̂→ Σ̃ is a blow up,

disjoint from the degeneracy locus of the superconformal structure, and if f : Σ̃→ CPn|m is

a full isotropic map, then f ◦ p is full isotropic. We can now make the following definition:

Definition 6.14. (a) A full isotropic harmonic map f : Σ̃→ CPn|m has invertible rami-

fication if all iterated Gauß transforms f±r are 1-regular.
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(b) A full isotropic harmonic map f : Σ̃→ CPn|m has regular ramification if there exists a

blow up p : Σ̂→ Σ̃, disjoint from the degeneracy locus of the superconformal structure,

such that f ◦ p has invertible ramification.

Remark 6.15. For B = pt all harmonic maps have regular ramification.

So, starting from a full isotropic harmonic map f : Σ̃→ CPn|m with invertible ramification,

there are natural numbers k = k(f) and l = l(f), and the sequence of Gauß transforms

takes the form

f−l, . . . , f = f0, f1, . . . , fk.

In view of Theorem 6.7 and Lemma 6.13 each constituent is full and isotropic. Moreover,

each map has invertible ramification, which is also a consequence of the second part of

Theorem 6.7 and f can be reconstructed from either f−l or fk. The maps f−l, and fk are

holomorphic and anti-holomorphic respectively and by counting dimensions we see that

|n+ 1−m| ≤ 1. Thus we have proved the supersymmetric version of [26, Thm. 6.9]:

Theorem 6.16. Consider (n + 1|m) = (n + 1|n + 1 + ε). For every 0 ≤ r ≤ n + 1 + m,

the assignment f 7→ fr gives a bijective correspondence between full holomorphic maps

f : Σ̃→ CPn|m with invertible ramification and full isotropic harmonic maps g : Σ→ Mr

with invertible ramification such that l(g) = r. Here, Mr = CPn|m if r is even and Mr =

CPm−1|n+1 if r is odd. The inverse is given by g 7→ g−l(g).

Remark 6.17. In view of Corollary 6.20 below, this theorem applies to the genus 0 case.

The theorem shows that any full harmonic map with regular ramification is related purely

algebraically to a holomorphic map on a blow up. Some examples will be given in the next

section.

We study now conditions under which these isotropy assumptions are satisfied. In local

superconformal coordinates on some U , we set

(ηα,β)U = 〈(∇HD̄)αΦ, (∇HD)βΦ〉.

Lemma 6.18. Let f : Σ̃ → CPn|m be harmonic. We have that (η0,1)U = (η1,0)U = 0.

Moreover, if (ηα,β)U = 0 for all 1 ≤ α + β ≤ r and all U , then (ηα+1,β)U and (ηα,β+1)U

yield global holomorphic sections of (D⊗(α+β+1))−1.

Proof. The proof is the same as in the ungraded case [26, Lem. 7.2]. If the assumptions

are satisfied, then (ηα+1,β)U , (ηα,β+1)U have the correct transformation behaviour. Holo-

morphicity follows essentially from the impliciation of Lemma 6.8, that for α ≥ 1, we

have

∇HD̄(∇HD)αΦ(ρ) ∈ span{(∇HD)lΦ(ρ) | 0 ≤ l ≤ α− 1},

and similarly for D and D̄ interchanged.
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In view of this lemma, isotropy of a harmonic map is encoded in terms of holomorphic

differentials. In particular, η1,1, a quadratic holomorphic differential, is always defined.

Definition 6.19. A map is called weakly conformal if η1,1 = 0.

Corollary 6.20. Any harmonic super sphere is isotropic.

Proof. We have seen earlier that on a super sphere Γ(D−k) = 0 for all k ≥ 1, hence Lemma

6.18 applies.

We conclude with an interesting fact:

Lemma 6.21. For any weakly conformal harmonic map C1|1
B → CPn|m, the underlying

map obtained by restriction along ι : C→ C1|1
B is harmonic.

Proof. For the proof we make use of the formula derived in Section 5.3.2. We choose a

framing and then have

αp,D =




0 ṽ† w̃†

v 0 0

w 0 0


 ,

where v and ṽ are odd and w and w̃ are even. Since the map is weakly conformal, we have

α2
p,D =




0 0 0

0 vṽ† vw̃†

0 −wṽ† ww̃†


 .

From ι∗v = 0 and ι∗ṽ = 0, we then obtain that the action of α2
p,D on αp,z̄ vanishes after

restriction along ι.

Remark 6.22. More generally, this argument shows that the underlying map of a conformal

(i.e., such that the images of both second fundamental forms are orthogonal) supersymmetric

harmonic map into a Grassmannian Grk|0(Cn|m) is harmonic. However, this argument fails

for Grassmannians of the form Grk|l(Cn|m), k, l 6= 0. An explicit counterexample will be

constructed in Section 7.4.4 below.

6.3 Examples for the Gauß transform

Holomorphic maps from a super sphere into CPn|m can be written down explicitly in terms

of polynomials, which makes it possible to give explicit examples of full isotropic harmonic

maps. It is a more subtle question to determine the ramification type of such maps. A

general discussion of this issue is not within the scope of this paper. Let Σ = CP 1|1 ×B be

the super sphere as constructed in Section 3.2.3. We will describe all maps in the chart U1.
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By isotropy and for dimensional reasons, all full harmonic maps Σ → CP 1|1 are holo-

morphic or antiholomorphic. In this case, we can explicitly compute the whole harmonic

sequence:

f = (p r | q), f1 = ((p, u) (r, u) | (q, u)),

f2 = c.c.(−Dqr + qDr Dqp− qDp | −i
Dq

((r, p)D
2 −D(p, r))q + i(p, r)),

where c.c. denotes complex conjugation. Here,

u = 〈f, f〉, (a, b)X = (Xa)b− (−1)|a||b|(Xb)a,

and (a, b) = (a, b)D. More generally, if we start from a holomorphic map

f : Σ // CPn|m, f = (p0 . . . pn | p1+n . . . pn+m),

then

f1 = ((p0, u) . . . (pn, u) | (p1+n, u) . . . (pn+m, u)).

For instance, we can consider the holomorphic map defined by

f = (1

√(
n

1

)
z

√(
n

2

)
z2 . . . zn | ϑ ϑ

√(
n− 1

1

)
z . . . ϑzn−1).

This is a supersymmetric generalization of the Veronese curve. In this case, the successive

derivatives give an ascending sequence of vector bundles

span{f} ⊂ span{f,Df} ⊂ . . . ⊂ span{f,Df,D2f, . . . ,D2nf} = Cn+1|n
Σ,

defined on all of Σ. So that this is an example of a full isotropic holomorphic map with

invertible ramification. For instance, we have, up to an invertible factor,

f1 = ((f1)0 . . . (f1)n | (f1)1+n . . . (f1)1+n+n),

(f1)k =

√(
n

k

)
zk−1(ϑ(−k + n

|z|2
1 + |z|2 ) + ϑ̄((−i) z

1 + |z|2 )), 0 ≤ k ≤ n,

(f1)1+n+l =

√(
n− 1

l

)
zl, 0 ≤ l ≤ n.

An example for regular but non-invertible ramification can be constructed as follows. We

consider the holomorphic map into CP 2|1 given by

f = (
√

2z 1 z2 | ϑ(z − P )),
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where P is a purely nilpotent. We have

|f |2 = (1 + |z|2)(1 + |z|2 − iϑ̄ϑhP ), Df = (
√

2ϑ 0 2ϑz | z − P ),

where hP = |z − P |2/(1 + |z|2). Furthermore,

(f,Df) = (1 + |z|2)(2ϑz̄ + iϑ̄hP ),
(f,Df)

(f, f)
= ϑ

2z̄

1 + |z|2 + ϑ̄
ihP

1 + |z|2 ,

f1 = (
√

2ϑ 0 2ϑz | z − P )−
1

1 + |z|2 (
√

2z(2z̄ϑ+ ihP ϑ̄) (2ϑz̄ + ϑ̄ihP ) z2(2ϑz̄ + ϑ̄ihP ) | iϑ̄ϑhP (z − P )).

It is clear that the underlying map degenerates at z = 0. In order to find the full ramification

divisor, we need to express f1 in terms of holomorphic sections of f∗Hom(γ, γ⊥). For this,

we put

X1 = (
√

2ϑ̄ϑz ϑ̄ϑ ϑ̄ϑz2 | 1).

Then

D̄X1 = ϑf, (f,X1) = ϑ̄ϑ(1 + |z|2)2 + iϑ̄(z̄ − P̄ )

and
(f,X1)

(f, f)
= ϑ̄ϑ+ iϑ̄

z̄ − P̄
1 + |z|2 .

Then

Z1 = X1 −
(f,X1)

(f, f)
f

= (−iϑ̄(z̄ − P̄ )
√

2z

(1 + |z|2)2
− iϑ̄ z̄ − P̄

(1 + |z|2)2
− iϑ̄ (z̄ − P̄ )z2

(1 + |z|2)2
|1− iϑ̄ϑ |z − P |

2

(1 + |z|2)2
)

is holomorphic. (Recall that this means V ⊥ f and D̄V ∼ f.) We compute

f1 − (z − P )Z1 = ϑ(
√

2(1− 2h) − 2
z̄

1 + |z|2 2z(1− h) | 0)

= ϑY.

We note that Y ⊥ f and

D̄Y = −2ϑ̄
1

(1 + |z|2)2
(
√

2z 1 z2 | 0).

For a solution ψ of

D̄ψ = −2ϑ̄ϑ
z − P

(1 + |z|2)2
, ϑψ = 0,
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we define X2 = (Y | ψ) and set

Z2 = X2 −
(f,X2)

(f, f)
f.

Then Z2 is holomorphic and since ϑ(f,X2) = ϑψ = 0 we have

f1 = (z − P )Z1 + ϑZ2.

One easily checks that f1 does not have a zero on U2, so that in this example the Gauß

transform is defined on the blow up of the super sphere along the infinitesimal neighbourhood

(z − P, ϑ).

6.4 2(n+ 1)-orthogonal non-isotropic harmonic maps in CP n|n+1

In the previous section, we studied harmonic maps for which all ηk,l vanished. Such maps

were related to holomorphic maps via the Gauß transform. We will now describe a class of

tori for which ηk,l = 0 for k + l ≤ 2n+ 1, but η1,2n+1 6= 0. The essential ingredient is that

on a torus, η1,2n+1 is always a globally defined holomorphic function. The key assumption

for the following discussion is that this function be invertible. The classification scheme

differs substantially from the methods employed previously. In the ungraded case this goes

back to [6, 10].

6.4.1 The 2(n+ 1)-symmetric space PSU(n+ 1|n+ 1)/PST

We set T = U(1)×2(n+1) ⊂ U(n+ 1|n+ 1). Then PST is a torus in PSU(n+ 1|n+ 1). An

element of pstC is of the form

diag(σ0, . . . σn, σn+1, . . . , σ2n+1) + 〈id〉,

and the roots are of the form σi−σj . We set αl = σl+n+1−σl, 0 ≤ l ≤ n, αn+l′ = σl′−σn+l′ ,

1 ≤ l′ ≤ n and α2n+1 = −∑2n
k=0 αk. Notice that

∑n
l=0 αl =

∑2n+1
l=n+1 αl = 0. Let El be the

root vector corresponding to αl with non-zero entry equal to 1. Then we define Bτ =
∑

k Ek.

For example, for n = 2, we have

E0 =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, Bτ =




0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




.
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Now we fix a 2(n+ 1)th simple root of unity ω and set

τ = diag(1, ω2, ω4, . . . , ω2n, ω, ω3, . . . , ω2n+1).

The adjoint action of τ defines an automorphism of order 2(n+1) and after complexification

we obtain a decomposition into eigenspaces

psl(n+ 1|n+ 1) =
2n+1⊕

i=0

Mi.

Here Mi corresponds to the eigenvalue ωi. For instance, M1 is the sum of the root spaces of

αl, 0 ≤ l ≤ 2n+ 1. In the case n = 2, M1 consists of matrices of the type




0 0 0 0 0 ∗
0 0 0 ∗ 0 0

0 0 0 0 ∗ 0

∗ 0 0 0 0 0

0 ∗ 0 0 0 0

0 0 ∗ 0 0 0




.

There are two PSTC-invariant supersymmetric polynomials of degree n+ 1 :

Pi ∈ Sym∗n+1(ΠM1), i = 1, 2.

Writing an element in the form ξi =
∑

k a
k
iEk, they are given by the following sums over

the symmetric group Σn+1 :

P1(ξ0, . . . , ξn) =
1

(n+ 1)!

∑

σ∈Σn+1

n∏

k=0

a
σ(k)
k ,

P2(ξ0, . . . , ξn) =
1

(n+ 1)!

∑

σ∈Σn+1

2(n+1)∏

k=n+1

a
σ(k)
k .

Moreover, we set Pi(ξ) = Pi(ξ, . . . , ξ) and P (ξ) = P1(ξ)P2(ξ).

Remark 6.23. There are also two invariant polynomials on M2. However, for a commutator

[X,X], where X ∈M1, these two coincide and are equal to P. In view of this, P1 and P2

are more elementary.

Definition 6.24. A map ξ : T → ΠM1 is called cyclic if P (ξ) is invertible.
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Lemma 6.25. Consider a map ξ : T → ΠM1. Then there exists t : T → PTC such that

Ad(t)(Bτ ) = ξ

if and only if P1(ξ)P2(ξ) = 1. In this case P2(ξ) = P1(ξ)−1 = Ber(t).

Proof. The ansatz t = diag(1, λ1, . . . , λ2n+1) yields a unique solution in PTC.

6.4.2 Primitive maps

Now let Σ be a connected super Riemann surface.

Definition 6.26. A map f : Σ → PSU(n + 1|n + 1)/PST is called primitive if dfC|D ∈
Γ((D)∗ ⊗ [M1]) and it is cyclic at one point.

A framing of f : Σ→ PSU(n+ 1|n+ 1)/PST is a map f̃ : Σ→ PSU(n+ 1|n+ 1) such

that

PSU(n+ 1|n+ 1)

��
Σ //

66

PSU(n+ 1|n+ 1)/PST

commutes. In this situation, we set A = f̃∗α, where α denotes the Maurer-Cartan form.

Then the primitivity of f is locally characterized by

AD = AD,0 +AD,1,

where AD,i has values in Mi and AD,1 is cyclic at one point. The Maurer-Cartan equation

for A takes the form

D̄AD,0 +DAD̄,0 + [AD,0, AD̄,0] + [AD,1, AD̄,1] = 0,

D̄AD,1 + [AD̄,0, AD,1] = 0.

Similarly as in the case of harmonic maps (Section 5.1), these equation have a zero curvature

formulation which also provides the link to Section 5.3.

Lemma 6.27. A is flat if and only if Aλ determined by Aλ,D = AD,0 + λAD,1 is flat for

all λ ∈ S1.

Proof. This follows immediately from the Maurer-Cartan equation.

A primitive map has two invariants.
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Lemma 6.28. Given a primitive map f : Σ→ PSU(n+ 1|n+ 1)/PST. Then

Pi(f) := Pi(ΠdfC|D) ∈ Γ(((ΠD)⊗(n+1))∗)0̄, i ∈ {1, 2}

are holomorphic sections. In particular, Pi(f) is invertible except for at a discrete set of

points.

Proof. The invariant is constructed using functoriality and that Symn+1(ΠD) ∼= (ΠD)⊗(n+1).

Holmorphicity can be checked locally. So we may suppose that f admits a framing f̃ . We

then find

D̄Pi(f) = D̄Pi(AD,1)

= (n+ 1)Pi(D̄AD,1, AD,1, . . . , AD,1)

= (n+ 1)Pi(−[AD̄,0, AD,1], AD,1, . . . , AD,1)

= 0.

The last ingredient we need is the notion of a Toda frame [6]. For this, we will make

use of a decomposition ptC = pstC ⊕ 〈M〉, where str(M) = 1. We assume that P (f) is

invertible at a point and hence in a coordinate neighbourhood U of that point. We notice

that the invariant P (f) is not invariant under change of superconformal coordinates in

the domain, however the ratio P1(f)/P2(f) is invariant. The latter is defined uniquely by

requiring P1(f) = (P1(f)/P2(f))P2(f) since both Pi(f) are invertible by assumption. A

framing f̃ into PSU(n+ 1|n+ 1) defined on U → Σ is called a Toda frame if there exists

a superconformal isomorphism a : U → U such that P (a∗f) = 1 and there exists a map

Ω = Ω̃ + χM : U → ipst⊕ 〈M〉 such that

a∗AD = DΩ̃ + Ad(exp(Ω))(Bτ ). (6.29)

It is worth mentioning that, using Lemma 6.25, P1(f)/P2(f) = P1(a∗f)/P2(a∗f) =

P2(a∗f)−2 = exp(str(Ω))−2 is holomorphic, so that χ is holomorphic.

The Maurer-Cartan equation for a∗A gives rise to the analogue of the affine Toda field

equation [6, Equ. (2.12)]:

2D̄DΩ− i
(

n∑

k=0

e2(αk(Ω̃)+Re(αk(χM)))(−α]k) +
2n+1∑

k=n+1

e2(αk(Ω̃)+Re(αk(χM)))α]k

)
= 0, (6.30)

where (−)] : pst∗C → pstC is the isomorphism induced by the super trace and Re(−) denotes

the real part. The main structural difference comes from the contributions of χ, which are

not present in the ungraded case.
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The theorem below is an adaption of [6, Thm. 2.5].

Theorem 6.31. Let f : Σ→ PSU(n+1|n+1)/PST be primitive and assume that f is cyclic

at a point p0. There exists a Toda frame in some neighbourhood of p0. The superconformal

isomorphism a : U → U is unique up to superconformal translation and rotation by a

2(n+ 1)th root of unity and the Toda frame is unique for fixed such a.

Proof. On a small coordinate neighbourhood U of p0, f is cyclic and we can choose any

framing f̃ : U → PSU(n+1|n+1). Since P (f) is holomorphic and invertible and U is simply

connected we can change superconformal coordinates a : U → U such that P (a∗f) = 1. This

coordinate transformation is unique up to superconformal rotation by a 2(n+ 1)th root of

unity and translation (Section 3.2.1). Since U is simply connected, by Lemma 6.25 we can

moreover find η : U → ptC such that

a∗AD,1 = Ad(exp(η))(Bτ ).

If we write η = η̃ + χM, we can decompose η̃ = Ω̃ + Λ̃ such that Λ̃ = Λ̃, Ω̃ = −Ω̃. Then

f̃exp((a−1)∗Λ̃) is the desired Toda frame. We have

−[a∗AD̄,0, a
∗AD,1] = D̄a∗AD,1 = [D̄Ω, a∗AD,1],

which implies D̄Ω̃ = D̄Ω = −a∗AD̄,0 and complex conjugation gives DΩ̃ = a∗AD,0. If f̃1, f̃2

are two such framings, then, putting Ai = f̃∗i α, we have

a∗AiD = DΩ̃i + Ad(exp(Ωi))(Bτ )

for suitable Ωi = Ω̃i +χiM as before. Moreover, we have f̃2 = f̃1exp(Λ) for some pst-valued

function Λ. Hence, we necessarily have exp(χ1) = exp(χ2) and

DΩ̃2 + Ad(exp(Ω2))(Bτ ) = DΩ̃1 +Da∗Λ + Ad(exp(Ω1 − a∗Λ))(Bτ ).

This implies Ω1 = Ω2 and exp(a∗Λ) is central. Since the center of PSU(n + 1|n + 1) is

trivial, we therefore have f̃1 = f̃2.

Corollary 6.32. Let Σ be a super torus and consider a primitive map Σ → PSU(n +

1|n + 1)/PST. Then there exists a Toda frame on the universal covering C1|1
B → Σ and

a superconformal isomorphism a : C1|1
B → C1|1

B , unique up to superconformal rotation by a

2(n+ 1)th root of unity and translation, such that (6.29) and (6.30) hold. Moreover, the

Toda frame and Ω factor through some finite covering Σ′ → Σ.

