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Zusammenfassung

Die Untersuchung selbstkonjugierter Kerne (
� ���

Kerne) in der pf-Schale ist
seit den letzten Jahren eines der Hauptforschungsgebiete am Institut für Kern-
physik der Universität zu Köln. Dabei konzentriert man sich auf die niederener-
getische Struktur der ungerade-ungeraden

� ���
Kerne ����
	 V �
	 , �
�� � Mn � � , �
���� Co ���

und �
��
� Co �
� , die sehr wichtig für das konzeptionelle Verständnis der Rolle der
Proton-Neutron-Wechselwirkung in Atomkernen ist. Eines der verblüffenden Er-
gebnisse dieser Untersuchungen war die Beobachtung sehr starker M1 Übergänge
zwischen Zuständen mit � ��� und � ��� .

In dieser Arbeit wird über Betrachtungen der spezifischen Eigenschaften un-
gerade-ungerader

�����
Kerne berichtet. Im Rahmen des Schalenmodells wurde

unter Zuhilfenahme des Konzeptes der Quasideuteronen-Konfigurationen der ge-
nerierende Mechanismus für starke M1 Übergange in ungerade-ungeraden

�����
Kernen dargelegt. Indem Formeln für B(M1)-Werte hergeleitet wurden, wurde
gezeigt, dass die positive Interferenz der Spin- und Orbit-Anteile von M1 Ma-
trixelementen für Ein-Proton-ein-Neutron � ����� �"!$#&%(' ) Konfigurationen mit �"� �
�"! �+*-,.�0/21 eine Hauptursache für diese Verstärkung ist. Es wurde gezeigt,
dass starke M1 Übergänge in einer ganzen Klasse von Kernen im unteren Teil
der 3 -, 4"5 - und 376 -Schale existieren, was durch die bekannten experimentellen
Daten bestätigt wird. Es wird gezeigt, dass M1 Matrixelemente ein sehr effek-
tives Werkzeug zur Identifizierung spezifischer Schalenmodell-Konfigurationen
darstellen. In dieser Arbeit wurde die Beziehung zwischen Quasideuteron-Kon-
figurationen und Shears-Banden hergestellt, und die Relationen für die Inten-
sitäten von B(M1) und B(E2) Werten wurden als gemeinsam für beide Phänomene
erkannt. Für den Fall wohldeformierter ungerade-ungerader

�8�9�
Kerne wur-

den analytische Ausdrücke für B(M1) Werte in Rahmen des Rotor-Plus-Quasi-
deuteron-Modells hergeleitet. Die Ergebnisse der Rechnungen im vorgeschlage-
nen Formalismus erklären die Fragmentierung der M1 Übergangsstärken in de-
formierten ungerade-ungeraden

� � �
Kernen und sind hilfreich beim Auf-

stellen interessanter Beziehungen für B(M1) Werte und helfen auch bei der Ex-
trapolation des Bildes der Quasideuteron-M1-Mode hin zu schweren ungerade-
ungeraden

� �:�
Kernen bis

� � In. Durch die Analyse der vollen 376 -Schalen-
modell Rechnungen für ����
	 V �
	 und �
�� � Mn � � und den Vergleich mit dem Rotor-
Plus-Quasideuteron Modell und experimentellen Daten zeigt sich, dass kollektive
Eigenschaften für die niedrigliegenden Zustände in diesen Kernen massgeblich
sind, und dass sich die K-Quantenzahl-Auswahlregel auf die starken M1 Über-
gänge auswirkt.



Abstract

The study of the self-conjugate
� � �

nuclei in the 376 -shell has been one of
the main topics of research performed at the Institute for Nuclear Physics at the
University of Cologne in the last few years. The investigations were focused on
low-energy structures of the odd-odd

� � �
nuclei ����
	 V �
	 , �
�� � Mn � � , �
���� Co ��� , and

�
��
� Co �
� which are of great importance for the conceptual understanding of the role
of proton-neutron interaction in atomic nuclei. One of the amazing findings of
these studies was the observation of very strong M1 transitions between � � �
and � � � states.

In the present work the studies of the exclusive properties of odd-odd
� ���

nuclei are reported. In the framework of the nuclear shell model the generating
mechanism of strong M1 transitions in odd-odd

� � �
nuclei using the concept

of quasideuteron configurations was revealed. By deriving analytical formulas for
B(M1) values, it was shown that a positive interference of spin and orbital parts of
M1 matrix elements for one-proton one-neutron � ��� � �"! # % ' ) configurations with
� � � �"! ��* ,��0/21 is a main source for this enhancement. It was brought to view
that strong M1 transitions are appropriate for a whole class of nuclei from the
lower part of 3 , 4"5 , and 376 -shells, what is well supported by known experimental
data. Comparing the properties of low-lying states in �
���� Co ��� and � ���� Sc ��� , we illus-
trate, that M1 matrix elements are very effective tools for the identification of the
specific shell model configurations and help to explore the properties of proton-
neutron interaction in isovector ( � � � ) and isoscalar ( � �.� ) channels. In this
work, the relation between quasideuteron configurations and shears bands was es-
tablished and the intensity relations for B(M1) and B(E2) values were found to be
common features of both phenomena.

For the case of well deformed odd-odd
�����

nuclei in the framework of the
rotor-plus-quasideuteron model, the analytical expressions for B(M1) values were
derived. The results of the calculations within the proposed approach explain the
fragmentation of the M1 transition strengths in deformed odd-odd N=Z nuclei.
They help to establish some interesting regularities for B(M1) values as well as
to extrapolate the quasideuteron picture to heavy odd-odd

� � �
nuclei up to� �� � In � � . Sum rules for M1 transitions in deformed and spherical odd-odd

� �
�

nuclei were derived. Analyzing the full 3 6 -shell model calculations and new
experimental data for ����
	 V �
	 and �
�� � Mn � � from the perspective of the rotor-plus-
quasideuteron model collective features appropriate for the low-lying states in
these nuclei were identified, and K-quantum number selection rule effects on the
strong M1 transitions were indicated.
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Chapter 1

Introduction

The concept of the atomic nucleus as a quantum system of interacting neutrons
and protons introduced by W. Heisenberg [Hei32] and D. D. Iwanenko [Iwa32]
is fundamental for understanding the rich and fascinating variety of nuclear phe-
nomena. In general the theoretical description of systems of strongly interacting
particles is a very complicated problem of Quantum Field Theory [Bog57]. The
study of the experimentally observed properties of the atomic nuclei allows some
general conclusions about the properties of nuclear forces helping to avoid the dif-
ficulties of Quantum Field Theory and develop a non-relativistic nuclear theory.

However, any nonrelativistic approximation of nuclear theory is countered
with two principal problems. First, the nature of the nuclear forces is not well
known. Second, the many-body problem is too difficult to be solved exactly
(for

�
nucleons there is a system of

1��
equations!); and even if exact solu-

tions were available they would be too complex to be analyzed. Therefore, in
order to make progress in understanding nuclear structure, macroscopic and mi-
croscopic models have been suggested which are based on empirical evidence
and are usually adopted for describing only certain groups of phenomena. For
instance, the nuclear shell model was aimed at explaining the magic numbers
and the structure of atomic nuclei with few valence nucleons near a shell closure
[Bar32, Els33, Els35]. In this model, the complicated motion of nucleons due to
their mutual interactions is modeled by the motions of independent nucleons in a
static spherical field. Immediately after the correct mathematical formulation of
the model by Mayer [May49], Haxel, Jensen, and Suess [Hax49], the nuclear shell
model had amazing success and was recognized as a fundamental microscopic nu-
clear model.

However, the observation of simple rotational like regularities in the spectra

5



6 CHAPTER 1. INTRODUCTION

of weakly excited states in even-even nuclei served as impressive evidence for
collective nuclear phenomena. These regularities were observed in nuclei with
numbers of protons and neutrons which are far form the magic numbers. These
regular features were described in the unified nuclear model developed by A. Bohr
and B. Mottelson [Boh53]. In this approach, the degrees of freedom of one or a
few weakly bound nucleons were explicitly taken into account. These weakly
bound nucleons are moving in a deformed field and thus occupy deformed or-
bitals which were introduced by Nilsson [Nil55]. At the same time, the collective
vibrations attributed to the changes of form and orientation of the nucleus were
“borrowed” from the liquid drop model. The Bohr-Mottelson model described a
lot of experimental data related to the deformed nuclei and predicted some of their
properties, too. Later the idea of collective nuclear properties was developed for
the more general case of triaxially deformed nuclei by A. S. Davydov and G. F.
Filippov [Dav58].

Shortly after the first steps in the application of the spherical shell model, it
was impossible to perform shell model calculations in large configurational spaces
with many active nucleons due to the technical problems. Thus, the question,
whether the shell model is in principle able to describe the observed collective
features of the nuclear structure remained unanswered. It was recognized that to
use the shell model in the description of heavier nuclei or nuclei far from closed
shells, one must come up with a reliable truncation procedure, in order to reduce
the number of shell model configurations while preserving the key dynamics of
the interacting nucleons. Many various truncation approaches were developed,
starting with the works on the generalized seniority scheme [Ker61], SU(3) sym-
metry considerations [Ell58], the interacting boson approximation [Jan74, Jol75,
Ari75, Ari77], the symplectic shell model [Mos84, Row85], the pseudo-SU(3)
approach [Rat73, Dra83] or quasi-SU(3) scheme [Zuk95, Mar97]. Most of these
approximations were primarily developed to avoid the problems of large space
shell model calculations. But on the other hand, they revealed beautiful and sim-
ple paradigms allowing deep insights into the underlying physics behind the ex-
perimental data as well as behind the shell model output itself.

With recent progress in computational facilities and calculation techniques
based on modern approaches like Quantum Monte Carlo Diagonalization [Ots98]
and Density Matrix Renormalization Group Methods [Duk01] it becomes possi-
ble to perform exact large scale shell model calculations nowadays. Results of
detailed shell model calculations carried out by Tokyo [ScM00] and Strasbourg
[Car99] groups recently show, that indeed a lot of effects predicted by simple col-
lective models and various truncation approximations really seem to be account-
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able within a shell model approach.
The theoretical advances mentioned above, accompanied by intense develop-

ments of new experimental tools like the radioactive ion-beam facilities, large
detector arrays or very efficient mass separator systems, have stimulated a new
wave of active studies on the longstanding problem of the proton-neutron (pn) in-
teraction and the role played by the pn degree of freedom in the formation of col-
lective quantum phenomena such as deformation or phonon excitations [Cho91,
Pet99, Fri99, Goo98, Isa97, Lan97, Len99, LiP99, OLe99, Rud96, Sat97, Sat98,
ScM00, ScC99, Sko98, Sve98, Vin98]. The peculiar property of the pn inter-
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Figure 1.1: Energy difference between the lowest � �9� state and the
� �
�
� � � �

ground state in even-even nuclei (upper points) and between the
� �
�
� � ��� state

and the lowest � ��� state in odd-odd nuclei (lower points).

action is, that, in contrast to proton-proton ( � � � � ��� � � �
) and neutron-

neutron ( � � � � ��� � � ) configurations, the pn pairs can either form isovector
( � � � � ��� � � ) or isoscalar ( � � ��� ��� � � ) states. Isovector pn correla-
tions manifest themselves in a similar fashion to like-nucleon correlations, what
is evident from the properties of � �8� isobaric analogue nuclei, while the pn
interaction in the isoscalar channel ( � � ��� ��� � � ) is much less understood
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and currently the subject of active debate and intense studies using new theo-
retical and experimental tools [Goo98, Lan97, Mac00, Vog00]. The best labo-
ratory to study the effects from the interplay between different modes of pn in-
teraction in isovector and isoscalar channels are

� ���
nuclei, while in nuclei

with neutron excess (or proton excess in light
� � � nuclei) the like-nucleon

� � � pairing forces dominate. Furthermore, odd-odd N=Z nuclei are par-
ticularly interesting systems, since in these nuclei, as a consequence of a can-
cellation of the symmetry and pairing energies, the � � � and � � � states
are almost degenerate (see Fig. 1.1). This creates very favorable experimental
conditions to study electromagnetic transitions between low-lying � � � and
� � � states, which is also indicated by a wealth of experimental data accu-
mulated for light

�������
odd-odd

� � �
nuclei. One of the interesting phe-

nomena related to the interplay of � �:� and � � � states, which we tried to
attract the attention of the nuclear physics community to in a series of our papers
[LiP99, LiL01, BrE00, BrB00, BrM01, BrE01, LiG01, ScM00, ScC99], is the
occurrence of very strong � � � � M1 transitions in some odd-odd N=Z nuclei.

The present work is aimed at explaining the origin of these extraordinary
strong M1 transitions introducing the simple concept of quasideuteron configu-
rations within the framework of the spherical shell model and the unified model.

The studies presented in Chapter 2 show, which information on the pn interac-
tion can be obtained using M1 transitions, what magnetic rotation has in common
with the quasideuteron mode, what the results of the interplay of the quasideuteron
mode with the spin-flip mode are, what the sum rules for M1 strengths generated
by pn pair are, and how strong M1 transitions are permissible to be in atomic
nuclei.

In Chapter 3 it is demonstrated, how quasideuteron configurations behave in
the presence of quadrupole deformation, which properties of deformed nuclei they
can help to reveal, what the regularities for M1 transitions are, how the concept
of quasideuteron configurations can serve as a guideline for the large scale shell
model and experimental studies of atomic nuclei in the pf-shell as well as exotic
proton-rich nuclei in the region up to

� � In, which actually is declared to be a region
of high interest of modern nuclear structure physics.



