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Abstract

We consider general ensembles of N X N random matrices in the limit
of large matrix size (N — o0). Our goal is to establish a new approach
for studying local eigenvalue statistics, allowing one to push boundaries of
known universality classes without strong assumptions on the probability
measure of matrix ensembles in question. The problem of computing many-
point correlation functions is approached by means of a supersymmetric
generalization of Laplace transform. The large N limit of said transform
for partition functions is in many cases governed by the R-transform known
from free probability theory.

We prove the existence and uniqueness of supersymmetric Laplace trans-
form and its inverse in interesting cases of ratios of products of determi-
nants. Our starting point is the appropriately regularized Fourier transform
over the space of Hermitian matrices. A detailed derivation is given in the
case of unitary symmetry, while formulas for real symmetric and quaternion
self-dual matrices follow from the analytic structure of Harish-Chandra-
Itzyskon-Zuber integral over orthogonal and symplectic groups respectively.

The region of applicability of our method is derived in a simple form
without putting any assumptions on the form of the probability density,
therefore developed formalism covers both standard cases of Wigner and
invariant random matrix ensembles. We derive N — oo applicability condi-
tions in a way that allows us to control the order of the error term for large
N.

Qualitative analysis of the region of invertibility of Green’s function is
performed in the case of eigenvalue densities supported on a finite number
of intervals and further refined by considering invariant random matrix en-
sembles. We provide conditions for the appearance of singularities during a
continuous deformation of matrix models in question.
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Kurzzussamenfassung

Wir betrachten allgemeine Ensembles von N x N Zufallsmatrizen im
Limes von groBer Matrixgrofie (N — 00). Unser Ziel ist es eine neue Vorge-
hensweise zu etablieren, um lokalen Eigenwertstatistiken zu analysieren und
dadurch die Grenzen der bekannten Universalitdtsklassen, ohne strenge An-
nahmen iiber die Wahrscheinlichkeitsmafle von Matrix- Ensemble, zu erweit-
ern. Das Problem der Berechnung von m-Punktkorrelationsfunktion wird
mittels der supersymmetrischen Verallgemeinerung der Laplace-Transfor-
mation gelost. Der Limes von groflem N der Transformation von Parti-
tionsfunktionen wird in vielen Féllen durch die aus der freien Wahrschein-
lichkeitstheorie bekannte R-Transformation bestimmt.

Wir beweisen die Existenz und Eindeutigkeit von supersymmetrischen
Laplace-Transformation und ihre Inverse am Beispiel von interessanten Féll-
en, in denen ein Verhéltnis von Determinantenprodukten erwégt wird. Uns-
er Ausgangspunkt ist die in bestimmter Weise regularisierte Fourier Trans-
formation im Raum Hermitescher Matrizen. Eine detaillierte Herleitung
wird am Beispiel einer unitdren Symmetrie gegeben, wiahrend Formeln fiir
reelle symmetrische und quaternione selbstduale Matrizen jeweils aus der
analytischen Struktur von Harish-Chandra-Itzyskon- Zuber Integral iiber
orthogonal und symplektische Gruppen folgen.

Die Reichweite von Anwendbarkeit unserer Methode wird durch eine ein-
fache Formel gezeigt, ohne auf irgendwelche Annahmen tiber die Form der
Wahrscheinlichkeitsdichte zu beruhen. Daraus wurde Formalismus entwick-
elt, der sowohl Standardfille von Wigner als auch invariante Zufallsmatrix-
Ensembles umfasst. Wir entwickeln N — oo Anwendbarkeitsbedingungen
in einer Weise, die uns ermoglicht die Groflenordnung von Fehlerterm fiir
groflen N zu kontrollieren.
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1 Introduction

1.1 Outline

This thesis is organized in the following way. In chapter We provide the
motivation for our work and a short historical background of the research
done in the area of random matrix theory. We explain the basic ideas of
two main theories we use and combine throughout the thesis. The free
probability theory is introduced in section [I.2.2] and the second one, the
supersymmetry, is briefly described in section The combination of those
two formalisms is the main topic of this thesis. We close the chapter by
reviewing previous results in the area of correlations between random matrix
eigenvalues in section [1.4]

Chapter [2] covers the construction of the main object of interest in this
thesis, the Laplace transform in space of supermatrices. We start by intro-
ducing relevant objects and motivating the need for said transform in the
random matrix theory. Next, in section we show in a heuristic way a
connection between the Laplace transform of partition function for the cor-
relation functions of random matrix eigenvalues with the supersymmetric
extension of the R-transform known from the free probability theory. We
proceed with the explanation of how our formalism applies in simplest cases
of 1-point function in section and continue by showing how one can ex-
tend it to many-point correlations in sections[2:3]and [2:4] We use techniques
of complex analysis, i.e. contour integrations and analytic continuations to
prove existence and invertibility of Laplace transform of partition functions
describing correlations between random matrix eigenvalues. The derivation
is based on well established Fourier transform in space of matrices. In the
beginning, we restrict ourselves to the case of unitary symmetry, or in other
words to the transforms over space of Hermitian matrices. Last section,
@ is devoted to the extension of our formalism to other symmetry classes,
i.e. orthogonal and symplectic, related to real symmetric and quaternion
self-dual matrices respectively.

The goal of chapter |§| is to determine the region of applicability of our
approach. We give a simple requirement that is necessary for all approxi-
mations in our derivation to be exact in the large matrix size limit (often
referred to as N — oo limit). In chapter 4] special attention is placed on
the regions of invertibility of Green’s function and as a consequence of the
inverse function theorem, analyticity of the R-transform. We start with
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general considerations, but to obtain more quantitative results, we restrict
ourselves first to the case of the eigenvalue distribution supported on a few
intervals in section 1] and later to invariant random matrix ensembles in
section

Chapter [5] summarizes the thesis and describes consequences of our re-
sults. We give an outlook on possible extensions and further developments
that may be accessible thanks to our Laplace transform formula.

1.2 Random matrices

1.2.1 Overview

Matrices play many roles in mathematics, physics, data analysis, telecom-
munication, and other numerous topics.The first work where considered ma-
trix was taken to have random elements, was done by Wishart [I], where the
correlation coefficients of multivariate data samples were computed, though
his work did not get deserved recognition at the time. The real pioneering
work in the field is attributed to Wigner [2]. In nuclear physics context
Wigner devised a model for Hamiltonians of heavy nuclei - too complicated
to write down and compute explicitly, therefore assumed to be represented
by large matrices with independent random Gaussian entries with appro-
priate symmetries. Model turned out to describe spacings between energy
levels (eigenvalues) quite well, but what is more important, is the fact that
many different nuclei displayed similar level spacings, exhibiting a property
called ’level repulsion’. The statistics of eigenvalues of random Hamiltoni-
ans were far from Poisson that would be expected from uncorrelated vari-
ables, showing that even though elements of the matrix are independent,
the eigenvalues become highly correlated. The universality of the result
suggests additionally, that the local statistics are independent of details of
the system but depend only on general properties like symmetries or band
structure. Eigenvalues statistics are so far the most studied property of ran-
dom matrices, but there has been some interest in other quantities like e.g.
eigenvectors. For a more detailed historical introduction see [3].

One of the most common ways of constructing random matrix models
is to consider matrices with, up to symmetry, independent entries. A spe-
cial class of those, called Wigner matrices, is constructed by requiring all
elements above diagonal to have zero mean and identical second moment
and requiring elements below the diagonal to reflect matrix symmetry (e.g.
invariance under transposition or hermitian conjugation). A prime example
from this class is a random matrix with all elements above diagonal being
independent identically distributed standardized complex Gaussian random
numbers, while diagonal ones are real.

The second convenient way of description is by a probability measure
on space of matrices that is invariant with respect to transformation by
some symmetry group. Standard example being random measures on space
of Hermitian matrices invariant w.r.t. unitary transformation. Each such
measure can be written in the following form:

o (H) oc e VU (1.1)
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where V () is a real-valued function (ensuring positivity of the probability
measure), called a potential - often considered to be a polynomial of small
degree.

Three classical random matrix models are the Gaussian Orthogonal En-
semble, Gaussian Unitary Ensemble, and Gaussian Symplectic Ensemble.
They all belong to both classes of Wigner and invariant random matrices
and differ only by symmetry group. One can construct them by taking el-
ements to be independent Gaussian random variables with mean zero and
appropriate variance - ensuring invariance property. In the first case the ma-
trix is real and symmetric, in second situation it is complex and Hermitian
and in the third case, one considers a self-dual quaternion matrix.

It has been shown that there is a total of 10 symmetry classes [4]. In
this thesis, we will restrict ourselves to 3 mentioned before, called classical
symmetry classes. In a typical way, we will start by considering the com-
putationally simplest unitary symmetry and afterward show how one can
extend the results to the orthogonal and symplectic symmetries.

1.2.2 Free probability

Many techniques were used in the study of random matrix models, in-
cluding enumerative combinatorics, Fredholm determinants, diffusion pro-
cesses or integrable systems just to name a few (see [} [6] for reviews).

In this section we will focus on one of them, the theory of free probability,
invented by Voiculescu [7] in the context of free group factors isomorphism
problem in the theory of operator algebras. Free probability describes be-
havior and properties of so-called ’free’ non-commutative random variables
with respect to addition and multiplication of said variables. The ’freeness’
property is defined in the following way: two random variables A and B are

free with respect to a unital linear functional ¢ if for all ny,mi,ng,... > 1
we have:
¢ ((A" — ¢ (A™)1) (B™ —¢(B™)1)(A™ —¢(A™)1)...)=0,
(1.2a)
¢ ((B™ —¢(B")1)(A™ —¢(A™)1)(B" —¢(B"2)1)...)=0.
(1.2b)

It basically allows one to compute mixed moments from moments of indi-
vidual random variables, e.g. freeness ensures that:

¢ (A"B™) = ¢ (A") ¢ (B™). (1.3)

Soon after it was realized [8] that large independent random matri-
ces with uncorrelated eigenvectors are mutually free with respect to the
limy_ oo %E {Tr ()} functional.