Proof. We let C1|1
B → Σ denote the universal covering and choose generators S and T of the

group Z⊕ Z defining the torus Σ (Section 3.2.4). Since P (f) is a globally defined invertible
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holomorphic function on the torus, we can assume by Proposition 3.6 that P (f) = 1. On

C1|1
B we can proceed as in Theorem 6.31 to obtain the Toda frame. The pullback of the

Maurer-Cartan form for any of f̃ ◦ S2 and f̃ ◦ T 2 is again of the form (6.29). Hence as in

the proof of the previous theorem, we have f̃ = f̃ ◦ S2 = f̃ ◦ T 2 and Ω̃ = Ω̃ ◦ S2 = Ω̃ ◦ T 2

and similarly for exp(χ) which implies the result.

Remark 6.33. A similar ambiguity concerning the double periodicity of the Toda frame

appears in the non-graded analogue [6, Cor. 2.7]. However, for a different reason, namely

the nontrivial center of SU(n). The center of PSU(n+ 1|n+ 1) is trivial, and the ambiguity

comes from the superconformal automorphisms defining the super torus. Moreover, in the

non-graded case Ω always factors through the original torus, which we cannot conclude in

our situation.

6.4.3 Primitive maps from pseudo-commuting flows

Now we relate the material from the previous section to a certain class of harmonic maps.

We consider a full harmonic map f : Σ→ CPn|n+1 with invertible ramification, where Σ is

a torus. Furthermore, we assume that the map is 2(n+ 1)-orthogonal and is non-isotropic if

P (f) is invertible at one point (hence everywhere). In this situation, we have the harmonic

sequence

f−l, . . . , f0, . . . , fk,

which determines a map

f : Σ // PSU(n+ 1|n+ 1)/PST.

This map is primitive by the construction of the Gauß transform.

Proposition 6.34 ([6, Theorem 4.6]). Conversely, any primitive map f into PSU(n+1|n+

1)/PST determines by projection onto CPn|n+1 a harmonic map which is 2(n+1)-orthogonal

and non-isotropic and whose Gauß transforms give back f.

Proof. For a primitive map f into PSU(n+ 1|n+ 1)/PST one can use the computation in

Section 5.3.2 to show that any of the 2(n+ 1) projections onto CPn|n+1 is harmonic. The

successive Gauß transforms give back f by construction.

We will now show how the machinery of [6, 10] can be adapted to give a method to

produce primitive maps such that the ratio P1(f)/P2(f) = C is constant. Let ΠM1
1

be the open submanifold of ΠM1 given by such elements with real positive entries and

P1(ξ) = P2(ξ) = 1. (Positivity here refers to positivity of the non-Grassmann-valued part.)

Let M1
2 ⊂ M2 be the submanifold consisting of matrices with positive real entries such

that both invariant polynomials equal unity. For a super vector space there is a map of
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supermanifolds ΠV → V ⊗ V which is given on T -valued points by v 7→ v ⊗ v. Composing

with the Lie bracket gives the squaring map on ΠM1
1.

Lemma 6.35. Squaring defines an isomorphism ΠM1
1 →M1

2.

Proof. If ξ =
∑n

k=0 akEk +
∑2n+1

l=n+1 blEl, then from ξ2 one can reconstruct ai/an, bi/bn.

Since P1(ξ) = 1/P2(ξ) = 1 are fixed, this gives back ai and bi by positivity. The same

argument shows injectivity.

Remark 6.36. For the formulation of this lemma, the assumption that P1(f)/P2(f) is

constant is indispensable.

Lemma 6.37. The following diagram commutes and all arrows are isomorphisms:

ΠM1
1

(−)2

��

ipstC

Ad(exp(−))(Bτ )
;;

Ad(exp(−))(B2
τ ) ##

M1
2

Proof. It is enough to show that the lower horizontal map is an isomorphism, this is similar

to the proof of Lemma 6.25.

Lemma 6.38. The adjoint action of Bτ is injective on M0.

Proof. It follows from the description of Bτ in terms of αi that any element in the kernel is

a multiple of the identity.

Since the constant C is B-valued in general, we need to extend this in the following way.

For a smooth supermanifold T we set T (B) = Hom(B, T ), where Hom(−,−) denotes the

internal hom object in supermanifolds. We take the splitting matrix ptC = pstC ⊕ 〈M〉,
str(M) = 1, a suitable constant c such that Ad(exp(cM))(Bτ ) has P1/P2 = C, and set

ΠMC
1 = Ad(exp(cM))(ΠM1

1(B)).

We now take M to be of the form M = diag(1/(n+ 1) 1n+1, 0n+1). Then Ad(exp(cM)) acts

trivially on M1
2 and we have:

Lemma 6.39. Squaring defines an isomorphism ΠMC
1 →M1

2(B).

Proof. This follows from Lemma 6.35 by applying Ad(exp(cM)).

54



Lemma 6.40. The following diagram commutes and all arrows are isomorphisms:

MC
1

(−)2

��

ipstC(B)

Ad(exp(−+cM))(Bτ )
99

Ad(exp(−))(B2
τ ) %%

M1
2(B)

Proof. This follows from Lemma 6.37.

Let d ∈ N, d = 2 (mod 2(n+ 1)). We denote by
√− : M1

2(B)→MC
1 the inverse map of

squaring. We define

Λd = {
d∑

i=−d
λiξi | ξ̄i = ξ−i}.

On this space τ acts by τ · ξ = τ(ξ(ω−1−)). Then we set

Λd,τ = {ξ ∈ Λd | τ · ξ = ξ}, Λ+
d = {ξ ∈ Λd | ξd ∈M1

2},

Λ∗d(B) = {ξ ∈ Λd(B) | ξd ∈M1
2(B), ξd−1 ∈ im(ad(

√
ξd)}, Λ∗d,τ (B) = Λ∗d(B) ∩ Λd,τ (B).

Depending on the constant C, we now define a certain complex vector field. For this, we

consider the assignment

Z : Λ∗d(B) // Λd(B), Zξ = [ξ, 1
2ad(
√
ξd)
−1ξd−1 + λ

√
ξd].

This is well-defined since [ξd,
√
ξd] = 0. Unlike in the non-graded case, this is not sufficient

to show that this defines a vector field on Λ∗d(B). However, we can view Z as a vector field

along the inclusion Λ∗d(B) → Λd(B). In the following, we let Z(−) denote the result of

applying this vector field to a function. Recall that a vector field along the inclusion of a

submanifold M → N can be applied to a function on N and returns a function on M. For

instance, on Λ+
d (B) we have the function Ω̃ defined by

√
ξd = Ad(exp(Ω̃ + cM))(Bτ ). Then

ξd and Ω̃ will be considered as matrix-valued functions on Λd(B) and Λ+
d (B) respectively.

Lemma 6.41. We have that:

(a) Z defines a vector field along the inclusion Λ∗d(B)→ Λ+
d (B).

(b) As such it restricts to a vector field on Λ∗d(B) and Λ∗d,τ (B).

Proof. We set ξ̃d−1 := ad(
√
ξd)
−1(ξd−1).
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(a) : We need to check that the vector field acts tangentially on the top term. We have

(Zξ)d = 1/2[ξ̃d−1, ξd], (Z̄ξ)d = −1/2[
¯̃
ξd−1, ξd],

which means

Z(ξd) = 1/2[ξ̃d−1, ξd], Z̄(ξd) = −1/2[
¯̃
ξd−1, ξd].

From this we conclude that this defines two real vector fields and both invariant polynomials

of M2(B) are preserved. Hence the result.

(b) : Using (a), the properties of a derivation, and the fact that the adjoint action of ξd is

injective on M0, it follows now that

Z(Ω̃) = 1/2ξ̃d−1, Z(
√
ξd) = 1/2[ξ̃d−1,

√
ξd], Z̄(

√
ξd) = −1/2[

¯̃
ξd−1,

√
ξd].

Now we check that Z acts tangentially on the (d− 1)st term. The condition on ξd−1 for

elements in Λ∗d(B) can be equivalently formulated as

Pi(ξd−1,
√
ξd, . . . ,

√
ξd) = 0.

We calculate

ZPi(ξd−1,
√
ξd, . . . ,

√
ξd) = Pi(Zξd−1,

√
ξd, . . . ,

√
ξd)− nPi(ξd−1, Z

√
ξd,
√
ξd, . . . ,

√
ξd)

= Pi([ξd−2,
√
ξd],

√
ξd, . . . ,

√
ξd)

− nPi(ξd−1, 1/2[ξ̃d−1,
√
ξd],

√
ξd, . . . ,

√
ξd])

= Pi([ξd−2,
√
ξd],

√
ξd, . . . ,

√
ξd)− n/2Pi(ξd−1, ξd−1,

√
ξd, . . .

√
ξd].

The first term vanishes by adpstC-invariance. The second term vanishes since the Pi are

supersymmetric. Moreover,

Z̄Pi(ξd−1,
√
ξd, . . . ,

√
ξd) = Pi(Z̄ξd−1,

√
ξd, . . . ,

√
ξd)− nPi(ξd−1, Z̄

√
ξd,
√
ξd, . . . ,

√
ξd)

= (−1/2)(Pi([
¯̃
ξd−1, [ξ̃d−1,

√
ξd]],

√
ξd, . . . ,

√
ξd)

− nPi(ξd−1, [
¯̃
ξd−1,

√
ξd],

√
ξd, . . .

√
ξd])),

where in the first line we dropped one of the first summands due to adpstC-invariance. This

sum vanishes as a result of adpstC-invariance. In fact, it is a derivative of

P ([ξ̃d−1,
√
ξd],

√
ξd, . . . ,

√
ξd) = P (ξd−1,

√
ξd,
√
ξd, . . . ,

√
ξd) = 0.

Finally, τ · Z · τ−1 = Z, hence the last statement.

The following result is the supersymmetric version of [6, Section 3], [10, Thm. 2.1].
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Theorem 6.42. We have the following:

(a) We have [Z, Z̄] = 0 and for every ξ0 ∈ Λ∗d(B) there exists an open neighbourhood

U ⊂ C1|1
B of 0 and ξ : U → Λ∗d uniquely specified by

ξ(0) = ξ0, Dξ
] = ξ] ◦ Z.

(b) If C lies in C ⊂ Γ(OB), then any initial condition has a unique maximal flow defined

on C1|1
B .

(c) Given a local flow ξ : U → Λ∗d, then

Aλ,D =
1

2
ad(
√
ξd)
−1ξd−1 + λ

√
ξd, λ ∈ S1,

integrates to a unique loop of primitive maps

Gλ : U // PSU(n+ 1|n+ 1)/PST, Gλ(0) = id.

Proof. We have seen in the previous proof that

Z̄
√
ξd = −1/2[

¯̃
ξd−1,

√
ξd].

We also have

[Z̄ξ̃d−1,
√
ξd] = Z̄ξd−1 + [ξ̃d−1, Z̄

√
ξd]

= −1/2[ ˜̄ξd−1, [ξ̃d−1,
√
ξd]] + [ξd,

√
ξd] + [ξ̃d−1, (−1/2)[

¯̃
ξd−1,

√
ξd]],

so that Z̄ξ̃d−1 = −[
√
ξd,
√
ξd]. Using this, we find

Z̄Z(ξ) = Z̄[ξ, 1/2ξ̃d−1 + λ
√
ξd] = [[ξ, 1/2

¯̃
ξd−1 + λ−1

√
ξd], 1/2ξ̃d−1 + λ

√
ξd]

+ [ξ,−1/2[
√
ξd,
√
ξd] + λ(−1/2)[

¯̃
ξd−1,

√
ξd]]].

The Jacobi identity implies now (ZZ̄ + Z̄Z)(ξ) = 0. This is the integrability condition for a

local C1|1 action, see [3, Thm. 1] and so (a) is proved. For (b), we note that the relevant

vector field is already defined on Λ∗d and it is sufficient to check that Z is complete there.

We compute

Z2ξ = [ξ, 1/2ξd−2 + λξd−1 + λ2ξd],

which on the underlying purely even manifold takes the form

Z̃2(ξ̃) = [ξ̃, 1/2ξ̃d−2 + λ2ξ̃d].
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Now one uses the argument from [10, Proof of Thm. 2.1] to show that this vector field

is complete: an ad-invariant inner product on the compact Lie algebra psu(n+ 1|n+ 1)0̄

induces on (Λd)0̄ the inner product

(ξ, ξ) =

d∑

i=0

(ξi, ξ−i),

which is invariant under Z̃2 and ˜̄Z2. Consequently, the flow is tangential to the spheres in

(Λd)0̄ and thus is complete. This implies the assertion by [3, Thm. 2].

The flatness of the form determined by Aλ,D follows from the above calculation so that

(c) follows from Proposition 3.16.

6.4.4 Finite type classification of 2(n+ 1)-orthogonal non-isotropic harmonic

tori

In the previous section we saw how primitive maps with constant P1(f)/P2(f) can be

obtained by integrating two pseudo-commuting vector fields. We will show now a partial

converse for maps from a super torus. We consider a primitive map f : Σ→ PSU(n+ 1|n+

1)/PST from a super torus Σ with P (f) invertible and constant P1(f)/P2(f) = C. Let

p : C1|1
B → Σ denote the universal covering. In view of Corollary 6.32, we obtain from f

a map g defined on a finite covering Σ′ → Σ with universal cover p′ : C1|1
B → Σ′ and the

following properties. We have P (g) = 1, there is a framing g̃ on C1|1
B which factors through

Σ′ and such that (6.29) holds, and, moreover, such that Ω factors through Σ′. It follows from

the construction in Corollary 6.32 that Σ′ is always odd and we will use the trivilization of

D induced by p′ in the following.

Definition 6.43. The maps f and g are of finite type if there exists d = 2 (mod 2(n+ 1))

and a map ξ : Σ′ → Λ∗d such that (p′)∗ξ is a solution to the flow in Theorem 6.42 and

g̃∗αD = AD =
1

2
ad(
√

(p′)∗ξd)
−1(p∗ξd−1) +

√
p∗ξd.

The key for the next proposition is:

Lemma 6.44. In this situation A2
D,1 is semisimple in the sense that we have a bundle

decomposition

sl(n+ 1|n+ 1)
C1|1
B

= ker(ad(A2
D,1))⊕ im(ad(A2

D,1)),

psl(n+ 1|n+ 1)
C1|1
B

= ker(ad(A2
D,1))⊕ im(ad(A2

D,1)).

Proof. It is enough to check this for B2
τ , which can be done directly.
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Proposition 6.45. We put D = d|D⊕D̄ + ad(Aλ), where Aλ,D = AD,0 + λAD,1. There is a

formal series ξ =
∑

i≤d λ
iξi such that

ξi : C
1|1
B → psl(n+ 1|n+ 1), Dξ = 0, ξd = A2

D,1, ξd−1 = 2[AD,0, AD,1].

Moreover, the ξi can be taken to factor through Σ′.

Proof. We can follow the ideas of the proof in the non-graded case [10, Thm. 7.1]. Since one

has to carefully distinguish between A2
D,1 and AD,1, which coincide in the non-graded setup,

we provide the relevant details here. As a shorthand, we write E = sl(n+ 1|n+ 1)
C1|1
B

. To

start with, we choose any lift of ÃD,0 to the maximal torus in sl(n+ 1|n+ 1). This lift is

unique up to a central element. Since the kernel of ad(A2
D,1) restricted to this torus consists

of central elements and due to the direct sum decomposition of Lemma 6.44, we may assume

without loss of generality that ÃD,0 lies in im(A2
D,1).

We notice that d|D⊕D̄A2
D,1 + ad(Ã0)(A2

D,1) = −ad(Q)(A2
D,1), where Q is given by QD =

−2ÃD,0, and QD̄ = 0. Hence, if we set D∇ = d|D⊕D̄ + ad(Ã0) + ad(Q), then D∇A2
D,1 = 0.

This connection is independent of the choice of the lift of AD,0 and V := ker(A2
D,1),

V ⊥ := im(A2
D,1) defines a direct sum decomposition of E into D∇-parallel subbundles.

Moreover, with respect to composition of matrices, we have

V V ⊂ V, V ⊥V ⊂ V ⊥, V V ⊥ ⊂ V ⊥. (6.46)

We make the following ansatz

ξ = (1 +W )−1A2
D,1(1 +W ),

where Wi =
∑

i≥1 λ
−iWi and each Wi is a section of V ⊥. We need to solve

D∇Dξ = [ξ,−QD + λAD,1], D∇D̄ξ = [ξ,−QD̄ + λ−1AD̄,1],

and, since

D∇ξ = [ξ, (1 +W )−1D∇W ],

this is equivalent to

D∇DW (1 +W )−1 − (1 +W )(−QD + λAD,1)(1 +W )−1 = ωD ∈ ker(A2
D,1),

D∇D̄W (1 +W )−1 − (1 +W )(−QD̄ + λ−1AD̄,1)(1 +W )−1 = ωD̄ ∈ ker(A2
D,1).

We solve this first for the D-direction. The equation is equivalent to

D∇DW − (1 +W )(−QD + λAD,1) = ωD(1 +W ).
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Splitting this equation according to E = V ⊕ V ⊥ gives in view of (6.46)

(WQD)V − λAD,1 = ωD,

D∇DW +QD + (WQD)⊥ − λWAD,1 = ωDW,

and hence we need to solve

λ[AD,1,W ] = (WQD)VW − (WQD)⊥ −QD −D∇DW.

The first equation is

[AD,1,W1] = 2QD,

where W1 is in V ⊥. By assumption, we have U , such that [A2
D,1, U ] = 2QD. Then we

may take W1 = [AD,1, U
⊥]. The remaining Wi can be constructed inductively now, since

ad(AD,1) is an isomorphism on V ⊥. Thus, we have found ξ such that DDξ = 0. We claim

that DD̄ξ = 0. To see this, we set DD̄ξ = (1 +W )−1σ(1 +W ) and using DDDD̄ = −DD̄DD,

we find

D∇Dσ = (1 +W )D∇DDD̄ξ(1 +W )−1 + [D∇D(1 +W )−1, σ]

= (1 +W )(DD + ad(QD)− ad(λAD,1))DD̄ξ(1 +W )−1 + [D∇D(1 +W )−1, σ]

= [(1 +W )(QD − λAD,1)(1 +W )−1 +D∇D(1 +W )−1, σ]

= [ωD, σ].

(6.47)

Moreover, from A2
D,1 = (1 + W )ξ(1 + W )−1 one obtains that all components of σ are

sections of V ⊥. Now, as in [10, Lem. 7.3], one can conclude σ = 0. Indeed, in view of (6.47),

the summand λAD,1 in ωD causes a potential first non-trivial coefficient of σ to lie in the

kernel of ad(AD,1), which is a contradiction. The formal Killing field λdξ satisfies now all

requirements.

Any such formal series is called an adapted formal Killing field. We can average 1/2(n+

1)(
∑2n+1

k=0 τk)(ξ) and thus obtain a τ -invariant adapted formal Killing, which factors through

a super torus. We now show that this implies that there is a τ -invariant adapted polynomial

Killing field, i.e., a formal sequence which is bounded from below. We follow the ideas in

[32, Section 25 II], but have to make some adjustments on the way. We consider a formal

adapted Killing field which is τ -invariant Y =
∑

i≤2 Yiλ
i. We can always assume this form,

since λl(2(n+1))Y is again a τ -invariant adapted formal Killing field for any l ≥ 0. The top

power of λ of a formal adapted Killing field is called the degree of Y. The equations satisfied

by Y are

DY = [Y,AD,0 + λAD,1], D̄Y = [Y,AD̄,0 + λ−1AD̄,1].
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We set

W ′ = DY≥0 − [Y≥0, AD,0 + λAD,1], W ′′ = D̄Y≥0 − [Y≥0, AD̄,0 + λ−1AD̄,1],

and notice that

DY≥0 − [Y≥0, AD,0 + λAD,1] = −DY<0 + [Y<0, AD,0 + λAD,1].

Hence W ′ can only have a constant term: W ′ = DY0 − [Y0, AD,0] = DY0. Likewise,

D̄Y≥0 − [Y≥0, AD̄,0 + λ−1AD̄,1] = −D̄Y<0 + [Y<0, AD̄,0 + λ−1AD̄,1], W ′′ = −λ−1[Y0, AD̄,1].

The goal is now to construct a τ -invariant adapted Killing field such that W ′ and W ′′ vanish.

Thus, this can be accomplished by constructing a τ -invariant adapted Killing field such that

Y0 vanishes. Evaluating the λ0-coefficient of D̄DY shows that

D̄DY0 = [[Y0, AD̄,1], AD,1].