Chapter 2

Quasideuteron configurations with
spherical core

2.1 Basics of Nuclear Shell Model

The basic assumption in the nuclear shell model is, that to first order, each nucleon
is moving in an independent way in an average field. This suggests, that the total
Hamiltonian

�
� of a system of

�
nucleons can be written as a sum of single

particle Hamiltonian operators:

��� �� � � ���
�
�

(2.1)

where �
�
� �

�
,�� �

, i.e. each �
�

is a sum of the kinetic �
�

and the average field
potential energy

� �
. Then, the single particle wave functions �
	���
�� are solutions

to the Schrödinger one body equation

�
�
��	���
�� ��� 	���	���
�� � (2.2)

where the multi-index 
 denotes single particle spatial, spin and isospin coordi-
nates 
������

�
��� � � � �"!

, # denotes the set of single particle quantum numbers and� 	 is the single particle energy. The total wave function of an
�

-body system is a
solution to the Schrödinger equation with total hamiltonian

�
(2.1) and is repre-

sented as an antisymmetrized product (Slater determinant) of single particle wave

9



10 CHAPTER 2. QUASIDEUTERON CONFIGURATIONS

functions:

� 	�� '������ ' 	�� � 
 � � ���	�
� � � � � �
� �
�

��������

� 	 � � � � ��	 � � 1 � ����� ��	 � � � �� 	�� � � � ��	�� � 1 � ����� ��	���� � �
����� ����� ����� �������	�� � � � � 	�� � 1 ������� � 	�� � � �

��������
�

(2.3)

The set of single particle quantum numbers #
�

depends on the form of the single
particle Hamiltonian �

�
. While the form of the single particle kinetic energy op-

erator is well defined, the average potential field can be chosen in different ways.
However, because of the short range nature of nuclear forces, this potential well
must have sharp boundaries, which are related to those of the matter distribution
in the nucleus. For practical reasons such wells should also be amenable to calcu-
lations. The potential of the spherical harmonic oscillator

�
�
� ��� �

�
1

satisfies these conditions and is usually used as basic ingredient for the total sin-
gle particle Hamiltonian. In order to reproduce higher magic numbers a phe-
nomenological spin-orbit potential ���

�
���

�
� [May49, Hax49] and the orbital-orbital

� �
�

[Nil55] term had been added to the harmonic oscillator:

� � �
�
� � �

�
� � � �

�
1 ��� �

�
���

�
��� � �

�
�

(2.4)

The constant
�

characterizes the strength of the spin-orbit coupling and the
parameter

�
simulates the deviation of the oscillator potential from a more real-

istic one. Both parameters are always positive for the oscillator potential.
The single particle Hamiltonian (2.4) and corresponding single particle wave

functions with quantum numbers
� * � constitute the building blocks of the nu-

clear shell model. The single particle level scheme for the Hamiltonian above
(see Fig.2.1) is of great importance for establishing the shell closures and deter-
mination of the dominant single � -orbitals for any atomic nucleus and thus for the
qualitative prediction of the structure of the nuclear states. The residual interac-
tion, i.e. the interaction between nucleons, which is not included in the average
field and has a predominant two-body character can strongly mix configurations
with various � -orbitals. Choosing the appropriate form of the residual interaction
is one of the fundamental problems in nuclear structure physics. Detailed descrip-
tions of this problem and possible ways of its solution are described in many shell
model books (see for example [Hey94, Bru77]).
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Figure 2.1: The single-particle level sequence for a Hamiltonian consisting of a central
harmonic oscillator potential plus a spin-orbit splitting. The number of particles in each
shell is shown, as well as the cumulative number of particles [May55] .
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However, there are cases in which some of the observables are not very sensi-
tive to the residual interaction. Thus, using the average field approximation, one
can already conclude about the structure of the observed states. Some of these
cases are considered in the next sections.

2.2 Two-nucleon configurations

In the description of the full Hamiltonian for a nucleus formed by a closed shell
system (

� � � � � inert core with
���

) and two extra valence nucleons with the
single-particle Hamiltonian � � ��
�� the total wave functions

��� � '
� � ' %�� � � �(1 � are eigen-

functions of ��� ��� , � � � � � , � � � 1 � � (2.5)

with eigenvalues � � ' � ' �
� � � , �

�
, � � . �

�
and

�
denote single particle angular

momentum and total angular momentum, respectively. The wave function of such
a system is well established for any possible value

�
of the total angular momen-

tum : 	 � � � � � 	�
 � 
 � � , � � . Without a two body interaction � � � � 1 � in Eq.(2.5)
all the states with different values of spin

�
will be degenerated. A residual inter-

action � � � �(1 � will split the degeneracy in
�

for the � � ��
 � � # % multiplet of states,
but will not affect the structure of the states and subsequently will not influence
the matrix elements of electromagnetic transition operators.

In the case of two nucleon configurations, the concept of isobaric spin (isospin)
is most illustrative. Isospin had been introduced to express the fact that forces be-
tween a pair of nucleons in a given state do not strongly depend on the nature of
the nucleons (i.e. if they are protons or neutrons or one of each). If the pair of
nucleons is in an antisymmetric state, the Pauli principle causes no restrictions;
such a state is available to all three types of nucleon pairs, and strict charge in-
dependence of the forces would ensure that the three resulting physical systems
have identical energies as well as identical descriptions in space and spin. The
Pauli principle does not allow two identical nucleons to be in an overall symmet-
ric state; such a state would only be available to a proton-neutron pair and have
no counterpart in the other systems.

The isospin description of this situation attributes an extra quantum number
to nucleons, the isospin � of magnitude

�� . While this does not correspond to
any physical angular momentum, it possesses all the algebraic properties of a
spin. Any state of a nucleus will be characterized by a total isobaric spin quantum
number � and a value ��� of the third component in the isospin space. The latter is
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simply half the difference between the neutron number
�

and the proton number�
and is always a good quantum number. Corresponding states which differ only

in their ��� value therefore belong to different systems of the same mass and are
said to form an isobaric multiplet. Since

�
behaves like an angular momentum,

one has the usual rule that ��� cannot exceed � . Thus � � � are singlets, existing
only in systems with

� � �
, � � �0/21 states are doublets in odd mass nuclei

(like the neutron and proton with � � ��� �� respectively) and so on. Today there
is experimental data available for more than 290 � �:�0/21 analog doublets, 110
� � � triplets, 26 � � � /21 quartets, and 6 � ��1 analog quintets [Bri98]. The pair
of nucleons mentioned above, which forms three degenerate states antisymmetric
in space-spin, would be described as a � ��� system; that is, an isospin triplet with
��� � , � (two neutrons), ��� � � (neutron-proton) and ��� � � �

(two protons).
When such a nucleon pair couples to the � � ��� ��� � � even-even core they will
also form an isospin triplet.

However a p-n pair can also exist in a � � � state for which there is no need
for equality with the � � � n-p, p-p and n-n forces. The properties of the proton-
neutron interaction in this � �9� state is one of the most active areas of current
research in nuclear structure physics. Effects from the interplay between different
modes of the proton-neutron interaction in isovector ( � � � ) and isoscalar ( � ��
) channels can be studied in

� � �
nuclei, while in nuclei with neutron excess

(or proton excess in light N �� Z nuclei) the neutron-neutron (proton-proton) � � �
pairing forces dominate. The odd-odd

�8� �
nuclei are particularly interesting

objects since the � ��� and � � � states are almost degenerate as a consequence
of a cancellation of the symmetry and pairing energies [BrE00, Mac00, Vog00]
in these nuclei. The contemporary advances in experimental techniques enable
one to obtain spectroscopic data on the nuclear structure of heavy

� � �
nuclei

nowadays and hopefully give some clues resolving the problem of proton-neutron
pairing correlations. In the light of this interest, the low-spin structure of odd-odd� ���

nuclei ��� V [BrM01, Fri99, Fri00, Sch00], �
� Mn [BrB00, ScM00], �
� Co
[BrE00, ScC99] and �
� Cu [BrM01, Sch00] was studied in Cologne recently. In
the next sections the most interesting findings of our studies are stressed.

2.3 Quasideuteron M1 mode in odd-odd N=Z nuclei

In order to study medium heavy odd-odd
� �:�

nuclei, the experimental data
available for all odd-odd

� ���
nuclei has been analyzed with the aim to find

common nuclear structure features appropriate for this class of nuclei (except the
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well known fact of degeneracy of � � � and � � � states). However, very
striking differences between the spectra as well as the electromagnetic transition
strengths have been found for the odd-odd

�+�.�
nuclei from different parts of

the same N-oscillator shell. While spectra, magnetic dipole moments, E2 transi-
tion strengths for the odd-odd

�8� �
nuclei from 3 � , 4�5 � , and 376 -shells were

intensely discussed, analyzed and interpreted in the frames of various approaches,
the occurrence of very strong M1 transitions and their origin has been overlooked
in a bulk of papers and books despite the known experimental data. Thus, analyz-
ing the data, it was noted that some of the odd-odd

�����
nuclei, namely � Li,

� � F
and � � Sc exhibit very strong isovector M1 transitions between the yrast states with
quantum numbers

� � ��� �
�
� � � � and

� � � � �
�
� � ��� (see Table 2.1) while the

transitions from
� � � � �

�
� � ��� to other

� � ��� �
�
� � � � states are negligible

weak. In other nuclei, for example like in
�
�

Na, the large M1 strength is distributed
among two or three low-lying

� � � � � states. Finally the odd-odd
�����

nuclei
� � N,

	 � P,
	 � Cl,

	 � K have considerably weaker
� �
�
� � � � � � �

�
� � ��� transitions,

in some cases with almost vanishing M1 strengths.
Attempting to understand this interesting phenomena [LiP99], an odd-odd� ���

nucleus was considered as an inert
� �
)
� � �
� even-even N=Z core cou-

pled to two valence nucleons, one proton and one neutron in the same shell model
orbital with quantum numbers ( � * � ).

The two nucleon � � � 
�� � # % ' )� ' )�� � � multiplet of states splits into two sequences
with different isospin symmetry: � �:� , (odd spin values

��� � � �����
� � 1 � ) and
� � � (even spin values

� ����� 1�� �
�	� �(1 � � � ). In the lowest states of the deuteron,
the bound

� �
)
� � � � � � � ground state and the unbound

� �
)
� � � � � � �

resonance, both nucleons occupy the
� 4 ���
� orbital, i.e. the one with � � * ,��0/ 1

and
* ���

.
In generalization of the deuteron case the wave functions 	 � � � 
	� �2#�
 ��� �
� were

denoted as quasi-deuteron configurations (QDC).
To calculate M1 matrix elements one starts with a nuclear magnetic dipole

operator, which is the sum of proton and neutron one-body terms for spin and
orbital contributions:

� ��� � � ��� �
� ������ � � �������� � � � , ���� � � � � , !� � � �"�#���$ � $� , �%�$ � $� ��&(' ! � (2.6)

where � �) and � �) are the orbital and spin � -factors and � )� , � )� are the single particle
orbital angular momentum and spin operators for *,+ �(3 � � !

and

' ! �.-0/� /21 � �21
represents the nuclear magneton. The bare values of � -factors are: � � ' 3 46587� � �

,
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, � � ' 3 46587� ��� � � �

, and � � ' 3 465 7$ � � � � � 1
.

A � � ��� isovector M1 transition, for instance between the
� � � � ��� and� � � � ��� yrast states in odd-odd

� ���
nuclei, is generated by the isovector

(IV) part of the M1 transition operator

����� ��� � � � � �
� � � � �� � � �$1 ��� � � � $ � , � �� � � �$1 �	� � � � $ ��
 ' !/� � (2.7)

where � ) �
� �
� )� and � ) �
� �

� )� with * � 3 � � . This is a consequence of the
tensor properties of the M1 transition operator in isospin space. The states with
isospin quantum number � � � and � �.� and spins

�
and

� ,��
are connected

by M1 transitions. The B(M1) values for these transitions are given by simple
analytical formulae [LiP99]:� ��� � 
 � � � , � � � �

� � � , �
1 � , ��� � , � , �

1���� � � �
1���� � ������ � ' �! � (2.8)

where � ���� � � �� � � �$ � * ,���� � � ��� � �� for � ��* , �0/21 (2.9)

and � ���� � * , � ����� � � ��� � �� , � for � ��*�� �0/21�� (2.10)

where the values of the orbital � -factors are taken to be bare ( � � ' 3 46587� � �
, � � ' 3 46587$ �

�
) and

���
is a quenching factor for the bare spin � -factors ( � � ' 3 46587� � � � � �

and� � ' 3 46587$ � � � � � 1
). Looking at Eqs. (2.9) and (2.10) one can immediately see

the origin of the phenomena. The positive interference of large spin and orbital
parts of the isovector � � =1 M1 reduced matrix elements in the � ��* , �0/21 case
(see Eq. (2.9)) causes a strong enhancement of � � ��� M1 transitions between
quasideuteron states with � ��* ,��0/21 in odd-odd

� ���
nuclei. Actually the

strongest known
� � � � �

M1 transitions between low-lying nuclear states are
observed in spherical odd-odd

� �.�
nuclei in the lower part of the 3 -, 4"5 - and

376 -shells, where the � ��* , ��/21 orbitals play a dominant role. On the contrary, for
the odd-odd

�:� �
nuclei in the upper part of the 3 - and 4"5 -shells, the

� � � � �
M1 transitions are strongly suppressed due to the destructive interference of spin
and orbital parts of the M1 matrix elements for one-proton-one-neutron configura-
tions in a single � � * � �0/21 orbital (see Eq. (2.10)). The

� ��� � � values calculated
from Eq. (2.8) assuming reasonable single particle orbitals are given in Table 2.1
together with the corresponding experimental

� ��� � � values.
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Table 2.1: Experimental and calculated B(M1) values for odd-odd
�����

nuclei.
In the columns labeled by “Th1” and “Th2” the results of calculations using
Eqs. (2.8) and (2.14), respectively, are shown. The free spin g-factors were used
for calculations.

