
F I E L D P L A C E R
A F L E X I B L E , FA S T A N D U N C O N S T R A I N E D

F O R C E - D I R E C T E D P L A C E M E N T M E T H O D F O R
H E T E R O G E N E O U S R E C O N F I G U R A B L E L O G I C

A R C H I T E C T U R E S

Inaugural-Dissertation
zur

Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Dustin Feld

aus Kevelaer

Köln 2016

Berichterstatter (Gutachter):

prof . dr . rer . nat. michael jünger
Institut für Informatik
Universität zu Köln
Deutschland

prof . dr .-ing . andré brinkmann
Zentrum für Datenverarbeitung
Johannes Gutenberg-Universität Mainz
Deutschland

Tag der mündlichen Prüfung: 24. Oktober 2016

Ohana means family.
Family means nobody gets left behind - or forgotten.

— Lilo & Stitch —

Dedicated to my family.

In loving memory of Cincinnati Kid.

Abstract
The field of placement methods for components of integrated circuits, es-
pecially in the domain of reconfigurable chip architectures, is mainly domi-
nated by a handful of concepts. While some of these are easy to apply but
difficult to adapt to new situations, others are more flexible but rather com-
plex to realize.

This work presents the FieldPlacer framework, a flexible, fast and uncon-
strained force-directed placement method for heterogeneous reconfigurable
logic architectures, in particular for the ever important heterogeneous FPGAs.
In contrast to many other force-directed placers, this approach is called ‘un-
constrained’ as it does not require a priori fixed logic elements in order to
calculate a force equilibrium as the solution to a system of equations. In-
stead, it is based on a free spring embedder simulation of a graph represen-
tation which includes all logic block types of a design simultaneously. The
FieldPlacer framework offers a huge amount of flexibility in applying dif-
ferent distance norms (e. g., the Manhattan distance) for the force-directed
layout and aims at creating adapted layouts for various objective functions,
e. g., highest performance or improved routability. Depending on the individ-
ual situation, a runtime-quality trade-off can be considered to either produce
a decent placement in a very short time or to generate an exceptionally good
placement, which takes longer.

An extensive comparison with the latest simulated annealing placement
method from the well-known Versatile Place and Route (VPR) framework
shows that the FieldPlacer approach can create placements of comparable
quality much faster than VPR or, alternatively, generate better placements in
the same time. The flexibility in defining arbitrary objective functions and the
intuitive adaptability of the method, which, among others, includes different
concepts from the field of graph drawing, should facilitate further develop-
ments with this framework, e. g., for new upcoming optimization targets like
the energy consumption of an implemented design.

v

Zusammenfassung
Das Gebiet der Platzierungsverfahren für Komponenten integrierter Schalt-
kreise wird, insbesondere im Sektor der rekonfigurierbaren Chiparchitek-
turen, im wesentlichen von einer Handvoll Konzepten dominiert. Während
einige davon einfach anzuwenden aber schwer an neue Situationen anzu-
passen sind, sind andere flexibler aber relativ komplex zu realisieren.

Diese Arbeit präsentiert das FieldPlacer Framework, eine flexible, schnelle
und uneingeschränkte kräftebasierte Platzierungsmethode für heterogene re-
konfigurierbare Logikarchitekturen, insbesondere für die immer wichtiger
werdenden heterogenen FPGAs. Im Gegensatz zu den meisten anderen kräfte-
basierten Platzierungsverfahren wird dieser Ansatz hier ‘uneingeschränkt’
genannt, da er keine a priori fixierten Logikelemente erfordert um ein Kräfte-
gleichgewicht als Lösung eines Gleichungssystems zu bestimmen. Stattdessen
basiert der Ansatz auf einer freien Spring-Embedder Simulation einer Graph-
repräsentation des Designs, welche alle Logikblocktypen simultan einschließt.
Das FieldPlacer Framework bietet große Flexibilität in der Anwendung ver-
schiedener Distanz-Normen (z. B. der Manhattan-Distanz) für das kräfteba-
sierte Layout mit dem Ziel, angepasste Layouts für verschiedene Zielfunk-
tionen zu erstellen, beispielsweise höchste Performanz oder verbesserte Ver-
drahtbarkeit. Abhängig von der individuellen Situation kann ein Laufzeit-
Qualität Kompromiss gewählt werden, um entweder eine ordentliche Platz-
ierung in sehr kurzer Zeit oder eine außerordentlich gute Platzierung in län-
gerer Zeit zu produzieren.

Ein umfangreicher Vergleich zum aktuellen Simulated Annealing Platzie-
rungsverfahren aus dem bekannten Versatile Place and Route (VPR) Frame-
work zeigt, dass der FieldPlacer Ansatz Lösungen vergleichbarer Qualität
deutlich schneller erstellen kann als VPR oder, alternativ, eine bessere Plat-
zierung in ähnlicher Zeit erzeugen kann. Die Flexibilität in der Definition
beliebiger Zielfunktionen und die intuitive Anpassungsfähigkeit des Frame-
works, welches unter anderem auf verschiedenen Konzepten aus dem Gra-
phenzeichnen basiert, soll weitere Entwicklungen mit jenem ermöglichen,
z. B. für neuartige Optimierungsziele wie den Energieverbrauch eines imple-
mentierten Designs.

vi

Publications & Talks
During the time of my PhD research, I have dealt with different aspects of
optimizing parallel programming for ‘ordinary’ multi-core CPUs and differ-
ent types of accelerators, also automatically within compiler-optimization
passes. My diploma thesis about an efficient vectorization technique based
on the polyhedral model was kind of the starting point for these works. In
this context, I published papers in collaboration with other researchers from
the Fraunhofer Institute for Algorithms and Scientific Computing, the University
of Cologne, the University of Mainz, the University of Bonn, the London Metropoli-
tan University, the Chinese Academy of Science and the Universities of Bielefeld,
Heidelberg and Gießen.

I sincerely want to thank everybody involved for the fruitful collaboration
and the valuable influences you had on me.

Conference talks I have been giving in that time are listed below. Some
of these have been supported by travel grants or other support, my heartfelt
thanks to the generous donors. In addition, I want to thank the MINO Initial
Training Network of the European Union and the ICT COST action TD1207 for
a travel grant to participate the MINO/ COST Spring School on Optimization
in march 2015. Last, but definitely not least, I want to thank Fraunhofer SCAI
for all the many opportunities to visit conferences during my PhD due to
SCAI’s (personal and financial) support.

In 2015, I also had the pleasure to be part of the program committee of
the ‘SPIE High-Performance Computing in Remote Sensing’ conference and
reviewing papers for the IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing. Thanks for these opportunities that enhanced my
knowledge and interest in the transdisciplinary field of parallel (multi-core,
MIC and GPU) computing and remote sensing.

No part of this work has been published in advance.

vii

conference publications

Facilitate SIMD-Code-Generation in the Polyhedral Model by Hardware-
aware Automatic Code-Transformation - Dustin Feld, Sven Mallach, Thomas
Soddemann and Michael Jünger, Proceedings of the 3rd International Work-
shop on Polyhedral Compilation Techniques (pp. 45–54), Jan 2013, Berlin,
Germany

Hardware-Aware Automatic Code-Transformation to Support Compilers
in Exploiting the Multi-Level Parallel Potential of Modern CPUs - Dustin
Feld, Sven Mallach, Thomas Soddemann and Michael Jünger, Proceedings of the
2015 International Workshop on Code Optimisation for Multi and Many
Cores (pp. 2:1–2:10), ACM, Feb 2015, San Francisco, USA

Impact of the Scheduling Strategy in Heterogeneous Systems That Provide
Co-Scheduling - Tim Süß, Dustin Feld, Nils Döring, Lars Nagel, Eric Schricker,
Ramy Gad, André Brinkmann and Thomas Soddemann, Proceedings of the 1st
COSH Workshop on Co-Scheduling of HPC Applications (pp. 37ff.), Jan 2016,
Prague, Czech Republic

VarySched: A Framework for Variable Scheduling in Heterogeneous Envi-
ronments - Tim Süß, Dustin Feld, Nils Döring, Lars Nagel, Stefan Lankes, Ramy
Gad, André Brinkmann and Thomas Soddemann, Proceedings of the 2016 IEEE
International Conference on Cluster Computing (CLUSTER 2016), Sep 2016,
Taipei, Taiwan

journal articles

Multicore Processors and Graphics Processing Unit Accelerators for Par-
allel Retrieval of Aerosol Optical Depth From Satellite Data: Implemen-
tation, Performance, and Energy Efficiency - Jia Liu, Dustin Feld, Yong Xue,
Jochen Garcke and Thomas Soddemann, IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing (vol. 8, nb. 5, pp. 2306-2317),
May 2015

Comparison of acceleration techniques for selected low-level bioinformat-
ics operations - Daniel Langenkaemper, Tobias Jakobi, Dustin Feld, Lukas Jelonek,
Alexander Goesmann and Tim W. Nattkemper, Frontiers in Genetics (vol. 7), Feb
2016

viii

An efficient geosciences workflow on multi-core processors and GPUs: a
case study for Aerosol Optical Depth retrieval from MODIS satellite data
- Jia Liu, Dustin Feld, Yong Xue, Jochen Garcke, Thomas Soddemann and Peiyuan
Pan, International Journal of Digital Earth, Feb 2016

Energy-Efficiency and Performance Comparison of Aerosol Optical Depth
(AOD) retrieval on distributed Embedded SoC architectures with Nvidia
GPUs - Dustin Feld, Jia Liu, Eric Schricker, Yong Xue, Jochen Garcke, Thomas
Soddemann, Scientific Computing and Algorithms in Industrial Simulations -
Projects and Products of Fraunhofer SCAI, Springer Verlag [accepted, to be
published]

conference talks

Facilitate SIMD-Code-Generation in the Polyhedral Model by Hardware-
aware Automatic Code-Transformation - European Network on High Perfor-
mance and Embedded Architecture and Compilation (HiPEAC), Berlin, Germany,
Jan 2013

Hardware-Aware Automatic Code-Transformation to Support Compilers
in Exploiting the Multi-Level Parallel Potential of Modern CPUs - Interna-
tional Symposium on Code Generation and Optimization (CGO), San Francisco
Bay Area, USA, Feb 2015 [ACM SIGPLAN Professional Activities Grant]

Energy-Efficiency and Performance Comparison of Aerosol Optical Depth
(AOD) retrieval on distributed Embedded SoC architectures with Nvidia
GPUs - GPU Technology Conference (GTC), Silicon Valley (San José), USA,
April 2016 [NVIDIA Full Conference Fee Grant]

ix

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [113]

Acknowledgments
It is said that you should surround yourself with people who inspire you,
who build you up and believe in you, people who are good for you - and
with music. I am infinitely thankful that I had the pleasure to meet many
such people that supported and fostered me.

First of all, I want to express my gratitude to my doctoral supervisor Prof.
Dr. Michael Jünger from the University of Cologne. You not only supervised
me but you often inspired and always supported me in many developments
of this work through discussions and suggestions and, very fundamentally,
by your university courses which initially opened up this field of research
to me. In addition, a very great thank you to Prof. Dr. André Brinkmann
from the University of Mainz who also mentored me. Working with you in
several projects in the field of high performance computing has always been
interesting and instructively.

In the last eight years and, therefore, during most of my time at the univer-
sity, I had the pleasure to research at the Fraunhofer Institute for Algorithms
and Scientific Computing SCAI. This not only gave me the opportunity to
write my diploma thesis and this dissertation in the context of applied re-
search, I have also been able to participate in many projects and to visit sev-
eral conferences to present my work. I personally want to thank Dr. Thomas
Soddemann and Dr. Johannes Linden for their confidence and support.

Further, I would like to thank my colleagues at SCAI and at the University
of Cologne for their fellowship and feedback during these years. A com-
prehensive listing of everyone would span pages, just to name some: Lauri,
Bea, Eric, Ottmar, ThoSo, ThoBra, Johannes, Christiane, Martin, Sven, Daniel,
Andi, Francesco . . . Thank you! My most sincere apologies to all those that
have not been named here.

xi

Due to the fact that I actually worked in two departments (Fraunhofer
SCAI and University of Cologne), a considerable amount of administration
effort has been carried out. Thank you Dorit and Göntje for your generous
support!

To my friends and my bandmates (bandmates ⊂ friends) - Spending
time with you has and will always be one of the most important things in
my life - more frequently from now on again.

Finally, I want to thank my family, especially my mum and my dad (a. k. a.
‘Chef’). Thank you all for everything!

Most importantly and most particularly, I want to thank my girlfriend
Katharina for all the backing - throughout the last fourteen years and in
particular during these last few years of my PhD. I cannot thank you enough!

Regarding the typography, further thanks go to André Miede1 for his pub-
lic available LATEXthesis style ‘A Classic Thesis Style - An Homage to The
Elements of Typographic Style’ which I used as the base for my thesis. We
even share a common passion for one of the best Disney movies ever. Your
postcard is on the way!

P.S.: Thanks to Dr. Guy Lonsdale for giving helpful advice regarding the
language!

1 http://www.miede.de

xii

Contents
I what is the background of this approach? 1
1 introduction 3

1.1 Background & idea . 4
1.2 Who are the addressees of this work? 5
1.3 Organization of this work . 6
1.4 Test environment . 6

II what is the domain of this approach? 7
2 field programmable gate arrays 9

2.1 History of PLDs . 10
2.1.1 CPLDs and FPGAs . 12

2.2 Field Programmable Gate Arrays 14
2.2.1 Operating principle . 15
2.2.2 Timing the delay . 19
2.2.3 Correctness, slack and clock-speed 23
2.2.4 Slack and critical path(s) calculation 25
2.2.5 Heterogeneous FPGAs 28

2.3 The FPGA ‘baseline model’ (in VPR) 29
2.4 Compilation flow for FPGAs 33

III what is behind all this? 41
3 the quadratic assignment problem 43

3.1 Model the problem of chip-layouting by QAP 44
3.1.1 Problem definition . 45
3.1.2 The problem’s complexity 50
3.1.3 Linearizations . 50
3.1.4 Lower bounds . 52
3.1.5 The QAP polytope . 55
3.1.6 QAP in chip layout . 57
3.1.7 Towards QAP heuristics 58
3.1.8 Why this work is not based on exact solutions 58
3.1.9 Why this work is not using QAP lower bounds 60

xiii

contents

3.2 Iterative Approaches towards solving QAP instances 60
3.2.1 Problem definition . 63
3.2.2 Neighborhood exploration techniques 64
3.2.3 Global and local optima 65
3.2.4 Local search . 66
3.2.5 Tabu search . 68
3.2.6 Iterated Tabu search . 70
3.2.7 Simulated annealing . 73
3.2.8 Comparison . 78

3.3 A layout through force-directed graph drawing 82
4 force-directed graph layouts 85

4.1 Force-directed graph layouts 86
4.1.1 Basic idea of Tutte . 87
4.1.2 Generalization of the model - Spring Embedder 93
4.1.3 Grid approximation of repulsive forces 98
4.1.4 A force-directed layout by spring embedder 102
4.1.5 The ideal edge length l 104

4.2 The Fast Multilevel Multipole Method FMMM 106
4.2.1 Quadtree for approximation of repulsive forces 107
4.2.2 Multipole approach for accurate and fast approxi-

mation of repulsive forces 111
4.2.3 Hierarchical multilevel approach to overcome weak

initial placements . 116
4.2.4 Alternative force-directed layout methods 125

4.3 From VLSI placement to graph drawing and back 127
4.3.1 Force-directed graph layouts for FPGAs placement . . 128

IV how can this be transferred to fpgas? 131
5 architecture-aware field embedder for fpgas 133

5.1 Established chip placement techniques 134
5.1.1 FPGA placement . 134
5.1.2 Related placement methods 138

5.2 Heterogeneous force-directed placement 147
5.3 Setup of the basic datastructures 148

5.3.1 Model the architecture 150
5.3.2 VPR norms . 152

5.4 Additional introduced norms 153
5.4.1 Point-to-point WireLength 153
5.4.2 An approximation of congestion 154

5.5 The FieldPlacer method . 159
5.5.1 1st Step: Setup of the graph representation 160
5.5.2 2nd Step: A force-directed graph layout 161

xiv

contents

5.5.3 3rd Step: CLB placement 164
5.5.4 4th Step: I/O placement 172
5.5.5 5th Step: Special blocks (MEM+MUL) placement . . . 182
5.5.6 Benchmark: Basic FieldPlacer 185

5.6 FieldPlacer Extensions . 194
5.6.1 5½th Step: Second energy phase 194
5.6.2 2nd Step with different distance norms 200
5.6.3 6th Step: Local refinement 208
5.6.4 Benchmark: Extended FieldPlacer 211

5.7 Theoretical runtime behavior of the FieldPlacer 214
5.8 Other architectures . 215
5.9 About the implementation . 217

5.9.1 FMMM extensions (FieldOGDF) 217
5.9.2 FieldPlacer framework 218

V how can repeated runs improve the placement? 223
6 repeated runs in a statistical framework 225

6.1 The FieldPlacer framework . 226
6.2 Inner and outer repetitions . 227
6.3 Slack Graph Morphing for improved critical path delay . . . 230
6.4 Benchmark: Repeated FieldPlacer runs 233

6.4.1 Slack graph morphing for improved critical path delay 233
6.4.2 Backup and restore for improved overuse 236
6.4.3 Combined target function 237

6.5 MCNC benchmarks . 238
6.6 Statistics for significantly good placements 241

6.6.1 Adaptive termination criteria 243
6.7 Graphical User Interface (GUI) 247

VI what does "the bigger picture" look like? 249
7 discussion 251

7.1 Résumé . 252
7.2 Comparison & Outlook . 253
7.3 A final test case . 255

VII anything else? 257
a appendix 259

a.1 A detailed simple example for the QAP model 259
a.2 A simple example for the calculation of a Tutte embedding . 263
a.3 Force-directed layout by Fruchterman & Reingold or FM3 . . 264
a.4 Graph-theoretical distance . 265
a.5 Multilevel construction & application 265

xv

contents

a.6 VPR default configuration . 267
a.7 Second energy phase examples 268
a.8 Slack graph morphing . 270
a.9 Energy layout gallery . 271

references 275

xvi

List of Figures
Figure 1 Lookup Table - 2-LUT possibilities 16
Figure 2 Basic Logic Element (BLE) 16
Figure 3 Main FPGA building blocks for CLBs 17
Figure 4 Configurable Logic Block (CLB) 18
Figure 5 H-tree clock net . 20
Figure 6 Wires with different lengths on the architecture . . . 21
Figure 7 Flip-Flops and delay types 25
Figure 8 Circuit (a) and timing graph traversals for slack cal-

culation (b)-(e) . 26
Figure 9 Heterogeneous island-style FPGA architecture 30
Figure 10 Switch box topology types 31
Figure 11 Main steps in an FPGA compile flow 33
Figure 12 Bounding box of net with 8 terminals 37
Figure 13 Different Manhattan routes and the direct connection 46
Figure 14 A Clique in Gn . 56
Figure 15 Idealized layout graph with N = 16 (16× 16 grid) . . 61
Figure 16 Number of elements in a full and a reduced neigh-

borhood . 65
Figure 17 Local search (LS) [10 runs] 67
Figure 18 Tabu search (TS) [10 runs] 70
Figure 19 Principles of local search and tabu search for a 2D

example . 71
Figure 20 Iterated tabu search (ITS) [10 runs] 72
Figure 21 Convergence comparison of the two tabu search ap-

proaches . 73
Figure 22 Transition probability pt(∆c) = min(e

∆c
t , 1) 75

Figure 23 Simulated Annealing (SA), t0 = 10000 and tω =

100 [10 runs] . 77
Figure 24 Simulated Annealing (SA), t0 = 10000 and tω =

0.0001 [10 runs] . 78
Figure 25 Comparison for 16× 16 instance [10 runs] 79

xvii

List of Figures

Figure 26 Best assignments for 16 × 16 grid with 104 initial
swaps [10 runs] . 80

Figure 27 Convergence of SA for N = 16 and various s0 qualities 81
Figure 28 Force-directed graph layout 82
Figure 29 Sierpiński Sieve Graph S5 90
Figure 30 Tutte node fixing examples for ‘Sierpiński’ graph S5 91
Figure 31 Tutte node fixing examples for ‘Crack’ graph 92
Figure 32 Force strengths with distance d and zero-energy

length l . 95
Figure 33 Node distributions and their influence on the neigh-

borhood size . 100
Figure 34 Attractive and repulsive forces strengths 102
Figure 35 Iterations of a force-directed graph layout 103
Figure 36 ‘Sierpiński Sieve Graph’ of order 5 104
Figure 37 Sum of acting forces of surrounding nodes 105
Figure 38 Construction of reduced bucket quadtree with K = 2 108
Figure 39 Approximation through coarsening in the reduced

quadtree . 109
Figure 40 Two ‘well-separated’ clouds of nodes as d > 3r . . . 112
Figure 41 Runtime with approximative repulsive force calcu-

lation in FM3 . 116
Figure 42 ‘Crack’ graph . 117
Figure 43 Force-directed layout and local minima 121
Figure 44 Multilevel steps of a force-directed ‘Crack’ graph

layout . 123
Figure 45 Force-directed layouts without multilevel method . . 126
Figure 46 The heterogeneous architecture in VPR (code: diffeq1) 151
Figure 47 Wave expansion on the architecture 156
Figure 48 Congestion-driven maze router (two examples) . . . 156
Figure 49 Congestion Router result, cp. Figure 71d (code: or1200) 158
Figure 50 OverUse in a cell . 158
Figure 51 Force-directed graph layout 162
Figure 52 Inner CLBs after force-directed layout (code: diffeq1) 165
Figure 53 Vertical sorting and slicing of the CLBNodeList (code:

diffeq1) . 166
Figure 54 Horizontal sorting in the CLBNodeList (code: diffeq1) 168
Figure 55 Embedding of the graph on the grid (code: diffeq1) 170
Figure 56 Embedding with different distribution strategies (code:

or1200) . 171
Figure 57 I/O legalization (code: or1200) 174
Figure 58 I/O legalization (code: or1200) 175
Figure 59 I/O and CLB placement (code: diffeq1) 176

xviii

List of Figures

Figure 60 Connections from North I/Os to CLBs (code: or1200) 178
Figure 61 Connections from I/Os to CLBs (code: or1200) . . . 178
Figure 62 Improvement of I/O displacement by the barycenter

heuristic (codes sorted ascendingly by number of I/O nodes) 179
Figure 63 Final CLB and I/O placement (code: diffeq1) 179
Figure 64 Multiple graph components (code: boundtop) 181
Figure 65 Placement of special blocks (code: or1200) 183
Figure 66 Placement of all elements with the basic FieldPlacer

method . 183
Figure 67 Overall workflow of the basic FieldPlacer 184
Figure 68 Pure FieldPlacer - Overview 186
Figure 69 Bounding Box cost improvement (sorted ascendingly

by VPR SA runtime) . 187
Figure 70 Pure FieldPlacer - Correlation 187
Figure 71 OverUse among the chip for different distribution

types (FieldPlacer) and VPR SA (code: or1200) . . . 190
Figure 72 Pure FieldPlacer after routing - Overview 191
Figure 73 Correlation between estimated and actual critical

path delay (all 19 codes with four distribution strate-
gies each) . 192

Figure 74 Percentage of the overuse calculation time of the
overall FieldPlacer runtime (codes sorted ascendingly
by VPR SA runtime) . 193

Figure 75 New slicing after second energy phase (code: or1200) 195
Figure 76 Second energy phase with fixed surrounding I/O

nodes (code: or1200) 196
Figure 77 Displacement in first and second energy phase (code:

or1200) . 197
Figure 78 Second energy phase quality impact 198
Figure 79 Second energy phase of the worst case (code: LU32-

PEEng) . 199
Figure 80 Force-directed layouts under different metrics (code:

or1200) . 201
Figure 81 Unit circle for different p-norms 202
Figure 82 3-dimensional p-norms 202
Figure 83 Influence of a ||.||2-rotation on the ||.||1-norm 203

Figure 84 Rotation of Glayout
D (code: or1200) 204

Figure 85 Influence of different norms on WireLength and
OverUse . 206

Figure 86 Local refinement scheme 209

xix

List of Figures

Figure 87 FieldPlacer and VPR SA iterations comparison (DIS-
TANCE penalties) . 210

Figure 88 Local refinement BoundingBox results (DISTANCE
penalties, sorted ascendingly by VPR SA runtime) . . . 211

Figure 89 Extended FieldPlacer runtime (DISTANCE penal-
ties, sorted ascendingly by VPR SA runtime) 212

Figure 90 FieldPlacer + LocalRefinement (DISTANCE penal-
ties) . 213

Figure 91 FieldPlacer - Overview 213
Figure 92 3D Placement . 216
Figure 93 Statistical framework surrounding the FieldPlacer . 227
Figure 94 Correlation of quality before and after LocalRefine-

ment (code: stereovision2) 229
Figure 95 SlackSum in repeated runs (code: stereovision2) . 234
Figure 96 CriticalPathDelay in repeated runs (code: stereo-

vision2) . 234
Figure 97 CriticalPathDelay results for all codes (sorted ascend-

ingly by VPR SA runtime) 235
Figure 98 FieldPlacer + LocalRefinement + Repetitions . . . 235
Figure 99 OverUse results for all codes (sorted ascendingly by

VPR SA runtime) . 236
Figure 100 FieldPlacer + LocalRefinement + Repetitions . . . 236
Figure 101 FieldPlacer+LocalRefinement + Repetitions (com-

bined target) . 238
Figure 102 CriticalPathDelay and OverUse results for all codes

(sorted ascendingly by VPR SA runtime) 239
Figure 103 MCNC FieldPlacer runtime results (DISTANCE penal-

ties, sorted ascendingly by VPR SA runtime) 240
Figure 104 MCNC CriticalPathDelay (DISTANCE penalties, sorted

ascendingly by VPR SA runtime) 240
Figure 105 MCNC FieldPlacer framework - Overview 241
Figure 106 BoundingBox cost histogram (code: stereovision2,

1000 runs) . 242
Figure 107 CriticalPathDelay histogram (code: stereovision2,

1000 runs) . 242
Figure 108 WireLength histogram (code: stereovision2, 1000

runs) . 243
Figure 109 OverUse histogram (code: stereovision2, 1000 runs) 243
Figure 110 Confidence interval . 244
Figure 111 Interpolated (1− α

2)-quantiles of the t-distribution
with n− 1 degrees of freedom 246

xx

Figure 112 Adaptive termination criterion for OverUse (code:
stereovision2) . 247

Figure 113 The FieldPlacer GUI 248
Figure 114 Oversized architecture results 255
Figure 115 The Manhattan distances between four locations . . 259
Figure 116 The connection-matrix of the graph’s nodes 259
Figure 117 Exemplary optimal assignment of the graph 260
Figure 118 Exemplary not optimal assignment of the graph . . . 260
Figure 119 Tutte embedding - four fixed (blue) and three free

(gray) nodes . 263
Figure 120 Random layout of ‘Crack’ Graph 264
Figure 121 ‘Crack’ graph layouts 264
Figure 122 Graph-theoretical distance to node 11 265
Figure 123 Multilevel construction and application 266
Figure 124 Displacement in first and second energy phase test

3 (code: or1200) . 268
Figure 125 Displacement in first and second energy phase test

4 (code: or1200) . 269
Figure 126 Displacement in second energy phase test 2 (code:

or1200) . 269
Figure 127 Slack graph morphing (code: stereovision2) 270
Figure 128 Energy layout gallery 1 271
Figure 129 Energy layout gallery 2 272
Figure 130 Energy layout gallery 3 273
Figure 131 Energy layout gallery 4 274

List of Tables
Table 1 System configuration 6
Table 2 Graph properties and FM3 speedups of different

‘Crack’ fractions . 115
Table 3 Properties of multilevel representations & time spend

on the levels . 122
Table 4 VPR’s temperature update schedule 134
Table 5 Comparison of average runtime in VTR 7.0 (sorted

ascendingly by VPR SA runtime) 188

xxi

Table 6 Statistics of the runs from Figure 71 189
Table 7 Theoretical runtime of the FieldPlacer routines . . . 215
Table 8 Extended FieldPlacer + LocalRefinement Boun-

dingBox cost (sorted ascendingly by VPR SA runtime) . 220
Table 9 Extended FieldPlacer + LocalRefinement Critical-

PathDelay (sorted ascendingly by VPR SA runtime) . . 220
Table 10 Extended FieldPlacer + LocalRefinement Wire-

Length (sorted ascendingly by VPR SA runtime) 221
Table 11 Extended FieldPlacer + LocalRefinement Over-

Use (sorted ascendingly by VPR SA runtime) 221
Table 12 Heterogeneous benchmark codes in VPR 7.0 - oc-

cupied and (available) slots 222

List of Algorithms
Algorithm 1 Local search . 66
Algorithm 2 Tabu search . 69
Algorithm 3 Iterated tabu search 71
Algorithm 4 Simulated Annealing 76
Algorithm 5 Spring Embedder (Eades) 97
Algorithm 6 Galaxy Partitioning (Hachul) 120
Algorithm 7 Calculate number of iterations on a level (FM3) . . . 124
Algorithm 8 Congestion-driven maze router 157
Algorithm 9 Create the FPGA representation graph 161
Algorithm 10 CLB placement . 171
Algorithm 11 Extract basic I/O partitioning 173
Algorithm 12 I/O legalization . 175
Algorithm 13 I/O refinement by barycenter heuristic 180
Algorithm 14 Special heterogeneous blocks’ placement 184

xxii

List of Listings
Listing 1 OR gate design in VHDL from the EDA playground 34
Listing 2 VPR 7.0 default configuration 267

Acronyms

ASIC Application-Specific Integrated Circuit

BB BoundingBox

BLE Basic Logic Element

BPU Basic Processing Unit

CB Compute Block

CFV Cost Function Value

CG bounds Christofides and Gerrard bounds

CLB Configurable Logic Block

CPD CriticalPathDelay

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

DAG Directed Acyclic Graph

FF Flip-Flop

FPGA Field Programmable Gate Array

GL bounds Gilmore and Lawler bounds

GML Graph Modelling Language

GPGPU General Purpose Computation on Graphics

Processing Unit

xxiii

GPU Graphics Processing Unit

GUI Graphical User Interface

HDL Hardware Description Language

HLS High-Level Synthesis

IC Integrated Circuit

I/O Input & Output

IP Integer Programming

ITS Iterated Tabu Search

LAP Linear Assignment Problem

LP Linear Programming

LQP Linearly Constrained Quadratic Programming

Problem

LS Local Search

LSI Large-scale integration

LUT LookUp Table

MCNC Microelectronics Center of North Carolina

MILP Mixed Integer Linear Programming

MUX Multiplexer

OGDF Open Graph Drawing Framework

OU OverUse

PLD Programmable logic device

QP Quadratic Programming

QAP Quadratic Assignment Problem

SA Simulated Annealing

TS Tabu Search

TSP Traveling Salesman Problem

ULSI Ultra-large-scale integration

VLSI Very-large-scale integration

VPR Versatile Place and Route

VPR SA VPR’s simulated annealing approach

VTR Verilog-to-Routing (Project)

WL WIreLength

WSPD Well Separated Pair Decomposition

xxiv

symbols

Symbols

math symbols

B Set of binary numbers→ {0, 1}

Z Set of integer numbers→ {. . . ,−2,−1, 0, 1, 2, . . . }

N Set of natural numbers→ {1, 2, . . . }

N0 Set of natural numbers including 0→ {0, 1, 2, . . . }

||.||1 1-norm (Manhattan distance, L1-norm)

||.||2 2-norm (Euclidean distance, L2-norm)

||.||max or ||.||∞ ∞-norm (Chebychev distance, Lmax- or L∞-norm)

other symbols

N Neighborhood

N Full neighborhood

G A general graph

GD General graph representation of an FPGA design

G
layout
D Graph layout of an FPGA design

Garch
D Graph representation of an FPGA design

embedded on the chip architecture

G
2ndlayout
D 2nd energy phase graph layout of an FPGA design

G2ndarch
D 2nd energy phase graph representation of an FPGA

design embedded on the chip architecture

xxv

Part I

What is the background of this approach?

This chapter briefly introduces the background and the challenge of the
presented approach. In addition, the organization of the work is outlined
and the benchmark system is described. This chapter is kept rather short
as each individual part of this work will also be preceded by an ‘informal’
introduction.

1
Introduction
“A graph is worth a thousand words.”

— common sense —

Contents
1.1 Background & idea . 4
1.2 Who are the addressees of this work? 5
1.3 Organization of this work . 6
1.4 Test environment . 6

3

introduction

1.1 background & idea

Compilation flows are often accepted as black boxes. Based on the input
code, their task is to produce an executable version of the process description.
This translation is necessary for any compiled programming language and
execution environment. Therefore, compilers generally accomplish the task
of translating abstract descriptions into concrete machine instructions.

Whereas this procedure is frequently used by programmers for all differ-
ent kinds of compiled languages, influencing the result is often limited to
common compiler options, e. g., the specification of an optimization level.
However, compiler development itself is a very interesting discipline of com-
puter science. The availability of different possibilities to influence the trans-
lation process can improve not only the quality of a resulting implementation
but also the process of development itself. For x86 processors, compilers usu-
ally offer a huge number of options while only very few are regularly taken
into account (like the typically used ‘-O3’ option in, e. g., Intel’s or GNU’s
compiler collections).

When dealing with more ‘exotic’ architectures, the situation is similar or
even more pronounced. Different situations and different goals demand flex-
ible configurability regarding ‘which direction a compiler should take’ to
translate an input description into executable instructions or even synthe-
sized hardware. This is especially the case if hard restrictions (like indispens-
able timing constraints) have to be respected in order to guarantee the correct
functionality of a system. Under such circumstances, FPGAs or other recon-
figurable hardware devices are often the architecture of choice. The straight
implementation in hardware, paired with the option to renew this hardware
implementation without the need to replace any hardware parts, make such
devices more and more important, especially if frequent changes of the hard-
ware design are anticipated or if only a small number of the hardware should
be produced. The manufacturing of an ASIC design in small quantities is
often much more expensive than integrating an appropriate reconfigurable
equivalent (which has been produced in very large amounts). In the end,
this relatively generic chip only has to be configured with the appropriate
functionality. In this context, ‘placement’ is the part of the compile flow that
assigns synthesized logic units to suitable positions on the architecture.

For such situations, this work introduces the FieldPlacer framework, a
flexible, fast and unconstrained force-directed placement method for hetero-
geneous reconfigurable logic architectures.

The FieldPlacer framework aims at providing an intuitive entry point to
the field of FPGA placement and facilitates the consideration of various op-
timization goals. In general, the appropriate placement of logic blocks onto
an underlying FPGA architecture is an important part of the FPGA compile

4

1.2 who are the addressees of this work?

flow. Furthermore, the FieldPlacer method is able to facilitate the subse-
quent routing in the flow. In contrast to many available placers, especially to
others from the field of analytical placement, no a priori fixation of nodes
in the design is necessary. The general idea of the FieldPlacer approach is
to create a graph representation of a chip design including all types of logic
blocks (including I/O) and create a layout for the entire graph with a spring
embedder simulation in a force-directed manner which imitates a system of
springs and magnets. It will be pointed out that the resulting layout has many
favorable properties to be used as a basic sketch for an FPGA design and that
the frequently applied and necessary fixation of I/O nodes in other methods
can be detrimental. Based on this generated basic layout description, many
different strategies can be applied in the FieldPlacer in order to create a
placement that matches the specific demands of the designer. To perform
all this in very short times and with high resulting quality, several recent
techniques, particularly from the field of graph drawing, are included in the
framework. Finally, universal interfaces are provided to be able to modify
and extend the method in the future.

This work describes all main parts of the FieldPlacer framework. In addi-
tion, a large number of benchmarks are included to demonstrate the achieved
quality on the one hand and to give suggestions about an appropriate usage
of the different possibilities in the application of the framework on the other
hand. Before addressing the developed placement method, the theoretical
foundations of the general placement problem are presented. This should
elucidate the problem’s complexity and outline available solution strategies
to, finally, explain and justify the chosen strategy for this placer.

1.2 who are the addressees of this work?

This is not an ‘FPGA fundamentals’ work. Even though the basic concepts
that are necessary to explain the developed method are described, details
about these should be found in other works. I personally recommend the
book ‘Architecture and CAD for Deep-Submicron FPGAs’ of Betz et al. [21] for
that purpose. It is also not intended to be a ‘graph drawing fundamentals’
work. Again, the fundamental ideas and concepts are of course described.
However, more details about graph drawing algorithms can be found in
many referenced works. For the applied force-directed approach, the dis-
sertation ‘A potential field based multilevel algorithm for drawing large graphs’ of
Hachul [81] is the reference for further research. Finally, apart from the ac-
tual development of the FieldPlacer framework, this work aims at bridging
gaps between all mentioned domains in order to solve a practically occurring
problem from an up-to-date field of computer science.

5

introduction

1.3 organization of this work

The work is organized in seven main parts. This first part contains the in-
troduction of the work. After that, Part II provides the domain of FPGAs in
general while Chapters 3 and 4 in Part III outline the theoretical backgrounds
of the quadratic assignment problem and force-directed graph layouting, re-
spectively. Part IV presents the general FieldPlacer approach and Part V
adds the surrounding statistical framework for repeated FieldPlacer runs.
Finally, Part VI concludes the work and Part VII contains supplementary
material.

1.4 test environment

Unless otherwise mentioned, each measurement is repeated 10 times (with
10 different seeds for randomized decisions). The maximal and minimal
value is neglected to disregard outliers (especially important for runtime
measurements) and the remaining results are averaged.

In order to avoid any misunderstanding, the wall-clock time that is needed
to run an algorithm (running time, time spent, time span, . . .) is denoted by the
term ‘runtime’ in this work.

A detailed description of the benchmark environment is given in Table 1.
Even though the processor has four physical cores, all measurements are
performed single-threaded.

Architecture: x86_64

Model name: Intel(R) Core(TM) i7− 4790K CPU @ 4.00GHz

CPU MHz: 4400.000

L1i/d / L2 / L3 cache: 32K / 256K / 8192K

Memory (RAM) 32GB

Harddisk type SSD

OS Scientific Linux release 7.1 (Nitrogen)

Kernel Linux version 3.10.0− 229.14.1.el7.x86_64

(mockbuild@sl7-uefisign.fnal.gov)

gcc version 4.8.3 20140911

(Red Hat 4.8.3− 9) (GCC)

Compiler gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5− 4)

Table 1: System configuration

6

Part II

What is the domain of this approach?

This chapter covers the basics of Field Programmable Gate Arrays. It
is explained what they are, from where they arose, how they work, what
they are used for, how they are programmed, how the entire compilation
workflow for those look like and what these workflows have to accom-
plish. In addition, the heterogeneous architectural ‘baseline’ model of an
FPGA for this work is explained. Throughout the chapter, diverse details
are given about techniques that are important for this work and that are,
for example, developed and implemented within the FPGA framework
that is used for the later implementations. In the end, this should pro-
vide a basic technical grounding for the subsequently presented idea of
a chip placement based on force-directed graph drawings.

2
Field Programmable Gate Arrays
“The measure of intelligence is the ability to change.”

— probably Albert Einstein —

Contents
2.1 History of PLDs . 10

2.1.1 CPLDs and FPGAs . 12
2.2 Field Programmable Gate Arrays 14

2.2.1 Operating principle . 15
2.2.2 Timing the delay . 19
2.2.3 Correctness, slack and clock-speed 23
2.2.4 Slack and critical path(s) calculation 25
2.2.5 Heterogeneous FPGAs 28

2.3 The FPGA ‘baseline model’ (in VPR) 29
2.4 Compilation flow for FPGAs . 33

9

field programmable gate arrays

2.1 history of plds

Apart from the large variety of ‘common’ processor alternatives in today’s
computers like x86 or ARM multi-core CPUs with 32- or 64-bit characteris-
tics, GPUs or (for pure computing purposes) so called GPGPUs, FPGAs are
becoming more and more popular in different fields of computing.

In the early 1970s, programmable logic devices (PLDs) entered the market
and extended chip designs (and consequently circuit boards) towards flexi-
bility with dynamically configurable elements instead of using solely combi-
nations of fixed logic-gates. Unlike the usual application-specific integrated cir-
cuits (ASICs) or integrated circuits (ICs) in general which contain a predefined
variety of logical functions, PLDs provide the possibility (and necessity) to de-
fine (and redefine) a chip’s behavior within the system after its fabrication. A
simple PLD can be seen as a programmable box that creates a user-defined
output for every input-combination in a specified and reconfigurable way.
The ‘size’ of the box along with the number of connections in and out the
chip constrain the amount of possible functions. As an alternative to logic
based implementations, such a functionality can (and has) statically also been
realized by much slower ROM-based approaches before. Due to the fact that
the final definition of the chip takes place outside of the factory in a produc-
tive environment, such devices introduced the so called ‘fabless’ semiconduc-
tor industry. Thus, it is, for example, possible to use a PLD within a system
for different demands at different times instead of integrating all necessary
logics in separate chips in the system at fabrication time.

Computing systems (or logic gate systems in general) of today still are, in
simple terms, machines that produce binary outputs based on binary inputs.
Hence, they are physical devices implementing and combining Boolean func-
tions. The most basic logic elements are gates with one or two binary inputs
and one binary output. The ‘standard’ logic gates are namely the NOT, AND,
OR and XOR gates (as well as their logical combinations NAND, NOR and
XNOR). By connecting these gates to a system of gates, more complex log-
ical functions can be implemented in hardware. The process of combining
hundreds, thousands or even hundred thousands of logic gates is covered by the
terms large-, very-large- or ultra-large-scale integration (LSI, VLSI, ULSI). Anal-
ogously, transistor counts of thousands, hundred thousands or millions/billions
per chip refer to the same terms.

PLDs are able to carry out specialized tasks (that may vary over time)
while still implementing them in hardware. Thus, they can be more ‘effi-
cient’ (with more predictable behavior) than very general processing units (like
CPUs) in various ways but they are likewise, in general, less efficient than
extremely specialized hardwired elements like ASICs. This holds true at least
as long as the desired task is ‘relatively simple’. Efficient in this context can,

10

2.1 history of plds

for example, mean that a minimum amount of hardware is involved on the
chip to process a requested operation or that as little power as possible is
consumed. On the one hand, this generally comes (for PLDs) at the price of
a lower circuit speed compared to fixed fabricated logic (like an ASIC) as
such reconfigurable logic elements cannot be packed as densely and work as
fast as their static counterparts. On the other hand, a function in a PLD can
be realized and changed without fabrication and within the actual system. Early
works like the one of Brown et al. [26] already examined the advantages
and drawbacks of Field Programmable Gate Arrays (FPGAs, see Section 2.2),
a special class of PLDs which is in the focus of this work. Later works like,
for example, the one of Kuon and Rose [117] from 2007 compared ASIC
designs’ efficiencies in many details to the one of such FPGAs. The authors
compared both hardware types from a 90-nm production generation in terms
of logic density, circuit speed and power consumption. Their experimental
results showed that the gap between ASICs and FPGAs was still very sig-
nificant, for example, concerning needed area for the logic (a factor of 35
was reported to give an idea of the magnitude) or concerning speed (with a
summarizing factor of 4). This gap is nowadays more and more closing with
heterogeneous FPGAs (see Section 2.2.5) and with upcoming FPGA frequen-
cies of up to 500MHz (cp. Lim [134]) enabled by 28-nm production and other
technological progress.

Besides the great potential due to the reconfigurability in productive sys-
tems, PLDs also offer the possibility of easy and cheap hardware prototyping
of chips instead of only simulating their behavior in the construction phase
or fabricating actual hardware prototypes. The decision whether to eventu-
ally produce ASICs with the functionality of the final PLD prototype or to
use a PLD even in the resulting product, potentially the same PLD that was
used for prototyping (as it is a common practice for different PLD-driven
developments like network routers, modems, DVD players or automotive
navigation systems) is not only governed by the option of later reconfigura-
bility of the system. It is often also a question of production costs. As ASIC
designs have to be fabricated with very high initial and fixed costs (a factory
has to be consulted), it is only worth the effort (and the money) if a very
large number of chips is finally produced. For specialized products, this is
often not the case and an ASIC design could therefore drastically increase
the production costs. Instead, a PLD chip can be used for many different ap-
plications and can therefore be fabricated and sold in large quantities what
can consequently make them cheaper (per unit).

One further advantage of PLD technologies compared to ASICs is a dras-
tically reduced time-to-market. A chip that has finally been prototyped can
simply be cloned to prefabricated PLDs in a very short time compared to the
time that would be needed to produce the respective ASICs. Furthermore,

11

field programmable gate arrays

the possibility to update a chip’s design after delivery is an advantage for cer-
tain applications, even when being incorporated in ordinary products like
those mentioned before.

Except for the already mentioned FPGAs (which will be further inves-
tigated in the remainder of this work), complex programmable logic devices
(CPLDs) are the second market dominant type of larger reconfigurable logic
today. Smaller units (with only several hundreds of logic gates) are, for
instance, programmable array logics (PALs) which are, in general, one-time-
programmable or only very difficultly reprogrammable. Their reconfigurable
equivalents are generic array logics (GALs) that are, hence, often used for PAL
prototyping.

2.1.1 CPLDs and FPGAs

CPLDs are, compared to FPGAs, made of a relatively simple and homoge-
neous structure consisting mainly of a configurable matrix of AND- and OR-
gates combined with a very small number of flip-flops to store states. The ma-
trix is accessible through a large number of in- and output pins from the out-
side of the CPLD whereas these pins are often the only elements ‘equipped’
with a (single) flip-flop. The large amount of in- and outputs predestinates
CPLDs to be used in a highly parallel manner. Instead of describing the logic
directly by connecting logic gates ‘manually’, higher level languages are of-
ten used to describe the functionality in an abstract way. The translation from
such an abstraction level into the actual netlist (logic description as a circuit
diagram) is called synthesis and is, in general, the initial step of a compilation
workflow (cp. Section 2.4) from a more or less abstract description language
into an actual hardware description. Prior to the actual translation into hard-
ware, the behavior of the later chip can be simulated in the chip-specific
software environment. However, the more complex a chip is and the more
degrees of freedom for the actual implementation exist, the more difficult is
any prediction. Due to the rather homogeneous structure and also due to
a very simple routing architecture, the timing of a CPLD is relatively easy
to predict. Inter-logic delays are small and the overall timing is quite con-
sistent for several compilation runs of the same functionality from a higher
description language.

A further difference between FPGAs and CPLDs is that the latter use elec-
trically erasable programmable read only memory (EEPROM memory) to store
the configuration of the chip (and on the chip) while the former ones of-
ten use static random-access memory (SRAM). One core advantage of using
EEPROM (e. g., flash memories are a subdivision of EEPROMs) is that a
CPLD is ready to use just after powering it up. An SRAM-based FPGA con-

12

2.1 history of plds

figuration instead is volatile and needs to be loaded from an external mem-
ory (sometimes also an EEPROM) to the FPGA’s SRAM-cells in the boot-
ing process. EEPROMs generally have the disadvantage that the number of
erase/write-cycles is rather limited as erasing degrades the oxide barrier on
the silicon which at some point may lead to failures. This is, for example, de-
scribed in the work of Buitenkamp [40]. The article primarily presents a soft-
ware technique to extend the operational life of EEPROMs. However, hard-
ware advancements could accomplish the same in the future. This technical
difference between common CPLDs and FPGAs has already been overcome
by some manufacturers providing flash based FPGAs. Such developments
only became possible by decreasing the size of flash cells to maintain the
relatively high logical density of FPGAs.

Remark 1. Apart from electrically erasable programmable read only memories,
there are also EPROM memories that can be erased by ultra-violet (UV) light.
However, such EPROMs are not really practicable when a reconfiguration is fre-
quently required.

Due to these characteristics, CPLDs are the right choice for relatively sim-
ple use cases like critical control applications or generally simple pure combi-
natorial designs like glue logics to basically combine/connect other resources
of the chip, see Greaves and Nam [78]. This is especially true if the func-
tionality will probably not change too often while the system is frequently
rebooted and a processing of the chip is desired directly after power up. Due
to their simple structure, CPLDs also require only extremely low amounts
of power, what is especially important in battery-operated systems. Finally,
CPLDs are relatively cheap.

FPGAs (in contrast to CPLDs) base on lookup tables (LUTs) as their prin-
cipal building blocks instead of simple logic gates. A LUT with k binary
inputs consequently has 2k possible input constellations while the output
for each of these can be specified by the SRAM table. Just like a CPLD, an
FPGA needs in- and outputs to communicate with the rest of the system. In
addition to these basic elements, FPGAs contain a relatively large number
of flip-flops and modern architectures provide more and more heterogeneous
on-chip elements such as hardwired processor cores, dedicated random-access
memory, digital signal processing elements (DSPs) including multipliers, various
clock management systems and support for advanced device-to-device signaling
technologies.

Even though the processing time of signals in a CPLD before the actual im-
plementation in hardware (resp. in a simulation) is easier to predict than for the
more complexly structured FPGAs, final hardware implementations of both
systems have great advantages in terms of predictability compared to ordi-
nary computing architectures like CPUs as these include many mechanisms

13

field programmable gate arrays

that are difficult to predict, like, for example, caches with hard- and software
prefetchers.

Due to their mentioned characteristics, FPGAs are applied in a wide vari-
ety of applications like networking hardware, data processing and storage,
general instrumentation, telecommunication systems or even as hardware-
configured digital signal processors.

Today, FPGAs are not any more only available as expensive niched special-
purpose hardware. Embedded in so called Systems-on-a-Chip (SoCs), several
FPGA manufacturers offer ‘all-in-one’ solutions which are dedicated espe-
cially towards early development and research. These boards often contain a
central processing unit (e. g., an ARM CPU), potentially along with other
specialized processing elements, memory regions, periphery, graphic proces-
sors, audio and further interfaces. The two most dominant manufacturers of
FPGAs over the last years have been Xilinx and Altera123 (part of Intel since
2015), both providing such relatively cheap development boards especially
for researchers in addition to their ‘professional’ products. Other vendors of
PLDs in general are Lattice Semiconductor (Vantis (AMD)), Microsemi (Actel),
Quicklogic, Lucent, Cypress or Atmel. Altogether, the market of PLDs is con-
stantly growing and the role of FPGAs has become even more important in
the recent past4.

2.2 field programmable gate arrays

As already stated in the previous section, FPGAs form a special class of PLDs
which is moving more and more into the field of ‘mainstream’ accelerators
due to their wide applicability and improved programmability. An FPGA’s
main feature is its reconfigurability. This can be achieved by the use of differ-
ent programmable hardware elements. Many popular FPGA architectures are
configurable by SRAM-cells as against EEPROMs (flash memories) on regular
CPLDs. However, some manufacturers base their FPGAs on flash memory or
on antifuses even though the latter class only allows for a onetime configura-
tion of the system. They could therefore more precisely be called configurable
instead of reconfigurable. Flash-based FPGAs are technically difficult to re-
alize compared to SRAM-based architectures because SRAM-based FPGAs
can achieve a much higher density on the chip. Still, as mentioned before,
flash-based (as well as antifuse-based) chips are ready to operate directly af-

1 http://sourcetech411.com/2013/04/top-fpga-companies-for-2013/ (accessed 19 April 2016)
2 http://hackaday.com/2015/08/24/two-new-fpga-families-designed-in-china/ (accessed 19

April 2016)
3 http://www.fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-companies.html (ac-

cessed 19 April 2016)
4 http://www.dailytech.com/Why+Intels+Massive+167B+USD+Plan+to+Purchase+Altera+Makes+
Perfect+Sense/article37380.htm (accessed 19 April 2016)

14

http://sourcetech411.com/2013/04/top-fpga-companies-for-2013/
http://hackaday.com/2015/08/24/two-new-fpga-families-designed-in-china/
http://www.fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-companies.html
http://www.dailytech.com/Why+Intels+Massive+167B+USD+Plan+to+Purchase+Altera+Makes+Perfect+Sense/article37380.htm
http://www.dailytech.com/Why+Intels+Massive+167B+USD+Plan+to+Purchase+Altera+Makes+Perfect+Sense/article37380.htm

2.2 field programmable gate arrays

ter powering up and have an exceptionally low power consumption. SRAM-
based FPGAs are volatile and therefore need separate memory to load the
configuration from on start up. This memory can in turn be a flash memory
in- or outside the chip or even an external configuration memory such as a
harddisk drive or the like. It depends on the circumstances of the use case
what kind of an architecture is the best choice.

Remark 2. For the approach presented in this work, it does not matter how the
reconfigurability is achieved. Even though the explanations in the following sections
assume SRAM, this does not play a role for the introduced model at all. Performance
indicators on which it would have an influence (e. g., in the timing prediction model)
are provided by external pieces of software, for example, VTR/VPR (see Section 2.3)
in the later benchmark sections.

2.2.1 Operating principle

Remark 3. The figures in the following section are partially based on schematics
from the book ‘Architecture and CAD for Deep-Submicron FPGAs’ by Betz et
al. [21] to preserve good comparability for any reader who wants to dive deeper into
FPGA details with the cited book. The equations are also partially related to the book
as the described framework in the book has been the basis for the framework in which
the methods of the presented work are finally implemented and benchmarked.

The most basic and important elements of an FPGA are the lookup tables
(LUTs). A k-input lookup table (k-LUT) is a small memory element with k
(binary) inputs and one (binary) output. The table can be programmed arbitrar-
ily by specifying a desired output for each of the 2k input combinations.
Thus, 2k cells of (e. g., SRAM) memory are required and such a table can
be programmed into 22

k
possible states. Figure 3a shows a 2- and a 4-LUT

together with one possible configuration for each. The 2-LUT in Figure 3a in
fact implements the same functionality as an ordinary OR-gate. However, a
simple 2-LUT can implement even more functions than the elementary logic
gates which have been named in the previous section (see Figure 1, the sym-
bols are settled in ANSI/IEEE Std 91-1984 [1]).

LUTs are, in general, the dominant operating logic elements of an FPGA
architecture.

An important characteristic of FPGAs is that designs implemented into
them are generally ‘synchronous’. When the FPGA is operating, a clock (or
several clocks) are driving the transition from one state to the next. Hence,
the processing of a signal from one point of the design to a subsequent one
is aligned to the underlying clock by flip-flops (FF), see Figure 3b. A flip-flop
(or a latch) is a bistable multivibrator. Thus, it can hold two stable states. Flip-
flops can be clock-driven to form a simple 1-bit storage element in sequential

15

field programmable gate arrays

In[0]

In[1]

Out

In[0] In[1] AND OR NAND NOR XOR XNOR MISC. . .

0 0 0 0 1 1 0 1 0 . . .
0 1 0 1 1 0 1 0 1 . . .
1 0 0 1 1 0 1 0 0 . . .
1 1 1 1 0 0 0 1 0 . . .

2-LUT

Figure 1: Lookup Table - 2-LUT possibilities

logics. If so, the input data is latched, stored, and the output data is refreshed
in each clock-cycle. Due to the insertion of flip-flops into a design, no ad-
ditional logic is added but the current state is stored and the execution of
different signals passing the chip are harmonized. This also helps to equalize
uncertainties (resp. unpredictabilities) or, in general, small variations in the
timing. Section 2.2.2 will discuss the use and importance of flip-flops to steer
the timing of an FPGA chip in more detail.

4-LUT D Q

FF

M
U

X

In[0]

In[1]

In[2]

In[3]
clock

Out

Figure 2: Basic Logic Element (BLE)

Figure 2 illustrates a basic logic element (BLE) which is a combination of
the mentioned components. To align such a BLE with the clock, the flip-flop
can be used to store the result from the LUTs output. However, if no syn-
chronization is needed at this point of the logic, the LUTs output (Out) can
directly be connected bypassing the flip-flop. This option is realized by the
use of a (programmable) multiplexer (MUX). A (k : 1)-MUX can dynamically
connect any of its k inputs to the output of the multiplexer. The MUX can
be programmed (e. g., through an SRAM cell of size log2(k)) to enable one
of the two strategies (with or without the flip-flop) for each BLE in the circuit.
Since a flip-flop is able to store one bit, a so called register of size r (group
of r flip-flops) is able to store r bits. The fact that a flip-flop needs a certain
amount of time to ‘transport’ the input data to the output introduces a delay
called the propagation delay. In an FPGA design, flip-flops are used for a num-

16

2.2 field programmable gate arrays

ber of purposes. The obvious one is to simply preserve a state within the
circuit, e. g., for the synchronization (and combination) of multiple signals.
In Section 2.2.2 it will be shown how the activation (or bypassing) of flip-flops
by the multiplexers in BLEs can influence the maximal possible clock-speed of
the circuit, e. g., by pipelining the design flow.

In[0]

In[1]

Out

In[0] In[1] Out

0 0 0

0 1 1

1 0 1

1 1 1

2-LUT

In[0]

In[1]

In[2]

In[3]

Out

In[0] In[1] In[2] In[3] Out
0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

4-LUT

(a) Lookup Table (LUT)

D Q

FF

(b) Flip-Flop (FF)

In[4]
In[3]
In[2]
In[1]
In[0]

Out

(c) Multiplexer (MUX)

Figure 3: Main FPGA building blocks for CLBs

Finally, all these basic elements are hierarchically combined to the com-
prehensive logic element of the FPGA, the configurable logic block (CLB). A
CLB consists of a number of BLEs sharing I inputs and N outputs, whereas
the outputs of the BLEs can again be internally connected to (the same or
other) BLEs’ inputs in the CLB (see Figure 4). For certain architectures, the
content of several BLEs are first combined to a slice and then several of these
slices are combined to a CLB, a principally technical difference to improve
the performance of the logics’ execution.

The overall hierarchy of the logic units on an FPGA can be summarized as
follows:

{LUTs, FFs,MUXs} ⊂ BLEs (⊂ slice) ⊂ CLBs ⊂ FPGA .

Instead of only placing simple LUTs of a specified size into the CLBs on the
FPGA architecture, (k+ 1)-LUTs can, for example, be constructed by combin-
ing two k-LUTs sharing the same k inputs whereas their outputs are com-
bined with a (2 : 1)-multiplexer which is consequently switched by the addi-
tional ‘+1’ input. Such configurations offer the possibility either to use fewer
and larger or more smaller LUTs. However, such a hierarchy of LUTs needs
more area and wiring on the chip. It is a weighing of pros and cons to choose

17

field programmable gate arrays

BLE 1

...

BLE N

...

N Outputs

I Inputs

N BLEs

clock

N

I

Figure 4: Configurable Logic Block (CLB)

the best LUT size and their best combination within the CLBs. Ahmed and
Rose [3] investigated the effect of the LUT sizes and of the number of LUTs
per CLB (logic cluster) on the needed area, the introduced delay and on a norm
called the area-delay. Area-delay is a product of both metrics and therefore
models the compromise between two contradicting goals. They came to the
conclusion that, if this combined area-delay norm is the criterion of choice,
clusters made of 3-10 LUTs each with 4-6 inputs produce the best overall
results. An earlier work of Betz and Rose [18] therefore experimentally pro-
vided a value for the number of inputs for the BLEs to achieve a high (> 98%)
utilization of the clusters (for a certain set of benchmarks).

To provide data from outside the FPGA as inputs for the logic and likewise
to emit outputs of it, the I/O blocks (in- or output pads) are the second basic
type of blocks on FPGAs. Due to bidirectional operability (tri-state capability),
many FPGAs’ pads (e. g., from Xilinx) can be configured to be used either
for input or output (the keyword is IOBUFs). Thus, I/O resources can of-
ten be assigned arbitrarily to such bi-directional pads, what in turn offers
maximal flexibility in the design phase. This holds true at least as long as the
outer connections are not fixed due to architectural constraints. This depends
strongly on the specific demands on a system and its operational status. If
the FPGA is embedded in a fixed setup that is possibly not accessible or not

18

2.2 field programmable gate arrays

changeable, the position of several or even all I/O pads may be fixed (see
Section 5.9.1). However, especially in a the design phase or the prototype
stage, the FPGA’s overall design can often influence the positioning of the
I/Os considerably (see Section 5.5.4). Thus, a good arrangement of the I/O
pads can be crucial to achieve a good performance of the chip or/and good
routability.

In addition to their pure function of providing access to signals for or from
the FPGA, the I/O pads can also contain flip-flops to store the data right
before the actual output or just after the input as a buffer.

Finally, the interconnection of such elements through wires is realized
through the FPGA’s routing architecture which traverses signals from one el-
ement to the next. To do so, routing paths are available on the chip. To meet
the requirements of the reconfigurability, the wires can be connected dy-
namically. The description of the interconnectivity of logic elements is called
netlist. The netlist forms a hypergraph and the hyperedges are accordingly
called nets.

2.2.2 Timing the delay

As already stated before, the flip-flops synchronize the progress of signals
in the design on an FPGA. Therefore, the flip-flops are clocked by so called
clock generators. FPGAs usually contain one or more such clock generators
to create sources for the synchronization signals with frequencies defined by
either the user or by (or with support of) the design tools. For a predictable syn-
chronization, it is obvious that the time of arrival of the clock signal should
ideally be identical (or at least very precisely predictable) for all clock driven
elements (here: flip-flops) on the chip. Thus, the clock signal should be dis-
tributed through independent nets (wires) on the architecture. Such nets are
often called global nets and the wires on the chip are accordingly called global
lines. They do not interfere with the ‘ordinary’ interconnects of logic elements
and can be hardwired so that their behavior is very stable and predictable (as
desired).

However, every transition of a signal takes (some amount of) time. Thus, even
the best clock architecture with fast interconnects imposes delays (resp. dif-
ferences in the arrival times) between different targets (e. g., flip-flops). These
delays of the clock signals are called clock skew. A commonly used (in VLSI
design) and very efficient distribution network for such global clock signals
(in terms of low clock skew) is an H-tree like the one shown in Figure 5. An
H-tree is a self-similar fractal with Hausdorff dimension 2 (see, for example,
Ullman [183] or Browning [27]). In such a global H-tree net, the path from

19

field programmable gate arrays

the central point (the root) to any of the tree’s endpoints (leaves) is equally
long so that the theoretical time of arrival is identical for all elements.

Figure 5: H-tree clock net

Clock skews have to be taken into account when performing a detailed
timing analysis, especially for designs that are time-critical, which means that
they need to operate as fast as possible near the timing bound and therefore
with as little slack as possible. Slack is basically the difference of required
and actual arrival time at a point in the design and it occurs due to several
reasons, some of which will be discussed in the following paragraphs.

Wire delay (dw)

The fundamental sources for the necessity of timing analyses in general are
different types of delays that are present within a chip layout. Consider the
simple succession of flip-flops and logic elements in Figure 7a on page 25. Ne-
glecting the clock skew (by assuming a perfect distribution network for the
clock), an obvious delay occurs from the ‘normal’ wires connecting the differ-
ent basic logic elements. The signal needs, for example, a certain amount of
time to pass from FF1 to FF2 through the wire between the elements. Depend-
ing on the length of this connection, the imposed wire-delay dw influences the
timing. In simple words, the longer the connection is, the longer the signal
takes to traverse from the output of FF1 to the input of FF2. Section 2.3 will

20

2.2 field programmable gate arrays

provide some more details about the routing architecture of FPGAs. How-
ever, it is generally desirable to keep connections relatively short.

Remark 4. Section 6.3 will show how detailed information about slack is used to
iteratively optimize the layout in cooperation with the graph-layouting approach.

The delay through a wire segment can, for example, be modeled very eas-
ily and still relatively accurately by the Elmore delay [55]. Assuming con-
sistent resistance and consistent capacitance through the wire, the delay is
proportional to half of the product of the resistance and the capacitance. The
resistance of a wire segment depends (among other factors) on the material,
where copper resistance is relatively low and silver resistance is, for example,
even lower. Other influencing factors are the cross-sectional area of the wire,
its temperature and, finally, its length. Assuming that the first three prop-
erties are given and constant throughout the architecture, a wire segment’s
length determines its resistance.

An accurate approximation of the capacitance of a wire is a difficult task
as it depends on several factors like, for example, the environment, the dis-
tance to surrounding wires and, finally, its shape (cross-sectional area and
length). However, by (again) neglecting several of these effects (which are
very difficult to estimate in detail), a linear dependence of the length of a
wire segment on the capacitance can be assumed as a simple approximation.

As both properties (resistance and capacitance) linearly depend on the wire’s
length and as the delay introduced by the wire is proportional to half of the
product of both values, the delay of a wire segment becomes (following all
simplifications and Elmore’s model) a quadratic function of its length.

Even though minimizing the length of connections between logic elements
in the circuit is therefore a reasonable goal, a good routing is in fact way
more complex. Available wires on a routing architecture may have different
lengths (see Figure 6) and connections of different wires affect each other. The
resulting choice of the right wire segments for each connection is extremely
challenging. It can, for example, be very beneficial in a VLSI design to split
long routing paths and insert amplifiers (buffers) to speed up the traversal of
the signals (see, for example, Bartoschek et al. [15]).

CLB CLB CLB CLB CLB
wire

length

1

2

long

Figure 6: Wires with different lengths on the architecture

21

field programmable gate arrays

In addition, even the available switches on the architecture to connect
wires can be of different kind. The benefits of using pass transistors or tri-
state buffers for this task differ from one situation to the next (e. g., influenced
by the lengths of wire segments or the number of connected segments). Fur-
thermore, the two types demand for different amounts of area on the chip.
Thus, a good mix of these architectural options should be present on the
chip’s architecture (see, for example, the work of Vaughn and Rose [20] or
the book of Betz et al. [21]).

Remark 5. Wire delay is a major bottleneck in the design of high-speed systems
and is therefore an important optimization goal in the design phase of a (high-speed)
circuit (see, for example, the work of Zhou et al. [193] or Bartoschek et al. [15]).
Due to the trend towards smaller and faster structures (deep sub-micron), Betz et
al. [21] (resp. Rose and Hill [160]) already stated in the late 90s that the impor-
tance of routing delays, rather than delays introduced by the logic, will become more
and more dominant. Consequently, a large proportion of the area on many modern
FPGAs is used for the routing architecture (cp. Vaughn and Rose [20]).

Summarizing at this point, it can be stated that routing is difficult and
that there are many influencing factors. However, the routing is not primar-
ily considered in this work (except marginally in Section 5.4.2). For now, it
is sufficient to note that the connections through wires on the architecture
impose a delay that grows with the wirelength. Thus, relatively short con-
nections between logic elements are desired.

An improvement of the delay model for wires in terms of accuracy has
been presented by Avci and Yamacli [14]. However, Elmore’s model is still
often used in practice due to its simplicity in combination with an acceptable
accuracy. To use Elmore’s estimation on an entire RC-tree (Resistor-Capacitor-
tree), the capacitances of subtrees must be combined. Details on this tech-
nique and links to other techniques like the Penfield-Rubenstein model [161]
can, for example, be found in Betz et al. [21, Section 2.2.4].

Remark 6. For this work, we assume that a delay model for both the approximation
of all delay types before actual routing and after it is provided by the surrounding
architecture specific software (VPR/VTR in this case, see Section 2.3). The model in
this work takes this (optionally) as an input for further timing-driven improvement.

In the design phase (e. g., before the actual routing or even before the place-
ment of the layout, see Section 2.4), the wire delay can only be roughly ap-
proximated due to many uncertainties concerning the final wires’ pathways.
As, for example, the definite placement of, e. g., the CLBs onto the architecture
is often performed before the routing between them, the wire delay should, in
general, be conservatively overestimated until the final layout is determined.
This is important to ensure correctness of the resulting configuration (see
Section 2.2.3).

22

2.2 field programmable gate arrays

Logic delay (dl)

Even though the delay introduced by the connections is today often dom-
inant in high-speed FPGAs (cp. Remark 5), another considerable type of
delay is the logic delay. This simply occurs due to the time that is needed
to perform a logical operation, e. g., the evaluation within a CLB. For sure,
this delay also includes wire-delay due to the block-internal interconnections.
The logic delay is often quantified by static models which rate the delay of
a component in a CLB (e. g., a LUT) with a constant delay and combine all
these values to a resulting delay for the entire logic element.

As the delay of the logic elements can be extracted from the hardware
specifications, the estimation of this delay type is, in general, rather accu-
rate, especially in a design environment that is specifically adapted for the
targeted hardware architecture. See Betz et al. [21, Section 6.2.3] for details
about the later incorporated model.

Propagation delay (dp)

A further basic delay type is the propagation delay of a general gate, e. g., of
a flip-flop. Propagation delay measures the time that a signal needs to tra-
verse from the input of a flip-flop (or gate) to its output. It is therefore the time
needed to ‘load’ the flip-flop with its new value. This delay must be taken
into account in the timing analysis, especially for time-critical situations op-
erating at maximum speed.

Remark 7. In addition, the connection of very many inputs to a single output in a
logic gate can impose a further propagation delay on the circuit.

2.2.3 Correctness, slack and clock-speed

Figure 7a on page 25 shows a very simple circuit with three flip-flops and one
logic element. A theoretical sequence plan of an input data signal traversing the
design without all the mentioned delay types is depicted in Figure 7b. As stated
before in Section 2.2.1, the signal in a synchronous design traverses from one
flip-flop to the next within one clock cycle. The clock signal is shown at the
top of Figure 7b, periodically switching between the states 0 and 1. To specify
a point in time, the clock will be considered to ‘take place’ and therefore
‘to actually clock’ at the rising edge of the clock signal. This is the point at
which the signal switches from 0 to 1. As this switching does also take a
small amount of time, the signal is actually rising instead of instantaneously
switching. These clock points in time are indicated with the gray vertical lines
in Figure 7. Now, the status of a flip-flop is updated at each of these points.
As a signal needs to be ‘transported’ from one flip-flop to the next within

23

field programmable gate arrays

one clock period, the overall delay in between two such clock events must
not exceed the time span of the clock period.

Figure 7c additionally contains delays of all mentioned types so that the
traversal through the wires (dw), the evaluation of the logic (dl) and the
‘loading’ of the flip-flops (dp) is rated with some time consumption. As a
result, the signal at the input and output of all flip-flops is distinguished
from one another and it becomes visible how the delays influence the actual
sequence plan. Consequently, the clock-speed may only be as high that, in-
cluding all delays, everything within one clock-cycle can be processed. The
higher the delays are, the lower must be the clock-speed. If the delays are
too large and exceed a clock-cycle, the design will not work as expected. On
the other hand, a too low clock-speed (inducted by the already mentioned
clock-generators at the beginning of Section 2.2.1) will result in wasted time
at the end of the clock-cycle, so called slack.

If a desired clock-speed of the circuit is a priori given, an analysis of the
delays can prove whether the circuit (as it is) can run at this speed or not. If
not, the insertion of flip-flops (e. g., by activation through the multiplexers in
the BLEs, see Figure 2) in restricting critical paths can facilitate the desired
clock-speed. In general, the pipelining of registers (flip-flops) is a common
technique to increase the clock-speed of a design. Conversely, if the overall
delay of two succeeding paths is smaller than the time period of a clock-cycle,
these two paths could be combined (e. g., by bypassing a flip-flop through the
multiplexer in a BLE) to reduce the necessary number of clock-cycles. Hence,
with a predefined clock-speed, the slack on a path can be negative in case that
the delay exceeds the clock-period.

Remark 8. For the model introduced in Section 6.3, positive slack is assumed in
any case by shifting all slack values by the most negative one if necessary.

In another scenario where only a circuit is given, the timing analysis can
determine the (approximated) maximal clock-speed for the circuit to run cor-
rectly. In this case, the positive (but differently sized) slacks at the end of paths
quantify how critical each path is in the context of the overall design. This
slack occurs due to different delay (and arrival) times of multiple combined
paths and is explained in the following section. Even if the circuit is finally
completely established (including the routing), a certain overestimation of
the delay is advisable to compensate variations and to guarantee correctness
of the circuit.

Remark 9. Timing-constraints can even be defined manually by the designer. This
can be necessary for specific paths in the design if these have to meet conceptual
timing restrictions.

24

2.2 field programmable gate arrays

D Q

FF1
D Q

FF2 Logic
D Q

FF3
data

clock

dp dp dpdw dw dl dw

(a) A simple circuit

positive (rising) edge triggered

clock

data

R1

R2

R3

(b) Theoretical sequence plan

dw

dw + dl + dw

dp

dp

dp

positive (rising) edge triggered

clock

D1

Q1

D2

Q2

D3

Q3

(c) Actual sequence plan

Figure 7: Flip-Flops and delay types

2.2.4 Slack and critical path(s) calculation

In the previous section, the sources of delay and the resulting restrictions
for the clock-speed of a design were presented. Considering and rating these
effects in complex designs is both crucial and difficult. For the model pre-
sented in this work, the calculation (or approximation) of slack in a design
is (more precisely: can be) used to influence the placement of logic elements
onto the available FPGA architecture to finally improve the circuits timing.

Slack in a simple concatenation of logic elements (like the one shown in
Figure 7) appears due to the difference between the clock-period and the
logics’ and wires’ delays. However, even without considering a clock, slack
still occurs in more complex designs.

