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Abstract

The interplay of the constituents of interacting many-body systems may reveal
emergent properties on the macroscopic scale which are not inherent to the in-
dividual constituents. These properties are expressed in macroscopic observables
describing the state — denoted as the phase of the system. Continuous phase tran-
sition between phases are generically manifested in critical behavior, for example,
a divergence of a macroscopic observable. The identification of the present phase
of a system and the classification of critical phenomena into universality classes are
exciting challenges of condensed-matter physics.

In this thesis, we use entanglement entropies as macroscopic quantities for the
characterization of phases of quantum matter and critical theories. For ground-
states of quantum many-body systems the entanglement entropy is a measure of
the amount of entanglement between two subsystems. The generic dependence of
the entanglement entropy on the size and shape of the subsystems is contained in
the well-known boundary law — stating a scaling of the entanglement entropy with
the boundary between the two subsystems. We numerically investigate how the co-
efficient of this dependence reflects quantum phase transitions in simple spin-half
bilayer models.

Subleading terms to the boundary law such as a logarithmic contribution provide
universal numbers for the criticality of field theories. We examine free and inter-
acting theories from an entanglement entropy perspective in order to assess the role
of the coefficient of the logarithmic correction induced by corners in the subsys-
tems. Beyond its universality, this coefficient also quantifies degrees of freedom of
low-lying excitations in the conformal field theory describing a critical point.

A constant contribution to the boundary law indicates the presence of so-called
topological order in the ground state of a many-body system. This extremely use-
ful property can also be identified in classical counterparts of entanglement entropy
which we study at the example of various toric code models. To this endeavor, we
have designed Monte Carlo techniques which allow for an efficient numerical com-
putation of the constant contribution. In particular, we analyze via entanglement
entropies under which conditions remnants of topological order are present in the
quantum system at finite temperature and at perturbations from a magnetic field.
The major motivation behind this effort is to use topological order for the robust
storage of a quantum information — a basic need for the construction of quantum
computers.
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Kurzzusammenfassung

Die Bestandteile eines wechselwirkenden Vielteilchensystems können durch ihr
Zusammenspiel emergente Eigenschaften des Gesamtsystems hervorrufen, die den
einzelnen Teilchen nicht innewohnen. Diese Eigenschaften werden in makroskopi-
schen Observablen ausgedrückt, die den Zustand — auch als Phase des Systems be-
zeichnet — beschreiben. Kontinuierliche Übergänge zwischen Phasen gehen üblich-
erweise mit kritischem Verhalten einher, zum Beispiel mit der Divergenz einer ma-
kroskopischen Observable. Die Bestimmung der vorliegenden Phase eines Systems
sowie die Einteilung der kritischen Phänomene in Universalitätsklassen sind span-
nende Herausforderungen der Physik kondensierter Materie.

In dieser Arbeit verwenden wir Verschränkungsentropien als makroskopische
Größen für die Charakterisierung von Phasen von Quantensystemen und kritischen
Feldtheorien. Für Grundzustände von Quanten-Vielteilchensystemen ist die Ver-
schränkungsentropie ein Maß für den Betrag der Verschränkung zwischen zwei
Teilsystemen. Die generische Abhängigkeit der Verschränkungsentropie von der
Größe und Geometrie des Teilsystems wird im bekannten Boundary-Law zum Aus-
druck gebracht: Die Verschränkungsentropie skaliert mit der Größe des Randes
zwischen den Teilsystemen. Wir untersuchen numerisch, inwiefern der Koeffizient
dieser Abhängigkeit Quantenphasenübergänge in einfachen Spin-1

2
Zweischicht-

Modellen widergibt.
Terme niedrigerer Ordnung im Boundary-Law wie zum Beispiel ein logarithmi-

scher Beitrag stellen universelle Größen für die Kritikalität von Feldtheorien dar.
Wir beleuchten freie und wechselwirkende Feldtheorien aus der Perspektive der
Verschränkungsentropien, um die Rolle des Koeffizienten der logarithmischen Kor-
rektur — induziert durch Ecken in den Teilsystemen — zu beurteilen. Über die
Universalität hinaus misst dieser Koeffizient auch die Freiheitsgrade von niedrig-
energetischen Anregungen in einer konformen Feldtheorie, welche einen kritischen
Punkt beschreiben.