As a shorthand we write this equation as D̄DY0 = LY0. Shifting by λl(2(n+1)) shows that

any Y−l(2(n+1)), l ≥ 0, is a solution of this equation.

Remark 6.48. In the non-graded setup one makes now use of the fact that the analogous

equation for the coefficient of λ0 is an elliptic equation on a torus and hence a finite linear

combination of λl(2(n+1))Y satisfies W ′ = W ′′ = 0. It is true that a family of doubly periodic

solutions Y k
0 , k ∈ N, of D̄DY k

0 = LY k
0 necessarily satisfies a non-trivial relation. This

follows from similar principles as we will encounter shortly. However, since we are working

over the basis B, when applied to the family λl(2(n+1))Y this would not necessarily give an

adapted Killing field. Still, an extension of this idea applies in the present situation.

We first assume that Σ′ is split. Filtering the Grassmann algebra by choosing a basis

indexed by multi-indices I, we have:

D̄DY0,<|I| = (L<|I|Y0,<|I|)<|I|,

D̄DYI = (L<|I|Y0,<|I|)I + LIY0,∅ + L∅Y0,I .

Assuming for a moment that we know that D̄D − L∅ has finite-dimensional kernel, we can

do an induction on |I|. The hypothesis reads:

For every l ≥ 0 there are infinitely many τ -invariant adapted formal Killing fields X l,k of

different degrees such that X l,k
(−l)(2(n+1)),<|I| = 0.

For |I| = 0 this holds, since we can take the family λl(2(n+1))Y. For |I| large enough,

X0,k is a τ -invariant adapted polynomial Killing field. For the inductive step, we choose
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any l ≥ 0. We consider an index I1 with |I1| = |I|. Then by the above consideration, the

X l,k
(−l)(2(n+1)),I1

satisfy a relation and we can arrange to obtain a new τ -invariant polynomial

Killing field X̃ l, such that X̃ l
(−l)(2(n+1)),<|I| = X̃ l

(−l)(2(n+1)),I1
= 0. Since l was arbitrary and

we can shift τ -invariant adapted Killing fields, we see that we obtain from this that for

each l ≥ 0 there are infinitely many τ -invariant adapted formal Killing fields Xk of different

degrees such that Xk
(−l)(2(n+1)),<|I| = Xk

(−l)(2(n+1)),I1
= 0. Repeating this for the finitely

many other multi-indices such that |Ij | = |I| finishes the induction.

We now argue that D̄D − L∅ has finite-dimensional kernel. If Ai denote the components

of the M0-valued function A, then the above equation is of the form

D̄D(Ai) =
∑

k

Li,k(D, D̄)Ak.

Here, due to the special form of L, in our situation each Li,k has the form (Li,k)0+ϑϑ̄(Li,k)ϑϑ̄
and A takes the form Ai = Ai0 + ϑϑ̄Ai

ϑϑ̄
, if even, and Ai = ϑAiϑ + ϑ̄Ai

ϑ̄
, if odd. Writing out

the components shows that in each case we have an elliptic operator on some trivial vector

bundle. Hence double periodicity implies that the kernel is finite-dimensional.

In the case of a non-split super torus δ 6= 0 we cannot directly argue like this, however,

we can circumvent this problem with the following manoeuvre. We know that there is a

smooth isomorphism (cf. Section 3.2.4) Σ(τ,0) → Σ(τ,δ) over B such that D takes the form

D 7→ X = D +N

on the left hand side, where N vanishes after setting B = pt. Now we study the same

problem as before, with D replaced by X. In the expansion in auxiliary variables all entries

are now doubly periodic and the nilpotent part of X does not change the underlying

homogeneous equation. In particular, we can then apply the ellipticity argument as before.

Hence, we obtain a τ -invariant complex polynomial solution

ξ̃ =
d∑

k=0

λkξk, ξ̃d = AD,1, ξ̃d−1 = 2[AD,0, AD,1],

where d = 2 (mod 2(n+ 1)) and then

η = (1/(2n+ 2)
∑

k τ
k)(ξ + ξ̄) : C1|1

B
// Λ∗d,τ

is a solution of the flow from Theorem 6.42. Moreover, it factors through Σ′. We thus have

proved the main theorem of this section.

Theorem 6.49. Every primitive map Σ → PSU(n + 1|n + 1)/PST from a super torus

such that P1(f)/P2(f) is constant is of finite type.
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Remark 6.50. The condition that P1(f)/P2(f) be constant is vacuous for even spin

structure tori.

6.4.5 Example: The case n = 1

In the following we shall calculate the zero curvature equation in the case of primitive

maps into PSU(2|2)/PST with P = 1 and P1 = 1/P2 = i and interpret the result as a

supersymmetric generalization of the sinh-Gordon equation.

Remark 6.51. At this point one should emphasize that a naive supersymmetric generaliza-

tion of the form D̄Du = 2λcosh(u) or D̄Du = 2λsinh(u)) does not reduce to the ordinary

sinh-Gordon equation, but a sinh-Gordon equation with “wrong sign”.

The construction of the Toda frame as discussed in Section 6.4.2 can be carried out

explicitly in terms of the Gauß transforms. This works as in the ungraded case and also for

general n (cf. [6, Section 4]). Locally we can choose holomorphic sections of fi (endowed

with the Koszul-Malgrange structure) and by abuse of notation we denote these by fi as

well. Together with the harmonic map equation this leads to

f1 = Df0 −Dlog|f0|2f0, D̄f1 = −|f1|2
|f0|2

f0

and in general

fp+1 = Dfp −Dlog|fp|2fp, D̄fp = (−1)|fp|
|fp|2
|fp−1|2

fp−1.

The compatibility equation for this system reads

D̄Dlog|fp|2 + (−1)|fp+1| |fp+1|2
|fp|2

= −(−1)|fp|
|fp|2
|fp−1|2

.

We set ωp = log|fp| and can rewrite this equation in the form

2D̄Dωp = −(−1)|fp|(e2(ωp−ωp−1) − e2(ωp+1−ωp)).

(Here, we choose, once and for all, a fixed (1/2) log(i).) In other words we have the equations:

ω0 + ω2 = ω1 + ω3 − log(i),

2D̄Dω0 = −(e2(ω0−ω3) − e2(ω1−ω0)),

2D̄Dω1 = (e2(ω1−ω0) − e2(ω2−ω1)),

2D̄Dω2 = −(e2(ω2−ω1) − e2(ω3−ω2)),
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2D̄Dω3 = (e2(ω3−ω2) − e2(ω0−ω3)).

Example 6.52. A particular solution is given by

(ω0, ω1, ω2, ω3) = (log(1), (1/2) log(i), log(1), (1/2) log(i)).

We note that we have

2D̄D(ω0 − ω2) = −e2(ω0−ω3) + e2(ω1−ω0) + e2(ω2−ω1) − e2(ω3−ω2)

= e2(ω1−ω2) + e2(ω1−ω0) + e2(ω2−ω1) + e2(ω0−ω1)

= 2cosh(2(ω2 − ω1)) + 2cosh(2(ω1 − ω0))

= 4cosh(ω2 − ω0)cosh(ω2 + ω0 − ω1 − ω1)

= −4icosh(ω2 − ω0)sinh(ω3 − ω1)

= (4i)cosh(ω0 − ω2)sinh(ω1 − ω3),

and similarly

2D̄D(ω1 − ω3) = e2(ω1−ω0) − e2(ω2−ω1) − e2(ω3−ω2) + e2(ω0−ω3)

= e2(ω1−ω0) − e2(ω2−ω1) + e2(ω0−ω1) − e2(ω1−ω2)

= 2cosh(2(ω1 − ω0))− 2cosh(2(ω2 − ω1))

= 4sinh(ω2 − ω0)sinh(ω1 − ω0 + ω1 − ω2)

= (−4i)sinh(ω0 − ω2)cosh(ω1 − ω3).

Finally,

D̄D(ω0 + ω2) = D̄D(ω1 + ω3)

= −e2(ω0−ω3) + e2(ω1−ω0) − e2(ω2−ω1) + e2(ω3−ω2)

= e2(ω1−ω2) − e2(ω2−ω1) + e2(ω1−ω0) − e2(ω0−ω1)

= 2sinh(2(ω1 − ω2)) + 2sinh(2(ω1 − ω0))

= 4sinh(ω1 + ω1 − ω2 − ω0)cosh(ω0 − ω2)

= (4i)cosh(ω1 − ω3)cosh(ω0 − ω2).

So putting f = ω0 − ω2, g = ω1 − ω3, and h = ω0 + ω2, we obtain the equivalent system

D̄Df = (2i)cosh(f)sinh(g),

D̄Dg = (−2i)sinh(f)cosh(g),

D̄Dh = (4i)cosh(g)cosh(f),

(6.53)
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where f , g, and h are real functions. The most simple ansatz is f = f0+iϑ̄ϑF , g = g0+iϑ̄ϑG.

Using that

cosh(f) = cosh(f0) + iϑ̄ϑF sinh(f0), sinh(f) = sinh(f0) + iϑ̄ϑF cosh(f0),

we obtain the equations

−iF + ϑ̄ϑ∂∂̄f0 = (2i)(cosh(f0) + iϑ̄ϑsinh(f0)F )(sinh(g0) + iϑ̄ϑcosh(g0)G),

−iG+ ϑ̄ϑ∂∂̄g0 = (−2i)(sinh(f0) + iϑ̄ϑcosh(f0)F )(cosh(g0) + iϑ̄ϑsinh(g0)G).

This system reduces to

F = −2cosh(f0)sinh(g0), G = 2sinh(f0)cosh(g0),

∂̄∂f0 = −2sinh(2f0), ∂̄∂g0 = −2sinh(2g0).

In particular, we can choose f0 = g0, hence −G = F. With this choice, we have

cosh(ω1 − ω3)cosh(ω0 − ω2) = (cosh(g0) + iϑ̄ϑsinh(g0)G)(cosh(f0) + iϑ̄ϑsinh(f0)F )

= cosh(g0)cosh(f0),

so that we can choose h = h0 + ϑϑ̄(4i)cosh(g0)cosh(f0), for a harmonic function h0. This

analysis shows that there is a large class of examples coming from solutions to the ordinary

sinh-Gordon equation:

Theorem 6.54. Any doubly periodic solution to the sinh-Gordon equation superizes and

gives a doubly periodic solution to (6.30) for n = 1. Given a doubly periodic solution to

the sinh-Gordon equation, then if the associated non-conformal harmonic map is doubly

periodic Σ1
τ → CP 1 with modular parameter τ, then the 4-orthogonal, in particular weakly

conformal, non-isotropic harmonic map is doubly periodic Σ
1|1
τ,0 → CP 1|2. Here Σ(τ,0) is the

split odd super torus with modular parameters (τ, 0).

Proof. We have already proved the first part. Now for the second part, let the solution to

the superized sinh-Gordon equation (6.53) be given by the connection AD = AD,0 +AD,1.

The integrated map which is defined on C1|1 will be doubly periodic if and only if the

integrated map of the flat connection on C determined by −(DAD,0 + A2
D,1) is doubly

periodic (cf. [36, Proof of Thm. 5]), which is true by assumption.

Remark 6.55. The non-conformal harmonic tori in CP 1 have an explicit description. We

refer to [45] and the references therein.
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7 Harmonic maps into DP n

We will now study harmonic maps into DPn ⊂ Gr1|1(Cn+1|n+1). In spite of the superficial

similarity of D and the quaternions H, such maps turn out to behave very similar to

(non-supersymmetric) harmonic maps into CPn. The key points are that the orthogonal

complement of a Jn+1-invariant subbundle of the trivial bundle Dn+1 is Jn+1-invariant and

the second fundamental form of Jn+1-invariant subbundles of Dn+1 commutes with Jn+1.

These two facts imply that all Gauß transforms, a priori maps into Gr1|1(Cn+1|n+1), are in

fact maps into DPn again. This contrasts with ordinary harmonic maps into HPn, where

the rank possibly drops under the Gauß transform. The map can happen to be “∂-reducible”

in the terminology of [1].

7.1 The Gauß transform

We presented the material in Section 6.1 such that adaptation to the case DPn is possible

with ease. Let f : Σ → DPn be harmonic. Using the type decomposition of TDPnC , the

complexified differential of f decomposes into two parts dfC = df (1,0) + df (0,1). In local

superconformal coordinates and picking a local section of the bundle determined by f, we

have that df (1,0)(D) is given by

Af,f⊥,D : f // f⊥, Af,f⊥,D(ρ) = πf⊥Dρ.

Similarly, df (1,0)(D̄) is given by

Af,f⊥,D̄ : f // f⊥, Af,f⊥,D̄(ρ) = πf⊥D̄ρ.

As before, a decomposition into orthogonal Jn+1-invariant subbundles ⊕li=1ϕi = Dn+1
Σ

leads in a local superconformal coordinate to the second fundamental forms

Aϕi,ϕj ,D : ϕi // ϕj , Aϕi,ϕj ,D(ρ) = πϕjDρ,

Aϕi,ϕj ,D̄ : ϕi // ϕj , Aϕi,ϕj ,D̄(ρ) = πϕjD̄ρ.

In view of the Jn+1-linearity of π⊥f , Example 2.7, they commute with Jn+1. With respect to

the standard hermitian structure on C1+n|1+n they satisfy as before

Aϕi,ϕj ,D = −A∗ϕj ,ϕiD̄. (7.1)

From Proposition 2.10 and Lemma 6.3, we obtain:

Lemma 7.2. We have the following:
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(a) The map f is holomorphic (resp. antiholomorphic) if and only if Af,f⊥,D̄ (resp.

Af,f⊥,D) vanishes.

(b) The map f is harmonic if and only if

Af,f⊥,D ◦ ∇fD̄ = −∇f⊥
D̄
◦Af,f⊥,D,

i.e., Af,f⊥,D is a holomorphic section of HomD(f, f⊥) equipped with its Koszul-

Malgrange structure. Equivalently, Af⊥,f,D̄ is antiholomorphic. In particular, f

is harmonic if and only if f⊥ is harmonic.

We can make again use of the holomorphicity of Af,f⊥,D to produce a new harmonic map

from f. We assume that the zeros of Af,f⊥,D are regular. In particular, due to holomorphicity,

the zeros are isolated. From Proposition 3.10 we obtain a blow up p̃ : Σ̃ → Σ and a line

bundle L on Σ̃ such that p̃∗Af,f⊥,D extends to a nowhere vanishing holomorphic section of

L⊗ p̃∗HomD(f, f⊥) = L⊗HomD(f̃ , f̃⊥),

where we set f̃ = f ◦ p̃. In view of the inclusion

f̃⊥ ⊂ Dn+1
Σ̃,

we obtain an inclusion of L∗⊗ f̃ into the trivial bundle. This inclusion commutes with Jn+1,

if we consider on the former the action on the second tensor factor. Hence this defines a new

map, the Gauß transform, f̃1 : Σ̃→ DPn. Similarly, under suitable assumptions on Aϕ,ϕ⊥,D̄,

we obtain f̂−1 : Σ̂→ DPn, where p̂ : Σ̂→ Σ is a possibly different blow up, f̂ = f ◦ p̂.

Theorem 7.3. Let f : Σ → DPn be a harmonic map such that the zeros of Af,f⊥,D and

Af,f⊥,D̄ are regular. Then the Gauß transforms f̃1, f̂−1 exist on possibly different blow ups

p̃ : Σ̃→ Σ, and p̂ : Σ̂→ Σ. They are harmonic and, moreover, (f̃1)−1 and (f̂−1)1 exist on Σ̃

resp. Σ̂ and coincide with f̃ = f ◦ p̃ and f̂ = f ◦ p̂ respectively.

Proof. The proof is formally the same as in Theorem 6.7.

Remark 7.4. The notion of harmonic maps is extended to parabolic super Riemann

surfaces as before in Remark 6.6.

7.2 Isotropic harmonic maps

We now study isotropy properties of maps into DPn. Σ denotes a connected super Riemann

surface and Σ̃ denotes a connected parabolic super Riemann surface with degeneracy locus

Z.
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It is again convenient to introduce a slightly different perspective on this. On DPn we

have the following exact sequence

0 // HomD(γD, γD) // HomD(γD,Dn+1)
π // HomD(γD, γ

⊥
D ) // 0.

We note that these are merely complex vector bundles. The first bundle has a canonical

section, the identity, which therefore gives a canonical section Φ of HomD(γD,Dn+1). Again,

on HomD(γD,D1+n) we have the connection ∇H induced by the canonical and the flat

connection. For a map f : Σ̃→ DPn, we will freely identify f∗Φ and Φ.

Lemma 7.5. We have:

(a) ∇HDΦ is perpendicular to the D-module spanned by Φ and projects to Af,f⊥,D under π.

(b) The map f is harmonic if and only if

π(∇HD̄∇HDΦ) = 0.

Proof. This is a reformulation of the previous characterization as before.

We have a again the general fact:

Lemma 7.6. Consider a smooth map f : Σ̃→ DPn. For any section V of HomD(f,Dn+1)

(∇HD∇HD̄ +∇HD̄∇HD)V = V ◦ ϕ,

where ϕ is a section of HomD(f, f).

Proof. This follows again from the fact that the curvature of the tensor product of connec-

tions is the difference of the curvatures of these connections and that the flat connection

has no curvature.

Definition 7.7. A smooth map f : Σ̃ → DPn is isotropic if in any local superconformal

coordinate and for any two local sections ρi of f :

〈Φ(ρ1), Dk∇HDΦ(ρ2)〉C1+n|1+n = 0, k ≥ 0.

We note that the standard hermitian structure on HomD(γD,D1+n), given by

〈∇HDΦ,∇HD̄Φ〉f∗⊗C1+n|1+n ,

which is effectively a super trace, is always zero. However, we can reformulate the isotropy

condition in the following way.
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Remark 7.8. Equivalently, for any two local sections ρi of f :

〈(∇HD̄)αΦ(ρ1), (∇HD)βΦ(ρ2)〉C1+n|1+n = 0, α, β ≥ 1.

Definition 7.9. A map ϕ : Σ̃ → DPn is full if, except for at a discrete set of points, we

have

spanD{x∗(∇HD̄)kΦ, x∗Φ, x∗(∇HD)lΦ | k, l ≥ 0} = D1+n,

where x : pt→ Σ̃.

Lemma 7.10. Let f : Σ̃→ DPn be a full isotropic and harmonic map such that f±1 exist

on Σ̃. Then f±1 are full and isotropic.

Proof. The same as in Lemma 6.13.

We call a full isotropic and harmonic map 1-regular if each of f1 and f−1 either exists

on Σ̃ or it is antiholomorphic respectively holomorphic. If p : Σ̂→ Σ̃ is a blow up, disjoint

from the degeneracy locus of the superconformal structure, and if f : Σ̃ → DPn is a full

isotropic map, then f ◦ p is full isotropic.

Definition 7.11. (a) A full isotropic harmonic map f : Σ̃→ DPn has invertible ramifi-

cation if all iterated Gauß transforms f±r are 1-regular.

(b) A full isotropic harmonic map f : Σ̃→ DPn has regular ramification if there exists a

blow up p : Σ̂→ Σ̃, disjoint from the degeneracy locus of the superconformal structure,

such that f ◦ p has invertible ramification.

Starting from a full isotropic harmonic map f̃ : Σ̃ → DPn with invertible ramification,

there are natural numbers k = k(f), l = l(f) such that the sequence of Gauß transforms

takes the form

f−l, . . . , f = f0, f1, . . . , fk.

The maps f−l, and fk are holomorphic and anti-holomorphic respectively and by counting

dimensions we see that k+ l = n. In view of Theorem 7.3 and Lemma 7.10 each constituent

is full and isotropic. Moreover, each map has invertible ramification, which is also a

consequence of the second part of Theorem 7.3 and f can be reconstructed from either f−l
or fk. Thus we have proved:

Theorem 7.12. For every 0 ≤ r ≤ n + 1, the assignment f 7→ fr gives a bijective

correspondence between full holomorphic maps f : Σ̃→ DPn with invertible ramification and

full isotropic harmonic maps g : Σ→ DPn with invertible ramification such that l(g) = r.

The inverse is given by g 7→ g−l(g).

69



We now define holomorphic invariants which characterize isotropy as in Lemma 6.18.