Nucleus orbital � 7 ���� [MeV] B(M1;
� �
�

� � �
� ) �

'
�! #� * � � �

�
� �
� Expt. Th1 Th2�

� H
� 4 ���
� 2.400 0 - 15.86 15.86

�	 Li
� 3 	 �
� 3.562 0 15.4(4) 12.96 15.77

� �� F
� 5 � �
� 1.041 0 20(4) 15.18 18.41

� ���� Sc
� 6 �6�
� 0 0.611 11(4) 18.23 21.85	 ��
� Cl
� 5 	 �
� 0 0.461 0.23(2) 0.42	 �� � K � 5 	 �
� 0.130 0.460 0.47(4) 0.42

2.4 Interplay between quasideuteron and spin-flip
M1 modes

Comparing large experimental and theoretical B(M1) values for �	 Li and
� �� F, it can

be seen that the main contribution ( � � �
%) to the M1 strength originates from the

quasideuteron configurations with � � * ,��0/21 . It is interesting to see, in which
way large M1 matrix elements can be generated by other mechanisms different
from the quasideuteron case. Analyzing single-particle M1 matrix elements, it is
easy to recognize that the additional source of the enhancement of

� �
�

� � �
� M1

transition strength can be an admixture of the 	 � � � ��* , �0/ 1 � 
 � � � * � ��/21 �
#�
 � �� � � ��� � state to the quasideuteron 	 � �&� � * , �0/21 � 
 �&� � * , �0/ 1 �
#�
 � � � � � ��� �
state. The corresponding isovector M1 matrix element generated by this spin-flip
component is

�
� �2# � 
 � � ��� ��� � ��� � � ��� ��� � � 
 ��� #�
 � ��� � � �

� � � 1 *
1 * , � � �1 � ��� � � � � � � � (2.11)

for � � * , ��/21 and � � ��* � �0/21 . In the case of the
� �

state formed by the proton
and neutron in the � � � *�� �0/21 state, one gets a slightly different expression:

�
� � � # � 
 � � ��� ��� � ��� � � ��� ��� � � 
 � � #�
 � � � � � �

� � � 1 * , 11 * , � � �1 ����� � ��� � � � �
(2.12)

Using Eqs. (2.11) and (2.12) one can show, that the M1 transition strength re-
lated to the isovector part of spin-flip mechanism is considerably smaller than the
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Figure 2.2: The comparison of B(M1;
� ����� �

) values for different possible one-proton-
one-neutron configurations for the

� �
and

� �
states. For the two nucleon configurations���	�	� ��
 the notation

�
��� 
 is used, where
���������

for the
������� �����

orbital and
�������! 

for
�"���# �����

orbital. For the quasideuteron
�$�%� 
 � �$�&� 
 and

�' % 
 � �' % 
 cases,
Eq. (2.8) was used. To calculate the spin-flip

�$�&� 
 � �' (� 
 and
�' % 
 � �' (� 
 M1

transitions Eqs. (2.11) and (2.12), respectively, were used.

one for the quasideuteron configurations with � �.* ,��0/ 1 , which is depicted in
Fig. 2.2. It must be noted, that this result is important not only for odd-odd nu-
clei, where the one-proton-one-neutron configurations are pronounced, but also
for the even-even nuclei where more complicated multi-nucleon configurations
are involved.

Furthermore it is noteworthy, that positive interference of the spin-flip and
quasideuteron parts of M1 matrix elements can result in B(M1) values larger than
the ones yielded by Eq. (2.8). For that purpose, the

� � � � � � state with the
following structure is considered:

�� � � � � � �*) �
��� � � � ��* , �0/21 � � � ) � �

) � � � 
 � � � � �
The
� � � � ��� state is supposed to be a superposition of quasideuteron and spin-



18 CHAPTER 2. QUASIDEUTERON CONFIGURATIONS

flip components:
�� � � � � � � ) � � ��� � � � � ) � �)�� � � 
 � � � � ,�� � � � � ��� � � 
 � � # ) � �)�� � � 
 � � � � � (2.13)

where � � * , �0/21 and � � ��* � �0/ 1 . Then it is easy to maximize the B(M1,
� � �� �

) value varying the parameter
�

. It was found, that the maximum value for this
case is the sum of B(M1) values given by Eqs. (2.8) and (2.11):��� 4 �� � �� ��� � � ��

� � � 1 * , �
1 * , � � * , ��� � � � � � � � , 1 *

1 * , � � �1 ����� � ��� � � � ��� ' �! � (2.14)

In other words, Eq. (2.14) represents the M1 sum rule for the two-nucleon 	 � � � � �� � � 	 � � � � * , �0/21 � � # ) � �

) � � � 
 � ��� � state:��� 4 �� � � � ���
� ��� � 
 � � � � � � � � � � ��� � 
 � � � � �
� � � (2.15)

Using Eq. (2.14) the
� � 4 � ��� � 
 � � � � � � values with bare � -factors (

� � � �
)

were calculated for different shells. The results of these calculations are given
in the last column of Table (2.1). It is interesting to note, that for both �	 Li and
� �� F the calculated maximum B(M1) values in the case above are very close to the
corresponding experimental data.

2.5 How strong can M1 transitions be?

Actually one can estimate the maximum possible M1 strength which can be con-
centrated in one

� � � � �
transition for any harmonic oscillator shell. As a most

simple example, the case of one proton and one neutron in the
� 3 -shell is consid-

ered. In this case the
� � � � � � state has two components:

�� � � � � � �*) � � ��� � 3 �	 �
� � ) � �

)�� � � 
 � ��� � , � � ��� � ��� � 3 � ���
� � ) � �

) � � � 
 � ��� � � (2.16)

and the
� � � � ��� state is a combination of three states:

�� � � � � ��� ) � � � ��� � 3 �	 �
� � ) � �)�� � � 
 � � � � , � � ��� � 3 � ���
� � ) � �)�� � � 
 � � � � , (2.17)

	 � � � �
�
� � �� ��� � 3 ���
� 
 3 	 �
� � ) � �) � � � 
 � � � � �



2.6. QUASIDEUTERON STATES IN �
� CO 19

Thus there are three variables:
�

,
�
� and

� � . Using Eqs. (2.8), (2.11) and (2.12) the
expression for the B(M1) values can be written as a function of the three variables
above and can be maximized. One finds, that the B(M1;

� � � � �
) value achieves

its maximum of 17.21

'
�! at

� � 4 � � � � � � � , � � ' � 4 � ��� � � � � and
� � ' � 4 � � � � � � � �

.
Thus, it is shown in a simple way how the interplay between different mechanisms
can enhance the M1 strength to its maximum value. But in any case, one can see,
that the quasideuteron configurations with � ��* , �0/21 play the key role in the
enhancement of M1 transitions.

A more detailed analysis of M1 transitions for the particular odd-odd
� �

�
nuclei has been presented in a recent paper [LiP99]. It was also shown, that

B(M1) strengths in odd-odd
�8� �

nuclei are related to the magnetic moments
of neighboring odd-N and odd-Z nuclei in a very simple way. The derived relation
was found to be rather useful for the estimation of M1 strengths in odd-odd

�����
nuclei using known experimental magnetic dipole moments in odd-A nuclei.

2.6 Quasideuteron states in
� �

Co

The low-spin structure of the odd-odd
� ���

nucleus �
� Co was recently investi-
gated in Cologne [ScC99]. The hitherto known (see, for instance [Rud98] ) low
spin level scheme of �
� Co has considerably been enlarged and the characteristics
of some low-lying states have been established. This section focuses on the results
of the work [ScC99] where a very good example of quasideuteron states has been
found.

To understand the structure of the low-lying states observed in �
� Co, spherical
shell-model calculations with the residual Surface Delta Interaction (SDI) [Pla66,
Bru77] were performed in two different configurational spaces considering �
� Ni as
an inert core [ScC99]. Here, the simplest case is analyzed, where only the proton� 6 �6�
� and neutron � 6 �6�
� valence orbitals were taken into account. It is well known,
that the 6 �6�
� orbital is well separated from the lower lying sd-shell (5 MeV) and
the next higher lying orbital is 3 	 �
� (4MeV). Thus, in the case of �
� Co (27 protons
and 27 neutrons) the valence orbital 6 �6�
� is occupied with one proton hole and one
neutron hole below the inert �
� Ni core. Within this limited configurational space
proton and neutron holes couple to the even–spin (

� ����� 1�� � � �
) � � � multiplet

and odd-spin (
� � � � ��� ��� �

) � � � multiplet. The residual nucleon-nucleon SDI
has the following form

��������� � � 1 � � � � � � �) � �	� � � � � � � � ��
 � � � � � ��
 � ,�� � � �
� � ��� � � (2.18)
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where � � � is the angle between the interacting particles,

���� � 1 � ���
	

fm is the
nuclear radius,

� �) � � and
� �) � � are the strength constants of the SDI for the two

possible isospin quantum numbers. The parameter
� � adjusts the shift of the � ��

and � � � centroids of level energies and is related to the isospin monopole part
of the residual two-body interaction. The SDI parameters

� �) � � and
� �) � � regulate

the splitting of the odd–spin and even spin states, respectively. The SDI is a very
simple interaction from the mathematical point of view. In the considered case
of a single-� -orbital, one has only diagonal matrix elements of the SDI, which
determine the splitting of the states with different spin values J within the � � �
and � ��� multiplets, respectively:

� ) � � � ��� � � � � � �

) � �
� 1 � , � � �1 � � � �

�� � �� � � � ,�� 
 (2.19)

� ) � � � ��� � � � � � � ) � � � 1 � , � �
�

1 � � � �
�� � �� � � � � � , � 1 � , � � �� � � , � � � � � � � (2.20)

where
��� ������� �� 	�
 is the 3-� symbol. Using three parameters

�

) � �
� �
) � � and� 1 one can fit experimental spectra (see Fig. 2.3). It was found that the optimal

values of the interaction parameters for the considered case are:
�

) � �
� �

) � � �� ��� �
MeV and

� � � � �2�
MeV. Using an interaction as simple as the SDI and

the 6 �6�
� model space, one can reproduce the excitation energies of the yrast states
with

� � �
. The excitation energy of the

� �
� state is not obtained satisfactorily.

This problem remains also for the enlarged configurational space which, aside
from the 6 �6�
� configuration, also takes the one-nucleon excitations to the 3 	 �
�
orbital into account. The underestimation of the two-body matrix element for the
maximum spin value

���:1 � by the SDI is known to be a general problem for
any � -orbital. The interaction in this channel can be enhanced using an additional
factor

� , �
%(' �
�

for two-body matrix elements given by Eq. (2.20). Therefore, the� � � � � � 	 ������� 	 � � � � � ��
 � � matrix element for the 6 �6�
� shell was replaced by
2
� � � � � � 	 ������� 	 � � � � � ��
 � � in order to reproduce the experimentally observed

0.197 MeV excitation energy of the
� � ��� �

state (see Fig. 2.3).
However, it is still remarkable, that the SDI qualitatively reproduces the ex-

perimental behavior of the energies as a function of spin
�

for the � ��� multiplet

1The fitted interaction parameters ��� are connected to ���� by the following expression: ������ ������������ �"!$#%�����'&(��!$#*) , where the radial matrix element �����+�,�-�.!$#*���+��� �.!$#/) is supposed to
be independent from the single particle states involved (see [Bru77] for details). The same is valid
for the parameters 0 and 0 � .
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Figure 2.3: Comparison of calculated and experimental spectra of the
� � �� � � � �

states in �
� Co. Th-1 and Th-2 label the calculations within �
6 �6�
� � and�
6 �6�
� � 3 	 �
� � configurational spaces, respectively. The states with isospin quantum
number � � � are plotted with dashed lines and � ��� with solid lines.

(known as “parabolic rule” [Hey94]) and for the � � � sequence of states (see
Fig.2.4).

2.6.1 What can one learn about proton-neutron interaction ?

Basing on this result some conclusions can be made about the proton-neutron
residual interaction in different isospin ( � ��� and � � � ) channels. As men-
tioned before, the SDI parameters

�

) � � and
�

) � � are equal. However, this equal-
ity does not automatically mean, that � � � and � � � interaction strengths are
equal. There is an extra parameter

�
(see Eqs. (2.19) and (2.20)) which can be

attributed to the additional long-range monopole part of the residual interaction.
As it can be seen from Eqs. (2.19) and (2.20), this part destructively acts on the
energies of � � � states but substantially enhances the T=0 two body matrix el-
ements. As a characteristic of the interaction, one can use the average two-body
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Figure 2.4: Calculated energies of � ��� and � ��� states for �
� Co as a function
of angular momentum. The excitation energy centroids � � � � � � � � � � � � � � � � � �
of � � � and � � � multiplets are shown.

energy, which is a centroid energy of multiplet states:

� � � � � �
% � 1 � , � � � ) � ��� � � ��
% � 1 � , � �

�
(2.21)

where
�

is summed over all possible values for the two-particle states 	 � � 
 � � � . It
is easy to show (see [Bru77]), that for the SDI with an additional monopole part
one has:

� � � � � �
�
�
�

) � �
,��

(2.22)

for the centroid of � � � multiplet and

� � � � � �
�
�
�

) � � � � � (2.23)

for the energy centroid of the � � � multiplet. Thus for the used values of the
SDI parameters and the modified matrix element for the

� �
state one gets:

��� ���� � � � � � � � � � �����
	 �
��� ��� ���� � � � � � � � � �21 ���
	 �

These energy centroids and the splitting of the � � � and � ��� states caused by
the SDI are shown in Fig. (2.4). The result above shows that the monopole part
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of the � ��� interaction is notably stronger than the monopole part of the � � �
two-body interaction. From the deviation of the energies of � � � states from
the � �9� centroid, one can see, that the � � � pn-interaction is strongest in the� � � � � state. This effect is related to the strong pn � �9� paring interaction in
the

� � � � � state, which is similar to the � � � pairing for identical nucleons
and corresponds to the maximal overlap of single particle orbits in the semiclas-
sical picture. All other � �:� states are lying close to the centroid indicating a
substantially weaker interaction in these states. For the � ��� multiplet one has a
qualitatively different picture – the splitting is comparable for all states and there
are two levels (

� � � � � and
� � � � �

) lowered in the energy. In the case of� � � � �
, maximum alignment of the single particle angular momentum of two

nucleons (allowed by the Pauli principle in the case of two non-identical particles)
occurs. It corresponds to the maximum overlap of the single particle orbits as in
the case of the

� � �9� � state, but with parallel orientation of the individual an-
gular momenta. Thus, the interaction in this state is stronger than in other � ���
states. This explains, why the

� � � � �
state is the lowest � � � state. It is

interesting to note, that the splitting between the
� � � � � and the

� � ��� � states
is small (0.2 MeV). This can probably be considered as an indication for strong
� � � pairing in the

� � � � � state. However, taking into account the difference
in the centroid energies of � ��� and � �9� multiplets, one finds that the � � �
pairing in the

� � � � �
state is approximately half as strong as the � � � pair-

ing in the
� � ��� � state. But the interpretation of the � ��� pairing is not as

transparent as the one for the � � � pairing, and it is currently under discussion
[Naz99].