Ein konstanter Beitrag zum Boundary-Law weist auf sogenannte topologische
Ordnung im Grundzustand des Vielteilchensystems hin. Diese äußerst nützliche Ei-
genschaft kann auch in klassischen Varianten der Verschränkungsentropien nachge-
wiesen werden, was wir am am Beispiel zahlreicher Toric-Code Modelle durchfüh-
ren. Zu diesem Zweck haben wir Monte-Carlo-Algorithmen entworfen, die eine
effiziente numerische Berechnung des konstanten Beitrags ermöglichen. Mit Hil-
fe der Verschränkungsentropien analysieren wir insbesondere, unter welchen Be-
dingungen Überbleibsel von topologischer Ordnung des Grundzustands bei endli-
cher Temperatur oder bei Störungen durch ein Magnetfeld im Quantenzustand vor-
handen sind. Die Hauptmotivation dieses Unterfangens besteht darin, topologische
Ordnung auszunutzen, um Quanteninformation robust zu speichern — eine Grund-
voraussetzung für die Konstruktion von Quantencomputern.
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1. Introduction

The fundamental requirement for any quantitative investigation of a physical phe-
nomenon is a mathematical description of the state of the considered system. This
description is conceptually simple if the system has few constituents — a set of
numbers denoting the (usually three-dimensional) vector components of the posi-
tion, velocity, etc. is sufficient and manageable. However, in a typical condensed
matter physics problem myriads of particles locally interact and collectively engen-
der so-called emergent phenomena. A (microscopic) description is hence not only
inconvenient due to the large number of necessary variables but also inappropriate
because it is not set on a macroscopic scale where the phenomenon is perceptible.
It is one of the great achievements of the domain of thermodynamics and statis-
tical physics to exhaustively describe such a system at equilibrium by only a few
macroscopic quantities such as energy, temperature, volume, pressure, etc.

We qualitative observe on the macroscopic level that many-body systems can ap-
pear in different phases of matter. A central aspect of many-body physics is to iden-
tify these phases as well as transitions between them via appropriate macroscopic
observables. For example, a system consisting of magnetic degrees of freedom
could exhibit a ferromagnetically ordered phase at a sufficiently low temperature.
This phase is characterized by a finite total magnetization. Upon increasing temper-
ature, a phase transition to the magnetically disordered phase (paramagnet) takes
place which implies a vanishing of the total magnetization. The two variables —
magnetization and temperature — of the system enable us to detect and locate the
transition. In this approach, the magnetization is the so-called order parameter in
the Landau theory of the phase transition [1].

Order-disorder transitions, like the above example, are accompanied by the break-
down of correlations between the constituents. It is hence intuitive that in addition
to the magnetization also the (spatial) correlation length is expected to provide a
signature of the transition. This quantity denotes the typical spatial distance over
which the degrees of freedom are correlated and is hence infinite in the ordered
phase and decays as a power law to a finite value in the disordered phase. The
point in the parameter space where the correlation length becomes infinite is de-
noted as the critical point. In its vicinity a rich spectrum of singular behavior of
several macroscopic observables allows for a classification of the continuous phase
transitions into universality classes [2].

In this thesis, we consider yet another quantity which provides universal informa-
tion about the phase of a many-body system and its critical behavior. It represents
an enhanced conceptualization of the idea to consider correlations in the state of the
system as a footprint of order. Instead of the characteristic length scale of correla-
tions, we focus on the aspect of dependencies which exist between two parts if they
are correlated. In other words, the knowledge of the state of one part implies partial
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1. Introduction

knowledge about the other. This notion opens up an information theory perspective
and therein — in the quest for a quantification — suggests an entropic measure of
correlations.