Consider the circuit shown in Figure 8a (this example circuit is taken from
the book of Betz et al. [21, Figure 2.12]). The numbers indicate the delay
introduced by the wires and by the logic elements. For an analysis of the
overall timing, the so called timing graph (Figure 8b) is created, a directed
acyclic graph (DAG). Registers and (primary) in- or outputs are the ‘borders’
of a clock-period and are, therefore, the leaves of the graph representing the
timing of one such clock-period. They have either no or exclusively incident
edges. Each element that introduces delay (wires, logics) is included with an
edge between the elements’ contact points (called fanins and fanouts), which
themselves become the nodes of the graph. The delay of the elements is then

25

field programmable gate arrays

Out

LUTBReg

LUTA

InA InB

0.5

0.5

2

5
3

1

4

2

(a) Circuit

Out

2

0.5
0.5

5

Reg

1

0.5
0.5

Reg

3

InA

4

InB

2

(b) Delays

Out

2

0.5
0.5

5

Reg

1

0.5
0.5

Reg

3

InA

4

InB

2

0 0 0

3 4

4.5

9.5 2

10

5.5 12

Tarr

(c) Arrival times

Out

2 0

0.5 0
0.5 7.5

5 0

Reg

1 6.5

0.5 1
0.5 0

Reg

3 1

InA

4 0

InB

2 7.5

01 00 07.5

34 44

4.54.5

9.59.5 29.5

1010

5.512 1212

Treq Sl

(d) Required times and slack

Out

2 0

0.5 0
0.5 7.5

5 0

Reg

1 6.5

0.5 1
0.5 0

Reg

3 1

InA

4 0

InB

2 7.5

01 00 07.5

34 44

4.54.5

9.59.5 29.5

1010

5.512 1212

(e) Critical path

Figure 8: Circuit (a) and timing graph traversals for slack calculation (b)-(e)

assigned to the edge as an edge weight (denoted by delay(i, j) on the edge from
node i to node j). The delay of a path between any two points can now be
calculated by summing up all delays on this specific path. Starting from the
sources of the graph (on the top), it can be calculated when the initial signal
arrives at any point in the circuit. This time is called the arrival time and it is
assigned to the nodes in Figure 8c (gray) by tracking all paths on a breadth-first

26

2.2 field programmable gate arrays

traversal from the top to the bottom, summing up the latest arrival times on
nodes of the graph (cp. equation (1)).

Tarr(i) = max
∀j∈fanin(i)

{Tarr(j) + delay(j, i)} (1)

See, for example, the predecessor of Out. Even though the incoming path
on the right fanin only takes 2 units of time (e. g., nanoseconds), the attached
logic element LUTB can calculate its output only after the signal on the left
fanin also arrived. As this signal takes 10 units of time, the (maximal) arrival
time on this node is max(2, 10) = 10.

After the arrival times have been calculated, the highest possible clock-
speed of the circuit can be estimated by taking the maximal overall delay
time of a path (Dmax), accordingly the latest arrival time on the outputs,
as the minimal clock-period. In the presented example circuit, this value is
Dmax = max(12, 5.5) = 12. When assuming nanoseconds as a unit of time,
12ns correspond to a maximal clock-speed of 1

12 · 10
9

106
= 8313 MHz.

As it was already mentioned before, not all paths in the graph limit the
clock-speed to this value because, at several nodes in the timing graph, some
signals have to ‘wait’ for others what induces slack for the ‘waiting path’.

To calculate the slack, a backwards breadth-first traversal from the bottom
to the top of the graph is performed. At each node i, the latest possible
arrival time Treq (orange) that does not increase the overall time needed to
process the circuit (therefore does not increase Dmax) is calculated as the
minimal difference between its successors’ latest arrival times Treq and the
delay between these two nodes (see Figure 8d and equation (2)).

Treq(i) = min
∀j∈fanout(i)

{Treq(j) − delay(i, j)} (2)

The slack on an edge (blue) between node i and j is now simply the differ-
ence between the available time span (Treq(j) − Tarr(i)) on the edge and the
actual delay(i, j) on the edge (see equation (3)).

slack(i, j) = (Treq(j) − Tarr(i)) − delay(i, j) (3)

Thereby, the slack quantifies how critical an edge is for the overall speed of
the circuit and is an important criterion for deciding which paths to route as
short as possible (or on faster wires if available) and which to relax when-
ever it becomes necessary due to architectural restrictions. Finally, a critical
path of the circuit is a path with no slack on its edges (highlighted in Fig-
ure 8e). However, it is not necessarily unique. Adding delay to any of the
edges on it (e. g., by longer wires) would directly increase Dmax and con-
sequently decrease the overall maximal possible clock-speed of the circuit.
Instead, a longer wire can be used for connections with high slack without

27

field programmable gate arrays

any drawbacks concerning the circuits final speed. This fact will be used in
the iterative slack graph morphing approach in Section 6.3.

Thus, slack estimations are important for the timing of circuits and are
used in general VLSI design (cp. Youssef and Shragowitz [189]) or specifically
for FPGAs (e. g., by Frankle [63]).

2.2.5 Heterogeneous FPGAs

The FPGA architecture explained so far consists of identical CLB and I/O
blocks combined with a routing architecture. Even though any kind of Boolean
function could be implemented on such an architecture (as long as there
are enough resources on the chip), heterogeneous architectures have become
more and more important in the past. A simple form of a heterogeneous
FPGA could contain different types of CLBs, for example, with differently
sizes LUTs. Thus, CLBs could not abundantly swap positions to improve
wirelength on such an architecture.

There are numerous functions that are frequently used in FPGA designs
and that can consume a large portion of the CLBs and routing resources.
Thus, including such functions as specialized blocks on heterogeneous FP-
GAs can be advantageous in several ways. One important such function is
a multiplicator. Multiplicators are on the one hand very often used in de-
signs, on the other hand it is already relatively complicated to realized them
with CLBs so that a large amount of area would be used for them. Hard-
wired (not reprogrammable) elements for such operations can be realized
more compactly and they operate faster than a reconfigurable logic pendant.
Moreover, such specialized blocks simplify the synthesis (see Section 2.4).
However, FPGAs are meant to be initially very general reconfigurable chips
that are finally used as special purpose hardware. Though, specialized hard-
wired blocks on the architecture should only be added if they are likely to
be useful in many designs. Multiplicators, for example, are. Digital signal pro-
cessing (DSP) blocks on the architecture can, for example, contain several
multipliers of different sizes and other frequently used functions like adders,
subtractors or accumulators. Such DSPs are, for instance, present on Altera’s
Stratix Series FPGAs. A further important type of basic ‘hard’ blocks on a het-
erogeneous architecture are block memories (RAMs). They can be used to store
data and several of them can be combined if more storage is needed. For ex-
ample, Kuon and Rose [116, 117] showed the great benefits of heterogeneous
FPGA architectures with DSP and memory elements compared to their ho-
mogeneous counterparts. In addition, they compared them to ASIC designs
in terms of area, speed and power consumption. They came to the conclu-
sion that adding heterogeneous blocks like hardwired multipliers and block

28

2.3 the fpga ‘baseline model’ (in vpr)

memories leads to a substantial improvement concerning area and power
consumption. However, the measured impact on the delay of the circuit was
relatively small. The effects on the routing of such a composition of I/O in-
tensive coarse-grained units with fine-grained logic units was, for example,
investigated by Yu et al. [190].

Remark 10. Even extremely complex blocks like ‘ordinary’ CPUs can be part of
today’s heterogeneous FPGA architectures.

2.3 the fpga ‘baseline model’ (in vpr)

In the following section, the basic elements of a generic heterogeneous island-
style FPGA architecture and their arrangement on the chip are discussed in
more details. This includes all relevant components of the architecture that
is used in all later benchmarks.

The set of logic blocks

As described before in Section 2.2.5, heterogeneous FPGAs can have great
advantages in comparison to homogeneous ones. However, heterogeneity
introduces further complexity and challenges for placement and routing. The
heterogeneous architectures that are considered in this work are made up of
four basic block types:

• Configurable Logic Blocks (CLBs)

• In- and Output pads (I/Os)

• Multiplicators (MULs) and

• Memory Blocks (MEMs)

However, the method can easily be extended for other types (see Section 5.8).
The four mentioned types are supported by the Versatile Place and Route (VPR)
framework [19] which was initially developed at the University of Toronto. The
actual implementation of the presented approach in this work is carried out
in the VPR framework. VPR is the place-and-route part (see Figure 11) of VTR,
an open source FPGA CAD tool that is widely used by the FPGA research
community for testing and extending methods (e. g., for the integration of a
power model by Poon et al. [151]) or for the simulation of different possible
FPGA architectures in order to gain conclusions about hardware decisions
before manufacturing them (see, for example, the architectural conclusions
of Betz et al. [21, Chapter 8]). VPR even became part of the SPEC 2000 [94]
suite of computer benchmarks, a standard set of applications which is used
to determine the productive and realistic speed of workstations.

29

field programmable gate arrays

The overall FPGA architecture

Some parts of an FPGA architecture were not yet discussed as they are not
explicitly considered in the presented approach. However, they should be
named at this point to complete the overall picture. The principal FPGA
architecture that is targeted in this work is shown in Figure 9.

CLB0,0

CLB0,1

CLB0,2

CLB0,3

CLB0,4

CLB2,0

CLB2,1

CLB2,2

CLB2,3

CLB2,4

CLB4,0

CLB4,1

CLB4,2

CLB4,3

CLB4,4

MUL1,0

MUL1,1

MUL1,2

MUL1,3

MUL1,4

MEM3,0

MEM3,1

MEM3,2

MEM3,3

MEM3,4

In[0]

In[1]

In[2]

Out

e. g., SRAM configured
pass transistor

SRAM

CLB0,0

CLB0,1

CLB0,2

CLB0,3

CLB0,4

CLB2,0

CLB2,1

CLB2,2

CLB2,3

CLB2,4

CLB4,0

CLB4,1

CLB4,2

CLB4,3

CLB4,4

MUL1,0

MUL1,1

MUL1,2

MUL1,3

MUL1,4

MEM3,0

MEM3,1

MEM3,2

MEM3,3

MEM3,4

In[0]

In[1]

In[2]

Out

e. g., SRAM configured
pass transistor

SRAM

CLB0,0

CLB0,1

CLB0,2

CLB0,3

CLB0,4

CLB2,0

CLB2,1

CLB2,2

CLB2,3

CLB2,4

CLB4,0

CLB4,1

CLB4,2

CLB4,3

CLB4,4

MUL1,0

MUL1,1

MUL1,2

MUL1,3

MUL1,4

MEM3,0

MEM3,1

MEM3,2

MEM3,3

MEM3,4

In[0]

In[1]

In[2]

Out

e. g., SRAM configured
pass transistor

SRAM

Figure 9: Heterogeneous island-style FPGA architecture

The heterogeneous island-style FPGA architecture contains all mentioned
block types from the previous section. In the figure, all blocks have the same
size. This may not be the case in general but does not play a major role for
the presented method as each element is simply represented with its center
coordinates. Specialized blocks like multiplicators and memory blocks are
often larger than the simple CLBs, thus, they span multiple block positions.
However, they are often available in dedicated columns of the island-style
architecture. The I/O pads are surrounding all logic elements which is a fact
that is important for the presented method and indeed kind of ‘natural’ as
these pads connect the FPGA to the surrounding system, e. g., on an embed-
ded device like a SoC.

Remark 11. In Figure 9 and also in the later introduced graph models, all logic
block types are assumed to be of equal size. However, in the future, the actual size
of a block could additionally be considered for the graph layout. The layouting

30

2.3 the fpga ‘baseline model’ (in vpr)

algorithm used in this work (see Section 4.2) is already able to take such node sizes
into account.

Apart from the different wirelengths that were already mentioned before,
the routing architecture also contains programmable connection boxes that
connect the logic blocks to the wires. In addition, programmable switch boxes
are available to connect two wires in order to ‘change the direction’ on a path
(e. g., from a vertical to a horizontal channel). Both types can, for example,
be programmable by SRAM cells. The switch boxes do normally not allow
the configuration of all possible connections of wires that reach the box. The
choice of the switch box type for an FPGA architecture addresses a trade-off
between routability and area efficiency. Three basic types of such switch boxes
are shown in Figure 10.

0

1

2

3

4

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

(a) Disjoint topology

0

1

2

3

4

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

(b) Universal topology

0

1

2

3

4

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

(c) Wilson topology

Figure 10: Switch box topology types

For comparisons of the different types, see, for example, the work of Rose
and Brown [159] from 1991 or more current investigations by Chang and
Wong [32] or Fan et al. [59] about universal and disjoint switch box topologies,
respectively. The disjoint switch box topology, for instance, simply allows to
switch from horizontal track i to vertical track i and vice versa or to follow
the current wire. Today, different vendors include different switch boxes in
their FPGA designs.

Even with restrictions concerning the connectivity in the switch boxes
(cp. Figure 10), interconnect has been and still is a dominant part of the
FPGA in terms of area consumption (see, for example, DeHon [46]).

In addition to all the mentioned options for the design of an FPGA archi-
tecture, another degree of freedom is available by assigning different channel
widths on the routing architecture. Instead of having the same number of
routing channels in all rows and columns of wires, it can, for example, be ad-
vantageous to have more tracks in the inner regions of the chip while reduc-
ing the number further out on the chip (as indicated in Figure 9). The channel

31

field programmable gate arrays

width will therefore be incorporated in the presented model in Section 5.4.2.
A further improvement included by Xilinx in their architectures consists of
extra I/O-channels at the I/O-pads to improve accessibility to these elements
(cp. Tavana et al. [178]). Another approach is to add additional channels near
the center of the FPGA. Even though this idea has been supported by many
researchers in the FPGA community to improve routability (cp. Betz et al. [21,
Section 5.4.1]), it was not profitable in practice.

Simulation tools like VPR greatly help to test such considerations before
manufacturing the FPGA and therefore make it possible for researchers and
manufacturers to test and develop new ideas at ‘no costs’. In VPR, the ar-
chitecture for the simulation of the design is ‘created’ based on a principal
input description including the different blocks and their possible arrange-
ment options (see Section 2.4).

Remark 12. In addition to the architecture model, Figure 9 also contains an ex-
ample for a ‘placed and routed’ net (indicated by red lines) from this coarse grained
perspective on the FPGA (without visible detailed routing inside the logic blocks).

Other architecture types

As already stated, modern FPGA architectures contain different types of
blocks and their arrangement on the chip is classically following one of the
following design principles: island-style (symmetrical), row-based or hierarchical.
The basic layout of island-style FPGAs (or PLDs in general) has already been
shown in Figure 9. They get their name from the fact that each block (con-
taining different types of logic elements) is surrounded by routing resources,
forming structures that look like ‘islands of logic in a sea of interconnect’ while
everything is surrounded by I/O pads. Row-based architectures instead con-
sist of rows of logic blocks interspersed with rows of interconnect and sur-
rounding I/O pads. Finally, another class are hierarchical FPGAs which can,
for example, follow a hierarchical layout idea, basically like the H-tree shown
in Figure 5.

Even though VPR was initially developed for island-style FPGAs, it is also
possible to describe other architecture types. However, this work primarily
targets island-style FPGAs for the method’s development and the benchmarks.
Still, many parts of the method could easily or even directly be used to create
placements for the other types (see Section 5.8). Another recent development
is the use of three-dimensional (3D) FPGAs (cp. Chen et al. [34]), Section 5.8
will give a short outlook how the method can directly be extended for them.

Remark 13. For example, Xilinx usually designs its architectures in island-style
while Altera builds many hierarchical FPGAs [22].

32

2.4 compilation flow for fpgas

2.4 compilation flow for fpgas

Remark 14. As this work focuses on a specific part of the FPGA compilation flow,
namely the placement of logic blocks onto heterogeneous FPGA architectures, the
other main parts will only be explained relatively briefly. A lot of additional details
about all following steps in the compilation flow for FPGAs, and also about their
specific realization in VPR, can be found in other works, in particular in the book of
Betz et al. [21, Figure 2.12], which also explains the VPR framework on which the
implementation of this work bases.

Place & Route

High Level
description

Circuit
description

Synthesis
to logic blocks

Placement
of logic blocks
to architecture

Routing
of connec-

tions on the
architecture

FPGA
programming

file (bit stream)

- Elaboration
- Optimization
- Technology Mapping
- Packing

Figure 11: Main steps in an FPGA compile flow

A rough description of the compilation flow for an FPGA architecture is
depicted in Figure 11. First of all, it is important to keep in mind that the
‘compile process’ generates a hardware description of the desired logic. This
is a fundamental difference to compilers for, e. g., CPUs which create a machine-
readable sequence of instructions operating on data in the predefined hard-
ware.

To describe the behavior of a desired piece of hardware in an FPGA, higher
level hardware description languages (HDLs) like Verilog or VHDL are com-
monly used instead of describing the nets of logic gates manually. Parts of
the code that should be translated into the FPGAs hardware have to follow
the register-transfer level (RTL) design abstraction for synchronous digital cir-
cuits. An RTL description may describe the traversal of digital signals (data)
and their transformation in logics between registers. This can, for example,
be realized in either of the above mentioned two alternatives.

Even though this work will not deal with actual coding for FPGAs at all,
at least a very simple example of a code written in a hardware description
language should be given.

Listing 1 contains the implementation of an OR gate in VHDL (taken from
the EDA playground5, cp. Figure 1). The entity section defines and names
the I/O ports of the circuit while the architecture declaration describes its
logical behavior. In this case, the logic has two inputs (named a and b) and
one output (named q). The RTL description of the architecture now simply

5 http://www.edaplayground.com/s/example/615 (accessed 04 May 2016)

33

http://www.edaplayground.com/s/example/615

field programmable gate arrays

determines that the two inputs a and b should be logically combined by an
‘or’ function and the result should be passed to the output q.

−− Simple OR gate design
l i b r a r y IEEE ;
use IEEE . std _ l o g i c _1164 . a l l ;

e n t i t y or _ gate i s
port (

a : in std _ l o g i c ;
b : in std _ l o g i c ;
q : out std _ l o g i c) ;

end or _ gate ;

a r c h i t e c t u r e r t l of or _ gate i s
begin

process (a , b) i s
begin

q <= a or b ;
end process ;

end r t l ; �
Listing 1: OR gate design in VHDL from the EDA playground

Even though it may already look quite complicated to create such sim-
ple functions, once they are created, they can be nested by calling each
other just like in programming languages for ‘normal’ CPUs. However, some
functionality can be described even more simple than in such already rela-
tively high level hardware description languages (at least simple compared to
pure descriptions on the gate level). Recently, approaches converting a sub-
set of ANSI C/C++/SystemC/Matlab code to RTL descriptions appeared, e. g.,
High-Level Synthesis (HLS) (see, for example, the publication of Martin and
Smith [137] or the overview of Meeus et al. [140]).

The synthesis step of the compile flow converts the description of the logics
behavior into a ‘gate-level’ netlist. In this step, technology independent opti-
mizations can be performed that are not related to the actual architecture but
only base on the evaluation of the logic. This optimization step is comparable
to the machine independent optimization (e. g., dead code elimination) in ‘normal’,
for example C, compilers. To run these optimization steps in the synthesis,
the elaboration phase first has to ‘roll-out’ and translate the hierarchical (e. g.,
VHDL or Verilog) code down to the basic blocks of the FPGA, in particular
LUTs, flip-flops, in- and outputs etc. In VPR, the tool Odin [101] is included to
handle this task.

After elaboration, the technology mapping converts the general description
of logic into one that specifically targets the desired hardware architecture.
This, for instance, includes the ascertainment of given LUT sizes. These steps,

34

2.4 compilation flow for fpgas

along with possible technology independent and technology dependent optimiza-
tions, form the synthesis phase and can, for example, be performed by the
‘basic’ ABC tool [23] (in VTR) or in combination with extended techniques
like WireMap [102] for improved technology mapping (published by Xilinx).

It has been described in the previous sections that the architecture on an
FPGA is somehow hierarchical and that the view on CLBs is coarse-grained
in the sense that such logic blocks can contain several BLEs which in turn con-
tain LUTs. Thus, multiple basic blocks like LUTs (or BLEs) can be assigned
to the same CLB. This process of packing can certainly influence the design’s
routability and the resulting timing. Successive BLEs that are on a (or on
multiple) critical path(s) should, for example, be packed into a common CLB
to minimize the wire delay between them whereas uncritical BLEs can be
scattered among different CLBs. Such a timing-driven logic block packing is
performed by T-VPack [136] (timing-driven further development of the basic
VPack tool) in VTR. Basically, connections between BLEs are rated concerning
their criticality compared to the most uncritical connection with a maximum
amount of slack (slackmax) following formula (4) and finally packed into
shared CLBs if they are critical (see Marquardt et al. [136] or Betz et al. [21,
Chapter 3.1]).

criticality(i, j) = 1−
slack(i, j)
slackmax

(4)

After the synthesis step with all its subroutines, the FPGA is described by
a net of logic elements (CLBs, I/Os, MULs, MEMs in the described heteroge-
neous model) which has to be placed and routed on the architecture. As there
are, in general, several available slots on the architecture for every single ele-
ment of each type, this process offers a great further degree of freedom but
also demands for techniques to create a ‘good’ such assignment.

Remark 15. Due to the complex (heterogeneous) logic and routing structure of FP-
GAs, both the coding and the synthesis take generally much longer than for simpler
reconfigurable logic devices like CPLDs. Optimization techniques like the mentioned
register pipelining for FPGAs are on the one hand often not necessary and on
the other hand simply not possible due to the very small number of available flip-
flops on CPLDs. It should have become obvious that high level description languages
like VHDL are, especially for FPGAs, very important to implement more complex
projects.

The assignment of the logic elements onto the architecture is called place-
ment. A placement can follow different goals. One can be to optimize the
timing by short connections on the chip to be able to set a high clock speed
for the final layout (timing-driven placement - see, for example, Marquardt
et al. [135]). Another approach could target a good routability of the placed

35

field programmable gate arrays

blocks on the architecture. As routing resources are limited, a pure timing-
driven placement can result in a block assignment that makes it impossible
or at least very difficult to find enough (or fast enough) connections through
wires and switch boxes on the architecture. A placement targeting this goal
is called routability-driven placement (see, for example, Kim et al. [110]). A
timing-driven placement could use the overall wirelength or the length of
the critical path as the target to optimize while a routability-driven place-
ment can, for example, take wire densities on the chip into account. The
placement algorithm VPlace used in VPR can, in a way, consider both goals
in the placement. Altogether, it is important to note that the placement in-
fluences the timing and routability. Further goals are certainly conceivable.
E. g., a combined place-and-route approach called Independence with tangible
routability-driven placement comparing itself to VPlace has been published
by Sharma et al. [167].

VPR Placer

VPlace uses a simulated annealing approach to optimize an initial random
configuration by pairwise swaps of blocks on the architecture. In this pro-
cess, swaps are accepted if they improve a certain cost function or, with a
decreasing probability throughout the process, even if they worsen it. This
peculiarity allows to escape local optima. For details on simulated annealing,
see Section 3.2.7. To find pairs of blocks that are considered for swapping, a
first element is chosen randomly and a second one is taken from a frame of
size Dlimit (with 1 6 Dlimit 6 FPGA_size) around the first one in the current
assignment in order to check whether this swap meets the requirements of
the cost function or not. The frame is continuously resized depending on the
number of accepted moves in the previous step. The more successful swaps
were found (within a number of swaps), the more is the frame kept large or
even enlarged. The fewer successful swaps are found at a specific tempera-
ture of the annealing, the more is the frame shrunk so that in the end only
swaps of elements nearby each other are considered. More details about this
adaptive annealing, about the temperature update schedule and other peculiari-
ties of the method can be found in Betz et al. [21, Section 3.2.2] and other
referenced works in this section.

As the calculation of the exact total wirelength after swaps of blocks would
be too time consuming in the process and as the actual final routing is not
known at this point, a norm called the semi-perimeter metric of a bounding box
surrounding a net with terminals (connected blocks) is used to approximate
the wirelength that will be necessary to route the net (see Figure 12).

The wirelength necessary to connect all the terminals in net i is approxi-
mated by the sum of its vertical span (bby(i) = ymax − ymin) and its hor-

36

2.4 compilation flow for fpgas

0, 0

0, 7

7, 0

7, 7

xmin = 2 xmax = 6

ymin = 1

ymax = 6

Figure 12: Bounding box of net with 8 terminals

izontal span (bbx(i) = xmax − xmin). An update of the cost function after
two elements have been swapped generally only requires an update of these
properties of (at most) two bounding boxes instead of remeasuring all con-
nections that are attached to the moved terminals.

The resulting cost function in VPlace is shown in equation (5). It contains
a factor q(i) which grows with the number of terminals in the net following
the work of Cheng [125] from the field of ASIC designs.

costβ =

Nnets∑
i=1

q(i)

[
bbx(i)

C
avg
x (i)β

+
bby(i)

C
avg
y (i)β

]
(5)

In addition to the wirelength approximation, the cost function implemented
in VPlace contains a linear congestion model with Cavg

x (i)β and Cavg
y (i)β and

β = 1. For the region where the net is placed, these two values contain the
average number of wires per horizontal and vertical channel, respectively.
Increasing β would penalize higher congestion in certain regions superlin-
early (as it makes the subsequent routing more difficult or even impossible).
However, the authors of VPlace experimentally verified that a linear conges-
tion (thus β = 1) led to the highest quality of placements in practice (see
Betz at al. [21, Section 3.2.3]). With β = 0, the approach neglects the routing
considerations and assumes a ‘traditional’ pure timing-driven nature.

37

field programmable gate arrays

Remark 16. A common effect in such simulated annealing approaches is, that (as a
rule of thumb) “reducing the number of moves per temperature by a factor of
10, for example, speeds up the placer by a factor of 10 and reduces the final
placement quality by less than 10%”6. Therefore, further improvements come at
a high price.

In contrast to the already mentioned combined (place & route) method of
Sharma et al. [167], the approach presented in this work is a placement
method after which the routing has to follow separately. This is also the
case for the compared baseline method in VPR which applies simulated an-
nealing.

Thus, the actual routing of connections follows after the placement was
performed. Routing is often realized in two steps: global and detailed rout-
ing. However, numerous combined one-step global-detailed-routers are also
available, e. g., the work of Lee and Wu [123] or the one of Plazcewski [148]
whereas only the one of Lee and Wu takes timing considerations into ac-
count to assign critical connections to fast wires. Global routing (cp. Chang
et al. [31]) assigns the pins and channel segments (threads of multiple parallel
wires between the logic blocks) used for the connections between the blocks
in a coarse-grained manner without specifying the explicit wires that will be
used. This is consequently done in the detailed routing phase (e. g., Brown et
al. [25]). In addition, local routing (within the logic block clusters) sets the
necessary connections inside of blocks (clusters), e. g., within CLBs.

Remark 17. Global routing and the effect of a specific placement on the feasibility
of the global routing is taken into consideration within the presented approach in
this work in Section 5.4.2. Thus, it is not only influencing the placement, but also
(partially) the routing. This has been indicated by the orange regions in Figure 11
on page 33.

Just as there are very many different approaches besides simulated anneal-
ing to solve the placement problem (which will be discussed in more details
in Section 5.1), there are also plenty of attempts to create good routings (see
Betz et al. [21, Section 2.2.3] for an overview of early fundamental works in
this field). In the recent past, some interesting works specifically targeting
heterogeneous architectures have been published (see, for example, Deepak
and Rajendra [156] from 2005 or Zha and Athanas [191] from 2013). How-
ever, this work is not primarily about routing. It only aims at supporting the
router with a ‘router-friendly’ placement. Thus, it does not target a specific
router but makes some general assumptions about how a router will princi-
pally proceed after the placement.

6 quote from Betz at al. [21, Section 3.2.2]

38

2.4 compilation flow for fpgas

In general, it is desirable to use the shortest possible connection between
all pairs of connected elements. However, routing resources are limited and
elements like the switch-boxes on FPGA architectures with topologies which
can not contain all possibilities to interconnect meeting wires further restrict
routing capabilities. A shortest path between two points on the architecture
can, for example, easily be found with Dijkstra’s algorithm [48] from 1959

or the related A*-search algorithm from 1968 (see Hart et al. [91]) which both
generally operate on a graph representation. In case of a regular routing
grid in two (or three) dimensions (like it is present on an FPGA), the prob-
lem can even be solved with a basic simple technique called maze-routing or
wave-propagation (see the work of Lee [122] from 1961). A more sophisticated
method is, for example, the MaizeRouter published by Moffitt [141], which is
an effective global router using and extending the basic approaches.

VPR’s router fundamentally bases on the PathFinder negotiated congestion-
delay algorithm [138] but includes several enhancements like modeling the
delay with Elmore’s model (see Section 2.2.2) instead of assuming constant
delays in a linear model. With Elmore’s approach, even the effect of different
buffer types can be taken into account. Another extension is the local wave-
front restart technique (see Betz at al. [21, Section 4.3.2]) to reduce the time
that is spend in the routing phases. The PathFinder algorithm itself takes
delays into account to route critical paths through fast tracks, even if the
tracks are already congested. In a subsequent rip-up and rerouting step (called
a routing iteration), non-critical paths (with slack) in congested areas can be
redirected to a detour.

If each connection would, instead, be strictly routed on the shortest possi-
ble path until a wire channel is congested, later routes would have to take
greater detours. In general, the order of the routes in the routing queue would
greatly influence the chance of obtaining better resources in such a simplified
approach. However, Section 5.4.2 will explain how such a simple model with-
out any rerouting is used in this work to simulate and rate the routability of a
placement. Anyway, the ability to reroute nets is extremely important for ‘real’
routers. A different order of the connections in the routing process can pos-
sibly already improve the situation, e. g., if an evitable constellation occurs
which would significantly deteriorate the timing. For example, if an uncriti-
cal connection has been routed early in the process. As a consequence, this
connection could be ‘blocking’ wire segments that would in fact be needed
for a more critical connection later in the procedure.

Remark 18. Finding the minimum rectilinear Steiner Tree (MRST) of a net
to interconnect it is an NP-hard problem and would, thus, not be applicable for
compilation situations in general. Instead, approximation algorithms or heuristics
like those mentioned above are often used in practice.

39

Part III

What is behind all this?

The first chapter of this part (Chapter 3) presents a model to describe
the chip-layout problem as a quadratic assignment problem (QAP).
Solving QAP is NP-hard and even today’s algorithms are only capa-
ble of solving very small QAP instances to optimality. Nevertheless,
promising results can be obtained with several (meta-)heuristics, due to
which three main classes of iterative neighborhood search based meth-
ods are presented and compared in this chapter. Therefore, an idealized
model of a chip with known optimal solution is defined, perturbed and
used as the input for the aforementioned algorithms. The results show
distinct peculiarities of the methods and lead to an initial justification
of the subsequently presented approach.

Chapter 4 contains a survey on ‘the evolution of force-directed graph
drawing methods’ and explains the force-directed model and implemen-
tation used in this work including several improvements that the method
contains in comparison to ‘traditional’ ones. Two fundamentally used
and extended concepts for this work are the FM3 algorithm and Tutte’s
layout approach with fixed nodes. To sum up, the chapter aims at pro-
viding principal, practical and figurative reasons for the strategy chosen
in the presented framework.

3
The Quadratic Assignment Problem
“Es gibt nichts Praktischeres als eine gute Theorie.”

— Kurt Lewin, 1951 —

(Nothing is as practical as a good theory.)

Contents
3.1 Model the problem of chip-layouting by QAP 44

3.1.1 Problem definition . 45
3.1.2 The problem’s complexity 50
3.1.3 Linearizations . 50
3.1.4 Lower bounds . 52
3.1.5 The QAP polytope . 55
3.1.6 QAP in chip layout . 57
3.1.7 Towards QAP heuristics 58
3.1.8 Why this work is not based on exact solutions 58
3.1.9 Why this work is not using QAP lower bounds 60

3.2 Iterative Approaches towards solving QAP instances 60
3.2.1 Problem definition . 63
3.2.2 Neighborhood exploration techniques 64
3.2.3 Global and local optima 65
3.2.4 Local search . 66
3.2.5 Tabu search . 68
3.2.6 Iterated Tabu search . 70
3.2.7 Simulated annealing 73
3.2.8 Comparison . 78

3.3 A layout through force-directed graph drawing 82

43

the quadratic assignment problem

3.1 model the problem of chip-layouting by qap

The problem of chip placement (or floorplanning) with equally dimensioned
facilities and a priori defined locations can be formalized by the Quadratic
Assignment Problem (QAP) [8], introduced by Beckman and Koopmans [16]
in 1957 in the mathematical field of operations research. The QAP is a special
case of general floorplanning from the category of ‘facility location problems’.
It can be formulated as follows:

Definition 1 (Quadratic Assignment Problem (informal)). Given a set of n fa-
cilities F and n respective locations L, along with a definition of distance between
two locations and flow (sometimes weight) that has to be transported between every
pair of facilities.

Find an assignment of the facilities to the locations that minimizes the sum of
costs which are in turn the product of distance and flow.

Definition 2 (Quadratic Assignment Problem).

Given :

F = {f1, . . . fn} a set of n facilities

L = {l1, . . . ln} a set of n locations

d : L× L→ R a distance function

w : F× F→ R a flow function

Find :

π : F→ L an assignment

minimizing : ∑
fi,fj∈F

w(fi, fj) · d(π(fi),π(fj)) the total cost.

In the general (non-homogeneous) formulation of the Koopmans-Beckmann
form, the cost function contains additional linear costs b as addend, repre-
senting costs that arise from placing a facility fi to location π(fi), regardless
of the placement of the other facilities:∑

fi,fj∈F
w(fi, fj) · d(π(fi),π(fj)) +

∑
fi∈F

b(fi,π(fi)) .

Another commonly used notation of the problem in the literature is shown
in Definition 3.

44

3.1 model the problem of chip-layouting by qap

Definition 3. Given two matrices W (flow) and D (distance) of size n× n with
entries wij and dij. Find a permutation π of the underlying set of n elements that
minimizes (6).

n∑
i=1

n∑
j=1

wijdπ(i)π(j)

(
+

n∑
i=1

biπ(i)

)
(6)

Lawler [121] introduced a generalized version of the QAP by representing
the overall costs (e. g., the product of flow and distance) in a combined four-
dimensional matrix C with entries cghij and the target to minimize (7).

n∑
i=1

n∑
j=1

cijπ(i)π(j)

(
+

n∑
i=1

biπ(i)

)
. (7)

3.1.1 Problem definition

Assume that a chip contains slots for different fundamental types {t1, t2, . . . , tc}
of units. Let utij denote the j-th unit which is of type ti and stkl the l-th slot
of type tk. The units correspond to the aforementioned facilities while the
slots in the model correspond to the locations. A unit utij can be assigned to

slot stkl if they are of the same type, therefore if ti=tk.
The following section is based on a idealized architecture model to apply

QAP as a study case on an ‘FPGA-like’ chip. It is assumed that a chip is a
square grid of N×N slots and that all these are of the same type. Due to
that fact, slots and locations can be used equivalently in the following. Thus,
the task is to place a number of n = N ·N units on an N×N grid.

Remark 19. The orange coloring of units in figures of this section is applied to mark
the elements on the outer frame of the idealized chip as they are typically of another
type (I/O) than the inner elements (logic units). Nevertheless, this distinction is
not involved in the assignments or any other part of the idealized model at this point.
It is indeed used to present some effects of different placement methods later in this
section.

First of all, a metric to define a measure of distance between two locations
on the grid is needed. For that, the available slots on the integer grid are
indexed by a simple enumeration as follows:

the location with coordinates (xi,yi) is referred to as lxi·N+yi . (8)

The distance between two locations li and lj can then be described by a
distance matrix

D ∈ Rn×n with d̄ij=̂distance between li and lj . (9)

45

the quadratic assignment problem

Figure 13: Different Manhattan routes and the direct connection

The distance in the model is measured by the L1-norm, also known as the
Manhattan distance, which is the sum of horizontal and vertical components,
formally

||(x,y)||1 = |x|+ |y| (10)

for the two-dimensional case and ||~p||1 =
n∑
i=1

|pi| in general for a vector

p ∈ Rn. The Manhattan norm is a good estimate for the distance between
two locations in the model, as it measures the length of a shortest possible
wire connection following only orthogonal paths on the chip. In general,
such a routing architecture is present on FPGAs and many other integrated
circuits. A path with the shortest Manhattan distance between two locations
is usually not unique. Figure 13 shows different such shortest L1-connections
on a grid and the direct connection in terms of the L2-norm, also referred

to as the Euclidean norm with ||(x,y)||2 =
√
x2 + y2 and ||~p||2 =

√
n∑
i=1

p2i ,

respectively. While the Euclidean norm of coordinates on the integer grid
maps to real values, the Manhattan norm of integer coordinates is always
integer.

The 2-dimensional coordinates of each location li on the integer grid with
width N, assigned to the grid as determined in (8), can be recalculated by

x(li) = i−N ·
⌊
i

N

⌋
, y(li) =

⌊
i

N

⌋
. (11)

Combining formulas (10) and (11), the Manhattan distance dij between
locations li and lj is comprised in

D ∈ Nn×n
0 with (12)

dij =

∣∣∣∣
⌊
i

N

⌋
−

⌊
j

N

⌋∣∣∣∣+
∣∣∣∣
(
i−N ·

⌊
i

N

⌋)
−

(
j−N ·

⌊
j

N

⌋)∣∣∣∣ .

46

3.1 model the problem of chip-layouting by qap

The distance-matrix D is symmetric and has a zero-diagonal.
The units of a chip are interconnected by nets to pass electrical signals

from one element to another. Together with their interconnections, the units
form a graph G = (V ,E) with nodes V = {v1, v2, . . . , vn} (|V | = n) which
represent the units of the chip description (resp. the facilities) and |E| vertices
between units to model the interconnections. The graph can be represented
by an adjacency matrix

V ∈ Bn×n with (13)

vij =

{
1 if vi and vj are connected

0 else .

Due to modeling only connectedness in the construction, G is an undi-
rected graph and the connection-matrix V is, thus, symmetric.

The primary goal is to find an assignment for each node vi to a location lj,
representable by the assignment-matrix

X ∈ Bn×n with (14)

xij =

{
1 if vi is assigned to location lj
0 else .

This assignment is a bijective one-to-one mapping between L and V . Each
row and each column contains exactly one ‘1’, whereas all other entries are
‘0’. It can directly be transformed into, or interpreted as, a permutation π of
the nodes in the following sense:

π : {1, 2, . . . ,n}→ {1, 2, . . . ,n} with (15)

π(i) = j if xij = 1

Hence, matrices like X with the aforementioned properties are called ‘per-
mutation matrices’.

A common objective is to find an assignment-matrix that minimizes the sum
of distances between all connected nodes. To achieve this, the connection-
matrix V, indicating whether two nodes are connected, has to be transformed
through the assignment-matrix X, describing to which location a node is
assigned. The result is a matrix Vloc indicating which locations are connected
through the assignment of nodes to the locations:

Vloc ∈ Bn×n with (16)

Vloc = XT ·V ·X with

vloc
ij =

{
1 if location li is connected to location lj
0 else .

47

the quadratic assignment problem

With Vloc it is now possible to compute the overall sum of distances of
the given assignment X by multiplying the locations’ connection-matrix Vloc

with the locations’ distance-matrix D and summing up the diagonal ele-
ments. An explanation why to sum up the diagonal elements is that each
row i of Vloc contains the information with which other locations lj the loca-
tion li is connected (vloc

ij = 1) while the corresponding column i of D contains
the distances between location li and the others. The inner product of row i

of Vloc and column i of D is the sum of costs that position i ‘produces’ and
these inner products are present as the diagonal elements of the product-
matrix of Vloc and D. A diagonal element agg of a matrix A is denoted by
diagg(A) in the following.

Remark 20. In general, matrix multiplication is not commutative. As the dis-
tances are modeled to be symmetric (dij = dji) and as the graph is undirected, the
connection-matrix of locations Vloc is accordingly also symmetric (vlocij = vlocji),
the inner product of column i (instead of row i) of Vloc with row i (instead of col-

umn i) of D would lead to the same results, formally: diagg
(
Vloc ·D

)
=

n∑
i=1

vlocgi ·

dig =
n∑
i=1

vlocig · dgi =
n∑
i=1

dgi · vlocig = diagg

(
D ·Vloc

)
. It does therefore not

play a role whether to apply Vloc ·D or D ·Vloc for the cost calculation in this model.

In that way, the distance of each assigned connection (vi, vj) ∈ E between
two nodes vi and vj, accordingly the distance between two connected loca-
tions, is counted twice, once for node vi and a second time for node vj. Thus,
the ‘correct’ sum of distances c̃ for such an undirected graph is half the sum
of these inner products.

Remark 21. The sum of the diagonal elements of a matrix is also called the trace
of the matrix, denoted with tr(A). It can be shown that the trace of a matrix is equal
to the sum of its eigenvalues.

Finally, the costs c̃ can be calculated by

c̃ =
1

2
·
n∑
g=1

diagg

(
Vloc ·D

)

=
1

2
· tr
(
Vloc ·D

)
. (17)

Remark 22. Examples for the construction of the QAP model in this form can be
found in Appendix A.1.

48

3.1 model the problem of chip-layouting by qap

As

c̃ =
1

2
· tr
(
Vloc ·D

)

=
1

2
·
n∑
g=1

diagg(V
loc ·D)

=
1

2
∗
n∑
g=1

diagg(X
T ·V ·X ·D)

=
1

2
∗
n∑
g=1

n∑
h=1

n∑
i=1

n∑
j=1

xhg · vhi · xij · djg (18)

and as the prerequisites for a legal permutation-matrix (as stated in for-
mula (14)) can be expressed by 2n constraints with n2 binary variables

n∑
i=1

xij = 1 ∀j ∧

n∑
j=1

xij = 1 ∀i ∧ xij ∈ {0, 1} , (19)

the system to be solved can be written as shown in equation (20).

min
1

2
·
n∑
g=1

n∑
h=1

n∑
i=1

n∑
j=1

vhi · djg · xhg · xij

(20)

s.t.
n∑
i=1

xij = 1 ∀j ∧

n∑
j=1

xij = 1 ∀i ∧ xij ∈ {0, 1}

This formulation of QAP is the trace formulation, introduced by Edwards [53,
54]. To find an optimal solution, the factor 12 can, of course, be dropped.

Remark 23. When relaxing the constraints in formulation (20) to general non-
negative real numbers xij, these constraints directly form the ‘Birkhoff polytope’ Bn
(e. g., in Paffenholz [146]) containing the so called ‘doubly stochastic matrices’ with
real entries and rows and columns summing up to one. The vertices of the Birkhoff
polytope form the set of permutation matrices, as already indicated in formula (15).
Consequently, the Birkhoff polytope Bn is the convex hull of the permutation matri-
ces of size n× n (known as the Birkhoff-von Neumann theorem). The Birkhoff
polytope appears in various different sectors of mathematics like geometry, enumera-
tive combinatorics, optimization theory and statistics [147].

49

the quadratic assignment problem

Finally, (20) forms a generally non-convex quadratic binary optimization
problem with linear constraints and quadratic objective function which is
solvable, for example, by Quadratic Programming (QP), by general Integer Pro-
gramming (IP) techniques after a linearization of the problem or by heuristical
methods.

Remark 24. The following explanations in Section 3.1.4 are partially based on the
work ‘An Analytical Survey for the Quadratic Assignment Problem’ of Loiola, de
Abreu, Boaventura-Netto, Hahn and Querido [128] and the ones in Section 3.1.3 on
the work ‘The Quadratic Assignment Problem’ [29] of Burkard, Çela, Pardalos and
Pitsoulis. In addition, the survey by Pardalos et al. [150] should be named for any
reader interested in a deeper insight to QAP. The main intention of these sections is
to provide an overview of the subject area and to reference important works to extend
it. Details are provided in the just mentioned surveys and in the referenced original
works.

3.1.2 The problem’s complexity

In 1976, Sahni and Gonzales [162] proved that QAP is NP-hard and that even
finding an ε-approximation of the solution is not possible in polynomial time,
unless P = NP. Moreover, QAP is said to be one of the hardest problems of
combinatorial optimization. Clausen et al. stated that QAP “belongs to the hard
core of NP-hard optimization problems” [39]. One main reason for the absence
of good solution methods is the absence of good lower bounds for the prob-
lem (see Section 3.1.4). These are crucial for improved branch-and-bound
techniques to skip branches that are inferior to the best obtained solution so
far in the process but also for the evaluation of heuristical approaches [128].
For example, ‘A Branch and Bound Algorithm for the Quadratic Assignment Prob-
lem using a Lower Bound Based on Linear Programming’ has been presented by
Ramakrishan et al. [154].

3.1.3 Linearizations

A fundamental approach to come to a solution of QAP is to linearize the
quadratic objective function and thereby transform the QP into a mixed integer
linear problem (MILP), solvable by a wide range of MILP solvers. This can be
achieved by the introduction of new variables representing the old quadratic
coherences and additional constraints. Even though this idea seems very
promising due to the strong presence of research and tools in this area, the
linearization adds an enormous amount of variables and restrictions. Cou-
pled with the fact that MILP is NP-hard and that the solution time of MILP
instances highly depends on the size of the formulation (variables and restric-

50

3.1 model the problem of chip-layouting by qap

tions), a considerable enlargement of the problem’s formulation may make
the solution time of such an MILP even for small QAP instances inapplicable.

But even if the exact solution of the respective MILP may not be desir-
able, the MILP formulation quasi incidentally delivers a starting point for
computational lower bounds for the problem’s solution when neglecting the
constraints of variables being integer or binary (e. g., xij ∈ {0, 1}) and instead
solving for real variables (xij ∈ [0, 1]). Such an LP relaxation of the problem
contains, besides an infinite number of additional solutions, all feasible solu-
tions of the original problem and can be solved by linear programming (LP)
solvers. Because a solution of the original problem can not be better than
the one obtained under these extended circumstances, the optimal solution
of the LP relaxation forms a lower bound for the original problem. Further-
more, each feasible solution of the dual of the relaxation is also such a (not as
tight) lower bound.

A number of linearizations of the problem appeared since Lawler pub-
lished his approach in 1963 [121], many of them basing on a substitution
of the quadratic terms in the target function by new additional variables
yghij = xgh · xij and an accordingly adjusted system of constraints. A good
overview of four important linearizations of QAP into an MILP is given in
Burkard et al. [29]. While the Lawler linearization needs O(n4) binary vari-
ables and O(n4) constraints, Frieze and Yadegar [65] form an equivalent
MILP with only O(n2) binary variables (like in the original formulation) but
plus additional O(n4) real variables and O(n4) constraints. By approximation
through a Lagrangian relaxation, they obtained a lower bound for QAP based
on their MILP formulation and proved that it is tighter than particular GL
based bounds (cp. Burkard et al. [29, Section 4.3]). Adams and Johnson [2] in-
troduced a mixed integer binary program formulation with (likewise) O(n2)
binary variables, O(n4) real variables and O(n4) constraints.

While all these linearizations base on the outright yghij = xgh · xij substi-
tution, others like the Kaufmann and Broeckx [108] linearization follow a dif-
ferent path using the general linearization method introduced by Glover [72],
resulting in a system with only O(n2) binary and O(n2) real variables with
O(n2) constraints.

Adams and Johnson [2] also stated a more compact formulation but fa-
vored the original one due to a good structure for approximations to obtain
lower bounds. For example, ‘Improved lower bounds for QAP’ based on the
linearization of Adams-Johnson are described in Sergeev’s work [166].

Especially the two linearizations of Frieze and Yadegar and the one of Adams
and Johnson have been thoroughly used to obtain lower bounds for QAP by
relaxing the formulation (e. g., in Burkhard et al. [29, Section 6.2]).

51

the quadratic assignment problem

3.1.4 Lower bounds

As already stated, lower bounds can diminish the solution time of branch-
and-bound methods to solve MILPs by helping to decide whether a branch
of the program is still relevant to obtain an improved solution. One of the
oldest and best known class of bounds are the Gilmore and Lawler bounds (GL
bounds) [71, 121] based on solving a linear assignment problem (LAP) with
relatively low computational costs instead of the original quadratic assign-
ment problem. The linear assignment problem (LAP) can, for example, be
solved in O(n3) time by the application of the Hungarian method but the qual-
ity of GL bounds is, in general, rather weak, especially when the problem size
increases (cp. Li et al. [124]). Further approaches, like the one of Christofides
and Gerrard [38] (CG bounds), base on solving a series of (e. g., O(n4)) lin-
ear assignment problems. Nevertheless, after having early and well-known
lower bounds like the GL bounds, the problem of poor lower bounds was
attenuated, e. g., by Anstreicher and Brixius [10] to achieve computational so-
lutions of larger instances. They applied bounds based on convex quadratic
programming by solving a semidefinite programming problem based on spec-
tral decompositions of transformed A and B matrices (cp. description (6),
details can be found in Sotirov [171]). This led to the solution of QAP in-
stances with size n = 30 on a computational grid in about 7 years of single
CPU time (on an HP9000 − C3000) [6]. For example, several more bounds
and their quality are reported by Loiola et al. [128].

An important early class of bounds for QAP are ‘eigenvalue bounds’. Eigen-
value bounds [61, 158, 85, 86] exploit the fact that the solution of QAP in-
stances with symmetric real flow and distance matrices can be put into the
constraints from Theorem 1 based on the (therefore all solely real) eigenval-
ues of the flow and the distance matrix.

Theorem 1. Let A and B in (6) be symmetric with (not-decreasingly sorted) eigen-
values λ1 6 λ2 6 · · · 6 λn and µ1 6 µ2 6 · · · 6 µn, respectively. For any
permutation π of the set, the following constraint holds true:

n∑
i=1

λiµn−i+1 6
n∑
i=1

n∑
i=j

aijbπ(i)π(j) 6
n∑
i=1

λiµi (21)

n∑
i=1

λiµn−i+1 and
n∑
i=1

λiµi are in fact the exact lower and upper bounds

of the estimation when relaxing the set of feasible matrices from permuta-
tion matrices to orthogonal matrices (cp. Rendl and Wolkowicz [158]). As the
permutation matrices Xn are the intersection of the orthogonal matrices and
the doubly stochastic matrices, the relaxation to orthogonal matrices due to the
obtained tight bounds for these leads to (more or less tight) bounds for the

52

3.1 model the problem of chip-layouting by qap

permutation matrices. Thereby, eigenvalue bounds are generally based on
the relaxation to orthogonal matrices.

Thus,
n∑
i=1

λiµn−i+1 provides a lower bound under the given restrictions

at the price of computing the eigenvalues of A and B in O(n3) time (theoret-
ically in O(n2.38) with the method of Coppersmith and Winograd [47, 41]).
Such simple eigenvalue bounds are, like Gilmore-Lawler bounds, known to
be still rather weak in general (cp. Anstreicher [9]). Strategies to sharpen
them can be based on reducing the matrices spreads (the range of the eigen-
values), e. g., by decomposing the flow and the distance matrix and trans-
porting a preferably large proportion of the problem to the linear term (B) of
the QAP formulation as described in Finke et al. [61]. Another possibility are
gradient projection methods like in Hadley et al. [86]. Even though sharpened
eigenvalue bounds can be much better than GL bounds, their calculation is,
in general, very time-consuming and therefore not applicable in a branch-
and-bound procedure. This fact is strengthened by the observation that the
bounds quality deteriorates in lower levels of the branch-and-bound tree (see
Clausen et al. [39]).

Referring to the eigenvalue bounds, a general approach to get lower bounds
for QAP is to relax the set of feasible solutions from the set of permutation
matrices Xn, which is the intersection of the sets of orthogonal, non-negative
and row/column-sum-equals-one matrices, to only a subset of these restrictions
(cp. Burkard et al. [29]).

Besides the important class of LP-based lower bounds, which was intro-
duced by linearized MILP formulations in Section 3.1.3, the already men-
tioned SDP bounds based on semidefinite programming, see Zhao et al. [192]
or Sotirov [171], became more and more important in recent researches on
QAP solutions. Let A • B denote the sum of elements of the Hadamard prod-
uct of A and B.

A •B =
∑
i

∑
j

Aij ·Bij (22)

In an SDP, the variable to solve for is a matrix X and a general system is set
up by m sets of equations, see formulation (23).

min C •X
s.t. Ai •X = bi ∀i ∈ {1, 2, . . . ,m}

X � 0 (23)

SDP bounds in a specific way relax the set of non-negative matrices (X > 0)
to the set of (positive or negative, w. l. o. g. positive in the following) semidef-
inite matrices (X � 0) and thereby change the search space for X from a

53

the quadratic assignment problem

non-negative orthant to the cone of semidefinite matrices. Another interpre-
tation is to switch the search space from matrices with non-negative entries
to matrices with non-negative eigenvalues. In addition, linear inequations are
transformed to linear operators of the matrix X and the trace operator tr()
becomes the inner product (scalar product) of two elements. A first access to
the relaxation of SDPs ‘from orthant to cone’ is to consider the relationship be-
tween an LP and an SDP by expressing an LP in the form of an SDP. Consider
the LP in formulation (24).

min
n∑
j=1

cj · xj

s.t.
n∑
i=1

aij · xj = bi ∀i ∈ {1, 2, . . . ,m}

xj > 0 ∀j ∈ {1, 2, . . . ,n} (24)

Setting up a matrix X with the xj’s on the diagonal and zero in all other
entries, defining matrices Ai in the same way with only entries aij on the
diagonal and a C matrix with only the cj’s on the diagonal, this system is the
linear program expressed in the form of an SDP as in formulation (23). Many
NP-hard combinatorial optimization problems (like QAP) can be bounded by
convex relaxations that, again, can be expressed by SDPs. The solutions of
relaxations for certain problems not only provide lower bounds but can even
be translated into a feasible solution of the original program with a provably
good objective value. More explanations, the detailed transformation and a
good overview about SDPs can, e. g., be found in the lectures ‘Introduction
to Semidefinite Programming (SDP)’ by Epelman [56] or Freund [64]. A great
benefit of SDP relaxations of QPs is that such systems often provide rather
tight bounds compared to many of the other bounds. The SDP can be solved
with interior-point or cutting-plane methods or other specialized algorithms
like the bundle method in Rendl and Sotirov’s work [157]. All this comes at
the price of relatively large computational costs to solve the SDP what makes
them not being well suited for practical use (cp. Huang [99]). Still, Anjos and
Liers investigated in their work ‘VLSI Layout: Global Approaches for Facility
Layout and VLSI Floorplanning’ that "the semidefinite optimization approaches
can provide global optimal solutions for instances with up to 40 facilities, and tight
global bounds for instances with up to 100 facilities" [7]. This result is particu-
larly related to this work as the later described method handles, as already
mentioned at the beginning of Section 3.1, a special case of floorplanning.

54

3.1 model the problem of chip-layouting by qap

3.1.5 The QAP polytope

Following a linearization of the coefficients, Jünger and Kaibel [103, 104, 105]
set up a Graph Gn(Vn,En) and showed that finding an n-clique with mini-
mal weight in this graph is equivalent to solving QAP as the n-cliques cor-
respond to the n× n permutation matrices. They also investigated relations
to other well known polytopes. A clique is a set of nodes in an undirected
graph with connections available in between all of these nodes.

The construction works as follows: Represent the coefficients cghij (cp.
equation (7)) as weights of edges between two nodes (g,h) (representing
xgh) and (i, j) (representing xij) with g 6= i and h 6= j. These restrictions are
important to construct a legal assignment, as g = iwould mean that a facility
g is placed on two locations at the same time and h = j that two facilities
are both placed on location h. In addition, consider the linear cost terms bij
as weights of the nodes xij. Now, finding a maximal clique (an n-clique) with
minimal total vertex- plus edge-weight is equivalent to solving the respective
QAP instance.

In the following, only a basic example of the interpretation of the idea
should be given, all the methodological details and the application of this
model to elaborate new insights to the structure of QAP are explicitly de-
scribed in the mentioned publications.

Let xCij be the index-vector of nodes in the n-clique C with

xCij =

{
1 if (i, j) ∈ C
0 else .

(25)

and yCghij the index vector of edges in the n-clique

yCghij =

{
1 if ((g,h), (i, j)) ∈ C
0 else .

(26)

An illustrative example for an n-clique in Gn with n = 4 (cp. Jünger and
Kaibel [103], Section 2) is shown in Figure 14. The highlighted clique repre-
sents the assignment of unit 1 to location 2, unit 2 to location 1, unit 3 to
location 4 and unit 4 to location 3.

Any n-clique can only contain one node of each row and one node of each
column as the row and column nodes are not interconnected to each other.
The relationship to permutation matrices is thereby obvious.

The QAP polytope of size n can, by this construction, be described by

QAPn := conv
(
{ (xC,yC) | C is an n-clique in Gn }

)
. (27)

55

the quadratic assignment problem

Figure 14: A Clique in Gn

By such constructions from basically other field than linear or quadratic
programming, the understanding of polytopes, here the QAP polytope, and
especially the understanding of its general structures and its facets, can and
has greatly be enhanced.

Remark 25. It can be shown that the QAP polytope of size n is isomorphic to the
Birkhoff polytope of second order B

[2]
n . B[2]

n is the convex hull of permutation ma-
trices of second order defined by

(
X
[2]
π

)
ghij

= (Xπ)gh (Xπ)ij (the index [ghij] is

often denoted by [gh, ij] to separate the indices of the permutation matrices) corre-
sponding to the linearization yghij = xgh · xij. A polytope can be minimally de-
scribed by its facets, the n−1 dimensional faces of the n dimensional polytope. While
the Birkhoff polytope has only n2 many facets, there are exponentially many known
facets for the Birkhoff polytope of second order B

[2]
n (cp. Aurora and Mehta [13]).

The facets are important to obtain a possibly minimal description of the polytope and
to generate, in that way, good cuts in a branch-and-cut procedure applied to such
problems. The facets are particularly precious as they cut off relatively large por-
tions of the relaxation and bound the polyhedron. For example, Erdoğan and Tansel
proposed an approach based on branch-and-cut to solve a linearized QAP [58].

Even though all these works and deliberations underline the high com-
plexity of QAP in general, there are small classes of instances that can be
solved efficiently. For example, Christofides and Gerrard [38] showed that, if
both matrices A and B are weighted adjacency matrices of trees, the problem
can be solved in polynomial time by dynamic programming approaches. As

56

3.1 model the problem of chip-layouting by qap

soon as one matrix is not a ‘tree-matrix’, the problem remains NP-complete
as the Traveling Salesman Problem (TSP) can be reduced to that case (see Parda-
los et al. [150]). Several other conditions for efficiently solvable QAPs where
reported by Christofides and Gerrard and also in the works of Erdoğan and
Tansel [57] and Burkard et al. [29, Section 10]. In ‘A note on a polynomial time
solvable case of the quadratic assignment problem’, Erdoğan and Tansel showed
that if the distance matrix represents a Manhattan grid and the flow follows
a path structure (like in the ‘chr18b’ example from the QAPlib [28]), the QAP
can be solved in polynomial time. Unfortunately, the instances that will come
up in this work do not meet these conditions in general.

Many other well known NP-hard problems (apart from TSP) have been for-
mulated as QAP instances, e. g., bin-packing, max-clique or graph-isomorphism
(cp. Loiola et al. [128]). In comparison to the very small sizes of optimally
solved QAPs (in general with n < 40), TSPs with sizes up to 89500 ele-
ments (a micro-chip layout from the Bell Laboratories solved by Cook et al.
in 2006 [12]1) have already been solved to optimality. Even though TSP is
also an NP-hard problem, this emphasizes that it is obviously not as hard as
QAP.

3.1.6 QAP in chip layout

QAP appears directly in the chip layouting problem introduced by Steinberg
in 1961 [173]. The task was to place 34 units with 2625 connections on a
backboard with 36 slots. To meet the QAP conditions, two dummy units
were inserted (an extension that is similarly performed later in this work to
match the ‘idealized FPGA architecture’ in Section 3.2). Steinberg considered
the L1-, L2- and the squared L2-norm for the distance calculations. Due to the
already mentioned properties of many wiring architectures in Section 3.1.1,
most research was invested for the L1-norm, cp. Brixius and Anstreicher [24].
In 2004, they analyzed the quality of different bounds in this work, including
the specialized triangle decomposition bound [107] for L1-norms on grids and
proposed a complete solution method based on branch-and-bound for the
L1 case. After 186 hours of CPU time on a single 800MHz Pentium III, their
method confirmed the optimality of a first 1990 found solution with costs
9526 based on a tabu search method [169]. This is a result that also shows
that (meta-)heuristics like Tabu Search can be of great value in this field,
more details on such techniques are given in Section 3.2. The best bound
that was applied to the problem in Brixius and Anstreicher’s approach was
a dual LP based bound, assessing the costs to 7860 (gap of 17%).

1 http://www.tsp.gatech.edu (accessed 15 Jul 2016)

57

http://www.tsp.gatech.edu

the quadratic assignment problem

3.1.7 Towards QAP heuristics

Due to the difficulty of the problem and the importance of its solution in sev-
eral fields, many heuristical approaches arose. While classical pure heuristics
are designed to find a good solution for a specific problem or even instance,
metaheuristics are able to process a wide range of problems, e. g., the class of
QAP with arbitrary flow and distance matrices. Metaheuristics therefore op-
erate as a general algorithm to find a good solution step-by-step. Many of the
most popular metaheuristics (e. g., local search) base on neighborhood search
principles, starting from an initial solution and improving the solution by
good choices of neighboring solutions until no further improvement is possible
in that way. Section 3.2 presents different examples for metaheuristics and
investigates their behavior in terms of quality and time needed to reach the
solution dependent on the size of the problem and the quality the initial so-
lution. The experiments are performed on the base of an input with known
optimal solution that is a simplification of the real instances later used in this
work. Other metaheuristical approaches for general QAP can, e. g., be found
in Hussin and Stützle’s work [100], in Stützle and Dorigo [174] or, realized
by a combination of different metaheuristical methods, in Kováč’s work [115].
In addition, the study of Abd El-Nasser and Mahmoud [163] provides an in-
teresting experimental comparison of different metaheuristics performed on
recent hardware for QAPlib problems. A well known example for a heuristic
in the field of chip layouting is the ‘Kernighan-Lin-Algorithm’ [109], solving
the graph-partitioning problem to minimize the wirelengths on a chip by
swapping elements between two partitions to reduce the edge cut between
them (the number of edges among both partitions).

3.1.8 Why this work is not based on exact solutions

All described techniques towards exact solutions of general QAP instances
have in common that the solution time is impractical for an approach like
the one presented in this work. Li et al. [124] provide a great survey on
the computation (time) of lower bounds of QAPlib instances and Loiola et
al. [128] additionally give an overview of the CPU times spent to solve the
popular Nugent instances [145]. Even though the hardware used is partially
from earlier decades and therefore extremely outdated from today’s point
of view, the results show the trend of runtime behavior for several different
sizes of instances from the de facto standard in benchmarks for QAP, the
QAPlib. With single CPU solution times of days, month or even years for
instances with mostly less than 30 units, it is obvious that without a break-
through in the methodology or in the compute architecture (e. g., maybe with

58

3.1 model the problem of chip-layouting by qap

quantum computers) there will be no possibility to solve instances with several
hundred or thousand elements exactly in the near future.

To complete the picture, Loiola et al. [128] also provide some insights into
the quantity of research efforts that were put into approaches towards ex-
act solutions or (meta-)heuristics. They counted the publications about QAP
theory and applications, investigated which solution approaches and formu-
lations have been used, what kind of bounds were applied and much more.
Reading these statistics, one has to take into account that traditional ideas
that arose years or decades ago naturally tend to have a higher count in their
inquiry. Following their statistics, it can be summarized that formulations
based on permutations, IPs and MILPs dominate the literature and are, for
example, by far more present than SDP formulations. The most intensively
studied class of lower bounds is (again, quite naturally) the GL bound. Due
to the complexity and, at the same time, the importance of the problem and
considering the costs of compute time to solve it exactly, it is finally not sur-
prising that there is more work on heuristics than on exact methods. With
more than 300 referenced publications (with growth over the years) alone in
this survey, the presence of the problem and the interest into this, extraordi-
narily difficult, problem is nicely confirmed.

However, this work is not about exact solutions of the problem. The reasons
for this are manifold: First and most importantly, the exorbitant solution time
of today’s methods is inapplicable in the proposed framework. The solution
for inputs of real-world netlists would, even for the smallest input of our
benchmark set, explode (at least 54 elements for the smallest ‘stereovision3’
example, cp. Table 12 on page 222). In addition, a repeated optimization
approach is desired in this work learning from previous layouts to meet other
goals than only the wirelength minimization. For example, Benjafaar [17]
showed in his work that layouts which minimize the work-in-progress (WIP)
may drastically differ from the ones obtained by a general QAP formulation
minimizing the wirelength. Likewise, similar characteristics for FPGAs are
investigated in this work, e. g., that minimizing the critical path delay may
result in different assignments than minimizing for overall wirelength while
the former is, at the same time, often more important. Another example for
an adjusted optimization goal is presented by Miranda et al.’s [45] heuristical
approach based on QAP considering specifically the thermal effects.

To conclude, the purpose of this developed framework is to provide flexi-
bility concerning the optimization goal and adaptivity within the procedure,
all the details follow later in this work.

59

the quadratic assignment problem

3.1.9 Why this work is not using QAP lower bounds

Even though lower bounds for QAP can help to get an impression of an as-
signment’s quality, it is not necessarily easily possible to derive meaningful
lower bounds with well known QAP bounds. First, these bounds (of course)
only estimate a defined cost function based on the underlying QAP model
and, as already stated in the previous section, wirelength is not for all situa-
tions the ‘cost function of choice’. In fact, the FPGA placement problem has
further restrictions as it demands for different types of units with appropriate
locations. In addition, an FPGA (or the available part of an FPGA) will gen-
erally be significantly larger than the desired set of logical units, a fact that
would in turn call for many dummy elements ‘blurring’ the bounds’ quali-
ties. It has also already been referenced that generating an ε-approximation
of QAP is again NP-hard. Finally, the calculation costs of QAP lower bounds
are, in general, too high for an incorporation in a productive framework, at
least in relation to their additional value. It will be shown that approxima-
tions of the achieved quality can be accomplished rather quickly and, most
of all, stronger related to the actual optimization goal.

3.2 iterative approaches towards solving qap instances

In this section, different iterative metaheuristical approaches are compared
to show peculiarities, potentials, costs and options of such techniques for
the desired layouting idea. The implemented algorithms are not meant to
be ‘the cutting edge’ of metaheuristics in this field but rather to give an
impression about the different basic characteristics. Finally, the idea of using
force-directed graph layouting methods as the base of the technique is motivated
by comparing the outcome of such a layout to the metaheuristics’.

All different neighborhood search algorithms examined in this section
have been implemented based on METSlib [132], an object oriented meta-
heuristics optimization framework written in C++. The METSlib framework
was designed to realize and adapt problem-independent metaheuristic solvers
for optimization problems. The implementation is part of COIN-OR [92], the
‘Common Optimization INterface for Operations Research’.

Remark 26. Due to the implementation of all methods on the same base and bench-
marking on the same machine, the results are well comparable in terms of quality
and computing time consumption. The machine is described in Section 1.4. The
main goal of this section is to show the dependence of the solution time and quality
on the input’s size and the input’s quality. To start off with, in FPGA- or chip-
layout in general, especially (the also considered) ‘simulated annealing’ approaches
(see Section 3.2.7) are widely used.

60

3.2 iterative approaches towards solving qap instances

First of all, the idealized models used for the comparison are described.

Definition 4 (Idealized chip architecture). For simplicity and to make QAP
directly applicable, the architecture to be mapped on is described by a regular N×N
grid with only one type of locations, just as in Section 3.1.1.

Definition 5 (Idealized layout graph). The idealized layout graph (see Figure 15),
itself representing the units (facilities) to be assigned and their interconnections,
actually consists of (N2 − 4) nodes. To fulfill the QAP requirements, four dummy
nodes are added (the corners). Besides these nodes on the outer frame of the graph
(orange), each node is connected to each of its four neighbors. The nodes on the outer
frame play a special role, as they represent the access to the chip from outer regions.
They are typically referred to as I/O (Input/Output) nodes.

Figure 15: Idealized layout graph with N = 16 (16× 16 grid)

Due to this construction, an ‘immediate’ global optimal assignment can be
obtained as shown in Figure 15. Each row and each column (except the first
and the last one) contains exactly (N− 1) connections and the resulting costs
in terms of wirelength can be calculated as described in formula (28).

c̃ = 2 · (N− 2) · (N− 1) (28)

Because each connection on the regular grid is exactly of length one, it is ob-
vious that such an assignment is optimal concerning the overall wirelength.

Remark 27. Moreover, the optimal placement is, apart from rotations of k · 90◦ with
k ∈ Z and apart from the positions of the dummy corner vertices, unique. Placing
any non-I/O unit on the outer frame would directly lead to higher costs as it would
not be possible to place the four connected neighbors each with a distance of one on the

61

the quadratic assignment problem

grid. The four ‘white inner corner nodes’ can only be placed optimally in such ‘inner
corners’, as they are connected to two I/O nodes. Therefore, the outer frame and
the ‘inner non-I/O corners’ are fixed apart from the mentioned 90◦ rotations and the
dummy nodes. The (N− 2) actual I/O nodes on each face of the frame consequently
form a group that has to be placed together on one face (due to the inner node with
two connected I/Os). Now, all the (N− 2) horizontal paths of (N− 1) segments from
the left face of the frame to the right one have to be on the same vertical coordinate and
interchanging entire horizontal paths would increase the vertical distances between
connected nodes.

It can particularly be concluded that an optimal assignment of this model has to
place the orange I/O nodes onto the outer frame of the grid, an observation that is,
for example, used in Section 3.2.8.

The following explanations of the different algorithms are based on the
work of Mirko Maischberger [132], who designed and implemented METSlib.
METSlib has specialized structures to deal with QAP instances and is there-
fore perfectly suited to develop and analyze own implementations of QAP
metaheuristics. For example, a QAP instance can be loaded from a simple
ASCII ‘.dat’ file containing the number of facilities and locations n, the flow
matrix V and the distance matrix D. For the benchmarks, a framework was
developed setting up this file for different sizes N ∈ {8, 10, 12, 14, 16} (N×N
grid) with a flow matrix representing the idealized layout graph (cp. formula-
tion (13)) and a distance matrix with Manhattan distances of locations on the
idealized chip architecture (cp. formulation (12)). In addition, the resulting
assignments can be exported to a standard graph modeling language ‘.gml’ file,
some resulting graphs for the different approaches are shown in Figure 26.

All algorithms are applied to five different initial assignments to show the
dependence of achieved solutions and solution times from the quality of the
initial situation. To make this dependence measurable and comparable, the
optimal solution was taken as a base and perturbed by a number of random
swaps. The more swaps are performed on the original optimal solution, the
further away from this optimal solution is the starting point of the optimiza-
tion.

All experiments for all sizes and every initial solution were performed
10 times. The results present either average measures of these ten runs or
the best and the worst achieved solution to additionally mark the span of
solutions.

The nomenclature in the algorithms is largely adopted from the referenced
work of Maischberger. More details about metaheuristics can, for instance,
be found in Gonzalezes book ‘Handbook of Approximation Algorithms and
Metaheuristics’ [75] or in Gendreau et al.’s book ‘Handbook of Metaheuris-
tics’ [70].

62

3.2 iterative approaches towards solving qap instances

3.2.1 Problem definition

Consider a general discrete optimization problem

min
s∈S̄

c(s) (29)

S̄ is discrete

with a set of feasible discrete solutions S̄ and a cost function c(s).
The cost function c(s) is a function of a permutation/assignment returning

the overall wirelength resulting from this permutation/assignment. It can be
calculated with the set up flow and the distance matrices as described in the
beginning of this chapter.

As already stated in Section 3.1, QAP can be formalized as a permutation
problem between the set of facilities F and the set of available locations L.

First, the size of the problem’s search space will be investigated to derive
some reasonable constants for the implementations later in this section, e. g.,
the size of a reduced neighborhood.

Definition 6. Let X = {x1, x2, . . . , xn} be a set of n elements. A k-permutation of
n is a re-arrangement of a k-element subset in the n-set X.

Lemma 1. The number of k-permutations (without repetition) of an n-set is P =
n!

(n−k)!

Proof (informal). The subset of the entire set with n elements to be permuted
consists of k elements. The first element can be swapped with any of the n
elements (even with itself). The second element can now only be swapped
with the n− 1 remaining elements, etc. The last element of the k-subset can
consequently be swapped with n− k+ 1 elements. This leads to n · (n− 1) ·
... · (n− k+ 1) = n!

(n−k)! possible k-permutations.

Corollary 1. The number of permutations (n-permutations) of an n-set is P = n!

Due to the fact that a linear order can be defined on every finite set (e. g., by
assigning successive numbers to each element of the set), a permutation can
be represented by a bijective correspondence between a set of n elements
and itself π : {1, 2, ...,n} → {1, 2, ...,n} (cp. formula (15)). Therefore, a reorder-
ing of the elements on the chip architecture can simply be expressed by a
permutation of the elements.