Let us introduce main objects needed when dealing with random matrices
in the free probability setting. Firstly, for a N X N Hermitian matrix H one
has the empirical eigenvalue distribution:

N
pu (A) = NZ‘s(A*)\i) ) (1.4)
i=1
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where {)\;} are eigenvalues of H. Now instead of considering a single deter-
ministic matrix, we can move on to an ensemble of random matrices defined
by some probability measure pn (H) and define the average eigenvalue den-
sity by:

1 & 1<
pN(A>=E{N;6(A—Ai)}=/N;6<A—Ai)duN(H) . (L15)

We are also going to assume that the limit limx_ o0 pv (A) converges to
a probability measure p (A). The form of eq. is not very convenient
for applications, because a measure on the space of matrices expressed in
terms of its eigenvalues will either be very complicated to integrate or, e.g.
in the case of uncorrelated eigenvalues, not interesting. Therefore one often
rewrites it using following representation of real Dirac delta:

d(A) = -1 lim Im

— . (1.6)
T e—0t A+ e

Next, we define a Green’s function as the Stieltjes transform of eigenvalue
distribution and we can recover said distribution by taking the imaginary
part of Green’s function and approaching the eigenvalue support on the real
line from the complex plane:

g(z):/R%dxzI&nOQN—lE{Tr(de)—l} , (1.7)
p(N) = 7%62%14_ Tmg (A +ic) . (1.8)

The Green’s function is analytic in the complex plane away from the
eigenvalue distribution, therefore it can be expanded into a series around
z = oo and presented as a moment generating function:

o0
o -1 -1 11 _ —k—1
g(z)—ngnooN E{Tr (=" +2 'Hz +...)}_I§:Oz myg , (1.9)
mkalgnooNE{TrH } . (1.10)

This is an analog of the moment generating function known from standard
commutative probability theory. We can see that knowledge of all moments
allows one to determine the average eigenvalue distribution, therefore all
result of the free probability apply to average eigenvalue spectra of large
random matrices.

Recall that in regular commutative probability theory one can obtain a
distribution of a random variable constructed as a sum of independent ran-
dom variables via sum of cumulant generating functions of the summands,
therefore in the setting of free probability we want to have an analogue of
cumulant generating function for average eigenvalue distribution that would
be additive w.r.t. addition of random matrices. For non-commutative vari-
ables this object is defined via its relation to Green’s function and called the
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R-transform. Not going into details that were derived in [7], the R-transform
and free cumulants k. are defined as follows:

-

z—R(g(2)

R(w) = rkpw™ ", (1.12)
n=1

g(z) = (1.11)

with the inverse relation
Rw)=g" (w)—w™?t. (1.13)

Having defined all necessary objects, the addition law for free random ma-
trices A and B reads:

Rayp (2) = Ra (2) + R (2) . (1.14)

Another question that arises is: can free probability theory provide in-
formation about eigenvalue spectra of products of random matrices? Even
though the product of two Hermitian matrices is not Hermitian and in prin-
ciple the formalism breaks down because the eigenvalue density of a product
is not supported on the real axis anymore, in some cases, one can also devise
the multiplication law in terms of R-transform [9]. We can consider a prod-
uct of two free Hermitian matrices A, B assuming A - positive semi-definite
and instead consider an equivalent problem of computing eigenvalues of the
product A/2BA1/2. In those cases one has a closed set of equations:

Rap(z) = Ra (w)Rp (v) , (1.15a)
v=2zRy (w) , (1.15b)
w=zRp (v) . (1.15¢)

The R-transform will be of great importance for us for reasons explained
later, but it’s worth mentioning now that if one is interested only in the aver-
age eigenvalue distributions one doesn’t need to calculate R-transforms. The
recently developed theory of subordination [I0} [11] allows one to efficiently
linearise and compute Green’s function for polynomials and rational expres-
sions in random matrices. This method doesn’t reference the R-transform,
which in principle might not be well defined in parts of the complex plane,
therefore has to be handled with care and might not be a convenient object
to manipulate numerically. I.e. R-transform is properly defined on circular
sectors around the origin of the complex plane. We focus on the analysis of
the analytic structure of the R-transform in chapter [

1.3 Supersymmetry

1.3.1 Grassmann variables

The first step in the introduction of the supersymmetry method is to
recall basic information about the Grassmann variables, denoted throughout
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this section by Greek letters x; with ¢ = 1,...,n. They are elements of the
Grassmann algebra and obey anticommutation relations:

{xisx;} =xix; +xjxs =0forany 1 <i,j <n. (1.16)
Anticommutation rules imply in particular, by taking i = j, that
X;=0. (1.17)

The usage of Grassmann variables in physics was significantly expanded by
the introduction of the Berezin integral [I2] over anticommuting variables.
This integral is formally defined by two simple rules

/dXi -0, (1.18)
/XidXi =1, (1.19)

sufficient to integrate arbitrary function due to eq. . Any function of
a single Grassmann variable must be linear in this variable and integrals of
sums are taken to be equal to sums of integrals.

For the physical application, the most important Berezin integrals are
the Gaussian integrals. As a further consequence of eq. , any series
expansion of an analytic function of a Grassmann variable ends with the
second term. Knowing that, it is easy to check by direct computation the
following identity

/exp <7)'(TAx) ﬁ dxidx; = DetA | (1.20)
=1

where {x;} and {x;} are two sets of independent Grassmann variables and
x and ¥ represent vectors of x; and ¥; respectively. A standard counterpart
of this formula is the Gaussian integral over complex variables );:

/exp (—wmp) ﬁ dpydip; = T"Det ™LA . (1.21)
=1

Because of this analogy, some texts refer to x; as a complex conjugate of
X: but in principle there is no need to try to add this structure because
1; and 1; are independent variables in the same sense as x; and ¥;. The
difference amounts to a change of basis, with respect to which determinants
are invariant.

1.3.2 Supervectors and supermatrices

One can extend standard linear algebra by introducing an additional
anticommutative structure. An (n|m) supervector © is defined as a vector

with block structure
o= ( 915 ) , (1.22)
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where x is an n component vector of Grassmann variables x; and b is an
m component vector of complex numbers b;. A product of a complex and
Grassmann numbers results in an anticommuting variable, while a product
of two Grassmann numbers is, in turn, a commuting object. Therefore if we
want to define linear transformations preserving the block structure of ©,
we need to represent them by matrices with a matching block structure:

_ Aoo o
et g, a2

where Agp and A1 are matrices of size n X n and m X m respectively, con-
sisting of commuting variables, while o and p are n X m and m X n matrices
with anticommuting elements. Such extensions of vectors and matrices are
called supervectors and supermatrices.

Lastly, one needs the extension of basic operations on supermatrices.
Using notation of eq. , the generalization of the trace of a matrix,
preserving invariance w.r.t. cyclic permutations, called a supertrace is de-
fined as

STrA = TrAgo — TrA11 , (1.24)

while equation defining a superdeterminant (also called Berezinian) is in
turn determined through

InSDetA =STrin A . (1.25)

If Apo and Aj; are invertible, one has another way of expressing the su-
perdeterminant:

SDetA = Det (Ago) Det ! (An - pAgola) (1.26a)
= Det <A00 — UA;llp) Det ™! (AH) . (1.26b)

Combining both commuting and anticommuting variables into one for-
malism significantly simplifies the notation, e.g. the Gaussian integral over
complex and Grassmann variables gives

/exp (-67ae) ﬁd;’ad)@ ﬁ db;db; = T™SDetA . (1.27)

j=1

1.4 Previous results

As mentioned before, it is believed that many of the local eigenvalue
statistics, like e.g. distribution of spacings between neighboring levels, are
universal, that is independent of the details of random matrix model. There
are many quantities of interest one can inspect on the local level, the sim-
plest being aforementioned level spacing or distribution of say k’th largest
eigenvalue. The object that possesses the most information about eigen-
value statistics is their joint probability distribution function (jpdf) denoted
by pn (A1,...,An) (for a Hermitian matrix of size N X N) where we take
A1 < ... An. For simplicity of notation, we use py for jpdf symmetrized
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w.r.t. eigenvalue permutations. From the jpdf one can recover any eigen-
value statistics, the simplest being average eigenvalue density:

p(N) = /Rn_l PO A2, AN) Ao dAN (1.28)
or a single k’th eigenvalue distribution
pO) :/RMp(Al,...,AN)dA1...dxk,ldxm...dAN . (1.29)
In a similar manner, one defines k-point correlation functions

k()\l,..‘,)\k):/ kﬁN(Al,...,AN)dAkH...d)\N. (1.30)
R”—

The universality of statistics tells us, that we need to be able to compute
them only in one simple case to know the result in any more complicated
situation falling into the same universality class. Obvious choice for the
specific model for computation is the most symmetric one - GUE, defined
by the probability measure

dp (H) < e~ TrH* 124 (1.31)

In this case one has explicit formulas for jpdf and all other correlation func-
tions, having an exceptionally simple form

pk (>\17---7>\k) = det (K (>\ia>‘j))1§i7j§k ’ (1-32)

Y
<,\f+ Wpsc( % MWN + o (A)> (1.33)
m KSine (IB, y) = W ’ (134)

where psc (A) = %\/4 — )\21‘)\|§2 is the average eigenvalue density for prop-
erly rescaled GUE, called the Wigner semicircle distribution, and |A| < 2.