First in local superconformal coordinates on some U , we set

(η1
α,β)U = 〈(∇HD̄)αΦ, (∇HD)βΦ〉HomD(f,D1+n),

where 〈−,−〉HomD(f,D1+n) denotes the odd hermitian metric

〈F,G〉HomD(f,D1+n) = otr(F ∗G).

Then ∇H is compatible with this metric. (Notice that str(F ∗G) vanishes necessarily.)

Moreover, we set

(η2
α,β)U = 〈(∇HD̄)αΦ(ρ), (∇HD)βΦ(ρ)〉Cn+1|n+1/〈ρ, ρ〉C1+n|1+n ,

where ρ is a local isotropic trivializing section of f. In view of Lemma 2.5, this does not

depend on the chosen isotropic vector section, provided (η1
α,β)U = 0.

Lemma 7.13. Let f : Σ̃ → DPn be harmonic. We have that (η1
0,1)U = (η1

1,0)U = 0 and

η2
1,0 = η2

0,1 = 0. Moreover, if (ηiα,β)U = 0 for all 1 ≤ α+ β ≤ r, all U, and i ∈ {1, 2}, then

(ηiα+1,β)U and (ηiα,β+1)U yield global holomorphic sections of Πi(D⊗(α+β+1))−1.

Proof. The proof follows along the lines of Lemma 6.18.

The map f is isotropic if and only if all these invariants vanish.

Definition 7.14. A map is called weakly conformal if η1
1,1 = 0, η2

1,1 = 0.

Corollary 7.15. Any harmonic super sphere is isotropic.

Proof. This follows from Lemmas 7.13, since Γ(D−k) = 0 for all k ≥ 1.

Remark 7.16. (a) Again, for B = pt all maps have always regular ramification.

(b) In view of Corollary 7.15, Theorem 7.12 applies for instance in the genus 0 case.

Remark 7.17. In contrast to Lemma 6.21, the underlying map of a weakly conformal

(supersymmetric) harmonic map into DPn is in general not harmonic. We will construct an

example of such a map in Section 7.4.4.

7.3 Examples for the Gauß transform

Examples of full isotropic harmonic maps from a super sphere into DPn can be easily

constructed as in Section 6.3. For dimensional reasons, any full harmonic map from a genus

0 super Riemann surface into DP 1 is holomorphic or antiholomorphic. For harmonic spheres

into DP 2, we can use the construction of harmonic super spheres in CP 1|1 from Section 6.3
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to obtain full isotropic harmonic maps. This simply works by considering the holomorphic

map defined by

f = (p J3q r).

The computation of the harmonic sequence can be carried out similarly.

7.4 Periodic harmonic sequences in DP 2n

Analogous to Section 6.4, we now analyze harmonic maps Σ→ DP 2n with periodic harmonic

sequence.

7.4.1 The (2n+ 1)-symmetric space PSQ(2n+ 1)/PSQ(1)2n+1

We fix the torus T = PS(U(1)2n+1) ⊂ PSQ(2n+1) and set βl = σl+1−σl, l = 0, . . . , 2n−1,

and β2n = −∑l βl. Each root space is 1|1-dimensional over C. We consider the adjoint

action of τ = diag(1, ω, . . . , ω2n | 1, ω, . . . , ω2n), where ω is a simple (2n+ 1)st root of unity.

Then after complexification we have a decomposition into eigenspaces

psq(2n+ 1)C =

2n⊕

i=0

Mi.

For instance, M1 is the sum of the root spaces of βl, l = 0, . . . 2n. In the following, we will

consider matrices as D-valued. Let El be the root vector for βl with only one non-zero entry

equal to 1. We set Bτ =
∑

k J̃
−1Ek. In the case n = 1 we have

M1 = {




0 0 c

a 0 0

0 b 0


 | a, b, c ∈ D}, E1 =




0 0 0

1 0 0

0 0 0


 , Bτ =




0 0 J̃−1

J̃−1 0 0

0 J̃−1 0


 .

We notice that M0 = ps(q(1)2n+1)C is not abelian. The same τ gives also rise to a description

of PQ(2n+ 1)/P (Q(1)2n+1) as a (2n+ 1)-symmetric space. The only difference being that

then M0 = p(q(1)2n+1)C. All Mi, i 6= 0, are left unchanged. In order to obtain invariants

for primitive maps, we need to understand the p(q(1)2n+1)C-invariant polynomials of M1.

Writing ξi =
∑

k a
k
iEk, we have

PQ1 (ξ0, . . . , ξ2n) =
1

(2n+ 1)!

∑

σ∈Σ2n+1

otr(a0
σ(0)a

2n
σ(1)a

2n−1
σ(2) . . . a1

σ(2n)).

Moreover, concerning ps(q(1)2n+1)C, there is one more invariant polynomial given by

PQ2 (ξ0, . . . , ξ2n) =
1

(2n+ 1)!

∑

σ∈Σ2n+1

odet(a0
σ(0)J̃a

2n
σ(1)J̃a

2n−1
σ(2) J̃ . . . a

1
σ(2n)J̃).
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They define elements in Sym∗2n+1(ΠM1) and ΠSym∗2n+1(ΠM1), respectively. Again, we set

PQi (ξ) = PQi (ξ, . . . , ξ).

Definition 7.18. A map ξ : T → ΠM1 is called cyclic if PQ1 (ξ) is invertible.

Lemma 7.19. Consider a map ξ =
∑
AiEi : T → ΠM1. Then there exists t ∈ PQ(1)2n+1

C
such that

Ad(t)(Bτ ) = ξ

if and only if PQ1 (ξ) = 1. In this case we have PQ2 (ξ) = 2odet(t).

Proof. In view of PQ1 (ξ) = 1, we can find X = 1 + ξJ̃ such that

t = diag(A−1
0 J̃3X−1, J̃4X,A1J̃X

−1, A2A1J̃
2X,A3A2A1J̃

3X−1, . . . , A2n−1 · · ·A1J̃
2n−1X−1),

does the job. The second claim follows by inspection.

7.4.2 Primitive maps

Definition 7.20. A map f : Σ→ PSQ(2n+ 1)/T is called primitive if dfC|D has values in

[M1] and it is cyclic at one point.

The definition of a framing f̃ : Σ→ PSQ(2n+ 1) is as before (Section 6.4.2) and, again,

primitivity of f is characterized by

AD = AD,0 +AD,1,

where A = f̃∗α and AD,i has values in Mi. Analogously as in Lemma 6.28, we have:

Lemma 7.21. Given a primitive map, then PQi (f) := PQi (ΠdfC|D) are holomorphic sections

of Πi+1((ΠD)∗)⊗(2n+1).

There is also a notion of Toda frame similar to Section 6.4.2. For this, we choose the

complement of psq(2n+ 1) ⊂ pq(2n+ 1) spanned by

MQ = diag(J̃ ,−J̃ , J̃ , . . . , J̃).

We assume that PQ1 (f) is invertible at a point and hence in a coordinate neighbourhood U.

A framing f̃ : U → PSQ(2n+1) is a Toda frame if there exists a superconformal isomorphism

a : U → U such that PQ1 (a∗f) = 1 and a map Ω = Ω̃ + χMQ : U → ipsq(1)2n+1 ⊕ 〈MQ〉
such that

a∗AD = (DΩ̃− 1

2
[Ω̃− χ̄M̄Q, DΩ̃]) + Ad(exp(Ω))(Bτ ).

The Maurer-Cartan equations of such a framing reduce to

2D̄DΩ̃− 2[D̄Ω̃, DΩ̃] + 1/2D̄D[(χMQ + χ̄M̄Q), Ω̃] + [AD,1, AD̄,1] = 0. (7.22)
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Then we have that PQ2 (a∗f) = PQ2 (f)/PQ1 (f) = 2odet(exp(Ω)) = 2otr(Ω) is holomorphic,

so that χ is holomorphic. The additional summand in AD,0 as compared with the Toda

frames in Theorem 6.31 in the above formula results from non-commutativity of Q(1) :

Lemma 7.23. For any derivation X, we have

(X exp(Ω)) exp(Ω)−1 = XΩ +
1

2
[Ω, XΩ].

Proof. This is a direct calculation.

Then we have:

Theorem 7.24. Let f : Σ→ PSQ(2n+ 1)/T be primitive and assume that f is cyclic at

the point p0. Then there exists a Toda frame in some neighbourhood of p0 such that (7.22)

holds. The superconformal isomorphism a : U → U is unique up to superconformal rotation

by a (2n+ 1)st root of unity and translations and the Toda frame is unique for such a.

Proof. The proof is similar to Theorem 6.31. On a coordinate neighbourhood U of p0 we

can find a framing f̃ with values in PSQ(2n + 1) and since PQ1 (f) is holomorphic and

invertible and U is simply connected we can change superconformal coordinates such that

PQ1 (a∗f) = 1. This coordinate transformation is unique up to superconformal translation

and rotation by a (2n + 1)st root of unity. Since U is simply connected, we can find by

Lemma 7.19 an η : U → pq(1)2n+1
C such that

a∗AD,1 = Ad(exp(η))(Bτ ).

Although PQ(1)2n+1
C is non-abelian and the exponential map is not a group homomorphism,

we can still find a decomposition exp(η) = exp(Λ̃)exp(Ω̃ + χMQ), where ¯̃Λ = Λ̃, ¯̃Ω = −Ω̃

have vanishing odd trace. We define Ω = Ω̃ + χMQ. We can gauge away Λ̃ and obtain the

desired Toda frame f̃ . Using Lemma 7.23, we find

−[a∗AD̄,0, a
∗AD,1] = D̄a∗AD,1 = [D̄Ω + 1/2[Ω, D̄Ω], a∗AD,1] = [D̄Ω̃ + 1/2[Ω, D̄Ω̃], a∗AD,1]

and hence a∗AD̄,0 = −D̄Ω̃− 1/2[Ω, D̄Ω̃] and a∗AD,0 = DΩ̃− 1/2[Ω̃− χ̄M̄Q, DΩ̃]. (Here we

used that the stabilizer Bτ acting on odd T -valued points of pq(1)2n+1
C is trivial due to the

fact that 2n+ 1 is odd.) The M0 component of the Maurer-Cartan equation is precisely

(7.22). The uniqueness follows as in Theorem 6.31.

Corollary 7.25. Let Σ be a super torus and consider a primitive map Σ→ PSQ(2n+1)/T.

Then there exists a Toda frame on the universal covering C1|1
B → Σ and a superconformal

isomorphism a : C1|1
B → C1|1

B , unique up to superconformal rotation by a (2n + 1)st root

of unity and translation, such that (7.22) holds. Moreover, the Toda frame and Ω factor

through some finite covering Σ′ → Σ.
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Proof. This follows as before in Corollary 6.32.

7.4.3 A class of 2n+ 1-orthogonal non-isotropic harmonic maps

Starting from a full harmonic map from a super torus with invertible ramification which

is (2n+ 1)-orthogonal and non-isotropic in the sense that PQ1 (f) is invertible at one point

(and hence everywhere), the harmonic sequence

f−l, . . . , f0, . . . , fk

determines a primitive map

f̃ : Σ // PSQ(2n+ 1)/T.

(Since 2n+ 1 is odd, this forces the super torus to be of the odd type.)

As follows from the proof of Theorem 7.24, for such primitive maps, we neither have

DAD,1 6= [AD,0, AD,1] nor [AD,0, AD̄,0] = 0 in general. However, the machinery used in

Section 6.4.3 produces maps satisfying these constraints. In view of this, one might not

expect and we cannot give a general finite type classification along the lines of Section 6.4.4.

However, it turns out that quite drastic assumptions still lead to sufficiently interesting

examples.

It is useful to use a slightly different setup. In the situation of Theorem 7.24, in a suitable

coordinate with PQ1 (f) = 1, we can also write

AD,1 = Ad(exp(η))(Bτ ), exp(η) = exp(Λ′)(exp(Ω′),

where Λ′, and Ω′ are pq(1)2n+1
C -valued and Λ̄′ = Λ′, Ω̄′ = −Ω′. At the cost of obtaining a

pq(2n+ 1)C-valued form we can gauge away Λ′. Thus such a form will integrate to a framing

of a primitive map into PQ(2n+ 1)/PQ(1)2n+1. In this new gauge

A′D,1 = Ad(exp(Ω′))(Bτ ), A′D,0 = DΩ′ − 1/2[Ω′, DΩ′]

and the Maurer Cartan equation reads:

2D̄DΩ′ − 2[DΩ′, D̄Ω′] + [A′D,1, A
′
D̄,1] = 0. (7.26)

We write A′D,1 =
∑

k AiEi and AiJ̃ = ai(1 + αiJ̃). In this situation all AiJ̃ are real.

Proposition 7.27. If [A′D,0, A
′
D̄,0

] = 0 and AiJ̃ commute pairwise, then the Maurer Cartan

equation is equivalent to the system:

D̄Dlog(ai) =
i

2
(a2
i+1 − a2

i−1), i = 0, . . . , 2n, (7.28)
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D̄Dαi = i(a2
i+1αi+1 − a2

i−1αi−1), i = 0, . . . , 2n, (7.29)

subject to αiαj = 0, and [DΩ′, D̄Ω′] = 0. Here, we set α2n+1 = α0 and a2n+1 = a0.

In particular, if we denote by pi : D → ΠiC the projection onto the ith summand, then

the form determined by p0AD,0 + p1AD,1 satisfies the Maurer-Cartan equation (7.22).

Proof. We know that

exp(Ω′) = diag(A−1
0 J̃3X−1, J̃4X,A1J̃X

−1, (A2A1)J̃2X, (A3A2A1)J̃3X−1, . . . ,

(A2n−1 · · ·A1)J̃2n−1X−1)

= diag(J̃(A0J̃)−1J̃−1X−1, X, (A1J̃)X−1, (A2J̃)(J̃A1)X, (A3J̃)(J̃A2)(A1J̃)X−1,

. . . , (A2n−1J̃)(J̃A2n−2) . . . (A1J̃)X−1),

where X = 1 + χJ̃ is determined in terms of AiJ̃ and is real. Since X and AiJ̃ commute,

we have

Ω′ = log(diag(J̃(A0J̃)−1J̃−1X−1, X, (A1J̃)X−1, (A2J̃)(J̃A1)X, (A3J̃)(J̃A2)(A1J̃)X−1, . . . ,

(A2n−1J̃)(J̃A2n−2) · · · (A1J̃)X−1))

= diag(−log(a0) + (α0)J̃ , 0 + 0 · J̃ , log(a1) + (α1)J̃ , log(a2a1) + (α2 − α1)J̃ , . . . ,

log(a2n−1 · · · a1) + (α2n−1 − α2n−2 + α2n−3 . . .+ α1)J̃)

+ diag(−χJ̃, χJ̃, . . . ,−χJ̃).

Moreover, A∗iAi = ia2
i (1 + 2αiJ̃) and AiA

∗
i = ia2

i (1− 2αiJ̃), so that

[AD,1, AD̄,1] = (−1)diag(A∗0A0 +A2nA
∗
2n, A

∗
1A1 +A0A

∗
0, . . . , A

∗
2nA2n +A2n−1A

∗
2n−1)

= (−i)diag(a2
0 + a2

2n + (2a2
0α0 − 2a2

2nα2n)J̃ , . . . ,

a2
2n + a2

2n−1 + (2a2
2nα2n − 2a2

2n−α2n−1)J̃).

Comparing with (7.26) then gives the result.

Remark 7.30. (a) On a torus the solution space to (7.29) is finite-dimensional as follows

from ellipticity considerations similar to those in Section 6.4.4. A solution given by

(αi) to (7.29) can always be arranged to satisfy the constraints by adding an additional

Grassmann variable η to the base B and then considering (iηη̄)αi.

(b) Up to a change of basis, the form p0AD,0 + p1AD,1 fits into the framework of Section

6.4. In particular, local solutions can be constructed from Theorem 6.42.
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7.4.4 Example: The case n = 1

We study the case n = 1. Similar as in Section 6.4.5, we have a trivial solution a1 = a2 =

a3 = 1. We consider ω = e2πi/3 and set

v =




1

1

1


 , A =



J̃−1 0 0

0 ωJ̃−1 0

0 0 ω2J̃−1


 .

Then [Ā, A] = 0 in psq(3)C and the framing is given by

exp(−zA2 − z̄Ā2)(1 + ϑA+ ϑ̄Ā+ ϑ̄ϑĀA)(v | (A−1J̃−1)v | (A−1J̃−1)2v).

The matrix on the left hand side is



ez−z̄ 0 0

0 eω
2z−ωz̄ 0

0 0 eωz−ω
2z̄




and the Maurer-Cartan form is given by

AD = AD,1 =




0 0 J̃−1

J̃−1 0 0

0 J̃−1 0


 .

The associated map to PSQ(3) is periodic with respect to the lattice spanned by 2π/
√

3

and 2πi.

Now we try to extend this non-trivially according to Proposition 7.27. The simplest

ansatz is to take αi to be harmonic. From (7.29) we thus obtain α0 = α1 = α2. For instance,

we can take αi = αC = C(ϑ− iϑ̄), where C is real.

We thus obtain

A′D,1 =




0 0 J̃−1 + αC

J̃−1 + αC 0 0

0 J̃−1 + αC 0


 ,

and

exp(Ω′) =




1 + αC/2J̃ 0 0

0 1 + αC/2J̃ 0

0 0 1 + αC/2J̃


 .

Hence

A′D̄,0 = −(−i)(C/2)diag(J̃ , J̃ , J̃), A′D,0 = (C/2)diag(J̃ , J̃ , J̃),
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which shows that the constraints in Proposition 7.27 are satisfied.

Theorem 7.31. There is a 1-parameter family of 3-orthogonal non-isotropic harmonic

maps fC : C1|1 → DP 2 such that the underlying maps f̃C : C → CP 2 are non-harmonic

except for C = 0. The map fC factors through a split super torus Στ,0 with

τ = 2π/(
√

3(1 + C)) + i2π/(1− C), C 6= 1.

If C = 1, the map is constant in y.

Proof. We define fC to be the map obtained by integrating the above form. To show that

the underlying map is not harmonic and to compute the periods, we need to study the

underlying map. From the above, using that for a flat connection αz = −(DαD + α2
D), we

see that the relevant connection is given by

αz =




0 1 −C
−C 0 1

1 −C 0


 , αz̄ = −




0 −C 1

1 0 −C
−C 1 0


 .

Setting G = U(3), K = U(1)× U(2), we thus see that

[αk,z̄, αp,z] = −[




0 0 0

0 0 −C
0 1 0


 ,




0 1 −C
−C 0 0

1 0 0


] ,

which vanishes if and only if C = 0, so that the underlying map is harmonic if and only if

C = 0. Moreover,

αx = (1 + C)




0 1 −1

−1 0 1

1 −1 0


 , αy = 1/(−i)(1− C)




0 1 1

1 0 1

1 1 0




have eigenvalues given by {0,±i
√

3} and {−1, 2} respectively. Hence the associated 1-

parameter groups have periods 2π/(
√

3(1 + C)) and 2π/(1 − C), C 6= 1 respectively. If

C = 1, αy = 0.

Remark 7.32. In view of the computation of the component fields in Section 4, we have

thus constructed doubly periodic solutions to the equations in Proposition 4.1 which are

coupled in the sense that the underlying map is not harmonic.

There is yet another extension to this system making use of Remark 7.30. Namely, the

ansatz α0 = ϕ0ϑ− iϕ̄0ϑ̄, α1 = ϕ1ϑ− iϕ̄1ϑ̄, and
∑

i αi = 0 leads to the equations

∂̄ϕ0 = −(2ϕ̄1 + ϕ̄0), ∂̄ϕ1 = (2ϕ̄0 + ϕ̄1).
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This system is equivalent to ∂∂̄ϕ0 = −3ϕ0 and automatically ϕ1 = −1/2(∂ϕ̄0 + ϕ0). The

condition α0α1 = 0 is then equivalent to

ϕ0∂̄ϕ0 − ϕ̄0∂ϕ̄0 = 0.