Under these assumptions, the system to be solved can be constrained to
formulation (30).

min
s∈S̄

c(s) (30)

S̄ is the set of permutations π

63

the quadratic assignment problem

The search space of formulation (30) therefore contains n! feasible solutions
for the allocation of n facilities to n locations.

3.2.2 Neighborhood exploration techniques

Neighborhood exploration techniques are frequently and effectively used in
heuristics (and metaheuristics) for discrete optimization problems, e. g., in
form of the popular Lin-Kerninghan heuristic [126] for TSP. A neighborhood
exploration starts with a feasible solution s0 ∈ S̄ as the current solution scur
and successively tries to improve the current costs by examining a neighbor-
hood N(scur) of this point. A neighborhood is, abstractly said, a set of points
that can be reached from the current solution, e. g., by minor modifications
of scur. For the later examples, a neighbor is constructed by swapping the
positions of two random points in the current solution.

The number of different k-sets in an n-set is known to be
(n
k

)
= n!

(n−k)!k! ,
called the binomial coefficient. For swapping two elements (pairwise swap) in
an n-set, there are thus

(n
2

)
= n!

(n−2)!2! =
n·(n−1)

2 possibilities. This corre-
sponds directly to a construction of all possible swaps by choosing the first
element out of all n elements and the second element out of the remaining
(n − 1) elements. As each swap is counted twice in this construction, this
number is divided by two to neglect the order of the two elements. The set
of all possible pairwise swaps in scur is called the full neighborhood N(scur)

of scur.

Corollary 2. The number of pairwise swaps in an n-set is
(n
2

)
=
n·(n−1)

2 . This is
thus the size of the full neighborhood N.

Instead of examining the full neighborhood N(scur) to find an improv-
ing neighbor s ′cur of scur, only a subset N(scur) of the full neighborhood
may be considered to reduce the search time. Rather than taking all

(n
2

)

pairwise swaps (cp. Corollary 2) of point positions in the full neighbor-
hood of the current solution scur into account, a random selection of only
n
√
n <

(n
2

)
(∀n ∈ N>6) swaps could be examined for a permutation prob-

lem like the prospected one. This is an O(n1.5) set size instead of the full
O(n2) set of swaps. This reduction provides a good balance between exam-
ining enough elements to find good solutions and not too many to keep the
time to find a new neighbor in a reasonable time range, especially for large
n. Nevertheless, many other choices are for sure possible and arguable. It is
important to note that this neighborhood is, in general, only containing the
next step in a series of many improvements. Examining all neighboring solu-
tions does not necessarily lead to better solutions as local minima can also be
reached earlier with larger neighborhoods. The mentioned reduction of the

64

3.2 iterative approaches towards solving qap instances

neighborhood is used in several of the following algorithms. Thus, a neigh-
borhood with n

√
n elements is called reduced neighborhood in this section and

denoted with N.

Definition 7. The reduced neighborhood N is a random selection of n
√
n pair-

wise swaps extracted from the full neighborhood.

The number of elements in a full and in a reduced neighborhood of pair-
wise swaps for the following benchmarked square N×N grids with N ∈
{8, 10, 12, 14, 16} (resp. with n ∈ {64, 100, 144, 196, 256} elements) are shown in
Figure 16.

64 100 144 196 256

0

1

2

3

·104

n

ne
ig

hb
or

ho
od

si
ze

f(
n)

f (n) = n·(n−1)
2 (full)

f (n) = n ∗
√

n (reduced)

Figure 16: Number of elements in a full and a reduced neighborhood

A new solution s ′cur is chosen based on the acceptance rule of the specific
algorithm and is, when applicable, assigned to be the best found solution
s∗. For example, an acceptance rule could either be to choose the best or to
choose the first improving solution in the neighborhood. If there is no new
solution meeting the acceptance rule, the algorithm can, for example, stop
and return s∗.

Remark 28. One-dimensional functions are suitable for illustrative purposes in
this section. For example, a neighborhood of a value x of a function c(x) could be
the values (x− ε) and (x+ ε). The ‘better’ neighbor is therefore the one with better
function value, e. g., (x+ ε) if c(x+ ε) < c(x− ε) in case of minimizing the costs.

3.2.3 Global and local optima

A function can contain global and local optima. Figure 19a on page 71 shows
how a local search routine gets stuck in a local optimum and is not able to
reach a nearby better value on the right of it. In general, many simple heuris-
tics tend to reach only local (and often poor) optima. Thus, one important

65

the quadratic assignment problem

task is to define strategies that can escape local optima and reach improved
solutions (here: permutations) to find better local optima or even a global
optimum without loosing the majority of improvements that were already
achieved by the heuristical method.

3.2.4 Local search

As a first metaheuristic to solve QAP, a simple local search (LS) method was
implemented (see Algorithm 1). The local search method gets an initial solu-
tion as the input and therefore makes it the first solution scur and accord-
ingly the, so far, best found solution s∗. It then generates a full neighborhood
of scur with elements s ′cur and looks for the best element in the neighbor-
hood which is successively the new scur and, if it improves s∗, also the new
s∗. This procedure is repeated until a neighborhood occurs in which no im-
proving neighbor is found. The algorithm then stops and returns s∗ as the
optimal solution. A possible modification would be to choose the first im-
proving s ′cur instead of the best one in the full neighborhood. This would
generally reduce the search time in the neighborhood. An analogue local
search approach for maximization problems is, for example, the ‘hill climbing’
algorithm.

Algorithm 1 Local search

procedure LocalSearch(s0)
s∗ ← s0
repeat
scur ← s∗

for all s ′cur ∈ N(scur) do . or until a better sol. was found
if c(s ′cur) < c(scur) then
scur ← s ′cur

end if
end for
if c(scur) < c(s∗) then . improving neighbor was found
s∗ ← scur

end if
until no improving neighbor was found
return s∗ . local optimum

end procedure

The local search algorithm monotonically iterates to a local optimum, as
depicted in Figure 19a. Figure 17b illustrates the relative deviation of the
cost value of the found local optimal solution to the cost value of the known

66

3.2 iterative approaches towards solving qap instances

global optimal solution, formally c(s∗)−copt
copt

. A relative deviation of one
therefore means that the costs of s∗ were two times as high as the optimal
cost value. A relative deviation of zero confirms optimality of the obtained
solution s∗.

100
101

102
103

104 8
10

12
14

16

0

1

2

number of swaps

N

re
la

ti
ve

de
vi

at
io

n
fr

om
op

ti
m

um

(a) Quality (min and max deviation)

100
101

102
103

104 8
10

12
14

16

0

10

number of swaps

N
ti

m
e

(s
)

(b) Time (average)

Figure 17: Local search (LS) [10 runs]

Figure 17a shows that the more swaps were performed to generate the
initial solution s0 by perturbing the optimal assignment sopt (see Figure 15),
the poorer is the finally found local optimum. The results of the ten repeated
runs contain solutions that occupy a high relative deviation of up to more
than factor two from the optimum with a moderate span of the quality which
is visible by the gap between the smallest and the largest achieved deviation
from the optimal cost value c(sopt). For the larger examples of up to 16× 16
elements with accordingly larger search space, the quality of of the final
placement also decreases slightly.

On the other hand, all initial instances with only 1 or 10 random swaps
distance to the optimal value were solved to optimality. In fact, any constel-
lation of each size that is only one swap away from the optimum would be
optimized after examining the first full neighborhood naturally. The initial
perturbing swap is found, recognized as the best swap in the neighborhood
and reversed. Consequently, the second neighborhood offers no further op-
timization and thus the algorithm stops. Already for the inputs with ‘swap-
distance’ 10 to the optimum, this behavior could not have been guaranteed
as a swapped element could also be iteratively moved nearer to a good des-
tination and it is not assured that a swapped element reduces the overall
costs when moved back to its originally optimal location because the other
swapped elements may influence the costs negatively. Nevertheless, local

67

the quadratic assignment problem

search with full neighborhood achieves the best results of all implemented
methods for these ‘near-optimal’ initial situations.

The time that the procedure spends before it decides to terminate expect-
edly increases with both the size of the instance and the degree of pertur-
bation in the initial solution. For both very small instances and very good
initial solutions, the runtime of local search is exceptionally small.

3.2.5 Tabu search

Tabu search [73] (TS) can be seen as a progression of local search to escape
local optima. Instead of terminating as soon as a neighborhood contains no
improving neighbor, tabu search always takes the best solution in the neigh-
borhood and proceeds. This is done for a number of neighborhoods (speci-
fiable by TS_STOP in this implementation, 250 in these experiments) which
lead to no improvement of the costs c(s∗) of the best obtained solution s∗.
Whenever an improving solution is found in the process, this ‘counter’ is
reset to zero. As this metaheuristic investigates much more neighborhoods
than the local search method, it is reasonable to shrink the neighborhood
size by examining only a reduced neighborhood N made of n

√
n randomly

chosen moves from the full neighborhood N (cp. Section 3.2.2).
To avoid cycling in the method by inversely performing a previous move

again, there is a mechanism called the tabu memory. This memory stores a
number of previous moves and inhibits to make them again for a certain
period of time. This period is called the tenure of the tabu search. In the
presented implementation, the tenure is set to a random value r̃ ∈ [5,n

√
n].

In certain circumstances, a neighbor from the tabu list may still be accepted
as a new solution. Such rules in a tabu search are called ‘aspiration criteria’. A
common aspiration criterion is to allow a move to new solution even though
this move may be in the tabu list if this leads to a solution that is better than
the current best one s∗.

Figure 19b shows how the tabu search proceeds rightwards after the first
local optimum was found. Without the tabu list, the algorithm would, after
going one step further to the right, turn back left to the local optimum as
its costs are less than the one of the right neighbor. This would directly end
in an infinite loop of non-improving swaps, whereby an escape from the
local optimum would not be possible without the tabu list. If the algorithm
reaches a new optimal solution s∗ within the specified range of acceptable
non-improving swaps (marked by the recommencement of the blue curve
after the orange escape time in Figure 19b), it resets the counter and quasi
continues with a new tabu search.

68

3.2 iterative approaches towards solving qap instances

If a sequence of too many non-improving neighborhood searches appears
(like in the second orange region in Figure 19b), the algorithm terminates.
The randomly chosen tenure and the defined range TS_STOP can therefore
greatly influence the outcome of the method. Furthermore, the aspiration cri-
terion and the definition of the tabu list are ‘adjusting screws’ that influence
both the quality and the runtime of a tabu search.

Summarizing, the algorithm (see Algorithm 2) can be described as

• start with an initial solution s0 as the current and the best solution
scur and s∗,

• search the solution s ′cur in the reduced neighborhood of scur which
has the lowest costs and is not in the tabu list unless it is the best
solution ever found (aspiration) and accept it in any case as the new
current solution,

• if this solution improves s∗, formally c(s ′cur) < c(s∗), update s∗ and,

• if a certain number of consecutive neighborhood searches without im-
provements is exceeded (TS_STOP = 250 in the experiments), return
s∗.

Algorithm 2 Tabu search

procedure TabuSearch(s0)
generate random tenure r̃

scur ← s0
s∗ ← s0
repeat
c̃←∞
for all s ′cur ∈ N(scur) do . or until a better sol. was found

if (c(s ′cur) < c̃)∧ (¬tabu(s ′cur)∨ aspirate(s
′
cur)) then

scur ← s ′cur
c̃← c(scur)

end if
end for
if c̃ < c(s∗) then . improving neighbor was found
s∗ ← scur

end if
until sequence of TS_STOP non-improving swaps appears
return s∗ . local optimum

end procedure

69

the quadratic assignment problem

Considering Figure 18a and Figure 18b, tabu search generates substantially
better results than local search and this, due to the significantly reduced
neighborhood for larger instances (cp. Figure 16), in rather comparable times.
While the runtimes of small instances are still extremely small, larger near-
optimal initial instances take much longer to achieve relatively good results
than in a local search as the tabu list (due to its construction and its purpose)
allows for local deteriorations of the current solution. Due to the reduced
neighborhoods, tabu search can (in contrast to the local search) not even
guarantee to fully optimize the 1-swap initial solutions. However, it produces,
in general, better results especially for heavily perturbed initial solutions in
times comparable to the ones of local search.

100
101

102
103

104 8
10

12
14

16

0

1

number of swaps

N

re
la

ti
ve

de
vi

at
io

n
fr

om
op

ti
m

um

(a) Quality (min and max deviation)

100
101

102
103

104 8
10

12
14

16

0

10

number of swaps

N

ti
m

e
(s

)

(b) Time (average)

Figure 18: Tabu search (TS) [10 runs]

3.2.6 Iterated Tabu search

A further improvement of tabu search (in terms of quality) is an iterated
tabu search (ITS). The idea is to call the tabu search method multiple times
while giving the solution a moderate ‘tap’ in between these repetitions to
let it escape the current local optimum s∗. In fact, after a tabu search stops
(configured with the same parameters than in the previous paragraph), s∗

is perturbed by applying a number of random swaps to it. It is obvious that
a very small number of swaps will, in general, not be sufficient to escape
a local optimum, as the next tabu search could easily iterate back to the
previous solution. On the other hand, too many swaps may shatter the so-
lution remarkably, so that all the already achieved improvements may be
lost. A perfect perturbation would break up congested regions while pre-
serving good structures. In the presented implementation, a perturbation is

70

3.2 iterative approaches towards solving qap instances

s0

s∗

(a) Local Search

s0

s∗

< max noimprove range exceeds max noimprove range

(b) Tabu Search

Figure 19: Principles of local search and tabu search for a 2D example

realized by a random number of r̄ ∈
[
n
5 , n2

]
swaps applied to the best known

solution. If a sequence of ITS_STOP non-improving tabu searches appears
(ITS_STOP = 30 in the experiments), the algorithm terminates and returns
s∗. The runtime of the overall method therefore strongly depends on the two
stopping criteria of the inner tabu search and the outer repeating iteration
method.

Algorithm 3 Iterated tabu search

procedure IteratedTabuSearch(s0)
s∗ ← TabuSearch(s0)

repeat
generate new random tenure r̃

generate new random perturbation size r̄

s ′cur ← perturb(s∗, r̄)
scur ← TabuSearch(s ′cur)
if c(scur) < c(s∗) then . improving neighbor was found
s∗ ← scur

end if
until sequence of ITS_STOP non-improving repetitions appears
return s∗ . local optimum

end procedure

71

the quadratic assignment problem

The results in Figure 20a and Figure 20b show that even though this ap-
proach (of course) has a much longer runtime than a simple tabu search ap-
proach (ITS averagely runs about 30 times as long as TS in the experiments,
which directly corresponds to the value of ITS_STOP), it produces very good
results. Considering the lower surface of best results in Figure 20a, it can be
seen that the obtained results are near to the global optimum. Only for the
largest grid and the poorer input solutions, the deviation from the optimum of
the best performing runs becomes considerable. However, the span of qual-
ity in the results is relatively large, based on the multiple random influences
in the method and, of course, on the inherent ‘local search’-characteristics of
these methods in general.

100
101

102
103

104 8
10

12
14

16

0

0.5

number of swaps

N

re
la

ti
ve

de
vi

at
io

n
fr

om
op

ti
m

um

(a) Quality (min and max deviation)

100
101

102
103

104 8
10

12
14

16

0

200

400

600

number of swaps

N

ti
m

e
(s

)

(b) Time (average)

Figure 20: Iterated tabu search (ITS) [10 runs]

Figure 21 depicts the convergence behavior of a tabu search and an iterated
tabu search run for the largest instance (16× 16) with maximal number of
swaps (104) on the input instance. Each node marks a new found improved
solution s∗ and each iteration on the horizontal axis represents a neighbor-
hood exploration. Figure 21a shows that, at the beginning of the method, a
new improving solution is found in almost every iteration. The further the
methods proceeds, the more iterations with no improvements occur result-
ing in larger gaps between two successive nodes. After 1076 neighborhood
explorations, a 250 iterations long sequence without improvements appears
and the algorithm stops returning a best solution s∗ with costs c(s∗) = 925

and, therefore, with a deviation of 925−420420 ≈ 1.2 to the global optimum
with costs of 420 (cp. equation (28) and Figure 15).

Figure 21b accordingly shows the convergence of an iterated tabu search
run with c(s∗) = 531 after 37773 iterations. The blue dotted line marks the
solution obtained by tabu search in Figure 21a. The tabu search optimum

72

3.2 iterative approaches towards solving qap instances

is, in this run, reached after 773 of the 37773 iterations and larger gaps be-
tween improved solutions become more frequent after that. At the end of the
procedure, a sequence with 30 non-improving tabu searches appears. The re-
sults show that the final additional enhancement of iterated tabu search over
a simple tabu search comes at the price of many more necessary neighbor-
hood explorations. Typically, the necessary effort for further improvements
increases vigorously the nearer the method is to the global optimum.

1 200 400 600 800 1000
0

1000

2000

3000

4000

iterations

c(
s∗
)

Tabu Search

optimum

(a) Tabu Search

1 10000 20000 30000
0

1000

2000

3000

4000

iterations

c(
s∗
)

Iterated Tabu Search

TS solution

optimum

(b) Iterated Tabu Search

Figure 21: Convergence comparison of the two tabu search approaches

3.2.7 Simulated annealing

Simulated annealing (SA), first proposed by Kirkpatrick et al. [111] in 1983, is
a heuristical optimization technique that bases on simulating the behavior of
an annealing physical system in the field of statistical mechanics. In fact, the
method was initially applied to solve a microprocessor layout (floorplanning)
problem by Kirkpatrick et al. and came into operation for many different
problems in combinatorial optimization.

To get a tangible impression of the basic idea, one can imagine a metal
plate that gets heated and cooled down again. By heating the plate, atomic ir-
regularities in the crystalline structure of the metal are provided with energy
to escape the unfavorable situation, consequently strengthening the structure
of the material. With decreasing temperature, more and more arrangements
become fixed due to the absence of energy, finally reaching a more stable cold
state.

Following fundamental ideas from statistical mechanics, the transition prob-
ability, estimating the likelihood that a state scur moves to a neighboring

73

the quadratic assignment problem

state s ′cur, can be described through the Boltzmann distribution (also Gibbs
distribution, cp. McQuarrie [139]) neglecting the Boltzmann constant by

p̃t(∆c) = e
∆c
t (31)

with

∆c = c(scur) − c(s
′
cur) . (32)

Definition 8. The thermodynamic temperature is a principle parameter in ther-
modynamics. It is also called the absolute measure of temperature and is defined
by the third law of thermodynamics, declaring the theoretically lowest temperature
as null. In this ‘absolute zero’ circumstance, particles’ constituents of matter have
minimal motion and cannot become colder.

∆c measures the difference of the two states in terms of costs or, more
precisely, the absolute improvement of a neighboring solution to the current
solution. If such a neighboring solution s ′cur is an improvement (solution
with lower costs) compared to the best known solution so far (scur), it follows
that ∆c = c(scur) − c(s

′
cur) > 0. Thus, as the thermodynamic temperature

t is positive by definition (Definition 8), the exponent in equation (31) is
positive and p̃t(∆c) > 1, which means that such an improving swap will
always be accepted. If ∆c < 0, it follows that p̃t(∆c) ∈ (0, 1). Now, a threshold
r ∈ [0, 1] has to be defined to decide for which probabilities p̃t(∆c) such a
non-improving swap will be accepted. As p̃t shall map ∆c on a probability,
equation (31) can be limited to 1, resulting in pt in equation (33).

pt(∆c) = min
(
e
∆c
t , 1

)
(33)

It is important to note that the transition probability is strictly positive
(pt(∆c) > 0), called a ‘non-zero transition probability’, so that any non-improv-
ing swap, regardless of its deteriorative intensity and the temperature, can
potentially be accepted (the larger the degradation of costs and the colder
the system, the less probable).

Figure 22 shows resulting transition probability functions for some chosen
thermodynamic temperatures t and an exemplary threshold of r = 0.63.

Remark 29. The Boltzmann distribution (including Boltzmann’s constant k) itself
describes the probability that a system is in a state with energy level E at a ther-
modynamic temperature t through the distribution e−

E
k·t . The negative sign in the

exponent disappears in equation (33) by reformulating the difference from originally
−(c(s ′cur) − c(scur)) to (c(scur) − c(s

′
cur)).

74

3.2 iterative approaches towards solving qap instances

Simulated annealing starts with a relatively high thermodynamic tempera-
ture t0, determines a random threshold r ∈ [0, 1] and calculates the transition
probability pt0(∆c) for a solution in the reduced neighborhood of the initial
solution. If pt0(∆c) > r, the move to s ′cur is performed, otherwise not. A spe-
cial characteristic of a simulated annealing approach therefore is that, besides
all improving moves, also non-improving moves are randomly accepted (if
the probability of the move exceeds the random parameter r), giving the
method a good chance to escape local optima. The warmer the system is, the
more non-improving moves are accepted, see the acceptance ranges denoted
by the arrows in Figure 22. A new threshold r is randomly computed for
each neighborhood.

−10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

accept

∆c

pr
ob

ab
ili

ty
p t
(∆

c)

t = 0.1 t = 1

t = 2 t = 5

t = 10 r ∈ [0, 1]

Figure 22: Transition probability pt(∆c) =min(e
∆c
t ,1)

Algorithm 4 sketches the implemented simulated annealing algorithm.
Starting with an initial solution s0 and an initial temperature t0, a reduced
neighborhood (see Definition 7) of the current solution scur is constructed.
As the first (and not the best like in the other approaches) improving neigh-
boring solution will be accepted, it is generally reasonable to use relatively
small neighborhoods to keep the time for the neighborhoods’ creation down.
After accepting a move to a neighbor s ′cur, the temperature of the system is
decreased by a cooling function. This cooling function can, e. g., be a linear
cooling ti+1 = ti − t̂ with t̂ ∈ (0, t0) or an exponential cooling ti+1 = f̂ · ti
with f̂ ∈ (0, 1) and resulting ti = t0 · f̂i. The exponential cooling approach
can inherently never generate negative temperatures and approximates a
cooling of a warmer object in a cold environment following ‘Newton’s law
of cooling’ (t(x) = tenv + (t0 − tenv) · e−kx with environmental temperature

75

the quadratic assignment problem

tenv, a parameter depending on the object’s properties k and a point in time
x). In general, any non-increasing progression of temperatures can represent
the cooling function. Successively, a new neighborhood of the new scur is
constructed and the procedure is repeated. The algorithm stops if the de-
sired final temperature tω is reached.

In the presented implementation (see Algorithm 4), an exponential cooling
with f̂ = 0.999 was applied in the function reduce(t).

Algorithm 4 Simulated Annealing

procedure SimulatedAnnealing(s0)
scur ← s0
s∗ ← s0
t← t0
while t > 0 do

for all s ′cur ∈ N(scur) do
generate random threshold r ∈ [0, 1]

if min{e
c(scur)−c(s

′
cur)

t , 1} > r then . acceptance rule
scur ← s ′cur
break

end if
end for
if c(scur) < c(s∗) then . improving neighbor was found
s∗ ← scur

end if
t← reduce(t)

end while
return s∗ . local optimum

end procedure

Combined with the cooling function, both the starting and the desired fi-
nal temperature of the simulation essentially influence the characteristic of
such a simulated annealing. Figure 23a shows the quality and Figure 23b the
runtime for the presented simulated annealing algorithm with a high initial
temperature t0 = 10000 and a still relatively high desired final temperature
tω = 100. It is obvious (and reasonable) that the runtime for a specific size
is mostly independent from the quality of the input, as the algorithm explores ex-

actly logf̂
(
tω
t0

)
f̂=0.999

= 4602 neighborhoods of size n
√
n for the mentioned

temperatures. The quality of obtained results is naturally rather poor (rela-
tive deviations from the optimum of up to 10) when performing simulated
annealing only in such ‘warm’ temperature regions. Due to the ‘disturbing’

76

3.2 iterative approaches towards solving qap instances

behavior of simulated annealing in warm phases of the algorithm, the re-
sulting solution is, in many cases, not (or not much) better than s0 as the
simulation did often not improve the solution until it stopped. For more de-
tails on the convergence behavior of the simulated annealing approach, see
Section 3.2.8. It should be clear that simulated annealing should not be ap-
plied in such a way. However, this parameter set is shown to illustrate this
behavior.

100
101

102
103

104 8
10

12
14

16

0

5

number of swaps

N

re
la

ti
ve

de
vi

at
io

n
fr

om
op

ti
m

um

(a) Quality (min and max deviation)

100
101

102
103

104 8
10

12
14

16

0

0.5

number of swaps

N

ti
m

e
(s

)

(b) Time (average)

Figure 23: Simulated Annealing (SA), t0 = 10000 and tω = 100 [10 runs]

Running the same implementation with tω = 0.0001 leads to the results
shown in Figure 24. Again, the runtime is independent of the quality of
the input solution s0. The quality of the solutions for the small inputs is
comparable to the ones obtained by the tabu search approach in Section 3.2.5.
However, one main difference when comparing these results is that not only
the runtime, but also the quality of the simulated annealing method is rather
independent from the quality of the initial solution (correspondingly the number
of initially applied swaps to the optimal solution) except for the near-optimal
example input with only one initial swap (the reason for that is given at the
end of Section 3.2.8). The conformity of the results is based on the high
starting temperature allowing for a high amount of non-improving swaps
and is one of the core features of simulated annealing compared to the other
presented iterative methods when dealing with arbitrary inputs.

Remark 30. The results already show that the quality of a simulated annealing
method strongly depends on its defining parameters. The cooling schedule itself,
another very important influence, was not even varied at all in the presented ex-
periments. There are exceptionally tuned simulated annealing schedules for specific
problems, optimized towards producing good resulting assignments while spending
as little time as possible. One such simulated annealing routine (which was fine-

77

the quadratic assignment problem

100
101

102
103

104 8
10

12
14

16

0

0.5

1

number of swaps

N

re
la

ti
ve

de
vi

at
io

n
fr

om
op

ti
m

um

(a) Quality (min and max deviation)

100
101

102
103

104 8
10

12
14

16

0

10

20

number of swaps

N

ti
m

e
(s

)

(b) Time (average)

Figure 24: Simulated Annealing (SA), t0 = 10000 and tω = 0.0001 [10 runs]

tuned over many years) is taken as the comparison method in the later parts of this
work as it is known to be very effective for good FPGA placement.

Remark 31. Even though several works have investigated under which circum-
stances simulated annealing reaches global optima with a high probability or even
guaranteed (e. g., the work of Granville et al. [77] or Rajasekaran [153]), the optimal-
ity of results obtainable by simulated annealing approaches is often of minor practical
importance. Instead, it is often more relevant in practice that simulated annealing
tends to find good solutions in relatively short times and mostly independently from
the initial quality.

3.2.8 Comparison

To give a final overview of the presented methods, this section compares only
the inputs on the largest grid (16× 16).

The runtimes and the assignments’ qualities are presented in Figure 25.
The resulting 2D view (by neglecting one dimension - the sizes) provides a
clearer view on the proportions of the measurements.

Remark 32. As the smallest real-world examples of layout graphs that are investi-
gated later in this work contain a comparable number of elements, it is justifiable to
concentrate only on the 16× 16 example here.

Figure 26 shows the best resulting assignments for N = 16 attained in
the repeated experiments. While the local search result is still rather per-
turbed, tabu search an simulated annealing already generate rather good
assignments. Nevertheless, simulated annealing is (in this case) slightly bet-
ter while needing almost the same amount of time. Iterative tabu search

78

3.2 iterative approaches towards solving qap instances

100 101 102 103 104
0

0.5

1

1.5

2

number of swaps

re
la

ti
ve

de
vi

at
io

n
fr

om
op

ti
m

um Local Search

Tabu Search

Iterated Tabu Search

Simulated Annealing

(a) Quality (average)

100 101 102 103 104
0

200

400

600

number of swaps

ti
m

e
(s

)

Local Search

Tabu Search

Iterated Tabu Search

Simulated Annealing

(b) Time (average)

Figure 25: Comparison for 16× 16 instance [10 runs]

leads to very good assignments at the price of exceptionally high runtimes
compared to the other methods (see Figure 25b). Figure 26c shows that a
great portion of the I/O nodes are already placed on or near the frame of the
grid (cp. Remark 27) and that the overall structure of the assignment is near
to the desired grid structure. Nevertheless, it also descriptively presents the
difficulty to escape the final local ITS optimum. For example, consider the
two unconnected nodes on the left face of the frame. They would have to be
swapped with any of the corner nodes to reach their optimal final location.
However, such a swap with a corner node of this assignment would increase
the wirelength still moderately when taking the nearby north-west corner to
swap and more considerable when taking any of the other corners. There
are several rectangular parts containing a perfect grid structure. However,
pairwise swaps would first of all increase the overall costs to move such a
complete block within the entire layout.

Figure 25a shows that the quality of the search methods can be rated
by LS < TS < ITS, an outcome that could have been expected as these
methods successively improve each other in the manners described. The run-
time could be rated by LS < TS � ITS. Basing on local search’s behavior,
these methods all perform particularly well for input instances that are near-
optimal (with small number of swaps in the input instance), but their qual-
ity worsens for intensively perturbed inputs. Simulated annealing instead
reaches a rather constant quality (except for the almost optimal input with
only one swap to the optimum) and outperforms local search and tabu search
for the inputs with higher perturbation. Even though iterative local search
still reaches better results than simulated annealing for these, the runtime of
ITS is higher by a factor of 24.

79

the quadratic assignment problem

(a) Local Search (c = 1174) (b) Tabu Search (c = 887)

(c) Iterated Tabu Search (c = 503) (d) Simulated Annealing (c = 787)

Figure 26: Best assignments for 16× 16 grid with 104 initial swaps [10 runs]

Figure 27 shows the convergence behavior of scur in the simulated an-
nealing method and thereby reveals the reason for the qualitative positive
outlier in case of the near-optimal initial solution with only one swap. The
simulated annealing approach does not lead to the good result, it is simply
the very good initial solution that is not improved at all during the anneal-
ing process. For better visibility, the dashed lines mark the initial costs c(s0)
for all constellations until the solution is actually improved by the algorithm.
Only for the ‘1-initial-swap’, and therefore in case of an extremely good first
assignment, the annealing costs never fall below this initial value. The data
series in Figure 27 expose that all runs follow a very similar annealing pro-
cess, regardless of the initial solutions s0. Due to the hot temperature in the

80

3.2 iterative approaches towards solving qap instances

system at the beginning of the process, the solution is initially vigorously per-
turbed before the system cools down (quite drastically at the beginning due
to the exponential cooling function) to converge to a stable solution s∗. Like
in Figure 23, the annealing convergence also shows that the two best initial
constellations can not achieve any improvement when setting tω = 100. This
confirms the assumptions from Section 3.2.7 that the resulting qualities for
tω = 100 often directly correspond to the quality of the input s0. It is also
noticeable that the process (almost) reaches its stable state long before the
termination of the procedure due to an unnecessarily too lowly defined tω
in this case (in terms of time saving). This is another evidence that tuning the
procedure’s parameters can, for example, greatly reduce the required time to
solution without loosing notable quality.

The tuning of parameters to obtain a high qualitative assignment in short
time with simulated annealing is therefore (once more) unveiled to be ex-
tremely valuable. Even though the input size in these experiments is fixed,
it is important to note that the acceptance probability directly bases on the
difference in costs caused by a swap. Therefore, it also depends on the input
size as larger input grids allow for swaps to more distanced locations (yet
another parameter).

1 4000 8000 12000 16000

0

1000

2000

3000

4000

5000

global optimum

iteration

c(
s c

ur
)

10000 swaps
1000 swaps
100 swaps
10 swaps
1 swap

tω = 100 tω = 0.0001

s0s0

s0s0

s0s0

s0s0

s0s0

s∗s∗s∗s∗s∗

Figure 27: Convergence of SA for N = 16 and various s0 qualities

Note that Figure 27 reports c(scur) and therefore all (also non-improving)
current solutions in contrast to Figures 21a and 21b which contained only
the improving interim solutions c(s∗).

Interim Result 1. The independence of the initial assignment s0 along with the
good results and the relatively short runtime approves simulated annealing as a
good choice for solving the assignment problem in time critical circumstances with
unknown input quality. If the initial assignment s0 is known to be rather good
already, a fast local search based approach can nevertheless still be favorable to in-
crementally iterate to a near local optimum while making use of the good initial
quality.

81

the quadratic assignment problem

3.3 a layout through force-directed graph drawing

With all the previous experiments as a base, the following section gives a
first brief motivation why force-directed methods (see Chapter 4) are used
as a fundamental component in this work.

Figure 28a shows the result of a force-directed graph layout of the idealized
layout graph (cp. Figure 15) with N = 16, constructed as described in the
following chapter through the Fast Multipole Multilevel Method (FMMM or
FM3) by Hachul and Jünger [82, 83, 84].

(a) Resulting layout

100
101

102
103

104 8
10

12
14

16

0

0.05

number of swaps

N

ti
m

e
(s

)

(b) Time (average)

Figure 28: Force-directed graph layout

Without going into the details of this method in this section, the outcome in
Figure 28a shows a very balanced grid with surrounding (orange) I/O nodes,
principally similar to the optimal assignment in Figure 15. However, this
layout is no mapping to an integer grid. It is directly possible to create such
layouts even with integer coordinates, but this usually comes at the price of
large coordinates by multiplying the final real coordinates with a constant so
that they occupy different integer points. Nevertheless, such methods often
produce large gaps in between coordinates for more complexly connected
graphs. An a priori set restriction of the layouting region in terms of size
and coordinate type withdraws degrees of freedom in the method that are
crucial for the result and the performance, especially to escape local optima.

The general resulting graph layout is profoundly independent from the qual-
ity of the initial solution as it creates, in contrast to all presented metaheuristics,
a good initial graph layout exploiting a multilevel method basing on the connec-
tion structure of the graph. The layout is then iteratively improved based on a

82

3.3 a layout through force-directed graph drawing

physical model minimizing the distances between connected nodes (and thus
the wirelengths) while keeping spaces between nodes by repulsive forces un-
til an equilibrium state is reached.

Simulated annealing in contrast achieves the independence by extreme
initial perturbation of the graph and therefore in a rather ‘immethodical’
manner.

While the quality of the result for the idealized layout graph looks very
promising already, it is particularly imposing to see the corresponding time
(Figure 28b) that was needed to produce such layouts. A layout for the
N = 16 took averagely not even a tenth of a second! Compared with the run-
times of the presented iterative methods, this is extraordinarily fast. The inde-
pendence of the input solution comes naturally, as the method produces its
own starting point based on the graph structure. To keep the overall runtime
moderate, especially for larger graphs, several time reducing approximations
were developed in the field of force-directed layouts. These and other bene-
fits are directly carried over into the presented method.

Even though such a force-directed graph layout looks promising for the
desired assignment, such a layout is not directly fitted to the available slots
as it does not match a restricted integer grid (due to the already mentioned
arbitrary and real coordinates) and also due to its potential inner rotation
angle.

Remark 33. It should be noted that the very good results of the force-directed
method concerning quality and time are partially based on the idealized regular
structure of the graph. The following chapters will deal with the behavior of the
method for more general input graphs. They will also show the demands on and the
influences of configurations of the method to achieve good results in general.

The basic idea of this work is to take such created layouts and embed
the nodes to the restricted integer grid as similar as possible to how they
appeared in the generic force-directed layout.

83

4
Force-directed graph layouts
“May the force be with you.”

— Yoda —

Contents
4.1 Force-directed graph layouts . 86

4.1.1 Basic idea of Tutte . 87
4.1.2 Generalization of the model - Spring Embedder . . . 93
4.1.3 Grid approximation of repulsive forces 98
4.1.4 A force-directed layout by spring embedder 102
4.1.5 The ideal edge length l 104

4.2 The Fast Multilevel Multipole Method FMMM 106
4.2.1 Quadtree for approximation of repulsive forces 107
4.2.2 Multipole approach for accurate and fast approxima-

tion of repulsive forces 111
4.2.3 Hierarchical multilevel approach to overcome weak

initial placements . 116
4.2.4 Alternative force-directed layout methods 125

4.3 From VLSI placement to graph drawing and back 127
4.3.1 Force-directed graph layouts for FPGAs placement . . 128

85

force-directed graph layouts

4.1 force-directed graph layouts

Force-directed graph layouts (like the one shown in the previous chapter in
Figure 28a) are the foundation of the approach presented in this work. Thus,
the basic concepts and their emerging will be pictured in the beginning of
this chapter. Based on these, advanced techniques for such force-directed
graph layouts are presented to establish different benefits that the chosen
method for the presented framework has compared to traditional ones and
also compared to other current implementations.

In the following, a graph G = (V ,E) is an undirected graph with nodes
(vertices) V and connections (edges) E. It therefore holds true that (u, v) ∈
E⇔ (v,u) ∈ E for u, v ∈ V .

Definition 9. A graph G = (V ,E) is called undirected if its edges have no orienta-
tion. Thus, the edges (u, v) and (v,u) are identical. This work generally operates on
such undirected graphs (unless stated otherwise).

Definition 10. A graph G = (V ,E) is called simple if at most one edge exists
between any pair of nodes in the graph.

Definition 11. A graph G = (V ,E) with nodes V and edges E is called complete
if E contains each possible node-to-node connection in the graph. An undirected
complete graph contains exactly |E| =

(|V |
2

)
=

|V |·(|V |−1)
2 edges (cp. Corollary 2).

Definition 12. A node v ∈ V is a neighbor of node u ∈ V (v ∈ N(u)) in the
undirected graph G = (V ,E) if, and only if, (u, v) ∈ E. The nodes v and u are then
called to be adjacent.

Definition 13. A node v in a graph G = (V ,E) has degree δ(v) if it has exactly
δ(v) neighbors.

Definition 14. A graph G = (V ,E) with nodes V and edges E is called connected
if there exist no two nodes u, v ∈ V such that G contains no path of edges with u
and v as its endpoints.

Definition 15 (Schrijver [164]). A (not complete) graph has connectivity k if
there does not exist a set of (k− 1) vertices whose removal disconnects the graph.
The graph is then called k-connected or, more precisely, k-vertex-connected.

Definition 16. An embedding of a graph G = (V ,E) is an assignment of the nodes
to the plane (with two dimensional coordinates) and of the edges to plane curves.

Definition 17. An embedding of G is called planar if no two edges intersect each
other.

Definition 18. A graph G is called planar if a planar embedding of G exists.

Definition 19. The canvas of an embedding of a graph G is the smallest rectangle
that contains all nodes of G.

86

4.1 force-directed graph layouts

4.1.1 Basic idea of Tutte

Tutte [180, 181] introduced the idea of drawing graphs based on barycen-
ter mapping in the 1960s. He presented a method that can be applied to
produce a convex planar embedding (crossing-free with straight edges) of a
simple 3-vertex-connected planar graph with each node being located in the
barycenter of its neighbors in the graph and each face in the graph forming
a convex polygon.

Remark 34. Aside from the graph-theoretical term of ‘3-vertex-connected planar
graphs’, such graphs are (geometrically) also called to be polyhedral.

To calculate a Tutte embedding (or barycenter embedding), a system of linear
equations can be created and subsequently solved.

To achieve a situation in which each node is in the barycenter of its neigh-
bors, the x and y coordinates of all nodes have to satisfy equations (34).

x(vi) =
∑

vj|(vi,vj)∈E
x(vj)

y(vi) =
∑

vj|(vi,vj)∈E
y(vj) (34)

It is obvious that such a system with no further restrictions has a trivial
solution with x(vi) = y(vi) = 0 ∀vi ∈ V . However, the result that all nodes
are placed onto the the same point (0, 0) is not Tutte’s desired solution. The
goal of a Tutte embedding is a tidied drawing of the graph with no edge-
crossing if it is a 3-vertex-connected planar graph. In order to achieve this,
antagonistic forces have to be present in the system. For a Tutte layout, the
coordinates of at least three nodes (corners) have to be fixed while the other
nodes of the graph can be placed each in barycenter of its neighbors which
will consequently be in the convex envelope of all fixed nodes.

Let V0 be the set of fixed nodes and V1 be the set of free nodes with
V = V0 ∪V1 and V0 ∩V1 = ∅. Let N0(vi) denote the set of fixed and N1(vi),
consequently, the set of free neighbors of vi and let the superscript ∗ high-
light that a coordinate is fixed (and therefore not variable). For each free node,
the barycentric coordinate with respect to all neighbors can be calculated as
stated in equations (35) and (36).

87

force-directed graph layouts

x(vi) =
1

δ(vi)
·

 ∑

(vi,vj)∈E
x(vj)

=
1

δ(vi)
·

 ∑
vj∈N1(vi)

x(vj) +
∑

vk∈N0(vi)
x∗(vk)

 ∀vi ∈ V1

(35)

y(vi) =
1

δ(vi)
·

 ∑

(vi,vj)∈E
y(vj)

=
1

δ(vi)
·

 ∑
vj∈N1(vi)

y(vj) +
∑

vk∈N0(vi)
y∗(vk)

 ∀vi ∈ V1

(36)

This forms two independent systems of linear equations A · x = bx and
A · y = by for the two coordinate vectors x and y, each with |V1| variables
(column j represents the free nodes’ (vj’s) coordinates) and |V1| equations
(row i represents the connections of vi to its neighbors).

Following equations (35) and (36), the matrix A = (aij) ∈ Z|V1|×|V1| and
the vectors bx = (bxi) ∈ Z|V1| and by ∈ R|V1| can be constructed as shown
in equation (37).

aii = δ(vi) ∀vi ∈ V1

aij = −1 ∀(vi, vj) with vi ∈ V1 and vj ∈ N1(vi)
bxi =

∑
vk∈N0(vi)

x∗(vk) ∀vi ∈ V1

(37)

An example of the calculation and the outcome of a Tutte embedding is
shown in Appendix A.2.

Remark 35. This barycentric idea of Tutte simulates that connected nodes attract
each other and derives an energy/force-minimal state of such a system (see Theo-
rem 2).

88

4.1 force-directed graph layouts

If a node vi would not be placed in the barycenter of its neighbors, there would be
a resulting force (vector) ~Fattr(vi) 6= ~0 acting on node vi which can be quantified
by equation (38).

~Fattr(vi) =
∑

vj|(vi,vj)∈E

((
x(vi)

y(vi)

)
−

(
x(vj)

y(vj)

))
(38)

Tutte has proven in his work [181] that the equation system is non-degenerate
for 3-vertex-connected planar graphs. Thus, the system has a unique solu-
tion under these assumptions. With a given set of fixed nodes, such a graph
therefore has a unique Tutte embedding which can be computed by linear
equation solvers naively in O(n3) time in general.

Given a graph, one non-trivial task for a Tutte embedding is to choose a
set of fixed nodes and assign respective coordinates to them that generate a
good layout. Figure 30 shows different Tutte embeddings of the ‘Sierpiński
Sieve Graph’. This graph is constructed by starting with an isosceles triangle
and recursively subdividing it in four equally sized isosceles triangles. This
fragmentation is performed in every recursion step for each but the central
appearing bottom up triangle. The graph in recursion number n is called the
Sierpiński Sieve Graph of order n (Sn).

The Sierpiński Sieve Graphs are only 2-vertex-connected so that the result-
ing layout may not be planar for all choices of fixed nodes. However, the
method places the nodes in the barycenter of their neighbors and the connec-
tivity preserves unique solvability of the equation systems. Altogether, the
constructed graphs are good examples to show characteristics of the Tutte
embedding. A graph Sn>1 consists of of 32 · (1+ 3n−1) vertices and 3n edges.

The example graph obtained from this construction is shown in Figure 29
(S5 ⇒ |V | = 243, |E| = 123).

Figures 30a-30c show different embeddings occurring from various choices
of three nodes of the graph that are fixed and equally distributed on a circle.
Figure 30d depicts the Tutte embedding when all nodes that define the largest
face (in terms of surrounding nodes) are fixed and also positioned equally dis-
tributed on a circle.

Two general observations for Tutte embeddings become very clear by these
examples:

• A Tutte embedding often wastes a lot of space (a few large and many
small polygons are formed). The nodes are not evenly distributed on the
canvas.

• The choice of fixed nodes influences the derived embedding vigorously.

89

force-directed graph layouts

Figure 29: Sierpiński Sieve Graph S5

Remark 36. In their work ‘Drawing Stressed Planar Graphs in Three Dimen-
sions’ [51], Eades and Garvan have proven that the worst case resolution of a (two-
dimensional) Tutte Drawing isΩ(kn) with k > 1. Thus, exponential space is needed
for a Tutte embedding in the worst case.

To give a second example, Tutte embeddings of the ‘Crack’ graph (pla-
nar, 3-vertex-connected, with |V | = 10240, |E| = 30380) taken from the ‘Open
Graph Drawing Framework’ OGDF [36] library have been calculated. Fig-
ures 31a-31c show the results for different numbers of fixed nodes and Fig-
ure 31d, again, presents a layout resulting from fixing all nodes of the largest
(outer) face on a circle.

As before, fixing only few nodes results in embeddings that waste a lot of
space on the canvas. Fixing the nodes of the entire outer face (in a successive
order following the face’s surrounding nodes clockwise or anti-clockwise) leads
to a good and biased embedding due to the regular connectedness of the
graph.

However, the strategy of placing all nodes in the barycenter (or the cen-
troid) of their neighbors is a meaningful approach for a good embedding as
it minimizes the sum of squared distances between a finite set of points (see
Theorem 2).

90

4.1 force-directed graph layouts

(a) 3 fixed nodes (1) (b) 3 fixed nodes (2)

(c) 3 fixed nodes (3) (d) Nodes of largest face fixed

Figure 30: Tutte node fixing examples for ‘Sierpiński’ graph S5

Theorem 2. The centroid of a finite set of n elements pi in Rd

C(p1, . . . ,pn) =
p1 + · · ·+ pn

n
=
1

n
·
n∑
i=1

pi

minimizes the sum of squared distances between itself and all points of the set.

Proof. Mathematical folklore.

91

force-directed graph layouts

(a) 3 fixed nodes (b) 6 fixed nodes

(c) 10 fixed nodes (d) Nodes of largest face fixed

Figure 31: Tutte node fixing examples for ‘Crack’ graph

Even though Tutte’s method is a comprehensible and direct approach
which is conceptually simple while following good ideas for common em-
beddings (like edge length minimization), the previous examples also show
some general drawbacks of Tutte’s method: a) the embeddings often waste
a lot of space on the canvas, b) the choice of fixed nodes and their positioning
are very influential on the resulting embedding and, finally, c) the method is
only applicable for a small subset of (3-vertex-connected planar) graphs. The

92

4.1 force-directed graph layouts

considered input graphs of the framework presented in this work are usually
not of this nature.

Furthermore, solving the equation system by direct methods like the Gaus-
sian elimination requires O(n3) (in this case O(|V1|3)) operations and is, thus,
still relatively time-expensive.

However, one goal that Tutte’s method achieves by generating a guaran-
teed planar embedding (for 3-vertex-connected planar graphs) is the minimiza-
tion of edge-crossings (in particular to zero) and it additionally places all
nodes in the convex hull of the fixed nodes (naturally by the barycenter
placement).

Remark 37. The minimization of the overall edge-length and the number of edge-
crossings are important for the method presented in this work as the edges represent
the connections on the reconfigurable chip that have to be routed on the architec-
ture. Too many edge-crossing will cause the necessity of longer detours for the edges
(‘wires’) on the chip and longer edges, in general, fill the limited routing resources
more quickly.

Apart from the already mentioned aesthetic criteria for ‘good’ embeddings
(short edges, as few edge-crossings as possible), a common criterion (e. g., in the
field of graph drawing) is that nodes should keep a certain distance to each
other.

Remark 38. Another early graph drawing technique related to the fundamental
goals of this work is a method for direct embeddings of planar graphs on a Man-
hattan grid which was presented by Tamassia [177] in 1987. In particular, Tamassia
proposed a method for region preserving grid embeddings with a minimum number
of bends on edges by using network-flow techniques.

4.1.2 Generalization of the model - Spring Embedder

The basic ‘barycentric’ idea of Tutte’s embedding can also be applied to arbi-
trary graphs with at least 3 fixed nodes (not only 3-vertex-connected planar
graphs) by iteratively calculating the forces F(vi) acting on each free node
(∀vi ∈ V1) and moving the node (possibly only ‘a bit’) in this direction. After
all free nodes of the graph have been moved once in that way, the procedure
can be repeated again and again until either a fixed number of iterations has
been performed or until the system reaches a stable state (formally until the
lengths of all force vectors are almost zero).

As it has already been mentioned in Chapter 4.1.1, a system without fixed
nodes that minimizes the overall edge-length (or the edge-forces) would re-
sult in an assignment of the same position to each point in the graph. Tutte’s
mechanism to overcome this was to fix a set of nodes (V0) which conse-
quently act as counterforces on the outer face of the resulting embedding. It

93

force-directed graph layouts

has also been shown in the previous section that the selection of fixed nodes
and their positioning has a great influence on the resulting embedding.

Instead of fixing nodes to obtain a counterforce, the edges can be con-
sidered to be mechanical helical springs with an ideal length l connecting the
nodes with each other. The ideal edge length is the ‘zero-energy length’ of
the spring and thus the length of the spring in its unbent equilibrium state.

Remark 39. Tutte’s approach can be considered as such a spring model with ideal
edge lengths l = 0 for all springs.

The force of such a linear spring can be estimated by Hook’s law (39),
which states that the force needed to stretch or compress a spring from
its natural relaxed state is linear to the difference ∆L of the spring’s current
length (in other words the distance d between spring’s endpoints) and its
zero-energy length l. If d > l, the spring is in a stretched state and the dif-
ference ∆L = (d− l) is greater than zero, whereas ∆L becomes smaller than
zero if the spring is in a compressed state. This force strength of the spring
can further be formalized by introducing a constant ca depending on the
material of the spring (cp. equation (39)).

fa = ca ·∆L = ca · (d− l) (39)

Hook’s law quantifies the strength of the force acting through the spring by
a linear approximation of the ‘real’ force. Nevertheless, it is obvious that this
assumption can not be true ‘far away’ from the zero-energy state. On the one
hand, any material would break when being stretched too drastically and, on
the other, it is not be possible to compress a physical spring to length zero.

Instead of using this linear approximation, Eades [50] proposed that a
logarithmic relation, like in equation (40), behaves better in practice for far
distanced pairs of points because the linear approximation is ‘too strong’ in
such situations.

Remark 40. In the following, pu denotes the position (localization) of node u.

Let pu and pv be two points in the Euclidean space (R2) and let l(u, v)
be the zero-energy length of the string between the two points. Then, the
strength of an attractive force in Eades’ model between two connected points
can be approximated by equation (40).

fa = ca · log
(
d

l

)
= ca · log

(
||pu − pv||2
l(u, v)

)
(40)

Remark 41. Note that the zero-energy length in equation (40) is individual for
each spring while Eades modeled it as a system-wide constant. This will in particu-
lar become important in Section 6.3.

94

4.1 force-directed graph layouts

If the distance d of two adjacent points is equal to the zero-energy length l
of the respective string, the fraction in the logarithm is one and, therefore, the
force strength fa becomes zero just like in the linear model in formula (39).
As a result, the spring is in its ‘relaxed’ state and no force acts to either
compress or stretch it (see Figure 32b).

Besides a model (approximation) for the strength of the force that acts on a
node pv, the direction of the force is needed to calculate the consequent force
vector. Assume that the force that acts on point pv through the connection of
pu and pv is acting in the direction of (pu − pv) and that ca = 1. Then, the
force vector ~F(u,v)

attr can be calculated as shown in equation (41).

~F
(u,v)
attr (v) = fa · (pu − pv) = log

(
||pu − pv||2
l(u, v)

)
· (pu − pv) (41)

If d > l (cp. Figure 32c), the spring is in a stretched state and therefore tends
to further contract itself to reach the zero-energy state. Thus, the force strength
fa that acts on pv in the direction of (pu − pv) is positive in that case.

However, if d < l (cp. Figure 32a), the spring is in a compressed state and
therefore tends to push its ends further apart to reach the zero-energy state.
Thus, the force strength fa that acts on pv in the direction of (pu − pv) is
negative in that case.

pu

pv

pu

pv

pu

pv

p u
−

p v

p u
−

p v

p u
−

p v

p v
−

p u

p v
−

p u

p v
−

p u

(a) d < l

pu

pv

pu

pv

pu

pv

p u
−

p v

p u
−

p v

p u
−

p v

p v
−

p u

p v
−

p u

p v
−

p u

(b) d = l

pu

pv

pu

pv

pu

pv

p u
−

p v

p u
−

p v

p u
−

p v

p v
−

p u

p v
−

p u

p v
−

p u

(c) d > l

Figure 32: Force strengths with distance d and zero-energy length l

As a result, the logarithm of the fraction of d and l in equation (40) quali-
tatively models the force strengths just like the linear assumption of Hook in
equation (39), but it quantifies it differently. To be more precise, the logarithm
is more ‘moderate’ in quantifying the forces’ strengths for far distanced node
pairs.

In addition to the attractive forces introduced by the strings between con-
nected nodes, Eades extended the model by introducing repulsive forces to

95

force-directed graph layouts

the nodes so that (only) non-adjacent nodes in the system repel each other.
The idea is to simulate the forces as repulsive forces Frep of static electrically
charged particles. The resulting repulsive forces Frep can therefore be assumed
to be proportional to 1

d2
due to Coulomb’s law (also called Coulomb’s inverse-

square law).
Assume that two points pu and pv are not connected in the graph and

therefore not encounter a reciprocal attractive force through a connecting
spring. Then, the strength of the repulsive force between these two nodes can
be quantified by equation (42).

fr =
1

||pv − pu||2
2

(42)

The resulting vector of the repulsive force ~Furep starting out from node u
that acts on node v (and therefore in direction (pv − pu)) is calculated by
formula (43) in Eades’ model.

~Furep(v) = fr · (pv − pu) =
1

||pv − pu||2
2
· (pv − pu) (43)

Remark 42. Both types of force vectors (attractive and repulsive) are calculated
by the product of the forces strengths (fa and fr) and the direction (vector) of the
force ((pu − pv) and (pv − pu), respectively).

With the two principal force sources (41) and (43), the overall system is
able to converge to a stable state of balanced forces that is not a single point
for all nodes and does not require any fixation of nodes. In contrast to Tutte’s
approach, in which the counterpart for the attractive forces was introduced
by fixed nodes on the outer face, this generalized and extended model contains
the repulsive forces between non-adjacent nodes (and also the zero-energy
lengths for connected nodes) as ‘opponents’ to the attractive forces of con-
nected nodes.

Thus, even if the graph is complete (eventuating in a system without repul-
sive forces), it does not collapse to a single point as long as the zero-energy
lengths l of the springs are not zero.

In Figure 34b on page 102, the functions of the two forces’ strengths are
shown. The overall force strength acting on node v levels off to zero if the
repulsive and the attractive forces neutralize each other and if, therefore, the
pairwise distances d between all connected nodes correspond to the desired
zero-energy lengths. Such a force model is often called a ‘system of springs
and magnets’ due to its real-world counterpart.

The process of iterating towards an equilibrium state with Eades’ force
model is summarized in Algorithm 5. After positioning all nodes randomly
to obtain an initial configuration, the iterative procedure of minimizing the

96

4.1 force-directed graph layouts

forces in the system is started. In each iteration, the repulsive and the at-
tractive forces that act on each of the nodes are calculated according to the
previously defined force model. A resulting force F(v) is derived for each
node v by summing up the relevant forces and potentially scaling the sum of
forces with parameters called the stiffness factor λattr for the attractive forces
and the repulsion factor λrep for the repulsive forces. After these calculations
have been completed for all nodes, each node v is moved ‘a little’ (more for-
mally by the proportion δ) in the direction of the resulting acting force F(v)
whereupon the entire process is repeated with the new forces acting on the
nodes due to their updated positions. If a fixed number of such iterations
has been performed, the process terminates returning the final positions of
all nodes.

Algorithm 5 Spring Embedder (Eades)

procedure SpringEmbedder(G,nb_iterations,δ)
for all v ∈ V do . initially assign random positions
pv ← random(x,y)

end for
i← 0

while i < nb_iterations do
for all v ∈ V do . calculate forces
Furep(v)← 1

||pv−pu||2
2 · (pv − pu)

F
(u,v)
attr (v)← log

(
||pv−pu||2

l

)
· (pu − pv)

F(v)← λrep ·
∑

u|(u,v)/∈E
Furep(v) + λattr ·

∑
(u,v)∈E

F
(u,v)
attr (v)

end for
for all v ∈ V do . move nodes
pv ← pv + δ · F(v)

end for
i← i+ 1

end while
return positions . set of coordinates for each v ∈ V

end procedure

In each iteration, the attractive forces arising from the springs (itself rep-
resenting the |E| edges of the graph) and the repulsive forces between each
non-adjacent pair of nodes (each pair of nodes but the connected ones in the
graph: |V |2 − |E|) have to be calculated. Thus, the overall time complexity of
one such iteration is O(|E|) for the attractive forces and O(|V |2 − |E|) for the

97

force-directed graph layouts

repulsive forces, therefore O((|V |2 − |E|) + |E|) = O(|V |2) in total. With a fixed
number of iterations, this is likewise the complexity of the entire procedure.

Remark 43. The termination criterion could easily be formulated more adaptively
and dynamically, e. g., by stopping either as soon as the sum of all acting forces∑
v∈V F(v) in the system falls below a certain predefined (small) threshold (as

this indicates an equilibrium state) or if a maximum number of iterations has been
performed.

The overall complexity of Eades’ approach is independent from the num-
ber edges in the graph, whereas the calculation of the repulsive forces is the
dominating compute part of the method for general graphs (especially for
rather sparse graphs with |E|� |V |2 edges).

Definition 20. A graph G = (V ,E) will be called sparse in the following if, and
only if, the number of edges in the graph is much smaller than the maximal possible
number of edges |V |(|V |−1)

2 (cp. Corollary 2), or - to put it simply - if |E| � |V |2.
Generally, graphs are divided roughly in dense and sparse graphs by a property called
the density of the graph which can, for example, be formalized by ρG =

2|E|
|V |(|V |−1)

for undirected and simple graphs. A complete graph consequently has a density of
1, the sparsest possible connected graph, consisting only of a path with n nodes,
has a very low density of ρG =

2(n−1)
n(n−1) = 2

n with this quantification. By setting a
certain threshold, it is possible to divide graphs into either the one or the other class,
but it is rather a vague separation in general.

The fact that the complexity of one single iteration is O(|V |2) makes Eades’
approach inapplicable for larger graphs. The initial random positioning of
the nodes can additionally prevent the algorithm from reaching a good lo-
cal or even a global optimum. Both aspects have consequently been improved
by more advanced techniques, whereas an early improvement for the expen-
sive calculation of repulsive forces has been introduced by Fruchterman and
Reingold in 1991.

4.1.3 Grid approximation of repulsive forces

The general principle behind a spring embedder model is that, on the one
hand, connected vertices should be placed near to each other and, on the
other hand, vertices should generally not be placed too close to each other
(cp. Fruchterman & Reingold [67]).

While this can principally be achieved with the model introduced by Eades,
Fruchterman & Reingold’s goal was to extend Eades’ model in some certain
directions and to reduce the overall computation time.

98

4.1 force-directed graph layouts

Calculating all pairwise repulsive forces between nodes in a graph G = (V ,E)
takes O(|V |2) time as there are

(|V |
2

)
=

|V |(|V |−1)
2 such pairs in the graph (cp.

Corollary 2). Considering that this set of calculations would have to be per-
formed in every iteration of the spring embedder, it is obvious that this is
relatively expensive in terms of runtime. Thus, it could only be applicable
for rather small graphs if a ‘precise’ layout (with many iterations and tenden-
tially small δ) of the graph is desired in a relatively short time. Combined
with the fact that ‘ordinary’ graphs (and also the ones that are present in the
application of this work) are rather sparse (|E|� |V |2), the bottleneck concern-
ing the calculation time is unambiguously the repulsive force computation
as the attractive force evaluation only needs O(|E|) calculations. On the other
hand, it is obvious that repulsive forces between nodes that are far away from
each other are not too influential.

An early attempt to reduce the bottleneck was published by Fruchterman
& Reingold in 1991 based on considerations from particle physics that arise
in the related field of n-body simulations (e. g., planetary simulations). Their
idea was to calculate only those repulsive forces acting on a node v ∈ V that
arise from nodes in its neighborhood. For this purpose, the graph is placed on
a canvas and the neighborhood is now constructed by dividing this canvas

for the drawing with an equidistant
(√

|V |

k ×
√

|V |

k

)
grid (with k = 2 in the

original formulation). Now, only nodes in v’s own and the eight neighboring
cells are taken into account for the calculation of repulsive forces acting on
node v.

Remark 44. The main idea behind their approach is the observation that the grav-
itational forces between two protons in a free system attract each other while their
electrical (charge) force is repelling them from each other. If the nodes are far away
from each other, none of the two forces acts between the two nodes significantly. At a
certain distance, the attractive force starts to become active and contracts both parti-
cles. At some point in a relatively near distance, the repulsive force from the nodes is
starting to take significant effect on the overall acting force between both and reduces
the overall attractive force until an equilibrium state between both forces is reached.
This model explains how atomic nuclei cohere and why they do not collapse.

Remark 44 gives a reasoning to neglect or at least less consider very far
distanced nodes’ repulsive forces what could, in turn, reduce the calculation
time for these forces. Nevertheless, the grid approach of Fruchterman & Rein-
gold has a great general disadvantage as it strongly depends on the actual
distribution of the nodes across the grid. While the distribution pictured in
Figure 33a is rather uniform and would thus reduce the number of consid-
ered repelling nodes on v drastically, Figure 33b shows how a non-uniform

99

force-directed graph layouts

distribution of the same number of nodes can still create situations in which
the calculation of almost all repulsive forces for v would be necessary.

(a) uniform (b) non-uniform

Figure 33: Node distributions and their influence on the neighborhood size

Remark 45. This drawback of a ‘static’ fragmentation of the canvas can be overcome
by methods based on tree decompositions like quadtrees (see Section 4.2.1).

As already stated in Section 4.1.2, the linear assumption in (39) for the
attractive forces is not realistic for mechanical springs between nodes that are
far distanced from each other. Even more, Fruchterman & Reingold stated
that following Hook’s linear law can also prevent the spring-system with
repulsive forces from escaping local optima in graph drawing simulations.
Thus, Fruchterman & Reingold [67] (in contrast to Eades) proposed to use
a factor that is quadratic in the distance d for the attractive forces while the
repulsive forces are modeled to decrease only inversely proportionally.

An additional cooling function in their approach descendingly limits the
allowed quantity of displacement for a node per iteration to improve the
drawing from a coarse grained to a fine grained manner. This idea is compa-
rable to the mechanisms of simulated annealing approaches in general (cp.
Section 3.2.7) and, more specifically, to the one published by Davidson and
Harel [44] for graph drawing in 1989.

While Eades weakened Hook’s linear assumption to a logarithmic coher-
ence to be more moderate for far distanced nodes, Fruchterman & Reingold
instead strengthened it to a quadratic dependence as the linear rule was often
(especially for complex graphs) not strong enough to escape local optima.
They additionally reported that their configuration of the overall system with
the chosen pair of force functions (shown in Figure 34c) led to results compa-
rable to Eades’ but reduced the calculation effort by not using the relatively
compute expensive logarithm function.

100

4.1 force-directed graph layouts

Remark 46. As the calculation of transcendental functions on modern compute ar-
chitectures has been continuously improved in common libraries and the hardware
itself (see, for example, Harrison et al. [90]), it is nowadays indeed absolutely reason-
able to use the logarithm if the algorithm behaves better in that way. It can therefore,
e. g., be considered how much a more expensive calculation may reduce the amount
of iterations.

Fruchterman & Reingold additionally integrated mechanisms to keep all
nodes on a predefined canvas, see Chapter ‘The frame’ of their work. In fact,
even the idea to overcome the drawbacks of their ‘static’ method in case of
non-uniform distributions by the use of a tree structure for an approxima-
tion of far distanced sets of nodes as single poles (a well known technique
from the field of n-body simulations to reduce complexity from O(|V |2)

to O(|V |log(|V |)) [11]) or as multipoles, like in Greengard and Rokhlin’s
work [80], was named in Fruchterman & Reingold’s publication from 1991.
It was actually not applied for the repulsive force calculation as the complex-
ity of the grid method is as little as O(|V |) for uniform grids. However, for
worst-case scenarios, like the one depicted in Figure 33b, the calculation time
for the repulsive forces can increase up to O(|V |2). As a result, the overall
worst-case complexity of the grid method from Fruchterman & Reingold is
O(|V |2 + |E|)

(
= O(|V |2)

)
.

Remark 47. Depending on the input graphs, their structure and their general den-
sity, the just presented basic approach can (under certain circumstances) be a
practical choice. However, for general graphs it is advisable to use ‘more advanced’
models for the repulsive force approximation like the one of Hachul and Jünger pre-
sented in Section 4.2, which bases on an efficient clustering of repulsive influences
from far distanced sets of nodes in a tree structure combined with an accurate ap-
proximation of the forces by multipole moments.

Figure 34 depicts the different force models mentioned in this section.
Other force models (e. g., linear, quadratic, logarithmic or inversely proportional
models but also combinations of these) and many different static or dynamic
configurations of the parameters (like the displacement factor δ, the repulsion fac-
tor λrep, the stiffness factor λattr etc.) are possible and have been developed
and tested in many researches.

It is an ‘an art of its own’ to find suitable configurations not only for the
desired layout and its basic properties but also for a fast convergence. To,
finally, say it with the words of Fruchterman & Reingold:

“We need not faithfully imitate a celestial, chemical, or atomic system -
we desire only that the results be pleasing.” ([67])

101

force-directed graph layouts

l

0

distance d

fo
rc

e
st

re
ng

th
f

fa = (d− l) [Hook]

fa = log
(

d
l

)

(a) Hook’s law & attractive forces Eades

l

0

distance d

fo
rc

e
st

re
ng

th
f

fa = log
(

d
l

)

fr =
1
d2

fa − fr

(b) Attractive & repulsive forces Eades

k

0

distance d

fo
rc

e
st

re
ng

th
f

fa = d2

k

fr =
k2

d
fa − fr

(c) Attractive & repulsive forces Rein-
gold&Fruchterman

l

0

distance d

fo
rc

e
st

re
ng

th
f

fa = log
(

d
l

)
· d

fr =
1
d2

fa − fr

(d) Attractive & repulsive forces Hachul (FM3)

Figure 34: Attractive and repulsive forces strengths

Remark 48. Beyond the already mentioned aesthetic criteria, force-directed models
also naturally tend to create symmetric structures due to their ‘undirected and locally
identical’ model.

4.1.4 A force-directed layout by spring embedder

Figure 35 depicts the iterative process in a spring embedder procedure. The
blue circles around nodes are drawn to indicate the repulsive force of the
node acting in its close spatial proximity. Starting with a random initial lay-
out, the spring forces (edges) attract connected nodes that are far away from
each other. During the process, nodes have to pass regions with higher re-

102

4.1 force-directed graph layouts

pulsive forces to overcome local optima. This is possible in case of strong
attractive forces for larger distanced connected nodes. It is important to note
that, in this process, a node can undoubtedly be stuck in such a situation. It is
therefore desirable to start with a good initial layout to avoid such situations
as much as possible. One strategy to do so is a multilevel layout which is used
in the presented implementation and explained in Section 4.2.3. When all the
distances between connected nodes are more or less balanced, the repulsive
forces become more influential by arranging all node pairs more consistently
distanced to each other.

(a) initial graph (b) low rep forces but high attr
forces

(c) increasing rep but de-
creasing attr

(d) both types of forces de-
crease

(e) both types of forces con-
tinue decreasing

(f) final stable equilibrium
state

Figure 35: Iterations of a force-directed graph layout

Figure 36b shows a force-directed layout for the Sierpiński Sieve Graph of
order 5 (cp. Figure 29) obtained after ‘deranging’ the initial layout randomly
as shown in Figure 36a. The energy minimized constellation that was finally
achieved by the force-directed simulation is similar to the constructed idea of
the Sierpiński graph. Equilateral triangles are (approximately) formed and the
final drawing is perfectly planar. The layout additionally shows the strong
general trend to form symmetrical structures (see Remark 48).

Another important observation for the later parts of this work is that the
drawing has no real orientation. Any rotation of this embedding has the

103

force-directed graph layouts

(a) Random layout (b) Simple force-directed layout

Figure 36: ‘Sierpiński Sieve Graph’ of order 5

same amount of acting forces between all nodes, a fact that is formally based
on the application of the L2-norm in the force calculation methods. This
characteristic will be discussed in more details in Section 5.6.2.

4.1.5 The ideal edge length l

To make use of all techniques presented in this work, it is important (though,
in general, not compulsory) to involve zero-energy edge lengths for the de-
sired graph layout to steer the distances between connected vertices in the
force-directed layout. Even though these l-values have already been intro-
duced in the previous section, the following paragraph should give a little
deeper insight to their influence in the force model.

Consider the force model of Hachul and Jünger (Figure 34d) with an at-
tractive force which is modeled following equation (44).

fa = log

(
d

l

)
· d = log

(
||pv − pu||2
lzero(e)

)
· ||pv − pu||2 (44)

If an edge is longer than its zero-energy length (d > l), the acting attractive
force is positive while it becomes negative when the edge’s length is smaller
than it’s zero-energy length (d < l). For d = l, the argument of the loga-
rithm is exactly one, though the logarithm is zero by which means there is
no acting attractive force. A state in which all distances of connected nodes
correspond precisely to their zero-energy lengths can be called an attractive
force equilibrium. The zero-energy lengths can therefore be seen as dampers
or amplifiers of the attractive forces’ strengths. Consider a node v which is
connected to four neighboring nodes (u1, u2, u3, u4) that are, at the mo-
ment of the force-calculation, located around v at the four corners of the unit

104

4.1 force-directed graph layouts

square. The strengths of the attractive forces acting on v depends on the po-
sition of node v. The sum of the strengths of the acting forces

∑
u|(u,v)∈E fa,

depending on the position of v in the unit square, with l =
√
2
2 for all edges

is depicted in Figure 37a. Under these circumstances, the sum of the forces’
strengths is minimal in the barycenter of the four surrounding nodes (the
attractive force equilibrium). Consequently, node v is pulled/pushed towards
the barycenter of u1, u2, u3 and u4. If l would be larger than

√
2
2 , the sur-

rounding nodes would additionally be pushed further away in the process
as the force strengths in the barycenter would fall below the value of zero
(the position would still be optimal).

However, consider the same situation but with differing zero-energy edge
lengths, e. g., with lzero(u1, v) =

√
0.252 + 0.252, lzero(u2, v) = lzero(u3, v) =√

0.252 + 0.752 and lzero(u4, v) =
√
0.752 + 0.752. Figure 37b depicts the re-

sulting forces sum
∑
u|(u,v)∈E fa and the consequent positioning for v in its

attractive force equilibrium (0.25, 0.25).

0
0.5

1 0

0.5

1

0

1

2

−−−−−→
(v− u1)

−−−−−→
(v− u2)

−−−−−→
(v− u3)

−−−−−→
(v− u4)u1

u2

u3

u4

v

x
y

∑
u|
(u

,v
)∈

E
f a

(a) Equal zero-energy edge lengths

0
0.5

1 0

0.5

1

0

2

−−−−−→
(v− u1)

−−−−−→
(v− u2)

−−−−−→
(v− u3)

−−−−−→
(v− u4)

u1

u2

u3

u4

v

x
y

∑
u|
(u

,v
)∈

E
f a

(b) Different zero-energy edge lengths

Figure 37: Sum of acting forces of surrounding nodes

Remark 49. Apart from this general incorporation of the zero-energy lengths in the
force model, FM3 additionally contains post-processing procedures to readjust the
desired lengths of edges very accurately by a few extra iterations of the embedder with
extremely reduced repulsion factor λrep and increased stiffness factor λattr. Under
these assumptions, a small number of improving iterations that almost neglect the
repulsive forces is performed after the main simulation. As a result, the final lengths
of the edges of an FM3 layout correspond rather precisely to the a priori desired
user-defined edge lengths. In Chapter 7.5 of his dissertation, Hachul experimentally
emphasizes the advantage that the post-processing provides (see also Section 4.2.4).
Due to the zero-energy lengths, connected nodes would still retain a minimal distance
to each other even if there were no repulsive forces.

105

force-directed graph layouts

4.2 the fast multilevel multipole method fmmm

The force-directed layout method that was applied, extended and adapted
in this work is the Fast Multilevel Multipole Method (FMMM or FM3). It was
developed and implemented by Stefan Hachul in his PhD-work at the com-
puter science chair of Prof. Dr. Michael Jünger and is practically available in
the already mentioned graph drawing framework OGDF [36]. Detailed ex-
planations of the method are available in several publications like [82, 83, 84]
and, of course, in Stefan Hachul’s PhD thesis ‘A Potential-Field-Based Multi-
level Algorithm for Drawing Large Graphs’ from 2005 [81]. The method and its
implementation contain a great deal of specific features and many extensions
to make it fast and accurate while providing a vast amount of steering func-
tions for users to control the resulting layouts’ properties. Several (but by far
not all of such) functionalities of the algorithm were used in this work and
the presence of many implemented mechanisms was, besides its speed and
accuracy, the main argument to use FM3 as the basis for this work. How-
ever, the force-directed layout algorithm incorporated in this framework is
easily exchangeable by any other layout algorithm (not even necessarily a
force-directed layout method) through a very generic interface in the imple-
mentation. Details are discussed in Section 5.5.2.

