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The Aligned Rank Transform and discrete Variables -
a Warning

Abstract

For two-way layouts in a between subjects anova design the aligned rank transform (ART) is 
compared with the parametric F-test as well as six other nonparametric methods: rank transform 
(RT), inverse normal transform (INT), a combination of ART and INT, Puri & Sen‘s L statistic, 
van der Waerden and Akritas & Brunners ATS. The type I error rates are computed for the 
uniform and the exponential distributions, both as continuous and in several variations as disc-
rete distribution. The computations had been performed for balanced and unbalanced designs as 
well as for several effect models. The aim of this study is to analyze the impact of discrete 
distributions on the error rate. And it is shown that this scaling impact is restricted to the ART- 
as well as the combination of ART- and INT-method. There are two effects: first with increasing 
cell counts their error rates rise beyond any acceptable limit up to 20 percent and more. And 
secondly their rates rise when the number of distinct values of the dependent variable decreases. 
This behaviour is more severe for underlying exponential distributions than for uniform 
distributions. Therefore there is a recommendation not to apply the ART if the mean cell fre-
quencies exceed 10.

1. Introduction
The Aligned Rank Transform (ART) seems to be a very popular method for a nonparametric 
analysis of variance (anova) judging from the number of publications. This procedure dates 
back to Hodges & Lehmann (1962) and had been made popular by Higgins & Tashtoush (1994) 
who extended it to factorial designs. 

In order to avoid an increase of type I error rates for the interaction in case of significant main 
effects, as it is observed for the simple rank transform procedure (RT, for details see next chap-
ter), an alignment is proposed: all effects that are not of primary interest are subtracted before 
performing an anova. The procedure consists of first computing the residuals, either as diffe-
rences from the cell means or by means of a regression model, then adding the effect of interest, 
transforming this sum into ranks and finally performing the parametric anova to them. As the 
normal theory F-tests are used for testing these rank statistics, the question arises if their asymp-
totic distribution is the same. Salter & Fawcett (1993) showed that at least for the ART these 
tests are valid.

There exist numerous studies on the ART-technique. But in most papers its behaviour is ex-
amined only for the comparison of normal and continuous nonnormal distributions in relation 
to the parametric F-test and the RT-method. And in general it is estimated rather well, by Lei, 
Holt & Beasley (2004), Wobbrock et al. (2011)  and Mansouri, Paige & Surles  (2004) to name 
only a few. Higgins & Tashtoush (1994) as well as Salter & Fawcett (1993) showed that the 
ART procedure is valid concerning the type I error rate and that it is preferable to the F-test in 
cases of outliers or heavily tailed distributions as in these situations the ART has a larger power 
than the F-test. Richter & Payton (1999) compared the ART with the F-test and with an exact 
test of the ranks using the exact permutation distribution, but only to check the influence of vi-
olation of normal assumption. For nonnormal distributions the ART is superior especially using 
the exact probabilities. 
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Nevertheless there are also a couple of critical results. Some authors investigated the behaviour 
of the ART in heteroscedastic conditions. Among those are Leys & Schumann (2010) and Car-
letti & Claustriaux (2005). The first analyzed 2*2 designs for various distributions with and wit-
hout homogeneity of variances. They found that in the case of heteroscedasticity the ART has 
even more inflated type I errors than the F-test and that concerning the power only for the main 
effects the ART can compete with the classical tests. Carletti & Claustriaux (2005) who used a 
2*4 design with a relation of 4 and 8 for the ratio of the largest to the smallest variance came to 
the same results. In addition the type I error increases with larger cell counts. But they proposed 
an amelioration of the ART technique: to transform the ranks obtained from the ART according 
to the INT method, i.e. transforming them into normal scores (see next chapter). This method 
leads to a reduction of the type I error rate, especially in the case of unequal variances. Another 
study to mention in this context is the one by Danbaba (2009). He compared for a simple 3*3 
two-way design 25 rank tests with the parametric F-test. He considered 4 distributions but 
unfortunately not the case of heterogeneous variances. His conclusion: among others the RT, 
INT, Puri & Sen and ATS fulfill the robustness criterion and show a power superior to the F-
test (except for the exponential distribution) whereas the ART fails. 

Of course the ART-procedure is designed for continuous dependent variables (dv). But in 
practice data are often available as integers only which may cause ties when transforming the 
data into ranks. And the number of ties increases if the data range is rather limited or the total n 
is fairly large. On the other side anova users prefer nonparametric methods if data are ordinal or 
look ordinal, i.e. data consist of integers with a limited range. And because of the popularity of 
the ART they are motivated to apply this method.

There are only few studies considering discrete distributions in their simulations. One of them 
is the one by Mansouri et al. (2004) in which they studied the ART-procedure for continuous 
and discrete variables. They found no remarkable differences in the performance. But it has to 
be mentioned that they studied only designs with cell sizes ni up to 10. Another study by Kaptein 
et al (2010) showed, unfortunately only for a 2*2-design, the power of the anova type statistic 
(ATS, see next chapter for details), being superior to the F-test in the case of Likert scales.