Considering the ansatz ϕ0 = Aei
√

3x +Be−i
√

3x, this is satisfied if ϕ0 = A cos(
√

3x) for real

A. Then ϕ1 = −A/2(−
√

3sin(
√

3x) + cos(
√

3x)). After adding an additional parameter η,

we thus obtain a doubly periodic solution to the Maurer-Cartan equation. The resulting

map will still be periodic with period π/
√

3 + 2πi since the underlying map, setting η = 0,

has this property.

8 Outlook

There is a wealth of problems which we did not address. We shall highlight only a few.

Non-conformal harmonic tori

Originally, the notion of finite type harmonic maps led to a classification of all non-conformal

tori in compact rank one Riemannian symmetric spaces [10]. Moreover, Burstall gave a

finite type description of all non-isotropic harmonic tori in CPn [8]. In view of our results

in Section 6.4.4, it is a natural question whether such other finite type classification results

have analogous supersymmetric versions. This is particularly interesting since in this case

Lemma 6.21 does no longer hold in general. However, in view of the special properties of

the situation employed in Section 6.4.4, e.g. the existence of suitable invariant polynomials

and the special orbit structure which allowed to define the complex vector field Z, such an

extension seems to be non-obvious.

Harmonic maps of finite uniton number

Theorem 1.2 has been vastly generalized by Uhlenbeck [52] and Burstall and Rawnsley gave

a comprehensive treatment for harmonic spheres in symmetric spaces [11]. It is not clear

how these results generalize to the graded setting. For instance, the statement in [46, p.8

l.-5 – l.-3] is not comprehensible since the arguments in [52] rely crucially on the existence

of kernel and image bundles of holomorphic endomorphisms similar as used in the Gauß

transform. In view of our results, this seems to be a subtle issue.

Spaces of harmonic maps

In [17, 41], the authors showed that in the case of harmonic spheres in CP 2, one can build in

certain situations smooth manifolds of harmonic maps. In view of the structural similarity,

it would be interesting to study a similar problem for full isotropic super spheres in DP 2.

78



Harmonic maps into DP n

Finally, there is also an interesting super division algebra over R :

D := C[j]/(ji = −ij, j2 = 1).

As a vector space it isomorphic to C1|1 and we will represent an element in the form a+ bj.

We let JD denote the operation of left multiplication by j, hence this takes (for even elements)

the form

JD(a, b) = (−b̄, ā).

Any map T → D− 0 can be written as f + gj and then

1

f + gj
=

1

f

(
1− ḡg

f̄f

)
+

g

f̄f
j.

We define DPn to be covered by n + 1 copies of Dn with the usual transition functions.

This comes with the tautological flag

γD = D×D× (D1+n − 0) //

((

D1+n

DPn

��
DPn,

where the top map is just (λ, a) 7→ ([a], λa).

Lemma 8.1. Smooth maps T → DPn are in bijective correspondence with complex subbun-

dles L ⊂ DnT which are invariant under JD.

Proof. This bijective correspondence is given again by pulling back the tautological flag.

Notice that JD is not unitary. Rather, for even vectors f and g we have

〈JDf, JDg〉 = i〈f̄ , ḡ〉.

As a consequence, there is no natural connection on ι : DPn ↪→ Gr1|1(C1+n|1+n) as was the

case for DPn. We define f : Σ → DPn to be harmonic if the composite map ι ◦ f : Σ →
Gr1|1(C1+n|1+n) is harmonic. In view of the discussion in Section 6.1, there is a notion of

Gauß transform for such maps. Moreover, there is a fibration sequence

CP 0|1 // CPn|n+1 // DPn.

Recall that a holomorphic map into a complex projective space is harmonic. On general

grounds, if a 1-regular isotropic holomorphic map f : Σ̃ → CP 1|2 is D-horizontal, i.e.,
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〈JDf,Df〉 = 0, then its projection to DP 1 is harmonic. (This also follows from similar

considerations as in the proof we give below.) The following partial converse illustrates that

our definition of harmonicity is not arbitrary.

Lemma 8.2. Consider a parabolic super Riemann surface Σ̃ and a harmonic map f : Σ̃→
DP 1. Assume that f±1 exist and the map is weakly conformal f−1 ⊥ f1. Then:

(a) There is a harmonic lift β : Σ̃→ CP 1|2 which satisfies β1 ⊥ JDβ.

(b) The differential of dβ(1,0))|D̄ is vertical, i.e., contained in Hom(β, f/β) if and only if

α = β⊥ ⊂ f is isotropic: 〈JDα, α〉 = 0. In this case, β is isotropic and D-horizontal.

Proof. On Σ̃ the relevant diagram for the second fundamental forms is (cf. [12, Thm. 3.7],

Section 6.2)

β
∼=
��

f−1

>>

!!

f1,

~~

oo

α

OO

where α⊕ β = f , α ⊥ β, and α = ker(Af,f⊥,D). The arrow f1 → α vanishes by f1 ⊥ f−1.

Thus, the diagram is actually of the form

f−1

~~ ��
α // β

∼= // f1 .

aa

Using similar arguments as in [12, Prop. 1.5], one can show that the map determined by β

is harmonic. It clearly satisfies the stated horizontality conditions.

Let v be an even local trivializing section of α. We compute

D̄β = D̄

(
JDv −

〈v, JDv〉
〈v, v〉 v

)

= −JD(Dv)− D̄
(〈v, JDv〉
〈v, v〉

)
v +
〈v, JDv〉
〈v, v〉 D̄v.

By assumption, the vector D̄v spans a locally free module except for at isolated points. So

the map is vertical if and only if 〈v, JDv〉 = 0.

Remark 8.3. This result suggests a similarity between the theory of supersymmetric

harmonic maps into DPn and harmonic maps into quaternionic projective spaces. Harmonic
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spheres in HPn spaces have been classified [1] and the above is analogous to the classification

of harmonic spheres in HP 1 (cf. [1, Equ. 6.2]). Moreover, this result is reminiscent of

[27, Lem. 2.7]. In the terminology introduced therein, (b) says that f is “quaternionic

holomorphic”.
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1 Introduction

In this article, we study geometric structures on cs manifolds and their automorphisms.

Super-Riemannian structures on cs manifolds play a prominent role in the work of Zirnbauer

[16]. In particular, the so-called Riemannian symmetric superspaces are worth mentioning.

Other instances of geometric structures on supermanifolds appeared in the context of

supergravity theories [14].

By a geometric structure on a manifold M we mean a reduction of the structure group of

the frame bundle L(M) to some closed subgroup G 6 GL(V ). Depending on the context,

there might be additional conditions like 1-flatness. A classical theorem states that the

group of automorphisms of such a G-structure is a Lie group provided it is of finite type.

(See [12] and the references therein.) This includes for instance the isometry group of a

Riemannian manifold.

In this work, we study the analogous structures in the category of cs manifolds (cf.

[7]). First, we lay the necessary foundations for the definition of a G-structure. This

leads naturally to the notion of mixed supermanifolds as follows. The frame bundle of

an ordinary manifold locally modelled on the vector space V is obtained from a cocycle

Uij → GL(V ) by glueing. Suppose M is a cs manifold (called supermanifolds in this article)

which is locally modelled on the super vector space V0̄ ⊕ V1̄. Here, V0̄ is a real and V1̄ is a

complex vector space. Then the analogous cocycle takes values in the mixed Lie supergroup

GL(V ) which has as body the mixed manifold GL(V0̄)×GL(V1̄). It is crucial to keep the

complex analytic structure on the second factor. After having developed the basic theory

of mixed supermanifolds, one can define G-structures, prolongations and G-structures of

finite type along the lines of the classical definitions. Our main result concerns the functor

of automorphisms of a G-structure of finite type that is in addition admissible. In this

situation, if restricted to purely even supermanifolds, the functor is representable by a mixed

Lie group and it is finite-dimensional in the sense that the higher points are determined by

the Lie superalgebra of infinitesimal automorphisms of the G-structure, which we prove to

be finite-dimensional (Theorem 4.11). Representability can fail for two reasons here, due to

the fact that the higher points of the functor of automorphisms contain all infinitesimal

automorphisms of the G-structure. For a representable functor these are necessarily all

complete and decomposable, which means that they admit a decomposition of the form
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X + iY for two real complete vector fields. The theory of G-structures can be developed for

real supermanifolds without the need for enlarging the category. Moreover, there is no need

for imposing an additional property on a G-structure of finite type. The only obstruction

for the representability of the functor of automorphisms of finite type is the completeness of

the infinitesimal automorphisms.

The paper is organized as follows. In Section 2 we introduce mixed supermanifolds.

After giving the basic definitions, we give a short account on mixed Lie supergroups and

principal bundles. We then show that mixed supermanifolds are the natural home for

constructions such as tangent bundles and frame bundles as well as their mixed forms, the

real tangent bundles and real frame bundles. In contrast to what the name suggests, mixed

supermanifolds are not supermanifolds with extra structure as we show in the appendix

(Proposition 7.1). Moreover, therein we prove that, for our purposes, mixed supermanifolds

cannot be avoided (Proposition 7.2).

In Section 3 we define a geometric structure to be a reduction of the real frame bundle of

a mixed supermanifold and construct its prolongation. In the super context it is advisable

to make the constructions in such a way that functoriality is evident. A subtlety is that the

standard prolongation has to be refined to a real prolongation, which is again a geometric

structure in the sense of our definition. The existence is ensured if the G-structure is

admissible.

In Section 4 we define the functor of automorphisms of a G-structure. Due to functoriality,

prolongation gives rise to inclusions of functors of automorphisms. Then we treat the case

of a {1}-structure. We show that the underlying functor is representable and the Lie

superalgebra of infinitesimal automorphisms is finite-dimensional. An important ingredient

is that even real vector fields possess a flow, as we show in the appendix. Similar results

on the functor of automorphisms of an admissible G-structure of finite type can then be

deduced by embedding it into the functor of automorphisms of a {1}-structure.

Everything we have said has a direct analogue in the category of real supermanifolds,

except that there are no complications caused by mixed structures and admissibility. The

completeness issues remain. The analogous theorems are stated in Section 5.

Finally, in Section 6 we discuss some examples. We treat even and odd metric structures

on supermanifolds and construct a canonical admissible geometric structure of finite type

associated to the superization of a Riemannian spin manifold as studied in [1, 14].
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2 Recollections on supergeometry

1 Mixed supermanifolds

A complex super vector space is a Z/2-graded complex vector space V = V0̄⊕V1̄. A morphism

is a grading preserving complex linear homomorphism. The resulting category is closed

symmetric monoidal with respect to the evident notion of tensor product and inner hom

objects.

A general mixed super vector space consists of the data (V, VR, VC) where V is a complex

super vector space, VR ⊆ V is a real sub super vector space, VC ⊆ V is a complex sub

super vector space such that VC ⊆ VR and the canonical map C ⊗ VR/VC → V/VC is an

isomorphism. A mixed super vector space is a general mixed super vector space (V, VR, VC)

such that (VR)1̄ = (VC)1̄ = V1̄. The class of these contains the classes of super vector

spaces and complex super vector spaces as the extreme cases where VC = V1̄ and VC = V ,

respectively. A real super vector space is a general mixed super vector space of the form

(V, VR, 0). For our purposes it is not necessary to discuss the various notions of morphisms

of general mixed super vector spaces at this point.

Example 2.1. One way to produce (general) mixed super vector spaces is the following.

Suppose we are given a real sub super vector space VR of a complex super vector space W.

The kernel of the induced map f : C⊗VR →W is of the form {i⊗ v− 1⊗ iv | v ∈ VC} ∼= VC

for a complex subspace VC ⊆ W contained in VR. Then (V = im(f), VR, VC) is a general

mixed super vector space. Of course, conversely, given a general mixed super vector

space (V, VR, VC), VC can be recovered from this by applying this procedure to VR → V.

In particular, the pair (V, VR) determines VC and the pair (VR, VC) determines V up to

isomorphism.

This leads to various notions of supermanifolds. We will first introduce the relevant

notions at the level of manifolds (without grading). Consider a purely even mixed vector

space VC ⊆ VR ⊆ V. We denote by A(VR) the locally ringed space over C given by

the topological space VR together with the sheaf OVR of partially holomorphic functions,

i.e., complex valued smooth functions whose differential is complex linear in the fibre

A(VR)× VC ⊆ A(VR)× VR = TA(VR).

Remark 2.2. More concretely, if we choose an isomorphism V ∼= Cn × Cm such that

VR ∼= Rn × Cm and VC ∼= Cm, then these are complex smooth functions ψ(x, z) on open

subspaces of Rn × Cm which are holomorphic in z.

Definition 2.3. A mixed manifold consists of a locally ringed space (M0,OM0) over C with

a second countable Hausdorff base which is locally isomorphic to A(VR) for some mixed

vector space (V, VR, VC). The subsheaf of real-valued functions is denoted by OM0,R. The full

subcategory of locally ringed spaces over C with objects mixed manifolds is denoted by Mµ.
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Remark 2.4. These are precisely the smooth manifolds locally of the form Rn × Cm

with transition functions (x, z) 7→ (ϕ(x), ψ(x, z)), where ψ(x, z) is holomorphic in z. Put

differently, these are manifolds endowed with a Levi flat CR-structure (cf. [2]).

Consider now a mixed super vector space (V, VR, VC). We denote by A(VR) the locally

ringed superspace over C given by the topological space VR0̄ together with the structure

sheaf OA(VR0̄) ⊗C
∧
V ∗

1̄
. Given a mixed super vector space (V, VR, VC), we can forget the

mixed structure and consider the mixed super vector space (V, V, V ). The associated locally

ringed space will be denoted by A(V ).

Definition 2.5. A mixed supermanifold is a locally ringed superspace M = (M0,OM ) over

C with a second countable Hausdorff base which is locally isomorphic to A(VR) for some

mixed super vector space (V, VR, VC). The full subcategory of locally ringed superspaces

over C with objects mixed supermanifolds is denoted by SMµ. The category SMµ contains

the full subcategories SM and SMC of supermanifolds and complex supermanifolds as the

extreme cases where VC = V1̄ and VC = V , respectively.

The sheaf of nilpotent functions on a mixed (real) supermanifold M will be denoted

by JM . The mixed (real) supermanifold structure on M induces the structure of a mixed

(real) manifold on the locally ringed space (M0,OM/JM ) which we abbreviate by abuse of

notation by M0. Moreover, we set OM0 := OM/JM . Then the inclusion i : Mµ → SMµ has

the right adjoint r : SMµ → Mµ, M 7→M0.

Given a mixed supermanifold, we define the sheaf of real functions to be the pullback in

the square of (real) supercommutative superalgebras

OM,R //

��

OM0,R

��
OM // OM0 .

We will often consider a mixed supermanifold as a set-valued functor on SMµ by the

assignment T 7→ SMµ(T,M). Then there is a natural transformation of functors M →
r∗i∗M = r∗M0 which is given by sending a map T →M to its underlying map T0 →M0.

The second part of the next lemma is only the first encounter of the typical reality condition

enforced by a mixed structure.

Lemma 2.6. Consider a mixed super vector space (V, VR, VC).

(a) There is a natural isomorphism SMµ(M,A(V )) ∼= Γ(OM ⊗C V )0̄.
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(b) The following diagram is a pullback of functors on SMµ:

A(VR) //

����

r∗A(VR0̄)

��
A(V ) // r∗A(V0̄).

In other words, we have

SMµ(M,A(VR)) ∼= Γ(OM,R,0̄ ⊗R (VR/VC)0̄)⊕ Γ(OM,0̄ ⊗C (VC)0̄)⊕ Γ(OM,1̄ ⊗C V1̄).

Proof. The proof is similar to that in [6, Theorem 4.1.11].

Corollary 2.7. The category SMµ admits all finite products and the full subcategory Mµ is

closed under finite products in SMµ.

Let M0 be a mixed manifold. Consider the sheaf TM0 whose sections over U0 are complex

linear derivations of OM0 |U0 and the subsheaf TM0,R of those derivations which restrict to

derivations of OM0,R|U0 . Then TM0,R contains a complex ideal TM0,C of derivations which

annihilate OM0,R|U0 and the quotient by this sheaf is isomorphic to the sheaf of derivations

of OM0,R.

Now, if M is a mixed supermanifold, the complex tangent sheaf is the sheaf TM whose

sections over U0 are the complex linear superderivations of OM |U0 . By analogy with the

definition of the real functions, one defines the real tangent sheaf by the pullback

TM,R //

��

TM0,R

��
TM // TM0 ,

where the lower arrow takes a vector field to its underlying vector field.

An important point is that, although TM,R is not closed under brackets, its even part

is and consists of those derivations which restrict to derivations of OM,R. In analogy, one

defines TM,C ⊆ TM,R in terms of TM , TM0 and TM0,C. Then (TM,C)0̄ ⊆ (TM,R)0̄ is an ideal.

The tangent space TmM at m ∈ M0 is the complex super vector space of complex

derivations OM,m → C. This comes with a mixed structure by considering the real subspace

(TmM)R consisting of those derivations which induce a derivation OM0,R,m → R together

with its complex subspace (TmM)C of those derivations in (TmM)R which vanish on OM0,R,m.

2 Mixed Lie supergroups

In this section we give a brief review of basic results concerning mixed Lie supergroups.
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Definition 2.8. A mixed Lie supergroup is a group object in SMµ.

2.1 Equivalence of mixed Lie supergroups and mixed super pairs

First we characterize mixed Lie groups, i.e., mixed Lie supergroups with trivial odd direction.

For a real (resp. mixed) Lie group G we will use the notation LieR(G) (resp. LieC(G)) for

the Lie algebra of left-invariant derivations of the sheaf of real valued smooth functions

(resp. sheaf of complex functions).

We define a mixed pair to be a pair (gC, G
sm) consisting of a real Lie group Gsm and an

AdGsm-invariant ideal gC ⊆ LieR(Gsm) endowed with a complex structure which is respected

by the adjoint action of Gsm.

A morphism of such pairs is a morphism of Lie groups such that the differential at the

identity respects the complex ideals.

Lemma 2.9. The categories of mixed Lie groups and mixed pairs are equivalent.

Proof. This follows from the Baker–Campbell–Hausdorff formula as in the case of complex

analytic structures on Lie groups.

As usual, the adjoint representation of a mixed Lie group G is the differential at the

identity of the conjugation action of G on itself. It can be seen as a mixed morphism

G× A(gR)→ A(gR).

Now, we turn our attention to mixed Lie supergroups. A mixed super pair consists of a

pair (g, G0) where G0 is a mixed Lie group and g is a complex Lie superalgebra together

with

(a) an isomorphism LieC(G0) ∼= g0̄, and

(b) an action σ : G0 × A(g)→ A(g) such that σ(g)|A(g0̄,R) = AdG0 and the differential of

σ acts as the adjoint representation

dσ(X)(Y ) = [X,Y ].

There is an evident notion of a morphism of mixed super pairs, and the following result

follows along the same lines as the corresponding for real and complex Lie supergroups.

Proposition 2.10. The categories of mixed super pairs and mixed Lie supergroups are

equivalent.

Proof. See [6, 7.4].

An important notion is the following.
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Definition 2.11. A mixed real form of a complex Lie supergroup G is a mixed Lie

supergroup GR together with a group morphism i : GR → G such that i0 : (GR)0 → G0 is

the inclusion of a closed subgroup and die : Te(GR)→ Te(G) is an isomorphism.

Remark 2.12. Any mixed real form GR 6 G yields a mixed real form (GR)0 6 G0.

Conversely, given a mixed real form (G0)R 6 G0, the pullback

GR //

��

r∗(G0)R

��
G // r∗G0

is representable and defines a mixed real form of G. For that reason, we will adopt the

notation (GR)0 = (G0)R = G0,R.

Example 2.13. Finally, we come to discuss the example of linear supergroups. Let

(V, VR, VC) be a mixed super vector space. Then we have the complex Lie supergroup

GL(V ) given by the complex group GL(V0̄)×GL(V1̄) and the Lie superalgebra gl(V ). An

element of GL(V )(T ) is given by an automorphism over T of the trivial vector bundle

V T = T × A(V )→ T.

Consider the subgroups of those even invertible isomorphisms of V respecting VC or the

pair VC ⊆ VR. We will denote them by

GLµ(V )0,R 6 GLµ(V )0 6 GL(V )0.

We then define the two group-valued functors GLµ(V ) and GLµ(V )R on SMµ by the

pullback

GLµ(V )(R)
//

��

r∗GLµ(V )0,(R)

��
GL(V ) // r∗GL(V )0,

where it is understood that the quantities in parentheses are only present in the latter case.