2.6.2 M1 transitions as fine testing tools of nuclear structure

Furthermore one can note from Eqs. (2.19) and (2.20), that the energies of the two-
nucleon states depend on the single particle angular momentum quantum number
� . Thus one should expect qualitatively the same spectra for the one-proton-one-
neutron configurations for different orbitals with the same � -value. For example,
the spectra for two-nucleon configurations in 5 � �
� and 6 � �
� orbitals (� � �2/21

)
should be very similar. The only difference is the global energy scale due to the
mass dependence of the interaction parameters

�

) . But as it is shown in the
previous section, the B(M1) values for these two cases are drastically different
(for the 5 � �
� orbital one has � � * , �0/ 1 and for the 6 � �
� orbital � ��*�� �0/21 ).

Thus, one can conclude, that the M1 transitions are much more sensitive tools
to test nuclear structure and wave functions than the excitation energies or even
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the E2 transitions, which in most cases exhibit an insensitivity to the orientation
of the single particle spin with respect to the orbital angular momentum.

To show how efficient nondiagonal M1 matrix elements in the case of the �
� Co
are, our attention was focused on the M1 and E2 transition probabilities between
low-lying states. From the new experimental data some very important branching
ratios and multipole mixing ratios

�
are known [ScC99]. To calculate B(M1)

values Eq. (2.8) was used with a quenching factor
� � ��� � �

. The effective proton- � and neutron
- $ charges for the E2 transition operator were chosen to get the

best agreement with experimental branching ratios for both calculations. Having
experimental branching ratios and multipole mixing ratios, one can get B(M1)
values if lifetimes of the states or B(E2) values are known. Unfortunately, it is
still very difficult to measure the lifetimes of low-lying states in �
� Co.

However, basing on the isospin symmetry one can show, for example, that the
B(E2;

1 �
�

� � �
� ) value in �
� Co is comparable with the B(E2;

1 �
�

� � �
� ) value in

�
� Fe, which belongs to the same � �+� isobaric triplet as �
� Co. �
� Co has one
proton more and one neutron less than �
� Fe. Taking into account that the effective
proton charge is larger than the effective neutron charge one should expect, that in
�
� Co the B(E2;

1 �
�

� � �
� ) value is at least not smaller than in �
� Fe. There are many

examples in lighter nuclei, even in the 376 -shell, indicating that this is really true.
Thus assuming that B(E2;

1 �
�

� � �
� ) values are equal in �
� Fe and �
� Co, one can

get a rather realistic estimation of the B(M1;
1 �
�

� � �
� ) value in �
� Co. Following

this prescription, the B(M1) values were estimated in [ScC99] for some transitions
which are compared to the calculated values in Table 2.2.

One sees from this comparison, that there are very strong M1 transitions in
�
� Co which are main indicators for the dominance of quasideuteron � � 6 �

��6�
� 
� 6 �

��6�
� # % ' ) configurations. It is important to note, that aside from the strong
� �
�

�
� �
� transition the strong

1 �
�

� � �
� ,
� �
�

� 1 �
� ,
� �
�

� � �
� and

� �
�

� � �
� transi-

tions are expected in �
� Co, too. Furthermore, it is very important to note, that
this result is very different from the case of � � Sc. The low-lying states in � � Sc
are usually considered as one of the best examples of the pure proton-neutron
� � 6 ��6�
� 
 � 6 ��6�
� # % ' ) configurations (see [Hey94, Tal93]), and the energies of the
low-lying states are used to extract the proton-neutron two-body matrix elements
of semi-empirical residual interactions for the 6 �6�
� orbital. However in � � Sc only
one strong transition is observed (see Table 2.2).

Thus, M1 transition strengths in � � Sc disprove the dominance of � � 6 ��6�
� 
� 6 ��6�
� # % ' ) configurations for most of the low-lying states in � � Sc, despite the fact
that the behavior of the energies for the yrast states appears to be similar to the
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Table 2.2: Calculated electromagnetic transition strengths for �
� Co (column 2
and 4), experimental B(E2) values for �
� Fe (column 3) used for the estimation of
B(M1) values in �
� Co (5th column), and experimental B(M1) values for � � Sc (last
column). The results of calculations in the 6 �6�
� configurational space are shown
for the effective spin g factors � 7 �� � � ��� � � � 5 7 7� and effective charges

- � ��1 ��� � ,- � ��1 � � � .
B(E2;

�
� � �

� ), � - � fm � � B(M1;
�
� � �

� ), � ' �! �� �
�
� �

�
� � � � � � � � � Th. Expt. Th. Expt.

�
� Co �
� Fe �
� Co �
� Co � � Sc� � � � �"� � � � � � � �(� � 0 12.15 � 10 11(4)� 1 � � �"� � � � � � � �(� � 1.0 4.63 4.2(1) 0.6(2)� 1 � � �"� � � � � � � �"� � 126 129(1)� � � � �(� � � � 1 � � �"� � 2.6 4.55 4.1(5) -� � � � �(� � � � � � � �(� � 141 0� � � � �"� � � � � � � �(� � 4.3 4.12 � 0.9 0.16(7)� � � � �"� � � � 1 � � �"� � 125 76(16) 0� � � � �"� � � � � � � �(� � 7.3 4.28 � 0.5 0.3(1)

one for the � � 6 ��6�
� 
 � 6 ��6�
� # % ' ) multiplet.

This means, that M1 transition strengths show how clean the � � 6 ��6�
� 
 � 6 ��6�
� # %(' )
states are, and therefore are very useful tools for the determination of properties
of the two-body proton-neutron residual interaction in nuclear states with well
defined single particle quantum numbers.

Based on the analysis of the new experimental data and simple theoretical
results for �
� Co presented above, it can be concluded, that the knowledge of the
structure of this nucleus is of great importance – it will help to determine the
proton-neutron two body matrix elements for the 6 �6�
� orbital more precisely, which
in turn are crucial for the description and understanding of the structure of many
pf-shell nuclei.

The observation of the sequence of strong M1 transitions in �
� Co directs to
another very interesting phenomenon, known as magnetic rotation, which also
has strong M1 transitions as main signature. The similarities and differences be-
tween the properties of quasideuteron configurations and magnetic rotation will
be discussed in the following section.
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2.7 Quasideuteron states and magnetic rotation

The regular sequences of M1 � -ray transitions have been observed in the near
spherical neutron-deficient Pb and Bi isotopes [Cla93, Bal94] and in many nuclei
of the A � 110 Cd-Sn region [Gad97, Jen98]. The states in these bands generally
have a rotational-like behavior with energies following the pattern of � � � � � �
� � � � � � � � � � � � � � � � � � � , where

�
is the spin of the state and

� � the band
head spin. However, the electromagnetic transition properties of the bands are
extremely unusual as for the rotational-bands: the levels are linked by strong M1
transitions with weak E2 crossover transitions (typical B(M1)/B(E2) ratios � 20-
40(

' ! / -�� � � ). The shell model configurations of these states involve high-� parti-
cles of one type of nucleons ( � � �
� and 
 � 	 �
� protons for the bands in the A � 200
region and � � ���
� neutrons for the bands in the A � 100 region) and high-� holes of
the other type of nucleons ( 
 � 	 �
� neutrons and � � �
� protons for the structures in the
Pb-Bi and Cd-Sn regions, respectively). Calculations by Frauendorf [Fra93] using
a tilted axis cranking (TAC) model suggests that the total angular momentum �
is almost completely generated by the recoupling of the total proton and neutron
spin vectors � � and � ! , which are characterized by good quantum numbers

� �
and

� ! , respectively. At the band head of these particle-hole bands, � � and � !
are perpendicular to each other. Higher angular momentum states might then be
generated by aligning the two spin vectors along the direction of � in a way that
resembles the closing of the blades of a pair of shears, hence the name usually
given to these structures: shears bands. A more phenomenological semiclassical
description of the shears mechanism has recently been presented in terms of two
long vectors [Mac98]. This model predicts a definitive signature characteristic of
the shears mechanism, namely, that the intraband B(M1) transition rates, which
are proportional to the square of the perpendicular component of the magnetic
dipole vector (see Fig. 2.5), should decrease noticeably with increasing angular
momentum. This follows from the simple geometry specified in Fig. 2.5 resulting
in the following simple semiclassical expression for the B(M1) values [Mac98]:� ��� � 
 � � � � � � � �

� � �1��' � � � �
� � � �7 �

� ��
�
1��
	 � ��� �

' �! � (2.24)

where � 7 �
� � � � � ! is the effective � -factor, 
 �
� � � � � ! �
	 � � / � � � , � !���� � � �

with
�

being the semiclassical shears angle between proton and neutron vectors:

��� � � � �� � � �� !
	 �� � 	 	 �� !�	

� � � � , � � � � � � � � , � � � � ! � � ! , � �1 � � � � � � , � � � !�� � ! , � � �
(2.25)
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Figure 2.5: Schematic representation of quasideuteron and shears mechanism. In
the case of quasideuteron configurations, angular momenta of only one proton
and one neutron are involved in the generation of the total spin J near

��� �
. In

the case of shears configurations several neutrons (short vectors aligned to
� ! )

and several proton holes (short vectors aligned to
� � ) are coupled to total spin

�
at the angle

� � � ���
.

An assumption about the goodness of proton and neutron quantum numbers of
angular momentum

� � and
� ! in the shears model resembles very much the case of

one-proton-one-neutron configurations. The only difference is, that
� � and

� ! are
now angular momentum quantum numbers of single particle � -orbitals and that
one deals with a proton-neutron particle-particle interaction instead of a particle-
hole interaction in the case of shears configurations. The latter results in a dif-
ferent behavior of the energies of the multiplet states, but the behavior of electro-
magnetic transition strengths as a function of spin

�
will be identical. Actually, an

exact quantum mechanical expression for the
� � � � 
 � !�� � � � 	 	 � ��� � � 	 	 � � � 
 � ! � � � �

matrix elements with
� � � � � � can easily be derived:

� � ��� � ��� � � � � � � � � � ! � � � � � � � � � ! 	 	 � ! ��� � � 	 	 � ! �6 � � ! � �
� � � 	 	 �7� ��� � � 	 	 � � �

6 � � � � � �
(2.26)

where 6 � � ) � � � � ) � � ) , � � � 1 � ) , � � for * � � � � and the only geometrical� � � ! � � � � � � factor contains the information on the total spin
�

:

� � � ! � � � � � � �
���� � � � � 4 � , � � � � � �! � � � , � � � � � ��#" $  

� � �
(2.27)

where
� � 4 � � � ! , � � and

� �#" $ � 	 � ! � � � 	 .
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Using the relation between the diagonal matrix elements of the � � transition
operator � ) ��� � � and the magnetic moment

' )
� � 	 	 � ��� � � 	 	 � � � � �

� � � � � ) , � � � 1�� ) , � ��
' ) � � ) � � (2.28)

where ' ) � � � � � � � % � � ������
!�� )��� � � � ���) � * � ��� � , ���) �04 � ��� � ������ � � % � �	� � (2.29)

one can show, that� ��� � 
 � � � � � � � �
� � � � � � � � � ! � � �1 � , � � � � � � � � � � ! � � ! �  � ' �! � (2.30)

where � ) � � ) � is the � -factor (

' ) � � ) � � ) � � ) � ) for the substate with spin
� ) . By

replacing
� � and

� ! in Eq. (2.30) with the single particle angular momentum � ,
it is easy to check that Eq. (2.30) transforms to Eq. (2.8) for the quasideuteron
configurations.