The force model used in FM3 is summarized in (45). It can be seen as a
mixture of Eades and Fruchterman & Reingold (cp. Figure 34). The repulsive
forces are assumed to act inversely proportional to the square of the distance

while the attractive force strength fa is modeled through log
(
d
l

)
· d. As

already stated at the end of Section 4.1.3, the tuning of the force model’s
parameters is important to obtain a good balance between short runtime and
high quality of the simulation.

Furep(v) =

1

||pv−pu||2
2 · (pv − pu) pv 6= pu

0 otherwise

F
(u,v)
attr (v) =

log
(
||pv−pu||2
lzero(e)

)
· ||pv − pu||2·(pu − pv) pv 6= pu

0 otherwise

Frep(v) =
∑

u∈V\v

Furep(v) Fattr(v) =
∑

u|(u,v)∈E
F
(u,v)
attr (v)

Fres(v) = λrep · Frep(v) + λattr · Fattr(v)
target→
force

equilibrium

0 (45)

106

4.2 the fast multilevel multipole method fmmm

Remark 50. For the later experiments, the FM3 option ‘qualityVersusSpeed →
qvsBeautifulAndFast’ was chosen. This is the ‘medium’ choice of the three predefined
and implemented option sets that are either optimized towards speed or more in
the direction of quality. Among other things, the option controls the number of
the already mentioned fine-tuning iterations for the zero-energy lengths in the post-
processing of the method (Remark 49).

Forces are only calculated when two nodes are not in the same position
(which is particularly important when dealing with integer coordinates), oth-
erwise the force is neglected. However, the are implemented mechanisms to
avoid such situations.

After calculating the attractive and repulsive forces acting on each node v,
the resulting force Fres(v) acting on node v is accumulated and the node is
consequently moved in this direction.

4.2.1 Quadtree for approximation of repulsive forces

To overcome the drawback of Fruchterman & Reingold’s rather static grid
based algorithm to speed up the calculation of the repulsive forces (Sec-
tion 4.1.3), which is for average relatively sparse graphs the bottleneck of the
embedding routine, tree data structures like the ‘reduced bucket quadtree’ are
likely used for further improvement.

In the following paragraph, the basic idea how to create and how to use
this data structure for faster repulsive force calculations is presented. Its ap-
plication in FM3 bases on early works of Appel [11] and Greengard [80] in
the field of n-body simulations. Appel presented a ‘gridless’ variant to cal-
culate potentials and forces of many-body simulations. Appel’s goal was to
approximate influencing forces of sets of nodes that are far away from a
prospected node v by a representing monopole (also called ‘center of mass’)
instead of simply neglecting them like Fruchterman & Reingold did.

To create a quadtree data structure of a graph G, the canvas of the graph
can recursively be split in four (equally sized) sub-cells whereas each cell
represents the set of nodes located in the cell. This procedure is repeated
recursively for each cell until it contains only a constant (small) number of
nodes K, at the extreme just a single one. If K > 1, a leaf of the tree can
consequently contain more than one node. Such a leaf is called a bucket and
the corresponding quadtree is more precisely called a ‘bucket quadtree’ with
bucket capacity K. Each created cell in the coarsening procedure becomes a
node in the quadtree and, as there are at most four non-empty children for a
cell by this construction, each node in the quadtree has at most four children.
After the i-th of such recursions, the current ‘coarsening’ of the graph is
called the coarsening of the graph to stage Ci and it is represented by level

107

force-directed graph layouts

i of the quadtree. After a number of n recursions, each cell contains at most
K nodes and the construction terminates. Thus, the leaves of the tree contain
the (buckets of) nodes of the graph.

Whenever a cell contains the same nodes than its child or, in other words,
whenever a cell has only one child, this stage can be ‘skipped’ for this cell and
the technically two cells become one in the tree which is consequently called
‘reduced (bucket) quadtree’. This shrinking of so-called degenerated paths in
the tree structure has been proposed by Aluru et al. [5, 4]. If a series of such
nodes forms a path (v1, . . . , vp), this entire path is shrunk and replaced by a
simple edge (v1, vp). One example is the bottom right cell on stage C1 and
C2 in Figure 38 and Figure 39.

Figure 38 shows how this process clusters a graph in three clustering
stages with K = 2.

(a) Graph (b) Clustering stage C1

(c) Clustering stage C2 (d) Clustering stage C3

Figure 38: Construction of reduced bucket quadtree with K = 2

108

4.2 the fast multilevel multipole method fmmm

A simple approximation theme using this quadtree to speed up the re-
pulsive force calculation is to represent the repulsive force of each quadtree
node by an accumulated cluster force located in the barycenter of all nodes in
the cell (cp. Figure 39). Consider a node v in the graph and a cloud of nodes
that is ‘far away’ from v.

(a) Coarsening to stage C1

(b) Coarsening to stage C2

(c) Coarsening to stage C3

Figure 39: Approximation through coarsening in the reduced quadtree

109

force-directed graph layouts

Instead of calculating the repulsive forces that act from each of the cloud’s
nodes onto v, the overall force can be approximated by the cluster force. This
can reduce the amount of calculations for v drastically if there are many
nodes in the cloud. Nevertheless, such an approximation introduces inaccu-
racies (errors) with respect to the underlying force model. Furthermore, the
influence of such inaccuracies is larger the larger the acting force of the cloud
is. Since the repulsive force in FM3 is inversely proportional to the square
of the distance of two nodes, the influence of the repulsive force and thus
the influence of the introduced error decreases quickly with the distance.
The question at which distance from the node to approximate forces can
clearly not be answered conclusively. The earlier the force is calculated ap-
proximately, the more calculations can be saved but the larger is the influence
of the error.

The following algorithm from Grama et al. [76] is a relatively simple traver-
sal of the quadtree which approximates the force (acting on v) introduced by
a cloud of distanced nodes (cell) only if the ratio of the size of the cell s (hori-
zontal or vertical expansion) and the distance d between the clouds barycen-
ter and v is smaller than a specific threshold t (thus, if sd < t). The threshold t
can consequently be used to control the accuracy of the approximation and
the runtime of the method. Figure 39 depicts the quadtree of the construction
from Figure 38 and the three coarsening stages for the approximation.

To constructively calculate all repulsive forces acting on a node v, the al-
gorithm starts at the root of the tree with an initial force Frep(v) = 0. Now,
all (at most four and at least two) children u1,u2, ... are visited with the fol-
lowing rule for the recursion step: if v is a leaf in the subtree rooted by the
quadtree child node (or the cell) ui, visit all children of ui. If v is not in the
subtree rooted by the child node ui, the following three cases are possible:

• if the child ui is a leaf, add the repulsive force acting from cell ui on v
to Frep(v),

• if ui is not a leaf but ‘far enough’ away (sd < t) from v, add the approx-
imative cluster force acting from the cloud in cell ui on v to Frep(v),

• else visit all children and proceed analogously.

The larger t is, the earlier the algorithm stops while traversing the tree
and the fewer calculations have to be performed but the larger is also the
introduced error. It is, again, a balancing act to choose a ‘good’ parameter
t. The repulsive influence of node 4 on node 1 in Figure 39 is considered
more and more accurately the deeper in the quadtree the repelling cluster
force (containing node 4) is. While the approximation on coarsening stage 1
(Figure 39a) may be too imprecise (if sd > t), stage 2 (Figure 39b) could be
sufficient to approximate the influences of nodes 4− 7.

110

4.2 the fast multilevel multipole method fmmm

Even though this method needs O(|V |log|V |) time only for uniform distri-
butions, there are very sophisticated methods that can guarantee this com-
plexity for the worst cases. One of such is applied in the presented and
used FM3 algorithm, all details can be found in the dissertation of Stefan
Hachul [81]. The O(|V |log|V |) approach using a reduced bucket quadtree also
bases on the work ‘Truly distribution-independent algorithms for the N-body
problem’ from Aluru et al. [5].

Even though the approximation can speed up the repulsive force calcula-
tion by reducing the number of calculated influencing forces per node, the
construction of the quadtree introduces a potentially relevant additional over-
head. To profit from the use of a quadtree in the explained manner, it is there-
fore necessary that the number of nodes in the graph is sufficiently large. In
Section 4.2.2, the influence of a quadtree approximation on the performance
and the outcome for two differently sized example graphs is elucidated by
way of example.

Remark 51. For three-dimensional graphs, an analogue construction leads to an
octree representation.

4.2.2 Multipole approach for accurate and fast approximation of repulsive forces

In comparison to grid or mesh based approaches like P3M (particle-parti-
cle/particle-mesh) [96] for n-body simulations whose efficiency strongly re-
lies on uniform node distributions (just like the grid-based graph drawing
approach of Fruchterman & Reingold), Greengard refined Appel’s ‘gridless’
tree idea from a monopole to a multipole approximation for influences of dis-
tanced clouds of nodes in 1997 [80] (see Figure 40). Multipoles can be used to
approximate the interaction of charges in a potential field instead of calculat-
ing all pairwise interactions.

Remark 52. The multipole approach is rather complex (not only in the sense of
complex numbers) and its application is not essential for the presented approach.
A monopole approximation would also work and would speed up the calculation of
repulsive forces, whereas a multipole approach is more accurate. Furthermore, the
repulsive force calculation was not modified for the presented approach in this work.
It is used simply due to the fact that it is very well implemented in the favored
FM3 algorithm. Thus, the basic idea of multipoles is only explained briefly at this
point while more details can be found in the referenced publications. The following
basic explanations are mainly based on the works of Greengard [80] and
Hachul [82].

The goal of a multipole approximation is to describe the influence of a
large set of charges onto other charges in a potential field by decomposing

111

force-directed graph layouts

this influence into the sum of ‘basic’ influences, whereas the incorporation
of more such basic components increases the accuracy of the approximation.
These basic components of the interaction in a potential field are monopoles,
dipoles, quadrupoles, octupoles, etc. The effort to determine the approximation
can be kept small by taking only few such components into account. The
‘right’ choice of a number of basic components is, again, a question of weigh-
ing up between costs (in terms of time) and accuracy of the approximation.

Remark 53. The idea of a multipole expansion is comparable to the one of a Taylor
series. A Taylor series approximates a function (in the neighborhood of a point a) by
an infinite sum of polynomial terms (basic components) that are associated with the
function’s derivatives (part of the coefficients) at this point a. Developing the series
only to a specific degree results in a Taylor polynomial which can be taken as an
approximation of the function at point a. The higher the degree, the more accurate
is the approximation, or, in other words, the smaller is the introduced error. Periodic
functions can, similarly, be modeled by the sum of sines and cosines (or complex
exponentials) with appropriate coefficients in a Fourier series.

A multipole expansion can be used to approximate the influence of the
potential field introduced by a cloud of charges that acts on another dis-
tanced cloud of charges. To perform the multipole approximation, charges
(or nodes) can be identified by points in the complex plane xR + i · xI ∈ C

directly equivalent to their Cartesian coordinates (xR, xI). The attribute that
two clouds (two sets of nodes {x1, . . . , xm} and {y1, . . . ,yn}) are distanced is
generally formalized by the term ‘well-separated’. According to Greengard,
two clouds are called well-separated if there exists a radius r so that two cir-
cles with centers p1 and p2 and radii r exist that contain all nodes xi and yi,
respectively, and themselves have a distance of at least r to each other.

Figure 40: Two ‘well-separated’ clouds of nodes as d > 3r

112

4.2 the fast multilevel multipole method fmmm

Formally, the two sets {xi} and {yi} are well-separated if there exist points
p1,p2 ∈ C and a radius r > 0 such that

|xi − p1| < r ∀i ∈ {1, . . . ,m}

|yi − p2| < r ∀i ∈ {1, . . . ,n}

|p1 − p2| > 3r (46)

A tangible approximation of acting forces between the two sets can be
derived by the theory of potential and force fields. It bases on the assump-
tion that the electrostatic potential in the free two-dimensional space satisfies
Laplace’s equation (47) and thus is harmonic.

∇2Φ = ∆Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
= 0 (47)

A multipole expansion approximates the distanced potential field and
thereby the potential energy E(z) induced by m particles in the distanced
cloud acting on any z ∈ C outside the cloud as described in Theorem 3.

Theorem 3 (Multipole Expansion (cp. [80] and [82])). Suppose that m charges
of strengths {qi, i = 1, . . . ,m} are located at points {zi, i = 1, . . . ,m} with
|zi − z0| < r. Then for any z ∈ C with |z − z0| > r, the potential energy E(z)

induced by the m charges is given by:

E(z) = Qlog(z− z0) +

∞∑
k=1

ak
(z− z0)k

with

Q =

m∑
i=1

qi and ak =

m∑
i=1

−qi · (zi − z0)k
k

Using the Cauchy-Riemann equations, the corresponding force F to that
energy E (with E ′ being the derivative of E) can be derived as described in
equation (48).

F(z) = (Re(E ′(z)),−Im(E ′(z))) (48)

Now, the infinite series in the multipole expansion may only be developed
up to an index p (cp. Taylor polynomial in Remark 53), whereas the resulting
approximation through the truncated Laurent series is called p-term multipole
expansion. Thus, p becomes a further steering parameter to increase accuracy
by including more multipole moments or reduce computation costs by taking
only a few into account.

113

force-directed graph layouts

Details on the comprehensive theory and on the specific practice in FM3

can, e. g., be found in the dissertations of Greengard [79] and Hachul [81], re-
spectively. The well-separated sets can basically be obtained from the quadtree
construction presented in the previous section.

By assigning a constant value to p (Hachul supposes p = 4 for a sufficiently
exact approximation), computing the coefficients of the multipole expansion
to get the repulsive force acting from one cloud of m particles onto another
cloud of n particles takes Θ(m) time. The calculation of the derivative of the
p-term multipole expansion (which is a simple Laurent series) only needs
constant time Θ(p). Therefore, the acting force can likewise be calculated in
Θ(m) time.

All approximately acting repulsive forces can now be derived by travers-
ing the quadtree up and down and calculating multipole expansions for the
nodes of the tree. Hachul presented an algorithm that guarantees a complex-
ity of O(|V |log|V |) for the quadtree construction and the calculations, which
is independent from the particle positions (related to Aluru’s approach [5],
all details in Hachul’s dissertation [81]).

Apart from this, the worst-case running time of the method only depends
on the density of the graph for the attractive force calculations and sums up
to O(|V |log|V |)︸ ︷︷ ︸

Frep

+O(|E|)︸ ︷︷ ︸
Fattr

= O(|V |log|V |+ |E|).

Remark 54. While the already mentioned medium accuracy option ‘qualityVer-
susSpeed → qvsBeautifulAndFast’ (cp. Remark 50) develops the multipole expan-
sion up to p = 4, the lesser and higher accuracy options set p = 2 and p = 6,
respectively.

An experimental comparison

To show the the influence of the quadtree approximation with multipole
moments and also the one of the force model in FM3 (on the runtime and
on the resulting graph) and the general runtime behavior of the approaches,
a set of benchmarks is presented in the following. Two approaches were
applied to generate a force-directed layout starting from an initial random
placement of the nodes in the plane within a rectangular region.

On the one hand, a layout based on the force model of Fruchterman & Rein-
gold (see Figure 34c) was performed without (!) making use of a grid approx-
imation (denoted by F&R (exact)). Thus, the repulsive forces are derived by
summing up all pairwise repulsive forces between nodes in O(|V |2).

On the other hand, the FM3 method (denoted by FM3) with its different
force model (see Figure 34d) was applied with p = 4 for the multipole ex-
pansion approximating repulsive forces through a quadtree in O(|V |log|V |).

114

4.2 the fast multilevel multipole method fmmm

For both approaches, the attractive forces are computed exactly (naively) in
O(|E|) time. The implementations were once again realized in OGDF.

To show how the runtime of different parts of the simulation increases
with increasing graph sizes, the ‘Crack’ graph with 10240 nodes and 30380
edges (cp. Figure 31) was taken as a base and was shrunk by deleting outer
regions of the graph resulting in i

8 -th (i = 1, . . . , 8) fractions of the entire
graph. The edges of the regions were accordingly deleted so that the edges
per node ratio |E|

|V |
is pretty much constant for all these fractions of the entire

‘Crack’ graph. The precise statistics about the resulting benchmark graphs are
shown in Table 2 including the achieved overall speedup due to the approx-
imation of repulsive forces. All times report the average time of 10 repeated
runs on the machine posed in Section 1.4.

Figure 41b shows the runtime behavior for the different graph sizes and
additionally contains the subdivision into time needed for the repulsive force
calculation, the attractive force calculation and also the amount of time spend
for miscellaneous parts. In addition to the measured times, interpolated curves
of the theoretical runtime behaviors are sketched by dotted lines.

The results of the Crack graph show that the approximation scheme speeds
up the simulation enormously and that the achieved speedup increases the
larger the input is due to the significantly reduced time complexity. For the
entire Crack graph, an overall speedup of 21.73 was achieved by computing
approximative repulsive forces instead of all pairwise exact ones. The amount
of time needed to compute the attractive forces is (as expected) very small
and becomes, due to the lower time complexity, less relevant the larger the
graphs are.

However, the fact that the approximation scheme can play off its advan-
tages for all Crack graph fractions bases on the relatively large sizes of all
these input graphs (in terms of number of nodes). The picture does change
when considering small graphs like the Sierpiński graph S5. The layout time
and its subdivision is shown in Figure 41a. In this case, applying the approx-
imation scheme within FM3 leads to an increased runtime compared to the
naive calculation of all pairwise repulsive forces. This can be explained by

Fraction 1
8

2
8

3
8

4
8

5
8

6
8

7
8 1

Nodes |V | 1280 2560 3840 5120 6400 7680 8960 10240

Edges |E| 3691 7498 11278 15081 18870 22697 26510 30380

|E|/|V | 2.88 2.93 2.94 2.95 2.95 2.96 2.96 2.97

Speedup 3.30 6.80 8.12 11.90 15.01 17.63 19.24 21.73

Table 2: Graph properties and FM3 speedups of different ‘Crack’ fractions

115

force-directed graph layouts

the fact that the quadtree creation and its traversal need additional time and
this overhead only pays off if the graph is sufficiently large (cp. Section 4.2.1).

Certainly, there is no constant number that can define this point exactly for
every graph and every system. In the default implementation of FM3, repul-
sive forces are calculated exactly for any graph with less than |V | = 175 nodes.
This also means that in the process of coarsening the graph in a multilevel ap-
proach like the one introduced in the following chapter, exact calculations of
all repulsive forces are performed on coarsened representations of the graph.

0

0.01

0.02

0.03

0.04

ti
m

e
(s

)

(a) S5

0

20

40

60

80

100

120

ti
m

e
(s

)

O(n2)
O(n · log(n))

1
8

2
8

3
8

4
8

5
8

6
8

7
8 1

F&R(exact)
misc
Fattr
Frep

FM3

misc
Fattr
Frep0

20

40

60

80

100

120

ti
m

e
(s

)

O(n2)
O(n · log(n))

1
8

2
8

3
8

4
8

5
8

6
8

7
8 1

F&R(exact)
misc
Fattr
Frep

FM3

misc
Fattr
Frep0

20

40

60

80

100

120

ti
m

e
(s

)

O(n2)
O(n · log(n))

1
8

2
8

3
8

4
8

5
8

6
8

7
8 1

F&R(exact)
misc
Fattr
Frep

FM3

misc
Fattr
Frep0

20

40

60

80

100

120

ti
m

e
(s

)

O(n2)
O(n · log(n))

1
8

2
8

3
8

4
8

5
8

6
8

7
8 1

F&R(exact)
misc
Fattr
Frep

FM3

misc
Fattr
Frep

(b) Different fractions of ‘Crack’ graph

Figure 41: Runtime with approximative repulsive force calculation in FM3

Figure 42 shows the initial random layout of the entire Crack graph and the
final FM3 layout. The random layout offers no visible structure of the graph
while the FM3 layout is, apart from very few exceptions in the outer regions
of the graph, planar and, referring to all the mentioned aesthetic criteria, well
structured.

In addition, Appendix A.3 contains some close-up comparisons of the
layouts obtained by both benchmarked methods. The results show that the
speedup due to the force approximation in FM3 does not come at the price of
an inferior layout to the exact method as the approximation with multipoles
is quite accurate. The results also show that the two differing force models
that were applied result in comparable layouts.

Remark 55. Although it is not a primary criterion for this work, it should be noted
that the implementation of FM3 only has linear memory requirements.

4.2.3 Hierarchical multilevel approach to overcome weak initial placements

One crucial challenge for force-directed graph layouts, as for other iterative
techniques, is the dependence of the methods behavior and its outcome on
the initial placement of the nodes. While direct approaches like the one of

116

4.2 the fast multilevel multipole method fmmm

(a) Random layout (b) FM3 layout

Figure 42: ‘Crack’ graph

Tutte calculate a placement without the need of randomized initial coordi-
nates, they are not comprehensively applicable and also not as customiz-
able as, for example, the spring embedder algorithm is. However, an utterly
randomized placement of the initial nodes as it is sketched in Algorithm 5
can lead to extremely long times needed until a stable equilibrium state is
reached or (or and) to a resulting local minimum of low quality. All the good
results and runtimes presented of both FM3 and F&R have been achieved by
embedding the discussed algorithm in a multilevel framework in OGDF.

The main goal of a multilevel approach in the field of graph drawing is to
create a good initial placement of nodes (or groups of nodes) for the layout-
ing phase. Specifically, a commonly used approach is to create (potentially
recursively) coarsened representations G1,G2, . . . ,Gn of the graph G and con-
sequently layout the graphs in the inverse order starting with Gn while trans-
ferring improvements that were made on a coarser representation onto the
finer ones. Even when dealing with an efficient layouting approach like FM3,
the layouts of such smaller (coarsened) graph take significantly less time than
the layouting of the finer or even the original representation G (resp. G0).

A graphically intuitive coarsening strategy has been presented by Wal-
shaw [187]. The idea is to choose the edges of a (good or even perfect) matching
(see Definition 21) of G and shrink all the edges to single nodes in a coarsened
graph.

Definition 21 (Matching). A subset of edges Ẽ ⊂ E of a graph G = (V ,E) is called
a matching (in G), if for all pairs of edges (u1, v1) ∈ Ẽ and (u2, v2) ∈ Ẽ it follows
that (u1, v1)∩ (u2, v2) = ∅.

117

force-directed graph layouts

Definition 22. A matching Ẽ is called maximal if there is no additional edge e ∈ E
so that Ẽ ′ = Ẽ∪ {e} still is a matching.

Definition 23. A matching Ẽ is called perfect if every node v ∈ V is part of one
edge in the matching.

By Walshaw’s method, shrinking edges of a perfect matching in Gi would
half the number of nodes in the coarsened graph Gi+1. However, a perfect
matching is not present in every graph. Even more, deriving a solution of
the maximum cardinality matching problem needs at least O(|V |2.5) time (cp.
Papadimitriou and Steiglitz [149]) which is thus not applicable to speed up
the O(|V |log|V |) process in general. Walshaw therefore proposed the heuristic
of Hendrickson & Leland [93] to find a ‘good’ matching. The heuristic is a
periodically applied variant of the well-known Kerninghan-Lin partitioning
scheme [109] and its time complexity is linear in the number of edges and
nodes.

The shrinking process can be applied iteratively until a coarsened graph
Gn contains only a constant (predefined) number of nodes. Now, Gn is lay-
outed with the force-directed layout method. Note that the coarsened graphs
contain a much smaller number of nodes that the original graph. Thus, this
layouting does need only a relatively little amount of time. As soon as Gn
reaches a force equilibrium state, the shrunken nodes of the graph Gn that
represent the matching edges of Gn−1 are ‘unfolded’ again, each to two con-
nected nodes. Now, the same procedure is applied to Gn−1, Gn−2, etc. until
the original graph G0 has been layouted. The fact that the nodes after the
expansion of the matching edges on each level are already near their equilib-
rium position facilitates that the layout of the refined graphs in the multilevel
calculations can be performed in fewer iterations.

The multilevel strategy that is used in this work is the one of Hachul im-
plemented in FM3. Instead of using matchings for the coarsening, Hachul
proposed his ‘sun-planet-moon’ model in analogy to galaxies and solar sys-
tems. The idea works as follows. The entire graph G is considered as a galaxy
partitioned into a set of solar systems that each contain a central object called
the sun of the system. The sun’s direct neighbors in the graph are called
planets and these planets may have neighbors called moons. To formalize the
property of being neighbors or, more general, the distance of nodes to each
other, a metric called the graph theoretical distance (Definition 24) is needed.
An example for graph-theoretical distances in the graph of Section 4.2.1 is
given in Appendix A.4.

Definition 24. Given a (connected) graph G(V ,E), the graph-theoretical distance
dG(u, v) between two nodes u, v ∈ V is the number of edges on a shortest path
between u and v in G.

118

4.2 the fast multilevel multipole method fmmm

To mark the nodes representing the suns in G, a ‘working-copy’ V ′ of all
nodes V is created. A random node v from V ′ is picked and its ‘twin-node’
in V is marked to be a sun-node. Now, all nodes u with graph-theoretical
distance dG(u, v) < 3 to v are deleted from V ′. This procedure is performed
until no node is left in V ′. After that, the further steps are performed solely
with the original set of nodes V .

Now that all sun nodes are marked in this way, the direct neighbors u ∈ V
of each sun node v are marked as planets of v’s solar system. As all nodes
with dG(u, v) < 3 were excluded from the set of potential suns after marking
v as a sun, no direct neighbor of v has become a sun afterwards. The planet
assignment can therefore be performed without any conflicts. Finally, the re-
maining nodes are moons in the galaxy and have a graph-theoretical distance
smaller than three to at least one of the suns in the galaxy (by construction).
Each of such moons is now assigned to a nearest planet and its solar system.
The method is formalized in Algorithm 6.

After partitioning a graph Gi in this way, the coarsened graph Gi+1 is
created by collapsing all solar systems to a single point which represents
this system on the coarser level (i+ 1). All paths connecting different solar
systems in Gi (inter solar-system paths) are represented by respective edges
connecting nodes in Gi+1. Thus, even several edges or paths between two
solar-systems may be collapsed to one. To inherit the zero-energy lengths
(which can be very important for this approach) from one level of the graph
Gi to the coarser representation Gi+1, each edge (sk, sl) in Gi+1 between two
collapsed solar systems with suns sk and sl gets a zero-energy length which
is the average zero-energy length of all paths between sk and sl in Gi. In this
context, the zero-energy length of a path is the sum of all edges’ zero-energy
lengths on the path. By this construction, the general aspirations concerning
edge lengths are inherited from one coarsening level to the next.

Remark 56. As said before, FM3 is also capable of creating drawings with user-
defined node sizes. To consider such sizes in the coarsening step, each node on a
coarser level (i+ 1) gets a desired node size that is the sum of the node sizes of its
ancestors on level (i).

As already mentioned, the overall process in the coarsening phase creates
the coarser representations of the graph G until a graph Gn with a predefined
constant number of nodes is created. This maximally coarsened representa-
tion Gn is subsequently layouted with the force-directed method. After that,
all planets and moons apparent in Gn−1 are placed near their respective suns
and therefore already near their final position. Then, Gn−1 is layouted by the
force-directed method. This process is repeated until G0 = G is reached. The
layouting on the coarse representations can be performed very fast due to
a very small number of nodes in the representations. However, the finer the

119

force-directed graph layouts

graphs become, the more nodes have to be layouted. Nevertheless, the sim-
ulations on the finer levels converge relatively quickly as the inserted nodes
are already near their desired equilibrium state position.

Algorithm 6 Galaxy Partitioning (Hachul)

procedure GalaxyPartitioning(G(V ,E))
create a copy V ′ of V
associate each v ∈ V ′ with its pendant v ∈ V . by ID
give each v ∈ V a property called ‘type’
for all v ∈ V do . initialize type
v.type← FREE

end for
while V ′ 6= ∅ do . mark suns

pick random v ∈ V ′
v.type← SUN . add v to the set of sun nodes in V
delete v and all nodes u ∈ V ′ with dG(u, v) < 3 from V ′

end while
for all v ∈ V with (v.type == SUN) do . mark planets

for all u ∈ N(v) do . all connected nodes in V
u.type← PLANET

associate u with v’s solar system
end for

end for
for all u ∈ V with (u.type == FREE) do . mark moons

find a nearest node u with (u.type == PLANET)
u.type←MOON

associate u with u’s (sun’s) solar system
end for
return G’s solar system partitioning

end procedure

It is crucial to perform the layout very accurately on the coarser represen-
tations of the graph. An inaccuracy that was made on any coarse level of G
propagates on the finer levels and therefore affects a larger number of nodes.
Such errors would create initial layouts on the next level that are local minima
and difficult or, accordingly, time consuming to escape. An example is given
in Figure 43. While Figure 43a shows how a good and accurate placement
has been achieved by this technique, Figure 43b instead shows what can hap-
pen if the layout on the coarsest representation has not been performed to
the end. Two of the four ‘corner nodes’ of the coarsest graph were flipped

120

4.2 the fast multilevel multipole method fmmm

and, as a result, a large amount of nodes on the finer levels would have to be
moved to ‘unknot’ this situation.

(a) Good multilevel layout (b) Bad multilevel layout

Figure 43: Force-directed layout and local minima

If the number of applied iterations on the finer levels is not sufficiently
large to ‘correct’ this, the layout can end in a weak local optimum. As the
calculation of repulsive and attractive forces on the finer levels takes much
longer, the process of ‘untangling’ such a situation on a fine level would take
very much time. Instead, applying many iterations on the coarser levels is
very cheap (in terms of time) due to the small number of nodes and edges. A
rapidly growing function for the number of iterations on coarsening level i can
be applied to obtain a good final layout quality by avoiding local minima in a
small amount of time due to many cheap iterations on the coarser graphs and
(due to good initial placements) decreasingly many on the finer and ‘more
expensive’ graphs.

In contrast to the meta-heuristics presented in Chapter 3, this multilevel
strategy takes the actual structure of the problem into account to create good
initial placements and thereby to avoid weak local optima. It is a much more
‘precise’ and problem-related technique than, for example, the strong perturba-
tion in the beginning of a simulated annealing approach. This is one of the
reasons why a multilevel strategy is used to improve the quality and the runtime
of the desired chip placement.

Remark 57. The node degree of the selected sun-nodes directly influences the ‘amount
of coarsening’ in the process. The more planets and moons a solar system contains,
the stronger is the reduction when collapsing the system to a single node on the next
level. Thus, a strategy for a rapid coarsening could be to sort the sun candidates in

121

force-directed graph layouts

V ′ decreasingly according to their degree (number of adjacent nodes). If the list is
sorted in ascending order, a tendentially moderate coarsening can be achieved.

The overall complexity of the multilevel approach of Hachul (without the
layouting procedures) is linear in the number of nodes and edges (O(|Vi| +
|Ei|)) on each level and, by restricting the construction to a fixed number of
maximum levels, O(|V |+ |E|) overall. The same holds true for the memory
requirements. The method guarantees that every solar system contains at
least 2 nodes and that consequently each coarsening step at least halves the

number of nodes
(
|Vi+1| 6

|Vi|
2

)
.

Remark 58. In the multilevel process, the repulsive forces on very coarse-grained
representations may even be calculated exactly for better performance by avoiding
the quadtree creation overhead (see Section 4.2.2).

Remark 59. To give an additional illustration, Appendix A.5 shows a detailed ex-
ample of a multilevel layout for a ‘chip graph’.

Figure 44 depicts the multilevel layout of the Crack graph with FM3. Three
coarsened levels of the graph (G1-G3) are created with the sun-planet-moon
model. The number of nodes and edges for each level of the graph, as well
as the time spent for layouting it, are listed in Table 3. The number of per-
formed iterations of the spring embedder on each level is derived by the
(FM3) rule in Algorithm 7. This rule follows a linear dependence between
the level i and the number of iterations on the level with a maximal number
of (ItFacmax · It) iterations on the coarsest graph and a minimal one of It
iterations on the finest (original) graph. The implementation of FM3 has been
applied with default parameters It = 60 and ItFacmax = 10.

The results in Table 3 show that the time needed to layout the finer levels of
the graph is still relatively short as the number of performed (and necessary)
iterations is consequently small. The overall time of 5.35 seconds for FM3

with multilevel support contains the time spent for the layouting including all
overheads caused by data structure constructions etc. With deactivated multi-
level approach, FM3 performed 600 iterations directly on the original graph

in level total

Level 0 1 2 3 with ML no ML

|V| 10240 1025 115 17 10240 10240

|E| 30380 2954 304 37 30380 30380

iterations 60 240 420 600 1320 600

time (s) 2.39 0.9 0.03 0.00 5.35 28.95

Table 3: Properties of multilevel representations & time spend on the levels

122

4.2 the fast multilevel multipole method fmmm

(a) Initial random graph
G3

(b) Layouted graph G3 (c) Refined graph G2

(d) Layouted graph G2 (e) Refined graph G1 (f) Layouted graph G1

(g) Refined graph G0 (h) Layouted graph G0

Figure 44: Multilevel steps of a force-directed ‘Crack’ graph layout

123

force-directed graph layouts

(according to Algorithm 7). For one thing, this takes much longer (28.95 sec-
onds) as each iteration operates on all 10240 nodes and 30380 edges of the
graph. For another thing, it leads to inferior results as the algorithm has not
yet reached a force equilibrium. Four different results of such a simulation
without the multilevel approach are shown in Figure 45.

Algorithm 7 Calculate number of iterations on a level (FM3)

procedure IterationsOnActLevel(i, ItFacmax(= 10), It(= 60))
i =̂ actLevel . description of variables
Iti =̂ IterationsOnActLevel

It =̂ fixedIterations

imax =̂ maxLevel

ItFacmax =̂ maxIterFactor

if maxLevel > 0 then . calculate Iti
Iti = It+

⌊
i

imax
· (ItFacmax − 1) · It

⌋

else
Iti = It+ (ItFacmax − 1) · It

end if
return Iti

end procedure

Remark 60. In fact, FM3’s stopping criterion can not only check for the maximum
number of (fixed) ‘commissioned’ iterations on each level but can, e. g., also query
whether the forces-sum falls below a certain threshold and thus reached a stable state.

Finally, applying the same force model without the multilevel approach
until it converges completely would result in significantly longer runtimes.
Performing a few such benchmarks on the Crack graph graph showed that
the time needed to layout the graph completely without the multilevel method
(and without stopping until the force model reached an equilibrium state)
can even take up to 3 orders of magnitude longer (depending on the initial
random situation). The runtime with the multilevel framework is pretty con-
stant. However, it is important to note that the coarsening of G works partic-
ularly well and accurately for the Crack graph due to its regular structure
(and a therefore very balanced distribution of node degrees, cp. Remark 57).

Remark 61. FM3 not only incorporates many mechanisms to produce a layout
whose edge lengths match the desired zero-energy lengths but also techniques to sim-
ilarly assign different desired node sizes. For now, this feature is not used but it
could be interesting to increase the node size of such nodes that have many connec-
tions to other nodes (a high node degree). In this way, the stress in the region
around such heavily ‘loaded’ nodes could pro-actively be reduced.

124

4.2 the fast multilevel multipole method fmmm

Remark 62. In the explanations of the previous chapters, G was assumed to be
connected. However, the presented methods and especially FM3 are not restricted
to connected graphs. Hachul implemented sophisticated techniques to handle uncon-
nected graphs by layouting all connected components of a graph separately and
finally arranging them compactly on a joint canvas. Once again, details can be found
in [81]. This fact is pertinent for this work as the handled graphs may be or become
unconnected due to some preprocessing in the method (see Section 5.5.4 - Multiple
components in the design).

Remark 63. Regarding the (still) expensive force calculation step, it is important
to note that the procedure is potentially highly parallel as all present forces of one
iteration can be calculated independently from each other. Thus, a parallelization
is easily possible and even architectures like GPUs have a great further speedup
potential as shown by Frishman and Tal [66] in general or, specifically for the FM3

algorithm, by Godiyal et al. [66, 74].

Interim Result 2. The previous sections presented the main sources of the good
performance and the high accuracy of FM3. It is based on a radical reduction of
repulsive force calculations for distanced nodes combined with an accurate ap-
proximation based on multipoles and a fast multilevel approach which leads to good
initial placements of the nodes. The multilevel approach also (mostly) eradicates
the dependence of the final solution’s quality on the initial arrangement by layouting
the coarser graph representations very precisely for ‘low costs’ (in terms of necessary
time).

4.2.4 Alternative force-directed layout methods

There is a large number of available force-directed graph layouting approaches
differing not only in the force model but also in their principal technique
to obtain a layout. Apart from approaches that are based on the iterative
spring embedder idea with and without a multilevel mechanism and, for ex-
ample, using different approximation schemes for the repulsive forces (e. g.,
The Grid Variant Algorithm (GVA) [67], Graph Drawing with Intelligent Place-
ment (GRIP) [69, 68], A Fast Multi-scale Method (FMS) [88]), there are also
several ‘direct’ approaches (like the one of Tutte based on solving a system
of linear equations) using eigenvectors and eigenvalues of a matrix constructed
from the adjacency structure (for example, the Laplacian matrix) of the graph
(e. g., the Algebraic Multigrid Method (ACE) [114], High-Dimensional Embedding
(HDE) [89]).

Hachul and Jünger published an experimental study in 2007 [84] compar-
ing all these approaches with each other and to FM3 in terms of time con-
sumption and quality of the outcome. For the quality comparison, the devia-
tion of edge lengths in the final layout was measured assuming and configuring

125

force-directed graph layouts

(a) Local optimum after 600 iterations without
multilevel method (run 1)

(b) Local optimum after 600 iterations without
multilevel method (run 2)

(c) Local optimum after 600 iterations without
multilevel method (run 3)

(d) Local optimum after 600 iterations without
multilevel method (run 4)

Figure 45: Force-directed layouts without multilevel method

that uniform edge lengths are desired. Anyway, many available implementa-
tions only support uniform lengths, some due to their implementation and
some due to the methods’ general characteristics.

Even though the experiments showed that direct approaches can be even
faster than FM3, concerning edge length accuracy (which can be of major im-
portance for the presented framework depending on its specific configura-
tion and usage) FM3 has clearly shown to be the best algorithm in the test
field while the direct approaches tendentially fail here.

126

4.3 from vlsi placement to graph drawing and back

Furthermore, FM3 layouts tend to produce a relatively small number of edge
crossings in the drawing (also favorable for the developed framework).

Finally, FM3 was absolutely stable in generating drawings for all bench-
mark graphs while several other implementations failed for some of them
because of memory restrictions or simply due to failures in the executables.
Due to the absence of the source code for some of the algorithms, the source
of errors could often not even be detected.

To conclude, FM3 is a very good choice for the intended ideas of the frame-
work and a good basis for further developments. An integration of some of
the mentioned (very fast) alternatives is nonetheless possible and planned.
Even the closed-source versions can be integrated due to the very generic
and unspecific interface of the presented framework (see Section 5.5.2).

further improvements like wspd Applying the FastMultipoleMulti-
levelEmbedder approach developed and implemented by Gronemann in OGDF
will be an interesting attempt for the future. Compared to Hachul’s FM3 im-
plementation, it includes a different quadtree space partitioning and a well
separated pair decomposition (WSPD). Combined with an approximation of re-
pulsive forces by ‘simple’ monopoles, the approach can perform an order
of magnitude faster than FM3 (or even more). However, to apply it directly
in the presented framework, the recognition of zero-energy lengths and the
mentioned post-processing for these should be added. In general, the lay-
outing process can be speeded up or refined by further parameter tuning or
other force and force approximation models. The implementation of FM3 is
used for the framework as it provides many useful mechanisms and a very
good balance between speed and accuracy. However, the presented frame-
work provides a flexible structure to exchange the graph layouting procedure
(cp. Section 5.5.2).

4.3 from vlsi placement to graph drawing and back

The works of Eades, Fruchterman & Reingold (and consequently all the ones
that have been presented and build upon these) base on the early work ‘A
force-directed component placement procedure for printed circuit boards’ of Quinn
and Breuer from 1979 [152]. Their general idea of using force-directed place-
ment methods for application-specific integrated circuits’ (ASICs’) designs will
again be addressed in Section 5.1. The approach presented in this work is
intended to, in a sense, bring progress that was made in the field of graph
drawing back to a discipline from the VLSI domain, along with further exten-
sions and adaptions.

127

force-directed graph layouts

4.3.1 Force-directed graph layouts for FPGAs placement

Just like for general VLSI placements of ASICs, there are several approaches
using force-directed methods for FPGA placement procedures (see, for ex-
ample, Section 5.1). This work aims at providing a framework for my own and
for further research in this field bridging the gap between the rather technical
scope of Logic synthesis and the ‘visually interpretable and applicable’ field
of graph drawing.

A novel approach, which performs, among other things, iterative adjust-
ments of the layout and which offers different objectives to optimize for, has
been developed. It is presented in the following chapters. In addition, it is
compared to, and partially combined with, a long-term tuned established
simulated annealing approach.

Besides the fact that the force-directed layouts meet several already men-
tioned aesthetic criteria, the drawings seem tidied and do heuristically min-
imize the overall edge lengths by attractive forces while avoiding ‘hugely
stressed’ regions by repulsive forces. The results maintain a good balance
between these two goals.

Figure 43a on page 121 shows how well the force-directed layout meets
the desired requirements by being principally near-optimal (cp. Section 3.2)
neglecting the facts that a) the graph is not embedded on an integer grid and
that it is b) not oriented (rotated) as its shape does not necessarily follow the
axes of the surrounding drawing frame (canvas). Another interesting fact of
such a force-directed layout is that the I/O pins (marked orange) are ‘auto-
matically’ placed on the outer frame of the grid graph (cp. instead the local
optimum of the basically very good, albeit slow, ITS approach in Figure 26c
of Section 3.2.8). This is based on the fact that all I/O pins in this synthet-
ical example only have one connection to inner elements of the chip and
thereby only have one edge keeping the node near its neighbor while all re-
pulsive forces carry such nodes outwardly. Even if an I/O node is connected
to multiple inner nodes of the chip, this I/O node would still be placed on
a position balancing the distances to all connected nodes. Section 5.5.4 ex-
plains how this fact is used to efficiently place the I/O nodes obtained from
a force-directed layout on the outer I/O frame of the (island-style) FPGA.

The following list summarizes the motivations why force-directed graph
drawings were used for the practical FPGA placement routine.

128

4.3 from vlsi placement to graph drawing and back

The force-directed drawings of FM3

• tend to create symmetrical, ‘tidied’, crossing-reduced and ‘balanced’
drawings with controllable edge lengths and

• without wasting space that naturally match common (especially island-
style) FPGA architectures,

• while heuristically minimizing the overall edge lengths through at-
tractive forces and avoiding ‘heavily stressed’ regions by repulsive
forces,

• fast and accurately in a stable and extendable framework.

129

Part IV

How can this be transferred to FPGAs?

This chapter presents the core of the FieldPlacer method to embed ‘the
graph onto the grid’. The force-directed graph layout is realized with no
restrictions concerning the coordinates, neither their data type nor their
range. The FieldPlacer takes such a layouted graph as its input and
assigns all the different elements structure-preservingly on the FPGA
grid architecture. Therefore, the ‘inner’ logic units are distributed by
sorting them according to their vertical and horizontal coordinates in
the graph layout respecting a previously defined distribution strategy.
The surrounding input and output pads are distributed with regard
to their angle to the barycenter of the graph. To complete the first basic
embedding of the graph to the grid, special and rare units like memory
or multiplicator elements are finally placed nearest to the barycenter
of their connected and already placed elements on the chip. In addition
to the basic FieldPlacer method, a subsequent local refinement of the
placement in form of a local search can be performed. This last step can
be interpreted as a ‘cold annealing’ and is implemented based on VPR’s
simulated annealing method with temperature 0. This post-processing
iterates until it (approximately) reaches the nearest local optimum. It is
shown, how this local refinement can additionally improve the quality
of the placement in terms of several FPGA related quality norms.

The entire process can roughly be summarized as follows:

1. setup a graph with the design’s netlist (representation of connec-
tions between blocks)

2. generate a force-directed layout

3. embed this layout to the architecture’s discrete grid

4. perform some additional improvements of the assignment

5. refine this assignment with a concluding local refinement (through
a local search) directly on the grid

5
Architecture-aware field embedder for FPGAs
“Don’t Panic”

— The Hitchhiker’s Guide to the Galaxy —

Contents
5.1 Established chip placement techniques 134

5.1.1 FPGA placement . 134
5.1.2 Related placement methods 138

5.2 Heterogeneous force-directed placement 147
5.3 Setup of the basic datastructures 148

5.3.1 Model the architecture 150
5.3.2 VPR norms . 152

5.4 Additional introduced norms 153
5.4.1 Point-to-point WireLength 153
5.4.2 An approximation of congestion 154

5.5 The FieldPlacer method . 159
5.5.1 1st Step: Setup of the graph representation 160
5.5.2 2nd Step: A force-directed graph layout 161
5.5.3 3rd Step: CLB placement 164
5.5.4 4th Step: I/O placement 172
5.5.5 5th Step: Special blocks (MEM+MUL) placement . . . 182
5.5.6 Benchmark: Basic FieldPlacer 185

5.6 FieldPlacer Extensions . 194
5.6.1 5½th Step: Second energy phase 194
5.6.2 2nd Step with different distance norms 200
5.6.3 6th Step: Local refinement 208
5.6.4 Benchmark: Extended FieldPlacer 211

5.7 Theoretical runtime behavior of the FieldPlacer 214
5.8 Other architectures . 215
5.9 About the implementation . 217

5.9.1 FMMM extensions (FieldOGDF) 217
5.9.2 FieldPlacer framework 218

133

architecture-aware field embedder for fpgas

5.1 established chip placement techniques

5.1.1 FPGA placement

As a part of the compilation flow for FPGAs, the placement step has already
been introduced in Section 2.4. The task is to assign logic blocks to suitable
positions on the chip architecture while optimizing a cost function, for exam-
ple, the overall wirelength on the chip. The following paragraphs introduce
the main techniques used in FPGA placement approaches today to finally
position the approach presented in this work in Section 5.2. Later in this
Chapter and in Chapter 6.4, the achieved results are compared to the widely
referenced simulated annealing approach implemented in VPR.

Simulated annealing-based placement

Simulated annealing (SA) is generally regarded as the most popular technique
to perform placements for FPGAs (see, for example, Ludwin and Betz [129]).
The method itself has already been introduced and discussed in Section 3.2.7.
One great advantage compared to other algorithms is that a basic SA ap-
proach is relatively simple to implement while creating results of relatively
high quality if its main defining components (like the temperature schedule
and the cost function) are configured appropriately. VPR’s placement [19, 21]
is based on a temperature schedule with exponential cooling (cp. Section 3.2.7).
In contrast to the ‘classical’ approach, the temperature in VPR’s placement is
not statically reduced but follows an adaptive scheduling scheme ti+1 = α · ti
with α depending on the number of previously accepted moves (in the it-
eration with temperature ti). The actual update function for α is depicted
in Table 4. Following the work of Swartz and Sechen [175] from 1990, the
default setting applies an initial temperature of t0 = 10 · (Nblocks)

1.33 (there-
fore depending on the total number of available blocks Nblocks of all types),
whereas this value can be varied to influence the time needed for the place-
ment and the consequently achieved quality (cp. Remark 16). However, the

Fraction of accepted moves (Raccept) α

Raccept 6 0.15 0.8

0.15 < Raccept 6 0.8 0.95

0.8 < Raccept 6 0.96 0.9

0.96 < Raccept 0.5

Table 4: VPR’s temperature update schedule

134

5.1 established chip placement techniques

default value of t0 and also the temperature update schedule have been
tuned intensively to achieve very good results. Two years ahead of the publi-
cation of Swartz and Sechen, Lam and Delosme [120] have presented a new
annealing schedule and benchmarked it for its application in standard cell
placements (ASICs). With reference to both mentioned works, VPR’s approach
tends to keep the Raccept value near 0.44, which is achieved by varying the
frame-size (Dlimit) out of which pairs of elements are taken to check whether
they should be swapped or not (see Section 2.4 [VPR Placer]). The Dlimit

value is updated through equation (49).

Dlimit
i+1 = Dlimit

i ·
(
1− 0.44+ Raccept

i

)
(49)

The annealing is finally terminated when the temperature falls below a
certain threshold (tω = 0.005 · cost

Nnets
). This threshold depends on the cost

function, more precisely, on the relative cost per net in the design.

Remark 64. Lam and Delosme [120] have additionally shown how their simulated
annealing approach could successfully be applied to solve TSPs. The generality of
simulated annealing is one of its core advantages compared to specialized approaches.

As already discussed in Section 3.2.7, SA also has the great advantage of
being rather independent from the initial solution. This fact is important as
VPR starts with a random initial assignment of all blocks.

Remark 65. In the later experiments, those and other default values are used
(see Appendix A.6). The predefined parameters provide a good basis for acceptable
runtime while reaching good resulting layouts. In addition, the results are thereby
comparable to other published works.

For example, the Quartus II placement algorithm (P2Q), which is incorpo-
rated in Altera’s design tools, uses simulated annealing as it is actually based
on an early version (v4.30) of VPR. Ludwin and Betz [129] showed how this
procedure can be parallelized.

Analytical (numerical) placement

While Xilinx’s ISE software suite (like most of the tools available in the 1990s)
also used to apply simulated annealing, they switched to an analytic placement
approach in 2012with the release of Vivado [60] in order to overcome the chal-
lenges that emerged from smaller production generations and a consequently
extremely increased number of logic blocks per chip. Analytic approaches
model the problem of placement in systems of mathematical equations and
subsequently solve these to obtain a solution in form of coordinates for the
blocks. In contrast to the simulated annealing approaches, which inherently
operate on the integer grid with valid locations for each block at each time in

135

architecture-aware field embedder for fpgas

the process, a solution vector of the equation system may contain arbitrary
real coordinates. Generally, restricting the components of the solution vector
to distinct integer coordinates while occupying solely a predefined area would
make the problem in fact a QAP and, thus, not efficiently (exactly) solvable
with today’s hardware and solution methods (see Chapter 3). Due to this fact,
analytic placers generally operate in two phases: Firstly, an arbitrary arrange-
ment is calculated and then, secondly, the achieved arrangement is projected
onto the integer grid by, for example, equally distributing them with respect
to the calculated relative assignment. This second step is often called slot as-
signment or, sometimes, legalization. The setup of the mathematical system of
equations and also the slot assignment step can both be used to influence the
desired optimization goal (cp. Section 5.5.3).

The basis of most analytic placers is the attempt to minimize the quadratic
wirelength between connected blocks (with respect to the Euclidean distance).
Assuming that a connection-matrix V of the design is given (like in Sec-
tion 3.1.1), the quadratic distances d2ij between connected blocks bi and bj
can be added up as described by equation (50).∑

(bi,bj)

d2ij =
∑

(bi,bj)

vij ·
(
(x(bi) − x(bj))

2 + (y(bi) − y(bj))
2
)

(50)

In addition, the connections could be weighted to target further optimiza-
tion goals, e. g., by their criticality for timing-driven placement.

Section 5.1.2 provides a further comparison of different analytic approaches
to the one presented in this work. As the equation systems, in general, model
and minimize the wirelength between the logic blocks and are thereby realiz-
ing a force-directed approach with wires representing the springs, the method
presented in this work can be classified as an analytic placement procedure,
even though it does not solve an equation system by a linear equation solver.
The mathematical system in this work is the force model of the spring embed-
der (see Section 4.2).

For example, Xilinx’s Vivado Design Suite models equations to minimize a
given cost function. Multiple possible optimization targets can be incorporated
in its models such as the timing, wirelength and congestion metrics for both
timing-driven and routability-driven placements. Due to its generally rising
importance in the world of computing and also due to energy-critical appli-
cation environments, even the power-consumption can be taken into account.

Partitioning-based (Min-Cut) placement

Partitioning-based (or Min-Cut) placement approaches divide the chip recur-
sively into subregions (e. g., by horizontal and vertical bisection) and assign
subsets of nodes (or subnets of the overall design) to such regions. The classical

136

5.1 established chip placement techniques

optimization target is to minimize the cut between the partitions, thus, the
number of edges connecting the partitions with each other.

Partitioning-based approaches often use iterative improvement techniques
(see Section 3.2) to improve the current layout while starting with a random
assignment just like the classical simulated annealing placers. The Kernighan-
Lin-Algorithm (see Section 3.1.7) can be applied to iteratively check whether
pairwise swaps of blocks between partitions improve the layout or not un-
til no more improving swap is available (see, for example, Udar and Shar-
ma [182]).

The main idea is that densely connected parts (net-parts) of the circuit
are thereby ‘packed closely together’ into a common region of the chip in
order to minimize the overall wirelength. Performing this approach recur-
sively then creates improved assignments of nodes to partitions, from a coarse-
grained level to a fine-grained one.

Selvakkumaran et al. [165] presented a partitioning-based placement meth-
od for heterogeneous FPGAs and Maidee et al. [131] published an approach of
this class specifically targeting a routing-aware partitioning.

Remark 66. In addition, an extensive comparison of placement (and routing) tech-
niques for FPGAs can be found in the dissertation of Tessier [179] from 1999.

Remark 67. In 2000, Haldar et al. [87] compared different approaches for par-
allel FPGA placement which were also benchmarked within the VPR framework.
They were able to achieve some speedups paired with high quality results with a
partitioning-based method, while parallelizing a simulated annealing method was
not successful due to many synchronization barriers. Their negative influences on
the method’s runtime dominated the parallel speedup, leading to no improvement in
the runtime by parallel processing. They also presented two versions (synchronous
and asynchronous) of a parallel placement method based on Markov chains with a
near-linear speedup.

Comparison to general chip placement

There are obvious similarities between the placement for FPGAs and the
placement for classical (hardwired) computer chips like ASICs. Both disci-
plines call for short connections and in both disciplines, the available envi-
ronment (chip area) has to be considered. However, an important difference
is that FPGA placement is, in a sense, discrete and that the area of the logic
blocks is negligible due to the predefined available and identical slots on the
FPGA architecture. A placement for a hardwired chip instead has to take
further properties like the size of the logic elements into account for the
placement in order to avoid overlapping. Furthermore, the positions of the
chip-elements are generally not (or not utterly) restricted to predefined slots.

137

architecture-aware field embedder for fpgas

However, whitespace management between blocks on the general chip that
maintains routability between the blocks is a technique from general chip
placement (e. g., for ASICs) that is related to routability-driven placement
for FPGAs. Two well-known frameworks for such general chip placements are
NTUplace3 [35], an analytical placer, or Kraftwerk2 [172], also a force-directed
approach. There are various other approaches in the field of chip placement
that, for example, apply evolution-based methods like the one of Kureichik et
al. [118].

Chang et al. [33] compared the three main classes of placers for general
chips (e. g., ASICs). In terms of FPGAs, they came to the conclusion that simu-
lated annealing generates placements of good quality for small designs while
it is easily possible to consider multiple objectives simultaneously but with a
relatively high runtime for larger circuits. Instead, Min-Cut placement was
classified to be more efficient and scalable for larger circuits while it is more
difficult to handle multiple objectives simultaneously. Finally, analytical place-
ment was appraised to be efficient and scalable for large circuits with results of
high quality while being able to relatively easily handle multiple objectives.

5.1.2 Related placement methods

The following section discusses works that are closely related to the pre-
sented approach. It is pointed out where ideas from other published ap-
proaches are similar to the presented method and also how they differ from
one another.

General chip placement

Even though this work is about FPGA placement, basic ideas, like the applica-
tion of a force-directed model in order to minimize wirelengths, come from
the general field of chip placement, e. g., for ASICs (cp. Quinn and Breuer
from 1979 [152] and Section 4.3). Thus, such basic related works should at
first be named. GORDIAN [112] is a widely used framework for VLSI place-
ment from 1991 which combines an analytical approach based on quadratic
programming with a partitioning technique and a final slicing optimization
based on the work of Dunlop and Kernighan from 1985 [49]. The applica-
tion of a force model and basic features of the slicing technique are similar
to some ideas of the presented work. The main idea of their approach is to
model the wires between connected modules (blocks) as springs in a force model
so that such nodes attract each other. Minimizing the overall spring forces
in the system consequently results in minimizing the overall wirelength in
the system (cp. equation (50)). The authors of GORDIAN (Kleinhans et al.)
set up linearly constrained quadratic programming problems (LQPs) for multiple

138

5.1 established chip placement techniques

levels l in the form of equation (51) and for both the x and the y coordinates
separately.

min
x∈Rm

{
φ(x) =

1

2
xTCx+ dTx

∣∣∣∣ A(l)x = u(l)
}

(51)

This system contains a quadratic objective function φ(x) modeling the wire-
lengths (or spring-forces) in the system and a linear system of constraints to
consider not only the initial free (movable) or fixed nodes but also inserted
fixed ‘dummy’ nodes.

On a level l, the overall (root) region has already been partitioned by bi-
section l times. The algorithm starts on level l = 0 by optimizing the system
with respect to the entire chip region and all modules while assuming that
all the surrounding (I/O) pads on the chip have fixed coordinates. In that case,
the matrix C is positive definite if only every module is (directly or indirectly)
connected to such fixed pads. This again is a reasonable assumption for us-
able designs, because a part of the logic without any connection to the outer
regions of the chip would not be useful at all. If there was a node with no
connections to pads, it would have no fixed reference points in whose center it
should be placed (see Section 4.1.1). In the extreme case that all nodes should
be treated as movable nodes, such a system with only attractive forces would
collapse to a single point with an overall wirelength of zero. This is similar
to the situation in Tutte’s approach for 3-vertex-connected planar graphs from
Section 4.1.1.

However, fixing the arrangement of the outer pads can influence the place-
ment considerably (cp. Figure 30) and may, especially in the prototyping
phase of a design, often not be necessary. A free (unconstrained) assignment
of the pads, like it is applied in the presented approach in this work, can (if
desired) indeed lead to remarkably better overall results (see Betz et al. [21,
Section 5.4.3]).

As many analytical placement approaches ground on the same basic qua-
dratic programming construction that GORDIAN also applies, this construc-
tion should now briefly be explained together with some GORDIAN-specific
additions.

The force system of the springs or, analogously, the system of wirelengths from
equation (50) can be modeled in the general form of the function φ(x) in
equation (51). With a positive definite system matrix C (and therefore a con-
vex objective function φ(x)) and together with the linear equality constraints,
the minimization problem can be solved by minimizing the combined (trans-
formed) target function ψ(xi) in equation (52) which incorporates the linear
system and φ(x).

min
xi∈Rm−q

{
ψ(xi) =

1

2
xTi Z

TCZxi + c
Txi

}
(52)

139

architecture-aware field embedder for fpgas

In other words, the linear system is transformed and substituted into φ(x)
to form ψ(xi), which now additionally contains information about inserted
partition-central fixed nodes that attract all nodes of the respective partition
for a more even distribution.

Since C is positive definite and since the columns of the transformation
matrix Z form a basis of the new search space for the optimization (an (m−q)-
dimensional subspace of Rm), the new system matrix [ZTCZ] of ψ(xi) is like-
wise positive definite. Thus, the (unique) optimal solution for equation (52)
can be obtained by equating the gradient of ψ(xi) to zero and solving this
system (∇ψ(xi) = 0) in equation (53) efficiently (like it is implemented in GOR-
DIAN) with a conjugate-gradient-solver and sparse-matrix datastructures.

ZTCZx∗i = −c (53)

One main problem of such systems incorporating only attractive forces and
springs with zero-energy lengths of zero (see Section 4.1.2) is that obtained opti-
mal solutions use to waste a lot of space, a fact that has already been shown
for the related approach of Tutte in Section 4.1.1 (except for rather regular
inputs such as the 3-vertex-planar Crack graph in Section 4.1.1). Optimizing
the root system in GORDIAN with fixed surrounding pads generally leads
to intensive overlays in the densely packed center region of the chip while
there occur larger whitespace areas in the outer regions (see the publica-
tion of Kleinhans et al. [112], the same effect is discussed in the presented
method in Section 5.6.1). The resulting overlays are certainly not allowed
for the 2-dimensional placement problem of general chips but they play an
important role even for FPGA placements using this quadratic optimization tech-
nique with the mentioned force model. On the other hand, incorporating the
repulsive forces between all node pairs would at least diminish the sparsity of the
system (equivalently to inserting inversely acting springs between all nodes).
Consequently, the solver time would generally be increased remarkably.

Remark 68. In contrast to the approach of GORDIAN, the presented model in this
work does not use such numerical techniques and is able to optimize designs
where all nodes are free (if desired, not necessarily). To overcome the problem of
extreme overlapping (or space-wasting), an extended force model incorporating re-
pulsive forces is used (the one of FM3) and new chip distribution methods targeting
FPGAs have been developed.

To get a better (more regular) distribution on the entire chip, the optimiza-
tion process in GORDIAN is iteratively repeated through a recursive parti-
tioning of the root region, realized by successive bisection in horizontal and
vertical direction. All created subregions on level l get a respective subset of
the modules from level (l− 1) and each partition’s subsystem additionally
obtains a so called center of gravity which attracts all nodes of this partition.

140

5.1 established chip placement techniques

While other approaches optimize each partition separately fixing the nodes
of all other partitions, the GORDIAN approach behaves more globally with
these centers of gravity. However, for such other approaches, the order of
optimizing the partitions also influences the result. Illustrations of the entire
process and a discussion about different partitioning schemes can be found
in the main publication about GORDIAN [112, Chapter IV] as the partition-
ing itself also influences the final results considerably. By including repulsive
forces, this work aims at a direct global optimization without any such itera-
tive partitioning-based postprocessing steps.

Another technique that is used in GORDIANs approach is the Standard
Cell Final Placement [112, Section 5.1]. Modules on a general chip (e. g., an
ASIC) may have different heights and, more often, very different widths.
To achieve horizontal rows of modules that are approximately of the same
length, the elements in the set of modules M obtained from the layout af-
ter partitioning are first of all sorted by their vertical coordinate. Now, this
list is divided by (r− 1) horizontal cuts to generate r pairwise disjoint subsets
(rows) of modules Mr with

⋃
i∈{1,...,r}

Mi =M and with approximately equal

accumulated widths. Thus, the rows may contain different numbers of mod-
ules but, by the preceding sorting of the y-coordinates, it is ensured that the
vertical coordinates of modules in consecutive rows are always increasing(
y(m ∈Mi) < y(n ∈Mj) iff i < j

)
. The modules within each row can be or-

dered horizontally by their x-coordinates obtained from the placement after
quadratic optimization and partitioning. The CLB assignment introduced in
Section 5.5.3 basically applies a similar approach, though with different ob-
jectives as it is a method for FPGAs and not for general chips. The authors of
GORDIAN already stated in the mentioned publication that this procedure
tries to change the available global placement after partitioning as little as pos-
sible. A further publication by Sigl et al. [168] from 1991 showed that using a
linear objective function for the optimization in GORDIAN (or at least some
linear assumptions to better match the Manhattan distances on the routing
architecture) can improve the placement compared to the classical quadratic
objective function. The linear function was in fact applied in order to mea-
sure the distances between modules in the constructed rows. The general use
of different norms is one main feature of the presented method in this work
and is discussed in Section 5.6.2. While an integration of the not everywhere
differentiable Manhattan distance introduces several difficulties for the direct nu-
merical quadratic programming approaches, the usage of different norms in the
presented iterative approach is directly possible.

Another force-directed approach for general chips which includes repulsive
forces (due to the already mentioned drawbacks of a simple model without
them) was published by Vorwerk et al. [186]. Referring to the just mentioned

141

architecture-aware field embedder for fpgas

publication of Sigl et al., they also use a linear objective function. However,
they fix the I/O pads in their model for general chips and apply a numerical
solver to find an optimum for the system. Like in FM3 (and therefore as in
this work), the authors use a quadtree for approximations of the repulsive
forces and multipoles for high accuracy. In addition, the optimization of the
circuit is iteratively repeated while the forces in their model are dynamically
adapted to reduce overlapping in dense regions. Even though this method is
directly targeted towards tackling challenges in general (ASIC) designs (which
are not present in FPGA placement), the idea of dynamically adjusting prop-
erties of the model in repeated optimization runs is similar to the slack graph
morphing of this work (see Section 6.3).

Finally, the work of Chan et al. [30] applies a force-directed multilevel tech-
nique to create general chip placements using a relatively complex objective
function (see the patent of Naylor et al. [144]). This function considers the
semi-perimeter wirelength approximation (see Section 2.4) in a differentiable
way (to be suitable for their numerical solver) instead of a linear or quadratic
function what consequently led to better results compared to many other
placers from this field.

FPGA chip placement

Motivated by the results of general chip placement methods, analytical ap-
proaches also arose as FPGA placement routines. In Section 5.1, it has al-
ready been mentioned that Xilinx switched to an analytic approach because
simulated annealing tends to need too much time for the ever rising amount
of resources an today’s FPGAs. While overlapping plays an important role
in general two-dimensional placement for general chips (also called floorplan-
ning), it is important for the discrete FPGA architecture in the sense that one
available slot can only be occupied by one block of the design. Overlapping
in the FPGA placement therefore represents situations where multiple blocks
are potentially assigned to exactly the same position on the chip. While simu-
lated annealing avoids such situations by construction of the algorithm itself, a
solution of an analytical placer (as introduced in the previous section) does
not restrict different elements to different integer locations. Thus, analytical
placements obtained from solvers like the already mentioned one in GOR-
DIAN have to find appropriate slots on the FPGA. Generally speaking, such
approaches (just like the one presented in this work) look for a unique lo-
cation for each element which is possibly near the calculated position. This
assignment is often followed by a local iterative improvement, like the local
refinement in this work (see Section 5.6.3).

In the year 2013 and thus in parallel to the development in this work,
Lin et al. [127] published an analytical placer for FPGAs and compared

142

5.1 established chip placement techniques

their approach to several other analytical ones that were available. In con-
trast to all but one of their ‘competitors’ (namely FastPlace [185]), they used
a multilevel approach (like this work does) and applied the norm of Naylor
et al. [144], just like Chan et al. [30] did for general chips. They also incor-
porated information about the slack into their model (similar to this work) to
create an approach that is both timing-driven and wirelength-driven (like the
presented one can be). Additionally, they performed a low temperature simu-
lated annealing at the end of their procedure for detailed refinement (which
allows non-improving swaps, see Section 3.2.7). Instead, the presented ap-
proach in this work optionally performs a local refinement after the main
force-directed method, which only is a quasi-simulated-annealing with tempera-
ture zero (in fact a local search, see Section 3.2.4). Moreover, Lin et al. consider
only homogeneous FPGAs made of CLBs and fixed I/Os to meet the re-
quirements of their numerical solver instead of the (optionally) totally free
spring embedder-based approach of this work. The overall technique pro-
posed in their publication therefore has some similar rudiments but differs
in several main and fundamental points (many of such, which are new
ideas of this work, have not even yet been named, see Chapters 5 and 6).
Nevertheless, Lin et al. thereby also showed that (at least for homogeneous
FPGAs) such a force-directed approach can be very beneficial compared to other
state of the art techniques, and this is a good foundation for this work. Mak
and Li [133] considered homogeneous FPGAs with only CLBs and I/Os and,
in addition to their general force-directed placer approach, they address a
special (constrained) I/O placement problem in more detail. For the case
that different I/Os need different voltages and assuming that groups of I/O
pads form so called banks which are all served by the same voltage (like on
Altera’s Stratix devices), they set up and solve an integer linear program to as-
sign each I/O pin to its optimal legal position in terms of an adjustable cost
function. In their force-directed approach, they iterate over differently de-
tailed representation levels of the design and they include repulsive forces.
A simulated annealing method is applied on the coarsest representation (due
to its small number of elements) while force-directed methods are used on
the finer representations. Finally, the obtained coordinates are simply con-
verted into integer coordinates. If more than one logic block is assigned to
the same location, they place ‘the outstanding ones into nearby available CLBs’
without going into details how this is specifically implemented. In fact, es-
pecially for FPGA designs that use almost the entire available chip, such a
technique can have great disadvantages compared to the CLB distribution method
presented in this work (see Section 5.5.3) as a reassigned CLB can potentially
be placed very far away from its initially desired position. As a result, very
dense regions could be spread widely over the FPGA. In their cost func-
tions, they use the Manhattan norm (like the approach of this work can)

143

architecture-aware field embedder for fpgas

and in contrast to all the other mentioned approaches, this one uses a kind
of a spring embedder method (instead of numerical solvers) until an equi-
librium state is reached. It was shown in the publication that the approach
can create better placements than VPR’s placer (concerning both net and crit-
ical path delay) while being slightly faster. Even though the authors discuss
the problem of I/O placement, they treat both problems (CLB and I/O place-
ment) separately instead of the global approach presented in this work. In
the force-directed placement routine, the I/O pads are not specifically placed.
Instead, if a CLB needs to be connected to I/O resources, the distance to the
nearest chip-boundary is simply taken as the respective contributed distance.
In summary, their approach shows that such an analytical placement (for ho-
mogeneous FPGAs in their work) can achieve promising results. Malpuri and
Hauck [142] came to the same conclusion by implementing different placer
types and comparing them for homogeneous FPGAs. The force-directed ap-
proach they benchmarked achieved the best results of all in terms of critical
path length and performed slightly better than VPR’s simulated annealing
placer. They especially investigated how the placement of the methods im-
proves over time. Based on this, a runtime-quality trade-off could be defined
and steered by the user to achieve either a very fast placement or a more
time-consuming one of higher quality by stopping the iterative routines at
the desired time. Different trade-offs between time and quality can also be
chosen in the presented work by different strategies for single placements
(see Section 5.5.3) or with respective termination criteria for repeated runs
(see Section 6.6.1).

An early and more related approach (again for homogeneous FPGAs) was
published by Raman et al. [155] in 1996. They set up a force-model like Eades
with attractive forces between connected nodes and repulsive forces between
non-connected nodes (see Section 4.1.2) representing the complete design as
a whole (just like the global nature of the presented approach in this work).
However, the I/O pads are again regarded as fixed and a system of equa-
tions is solved by a numerical solver whereas the nodes are then iteratively
moved into the calculated direction until an equilibrium state is reached. The
Manhattan distance is used to estimate the distance between blocks, like it is
possible in this work. They additionally integrate a timing-driven approach
called adaptive netweighting which is similar to the slack graph morphing of
this work presented in Section 6.3. Their overall method works as follows.
A set of upper bounds for the net lengths is obtained from the zero-slack
algorithm to meet the timing requirements (see Nair et al. [143]). They are
incorporated into the force-model as weights to modify the strengths of the
forces. The force-directed approach calculates optimal positions for the logic
blocks and the nodes are iteratively moved into this direction until an equilib-
rium state is reached. The nodes from this continuous plane are then assigned

144

5.1 established chip placement techniques

to near slots on the FPGA in the order of the impact that this assignment
has on the overall net lengths. Due to this, the necessary moving of blocks
in the slot assignment should be reduced. Now, the incorporated timing anal-
ysis checks which connections are (in simple words) too slow and reduces the
weights accordingly. This is repeated until no more significant improvement
can be achieved. In contrast to this work of Raman et al., the approach pre-
sented here not only shortens critical paths, but also relaxes those that have
a high slack. This gives the simulation in this work ‘more space for nodes on
critical paths’ even though previous non-critical paths may become critical
in this process. However, a good resulting ‘timing-equilibrium’ was achieved
by a detailed iterative adjustment of the underlying model of weights (which
is comparable to the slack graph morphing in Section 6.3). Finally, a limited
and local pairwise exchange is carried out to legalize paths that still violate
any timing-constraints (see also Remark 9). This is comparable to the local
refinement in this work (see Section 5.6.3) but towards the specific goal of
legalization instead of general refinement. The adaptive netweighting payed
off as it remarkably improved the overall timing and consequently increased
the feasible speed in the circuit. They experimentally verified that optimizing
for better timing can increase the overall wirelength while the circuits speed
is still higher due to the additional optimization. Furthermore, they showed
that routability was not remarkably affected by the timing-driven adaptive
netweighting. These results motivate the heterogeneous approach from this
work with all its incorporated methods which are discussed later in this
Chapter (including timing optimization).

While writing this thesis, another related approach was published by
Upadhyay [184]. He presented a placement method directly based on the
combined analytical and partitioning-based GORDIAN approach using the
mentioned quadratic formulation of the problem (see Section 5.1.2). It treats
homogeneous FPGAs and was finally implemented in MATLAB to compare
its results to VPR’s placer (version 7.0). The elements in the continuous re-
sult of the equation system were assigned to slots by searching a free slot
starting from the calculated position in a spiral manner. The author already
mentioned that this heuristic can destroy the results of the analytical placer
for denser circuits significantly (like in the approach of Mak and Li). Finally,
a simulated annealing with cold temperature for the final local refinement
was applied (comparable to this work, while this work applies a pure local
search). Overall, the results without the local refinement were achieved in
38% shorter time on average than the simulated annealing based placer in
VPR, but the overall wirelength quality was rather poor. Together with the
local refinement, the achieved wirelength was comparable to the one accom-
plished by VPR at the cost of 11% higher runtime. Finally, it has to be noted
that the method needs an (optimized) I/O assignment as an input which

145

architecture-aware field embedder for fpgas

was received by additionally running VPR’s placer in advance. This adds
remarkable runtime (in addition to the reported one) and is not necessary
in the presented approach in this work due to its global optimization with
an extended force model. In any case, locations for the I/O pads have to be
fixed in Upadhyay’s model due to the application of the numerical method
with only attractive forces.