The inclusion LieR(GLµ(V )0,R) ⊆ gl(V )0̄ only defines a mixed structure in the cases

VC = V1̄ and VC = V. In this case GLµ(V )R is representable and is a mixed real form of

GL(V ). In general, GLµ(V )(R) is not representable.

2.2 Actions of mixed Lie supergroups and their point functors

A left action of the mixed Lie supergroup G on the mixed supermanifold M is given by a

unital and associative map a : G×M →M. The map a] can be made explicit in terms of

two more basic objects. First, let a denote the action G0 ×M → G×M →M. Then any
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g ∈ G0 (considered as a map g : A({0})→ G) gives a map

ag : M ∼= A({0})×M g×M // G0 ×M
a //M.

Secondly, the action gives rise to a Lie superalgebra antimorphism

ρ : g // Γ(TM ), X 7→ (e×M)] ◦ (X ⊗ 1) ◦ a] (2.14)

and we have

(a) ρ|g0̄
(X) = (X ⊗ 1) ◦ a], and

(b) ρ(g · Y ) = (a−1
g )] · ρ(Y ) · a]g.

Conversely, given an action a : G0 ×M → M and ρ satisfying (a) and (b), then one can

construct an action G×M →M (cf. [6, Prop. 8.3.2, 8.3.3]).

Now let G be a mixed Lie group and M a mixed supermanifold and consider an action

asm : Gsm ×M → M. This gives rise to a Lie algebra morphism gR → Γ(TM,R)0̄. The

connection between such an action and an action of G is made precise in the next lemma.

Lemma 2.15. The action asm extends to an action a : G×M → M if and only if g fits

into the following square

gR //

��

Γ(TM,R)0̄

��
g // Γ(TM )0̄

the lower horizontal arrow being an antimorphism of complex Lie algebras. The extension is

unique if it exists. Equivalently, the restriction of the upper horizontal arrow to gC factors

as a complex linear map through Γ(TM,C)0̄.

Proof. Uniqueness is clear since any element X ∈ g can be written in the form X1 + iX2 for

someXj ∈ gR. If the extension in the diagram exists, then the differential TGsmR ×TM → TM

is complex linear on TGsmC ×TM → TM , which proves that the action extends to G×M.

Let T be an arbitrary mixed supermanifold. Consider a morphism ϕ0 : T → G and a

homogeneous derivation X : OG → (eT 0)∗OT along eT : T → ∗ → G.

Given this, we construct a homogeneous derivation along ϕ0 as follows:

ϕ0 ·X : OG
(ϕ0×T )]◦(1⊗X)◦µ]// (µ0)∗(ϕ0 × eT )0∗OT×T

∆]
// (ϕ0)∗OT .

Similarly, for two homogeneous derivations X and Y we set

X · Y := ∆] ◦ (µ0)∗((X ⊗ 1) ◦ (1⊗ Y )) ◦ µ].
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Now, suppose G acts on M and let X and Y be as above. We set

ρ(X) : OT×M
(1⊗X⊗1)◦(T×a)]// OT×T×M

(∆×M)] // OT×M .

Then ρ(X) is the OT -linearization of ρ(X) ◦ p]T , where pT : T ×M →M is the projection.

From the associativity of the action it follows that

ρ(X · Y ) = (−1)|X||Y |ρ(Y ) ◦ ρ(X).

Let n ≥ 0, then Γ(OA(C0|n)) is the exterior algebra on generators ηi. As usual, given a

non-empty subset I ⊂ {1, . . . , n}, we set ηI =
∏
i∈I ηi, where we implicitly use the ordering

on I induced from the standard ordering on {1, . . . , n}.

Lemma 2.16. Suppose G is mixed and acts on the mixed supermanifold M.

(a) Any ϕ ∈ G(A(C0|n) × T ) is uniquely determined by ϕ0 ∈ G(T ) and homogeneous

derivations XI along eT of degree |I| and

ϕ] = ϕ]0 ·
n∏

k=1

(
1 +

∑

k∈I⊆{1,...,k}
ηIXI

)
.

(b) Moreover, under this identification, the morphism aϕ, defined as the composition

(A(C0|n)× T × a) ◦ ((prA(C0|n)×T , ϕ)×M) : A(C0|n)× T ×M // A(C0|n)× T ×M,

takes the form

a]ϕ =

1∏

k=n

(
1 +

∑

k∈I⊆{1,...,k}
ηIρ(XI)

)
· a]ϕ0

.

Proof. The first part is proved by induction on n and the second part then boils down to

(µ×M)] ◦ a] = (G× a)] ◦ a].

3 Mixed real forms of principal G-bundles

Suppose we are given a mixed supermanifold M and a group-valued functor G on SMµ.

A principal G-bundle is a functor P on SMµ together with a right G-action and a map

π : P →M equivariant with respect to the trivial action on M such that for each m ∈M0

there exist an open neighbourhood U and equivariant isomorphisms U ×G→ P |U over U.

This reduces to the usual definition if G is representable.

Later we will need to build real forms of certain principal bundles. This will be done so

with the help of the following lemma.
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Lemma 2.17. Let G be a complex Lie supergroup with mixed real form GR. Let P →M

be a principal G-bundle over a mixed supermanifold M and P0,R →M0 a reduction of P0 to

G0,R. Then the pullback

PR

��

// r∗(P0,R)

��
P // r∗(P0)

is a principal GR-bundle.

Proof. We observe that GR acts on PR by the universal property of the pullback and the

map PR → P →M is equivariant with respect to this action. So we only need to show local

triviality. We choose trivializations ψi : Ui ×G→ P |Ui on coordinate charts Ui = A(VR) on

M. They come with retractions ri : Ui → (Ui)0. Without loss of generality, we may assume

that P0,R|(Ui)0
is trivial, too, say by maps ϕi : (Ui)0 × G0R → P0,R|(Ui)0

. The ϕi induce

trivializations ϕ̃i : (Ui)0 ×G0 → P0|(Ui)0
which differ from (ψi)0 by maps gi : (Ui)0 → G0 in

the sense that

ϕ̃i = (ψi)0 ◦ ((Ui)0 × a0) ◦ ((id(Ui)0
, gi)×G0) : (Ui)0 ×G0

// P0|(Ui)0
.

Denoting by ã the composition G0 ×G→ G×G→ G, we now set

ψ̃i = ψi ◦ (Ui × ã) ◦ (Ui × gi ×G) ◦ ((idUi , ri)×G) : Ui ×G // P |Ui ,

which is still a trivialization. Then (ψ̃i)0 = ϕ̃i, and the universal property of the pullback

now shows that ψ̃i, restricted to Ui ×GR, gives a trivialization of PR|Ui .

4 Tangent bundles and frame bundles of mixed supermanifolds

Suppose M is a mixed supermanifold locally modelled on the mixed super vector space

(V, VR, VC). The sheaf TM is locally free on V and glueing leads to the mixed total space

TM →M. If i : M0 →M is the canonical inclusion, then

i∗TM = TM0̄ ⊕ TM1̄

for certain complex bundles (TM)j̄ →M0 (in the category of mixed manifolds). Actually,

we have (TM)0̄ = TM0.

Define V T = T ×A(V )→ T to be the trivial vector bundle over T with fibre A(V ). There

is a vector bundle of homomorphisms Hom(VM , TM)→M and the T -points of the total
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space are given by squares of vector bundles

V T
ϕ′ //

��

TM

��
T

f //M.

(2.18)

Equivalently, a T -point consists of a tuple (f, ϕ) consisting of a map f : T →M and a map

ϕ : V T → f∗(TM) of vector bundles over T.

The frame bundle of M is the open subsupermanifold of Hom(VM , TM) characterized by

L(M)(T ) = {(f, ϕ) ∈ Hom(VM , TM)(T ) | ϕ isomorphism}.

In terms of squares: (f, ϕ) ∈ L(M)(T ) if and only if the associated square (2.18) is a

pullback. This is a principal GL(V )-bundle over M.

We have L(M)0 = L(TM0̄) ×M L(TM1̄), and thus the mixed structure of M yields

subbundles

Lµ(M)0,R // Lµ(M)0
// L(M)0,

where Lµ(M)0 (resp. Lµ(M)0,R) is the subbundle of those frames which map VC to TMC

(resp. (VR, VR) to (TMR, TMC)). By pulling back, we obtain the bundles

Lµ(M)(R)
//

��

r∗Lµ(M)0,(R)

��
L(M) // r∗L(M)0.

The structure group of Lµ(M)(R) is precisely GLµ(V )(R), and this functor of frames is

representable precisely for supermanifolds and complex supermanifolds, that is, in terms of

local models VC ∈ {V1̄, V }.

All these principal bundles have associated bundles that fit in a square

TMR //

��

r∗T (M0)R

��
TM // r∗T (M0),

which is a pullback in view of the pullback square defining TM,R in terms of TM , TM0 and

TM0,R.

98



3 Geometric structures on mixed supermanifolds

We can now define the notion of a geometric structure on a mixed supermanifold. Let G 6
GL(V ) be a closed mixed Lie subgroup, i.e., Gsm0 6 GL(V )sm0 is closed and G0 6 GL(V )0

is a mixed embedding.

1 Basic definitions

Definition 3.1. A G-structure on M is a reduction P of Lµ(M)R to G. Equivalently, it is

a reduction P of L(M) such that P0 → L(M)0 factors through Lµ(M)0,R.

Any G-structure P comes with a canonical 1-form ϑ : TP → V P . It sends a pair (f,X) ∈
TP (T ), considered as the data of a map f = (π ◦ f, ϕ) : T → P and a section X of f∗(TP ),

to the composite

T
X // f∗(TP )

f∗(dπ)// (π ◦ f)∗(TM)
ϕ−1
// V T

f×idV // V P .

The differential of the canonical 1-form ϑ : TP → V P is a 2-form dϑ : Λ2TP → V P .

Lemma 3.2. Let V : P × g → TP be the restriction of the differential of the action

P ×G→ P. For all A : S → g
P

and x : S → TP with same underlying map S → P we have

dϑ ◦ (V(A) ∧ x) = −A(ϑ(x)) : S // V P .

Proof. This is Proposition 4 in [9].

2 Prolongation

2.1 Unrestricted prolongation

Adapting the classical construction [12], we will in this subsection associate with a G-

structure P on M a tower of prolongations

· · · // P (k) // P (k−1) // · · · // P (1) // P (0) = P //M,

where P (i+1) → P (i) is a reduction of L(P (i)) to G(i+1). Here G(0) = G and G(i) is a vector

group for all i ≥ 1.

Remark 3.3. Given a super vector space, the associated supergroup structure on A(V )

will be denoted by V. More generally, if a Lie supergroup G acts linearly on a complex super

vector space V , then the associated semi-direct product will be denoted by Gn V instead

of GnA(V ).
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It will be convenient to introduce a name for the representation ofG on V : α : G→ GL(V ).

Applying J1
V (−) to G → P → M yields a principal J1

VG-bundle J1
VG → J1

V P → J1
VM

and the usual identification TG ∼= G nad g gives an isomorphism of groups J1
V (G) ∼=

Gnad Hom(V, g), where G acts via its adjoint representation on g. The bundle of horizontal

frames is defined by the pullback

H //

dπ∗
��

J1
V P

��
P // J1

VM.

Its S-points are the squares

V S
h //

��

TP

��
S

f // P

such that the composite square

V S
//

��

TP

��

// TM

��
S // P //M

lies in P (S). Moreover, H is the total space of a principal G nad Hom(V, g)-bundle with

respect to the map dπ∗. We need to construct an action of Gnα Hom(V, g). The group G

acts via α on J1
V (P ) by precomposition. Together with the action of Hom(V, g) 6 J1

V (G),

this yields an action of Gnα Hom(V, g) on J1
V (P ), which restricts to an action on H. The

composition ιP : H→ J1
V P → P is equivariant if we let Gnα Hom(V, g) act trivially on P.

Moreover, dπ∗ is equivariant with respect to this action if we let Gnα Hom(V, g) act on P

via the projection to G.

The canonical vertical distribution V : g
P
→ TP gives rise to a map J1

V P → J1
V⊕gP

and the composition H→ J1
V⊕gP factors through L(P ). Moreover, the GL(V ⊕ g)-action

on L(P ) is seen to restrict to the action of Gnα Hom(V, g) 6 GL(V ⊕ g). This identifies

ιP : H→ P as a reduction of L(P ) to Gnα Hom(V, g).

As usual, g(1) is defined to be the kernel of the super-antisymmetrizer

∂ : Hom(V, g) // Hom(Λ2V, V ), (∂S)(v, w) = 1
2(S(v)(w)− (−1)|v||w|S(w)(v)),

and the first prolongation P (1) → P is obtained from H→ P by two successive reductions

of the structure group to g(1) using the following lemma.
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Lemma 3.4. Consider a short exact sequence of mixed Lie supergroups

1 // H // G // K // 1.

Let π : P → B be a G-principal bundle and assume that there is a G-equivariant map

f : P → K. Then P/H → B is a principal K-bundle and as such isomorphic to the trivial

bundle. Moreover, the map (π, f) : P → B ×K is a principal H-bundle.

Proof. Since any map of principal bundles is an isomorphism, it suffices to construct a

K-equivariant map P/H → B ×K over B. But such a map can be constructed from the

G-equivariant map (π, f) : P → B ×K since H acts trivially on the target.

The first step is a reduction to Hom(V, g) 6 G nα Hom(V, g). We have two maps dπ∗,

ιP : H→ P over the same map to the base M. Fibrewise comparison yields a map d : H→ G.

It follows now from the equivariance properties of dπ∗ and ιP that d is G nα Hom(V, g)-

equivariant if we let this group act from the right on G by g · (g′, ϕ) = (g′)−1g. Now we can

apply Lemma 3.4 and see that (ιP , d) : H→ P ×G is a principal Hom(V, g)-bundle. Pulling

back along the inclusion P ×{1} ↪→ P ×G yields the bundle of compatible horizontal frames

CH→ P , a reduction of L(P ) to the group Hom(V, g). Its S-points consist of those squares

(f, h) such that T (π) ◦ h = f ∈ P (S).

The second reduction is a little bit more elaborate. For a section v : T → V T and a map

f : T → P , we will use the shorthand vf := (f × A(V )) ◦ v : T → V P .

Lemma 3.5. For all compatible horizontal frames (f, h) ∈ CH(T ) and all sections x : T →
V T , we have ϑ(h(x)) = xf :

T
x //

xf
((

V T
h // TP

ϑ
��

V P .

Proof. This follows immediately from the definition.

Consider (f, h) ∈ CH(S). The torsion is defined to be the composition

c(f, h) : Λ2V S
Λ2h // Λ2TP

dϑ // V P .

Equivalently, it is given by a map

c′(f, h) : S // Hom(Λ2V, V ).

By naturality, we obtain a map c : CH → Hom(Λ2V, V ). Now consider two distinguished

squares over f with horizontal parts h and h′. As CH→ P is a principal Hom(V, g)-bundle

there is a unique map S(f,h′),(f,h) : V S → g
P

over f such that h′ = h+ V ◦ S(f,h′),(f,h). By
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adjointness this can be viewed as a map S′(f,h′),(f,h) : S → Hom(V, g). Then, by Lemmas 3.2

and 3.5, we have that for any two sections v, w : S → V S

c(f, h′)(v ∧ w)− c(f, h)(v ∧ w) = dϑ ◦ h′(v) ∧ h′(w)− dϑ ◦ h(v) ∧ h(w)

= dϑ ◦ (h′(v)− h(v)) ∧ h′(w) + dϑ ◦ h(v) ∧ (h′(w)− h(w))

= dϑ ◦ (V ◦ S(f,h′),(f,h)(v)) ∧ h′(w) + dϑ ◦ h(v) ∧ (V ◦ S(f,h′),(f,h)(w))

= −S(f,h′),(f,h)(v)(ϑ(h′(w)))− dϑ ◦ (V ◦ S(f,h′),(f,h)(w)) ∧ h(v)

= −S(f,h′),(f,h)(v)(ϑ(h′(w))) + S(f,h′),(f,h)(w)(ϑ(h(v)))

= −S(f,h′),(f,h)(v)(wf ) + S(f,h′),(f,h)(w)(vf ).

In other words,

c′(f, h′)− c′(f, h) = −2∂S′(f,h),(f,h′)

and if we let Hom(V, g) act on Hom(Λ2V, V ) via (−2)∂, then c : CH → Hom(Λ2V, V ) is

Hom(V, g)-equivariant. Now, we have the exact sequence

0 // g(1) // Hom(V, g)
∂ // Hom(Λ2V, V ) // H0,2(V, g) // 0.

(Here, H0,2(V, g) denotes the (0, 2)th Spencer cohomology [13].) Consequently, any splitting

s of im(∂)→ Hom(Λ2V, V ) gives rise to an equivariant map CH→ im(∂) and Lemma 3.4

applied to the short exact sequence

0 // g(1) // Hom(V, g)
∂ // im(∂) // 0

shows that CH → P × im(∂) is a principal g(1)-bundle. Finally, by pulling back along

P×{0} → P×im(∂) one obtains the first prolongation P (1) → P , a reduction of L(P ) to g(1)

which consists of those compatible horizontal frames with torsion contained in C := ker(s).

The higher prolongations are now defined inductively: P (i+1) := (P (i))(1). Setting g(−1) :=

V and g(0) := g, we arrive at the following inductive description of g(k) for k ≥ 1:

g(k) = {X ∈ Hom(g(−1), g(k−1)) | X(v)(w) = (−1)|v||w|X(w)(v) for all homog. v, w}.

By inspection, we have

(g(1))0̄ ⊆ (Hom(V, g)0̄)µ ⊆ Hom(V, g)0̄,

i.e., any f ∈ (g(1))0̄ satisfies f(VC) ⊆ gC. This implies that P (k) ⊆ Lµ(P (k−1)).

102



2.2 The real prolongation

The prolongations P (k+1) → P (k) defined so far only provide reductions of Lµ(P (k−1)). To

prove representability for the functor of automorphisms of a G-structure of finite type, we

need to single out the real prolongation which provides a reduction of Lµ(P (k−1))R. For this

to be possible, we need to impose a condition on the G-structure.

To that end, consider the subspaces

(Hom(V, g)0̄)µR ⊆ (Hom(V, g)0̄)µ ⊆ Hom(V, g)0̄

consisting of even linear maps f satisfying f(VC) ⊆ gC or f(VR, VC) ⊆ (gR, gC), respectively.

Recall the bundle of compatible horizontal frames with the map CH → P × im(∂).

One readily constructs (CH0)µR ⊆ (CH0)µ ⊆ CH0 with structure groups (Hom(V, g)0̄)µ(R).

Pullback along the inclusion P0 × {0} → P0 × im(∂)0̄ yields (P
(1)
0 )µR ⊆ (P

(1)
0 )µ ⊆ P (1)

0 with

structure groups given by the pullback

(g(1))0̄,R //

��

(Hom(V, g)0̄)µ(R)

��
(g(1))0̄

// Hom(V, g)0̄,

where once again, it is understood that the quantities in parentheses are only present for

the case of (P
(1)
0 )µR. Inductively, we obtain (P

(k)
0 )µR ⊆ (P

(k)
0 )µ ⊆ P (k)

0 with structure groups

given by the pullback

(g(k))0̄,R

��

// (Hom(V, g(k−1))0̄)µ(R)

��
(g(k))0̄

// Hom(V, g(k−1))0̄.

Definition 3.6. A G-structure is called admissible if, for all k ≥ 0, (g(k))0̄,R defines a mixed

structure on (g(k))0̄.

Assume now that the G-structure is admissible. Since (g(1))0̄ ⊆ (Hom(V, g)0̄)µ, we

have that (P
(1)
0 )µ = P

(1)
0 and the structure group of (P

(1)
0 )µR = P

(1)
0,R is by definition

(g(1))0̄,R. Pulling back r∗P (1)
0,R → r∗P (1)

0 along P (1) → r∗P (1)
0 gives the functor P

(1)
R , which

is representable in view of Lemma 2.17 and the assumption on the G-structure. All in all,

this yields the real prolongation:

· · · // P
(k)
R

// P
(k−1)
R

// · · · // P
(1)
R

// P
(0)
R = P //M.