So far, we have outlined our relevant aspects of the physics of phase transitions in
the realm of classical statistical mechanics. All macroscopic observables are hence
thermal averages over the configurations in the ensemble. However, we want to ex-
amine quantum phase transitions which take place in the groundstate of a quantum
system — a single many-body state as opposed to a statistical ensemble. The fun-
damental difference between interacting classical and quantum many-body systems
is that in the latter degrees of freedom can be entangled, i.e. they exhibit a very
counterintuitive form of a correlation which is unique to the quantum world [3]. As
we expect correlations — and thereby the amount of entanglement — to undergo a
significant change at a quantum phase transition we want to measure precisely this
type of correlation in the groundstate with our macroscopic quantity. Combining
the two desired features of the measure we want to use in this thesis, we arrive at
the mathematical concept of our need, namely entanglement entropy [4].

Entanglement is mostly referring to a phenomenon between two participants — a
notion which is in contradiction to the present many-body context. The workaround
to this issue is to introduce a bipartition of our many-body system and consider en-
tanglement between the resulting two subsystems. Subsequently, the adaptation of
the concept of entropy in the information theory sense provides the quantification
of entanglement. There are many ways to perform the necessary bipartition. This
choice adds a technical degree of freedom to the problem which influences the value
of the entanglement entropy although the total physical system is not changed. We
hence need to understand the dependency of the entanglement entropy on the (non-
physical) choice of the bipartition and — one step further — extract the universal
parts which actually have physical significance. This decomposition is done by the
boundary law of entanglement entropies and its subleading contributions [5]. If
we compute the entanglement entropy for varying subsystem sizes of the biparti-
tion, we obtain a leading term which scales linear in the size of the boundary of the
subsystem. Subleading logarithmic (in the subsystem size) or constant terms are
independent of the size of the bipartition (but not of its geometry) and their coef-
ficients are hence candidates for universal quantities classifying phases or critical
behavior.

After a broad introduction to the issue of measuring entanglement and a discus-
sion of the boundary law, the structure of this thesis follows basically the orders of
the contributions to the boundary law. With regard to the systems and phenomena
considered, each Part focusses on its own physical problems.

In Part one, we provide a brief discussion of the physical content of the boundary
coefficient. Even though it is non-universal and hence does not enhance our knowl-
edge about a specific system at criticality it can nevertheless qualitatively reflect a
phase transition by exhibiting a local maximum at the critical point [6]. We support
these findings by quantum Monte Carlo simulations for bilayer spin-half models.
An interesting aspect of this signature of the phase transition is that it sheds light on
the role of an amplitude mode on the ordered side of the transition.

In Part two, we demonstrate the universality of the subleading logarithmic con-
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tribution in gapless critical Hamiltonians — induced by corners in the biparti-
tion [7]. The entanglement entropy perspective here constitutes a two-fold com-
plementary description of criticality: For interacting systems corner entanglement
adds another universal quantity to those of the order parameter paradigm of Landau.
On the other hand, for conformal field theories there is a surprising equivalence
between its canonical characteristic quantity, the central charge, and corner entan-
glement. We consider quantum critical spin-half bilayers as our interacting systems
and study them with quantum Monte Carlo simulations. For these models we relate
the value of their critical corner entanglement to their (known) O(N) universality
classes. The notion that N plays a crucial role leads over to studying degrees of
freedom of low-lying excitations of conformal field theories via corner entangle-
ment. We select the free boson and free Dirac fermion theories and carry out our
entanglement entropy calculations on appropriate lattice field theories thereof.

A key role is taken by a subleading constant contribution in the boundary law of
entanglement entropies which we will point out in Part three of this thesis. Specif-
ically, it indicates the existence of topological order in gapless Hamiltonians [8].
This concept of order in a many-body system is characterized by the fact that fun-
damental properties of the system depend on its topology. It does not allow for a
description via a local order parameter. In fact, a finite constant contribution of the
entanglement entropy — also known as topological entanglement entropy — is of-
ten the only known indicator of topological order. Beyond the fundamental interest
in topological order as an explanation for phenomena such as the fractional quantum
Hall effect [9] we focus in this thesis on a potential application, namely quantum
computing. The well-studied two-dimensional toric code model at its groundstate
embodies a concept for the storage of quantum information which is robust against
local perturbation by exploiting topological order [10]. We investigate this model
and three-dimensional variants thereof from the perspective of topological entangle-
ment entropies. Our main interest is the finite-temperature stability of topological
order in the considered models which is of great importance for the practical rele-
vance of the concept of such a quantum memory [11]. In addition, we examine the
robustness of topological order against local perturbations by a magnetic field. It
turns out, that the phenomenon of topological order can be spotted in a purely clas-
sical context via so-called classical Rényi entropies. In order to obtain a finite con-
stant contribution, a non-trivial bipartition has to be performed which divides either
subsystem A or B into two disconnected parts. We adopt this classical perspective
and perform Monte Carlo simulations of our models and show how the topolog-
ical entropy unambiguously detects transitions between topologically ordered and
trivial phases.