The universality of eigenvalue statistics is known as ”Sine kernel univer-
sality”, thanks to the interpretation of eigenvalues of random matrices as
particles in a determinantal point process with kernel Kgipne (z,y). Many
works were devoted to proving and expanding regions of validity of the
universality conjecture, in both realms of Wigner and invariant random ma-
trices. We will shortly describe previous results and refer the reader to some
of the extensive literature on the subject.

1.4.1 Wigner matrices

First of the methods to analyze the local statistics of Wigner matrices
are the heat flow techniques. One starts with a Wigner matrix, say MR,,
and considers a stochastic diffusion process defined by the equation

1
dMY; = dBy — 5M}fvdt , (1.35)
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with a starting point at M]tvlt:O = MR,. Bt is a Hermitian matrix process
with entries being independent Brownian motions, real on the diagonal,
complex off the diagonal. This process describes a continuous flow from
MR, towards GUE as t — co. Roughly speaking, one can use the dynamics
of the flow of eigenvalues, established by Dyson [13], to extend the Sine
kernel universality [14] [15].

Another way of dealing with Wigner matrices is the so-called "Four Mo-
ment Theorem’. The theorem asserts that statistics of the eigenvalues on
the local scale of N=1/2 depend only on the first four moments of the matrix
entries [16]. Details of that approach are beyond the scope of this thesis,
but by using the Four Moment Theorem the universality has been proven
for a broad class of Wigner hermitian matrices [I7] and further extended
to properties of eigenvectors [I8] and eigenvalues of non-hermitian random
matrices [I9]. For a detailed review on the topic of universality in the class
of Wigner random matrices see [20].

1.4.2 Invariant ensembles

Some work has been done in the case of invariant ensembles, starting
with [21I], where Sine kernel universality was shown for invariant unitary
random matrices with potential function having sufficiently fast growing
tails. The method of proof was relying strongly on the orthogonal poly-
nomial technique. This method proved to be very effective in the case of
analytic potentials with some additional requirements [22] 23] [24] and a lot
of progress was made (see [25] for a review), though often restricted to the
unitary symmetry class only.

More recent results proving universality hypothesis for a broader class of
random matrix ensembles came from flow equation approach [26] 27] applied
to so-called B-ensembles, an interpolation between the 3 classical symmetry
classes. Similar to the case of Wigner matrices, one can investigate a flow
in space of invariant matrices ending with the Gaussian ensemble, in this
way matching the statistics of complicated models with the Gaussian ones.

Lastly, first results combining formalisms of supersymmetry and free
probability came in [28], while the first attempts to relate the Laplace trans-
form of partition function with free probabilistic R-transform arose in [29].
The relation was proven for different regimes for a low-rank argument of the
transform in several papers. showed the result in the case of eigenvalue
distribution restricted to an interval, while [31] proved the matching in the
case of analytic uniformly convex potentials. We expand and generalize
those results.






2 Laplace transform

In the standard setting, the Laplace transform of a function f(p) is de-
fined for ¢ > 0 by:

Fla)= /O T f e rdp (2.1)

Formally, to invert the transform one performs an integral in the complex
plane, parallel to the imaginary axis:

1 v+ico |

fw =5 [ F@erag, (2:2)
278 Jy—ico

where v € R is greater than the real part of singularities of f (¢). In practice,

one can close the contour of integration to the left of the complex plane and

have it encircling all singularities of f (q).

Our goal is the description of correlation functions for eigenvalues of
random matrix models. As explained in section[[.2.2] the average eigenvalue
density (one-point correlation function) may be obtained by considering the
Green’s function, i.e.:

g(x) = Jim NTE{Tr(:1—m)"'} (2:3)

where H is a N X N random matrix. Trace may be expressed as a ratio of
determinants, giving us an alternate expression for the resolvent:

Z/:z} . (2.4)

In a similar manner, the many-point correlation functions are governed by
the expected value of a ratio of products of determinants. We define a
general (n|m) partition function by:

d Det (2’1 —H)

= lim NE - -/
9(2) NS {dz’ Det (21 — H)

(2.5)

Zpjm ({po}, {p1}) = E{ [1;%, Det (p1,;1 — H) } .

[Tr—1 Det (po,x1 — H)
This object extends to a radial function of a supermatrix P of rank (n|m):

Z(P)=E{SDet ' (P®1y —1,,, ® H)} . (2.6)

11



2. Laplace transform

The goal of this chapter is to establish and prove the existence of the
Laplace transform and its inverse in the context of the supersymmetric gen-
eralization of the aforementioned partition function , first in the case
of one-point function as a proof of concept, and later for arbitrary integer
values of n and m.

It remains to motivate the need for Laplace transform in the random
matrix theory. What is the advantage of taking Laplace transform of our
partition function? The n = 1,m = 0 example is enough to see the idea.
We use the notation

G(p)= lim Gy (p)= lim NT'E{Trln(p1—H)},  (27)

N —oo

for so-called integrated Green’s function, related to the standard Green’s
function by:

g(p) = —G(p) - (2.8)

One can reduce the expected value of a determinant into a simpler form
using the following approximation:

Z(p) =E{Det™! (p1 — H)} (2.92)
—E {e—mn(pl—H)} (2.9b)
r e—E{Trin(p1-H)} (2.9¢)
— o NGN (D) (2.9d)

Unfortunately, when p is near the spectrum of H it is a bad approximation.
The way to avoid it would be to keep p away from support of eigenvalue
distribution of H by e.g. performing the following transformation:

Z(q) = 755 {Det ™! (p1 — H)} ePadp (2.10)

with the contour of integration encircling the support of the spectrum. Af-
ter performing this approximation, all calculations are reduced to one-point
functions, therefore it cannot be true for any probability density. One can
construct many random matrix models with same average eigenvalue density
and very different correlation functions. E.g. one can choose each eigenvalue
as an independent random variable distributed identically to the GUE aver-
age eigenvalue spectrum, in the first case one has Poisson statistics, vastly
different from ones observed in the latter case. Validity of this approxima-
tion is discussed in detail in chapter After making the approximation,
one way of evaluating this integral (or in more complicated cases its super-
symmetric extension) in N — oo limit is to perform a saddle-point analysis.
This form resembles the inverse Laplace transform, making it a topic worth
further investigation.
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2.1. R-transform as a result of the saddle-point approximation

2.1 R-transform as a result of the saddle-point ap-
proximation

In this section, we heuristically explain the connection between super-
symmetry, free probability and local statistics of eigenvalues. We leave out
many details, like e.g. normalization constants or integration domains, that
are derived and explained in later parts of the thesis. For simplicity, the
notation used in this section is schematic and not mathematically precise.

As discussed in the previous section, we want to calculate the Laplace
transform of a supersymmetric partition function that is schematically
expressed as

Z(Q) = /dP exp (STrPQ) Z (P) (2.11a)

:/dpexp(STrPQ)E{SDet—l(P®1—1®H)} . (2.11b)

where Q and P are supermatrices of appropriate sizes and symmetries. Now
we assume that in N — oo limit we can move the expected value under
the exponential. Denoting a supersymmetric lift of the integrated Green’s
function by G (P) we arrive at

= /dP exp (STrPQ) exp (—STrlogE{P®1 —1® H}) (2.11¢)

- / dP exp (STrPQ — NSTYG (P)) . (2.11d)

Now taking A (NQ) for large N, we can perform a saddle-point approx-
imation of the integral. We make a variation of P in a direction of some 6 P
and calculate a directional derivative of the exponent w.r.t. a parameter t.
The matrices Py for which the derivative vanishes form a critical subspace

G (P +15P) — G (P)
t

STr (§PQ) — lim ST =0. (2.12)

P=Py
Writing the lift of Green’s function as
. -1 _ -1
g(P)= lim N E{(P®1 Lojm © H) } ;
and requiring condition (2.12)) to be true for any § P, we have:
Q—9g(P)=0, (2.13)
resulting in
I'(Q):=logN"1Z(NQ)  STr (PoQ — G (Fp))
=STr (¢ (@Q-G (91 (Q)) -

The last step is to again take a derivative (this time simply denoted by
prime symbol ”’”) and remove the singularity at Q = 0, resulting in

(F(Q) —STrlog Q) =STr (¢~ (@) - Q") , (2.15)

which has exactly the form of eq. (1.13), defining the R-transform, or in
this case a supersymmetric extension thereof.

(2.14)
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2. Laplace transform

2.2 One-point function

We use the one-point function as an example allowing us to present the
reasoning behind the more complicated analysis of the Laplace transform for
many-point correlation functions. The main idea is to start with the well-
established Fourier transform and to use techniques of complex analysis, i.e.
contour integration and analytic continuations in order to establish relations
between the transforms. The standard Fourier transform and its inverse are
given by:

f@= [ swerap, (2.16)

)= 5= [ Faerag. (217

2.2.1 Fermion-fermion sector

In this section we will consider the relation between Fourier and Laplace
transforms of the function:

f (p) =Det (p1 — H). (2.18)

which is a polynomial in variable p, and therefore doesn’t have any sin-
gularities. The Laplace transform, defined for Re(q) > 0, extends to a
holomorphic function on C\ {0} by following an analytic continuation pro-
cedure. We start by drawing a contour of integration consisting of real
positive semi-axis, another ray starting at the origin and lying in the right
side of the complex plane, denoted by =, and an arc connecting those two
in the infinity as presented in fig. We perform ¢ f (p) e P4dp along this
contour in the counter-clockwise direction and using Cauchy integral theo-
rem we know that such integral is equal to zero. Therefore, as the integral
on the arc in infinity vanishes, we know that

~ e Pldp = — e Pldp = e Pldp , 2.19
/Of(p) p Af(p) p /_Wf(p) p, (219)

where the two integrals are properly defined. If we denote by a the angle
between real positive semi-axis and -, the integral over ~ is well defined in
the region described by inequality

Re(g) cosa —Im (g)sina > 0 . (2.20)

In fact, we can define the analytical continuation of Laplace transform for
any g € C/ {0} by repeating this procedure. In particular, we have

Fla) = /0 T f@edp (2.21)

for Re (q) < 0.
Let us turn our attention to the Fourier transform of f (p). It’s not well
defined unless we perform some regularization procedure. We will regularize

14



2.2. One-point function

Im(p)
4
1]
s
0.5
o N
-05 0.5 1.0 =15 2'0 Zﬁe(p)
R.