Apart from such similarities between this work and others’ analytical plac-
ers for homogeneous FPGAs, Hu [97] proposed an approach especially tar-
geting a designated class of heterogeneous FPGA architectures. Like in the
presented approach of this work (see Section 5.5.1), the set of different types
of blocks in the overall design is partitioned into the available basic types
of blocks (computational blocks, memory blocks, LUTs and pads) while the pads
are fixed (again) to create a system with attractive forces only (like Tutte, Sec-
tion 4.1.1). Hu assumes a special type of heterogeneous architectures which
consist of an array of equal basic processing units (BPUs) which each contain
different types of elements (compute units, memory blocks and lookup tables).
Such an FPGA therefore has a fine-grained heterogeneity. Each compute block
(CBs) (basically a part of the design performing a task) is represented by a
geometric shape that models what kind of neighboring resources are needed
for its included heterogeneous functionality (see the publication of Hu for
some demonstrative examples). For example, LUTs are considered much
smaller than compute units as the former ones are available in much larger
numbers on the chip. However, these shapes of the CBs (and therefore the
local arrangement of elements) are predefined and constant throughout the
process (what is not at all the case in this work). Now, a force-directed opti-
mum of the nodes is iteratively calculated for each density layer solving a
non-constrained quadratic optimization problem by a VLSI placer (see Hu et
al. [98], similar to GORDIAN in Section 5.1.2). The method stops as soon as
the density on the two dimensional density-fields (for each block type) is bal-
anced. For this, several iterations are necessary as the positions achieved for
the different types obviously affect each other. In general, high-density (over-
lapping) regions are resolved by adding respective attractive forces (fixed-
points) to the system to pull the nodes away from such high density regions
(also comparable to GORDIAN). Such effects are directly avoided in the pre-
sented global approach in this work by repulsive forces in the system and
an appropriate slot assignment instead of such a rather local approach. Hu’s
method quasi creates a floorplanning for each type of resources (like for ASICs).
Even though the idea of the method is not too related to the presented ap-
proach in this work, the partitioning of the overall design into the different
block types and individual assignment routines for these are also necessary
in this work whereas the optimization in this method is always performed
globally as a whole. The approach of Hu is also timing-driven as it modifies

146

5.2 heterogeneous force-directed placement

force-strengths in the system throughout the iterative process relatively to
the connections’ criticalities by timing analyses (similar to the timing-driven
slack graph morphing presented in Section 6.3). Hu performs the timing anal-
yses within the necessary iterative process of the force-directed method to
adjust the forces. Even though an iterative process is not necessary in the pre-
sented global approach of this work, repeated independent runs can deliver
and include such information in the mentioned slack graph morphing.

In summary, the works of Raman et al. [155] and the one of Upad-
hyay [184], both for homogeneous FPGAs with fixed I/O pads, can be
regarded as the two mostly related works in this field (in the author’s
opinion).

5.2 heterogeneous force-directed placement

One main idea behind this work is to bring progress that was made in the
field of graph drawing within the last decades, in particular in the field of
force-directed graph drawing, back to the contemporary field of FPGA place-
ment (see Chapter 4.3) together with a new assignment methodology and
additional studies. The presented method in this work is pursuing several
goals.

First of all, a force-directed placement routine for heterogeneous FPGAs
should be developed to meet the requirements of today’s FPGA architec-
tures, principally basing on an iterative spring embedder simulation (see
Section 4.1.4) with a force system including attractive and repulsive forces
(in this case FM3, see Section 4.2). It is desired to build a method incorporat-
ing multilevel coarsening and multipole approximations of repulsive forces
for a fast simulation with high accuracy.

A characteristic of almost every available analytical placement method is
that the surrounding I/O pads have to be fixed to create a uniquely solvable
equation system finding the optimal coordinates of all inner nodes. The tech-
nique presented in this work should be usable without any fixing of nodes
to optimize the system more globally, as the initial fixing of nodes can either
negatively affect the quality of the resulting placement or, if it is calculated
in advance, be very time consuming. Anyway, I/O positions and inner log-
ics’ position influence each other considerably so that all nodes should be
declared free if the situation allows it (e. g., in a prototyping phase).

Both facts, the influence of the actual assignment of fixed nodes to prede-
fined positions and the unbalanced distribution in the absence of repulsive
forces (see Section 4.1.1 for examples from the related approach of Tutte)
emphasized the application of a global and entirely free spring embedder
approach. The direct usage of graph drawings that could be provided by any

147

architecture-aware field embedder for fpgas

graph drawing software within the workflow (due to universal interfaces)
should generate an intuitive entry point and flexible access as a basis for fu-
ture developments in this field supported by other researchers, e. g., from the
field of general graph drawing. In particular, the abstraction of the chip de-
sign into a basic graph will be used to create placement strategies with dif-
ferent targets, e. g., wirelength-driven, timing-driven or routability-driven
placements or even their weighted combinations. In addition, various op-
eration modes with different trade-offs between time and quality should
be available (depending on the development state of a design) and the principal
distribution of elements on the chip should also be adjustable (for different
demands).

Finally, the system should have a modular design to make it possible to
use parts of it in combination with other methods. As many previous an-
alytical placers need fixed I/O pads, a rapid global optimization from this
workflow could, for example, also be used to obtain a good initial I/O distri-
bution for such analytical methods.

It has been discussed in Section 5.1.1 that the design flows of today’s (and
especially upcoming) architectures with an extremely increased number of
logic elements have a great need for faster techniques than the traditional
simulated annealing, which is why Xilinx already switched to analytical
placement in 2012. The method presented in this work could be incorporated
in any FPGA CAD software in the future. However, to compare against the
simulated annealing method in the academic FPGA world, it will first be
incorporated into VPR in this work.

5.3 setup of the basic datastructures

The place-and-route tool VPR is embedded into the comprehensive Verilog-To-
Routing (VTR) CAD flow [130] and basically needs two input files to run the
FPGA compile chain (see Section 2.4).

First, it needs the design that should be implemented into the hardware in
form of a netlist. A high-level Verilog description of the design is transformed
into a text file using the Berkeley Logic Interchange Format (BLIF) in the elabo-
ration step performed by ODIN [101]. This file is subsequently taken by the
synthesis step (ABC [176]) for hardware-independent optimizations and the
like.

Second, it needs a description of the targeted hardware architecture. VPR ex-
pects a principal description of the architecture in an Extensible Markup Lan-
guage (XML) file. For all VTR (VPR) benchmarks, the heterogeneous flagship
architecture of VTR, the ‘Comprehensive Architecture’ file, is used. This het-
erogeneous architecture consists of CLBs (with fracturable LUTs that can be

148

5.3 setup of the basic datastructures

used either as one 6-LUT or two 5-LUTs, see Section 2.2.1), fracturable mul-
tipliers, configurable memories and I/O pads. Every eighth column of the Com-
prehensive Architecture is a column of multiplier blocks and, with an offset,
every eighth column consists of memory blocks. Both special block types span
several rows as they are larger than the ordinary LUTs. As the multipliers are
fracturable, a 36× 36 multiplier can also be used as two independent 18× 18
multipliers or these again as two 9× 9 multipliers. The memory blocks are
fracturable by their word size. The I/O blocks are surrounding the architec-
ture while each I/O block holds 8 I/O pins which can either be used as output
or as inputs (cp. Section 2.2.1).

Remark 69. A modern architecture can also contain so called carry-chains to
transport results from one LUT to a neighboring one directly. These can, e. g., be used
to implement adders in hardware efficiently using columns of LUTs. However, it
does not affect the abstracted architecture and is, thus, not explicitly considered
in the presented method. The architectures used for the benchmarks later in this work
do not model carry-chains.

All architecture assumptions in VTR are made based on real architectures
from Xilinx and Altera, see the publication of VTR 7.0 [130] for more details.
However, the presented method is not restricted to such an architecture in
any sense. Further special block types and also different CLB or I/O types can
be easily added to the model in the future (see Section 5.5.5 and Section 5.8).

VPR first reads the design description and packs (or groups) it into basic
blocks available on the architecture (I/Os, CLBs, MEMs, MULs - see Sec-
tion 2.4). After this, it is known how many resources of each type are neces-
sary for the design. An architecture with the aforementioned properties that
contains all such basic blocks in an adequate number can automatically be cre-
ated instead of manually passing a size for the FPGA. This automatic mode
is used in all benchmark runs of this work (apart from the outlook in Sec-
tion 7.3). In real implementations (in contrast to such simulations), a suitable
subarea of the overall FPGA is often chosen.

The size of the automatically derived squared N×N architecture is deter-
mined by simple bisection starting with N0 =

√
#blocks. If there are enough

resources of all types, the sizeN0 is halved toN1 = N0
2 (otherwise it is doubled)

and the routine subsequently checks whether enough resources of all heteroge-
neous types are available on an architecture of this size. If not, N2 = N0+N1

2
is checked and so forth. As soon as the suitable size is found so that enough
resources of each type are available, the position of all blocks on the archi-
tecture is exported to an appropriate data structure named FPGAArch (see
Section 5.3.1).

VTR comes with a set of heterogeneous benchmark circuits which will be
used throughout this work to show the working principles, the characteristics,

149

architecture-aware field embedder for fpgas

the quality and the performance of the developed methods. The necessary num-
ber of each block type (after packing with ABC in VTR 7.0) for all benchmarks
in this heterogeneous set is shown in Table 12 on page 222. These benchmarks
(included in VTR 7.0) are mostly identical to those of earlier VTR releases so
that results can be compared to former implementations and publications.
Table 12 also contains information about the representing graph that is set up
by the presented method for the force-directed placement as its input (see
Section 5.5.1). Section 6.5 will additionally provide results for another set of
benchmarks for logic-synthesis, the well-known classical (though rather out-
dated) and formerly commonly used MCNC benchmarks [188]. The presented
methods of this work were originally developed and integrated within VPR
version 6.0. With the release of version 7.0, several structures changed in VPR
and, more globally, it was even programmed in C++ instead of C before. With
this version change, several methods were refined whereas the performance
of VPR 7.0 is generally significantly better than the one of VPR 6.0. In partic-
ular, the packing was greatly accelerated while producing solutions of higher
quality. However, the placer routine has also been accelerated by about 24%
(e. g., by the incremental bounding box update, see Luu et al. [130] for details
and comparisons). The presented method was adjusted accordingly and in-
tegrated into the VPR 7.0 code. The final version of the presented placer can
consequently be used in both version with the same code base.

For comparability to earlier works, both VPR versions are supported by the
implementation while only the faster and most recent version VPR 7.0 (with its
faster simulated annealing approach) is finally benchmarked and compared.

5.3.1 Model the architecture

Before the placement routine starts, an appropriate architecture size was ei-
ther defined by the user manually or found by the bisection-based routine
introduced in the previous section. Anyway, the automatic bisection-based
method guarantees that the packed design can be implemented in the defined
hardware architecture. If the user defines the size manually, this is checked
and the program does not proceed if the size is not sufficient.

An architecture that was created by VPR with automatic sizing is shown
in Figure 46 with an initial random assignment of the 44 CLBs (in white),
258 I/Os (in orange), 5 MULs (36× 36 in gray) and no MEMs (in blue) from
the diffeq1 VTR design. The unoccupied slots of all types on the architecture
are shown in a lighter shade of the respective (type’s) color. There are 96 CLB
slots, 384 I/O slots (at 48 8-way locations), 6 MUL slots and 4 MEM slots on
the depicted architecture.

150

5.3 setup of the basic datastructures

Figure 46: The heterogeneous architecture in VPR (code: diffeq1)

The overall architecture (and therefore also the placement) can be repre-
sented on a two dimensional grid (FPGAArch[x][y]) containing logic blocks
and routing resources (RR). Each element on this grid contains a type infor-
mation (CLB, I/O, MEM, MUL or RR). The I/O blocks additionally need to
contain the number of available I/O pads in this I/O block (e. g., eight in Fig-
ure 46 for each I/O block). The routing wires, for example, supplementary
store their channel widths (see Section 2.3). In general, each block on the ar-
chitecture is represented by a two-dimensional reference point in its center. All
(e. g., eight) I/O pads in an I/O block are represented by the center (x,y) coor-
dinates of their block together with an additional z-coordinate (e. g., ranging
from 0 to 7) to distinguish the different pads in a block.

In addition to the general availability of the CLBs’ coordinates in the
FPGAArch array, the number of CLBs in each row of the FPGA is stored in
a separate array for fast creations of appropriate distributions later (see Sec-
tion 5.5.3). For the depicted architecture in Figure 46, this CLB-on-architecture
distribution contains 8 CLBs in each of the 12 CLB rows.

All heterogeneous blocks (MEMs and MULs) are solely represented by a
central reference point.

151

architecture-aware field embedder for fpgas

5.3.2 VPR norms

bounding box cost (bb) The predominant norm in VPR is the bounding
box cost norm, which takes the semi-perimeter bounding box sizes of all nets and
the available average channel width in a region of the FPGA into account (see
equation (5)). The implementation in VPR also includes an estimation about
wire-crossings within the boxes and rates the consequent wire elongation in
the routing based on the previously named bounding boxes’ parameters (the
RISA model, see Cheng [125]). Based on this estimation of wire-crossings
(which essentially uses statistics about Steiner Trees), the bounding box cost is
scaled by a factor q(i) depending on the number of terminals in a net.

The simulated annealing approach in VPR uses this norm in its cost func-
tion. Thus, the optimization in VPR considers both the overall wirelength (by
the semi-perimeter bounding box sizes) and the routability (by the channel widths
and the estimation of crossings) simultaneously.

critical path delay (cpd) VPR includes a method to estimate the
critical path delay after the actual routing and also before it. If this norm is
used after the placement and, therefore, before the routing, the wire-delay has (of
course) to be roughly estimated as the concrete routing tracks are not known.
This norm estimates the maximum delay of a clock-cycle in the design and
consequently the maximum possible speed to run it validly (1

CPD · 103MHz).
See Section 2.2.4 for a detailed explanation how the calculation of this norm
is performed.

maximal channel occupancy (mco) The router in VPR tries to route
all connections of a net with the available routing tracks on the architec-
ture by applying an iterated maze router similar to the PathFinder negotiated
congestion-delay algorithm [138]. As already described in Section 2.4, the nets
are ripped up and rerouted in each routing iteration with adjusted parameters
(timing-driven in the applied default configuration) if the previous routing
was not successful under the restrictions of the routing architecture (conse-
quently prioritizing critical connections in the next routing iteration). This
process is repeated until a successful routing is created which satisfies all
guidelines (including some additional cost functions) or until a predefined
number of routing iterations has been performed (which is 50 in the default
setup, see RouterOpts.max_router_iterations in Appendix A.6). After the rout-
ing process, the numbers of routing tracks that are used on each wire seg-
ment (their occupancies) are reported. The Maximal Channel Occupancy (MCO)
is consequently the largest number of channels used on one wire segment by
the final routing. If the routing satisfies the requirements of the architecture,
the occupancy is smaller than the channel width for each wire segment. Oth-

152

5.4 additional introduced norms

erwise, it exceeds the guidelines and would not be realizable on the given
architecture.

Remark 70. As this work is not particularly about the routing, this ‘simplified’
view of it should be sufficient. More details about the routing process can be found
in Betz et al. [21].

However, the maximal channel occupancy can be taken as a norm to rate the
congestion in a specific routing and the routability of a placement. Together
with the finally realized critical path delay after routing, the overall quality of
a design’s layout can be rated.

Remark 71. During and after the simulated annealing iterations in VPR, several
additional norms like the overall delay sum of all point-to-point connections are
reported. However, for the investigations in this chapter, only the named norms will
be used.

5.4 additional introduced norms

Along with the presented FieldPlacer method, additional norms were in-
troduced to rate the quality of a placement towards different objectives. All
these norms operate on a model considering the global routing on the archi-
tecture (see Section 2.4). The precise setup of the graph model is described
in Section 5.5.1. Generally, there is an initial graph representation GD with ar-
bitrary coordinates to perform the basic force-directed layout Glayout

D and an
embedded representation Garch

D on the architecture after slot assignment with
constrained integer coordinates.

5.4.1 Point-to-point WireLength

The bounding box cost norm in VPR includes the approximation of the over-
all wirelength by the semi-perimeter bounding box size of nets. As the actual
routing of connections is not known in the placement phase, this approxima-
tion is reasonable and, as the upcoming chapter will show, very well suited
and rather accurate. However, the force-directed layout approach that will
be used in this work tends to minimize the point-to-point wirelength sum
in the targeted force-equilibrium of the introduced graph model of the de-
sign by attractive forces (see Section 5.5.1) while keeping distances between
nodes by repulsive forces. Thus, a further norm was implemented that iter-
ates over the edges of the graph representation of the design (Glayout

D) and
sums up all distances between connected nodes. Due to the characteristics of

153

architecture-aware field embedder for fpgas

the routing architecture, the distance is measured as the Manhattan distance.
Consequently, the wirelength in the graph can be derived by equation (54).

WireLength
G

layout
D

=
∑

(u,v)∈ED

|x(v) − x(u)|+ |y(v) − y(u)| (54)

After the embedding of the graph on the integer grid of the chip, each
node v ∈ G

layout
D receives the coordinate of its assigned slot on the architecture

in Garch
D . Thus, the point-to-point wirelength on the chip can be calculated

analogously on the corresponding graph Garch
D with Garch

D = (Varch
D ,ED). No-

tice that the connection information (ED) in the graphs does not change by
the layout or the embedding.

VPR uses the semi-perimeter bounding box approximation not only be-
cause the actual routing is not known, but also because the bounding box
updates can be performed much faster than recalculating all connections’
lengths of a node after a position change. This is extremely important for
VPR’s placer, as the simulated annealing method needs to recalculate the
distances frequently in every iteration. The point-to-point wirelength is not
applied within the optimization process of the graph, but after it in order to
get a final evaluation of the achieved quality so that the time consumption is
‘negligible’.

5.4.2 An approximation of congestion

As mentioned previously in Chapter 2, not only the estimation of the wire-
length in the resulting layout plays a role for a placement. Other criteria may
even be much more relevant, though not easily assessable. For example, it
would often be more desirable to minimize the critical path length instead of
the overall wirelength. However, in a simulated annealing process, the esti-
mation of the critical path length in every iteration would be way too time
consuming (see Section 2.2.4). Thus, such complex estimations are generally
performed once after the placement.

Besides wirelength, VPR’s placer also includes a statistical evaluation of
wire crossings (see Section 5.3.2) to take routability into account in the an-
nealing process. In general, rating routability is a difficult task but as the
routability affects the later routing time and quality, an approximation of it is
desirable to compare different placements. The following section describes
a model to rate the routability of a placement based on several idealized
assumptions while taking the actual routing architecture on the chip into
account.

154

5.4 additional introduced norms

The FieldPlacer congestion-driven maze router

As VPR iteratively applies a maze router to route the nets, this behavior is im-
itated by the ‘FieldPlacer congestion norm’. In fact, the routing of each point-
to-point connection between logic blocks is simulated by searching a shortest
route via wave propagation and backwards tracking. As it has been described ear-
lier in this work, there are, in general, multiple shortest routes (concerning
the Manhattan distance). The idea is to make one routing attempt under the
assumption of an infinite number of routing tracks in each routing channel.
In addition, the routing cell with the smallest current congestion is (greedily)
chosen among the possible cells on shortest routes. After that, the overuse of
all routing wires is measured by summing up the congestion on all routing
tracks. This process will be illustrated in the following.

Figure 47a shows a part of an FPGA architecture with I/Os and CLBs. In
this example, a connection from the marked CLB (Source) to the marked I/O
(Target) has to be found. Therefore, a wave is expanded from the source point,
marking the Manhattan distance of every routing cell back to the source. As
the overall architecture not only consists of routing cells but also contains
the logic units, the expanded wave has holes. However, due to the regular
grid of logic and routing resources in the model, a shortest track back to
the source is available for every connection. The wave is expanded until the
target point is reached with a final Manhattan distance n. This part of the
process is called wave expansion.

After this, the route is determined by starting at the target point and follow-
ing the wave back to the source by choosing routing resources with declining
Manhattan distances from n to 1. This part of the process is called backwards
tracking. Figure 47b shows three different routes with minimal Manhattan
distance. Due to the ‘holes’ in the wave that occur from the logic cells, the
process always proceeds from one switch box to the next traversing one wire
segment.

All depicted routes in Figure 47b obviously have the same (minimal) wire-
length by this construction. Now, the occupancy of the cells caused by al-
ready routed connections is taken into account. If two wire segments (rout-
ing cells), both on optimal tracks, are available as the next cell, the ‘FieldPlacer
congestion-driven maze router’ greedily takes the next wire segment with the
smallest current occupancy to continue the routing. This decision is locally
optimal but not necessarily globally. Figure 48 visualizes the process for two
example situations. Starting with the current wire usage (in form of the oc-
cupancy array), the wave is expanded from the source and tracked back from
the target. Reaching the first switch box, the track could continue upwards or
rightwards. In both examples, the upwards wire segment has a smaller current
usage (or occupancy) and is therefore chosen. After choosing the next routing

155

architecture-aware field embedder for fpgas

1

1

1 1

2

2

2

2

3

3

3

3

3

3

3 3

4

4

4 4

5

5

5

5

5

5

5 5

5

5

5 5 5

66

6

6

6

777

7

7

7

7

7

8

8

9

9 CLB1,1

CLB1,2

CLB1,3

CLB1,4

CLB2,1

CLB2,2

CLB2,3

CLB2,4

CLB3,1

CLB3,2

CLB3,3

CLB3,4

CLB4,1

CLB4,2

CLB4,3

CLB4,4

I/O1,0 I/O2,0 I/O3,0 I/O4,0

I/O0,1

I/O0,2

I/O0,3

I/O0,4

S

T

(a) Expanded wave on architecture

1

1

1 1

2

2

2

2

3

3

3

3

3

3

3 3

4

4

4 4

5

5

5

5

5

5

5 5

5

5

5 5 5

66

6

6

6

777

7

7

7

7

7

8

8

9

9 CLB1,1

CLB1,2

CLB1,3

CLB1,4

CLB2,1

CLB2,2

CLB2,3

CLB2,4

CLB3,1

CLB3,2

CLB3,3

CLB3,4

CLB4,1

CLB4,2

CLB4,3

CLB4,4

I/O1,0 I/O2,0 I/O3,0 I/O4,0

I/O0,1

I/O0,2

I/O0,3

I/O0,4

S

T

(b) Backwards tracking of possible routes

Figure 47: Wave expansion on the architecture

cell, the occupancy array is updated. Finally, the wire usage on the cells that
are chosen for the actual route are increased by one each. This procedure is
consecutively performed for every connection between blocks in the design.

Occupancy array (section)

4 13 S

6 13 9 24 13

7 15

13 13 23 23 21

T
Starting situation

Wave array

3 1 S

5 4 3 2 1

5 3

7 6 5 4 3

T
Make local decisions

Occupancy array (section)

4 14 S

6 14 10 25 13

8 15

14 14 23 23 21

T
Final situation

Occupancy array (section)

T

0 1 7

1

3 5 4

S 13
Starting situation

Wave array

T

3 4 5

3

1 2 3

S 1
Make local decisions

Occupancy array (section)

T

0 2 8

2

4 6 4

S 13
Final situation

Figure 48: Congestion-driven maze router (two examples)

After every connection has been routed in a globally optimal way concerning
wirelength and locally optimal concerning the congestion of routing tracks, the

156

5.4 additional introduced norms

overall overuse of routing resources in this simplified model is obtained by
summing up all cells’ overuse ratings (see equation (55)).

OverUse =
∑

wire segments w

max(0, occupancy(w) − capacity(w)) (55)

Thus, the overuse norm considers only those wire segments that would not
be routable in the described manner on the defined architecture. It rates in
which quantity routing cells would be overused. In the actual routing phase,
such congestions would have to be resolved by routing uncritical paths on a
detour. This enlarges the final overall wirelength and also increases the routing
time. Consequently, a placement with small overuse is generally desired. The
entire process is summarized in Algorithm 8.

Remark 72. The capacity of switch boxes is not easily estimable because not every
change of direction at ‘intersecting’ wire segments is possible (see Section 2.3, espe-
cially Figure 10). A detailed routing would be necessary for accurate investigations
(see Section 2.4). Thus, the switch boxes’ capacities are not considered in this model.

Algorithm 8 Congestion-driven maze router
procedure CongMaze(Arch FPGAArch, NodeList* BlockPlacement, EdgeList* BlockConnections)

combine point-to-point connections from BlockConnections
with their coordinates from BlockPlacement

for all such point-to-point connections (S,T) do
place S and T from BlockPlacement on the FPGAArch

start at S . wave expansion
repeat

expand wave by one unit on the routing segments’ cells
until T is reached after n expansions

start at T . backwards tracking
for all n,n− 1, . . . ,1 do

find next wire segment with smallest current occupancy
update occupancy array

end for
end for

OverUse =
∑

wire segments w
max(0, occupancy(w)− capacity(w))

return OverUse . return the norm
end procedure

Like in the ‘real’ routing, the order of the connections plays a role for this
process, but as the norm is only used to get an impression of the stress on
the routing architecture, this fact is not considered in the norm calculation.
Figure 49 shows the wiring and the occupancy from such a simulated routing
run with the ‘FieldPlacer congestion-driven maze router’. The resulting overuse
is illustrated and discussed in Figure 71 in Section 5.5.6.

157

architecture-aware field embedder for fpgas

Figure 49: Congestion Router result, cp. Figure 71d (code: or1200)

Instead of simply accumulating the overuse of wire segments, a superlin-
ear assumption could be made to, for example, penalize heavily overused re-
sources more than only slightly overused ones, as the rerouting may take
overproportionally longer in such cases (see Figure 50).

0 capx,y
0

capx,y

sublinear

superlinear

wire usage u(x, y)

O
ve

rU
se

co
st

cO
U
(x

,y
)

linear

Figure 50: OverUse in a cell

158

5.5 the fieldplacer method

Finding a suitable function for the overuse cost would in any case be diffi-
cult and would have to be done on basis of experiments, as there are many
influencing and unknown factors. In this work, a linear behavior of the overuse
cost is assumed. Thus, the function is piecewise linear (0 up to the point of
overuse and directly proportional with slope 1 afterwards). As a result, the
more a segment is overused, the higher is the penalty, while non-overused
segments are neglected.

Remark 73. In this context, VPR similarly rates the channel width in its cost
function linearly as it led to the best results in practice (see Section 2.4).

5.5 the fieldplacer method

Remark 74. In this work, VPR is always used in its default configuration (see
Appendix A.6). Only the seed for the initial random assignment of all blocks onto
the architecture is varied (via command line parameter) for repeated runs of one
method. However, the set of 10 different seeds for 10 repeated runs is reused for the
different methods to generate the same set of 10 inputs for each. Unless otherwise
mentioned, each measurement is repeated 10 times with the already mentioned 10
different seeds for each version and each input code. Finally, the minimum and the
maximum of the 10 runs (concerning the different norms) are ignored while the other
values are averaged. The used hardware is described in Section 1.4.

The FieldPlacer method creates a heuristically energy-minimized graph
layout as a basic ‘arrangement-draft’ of the design and embeds this unre-
stricted graph with arbitrary (e. g., floating-point) coordinates on a given het-
erogeneous FPGA architecture (and therefore on a constrained integer grid).
The algorithm to create the initial graph-layout is arbitrarily exchangeable
although a force-directed graph layout is, for this approach, advisable to match
the presented embedding-process. The basic FieldPlacermethod mainly bases
on nested sort-techniques and barycenter- and angle-calculations paired with user-
definable distributions. It is composed of several consecutive steps and can be
extended for upcoming FPGA architectures with other block types and also
with further methods. The development of the FieldPlacer itself has been
an iterative process adding more and more refinements and functionalities
step by step. The method sets up a graph that represents the design that has
to be be placed, creates a free (unconstrained) force-directed layout and places
it by assigning each element to a suitable (fitting and adequate) integer posi-
tion on the restricted grid of the FPGA chip following different (selectable)
strategies. This basic FieldPlacer method has then been extended by further
optimization steps like, for example, a local refinement (see Section 5.6.3), the
application of different distance norms in the layout phase (see Section 5.6.2),

159

architecture-aware field embedder for fpgas

a second energy phase (see Section 5.6.1) or even the repeated application of
(parts of) the method in a statistical framework (see Chapter 6).

Remark 75. In this work, the algorithmic ideas of the FieldPlacer and their effect
are described and compared. However, details about the implementation are not part
of this work. The implementation contains several additional experimental features
that are not even described. Any interested reader is very welcome to contact me!

5.5.1 1st Step: Setup of the graph representation

The representation of the design, stored in the FPGAGraphRep structure, is
the fundamental basis of the procedure and the input for the force-directed
graph layout. For its setup, each packed (CLB, I/O, MEM, MUL) block of the
FPGA design becomes a node in the FPGAGraphRep and all point-to-point con-
nections of the nets of the design are traversed and incorporated as edges
in the FPGAGraphRep. In this process, only connections that do not belong to
global nets are considered because global nets do not have to be routed on the
normal routing architecture and do generally not influence the placement,
routing and timing of a layout (see Section 2.2.2).

The initial position of the nodes is only needed if there are fixed nodes in
the design that should not be moved. For now, this is not the case. Thus, the
graph representation contains no information about the position of nodes but
solely their connectivity (or adjacency) and their heterogeneous block type. It is
consequently a pure abstract graph with no definite geometry (no embedding).

Depending on the subsequently applied graph layouting approach, it can
be desirable to remove parallel edges in the graph that result from multiple
connections between pairs of logic blocks. This is optionally possible in the
FieldPlacer method. For the presented ideas of this work, this option is
actually always activated as it becomes particularly important in the slack graph
morphing procedure in Section 6.3 to steer the connections’ lengths in the
layout.

In summary, the FPGAGraphRep structure represents the netlist of the in-
put design as a graph GD = (VD,ED) with all heterogeneous blocks (VD)
and their interconnectivity (ED). This graph may have multiple components
processing different independent tasks. However, the inputs that were taken
from the heterogeneous benchmark set in VTR 7.0 (see Table 12) mostly con-
tain one single or at least one predominant component (in terms of number of
blocks/nodes).

160

5.5 the fieldplacer method

Algorithm 9 Create the FPGA representation graph
procedure CreateFPGARep(NodeList* BlockPlacement , EdgeList* BlockConnections)

for all nodes in BlockPlacement do . create the nodes
create a node in the FPGAGraphRep (GD)
store the block type with the node in the FPGAGraphRep

end for

extract point-to-point connections from BlockConnections that are NOT on GLOBAL nets

for all such point-to-point connections (S,T) do . create the edges
if Option.no_parallel_edges then

if the nodes S and T are not yet connected in the FPGAGraphRep then
insert the edge (S,T) into the FPGAGraphRep

end if
else

insert the edge (S,T) into the FPGAGraphRep
end if

end for
return FPGAGraphRep (GD) and .gml representation . return and export FPGAGraphRep

end procedure

5.5.2 2nd Step: A force-directed graph layout

/ . . . Energy
LayoutThe FPGAGraphRep from Section 5.5.1 is internally stored in a structure and

additionally exported to a common Graph Modelling Language (GML) [95] file
(see Algorithm 9). In that way, the graph layout can be performed by any
graph layouting software that is able to read and write such files. Additional
interfaces can be implemented. In the FieldPlacer method, this GML file is
passed to a slightly modified and enhanced version of the FM3 algorithm
implemented in OGDF (see Section 4.2), FieldFM3 and FieldOGDF in the
following. The extensions are methodologically described in in the following
Sections and some technical insights are given in Section 5.9.1.

Remark 76. The GML-interface may require some small additional (and negligi-
ble) time to write the graph to harddisk, but it makes the layouting approach easily
exchangeable, even by commercial products with closed sources.

In VPR’s simulated annealing approach, all blocks are randomly assigned
to suitable slots on the architecture to create a legal initial solution. The graph
layouting in FieldFM3 gets the general graph description (without embedding)
and starts with a random initial assignment on the coarsest representation of
the multilevel framework.

Remark 77. All nodes are randomly assigned in the beginning as long as there
are no user-defined fixed nodes. As there were no inputs with such fixed blocks
in the benchmark set, this is always assumed in this work. However, an extension
with initially fixed nodes is directly possible due to the extensions implemented in
FieldFM3.

161

architecture-aware field embedder for fpgas

(a) code: diffeq1 (b) code: or1200

Figure 51: Force-directed graph layout

Figures 51 shows the resulting layout obtained from FieldFM3 for two ex-
ample codes. Even tough these layouts were produced without any restrictions
concerning the resulting coordinates of the nodes, the results show some dis-
tinct peculiarities of achieved force-directed layouts in general. First of all,
each node is approximately placed in the barycenter of its neighbors as the
energy-minimized solution tends to minimize the sum of distances between
connected nodes (see Section 4.1.1).

In addition, I/O nodes (depicted in orange) tend to the border of the layout.
This is based on the fact that most I/O pads are only connected to one single
inner logic block (CLB, MEM or MUL). Thus, such I/O nodes are (the) leaves
of the graph and there is no force that pulls the node ‘inwards’ the graph lay-
out except for these single connections. This perfectly matches the structure
of FPGAs (e. g., the considered island-style FPGAs) or chip architectures in
general as the I/O connections are naturally surrounding the other elements.

Remark 78. There may also be I/O nodes that are connected to multiple inner nodes.
These are then, again, placed near the barycenter of their neighbors.

Every block of another type (than I/O) generally has in- and outputs to pro-
cess data and is therefore carried to the inner regions of the graph layout. As
a result, while the I/O nodes are pulled outwards the layout due to the re-
pulsive forces, the neighboring inner nodes reside near them. The inner nodes

162

5.5 the fieldplacer method

are ordinarily much stronger connected to several other nodes (e. g., a CLB,
depicted in white, contains multiple LUTs and these have multiple in- and
outputs). In fact, the MEM (in blue) and MUL (in gray) elements often have
exceptionally many in- and outputs and are therefore strongly connected
(and placed near the barycenter of their neighbors).

As extensively discussed in Chapter 4, the layout of the GD follows some
physically motivated properties. Like in many published approaches from
the field of analytical placement techniques, connected elements attract each other
by the attractive forces in the force model. However, the FieldPlacer method
additionally considers repulsive forces. As a consequence, the I/O nodes can
be freely distributed to find good positions for them (like for all other nodes)
without a collapse of the system. Another very positive effect is that the nodes
are quite evenly distributed and not too much space is wasted in the layout.
Due to the implication of the repulsive forces for each node in VD, nodes
tend to repel each other and this reduces the problem of overlapping (see
Section 5.1). On the other hand, each edge in ED generates a contracting
force between connected blocks, conceivable as a spring. By these attractive
forces, connected nodes still tend to be placed closely together.

Summarizing, this phase generates a low energy arrangement of the sys-
tem (the design), it concentrates ‘clusters’ that are strongly connected together
(so that the many wires between nodes in the cluster are kept short) and it
preserves larger distances between groups of nodes with smaller numbers of
connections. The method thereby keeps the overall edge length sum small
and generates a consistently distributed node arrangement of the design
whereas the repulsive forces ensure that the stress (resp. the overlapping) in
all regions of the layout remains moderate.

The main idea is now to take this force-directed layout as a ‘preliminary
sketch’ of the later embedding. For the depicted graph layouts, the FieldFM3

implementation (which uses the FM3 algorithm [81]) was used as it is ex-
tremely fast while being accurate at the same time (see Section 4.2). Never-
theless, the method is absolutely exchangeable. No matter which particular
force-directed layout approach and implementation is used, the mentioned
positive core effects are in the nature of these methods and should therefore
generally be present for each individual implementation.

Extensions

The later placement can easily be controlled, adjusted and extended by mod-
ifying the properties of the graph model GD as it is, e. g., done in the slack
graph morphing (see Section 6.3) by adjusting the zero-energy lengths of the
edges to iteratively reduce the overall slack in the design and consequently
the critical path delay (‘length’).

163

architecture-aware field embedder for fpgas

Minimizing the critical path delay is reasonable when the primary opti-
mization goal is performance. If developers are, for instance, aiming at a
better thermal distribution, the graph model and the layouting algorithm
could be modified in that direction before applying the force-directed layout,
e. g., towards further reduction of stress by a more ‘aggressive’ function for
the repulsive forces. Even completely different layout-techniques could be
used in such a case.

Another possibility to adjust the generated placement is to choose different
norms for the distance within the layouting phase. For the depicted graphs
in this section, the Euclidean norm has been used to calculate the strength of
attractive and repulsive forces. Section 5.6.2 discusses how other norms can
be applied to influence the layout in a positive manner.

Remark 79. Note that the horizontal coordinates in all following calculations
(and also in all visualizations) rise from west to east and the vertical ones rise
from north to south (NOT from south to north).

Remark 80. To represent the order of the nodes in the linked node-lists, the graphs
in the next paragraphs depict succeeding list elements connected with an arrow.
These arrows do not represent physical connections in the design.

5.5.3 3rd Step: CLB placement

CLBs. . . .
Definition 25. Revisiting the notation from the previous Sections, let GD be the
graph of the basic description of a design’s blocks’ connectivity (adjacency), Glayout

D
the output graph of the force-directed layout with arbitrary coordinates and Garch

D
the embedded graph on the architecture after slot assignment with constrained
integer coordinates.

The nodes of the force-directed layout in G
layout
D from step 2 in the previous

Section can have arbitrary (floating-point and arbitrarily sized) coordinates. The
next steps embed this graph layout onto the restricted integer grid of the
FPGA architecture.

As CLBs are the basic logic blocks of ordinary FPGAs (the ‘general purpose
FPGA workers’, see Section 2.2) and therefore are, in general, the predominant
(non-I/O) block type in a design, these are embedded first of all. For that, the
GML output from the graph layouting method is taken as the input of the
following steps.

To be able to create an embedding of the CLBs from the graph layout, the
CLB nodes and their coordinates are extracted from G

layout
D (which contains

all block types) while the connections can be neglected in this step (see Fig-
ure 52). The extracted set of CLB nodes is denoted by V layout

CLB and they should

164

5.5 the fieldplacer method

Figure 52: Inner CLBs after force-directed layout (code: diffeq1)

now be placed on the integer grid, generally preserving their two-dimensional
arrangement to each other in the obtained layout.

Remark 81. In the following, the nodes of a node pair v and ṽ are always represent-
ing the same node of the FPGA design while v ∈ G

layout
D has the arbitrary coordinates

of the layout and ṽ ∈ Garch
D is its counterpart embedded on the architecture.

Vertical sort

At first, a node v ∈ V layout
CLB that is below another node u ∈ V layout

CLB in G
layout
D

may not be placed over v in the final embedding on the architecture in Garch
D . If

ṽ, ũ ∈ Varch
CLB are the embedded nodes with integer coordinates, then y(v) <

y(u)⇒ y(ṽ) 6 y(ũ) should hold true. Therefore, the set of CLB nodes V layout
CLB

is arranged in a linked list (the CLBNodeList) which is first sorted ascendingly
according to all nodes’ vertical coordinates. The resulting list for the depicted
example is shown in Figure 53a.

At this stage, successive nodes in the CLBNodeList have ascending verti-
cal coordinates. In the next step, this list is partitioned into disjoint subsets
of nodes Ri whereas all nodes of one subset Ri (depicted by the coloring
in Figure 53b) will be placed in the same row ri of CLBs on the FPGA
architecture (with

⋃
i

Ri = V
layout
CLB). For the partitioning, different desired

CLBDistributions can be chosen.

165

architecture-aware field embedder for fpgas

- center distribution - The CENTER distribution places the CLBs
densely in the center of the FPGA. For this purpose, the smallest central
square field of size NSQUARE ×NSQUARE on the architecture containing a
sufficient number of CLB slots (> #CLBs) is chosen and the CLBNodeList is
partitioned into NSQUARE respective sets of nodes.

Remark 82. In case of an homogeneous architecture, this field is of size
⌈√

#CLBs
⌉
×

⌈√
#CLBs

⌉
. However, due to special blocks on the architecture, this size may vary

(see Figure 56a as an example). In this example, the centered square is of size 19× 19
as there are only 14 CLB columns in the region to finally gather the 257 CLBs of the
design.

- no, equal & distance distribution - All other distributions place
the CLBs consistently across the rows of the FPGA. Thus, the number of

elements per row is calculated as
⌈

#CLBs
#CLBRowsOnArch

⌉
. The last used row

may consequently get a smaller number of CLBs and some final rows on the
architecture may remain empty due to rounding. Under this assumption, the
partitioning of all CLBs into the group that will be placed in the first row
of the FPGA (R1), the second row (R2), etc. is defined (see Figure 53c) and,
therefore, the assignment of vertical coordinates in Garch

D can be conducted.

(a) Vertically sorted
CLBNodeList

(b) Partitioned CLBNodeList (c) Resulting partitioned set of
CLBs

Figure 53: Vertical sorting and slicing of the CLBNodeList (code: diffeq1)

Remark 83. For the CENTER distribution, empty sets Rk appear for
k = 1, . . . ,

⌊
#LOGICRowsOnArch−NSQUARE

2

⌋

and for
k =

⌊
#LOGICRowsOnArch−NSQUARE

2

⌋
+NSQUARE +1, . . . , #LOGICRowsOnArch .

The next step additionally generates the horizontal coordinates of the nodes
in Garch

D within each row following the different distribution strategies.

166

5.5 the fieldplacer method

Horizontal sort

For the horizontal assignment of the nodes, each packed row Ri (slice) is
independently considered and the subset of the linked list is sorted by its
nodes’ horizontal coordinates from G

layout
D (see Figure 54b). After this step,

x(v) < x(u) ⇒ x(ṽ) < x(ũ) will hold true for every pair of nodes u, v from the
same row. In addition to their pure horizontal order, penalties (free slots) may
be placed between nodes following the distribution strategies.

- center distribution - To center each row, the first CLB is placed
with an offset of ColumnOffset logic blocks to leave a free margin on the left
and on the right (like it was left at the top and the bottom).

ColumnOffset =

⌊
#LOGICColumnsOnArch−NSQUARE

2

⌋

The nodes of each row are placed from left to right onto the next free CLB
slot and columns with heterogeneous ‘special’ block types (see Section 2.3)
are skipped if they appear.

- no distribution - The NO distribution uses all rows of the FPGA
(see the previous paragraph). The CLBs are simply placed from the left to
the right onto the next free CLB slot with no free CLB slots between them.

Remark 84. This NO distribution is the baseline for the EQUAL and DISTANCE
distribution which instead add free CLB slots within the rows.

- equal distribution - The EQUAL distribution aims at spreading the
CLBs of each row evenly within this row. For this purpose, a penalty counter p
is increased by #CLBsToBePlacedInThisRow

#CLBColumnsOnArch after placing a CLB. Whenever
this counter p becomes equal to or greater than 1, bpc CLB slots are skipped
and p is updated to p − bpc. This guarantees that all CLBs can be placed
within the row and that the available penalties are approximately evenly
distributed across the row.

- distance distribution - This is the core distribution of the FieldPlacer.
Instead of distributing the penalties equally, free CLB slots between blocks
of a row are assigned according to the respective open spaces in the force-
directed layout G

layout
D . Larger spaces between two nodes u, v in the layout

are supposed to result in multiple free slots between the embedded nodes
ũ, ṽ and vice versa. To realize this, the minimal and maximal horizontal coor-
dinate is extracted from G

layout
D to derive the overall width of the set V layout

CLB
as shown in equation (56).

width
V

layout
CLB

= max
∀v∈V layout

CLB

{x(v)}− min
∀v∈V layout

CLB

{x(v)}. (56)

167

architecture-aware field embedder for fpgas

For each row Ri, the number of
#FreeCLBsInThisRow = #CLBColumnsOnArch−#CLBsToBePlacedInThisRow

should now be distributed according to horizontal distances in G
layout
D . There-

fore, each unit of distance between two successive nodes in a row is basi-
cally penalized with #FreeCLBsToBePlacedInThisRow

width
V

layout
CLB

free slots. The same

is done for the initial free space in the row to the left border of the chip
architecture. For two successive nodes in the CLBNodeList vj and vj+1, the
penalty counter p is consequently increased by pj, see equation (57).

pj = (x(vj+1) − x(vj)) ·
#FreeCLBsInThisRow

width
V

layout
CLB

. (57)

Like for the EQUAL distribution, bpc CLB slots are left free between vj and
vj+1 and p is updated to p− bpc. By this strategy, the distribution of nodes in

G
layout
D is ‘imitated’ on the architecture and therefore in Garch

D . Figure 54c shows
the outcome of an embedding with the DISTANCE distribution. Figure 54 ex-
plicitly shows how the horizontal distances in Figure 54b are (approximately)
imitated in the embedding in Figure 54c (by the DISTANCE distribution).

(a) Partitioned CLBNodeList (b) Horizontally sorted rows in
CLBNodeList

⇒
(c) Final embedded

CLBNodeList

Figure 54: Horizontal sorting in the CLBNodeList (code: diffeq1)

Remark 85. Currently, the DISTANCE distribution assigns the same number of
nodes to each row Ri (except for the last row) and the layout-aware distribution
on the architecture is solely realized by respective penalties between nodes within
the rows. In the future, a more appropriate imitation of Glayout

D on the architecture
could be achieved by a respective vertical distribution of nodes. For example, a
histogram of the vertical distribution of nodes in G

layout
D could be calculated to par-

tition the nodes more adaptively. Furthermore, other more sophisticated techniques
are undoubtedly conceivable to consider vertical penalties.

168

5.5 the fieldplacer method

Remark 86. The accumulation of penalties ensures that each basic penalty (frac-
tion) pj is legally inserted nearby the node vj. Without the accumulation, smaller
distances (pj < 1) would simply be globally neglected. The next paragraph describes
the motivations behind the different distribution strategies.

Motivations of the distribution strategies

The principal arrangement of the nodes is the same for all presented distribution
types as their relative position to each other is defined by their occurrence
in G

layout
D and by the two-dimensional sorting. The inserted penalties follow

different purposes.
The CENTER distribution places the CLBs densely in the center of the

architecture. As the blocks are generally connected with multiple elements,
nodes representing CLBs (just like for MEMs or MULs) have much higher
node degrees than the I/O nodes on average. The CENTER distribution
should therefore be well suited to keep the many inner connections small
while enlarging only the fewer connections’ lengths between I/O and inner
logic blocks. Thus, the overall wirelength in the embedding should be rel-
atively small. However, the overuse and the maximal channel occupancy can
instead be expected to be relatively high as the connections have no good
chance for low-stress detours. Thus, the routing time for a placement with
the CENTER distribution is extended by the ripup and reroute phases (see
Section 5.3.2). On the other hand, the expanded waves are relatively small so
that creating the individual routes between two points should be possible in
relatively short times.

The EQUAL distribution should work in the contrary way. Due to the free
spaces between the CLBs, the routing should be more ‘relaxed’ because of
many opportunities for detours. However, the distances between nodes are
relatively large so that the overall wirelength should consequently become
large and the routing of the individual connections requires more time. The
EQUAL distribution is intended to produce an even dispersion of the nodes
among the architecture, like it was desired by the partitioning technique in
GORDIAN (see Section 5.1.2).

Finally, the DISTANCE distribution is the main objective of the FieldPlacer
method. It imitates the free (or unconstrained) situation in the force-directed
layout with repulsive forces and should therefore find a good balance (equi-
librium) between the two extreme options mentioned before. For example, re-
gions with many nodes are expanded by the repulsive forces and weakly
connected nodes can be carried further away from others due to small acting
attractive forces.

169

architecture-aware field embedder for fpgas

Remark 87. One of the main ideas of this work is that the equilibrium state
of such a force-directed layout with repulsive forces results in a profitable
trade-off between wirelength and overuse.

The NO distribution is primarily shown for comparison purposes. It has
exactly the same order of nodes in each row than both the EQUAL and the
DISTANCE distribution. Results for this distribution strategy can therefore be
considered to investigate the impact of the introduced penalties on different
measures of quality.

Figure 55 shows the embedding of the CLBs (Glayout
CLB in Figure 55a and

Garch
CLB in Figure 55b) onto the architecture with the CENTER distribution.

The connections of two strongly connected nodes are highlighted in blue
and orange. The two nodes themselves are connected by the gray edge. The
figures show how the relative position of nodes to each other is preserved by
the CLB embedding technique presented in this Section. Algorithm 10 shows
a summarizing pseudo-code of the method. Examples for the embedding
with the different distribution types are depicted in Figure 56.

(a) Force-directed layout result (b) Embedded on the grid

Figure 55: Embedding of the graph on the grid (code: diffeq1)

Remark 88. The entire process was described with a constant number of CLBs per
row. However, it is possible to have different numbers of CLBs in each row. Therefore,
two arrays are used to store the information of how many CLBs are available and
used per row, respectively.

170

5.5 the fieldplacer method

Algorithm 10 CLB placement

procedure createCLBplacement(Arch FPGAArch , Graph G
layout
D , Enum Option.dist_type)

linked list CLBNodeList← extract V layout
CLB from G

layout
D

sort CLBNodeList ascendingly concerning vertical coordinates

partition the list into rows Ri

for all rows Ri do
sort the nodes of Ri in CLBNodeList ascendingly concerning horizontal coordinates

if Option.dist_type==EQUAL or DISTANCE then
calculate penalties between nodes . see the ‘Horizontal sort’ subsection
assign the sorted CLBs to repective CLB slots on FPGAArch skipping the free slots

else
assign the sorted CLBs to successive CLB slots on FPGAArch

end if
end for
return the CLB slot assignment in the CLBNodeList

end procedure

(a) CENTER distribution (b) NO distribution

(c) EQUAL distribution (d) DISTANCE distribution

Figure 56: Embedding with different distribution strategies (code: or1200)

171

architecture-aware field embedder for fpgas

5.5.4 4th Step: I/O placement

I/Os
Basic I/O partitioning

To be able to create the embedding of the I/O pins from the graph layout, the
I/O nodes and their coordinates V layout

I/O
are extracted from G

layout
D and stored

in a linked list, the IONodeList. In addition, for each node in the list, the
angle ω to the barycenter of the graph (BC) is stored as a further parameter.
This angle is rotated to start (and end) with −π (and π) in the north-west.

The I/O nodes are basically grouped into four faces by sorting them accord-
ing to their ω-parameter. This results in a clockwise enumeration of the nodes
in the IONodeList (beginning in the north-west). For the basic partitioning
into the four I/O faces of the FPGA architecture, each node is assigned to
either the North (−π < ω(v) 6 −π2), the East (−π2 < ω(v) 6 0), the South
(0 < ω(v) 6 π

2) or the West face (π2 < ω(v) 6 π), solely based on its position

in G
layout
D . This process is formally described in Algorithm 11.

Capacity legalization

Even though the FPGA contains enough I/O pins to satisfy the code’s de-
mands (ensured by the setup of the architecture, see Section 5.3), some faces
may be overfull while others still have free capacities due to the simple par-
titioning concerning their angle to the BC described in the previous section.
In that case, nodes should be redistributed into neighboring faces so that, in
the end, no face is overfull.

Remark 89. For the partitioning of the (sorted) list, only the indices that contain
the last node of each face have been stored as the split points of faces in the list (see
Algorithm 11).

For the legalization of the capacities in the I/O faces, the following tech-
nique is applied.

First, traverse the sorted list’s split_points clockwise (North.end, East.end,
South.end). If the capacity of the prospected face is exceeded (this.nb_nodes
> this.capacity), the exceeding amount of nodes is transferred from the
end of this face to the beginning of the next face (clockwise) by adjusting
the split_point this.end (last node’s index of this face) for the sorted
IONodeList. After this, the West face may still be overfull as it could, e. g.,
have ‘received’ exceeding nodes from the South face.

Therefore, the linked list’s split_points are then traversed anticlockwise
(South.end, East.end, North.end) and the number of nodes that exceed the
capacity of the prospected face are passed to the anticlockwise neighbor by
adjusting prev.end.

172

5.5 the fieldplacer method

Algorithm 11 Extract basic I/O partitioning

procedure createBasicIOpartitioning(Graph G
layout
D)

linked list IONodeList← extract V layout
I/O

from G
layout
D

x(BC) = 1∣∣∣∣V
layout
I/O

∣∣∣∣

∑
v∈V layout

I/O

x(v) . calculate the graph’s barycenter

y(BC) = 1∣∣∣∣V
layout
I/O

∣∣∣∣

∑
v∈V layout

I/O

y(v)

for all nodes v in V layout
I/O

do

∆x = x(BC)−x(v) . get the distance vector from v to BC
∆y = y(BC)−y(v)

. rotate the node temporarily to start enumerating in the north-west
α = − 3π4
∆x̂ = ∆x ∗ cos(α)+∆y ∗ sin(α)
∆ŷ = −∆x ∗ sin(α)+∆y ∗ cos(α)

. calculate the α-rotated angle to the rotation point
ω(v) = atan2(∆ŷ,∆x̂)

with atan2(∆ŷ,∆x̂) =

arctan
(
∆ŷ
∆x̂

)
∆x̂ > 0

arctan
(
∆ŷ
∆x̂

)
+π ∆x̂ < 0,∆ŷ> 0

arctan
(
∆ŷ
∆x̂

)
−π ∆x̂ < 0,∆ŷ< 0

+π
2

∆x̂= 0,∆ŷ> 0

−π
2

∆x̂= 0,∆ŷ< 0

undefined ∆x̂= 0,∆ŷ= 0

end for

sort IONodeList ascendingly concerning ω

. partition the list by finding the list’s (the faces’) split_points (indices)
North.end← index of first element with ω> −π2
East.end ← index of first element with ω> 0
South.end← index of first element with ω> π

2
return the IONodeList and the split_points

end procedure

An example for the number of nodes in each face in the iterative traversals
is given in the following table. The last column shows how many nodes
were transferred (in brackets) and between which faces. The initial situation
is depicted in Figure 57.

N E S W

177 206 195 200 N→ E (0)

177 200 201 200 E→ S (6)

177 200 200 201 S→W (1)

177 200 201 200 W→ S (1)

177 201 200 200 S→ E (1)

178 200 200 200 E→N (2)

173

architecture-aware field embedder for fpgas

177 (200)

206
(200)

195 (200)

20
0

(2
00

)

Figure 57: I/O legalization (code: or1200)

After both traversals, it is guaranteed (by construction of the method and
the architecture) that all faces’ capacities are respected. Finally, the set of I/O
nodes in each face is assigned clockwise to the faces slots on the architec-
ture (I/O nodes from the sorted IONodeList are successively assigned to the
North, East, South and West face), whereas each integer I/O block on the
architecture generally comprises multiple I/O pins (eight for the depicted
architecture, see Section 5.3.1). The nodes have z-coordinates to distinguish
between each blocks’ pins. Thus, groups of eight successive nodes in the
sorted IONodeList always have the same horizontal and vertical coordinate. In
each face, the set of nodes is additionally centered so that free I/O pins in a
face are equally distributed to the outer ends of the face.

Remark 90. This technique locally transfers as many nodes as necessary but as
few as possible to neighboring faces (see Algorithm 12). The time complexity of the
legalization method only depends on the number of faces and is thus constant for
given architectures (independent from the design).

Figure 58a shows the IONodeList and the partitioning after calling create

BasicIOpartitioning while Figure 58b depicts the final legal partitioning af-
ter calling the legalizeIOpartitioning technique (with final I/O slot assign-

174

5.5 the fieldplacer method

ment). The different faces are illustrated by different colors and the white
node in the north-west is the start of the α-rotated IONodeList.

Algorithm 12 I/O legalization
procedure legalizeIOpartitioning(Arch FPGAArch, NodeList* IONodeList, IndexList* split_points)

extract capacity constraints of the I/O faces from FPGAArch

for this=North, East, South do . traverse clockwise
if this==North then prev.end = 0
end if
this.nb_nodes = this.end - prev.end
if this.nb_nodes > this.capacity then

this.end -= (this.nb_nodes - this.capacity)
end if

end for

for West, South, East do . traverse anticlockwise
if this.nb_nodes > this.capacity then

prev.end += (this.nb_nodes - this.capacity)
end if

end for

. I/O slot assignment
Place the I/O nodes of each face centered to the face by traversing
the angle-sorted IONodeList splitting at the updated split_points

return the legalized I/O slot assignment with updated split_points and the IONodeList
end procedure

177 (200)

2
0

6
(
2

0
0)

195 (200)

2
0
0

(2
0

0
)

177 (200)
2

0
6

(
2
0

0)

195 (200)

2
0
0

(2
0
0

)

177 (200)

2
0

6
(
2

0
0)

195 (200)

2
0
0

(2
0
0

)

177 (200)

2
0
6

(
2
0
0)

195 (200)

2
0
0

(2
0
0

)

(a) before legalization

178 (200)

2
0

0
(
2

0
0)

200 (200)

2
0
0

(2
0

0
)

178 (200)

2
0
0

(
2
0

0)

200 (200)

2
0
0

(2
0
0

)

178 (200)

2
0

0
(
2

0
0)

200 (200)

2
0
0

(2
0
0

)

178 (200)

2
0
0

(
2
0
0)

200 (200)

2
0
0

(2
0
0

)

(b) after legalization

Figure 58: I/O legalization (code: or1200)

175

architecture-aware field embedder for fpgas

Remark 91. The close-ups in Figure 58 show how the six exceeding nodes from the
East face in the list were finally transferred to the North face (one node) and the
South face (five nodes).

In the slot assignment obtained from the legalizeIOpartitioning method
(which uses the force-directed graph layout G

layout
D as its base just like the

createCLBplacement method), I/O pins that are connected to ‘upper’ regions
of the CLB placement from the previous step (see Section 5.5.3) tend to be
assigned to the northern I/O face, I/O pins that connect to the ‘lower’ part of
the CLB placement are in the southern I/O face, etc. Thus, the methods lead to
short connections from the outer I/O pins to the inner CLBs of the FPGA.

A resulting placement graph Garch
CLB+I/O

with CLB and I/O nodes is shown
in Figure 59. Notice that multiple I/O nodes are on identical positions over
each other.

Figure 59: I/O and CLB placement (code: diffeq1)

I/O refinement with the barycenter heuristic

The relative positioning of CLB and I/O nodes to each other has essentially
been optimized by the force-directed graph layout in G

layout
D . Even though

the introduced embedding of both the CLBs and the I/Os is principally pre-
serving the relations of positions in the graph layout, the detailed positioning
is inevitably disturbed by the embedding on the restricted integer grid. To
take the actual embedding of the CLBs from the preceding step into account,
an additional optimization step is performed after the I/O legalization.

176

5.5 the fieldplacer method

The idea is to take the legalized I/O partitioning and rearrange the I/O
pins in each face with a fast heuristic to minimize wirelengths and wire-
crossings. Minimizing crossings can be very beneficial as the short connec-
tions between outer CLBs and I/O faces usually do not have too many detour
possibilities in heavily used regions of the routing architecture.

The problem of minimizing the wire-crossings between I/O nodes and
CLB nodes is basically a ‘(one-sided) bilayer straightline crossing minimization
problem’. The CLB nodes of all CLB-to-I/O-connections define the fixed layer of
the problem and the I/O nodes are on the free layer. The fact that the CLB
nodes are not necessarily on one horizontal line can be neglected. Unfortu-
nately, the problem is known to be NP-hard (see Eades and Whitesides [52]).
However, good heuristics have been developed. In this work, the barycenter-
heuristic is applied.

To each node on the free layer, the barycenter heuristic assigns the arith-
metic mean of the horizontal coordinates of connected fixed nodes (CLBs) and
subsequently sorts the free nodes (I/Os) according to this average value.

Remark 92. This procedure can analogously be performed for vertical parallel
layers.

In their work from 1996, Jünger and Mutzel [106] investigated the quality
of different heuristics for this problem comparing the results to optimal so-
lutions obtained from a branch-and-cut solver. They came to the conclusion
that the simple barycenter heuristic leads to surprisingly good results and that
smaller instances can even be solved to optimality with their branch-and-cut
solver.

Remark 93. In this work (and at this point in time), an exact solution is not
considered at all as subsequent refinement-steps may disturb the placement and due
to simplicity for the implementation and for short runtimes of the method.

Figure 60 shows how the barycenter heuristic improves the I/O arrange-
ment on the North face of the FPGA for one example code. Even though
the assignment has already been quite good before, it is obvious that the
application of the barycenter heuristic improves both wirelengths and wire-
crossings. Connections from identical I/O blocks are ‘bundled’ by this pro-
cedure. Applying this heuristic to all four faces of the architecture (see Algo-
rithm 13) leads to a CLB-aware reordering of the I/O nodes in each face. For the
chosen example, the overall result is depicted in Figure 61. The improvement
of wirelengths by the reordering can be measured by accumulating the pure
horizontal (North and South face: |xI/O(v) − xCLB(u)|) or the pure vertical
(East and West face: |yI/O(v)−yCLB(u)|) distance between connected nodes
v (I/O) and u (CLB). For example, this displacement would be zero if a totally
crossing-free arrangement is found where each I/O node connects to a CLB

177

architecture-aware field embedder for fpgas

(a) before resort (b) after resort

Figure 60: Connections from North I/Os to CLBs (code: or1200)

in the same column or row. The accumulated displacement in Figure 61a is
6963 while the application of the barycenter heuristic reduced the displace-
ment of this (already quite decent) arrangement to only 3232. Considering
the fact that there are 779 I/O nodes in the design (and therefore in G

layout
D ,

cp. Table 12 on page 222), the average displacement per node was reduced
from ∼ 9 to ∼ 4 through the application of the barycenter heuristic. Figure 62
shows the improvement of the displacement in the CLB-to-I/O-connections for
all codes in the heterogeneous benchmark set of VTR (average of 10 repeated runs
neglecting the minimum and maximum).

(a) before resort (b) after resort

Figure 61: Connections from I/Os to CLBs (code: or1200)

Summarizing, the barycenter heuristic can improve the placement of the
I/O nodes after fixing the CLBs significantly, especially for codes with rel-
atively high numbers of I/O blocks. Due to the centering in the I/O face,
codes with only very few I/O connections can naturally not be improved
too much. However, in such designs it is also not that important. After this
fourth step, both the CLB blocks and the I/O pins are set to their final posi-

178

5.5 the fieldplacer method

ste
re

ov
isi

on3

m
cm

l
sh

a

blob
m

erg
e

diff
eq

2

LU3
2
PEEng

LU8
PEEng

ch
in

tri
nsic

s

diff
eq

1

ste
re

ov
isi

on1

bgm

ste
re

ov
isi

on2

ste
re

ov
isi

on0

m
kSM

Adap
ter

4
B

boundto
p

m
kPktM

erg
e

ray
gen

to
p

or1
2
0
0

m
kDela

yW
ork

er
3
2
B

0

20

40

60
Im

pr
ov

em
en

t
of

I/
O

di
sp

la
ce

m
en

t
(%

)
FieldPlacer (DISTANCE)

Figure 62: Improvement of I/O displacement by the barycenter heuristic (codes sorted
ascendingly by number of I/O nodes)

tion in the basic FieldPlacer method (see Figure 63). Subsequently, final op-
timizing exchanges may (possibly) only take place in the second energy phase
(Section 5.6.1) or the local refinement (see Section 5.6.3).

Figure 63: Final CLB and I/O placement (code: diffeq1)

Multiple components in the design

As already mentioned in Section 5.5.1, the designs and therefore the represent-
ing graph GD may have more than one component (unconnected subgraphs).
However, in the observed benchmark examples there is always a predom-
inant graph component (in terms of number of nodes, cp. Appendix A.9).

179

architecture-aware field embedder for fpgas

Algorithm 13 I/O refinement by barycenter heuristic

procedure improveIOarrangement(Graph G
layout
D , NodeList CLBNodeList, NodeList IONodeList)

extract NodeConnections E between I/Os and CLBs from G
layout
D

for face=North,South do
for all nodes v in this face do

extract coordinates of CLBs and I/Os from the CLBNodeList and the IONodeList
xI/O(v) = 1

δ(v)

∑
(u,v)∈E

xCLB(u) . see Definition 13

end for
sort the face’s part of the IONodeList ascendingly concerning x(v)
assign updated coordinates to the nodes with respect to their sorted order

end for
for face=East,West do

for all nodes v in this face do
extract coordinates of CLBs and I/Os from the CLBNodeList and the IONodeList
yI/O(v) = 1

δ(v)

∑
(u,v)∈E

yCLB(u) . see Definition 13

end for
sort the face’s part of the IONodeList ascendingly concerning yI/O(v)
assign updated coordinates to the nodes with respect to their sorted order

end for
return the refined coordinates in the IONodeList

end procedure

The FM3 algorithm has a powerful postprocessing step to combine the indi-
vidual layouts of all components of a graph to a compact common drawing
(see Hachul [81]). The entire placement of such designs in the FieldPlacer
method is directly realized based on this common drawing. Figure 64a shows
a second (small) component of the or1200 design after the force-directed
graph layout in G

layout
D including I/O and CLB nodes (cp. the entire graph

in Figure 51b on page 162). After the embedding, the component has been
compactly placed onto the FPGA architecture (see Figure 64b) with short
connections. Due to the separate layouting of the components with subse-
quent consolidation, each component gets a virtually separate part of the chip
architecture with short resulting connections on the routing architecture.

Remark 94. The basic FieldPlacer method assumes a free (unconstrained) assign-
ment of all nodes on the architecture. However, if there are (user-)fixed blocks in the
design, they can also be taken into account as the enhanced FieldOGDF implemen-
tation can handle such fixed nodes. This is exploited in the second energy phase
in Section 5.6.1 and further explained in Section 5.9.1. Thus, inputs with a priori
fixed nodes can be considered in the FieldPlacer method in the future. All requisite
preconditions for these procedures are already implemented, even maintaining the
important multilevel functionality. In the case of a priori fixed I/O nodes, an initial
free force-directed layout could be performed to extract a good scaling of the nodes’
positions for the forces in the subsequent simulation.

The I/O assignment technique of the FieldPlacer can also be used for other nu-
merical force-directed approaches basing on equation systems which require a priori
fixed I/O nodes (like those presented in Section 5.1). In such cases, the FieldPlacer

180

5.5 the fieldplacer method

(a) Graph Layout with two components (b) Placement of the two components

Figure 64: Multiple graph components (code: boundtop)

could be used to create a good I/O assignment for other placers rapidly. The im-
provement achieved by the use of the barycenter heuristic alone shows that a free
positioning of the I/O nodes can actually be quite beneficial (cp. also Betz et al. [21,
Section 5.4.3]).

Nevertheless, fixed I/O blocks also appear in certain situations in ‘productive de-
sign flows’ and random pin assignment is a well known issue for FPGA designs (see
Betz et al. [21, Section 3.2.1]). The application of the proposed rapid FieldPlacer
I/O assignment could be considered in the future in such cases (even without all the
other embedding techniques of the FieldPlacer).

In addition, different I/O block types - like mentioned in the publication of Mak
and Li [133] - could be considered by performing a separate clockwise enumeration
for each I/O type and subsequently splitting the IONodeLists with respect to the
architecture’s equipping.

Finally, a splitting of the clockwise enumerated IONodeList into less than four
faces can easily be performed, e. g., in the case that only a small fraction of a large
FPGA is used for a design which is placed in one corner of the chip. In such cases, it
can be desirable to connect only to the two nearby I/O faces. Due to the fact that the
architecture is rather densely filled in the presented benchmarks (due to the bisection-
based architecture creation), this situation does not occur in the investigations of
this work. However, some designs with only few I/Os (compared to the number of
CLBs) already use only some of the I/O faces with the introduced I/O partitioning
technique.

181

architecture-aware field embedder for fpgas

5.5.5 5th Step: Special blocks (MEM+MUL) placement

MULs &
MEMs Finally, further heterogeneous block types are placed. Two main characteris-

tics of such blocks in common designs are used. First, they appear only in
relatively small numbers and, second, they generally have a high node degree
(as they are strongly connected due to many in- and out-pins). This is due
to their high inner complexity which is the essential motivation to use such
special elements in a design. Each of these special blocks is now placed after
the general purpose elements of the FPGA (CLBs and I/Os) have been assigned
to suitable locations. For this purpose, all memory blocks (MEMs) are first
extracted from the force-directed layout Glayout

D and stored in a linked list to-
gether with the information about connected I/O and CLB nodes for each of
those. Then, the barycenter (x,y) of all such connected nodes’ coordinates on
the architecture (taken from Garch

CLB+I/O
) is calculated for each memory block

and the number of connections (the node degree) is stored. The memory blocks
are subsequently sorted descendingly according to their node degrees. Finally,
they are - in their sorted order - assigned to the positions that are nearest to
the beforehand calculated barycenters of connected nodes (that have already
been embedded on the architecture) until all blocks have been placed. The
same procedure is performed independently for the multiplicators (MULs).

Remark 95. Connections between different special types of blocks could also be
considered for later placed special blocks.

As already mentioned, these special elements are placed after all other ‘or-
dinary’ ones. The idea is to assign them the best suitable available place with
respect to the placed CLBs and I/Os and to priorize such elements that influ-
ence many connections on the chip to keep the overall wirelength small. Due to
the fact that the number of such elements is nowadays still relatively small,
a pretty naive implementation of the assignment is used (see Algorithm 14).
In the future, more advanced techniques, for example, basing on a quadtree
to find the nearest available slot, can be applied (see Section 5.7).

Remark 96. To emphasize this fact once again, even though the number of heteroge-
neous blocks may be small, they often have many in- and output pins and, thus, their
influence is important and can become crucial for the wirelength in the placement
and for good routability. It is therefore reasonable to place these nodes with respect
to all already placed blocks taking their final coordinates from Garch

D into account.

Figure 65 shows the three heterogeneous elements in the or1200 design
after embedding them with the presented method. The heterogeneous block
itself is highlighted in green while fanouts and fanins to the block (cp. Sec-
tion 2.2.4) are shown in red and blue, respectively. The final position in the
barycenter of connected nodes is clearly visible.

182

5.5 the fieldplacer method

(a) MEM block 1 (b) MEM block 2 (c) MUL block 1

Figure 65: Placement of special blocks (code: or1200)

After these 5 phases, all elements are placed on the FPGA and the ba-
sic FieldPlacer placement Garch

D is produced by combining Garch
CLB, Garch

I/O and
Garch

MEM+MUL. An example for such a complete placement with distance penalties
(for the CLBs) is shown in Figure 65 for the or1200 code while Figure 66 de-
picts such a placement for the smaller diffeq1 design (cp. also Figure 63).
Figure 67 finally illustrates the overall workflow of the basic FieldPlacer
method.

Placement. Cost: 1 bb_cost: 72.299 td_cost: 2.13684e-07 Channel Factor: 100

Figure 66: Placement of all elements with the basic FieldPlacer method

183

architecture-aware field embedder for fpgas

Algorithm 14 Special heterogeneous blocks’ placement

procedure embedSPECblocks(Arch FPGAArch, Graph G
layout
D , Graph Garch

CLB+I/O
)

linked list MEMNodeList← extract V layout
MEM from G

layout
D

linked list MULNodeList← extract V layout
MUL from G

layout
D

linked list MEMSlots← extract all memory slots from FPGAArch
linked list MULSlots← extract all multiplicator slots from FPGAArch

sort the MEMNodeList descendingly concerning the nodes’ degree in G
layout
D

sort the MULNodeList descendingly concerning the nodes’ degree in G
layout
D

for all v ∈ MEMNodeList and for all v ∈ MULNodeList do
extract (x,y) coordinates of connected CLBs and I/Os from Garch

CLB+I/O

. calculate the barycenter of all connected and embedded elements (x(v),y(v))
x(v) = 1

δ(v)

∑
(u,v)∈ED

x(u) . see Definition 13

y(v) = 1
δ(v)

∑
(u,v)∈ED

y(u) . see Definition 13

. calculate the distances of the barycenter to each available slot
for all suitable slots (x(s),y(s)) on FPGAArch do
dist(s) = ||(x(v),y(v))− (x(s),y(s))||p . see Section 5.6.2

end for

. embed the special block
select slot s with minimum dist
assign coordinates of s to v in MEMNodeList or MULNodeList
remove slot s from the respective list (MEMSlots or MULSlots)

end for
return coordinates for all special blocks in MEMNodeList and MULNodeList

end procedure

Setup
of the graph

representation

1st Step

Force-
directed

graph layout

2nd Step

CLB
placement

3rd step

- 2D arrangement by
nested sorting
- Penalty insertion for
different distributions

I/O
placement

4th step

- Basic I/O partitioning
- Capacity legalization
- I/O refinement with the
barycenter heuristic

MEM + MUL
Special blocks

placement

5th step

- Prioritized barycenter
assignment

Garch
D

architecture
design (code)

Placement. Cost: 1 bb_cost: 72.299 td_cost: 2.13684e-07 Channel Factor: 100

Garch
CLB Garch

I/O Garch
MEM+MUL

G layout
D

CLBNodeList

Garch
CLB+I/O

Figure 67: Overall workflow of the basic FieldPlacer

184

5.5 the fieldplacer method

5.5.6 Benchmark: Basic FieldPlacer

In this section, results from the basic FieldPlacer are presented. Once again,
all runs were repeated 10 times and the average over these runs is reported
(neglecting the minimal and maximal value).