It is interesting to compare the exact quantum mechanical expression for B(M1)
values derived above (Eq. (2.30)) with the semiclassical one given by Eq. (2.24).
Assuming that � 7 � in Eq. (2.24) and � � � � � � � � !�� � ! � in Eq. (2.30) are the same
quantities (i.e., � 7 �

� � � � � � � � � !�� � ! � ) one can show, that at the limit of very
large

� � � � ! and
�

values (regime of shears mechanism) the geometrical factor
determining the dependence of B(M1) values on total spin J approaches the semi-
classical one, as it should be:

� � � � � � � ! � � �1 � , � � 1 � �
' �� 7 �
� � ��1 � �� � 	 � � � � � (2.31)

However for realistic values of
� � � � ! and

�
there are some differences. In Fig. 2.6

B(M1) values are plotted as a function of spin
�

using Eqs.(2.24) and (2.30) for� � � � ! � �01 (panel (a)) and
� � � � ! � � /21

(panel (b)) taking � 7 �
� � � �

.
The spin value

� �
corresponding to perpendicular coupling of proton and neutron

vectors is obtained from Eq. (2.25) (putting ��� � � � � ) and plotted as a vertical
line. As one can see from Fig. (2.6a), the behavior of both curves at

� � � �
is almost identical. Thus, the semiclassical picture gives a perfect approximation
for the B(M1) values at large spins

�
, where the sequences of strong but rapidly
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Figure 2.6: B(M1;
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) values as a function of spin
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corresponds to the results of the calculation using Eq. (2.24). The “exact” curves
correspond to the results of Eq. (2.30). The values of the total spin correspond-
ing to the perpendicular coupling of proton and neutron vectors are shown by a
vertical line.
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decreasing M1 transitions are actually experimentally observed. As one can see
from Fig. (2.6), the states connected by even stronger M1 transitions are expected
on the other side of the curve, i.e. for

� � � �
(
� � � � �

). However there are only
few experimental examples where shears states with

� � � �
were observed for the

same particle-hole structures as for long bands with
� � � �

. Thus, unfavorable
conditions for a shears-like mode at

� � � � �
for particle-hole configurations are

indicated.
On the contrary, for particle-particle (or hole-hole) cases there are more fa-

vorable conditions for observing shears-like states at
� � � � � � � � � �

. This is
evident from the case of quasideuteron states observed in �
� Co and discussed in
the previous section. However, in this case one has short blades (completely open
mini-shears) with the angle

�
inbetween, changing from

� � � �
up to

� � � �
. As one

can see from Fig. (2.6a), in the case of short vectors one should expect only a few
transitions at

� � � � �
. Moreover, because of the large spacing between the states

in this region (for example, between the
� �
� and

� �
� states in �
� Co it is

� �
MeV)

it would be very difficult to identify transitions between them.
Another interesting point is that, despite short vectors, one has M1 transitions

comparable in strength with the ones for long vectors. For example, in
� � � Pb one

has B(M1;
1 �

� � 1 �
� )=4.5(10)

'
�! , B(M1;

1 �
� � 1 �

� )=5.3(11)

'
�! [Cla98],

while in �
� Co one expects B(M1;
1 � � � �

)=4.2(1)

'
�! . This means, that the dif-

ference of proton and neutron � -factors ( � 7 � in Eq. (2.24)) is considerably larger
in the case of short vectors. This is related to the properties of the single particle
orbitals involved in these structures. Thus, in the case of quasideuteron config-
urations one has only an 6 �6�
� orbital with � �8* , ��/21 for which the positive
interference of spin and orbital parts of � � -factors ( see Eq. (2.9)) results in a large
value for � 7 � . In the case of long shears vectors, for example created by two pro-
tons and two neutrons, one has the following expression for the effective � -factor:� 7 �

� �1 � � �� � , � �� � � � $� �

, � $� �

� �
(2.32)

where � )� are the Schmidt � -factors:

� )� � � )� * , �0/21 � )�� for � � * , ��/21 (2.33)

and � )� � � )� � * , � � � ��/21 � )�� , � for � ��*�� �0/ 1�� (2.34)
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i.e. � 7 � is the difference of average values of � -factors for protons and neutrons. In
the case of shears bands observed in the lead isotopes, the structures are thought
to be built on high-� proton excitations involving the 
 � 	 �
� (� � * , ��/21 ) and

� � �
� (� � * � �0/ 1 ) orbitals combined with 
 � 	 �
� neutron holes. The proton � � �
�orbital acts destructively on the proton � -factor due to the antiparallel orientation
of the single particle spin and orbital angular momentum (see Eq. (2.34)) and
thus reduces the value of � 7 � . It is a generic feature of shears structures that
both � � * ���0/ 1 and � � * , �0/21 orbitals are equally represented, and thus, it
explains the reduction of � 7 � -factors for shears bands in comparison to mini-shears
quasideuteron states.

From the comparison above one can draw the following conclusions:

� The quasideuteron configurations represent the realization of a mini-shears
mode (short blades) for particle-particle (hole-hole) configurations at

� � � � �� � � � �
, i.e. in the region where one has unfavorable conditions to observe

shears bands built on very long blades of particle-hole configurations;

� There is a qualitative difference in the behavior of B(M1) values as a func-
tion of spin

�
for semiclassical and quantum mechanical cases for small

values of spin
�

(
� � � � � � ). Thus the semiclassical picture of the shears

mechanism is appropriate only for
��� � � � �

;

� The favorable condition for the observation of very strong M1 transitions
within a shears band is not just the presence of high-� orbitals but the or-
bitals with � � * , �0/21 .

2.8 Intensity Relations

Similarly to the case of M1 transitions discussed in the previous section, one can
derive expressions for the matrix elements of the E2 transition operator

� � � 1 � �� � � � 1 � , � ! � � 1 � :
� � 	 	 � � � 1 � 	 	 � � 1 � �� � � � � ! � � � � � � � � � ! � � � � � � � �� 1 � � � ��� � � � � � , � !�� � ! �  � (2.35)
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Figure 2.7: The fragment of the cascades of E2 and M1 transitions for which
Eqs. (2.37), (2.38) and (2.39) are valid.

where

� ) � � ) � � � � ) 	 	 � ) � � 1 � 	 	 � ) �� � ) � � ) , � � � 1 � ) , � � � 1 � ) , � � � 1 � ) � � � � � �
� � � � ) � � ) �� ) � 1 � ) � � � �

where
� ) is the static quadrupole moment of the proton ( * � � ) or neutron ( * �� ) subsystem in the state with spin

� ) :
� ) � - ) � � � � ) � � � ) ��� ��� �� � � �

� ��� � ) � � � ) � � (2.36)

with
- ) as effective charge. The geometrical factor

� � � ! � � � � � � is defined by
Eq. (2.27). Combining Eqs. (2.35) and (2.30) one finds the following interesting
relation between M1 and E2 strengths for the cascades of transitions shown in
Fig. 2.7

� ��� � 
 � , � � � � � ��� � 
 � , 1 � � , � �� � � 1 
 � , 1 � � � � � � � � � � � � � ! � � ! �  �
� � � � � � � � , � ! � � ! �  �

�
(2.37)

i.e. it is independent of the spin values of the states involved. The relation (2.37)
means that, if the B-values are known for some

�
then there is an invariant ex-
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Table 2.3: Experimental B(E2) and B(M1) values for the shears states identified
in

� � � Pb,
� �
� Sn, and

� 	
�
Sm. In the last column the invariant quantity for a shears

band defined in Eq. (2.37), deduced from the experimental data is shown for each
band.

� � � Pb nucleus [Cla97]�
�

B(M1;
�
� � �

�
� �

) B(E2;
�
� � �

�
� �

) Eq. (2.37)� ' �! � � - � b � � � ' � ! /
- � � � �� , � � � � 1 � � � � �

�

� � � �
� � � � � � � � ��� �

� � � � � �� , 1 � � � � � � � �
�
� � � �
�

� � � � � � � � � 	��
� � � � 	�� 226

� � �
�
�

� �
	� , � � � � � � � � �
�
� � � ���

� � � � � � � � �
�
�
� � � �
�
� 63

� � �
�

� �� , � 1 � � � � � � � 	
� � � �
�

� � ��� � � � � � 	
	
� � � �
� � 73

� � �
�

� �� , � 1 � � � � � � � �
� � � � �

� � � � � � � � � � �
� � � � � � 72

� �
�
�

� �� �
� Sn nucleus , [Jen99]� �
�

� � � � � � � �
� � � �

� � � � � � � � �
�
�
� � � �
�
�� �

�

� � � � � � � � �
� � � � �

� � � � � � � � � � �
� � � � � �

1 � � �
� �� �

�

� � � � � � � � �
� � � � �

� � � � � � � � �
�
�
� � � �
�
�

� � � �
� �� �

�

� � � � � � � � �
� � � � �

� � � � � � � � �
� �
� � � �
�
�

1 � � �
� �� �

�

� � � � � � � � �
� � � � �

� � � 1 � � � � �
�
�
� � � �
�
�

� � � 	
�

	
� 	
�

Sm nucleus [Bra96]
31/2

� � � � � � �
� � � �

� � � � � � � � 	
� � � � 	

33/2
� � � � � � �

� � � �
� � 1 � � � � �
�

� � � �
�
� � � �

� �
35/2

� � 1 � � � �
� � � �

� � 1 � � � � �
�
� � � �
�

�2� � �
� �

37/2
�01 � �

� �
pression for any other possible

� � � � , � :� ��� � 
 � , � � � � � ��� � 
 � , 1 � � , � �� � � 1 
 � , 1 � � � �

� ��� � 
 � , � , � � � , ��� � ��� � 
 � , � , 1 � � , � , � �� � � 1 
 � , � , 1 � � , ��� � (2.38)

The property of this “three-level” relation is the independence of total spin
�

as
well as of the spin of the proton (

� � ) and neutron (
� ! ) subsystems. One does

need to know these quantum numbers to check, whether chosen states belong to
the band or not, i.e. whether they have the same structure. Moreover, one does
need to know all the absolute B values, because of the presence of the

� ��� � 
 � ,1 � � ,�� � / � � � 1 
 � , 1 � � � ratio, which can directly be extracted from the
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relative intensities. Putting � ��� in Eq. (2.38) one gets the following “four-level”
relation: � � � 1 
 � , � � � , � � � ��� � 
 � , � � � � �� ��� � 
 � , � � � , 1 � � � � 1 
 � , 1 � � � � (2.39)

This relation can be interpreted in the following way. The
� , �

state can decay
to the final state

�
in two alternative ways:

� , � � � , 1 � �
and

� , � �� ,�� � �
. The relation (2.39) connects the properties of these two channels. It

shows that the “probability” of the
� , � � �

decay for two alternative ways is
the same.

Furthermore it is interesting to note, that the relation between E2 and M1
strengths for the intraband transitions in the frames of the rotational model has
exactly the same property (see [Boh69]) as the one for the case discussed above.
In the case of the rotational model, a relation similar to the one given by Eq. (2.37)
was tested for several rotational bands, proving that the states belonging to the
band have the same intrinsic structure.

Having obtained the rule given by Eq. (2.37) one sees that it is not an unique
property of the well deformed structures with the same intrinsic state, but it is, too,
appropriate for any system consisting of two subsystems characterized by definite
values of corresponding angular momentum.

To illustrate the efficiency of Eq. (2.37) in the test of the shears band structures,
a few experimental examples for shears bands in

� � � Pb [Cla97],
� �
� Sn [Jen99] and

� 	
�
Sm nuclei [Bra96] are presented in Table 2.3. One sees from this table, that

the ratio defined by Eq. (2.37) is approximately constant for states belonging to
the same band. Thus, it indicates that they have the same structure. However, the
B(E2) and B(M1) values have to be measured more precisely to have better proof
for the shears nature of the studied states.



Chapter 3

Quasideuteron states with deformed
core

3.1 Rotor-plus-quasideuteron model

The study of the strong
� �
�

� � �
M1 transitions in odd-odd

� � �
nuclei

presented in Chapter 2 shows, that in spherical nuclei with one proton and one
neutron above the inert doubly magic even-even

� � �
core, e.g. in � Li,

� � F
and � � Sc, the total M1 transition strength from the yrast

� �
�
� � � � state to the� � � � ��� states is concentrated in the

� �
�

� � �
� transition. As shown above, this

suggests, that the structure of the low-lying states in these nuclei is dominated by
simple quasideuteron configurations. In other nuclei, which have three valence
protons and three valence neutrons (like

� � B,
�
�

Na and ��� V) or larger, equal num-
ber of valence protons and neutrons (like

� � Al), the
� �
�

� � �
� transition strength

is large, but nevertheless reduced by a factor � 2-3 compared to the values for
nuclei having just one valence proton and neutron. From experimental data for
the nuclei mentioned above (especially for the light ones:

� � B,
�
�

Na,
� � Al) it fol-

lows, that they exhibit the properties of deformed nuclei. Thus, to analyze the
M1 transitions in this kind of nuclei it is instructive to apply the unified model,
where nucleons are supposed to move in an axially symmetric deformed field and
occupy deformed Nilsson orbitals.