2. Methods to be compared
Beside the ART-technique also other methods are to be compared for discrete dependent va-
riables. It follows a brief description of them.

The anova model shall be denoted by

with fixed effects αi (factor A), βj (factor B), αβij (interaction AB) and error eijk .

RT ( rank transform)

The rank transform method (RT) is just transforming the dependent variable (dv) into ranks and 
then applying the parametric anova to them. This method had been proposed by Conover & 
Iman (1981). Blair et al (1987), Toothaker & Newman (1994) as well as Beasley & Zumbo 
(2009), to name only a few, found out that the type I error rate of the interaction can reach bey-
ond the nominal level if there are significant main effects because the effects are confounded. 
At least Hora & Conover (1984) proved that the tests of the main effects are correct. A good 
review of articles concerning the problems of the RT can be found in the study by Toothaker & 
Newman.

xijk αi βj αβij eijk+ + +=
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INT (inverse normal transform)

The inverse normal transform method (INT) consists of first transforming the dv into ranks (as 
in the RT method), then computing their normal scores and finally applying the parametric ano-
va to them. The normal scores are defined as

      

where Ri are the ranks of the dv and n is the number of observations. It should be noted that there 
exist several versions of the normal scores (see Beasley, Erickson & Allison (2009)  for details). 
This results in an improvement of the RT procedure as could be shown by Huang (2007) as well 
as Mansouri and Chang (1995), though Beasley, Erickson & Allison (2009) found out that also 
the INT procedure results in slightly too high type I error rates if there are significant main 
effects.

ART combined with INT (ART+INT)

Mansouri & Chang (1995) suggested to apply the normal scores transformation INT (see above) 
to the ranks obtained from the ART procedure. They showed that the transformation into normal 
scores improves the type I error rate, for the RT as well as for the ART procedure, at least in the 
case of underlying normal distributions. 

Puri & Sen tests (L statistic)

These are generalizations of the well known Kruskal-Wallis H test (for independent samples) 
and the Friedman test (for dependent samples) by Puri & Sen (1985), often referred as L stati-
stic. A good introduction offer Thomas et al (1999). The idea dates back to the 60s, when  
Bennett (1968) and Scheirer, Ray & Hare (1976) as well as later Shirley (1981) generalized the 
H test for multifactorial designs. It is well known that the Kruskal-Wallis H test as well as the 
Friedman test can be performed by a suitable ranking of the dv, conducting a parametric anova 
and finally computing χ2 ratios using the sum of squares. In fact the same applies to the gene-
ralized tests. In the simple case of only grouping factors the χ2 ratios are 

      

where SSeffect  is the sum of squares of the considered effect and MStotal is the total mean square. 
The major disadvantage of this method compared with the four ones above is the lack of power 
for any effect in the case of other nonnull effects in the model. The reason: In the standard anova 
the denominator of the F values is the residual mean square which is reduced by the effects of 
other factors in the model. In contrast the denominator of the χ2 tests of Puri & Sen‘s L statistic 
is the total mean square which is not diminished by other factors. A good review of articles con-
cerning this test can be found in the study by Toothaker & De Newman (1994).

van der Waerden

At first the van der Waerden test (see Wikipedia and van der Waerden (1953)) is an alternative 
to the 1-factorial anova by Kruskal-Wallis. The procedure is based on the INT transformation 
(see above). But instead of using the F-tests from the parametric anova, χ2 ratios are computed 
using the sum of squares in the same way as for the Puri & Sen L statistics. Mansouri and Chang 
(1995) generalized the original van der Waerden test to designs with several grouping factors. 
Marascuilo and McSweeney (1977) transferred it to the case of repeated measurements. Sheskin 
(2004) reported that this procedure in the 1-factorial version outperforms the classical anova in 
the case of violations of the assumptions with regard to the power. On the other hand the van 

Φ 1– Ri n 1+( )⁄( )

χ2 SSeffect
MStotal
-----------------=
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der Waerden tests suffer from the same lack of power in the case of multifactorial designs as the 
Puri & Sen L statistic.

Akritas, Arnold and Brunner (ATS)

This is the only procedure considered here that cannot be mapped to the parametric anova. 
Based on the relative effect (see Brunner & Munzel (2002)) the authors developed two tests to 
compare samples by means of comparing these relative effects: ATS (anova type statistic) and 
WTS (Wald type statistic). The ATS has preferable attributes e.g. more power (see Brunner & 
Munzel (2002) as well as Shah & Madden (2004)). The relative effect of a random variable X1 
to a second one X2 is defined as p+ =  , i.e. the probability that  X1 has smaller values 
than X2 . As the definition of relative effects is based only on an ordinal scale of the dv this 
method is suitable also for variables of ordinal or dichotomous scale. The rather complicated 
procedure is described by Akritas, Arnold and Brunner (1997) as well as by Brunner & Munzel 
(2002).