To get a rough overview, Figure 68 shows the average quality (over all 19
benchmark codes from Table 12 on page 222) that was achieved with the
different distribution types concerning the bounding box cost, the critical path
delay, the overall wirelength and the overuse (see Section 5.3.2 and Section 5.4).
The quality is measured relative to results of the simulated annealing approach
in VPR in its default configuration (see Appendix A.6). First of all, it is clearly
visible that the quality of the basic FieldPlacer is (on average) inferior to the
one of the simulated annealing results of VPR in all categories.

Remark 97. As this is only the basic FieldPlacer approach, the absolute values
of the quality are not too important right now. The measurements are primarily
intended to show the relations between the different FieldPlacer options and the
quality norms.

However, there are distinct differences concerning the results of the dif-
ferent distribution strategies. While the CENTER distribution performs best
concerning all measures that are principally related to the resulting wire-
lengths between connected nodes (namely the bounding box cost, the critical
path delay and the overall wirelength), it achieves the worst result concerning
the average overuse. This was expectable (see Section 5.5.3 - Motivation of the
distribution strategies) as the densely packed CENTER distribution does not
leave additional space for detours in the simulated ‘stress-aware’ routing of
the overuse norm calculation (see Section 5.4). In general, the stress on the
routing architecture is intensified by the dense assignment. The results for
the overuse show that both the EQUAL and the DISTANCE distribution lead
to significantly better results concerning this measure while the EQUAL dis-
tribution was expected to produce the placement with the lowest stress on
the overall architecture beforehand due to the equally distributed free spaces
between the CLBs.

It is interesting that the imitation of the force-directed graph layout through
the DISTANCE distribution achieves the second best average results in all cat-
egories. It therefore combines the aforementioned positive characteristics of
force-directed layouts with attractive and repulsive forces. The attractive forces
tend to keep distances between connected nodes small (for small bounding
box cost, critical path delay and overall wirelength) while the repulsive forces
keep nodes away from each other and counteract highly dense regions in the
layout (basically for reduced overuse).

185

architecture-aware field embedder for fpgas

Concerning all four categories, the results are in each case in similar ranges.
This is based on the fact that the general arrangement of nodes to each other
is the same for all distribution types (at least identical for all but the CENTER
distribution and it is also rather similar for this one, see Section 5.5.3).

BoundingBox CriticalPathDelay WireLength OverUse
100

120

140

160

180

200

220

240

260

280

13
5.

65
%

12
3.

96
%

12
7.

39
%

24
8.

21
%

14
2.

47
%

12
6.

9% 13
4.

86
%

22
2.

96
%

14
6.

21
%

12
9.

87
%

13
9.

41
%

18
9.

79
%

14
0.

05
%

12
6.

64
%

13
2.

16
%

19
1.

67
%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer penalty type :
CENTER
NO
EQUAL
DISTANCE

Figure 68: Pure FieldPlacer - Overview

Each reported value in Figure 68 contains the average quality of all 19
codes (each one run with 10 repetitions) and is therefore only outlining a
rough overview of the situation. Figure 69 instead shows the average results
for each code concerning VPR’s main optimization target, the bounding box
cost. More precisely, the depicted values show how much the 10 different
initial random assignments of each code were improved by the full simulated
annealing approach in VPR and by the basic FieldPlacer. The measurements
confirm that the simulated annealing results are still consistently better than
the ones of the basic FieldPlacer but that the difference between both ap-
proaches vary from code to code. For the ch_instrinsics code, for example,
both solutions are relatively close to each other concerning the bounding box
cost while for the mkPktMerge code, the difference is much larger.

Figure 70 shows the correlation between all measurements for the different
norms in scatter plots (again relative to the VPR SA results of each code, the
colors match the distribution strategies from, e. g., Figure 68). A code achiev-
ing the same quality with the basic FieldPlacer than with the SA approach in
VPR would consequently have a quality measure of one (100%). Without this
relative measure, the comparison of different codes would, in general, not be
meaningful. It is obvious that, for example, one code with 1000 times larger
bounding box cost than another code will have a much larger absolute overall
wirelength. However, the same would generally be the case for the compar-

186

5.5 the fieldplacer method

ste
re

ov
isi

on3

diff
eq

2

ch
in

tri
nsic

s

diff
eq

1

m
kPktM

erg
e

sh
a

m
kSM

Adap
ter

4
B

ray
gen

to
p

boundto
p

or1
2
0
0

blob
m

erg
e

m
kDela

yW
ork

er
3
2
B

ste
re

ov
isi

on0

ste
re

ov
isi

on1

LU8
PEEng

ste
re

ov
isi

on2

bgm
m

cm
l

LU3
2
PEEng

0

20

40

60

80

100
B

ou
nd

in
gB

ox
im

pr
ov

em
en

t
by

pl
ac

em
en

t
(%

)

VPR SA
FieldPlacer (DISTANCE)

Figure 69: Bounding Box cost improvement (sorted ascendingly by VPR SA runtime)

ison of absolute bounding box cost and absolute overuse as this measure is

very coarse-grained. The relative measure for each code
(
FieldPlacer result

VPR SA result

)

instead answers the much more meaningful fine-grained question whether,
e. g., a larger bounding box cost for one code due to the distribution strategy in
the FieldPlacer does lead to an appropriate increase in the overall wirelength.

1 1.5 2 2.5
1

1.5

2

2.5
regression: WL = 0.81 · BB + 0.19

BoundingBox

W
ir

eL
en

gt
h

(a) BB - WL

1 1.5 2 2.5
1

1.5

2

2.5
regression: CPD = 0.52 · BB + 0.54

BoundingBox

C
ri

ti
ca

lP
at

hD
el

ay

(b) BB - CPD

1 1.5 2 2.5
0

10

20

30
regression: OU = −0.22 · BB + 2.2

BoundingBox

O
ve

rU
se

(c) BB - OU

Figure 70: Pure FieldPlacer - Correlation

The results in Figure 70a and Figure 70b confirm the already assumed posi-
tive correlation between bounding box cost, the overall wirelength and the critical
path delay. Figure 70c additionally shows that there is a negative correlation be-
tween these values and the resulting overuse in the system. However, due to
higher outliers for this measure, the trend is not as ‘clear’ as in the other two
plots. Finally, the trendlines (linear regression) of the scatter plots are shown in
form of a black line and their mathematical function. The bounding box cost to
wirelength comparison is in fact nearest to a perfect correlation (which would
have to have a slope of one).

Besides the obtained quality of results, the time that was needed to pro-
duce the result (runtime in the following) plays an important role. Table 5
shows the average placer runtimes of VPR’s simulated annealing approach

187

architecture-aware field embedder for fpgas

and those of the basic FieldPlacer for the different codes along with the num-
ber of nodes and edges in GD, as the routines’ runtimes directly depend on
these values (see Section 3.1.2 and Section 5.7). Even though the quality of
the basic FieldPlacer method is (so far) inferior to the simulated annealing ap-
proach of VPR, the basic FieldPlacer is up to 26 times faster than the VPR
SA method. It can in fact play out its benefits concerning the runtime espe-
cially for larger inputs due to its relatively small runtime complexity (see
Section 5.7).

Placer runtimes (s) FieldPlacer VPR SA Nodes Edges Speedup

stereovision3 0.03 0.06 54 72 2.05

diffeq2 0.08 0.15 194 433 1.88

ch_intrinsics 0.12 0.20 267 560 1.64

diffeq1 0.14 0.26 299 661 1.84

mkPktMerge 0.23 0.34 497 614 1.48

sha 0.21 0.97 283 2793 4.64

mkSMAdapter4B 0.29 1.21 570 2373 4.18

raygentop 0.45 1.57 725 2648 3.49

boundtop 0.36 2.04 701 3327 5.68

or1200 0.62 2.68 1039 5048 4.33

blob_merge 0.60 4.29 679 9406 7.10

mkDelayWorker32B 1.20 5.62 1554 7178 4.68

stereovision0 0.85 8.49 1259 6223 9.93

stereovision1 0.98 9.23 1205 8579 9.39

LU8PEEng 2.45 32.65 2373 36616 13.31

stereovision2 3.39 46.70 2939 26002 13.79

bgm 3.89 53.90 3230 57686 13.86

mcml 8.27 220.68 6873 81390 26.67

LU32PEEng 11.57 287.83 7544 129453 24.87

Table 5: Comparison of average runtime in VTR 7.0 (sorted ascendingly by VPR SA run-
time)

The following Sections will investigate the quality of the achieved basic
FieldPlacer placement in more details. Section 5.6 then addresses further
methodology to improve the quality of the basic FieldPlacer in the extended
FieldPlacer method.

OverUse

The FieldPlacer congestion-driven maze router was introduced to simulate
an ‘ideal routing’ without capacity restrictions on the routing architecture in
order to extract a measure for the routability of a placement before the actual
routing takes place (see Section 5.4.2).

While the reported relative overuse values in Figure 68 represent the av-
erage overuse sum on the architecture, Figure 71 shows the distribution of

188

5.5 the fieldplacer method

overused routing resources for the or1200 example code in absolute values
(best run out of ten). It is clearly visible how the overuse of routing resources
matches the distribution types’ shapes as the overuse mainly takes place due
to inter-logic-block connections. There is almost no overuse in the outer re-
gions of the architecture because there are fewer connections to I/O than
between the inner logic-blocks and probably also because of the good I/O
placement through the application of the barycenter heuristic.

While the DISTANCE distribution reaches an overuse quality comparable
to the simulated annealing approach in VPR (2982 compared to 2907 overused
segments), the EQUAL distribution even performs remarkably better (con-
cerning this measure) with an overuse of only 1154.

Table 6 contains the other quality measures for these single runs.

Placer BoundingBox CriticalPathDelay (ns) WireLength OverUse

CENTER 374.05 25.31 60516 5623

NO 388.87 26.13 62950 6644

EQUAL 447.67 26.26 76277 1154

DISTANCE 421.03 25.58 69652 2982

VPR-SA 317.81 24.34 55843 2907

Table 6: Statistics of the runs from Figure 71

As the estimation of the overuse simulates the routing under idealized cir-
cumstances (see Section 5.4.2), the actual routing will in fact look different and
may, due to many different influences (like the connections’ order and the
resolving of congestions) not necessarily behave as the overuse norm tries to
predict. To investigate the discrepancy between the new simulating overuse
metric and the actual routability, all benchmark codes were placed with the
different distribution strategies and subsequently routed by VPR’s router.

Remark 98. As the routing of all benchmark codes took approximately 2 days for
each distribution strategy (almost 10 days in total), the router investigations in
Figure 72 are, as an exception, not repeated 10 times but only measured once per
code and distribution strategy.

The maximal channel occupancy (see Section 5.3.2) reports the highest usage
in a routing cell and thereby the maximal number of parallel routing wires
that are necessary to realize this specific routing. The higher this value is, the
higher is the maximal ‘stress’ on the routing architecture. Figure 72 shows that
a correlation between the overuse estimation and the final maximal channel
occupancy is, to a certain extent, measurable. For example, the distribution
strategy with the smallest average overuse (the EQUAL distribution) is the one
with the smallest maximal channel occupancy. However, both are still not ‘exact’

189

architecture-aware field embedder for fpgas

(a) FieldPlacer-CENTER (OU: 5623) (b) FieldPlacer-NO (OU: 6644)

(c) FieldPlacer-EQUAL (OU: 1154) (d) FieldPlacer-DISTANCE (OU: 2982)

(e) VPR SA (OU: 2907)

Figure 71: OverUse among the chip for different distribution types (FieldPlacer)
and VPR SA (code: or1200)

measures but only (more or less rough) estimates for the general routability
of a design’s placement.

As it has already been shown earlier in this Section, the overuse of the
EQUAL and the DISTANCE distribution is generally much smaller than the
one of the other two FieldPlacer distribution strategies. As a consequence,
only for these two strategies, all codes that were routable with VPR’s place-
ment by simulated annealing were finally routable with the basic FieldPlacer
placement. For the CENTER distribution, three times as many codes were not

190

5.5 the fieldplacer method

routable (under the given architecture restrictions concerning the channel
widths, see Appendix A.6). This actual routability of the placement (cp. the
amount of NotSuccRouted inputs in Figure 72) does in fact correlate very well
with the introduced overuse estimation (cp. OverUse in Figure 72) performed
by the FieldPlacer congestion-driven maze router (Section 5.4.2).

Figure 72 additionally shows that the routing time does not necessarily fol-
low the trend of the overuse or the maximal channel occupancy. This is based,
among other things, on the fact that even though a placement of a design
might be routable with smaller maximal channel occupancy than another place-
ment, both can still be routable at all so that a legal routing could be gener-
ated in the same time, just with different requirements for the channel widths.

BoundingBox CriticalPathDelay WireLength OverUse MaxChanOcc NotSuccRouted RouteTime

100
120
140
160
180
200
220
240
260
280
300
320

Placer Router

13
5.

65
%

12
3.

96
%

12
7.

39
%

24
8.

21
%

14
3.

29
%

14
2.

62
%

30
0%

14
2.

47
%

12
6.

9%

13
4.

86
%

22
2.

96
%

12
3.

52
%

15
2.

07
%

15
0%

14
6.

21
%

12
9.

87
%

13
9.

41
%

18
9.

79
%

98
.0

4%

13
8.

62
%

10
0%

14
0.

05
%

12
6.

64
%

13
2.

16
%

19
1.

67
%

12
5.

6%

12
8.

49
%

10
0%

Pe
rc

en
ta

ge
of

V
PR

SA
re

su
lt

s
(%

) FieldPlacer penalty type :
CENTER
NO
EQUAL
DISTANCE

Figure 72: Pure FieldPlacer after routing - Overview

To measure the quality of the placement procedure, the critical path delay
can only be estimated after the placement as the routing influences connec-
tions’ wiring and wirelengths and thus the resulting (wire) delays (see Sec-
tion 5.3.2). Figure 73 shows the correlation between the estimated critical path
delay after the placement and the actual final critical path delay after routing
(again relative to the VPR SA result and, as before in Figure 70, the colors
match the distribution strategies from, e. g., Figure 72). The measurements
show that the correlation between the estimated and the final critical path
delay is almost perfectly positive. Thus, the estimated critical path delay after
placement can definitely be considered to estimate the speed of the design
on the architecture already after the placement and without the actual routing in
the following.

Finally, it has to be noted that even though the estimation of the overuse
is interesting and (as the previous results showed) valuable to measure the
routability of a placement, this comes at the price of additional runtime by
running the simulated routing of the congestion-driven maze router. If one as-
sumes a completely filled architecture and neglects the fact that multiple
I/O pins may share the same I/O block, the theoretical worst case runtime of

191

architecture-aware field embedder for fpgas

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2
regression: CPD f in = 0.85 · CPDest + 0.15

CriticalPathDelayest

C
ri

ti
ca

lP
at

hD
el

ay
fi

n

Figure 73: Correlation between estimated and actual critical path delay (all 19 codes
with four distribution strategies each)

expanding the wave is O(N×N) = O(|VD|) for each connection on a square
architecture of size N times N (see Algorithm 8). Tracking the wave back of
course takes less time (O(N)) and has to be performed for each edge. Thus,
the (combined) theoretical worst case runtime is O(|VD| · |ED|). However, this
is a theoretical consideration. With short connections, the runtime to route
the single connection will be much smaller in general. Due to this fact, an
exploration of the real effective runtime is indispensable. Figure 74 shows how
long the execution of the congestion-driven maze router took for each code and
each distribution strategy compared to the time spend in the entire place-
ment procedure of the basic FieldPlacer. The different codes were sorted as-
cendingly concerning the runtime of the simulated annealing approach in VPR.
The relative runtime of the congestion-driven maze router increases the ‘larger’
the inputs become. This is based on the higher theoretical runtime complex-
ity of the norm calculation compared to the theoretical O(|VD|log|VD|+ |ED|)

runtime of the FieldPlacer implementation (see Section 5.7). In general, the
time to calculate the overuse is smallest for the CENTER distribution, due to
the relatively small wirelengths for this strategy. To sum up, the runtime of
the overuse calculation is maximally ∼ 30% of the overall basic FieldPlacer
runtime (including this calculation) and is, in general, much smaller for the
small codes (or designs). Nevertheless, the estimation time of overuse can be-
come noteworthy and a designer can consider whether it is important to get
this information or, instead, to save this time.

Interim Result 3. In this section, the basic FieldPlacer was introduced. The
investigations showed that the different distribution strategies actually have the

192

5.5 the fieldplacer method

ste
re

ov
isi

on3

diff
eq

2

ch
in

tri
nsic

s

diff
eq

1

m
kPktM

erg
e

sh
a

m
kSM

Adap
ter

4
B

ray
gen

to
p

boundto
p

or1
2
0
0

blob
m

erg
e

m
kDela

yW
ork

er
3
2
B

ste
re

ov
isi

on0

ste
re

ov
isi

on1

LU8
PEEng

ste
re

ov
isi

on2

bgm
m

cm
l

LU3
2
PEEng

0

5

10

15

20

25

30
ov

er
us

e
ca

lc
ul

at
io

n
ti

m
e

ov
er

al
l

ti
m

e
(%

) Penalty Type :
CENTER
NO
EQUAL
DISTANCE

Figure 74: Percentage of the overuse calculation time of the overall FieldPlacer run-
time (codes sorted ascendingly by VPR SA runtime)

previously assumed characteristics (see Section 5.5.3 - Motivation of the distribu-
tion strategies). It has been shown that the strategies differ concerning the different
quality measures and that the new introduced overuse norm can be helpful to pre-
dict the routability of a placement. It can therefore be used to choose either a ‘well
routable’ placement out of several tries or to choose, for example, the right distribu-
tion strategy for the demands of the designer as better routability normally comes
at the price of increased wirelength (which correlates positively with the critical
path delay and the bounding box cost). Thus, wirelength minimization and routabil-
ity can be contradicting goals in general. However, the DISTANCE distribution,
which imitates the arrangement of the force-directed graph layout, is very promis-
ing at combining good routability and short wirelengths and is therefore the
strategy of choice in the following.

As the actual routing time is generally very long, it can be crucial to have a
placement which supports the routing process. In fact, the routing can take many
(3 to > 400) times longer than the placement time with VPR’s placer and router
in the default configuration although this, undoubtedly, depends on the specific
router (and placer) that is used. Apart from the routing time, the general routability
of placements has been shown to be influenceable by the distribution strategy.

Due to the good estimation of the critical path delay, the basic FieldPlacer
could, for example, be applied to quickly check how changes in the design may help
to achieve a desired clock speed before placing and routing the design in detail.

The next Sections will now show how the basic FieldPlacer is used as the basis
for extended FieldPlacer techniques to achieve further improved results.

193

architecture-aware field embedder for fpgas

5.6 FieldPlacer extensions

5.6.1 5½th Step: Second energy phase

The biggest portion of the runtime in the basic FieldPlacer is usually
needed to calculate the repulsive forces in the force-directed graph layout
in step 2 (see Section 5.5.2 and also Section 4.2.2 - An experimental compari-
son). Simulating (or even solving) a (sparse) system without repulsive forces (like
in the GORDIAN approach based on equation systems, see Section 5.1.2), but
instead with fixed I/O nodes, would work much faster (see Section 5.6.1 and
Section 4.2.2). However, it was reasoned extensively that fixing the I/O nodes
a priori can influence the later design a lot and is not the idea in this work.
Nevertheless, assuming that the I/O nodes are as well distributed as with
the basic FieldPlacer result, the question remains whether the attendance
of repulsive forces is necessary or advantageous at all.

To investigate this, a second energy phase can be conducted after the basic
FieldPlacer has been applied. In the second energy phase, all I/O nodes are
fixed and only attractive forces between connected nodes are taken into account.
The resulting force system is shown in equation (58).

F
(u,v)
attr (v) =

log
(
||pv−pu||2
lzero(e)

)
· ||pv−pu||2·(pu−pv) pv 6= pu

0 otherwise

Fattr(v) =

0 if v is fixed∑
u|(u,v)∈E

F
(u,v)
attr (v) otherwise

Fres(v) = λattr · Fattr(v)
target→ 0 (58)

Optimizing this system is twofold. On the one hand, the absence of repul-
sive forces should help to escape from local minima (that were facilitated by
the repulsive forces in step 2) and, on the other hand, nodes are not kept
away from each other by their reciprocal repulsion. Finally, such an ‘amend-
ment’ respects the final I/O positions and could therefore be able to improve
especially the CLB placement which was performed solely based on G

layout
CLB

and without the explicit knowledge of the later embedded I/O positions in
Garch
D .
As the initial layout of this phase is already quite good and should only

be improved, the initial positions for all nodes are of course taken from the
embedded layout of the FieldPlacer (instead of placing the nodes randomly
like in the first phase). Due to the good initial solution, the multilevel ability
of FieldFM3 is deactivated (as it is generally included to create a good initial
placement, see Section 4.2.3).

194

5.6 FieldPlacer extensions

Figure 76 shows the layout after different numbers of improving iterations
and nodes of the same row in the initial layout are depicted with identical
colors. The surrounding fixed I/O nodes are again shown in orange. After
a defined number of iterations has been performed in this way, the entire
FieldPlacer procedure (Step 3-5) is called again with the new layout as its
input. Figure 75 shows the CLBs in the second layout graph G

2ndlayout
D with a

new final row assignment.

Figure 75: New slicing after second energy phase (code: or1200)

A closer look onto Figure 76f reveals different peculiarities of such layouts
without repulsive forces that were already discussed several times before in
this work (e. g., in the description Tutte’s approach in Section 4.1.1). There
are heavily stressed regions but also sparely used ones. The initial rows are par-
tially preserved, but especially in the heavily stressed regions, the order of
the elements is significantly perturbed. Overall, the different densities in the
force-directed layout G

2ndlayout
D without repulsive forces can not be preserved

well in the embedding G2ndarch
D due to the restricted number of slots on the

architecture.
Figure 77 shows a few randomly chosen connections in the or1200 de-

sign and how they are varied due to both layouting and embedding phases.
While the first energy layout with repulsive forces (Figure 77a) can be em-
bedded in a structure-preserving way (cp. Figure 77b), connections in G2ndarch

D
(Figure 77d) are more often altered compared to the energy layout without
repulsive forces (Figure 77c). For example, the gray connection in the bottom
part of the layout even changes its direction in the embedding and is short-

195

architecture-aware field embedder for fpgas

(a) Initial arrangement (b) 10 improving iterations

(c) 100 improving iterations (d) 1000 improving iterations

(e) 10000 improving iterations (f) 100000 improving iterations

Figure 76: Second energy phase with fixed surrounding I/O nodes (code: or1200)

196

5.6 FieldPlacer extensions

(a) Force-directed layout Phase 1 G
layout
D

(b) Embedded on the grid Phase 1 Garch
D

(c) Force-directed layout Phase 2 G
2ndlayout
D

(d) Embedded on the grid Phase 2 G2ndarch
D

Figure 77: Displacement in first and second energy phase (code: or1200)

ened a lot due to the large unused spaces in the layout. Appendix A.7 shows
two further examples of embeddings to illustrate this effect.

Generally, the more iterations are performed with the fixed outer I/O
nodes, the smaller becomes the wirelength in G

2ndlayout
D . However, as the dis-

tances of the nodes to each other can not be preserved in the embedding, this
does not necessarily mean that the embedded result on the architecture in
G2ndarch
D can also benefit from many iterations.

197

architecture-aware field embedder for fpgas

Figure 78 shows that for the LU32PEEng code example, the force-directed
layout can improve the wirelength in G

2ndlayout
D by up to 69.43% after 100000

iterations while the wirelength in the embedded layout G2ndarch
D becomes

worse and worse. Even for codes where the embedding can be performed
in a more structure-preserving way (like for the mkPktMerge example), the
final improvement due to this second energy phase is rather small and such a
refinement takes a significant amount of time (depending on the density of
the graph), even though the repulsive force calculations do not have to be
carried out. While 1000 iterations in the second energy phase of the or1200

example (see Figure 76) took approximately the same time than the entire
energy layout in phase 1, performing 100000 iterations took consequently 100
times as long. Together with the rather poor overall improvement, only very
few, if any, iterations of such a second energy phase should be performed.

101 102 103 104 105
−60

−40

−20

0

20

40

60

number of iterations

re
la

ti
ve

im
pr

ov
em

en
t

(%
)

Average over all codes

Average (on chip after embedding on the grid)

Average (on graph before embedding on the grid)

Best case code on architecture: mkPktMerge

on chip after embedding on the grid (G2ndarch
D)

on graph before embedding on the grid (G2ndlayout
D)

Worst case code on architecture: LU32PEEng

on chip after embedding on the grid (G2ndarch
D)

on graph before embedding on the grid (G2ndlayout
D)

Figure 78: Second energy phase quality impact

This shows why the aforementioned approaches (see Section 5.1.2), which
base on force systems without repulsive forces and solve the system for min-
imal wirelength, need an intensive hierarchical partitioning scheme after the
basic layout. The usage of repulsive forces makes it possible to embed the
created layout with only small displacements and, therefore, to benefit from
the fine-grained properties of the layout without the need for a ‘universal’ par-
titioning like in the GORDIAN method. Altogether, these results underline the
good quality of the embedding through the FieldPlacer method.

Finally, only very few additional iterations for fine-grained improvement
of the situation could be performed in general. Figure 79 shows a further
problem in case that there are relatively few I/O nodes in the design at all.
Very much space is wasted in the outer regions of the graph because all nodes

198

5.6 FieldPlacer extensions

are contracted to (and by) the inner regions. This is based on the very few
attractive forces from the fixed surrounding I/O nodes which are dominated
by the attractive forces in the strongly connected inner parts of the graph.
A structure-preserving embedding onto a fairly filled chip architecture is not
possible in such situations.

Remark 99. To match the parameters of the force-system from the beginning, the
coordinates of the initial layout with fixed I/O nodes are linearly scaled according to
the final size of the previously obtained G

layout
D graph.

Remark 100. Other choices of fixed node sets are directly possible in the FieldPlacer.
For example, it can also be configured to fix all but the CLB nodes.

Remark 101. Due to the fact that the benefit of the second energy phase depends
much on the specific example code, it is not performed in any of the following bench-
marks. Nevertheless, the option is available as an experimental feature in the method.
If the number of I/O nodes is relatively small, it should generally not be used.
In such cases, the method therefore outputs an appropriate warning.

Figure 79: Second energy phase of the worst case (code: LU32PEEng)

199

architecture-aware field embedder for fpgas

5.6.2 2nd Step with different distance norms

Many available approaches in the field of force-directed placement tech-
niques measure and model the distances between connected blocks usually
with the Euclidean distance (see Section 5.1.2). However, the wiring on the
architecture instead follows the Manhattan distance.

In order to pursue this fact, the FieldPlacer supports the usage of not only
the Euclidean distance (||.||2 norm) in the force model for the attractive forces,
but also contains the option to use the Manhattan distance (||.||1 norm) or the
Chebyshev distance (||.||max or ||.||∞ norm).

Remark 102. The reason for the consideration of the Chebyshev distance is given
in the following.

In general, such ||.||p distances (metrics) are called p-norms. The p-norm of
a vector x ∈ Rn is calculated as shown in equation (59).

||x||p :=

(
n∑
i=1

|xi|
p

)1/p
(59)

In the FieldPlacer method, the norm to calculate distances can be arbitrar-
ily varied. If the FieldPlacer is configured to use, for example, the Manhat-
tan distance to model the wirelength of connections, the original force model
from FM3 (see equation (45)) changes to system (60).

Furep(v) =

1

||pv−pu||2
2 · (pv − pu) pv 6= pu

0 otherwise

F
(u,v)
attr (v) =

log
(
||pv−pu||1
lzero(e)

)
· ||pv − pu||1·(pu − pv) pv 6= pu

0 otherwise

Frep(v) =
∑

u∈V\v

Furep(v) Fattr(v) =
∑

u|(u,v)∈E
F
(u,v)
attr (v)

Fres(v) = λrep · Frep(v) + λattr · Fattr(v)
target→
force

equilibrium

0 (60)

Remark 103. The norm calculations for the repulsive forces can also be performed
with other norms in the FieldPlacer. However, as the routing architecture and
the resulting wirelengths are the reasons to alter the norm, only the attractive forces
are modified in the force system at this point.

Figure 80 shows resulting force-directed graph layouts Glayout
D for the three

already mentioned metrics.

200

5.6 FieldPlacer extensions

(a) Euclidean distance: nodes (b) Euclidean dist.: nodes and edges

(c) Manhattan distance: nodes (d) Manhattan dist.: nodes and edges

(e) Chebyshev distance: nodes (f) Chebyshev dist.: nodes and edges

Figure 80: Force-directed layouts under different metrics (code: or1200)

201

architecture-aware field embedder for fpgas

Naturally, nodes of a graph that are connected to a common center tend
to be spread on circular perimeters around this center in a force equilibrium
obtained from a force-directed layout method. This is based on the fact that
the strength of attractive forces between nodes depends on their distance to
each other and that, therefore, nodes with the same distance to the center
experience the same force so that an equilibrium state is reached when re-
pulsive and attractive forces compensate each other on the unit circle of the
applied p-norm. Figure 81 shows two dimensional unit circles for different
p-norms and it is obvious that the layouts from Figure 80 basically result in
the shape of the respective p-norm’s unit circle.

−1 0 1
−1

0

1 ||.||1 ||.||2
||.||4 ||.||8
||.||16 ||.||∞

Figure 81: Unit circle for different p-norms

In three dimensions, the p-norms form the distance functions presented in
Figure 82. For each point (x,y) in the two dimensional plane (as present in
general 2-dimensional layouting approaches), the z-coordinate represents the
normed distance of (x,y) to the origin (0, 0). Consequently, the z-coordinate of
each point (x2− x1,y2−y1) corresponds to the distance between two points
(x1,y1) and (x2,y2). The shape of the unit circles is revisited in Figure 82.

0

0
0

x

y

||(
x,

y)
|| 2

=
√ x2

+
y2

(a) Euclidean distance

0

0
0

x

y

||(
x,

y)
|| 1

=
|x
|+

|y
|

(b) Manhattan distance

0

0
0

x

y

||(
x,

y)
|| ∞

=
m

ax
(|

x|
,|

y|
)

(c) Chebyshev distance

Figure 82: 3-dimensional p-norms

202

5.6 FieldPlacer extensions

While the Euclidean graph layout results is circular graphs, the two other
layouts have an ‘orientation’ due to their different distance functions. The
Manhattan graph has a diamond shape and the Chebychev graph has a square
shape. Thus, as the resulting layouts in Figure 80 do not all have a quadratic
shape (as the embedding on the chip has to have), it could be advantageous
to rotate the layouts appropriately to match the shape of the chip. Without a
rotation, the displacement of nodes in the embedding (from G

layout
D to Garch

D)
can become large and could even eradicate the advantages of the other norm
usage as the created diamond and the square chip shape do not match at
all. Figure 81 highlights that the shape of the resulting force-directed layout
matches better with the chip’s shape the larger p is.

Thus, applying the Chebychev distance (p → ∞) results in a perfectly
matching (outer) graph shape. However, the Manhattan norm respects the
routing architecture perfectly. To make the Manhattan result also match the
chip’s shape, it could be ordinarily rotated by 45◦ (in the Euclidean sense).
Even though an ‘ordinary Euclidean’ rotation does not change distances be-
tween any two points under the Euclidean norm, this is not the case for other
metrics. Thus, as the distances on the chip have to be minimized concerning
the Manhattan norm for the wiring, such a rotation actually influences the
Manhattan distances between nodes in the graph.

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

x

||(
x,

f(
x)
)|
| 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f(
x)

=
√

1
−

x2

max

x∗ =
√

2
2

max→
(√

2
2 ,
√

2
2

)

min

x = 0

min

x = 1

Figure 83: Influence of a ||.||2-rotation on the ||.||1-norm

Figure 83 shows that a vertical connection of length 1 that is rotated has a
minimal ‘Manhattan’-length of 1 in the vertical and horizontal position while
it is ‘longest’ (

√
2→ 41.4% longer) when it is rotated by 45◦.

Remark 104. For a complete graph, this degradation is the maximal possible value
as the elongation of an edge caused by the rotation can (fully or partially) be compen-

203

architecture-aware field embedder for fpgas

sated by other edges with different initial orientations. The rotation benchmarks
on ‘real world graphs’ (see Figure 84) - just as many other performed benchmarks
- have shown that the effect is in fact much smaller due to rather ‘un-orthogonal’
graph structures.

One question is whether it is profitable to optimize for the Manhattan dis-
tance directly in the force model and either ‘loose wirelength quality’ in the
rotation step or have larger displacements in the embedding step.

Figure 84 presents the influence of such rotations on the wirelength (mea-
sured by the Manhattan distance) of the resulting layouts from Figure 80.

0 45 90

6.41

6.42

6.43

6.44

6.45

·105

rotation angle (◦)

ab
so

lu
te

ov
er

al
lW

ir
eL

en
gt

h
in
Gla

yo
ut

D

(a) Euclidean distance

0 45 90

5.04

5.06

5.08

5.1

5.12

5.14

·105

rotation angle (◦)

ab
so

lu
te

ov
er

al
lW

ir
eL

en
gt

h
in
Gla

yo
ut

D

(b) Manhattan distance

0 45 90

7.15

7.2

7.25

·105

rotation angle (◦)

ab
so

lu
te

ov
er

al
lW

ir
eL

en
gt

h
in
Gla

yo
ut

D

(c) Chebyshev distance

Figure 84: Rotation of Glayout
D (code: or1200)

Remark 105. Larger rotation angles that are not between 0◦ and 90◦ lead to peri-
odical results due to the ‘horizontal and vertical (orthogonal) characteristic’ of the
Manhattan distance.

First of all, Figure 84a shows that rotating the resulting graph G
layout
D cre-

ated with the Euclidean distance in the force model can improve the graphs
overall (Manhattan) wirelength, but the optimal angle is not predictable. This

204

5.6 FieldPlacer extensions

is simply based on the fact that the graph produced with the Euclidean dis-
tance has no ‘distinct orientation’, in other words, there is no trend how the
final circle is rotated in the force-directed minimum because the rotation does
not influence the layout’s energetic potential. However, this also means that
the general displacement (concerning the shape) is the same for all rotations.

Figures 84b and 84c show very conspicuous trends in the 10 benchmark
runs (here for the or1200 code) and consequently in the resulting average
wirelength behavior in G

layout
D (black line) for the varied rotation angles. While

the Manhattan graph has the smallest overall wirelength in its resulting energy-
minimal layout (with no rotation as it was particularly optimized towards the
distance norm of the wirelength), the Chebyshev graph has the smallest wire-
length in G

layout
D if it is rotated by 45◦ and is, therefore, similarly oriented as

the Manhattan graph.
Even though Figure 84 shows that the wirelength can be optimized when

rotating the chip, this is still performed with the layout graph G
layout
D before

the actual embedding onto the chip. Once again, as the wirelength is calcu-
lated by Manhattan distance between connected blocks, both the (oriented)
Manhattan and Chebyshev results have the smallest overall wirelength in
G

layout
D in the diamond shape rotation of the 1-norm unit circle. This means

that the Manhattan result should not be rotated at all and the Chebyshev
graph should be rotated by approximately 45◦ to minimize the distances in
G

layout
D . On the other hand, a diamond shape of the graph G

layout
D does not

match the shape of the chip architecture. Thus, larger displacements are in-
troduced when embedding the layout onto the restricted quadratic integer
grid for Garch

D (with all the different distribution strategies). This is based on
the fact that nodes have to be moved further away from their relative posi-
tion in a diamond-shaped G

layout
D to embed them on the square-shaped chip. In

fact, further repeated benchmark results have shown that - on average - the
deterioration of the wirelength by these displacements to create Garch

D redeems

the advantage of the rotation applied to G
layout
D in case of using the Chebyshev

distance for Glayout
D while it is profitable to rotate the result of the Manhattan

graph by 45◦. Both graphs consequently match the shape of the chip while not nec-
essarily minimizing the wirelength in G

layout
D . Thus, matching the chip’s shape to

preserve the arrangement of nodes to each other as well as possible is more
favorable.

Due to the unpredictable optimal rotation angle for the Euclidean graph,
it is desirable to try different angles between 0◦ and 90◦ and choose the best
one. This rotation of the Euclidean graph is, due to its choice of the best
angle and the relatively constant outer shape, undoubtedly profitable but
accordingly more time consuming.

205

architecture-aware field embedder for fpgas

Considering the embedded results in Garch
D , the following strategies are

defined for the final rotation of the energy-graphs (see Figure 80).

norm strategy : euclidean Rotate the graph in 10 steps from 0◦ to
90◦ and choose the best rotation angle.

norm strategy : manhattan Rotate the graph by 45◦ for small dis-
placements in Garch

D .

norm strategy : chebyshev Do not rotate the graph at all for small
displacements in Garch

D .

CENTER NO EQUAL DISTANCE
125

130

135

140

145

12
7.

15
%

12
7.

27
%

13
9.

11
%

13
2.

93
%

12
6.

56
%

12
7.

21
%

13
8.

37
%

13
2.

3%

12
8.

47
%

12
8.

56
%

14
0.

52
%

13
3.

39
%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer norm :
EUCLIDEAN
MANHATTAN
CHEBYSHEV

(a) Average WireLength

CENTER NO EQUAL DISTANCE
135

140

145
13

8.
33

%

13
8.

28
%

14
2.

58
%

14
2.

33
%

13
5.

97
%

13
6.

74
%

14
2.

08
%

14
1.

02
%

13
9.

79
%

14
0.

08
%

14
4.

63
%

14
2.

88
%

Pe
rc

en
ta

ge
of

ov
er

al
l

V
PR

SA
re

su
lt

s
(%

)
FieldPlacer norm :

EUCLIDEAN
MANHATTAN
CHEBYSHEV

(b) Overall (total) WireLength

CENTER NO EQUAL DISTANCE
125

130

135

140

145

12
7.

15
%

12
7.

27
%

13
9.

11
%

13
2.

93
%

12
6.

56
%

12
7.

21
%

13
8.

37
%

13
2.

3%

12
8.

47
%

12
8.

56
%

14
0.

52
%

13
3.

39
%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer norm :
EUCLIDEAN
MANHATTAN
CHEBYSHEV

(c) Average OverUse

CENTER NO EQUAL DISTANCE
135

140

145

13
8.

33
%

13
8.

28
%

14
2.

58
%

14
2.

33
%

13
5.

97
%

13
6.

74
%

14
2.

08
%

14
1.

02
%

13
9.

79
%

14
0.

08
%

14
4.

63
%

14
2.

88
%

Pe
rc

en
ta

ge
of

ov
er

al
l

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer norm :
EUCLIDEAN
MANHATTAN
CHEBYSHEV

(d) Overall (total) OverUse

Figure 85: Influence of different norms on WireLength and OverUse

The results obtained by using these (in each case averagely optimal) rota-
tion strategies are depicted in Figure 85. Even though the overall improve-
ments after embedding are relatively small (partially due to the fact that the
chips are principally very densely filled with logic blocks), the best strategy

206

5.6 FieldPlacer extensions

is to perform a force-directed layout with the Manhattan distance in the force
model (see equation (60)), rotate G

layout
D by 45◦ and embed it with the de-

sired CLB distribution strategy. Figure 85 shows the impact on the average
wirelength and also on the overall wirelength (after embedding) of all bench-
mark codes (again relative to the results of full simulated annealing runs in
VPR). The fact that the advantage obtained from using the Manhattan norm
is even higher regarding the overall total wirelength sum (Figures 85b) instead
of measuring the average advantage per code shows that the impact of the ‘right’
norm is greater for larger designs with larger overall wirelengths.

Figures 85c and 85d additionally show that using the Manhattan norm
with its 45◦ rotation strategy even results in a reduced overuse.

In summary, the impact of the different norms on the final embedded wire-
length in Garch

D is, nevertheless, averagely relatively small and is, therefore,
rather a fine-tuning as the basic arrangement of nodes is not influenced too
significantly by the norm itself. For example, the influence of the distribution
strategy is generally much larger (see Figure 85).

However, the CENTER distribution, for example, results in shortest over-
all wirelengths when using the Manhattan distance in the force model with
subsequent 45◦ rotation of the layout graph. This shows that the Manhattan
norm not only improves pure distances between connected nodes (by smaller
penalties in the DISTANCE distribution strategy, see Section 5.5.3), but it also
slightly improves the general arrangement of nodes as the CENTER distribu-
tion packs all nodes densely (in Garch

D) into the same area of the chip for each

outcome of Glayout
D .

Remark 106. The results, especially from the Chebychev graphs, show that the
rotation towards a diamond shape is generally the best choice for Glayout

D . However,
as the chip architecture has a square shape, the diamond arrangement cannot be
preserved and the displacements between G

layout
D and Garch

D in the embedding phase
can deteriorate the good original wirelength results.

The results also show that a diamond-shaped chip or, equivalently, a square chip
with ‘diagonal routing architecture’ could actually be advantageous to minimize the
wirelength on the chip.

Interim Result 4. Following the results of Section 5.6.1 and Section 5.6.2, the
second energy phase will not be applied in the following benchmarks and the force
system with the Manhattan distance (equation (60)) with subsequent 45◦ rotation
of the layout graph will be used to obtain the best results.

Due to the results from Section 5.5.6, the DISTANCE penalty option will gen-
erally be used in the following for a good balance between performance (short wire-
lengths) and routability of the placed design.

207

architecture-aware field embedder for fpgas

5.6.3 6th Step: Local refinement

Section 3.2 investigated the strengths and weaknesses of common iterative
approaches to solve the QAP problem. It was shown that simulated anneal-
ing is a powerful method as it is relatively independent from the initial solu-
tion and leads to good results in reasonable times. Even though the funda-
mental local search approach (see Section 3.2.4) leads to local optima in short
times, the quality of obtained solutions strongly depends on the initial config-
uration as the algorithm finally stops when the first (nearest) local optimum
has been found (see Figure 17). However, Figure 17 also shows that local
search can be a profitable technique to improve results that are already of
good quality very fast as it does not deteriorate the solution at all.

In fact, after steps 1 to 5 of the FieldPlacer method, the obtained result is
already of a relatively high quality. Thus, applying a final local search can be
expected to be both advantageous and fast (cp. Interim Result 1).

The benchmarks of this Chapter also showed that the simulated annealing
approach implemented in VPR, which was tuned over many years, leads to
rather good results and that the bounding box cost function is an accurate
norm for several optimization goals like wirelength, critical path delay or even
the overuse as it actually takes all influencing effects into account. As a con-
sequence, a local search (essentially based on the VPR SA approach and es-
pecially on its cost function) can finally be performed to improve the created
placement. For that, the VPR SA method is called with an initial system tem-
perature of 0. In that way, only improving swaps are accepted and the bound-
ing box cost of the layout can consequently only become smaller. In addition,
the idea of shrinking the regions (the frames) from which the pairs of blocks
are taken is used to make global swaps in the beginning and become more
and more local if fewer swaps are accepted in the process. Due to the fact that
the temperature is 0 and that consequently only improving swaps are accepted,
the stopping criterion of this ‘cold annealing’ approach or, more precisely, of
the local search method, can be simplified. In the VPR SA method, a number
of inner iterations #inner_iter = annealing_sched.inner_num · |VD|1.3333

(with the default configuration of annealing_sched.inner_num = 1.0, see
Appendix A.6) is performed in each iteration block. Depending on the num-
ber of successful swaps, the frame to choose the swap-candidates from is
shrunk or enlarged and the next iteration block is processed. For the follow-
ing extended FieldPlacer benchmarks (Section 5.6.4), the method stops if
the improvement of the bounding box cost in one such iteration block is smaller
than 1%.

In summary, the 6th step (the local refinement) can be seen as a simulated
annealing with starting temperature 0 and, therefore, improves the layout up
to the nearest local optimum of the objective function (see Figure 86). While

208

5.6 FieldPlacer extensions

a general simulated annealing approach overcomes local optima by accepting
deteriorating swaps in the beginning of the method, this task is carried out by
the preceding force-directed multilevel layout of the basic FieldPlacer which
provides the initial solution for this local search.

traditional
annealing

‘Local Refinement’
starting point

final
placement

basic FieldPlacer
embedded force

directed layout

im
pr

ov
em

en
t

by
lo

ca
lr

efi
ne

m
en

t

only very few additional iterations

traditional
annealing

‘Local Refinement’
starting point

final
placement

basic FieldPlacer
embedded force

directed layout

im
pr

ov
em

en
t

by
lo

ca
lr

efi
ne

m
en

t

only very few additional iterations

Figure 86: Local refinement scheme

Figure 87 shows how the local refinement performs in the extended Field-
Placer method compared to the VPR SA approach for three chosen exam-
ple codes from the benchmark set. More specifically, the most average code
(stereovision2), the best case (mcml) and the worst case (stereovision3) code
are presented (in terms of resulting bounding box cost). Each dot marks the
result of one iteration block. Due to the constant number of attempted swaps
per iteration block, the evaluation of each block takes approximately the same
time.

These results already show that, after the local refinement, the extended
FieldPlacer can reach better (bounding box) results than VPR SA by finding
the nearby local optimum after only very few iterations in short time (mcml).
However, the small stereovision3 code shows that, for other codes, the VPR
SA approach can still perform better than the extended FieldPlacer. On av-
erage, the obtained results concerning the bounding box cost are comparable
(like for the average stereovision2 code with 4% higher bounding box cost
than VPR SA, cp. Table 8). Section 5.6.4 will give a more detailed evaluation
for the different quality norms.

However, it should already be mentioned that, even including the local re-
finement, the extended FieldPlacer approach is still remarkably faster than
the VPR SA method for all three depicted examples. The number of per-

209

architecture-aware field embedder for fpgas

0

2

4

6

8

–

time

B
ou

nd
in

gB
ox

co
st

FieldPlacer
LocalRe f inement
VPR SA

(a) worst case (code: stereovision3)

0

1

2

3

4

5

·104

–

time

B
ou

nd
in

gB
ox

co
st

FieldPlacer
LocalRe f inement
VPR SA

(b) best case (code: mcml)

0

0.5

1

1.5

2

2.5

·104

–

time

B
ou

nd
in

gB
ox

co
st

FieldPlacer
LocalRe f inement
VPR SA

(c) average case (code: stereovision2)

Figure 87: FieldPlacer and VPR SA iterations comparison (DISTANCE penal-
ties)

formed iteration blocks was limited to 100 in the extended FieldPlacer imple-
mentation to restrict the maximal runtime. The actually performed number
of iteration blocks until the improvement fell below the threshold of 1% has in
fact been significantly smaller in all presented benchmarks.

Remark 107. Some further insights to the VPR SA approach are given in Sec-
tion 5.1.1. For a very detailed description of the VPR SA method, please refer to the
book of Betz et al. [21].

210

5.6 FieldPlacer extensions

5.6.4 Benchmark: Extended FieldPlacer

In this Section, the performance of the extended FieldPlacer will be exam-
ined. Figure 88 presents the bounding box cost per code relative to the result
achieved by the simulated annealing approach of VPR. The codes are sorted
ascendingly by their VPR SA runtime and three bounding box results are
presented for each code (averaged from 10 runs as before). First, the INIT
bar shows the average bounding box cost of the initial random placement. The
FieldPlacer bar marks the results of the basic FieldPlacer (in the chosen con-
figuration with DISTANCE penalties and using the Manhattan metric in the
force system) and the LocalRefinement bar finally represents the achieved
bounding box cost result from the extended FieldPlacer.

In general, the relative improvement of both methods, VPR SA and Field-
Placer, compared to the initial assignment, tends to increase with growing
VPR SA time (and with growing ‘design size’). While the bounding box cost
after the basic FieldPlacer are generally still considerably higher than the
ones of the VPR SA approach, the extended FieldPlacer is able to create
comparable results along with the LocalRefinement. Even more, the ex-
tended FieldPlacer with LocalRefinement is even able to beat the quality
of the VPR SA method for some codes (as it has already been presented in
Figure 87b).

ste
re

ov
isi

on3

diff
eq

2

ch
in

tri
nsic

s

diff
eq

1

m
kPktM

erg
e

sh
a

m
kSM

Adap
ter

4
B

ray
gen

to
p

boundto
p

or1
2
0
0

blob
m

erg
e

m
kDela

yW
ork

er
3
2
B

ste
re

ov
isi

on0

ste
re

ov
isi

on1

LU8
PEEng

ste
re

ov
isi

on2

bgm
m

cm
l

LU3
2
PEEng

0

100

200

300

400

500

600

Pe
rc

en
ta

ge
of

V
PR

SA
B

ou
nd

in
gB

ox
re

su
lt

s
(%

)

INIT
FieldPlacer
FieldPlacer + LocalRe f inement

Figure 88: Local refinement BoundingBox results (DISTANCE penalties, sorted as-
cendingly by VPR SA runtime)

For comparison, Figure 89 shows the time that is spend for the various
codes in the different parts of the extended FieldPlacer method (relative to
the VPR SA time). First of all, the relative runtime of the overall approach
(compared to VPR SA) tends to decrease for larger code/design sizes. For
the largest codes, the extended FieldPlacer with LocalRefinement is more

211

architecture-aware field embedder for fpgas

than 10 times faster than the VPR SA method while achieving a comparable
bounding box quality in the placement. The fraction of the time that is spent in
the basic FieldPlacer essentially becomes smaller the larger the codes are.

Within the FieldPlacer method, a very large proportion of the time is
spent to create the force-directed graph layout by the spring embedder ap-
proach. The overall presented embedding itself only needs a very small time
span for all codes.

The remarkable jump of the graph layouting time from stereovision3 to
diffeq2 can be explained by the strategy switch in the multipole method (see
Section 4.2.2 - An experimental comparison). While the graph representation
of the stereovision3 code has only 53 nodes, diffeq2 contains 194 nodes
(cp. Table 12) and, therefore, exceeds the threshold of 175 nodes to make use
of multipole approximations for the repulsive force calculations. As it has
been shown in Section 4.2.2, this threshold is not necessarily ‘accurate’. Thus,
the multipole approximation (including the setup of the quadtree etc.) may
not pay off for codes with node numbers slightly above this value.

ste
re

ov
isi

on3

diff
eq

2

ch
in

tri
nsic

s

diff
eq

1

m
kPktM

erg
e

sh
a

m
kSM

Adap
ter

4
B

ray
gen

to
p

boundto
p

or1
2
0
0

blob
m

erg
e

m
kDela

yW
ork

er
3
2
B

ste
re

ov
isi

on0

ste
re

ov
isi

on1

LU8
PEEng

ste
re

ov
isi

on2

bgm
m

cm
l

LU3
2
PEEng

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
of

V
PR

SA
ru

nt
im

e
re

su
lt

s
(%

)

FieldPlacer (graph layout)
FieldPlacer (embedding)
LocalRe f inement

Figure 89: Extended FieldPlacer runtime (DISTANCE penalties, sorted ascend-
ingly by VPR SA runtime)

To get an overview, Figure 90 shows the average and the total quality
achieved for the three different stages concerning all considered quality mea-
sures and, again, relative to the VPR SA results. While the extended Field-
Placer with LocalRefinement is able to achieve results that are - on average -
not more than 5% inferior to the ones of VPR SA, the situation concerning
the total values is even better with less than 3% deviation. The total values
again show that the FieldPlacer performs especially well (compared to VPR
SA) for larger codes with, e. g., larger overall wirelengths.

Figure 91 additionally shows that some details in the trends of advantages
and disadvantages for the different distribution strategies may no longer be as
apparent as before because of the LocalRefinement. However, the general

212

5.6 FieldPlacer extensions

assumptions remain and the DISTANCE distribution still results in a good
trade-off between all measures. Comparing Figure 91a and Figure 91b reveals
the additional advantage that the LocalRefinement achieves.

In addition to these summaries, the Tables 8-11 contain the detailed aver-
age results for all three stages and all quality norms. The codes are again
sorted ascendingly by their VPR SA runtime.

BoundingBox CriticalPathDelay WireLength OverUse
100

150

200

250

300

26
9.

91
%

19
9.

64
%

28
0.

95
%

22
07

.5
7%

14
0.

68
%

12
7.

68
%

13
2.

6% 14
9.

84
%

10
4.

16
%

10
1.

47
%

10
3.

54
%

10
3.

68
%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

INIT
FieldPlacer
FieldPlacer + LocalRe f inement

(a) Average

BoundingBox CriticalPathDelay WireLength OverUse
100

150

200

250

300

350

400

41
3.

8%

28
6.

66
%

43
1.

83
%

12
30

.6
8%

15
5.

97
%

14
5.

33
%

13
9.

29
%

21
3.

5%

10
1.

58
%

10
2.

48
%

10
0.

98
%

10
2.

71
%

Pe
rc

en
ta

ge
of

ov
er

al
l

V
PR

SA
re

su
lt

s
(%

)

INIT
FieldPlacer
FieldPlacer + LocalRe f inement

(b) Overall (total)

Figure 90: FieldPlacer + LocalRefinement (DISTANCE penalties)

BoundingBox CriticalPathDelay WireLength OverUse
100

120

140

160

180

200

220

240

13
4.

98
%

12
4.

24
%

12
6.

6%

21
5.

92
%

14
3.

06
%

12
7.

49
%

13
5.

08
%

21
7.

15
%

14
6.

23
%

13
0.

44
%

13
9.

32
% 15

3.
21

%

14
0.

68
%

12
7.

68
%

13
2.

6%

14
9.

84
%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer penalty type :
CENTER
NO
EQUAL
DISTANCE

(a) Basic FieldPlacer

BoundingBox CriticalPathDelay WireLength OverUse
100

105

110

115

120

125

130

10
4.

08
%

10
1.

85
%

10
3.

14
%

12
1.

86
%

10
6.

08
%

10
2.

28
%

10
5.

7%

11
9.

69
%

10
4.

36
%

10
1.

9% 10
4.

12
%

10
1.

16
%10

4.
16

%

10
1.

47
% 10
3.

54
%

10
3.

68
%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer penalty type :
CENTER
NO
EQUAL
DISTANCE

(b) Extended FieldPlacer

Figure 91: FieldPlacer - Overview

Interim Result 5. The results of the extended FieldPlacer along with the Local-
Refinement show that, on average, this approach leads to resulting placements
that are comparable to those of the VPR SA approach concerning all the mentioned
quality metrics. The basic FieldPlacer layout is used as a good starting point
for a LocalRefinement with reducing ‘swap-frame’. Even though the resulting
quality is comparable, the runtime of the FieldPlacer based placement is up to 10
times smaller (in VTR 7.0) and the runtime advantage of the extended FieldPlacer
increases with larger inputs due to an actually smaller runtime complexity of the
method.

213

architecture-aware field embedder for fpgas

The remainder of this Chapter will investigate the theoretical runtime behavior
of the algorithm and point out some further extensions that are planned for the future.
In addition, some very few insights to the actual implementation of the FieldPlacer
and FieldOGDF are given. The following Chapter will finally present how these
results can be further improved by repeated execution of the method.

5.7 theoretical runtime behavior of the fieldplacer

Like before, VD and ED represent the nodes and edges of the designs’ graph
representations (GD, see Table 12). Table 7 contains the summarized theoret-
ical runtimes of all parts of the method.

Most of all steps are dominated by sorting of nodes that can be done in
O(|VD|log|VD|) time. The used sort function from the C++ Standard Library
guarantees such a theoretical worst-case runtime of O(|VD|log|VD|) (cp. the
Working Draft, Standard for Programming Language C++ [170, 25.4.1.1]).

Traversals of all edges take additional O(|ED|) time so that the overall theo-
retical runtime of the FieldPlacer (without local refinement) is O(|VD|log|VD|+

|ED|).
Due to the fact that the number of MEM/MUL nodes is very small (in gen-

eral and) for the benchmark codes, the actual implementation uses a simple
O(|V2MEM/MUL|)) approach in Step 5 to avoid the setup of a quadtree. For up-
coming architectures with other conditions, this can easily be exchanged to
an appropriate method with O(|VMEM/MUL|log|VMEM/MUL|) runtime. How-
ever, like in the FM3 algorithm, this will only make sense for relatively
large numbers of such special nodes (the maximal number is 200 for the
benchmark codes in this work). As the slots on the architecture are relatively
evenly distributed, a very simple quadtree construction could in fact be used.
As a result, the FieldPlacer does not extend the theoretical runtime of the
included FM3 algorithm.

In practice, the runtime of FieldPlacer’s embedding methods is signifi-
cantly smaller than the time needed to perform the graph layout. A practi-
cally faster implementation of a spring embedder-based force-directed graph
layout routine, like the already mentioned work of Gronemann in OGDF

(see Section 4.2.4), could indeed help to improve the runtime of the overall
FieldPlacer method even more. However, it has to be investigated if such an
approach without multipoles is still as accurate as FM3 and if an accurate
edge length steering can be integrated.

The runtime of the LocalRefinement in the FieldPlacer implementation
is O(|VD|1.3333). This is due to the fact that (per default) each iteration block
performs |VD|1.3333 swaps and that the number of these iteration blocks is
limited to 100 in the FieldPlacer.

214

5.8 other architectures

Step Theoretical runtime Reference

1st Step: O(|VD|+ |ED|) Algorithm 9

2nd Step: O(|VD|log|VD|+ |ED|) Section 4.2.2

3rd Step: O(|VCLB|log|VCLB|) Algorithm 10, sorting dominates

= O(|VD|log|VD|)

4th Step: O(|VI/O|log|VI/O|+ |EI/O|) Section 5.5.4, sorting dominates, edges are initially

= O(|VD|log|VD|+ |ED|) traversed in the sum calculation once

O(|VI/O|log|VI/O|) Algorithm 11, sorting dominates

= O(|VD|log|VD|)

O(|F|) = O(C) Algorithm 12, for constant number of I/O faces |F|

O(|VI/O|log|VI/O|+ |EI/O|) Algorithm 13, sorting plus the number of

= O(|VD|log|VD|+ |ED|) connections between I/O and CLB nodes

5th Step: O(|V2MEM/MUL|)) generally with a very small VMEM/MUL , see Section 5.5.5,

(naive) VMEM/MUL is definitely smaller than the number of

available MEM/MUL slots on the architecture

5th Step : O(|VMEM/MUL|log|VMEM/MUL|)) Section 4.2.2

(quadtree) = O(|VD|log|VD|)

5½th Step: O(|VD|log|VD|+ |ED|) Section 4.2.2

6th Step: O(|VD|1.3333) Section 5.6.3 and runtimes in Figure 89, maximally

100 inner iterations with |VD|1.3333 swaps each

Table 7: Theoretical runtime of the FieldPlacer routines

Remark 108. The memory requirements are not analyzed in this work as they are
not limiting for the considered inputs on today’s systems. However, this can become
more important for future (larger) designs. In the benchmarked implementation, the
available memory has always been more than sufficient.

5.8 other architectures

Apart from the introduced heterogeneous FPGA architecture with I/O, CLB,
MEM and MUL blocks (see Section 2.3), other types or even utterly differ-
ent architectures can easily be integrated into the framework. Depending on
the typical number of elements of such a new block type and its influence
on the placement quality, an appropriate execution point in the consecutive
FieldPlacer steps has to be chosen. In the following, some ideas for such
integrations are given.

non-uniform clbs For extended architectures with non-uniform CLBs
(e. g., with CLB types CLB1 and CLB2 having different sizes/numbers of LUTs),
the FieldPlacer method could be applied with small adaptions. All steps,
except for Step 3 from Section 5.5.3, could operate exactly the way that is ex-
plained in Section 5.5. Step 3 could take the energy-minimized graph layouts

215

architecture-aware field embedder for fpgas

from Step 2 (Section 5.5.2) and partition the CLB nodes into node sets of type
1 (CLB1) and those of type 2 (CLB2). After that, the CLB slot assignment can
be performed independently for these types with the presented approach in-
cluding the different distribution strategies. Therefore, a distribution solely
for the CLB1 slots on the target architecture can be considered (based on the
availability of type 1 CLBs on the chip) and the type 1 CLBs can be embed-
ded with a chosen distribution strategy. Subsequently, this could be done
with the type 2 CLBs (CLB2) in the same way. For sure, more than 2 CLB
types are possible in that way.

further special block types If there are additional special block types
(like further DSPs) which are only sparsely available on the architecture, Step
5 could simply be repeated with the new block type to assign such nodes to
appropriate slots on the chip.

3d-fpgas The method can even be extended to place layouts for 3-di-
mensional FPGAs (cp. Kwon et al. [119]). For that purpose, a 3-dimensional
force-directed layout (see Figure 92) can be performed similarly to the FM3

approach with 3-dimensional coordinates, e. g., with a corresponding 3-di-
mensional multipole development (cp. Cottet and Koumoutsakos [42]) and
a 3-dimensional version of Hachul’s ‘sun-planet-moon’ multilevel model (see
Section 4.2.3).

The 3-dimensional graph layout G3Dlayout
D could be embedded by dividing

the nodes in horizontal slices (basically ordered by their z-coordinate and par-
titioned according to an architecture-related distribution, similarly to how it
is done in Step 3 of the FieldPlacer for the CLBs, see Figure 92). Then, a
2-dimensional embedding for each of these slices can be performed accord-
ing to the corresponding layer in the ‘FPGA cube’ (just as in Section 5.5.3).
To obtain a resulting placement, the 2-dimensional slices finally have to be
stacked with respect to their z-coordinate.

Figure 92: 3D Placement

However, it can be expected that the inter-slice communication in the lay-
out and the arrangement of I/O resources (and many other more specific
effects) in such hardware circumstances will demand for additional optimiza-
tion steps.

216

5.9 about the implementation

5.9 about the implementation

5.9.1 FMMM extensions (FieldOGDF)

The FieldOGDF library is a modified subset of the original OGDF library [36]
(version v2012.07) containing the energy-based layout techniques and all nec-
essary miscellaneous functionalities. The library has therefore been reduced
to a state without considerable dependencies to other non-system libraries. In
other words, FieldOGDF is a stripped-down force-directed graph layouting
library with some extra functionalities to communicate with the FieldPlacer
method and including new methodological options. All of these ‘special op-
tions’ are not mandatory but only used for further refinements (as it has al-
ready been described previously). Every other ‘ordinary’ graph layouting
method that outputs GML descriptions can be directly included. OGDF (and
FieldOGDF) are written in C++.

different norms to match the chip Apart from the ‘traditional’ us-
age of the Euclidean metric in the force system for the spring embedder, two
other norms were additionally implemented as options in FieldOGDF’s force
systems, namely the Manhattan and the Chebyshev distance (see Figure 80 for
resulting layouts). The different norms are applied in different parts of the
force calculations and they can be used for all forces or (like in the presented
method) only for the attractive forces by a simple switch in the implementa-
tion. The norm itself can even be chosen at runtime by setting an appropriate
member of the fmmm class (e. g., by fmmm.applied_norm(MANHATTAN_NORM)).

The rotation strategy is automatically set with respect to the chosen met-
ric but can be altered by a user in the same simple way (e. g., by setting
fmmm.innerrotationstrategy(ROT_45) for a 45◦ rotation). Instead of rotat-
ing each component of a graph after the other (like it is done in the origi-
nal FM3 implementation before the compaction to optimize the area of each
component in the drawing), the components are rotated simultaneously in
FieldFM3. This is important when using the EUCLIDEAN distance and choos-
ing the best rotation angle out of, e. g., 10 angles between 0◦ and 90◦ as the
evaluation of the Manhattan wirelength has to be conducted for all graph com-
ponents concurrently for each angle to choose the best one. The check which
norm to use is generally performed as far as possible outside of loops to re-
duce (time-consuming) branching within deeply nested loops. However, this
potentially comes at the price of more code lines by ‘duplicated’ loop nests.

handling and usage of fixed nodes in fmmm The node object in
FieldOGDF got an additional parameter to store whether a node is fixed or
free. This is necessary to perform the second energy phase and, in the future,

217

architecture-aware field embedder for fpgas

to handle a priori fixed nodes (see Section 2.2.1). To preserve the multilevel
functionality in this idea, the fixed or free status is inherited from a finer level
to a coarser one. Whenever a cluster node of a coarser representation in the
quadtree (see Section 4.2.1) contains at least one fixed child node, this cluster
node is accordingly also fixed. Consequently, a (cluster) node on any level is
only moved if it is not fixed, otherwise the node always remains in its position.
Whenever the movement of a free node that is connected to a fixed node has
to be calculated, the attractive and repulsive forces are not split between both
nodes but are acting entirely on the free node.

handling several nodes in the same place in fmmm Due to the
fact that several I/O nodes may be in the same position on the architecture (see
Section 5.5.4), the calculation of repulsive forces between such pairs has to
be skipped. This is not an issue, as the two nodes are fixed anyway and
will consequently not be moved at all. The original FM3 implementation in
the OGDF library generally handles such cases by moving the nodes slightly
away from each other (within a small epsilon radius) to avoid the singularity in
the repulsive force calculation from pairs of nodes with zero distance.

other modifications Several other modifications were introduced to
enable a flawless interaction with the FieldPlacer framework (see, for exam-
ple, Section 6.3). However, the general behavior of the FM3 method has, of
course, been preserved and the modifications are not essential for the appli-
cation within the FieldPlacer. For a basic usage in the FieldPlacer (without the
second energy phase), any layouting method that takes a .gml description of the
graph as an input and outputs a .gml description of the layout can be used
(the nodes’ numbers/labels should, in any case, be preserved to reassign the
nodes appropriately).

Remark 109. As a further extension, the nodes’ sizes could be scaled with the
nodes’ degrees in FM3 to create larger whitespace regions around nodes with higher
node degrees to, finally, facilitate the routing.

5.9.2 FieldPlacer framework

integration of the software The FieldPlacer is an independent im-
plementation and was tested in VTR 7.0 and VTR 6.0. It can easily be inte-
grated into these frameworks by adding the FieldPlacer sources to VPR’s
SRC folder and running a patch script to incorporate the placement method
into VTR’s (more precisely VPR’s) placer routine. In fact, the user can af-
terwards choose which placer to use in the GUI or by the command line
option --vprfieldplacer. All options can initially be configured in a header

218

5.9 about the implementation

file and can also be altered at runtime in the FieldPlacer GUI (a GUI exten-
sion of the VPR GUI, see Chapter 6) to test different strategies and options
interactively. As VTR 7.0 is written in C++ while VTR 6.0 was written in pure
C, the FieldPlacer implementation provides calls for both and the script to
patch VTR expects a parameter to decide which code base should be patched.
In detail, the integration of the FieldPlacer into both VTR versions modifies
several source code files to integrate the new options, graphics, outputs, etc.
However, the FieldPlacer method itself remains as decoupled as possible
and works rather encapsulated. To integrate the FieldPlacer into other FPGA
‘compile flows’, the framework only has to provide the architecture (see Sec-
tion 5.3.1) and the design’s description (see Section 5.5.1). After the entire pro-
cess, an export routine has to pass back the block positions of the final layout
to the compile flow.

graph debugger/tracer The graph debugger component of the Field-
Placer was a great help for the development of all presented features. It ex-
ports the graph representation from different steps of the FieldPlacer as .gml
files to make the effects and results of all steps easily comprehensible. This
feature is also very helpful to find and fix methodological bugs in the imple-
mentation. Several of the shown figures in this chapter are directly taken
from this graph debugger/tracer. Finally, it should support the development
of further extensions in the future. Furthermore, a command-line debugging
mode can be activated which, e. g., outputs the nodes’ parameters of the dif-
ferent NodeLists before and after being sorted (like coordinates, angles to the
barycenter, displacements, etc.) and other helpful information especially for fur-
ther development.