13





2. Entanglement measures
To understand and classify phenomena in quantum many-body systems the usual
approach has been for a long time to look at order parameters of the system, its
spectrum of excitations or its response to external perturbations. A substantially dif-
ferent method — adapted from quantum information theory — is introduced in this
Chapter as it constitutes the approach pursued in this thesis: The study and quantifi-
cation of entanglement contained in ground states of quantum many-body systems.
The underlying idea is that the wavefunction describing the ground state contains
all (quantum) correlations governing the phases of matter. Accessible measures of
entanglement hence often allow for a complementary characterization of e.g. crit-
ical phenomena and sometimes they even entail the only known identification of a
quantum phase — as in the realm of topologically ordered phases.

In the wake of the Einstein Podolsky Rosen (EPR) paradox [12], entanglement
was regarded mainly as a qualitative phenomenon. This Chapter starts off by a
quantum information theory perspective on what entanglement is (Sec. 2.1). From
this perspective, entanglement is often considered as a resource which can be ex-
ploited in quantum information processing and is believed to be responsible for the
speed-up of quantum computation compared to classical computation. In trying to
understand this resource, the quantification of entanglement underwent a rising in-
terest in the context of quantum information science. Entropies of density matrices,
introduced in Sec. 2.2, are basic tools for measuring entanglement. This concept
is very successfully transfered to condensed-matter physics where it quantifies the
entanglement in a pure quantum state via a bipartition of the many-body system.
The entropy of the reduced density matrix of this bipartition is called entanglement
entropy. Beyond two definitions thereof we discuss a prevalent boundary law of the
entanglement entropy that generically occurs in locally interacting quantum sys-
tems. We also summarize an experiment that can measure entanglement entropies.
Away from pure states the mutual information, introduced in Sec. 2.3, is an insight-
ful quantity for example in thermally excited states. In Sec. 2.4 we discuss general
criteria of entanglement measures for mixed states and explicitly present three ex-
amples, partly based on the entanglement entropy.

2.1. Characterization of entanglement
We begin with the technical definition of entanglement as our starting point in this
discussion. We consider a composite quantum system, e.g. a state of two qubits1

|ψ〉 =
|00〉+ |11〉√

2
, (2.1)

1A qubit is two-state quantum system with basis states denoted by |0〉 and |1〉.
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2. Entanglement measures

also known as one of the Bell states. If — as in this example — it is impossible to
write the quantum state as a direct product of two single qubit states, |ψ〉 = |a〉⊗|b〉,
we define the state to be entangled. In the early days of quantum mechanics the
consequences of entanglement were perceived as paradoxial [12] because they are
contradictory to a notion of local realism — assumed to be an axiom of any scien-
tific theory. Later, J. S. Bell derived an inequality between correlations of different
measurements on entangled states in his seminal work [13]. This inequality would
hold if local realism is to be obeyed. However, the violation of this inequality, in-
deed found2 in a series of experiments [14–16], clearly forced the abandonment of
the local reality axiom.

Classical Communication (CC)

U |ψA⟩
Local Quantum
Operations (LO)

U |ψB⟩
Local Quantum
Operations (LO)

Figure 2.1.: Sketch of the LOCC paradigm. Alice and Bob
can communicate classically and perform local
quantum operations in their respective labora-
tory No quantum particles can be transfered be-
tween them. c©BBC, Disney.