3. The Problem
While comparing several nonparametric methods in a Monte Carlo study for several distribu-
tions under different conditions in a simple two factor between subjects design it became evi-
dent that the type I error rate rose beyond any limit in the case of an underlying discrete 
distribution for increasing cell counts ni. But not for all methods, only for the ART- and the 
ART+INT-procedures (see figure 1). Further simulations showed that the rate increases also if 
the number of distinct values of the dependent variable is becoming smaller (see figure 2). Only 
for 2*2 designs there are a couple of situations in which the error rate behaves inconspicuously, 
e.g. for the test of the main effects in a null model with an underlying uniform distribution (see 
tables A 7.8.3 and A 7.8.4 in appendix 7).

There is an explanation for the increase of the type I error rate when the number of distinct valu-
es gets smaller or the sample size larger: due to the subtraction of the other effects - a linear 
combination of the means - from the observed values even tiny differences between the means 
lead to large differences in the ranking. While for instance for the RT-procedure a value m is 
transformed into the same rank Rm for all groups, using the ART-procedure this value m is first 
transformed into different values (m-di) depending on the cell i and then each (m-di) is transfor-
med into a different rank Rmi though the differences between the di and therefore between the 
(m-di) may be very small. And as there are only a few distinct values, there is a high number of 
ties causing large differences between the average ranks Rmi . So tiny mean differences result 
in larger differences between the mean ranks and therefore in significant results. And for larger 
sample sizes this effect is multiplied. 

A simple example shall demonstrate this computational procedure. Let us consider a dicho-
tomous dependent variable y with values 1 and 2 in a 2*4-design (factors A and B) with equal 
cell counts ni=20. 

P X1 X2≤( )
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Table 1: data and means Table 2: standard ranks with mean ranks

Table 1 shows the raw data which are transformed into standard ranks (table 2): the 1 into 47 
(average rank of 1,..,93) and the 2 into 127 (average rank of 94,..,160).
    

Table 3: aligned data Table 4: aligned ranks with mean ranks

Table 3 shows the data aligned for the two main effects, computed as
    

or equivalently as 
    

where eijk  are the residuals,  the cell means,  the marginal means corresponding to A 
and B and   the grand mean. In table 4 these values are transformed into ranks. Apparently the 
differences between the mean ranks are much larger for the ART than for the simple RT-pro-
cedure which is confirmed by the anova results (table 5), where additionally to the alignment 
for the interaction the same was done for the main effects. In opposition to the RT the ART 
shows both main effects as significant and a comparatively lower p-value for the interaction. 
This should give an impression how the ART-technique leads to an inflation of the error rates.  

Table 5: p-values of several anovas applied on the data of table 1

Therefore additional investigations on this relation seemed to be reasonable. 

B1 B2 B3 B4 B1 B2 B3 B4

A1 10*1  
10*2
= 1.50

12*1
 8*2
= 1.40

13*1  
7*2
= 1.35

13*1  
7*2
= 1.35

10*47  
10*127

= 87

12*47  
8*127

= 79

13*47  
7*127

= 79

13*47 
7*127

= 75

A2 7*1 
13*2
= 1.65

13*1  
7*2
= 1.35

 13*1  
7*2
= 1.30

 12*1  
8*2
= 1.40

7*47  
13*127

= 99

13*47  
7*127

= 75

13*47  
7*127

= 75

12*47  
8*127

= 79

B1 B2 B3 B4 B1 B2 B3 B4

A1 10*-0.556
10*0.444

12*-0.356
8*0.644

13*-0.331
7*0.669

13*-0.356
7*0.644

10*12.5  
10*111.5

= 62

12*68  
8*146
= 99.2

13*87  
7*157
= 111.5

13*68 
7*146
= 95.3

A2 7*-0.594
13*0.406

13*-0.394
7*0.606

13*-0.369
7*0.631

12*-0.394
8*0.606

7*4  
13*100

= 66.4

13*30  
7*124
= 62.9

13*49  
7*135
= 79.1

12*30  
8*124
= 67.6

effect parametric RT ART
A, B aligned

ART
A, AB aligned

ART
B, AB aligned

A 0.633 0.633 0.037

B 0.152 0.152 0.019

AB 0.828 0828 0.143

x x x x x x x x

x x x x x x x x

x x x x

x x x x

x'ijk e= ijk abij ai– bj– 2x+( )+

x'ijk x= ijk ai– bj– 2x+

abij ai bj,
x
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4. The Study
This is a Monte Carlo study. That means a couple of designs and theoretical distributions had 
been chosen from which a large number of samples had been drawn by means of a random 
number generator. These samples had been analyzed for the various anova methods. The 
number of samples had been restricted to 2000, and by means of a unique starting value they are 
identical for each of the situations below in order to make the results better comparable.

In the current study only grouping (between subjects) factors A and B are considered. It ex-
amines: 
• Four layouts: 

- a 2*4 balanced design with 10 observations per cell (total n=80) and 
- a 4*5 unbalanced design with an unequal number of observations ni per cell (total n=100),
as well as
- a 2*2 balanced design with 20 observations per cell (total n=80) and 
- a 2*2 unbalanced design with an unequal number of observations ni per cell (total n=100).
For the unbalanced designs there is a ratio max(ni)/min(ni) of 4. These differ not only 
regarding the cell counts but also the number of cells, though the df of the error term in all 
designs are nearly equal.