219

architecture-aware field embedder for fpgas

BoundingBox INIT (%-SA) FieldPlacer (%-SA) LocalRef (%-SA) VPR SA

stereovision3 7.45 (169%) 5.81 (132%) 4.93 (112%) 4.42

diffeq2 74.66 (190%) 56.26 (143%) 41.72 (106%) 39.28

ch_intrinsics 40.52 (167%) 27.55 (113%) 25.92 (107%) 24.29

diffeq1 109.34 (194%) 72.96 (130%) 59.83 (106%) 56.26

mkPktMerge 221.55 (245%) 149.40 (165%) 97.15 (107%) 90.49

sha 263.94 (198%) 174.72 (131%) 142.28 (107%) 133.38

mkSMAdapter4B 320.03 (215%) 193.56 (130%) 153.94 (103%) 148.76

raygentop 352.90 (199%) 225.67 (127%) 188.09 (106%) 177.26

boundtop 428.28 (222%) 253.86 (131%) 205.96 (107%) 193.11

or1200 734.43 (220%) 410.25 (123%) 345.75 (104%) 333.95

blob_merge 1097.47 (205%) 674.06 (126%) 550.83 (103%) 535.89

mkDelayWorker32B 2390.31 (282%) 1352.46 (160%) 870.63 (103%) 846.39

stereovision0 2293.54 (321%) 1060.00 (148%) 717.69 (100%) 714.26

stereovision1 3316.74 (246%) 1925.95 (143%) 1379.28 (102%) 1350.72

LU8PEEng 10374.94 (347%) 4237.84 (142%) 3062.93 (102%) 2991.71

stereovision2 24640.44 (340%) 10594.99 (146%) 7530.05 (104%) 7245.87

bgm 16431.28 (391%) 6416.73 (153%) 4265.35 (102%) 4201.02

mcml 52093.60 (537%) 16466.07 (170%) 8940.50 (92%) 9704.72

LU32PEEng 64018.88 (441%) 23247.50 (160%) 15409.35 (106%) 14516.25

AVERAGE 270% 141% 104%

Table 8: Extended FieldPlacer + LocalRefinement BoundingBox cost (sorted
ascendingly by VPR SA runtime)

CriticalPathDelay INIT (%-SA) FieldPlacer (%-SA) LocalRef (%-SA) VPR SA

stereovision3 1.91 (105%) 1.86 (102%) 1.83 (101%) 1.82

diffeq2 18.50 (120%) 16.95 (110%) 15.57 (101%) 15.47

ch_intrinsics 3.87 (120%) 3.66 (113%) 3.21 (100%) 3.23

diffeq1 23.21 (115%) 21.54 (107%) 20.29 (101%) 20.11

mkPktMerge 4.95 (118%) 4.43 (106%) 4.21 (100%) 4.19

sha 19.49 (156%) 15.83 (126%) 12.93 (103%) 12.53

mkSMAdapter4B 7.61 (146%) 6.02 (116%) 5.28 (101%) 5.21

raygentop 7.23 (149%) 5.65 (117%) 4.87 (100%) 4.85

boundtop 9.22 (150%) 7.10 (115%) 6.10 (99%) 6.15

or1200 17.36 (139%) 14.53 (116%) 12.55 (100%) 12.52

blob_merge 18.86 (199%) 12.00 (126%) 9.73 (103%) 9.49

mkDelayWorker32B 15.96 (221%) 9.21 (127%) 7.15 (99%) 7.22

stereovision0 10.07 (256%) 5.38 (137%) 4.01 (102%) 3.94

stereovision1 8.04 (143%) 6.59 (118%) 5.70 (102%) 5.60

LU8PEEng 289.54 (264%) 143.69 (131%) 114.32 (104%) 109.78

stereovision2 59.20 (365%) 29.62 (183%) 17.38 (107%) 16.22

bgm 75.28 (296%) 37.25 (147%) 25.34 (100%) 25.41

mcml 230.49 (306%) 111.28 (148%) 77.79 (103%) 75.37

LU32PEEng 463.65 (425%) 198.63 (182%) 110.89 (102%) 108.98

AVERAGE 200% 128% 101%

Table 9: Extended FieldPlacer + LocalRefinement CriticalPathDelay (sorted
ascendingly by VPR SA runtime)

220

5.9 about the implementation

WireLength INIT (%-SA) FieldPlacer (%-SA) LocalRef (%-SA) VPR SA

stereovision3 661 (224%) 472 (160%) 369 (125%) 295

diffeq2 9361 (208%) 6415 (142%) 4754 (106%) 4507

ch_intrinsics 4974 (182%) 3100 (114%) 2868 (105%) 2730

diffeq1 13144 (211%) 7999 (128%) 6564 (105%) 6234

mkPktMerge 22884 (254%) 14287 (158%) 9566 (106%) 9019

sha 50859 (172%) 30764 (104%) 29613 (100%) 29645

mkSMAdapter4B 50113 (233%) 27371 (127%) 21942 (102%) 21482

raygentop 52104 (213%) 29801 (122%) 25676 (105%) 24511

boundtop 68080 (225%) 37967 (125%) 31623 (104%) 30321

or1200 132830 (232%) 67785 (118%) 59573 (104%) 57326

blob_merge 275646 (208%) 146272 (110%) 133213 (100%) 132557

mkDelayWorker32B 375178 (286%) 192050 (146%) 133354 (102%) 131164

stereovision0 275808 (340%) 115217 (142%) 80164 (99%) 81054

stereovision1 416015 (241%) 227416 (132%) 174800 (101%) 172899

LU8PEEng 2203924 (391%) 722746 (128%) 571615 (101%) 564193

stereovision2 2997655 (332%) 1232651 (136%) 937581 (104%) 903465

bgm 3745187 (439%) 1239801 (145%) 853758 (100%) 853630

mcml 8912896 (439%) 2665026 (131%) 1835109 (90%) 2032197

LU32PEEng 14334144 (511%) 4180907 (149%) 3024876 (108%) 2802725

AVERAGE 281% 133% 104%

Table 10: Extended FieldPlacer + LocalRefinementWireLength (sorted ascend-
ingly by VPR SA runtime)

OverUse INIT (%-SA) FieldPlacer (%-SA) LocalRef (%-SA) VPR SA

stereovision3 0 (100%) 0 (100%) 0 (100%) 0

diffeq2 0 (100%) 0 (100%) 0 (100%) 0

ch_intrinsics 0 (100%) 0 (100%) 0 (100%) 0

diffeq1 0 (100%) 0 (100%) 0 (100%) 0

mkPktMerge 0 (100%) 0 (100%) 0 (100%) 0

sha 5245 (820%) 996 (156%) 629 (98%) 640

mkSMAdapter4B 2118 (3103%) 147 (216%) 76 (111%) 68

raygentop 3938 (9938%) 194 (490%) 51 (130%) 40

boundtop 13473 (3269%) 785 (190%) 427 (103%) 412

or1200 23975 (906%) 3274 (124%) 3646 (138%) 2645

blob_merge 134242 (553%) 35304 (146%) 24725 (102%) 24264

mkDelayWorker32B 29818 (767%) 4923 (127%) 4776 (123%) 3889

stereovision0 71320 (14140%) 818 (162%) 488 (97%) 504

stereovision1 164118 (1163%) 26304 (186%) 11087 (79%) 14114

LU8PEEng 1664017 (1653%) 224126 (223%) 104938 (104%) 100683

stereovision2 1651868 (1112%) 148722 (100%) 130772 (88%) 148495

bgm 2980165 (1628%) 546759 (299%) 184736 (101%) 183106

mcml 7171909 (1249%) 1219469 (212%) 453068 (79%) 574189

LU32PEEng 12463143 (1143%) 2364584 (217%) 1282125 (118%) 1090425

AVERAGE 2208% 176% 104%

Table 11: Extended FieldPlacer + LocalRefinement OverUse (sorted ascend-
ingly by VPR SA runtime)

221

architecture-aware field embedder for fpgas

FPG
A

design
statistics

G
raph

representation
statistics

M
EM

|V
D
|

#
C

on-
|E
D
|

D
esign/C

ode
6LU

Ts
#

C
LBs

#
M

U
Ls

bits
#

M
EM

s
#

I/O
s

#
Blocks

nections
#

Edges
D

ensity
D

om
ain

bgm
38537

2930
(2961)

11
(120)

0
0

(80)
289

(2016)
3230

89115
57686

1.11%
Finance

blob
m

erge
8067

543
(588)

0
(21)

0
0

(16)
136

(896)
679

14647
9406

4.09%
Im

age
Processing

boundtop
3053

233
(234)

0
(8)

32768
1

(9)
467

(576)
701

5518
3327

1.36%
R

ay
Tracing

ch_intrinsics
425

37
(48)

0
(2)

256
1

(1)
229

(256)
267

810
560

1.58%
M

em
ory

Init

diffeq1
362

36
(140)

5
(6)

0
0

(4)
258

(448)
299

1267
661

1.48%
M

athem
atics

diffeq2
272

27
(140)

5
(6)

0
0

(4)
162

(448)
194

917
433

2.31%
M

athem
atics

LU
32PEEng

86521
7128

(7154)
32

(288)
673328

168
(208)

216
(3136)

7544
220565

129453
0.45%

M
athem

atics

LU
8PEEng

25251
2104

(2120)
8

(78)
46608

45
(56)

216
(1696)

2373
62254

36616
1.30%

M
athem

atics

m
cm

l
107784

6615
(6745)

30
(276)

5210112
159

(180)
69

(3040)
6873

140593
81390

0.34%
M

edicalPhysics

m
kD

elayW
orker32B

5588
447

(1728)
0

(72)
532916

43
(48)

1064
(1536)

1554
11298

7178
0.59%

Packet
Processing

m
kPktM

erge
239

15
(494)

0
(18)

7344
15

(16)
467

(832)
497

1146
614

0.50%
Packet

Processing

m
kSM

A
dapter4B

1960
165

(234)
0

(8)
4456

5
(9)

400
(576)

570
4063

2373
1.46%

Packet
Processing

or1200
3075

257
(475)

1
(18)

2048
2

(12)
779

(800)
1039

7535
5048

0.94%
Soft

Processor

raygentop
1884

173
(221)

7
(8)

5376
1

(4)
544

(544)
725

4300
2648

1.01%
R

ay
Tracing

sha
2001

209
(221)

0
(8)

0
0

(4)
74

(544)
283

4308
2793

7.00%
C

ryptography

stereovision0
9567

905
(910)

0
(32)

0
0

(25)
354

(1120)
1259

11732
6223

0.79%
C

om
puter

V
ision

stereovision1
9874

889
(1064)

38
(45)

0
0

(30)
278

(1216)
1205

16392
8579

1.18%
C

om
puter

V
ision

stereovision2
11012

2395
(5504)

213
(231)

0
0

(154)
331

(2752)
2939

52377
26002

0.60%
C

om
puter

V
ision

stereovision3
174

13
(20)

0
(0)

0
0

(0)
41

(160)
54

182
72

5.03%
C

om
puter

V
ision

Table
12:H

eterogeneous
benchm

ark
codes

in
V

PR
7.0

-
occupied

and
(available)

slots

222

Part V

How can repeated runs improve the place-
ment?

This chapter presents the statistical framework which enframes the
FieldPlacer method to make use of repeated runs with further refine-
ments in the graph layouting phase (slack graph morphing). In addi-
tion, the influence of randomized decisions can be exploited. While the
force-directed graph layout is performed, the randomized decisions still
influence the entire process, e. g., when inserting nodes on a finer grid
‘near to’ their representative on the coarser grid in the hierarchical pro-
cess of FM3 (more specifically FieldFM3). Due to such slightly varying
initial constellations, the graph can still converge to different local min-
ima and the quality of the later embedded placement therefore still varies
when performing repeated runs. However, as it was shown in Chap-
ter 4, this influence is generally relatively small due to the multilevel
approach. The framework enables the application of different (potentially
mixed) target functions to meet the specific requirements in different use
cases. The system can even automatically analyze after how many gen-
erated placements a ‘significantly’ good assignment has been found. To
reduce the time of the repetitive process, it is furthermore investigated
whether a repetition of the first graph layout (before performing the ad-
ditional optimizations and the local refinement) already leads to good
placements or if the entire process should be repeated several times.

As a summary, this chapter delivers suggestions about how to use and
improve the FieldPlacer results in the statistical framework through
repetitive runs.

6
Repeated runs in a statistical framework
“Everything not saved will be lost.”

— Nintendo ‘Quit Screen’ message —

Contents
6.1 The FieldPlacer framework 226
6.2 Inner and outer repetitions . 227
6.3 Slack Graph Morphing for improved critical path delay 230
6.4 Benchmark: Repeated FieldPlacer runs 233

6.4.1 Slack graph morphing for improved critical path delay 233
6.4.2 Backup and restore for improved overuse 236
6.4.3 Combined target function 237

6.5 MCNC benchmarks . 238
6.6 Statistics for significantly good placements 241

6.6.1 Adaptive termination criteria 243
6.7 Graphical User Interface (GUI) 247

225

repeated runs in a statistical framework

6.1 the FieldPlacer framework

The previous chapter presented the FieldPlacer method for heterogeneous
FPGAs and showed that it can be used to create accurate placements that are
comparable (in terms of different quality metrics) to those obtained by VPR
SA but in much shorter time. The runtime advantage of the method was in
fact shown to become larger with increasing input sizes.

However, an even higher quality in terms of different measures could be
desired regardless of an increased placer runtime. This can especially be the
case for final implementations that are synthesized into delivered products.
It has already been shown that, self-evidently depending on the applied
router, the placer runtime can be relatively small compared to the routing
time. Thus, the FieldPlacer framework includes further functionalities to
improve the placement at the price of a longer placer runtime. To this end,
multiple placements are consecutively generated. Due to randomized assign-
ments of node coordinates, the result may (even with the multilevel frame-
work) vary and lead to different local optima. Anyhow, this effect should not
be too immense due to the hierarchical layout procedure (see Section 5.5.2
and Section 4.2.2).

Instead of repeating the entire workflow, it could already be advantageous
to repeat only the basic FieldPlacer (graph layouting phase for G

layout
D and

embedding) while choosing the best embedding (subject to a predefined met-
ric) and (potentially) proceed with the LocalRefinement to save the re-
peated and relatively high refinement runtimes (see Section 6.2). For this
purpose, a statistical framework was implemented around the FieldPlacer
which can rate, backup and restore the placements generated in repeated runs.
Along with a predefined objective function (e. g., minimize the critical path de-
lay), a backup of the best obtained placement is created and restored whenever
a new placement is inferior to this one. In addition to the simple exploitation
of ‘randomness’, the slack graph morphing procedure can be used to optimize
for low slack in the system and, consequently, for a small critical path delay by
incorporating a timing analysis to modify the graph model. This process is
described in Section 6.3. Finally, combined target functions (e. g., small critical
path delay and small overuse) are possible (see Section 6.4.3) and adaptive termi-
nation criteria in the repeated procedure are also applicable (see Section 6.6.1).

Figure 93 shows the framework’s workflow which already includes the
FieldPlacer and FieldOGDF from the previous chapter. It will be ex-
plained and applied in the following sections.

Remark 110. The following sections will describe some possibilities of how the
FieldPlacer framework can be used by means of examples. Several other use cases
are possible, always depending on the needs of the situation.

226

6.2 inner and outer repetitions

Synthesis
Read in

circuit description

Extract connectivity

Create
data-structures

Graph setup

FieldPlacer
embedding

FieldPlacer
embedding

LocalRe f inement

Routing

Force-directed
graph layout

Second
energy phase

repeat?

repeat?

no

no

yes

yes

in
ne

r
re

pe
ti

ti
on

ou
te

r
re

pe
ti

ti
on

backup or restore
placement

Embedding Framework (FieldPlacer)

Statistical Framework (FieldPlacer)

Graph Framework (FieldOGDF)

Figure 93: Statistical framework surrounding the FieldPlacer

Remark 111. Following the results from the previous chapter, all benchmarks are
conducted with the MANHATTAN metric for the graph layout (with 45◦ rota-
tion) and the DISTANCE distribution for the CLB assignment (without a second
energy phase).

6.2 inner and outer repetitions

Figure 93 depicts the statistical framework surrounding the FieldPlacer with
the two already mentioned options for repetitions.

Assuming that a local refinement is principally desired to improve the qual-
ity of the placement, the first option is to perform inner repetitions. In this
case, the graph layout is performed multiple times and each G

layout
D graph is

embedded with the basic FieldPlacer method. Any of the presented metrics
(bounding box cost, wirelength, critical path delay, overuse) can be used to rate
these basic embeddings and if an embedding is better than the best one that
has been found so far, the solution is backed and the next layout is created.
This process can, for example, be repeated until a defined number of itera-

227

repeated runs in a statistical framework

tions has been performed. After restoring the best found solution from the
backup, the local refinement can furthermore improve this layout.

Instead of only repeating the basic FieldPlacer method in that way, the
outer repetition option can be activated to repeat the entire extended FieldPlacer
multiple times and choose the best placement (again subject to a predefined
objective function). This process can either be repeated interactively by the
user until a satisfying solution has been created or automatically with either
a constant number of repetitions or with an adaptive termination criterion
(see Section 6.6.1).

Repeating the entire extended FieldPlacer (including the local refinement in
every repetition) is undoubtedly more time consuming than repeating only
the basic FieldPlacer before a unique final local refinement phase. However,
repeating only the inner part of the method would only make sense if there
is a high correlation between the quality before and after the local refinement
(concerning the chosen objective function). To investigate this, 1000 indepen-
dent extended FieldPlacer layouts of the ‘most average’ VPR benchmark code
(stereovision2, see Section 5.6.3) have been created.

Due to the randomized decisions in the graph layouting phase, the quality
of the results concerning the different norms varies. Moreover, the number of
iterations in the spring embedder method is restricted (by using the default
configuration, see Table 3) and thus the system may not have converged on
all levels with the default configuration of the multilevel layout.

Remark 112. Finding the ‘right’ parameters (like the maximal number of itera-
tions for each graph representation and level) for the force-directed layout method,
matching various inputs, is an art in itself. The default configuration taken from
FM3 works particularly well for many graphs (just as for most of the graph repre-
sentations obtained from the FPGA designs in this work). However, more advanced
techniques to set these parameters could be included in the future. Nevertheless, the
method already combines several termination criteria by stopping, for example, either
if the overall force in the system has converged or if the maximal number of itera-
tions has been reached on each level (more details can be found in the dissertation
of Hachul [81] as the termination criteria for the Glayout

D layout phase have not been
modified in FieldOGDF).

Figure 94 shows scatter plots and the linear regression lines of the men-
tioned metrics before and after the local refinement. While a positive correla-
tion between the measurements is principally present for the bounding box
cost, the wirelength and the overuse, the slope of the regression line is far
away from a perfect correlation (with a slope of 1.0). In fact, the results do scat-
ter conspicuously around the regression line so that a clear trend is hardly
distinguishable. The best correlation (with a slope of 0.38 in this example mea-
surements) exists for the overuse metric. For this metric, a good (small) overuse

228

6.2 inner and outer repetitions

before the local refinement generally results in a small overuse after local refine-
ment. For the critical path delay, no measurable correlation is present at all.
This is due to the fact that the critical path delay is the maximal delay on
one path in the layout and this norm is not as ‘continuous’ as the others are.
While an improvement of the bounding box cost in the refinement phase
does relatively directly lead to an improvement of the wirelength, this is
not necessarily the case for the critical path delay. It depends on the random
choice of logic blocks to be swapped in the refinement phase and on the fact,
how often a pair of logic blocks is taken that can improve the critical path
when being swapped. In addition, the critical path itself varies if, due to an
improvement of one path, another one becomes the most critical one.

1.03 1.04 1.05 1.06 1.07 1.08
7.3

7.4

7.5

7.6

7.7

·104

regression: BBa f ter = 0.34 · BBbefore + 3836.2

BB before LocalRe f inement

B
B

af
te

r
Lo

ca
lR

ef
in

em
en

t

·103

(a) BoundingBox cost

26 28 30 32 34
16

17

18

19

20

21 regression: CPDa f ter = −2.4 · 10−4 · CPDbefore + 17.6

CPD before LocalRe f inement (ns)

C
PD

af
te

r
Lo

ca
lR

ef
in

em
en

t
(n

s)

(b) CriticalPathDelay

1.19 1.2 1.21 1.22 1.23 1.24 1.25 1.26
9.1

9.2

9.3

9.4

9.5

9.6

·106

·105

regression: WLa f ter = 0.27 · WLbefore + 6.02 · 105

WL before LocalRe f inement

W
L

af
te

r
Lo

ca
lR

ef
in

em
en

t

(c) WireLength

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
1.1

1.2

1.3

1.4

1.5

·105

·105

regression: OUa f ter = 0.38 · OUbefore + 74876

OU before LocalRe f inement

O
U

af
te

r
Lo

ca
lR

ef
in

em
en

t

(d) OverUse

Figure 94: Correlation of quality before and after LocalRefinement (code:
stereovision2)

229

repeated runs in a statistical framework

As a summary it may be stated that the correlation between results before
and after the local refinement is, though existent for several norms, not suf-
ficiently high if results of highest quality are desired. This is especially the
case for the important critical path delay, which rates the final performance of
the chip design (in terms of speed). Thus, outer repetitions are applied in the
following investigations.

One run of the entire VPR benchmark set with the FieldPlacer + Local-
Refinement took 70.11 s on average while VPR SA needed 680.03 s. Thus,
the extended FieldPlacer was (for this complete benchmark set on the test
system) about 10 times faster then VPR SA.

For a fair comparison, the entire extended FieldPlacer method is conse-
quently repeated 10 times to obtain better results in the following. As a
result of this, the application of the repeated extended FieldPlacer method
takes approximately the same time as the VPR SA approach for the com-
plete benchmark set.

6.3 slack graph morphing for improved critical path delay

Choosing the best placement out of several ones with randomized influences
is one possibility to improve the final quality of the placement at the cost
of a higher overall runtime. However, the FieldPlacer framework includes
another mechanism to specifically improve the critical path delay involving
the timing analysis of the entire design after each placement, which has to
be performed to rate the critical path delay anyway. Sections 2.2.3 and 2.2.4
already introduced this method which finally estimates the slack on each
path in the design. Slack appears if one signal has to wait for another one
to proceed the signal processing. As a consequence, the critical path of a
design is the path with no slack and highest delay. The slack is essentially
a result of different amounts of delays on joining paths while the delays
occur due to different delay types (see Section 2.2.2). While the logic and
the propagation delays are independent from the placement, the wire delay
depends on the distances between connected logic blocks and thus on the
(Manhattan) edge lengths in the graph layout. Other influencing facts (e. g.,
more detailed Resistor-Capacitor effects) that depend on the detailed routing
are not considered at that point.

The idea of the slack graph morphing in the FieldPlacer is as follows: A path
with high slack finally has to ‘wait’ for other signals relatively long at the next
synchronization point. Thus, the wires on such paths can be elongated without
worsening the overall timing as long as the delay added by the elongation
does not exceed the available slack. This opens up the possibility to spread
such nodes further away from each other to let other nodes become more

230

6.3 slack graph morphing for improved critical path delay

close to each other. This opportunity can directly be used for paths with small
or even no slack in the design. The connections on such paths could be shrunk
to reduce the wire delay and possibly even the critical path (delay) of the
design. Thus, the elongation of un-critical paths opens new possibilities for
improvements of the critical ones (as the numbers of slots and routing resources
on the architecture are both restricted). In this way, the system can improve
the timing of the final layout in each repetition and an ‘equilibrium slack state’
can be reached after a number of such iterations. During this process, the
critical path (not only its delay) may even change as the optimization of one
path can make another one critical.

Remark 113. If negative slack is present in the design (e. g., due to user-defined
timing constraints), all slack values are constantly shifted by the most negative slack
to make all slack values non-negative and maintain the ratios of slack to each
other in the system (cp. Remark 8).

The slack graph morphing in the FieldPlacer framework is based on the fol-
lowing model. First, the absolute slack slk(e) on each connection/edge e is
related to the average slack slk = 1

|E|

∑
e∈E

slk(e) in the placement in equa-

tion (61) to get a relative measure of the slack on each edge.

s̃lk(e) =
slk(e)

slk

=
slk(e)

1
|E|

∑
e∈E
slk(e)

= |E|
slk(e)∑

e∈E
slk(e)

(61)

A resulting value of s̃lk(e) = 1.0 consequently means that the slack on
the edge e is just on the average of the design. A value that is smaller than
1.0 corresponds to a connection with lower-than-average slack (more critical)
and connections with s̃lk(e) > 1.0 have an over-average amount of slack
(less critical). Using this information, critical edges should be shrunk while
uncritical edges can be lengthened. The FieldPlacer framework uses the zero-
energy length in the force-system of the spring embedder method to adjust
such imbalances (see Section 4, especially Sections 4.1.2 and 4.2). By default
(and therefore also in the first iteration of the repeated flow), the zero-energy
length is set to lzero(e) = 1.0 for all edges. After every iteration, this value is
updated by averaging the actual zero-energy length of each edge with the new

231

repeated runs in a statistical framework

calculated relative slack value obtained from the new layout’s timing analysis
(see equation (62)).

lzeronew (e) =
lzeroold (e) + s̃lknew(e)

2
(62)

Remark 114. For a more aggressive shrinking, (lzeronew (e))b with b > 1 could be
used instead of the applied case with b = 1.

In each repetition, the sum of all s̃lk(e) values is |E|. Thus, the relative
amount of elongation of edges is exactly compensated by shrinking of other
edges (see equation (63)).

∑
e∈E
s̃lk(e) =

∑
e∈E

|E|
slk(e)∑

e∈E
slk(e)

(see equation (61))

= |E|
∑
e∈E

slk(e)∑
e∈E
slk(e)

= |E|
1∑

e∈E
slk(e)

∑
e∈E
slk(e)

= |E| (63)

For this part of the FieldPlacer framework in particular, the option of re-
moving parallel (multiple) edges should be activated to make an accurate steer-
ing of connections’ lengths possible. As already mentioned, the FM3 method
is exceptionally well suited for this purpose as it creates layouts that meet
the requirements of the defined zero-energy lengths very precisely (see Re-
mark 49). When multiple edges e1, e2, . . . , en have been combined to one
common edge e within the FieldPlacer framework, this resulting edge e
consequently gets a slack of s̃lk(e) = min

i=1,...,n
s̃lk(ei) to be as restrictive as

possible.

Remark 115. In each repetition, the presented shrinking method with equation (62)
maximally halves edges’ lengths that are part of the critical path (with s̃lknew = 0.0)
as all edges initially have a zero-energy length of 1.0.

The following section will evaluate experimental results of the slack graph
morphing in particular and of repeated runs in the FieldPlacer framework
with various objectives in general.

232

6.4 benchmark : repeated fieldplacer runs

6.4 benchmark : repeated fieldplacer runs

The correlations between bounding box cost and wirelength or bounding box cost
and critical path delay of a design, and also the anticorrelation between bound-
ing box cost and overuse (and the connection between overuse and routability),
have already been shown in Section 5.5.6. Thus, only the two main contradict-
ing targets critical path delay and overuse will be considered in the following.

6.4.1 Slack graph morphing for improved critical path delay

Due to the fact that the critical path delay is the measure of resulting speed of
a circuit and as the estimated critical path delay after placement correlates very
well with the final critical path delay after routing (see Figure 73), this target is
often the prevalent optimization goal. Section 6.3 already introduced the slack
graph morphing procedure in the FieldPlacer framework which modifies the
desired zero-energy lengths for edges in G

layout
D in the force system of the

spring embedder routine towards better timing by reduced slack on connec-
tions.

Figure 95a depicts the slack sum of the entire design when performing 10
(outer) repetitions without the slack graph morphing functionality. The exper-
iment as a whole was repeated 10 times and the resulting slack sums are
depicted as dashed ‘curves’ in different colors. The black line marks the av-
erage value of these 10 experiments for each repetition. The results obtained
have no recognizable trend but are (randomly) sometimes slightly better and
sometimes worse. The figure shows that simply choosing the best obtained
solution would result in a slack sum of 7.299 · 10−4 seconds while it is unpre-
dictable in which iteration such good results will be achieved. On the average
(the black line), the results remain rather constant during the repetitions.

In contrast to these results, Figure 95b shows the behavior with the slack
graph morphing functionality activated. It is immediately plain to see that the
overall slack sum tends to decrease in the repetitive process in each of the
10 experiments and, as a result, also on average. Already after one morphing
iteration (repetition), the average slack sum is smaller (6.518 · 10−4 seconds)
than the best result obtained by the previously presented 10 random runs. As
early as after some very few iterations, the slack sum stagnates to a steady
equilibrium state. Appendix A.8 visualizes the logic blocks and the slack on
their interconnections for the first four repetitions of this process. The time se-
ries of graphs in this appendix thereby depicts the convergence to the steady
state. After 10 iterations, the best generated placement has an average slack
sum of only 4.641 · 10−4 seconds.

233

repeated runs in a statistical framework

0 1 2 3 4 5 6 7 8 9

0.7

0.8

0.9

1

1.1

·10−3

repetition

ab
so

lu
te

Sl
ac

kS
um

(s
)

(a) without slack graph morphing

0 1 2 3 4 5 6 7 8 9
0.4

0.6

0.8

1

·10−3

repetition

ab
so

lu
te

Sl
ac

kS
um

(s
)

(b) with slack graph morphing

Figure 95: SlackSum in repeated runs (code: stereovision2)

0 1 2 3 4 5 6 7 8 9

17

18

19

repetition

ab
so

lu
te

C
ri

ti
ca

lP
at

hD
el

ay
(n

s)

(a) without slack graph morphing

0 1 2 3 4 5 6 7 8 9

16

16.5

17

17.5

18

repetition

ab
so

lu
te

C
ri

ti
ca

lP
at

hD
el

ay
(n

s)

(b) with slack graph morphing

Figure 96: CriticalPathDelay in repeated runs (code: stereovision2)

Even though a small slack sum in the placed design tends to facilitate a
small critical path delay, it has been explained before that this is not necessar-
ily a one-to-one correspondence. Figure 96 shows the results for the critical
path delay (cp. with Figure 95). Again, without the slack graph morphing (see
Figure 96a), the obtained results are randomly better or worse in each repe-
tition. With activated slack graph morphing (see Figure 96a), the critical path
delay also almost continually decreases with every repetition. However, the
trend is (as expected) by far not as clear as the one of the slack graph sum. How-
ever, finally the critical path delay can be remarkably reduced by affecting the
slack on connections through the wire delay in this method.

234

6.4 benchmark : repeated fieldplacer runs

Figure 97 depicts the critical path delay for each code after the application
of the extended FieldPlacer without repetitive runs (FieldPlacer + Local-
Refinement), with 10 outer repetitions but without the slack graph morphing
(. . . + OUTER REP) and, finally, additionally with the slack graph morphing
(. . . + SlackGraph). Figure 98 contains the overview for the entire benchmark
set including the other metrics.

ste
re

ov
isi

on3

diff
eq

2

ch
in

tri
nsic

s

diff
eq

1

m
kPktM

erg
e

sh
a

m
kSM

Adap
ter

4
B

ray
gen

to
p

boundto
p

or1
2
0
0

blob
m

erg
e

m
kDela

yW
ork

er
3
2
B

ste
re

ov
isi

on0

ste
re

ov
isi

on1

LU8
PEEng

ste
re

ov
isi

on2

bgm
m

cm
l

LU3
2
PEEng

90

95

100

105

110

Pe
rc

en
ta

ge
of

V
PR

SA
C

ri
ti

ca
lP

at
hD

el
ay

(%
)

FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP
FieldPlacer + LocalRe f inement OUTER REP + SlackGraph

Figure 97: CriticalPathDelay results for all codes (sorted ascendingly by VPR SA runtime)

BoundingBox CriticalPathDelay WireLength OverUse
95

100

105

110

115

10
4.

16
%

10
1.

47
% 10

3.
54

%

10
3.

68
%

10
4.

03
%

99
.1

7%

10
3.

76
% 10

5.
36

%

10
5.

26
%

98
.1

3%

10
4.

49
%

11
0.

96
%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP
FieldPlacer + LocalRe f inement OUTER REP + SlackGraph

(a) Average

BoundingBox CriticalPathDelay WireLength OverUse
95

100

105

110

115

10
1.

58
%

10
2.

48
%

10
0.

98
% 10

2.
71

%

10
1.

56
%

99
.9

6% 10
0.

84
%

10
3.

25
%

10
3.

59
%

99
.0

8%

10
2.

17
%

10
9.

29
%

Pe
rc

en
ta

ge
of

ov
er

al
l

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP
FieldPlacer + LocalRe f inement OUTER REP + SlackGraph

(b) Overall (total)

Figure 98: FieldPlacer + LocalRefinement + Repetitions

While the repetitive runs already contribute to improve the critical path de-
lay (simply by choosing the placement with the smallest critical path delay
out of 10 outer repetitions), the slack graph morphing improves the results
even further. Although the critical path delay is reduced in that way, the coun-
teracting overuse norm is instead increased. This effect has been discussed
before in Chapter 5. Finally, the critical path delay of the extended FieldPlacer
with slack graph morphing yields better results than VPR SA.

235

repeated runs in a statistical framework

6.4.2 Backup and restore for improved overuse

Instead of optimizing for a smallest critical path delay, an improved routabil-
ity can be desired to achieve more ‘relaxed’ routings with smaller channel
widths or shorter routing times.

As for the critical path delay without slack graph morphing, outer repeti-
tions can be performed while accepting a new placement if it improves the
currently best one (in this case in terms of smallest overuse).

The final results (after 10 outer repetitions) for each code are shown in Fig-
ure 99. An overview with all metrics is given in Figure 100.

ste
re

ov
isi

on3

diff
eq

2

ch
in

tri
nsic

s

diff
eq

1

m
kPktM

erg
e

sh
a

m
kSM

Adap
ter

4
B

ray
gen

to
p

boundto
p

or1
2
0
0

blob
m

erg
e

m
kDela

yW
ork

er
3
2
B

ste
re

ov
isi

on0

ste
re

ov
isi

on1

LU8
PEEng

ste
re

ov
isi

on2

bgm
m

cm
l

LU3
2
PEEng

40

60

80

100

120

140

Pe
rc

en
ta

ge
of

V
PR

SA
O

ve
rU

se
(%

)

FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP

Figure 99: OverUse results for all codes (sorted ascendingly by VPR SA runtime)

BoundingBox CriticalPathDelay WireLength OverUse
85

90

95

100

105

110

115

10
4.

16
%

10
1.

47
% 10
3.

54
%

10
3.

68
%

10
3.

78
%

10
2.

58
%

10
3.

1%

87
.4

7%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP

(a) Average

BoundingBox CriticalPathDelay WireLength OverUse
85

90

95

100

105

110

115

10
1.

58
%

10
2.

48
%

10
0.

98
%

10
2.

71
%

10
1.

13
%

10
2.

63
%

99
.2

4%

96
.4

2%

Pe
rc

en
ta

ge
of

ov
er

al
l

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP

(b) Overall (total)

Figure 100: FieldPlacer + LocalRefinement + Repetitions

As for the critical path delay, the outer repetitions improve the results in
the direction of the desired target (small overuse in this case). On the other
hand, the critical path delay is slightly increased by this choice. The counteract-
ing characteristic of both metrics explains this fact once again. The repeated

236

6.4 benchmark : repeated fieldplacer runs

extended FieldPlacer method can yield better results than VPR SA for most
of all the individual codes and also in the general view.

While the previous two benchmark sets showed that the repeated runs can
improve the resulting quality for one or the other measure, the following section
will describe how combined target functions can be applied in repeated runs.

6.4.3 Combined target function

Explicitly improving the critical path delay in repeated runs worsens the overuse
in the resulting layout and vice versa due to the principally contradicting
characteristics of both targets. However, an ‘optimization’ in both directions
simultaneously can often be desirable. Thus, the FieldPlacer framework in-
cludes the ability to use a combined measure to choose a layout with possibly
small CriticalPathDelay and small OverUse at the same time. The trade-off can
simply be steered by a function representing the convex combination of all
desired targets.

Consider n measures of cost cj0, . . . , cjn−1 of a placement generated in rep-
etition j. Every run (j = 0, . . . , r− 1) generates such a set of measures so that
c
j
i denotes the placement’s cost of type i in repetition j. As the different cost

measures can be in very different number ranges (e. g., critical path delay in
nanoseconds vs. overuse), each cost value cji of a repetition (j > 0) is scaled by

the first obtained value (c0i). Consequently, the relative cost measure c̃ji =
cji
c0i

is used to transform all cost values to a more common scale. Thus, the rel-
ative measure rates how much better or worse the costs in repetition j are
compared to the first obtained layout. Due to this common scale, a convex
combination can be used to provide an ‘intuitive and meaningful’ trade-off
between the different cost values (see equation (64)).

Cj =
∑

i=0,...,n−1

λi · cji with λi > 0 and
∑

i=0,...,n−1

λi = 1 (64)

Cj represents the combined measure for the placement generated in run
j. As an example, a benchmark set combining the two already investigated
and basically contradicting measures critical path delay (c0) and overuse (c1)
in equal shares (λ0 = λ1 = 0.5) was executed.

With the combined cost function and activated slack graph morphing, good
layouts concerning the desired trade-off between the two measures are cho-
sen and, as a result, both metrics are improved on the average (see Fig-
ure 101). In fact, all cost measures are further improved by the application
of this combined target (in total). Figure 102 contains the resulting costs for
each code and for both cost types.

237

repeated runs in a statistical framework

BoundingBox CriticalPathDelay WireLength OverUse
85

90

95

100

105

110

115

10
4.

16
%

10
1.

47
% 10
3.

54
%

10
3.

68
%

10
4.

65
%

10
0.

17
%

10
3.

61
%

91
.4

4%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP + SlackGraph

(a) Average

BoundingBox CriticalPathDelay WireLength OverUse
85

90

95

100

105

110

115

10
1.

58
%

10
2.

48
%

10
0.

98
%

10
2.

71
%

10
1.

54
%

10
1.

41
%

99
.3

%

97
.0

9%

Pe
rc

en
ta

ge
of

ov
er

al
l

V
PR

SA
re

su
lt

s
(%

)

FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP + SlackGraph

(b) Overall (total)

Figure 101: FieldPlacer+LocalRefinement + Repetitions (combined target)

Remark 116. For the smallest five benchmark codes, the overuse is always 0 and
therefore exactly the same for the different approaches (cp. Figures 99 and 102b).

Remark 117. Graph layouts (Glayout
D) for all VPR benchmark codes are presented in

Appendix A.7.

6.5 mcnc benchmarks

It has been discussed in Section 2.2.5 that (and why) heterogeneous FPGAs
become more and more important in the field of reconfigurable logic archi-
tectures. The FieldPlacer approach is specifically targeted at creating place-
ments for such heterogeneous FPGA architectures. However, a comparison for
a subset of the former ‘classical’ and frequently applied benchmark set from
the Microelectronics Center of North Carolina (MCNC) [188] for general gate ar-
rays (not only FPGAs) is briefly presented in the following. These are 20
large circuits from the MCNC set which are, in addition to VTR, provided by
the University of Toronto1. These codes are the basis for evaluation in their
‘FPGA Place-and-Route Challenge’2.

Instead of creating placements for the heterogeneous flagship architecture
of VTR with the ‘Comprehensive Architecture’ file (cp. Section 5.3), the classical
homogeneous k4_N4_90nm architecture with four 4-LUTs per logic cluster and
no hard blocks has been used for these rather ‘simple’ designs (see Luu et
al. [130]). The FieldPlacer approach adapts to the architecture automatically.
For example, without special blocks, the 5th step in the flow is skipped.

The designs in the MCNC benchmark set are relatively small. The largest
example in the set is the clma code. After packing, it consists of just 2298
blocks (2154 ‘smaller’ CLBs, 62 input and 82 output pins) while the largest
VTR code LU32PEEng contains 7544 blocks (7128 CLBs, 32 MULs, 168 MEMs,

1 http://www.eecg.toronto.edu/~vaughn/vpr/download.html (accessed 15 Jul 2016)
2 http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html (accessed 16 Jul 2016)

238

http://www.eecg.toronto.edu/~vaughn/vpr/download.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html

6.5 mcnc benchmarks

ste
re

ov
isi

on3

diff
eq

2

ch
in

tri
nsic

s

diff
eq

1

m
kPktM

erg
e

sh
a

m
kSM

Adap
ter

4
B

ray
gen

to
p

boundto
p

or1
2
0
0

blob
m

erg
e

m
kDela

yW
ork

er
3
2
B

ste
re

ov
isi

on0

ste
re

ov
isi

on1

LU8
PEEng

ste
re

ov
isi

on2

bgm
m

cm
l

LU3
2
PEEng

90

95

100

105

110
Pe

rc
en

ta
ge

of
V

PR
SA

C
ri

ti
ca

lP
at

hD
el

ay
(%

)

FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP + SlackGraph

(a) CriticalPathDelay

ste
re

ov
isi

on3

diff
eq

2

ch
in

tri
nsic

s

diff
eq

1

m
kPktM

erg
e

sh
a

m
kSM

Adap
ter

4
B

ray
gen

to
p

boundto
p

or1
2
0
0

blob
m

erg
e

m
kDela

yW
ork

er
3
2
B

ste
re

ov
isi

on0

ste
re

ov
isi

on1

LU8
PEEng

ste
re

ov
isi

on2

bgm
m

cm
l

LU3
2
PEEng

40

60

80

100

120

140

160

Pe
rc

en
ta

ge
of

V
PR

SA
O

ve
rU

se
(%

)

FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP + SlackGraph

(b) OverUse

Figure 102: CriticalPathDelay and OverUse results for all codes (sorted ascendingly by
VPR SA runtime)

114 input and 102 output pins, see Table 12) paired with almost 10 times as
many nets in the circuit. Thus, the runtime of the MCNC benchmarks is still
relatively small (from today’s perspective). Details about the MCNC codes
can, for example, be found on the referenced homepage of the ‘FPGA Place-
and-Route Challenge’. Consequently, the runtime advantage of the FieldPlacer
framework is not as remarkable as for the largest VTR benchmarks. Fig-
ure 103 shows the average runtime of single extended FieldPlacer runs with
LocalRefinement (once again relative to the respective VPR SA runtimes
and sorted ascendingly by these).

Like for the VTR benchmarks, the advantage of the FieldPlacer concern-
ing the runtime rises with increasing input size. The relative runtime of the
graph layouting is smaller for larger inputs and the time for the actual em-
bedding with the FieldPlacer is relatively small.

239

repeated runs in a statistical framework

tse
ng

ex
5
p

ap
ex

4

m
ise

x3
alu

4

diff
eq s2

9
8

dsip se
q

ap
ex

2

bigkey des

ell
ip

tic fri
sc

sp
la

ex
1
0
1
0

pdc

s3
8
4
1
7

s3
8
5
8
4
.1

clm
a

0

10

20

30

40

50

60

70
Pe

rc
en

ta
ge

of
V

PR
SA

ru
nt

im
e

re
su

lt
s

(%
)

FieldPlacer (graph layout)
FieldPlacer (embedding)
LocalRe f inement

Figure 103: MCNC FieldPlacer runtime results (DISTANCE penalties, sorted as-
cendingly by VPR SA runtime)

Figure 105 shows that the quality concerning the different measures is
improved by every ‘evaluation level’. For a direct comparison, the outer rep-
etitions are again performed 10 times with activated slack graph morphing for
improved critical path delay (which pays off). The quality that has finally
been achieved is comparable to the one from the VTR benchmarks. However,
it has to be noted that the 10 FieldPlacer repetitions for this benchmark set
took longer than one VPR SA run (due to the smaller input codes). Neverthe-
less, 10 repetitions are applied for the comparability to the previous sections.
Section 6.6 presents adaptive stopping criteria to overcome the need of statically
a priori defined numbers of repetitions.

Figure 104 shows the detailed critical path delay results for all codes in the
set, once again relative to the VPR SA result (repeated 10 times and averaged
as before).

tse
ng

ex
5
p

ap
ex

4

m
ise

x3
alu

4

diff
eq s2

9
8

dsip se
q

ap
ex

2

bigkey des

ell
ip

tic fri
sc

sp
la

ex
1
0
1
0

pdc

s3
8
4
1
7

s3
8
5
8
4
.1

clm
a

100

150

200

250

300

350

400

Pe
rc

en
ta

ge
of

V
PR

SA
C

ri
ti

ca
lP

at
hD

el
ay

(%
)

INIT
FieldPlacer
FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP
+SlackGraph

Figure 104: MCNC CriticalPathDelay (DISTANCE penalties, sorted ascendingly by
VPR SA runtime)

240

6.6 statistics for significantly good placements

BoundingBox CriticalPathDelay WireLength OverUse

100

150

200

250

300

350

400

450

500

23
0.

06
%

24
8.

63
%

21
0.

75
%

42
8.

92
%

12
8.

39
%

13
7.

27
%

11
4.

4%

10
7.

93
%

10
3.

42
%

10
6.

66
%

10
1.

26
%

97
.6

9%

10
4.

31
%

97
.0

5%

10
2.

22
%

10
9.

66
%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

INIT
FieldPlacer
FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP
+SlackGraph

(a) Average

BoundingBox CriticalPathDelay WireLength OverUse

100

150

200

250

300

350

400

450

500

550

600

650

25
0.

01
%

25
1.

54
%

21
9.

95
%

68
5.

91
%

13
1.

96
%

13
7.

77
%

11
3.

3%

98
.9

%

10
3.

6%

10
5.

4%

10
0.

35
%

88
.3

6%

10
4.

66
%

96
.7

8%

10
2.

06
%

10
0.

92
%

Pe
rc

en
ta

ge
of

ov
er

al
l

V
PR

SA
re

su
lt

s
(%

)

INIT
FieldPlacer
FieldPlacer + LocalRe f inement
FieldPlacer + LocalRe f inement OUTER REP
+SlackGraph

(b) Overall (total)

Figure 105: MCNC FieldPlacer framework - Overview

Remark 118. The MCNC benchmarks contain codes with much more than one
component in the design. Thus, these codes can additionally be consulted to confirm
the working behavior of the FieldPlacer in such cases.

6.6 statistics for significantly good placements

In the previous sections, it was shown how repeated runs can improve the
quality of a placement with different optimization targets. Both adaptive and
randomized influences can therefore be taken into account to choose a ‘good’
placement out of several ones.

In an interactive case of application, a user may simply decide when a
sufficiently good placement has been found and thus when to stop the place-
ment procedure and proceed, for instance, with the routing. However, an au-
tomatic approach to find a good placement is often desirable. Even though
the extended FieldPlacer method (without repetitions) leads to good results
in short times, a higher quality can in many cases be preferable at the price
of longer runtimes. In the former repeated benchmarks, the entire extended
FieldPlacer was repeated 10 times to end up with runtimes that are compa-
rable to VPR SA for the entire benchmark set. However, the best placement
was often found after only very few iterations so that the flow could have
terminated earlier.

In addition, for different codes and different metrics, the deviation of the re-
sulting quality due to the random influences was larger or smaller. To inves-
tigate this further, the average stereovision2 code was placed 1000 times
with the previously defined and applied FieldPlacer ‘standard’ configura-
tion (DISTANCE distribution, MANHATTAN metric, 45◦ rotation, etc.) but with-
out slack graph morphing to reveal only the random effects in the repetitions.

241

repeated runs in a statistical framework

Figures 106-109 show histograms for the obtained quality concerning the
different metrics before and after the LocalRefinement.

For each metric, the results tend towards a ‘common state’ (the average lay-
out), which is based on the similar but not identical equilibrium state reached
by the force-directed graph layout. Especially after the local refinement, the pic-
ture is becoming even clearer. Most of the placements have a similar quality as
the average placement while significantly better or worse ones are rare.

In repeated runs, these rare significantly good layouts are the ones a user
is interested in. As all the metrics are to be minimized, the left-end of the
histograms contain the interesting layouts. To find such, it can be assumed
that the layout’s quality (in these cases and for these metrics) approximately
follow a normal distribution due to the common average state in the force
equilibrium towards which all layouts strive.

1.03 1.04 1.05 1.06 1.07
0

50

100

150

·104BoundingBox

st
ri

ke
fr

eq
ue

nc
y

(a) before LocalRefinement

7350 7400 7450 7500 7550 7600 7650

0

20

40

60

80

100

120

BoundingBox

st
ri

ke
fr

eq
ue

nc
y

(b) after LocalRefinement

Figure 106: BoundingBox cost histogram (code: stereovision2, 1000 runs)

26 28 30 32 34
0

20

40

60

80

100

120

CriticalPathDelay

st
ri

ke
fr

eq
ue

nc
y

(a) before LocalRefinement

16 17 18 19 20 21
0

50

100

150

200

250

CriticalPathDelay

st
ri

ke
fr

eq
ue

nc
y

(b) after LocalRefinement

Figure 107: CriticalPathDelay histogram (code: stereovision2, 1000 runs)

242

6.6 statistics for significantly good placements

1.2 1.21 1.22 1.23 1.24 1.25
0

50

100

150

·106WireLength

st
ri

ke
fr

eq
ue

nc
y

(a) before LocalRefinement

9.2 9.3 9.4 9.5
0

20

40

60

80

100

·105WireLength

st
ri

ke
fr

eq
ue

nc
y

(b) after LocalRefinement

Figure 108: WireLength histogram (code: stereovision2, 1000 runs)

1.3 1.4 1.5 1.6 1.7 1.8
0

20

40

60

80

100

120

·105OverUse

st
ri

ke
fr

eq
ue

nc
y

(a) before LocalRefinement

1.15 1.2 1.25 1.3 1.35 1.4 1.45
0

20

40

60

80

100

120

·105OverUse

st
ri

ke
fr

eq
ue

nc
y

(b) after LocalRefinement

Figure 109: OverUse histogram (code: stereovision2, 1000 runs)

Remark 119. The presence of the normal distribution is used in the following but is
not mathematically proved in any sense. The assumption is based on the graphical
interpretation of obtained results and on the fact that the layouts tend towards a
common (average) equilibrium state with randomized deviation.

The following section presents a method to define and find ‘good’ layouts
with adaptive termination criteria.

6.6.1 Adaptive termination criteria

Remark 120. The following methodology is (due to the ‘careless’ assumption of the
normal distribution) not intended to be mathematically (especially ‘statistically’)
accurate or provable. It is an ‘experimental’ feature of the framework and several

243

repeated runs in a statistical framework

assumptions are made as they actually work very well in practice. The following
explanations can therefore be regarded to be ‘informal’.

When an optimization of the critical path delay with activated slack graph
morphing is desired, the fact that the slack in the system tendentially de-
creases in every iteration could be used to terminate as soon as the improve-
ment falls below a certain threshold. However, a general cost measure that
follows a normal distribution can reach its randomly influenced optimum in any
of the iterations. Hence, the backup and restore functionality has already been
introduced to store the best placement that was found.

One question still has to be answered: How could the system determine if a
‘significantly good’ placement has been found so that the system can finally
terminate the search?

Remark 121. By way of example, the overuse should be optimized by the system
in the following. In general, the (possibly combined) cost function value (CFV) is
optimized in the FieldPlacer framework.

To find a measure for the term ‘significantly good’ placement, the FieldPlacer
framework can make use of the confidence interval (CI). Assuming that a nor-
mally distributed population is present, the value of one measurement lies
in a confidence interval with a certain probability (see Figure 110). Cox and
Hall [43] described it tangibly as follows:

‘The confidence interval represents values for the population parameter for which
the difference between the parameter and the observed estimate is not statistically
significant at the 10% level’.

α
2

α
2

1 − α

‘significantly good’ placements

Figure 110: Confidence interval

However, the real distribution is not known within the process as the set
of measurements only represents a sample. This is especially important in
the beginning of the procedure when only very few placements have been

244

6.6 statistics for significantly good placements

accomplished. By consequence, the parameters of the actual distribution have
to be estimated. The first necessary one is the sample mean, which can simply
be calculated by equation (65).

x =
1

n

n∑
i=1

xi (65)

The sample variance can be estimated by the corrected sample variance in
equation (66).

s2 =
1

n− 1

n∑
i=1

(xi − x)
2 (66)

In general, the confidence interval’s size depends on the size of the sample n
and the corrected sample standard deviation s (square root of the sample vari-
ance), precisely on s√

n
. The smaller this ratio is, the larger is the interval.

However, especially for small sample sizes, this value has to be extended
to estimate a confidence interval. Consider a set of only two measurements
with (coincidentally) almost identical cost function values. The corrected sample
standard deviation s would be very small and the confidence interval would
consequently also be very small. A significantly good sample would therefore
often be detected only based on the fact that the sample size is too small.

To overcome this issue for normally distributed samples of small sizes,
William Sealy Gosset developed the t-distribution (also called the ‘Student’s t-
distribution’ as he originally published it under the pseudonym ‘Student’). It’s
application is, for example, described in the work of Fisher [62] from 1938.

The t-distribution (see Figure 111) can be applied to ‘correct’ the measured
confidence interval parameters for small sample sizes (generally for n < 30).
The samples are in fact very often that small when using the FieldPlacer
method. The final two-sided confidence interval (for minimization or maximiza-
tion) is defined by equation (67).

[
x− t(1−α

2
;n−1)

s√
n

; x+ t(1−α
2

;n−1)
s√
n

]
(67)

The value t(1−α
2

;n−1) is called the (1− α
2)-quantile of the t-distribution

with n− 1 degrees of freedom. The smaller the sample size and the higher
the confidence level (1− α) is, the larger is t(1−α

2
;n−1). With respect to the

optimization direction (minimization or maximization), one or the other side
of the two-sided confidence interval is of interest (see Figure 110).

To finally steer the size of the confidence interval and, therefore, the desired
quality of the result, the confidence level can be varied in the FieldPlacer
framework. Three predefined confidence levels of 0.75 (small), 0.975 (medium)
and 0.998 (high) can be chosen at runtime whereas others are easily insertable.

245

repeated runs in a statistical framework

1
10

20
30

100 ∞ 0.50.75
0.8

0.90.95
0.98

0.99

1

2

3

4

5

degrees of freedom (n − 1)
confidence

lev
el (

1−
α)

t-
di

st
ri

bu
ti

on
qu

an
ti

le
s

t (
1−

α 2
;n
−

1)

Figure 111: Interpolated (1− α
2)-quantiles of the t-distribution with n−1 degrees of

freedom

Remark 122. A t-distribution with an ever-growing sample size resembles in fact
a normal distribution.

Remark 123. In the FieldPlacer implementation, the quantiles are approxima-
tively taken from a respective lookup table with the depicted exact values from Fig-
ure 111.

Figure 112 shows three such runs at high confidence level of the average
stereovision2 code from the VTR benchmark set. The first run (Figure 112a)
terminates after 10 passes and reaches the optimum in the final run. The cost
function value (overuse in this case) of this repetition is significantly good as
it is smaller than the lower boundary of the confidence interval. The sec-
ond run (Figure 112b) also terminates after 10 passes, but the optimal so-
lution is found in repetition 6. The backup and restore functionality of the
FieldPlacer framework ensures that this solution is finally recovered. The
third run (Figure 112c) appreciably shows how an outlier (with respect to
previously achieved results) enlarges the confidence interval after it continu-
ously decreased (due to the growing n in the denominator of equation (67))
by extending the corrected sample standard deviation s by a factor of four. The
high variance in the following repetitions keeps the interval almost constantly
large by acting towards the decreasing t-quantile. The optimum is reached
in repetition 7.

This strategy of automatic termination can be used to find significantly
good layouts without wasting too much time and without the need to de-
fine a ‘meaningful’ static number of repetitions. This adds a further dimen-
sion of flexibility to the framework, which is particularly interesting for non-

246

6.7 graphical user interface (gui)

1 2 3 4 5 6 7 8 9

0.6

0.8

1

1.2

1.4

min

repetition

va
lu

es
re

la
ti

ve
to

re
pe

ti
ti

on
0 Confidence interval

CostFunctionValue
average mean of CFV

(a) Minimum in rep 9 of 9

1 2 3 4 5 6 7 8 9

0.6

0.8

1

1.2

1.4

min

repetition

va
lu

es
re

la
ti

ve
to

re
pe

ti
ti

on
0 Confidence interval

CostFunctionValue
average mean of CFV

(b) Minimum in rep 6 of 9

1 2 3 4 5 6 7

0.6

0.8

1

1.2

1.4

min

repetition

va
lu

es
re

la
ti

ve
to

re
pe

ti
ti

on
0 Confidence interval

CostFunctionValue
average mean of CFV

(c) Minimum in rep 7 of 7

Figure 112: Adaptive termination criterion for OverUse (code: stereovision2)

interactive use cases. However, the outcome still depends on the choice of the
accuracy (small, medium, high). The confidence interval could additionally be
scaled if a larger or smaller number of repetitions is desired. In any case,
the involvement of the statistical parameters (mean and variance) makes the
criterion adapt to the specific sample.

6.7 graphical user interface (gui)

As mentioned before, the setup of the FieldPlacer can be conducted via a
configuration header. In an interactive use case, a GUI additionally provides
runtime access to all mentioned options. Figure 113 shows how this GUI ex-
tends the original VPR GUI. The FieldPlacer GUI only appears if the added
FieldPlacer button in the VPR GUI is pressed. Otherwise, the original work-
flow can be continued with the Proceed button. Choosing the FieldPlacer

option opens a new window including the FieldPlacer method’s controls
(on the right) and a summary of the last 10 FieldPlacer repetitions or runs
(on the left). After potentially varying the options, the new setup can instantly
be used to find improved solutions with the OPTIMIZE button. Repeated runs
can be continuously repeated in that way. While the line diagrams indicate
the obtained quality metrics of every iteration, the bars represent the (po-
tentially combined) cost function value (CFV) while the blue bar highlights
the backed best solution found so far. Whenever the user decides to use
the obtained solution, the surrounding workflow can be continued with the
PROCEED button.

The basic configurations of the FieldPlacer applies DISTANCE penalties
and uses the MANHATTAN metric with 45◦ rotation of the layout and the
slack graph morphing, always with removed parallel edges. The second energy
phase is not activated by default. The different standard setups (light blue
buttons at the bottom) perform the following FieldPlacer setups:

247

repeated runs in a statistical framework

• ULTRAFAST: basic FieldPlacer

• FAST: extended FieldPlacer (with LocalRefinement)

• NORMAL: extended FieldPlacer (with LocalRefinement) and automat-
ically repeated runs at confidence level medium (1−α = 0.95)

• ACCURATE: extended FieldPlacer (with LocalRefinement) and auto-
matically repeated runs at confidence level high (1−α = 0.998)

activate FieldPlacer
FieldPlacer option menu

FieldPlacer statistics

Figure 113: The FieldPlacer GUI

In addition to the mentioned ‘methodological’ options, a general command
line debugging mode and the graph debugger/tracer (see Section 5.9.2) can be
activated.

Remark 124. Graph layouts for all VPR benchmark codes are presented in Ap-
pendix A.9 (automatically created by the graph debugger/tracer).

248

Part VI

What does "the bigger picture" look like?

What has been achieved? This chapter briefly discusses the entire frame-
work taking the benchmark results into account and summarizing what
the overall goal of the presented method is. The FieldPlacer framework
should neither be a black box nor a static FPGA design tool plugin. In-
stead, it could open a field of research to other researchers, e. g., from the
domain of graph drawing.

My personal wish is that the framework introduces an easy-to-use ‘sci-
entific playground’ in a field which is (normally) not readily accessible
for researchers from other domains in order to finally contribute their
own ideas in the future.

7
Discussion
“Phantasie ist wichtiger als Wissen. Wissen ist begrenzt, Phantasie aber umfasst die
ganze Welt.“
— Albert Einstein —

(Imagination is more important than knowledge. For knowledge is limited, whereas
imagination encircles the world.)

Contents
7.1 Résumé . 252
7.2 Comparison & Outlook . 253
7.3 A final test case . 255

251

discussion

7.1 résumé

This work introduced the FieldPlacer framework, a flexible, fast and uncon-
strained force-directed placement method for heterogeneous reconfigurable
logic architectures.

It has been shown that force-directed methods can offer great advan-
tages compared with traditional simulated annealing based approaches even
though they also introduce further challenges. In this context, the theoretical
foundations of the general placement problem have been discussed while
the main focus has been on the special task of FPGA placement. In order to
provide methodological bases for the developed framework, state-of-the-art
techniques from the field of force-directed graph layouting were intensively
investigated and compared culminating in the application and extension of
the FM3 algorithm.
FM3, just as it is, already combines multiple desired characteristics of a

force-directed layouting approach. While the multilevel functionality makes
solutions relatively independent of an initial random assignment of the
nodes, the multipole approach in turn speeds up the layouting process re-
markably. In combination, force-directed graph layouts can be created quickly
to form the basic sketch of the actual embedding on the integer grid of the
reconfigurable logic architecture. The involvement of repulsive forces in the
spring embedder simulation of FM3 allows for an entirely unconstrained real-
ization of the graph layout. This is a rather unique feature of the presented
force-directed method as it allows free movements of all node types in the
layouting phase (as the compared simulating annealing approach does). This
results in layouts which are not influenced by a priori fixed nodes (e. g., sur-
rounding I/O blocks). Furthermore, all heterogeneous block types of a design
are included in the global layouting procedure to reach a force equilibrium
state which considers all such types simultaneously.

For high flexibility, the FieldPlacer framework is able to perform the en-
tire embedding into the integer grid of the chip architecture with various
configurable objectives, e. g., small critical path delay or improved routability.
A corresponding norm to quantify the routability of a placement has conse-
quently been developed for the FieldPlacer method. In addition to that, how
different optimization goals correlate to each other and how different exten-
sions, like the application of the Manhattan distance in the force model right
from the outset, can positively influence the layout by matching the architec-
ture’s properties has been investigated extensively. In the embedding phase
of the FieldPlacer, additional methods from the field of graph drawing have
been integrated, e. g., the barycenter heuristic to reduce wirelengths and crossings
between I/O pins and logic blocks.

252

7.2 comparison & outlook

Even though the basic FieldPlacer embedding is exceptionally fast, it was
emphasized that a local refinement can greatly improve the quality of the
placement while preserving the desired properties of the layout obtained by
each specific embedding strategy. Including these and other techniques, the
extended FieldPlacer is able to create placements of good quality (at a com-
parable level to a state-of-the-art method) with freely definable objectives.
However, the FieldPlacer method is, at the same time, 10 times faster than
the compared state-of-the-art placer which is based on simulated annealing.
More importantly, the runtime advantage of the FieldPlacer continuously
increases with the size of the input design - the larger the design, the big-
ger the benefit! Thus, the advantage will grow in the future with yet larger
inputs.

If a placement of highest quality (concerning the user-defined objective) is
desired, the assignment on the chip can be further improved by repeated
FieldPlacer runs. In combination with the slack graph morphing functionality,
the critical path delay can be adaptively reduced in successive iterations. In
general, variances in the quality of placements that result from randomly in-
fluenced decisions in the graph layouting procedure can also be exploited in
the statistical framework of the FieldPlacer. Finally, objective functions com-
bining different goals can be used to improve the quality of placements con-
cerning several, even principally contradicting, goals at the same time.

Throughout the entire work, many benchmark results have been included
in order to give suggestions for a meaningful usage the framework.

In summary, the FieldPlacer framework should provide an intuitive ac-
cess to the field of chip placement for future researches and for researchers
from different fields to bridge the gaps between FPGA development, general
algorithm development and graph drawing.

7.2 comparison & outlook

The work of Chang et al. [33] has already been mentioned in Section 5.1.1. In
their comparison of different placement methods, they came to the conclu-
sion that simulated annealing is able to generate good placements for small
designs while considering multiple objectives simultaneously. However, ana-
lytical placement was described to be efficient and scalable for large circuits with
high quality results and multiple objectives. The results obtained in this work
support this thesis and provide a placer of such a kind for heterogeneous
FPGA architectures.

It has additionally been stated how the runtime advantage of the
FieldPlacer could further be increased in the future. As mentioned in Re-
mark 63, the repulsive force calculation can, e. g., even be speeded up by

253

discussion

massively parallel architectures like GPUs. This has also been proposed
for simulated annealing in Chong et al. [37]. However, GPU usage in the
FieldPlacer could have huge advantages compared to many available sim-
ulated annealing approaches since necessary synchronization in simulated
annealing makes it generally difficult to obtain an effective parallelization of
the method on many cores (cp. Remark 67). On the contrary, parallel architec-
tures will be able to improve FieldPlacer compilation time remarkably. As a
result, many repeated runs could be performed in shorter times to generate
even better placements in the statistical framework of the FieldPlacer. Due
to the simple exchangeability of the force-directed layouting method, other
approaches and different implementations, like the one of Gronemann, can
directly be integrated in the future, e. g., to reduce the runtime of a single run
(see Section 5.7). The local refinement approach could also be enhanced in
the future. In addition, other stopping criteria for repeated runs are possible.

Furthermore, FM3 has always been used in its default configuration in
this work. Further adaptive features could help to guarantee, for example,
that the system has ‘completely’ converged. Actually, the predefined con-
stant maximal numbers of iterations on the multiple levels of FM3’s graph
representation have frequently been exploited, especially for the finest level.
In addition, it will be investigated if a smaller p < 4 in the p-term multipole
expansion can speed up the calculation remarkably and keep the accuracy
sufficiently high at the same time.

While Mak and Li [133] presented an approach that was able to create bet-
ter placements than the current VPR placer at that time in slightly shorter
runtimes (concerning both net and critical path delay), the FieldPlacer ap-
proach can generate improved assignments, too, especially if repeated runs
are applied. However, the FieldPlacer approach can also create comparable
placements much faster than VPR’s placer. The flexibility of the framework
offers different runtime-quality trade-offs for different situations, e. g., a sin-
gle (extended) FieldPlacer run for rapid prototyping or multiple repeated
runs for final products. It certainly also depends on the applied router, how
much time to spend for the placement phase. An improvement of overuse in
the placement through repeated runs could reduce the routing time remark-
ably so that the additional time that was spend in the placement can be more
than offset.

Even though Upadhyay [184] presented some comparable ideas for ho-
mogeneous FPGAs in 2015, his approach needs a priori placed and fixed
I/O blocks. This was achieved by running the whole simulated annealing
placement of VPR in advance. The placements that were generated by his
approach for homogeneous FPGAs have been comparable to VPR’s results
at the cost of 11% higher runtime (not including the preceding VPR place-
ment). Instead, the FieldPlacer generates a free (unconstrained) placement

254

7.3 a final test case

for all block types through the inclusion of repulsive forces in its analyti-
cal placement while being remarkably faster than VPR’s placer. However, a
basic FieldPlacer run could be used in Upadhyay’s method in order to ob-
tain a good initial I/O assignment much faster than by applying simulated
annealing in advance.

With version 7.0, the simulation of the energy consumption of imple-
mented designs has been added to VPR (see Luu et al. [130]). Thus, strategies
for energy optimization based on an adapted graph layouting or slot assign-
ment should be included into the FieldPlacer framework in the future. It
has to be investigated how the graph layout can influence the energy con-
sumption in a positive manner. In addition, thermal considerations could be
considered in the FieldPlacer framework.

7.3 a final test case

Finally, further benchmarks brought to light that the FieldPlacer method
performs particularly well in situations where the number of available slots
on the architecture is much larger than the number of necessary ones. In
all presented benchmarks in this work, the simulated architecture has been
kept ‘as small as possible and as large as necessary’ (VPR’s default strategy). In
contrast to that, the size of the underlying simulated architecture has (for
test purposes) been oversized in the following. More precisely, it was first
estimated which architecture size would be necessary to make a placement
possible (by the use of the bisection method in VPR). Then, this size was dou-
bled, tripled and quadrupled to simulate an oversized architecture. Figure 114
shows the gathered average and overall quality measures for the entire VPR
benchmark set. The results have been obtained by the extended FieldPlacer
method with 10 repeated runs and activated slack graph morphing.

CriticalPathDelay OverUse
85

90

95

100

105

110

115

120

98
.1

3%

11
0.

96
%

99
.1

6%

99
.8

7%

10
0.

01
%

88
.8

2%

10
0.

83
%

88
.2

8%

Pe
rc

en
ta

ge
of

av
er

ag
e

V
PR

SA
re

su
lt

s
(%

)

1x (original architecture size)
2x (doubled architecture size)
3x (triplet architecture size)
4x (quadrupled architecture size)

(a) Average

CriticalPathDelay OverUse

80

100

120

140

99
.0

8%

10
9.

29
%

98
.5

5%

92
.5

2%99
.6

4%

79
.0

1%

10
1.

54
%

70
.3

3%

Pe
rc

en
ta

ge
of

ov
er

al
l

V
PR

SA
re

su
lt

s
(%

)

1x (original architecture size)
2x (doubled architecture size)
3x (triplet architecture size)
4x (quadrupled architecture size)

(b) Overall (total)

Figure 114: Oversized architecture results

255

discussion

The available free slots have been exploited by the FieldPlacer’s DIS-
TANCE distribution to reduce the estimated overuse on the routing architec-
ture, what in turn facilitates a subsequent routing. By imitating the force equi-
librium obtained from the force-directed layout along with the slack graph
morphing functionality, the final layouts tend to combine a drastically reduced
overuse with a still small critical path delay. In general, the average critical path
delays are at a level similar to that of the VPR results.

Remark 125. In contrast to these results obtained with the DISTANCE distribution
of the FieldPlacer, the critical path delay would be remarkably smaller when using
the CENTER distribution instead (while the overuse would be accordingly larger).

Such situations with large chips are indeed realistic as the FPGA architec-
ture is generally much larger than the design itself. Instead of forcing all ele-
ments into one corner or the center of the chip, the DISTANCE distribution
of the FieldPlacer spreads the logic blocks over the entire chip with respect
to the arrangement in the force-directed layout. The reduction of overuse
should also have a positive influence on the thermal distribution on the chip.
Finally, these are promising results for such and other future researches with
the FieldPlacer framework.

256

Part VII

Anything else?

A
Appendix

a.1 a detailed simple example for the qap model

distance-matrix D with manhattan distance

l1 l2

l3 l4

1

1

1

1 2 2

⇒ D =

l1 l2 l3 l4

l1 0 1 1 2

l2 1 0 2 1

l3 1 2 0 1

l4 2 1 1 0

 (68)

Figure 115: The Manhattan distances between four locations

connection-matrix V

v2

v3

v1

v4

⇒ V =

v1 v2 v3 v4

v1 0 1 0 0

v2 1 0 1 0

v3 0 1 0 1

v4 0 0 1 0

 (69)

Figure 116: The connection-matrix of the graph’s nodes

259

appendix

assignment-matrix X

v2 v3

v1 v4

⇒ X1 =

l1 l2 l3 l4

v1 0 0 1 0

v2 1 0 0 0

v3 0 1 0 0

v4 0 0 0 1

 (70)

Figure 117: Exemplary optimal assignment of the graph

v2 v3

v1v4

⇒ X2 =

l1 l2 l3 l4

v1 0 0 0 1

v2 1 0 0 0

v3 0 1 0 0

v4 0 0 1 0

 (71)

Figure 118: Exemplary not optimal assignment of the graph

locations’ connection-matrix

Vloc
1 = XT1 · V · X1 =

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

·

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

·

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

=

0 1 1 0

1 0 0 1

1 0 0 0

0 1 0 0

(72)

260

A.1 a detailed simple example for the qap model

Vloc
2 = XT2 · V · X2 =

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

·

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

·

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

=

0 0 0 1

0 0 1 0

0 1 0 1

1 0 1 0

(73)

the cost calculation

c̃1 =
1

2
·
4∑
i=1

diagi

(
XT1 ·V ·X1 ·D

)

=
1

2
·
4∑
i=1

diagi

(
Vloc
1 ·D

)

=
1

2
·
4∑
i=1

diagi

0 1 1 0

1 0 0 1

1 0 0 0

0 1 0 0

·

0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 0

=
1

2
·
4∑
i=1

diagi

2© 2 2 2

2 2© 2 2

0 1 1© 2

1 0 2 1©

=
1

2
∗ (2+ 2+ 1+ 1)

=
1

2
∗ 6 = 3 (74)

The assignment X1 of the graph causes costs of 12 ∗ (2+ 2+ 1+ 1) = 0.5 ∗
6 = 3.

261

appendix

c̃2 =
1

2
·
4∑
i=1

diagi

(
XT2 ·V ·X2 ·D

)

=
1

2
·
4∑
i=1

diagi

(
Vloc
2 ·D

)

=
1

2
·
4∑
i=1

diagi

0 0 0 1

0 0 1 0

0 1 0 1

1 0 1 0

·

0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 0

=
1

2
·
4∑
i=1

diagi

2© 1 1 0

1 2© 0 1

3 1 3© 1

1 3 1 3©

=
1

2
∗ (2+ 2+ 3+ 3)

=
1

2
∗ 10 = 5 (75)

The assignment X2 of the graph causes costs of 12 ∗ (3+ 3+ 2+ 2) = 1
2 ∗

10 = 5.

origins of the costs

Cost origins:
l1 causes costs of 2,
l2 causes costs of 2,
l3 causes costs of 1,
l4 causes costs of 1.

l1 l2

l3 l4

+1

+1

+1

+1

+1 +1

262

A.2 a simple example for the calculation of a tutte embedding

Cost origins:
l1 causes costs of 3,
l2 causes costs of 3,
l3 causes costs of 2,
l4 causes costs of 2.

l1 l2

l4l3

+2

+2

+2

+2

+1 +1

a.2 a simple example for the calculation of a tutte embed-
ding

Consider the graph shown in Figure 119a. The vectors and the matrix of the
linear equation systems are shown in equation (76), the Tutte embedding
with the solutions x and y is visualized in Figure 119b.

(a) Random assignment of free nodes (b) Tutte embedding

Figure 119: Tutte embedding - four fixed (blue) and three free (gray) nodes

A =

3 −1 −1

−1 4 −1

−1 −1 3

 ,bx =

1

0

1

 ,by =

0

1

1

x =

0.667

0.333

0.667

 ,y =

0.375

0.5

0.625

 (76)

263

appendix

a.3 force-directed layout by fruchterman & reingold or
FM3

Figure 120 shows a random assignment of the nodes in the ‘Crack’ graph to
a rectangular canvas. Figures 121a and 121b depict the resulting outcomes
of the basic Fruchterman & Reingold approach and the result of FM3 which
is more than 20 faster due to the approximation of the repulsive forces. The
close-ups verify that the results of both methods are, though not identical,
very similar to each other.

Figure 120: Random layout of ‘Crack’ Graph

(a) Fruchterman & Reingold (b) FM3

Figure 121: ‘Crack’ graph layouts

264

A.4 graph-theoretical distance

a.4 graph-theoretical distance

An example for all graph-theoretical distances in a graph (to node 11) is
shown in Figure 122.

Figure 122: Graph-theoretical distance to node 11

a.5 multilevel construction & application

Figure 123 shows a detailed example of how one multilevel graph is con-
structed and how its coarsened representation is used to perform a coarse-
grained layout of the sun systems before layouting on the finer level.

265

appendix

(a) Initial Graph G0 (b) First sun (c) Second sun (d) Third sun

(e) Fourth sun (f) Other suns (g) Assign planets to
suns

(h) Assign each moon
to a nearest planet

(i) Contracted graph
G1

(j) Force-directed lay-
out of G1

(k) Reinsert sun-
system nodes
near suns→ G0

(l) Force-directed layout
of G0

(m) Final graph (n) Rotate graph?

Figure 123: Multilevel construction and application

266

A.6 vpr default configuration

a.6 vpr default configuration

Listing 2 shows the defult configuration of VPR that is used for all bench-
marks in this work.

PackerOpts . allow _ e a r l y _ e x i t : FALSE
PackerOpts . allow _ unrelated _ c l u s t e r i n g : TRUE
PackerOpts . alpha _ c l u s t e r i n g : 0 .750000
PackerOpts . aspect : 1 .000000
PackerOpts . beta _ c l u s t e r i n g : 0 .900000
PackerOpts . block _ delay : 0 .000000
PackerOpts . c l u s t e r _ seed _ type : TIMING
PackerOpts . connect ion _ driven : TRUE
PackerOpts . g loba l _ c l o c k s : TRUE
PackerOpts . h i l l _ cl imbing _ f l a g : FALSE
PackerOpts . i n t e r _ c l u s t e r _ net _ delay : 1 .000000
PackerOpts . i n t r a _ c l u s t e r _ net _ delay : 0 .000000
PackerOpts . recompute_ timing _ a f t e r : 32767
PackerOpts . sweep_hanging_ nets _and_ inputs : TRUE
PackerOpts . t iming _ driven : TRUE

PlacerOpts . place _ f r e q : PLACE_ONCE
PlacerOpts . place _ algorithm : PATH_TIMING_DRIVEN_PLACE
PlacerOpts . pad_ l o c _ type : FREE
PlacerOpts . place _ c o s t _exp : 1 .000000
PlacerOpts . inner _ loop _recompute_ div ider : 0
PlacerOpts . recompute_ c r i t _ i t e r : 1
PlacerOpts . t iming _ t r a d e o f f : 0 .500000
PlacerOpts . td _ place _exp_ f i r s t : 1 .000000
PlacerOpts . td _ place _exp_ l a s t : 8 .000000
PlaceOpts . seed : 1
AnnealSched . type : AUTO_SCHED
AnnealSched . inner _num: 1 .000000

RouterOpts . route _ type : DETAILED
RouterOpts . router _ algorithm : TIMING_DRIVEN
RouterOpts . base _ c o s t _ type : DELAY_NORMALIZED
RouterOpts . f i x e d _ channel _width : NO_FIXED_CHANNEL_WIDTH
RouterOpts . acc _ f a c : 1 .000000
RouterOpts . bb_ f a c t o r : 3
RouterOpts . bend_ c o s t : 0 .000000
RouterOpts . f i r s t _ i t e r _ pres _ f a c : 0 .500000
RouterOpts . i n i t i a l _ pres _ f a c : 0 .500000
RouterOpts . pres _ f a c _mult : 1 .300000
RouterOpts . max_ router _ i t e r a t i o n s : 50
RouterOpts . a s t a r _ f a c : 1 .200000
RouterOpts . c r i t i c a l i t y _exp : 1 .000000
RouterOpts . max_ c r i t i c a l i t y : 0 .990000

RoutingArch . d i r e c t i o n a l i t y : UNI_DIRECTIONAL
RoutingArch . switch _ block _ type : WILTON
RoutingArch . Fs : 3 �

Listing 2: VPR 7.0 default configuration

267

appendix

a.7 second energy phase examples

Figure 124 and Figure 125 show two additional examples of vectors before
and after grid embedding in the second energy phase.