The structure group of the kth real prolongation will be denoted by G
(k)
R .
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4 Automorphisms of G-structures

The main object of study in this paper is the functor of automorphisms of a G-structure,

which we presently define.

1 The functor of automorphisms of a G-structure

Let M be a mixed supermanifold. An automorphism f : S ×M → S ×M over S is called

an S-family of automorphisms of M. Such morphisms assemble to a functor Diff(M) given

by

Diff(M)(S) = {f : S ×M → S ×M | f an S-family of automorphisms of M}.

Moreover, for any Lie supergroup G and any principal G-bundle P → M , we let

Diff(P )G ⊆ Diff(P ) be the subfunctor of equivariant automorphisms, i.e.

Diff(P )G(S) = {f ∈ Diff(P )(S) | f is G-equivariant}.

Note that if P is a G-structure, then inducing up from G to GL(V ) gives a map

Diff(P )G → Diff(L(M))GL(V ) and, moreover, the differential induces an inclusion of functors

L(−) : Diff(M)→ Diff(L(M))GL(V ).

Definition 4.1. The functor of automorphisms of a G-structure P on M is defined to be

the pullback

Aut(P ) //

��

Diff(M)

��
Diff(P )G // Diff(L(M))GL(V ).

An S-point of Aut(P ) is called an S-family of automorphisms of P .

Definition 4.2. A homogeneous vector field OM → (pS0)∗OS×M along pS : S ×M → M

is called an S-family of infinitesimal automorphisms of P if the induced vector field

OL(M) → (pS0)∗OS×L(M) extends to OP → (pS0)∗OS×P . For S = ∗ this yields the Lie

superalgebra aut(P ) ⊆ Γ(TM ) of infinitesimal automorphisms of P. The even part has a real

subalgebra defined by aut(P )0̄,R := aut(P )0̄ ∩ Γ(TM,R).

Remark 4.3. There is no reason for aut(P )0̄,R to be a mixed real form or even a real form

of aut(P )0̄. For instance, on a purely odd supermanifold all vector fields are real. The latter

would be a necessary condition for the automorphism group to be representable by a Lie

supergroup. For this reason automorphism groups of G-structures are generically mixed

supermanifolds.

104



In analogy with Lemma 2.16, one sees that any ϕ ∈ Diff(M)(A(C0|n)× T ), where T is a

mixed supermanifold, can be uniquely written as

ϕ] =
1∏

k=n

(
1 +

∑

k∈I⊆{1,...,k}
ηIXI

)
· ϕ]0

where XI are vector fields along pT of degree |I| and ϕ0 ∈ Diff(M)(T ).

Lemma 4.4. Consider ϕ ∈ Diff(M)(A(C0|n)× T ). Then ϕ ∈ Aut(P )(A(C0|n)× T ) if and

only if ϕ0 ∈ Aut(P )(T ) and all XI are T -families of infinitesimal automorphisms of P.

Proof. The condition is clearly sufficient. So, assume that ϕ is an A(C0|n) × T -family of

automorphisms of P. Then ϕ0 is a T-family of such automorphisms since it is obtained by

restricting along the inclusion T → A(C0|n)× T. Now one proceeds by induction on n to

show that all XI are infinitesimal automorphisms of P.

2 The automorphisms of a {1}-structure

We now come to the issue of representability of Aut(P ). Before proceeding to higher order

G-structures we need to treat the simplest case G = {1}. We assume that M has finitely

many connected components. A G-structure is simply a parallelization Φ: VRM → TMR.

Such a Φ induces an even real vector field on M × A(VR) :

Z : M × A(VR) // TMR × A(VR) // T (M × A(VR))R

and Aut(Φ)(S) consists of those automorphisms making the diagram

S ×M × A(VR)
S×Φ //

f×VR
��

S × TMR

df

��
S ×M × A(VR)

S×Φ // S × TMR

commutative.

We first show that i∗Aut(Φ) is representable. To that end, we endow Aut(Φ)0 :=

Aut(Φ)(∗) with the structure of a Lie group acting on M.

Recall that there is a forgetful functor sending a mixed manifold to its underlying smooth

manifold. (We prove in Proposition 7.1 below that such a functor does not exist for mixed

supermanifolds.) Consider the underlying parallelization Φ0 : M0 × A((VR)0̄) → T (M0)R

and its underlying smooth morphism Φsm
0 : M sm

0 × (VR)0̄ → TM sm
0 . In order to define a

topology on Aut(Φ)0, we need the following fact.

Lemma 4.5. The forgetful map Aut(Φ)0 → Aut(Φ0), s 7→ s0, is injective.
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Proof. Deferred to Section 4.

Moreover, we have that Aut(Φ0) ⊆ Aut(Φsm
0 ) are precisely the elements which preserve

the mixed structure on M sm
0 .

By a result of Kobayashi [12], any choice of representatives xi ∈ M0 (i ∈ {1, . . . l}) of

π0(M0) gives rise to a closed injection

Aut(Φsm
0 ) //

∏l
i=1M

sm
0 , s 7→ (s(xi))

and with this topology, Aut(Φsm
0 ) is a Lie group such that the evaluation map asm0 : Aut(Φsm

0 )×
M sm

0 → M sm
0 is smooth [3, Thm. 1.7]. This topology is the coarsest such that for all

f ∈ Γ(OMsm
0

), the map Aut(Φsm
0 )→ Γ(OMsm

0
), s 7→ s](f), is continuous, where Γ(OMsm

0
) is

considered as a Fréchet space with respect to the family of seminorms |f |K,∂ = supK |∂f |,
K ⊆ M0 compact, ∂ differential operator. In this topology, sn → s if and only if

s]n(f)→ s](f) in Γ(OMsm
0

) for all f ∈ Γ(OMsm
0

).

Being mixed is a closed condition (locally equations of the form ∂zs
](f) = 0 for all f ∈ OM ),

hence Aut(Φ0) ⊆ Aut(Φsm
0 ) is closed. Then we get a Lie group Aut(Φ)sm0 ⊆ Aut(Φ0), in

view of the following lemma.

Lemma 4.6. The subspace Aut(Φ)0 ⊆ Aut(Φ0) is closed. The topology on Aut(Φ)0 is such

that sn → s implies that for all pairs of coordinate charts U , V such that sn(U) ⊆ V for all

n large enough, all the coefficients in the Taylor expansion of s]n(f), f ∈ Γ(OM |V ), with

respect to the odd coordinates, converge in OMsm
0

(U0).

Proof. Deferred to Section 4.

In particular, we have an action a′0 : Aut(Φ)sm0 ×M0 →M0 and this is a mixed map since

it is so pointwise.

Lemma 4.7. The map a′0 extends to the action

a′] : OM // OAut(Φ)sm0 ×M , f 7→ (s 7→ s](f)).

Proof. Deferred to Section 4.

As explained in Section 7, even real vector fields have unique maximal flows. Using

this, the action above and the description of the topology on Aut(Φ)sm0 , one obtains an

isomorphism

LieR(Aut(Φ)sm0 ) ∼= aut(Φ)c0̄,R := {X ∈ Γ(TM,R)0̄ | [X,Z] = 0, X is complete} ⊆ aut(Φ).
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Then C-linearization yields a Lie algebra morphism

C⊗ aut(Φ)c
0̄,R

// Γ(TM )0̄

and the kernel is of the form

aut(Φ)c0̄,C := {1⊗ iv − i⊗ v | v ∈ aut(Φ)c0̄,C}

for a complex invariant ideal aut(Φ)c
0̄,C ⊆ aut(Φ)c

0̄,R. This yields the mixed structure Aut(Φ)0

on Aut(Φ)sm0 and, on general grounds, the quotient

(C⊗ aut(Φ)c0̄,R)/aut(Φ)c0̄,C =: aut(Φ)c,d
0̄
⊆ aut(Φ)0̄

is the Lie algebra of left-invariant derivations of OAut(Φ)0
. It is the algebra of complete

decomposable infinitesimal automorphisms in the sense that any of its elements can be

written as the sum v + iw of complete real vector fields v and w. Moreover, with this

structure a : Aut(Φ)0 ×M →M is a mixed morphism, by Lemma 2.15.

Finite-dimensionality of the full algebra of infinitesimal automorphisms is ensured by the

following lemma.

Lemma 4.8. Assume that M0 is connected. For every p ∈M0, evaluation aut(Φ)→ TpM ,

X 7→ X(p), is injective. If M0 is not connected, the analogous statement holds true if one

chooses one point for each connected component.

Proof. Deferred to Section 4.

Moreover, the conjugation action of Aut(Φ)0 on Γ(TM ) restricts to an action on aut(Φ) and

the differential of this representation is simply the restriction of the adjoint representation

aut(Φ)c,d
0̄
× aut(Φ) // aut(Φ).

The following result shows that Aut(Φ)0 has the correct topology and mixed structure.

Proposition 4.9. The functors i∗Aut(Φ) and Mµ(−,Aut(Φ)0) are naturally isomorphic.

Proof. Given a map T0 → Aut(Φ)0, the action of the group yields a map T0×M → T0×M.

Conversely, take an element f : T0 ×M → T0 ×M in Aut(Φ)(T0). The obvious candidate

f̃ : T0 → Aut(Φ)0 is a smooth mixed map, since the composition

T0
// Aut(Φ)0

//M0

with evaluation at some m ∈M0 equals f0(−,m0), which is smooth and mixed.
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3 The automorphisms of a G-structure of finite type

Definition 4.10. An admissible G-structure is of finite type if there exists a k ≥ 0 such

that G
(k+l)
R = {1} for all l ≥ 0.

The main theorem is as follows:

Theorem 4.11. Suppose M has finitely many connected components and P → M is an

admissible G-structure of finite type. Then i∗Aut(P ) is representable and its (real) Lie

algebra consists of the complete real infinitesimal automorphisms of P , denoted by aut(P )c
0̄,R.

Moreover, aut(P ) is finite-dimensional and the functor Aut(P ) is representable if and only

if aut(P )c,d
0̄

= aut(P )0̄.

Proof. By applying the universal property of the pullback in the construction of P
(1)
R , we

see that there is a natural inclusion of group-valued functors Aut(P )→ Aut(P
(1)
R ). More

generally, we have an embedding Aut(P )→ Aut(P
(k)
R ) for any k ≥ 0. We choose k ≥ 0 such

that G
(k+l)
R = {1} for all l ≥ 0. Then aut(P ) is finite-dimensional in view of Lemma 4.8. Let

Φ be the given parallelization of the real tangent bundle of P
(k−1)
R .

We show that the inclusion

Aut(P )(∗) ⊆ Aut(Φ)(∗) = Aut(Φ)sm0

is closed. Recall that the topology on Aut(Φ)sm0 ⊆ (P
(k−1)
R )sm0 is such that sn → s implies

that locally all s]n(f), f ∈ Γ(O
P

(k−1)
R
|V ), converge in the closed subspace

O
P

(k−1)
R

(U0) ∼=
2d⊕

i=1

O
(P

(k−1)
R )0

(U0) ⊆
2d⊕

i=1

O
(P

(k−1)
R )sm0

(U0),

where d denotes the odd dimension of P
(k−1)
R .

Now assume sn ∈ Aut(P )(∗) and s
(k)
n → s̃. From the construction of the prolongation, it

is clear that one obtains a diffeomorphism s : M →M with kth prolongation s(k) equal to

s̃. From equivariance it now follows that s is actually in Aut(P )(∗).
Next, assume that the action Aut(P

(i+1)
R )sm0 × P (i)

R → P
(i)
R is smooth. Restricted to

Aut(P
(i)
R )sm0 , it is pointwise equivariant, hence it is itself equivariant and thus descends to

an action on P
(i−1)
R . This action gives the identification of the Lie algebra of Aut(P )sm0

with aut(P )c
0̄,R, and the mixed structure is now defined as in the case of Aut(Φ)0. Then

the action just defined refines to an action Aut(P )0 ×M →M by Lemma 2.15 and, using

this, as in the similar situation of the automorphisms of a parallelization, one deduces that

i∗Aut(P ) ∼= Aut(P )0.

Clearly, if Aut(P ) is representable, then aut(P ) can only consist of complete and decom-
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posable vector fields. Conversely, if aut(P )c,d
0̄

= aut(P )0̄, then

Aut(P ) = (aut(P ),Aut(P )0)

forms a mixed super pair. The action defines a map SMµ(−,Aut(P ))→ Diff(M), and in

view of Lemma 2.16, it factors locally through an isomorphism to Aut(P ). Hence, it factors

globally as an isomorphism SMµ(−,Aut(P )) ∼= Aut(P ).

4 Proofs of Lemmas 4.5, 4.6, 4.7, and 4.8

Proof of Lemma 4.5. Let s ∈ Aut(Φ)0 be such that s0 = id. In order to see that this

implies s = id, we consider, for k ≥ 1, the restriction of s to the (k − 1)th infinitesimal

neighbourhood

(s(k−1))] : OM/J
k // (s0)∗OM/Jk.

We have (s(0))] = s]0 = id.

Now, we choose a homogeneous basis {v1, . . . , vn, vn+1, . . . , vn+m} of VR and local coordi-

nates {q1, . . . , qn, qn+1, . . . , qn+m} on an open subset U0 containing m ∈M0. Here, the first

n (resp. last m) entries are assumed to be even (resp. odd). In the given basis

Zvk =
∑

l

Akl∂ql

for some even invertible matrix A = (Akl) ∈ GLOM
(OM (U0)n|m). The requirement for f to

lie in Aut(Φ)0 reads

Jf = A−1 ◦ f ](A)

where Jf = (∂qif
](qj)) and we denote the natural extension of f ] to matrices by the same

symbol.

So assume (f (k−1))] = id. We have

Jf + Jk(U0)(n|m)×(n|m) = A−1 ◦ f ](A) + Jk(U0)(n|m)×(n|m)

= A−1 ◦ (f (k−1))](A) + Jk(U0)(n|m)×(n|m)

= idn|m + Jk(U0)(n|m)×(n|m),

and this implies (f (k))] = id.

Proof of Lemma 4.6. Let {sn} be a sequence in Aut(Φ)0 such that {(sn)0} converges to

some s̃. We have to show that s̃ = s0 for some suitable s ∈ Aut(Φ)0 and that sn converges

to s. Without loss of generality all (sn)0 lie in one coordinate chart (in Aut(Φ0)) and since

asm0 is smooth we may choose open subspaces U and V with coordinates {pi} and {qi}
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respectively such that every sn restricts to a map U → V. Let us organise the coordinates

into even and odd functions {pi} = {xi, ηj}, {qi} = {yi, ξj}.
In these coordinate charts the condition for sn to lie in Aut(Φ)0 reads

J(sn) = A · s]n(B)

for certain invertible matrices A and B where J(sn) = (∂pis
]
n(qi)). Starting from s(0)] :=

s̃], we inductively define (s(k))] : OM/J
k+1(V0) → OM/J

k+1(U0) with reductions s̃. The

construction will be such that the following holds: We have (s
(k)
n )](f) → (s(k))](f) for

all f ∈ (OM/J
k+1)(V0). Here, (OM/J

k+1)(U0) is considered as a subspace of
⊕

OMsm
0

(U0),

where the number of summands is 2m.

The respective lifts will be determined by the Jacobian J(s(k)) which naturally has values

in matrices of the form (
OM/J

k+1 OM/J
k

OM/J
k+1 OM/J

k

)
.

There is a projection from OM/J
k+1-valued matrices to such matrices. The image of a

matrix A will be denoted by A∼.

Assume that k is even and (s(k))] has been constructed such that

J(s(k)) = (A(k)(s(k))]B(k))∼.

First, we have to set (s(k+1))](qi) = (s(k))](qi) for qi even. The odd-odd sector of the

Jacobian determines (s(k+1))](qi) for qi odd: In fact, it follows that

∂ηi(s
(k+1))](ξj)

!
= (A(k+1)(s(k+1))]B(k+1))∼ij

= (A(k)(s(k))]B(k))ij

= lim
n

(A(k)(s(k)
n )]B(k))ij

= lim
n
∂ηi(s

(k+1)
n )](ξj).

These derivatives fit together to give a well-defined (s(k+1))](ξj) since the different partial

derivatives fit together; that is, for any multiindex I, |I| = k + 1, with ηi, ηi′ ∈ I, we have

∂I−{ηi}∂ηi((s
(k+1))](ξj)) = εi,i′∂I−{ηi′}∂ηi′ ((s

(k+1))](ξj))

since this equality holds for all sn. With this definition we have (s(k+1))] = limn(s
(k+1)
n )],

which ensures J(s(k+1)) = (A(k+1)(s(k+1))]B(k+1))∼ by continuity.

If k is odd and (s(k))] has been constructed in such a way that

J(s(k)) = (A(k) · (s(k))]B(k))∼,
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then one can proceed similarly. There are no changes in the pullbacks of odd coordinates

and the pullbacks of the even coordinates are forced by the respective equation for the

odd-even sector of the Jacobian. Again, (s(k))] = lim(s
(k)
n )]. This yields the construction of

s|U : OV → (s0)∗OU . By uniqueness (Lemma 4.5), these s|U coincide where two coordinates

patches overlap, and so we obtain the desired s : M →M.

The statement concerning the topology is clear from the above considerations.

Proof of Lemma 4.7. Similary as in the preceding lemma, starting from ((a′)(0))] := (a′0)],

we inductively construct ((a′)(k))] : OM/J
k+1 → (a′0)∗OAut(Φ)sm0 ×M/J

k+1. First we choose

some neighbourhoods W ⊆ Aut(Φ)sm0 and U , V ⊆M given by coordinates {pi} = {xi, ηj}
and {qi} = {yi, ξj} such that a′0 restricts to

W × U0
// V0.

Then, if A and B are as in the proof above, the map (a′)] to be constructed will be

characterized by

J res(a′) = A(a′)](B).

where J res(a′) denotes the submatrix (∂pi(a
′)](qj)) of the Jacobian. So, assume ((a′)(k))] is

constructed such that

J((a′)(k)) = (A(k)((a′)(k))]B(k))∼.

Suppose first that k is even. Looking at the odd-odd sector of the Jacobian gives

∂ηi((a
′)(k+1))](ξj) = (A(k)((a′)(k))]B(k))ij .

These fit together since they do so pointwise, i.e. after specializing to any element s ∈
Aut(Φ)sm0 . Moreover, the identity for the Jacobian holds true, since it holds true pointwise.

Proof of Lemma 4.8. We follow [3, Lem. 2.4]. If X ∈ aut(Φ), then XVR := X ⊗ idVR is a

vector field on M × A(VR) which commutes with Z (as is seen in local coordinates).

Let ΘZ be the maximal flow of the even real vector field Z (see Theorem 7.8), defined

on V ⊆ R×M × A(VR), and consider the composite ΘZ ′ = pr1 ◦ΘZ : V → M. Note that

{1} ×M × {0} ⊆ V, so ΘZ ′(1,−) is defined on an open neighbourhood of M × {0}.
We have the following: For all p ∈M0 there exists an open neighbourhood p ∈ U0 ⊆M0

and an open subspace V ′ ⊆ A(VR) such that for all q ∈ U0 the map ΘZ ′(1, q,−) : V ′ →M

is a diffeomorphism onto an open subspace.

Indeed, the map (pr1,Θ
Z ′(1,−)) is defined on an open neighbourhood of M × {0} and
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its differential at (p, 0) is of the form

(
1 0

∗ Z

)
,

which is invertible.

Now, assume inj]p ◦X = X(p) = 0. Choose open subspaces U ⊆M and V ′ ⊆ A(VR) such

that p ∈ U0 and 0 ∈ V ′ such that ϕ := ΘZ(1, p,−) : V ′ → U is an isomorphism. Then

ϕ] ◦X = inj]p ◦ΘZ(1,−,−)] ◦ pr]1 ◦X
= inj]p ◦ΘZ(1,−,−)] ◦XV ◦ pr]1

= inj]p ◦XV ◦ΘZ(1,−,−)] ◦ pr]1

= 0,

where we have used Proposition 7.10 in the third line. Since ϕ] is invertible, it follows that

X = 0 on U.

This shows that the non-empty closed set {p ∈M0|X(p) = 0} is contained in the open

subset {p ∈M0|Xp = 0}. The converse inclusion holds always, so that both subsets agree

and are open and closed, hence they are all of M0 if M0 is connected. More generally, the

argument shows that X(p) = 0 implies X = 0 on the connected component containing

p.