• Two underlying distributions:
- uniform distribution in the interval (0,5) and
- exponential distribution (parameter λ=0.4) with μ=2.5 which is extremely skewed (S=2).

• Several effect sizes for the main effects as well as for the interaction effect.

(In the following sections the terms unbalanced design and unequal cell counts will be used 
both for the corresponding design, being aware that they have different definitions. But the 
special case of a balanced design with unequal cell counts will not be treated in this study.)

Originally there had been a study in which the seven nonparametric methods listed above had 
been compared together with the parametric F-test for the uniform and the exponential distribu-
tion, both as continuous and as discrete distribution with the values rounded to integers, as well 
as for 12 other distributions. And the average cell sizes had been varied from 5 to 50 in steps of 
5. After it became evident that there are large differences between the error rates for continuous 
and discrete distributions, especially for large ni, further investigations seemed to be needed.

Therefore additionally the results for a continuous variable were compared with those of several 
discrete variables: in case of the uniform distribution with values rounded to integers 1 to 7, 1 
to 4 as well as 1 and 2. And in case of the exponential distribution with values were rounded to 
integers which results in values 1 to 18, transformed to integers 1 to 10 and to integers 1 to 5. 
Finally, to be able to explain differences in the results for the 2*4 balanced and the 4*5 
unbalanced design, additionally a 2*4 unbalanced and a 4*5 balanced design were analyzed.

The main focus had been laid upon the control of the type I error rates for α=0.05 for the various 
methods and situations. For the computation of the random variates level/cell means had to be 
added corresponding to the desired effect sizes. These are denoted by ai and bj for the level me-
ans of A and B corresponding to effects αi and βj , and abij for the cell means concerning the 
interaction corresponding to effects αi + βj + αβij . In this study only one moderate effect size 
had been chosen for each of the models below (see e.g. Danbaba, 2012 and Shoemaker, 1986), 
though other authors are varying the effect size from small to large values, e.g. from 0.25 up to 
over 2.0 (see e.g. Salter & Fawcett, 1993 and Mansouri & Chang, 1995). The reason is obvious: 
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only the type I error rates are investigated and not the power in realtion to the effect size. Fur-
thermore there are so many different influencing factors in this study that a restriction seemed 
necessary. And the main focus had been laid on the magnitude of ni and the number of disctinct 
values of the dv.

For the subsequent specification of the effect sizes the following abbreviations are used (s being 
the standard deviation):
• A(d):

a1=d*s, a2=0  for a 2*4 and a 2*2 plan, 
respectively a1= a2= d*s, a3= a4= 0 for a 4*5 plan

• B(d):
b1= b2= d*s, b3= b4= 0 for a 2*4 plan, 
b1= d*s, b2= 0 for a 2*2 plan,
respectively b1= b2= d*s, b3= b4= b5= 0 for a 4*5 plan

• AB(d):
ab11= ab12= ab23= ab24= d*s , ab21= ab22= ab13= ab14= 0 for a 2*4 plan, 
ab11= ab22= d*s , ab21= ab12= 0 for a 2*2 plan, 
respectively ab11= ab12= ab21= ab22= ab34= ab35= ab44= ab45= d*s , 
ab31= ab32= ab41= ab42= ab14= ab15= ab24= ab25= 0 and ab13= ab23= ab33= ab43= d*s/2 
for a 4*5 plan

The error rates had been checked for the following effects:
• main effects and interaction effect for the case of no effects (null model, equal means),
• main effects and interaction effect for the case of one significant main effect A(0.6)

i.e. a weak impact of significant main effects,
• main effect for the case of a significant interaction AB(0.6)

i.e. a weak impact of significant interaction effect,
• main effect for the case of a significant main and interaction effect A(0.6) and AB(0.6)

i.e. a weak impact of significant effects.
• interaction effect for the case of both significant main effects A(0.8) and B(0.8)

i.e. a strong impact of significant main effects.

These are 7 effect models which are analysed for both a balanced and an unbalanced design. So 
there are all in all 14 models which are tested for a small 2*2 design as well as for larger 2*4 
and 4*5 designs.

In case of effects the uniform distribution has been transformed that x+d*s lies still in the given 
interval.

In the case of the exponential distribution for the analysis of the influence of effects d it is not 
reasonable to add a constant d*s to the values x of one group. In order to keep the type of ex-
ponential distribution with parameter λ for the alternative hypothesis (H1) a parameter λ‘ had 
to be chosen so that the desired mean difference 1/λ − 1/λ‘ is  d*s where in this case 
s=(1/λ + 1/λ‘). As a consequence the H1-distribution has a larger variance.

In the original study the error rates were computed for ni varying from 5 to 50 in steps of 5, whe-
reas for the detailed comparison of continuous and discrete distributions the rates were comput-
ed only for ni = 5, 10 and 50.
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5. Results
All tables and corresponding graphical illustrations are available online:
http://www.uni-koeln.de/~luepsen/statistik/texte/comparison-tables/
Each table and graphic includes the results for all 8 methods and report the proportions of rejec-
tions of the corresponding null hypothesis:
• Appendix 2: type I error rates (α=0.05) for large ni (5 to 50 in steps of 5) and fixed effect 

sizes, for all 16 distributions, 7 different effect models, equal and unequal cell frequencies.
• Appendix 7: type I error rates (α=0.05) for ni = 5, 10, 50 and fixed effect sizes, for the ex-

ponential and the uniform distributions with the continuous and several discrete versions, 
7 different effect models, equal and unequal cell frequencies.