Figure 2.1: Sketch of the contour of integration used for analytical continu-
ation of the Laplace transform in the fermion-fermion sector. Integral over
the real positive semi-axis coincides with integral over (—v) as there are no
singularities inside of the contour and integral over § vanishes.

the transform by using an exponential cutoff and relate it to the Laplace
transform:

f@) = tim [ e e rlap (2.220)
~ lim, ( /O T F e e rdy — /0 T rw e*iﬁqeépdp) (2.22b)
= lm (Flp+e)—fp—0) . (2.22¢)

Having this relation, we can use the inverse Fourier transform to con-
struct the inverse of the Laplace transform in turn showing it’s existence
and form. The inverse relation goes as follows,

1 [ . .
fp) = */ f(q)e®idq (2.23a)
21 J_ o
1 [ /- - )
lim — / (f (ig+€) — f (ig — e)) e'Pldq (2.23b)
e—0t+ 2T J_
1 co—ie . cotie .
lim — (/ f (ig) e'Pldg — / f (ig) e”’%lq) . (2.23¢)
e—0t+ 27 —0o0—1€ —oo+i€e
After a change of the integration variable to z := iq, the two integrals

can be collapsed to a contour integral running counter-clockwise around the
imaginary axis (see fig. . Any contour deformation is allowed, as long
as it doesn’t pass through the possible singularity at 0. Therefore we end
with the following inverse Laplace transform:

1

T 2mi

£ @) 74 Fz)erds | (2.24)

where integration contour encircles the origin of the complex plane.
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2. Laplace transform

—e+ik Y[ A csir

3 Re(2)

Figure 2.2: Sketch of the contour of integration used for calculation of the
inverse Laplace transform in the fermion-fermion sector. We join two in-
tegrals over lines parallel to the imaginary axis, one slightly to the right,
and one slightly to the left, in +ic0, in turn replacing them by one contour
integral around the imaginary axis.

2.2.2 Boson-boson sector

Regularization of the denominator in the Green’s function can be done
in one of two ways, advanced or retarded, denoted in this section by

f(p) =Det™! (pl £ic — H) . (2.25)

For the simplicity we will consider only the advanced case, the other one is
analogical. Let us again start with the Fourier transform, adjust contours
and arrive at Laplace transform and its inverse in the boson-boson sector.
Starting with the integral over the real axis, we close the contour of integra-
tion in either upper or lower complex plane, depending on the sign of the
transform argument (see fig. |2.3). Therefore we have:

Fla)= [ T ) eridp = f £ (p)e~Pidp (2.26)

where k goes along the real axis to the right and closes in the upper complex
plane for ¢ < 0 or lower for ¢ > 0. f (p) is holomorphic in the upper complex
plane, so again using Cauchy theorem we obtain that f(q) =0 for ¢ < 0.
In case of ¢ > 0, we may deform the contour into any shape encircling all
singularities of f (p), that is positions of the eigenvalues shifted by ie into
the lower complex plane. After making the p — ip variable change, we end
up with the following reduced formulas for the Fourier transform and its
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2.2. One-point function

-3

Figure 2.3: Sketch of contour of integration used for reduction of Fourier
transform in boson-boson sector. Contour is closed in upper or lower com-
plex plane, depending on sgn (g) s.t. contour integral coincides with integral
over the real axis. As a result of Cauchy theorem it is equal zero for ¢ < 0,
while for ¢ > 0 the contour encircles all singularities (represented by black
dots) of integrated function.

inverse:

sy )id f(ip)ePidp  for ¢ <O
@)= {0 for ¢ >0’ (2.27)

£ = o [ Fe g (225)

The first expression (up to a factor of ¢ and orientation of the contour k) is
the inverse Laplace transform of the function F (p) := f (ip) we were looking
for, and the second one is the forward transform. To obtain the standard
form of the transform, we may change the orientation of the contour x and
include the resulting (—%) factor in the inverse transform instead of the
forward one. Explicitly, the final results reads:

fl@)= %?{F(p) ePldp (2:29)

F(p)= /Ooo fq) e Pdq, (2.30)

where F (p) = Det™! (i (p + €)1 — H). In the boson-boson sector, the for-
ward transform is an integral along a closed curve encircling positions of all
the eigenvalues, while the inverse one goes along the real positive semi-axis.

In the following sections, we will generalize this approach to deal with
the ratio of products of determinants.

17



2. Laplace transform

2.3 Many-point functions

To gain access to local scales one has to go beyond one-point function, as
it gives information only about the average eigenvalue distribution. We need
to consider cases with n,m > 1, where the Fourier transform is not a simple
integral over the real axis anymore, and the resulting Laplace transform has
to be a multidimensional integral too. Our starting points will be the Fourier
transform over the space of Hermitian matrices and its inverse, that will be
expressed in terms of the Laplace transform over the Hermitian positive-
definite matrices and unitary matrices respectively. In later sections, we
will show how our construction generalizes to real symmetric and quaternion
self-dual matrices.

Before we move to specific calculations, let us recall a very important
result, the Harish-Chandra—Ttzykson-Zuber (HCIZ) integral formula [32][33].
Let A, B be n X n Hermitian matrices with eigenvalues (by convention in
increasing order) denoted by \; (A) and \; (B). The formula states that if
eigenvalues are non-degenerate then

/U(n) P <zTr (AUBUJf)) v = (2.31a)

n—1 " Det (exp (zA; (A) Aj (B)))lgi,jgn

o 2(MT2A (A (A) AN (B))
(2.31b)

where dU is the Haar probability measure over the group of unitary matrices
of size n X n. A (A (A)) represents the Vandermonde determinant:

A= JI @ -x) . (2.32)
1<i<j<n

HCIZ formula is especially useful when dealing with Fourier type trans-
forms of class functions of matrices, i.e. ones that depend only on the set
of matrix eigenvalues. One can first perform the eigenvalue reduction and
then integrate out angular degrees of freedom using eq. . E.g. for an
integral over the unitary group with invariant measure:

/ dPe*TPRE () (P)) = (2.33a)
U(n)
n
=/ Hdij()\(P))?‘/ dUeSTUAPUTQ
(Sl>><n j=1 U(n)
(2.33D)

2.3.1 Fermion-fermion sector

Let us start, in a similar manner to the one variable case, by analyzing
the Fourier transform of the product of determinants:

F(P) = ﬁ Det (p;1 — H) |, (2.34)
j=0
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2.3. Many-point functions

over the space of Hermitian matrices of size m X m, denoted by H (m), where
p; denote eigenvalues of said matrices P. We know that properly regular-
ized Fourier transform and its inverse exist for such functions. By relating
Fourier and Laplace transforms we will show that the latter is well defined
and invertible in an analogous way to the one-dimensional case presented
previously. Again using the exponential cutoff, the regularized Fourier trans-
form reads:

F. (Q):/H( )dPe’iTrPQ’eTr‘P‘F(P) , (2.35)

where dP denotes a flat measure. The Fourier transform is recovered in the
€ — 01 limit. Using the fact that F (P) is a radial function, we start by
performing eigenvalue reduction and use the HCIZ formula to evaluate the
resulting integral over the unitary group:

:/ [T dpiar (x (P))? e=<T1AP e~ ITUAPUTQ B (A 1) qU
m U(m)

(2.36a)

D Xp (—ipiq; o
“ ef;(e p( 1PZQJ))1S7,7]§7L I AP) ‘ (2.36C)
(=)™ =M A () A Q)

We will use the combinatorial definition of the determinant, as a sum
over all permutations of products of matrix elements with the sign of the
permutation. One can move the sum in front of the integral and, noting
the transformation law for Vandermonde determinant under permutation of
matrix eigenvalues:

Pi = Po(i) > (2.37a)
A (X (P)) = sgn(oc) AN (P)) , (2.37b)

one can perform such change of variables in each integral separately and end
up with the following expression (F'(Ap) and Tr|Ap| are invariant w.r.t.
permutation of p;’s):

b (O — AAP) —erefap) m?—m)/
Fe(Q)fz/ijJ;dp]A(A(Q))e Tr|A (H kl) )/2

(2.38a)

X exp <z Zplql> (Ap) . (2.38b)

The sum amounts to an adjustment in a constant factor while the exponents
can be combined in the following way:

exp (—€Tr [Ap|) exp (—i2p1q1> = exp <— > i (igr + € sgn (m)))
l

!
(2.39)
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2. Laplace transform

yielding the Fourier transform expressed in a way convenient for comparison
with the Laplace transform:

e—0t

. _ AX(P m2—m)/2
F(Q) = lim /lel[ Pi A (N @) <Hk|> (2.40a)

X exp <— > i (iq + € sgn (m))) F(Ap) . (2.40b)

l

Now let us turn our attention to the Laplace transform of functions
F (P). The same approach as in the case of the Fourier transform may be
employed mutatis mutandis to arrive at the following form:

F(Q):/m( )dPe’TrPQF(P) (2.41a)
_ P)) i _ (m27m)/2
/+ ]r[ldp]A ) (];[ k!>( 1) (2.41b)

X exp <— szm) F(Ap) , (2.41¢)
1

properly defined when Re (¢q;) > 0 for all I. A procedure identical to the one
for one-point function (eq. (2.21))) can be performed for any number of the
integrals over p;’s