(a) Force-directed layout result Phase 1 (b) Embedded on the grid Phase 1

(c) Force-directed layout result Phase 2 (d) Embedded on the grid Phase 2

Figure 124: Displacement in first and second energy phase test 3 (code: or1200)

Figure 125 shows that the displacement after embedding can become rel-
atively large when the energy layout without repulsive forces wastes much
space.

268

A.7 second energy phase examples

(a) Force-directed layout result
Phase 1

(b) Embedded on the grid Phase 1

(c) Force-directed layout result
Phase 2

(d) Embedded on the grid Phase 2

Figure 125: Displacement in first and second energy phase test 4 (code: or1200)

(a) Force-directed layout result
Phase 2

(b) Embedded on the grid Phase 2

Figure 126: Displacement in second energy phase test 2 (code: or1200)

269

appendix

a.8 slack graph morphing

Figure 127 depicts the logic blocks (without I/O) of the stereovision2 code
and their interconnections in four repetitions of the slack graph morphing.
Connections with low slack are orange while those with high slack are blue
(average ones are black). The slack (and consequently the critical path delay)
tends to decrease in the successive iterations.

(a) Slack: 5.495 ∗ 10−4 CPD: 32.611ns (b) Slack: 3.236 ∗ 10−4 CPD: 23.277ns

(c) Slack: 2.734 ∗ 10−4 CPD: 20.886ns (d) Slack: 2.672 ∗ 10−4 CPD: 20.617ns

Figure 127: Slack graph morphing (code: stereovision2)

270

A.9 energy layout gallery

a.9 energy layout gallery

Figures 128-131 show examples for generated energy graphs G
layout
D .

(a) LU32PEEng

Figure 128: Energy layout gallery 1

271

appendix

(a) stereovision3 (b) diffeq2

(c) ch_intrinsics (d) diffeq1

(e) mkPktMerge (f) sha

Figure 129: Energy layout gallery 2

272

A.9 energy layout gallery

(a) mkSMAdapter4B (b) raygentop

(c) boundtop (d) or1200

(e) blob_merge (f) mkDelayWorker32B

Figure 130: Energy layout gallery 3

273

appendix

(a) stereovision0 (b) stereovision1

(c) LU8PEEng (d) stereovision2

(e) bgm (f) mcml

Figure 131: Energy layout gallery 4

274

references
[1] IEEE graphic symbols for logic functions (includes IEEE std 91a-1991

supplement, and IEEE std 91-1984). IEEE Std 91a-1991 IEEE Std 91-1984,
page 160, 1991. doi: 10.1109/IEEESTD.1991.81068.

[2] Warren P. Adams and Terri A. Johnson. Improved linear programming-
based lower bounds for the quadratic assignment problem. In DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 43–
77, 1994.

[3] Elias Ahmed and Jonathan Rose. The effect of LUT and cluster size on
deep-submicron FPGA performance and density. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 12(3):288–298, March 2004.
ISSN 1063-8210. doi: 10.1109/TVLSI.2004.824300.

[4] Srinivas Aluru, John Gustafson, Gurpur M. Prabhu, and Fatih E. Sevil-
gen. Distribution-independent hierarchical algorithms for the N-body
problem. The Journal of Supercomputing, 12(4):303–323. ISSN 1573-0484.
doi: 10.1023/A:1008047806690. URL http://dx.doi.org/10.1023/A:

1008047806690.

[5] Srinivas Aluru, Gurpur M. Prabhu, and John Gustafson. Truly
distribution-independent algorithms for the N-body problem. In Su-
percomputing ’94., Proceedings, pages 420–428, Nov 1994. doi: 10.1109/
SUPERC.1994.344305.

[6] Miguel F. Anjos and Jean-Bernard Lasserre, editors. Handbook on
semidefinite, conic and polynomial optimization, volume 166 of Interna-
tional series in operations research & management science. Springer, New
York, 2012. ISBN 978-1-461-40768-3. URL http://opac.inria.fr/

record=b1133560.

[7] Miguel F. Anjos and Frauke Liers. Global approaches for facility lay-
out and VLSI floorplanning. In Miguel F. Anjos and Jean B. Lasserre,
editors, Handbook on Semidefinite, Conic and Polynomial Optimization,

275

http://dx.doi.org/10.1023/A:1008047806690
http://dx.doi.org/10.1023/A:1008047806690
http://opac.inria.fr/record=b1133560
http://opac.inria.fr/record=b1133560

references

volume 166 of International Series in Operations Research & Manage-
ment Science, pages 849–877. Springer US, 2012. ISBN 978-1-4614-0768-
3. doi: 10.1007/978-1-4614-0769-0_29. URL http://dx.doi.org/10.

1007/978-1-4614-0769-0_29.

[8] Miguel F. Anjos and Frauke Liers. Global approaches for facility lay-
out and VLSI floorplanning. In Miguel F. Anjos and Jean B. Lasserre,
editors, Handbook on Semidefinite, Conic and Polynomial Optimization,
volume 166 of International Series in Operations Research & Manage-
ment Science, pages 849–877. Springer US, 2012. ISBN 978-1-4614-0768-
3. doi: 10.1007/978-1-4614-0769-0_29. URL http://dx.doi.org/10.

1007/978-1-4614-0769-0_29.

[9] Kurt M. Anstreicher. Eigenvalue bounds versus semidefinite relax-
ations for the quadratic assignment problem. SIAM Journal on Opti-
mization, 11(1):254–265, 2000. doi: 10.1137/S1052623499354904. URL
http://dx.doi.org/10.1137/S1052623499354904.

[10] Kurt M. Anstreicher and Nathan W. Brixius. A new bound for the
quadratic assignment problem based on convex quadratic program-
ming. Mathematical Programming, 89(3):341–357. ISSN 1436-4646. doi:
10.1007/PL00011402. URL http://dx.doi.org/10.1007/PL00011402.

[11] Andrew W. Appel. An efficient program for many-body simulation.
SIAM J. Sci. and Stat. Comput, 6(1):85–103, 1985.

[12] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J.
Cook. The Traveling Salesman Problem: A Computational Study (Princeton
Series in Applied Mathematics). Princeton University Press, Princeton,
NJ, USA, 2007. ISBN 0691129932, 9780691129938.

[13] Pawan K. Aurora and Shashank K. Mehta. New facets of the QAP-
Polytope. Submitted to Operations Research Letters, 2014. URL http:

//arxiv.org/abs/1409.0667v2.

[14] Mutlu Avci and Serhan Yamacli. An improved elmore delay model for
VLSI interconnects. Mathematical and Computer Modelling, 51(7-8):908 –
914, 2010. ISSN 0895-7177. doi: http://dx.doi.org/10.1016/j.mcm.2009.
08.024. URL http://www.sciencedirect.com/science/article/pii/

S0895717709002866. 2008 International Workshop on Scientific Com-
puting in Electronics Engineering (WSCEE 2008).

[15] Christoph Bartoschek, Stephan Held, Jens Maßberg, Dieter Rauten-
bach, and Jens Vygen. The repeater tree construction problem. In-

276

http://dx.doi.org/10.1007/978-1-4614-0769-0_29
http://dx.doi.org/10.1007/978-1-4614-0769-0_29
http://dx.doi.org/10.1007/978-1-4614-0769-0_29
http://dx.doi.org/10.1007/978-1-4614-0769-0_29
http://dx.doi.org/10.1137/S1052623499354904
http://dx.doi.org/10.1007/PL00011402
http://arxiv.org/abs/1409.0667v2
http://arxiv.org/abs/1409.0667v2
http://www.sciencedirect.com/science/article/pii/S0895717709002866
http://www.sciencedirect.com/science/article/pii/S0895717709002866

references

formation Processing Letters, 110(24):1079 – 1083, 2010. ISSN 0020-
0190. doi: http://dx.doi.org/10.1016/j.ipl.2010.08.016. URL http://

www.sciencedirect.com/science/article/pii/S0020019010002747.

[16] Martin Beckman and Tjalling C. Koopmans. Assignment problems and
the location of economic activities. Econometrica, 25:53–76, 1957.

[17] Saifallah Benjaafar. Modeling and analysis of congestion in the design
of facility layouts. Manage. Sci., 48(5):679–704, May 2002. ISSN 0025-
1909. doi: 10.1287/mnsc.48.5.679.7800. URL http://dx.doi.org/10.

1287/mnsc.48.5.679.7800.

[18] Vaughn Betz and Jonathan Rose. Cluster-based logic blocks for FPGAs:
area-efficiency vs. input sharing and size. In Custom Integrated Circuits
Conference, 1997., Proceedings of the IEEE 1997, pages 551–554, May 1997.
doi: 10.1109/CICC.1997.606687.

[19] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement and
routing tool for FPGA research. In Proceedings of the 7th International
Workshop on Field-Programmable Logic and Applications, FPL ’97, pages
213–222, London, UK, UK, 1997. Springer-Verlag. ISBN 3-540-63465-7.
URL http://dl.acm.org/citation.cfm?id=647924.738755.

[20] Vaughn Betz and Jonathan Rose. FPGA routing architecture: Segmen-
tation and buffering to optimize speed and density. In Proceedings
of the 1999 ACM/SIGDA Seventh International Symposium on Field Pro-
grammable Gate Arrays, FPGA ’99, pages 59–68, New York, NY, USA,
1999. ACM. ISBN 1-58113-088-0. doi: 10.1145/296399.296428. URL
http://doi.acm.org/10.1145/296399.296428.

[21] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, editors. Archi-
tecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publish-
ers, Norwell, MA, USA, 1999. ISBN 0792384601.

[22] Lilian Bossuet, Guy Gogniat, Jean-Philippe Diguet, and Jean-Luc
Philippe. System-on-Chip for Real-Time Applications, chapter A
Modeling Method for Reconfigurable Architectures, pages 170–179.
Springer US, Boston, MA, 2003. ISBN 978-1-4615-0351-4. doi:
10.1007/978-1-4615-0351-4_16. URL http://dx.doi.org/10.1007/

978-1-4615-0351-4_16.

[23] Robert Brayton and Alan Mishchenko. Computer Aided Verification:
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings, chapter ABC: An Academic Industrial-Strength Verifica-
tion Tool, pages 24–40. Springer Berlin Heidelberg, Berlin, Heidelberg,

277

http://www.sciencedirect.com/science/article/pii/S0020019010002747
http://www.sciencedirect.com/science/article/pii/S0020019010002747
http://dx.doi.org/10.1287/mnsc.48.5.679.7800
http://dx.doi.org/10.1287/mnsc.48.5.679.7800
http://dl.acm.org/citation.cfm?id=647924.738755
http://doi.acm.org/10.1145/296399.296428
http://dx.doi.org/10.1007/978-1-4615-0351-4_16
http://dx.doi.org/10.1007/978-1-4615-0351-4_16

references

2010. ISBN 978-3-642-14295-6. doi: 10.1007/978-3-642-14295-6_5. URL
http://dx.doi.org/10.1007/978-3-642-14295-6_5.

[24] Nathan W. Brixius and Kurt M. Anstreicher. 17. The Stein-
berg Wiring Problem, chapter 17, pages 293–307. doi: 10.1137/1.
9780898718805.ch17. URL http://epubs.siam.org/doi/abs/10.1137/

1.9780898718805.ch17.

[25] Stephen Brown, Jonathan Rose, and Zvonko G. Vranesic. A detailed
router for field-programmable gate arrays. In Computer-Aided Design,
1990. ICCAD-90. Digest of Technical Papers., 1990 IEEE International Con-
ference on, pages 382–385, Nov 1990. doi: 10.1109/ICCAD.1990.129931.

[26] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G.
Vranesic. Field-Programmable Gate Arrays. The Springer Interna-
tional Series in Engineering and Computer Science. Springer US,
1992. ISBN 9780792392484. URL https://books.google.de/books?

id=8s4M-qYOWZIC.

[27] Sally A. Browning. The tree machine, a highly concurrent computing en-
vironment. PhD thesis, Dept. of Computer Science, CIT, 1980. URL
http://resolver.caltech.edu/CaltechCSTR:3760-tr-80.

[28] Rainer E. Burkard, Stefan E. Karisch, and Franz Rendl. QAPLIB – a
quadratic assignment problem library. J. of Global Optimization, 10(4):
391–403, June 1997. ISSN 0925-5001. doi: 10.1023/A:1008293323270.
URL http://dx.doi.org/10.1023/A:1008293323270.

[29] Rainer E. Burkard, Eranda Çela, Panos M. Pardalos, and Leonidas S.
Pitsoulis. The quadratic assignment problem, 1998.

[30] Tony Chan, Jason Cong, and Kenton Sze. Multilevel generalized force-
directed method for circuit placement. In Proceedings of the 2005 Inter-
national Symposium on Physical Design, ISPD ’05, pages 185–192, New
York, NY, USA, 2005. ACM. ISBN 1-59593-021-3. doi: 10.1145/1055137.
1055177. URL http://doi.acm.org/10.1145/1055137.1055177.

[31] Yao-Wen Chang, S. Thakur, Kai Zhu, and D. F. Wong. A new
global routing algorithm for FPGAs. In Computer-Aided Design, 1994.,
IEEE/ACM International Conference on, pages 356–361, Nov 1994. doi:
10.1109/ICCAD.1994.629817.

[32] Yao-Wen Chang, Martin D. F. Wong, and Chak-Kuen Wong. Universal
switch modules for FPGA design. ACM Trans. Design Automation of
Electronic Systems, 1:80–101, 1996.

278

http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://epubs.siam.org/doi/abs/10.1137/1.9780898718805.ch17
http://epubs.siam.org/doi/abs/10.1137/1.9780898718805.ch17
https://books.google.de/books?id=8s4M-qYOWZIC
https://books.google.de/books?id=8s4M-qYOWZIC
http://resolver.caltech.edu/CaltechCSTR:3760-tr-80
http://dx.doi.org/10.1023/A:1008293323270
http://doi.acm.org/10.1145/1055137.1055177

references

[33] Yao-Wen Chang, Zhe-Wei Jiang, and Tung-Chieh Chen. Essential Is-
sues in Analytical Placement Algorithms. IPSJ Transactions on System
Lsi Design Methodology, 2:145–166, 2009. doi: 10.2197/ipsjtsldm.2.145.

[34] Chia-I Chen, Bau-Cheng Lee, and Juinn-Dar Huang. Architectural ex-
ploration of 3D FPGAs towards a better balance between area and de-
lay. In 2011 Design, Automation Test in Europe, pages 1–4, March 2011.
doi: 10.1109/DATE.2011.5763290.

[35] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen,
and Yao-Wen Chang. NTUplace3: An analytical placer for large-scale
mixed-size designs with preplaced blocks and density constraints.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 27(7):1228–1240, July 2008. ISSN 0278-0070. doi: 10.1109/TCAD.
2008.923063.

[36] Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W.
Klau, Karsten Klein, and Petra Mutzel. The open graph drawing frame-
work (OGDF), 2014. URL http://e-archive.informatik.uni-koeln.

de/704/.

[37] Alexander Choong, Rami Beidas, and Jianwen Zhu. Parallelizing sim-
ulated annealing-based placement using GPGPU. In 2010 International
Conference on Field Programmable Logic and Applications, pages 31–34,
Aug 2010. doi: 10.1109/FPL.2010.17.

[38] Nicos Christofides and M. Gerrard. A graph theoretic analysis of
bounds for the quadratic assignment problem. In P. Hansen, editor, An-
nals of Discrete Mathematics (11)Studies on Graphs and Discrete Program-
ming, volume 59 of North-Holland Mathematics Studies, pages 61 – 68.
North-Holland, 1981. doi: http://dx.doi.org/10.1016/S0304-0208(08)
73458-3. URL http://www.sciencedirect.com/science/article/pii/

S0304020808734583.

[39] Jens Clausen, Stefan E. Karisch, Michael Perregaard, and Franz Rendl.
On the applicability of lower bounds for solving rectilinear quadratic
assignment problems in parallel. Computational Optimization and Appli-
cations, 10(2):127–147. ISSN 1573-2894. doi: 10.1023/A:1018308718386.
URL http://dx.doi.org/10.1023/A:1018308718386.

[40] Peter Buitenkant (Consultant). Overcoming erase/write-endurance
limitations in eeproms. Technical report, Compuserve, September 2000.
URL http://m.eet.com/media/1149460/22945-47235.pdf.

279

http://e-archive.informatik.uni-koeln.de/704/
http://e-archive.informatik.uni-koeln.de/704/
http://www.sciencedirect.com/science/article/pii/S0304020808734583
http://www.sciencedirect.com/science/article/pii/S0304020808734583
http://dx.doi.org/10.1023/A:1018308718386
http://m.eet.com/media/1149460/22945-47235.pdf

references

[41] Don Coppersmith and Shmuel Winograd. Matrix multiplication via
arithmetic progressions. J. Symb. Comput., 9(3):251–280, mar 1990. ISSN
0747-7171. doi: 10.1016/S0747-7171(08)80013-2. URL http://dx.doi.

org/10.1016/S0747-7171(08)80013-2.

[42] Georges-Henri Cottet and Petros D. Koumoutsakos. Fast multi-
pole methods for three-dimensional n-body problems. In Vortex
Methods, pages 284–300. Cambridge University Press, 2000. ISBN
9780511526442. URL http://dx.doi.org/10.1017/CBO9780511526442.

011. Cambridge Books Online.

[43] David R. Cox and David V. Hinkley. Theoretical Statistics.
Springer US, Boston, MA, 1974. ISBN 978-0-412-12420-4. doi:
10.1007/978-1-4899-2887-0. URL http://dx.doi.org/10.1007/

978-1-4899-2887-0.

[44] Ron Davidson and David Harel. Drawing graphs nicely using sim-
ulated annealing. ACM Trans. Graph., 15(4):301–331, oct 1996. ISSN
0730-0301. doi: 10.1145/234535.234538. URL http://doi.acm.org/10.

1145/234535.234538. preliminary version published at the ’The Weizmann
Institute’ in 1989.

[45] Gilberto de Miranda, Henrique P. L. Luna, Geraldo R. Mateus, and
Ricardo P. M. Ferreira. A performance guarantee heuristic for elec-
tronic components placement problems including thermal effects. Com-
puters & Operations Research, 32(11):2937 – 2957, 2005. ISSN 0305-
0548. doi: http://dx.doi.org/10.1016/j.cor.2004.04.014. URL http://

www.sciencedirect.com/science/article/pii/S0305054804000875.

[46] André DeHon. Balancing interconnect and computation in a recon-
figurable computing array (or, why you don’t really want 100% LUT
utilization). In Proceedings of the 1999 ACM/SIGDA Seventh International
Symposium on Field Programmable Gate Arrays, FPGA ’99, pages 69–78,
New York, NY, USA, 1999. ACM. ISBN 1-58113-088-0. doi: 10.1145/
296399.296431. URL http://doi.acm.org/10.1145/296399.296431.

[47] James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear alge-
bra is stable. Numerische Mathematik, 108(1):59–91, 2007. ISSN 0945-
3245. doi: 10.1007/s00211-007-0114-x. URL http://dx.doi.org/10.

1007/s00211-007-0114-x.

[48] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959. ISSN 0945-3245. doi: 10.
1007/BF01386390. URL http://dx.doi.org/10.1007/BF01386390.

280

http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1017/CBO9780511526442.011
http://dx.doi.org/10.1017/CBO9780511526442.011
http://dx.doi.org/10.1007/978-1-4899-2887-0
http://dx.doi.org/10.1007/978-1-4899-2887-0
http://doi.acm.org/10.1145/234535.234538
http://doi.acm.org/10.1145/234535.234538
http://www.sciencedirect.com/science/article/pii/S0305054804000875
http://www.sciencedirect.com/science/article/pii/S0305054804000875
http://doi.acm.org/10.1145/296399.296431
http://dx.doi.org/10.1007/s00211-007-0114-x
http://dx.doi.org/10.1007/s00211-007-0114-x
http://dx.doi.org/10.1007/BF01386390

references

[49] Alfred E. Dunlop and Brian W. Kernighan. A procedure for placement
of standard-cell VLSI circuits. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 4(1):92–98, January 1985. ISSN
0278-0070. doi: 10.1109/TCAD.1985.1270101.

[50] Peter Eades. A Heuristic for Graph Drawing. Congressus Numerantium,
42:149–160, 1984.

[51] Peter Eades and Patrick Garvan. Drawing stressed planar graphs in
three dimensions. In In, pages 212–223. Springer, 1995.

[52] Peter Eades and Sue Whitesides. Drawing graphs in two layers.
Theoretical Computer Science, 131(2):361 – 374, 1994. ISSN 0304-3975.
doi: http://dx.doi.org/10.1016/0304-3975(94)90179-1. URL http://

www.sciencedirect.com/science/article/pii/0304397594901791.

[53] C.S. Edwards. The derivation of a greedy approximator for the
koopmans-beckmann quadratic assignment problem. Proceedings of the
77-th Combinatorial Programming Conference (CPP77), pages 55–86, 1977.

[54] C.S. Edwards. A branch and bound algorithm for the Koopmans-
Beckmann quadratic assignment problem. In V.J. Rayward-Smith, ed-
itor, Combinatorial Optimization II, volume 13 of Mathematical Program-
ming Studies, pages 35–52. Springer Berlin Heidelberg, 1980. ISBN 978-
3-642-00803-0. doi: 10.1007/BFb0120905. URL http://dx.doi.org/10.

1007/BFb0120905.

[55] W. C. Elmore. The transient response of damped linear networks
with particular regard to wideband amplifiers. Journal of Applied
Physics, 19(1):55–63, 1948. doi: http://dx.doi.org/10.1063/1.1697872.
URL http://scitation.aip.org/content/aip/journal/jap/19/1/10.

1063/1.1697872.

[56] Marina A. Epelman. Introduction to semidefinite programming (SDP).
University Lecture, 2007. URL http://users.math.msu.edu/users/

markiwen/Teaching/MTH995/Papers/SDP_notes_Marina_Epelman_UM.

pdf.

[57] Güneş Erdoğan and Barbaros Tansel. A note on a polynomial time solv-
able case of the quadratic assignment problem. Discrete Optimization, 3
(4):382 – 384, 2006. ISSN 1572-5286. doi: http://dx.doi.org/10.1016/
j.disopt.2006.04.001. URL http://www.sciencedirect.com/science/

article/pii/S1572528606000429.

281

http://www.sciencedirect.com/science/article/pii/0304397594901791
http://www.sciencedirect.com/science/article/pii/0304397594901791
http://dx.doi.org/10.1007/BFb0120905
http://dx.doi.org/10.1007/BFb0120905
http://scitation.aip.org/content/aip/journal/jap/19/1/10.1063/1.1697872
http://scitation.aip.org/content/aip/journal/jap/19/1/10.1063/1.1697872
http://users.math.msu.edu/users/markiwen/Teaching/MTH995/Papers/SDP_notes_Marina_Epelman_UM.pdf
http://users.math.msu.edu/users/markiwen/Teaching/MTH995/Papers/SDP_notes_Marina_Epelman_UM.pdf
http://users.math.msu.edu/users/markiwen/Teaching/MTH995/Papers/SDP_notes_Marina_Epelman_UM.pdf
http://www.sciencedirect.com/science/article/pii/S1572528606000429
http://www.sciencedirect.com/science/article/pii/S1572528606000429

references

[58] Güneş Erdoğan and Barbaros Tansel. A branch-and-cut algorithm
for quadratic assignment problems based on linearizations. Com-
puters & Operations Research, 34(4):1085 – 1106, 2007. ISSN 0305-
0548. doi: http://dx.doi.org/10.1016/j.cor.2005.05.027. URL http://

www.sciencedirect.com/science/article/pii/S0305054805001760.

[59] Hongbing Fan, Yu-Liang Wu, and Catherine L. Zhou. Augmented dis-
joint switch boxes for FPGAs. In Proceedings of the 4th International
Symposium on Information and Communication Technologies, WISICT ’05,
pages 129–134. Trinity College Dublin, 2005. ISBN 1-59593-169-4. URL
http://dl.acm.org/citation.cfm?id=1071752.1071778.

[60] Tom Feist. Vivado Design Suite (wp416). Technical report, Xilinx, Inc.,
jun 2012.

[61] Gerd Finke, Rainer E. Burkard, and Franz Rendl. Quadratic assign-
ment problems. Annals of Discrete Mathematics, 31:61–82, 1987.

[62] Ronald Aylmer Sir Fisher. Statistical methods for research workers.
Edinburgh Oliver and Boyd, 7th ed., rev. and enl edition, 1938.
ISBN 0050021702. URL http://openlibrary.org/books/OL181269M.
’Sources used for data and methods’: p. 341-344; Bibliography: p. 345-
352.

[63] Jon Frankle. Iterative and adaptive slack allocation for performance-
driven layout and FPGA routing. In Proceedings of the 29th ACM/IEEE
Design Automation Conference, DAC ’92, pages 536–542, Los Alamitos,
CA, USA, 1992. IEEE Computer Society Press. ISBN 0-89791-516-X.
URL http://dl.acm.org/citation.cfm?id=113938.149626.

[64] Robert M. Freund. Introduction to Semidefinite Programming (SDP),
in Dimitris Bertsimas course 6.251J Introduction to Mathematical Pro-
gramming. University Lecture, Massachusetts Institute of Technology:
MIT OpenCourseWare, License: Creative Commons BY-NC-SA, 2009.
URL http://ocw.mit.edu.

[65] Alan M. Frieze and Joseph Yadegar. On the quadratic assignment prob-
lem. Discrete Applied Mathematics, 5(1):89 – 98, 1983. ISSN 0166-218X.
doi: http://dx.doi.org/10.1016/0166-218X(83)90018-5. URL http://

www.sciencedirect.com/science/article/pii/0166218X83900185.

[66] Yaniv Frishman and Ayellet Tal. Multi-level graph layout on the GPU.
IEEE Transactions on Visualization and Computer Graphics, 13(6):1310–
1319, Nov 2007. ISSN 1077-2626. doi: 10.1109/TVCG.2007.70580.

282

http://www.sciencedirect.com/science/article/pii/S0305054805001760
http://www.sciencedirect.com/science/article/pii/S0305054805001760
http://dl.acm.org/citation.cfm?id=1071752.1071778
http://openlibrary.org/books/OL181269M
http://dl.acm.org/citation.cfm?id=113938.149626
http://ocw.mit.edu
http://www.sciencedirect.com/science/article/pii/0166218X83900185
http://www.sciencedirect.com/science/article/pii/0166218X83900185

references

[67] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing
by force-directed placement. Softw. Pract. Exper., 21(11):1129–1164, nov
1991. ISSN 0038-0644. doi: 10.1002/spe.4380211102. URL http://dx.

doi.org/10.1002/spe.4380211102.

[68] Pawel Gajer and Stephen Kobourov. Grip: Graph drawing with intel-
ligent placement. Journal of Graph Algorithms and Applications, 6:2002,
2002.

[69] Pawel Gajer, Michael T. Goodrich, and Stephen G. Kobourov. Graph
Drawing: 8th International Symposium, GD 2000 Colonial Williams-
burg, VA, USA, September 20–23, 2000 Proceedings, chapter A Multi-
dimensional Approach to Force-Directed Layouts of Large Graphs,
pages 211–221. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.
ISBN 978-3-540-44541-8. doi: 10.1007/3-540-44541-2_20. URL http:

//dx.doi.org/10.1007/3-540-44541-2_20.

[70] Michel Gendreau and Jean-Yves Potvin. Handbook of Metaheuristics.
Springer Publishing Company, Incorporated, 2nd edition, 2010. ISBN
1441916636, 9781441916631.

[71] P. C. Gilmore. Optimal and suboptimal algorithms for the quadratic
assignment problem. SIAM J. Appl. Math., 10:305–313, 1962.

[72] Fred Glover. Improved linear integer programming for-
mulations of nonlinear integer problems. Management Sci-
ence, 22(4):455–460, 1975. URL http://www.scopus.com/

inward/record.url?eid=2-s2.0-0016619730&partnerID=40&md5=

9f05acecca2b736bdc8808fe4f284d30. cited By 263.

[73] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 1997. ISBN 079239965X.

[74] Apeksha Godiyal, Jared Hoberock, Michael Garland, and John C.
Hart. Graph Drawing: 16th International Symposium, GD 2008, Herak-
lion, Crete, Greece, September 21-24, 2008. Revised Papers, chapter Rapid
Multipole Graph Drawing on the GPU, pages 90–101. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-00219-
9. doi: 10.1007/978-3-642-00219-9_10. URL http://dx.doi.org/10.

1007/978-3-642-00219-9_10.

[75] Teofilo F. Gonzalez. Handbook of Approximation Algorithms and Meta-
heuristics (Chapman & Hall/Crc Computer & Information Science Series).
Chapman & Hall/CRC, 2007. ISBN 1584885505.

283

http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1007/3-540-44541-2_20
http://dx.doi.org/10.1007/3-540-44541-2_20
http://www.scopus.com/inward/record.url?eid=2-s2.0-0016619730&partnerID=40&md5=9f05acecca2b736bdc8808fe4f284d30
http://www.scopus.com/inward/record.url?eid=2-s2.0-0016619730&partnerID=40&md5=9f05acecca2b736bdc8808fe4f284d30
http://www.scopus.com/inward/record.url?eid=2-s2.0-0016619730&partnerID=40&md5=9f05acecca2b736bdc8808fe4f284d30
http://dx.doi.org/10.1007/978-3-642-00219-9_10
http://dx.doi.org/10.1007/978-3-642-00219-9_10

references

[76] Ananth Grama, Vivek Sarin, and Ahmed Sameh. Improving error
bounds for multipole-based treecodes. In High Performance Computing,
1998. HIPC ’98. 5th International Conference On, pages 73–80, Dec 1998.
doi: 10.1109/HIPC.1998.737973.

[77] Vincent Granville, Mirko Křivánek, and Jean-Paul Rasson. Simulated
annealing: A proof of convergence. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 16(6):652–656, 1994. ISSN 0162-8828. doi:
http://doi.ieeecomputersociety.org/10.1109/34.295910.

[78] David J. Greaves and Myoung-Jin Nam. Synthesis of glue logic, trans-
actors, multiplexors and serialisors from protocol specifications. In
Specification Design Languages (FDL 2010), 2010 Forum on, pages 1–7,
Sept 2010. doi: 10.1049/ic.2010.0148.

[79] Leslie Frederick Greengard. The Rapid Evaluation of Potential Fields in
Particle Systems. PhD thesis, New Haven, CT, USA, 1987. AAI8727216.

[80] Leslie Frederick Greengard and Vladimir Rokhlin. A fast algorithm
for particle simulations. Journal of Computational Physics, 135(2):280
– 292, 1997. ISSN 0021-9991. doi: http://dx.doi.org/10.1006/jcph.
1997.5706. URL http://www.sciencedirect.com/science/article/

pii/S0021999197957065.

[81] Stefan Hachul. A potential field based multilevel algorithm for drawing large
graphs. PhD thesis, University of Cologne, 2005. URL http://kups.ub.

uni-koeln.de/volltexte/2005/1409/index.html.

[82] Stefan Hachul and Michael Jünger. Drawing large graphs with a
potential-field-based multilevel algorithm. In Proceedings of the 12th In-
ternational Conference on Graph Drawing, GD’04, pages 285–295, Berlin,
Heidelberg, 2004. Springer-Verlag. ISBN 3-540-24528-6, 978-3-540-
24528-5. doi: 10.1007/978-3-540-31843-9_29. URL http://dx.doi.org/

10.1007/978-3-540-31843-9_29.

[83] Stefan Hachul and Michael Jünger. Large-graph layout with the fast
multipole multilevel method. Technical report, 2005. URL http://

e-archive.informatik.uni-koeln.de/509/.

[84] Stefan Hachul and Michael Jünger. Large-graph layout algorithms
at work: An experimental study. Journal of Graph Algorithms and Ap-
plications, 11(21):345–369, 2007. URL http://e-archive.informatik.

uni-koeln.de/510/.

284

http://www.sciencedirect.com/science/article/pii/S0021999197957065
http://www.sciencedirect.com/science/article/pii/S0021999197957065
http://kups.ub.uni-koeln.de/volltexte/2005/1409/index.html
http://kups.ub.uni-koeln.de/volltexte/2005/1409/index.html
http://dx.doi.org/10.1007/978-3-540-31843-9_29
http://dx.doi.org/10.1007/978-3-540-31843-9_29
http://e-archive.informatik.uni-koeln.de/509/
http://e-archive.informatik.uni-koeln.de/509/
http://e-archive.informatik.uni-koeln.de/510/
http://e-archive.informatik.uni-koeln.de/510/

references

[85] Scott W. Hadley, Franz Rendl, and Henry Wolkowicz. Bounds for
the quadratic assignment problem using continuous optimization tech-
niques, 1990.

[86] Scott W. Hadley, Franz Rendl, and Henry Wolkowicz. A new lower
bound via projection for the quadratic assignment problem. Mathemat-
ics of Operations Research, 17:727–739, 1992.

[87] Malay Haldar, Anshuman Nayak, Alok N. Choudhary, and Prithviraj
Banerjee. Parallel algorithms for FPGA placement. In GLVLSI, 2000.

[88] David Harel and Yehuda Koren. A fast multi-scale method for drawing
large graphs (full version). In Journal of Graph Algorithms and Applica-
tions, pages 183–196. Springer-Verlag, 2000.

[89] David Harel and Yehuda Koren. Graph Drawing: 10th International Sym-
posium, GD 2002 Irvine, CA, USA, August 26–28, 2002 Revised Papers,
chapter Graph Drawing by High-Dimensional Embedding, pages 207–
219. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-
540-36151-0. doi: 10.1007/3-540-36151-0_20. URL http://dx.doi.org/

10.1007/3-540-36151-0_20.

[90] John Harrison, Ted Kubaska, Shane Story, Microprocessor Software
Labs, and Intel Corporation. The computation of transcendental func-
tions on the ia-64 architecture. Intel Technology Journal, 4:234–251, 1999.

[91] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2):100–107, July 1968. ISSN 0536-
1567. doi: 10.1109/TSSC.1968.300136.

[92] Lougee R. Heimer. The Common Optimization INterface for Opera-
tions Research: Promoting open-source software in the operations re-
search community. IBM Journal of Research and Development, 47, 2003.

[93] Bruce Hendrickson and Robert Leland. A multilevel algorithm for
partitioning graphs. In Proceedings of the 1995 ACM/IEEE Conference on
Supercomputing, Supercomputing ’95, New York, NY, USA, 1995. ACM.
ISBN 0-89791-816-9. doi: 10.1145/224170.224228. URL http://doi.acm.

org/10.1145/224170.224228.

[94] John L. Henning. SPEC CPU2000: Measuring CPU performance in the
new millennium. Computer, 33(7):28–35, July 2000. ISSN 0018-9162. doi:
10.1109/2.869367. URL http://dx.doi.org/10.1109/2.869367.

285

http://dx.doi.org/10.1007/3-540-36151-0_20
http://dx.doi.org/10.1007/3-540-36151-0_20
http://doi.acm.org/10.1145/224170.224228
http://doi.acm.org/10.1145/224170.224228
http://dx.doi.org/10.1109/2.869367

references

[95] Michael Himsolt. GML: A portable Graph File Format. Technical
report, Universität Passau, 94030 Passau, Germany, 1999. URL http:

//www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html.

[96] Roger W. Hockney and James W. Eastwood. Computer Simulation Using
Particles. Taylor & Francis, Inc., Bristol, PA, USA, 1988. ISBN 0-85274-
392-0.

[97] Bo Hu. Timing-driven placement for heterogeneous field pro-
grammable gate array. In 2006 IEEE/ACM International Conference on
Computer Aided Design, pages 383–388, Nov 2006. doi: 10.1109/ICCAD.
2006.320062.

[98] Bo Hu, Yue Zeng, and Malgorzata Marek-Sadowska. mFAR: Fixed-
points-addition-based VLSI placement algorithm. In Proceedings of the
2005 International Symposium on Physical Design, ISPD ’05, pages 239–
241, New York, NY, USA, 2005. ACM. ISBN 1-59593-021-3. doi: 10.
1145/1055137.1055189. URL http://doi.acm.org/10.1145/1055137.

1055189.

[99] Tao Huang. Continuous Optimization Methods for the Quadratic As-
signment Problem. BiblioBazaar, 2011. ISBN 9781243461346. URL
https://books.google.de/books?id=UrSXpwAACAAJ.

[100] Mohamed Saifullah Hussin and Thomas Stützle. Hierarchical iterated
local search for the quadratic assignment problem. In Maria J. Blesa,
Christian Blum, Luca Di Gaspero, Andrea Roli, Michael Sampels, and
Andrea Schaerf, editors, Hybrid Metaheuristics, volume 5818 of Lecture
Notes in Computer Science, pages 115–129. Springer, 2009. ISBN 978-
3-642-04917-0. URL http://dblp.uni-trier.de/db/conf/hm/hm2009.

html#HussinS09.

[101] Peter Jamieson and Jonathan Rose. A Verilog RTL synthesis tool for
heterogeneous FPGAs. In International Conference on Field Programmable
Logic and Applications, 2005., pages 305–310, Aug 2005. doi: 10.1109/
FPL.2005.1515739.

[102] Stephen Jang, Billy Chan, Kevin Chung, and Alan Mishchenko.
Wiremap: FPGA technology mapping for improved routability and en-
hanced LUT merging. ACM Trans. Reconfigurable Technol. Syst., 2(2):
14:1–14:24, June 2009. ISSN 1936-7406. doi: 10.1145/1534916.1534924.
URL http://doi.acm.org/10.1145/1534916.1534924.

286

http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
http://doi.acm.org/10.1145/1055137.1055189
http://doi.acm.org/10.1145/1055137.1055189
https://books.google.de/books?id=UrSXpwAACAAJ
http://dblp.uni-trier.de/db/conf/hm/hm2009.html#HussinS09
http://dblp.uni-trier.de/db/conf/hm/hm2009.html#HussinS09
http://doi.acm.org/10.1145/1534916.1534924

references

[103] Michael Jünger and Volker Kaibel. A basic study of the QAP-
polytope. Technical report, Institut für Informatik, Universität zu Köln,
Pohligstrasse 1, 50969 Köln, Germany, 1996.

[104] Michael Jünger and Volker Kaibel. On the SQAP-polytope.
SIAM J. on Optimization, 11(2):444–463, feb 2000. ISSN 1052-6234.
doi: 10.1137/S1052623496310576. URL http://dx.doi.org/10.1137/

S1052623496310576.

[105] Michael Jünger and Volker Kaibel. The QAP-polytope and the star
transformation. Discrete Appl. Math., 111(3):283–306, aug 2001. ISSN
0166-218X. doi: 10.1016/S0166-218X(00)00272-9. URL http://dx.doi.

org/10.1016/S0166-218X(00)00272-9.

[106] Michael Jünger and Petra Mutzel. Exact and heuristic algorithms for 2-
layer straightline crossing minimization, pages 337–348. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1996. ISBN 978-3-540-49351-8. doi: 10.
1007/BFb0021817. URL http://dx.doi.org/10.1007/BFb0021817.

[107] Stefan E. Karisch and Franz Rendl. Lower bounds for the quadratic as-
signment problem via triangle decompositions. Mathematical Program-
ming, 71(2):137–151. ISSN 1436-4646. doi: 10.1007/BF01585995. URL
http://dx.doi.org/10.1007/BF01585995.

[108] L. Kaufman and F. Broeckx. An algorithm for the quadratic assignment
problem using bender’s decomposition. European Journal of Operational
Research, 2(3):207 – 211, 1978. ISSN 0377-2217. doi: http://dx.doi.org/
10.1016/0377-2217(78)90095-4. URL http://www.sciencedirect.com/

science/article/pii/0377221778900954.

[109] Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for
partitioning graphs. Bell System Technical Journal, 49(2):291–307, 1970.
ISSN 1538-7305. doi: 10.1002/j.1538-7305.1970.tb01770.x. URL http:

//dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x.

[110] Myung-Chul Kim, Jin Hu, Dong-Jin Lee, and Igor L. Markov. A simplr
method for routability-driven placement. In Proceedings of the Inter-
national Conference on Computer-Aided Design, ICCAD ’11, pages 67–73,
Piscataway, NJ, USA, 2011. IEEE Press. ISBN 978-1-4577-1398-9. URL
http://dl.acm.org/citation.cfm?id=2132325.2132346.

[111] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Optimiza-
tion by simulated annealing. Science, 220(4598):671–680, 1983. ISSN
0036-8075. doi: 10.1126/science.220.4598.671. URL http://science.

sciencemag.org/content/220/4598/671.

287

http://dx.doi.org/10.1137/S1052623496310576
http://dx.doi.org/10.1137/S1052623496310576
http://dx.doi.org/10.1016/S0166-218X(00)00272-9
http://dx.doi.org/10.1016/S0166-218X(00)00272-9
http://dx.doi.org/10.1007/BFb0021817
http://dx.doi.org/10.1007/BF01585995
http://www.sciencedirect.com/science/article/pii/0377221778900954
http://www.sciencedirect.com/science/article/pii/0377221778900954
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dl.acm.org/citation.cfm?id=2132325.2132346
http://science.sciencemag.org/content/220/4598/671
http://science.sciencemag.org/content/220/4598/671

references

[112] Jürgen M. Kleinhans, Georg Sigl, Frank M. Johannes, and Kurt J. Antre-
ich. GORDIAN: VLSI placement by quadratic programming and slic-
ing optimization. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 10(3):356–365, Mar 1991. ISSN 0278-0070.
doi: 10.1109/43.67789.

[113] Donald E. Knuth. Computer Programming as an Art. Communications
of the ACM, 17(12):667–673, December 1974.

[114] Yehuda Koren, Liran Carmel, and David Harel. Drawing huge graphs
by algebraic multigrid optimization. Multiscale Modeling & Simulation,
1(4):645–673, 2003. doi: 10.1137/S154034590241370X. URL http://dx.

doi.org/10.1137/S154034590241370X.

[115] M. Kováč. Solving quadratic assignment problem in parallel using
local search with simulated annealing elements. In Digital Technologies
(DT), 2013 International Conference on, pages 18–20, May 2013. doi: 10.
1109/DT.2013.6566279.

[116] Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and
ASICs. In Proceedings of the 2006 ACM/SIGDA 14th International Sympo-
sium on Field Programmable Gate Arrays, FPGA ’06, pages 21–30, New
York, NY, USA, 2006. ACM. ISBN 1-59593-292-5. doi: 10.1145/1117201.
1117205. URL http://doi.acm.org/10.1145/1117201.1117205.

[117] Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and
ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 26(2):203–215, Feb 2007. ISSN 0278-0070. doi: 10.1109/
TCAD.2006.884574.

[118] Viktor M. Kureichik, Boris K. Lebedev, and Oleg B. Lebedev. A sim-
ulated evolution-based solution of the placement problem. Journal of
Computer and Systems Sciences International, 46(4):578–589, 2007. ISSN
1555-6530. doi: 10.1134/S1064230707040089. URL http://dx.doi.org/

10.1134/S1064230707040089.

[119] Young-Su Kwon, Payam Lajevardi, Anantha P. Chandrakasan, and
Donald E. Troxel. A 3-D FPGA wire resource prediction model vali-
dated using a 3-D placement and routing tool. In in Proc. of SLIP ’05,
pages 65–72. ACM, 2005.

[120] Jimmy Lam and Jean-Marc Delosme. Performance of a new anneal-
ing schedule. In Design Automation Conference, 1988. Proceedings., 25th
ACM/IEEE, pages 306–311, June 1988. doi: 10.1109/DAC.1988.14775.

288

http://dx.doi.org/10.1137/S154034590241370X
http://dx.doi.org/10.1137/S154034590241370X
http://doi.acm.org/10.1145/1117201.1117205
http://dx.doi.org/10.1134/S1064230707040089
http://dx.doi.org/10.1134/S1064230707040089

references

[121] Eugene L. Lawler. The quadratic assignment problem. Management
Science, 9(4):586–599, 1963. doi: 10.1287/mnsc.9.4.586. URL http://dx.

doi.org/10.1287/mnsc.9.4.586.

[122] Chin-Yang Lee. An algorithm for path connections and its applications.
IRE Transactions on Electronic Computers, EC-10(3):346–365, Sept 1961.
ISSN 0367-9950. doi: 10.1109/TEC.1961.5219222.

[123] Yuh-Sheng Lee and Allen C.-H. Wu. A performance and routability-
driven router for FPGAs considering path delays. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 16(2):179–185,
Feb 1997. ISSN 0278-0070. doi: 10.1109/43.573832.

[124] Yong Li, Panos M. Pardalos, K. G. Ramakrishnan, and Mauricio G. C.
Resende. Lower bounds for the quadratic assignment problem. Annals
of Operations Research, 50(1):387–410. ISSN 1572-9338. doi: 10.1007/
BF02085649. URL http://dx.doi.org/10.1007/BF02085649.

[125] Chih liang Eric Cheng. RISA: Accurate and efficient placement
routability modeling. In Computer-Aided Design, 1994., IEEE/ACM Inter-
national Conference on, pages 690–695, Nov 1994. doi: 10.1109/ICCAD.
1994.629897.

[126] Shen Lin and Brian W. Kernighan. An effective heuristic algorithm
for the traveling-salesman problem. Oper. Res., 21(2):498–516, apr 1973.
ISSN 0030-364X. doi: 10.1287/opre.21.2.498. URL http://dx.doi.org/

10.1287/opre.21.2.498.

[127] Tzu-Hen Lin, P. Banerjee, and Y. W. Chang. An efficient and effective
analytical placer for FPGAs. In Design Automation Conference (DAC),
2013 50th ACM/EDAC/IEEE, pages 1–6, May 2013.

[128] Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo
Boaventura-Netto, Peter Hahn, and Tania Querido. An analytical sur-
vey for the quadratic assignment problem. EUROPEAN JOURNAL OF
OPERATIONAL RESEARCH, pages 657–690, 2007.

[129] Adrian Ludwin and Vaughn Betz. Efficient and deterministic parallel
placement for FPGAs. ACM Trans. Des. Autom. Electron. Syst., 16(3):
22:1–22:23, jun 2011. ISSN 1084-4309. doi: 10.1145/1970353.1970355.
URL http://doi.acm.org/10.1145/1970353.1970355.

[130] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville,
Thien Yu, Konstantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu,
Nooruddin Ahmed, Kenneth B. Kent, Jason Anderson, Jonathan Rose,

289

http://dx.doi.org/10.1287/mnsc.9.4.586
http://dx.doi.org/10.1287/mnsc.9.4.586
http://dx.doi.org/10.1007/BF02085649
http://dx.doi.org/10.1287/opre.21.2.498
http://dx.doi.org/10.1287/opre.21.2.498
http://doi.acm.org/10.1145/1970353.1970355

references

and Vaughn Betz. VTR 7.0: Next generation architecture and CAD
system for FPGAs. ACM Trans. Reconfigurable Technol. Syst., 7(2):6:1–
6:30, jul 2014. ISSN 1936-7406. doi: 10.1145/2617593. URL http:

//doi.acm.org/10.1145/2617593.

[131] Pongstorn Maidee, Cristinel Ababei, and Kia Bazargan. Timing-driven
partitioning-based placement for island style FPGAs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 24(3):395–
406, March 2005. ISSN 0278-0070. doi: 10.1109/TCAD.2004.842812.

[132] Mirko Maischberger. COIN-OR METSlib, a metaheuris-
tics framework in modern C++. http://www.coin-
or.org/metslib/docs/releases/0.5.2/metslib-tr.pdf, April 2011.

[133] Wai-Kei Mak and Hao Li. Placement for modern FPGAs. In Conference,
Emerging Information Technology 2005., pages 4 pp.–, Aug 2005. doi:
10.1109/EITC.2005.1544354.

[134] Stephen Lim (Product Marketing Manager). Expect a breakthrough
advantage in next- generation FPGAs. Technical report, Altera Corpo-
ration, Jun 2015.

[135] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Timing-
driven placement for FPGAs. In Proceedings of the 2000 ACM/SIGDA
Eighth International Symposium on Field Programmable Gate Arrays, FPGA
’00, pages 203–213, New York, NY, USA, 2000. ACM. ISBN 1-58113-193-
3. doi: 10.1145/329166.329208. URL http://doi.acm.org/10.1145/

329166.329208.

[136] Alexander (Sandy) Marquardt, Vaughn Betz, and Jonathan Rose. Us-
ing cluster-based logic blocks and timing-driven packing to improve
FPGA speed and density. In Proceedings of the 1999 ACM/SIGDA Sev-
enth International Symposium on Field Programmable Gate Arrays, FPGA
’99, pages 37–46, New York, NY, USA, 1999. ACM. ISBN 1-58113-088-
0. doi: 10.1145/296399.296426. URL http://doi.acm.org/10.1145/

296399.296426.

[137] Grant Martin and Gary Smith. High-level synthesis: Past, present, and
future. IEEE Design Test of Computers, 26(4):18–25, July 2009. ISSN
0740-7475. doi: 10.1109/MDT.2009.83.

[138] Larry McMurchie and Carl Ebeling. Pathfinder: A negotiation-based
performance-driven router for FPGAs. In Field-Programmable Gate Ar-
rays, 1995. FPGA ’95. Proceedings of the Third International ACM Sympo-
sium on, pages 111–117, 1995. doi: 10.1109/FPGA.1995.242049.

290

http://doi.acm.org/10.1145/2617593
http://doi.acm.org/10.1145/2617593
http://doi.acm.org/10.1145/329166.329208
http://doi.acm.org/10.1145/329166.329208
http://doi.acm.org/10.1145/296399.296426
http://doi.acm.org/10.1145/296399.296426

references

[139] Donald A. McQuarrie. Statistical Mechanics. University Science Books,
2000. ISBN 9781891389153. URL https://books.google.de/books?id=

itcpPnDnJM0C.

[140] Wim Meeus, Kristof van Beeck, Toon Goedemé, Jan Meel, and Dirk
Stroobandt. An overview of today’s high-level synthesis tools. De-
sign Automation for Embedded Systems, 16(3):31–51, 2012. ISSN 1572-
8080. doi: 10.1007/s10617-012-9096-8. URL http://dx.doi.org/10.

1007/s10617-012-9096-8.

[141] Michael D. Moffitt. MaizeRouter: Engineering an effective global
router. In 2008 Asia and South Pacific Design Automation Conference,
pages 226–231, March 2008. doi: 10.1109/ASPDAC.2008.4483946.

[142] Chandra Mulpuri and Scott Hauck. Runtime and quality tradeoffs in
FPGA placement and routing. In Proceedings of the 2001 ACM/SIGDA
Ninth International Symposium on Field Programmable Gate Arrays, FPGA
’01, pages 29–36, New York, NY, USA, 2001. ACM. ISBN 1-58113-341-
3. doi: 10.1145/360276.360294. URL http://doi.acm.org/10.1145/

360276.360294.

[143] Ravi Nair, C. Leonard Berman, Peter S. Hauge, and Ellen J. Yoffa. Gen-
eration of performance constraints for layout. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 8(8):860–874,
Aug 1989. ISSN 0278-0070. doi: 10.1109/43.31546.

[144] William C. Naylor, Ross Donelly, and Lu Sha. Non-linear optimization
system and method for wire length and delay optimization for an au-
tomatic electric circuit placer, oct 2001. URL http://www.google.com/

patents/US6301693. US Patent 6,301,693.

[145] Christopher E. Nugent, Thomas E. Vollmann, and John Ruml. An ex-
perimental comparison of techniques for the assignment of facilities to
locations. Operations Research, 16(1):150–173, 1968. doi: 10.1287/opre.
16.1.150. URL http://dx.doi.org/10.1287/opre.16.1.150.

[146] Andreas Paffenholz. Faces of Birkhoff polytopes. Electr. J. Comb., 22
(1):P1.67, 2015. URL http://www.combinatorics.org/ojs/index.php/

eljc/article/view/v22i1p67.

[147] Igor Pak. Four questions on Birkhoff polytope. Annals of Combinatorics,
4(1):83–90, 2000. ISSN 0219-3094. doi: 10.1007/PL00001277. URL http:

//dx.doi.org/10.1007/PL0000127.

291

https://books.google.de/books?id=itcpPnDnJM0C
https://books.google.de/books?id=itcpPnDnJM0C
http://dx.doi.org/10.1007/s10617-012-9096-8
http://dx.doi.org/10.1007/s10617-012-9096-8
http://doi.acm.org/10.1145/360276.360294
http://doi.acm.org/10.1145/360276.360294
http://www.google.com/patents/US6301693
http://www.google.com/patents/US6301693
http://dx.doi.org/10.1287/opre.16.1.150
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p67
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p67
http://dx.doi.org/10.1007/PL0000127
http://dx.doi.org/10.1007/PL0000127

references

[148] Michael Palczewski. Plane parallel A* maze router and its appli-
cation to FPGAs. In Proceedings of the 29th ACM/IEEE Design Au-
tomation Conference, DAC ’92, pages 691–697, Los Alamitos, CA, USA,
1992. IEEE Computer Society Press. ISBN 0-89791-516-X. URL http:

//dl.acm.org/citation.cfm?id=113938.149679.

[149] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1982. ISBN 0-13-152462-3.

[150] Panos M. Pardalos, Franz Rendl, and Henry Wolkowicz. The quadratic
assignment problem: A survey and recent developments. In In Proceed-
ings of the DIMACS Workshop on Quadratic Assignment Problems, volume
16 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 1–42. American Mathematical Society, 1994.

[151] Kara K. W. Poon, Andy Yan, and Steven J. E. Wilton. A Flexible
Power Model for FPGAs. In FPL ’02: Proceedings of the Reconfigurable
Computing Is Going Mainstream, 12th International Conference on Field-
Programmable Logic and Applications, pages 312–321, London, UK, 2002.
Springer-Verlag. ISBN 3540441085. URL http://portal.acm.org/

citation.cfm?id=740248.

[152] Neil R. Quinn and Melvin A. Breuer. A force-directed component
placement procedure for printed circuit boards. IEEE Transactions on
Circuits and Systems, 26(6):377–388, Jun 1979. ISSN 0098-4094. doi:
10.1109/TCS.1979.1084652.

[153] Sanguthevar Rajasekaran. On the convergence time of simulated an-
nealing. Technical Report MS-CIS-90-89/GRASP LAB 242, University
of Pennsylvania. Philadelphia (PA US), 1990. URL http://opac.inria.

fr/record=b1048187.

[154] K. G. Ramakrishnan, Mauricio G. C. Resende, and Panos M. Pardalos.
A branch and bound algorithm for the quadratic assignment problem
using a lower bound based on linear programming. In In C. Floudas
and P.M. Pardalos, editors, State of the Art in Global Optimization: Compu-
tational Methods and Applications, pages 57–73. Kluwer Academic Pub-
lishers, 1995.

[155] Srilata Raman, C. L. Liu, and Larry G. Jones. Timing-constrained FPGA
placement: A force-directed formulation and its performance evalua-
tion. VLSI Design, 4(4):345–355, 1996. doi: 10.1155/1996/53238. URL
http://dx.doi.org/10.1155/1996/53238.

292

http://dl.acm.org/citation.cfm?id=113938.149679
http://dl.acm.org/citation.cfm?id=113938.149679
http://portal.acm.org/citation.cfm?id=740248
http://portal.acm.org/citation.cfm?id=740248
http://opac.inria.fr/record=b1048187
http://opac.inria.fr/record=b1048187
http://dx.doi.org/10.1155/1996/53238

references

[156] Deepak Rautela and Rajendra Katti. Design and implementation
of FPGA router for efficient utilization of heterogeneous routing re-
sources. In IEEE Computer Society Annual Symposium on VLSI: New
Frontiers in VLSI Design (ISVLSI’05), pages 232–237, May 2005. doi:
10.1109/ISVLSI.2005.26.

[157] Franz Rendl and Renata Sotirov. Bounds for the quadratic assignment
problem using the bundle method. Mathematical Programming, 109(2):
505–524, 2006. ISSN 1436-4646. doi: 10.1007/s10107-006-0038-8. URL
http://dx.doi.org/10.1007/s10107-006-0038-8.

[158] Franz Rendl and Henry Wolkowicz. Applications of parametric pro-
gramming and eigenvalue maximization to the quadratic assignment
problem. Mathematical Programming, 53(1):63–78. ISSN 1436-4646. doi:
10.1007/BF01585694. URL http://dx.doi.org/10.1007/BF01585694.

[159] Jonathan Rose and Stephen Brown. Flexibility of interconnection struc-
tures for field-programmable gate arrays. Solid-State Circuits, IEEE Jour-
nal of, 26(3):277–282, 1991.

[160] Jonathan Rose and Dwight Hill. Architectural and physical design
challenges for one-million gate FPGAs and beyond. In Proceedings of
the 1997 ACM Fifth International Symposium on Field-programmable Gate
Arrays, FPGA ’97, pages 129–132, New York, NY, USA, 1997. ACM.
ISBN 0-89791-801-0. doi: 10.1145/258305.258324. URL http://doi.acm.

org/10.1145/258305.258324.

[161] Jorge Rubinstein, Paul Penfield, and Mark A. Horowitz. Signal delay
in rc tree networks. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 2(3):202–211, July 1983. ISSN 0278-0070.
doi: 10.1109/TCAD.1983.1270037.

[162] Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation prob-
lems. J. ACM, 23(3):555–565, 1976. doi: 10.1145/321958.321975. URL
http://doi.acm.org/10.1145/321958.321975.

[163] Gamal Abd El-Nasser A. Said, Abeer M. Mahmoud, and El-Sayed M.
El-Horbaty. A Comparative Study of Meta-heuristic Algorithms for
Solving Quadratic Assignment Problem. International Journal of Ad-
vanced Computer Science and Applications(IJACSA), 5(1), 2014. URL
http://ijacsa.thesai.org/.

[164] Alexander Schrijver. Combinatorial optimization : Polyhedra and Effi-
ciency. Algorithms and combinatorics. Springer-Verlag, Berlin, Hei-

293

http://dx.doi.org/10.1007/s10107-006-0038-8
http://dx.doi.org/10.1007/BF01585694
http://doi.acm.org/10.1145/258305.258324
http://doi.acm.org/10.1145/258305.258324
http://doi.acm.org/10.1145/321958.321975
http://ijacsa.thesai.org/

references

delberg, New York, N.Y., et al., 2003. ISBN 3-540-44389-4. URL
http://opac.inria.fr/record=b1124844.

[165] Navaratnasothie Selvakkumaran, Abhishek Ranjan, Salil Raje, and
George Karypis. Multi-resource aware partitioning algorithms for
FPGAs with heterogeneous resources. In Design Automation Conference,
2004. Proceedings. 41st, pages 741–746, July 2004.

[166] S. I. Sergeev. Improved lower bounds for the quadratic assignment
problem. Automation and Remote Control, 65(11):1733–1746. ISSN 1608-
3032. doi: 10.1023/B:AURC.0000047888.76717.7a. URL http://dx.doi.

org/10.1023/B:AURC.0000047888.76717.7a.

[167] Akshay Sharma, Scott Hauck, and Carl Ebeling. Architecture-adaptive
routability-driven placement for FPGAs. In International Conference on
Field Programmable Logic and Applications, 2005., pages 427–432, Aug
2005. doi: 10.1109/FPL.2005.1515759.

[168] Georg Sigl, Konrad Doll, and Frank M. Johannes. Analytical placement:
A linear or a quadratic objective function? In Proceedings of the 28th
ACM/IEEE Design Automation Conference, DAC ’91, pages 427–432, New
York, NY, USA, 1991. ACM. ISBN 0-89791-395-7. doi: 10.1145/127601.
127707. URL http://doi.acm.org/10.1145/127601.127707.

[169] Jadranka Skorin-Kapov. Tabu search applied to the quadratic assign-
ment problem. ORSA Journal on Computing, 2(1):33–45, 1990. doi:
10.1287/ijoc.2.1.33. URL http://dx.doi.org/10.1287/ijoc.2.1.33.

[170] Richard Smith. Working draft, standard for programming language
C++, rev. N4140. Technical report, Google Inc, 2014. URL http://www.

open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf.

[171] Renata Sotirov. SDP relaxations for some combinatorial optimiza-
tion problems. In Miguel F. Anjos and Jean B. Lasserre, edi-
tors, Handbook on Semidefinite, Conic and Polynomial Optimization, vol-
ume 166 of International Series in Operations Research & Management
Science, pages 795–819. Springer US, 2012. ISBN 978-1-4614-0768-
3. doi: 10.1007/978-1-4614-0769-0_27. URL http://dx.doi.org/10.

1007/978-1-4614-0769-0_27.

[172] Peter Spindler, Ulf Schlichtmann, and Frank M. Johannes. Kraftwerk2
- a fast force-directed quadratic placement approach using an accurate
net model. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(8):1398–1411, Aug 2008. ISSN 0278-0070. doi:
10.1109/TCAD.2008.925783.

294

http://opac.inria.fr/record=b1124844
http://dx.doi.org/10.1023/B:AURC.0000047888.76717.7a
http://dx.doi.org/10.1023/B:AURC.0000047888.76717.7a
http://doi.acm.org/10.1145/127601.127707
http://dx.doi.org/10.1287/ijoc.2.1.33
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
http://dx.doi.org/10.1007/978-1-4614-0769-0_27
http://dx.doi.org/10.1007/978-1-4614-0769-0_27

references

[173] Leon Steinberg. The backboard wiring problem: A place-
ment algorithm. SIAM Review, 3(1):37–50, 1961. URL http:

//scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&

id=SIREAD000003000001000037000001&idtype=cvips&gifs=yes.

[174] Thomas Stützle and Marco Dorigo. Local search and metaheuristics
for the quadratic assignment problem. Technical Report AIDA-01-01,
FG Intellektik, FB Informatik, TU Darmstadt, Germany, 2001.

[175] William Swartz and Carl Sechen. New algorithms for the placement
and routing of macro cells. In Computer-Aided Design, 1990. ICCAD-90.
Digest of Technical Papers., 1990 IEEE International Conference on, pages
336–339, Nov 1990. doi: 10.1109/ICCAD.1990.129918.

[176] Berkeley Logic Synthesis and Verification Group. ABC: A
system for sequential synthesis and verification, release 70930.
http://www.eecs.berkeley.edu/˜alanmi/abc/. URL http://www.eecs.

berkeley.edu/~{}alanmi/abc.

[177] Roberto Tamassia. On embedding a graph in the grid with the mini-
mum number of bends. SIAM J. Comput., 16(3):421–444, jun 1987. ISSN
0097-5397. doi: 10.1137/0216030. URL http://dx.doi.org/10.1137/

0216030.

[178] Danesh Tavana, Wilson Yee, Steve Young, and Bradly Fawcett. Logic
block and routing considerations for a new SRAM-based FPGA archi-
tecture. In Custom Integrated Circuits Conference, 1995., Proceedings of the
IEEE 1995, pages 511–514, May 1995. doi: 10.1109/CICC.1995.518235.

[179] Russell G. Tessier. Fast Place and Route Approaches for FPGAs. PhD
thesis, Cambridge, MA, USA, 1999. AAI0800664.

[180] William T. Tutte. Convex representations of graphs. Proceedings of the
London Mathematical Society, 10:304–320, 1960. URL http://www.ams.

org/mathscinet-getitem?mr=0114774.

[181] William T. Tutte. How to draw a graph. Proceedings of the Lon-
don Mathematical Society, 13:743–767, 1963. URL http://www.ams.org/

mathscinet-getitem?mr=28:1610.

[182] Vaishali Udar and Sanjeev Sharma. Analysis of place and route algo-
rithm for field programmable gate array (FPGA). In Information Com-
munication Technologies (ICT), 2013 IEEE Conference on, pages 116–119,
April 2013. doi: 10.1109/CICT.2013.6558073.

295

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SIREAD000003000001000037000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SIREAD000003000001000037000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SIREAD000003000001000037000001&idtype=cvips&gifs=yes
http://www.eecs.berkeley.edu/~{}alanmi/abc
http://www.eecs.berkeley.edu/~{}alanmi/abc
http://dx.doi.org/10.1137/0216030
http://dx.doi.org/10.1137/0216030
http://www.ams.org/mathscinet-getitem?mr=0114774
http://www.ams.org/mathscinet-getitem?mr=0114774
http://www.ams.org/mathscinet-getitem?mr=28:1610
http://www.ams.org/mathscinet-getitem?mr=28:1610

references

[183] Jeffrey D Ullman. Computational Aspects of VLSI. W. H. Freeman & Co.,
New York, NY, USA, 1984. ISBN 071678145X.

[184] Satya Prakash Upadhyay. Wirelength-driven analytical placement for
FPGA. Master’s thesis, 2015. URL http://hdl.handle.net/11299/

174729.

[185] Natarajan Viswanathan, Min Pan, and Chris Chu. FastPlace 3.0: A fast
multilevel quadratic placement algorithm with placement congestion
control. In 2007 Asia and South Pacific Design Automation Conference,
pages 135–140, Jan 2007. doi: 10.1109/ASPDAC.2007.357975.

[186] Kristofer Vorwerk, Andrew Kennings, and Anthony Vannelli. Engi-
neering details of a stable force-directed placer. In Proceedings of the
2004 IEEE/ACM International conference on Computer-aided design, pages
573–580. IEEE Computer Society, 2004.

[187] Chris Walshaw. Graph Drawing: 8th International Symposium, GD 2000
Colonial Williamsburg, VA, USA, September 20–23, 2000 Proceedings, chap-
ter A Multilevel Algorithm for Force-Directed Graph Drawing, pages
171–182. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. ISBN
978-3-540-44541-8. doi: 10.1007/3-540-44541-2_17. URL http://dx.

doi.org/10.1007/3-540-44541-2_17.

[188] Saeyang Yang. Logic synthesis and optimization benchmarks user
guide version 3.0, 1991.

[189] Habib Youssef and Eugene Shragowitz. Timing constraints for correct
performance. In Computer-Aided Design, 1990. ICCAD-90. Digest of Tech-
nical Papers., 1990 IEEE International Conference on, pages 24–27, Nov
1990. doi: 10.1109/ICCAD.1990.129830.

[190] Chi-Wai Yu, Wayne Luk, Steven J. E. Wilton, and Philip H. W. Leong.
Routing optimization for hybrid FPGAs. In Field-Programmable Tech-
nology, 2009. FPT 2009. International Conference on, pages 419–422, Dec
2009. doi: 10.1109/FPT.2009.5377695.

[191] Wenwei Zha and Peter Athanas. An FPGA router for alternative re-
configuration flows. In Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW), 2013 IEEE 27th International, pages
163–171, May 2013. doi: 10.1109/IPDPSW.2013.221.

[192] Qing Zhao, Stefan E. Karisch, Franz Rendl, and Henry Wolkowicz.
Semidefinite programming relaxations for the quadratic assignment

296

http://hdl.handle.net/11299/174729
http://hdl.handle.net/11299/174729
http://dx.doi.org/10.1007/3-540-44541-2_17
http://dx.doi.org/10.1007/3-540-44541-2_17

references

problem. Journal of Combinatorial Optimization, 2(1):71–109. ISSN 1573-
2886. doi: 10.1023/A:1009795911987. URL http://dx.doi.org/10.

1023/A:1009795911987.

[193] Dian Zhou, Franco P. Preparata, and Sung-Mo Kang. Interconnection
delay in very high-speed VLSI. In Computer Design: VLSI in Computers
and Processors, 1988. ICCD ’88., Proceedings of the 1988 IEEE International
Conference on, pages 52–55, Oct 1988. doi: 10.1109/ICCD.1988.25658.

297

http://dx.doi.org/10.1023/A:1009795911987
http://dx.doi.org/10.1023/A:1009795911987

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Typographic Style”.
classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a
collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of March 21, 2017 (classicthesis version 1.0).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

Erklärung
Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig ange-
fertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die
Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die
anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem
Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation
noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat;
dass sie - abgesehen von unten angegeben Teilpublikationen - noch nicht
veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor
Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestim-
mungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte
Dissertation ist von Prof. Dr. Michael Jünger betreut worden.

Teilpublikationen liegen nicht vor.

Dustin Feld Köln, den 29.08.2016

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms
	Symbols
	What is the background of this approach?
	1 Introduction
	1.1 Background & idea
	1.2 Who are the addressees of this work?
	1.3 Organization of this work
	1.4 Test environment

	What is the domain of this approach?
	2 Field Programmable Gate Arrays
	2.1 History of PLDs
	2.1.1 CPLDs and FPGAs

	2.2 Field Programmable Gate Arrays
	2.2.1 Operating principle
	2.2.2 Timing the delay
	2.2.3 Correctness, slack and clock-speed
	2.2.4 Slack and critical path(s) calculation
	2.2.5 Heterogeneous FPGAs

	2.3 The FPGA `baseline model' (in VPR)
	2.4 Compilation flow for FPGAs

	What is behind all this?
	3 The Quadratic Assignment Problem
	3.1 Model the problem of chip-layouting by QAP
	3.1.1 Problem definition
	3.1.2 The problem's complexity
	3.1.3 Linearizations
	3.1.4 Lower bounds
	3.1.5 The QAP polytope
	3.1.6 QAP in chip layout
	3.1.7 Towards QAP heuristics
	3.1.8 Why this work is not based on exact solutions
	3.1.9 Why this work is not using QAP lower bounds

	3.2 Iterative Approaches towards solving QAP instances
	3.2.1 Problem definition
	3.2.2 Neighborhood exploration techniques
	3.2.3 Global and local optima
	3.2.4 Local search
	3.2.5 Tabu search
	3.2.6 Iterated Tabu search
	3.2.7 Simulated annealing
	3.2.8 Comparison

	3.3 A layout through force-directed graph drawing

	4 Force-directed graph layouts
	4.1 Force-directed graph layouts
	4.1.1 Basic idea of Tutte
	4.1.2 Generalization of the model - Spring Embedder
	4.1.3 Grid approximation of repulsive forces
	4.1.4 A force-directed layout by spring embedder
	4.1.5 The ideal edge length l

	4.2 The Fast Multilevel Multipole Method FMMM
	4.2.1 Quadtree for approximation of repulsive forces
	4.2.2 Multipole approach for accurate and fast approximation of repulsive forces
	4.2.3 Hierarchical multilevel approach to overcome weak initial placements
	4.2.4 Alternative force-directed layout methods

	4.3 From VLSI placement to graph drawing and back
	4.3.1 Force-directed graph layouts for FPGAs placement

	How can this be transferred to FPGAs?
	5 Architecture-aware field embedder for FPGAs
	5.1 Established chip placement techniques
	5.1.1 FPGA placement
	5.1.2 Related placement methods

	5.2 Heterogeneous force-directed placement
	5.3 Setup of the basic datastructures
	5.3.1 Model the architecture
	5.3.2 VPR norms

	5.4 Additional introduced norms
	5.4.1 Point-to-point WireLength
	5.4.2 An approximation of congestion

	5.5 The FieldPlacer method
	5.5.1 1st Step: Setup of the graph representation
	5.5.2 2nd Step: A force-directed graph layout
	5.5.3 3rd Step: CLB placement
	5.5.4 4th Step: I/O placement
	5.5.5 5th Step: Special blocks (MEM+MUL) placement
	5.5.6 Benchmark: Basic FieldPlacer

	5.6 FieldPlacer Extensions
	5.6.1 5½th Step: Second energy phase
	5.6.2 2nd Step with different distance norms
	5.6.3 6th Step: Local refinement
	5.6.4 Benchmark: Extended FieldPlacer

	5.7 Theoretical runtime behavior of the FieldPlacer
	5.8 Other architectures
	5.9 About the implementation
	5.9.1 FMMM extensions (FieldOGDF)
	5.9.2 FieldPlacer framework

	How can repeated runs improve the placement?
	6 Repeated runs in a statistical framework
	6.1 The FieldPlacer framework
	6.2 Inner and outer repetitions
	6.3 Slack Graph Morphing for improved critical path delay
	6.4 Benchmark: Repeated FieldPlacer runs
	6.4.1 Slack graph morphing for improved critical path delay
	6.4.2 Backup and restore for improved overuse
	6.4.3 Combined target function

	6.5 MCNC benchmarks
	6.6 Statistics for significantly good placements
	6.6.1 Adaptive termination criteria

	6.7 Graphical User Interface (GUI)

	What does "the bigger picture" look like?
	7 Discussion
	7.1 Résumé
	7.2 Comparison & Outlook
	7.3 A final test case

	Anything else?
	A Appendix
	A.1 A detailed simple example for the QAP model
	A.2 A simple example for the calculation of a Tutte embedding
	A.3 Force-directed layout by Fruchterman & Reingold or FM3
	A.4 Graph-theoretical distance
	A.5 Multilevel construction & application
	A.6 VPR default configuration
	A.7 Second energy phase examples
	A.8 Slack graph morphing
	A.9 Energy layout gallery

	References
	Colophon
	Erklärung