All references to these tables and graphics will be referred as A n.n.n. The most important tables  
and some graphics are included in this text.

Concerning the type I error rate a deviation of 25 percent (α + 0.25α) - that is 6.25 percent for 
α=0.05 - can to be treated as a moderate robustness (see Peterson (2002). It should be mentioned 
that there are other studies in which a deviation of 50 percent, i.e. (α 0.5α), Bradleys liberal 
criterion (see Bradley, 1978), is regarded as robustness. As a large amount of the results con-
cerns the error rates for 10 sample sizes ni = 5,...,50 it seems reasonable to allow a couple of 
exceedances within this range. 

Comparing all 8 methods with regard to the behaviour in the case of underlying discrete 
distributions the tables and graphics in Appendix 2 show that the type I error rates rise only for 
the ART- and the ART+INT-procedures for increasing cell counts ni, in most cases beyond 10 
percent, but sometimes even up to 20 percent (see e.g. A 2.4.6) or 50 percent (see A 2.4.9). But 
at second sight it must be admitted that there are a couple of situations where the rates rise also 
for the corresponding continuous distribution. But in any case the error rates for the discrete 
distribution lie considerably above those for the continuous distribution, on average between 10 
and more than 100 percent. With one exception: the RT- as well as the ATS-method exhibit inc-
reasing error rates for the interaction in the case of a discrete exponential distribution and both 
significant main effects (see A 2.13.6 and 2.14.6). 

Concerning the exponential distribution the rates of the ART and the ART+INT are under 
control for the tests in the null model with a continuous distribution, but exceed the acceptable 
limit with values of 8 percent and above for 20 in the case of a discrete distribution. For the 
tests in the nonnull models the values increase in any case above the limit of about 6 percent, 
while the rates for the discrete distribution exceed those for the continuous ditribution by appro-
ximately 10 percent. See table 6 for details which represents a summary of the results for the 
ART-method tabulated in A 2.

In the case of the uniform distribution the situation is more transparent because for the conti-
nuous distribution the error rates are always under control except for the test of a main effect if 
the other main effect is nonnull. For all other models the rates for the discrete distribution stay 
below 6 percent as long as 15 and rise up to values between 6 and 8 if ni increases up to 50.

But it has to be noted that at least for equal cell counts the rates keep acceptable for most models, 
especially for the test of the interaction, though they lie between 10 and 20 percent above those 
for the continuous distribution. See table 7 for details.

+−

ni ≥

ni ≤
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Having now shown that discrete distributions have an impact on the error rates for the ART- and 
the ART+INT-method, the focus of the second part of the study lies on the question: how large 
is the effect of the number of distinct values of the dependent variable. And the target is here 
the case of small cell counts, as for large cell counts the impact has been already proven for any 
situation. Here a general tendency is obvious: for a decreasing number of distinct values the type 
I error rates for the ART- and the ART+INT-method rise.  

Figure 1: type I error rates for 8 methods in the case of the null model,
1st row: main effect A in a balanced design, 

2nd row: interaction effect in an unbalanced design
left: exponential distribution, right: uniform distribution

As in the analysis above, for increasing ni here also the behaviour of the exponential distribution 
is more critical. In any of the 14 models the rates for the ART increase to values between 10 and 
20 percent for the cases of 10 or 5 distinct values. But the additional application of the INT-
transformation to the ART-method is able to damp this effect though there are still a couple of 
situations where the rates for the ART+INT rise to values between 7 and 10, e.g. for the main 
and interaction effect in the null model (see A 7.1 and 7.2 as well as A 7.9 and 7.10) and for the 
main effect if the interaction is significant (see A 7.5 and 7.6). See table 8 for details.
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Figure 2: type I error rates for 4 different scalings of the dependent variable in the case of the 
null model,

1st row: main effect A in a balanced design, 
2nd row: interaction effect in an unbalanced design

left: exponential distribution, right: uniform distribution

In contrast for the uniform distribution the error rates exceed the acceptable limit with values 
between 8 and 10 percent only when the dependent variable is dichotomous. And this only in 6 
of the 14 models. Furthermore it is remarkable that the rates for the unbalanced 4*5-design lie 
below those for the balanced 2*4-design. As the designs differ not only with regard to the 
balance but also to the number of cells, additionally a balanced 4*5- and an unbalanced 2*4-
design were studied. Their results lie in between. See table 9 for details.    

6. Conclusion
As the type I error rates for the ART- as well as for the ART+INT-method rise above any limit 
with increasing cell counts ni in the case of discrete dependent variables a general warning has 
to be stated for this combination. For exponential distributed discrete variables this is more se-
vere because even for small cell counts (5 or 10) the rates lie often beyond an acceptable limit 
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of 6 percent whereas for uniform distributed discrete variables the error rates are under control 
at least for cell counts of 15 and below.