/R dp; A (A (P)) exp (—p;ja;) F (Ap) . (2.42)
.

in order to obtain an analytical continuation of F' (Q) valid for matrices with
any possible signature. Now we can split regions of integration over p;’s in
eq. to positive and negative real semi-axes and match those with
Laplace transform up to a constant and slightly different dependence on
q;’s. Doing so allows one to evaluate sgn functions explicitly. Additionally
each integral over negative real semi-axis only introduces (—1) factor. In the
end, we have a relation between Fourier and Laplace transforms analogous
to the one in the one-point function case ([2.22¢)):

F(Q) = lim > (=)™ F (iAg +€S) . (2.43)
€=0F o diag(d1,..,41)

Now we will obtain an inverse Laplace transform formula starting with
inverse Fourier transform, inserting formula (2.43)) into it and performing
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2.3. Many-point functions

eigenvalue reduction:

1

(27r)’"2 H(m)

= lim / qu] (2.44D)

e—0t (27r

X / dUemPUTAQU > (-1)™S F (iAg + €S) .
U(m) S=diag(£1,...,+1)

F(P) = dQet PR () (2.44a)

(2.44c)

Again, as F' depends only on the set of eigenvalues of Q, we can follow the
same reduction as in the case of the forward transform. We perform HCIZ
integral, write determinant explicitly, perform necessary permutations of
g;’s as before, and continue the previous series of equations in the following
way:

m

m2—m /2
— lim 1(7/Rm 1:[ dqj A(/\ g) <H k') eX1 Pl (2.44d)

e—0T (271')

X > (-1 F (iAg +€S) . (2.44¢)
S=diag(+1,...,£1)

Now we can take the sum in front of integration and for each term in the
sum perform Az := iAg + €S change of variables. Then the integrated
function will be the same in each of the terms after taking e — 01 limit,
but integration domains will be different. Each of integrals over eigenvalues
z;j of Z will be performed parallel to the imaginary axis, either on the left
or right depending on the element of the sum. Keeping track of proper
prefactor coming from the change of variables we continue:

o (27rZ m2 (/R+5 /R e ) (>\>\((AIDZ)))) (2.44f)

X <H k:!> eXUPIALE (A y) . (2.44g)
k=1

Each of the integrals over dz; can be replaced by a contour integral going
counter-clockwise around the imaginary axis, see fig. @ As the function
under integral doesn’t have any singularities apart from possible one at
z; = 0, each contour can be deformed to a circle. Finally, comparing this
result with HCIZ integral in eq. , we see that

F(P) = % PR (Q) dQ (2.45)
(2m)™" JU(m)

is a formula for inverse Laplace transform in question.
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2. Laplace transform

2.3.2 Boson-boson sector

In this section, we will focus on denominator part of the partition func-
tion in eq. (2.5). In the beginning, we will construct the Laplace transform
and its inverse of functions of the type:

F(P) = hm H Det™' ((p; +in)1 — H) , (2.46)

which has poles in variables p; in lower complex half-plane. In appendix
we show how our approach generalizes in order to include conjugate
situation of poles in the upper complex half-plane (which amounts to change
n — —n), as well as mixed cases, where some of the factors contain (+in)
and some of them have (—in).

Our starting point again is the Fourier transform over the space of Her-
mitian matrices. We can perform exactly the same reduction as in the
fermion-fermion case up to the eq. , the only difference being that we
don’t need any regularization, so we can straight ahead put ¢ = 0. We have
therefore for each j:

FQ e [dp T e (cina) Fdp) . (247

We may rephrase the integral over the real axis as a contour integral by
closing it in the upper (lower) complex half-plane for g; < 0 (g; > 0), so that
the contribution from the closure vanishes. In the first case, the integrated
function doesn’t have any singularities inside the contour, therefore it is
equal to zero. In the latter, we have enclosed all the singularities in a
clockwise direction and we can deform the contour to a circle around the
origin of the complex plane with a radius bigger than the absolute value
of largest singularity. The same procedure may be performed for each and
every 7, resulting in the following formula for Fourier transform:

A()‘ P) k") (n 771)/2
%H ]A )‘(Q) <H ifV]'q]'>0<:>

FQ) = Q€ Hy(n)
xexp (=i > pa | F(Ap)
l
0 otherwise
(2.48)
Lastly, we just need to reverse the orientation of integration contours (intro-
duces (—1)" factor) and change variables z; = —ip; (introduces i(n?4n)/2

factor). Similar to the case of the inverse transform in the previous section,
for positive definite matrices @Q we are left with an integral over the unitary
group:

F(Q) = (1) /U( )dZexp (TtZQ) F (iZ) . (2.49)
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2.4. Supersymmetric Laplace transform

Defining G (Z) := F (iZ) we arrive at the Laplace transform:
2 A
G(Q) = /U L ZEPMIQG ) = () F (@) (2.50)
n

For consistency, we will move constant factor to the inverse transform.
Calculation of the inverse Laplace transform follows straightforward from
the inverse Fourier transform and second case in eq. , by considering
F (iP). We immediately obtain a reduction in the integration space of
Fourier transform and, as a result, the inverse Laplace transform formula:

G(P)=F (iP) = . / dQ exp (iTr (iPQ)) F (Q) (2.51a)
2m)"" JH(n)
1 -
P /H @ exp (—TrPQ)G(Q) . (2.51b)

The same formula can be derived for a product of an arbitrary number
of ’advanced’ and ’retarded’ determinants. One has to carefully handle sub-
spaces of H (n) with different signatures and combinations thereof, but the
main idea remains the same. A detailed derivation is given in the appendix
AD).

Concluding, we have forward and inverse Laplace transform formulas for
the product of determinants or the product of the inverse of determinants. In
the first case, the forward transform is an integral over the space of positive-
definite Hermitian matrices and its inverse is an integral over the unitary
group. For a product of inverse of determinants, the situation is opposite,
Laplace transform is performed by integration over the unitary group and
the inverse one is computed by integrating over Hermitian positive-definite
matrices.

2.4 Supersymmetric Laplace transform

Having developed formulas in cases of products of determinants and in-
verse of thereof separately, now let us combine both approaches by usage of
the supersymmetry. We will consider functions of the type:

_ TIpz, Det (p1,x1 — H)
F({po,j}:{p1,r}) = Z-‘=11 Dot (pog T H) ° (2.52)

We choose to interpret p variables as the eigenvalues of a supermatrix:

Py Po1
P = . . 2.53
( Pio P ) (2.53)

The function F' can be lifted to a function of a supermatrix P:

F(P)=SDet ' (P®1—1,,,®H) , (2.54)
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2. Laplace transform

that has the form of our partition function. As in previous sections, we can
apply the Fourier transform for Poo € H (n) and P11 € ¢H (m):

FQ) = / dP exp (—iSTrPQ) F (P) (2.55a)
n,m 52
= dF / dP; — F (P 2.55b
/H(n) o0 iH (m) " EI 0Py, ; 0P, , (P) ( )
X exp (—iTI‘P()oQOO — iTrP01Q1o + iTrPlOQOl — iTrPllQll) s
(2.55¢)

with parametrization of supermatrix ) analogous to eq. . We can
transform any such supermatrix P by a similarity transformation, that
brings Pyp and P11 to diagonal forms, denoted by Agp and Aj; respectively,
in the following way:

Poo P \_ (U 0 Aoo UPp V1 U o
(Pm P11 )_( o Vvt ><VP10UT iA11 )( 0 V) '
(2.56)
where U € U(n) and V € U (m). This allows us to perform eigenvalue
reduction in both boson-boson and fermion-fermion sectors of our super-

symmetric Fourier transform. Additionally, derivatives over anticommuting
variables are invariant w.r.t. following simultaneous change of variables:

Py =UPu VT, (2.57a)
P{y=VPioU" . (2.57b)

The function of interest in our new variables reads:

Ao Pjy _ 1 Aoo — H Py,
F (( P, iAn = SDet Pl i H (2.58a)

= Det™! (Ago — H) Det ((mu — H) — Ply (Aoo — H) ™ Pél) .(2.58b)

It is clear now, that F (P) is a polynomial in eigenvalues of P11 and is
meromorphic in eigenvalues of Pyp. Derivatives over anticommuting vari-
ables Pj, and P]; will not change the type of this dependence, therefore we
can proceed with computations for Pyp as in boson-boson case by shifting
eigenvalues of H by some small ¢n and for P;1 as in fermion-fermion sector,
by regularizing the Fourier transform with an exponential cutoff. Since this
regularization is done in an invariant way, the Fourier transform F (Q) will
be a radial function of Q. For simplicity we can straight ahead consider only

24



2.5. Non-unitary symmetry classes

diagonal @Q’s by writing:

Fe (AQ) :/Rn dAoo A (A (Aoo))Q/U( )dU (2.59a)
></ dA11 A (A (A11))2/ av (2.59b)
iR™ U (m)
n,m
. 82 AOO P/
X 7exp(feTr|P|)F(( ;01 ))
l_J[ Py, 0P, | Pl, iAn
(2.59¢)
x exp (—TrUT AooUAG,00 — 1TV AL VA1) - (2:59d)

The integral factorizes and each sector can be treated separately, ex-
actly like in previous sections. Therefore we immediately obtain following
final formulas for supersymmetric Laplace transform and its inverse for the
inverse of a superdeterminant:

F(Q) :/dPexp(—STrPQ)F(P) ) (2.60)

F(P) =cum [ dQexp (STePQ) F (Q) (2.61)

where integration is done over Hy (n) x U (m) for the forward transform and

2 2
over U (n) x Hy (m) for its inverse with the constant ¢, m = 1/ (27)™ ™™

2.5 Non-unitary symmetry classes

Formalism we developed applies to Hermitian matrices, or in other words
matrices diagonalizable by a unitary similarity transformation. The calcu-
lation we performed relies heavily on the usage of HCIZ integral formula
(2.31)), which has been derived explicitly only in the case of an integral over
the unitary group. Although analogs of HCIZ formula are not known in
closed form, it turns out that our results are not limited to the unitary
symmetry class only. The crucial observation is, that our derivation doesn’t
require exact HCIZ formula, but exploits only the symmetry of the result
and analytic properties of integrands. In fact, it has been conjectured in
[34] and proven in [35], that the HCIZ type integral over some other sym-
metry groups, in particular, orthogonal group O (N) and symplectic group
Sp (2N), possess properties required by our formalism. We will shortly sum-
marize those results here and explain how to apply them to obtain Laplace
transform formulas for real symmetric matrices (diagonalized by orthogonal
transformations) and quaternion self-dual matrices (diagonalized by sym-
plectic transformations).