5 G-structures of finite type on real supermanifolds

Results analogous to those obtained in the mixed case hold for real supermanifolds. Their

proofs are simplifications of our previous arguments, so we only briefly comment on them

to provide precise statements for future reference.

A real super vector space is Z/2-graded real vector space V = V0̄ ⊕ V1̄. The model spaces

for real supermanifolds are the affine spaces A(V ) = (V0̄, C
∞
V0̄

(−)⊗∧V ∗
1̄

).

Definition 5.1. A real supermanifold is a locally ringed superspace M = (M0,OM ) over R
with a second countable Hausdorff base that is locally isomorphic to A(V ) for some real

super vector space V. The full subcategory of locally ringed superspaces over R with objects

real supermanifolds is denoted by SMR.

Similarly as in the case of supermanifolds, a real supermanifold has a frame bundle L(M),

which is a principal GL(V )-bundle. In the real category, GL(V ) is a real Lie supergroup and

so L(M) is an object in the category of real manifolds. Furthermore, given a G-structure,

i.e. a closed subgroup G 6 GL(V ) and a reduction P of L(M) to G, one can define the

prolongation without leaving the real category.
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One has a functor i : M→ SMR and similarly as in the case of mixed supermanifolds, one

obtains the following result.

Theorem 5.2. Suppose P → M is a G-structure of finite type and M has finitely many

connected components. Then i∗Aut(P ) is representable and its Lie algebra consists of

the complete infinitesimal automorphisms of P , denoted by aut(P )c
0̄
. Moreover, aut(P ) is

finite-dimensional. The functor Aut(P ) is representable if and only if aut(P )c
0̄

= aut(P )0̄.

6 Examples of G-structures of finite type

1 Riemannian structures on supermanifolds

In this section, we treat Riemannian structures on a supermanifold M locally modelled on

the super vector space (V, VR, VC).

1.1 Even Riemannian structures

Consider an even non-degenerate supersymmetric bilinear form J : V ⊗ V → C1|0 with

components Ji : Vī ⊗ Vī → C (i ∈ {0, 1}). There is a Lie supergroup OSp(V, J) which

represents automorphisms of the trivial vector bundle endowed with J :

OSp(V, J)(S) = {f ∈ GL(V )(S) | (S × J) ◦ (f ⊗ f) = (S × J)}.

Proposition 6.1.

(a) Reductions of L(M) to OSp(V, J) are in bijective correspondence with even non-

degenerate supersymmetric maps of vector bundles TM ⊗ TM → C1|0
M .

(b) OSp(V, J) 6 GL(V ) is of finite type, more precisely osp(V, J)(1) = 0.

Proof. Suppose given an OSp(V, J)-structure on P. A local trivialization P |U ∼= U ×
OSp(V, J) induces a trivialization TM |U ∼= V U . In virtue of this isomorphism we use the

constant metric on V U given by J to define the form on TM |U . This definition is independent

of the choice of local trivialization and thus gives the required tensor. Conversely, if g is

any metric then locally (TM |U , g|U ) is isomorphic to (V U , J) (cf. [8, Sect. 2.8]). We then

use the constant OSp(V, J)-structure on the latter to get an OSp(V, J)-structure on U and

these fit together to give an OSp(V, J)-structure on M.

In order to show the second part, we observe that osp(V, J) consists of those endomor-

phismsA : V → V, whose homogeneous componentsAi satisfy J(Aiv, w) = −(−1)|Ai||v|J(v,Aiw).

Using a homogeneous basis {vi}, the conditions for T to lie in osp(V, J)(1) read T ijk =

(−1)|vi||vj |T jik and T ijk = −(−1)|vj ||vk|T ikj , where we set T ijk = J(T (vi)vj , vk). Both together

imply T ijk = 0.

113



The underlying complex group of OSp(V, J) is the product of the complex groups

O(V0̄, J0)×Sp(V1̄, J1). Assume that J0 restricts to a non-degenerate bilinear form J0,R : (V0̄)R⊗
(V0̄)R → R. Such a J gives rise to the mixed real form OSp(V, J)R → OSp(V, J) with un-

derlying group O((V0̄)R, J0,R)× Sp(V1̄, J1). Moreover, OSp(V, J)R 6 GL(V )R.

Lemma 6.2. The OSp(V, J)R-structures on M are in bijective correspondence with even

non-degenerate supersymmetric maps of vector bundles TM⊗TM → C1|0
M whose restriction

to (TM)0̄ ⊗ (TM)0̄ ⊆ i∗(TM ⊗ TM) induce a metric T (M0)R ⊗ T (M0)R → R1
M0

of the

same signature as J0,R on the underlying real manifold M0.

Proof. This follows readily from the definition of OSp(V, J)R.

From Theorem 4.11, we obtain the following result.

Theorem 6.3. Let P → M be a OSp(V, J)R-structure on a supermanifold with finitely

many path components. If M0 is complete and every Killing vector field is decomposable,

then the isometry group functor Aut(P ) is representable.

Remark 6.4. In the real category the only obstruction for representability is completeness

of the Killing vector fields. In this setting, an isometry group was constructed by Goertsches

[11]. (The completeness condition seems to be assumed implicitly.) Our results in the real

case give a rederivation of this result.

Example 6.5. The isometry group of V with the OSp(V, J)R-structure as above is

OSp(V, J)R n VR.

1.2 Odd Riemannian structures

In the super setting, there is an odd analogue of a Riemannian structure, given by an odd

non-degenerate supersymmetric bilinear form J : V ⊗V → C1|0. The Lie supergroup P (V, J)

is defined by the functor

P (V, J)(S) = {f ∈ GL(V )(S) | (S × J) ◦ (f ⊗ f) = (S × J)}.

As with the even case, one can show the following.

Proposition 6.6.

(a) The P (V, J)-structures on L(M) and the odd non-degenerate supersymmetric maps of

vector bundles TM ⊗ TM → C1|0
M are in one-to-one correspondence.

(b) P (V, J) 6 GL(V ) is of finite type, more precisely, p(V, J)(1) = 0.
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We have P (V, J)0
∼= GL(V0̄), which comes with the mixed real form given by GL((V0̄)R)

and thus gives rise to P (V, J)R 6 GL(V )R.

For any P (V, J)-structure P on M , we have that P0
∼= L(M0) and hence, it admits the

real form P0,R ∼= L(M0)R. Now, one easily concludes the following.

Proposition 6.7. P (V, J)R-structures are in one-to-one correspondence with P (V, J)-

structures.

From Theorem 4.11, we obtain the following result.

Theorem 6.8. Let P →M be a P (V, J)R-structure on a supermanifold with finitely many

path components. If M0 is complete and all infinitesimal automorphisms are decomposable,

then the isometry group functor Aut(P ) is representable.

2 Superization of Riemannian spin manifolds

Let (M0, g0) be a connected pseudo-Riemannian spin manifold endowed with a Spin(V0̄)-

structure

ρ(M0) : Spin(M0) // SO(M0),

where we set (V0̄, α) = (TmM0, gm) for some m ∈M0. Choose a real or complex Cl(V0̄, α)- or

Cl(V0̄, α)⊗C-module V1̄. The spinor bundle is the associated bundle S = Spin(M0)×Spin(V0̄)

V1̄ →M0, which we endow with the lift of the Levi-Civita connection. Then TM0⊕S→M0

admits a reduction to Spin(V0̄) 6 GL(V0̄)×GL(V1̄) by means of

(ρ(M0), id) : Spin(M0) // SO(M0)× Spin(M0).

The supermanifold M associated to this data is obtained by taking the exterior algebra

of the dual S∗:

M = (M0,Γ(−,∧ S∗)).

It is a real supermanifold or a supermanifold depending on whether V1̄ is chosen to be real

or complex. Any vector field on M0 can be extended to M by means of the dual connection

on S∗, X 7→ ∇X , and, furthermore, dual spinors can be contracted with spinors. This yields

an inclusion ι : TM0 ⊕ΠS→ TM and hence a Spin(V0̄)-structure PSpin(V0̄) ⊆ L(M)R.

Any Spin(V0̄)-submodule W ⊆ Hom(V0̄, V1̄) gives rise to a mixed Lie supergroup Spin(V0̄)n
W 6 GL(V )R. Consequently, by inducing up, any such W gives rise to a Spin(V0̄) nW-

structure on M :

PSpin(V0̄)nW := PSpin(V0̄) ×Spin(V0̄) (Spin(V0̄) nW).
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A particular choice is

W = {fs : V0̄ → V1̄ | s ∈ V1̄, fs(v0) = v0s}.

Proposition 6.9. For this choice of W, Spin(V0̄) nW 6 GL(V ) is of finite type, provided

that dimM ≥ 3.

Proof. We show that any f ∈ (spin(V0̄)⊕W)(1) ⊂ Hom(V, spin(V0̄)⊕W) vanishes. Suppose

f is even. The homomorphism f |V0̄
has image in the image of (ρ∗, id) : spin(V0̄)→ o(V0̄)⊕

spin(V0̄). Since ρ∗ is an isomorphism and o(V0̄)(1) = 0, we have f |V0̄
= 0. Then f |V1̄

∈
Hom(V1̄,Hom(V0̄, V1̄)) vanishes as well by supersymmetry. If f is odd, then f |V1̄

has image

in spin(V0̄) ↪→ o(V0̄)⊕ spin(V0̄). Using that (spin(V0̄)⊕W) ∩Hom(V1̄, V0̄) = 0 and that ρ∗
is an isomorphism, we see that f |V1̄

= 0. Finally, we show that f |V0̄
= 0. If we choose an

orthogonal basis {ei} of V0̄, normalized such that (ei, ei)
2 = 1, we have f(ei)(ej) = ejsi for

certain si ∈ V1̄. The condition on f then reads

eisj = ejsi

for all i and j. This implies sj = 0 if dimM ≥ 3: Using eiej + ejei = −2(ei, ej), we have

sj = −(ei, ei)eiejsi. On one hand, if k, l and j are such that l 6= j and l 6= k we have

sk = −(el, el)eleksl

= −(el, el)elek(−(ej , ej)ejelsj)

= −(ej , ej)ekejsj

On the other hand,

sk = −(ej , ej)ejeksj .

So, if in addition k 6= j (hence all three are different), then

sk = −(ej , ej)
1

2
(ekej + ejek)sj

= (ej , ej)(ek, ej)sj

= 0.

Remark 6.10. By a theorem of Cortés et al. [1], the vector field ι(s) associated with a

spinor gives rise to an infinitesimal automorphism of PSpin(V0)nW if and only if s is a twistor

spinor, i.e., there exists a spinor s̃ such that for all X we have ∇Xs = X · s̃.
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7 Appendix

1 Non-existence of a forgetful functor SMµ → SM

A mixed manifold M has an underlying manifold M sm which comes with a functorial map

M sm →M. For an affine space M = A(V, VR, VC), the assignment is simply given by setting

M sm = A(C⊗ VR, VR, 0), and the map M sm →M is induced by the map C⊗ VR → V. We

show that the analogous statement fails in the category of mixed supermanifolds. This

is not surprising, insofar as there does not even exist a forgetful functor from complex

supermanifolds to supermanifolds [15]. A by-product of the argument is a proof that there

is no functorial way to split even complex functions on supermanifolds into two even real

functions (Proposition 7.2).

Let (V, VR, VC) be a mixed super vector space. The natural choice for the underly-

ing supermanifold is given by the affine space associated with the super vector space

u(V, VR, VC) = (C⊗ (VR)0̄ ⊕ V1̄, VR, V1̄). The natural choice for the map

ε(V,VR,VC) : A(u(V, VR, VC)) // A(V, VR, VC)

is induced by the C-linearization of the inclusion (VR)0̄ → V0̄ and the identity on V1̄. Note

that u2 = u. However, these natural choices do not assemble to a forgetful functor from

mixed supermanifolds to supermanifolds:

Proposition 7.1. There is no functor F : SMµ → SM such that the following two conditions

hold:

(a) F (A(V, VR, VC)) = A(u(V, VR, VC)) and F (A(ε(V,VR,VC))) = idA(u(V,VR,VC)).

(b) F |SM = idSM.

Proof. Assume that such a functor F existed. Consider A(C) and A(R2) with their standard

monoid structure. Then we would have a commutative square

A(R2)× A(R2)
µR2 //

εC×C
��

A(R2)

εC
��

A(C)× A(C)
µC // A(C)

and it would follow from the second assumption that F would take the monoid A(C) to the

monoid A(R2).

Consider the supermanifold M = A(R2×C0|2) with coordinates (x, y, ϑ1, ϑ2) and consider

the two maps ϕz, ϕϑ1ϑ2 : M → A(C) given by ϕ]z(z) = x + iy and ϕ]ϑ1ϑ2
(z) = ϑ1ϑ2,

respectively. Then we have ϕz = εC ◦ (x, y), so that we would obtain F (ϕz) = F ((x, y)) =

(x, y).
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For an arbitrary smooth function α : R2 → C we now define fα : M →M by

f ]α(x) = x+ αϑ1ϑ2,

f ]α(y) = y + (−i)(1− α)ϑ1ϑ2,

f ]α(ϑi) = ϑi.

Then ϕz ◦ fα = ϕz + ϕϑ1ϑ2 . However, on one hand

F (ϕz ◦ fα)] = F (fα)] ◦ F (ϕz)
]

= f ]α ◦ F (ϕz)
]

= f ]α ◦ (x, y)

= (x, y) + (αϕϑ1ϑ2 , (−i)(1− α)ϕϑ1ϑ2)

and on the other hand,

F (ϕz + ϕϑ1ϑ2) = F (ϕz) + F (ϕϑ1ϑ2)

= (x, y) + F (ϕϑ1ϑ2).

This would imply F (ϕϑ1ϑ2) = (αϕϑ1ϑ2 , (−i)(1−α)ϕϑ1ϑ2) for arbitrary α : R2 → C, which is

absurd.

Similarly, one proves the following related proposition.

Proposition 7.2. The natural transformation εC : A(R2)→ A(C) between functors on SM

admits no section.

Proof. Assume that such a natural transformation F existed. We use the notation from

the previous proof. We consider again M = A(R2 × C0|2) and the two maps ϕz and ϕϑ1ϑ2 .

Then F (ϕz) = (x+ n, y + in) for a nilpotent function n on M. Defining fα as previously,

we have ϕz ◦ fα = ϕz + ϕϑ1ϑ2 , and so F (ϕz ◦ fα) would be independent of α. However, we

would have

F (ϕz ◦ fα) = f ]α(x+ n, y + in)

= (x+ αϑ1ϑ2 + n, y + (−i)(1− α)ϑ1ϑ2 + in),

a contradiction.

2 Flows of even real vector fields on mixed supermanifolds

We outline the construction of flows of vector fields on mixed supermanifolds. In this setting,

only even real vector fields can be integrated. We show that they have a unique maximal
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flow.

Let M be a mixed supermanifold and let X be an even real vector field. Let V ⊆ R1×M
be open such that {0} ×M ⊆ V. A morphism

ΘX : R1 ×M ⊇ V //M

is called a flow of X if

(a) ∂t ◦ΘX] = ΘX] ◦X, and

(b) ΘX |{0}×M = idM .

Following [10], an open subspace {0} ×M ⊆ V ⊆ R1 ×M such that, for all m ∈ M0,

V ∩ (R1 × {m}) is an interval and a flow exists on V is called a flow domain.

First we show that a real vector field on a mixed manifold has a unique maximal flow. Let

M be a mixed manifold and M sm its underlying smooth manifold which comes with a map

i : M sm →M. Then (i∗TM ), (i∗TM ) ⊆ C⊗ TMsm and we have the following exact sequence:

0 // i∗(TM,C ⊕ T̄M,C) // C⊗ TMsm // i∗TM/TM,C // 0. (7.3)

In fact, locally in a neighborhood of the form (Cn1+n2 ,Rn1×Cn2 ,Cn2), i∗TM,C and (i∗TM,C)

are spanned as OMsm-modules by ∂zi and ∂̄zi (i ∈ {n1 + 1, . . . , n1 + n2}), respectively.

Then we have the following observation.

Lemma 7.4. For any real vector field X on M , there is a unique real vector field Y on

M sm such that (C⊗ Y )|OM
= X.

Proof. Consider two such real vector fields Y1 and Y2 on M sm. Locally on the model space

defined by (Cn1+n2 ,Rn1 × Cn2 ,Cn2), with coordinates {x = (x1, . . . xn1), z = (z1, . . . , zn2)},
we have

X =
∑

i

fi(x)∂xi +
∑

j

gj(x, z)∂zj

for smooth real functions fi(x) and partially holomorphic functions gj(x, z). Hence we have

Yl =
∑

i

fi(x)∂xi +
∑

j

gj(x, z)∂zj +
∑

j

ḡj(x, z)∂̄zj (l ∈ {1, 2}),

which proves uniqueness. In order to prove existence, we choose a splitting of (7.3) in order

to write i∗X = XR + XC, where XC ∈ i∗TM,C. Then Y = XR + XC + X̄C is the desired

vector field.

Lemma 7.5. Let (V, VR, VC) be a mixed vector space and let X be a real vector field on

U ⊆ A(VR) and Y the unique real vector field such that (C ⊗ Y )|OU
= X. The maximal
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flow ΘY : Vsm → U sm of Y defines a morphism of mixed manifolds ΘX which is the unique

maximal flow of X.

Proof. The proof of [4, Thm. 12.4.2] applies to show that for every p ∈ U there is an open

neighbourhood U ′ of p and an ε > 0 such that (−ε, ε) × U ′ ⊆ Vsm and ΘY |(−ε,ε)×U ′ is a

mixed morphism. Since Vsm is a flow domain and since the flow is additive, we conclude

that ΘY defines a mixed morphism. This is a flow morphism since ΘY is a flow for Y and

(C⊗ Y )|OU
= X. Uniqueness follows from uniqueness of the flow of Y and maximality is

ensured by maximality of Vsm.

Lemma 7.6. Let (V, VR, VC) be a mixed super vector space and let X be a real even vector

field on the open subspace U ⊆ A(VR). Furthermore, let X̃ be the underlying real vector field

on A((V0̄)R) with maximal flow ΘX̃ : V0 → U0. There is a unique flow morphism ΘX : V→ U

where V0 is the maximal flow domain and (ΘX)0 is the maximal flow of X̃.

Proof. Following the proof given in [10, Lem. 2.1], the higher order terms of the flow ΘX

are constructed by solving linear ordinary differential equations. The unique solutions will

automatically be partially holomorphic, since the initial condition, the identity, is partially

holomorphic. So we get a flow ΘX : V→ U for X with (ΘX)0 = ΘX̃ and V ⊆ R× U is the

open sub supermanifold with base V0.

By the same reasoning as in [10, Lem. 2.2] one can prove the existence of flow domains:

Lemma 7.7. Let X be an even real vector field on the mixed supermanifold M. Then there

exists a flow domain V for X. Furthermore, if Vi, i ∈ {1, 2}, are flow domains with flows

ΘX
i , then ΘX

1 |V1∩V2 = ΘX
2 |V1∩V2 .

Putting everything together we obtain the final result.

Theorem 7.8. Let X be an even real vector field on the mixed supermanifold M with

underlying real vector field X̃ on M0. Then there exists a unique flow map ΘX : V → M

where V is the maximal flow domain for X. Moreover, (ΘX)0 is the maximal flow of X̃.

Proof. This follows from the above considerations by taking the union of all flow domains.

Definition 7.9. An even real vector field is called complete if its maximal flow domain V

equals R×M.

The following basic properties can be proved as in the classical case.

Proposition 7.10. Suppose X is an even real vector field and Y is an arbitrary vector

field on M.

(a) LXY := ∂t|t=0(ΘX
t )] ◦ Y ◦ (ΘX

−t)
] = [X,Y ].
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(b) If [X,Y ] = 0, then ΘX] and Y commute.

Proof. See for instance [5, Lem. 3.7, Cor. 3.8].
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Bureš, Jaroĺım (ed.), The proceedings of the 22nd winter school “Geometry and physics”, Srńı, Czech
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benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit –

einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im Wortlaut oder

dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht

habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung

vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht
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