The behaviour of the error rate worsens when the number of distinct values of the dependent 
variable decreases. Here also the situation is more severe for the exponential distribution. For 5 
or 10 distinct values the rates of the ART lie above 10 percent. In contrast for the uniform 
distribution only the case of 2 distinct values is critical.

Therefore the application of the ART and the ART+INT-methods should be restricted to the ca-
ses when first
• the cell frequencies stay below 15 

and additionally
• either the underlying distribution is approximately uniform,
• or the number of distinct values exceeds 10.

The application of the INT-transformation to the ART is able to damp the high error rates when 
there are fewer distinct values. 

The conclusion: The ART as well as the ART+INT cannot be applied to Likert and similar me-
tric or ordinal scaled variables, e.g. frequencies like the number of children in a family or the 
number of goals, or ordinal scales with ranges from 1 to 5.

Though between subject designs are the basis for this study it is to be expected that the results 
are also valid for designs with repeated measurements such as split plot designs.

7. Software
This study has been programmed in R (version 3.0.2), using mainly the standard anova function 
aov in combination with drop1 to receive type III sum of squares estimates in the case of 
unequal cell counts. For the ART, ATS, factorial Puri & Sen and van der Waerden methods own 
functions had been written (see Luepsen, 2014). All the computations had been performed on a 
Windows notebook.
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Table 6: type I error rates of the ART-method for 7 different effect models, equal and unequal 
cell counts and two different scalings of the exponential distribution (continuous and discrete). 
(This is a summary of the results for the ART-method tabulated in Appendix 2.)

cell count

method count scale 5 10 15 20 25 30 35 40 45 50

Main effect A
- null model

equal cont. 5.40 5.40 5.35 4.90 5.00 5.80 5.80 4.65 5.00 5.30
discr. 5.45 5.90 6.30 6.20 6.65 6.75 8.35 7.20 8.05 8.15

unequal cont. 4.15 3.05 3.70 2.65 3.95 3.45 3.50 3.60 3.20 4.05
discr. 4.25 3.50 4.40 3.70 4.95 5.20 5.15 5.90 5.65 6.50

Main effect B
- A significant

equal cont. 6.00 7.05 7.70 7.70 7.20 7.60 6.40 6.90 8.40 8.90
discr. 6.25 7.25 7.80 7.90 7.85 7.95 7.30 7.35 8.70 9.15

unequal cont. 6.45 7.60 8.00 10.50 13.20 13.65 15.50 17.45 18.25 19.50
discr. 6.60 8.40 8.35 11.70 13.90 15.40 16.65 20.00 20.85 22.50

Main effect A
 - interact. sig

equal cont. 6.45 5.85 7.30 7.05 7.45 6.10 6.00 6.70 6.40 6.60
discr. 6.65 7.00 8.10 9.30 8.35 8.95 8.25 10.25 9.60 10.00

unequal cont. 6.20 5.40 7.35 6.80 6.85 8.45 9.10 9.50 10.30 12.15
discr. 6.25 6.00 8.45 7.80 8.20 10.80 11.95 13.75 13.40 16.85

Main effect B
- A and int. sig

equal cont. 6.65 6.30 6.60 7.15 7.85 7.40 7.45 7.30 7.20 6.50
discr. 7.05 6.40 7.30 7.70 7.90 8.10 7.65 7.55 7.25 7.15

unequal cont. 6.85 6.35 7.25 8.00 8.60 9.50 9.70 11.65 11.65 13.40
discr. 7.00 6.75 8.05 8.35 9.40 11.55 12.30 13.00 14.80 16.90

Interaction
- null model

equal cont. 5.85 5.70 5.65 5.75 5.60 5.60 5.60 5.90 5.75 6.00
discr. 6.00 6.15 6.25 6.30 6.15 6.80 6.75 7.00 6.70 6.85

unequal cont. 6.65 5.35 4.85 5.55 4.70 5.20 4.85 5.55 4.65 4.65
discr. 7.10 5.60 5.40 7.25 6.65 6.65 6.90 8.50 8.05 8.50

Interaction
- A significant

equal cont. 7.65 7.90 8.40 7.40 8.50 7.20 8.55 8.25 7.80 7.40
discr. 8.20 7.65 8.95 8.25 9.25 7.60 9.25 8.70 8.65 9.40

unequal cont. 5.10 6.40 5.65 5.90 4.60 5.30 5.90 4.95 6.00 5.20
discr. 5.80 6.65 6.25 6.20 5.85 5.95 6.60 5.90 6.95 7.05

Interaction
- A and B sig

equal cont. 7.10 8.15 8.05 7.85 7.65 8.90 7.65 9.25 8.55 9.15
discr. 7.55 8.05 8.45 8.30 8.10 9.60 8.10 9.25 9.05 9.10

unequal cont. 5.30 5.65 7.10 6.10 6.90 7.15 6.80 7.60 7.55 6.70
discr. 5.25 6.05 6.50 6.05 6.75 7.90 7.75 7.95 8.35 7.75
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Table 7: type I error rates of the ART-method for 7 different effect models, equal and unequal 
cell counts and two different scalings of the uniform distribution (continuous and discrete).
(This is a summary of the results for the ART-method tabulated in Appendix 2.)