Following (non-standard) notation of [35], we denote compact Lie groups
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2. Laplace transform

Gg, N as follows:

Gij2,n =0 (N) , (2.62a)
Gin=U(N) , (2.62b)
Ga,ny = Sp(2N) , (2.62¢)

and are interested in integrals of the form:

Isn (P,Q):/ dUeTPURQUT! (2.63)
Gg,N

where dU is the Haar measure on the Lie group Gg n, while P and Q
are matrices diagonalizable by similarity transformation by an element of
Gg,n. Because of the invariance of dU, without loss of generality, one can
consider P and @ to be diagonal matrices with eigenvalues {p;} and {g;}
respectively. It has been shown in [35] that one can write such integrals in
the following form:

Det (exp (pqu'))lgi,jgN 5

lan (PQ =2 S o anoyP ey Pe) . 26

o

where fg, ~ (P, Q) are so-called principal terms that can be derived via cer-
tain recursion relation, the sum is performed over permutations and matrix
subscript o means, that the order of eigenvalues is changed by according per-
mutation. In particular, for 8 integers, the principal terms are symmetric
polynomials of degree 8 in

Tij=— (pz pj) (qz q]) (2.65)
2
variables. In the case of 8 = 1/2 (orthogonal symmetry group), it can be
expressed as a series in 7; ;.

We will sketch the derivation of Laplace transform formulas for matri-
ces with other than unitary symmetries. Evaluation of the Fourier trans-
form over real symmetric or quaternion self-dual matrices (denoted here by
HPB (n)) begins with, as in previous sections, eigenvalue reduction, which for
general (3 reads:

exp (0 = i j 26 .66a
/Hﬁ(n)dP p (—iTrPQ)F (P) /an];[ldp]A(A(P)) (2.66a)

></ dU exp (—iTxUApUT'Q) F (Ap) .
Gg,n

(2.66b)
The A (A (P))?# term cancels with the same term in the denominator in
eq. (2.64). As a result, even though the integrand differs from the one

in the case of unitary symmetry, it possesses exactly the same analytic
structure. This fact, together with the symmetry of 7; ; variables, is all
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2.5. Non-unitary symmetry classes

we needed to proceed with derivation analogous to the one in the case of
transform over Hermitian matrices presented in previous sections. We use

Hf_ (n) notation for the positive definite subspace of H® (n). The resulting
Laplace transform formulas have exactly the same form as eq. (2.60]2.61)
with following changes:

e Integration is performed over Hf_ (n)xU (m) /G g, m for forward trans-
form and U (n) /Gg,, X H{i (m) for the inverse.
e Constant factor is equal ¢n,m = 1/ (27ri)"d°f+md°f.

Ndof and Mmgos denote the number of degrees of freedom in H? (n) and
HPB (m) respectively. In the case of orthogonal symmetry ngor = (n%+mn) /2
while for 8 = 2 we have ngor = n(2n + 1)
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3 Region of applicability

The partition functions, and as a result determination of the universal-
ity class of a random matrix ensemble, are determined within our formalism
via the supersymmetric extension of the R-transform. However, the form
of the R-transform depends on the average eigenvalue spectrum only. One
can easily construct a random matrix ensemble having the same eigenvalue
distribution while possessing different higher correlation functions. As an
example in the realm of complex Hermitian matrices, take the GUE, be-
longing to the Sine-kernel universality class. One can consider an ensemble
of N x N diagonal matrices, where each element is drawn independently
according to the Wigner semicircle distribution as its counterpart. Eigen-
values of matrices constructed in such a way are independent and therefore
experience Poissonian statistics. Obviously, in the N — oo, both ensembles
have the same average eigenvalue distribution, therefore their R-transforms
are identical, while they belong to different universality classes. Clearly,
independent eigenvalues do not experience the level repulsion property that
is a key feature of invariant ensembles like e.g. the GUE.

At which point our approach fails in the case of independent eigenvalues?
One crucial step of our derivation is the approximation of the type taken in
the eq. . Shortly speaking, we would want to be able to replace the
expected value of a determinant by the exponent of the expected value of
trace of a logarithm. Without loss of generality, we will consider the simplest
case of Zy) (p) partition function and for the convenience of notation we
will take its logarithm:

log E {exp (Trlog (p1 — H))} ~ logexp (E{Trlog (p1 — H)}) (3.1a)
=E{Trlog (p1 — H)} (3.1b)
= NG (p) . (3.1¢)

In the aforementioned example of independent eigenvalues distributed
according to the Wigner semicircle distribution, the left-hand side of eq.

(3.14) is equal to

log E{exp (Trlog (pl — H))} = Nlogp, (3.2)
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3. Region of applicability

while the integrated Green’s function, in this case, is given by

2 22
NG (p) = — B log(p =My [1— (3.3)
— 2 _ 4
=N p(p 4p >+1og(p+\/zm)—;—log2
(3.4)

We clearly obtain different results. In this case, the error of our approxima-
tion scales proportionally to N, which makes it unusable. In next sections,
we will check under what conditions this approximation is justified in the
N — oo limit and explore examples satisfying our requirements.

3.1 Moment generating function and variance of
integrated Green’s function

To further shorten the notation, we will denote any term of the form
Trlog (pl — H) by a random variable z. It is obvious from eq. that
the result of our approximation behaves as O (N), therefore we want to keep
the error term,

logE {exp (x —E{z})} , (3.5)

behaving at most as O (Nl_e) for some ¢ > 0. This can be replaced by a
slightly more conservative requirement for the central moment generating
function:

|E {exp (z — E{z})}| < E{|exp (x — E{z})|} ~ O (exp (aN'7¢))  (3.6)

for some fixed constant a.
First, we employ the Chebyshev inequality [36], for the random variable
z, that for any k > 0 reads:

P(le —E{2}| > ko) < kiQ (3.7)

where ¢ is the square root of the variance of z. If we take k = N? for some
small § > 0, we can see that the probability of x to fluctuate more than
N9o from its mean goes to zero as N — co:

P (|:5 —E{z}| > N%) <N 0. (3.8)

As aresult, we will treat « —E {z} as a centered random variable bounded to
the interval [—N‘sa, N‘So} . The size of the effective support of z depends on
N in a way determined by the behavior of its variance. Having that, we will
apply the Hoeffding’s lemma [37], to move the requirement from the central
moment generating function to the endpoints of the effective domain, and as
a consequence onto the variance of z. The lemma states that for a centered
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3.1. Moment generating function and variance of integrated Green’s. ..

random variable y bounded to an interval, its moment generating function
is bounded in the following way:

2 (b — )2
E {exp (ty)} < exp <””8)> : (39)

where a < b are endpoints of the support of random variable y.

One should note, that Hoeffding’s lemma holds for random variables
bound almost surely, though one can extend this result to cases of random
variables with tails decaying sufficiently fast. Random variables constructed
in a similar way to the (integrated) Green’s function generically have tails
decaying fast, i.e. faster than Gaussian, see e.g. [38] for a recent review.
Nevertheless, we do not give a proof of required tail bounds here.

Applying the lemma to our case we obtain the following bound:

S 42

E{lexp (x — E{z})|} < exp (NZU ) ~ O (exp (N2602>) , (3.10)

Comparing this bound with our previous considerations (3.6), we can
move the requirement from moment generating function onto the variance
of x:

o2~ O (N1—€—25) : (3.11)

or equivalently, denoting k = € + 29, to deviations of the integrated Green’s
function

E{IG () ~E{G(@)I}} ~ O (N~0F9/2)., (3.12)
In most of the cases, the object analyzed in literature is not the inte-
grated, but regular Green’s function. We need one more step to relate re-

sults on the deviations of Green’s function to ones required by our method.
I.e. usual form of bounds proven in the literature is

lg (P) —E{g (p)} <O(f (N)), (3.13)

for some function f. The behavior of integrated Green’s function is bounded
in the same way, through the following reasoning:

/ g(q)dq—E{/ g(q)dq}w
y(p) ~y(p)

g/ l9(a) — E {9 (@)} Ida| + [C], (3.15)
~¥(p)

IG (p) —E{G ()} = (3.14)

for some constant C, where « (p) denotes a path in the upper (lower) complex
plane ending at p for Imp > 0(Imp < 0). As a consequence, all results about
deviations of g (p) for large N apply when considering G (p) as well.
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3. Region of applicability

3.2 Known variance estimates

Much attention in random matrix theory was given to the question of
self-averaging of Green’s function. Namely, if Green’s function variance goes
to zero as matrix size grows to infinity, one converges to a deterministic limit
for the average eigenvalue spectrum. Results of the type:

E{lg(p) —E{g (@I} < F(N) ——0 (3.16)

N—o0

have been proven for the first time for some Wigner random matrices in [2]
and for a broad class of invariant random matrices in [39]. To no surprise,
the bounds obtained in those papers are not good enough to conform to
our requirements. Better control of the rate of convergence is required for
many methods, including one developed in this thesis, in order to access
many-point correlation functions.