The basic assumption of the model [Asc68, Was71], which was applied to the
deformed odd-odd

� � �
nuclei in [LiL01], is, that one has one proton and

one neutron outside a rotating axially deformed even-even core. The simplified
version of this model was considered, neglecting the Coriolis interaction and the

35
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residual interaction between the odd proton and odd neutron. Then the rotational
motion of the nucleus is specified by the quantum numbers

� � � and the total
wave function has its form appropriate to a rotationally invariant system:

	 � � � �
� � 1 � , �
� � � � � � , � � ' � � � � %� ��� � ' ) , � � � � % � � � %� �

��� � ' )
 �

(3.1)

where � � ' ) is the wave function in the intrinsic system:

� � ' )
� � 1�� ��� � � �1 ��� � �	� � � � !��	� � � , � � � � ) � � �	� � � � !��	� � �  �	� )) � � � � � � 1 � � (3.2)

where
� � � �

, � � , � ) �	� �
� are single particle eigenfunctions of the Nilsson

Hamiltonian with �
�

as 3-projection of the particle angular momenta, � is the
isospin quantum number and � )) � � � � � � 1 � - the isospin wave function. In order to
understand M1 transitions in deformed odd-odd

�����
nuclei, the representation

of explicit coupling of angular momenta of the axial rotor, the odd proton, and
the odd neutron was used [Boh69]. The reason for the use of this representation
was the question, whether these M1 transitions are related to the QD- or spin-
flip mechanism having non-collective nature or whether they are induced by the
quadrupole deformation and are of collective nature. As a starting point one can
use the particle-plus-rotor model basis states written in terms of spherical single-
particle wave functions in a strong coupling approximation [Boh69, Gui98]:

	 � � � � � �

 '
� � � � , � ��� ' � � � 1 
 , � �1 � , � � % �

� � � ���

�� � 	 
 � � 	 ���  %� � (3.3)

where
� ��

are projection coefficients of single particle Nilsson � � � ��� # � orbitals
on the spherical single particle 	 � * � � � basis [Irv72]:

	 � �����	
 � � � ! � ���
��
� � � � �� 	 � * � � � � (3.4)

� % �
���� � � are Clebsch-Gordan coefficients, R is the core angular momentum quan-
tum number and

� 	 
 � � 	 ���  %� � �
� � ' �

� %��
 � �
�
� 	

 � 
 � � 	 � * � � �
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are weakly coupled rotor-plus-particle states (SU(2) coupling). The wave func-
tions for two particle states coupled to the

� 
 ��� , � �:� rotational core can
easily be constructed applying Eq. (3.3). After some simple transformations one
obtains:

	 � � � �
� � �

 ' % �

� 1 � 1 
 , � �1 � , � � % �
 � % �
� � 	 
 � � 	 � � �  %$)� )�� � � � (3.5)

where the 	 � � � is a one-proton-one-neutron state in the deformed field:

	 � � ��� 	 � � � � � �
� � �
� � '
� �
� � �� � �

� �� � � % �
�� � � � � � � � � 	 � � � � 	 � � �  % � )

� � )�� � � � (3.6)

and �
�

is the Nilsson quantum number of the angular momentum projection on
the symmetry axis for the odd proton or the odd neutron, the projection coeffi-
cients

� ��
can be found in [Irv72]. The representation of the wave function in the

form given by Eq. (3.5) is very convenient for finding the common and distinctive
features between spherical quasideuteron and deformed rotor-plus-quasideuteron
states. At first, one notes, that the wave function for the proton-neutron sub-
system 	 � � � � � �
� is more complicated in the deformed field: excepting the
quasideuteron components � 	 � � � � 	 � � � # % � )� � ' )�� � � with � � � � � it contains also com-
ponents with � � �� � � . For the deformed nuclei near closed shells, however, the
quasideuteron components with � � � � � � ��,��0/ 1 are dominant, which is ev-
ident from the large values of

� ��
coefficients [Irv72] which actually determine

their weights. Secondly, the proton-neutron states 	 � � � � � �
� are coupled to the
different states of the rotating core, and thus, the strengths for the M1 transition be-
tween states with the total spin

�
and

� , �
contain the contribution both from the� � � � � � � , � � � , �

transition (similar to the case of spherical quasideuteron
configurations) and from different configurations with

� 
 � � 
 1 � � 4 � ��� . At
last, one sees, that there is no core contribution to the isovector M1 transitions
since only the even spins of the axial rotor (


������ 1�� � ���
�	�
) contribute to the total

wave function. Thus, it is impossible to construct dipole matrix elements between
rotor states with



and


 , 1
. In the considered model the isovector M1 transi-

tions should therefore have the same noncollective nature caused by the relative
motion of the odd proton and the odd neutron.
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3.2 Regularities for M1 transitions in deformed
odd-odd N=Z nuclei

Using explicit expressions for the wave functions (3.5) and (3.6) the analytical
expressions for the B(M1) values were derived. Considering the particular case of
the initial state characterized by

� ���
and � � � (even

�
) one gets the following

formula for the B(M1) values:� ��� � 
 ��� � � � � � � � � � � � � � , � � � � � �
� � ' �! � � % � � �% � � � �

 � � � �	� �
� � � � � � (3.7)

with the
�

representing the contributions of different single particle orbitals:

� �	� �
� � � � � � �

� � '
� ��
� � �� � �

� � �� � �
� � � �� � � � � �� � � �� � � � � � �� � (3.8)

where � � � � � � � �&� , � � � 1 � , � � � � ��� for � � � � , i.e. for quasideuteron configu-
rations and � � � � � � * � * , � � � 1 * , � � � � � ���� � � ���� � /21 for spin-orbit partner orbitals
with � �9* � �0/ 1�� � � � *�� �0/21 . The difference of proton and neutron � -factors
( � ���� � � �� � � �$ ) is given by the Eqs. (2.9) and (2.10). When both odd particles
occupy the same Nilsson level with � �� �0/21 , it can be taken for granted that, the
lowest

� �
state in the odd-odd

� � �
nucleus is a bandhead of a

� ����� � � �� � � � � � band. This means that both initial
�

and final
� � � � ,��

states are
characterized by

� � � �+� � quantum numbers and from Eq. (3.7) one obtains
a simple expression for the B(M1) values which is analyzed in details in [LiL01].
The calculated and experimental B(M1;

� �
�

� � �
� ) values for the deformed odd-

odd
� �9�

nuclei with the
� �
� state characterized by

� � �
are given in Table

3.1. This data are plotted in Figure 3.1, also giving the predictions for the cases
where the � � �
� orbital (

* � �
) is expected to be dominant. One can conclude from

Table 3.1 and Figure 3.1 a surprisingly good agreement of the experimental data
with the theoretical results. It means that in the deformed odd-odd

��� �
nuclei

considered the lowest
� �
� state corresponds to the

� �:�
component of the

� �
quasideuteron state, while other

� � �
components are shifted to higher ener-

gies. This subsequently explains an observed decrease of the B(M1;
� �
�

� � �
� )

values in the analyzed deformed nuclei in comparison to the ones containing just
one valence proton and one valence neutron. Below some interesting properties
of the � �:��� , � � � � � �

� transitions are briefly noted:

� Proportionality of B(M1, � �:��� ) values to � � ;
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� Dominant contribution of quasideuteron configurations with � ��* , ��/21 to
the B(M1, � �:��� ) values;

� Insensitivity to the quadrupole deformation
�

in the � � 4 � ��� , �0/ 1 case;

� Proportionality of B(M1, � �:��� ) values to
� �

for the same values of � ;

� Expectation of very strong M1 transitions in heavy odd-odd N=Z nuclei
near

� �
� Sn.

Using Eq. (3.7) one can also calculate the B(M1) values for the transitions in
nuclei where � ��* ���0/21 orbitals play a dominant role. However, the problem

Table 3.1: B(M1) values for the transitions between the
� �
�
� �+� �

state and the� �
�
� �����

state. The structure of the
� �

states is shown in the third column, where� * � � � � indicates the dominant spherical component in Eq. (3.4). The calculated
B(M1) values are given for the quenching factor

� � � � � �
. Experimental B(M1)

values shown in the last column are taken from [Fri99, BrM01, PiY01, ScC99,
End93]. The summed B(M1) values defined by the Eq. (3.7) are shown in the last
column. The contribution of quasideuteron configurations with � �

��*
�
, ��/21

are
given in the column labeled by QD for comparison. For the nuclei marked with
(*) the Coriolis effect was taken into account, (see text for details).

Structure B(M1;
� �
�

� � �
� ), (

'
�! )

� $ � ��� � � $ , (

'
�! )

Nucleus
� 7 � � * � � �

� � � � Theory, Expt. QD Eq. (3.7)��� ��� � � ��� � � � � ��� � � � �
� � B 0.8 � 3 	 �
� � �2/21 � � 6.5 7.5(32) 13.0 15.8�
�
Na 0.43 � 5 � �
� � � / 1 � � 4.6 5.0(3) 15.0 17.8� � Al 0.38 � 5 � �
� � �2/ 1 � � 9.3 8(2) 15.0 18.4
��� V 0.23 � 6 �6�
� � � /21 � � 3.2 5(2) 18.2 21.5
�
� Mn 0.25 � 6 �6�
� � �2/21 � � 7.2 6.7(14) 18.2 21.6
�
� Co 0.16 � 6 �6�
� � �2/21 � � 12.5 12(2) 18.2 21.8
� � N �

0.31 � 3 ���
� �"��/21 � � 0.05 0.05(2)	 � P �

0.28 �
4 ���
� �"�0/21 � � 2.0 1.3(1)	 � Cl 0.23 � 5 	 �
� � � / 1 � � 0.36 0.23(2)	 � K 0.11 � 5 	 �
� � � / 1 � � 0.25 0.47(4)
�
� As 0.25 � 3 	 �
� � �2/21 � � 2.9 -� � Br 0.25 � 6 � �
� � � /21 � � 0.24 -
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Figure 3.1: Calculated (Eq. (3.7) with
� � � � � �

) and experimental B(M1;
� �
�

�
� �
� ) values as a function of principal quantum number N for different values of the
� quantum number. The filled circles with error bars and filled squares connected
with dashed lines are used for experimental and theoretical data, respectively.
For the nuclei marked with an asterisk (*), the experimental data are deduced
following the procedure discussed in [LiL01]. Very small B(M1;

� �
�

� � �
� ) values

are shown at the bottom for some of the nuclei were the � � * � �0/ 1 orbital is
expected to be dominant.

is, that for the upper part of the harmonic oscillator shell one should deal with the
Nilsson orbitals with � � ��/21 , and thus, one should take into account the Coriolis
interaction, which mixes the 	 � � � � � � � � * �

� � �
� � � �0/21 � � � and the 	 � � � � ���� � * �

� � �
� � � �0/21 � � � * �

� � �
� � � � �0/21 � � states. Following the prescription given

in [Boh69] the mixing amplitudes were estimated. For
� � N one finds that the

admixture of the 	 � � � �+� � � state to the 	 � � � �8� � � state (which is the lowest
one) is � � � and for

	 � P it is � � �
. Using Eq. (3.7) B(M1;

� �
�
� � � � �

� �
�
� ����� �#" $ 4 $�� � � ) values were calculated for

� � N and
	 � P (see Table 3.1). For

other nuclei of this class with � � �2/21
, i.e. for

	 � Cl,
	 � K, and

� � Br, Eq. (3.7)
was directly used. The results are compared to experimental data in Table 3.1
and for some of them the data are shown in Fig. (3.1). Again a nice agreement
can be seen: very small experimental B(M1) strengths are reproduced within the
rotor-plus-quasideuteron model.
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Figure 3.2: The calculated spin
� � ��� � � (circles) and orbital

��� ��� � � (squares)
contributions to the total B(M1) strength are plotted as a function of orbital angu-
lar momentum

*
� of the dominant spherical component � �

� *
�
, �0/21

in Eq. (3.4).
The circles corresponding to the same value of � are connected by solid lines and
squares by dashed lines.

3.3 Spin and orbital contributions to M1 strengths

The analytical expression (3.7) obtained for B(M1) values makes it very simple
to determine the spin and orbital contributions to the total B(M1) strength. Us-
ing Eq. (3.7) spin

� � ��� � � ( � � � � , ��� � � � � ) and orbital
��� ��� � � ( � � � � ,��� � �

) contributions to the total B(M1) strength were calculated. The calcu-
lated

� � ��� � � and
��� ��� � � values are plotted in Fig. 3.2. One notes, that in the

� ��� , �0/21 case, the spin contribution is independent of the shell and amounts
to 5.3

' �! for
��� � � � �

(4.3

' �! for
��� � � � �

). The spin part of the M1 transi-
tion strength is related in a simple way with the Gamow-Teller strength for the� � � � �.� � ��� � � � � � � � � ��� ��� ��� transition (see [Zam88, LiG01]). Thus,
the result above means, that in this specific case the GT strength amounts to 2,
i.e. it is 1/3 of the Ikeda’s sum rule

� � � � � � and is also independent of the shell
considered. Furthermore, one notes, that the spin contribution rapidly decreases
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Figure 3.3: Ratio of orbital and spin contributions

 � � � ��� � � / � � ��� � � as a

function of the orbital angular momentum
*

� of the dominant spherical component
(which is shown below) for different � values. The solid line corresponds to the
� � 4 � � * �

, �0/ 1
case where the ratio R is the same as for the quasideuteron

configurations with � � * �
, �0/21

.

with increasing
*

� for the same value of � while the orbital part increases very
slowly. For higher � there is a substantial orbital contribution ( � 1-2

'
�! ) that is

even comparable with the M1 strength for the collective scissors mode in heavy
nuclei. However an increase of the orbital contribution with decreasing deforma-
tion can be seen, which is in contrast to the case of the scissors mode in deformed
even-even nuclei.