cell count

method count scale 5 10 15 20 25 30 35 40 45 50

Main effect A
- null model

equal cont. 5.05 5.40 5.40 4.75 4.65 5.05 4.40 4.20 5.75 5.15
discr. 5.40 6.05 6.10 5.65 6.30 7.00 6.75 7.70 7.05 7.95

unequal cont. 2.70 2.30 2.60 2.25 2.60 2.55 2.35 2.90 2.30 2.40
discr. 2.85 2.40 3.40 3.10 3.30 3.90 4.30 4.90 4.85 5.05

Main effect B
- A significant

equal cont. 4.60 4.55 4.00 4.65 4.60 5.55 5.40 4.65 4.00 5.05
discr. 4.40 4.50 4.30 4.65 5.05 5.40 5.00 5.10 4.55 5.70

unequal cont. 3.50 4.20 4.80 5.10 7.15 7.80 9.00 8.90 9.55 11.05
discr. 3.75 4.65 6.25 7.10 10.05 12.20 15.75 22.25 25.10 32.80

Main effect A
 - interact. sig

equal cont. 4.45 5.15 4.85 4.90 4.75 5.35 5.30 4.90 4.75 4.45
discr. 5.10 5.25 5.90 5.80 5.95 6.70 6.60 6.90 8.15 6.80

unequal cont. 3.05 2.85 2.80 3.50 3.20 4.00 3.75 4.80 4.90 5.30
discr. 3.20 3.45 2.90 3.45 4.65 4.65 4.80 6.15 5.55 5.90

Main effect B
- A and int. sig

equal cont. 4.60 4.55 4.00 4.65 4.60 5.55 5.40 4.65 4.00 5.05
discr. 4.40 4.40 4.50 5.05 5.45 5.70 5.10 4.90 4.20 5.70

unequal cont. 3.40 3.40 3.60 3.60 3.90 4.15 4.40 4.90 4.50 5.55
discr. 3.50 3.75 3.65 4.05 4.65 4.80 4.95 6.05 5.30 6.15

Interaction
- null model

equal cont. 5.25 5.30 4.10 5.00 5.05 4.60 4.70 4.25 5.20 4.55
discr. 5.75 4.50 4.85 5.00 5.95 5.15 4.85 5.40 6.30 6.15

unequal cont. 5.50 5.55 5.30 5.80 4.35 4.45 4.60 4.20 4.65 4.40
discr. 5.55 5.95 5.85 6.80 6.30 5.80 6.70 7.35 7.70 7.60

Interaction
- A significant

equal cont. 5.25 5.30 4.10 5.00 5.05 4.60 4.70 4.25 5.20 4.55
discr. 5.75 5.00 4.75 5.25 5.85 4.85 5.05 5.35 5.60 5.90

unequal cont. 5.50 5.65 5.05 5.80 4.35 4.50 4.50 4.30 4.60 4.60
discr. 5.55 6.00 6.40 7.45 6.30 6.10 6.85 6.55 7.00 7.20

Interaction
- A and B sig

equal cont. 5.25 5.30 4.10 5.00 5.05 4.60 4.70 4.25 5.20 4.55
discr. 5.75 4.50 4.85 5.00 5.95 5.15 4.85 5.40 6.30 6.15

unequal cont. 5.10 5.60 4.95 5.90 4.40 4.40 4.60 4.25 4.60 4.45
discr. 5.65 6.10 5.60 7.00 6.65 6.05 7.25 7.65 7.45 8.05
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5

38.75
55.45
48.35
72.25
24.15
60.45
73.85
69.30
39.55
59.20
69.70
79.05
26.45
67.70
54.10
57.45
31.85
70.95
37.40
71.10
26.40
44.90
24.15
18.60
21.10
40.50
29.10
35.35
    

Table 8: type I error rates of the ART-method for 7 different effect models, equal and unequal 
cell counts, two different designs and 4 different scalings of the exponential distribution (conti-
nuous and discrete) for small cell counts (5 and 10) and large cell counts (50).

number of discrete values

n = 5 / n = 10 n = 50

method count design cont. 18 10 5 cont. 18 10

Main effect A
- null model

equal 2*4 5.40 5.90 7.65 20.20 5.30 8.15 17.25
4*5 6.90 7.45 8.60 27.60 4.95 6.60 19.80

unequal 2*4 4.65 4.65 7.15 17.05 4.65 8.25 19.70
4*5 4.15 4.25 4.80 19.05 4.05 6.50 25.45

Main effect B
- A significant

equal 2*4 7.05 7.25 7.25 10.90 8.90 9.15 13.80
4*5 9.15 9.60 11.00 22.80 9.70 12.05 25.90

unequal 2*4 6.45 7.00 9.20 14.15 17.70 22.90 40.95
4*5 6.45 6.60 7.25 14.40 19.50 22.50 37.85