In the case of matrices with independent entries, one can standardize
them by a simple linear scaling to zero mean and normalized variance:

N
So%=1, i=1,2,...,N. (3.17)
j=1

One calls such ensembles ”generalized Wigner” if all of the variances for
individual entries are of the same order, U?j ~ O (1/N). In those cases, not
only the existence of a limit can be proven, but it is universally given by the
Stieltjes transform of the semicircle density:

2 A) dx 1
9gsc (P) = / Psc ( ) ) Psc (A) = —V4-2A (3~18)
9 p—A 2

as in the purely Gaussian case. The best bound of this type is given in [40]:

(log N)*

E{lg () = gse M} = C—4

(3.19)

with some constants C,L for sufficiently large N. This result is strong
enough for our method to apply.

In the realm of invariant random matrices a similar result, yielding a
sufficient self-averaging of Green’s function, was proven and studied in great
detail in [27] [41] [42]. In all three classical cases of 8 = 1,2,4 and for a
broad class of potential functions, including eigenvalue densities supported
on single or multiple intervals, one has:

log N

E{lg(p) —E{g(p)}I} < 077 (3.20)

for some constant C'.
The next case to discuss here, are random band matrices, constructed
in a similar way to (generalized) Wigner matrices, but with entries set to

zero beyond a diagonal band. This type of models are probably the most
interesting ones, as correlations universality has been conjectured, but not
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3.2. Known variance estimates

rigorously proven yet, if one lets the band width M scale at least as fast as
v/N. Numerical evidence confirming the conjecture is extensive, showing the
Sine-kernel universality for M >> +/N and Poisson statistics for eigenvalues
if M << v/N. In this case authors of [43] have shown that

€

E{lg () — gsc (P)I} < CNM (3.21)

away from edges of the eigenvalue distribution for any ¢ > 0. Comparing
this bound with our requirement translates to

M~O (N1/2+5) (3.22)

for any § > 0, therefore only slightly exceeding the conjectured 1/2 expo-
nent.

Finally, in the realm of non-Hermitian random matrices, proven self-
averaging bounds aren’t tight enough yet to comply with our requirements.
As an example and not going into details of extended formalism, the best
estimate in the case of matrices with independent entries for the variance of
the quaternionic generalization of Green’s function is [44]:

E{lg(¢) — E{gsc (9)}I} <CNTV2. (3:23)

Nevertheless, the construction of a quaternionic Green’s function and R-
transform is a relatively new concept, requiring further work. Many objects
are not well defined or studied in detail to date, therefore almost surely
there is room for improvement on this front.
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4 Singularities of the R-transform

The Green’s function, as defined in , is holomorphic on C/supp (p).
Its non-analyticity near the eigenvalue spectrum is exactly what allows us to
relate it to the eigenvalue density. In the most extreme case of supp (p) = R
one has two equivalent disjoint domains of definition for Green’s function:
CT and C—, denoting upper and lower complex half-plane respectively.
Those regions are equivalent because of the symmetry of the Stieltjes trans-
form of a real-valued function p (\) w.r.t. complex conjugation g (z) = g (2).
Therefore without loss of generality, we can treat g (2) as a function on C*
or in fact, as a map from upper to lower half of the complex plane

Ctsz—g(z)eC . (4.1)

In our approach to local eigenvalue statistics, we expect two models to
belong to the same universality class if their I' (Q) functions, as defined in
, have the same analytic structure. Most notably, we expect the Sine
kernel universality to hold if I"(Q) is holomorphic. Therefore we need to
have good control over the analyticity of the R-transform.

Invertibility of the Green’s function was already considered in the case of
a compactly supported probability measures in one of the first works intro-
ducing the free probability theory [7] and the results were further extended
to non-compact cases in [45] [46]. It was shown, that

§(:)= - (+o(1) (42)

as |z| — oo with |arg (z)| < 7/2—6 for some 6 > 0. This result implies, that
Green’s function is invertible in some cone-shaped neighborhood of infinity.
Formally, denoting:

Tos={z€Ct:arg(z) € (8,m—0);|z| > B} , (4.3)
Dyg={2€C™ rarg(z) € (-7 +6,-0);|z| < B} , (4.4)
F(z)=1/g(2) =2(1+0(1)) ,
it was shown that for any probability measure and a € R there exists 8 >
0, such that F(z) is invertible in the truncated cone T'y g. Additionally

F (FQ,B) D lacpite for any 0 < € < a. As a result, the inverse of
Green’s function, and by extension the R-transform, is properly defined
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4. Singularities of the R-transform

in the circular sectors D, g. The addition law in eq. is true in
the region of the complex plane where both of summed R-transforms are
properly defined, and the resulting R-transform for the sum is well behaved
in the intersection of two regions.

Those considerations provide us with some grasp of the possible non-
analyticity of the R-transform, but results are rather qualitative. In next
sections, we will provide a more quantitative approach to this problem in
the case of eigenvalue density p (A) with a compact, but possibly disjoint,
support as well as consider the birth of singularities during a continuous
deformation of the potential function for invariant ensembles.

4.1 Densities with a compact support

Very often in N — oo limit, with appropriate scaling, the resulting aver-
age spectrum of a random matrix ensemble has a compact support. Exam-
ples include Gaussian ensembles, other invariant ensembles with polynomial
potential NV (H) or Wishart ensemble. In this section we will put a restric-
tion on positions of singularities of the R-transform for matrix models with
eigenvalue spectra supported on a finite number of intervals on the real axis.

Let us start by recalling the inverse function theorem for holomorphic
functions. If

£0, (4.6)

zZ=z0

Ie]
!
20) = —g(z
9 (20) = 5-9(2)
then g is invertible in the neighborhood of zg. We will explicitly look for
constraints that eq. (4.6)) provides without further restrictions on random
matrix model.
Conversely, we can ask the question, what are the solutions of the equa-
tion
el A
g (z) = 7/ L)Qd,\ =0. (4.7)
oo (=)
In fact, one can express it not as one, but a set of two linearly independent
real equations for real and imaginary parts of g’ (z) separately. In other
words, writing z = = + 4y, singularities can appear if for all @« € R

e -2 —y? 2 -
Reg’ (2) + almg’ (2) = —/ (2 oyt aix )yp()\) dx=0.
—oo lz + iy — Al

(4.8)

. . A2 —2axy—y?

After a A = —\ 4+ z change of variables, denoting fy o (A) = W

we can write our requirement in a concise way:

oo

VaeRr / fya N px—X)dr=0. (4.9)
— 00

The shape of function fy, for some values of y and « is presented in
fig. It has zeroes at A4 =y (a ++V1+ a2> and is negative in between

those zeroes, therefore if the support of p (z — A) lies in the region where
fy,a is negative, the integral (4.9)) cannot be equal to zero. If the eigenvalue
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4.2. Birth of singular values

Figure 4.1: Two examples presenting shape of function fy o (A). Solid line
corresponds to parameters y = 1, = —1/2 and dashed line is drawn for
y = 1,0 = 1. Zeroes of fy o are marked by dots on the real axis, the
function is negative in between those points.

distribution is positive only on some interval (a,b), then we have the allowed
region for zeroes of g’ (z) given by:

VaeR <w+a<y(a—\/1+a2)\/x+b>y<a+\/1+a2)) . (4.10)

Boundary of this region is given by saturation of the inequality, which solved
for x and y gives the circle equation around the center of the interval (a,b)
with a radius being half of its width

(x_%“’)2+y2: (b;“f . (4.11)

Lastly, if the average eigenvalue distribution is supported on two disjoint
intervals, say (a,a’)U (b, b), with a’ < b/, the same analysis as before applies
to the hole (a’,b’) in the spectrum. Only difference being, that if the hole
lies in between zeroes of fy o for some a, the resulting region is forbidden
for zeroes of g’ (2).

To summarize, in the case of the eigenvalue density supported on multiple
intervals, the domain in which Green’s function may not be invertible, is
given by a circle in the complex plane around the whole eigenvalue density,
while each hole in the spectrum excludes a smaller circle from this domain.
An example of such configuration is given in fig.

4.2 Birth of singular values

It is easy to construct examples of eigenvalue densities, that make the
Green’s function non-invertible arbitrarily close to the boundaries of the
region described in the previous section. One can do this by considering
random variable given by two-point distributions and small deformations of
thereof. To proceed further with our analysis we have to assume something
more than just the compact support of the spectrum.
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4. Singularities of the R-transform

-2!

-4 2 0 2 3
Re g(2)

Figure 4.2: Example of a region, where singularities of R-transform may
appear for eigenvalue support consisting of a few disjoint intervals. Partic-
ular example shows this domain in case of 4 disjoint intervals supp (p) =
(—3.0,—2.5) U (—2.0,—1.0) U (1.5,2.0) U (3.5,4.0).

Firstly we consider p (\) € C! and integrate by parts in (4.9) with a = 0.
The resulting condition

<y
/
———p (x—N)dr=0, (4.12)
/ﬁ,o A%+ y2

simplifies significantly in the vicinity of the real axis, i.e. in the limit y — 0,
as the first factor under the integral converges to the Dirac delta at A =
0. This is where we expect the non-analytic structure to appear if the
probability measure is continuously deformed from the case without any
singularities. As a result, we are simply left with a requirement that the
eigenvalue density has a critical point at x

o' (z) =0. (4.13)

Let us now further specify to the description of invariant random matrix
ensembles. It is known [47] 48], that in the case of a probability measure of
the type

du (H) oc e NTVIH) g | (4.14)

on the space of Hermitian N X N matrices, where V (H) is a polynomial of
degree d > 2 and dH is a flat measure, the eigenvalue density is supported
on a finite number of intervals. Without a loss of generality, we assume
that V'’ (z) is a monic polynomial. A way of computing arbitrary partition
functions for this particular type of matrices was derived in [49] via the
method of topological expansion, but for our purposes, we only need the
first one, the Green’s function. It was shown in multiple ways that g (z) is
algebraic, i.e.