It is also instructive to plot the ratio of the orbital and spin contributions (

����� ��� � � / � � ��� � � ) as a function of

*
� (see Fig. 3.3). The solid line connecting the

ratio values for the � � 4 � � * �
, �0/ 1

cases (
*

�
� �

, where
�

is a principal quantum
number) represents the upper possible value of the ratio which one obtains in the
case of spherical quasideuteron configurations. In this case


 � * �� holds. In
other cases the



value increases slower showing almost linear (


 � * � ) behavior.
Thus the mixing of configurations caused by the quadrupole deformation tends to
decrease the orbital contribution to the total � ����� M1 strength.
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3.4 Sum Rules for M1 Strengths

As it was mentioned before, the
� ���

components of quasideuteron states are
expected to be shifted to higher energies. This happens if one of the two nucleons
occupying a Nilsson orbital with quantum number � is excited to the orbital with
� � � � �.� . Then the B(M1;

� �
�
� � ��� � � � � � � � � ) values can be calcu-

lated using Eq. (3.7). This was done in [LiL01], and the calculated values were
compared to the available experimental ones for some of the nuclei from 3 - and
4"5 -shells. Summing up the strengths of

� � � � �
transitions for the

� � � � � �
state and for one or two lowest

� � � � � �
states, one gets the value which is

close to the one given by the Eq. (2.8) for the spherical quasideuteron configu-
rations. Thus, the M1 strength for the quasideuteron

� �
state is distributed over

few low-lying
� � �

and
� ���

states. To show this, the deformed single-� -
orbital approximation was considered, i.e. only the dominant component is kept
in Eq. (3.4). This means, that the

� ��
coefficients with � �� �., �0/21 vanish, while� �� � ! � ���
� � � . Then using Eq. (3.7) one gets the following expressions for the� �

� ' � ) � � ' � � � � � � �� ' � ) � � ' � � � transitions:� ��� � 
 � � � � � �
� ' � � � � �

�
� � � � � � � ��� 
 � ' �! � and (3.9)

� ��� � 
 � � � � � � � � ' 	 � ' � � � � � �� � � � , � � ' 	 � �&� � � � ' 	
, � � � � � ��� 
 � ' �! � (3.10)

where � � ' 	
� � � 	 � 	 . Summing up the strengths for three

� �
states one obtains�� � � ' � ' 	 � � � � ' �

� ��� � 
 � � � ' � ) � � ' � � � � � � �� ' � ) � � ' � � � � �
� � � � � , � � � � ���� 
 � ' �! � (3.11)

which is exactly the same as the expression yielded by Eq. (2.8) for the
� � � � �

transition. This exercise shows that one of the consequences of deformation is a
splitting of the quasideuteron states, i.e. the splitting of the single particle states
and their coupling to different spins of the deformed core result in the appearance
of a few low-lying

� � � � ��� states connected with the lowest
� � � � � � state by

comparably strong M1 transitions.
As an example the results of the exact calculations using Eq. (3.7) for M1

matrix elements and calculations in the deformed single-� -orbital approximation
( 6 �6�
� orbital) using Eqs. (3.9) and (3.10) for the three lowest

� �
states are pre-

sented in Table 3.2.
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Table 3.2: Individual B(M1;
� �
�

� � �
�
� �
� ) and summed

� � �
� B(M1;

� �
�

�
� �
�
� �
� � values for the three lowest

� � � � ��� states. Results of calculations using
the exact formula (3.7) and deformed single-� -orbital approximation formulae
(3.9) and (3.10) are shown. The bare spin � -factors were used.

State B(M1;
� �
�

� � �
�
� �
� ), (

'
�! )� �

�
� �
� ��� V �
� Mn

Eq. (3.7) Eqs. (3.9,3.10) Eq. (3.7) Eqs. (3.9,3.10)� �
�
�(�

3.7 2.6 8.2 7.2� �� �"� 7.6 8.7 5.6 6.9� �	 �"� 5.7 6.9 3.2 4.1�
17.0 18.2 17.0 18.2

As one can see from Table 3.2 the contribution of the quasideuteron � ���2/21
configuration is dominant for all three states, and it determines the character of the
distribution of the total M1 strength among them. The summed strength for these
three states in exact and approximate calculations are also very similar. However
they are not exactly equal. This means that there should exist a more general
sum rule. To obtain it, the

� �
�

� � �
�

M1 strength calculated with Eq. (3.7) were
summed up for all the

� � � � � � states constructed in the frames of a unified
model for the

�
-shell. It was found that the sum rule determining the contribution

of the odd proton and the odd neutron to the total M1 strength in the double-odd
N=Z nuclei has the following form:

� $ � ��� � 
 � � � � � �$ � � �
� � ! � ���
��

� � � � �� � � � � , � � � � �" � � � , � � � � � �  ' �! � (3.12)

where the first term represents the contribution of the quasideuteron configurations
and the second one corresponds to the spin-flip mechanism:

� � � �&� ��* ���0/ 1 � � � � � �
1 * , � ��� �1 ����� � ��� � � � � � (3.13)

The summed strength depends only on the structure of the
� �
� state (

� ��
-coefficients).

It is interesting to note, that the sum (3.12) can be rewritten in the following way:

� $ � ��� � 
 � � � � � �$ � � ! � ���
��
� � � � �� � � 4 �� �

(3.14)
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where
� � 4 ��

is given by Eq. (2.14) for the � ��* ,��0/ 1 case and represent the M1
sum rule for the two nucleon 	 � � � � � � � � 	 � �&� � * ,��0/21 � � # ) � �

) � � � 
 � � � � state.
For the 	 � � � � �+� � � 	 � �&� � * � ��/21 � � # ) � �

)�� � � 
 � � � � state the spherical shell
model sum rule

� � 4 ��
is given by��� 4 �� �

�� ��� � � ��
� � � 1 *�� �

1 * , � � * , � � ��� � ��� � � � � , 1 * , 11 * , � � �1 ����� � � � � � � � � ' �! � (3.15)

For sum (3.15) the spin-flip contribution (second term) will be dominant, while
the quasideuteron contribution (first term) is very small due to the negative inter-
ference of spin and orbital parts. However, the

� � � � �

���
� amplitude in Eq. (3.14)
is usually small for the lower part of any N-shell and thus the contribution to the
total strength will be determined by the

� � 4 �� � � � ���
� value for which the spin-flip
contribution is smaller than the quasideuteron one.

The summed B(M1) values (Eq. (3.14)) for different considered cases are
shown in Table 3.1 in the last column. It is interesting to note, that for the nu-
clei with the same value of

*
�
� � � , the summed values are very similar. Moreover,

in the case of 3 � and 4"5 � shells the summed M1 strengths are almost the same
as the experimental B(M1;

� �
�

� � �
� ) values for � Li (15.4(4)

'
�! ) and

� � F (20(4)
'
�! ), respectively, indicating that almost 100

�
of the sum rule is exhausted by

the
� �
� state in the case of one proton and one neutron above the doubly-magic

core. For comparison, the B(M1) values for spherical quasideuteron configura-
tions with a � ��* �

,��0/21
orbital are shown in column “QD”. One notes, that this

contribution is dominant for all cases. Furthermore, the considerable part of the
summed M1 strength is distributed over the

� �
� states in deformed odd-odd

�:���
nuclei. This means, that the largest part of the summed strength is concentrated
in the low-lying

� �
states and there is enough experimental data to support this

conclusion.

3.5 Quasideuteron states in
���

V and
� �

Mn

The results of the studies presented in the previous sections were focused on the� �
�

� � �
�

M1 transitions. However, the transitions between the states with spin
values different from

��� �
and

� � �
are of great importance for a better

understanding of the quasideuteron picture. Beside the yrast
� �9��� � ��� and� � ��� � � � bands the yrast

� ��1 � � � � � band is present at low energies in
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odd-odd
�:���

nuclei. In the collective model, isovector M1 transitions between
the states of the

� � ��� � � � and
� � 1 � � � � � (with � � �2/21

) bands
are forbidden. Thus these forbidden isovector M1 transitions on the background
of enhanced isovector M1 transitions can be used as effective indicators for the
goodness of

�
as a quantum number in odd-odd

�����
nuclei. As an example, in

the present subsection the results of our calculations for ��� V and �
� Mn are shown
and compared to large scale shell model calculations performed by the Tokyo
group [Fri99, ScM00] and recently available experimental data [Fri99, ScM00,
PiY01, BrM01].

In order to establish the degree to which realistic shell-model calculations in
the full 376 -shell space generate the characteristics of collective rotational wave
functions in the odd-odd

� �.�
nuclei, ��� V and �
� Mn E2 matrix elements from

shell model and experiments were analyzed.
In the 376 -shell model space with ��� Ca as inert core, the low-lying states of ��� V

correspond to three protons and three neutrons which can be coupled to � ���
and � � � states, while for �
� Mn there are already five valence protons and five
valence neutrons. Applying the Nilsson model one finds, that the symmetry prop-
erties of the intrinsic lowest states in ��� V are firmly determined by the odd pro-
ton and odd neutron occupying the Nilsson [321] � =

�2/21
� orbital while the other

two protons and two neutrons close the [330] � =
�0/ 1

� orbital. Parallel coupling
( � � � � ! � � / 1 � of two nucleons results in the intrinsic

� � �
state. Due

to the Pauli principle and signature symmetry, the states built on this intrinsic
state are restricted to have isospin quantum number � ��� and negative signature� � � �

. In the case of antiparallel coupling ( � � � � � ! � � /21 � there are two
intrinsic

� �:�
states with different isospin and signature symmetry : � � � ,� ��, �

(corresponding to the band containing even spins) and � � � , � � � �
(the band with odd spins). The consideration of �
� Mn in the frames of the Nils-
son model results in the

� � �
band ( � � � � ! � �2/21 � and two

� � �
bands

( � � � � � ! � �2/ 1 � similarly to the situation in ��� V. Then, in the framework of the
rotational model the E2 transition strengths within a single band can be calculated
using the standard formula:� � � 1 
 � � � � � �

�
� � � � �

� � � - � � �
�
� �

�
� 1 � ��� � � � � � �

(3.16)

where the intrinsic quadrupole moment
�
� is related to the deformation parameter�

by

�
�
� �

� � � � 
 �� � � � , 1� � �� � & �
(3.17)
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3.5.1 Identification of
� ��������� 	

bands

To check, which levels can possibly correspond to the same stable intrinsic
�

-
state, B(E2) values for the

� ���
case were calculated using Eq. (3.16) choosing

the value of the deformation parameter that yields the best agreement with shell
model and experiment for the few transitions between the lowest

� �.��� � ���
states. The results of the collective model are compared to the shell model results
and new experimental data in Table (3.3).

Table 3.3: The calculated and experimental B(E2) values for the isoscalar tran-
sitions for

�+� �
states in ��� V and �
� Mn. The results of the collective rotational

model (Eq. 3.16) are given in the column R+QD. The values of the quadrupole
deformation parameter

�
used for the calculations are shown for both nuclei. The

results of Elliott’s SU(3) model are given in column SU(3). The shell model results
for the KB3 residual interaction with standard effective charges (

- � =1.5,
- $ =0.5)

are shown in the column KB3. Available experimental data is given in the column
labeled with “Expt.”.

�
� � �

� ��� V,
�

=0.23
�
� � �

� �
� Mn,
�

=0.25

R+QD. KB3 SU(3) Expt. R+QD. KB3
K=0,T=1 [e

�
fm � ] K=0,T=1 [e

�
fm � ]

1 �
�

� � �
� 127 143 127 137(35)

1 �
�

� � �
� 202 220

� �� � 1 �
� 183 187 175 � 169

� �� � 1 �
� 289 298

� �� � � �� 201 175 177
� �� � � �� 318 255� �� � � �� 211 168 163��� �� � � �� 216 124 136��1 �� � ��� �� 220 54 99� � �� � �01 �� 222 53 54

K=0,T=0 K=0,T=0
� �� � � �

� 164 189 161
� �
�

� � �
� 260 272� �� � � �� 193 159 173

� �� � � �
� 306 227
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Figure 3.4: Comparison of the B(E2;
� ,�1 � �

) values for the
� � ��� � � � band

in ��� V calculated in shell model, collective rotational model and SU(3) model. The
rotational and SU(3) model results are plotted with a solid line. The shell model
results are shown with circles connected by dashed lines. Experimental values are
shown with squares and error bars.

One notes from Table 3.3, that the B(E2) values between
� ����� � � � states

in the collective model and the � �.� states with even spins
�

in the shell model
are rather similar for the lowest states. However, in the shell model one observes
a decrease of B(E2) values starting from

� �
�
� � �� , while in the collective model

B(E2) values continue to increase. This effect finds its explanation in the mi-
croscopic character of the shell model: the valence nucleons in an appropriate
configurational space can only be coupled to some certain maximum spin value� � 4 � , while in the idealized case of the collective rotational model there is no up-
per limit for the spin value of the band. The model, which nicely establishes the
bridge between microscopic and collective rotational model, is the SU(3) model
[Ell58]. It imposes a compactness condition on the sequences of the rotational
states, that naturally results in the truncation of the band. In the simplest case of
the axial symmetry the rotational wave functions of the ground band are charac-
terized by the SU(3) irreducible representation � � �(� � , where

� � 4 � � �
. In this

case the Elliott model yields the following expression for the B(E2) values of the
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� ���
band:� � � 1 
 � , 1 � � � � �

� � � - � � �
�
� �2, 1 � 1 � ��� � � �

� � � � � � � , � �
� � � , � � 
 � (3.18)

which differs from Eq. (3.16) by an additional geometrical factor that involves
the quantum number

�
. From Eq. (3.18) one can easily see, that for the

1 � � � �
transition the SU(3) and collective model results are identical. But at the top of the
band (

� � � � 4 � � �
) the B(E2) strength vanishes in the Elliott model, indicating

band termination. Taking
� ��� �

(it is an appropriate value for 3 protons and 3
neutrons in

� � �
harmonic oscillator shell [Ell58]) and using Eq. (3.18), B(E2)

values for the � �9� � � � � band in ��� V were calculated. The results are shown
in Table 3.3 in column SU(3) and plotted in Figure 3.4. One notes from Figure 3.4
an unexpectedly similar behavior of the B(E2) strengths in the full 376 -shell model
calculations and the SU(3) model. At the present moment only few experimental
B(E2) values are known for the � � � � � � �

band (see Table 3.3 and Fig-
ure 3.4). Thus, it would be very interesting to test the shell model predictions
(which reproduce the results of the SU(3)-rotor model) for higher spins.