Main effect A
 - interact. sig

equal 2*4 5.85 7.00 10.45 23.55 6.60 10.00 20.70
4*5 7.65 8.50 10.95 33.55 8.25 10.90 23.80

unequal 2*4 6.40 7.35 11.05 25.30 25.20 32.25 44.60
4*5 6.20 6.25 8.35 29.20 12.15 16.85 35.90

Main effect B
- A and int. sig

equal 2*4 7.45 7.80 9.20 11.10 8.10 8.80 10.05
4*5 9.55 10.20 12.10 23.95 9.95 12.10 18.65

unequal 2*4 7.25 7.85 9.25 16.60 13.10 15.45 15.45
4*5 8.05 8.75 9.40 15.85 17.40 18.95 25.55

Interaction
- null model

equal 2*4 5.70 6.15 6.90 12.55 6.00 6.85 12.40
4*5 6.60 7.05 8.65 15.55 4.95 7.90 22.60

unequal 2*4 5.75 6.15 8.35 14.70 5.10 7.20 13.60
4*5 6.65 7.10 8.40 17.95 4.65 8.50 21.70

Interaction
- A significant

equal 2*4 7.90 7.65 9.20 14.60 7.40 9.40 14.70
4*5 8.70 8.80 9.90 16.35 7.80 10.00 18.60

unequal 2*4 6.55 7.65 9.10 13.20 8.05 8.65 14.70
4*5 5.10 5.80 6.35 11.30 5.20 7.05 12.30

Interaction
- A and B sig

equal 2*4 8.15 8.05 8.85 11.35 9.15 9.10 11.60
4*5 8.80 8.80 9.30 12.90 9.60 10.85 19.35

unequal 2*4 10.00 10.40 11.25 15.75 9.90 11.45 13.55
4*5 5.30 5.25 5.70 7.75 6.70 7.75 11.05
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2

22.60
28.95
29.05
38.45

8.30
23.95
60.50
42.85
14.05
16.20
40.55
29.30

8.10
13.45
18.40
12.90
14.60
35.75
20.70
38.75
9.20

16.10
10.10

9.80
11.35
16.45
11.45
14.95
     

Table 9: type I error rates of the ART-method for 7 different effect models, equal and unequal 
cell counts, two different designs and 4 different scalings of the uniform distribution (continuous 
and discrete) for small cell counts (5 and 10) and large cell counts (50).

number of discrete values

n = 5 / n= 10 n = 50

method count design cont. 7 4 2 cont. 7 4

Main effect A
- null model

equal 2*4 5.05 5.40 5.80 9.65 4.20 6.0 10.15
4*5 4.85 5.20 5.60 5.75 4.85 5.95 9.45

unequal 2*4 3.20 3.70 4.25 7.05 2.80 4.95 9.30
4*5 2.20 2.25 2.80 3.00 2.30 3.65 7.20

Main effect B
- A significant

equal 2*4 4.45 4.70 5.45 6.65 5.15 5.30 5.15
4*5 6.15 6.25 6.50 9.05 4.15 5.80 7.60

unequal 2*4 5.55 6.20 7.20 10.70 13.30 21.85 29.65
4*5 3.70 3.85 4.25 5.25 11.15 14.80 23.55

Main effect A
 - interact. sig

equal 2*4 5.05 4.85 5.85 8.85 4.20 6.55 6.60
4*5 4.85 5.40 5.40 7.05 4.85 5.50 7.00

unequal 2*4 4.80 4.60 4.85 9.10 12.15 14.40 13.05
4*5 2.70 2.40 2.85 3.60 4.25 5.70 6.75

Main effect B
- A and int. sig

equal 2*4 4.45 4.40 4.75 5.45 5.15 4.85 5.90
4*5 6.15 5.90 6.00 7.00 4.15 5.65 6.30

unequal 2*4 5.15 5.65 6.00 8.30 11.45 15.30 7.85
4*5 3.80 4.15 4.05 5.15 8.80 11.00 12.25

Interaction
- null model

equal 2*4 6.05 5.85 6.25 7.70 4.75 5.25 6.65
4*5 5.35 5.65 5.35 7.40 5.00 6.10 9.10

unequal 2*4 4.65 5.05 5.15 6.35 4.95 6.10 8.00
4*5 4.40 4.70 5.05 6.45 5.55 7.50 12.05

Interaction
- A significant

equal 2*4 6.05 6.00 5.95 9.05 4.75 5.65 5.50
4*5 5.35 5.10 5.45 7.50 5.00 5.80 5.85

unequal 2*4 4.30 4.80 4.85 7.75 5.00 5.80 7.75
4*5 4.40 4.25 4.50 5.45 5.50 6.90 8.20

Interaction
- A and B sig

equal 2*4 6.05 6.15 6.05 8.15 4.75 5.20 6.50
4*5 5.35 5.6 5.30 7.45 5.00 5.30 9.60

unequal 2*4 4.30 4.60 5.35 6.55 4.75 6.30 9.90
4*5 4.60 4.95 4.85 5.15 5.60 6.50 12.25
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