(V'@ = M@) Vo@) , (@15

g(z) = %E{Tr(x—H)*l} :%
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4.3. Example of singularities evolution

where M is a monic polynomial and if we denote by ai,...,as2s boundary
points of the s intervals forming the support of eigenvalue distribution, we

have
2s

o@=][@=-a) . (4.16)
i=1
From previous considerations we know, that singularities may appear

only near the eigenvalue support, where o (x) is purely imaginary. This
time looking at the real part of the eq. (4.7) we have

. ) 1
31_% Re (¢ (z =z +1iy)) = 5V” (x)=0. (4.17)

as a second independent condition complementing the eq. (4.13]).

To summarize, the necessary condition for non-invertibility of Green’s
function of invariant random matrix ensemble with potential V' in the neigh-
borhood of a point x on the real axis is

V" (z) =p' (z) =0. (4.18)

4.3 Example of singularities evolution

Let us consider a simple example illustrating a possible behavior of sin-
gularities of R-transform. We take

(I1-o)

p(A)=ad(\) + 2

A=-14+06(A+1)), (4.19)
as an average eigenvalue distribution of some invariant random matrix en-
semble in the limit of the potential function being symmetric and having 3
very deep minima at A = —1,0,1. Parameter a controls relative depth of
potential wells. In this case, we have

() e 1704( 1 n 1 ) 22 4+22(1-3a) +a
I PR T PR e EIE
(4.20)
for which 4 distinct zeroes can be easily computed. A plot presenting the
evolution of singularities is presented in fig. With the full allowed region.
This example behaves according to predictions from previous sections,
singularities do not appear beyond the region calculated for a general density
supported on 3 points supp (p) = {-1,0,1}.
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4. Singularities of the R-transform

1.0
\
0.5 |
a .,

N k)
> 0.0
E

-05

-1.0

-1.0 -05 0.0 05 1.0

Re g(z)

Figure 4.3: An example of the behaviour of singularities of R-transform
for 3-point eigenvalue density . There are a total of 4 singularities in
this model, starting for « close to zero at z = 0, —¢,7 and evolving along
the imaginary axis as « increases. After the points meet, they evolve in
direction of z = —1, 1 symmetrically. This evolution is indicated by arrows.
Shaded region indicates possible location of singularities for most general
eigenvalue density supported on 3 points —1,0, 1.
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5 Summary and outlook

We have generalized the concept of the Laplace transform to the space of
supermatrices with the transformed function being a ratio of characteristic
polynomials. The existence of the transform and its inverse were proven and
exact formulas were given in the cases of partition functions of Hermitian,
real symmetric and quaternion self-dual ensembles. In the limit of large
matrix size (N — oo) the transform is often governed by the free probabilis-
tic R-transform. In this way, we have extended the results of [30] and [31]
by considering a full supersymmetric extension of angular integrals. Our
analysis is general in the sense that it does not rely on a particular form of a
probability measure. It applies to both classical cases of Wigner and invari-
ant random matrix ensembles, as well as other matrix models. One way of
obtaining the R-transform equation is the saddle point method for integral
of an approximation of a partition function. We provide a simple condition
under which this approximation becomes exact in the N — oo limit, while
keeping track of the order of magnitude of the error term. Lastly, we qualita-
tively analyze the analyticity of the R-transform in more concrete examples
of eigenvalue densities supported on multiple intervals and show, that the
region of non-invertibility of Green’s function is restricted to a domain not
far from the support of eigenvalue density.

Further work should include using our method to calculate the correla-
tion functions for some particular physical models. One can further refine
applicability region of approximation provided in chapter E[, by considering
certain classes of random matrix ensembles. In particular, it may be pos-
sible to, first of all, recreate universality results in the realms of Wigner or
invariant random matrices. Having done that, many results will follow from
the additivity of R-transforms or the multiplication law for free random
matrix ensembles. In this way, one can extend the boundaries of known
universality classes.

Another direction of research may include analysis of circular ensem-
bles, that is unitary, orthogonal or symplectic random matrices. It has been
shown in many cases that correlation functions have a very similar form
to those for Hermitian, real symmetric or quaternion self-dual matrices re-
spectively. The significant difference is, that analytic structure of partition
functions in the boson-boson sector is very different in those cases. The sin-
gularities lie on a unit circle, therefore a good contour of integration cannot
simply involve the real axis and a proper regularization method must be
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5. Summary and outlook

employed.

Lastly, the extension of the free probability theory to the realm of non-
Hermitian matrices (i.e. with complex eigenvalues) was preliminary devel-
oped in recent years [50} [0 [51]. Instead of being a complex function, the
R-transform in this cases is considered as a 2 X 2 matrix valued function on
the space of 2 X 2 matrices, or equivalently as a quaternionic map. It is a
very recent topic of research, but it seems like both our and quaternionic
formalisms may be combined in order to give insight into correlations of
eigenvalues of non-Hermitian random matrices.
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A Appendix

A.1 Shifting poles into different parts of the com-
plex plane

In section we discussed the construction of the Laplace transform
of a product of inverse determinants. To avoid contour integration going
through the singularities, one has to add a small imaginary number to the
argument of the transformed function. One can do that in two different
ways, by shifting poles into upper or lower complex plane, for each deter-
minant in the product. We already discussed the simplest case of adding
in with 7 > 0 to each variable p; in eq. . We will now present the
detailed derivation of Laplace transform formulas in the case of arbitrary
shifts of singularities, by considering the (non-radial) function:

n—mng

F(P)= hm H Det™! ((pj +in) 1 — H) (A.1a)
x J] Det ' ((p; —im)1—H) . (A.1b)
j=n—no+1

As F (P) does depend on first ng of p;’s in a different way than on the
last (n — ng) ones, we cannot simply perform a variable change in .
To circumvent this problem, let us start with observation, that we can still
express the Fourier transform as:

7 _ - A(A P) n 771)/2 a
F@ = [ TS L I ()

X ngn (o) exp (—inlq[,(l)) F(Ap) . (A.2b)
o l

We can interchange the sum over permutations and integral and close con-
tours in upper/lower complex half-plane depending on signs of ¢, (;) in each
term of the sum and each integral respectively. By the same argument as
in section [2.3.2] the transform will be equal to zero if @ does not have a
particular signature. For the Fourier transform not to vanish, @ has to have
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A. Appendix

exactly ng positive and (n — ng) negative eigenvalues. Due to the sum over
o, the ordering of g;’s is not important. For simplicity take the case of
gj > 0 for j < ng (small indices) and g; < 0 for j > ngo (large indices).
We can still freely permute variables p; in each of the subsets j < ng and
j > np, but if a permutation o mixes a small index with a large one the
resulting integral will vanish. As a result, we have the analog of Eq. :

A (P))
n—no)'jg dp; k!
H ’A A(Q)) <H ) i Vj<ngqj > 0

Vj>n q; < 0 .

X Z‘(nz—n)/Q exp <—izplql> F(AP) o
1

0 otherwise

FQ) =

(A.3)

Finally, in the same manner as in section we can reverse contours,
change variables et cetera to arrive at an integral over the unitary group,
with an additional factor m This factor is absorbed during the
calculation of inverse Laplace transform. Analogous to the reduction in the
integration region in eq. the inverse transform is now performed not
over Hy (n) but over the space of matrices with (ng,n — ng) signature.
We perform analytic continuations for different eigenvalues, from R_ to R4
when needed, exactly like in section Because of different possible or-
derings of positive and negative eigenvalues one arrives at WLHO), copies

of Hy (n). The resulting Laplace transform formula is the same as in the
case of shifting all singularities into lower complex half-plane.

A.2 Non-unitary symmetry classes

In this appendix, we will expand on the topic of Laplace transform in
cases of matrix ensembles with orthogonal or symplectic symmetries. The
computation follows essentially the same steps and formulas resemble ones
seen in the case of the unitary symmetry. We will point out all the ad-
justments needed in order to apply our reasoning to transform over real
symmetric or quaternion self-dual matrices. We keep the same notation as
in section
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A.2. Non-unitary symmetry classes

Firstly, after performing eigenvalue reduction in eq. (2.36)), we obtain

F(@) = /R . [T dos (3 ()27 e=<Tiar (Ada)

Jj=1

Det (exp(—ipiqj))lgm<n .
x A( (—Z'P))2BA()\(QG))2B I, N (—iP, Qo) F (Ap) (A.4b)

/ H dp; e~ <TrlAp] (A.4c)

Jj=1

y Z Det (e zp,qj))l<i i<n

NG o (CRQF(Ar)

(A.4d)

The additional factor i’g, N (—iP,Qs) doesn’t change the analytic structure
of the integrand, therefore all changes of contour and analytic continuations
of chapter |2| remain the same.

Secondly, instead of integral over the unitary group in eq. , one is
left with integral over a circle for each eigenvalue and integral over O (n) or
Sp (2n) for the similarity transformations. As a result, we get symmetric or
self-dual matrices, with eigenvalues described only by the phase, which is
U (n) /O (n) and U (2n) /Sp (2n) respectively.

The last point to address, is the value of the constant ¢y m. The pre-
factor for inverse Fourier transform over n X n real symmetric or quaternion
self-dual matrices is 1/(27)™dof as defined in the end of section The
additional i factor comes first of all from 1/A (A (—iQs))?? in eq. (A.4c)
and change of variables z; = —ip; as in sections @ and @ This
concludes all the differences occurring in the derivation of Laplace trans-
form for non-unitary symmetry classes, i.e. the orthogonal and symplectic
symmetries.
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