3.5.2 Identification of
� � � ����� �

and
� ��� ����� �

bands

Furthermore based on the comparison of the collective rotational model, the shell
model and experimental data, one can identify (see Table 3.4) � � � states be-
longing to the

� � �
band in ��� V and the

� � �
band in �
� Mn. It is generally

accepted that large � � � 1 E2 matrix elements are indicators of collectivity. But
it must be stressed here, that this is true only for

� ���
bands while for higher

�
bands this statement is valid only in the limit of high spins. However, the behavior
of the E2 transition matrix elements between the several lowest states belonging
to the band with high

�
(in our case

� � �
for ��� V and

� � �
for �
� Mn) is

qualitatively different from the
� � �

case: � � �.1 transitions are a few times
weaker than the � � � � ones. This is nicely illustrated in Table 3.4 and Fig. 3.5.
Thus, at first glance, the small value of the

� �
�

� � �
� E2 transition strength in ��� V

alone can be misunderstood as an indicator of non-collective or weakly collective
states. But in a combination with the strong

� �
�

� � �
� E2 transition it becomes

an important fingertip to the formation of an intrinsic
� � �

state. Furthermore,
one notes remarkably good agreement of the shell model results with rotational
model ones for higher spins, where experimental data is not available. For the� ,�� � �

E2 transitions one has perfect agreement up to
� � ���

, with the ex-
ception of two B(E2) values (see Fig. 3.5). The shell model results for

� , 1 � �
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Table 3.4: Calculated and experimental B(E2) values for allowed and forbidden
isoscalar transitions in ��� V and �
� Mn. The results of the collective rotational
model (Eq. 3.16) are given in the column R+QD. The values of the quadrupole
deformation parameter

�
used for the calculations are shown for both nuclei.

The shell model results for the KB3 residual interaction with standard effective
charges (

- � =1.5,
- $ =0.5) are shown in column KB3. Available experimental data

is given in the column labeled with “Expt.”.�
� � �

� ��� V,
�

=0.23
�
� � �

� �
� Mn,
�

=0.25

R+QD. KB3 Expt. R+QD. KB3 Expt.
K=3,T=0 � � � ��� � � K=5,T=0 � � � ��� � �
� �
�

� � �
� 223 234 200(50)

� �
�

� � �
� 305 293� �

�
� � �

� 54 65 66(14)
� �
�

� � �
� 49 48� �

�
� � �

� 208 209 -
� �
�

� � �
� 361 285

� �
�

� � �
� 96 79 -

� �
�

� � �
� 99 85 � 37

� �
�

� � �
� 170 159 -

� �
�

� � �
� 142 152 145(22)� �

�
� � �

� 126 62 98(20)� �
�

� � �
� 136 131 -� �

�
� � �

� 147 114 -� �
�

� � �
� 110 26 -

� �
�

� � �
� 163 145 -

� � ��� , � � ��� � �:� � , � � ���� �� � � �
� 0 7.5

�
18

� �� � � �
� 0 0.2� �� � � �

� 0 7.3
� �
�

� � �
� 0 0.3� �� � � �

� 0 9.9 -
� �� � � �

� 0 4.0� �� � � �
� 0 2.6 -

� �� � � �
� 0 4.3

E2 transitions deviate more from the rotational model results for higher spins,
but the characteristic behavior is rather similar. The observations above are in
favor of our conclusion about the

� � �
band in ��� V. However, there are indi-

cations of more complicated structures of the states in the high spin region, that
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Figure 3.5: Comparison of the B(E2;
�
� � �

� ) values for the
� � ��� � ��� band

in ��� V and the
� � ��� � � � band in �
� Mn calculated in the shell model and the

collective rotational model. Rotational model results are plotted with a solid line.
Shell model results are shown with circles connected with dashed and solid lines.
Experimental data is shown with squares and error bars.
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could probably be due to the interplay of collective and single-particle degrees of
freedom. For �
� Mn there is less experimental information and fewer shell model
results are known. However, similar to the ��� V case discussed above, the available
data indicates the presence of the

� � ��� � �9� band. The goodness of
�

as a
quantum number can also be addressed by analyzing E2 matrix elements between
the states of different bands. In frames of the rotational model, these E2 matrix
elements should vanish. The shell model B(E2) values for the transitions between

Table 3.5: Calculated and experimental B(M1) values for the isovector transitions
in ��� V and �
� Mn. The results of the collective rotor-plus-quasideuteron model
(Eq. 2.8) are given in the column R+QD. The quenching factor value of

� � �
� � �

was used for the calculations. The shell model results for the KB3 residual
interaction with bare � -factors are shown in the column KB3. Experimental data
for ��� V are given in the column labeled with ”Expt”.

��� V,(

'
�! ) �
� Mn ,(

'
�! )�

� � �
� R+QD KB3 Expt.

�
� � �

� R+QD KB3 Expt.

� � ��� , � � � � � � ��� , � � � �
� �
�

� � �
� 3.24 3.80 � 2.31

� �
�

� � �
� 7.23 8.71 �

�
� � �

� 1.30 0.80 -
1 �
�

� � �
� 2.89 1.94 -� �� � 1 �

� 1.39 1.25 1.98(71)
� �
�

� 1 �
� 3.09 3.73 2.7(6)

� �� � � �� 1.44 0.85 � 0.52
� �
�

� � �
� 3.21 2.71 � 0.8� �� � � �� 1.47 1.17 � 0.41

� �� � � �
� 3.28 3.46 -

� �� � � �� 1.50 1.07 -
� �� � � �� 3.33 1.73 � 0.6� �� � � �� 1.51 0.07 -
� �� � � �� 3.37 1.59

� � ��� , � � � � � � � � , � � � �
� �
�

� 1 �
� 0.0 0.21 � 0.01

� �
�

� � �
� 0.0 0.04

� �� � � �
� 0.0 0.08 � 0.01

� �� � � �
� 0.0 0.28� �

�
� � �� 0.0 0.02 � 0.02

� �
�

� � �� 0.0 1.32
� �� � � �

� 0.0 0.003 � 0.01� �
�

� � �� 0.0 1.20 -
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some of the states from
� � ��� � � � and

� � ��� � � � (
� � ��� � � � )

bands in ��� V ( �
� Mn) are shown in Table 3.4. The values are not zero, but on the
average they are significantly smaller (a factor of 100 for the lowest states) than
the corresponding intraband transitions.

3.5.3
� � � ��� � � � 	

and
� � � � � � ��� 	

M1 transitions

Having established the collective properties of the wave functions, one can turn to
the M1 transitions. One can check, how good M1 transitions in ��� V and �
� Mn fit
into the collective picture. Using Eq. (2.8), B(M1) values for � � � � � � �8� �
transitions were calculated. The results of the calculations for ��� V and �
� Mn are
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Figure 3.6: Comparison of experimental (Expt.) and Shell Model (SM) low-spin
level schemes of �
� Mn and ��� V. The band classification of the states is based on
theoretical (Shell Model and Collective Model) and experimental B(E2) values.
The levels with spin values given in parenthesis were not observed in present
experiments. The asymptotic Nilsson quantum number of the 3-projections of the
odd proton and the odd neutron angular momentum in the intrinsic system are
shown below. The main spherical component of the two nucleon configuration in
a deformed field are given, too.
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shown in Table 3.5.
As it can be seen from this table, the collective model reproduces both the large

shell model B(M1) values and experimental B(M1) values for � K=0 transitions
with good accuracy. Furthermore the � � � � M1 transitions calculated in the
shell model between the states from supposed

� � �
and

� � �
(
� � �

)
bands (which are forbidden in the collective model) are strongly suppressed in
comparison to the � � � � , � � � � transitions. Finally, based on the analysis
above, levels observed in ��� V and �
� Mn were grouped into bands as shown in
Fig. (3.6).

The analysis of the spectra shows that the excitation energies of the states do
not follow the simple

� � � ,�� � � � � formula as it is for rotational bands. This
deviation is especially obvious for the

� � �
band, were one actually observes

doublets of states with spins
�

and
� , �

. These deviations can probably be
attributed to the residual interaction of the odd proton and odd neutron and the
Coriolis interaction, which had not been taken into account.

Furthermore, as seen from the shell model results for the
� � � � �

� ' � states (see
Table 3.5), the simple regularities noted for M1 transitions for other low-lying
states suddenly disappear. The

� �� � � � ��� � � � � � �� � � �8� � � � � M1
transition becomes very weak while the strength of the

� �
�
� � � ��� � � � �

� �� � � ��� � � ��� M1 transition increases. This means that for the
� �
� ' �
� � ���

states from shell model,
�

can not be treated as a good quantum number despite
the fact that B(E2) values identify the

� �
�
� � � � state as a member of the

� � �
band in ��� V (see Table 3.4). This could be related to the spin dependence of the
deformation

�
or a strong band mixing.

Thus, it would be very interesting to find a simple explanation of this puzzling
problem and to check experimentally what is happening in this region.

Concluding, a rather good approximation for the realistic wave functions
of the low-lying states in ��� V and �
� Mn, which can be characterized by the K-
quantum number, was found. However, the deviations of experimental and shell
model excitation energies from rotational model results, as well as the more com-
plex behavior of electromagnetic transitions matrix elements between the states
with higher spin values, mean that rotational collectivity for ��� V and �
� Mn is well
approached for low-lying states only.



Chapter 4

Summary

The study of odd-odd
�:���

nuclei provides much insight into systems of many
strongly interacting particles. The results of the studies presented in this work
show that odd-odd

� � �
nuclei are excellent sources of information on the

properties of the proton-neutron force. One of the most powerful tools to obtain
such information are isovector M1 transitions. The drastic difference between
nondiagonal isovector M1 matrix elements for different two-nucleon configura-
tions, emphasized in this work, makes the M1 transitions very helpful for the
identification of the specific configurations. Putting forward the simple concept
of quasideuteron configurations, it is shown, that the degrees of freedom related
to the dynamics of the odd proton and the odd neutron determine character and
intensity of the isovector M1 transitions between the states with � ��� and � ���
in odd-odd

�����
nuclei.

With the identification of a sequence of strong isovector M1 transitions in �
� Co
the dominant influence of the � � 6 �6�
� 
 � 6 �6�
� # %(' ) quasideuteron configurations on
the structure of the low-lying states in this nucleus is demonstrated. Analyzing
the low-energy spectra of �
� Co, the important properties of the proton-neutron
interaction in the states dominated by the quasideuteron configurations were es-
tablished. It was found that, the monopole part of proton-neutron interaction in
the � � � channel is considerably stronger than in the � ��� channel, and that
there is no unambiguous indication for strong isoscalar pairing phenomena which
one has actually for isovector pairing.

The use of analytical methods in the present work helped to link the quasi-
deuteron mode with the recently discovered phenomenon of magnetic rotation.
The strong M1 transitions between the states with fixed proton as well as neu-
tron structures is a main signature for both phenomena. The conclusion drawn
from the comparison of two modes is that the quasideuteron states represent a

55
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small scale analogue of the shears states but under conditions which are believed
to be unfavorable for long shears bands. One more phenomenon, which is closely
related to the latter two and which is also characterized by enhanced M1 transi-
tions, is the scissors mode and the mixed-symmetry excitations connected with it.
The recent identification of mixed-symmetry states in near-spherical nuclei

� � Mo
and
� � Ru has motivated the study of these states within the spherical shell model.

The results of our extended studies were published in a series of papers recently
(see Refs. [LiN00,KlP01,BrC01,Fra01,BrH00,PiT00,BrT99] in the List of Pub-
lications following this Chapter). They are fully published and therefore are not
included in the thesis. These studies have revealed the microscopic origin of the

�
-spin symmetry and the similarities of

�
-spin and isospin symmetry, proved the

existence of both symmetric and mixed-symmetry quadrupole phonon excitations
and shown the effects caused by the interplay between spin and orbital degrees of
freedom on the properties of mixed-symmetry states in near-spherical even-even
nuclei. It is very interesting to note, that for quasideuteron states, shears states,
and mixed-symmetry two-phonon states, one can even use the same analytical
expression (2.30) from Chapter 2 to estimate B(M1) values. The only difference
is the input: spin values for proton

� � and neutron
� ! subsystems and quantum

numbers of single particle orbitals involved, which actually give the information
on the kind of phenomenon one deals with and subsequently on the driving part of
the proton-neutron forces for the corresponding phenomenon. Thus, these three
phenomena provide supplementary information on the proton-neutron interaction
under different conditions and in different regions of excitation energy and spin.

It is shown in the present work, that in deformed odd-odd
�8� �

nuclei the
quadrupole deformation governs the collective dynamics of the nucleons, which
is indicated by the regular behavior of strong E2 transition strengths, and causes
the fragmentation of the isovector M1 strength. The studies of the latter effect
shows that the quasideuteron configurations retain their individual properties in a
deformed field despite the well pronounced collective effects. Studying the odd-
odd
� � �

nuclei ��� V and �
� Mn, the high-
�

, � � � bands were identified
at low energies in these nuclei. It was found, that the behavior of the intraband
B(E2) values as a function of spin

�
for these bands (

�8� �
for ��� V and

�+� �
for �
� Mn) is very different from the one for

� � �
bands. Identifying very weak

isovector � � � � and � �:��� M1 transitions, it is shown, that the quasideuteron
picture allows a critical assessment of collective

�
-quantum number selection

rules for low-lying states in odd-odd
� � �

nuclei, which nicely arise in full
376 -shell model results, too. This was established by treating the quasideuteron
degrees of freedom explicitly in the rotor-plus-particles model. Having derived
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analytical expressions for isovector M1 transition strengths it was found, that only
the one proton and one neutron above the rotating even-even N=Z core contribute
to the isovector M1 transition strengths for the low-lying states. A very good
agreement between the experimental and theoretical B(M1;

� �
�

� � �
� ) values in

odd-odd
� �+�

nuclei indicated in this thesis, helps to extend the systematic
for B(M1) values, identify the regularities for them, and to predict some of the
specific properties of heavy odd-odd nuclei along the

� �.�
line. Furthermore,

taking into account very close relations of the Gammow-Teller transitions to M1
transitions, our results can be very helpful for the understanding of the quenching
and fragmentation problems for Gammow-Teller

� �
transitions, what was shown

in our very recent paper [LiG01].
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