Beyond the above definition
we further want to give an in-
tuition from a quantum infor-
mation theory perspective on
what entanglement actually is,
following the review article in
Ref. [4]. This will be very
helpful for our understanding
of possibilities and limits of the
quantification of entanglement.
We first paraphrase entangle-
ment by quantum correlations
of many-body quantum states
which takes us to the question
what distinguishes them from
classical correlations. To this
end, we make an excursion to
the quantum information tech-
nological paradigm of LOCC

— local quantum operations and classical communication. The underlying motiva-
tion for LOCC operations is the quest for communication between different quan-
tum states in a quantum circuit. Unfortunately, decoherence hampers the lossless
direct transmittal of quantum states over long distances. However, performing local
quantum operations (LO) on both sides of the communication is much less threat-
ened by decoherence since laboratory conditions close to ideal can be set. By the
additional use of classical communication (CC) which is likewise close to perfect
the local quantum operations can be applied in a coordinated way on both sides. The
quantum computation setup could then consist of an initial distribution of quantum
states over (noisy) quantum channels and further processing them by LOCC op-
erations alone. Targeting to narrow down entanglement we now define classical
correlations (between the distant partners) as those which can be created by LOCC
operations. Further, we may find correlations in the quantum systems that cannot
be created that way and therefore must have been already present in the initial state.
A way to identify these quantum correlations is to use the noisy quantum state and

2Strictly speaking, it was not Bell’s original inequality but variants thereof which were tested in
experiments.

16



2.2. Entanglement entropy

LOCC operations to perform a task that cannot be simulated by classical corre-
lations. Entanglement can hence be regarded as a resource needed in addition to
LOCC operations for such tasks, e.g. the violation of the Bell inequality, and can
conversely be defined as the correlations that cannot be created by LOCC.

As a completion of our characterization we now list a few properties of entan-
glement that will help tackling the problem of entanglement quantification. First,
(i) the amount of entanglement in a separable state is zero. This statement follows
not only from the mathematical definition but also from the fact that LOCC oper-
ations can create separable states from scratch. Further, (ii) LOCC operations do
not increase entanglement. We can understand this property from considering two
quantum states described by density matrices ρ and σ. If we can transform ρ into
σ using LOCC operations, any task we can do with σ can also be done with ρ and
LOCC. Hence, σ cannot contain more of the resource entanglement than ρ. A con-
sequence of this property is (iii) that local unitary operations leave the amount of
entanglement invariant. It follows from the fact that local unitary operations are
invertible and belong to LOCC. Very important for the availability of an appropri-
ate measure of entanglement is (iv) the notion that there exist maximally entangled
states. Specifically, it can be shown [4] that for a bipartite quantum system with
both subsystems of dimension d the state

∣∣ψ+
d

〉
=
|0, 0〉+ |1, 1〉+ . . .+ |d− 1, d− 1〉√

d
(2.2)

must be maximally entangled as a consequence of (ii) because every other pure or
mixed state of the system can be obtained by LOCC on

∣∣ψ+
d

〉
. It is evident that a

requirement for an entanglement measure is that it be maximal for this state.
As a final remark we emphasize that without exception our notions of entangle-

ment involve two parts or subsystems between which entanglement can be spotted:
The LOCC paradigm assumes two participants in the communication and any corre-
lation considered refers to the two parts — also the Bell inequalities are statements
for pairs of particles. In a quantum information context this is quite natural be-
cause often communication between one sender and one receiver is considered (al-
beit cluster states and multi-user communication pose interesting scenarios as well).
However, in a many-body system in condensed-matter physics we are interested in
the collective behavior and the role of entanglement of multiple equally important
constituents. No ‘natural’ bipartiteness is present in this context but we desire3 it
for the measurement of entanglement, because this approach is best understood and
most tractable. This leads to the apriori artificial bipartition of many-body systems
that we are going to carry out in the following discussions.

2.2. Entanglement entropy
The objects of our interest are (pure) ground states of quantum many-body systems,
whose density matrices are of the form ρ = |ψ 〉〈ψ| and obey Trρ2 = 1. In our

3There exist approaches for measuring entanglement in multipartite systems, reviewed in Refs. [3,
4]. However, no unified characterization of multiparty entanglement exists and a definition of an
appropriate is not unique even for pure states. We will therefore not consider it in this thesis.
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2. Entanglement measures

attempt to quantify (some of) the entanglement contained in ρ we subdivide the
total system into two complementary parts A and B ≡ A which we assume to be
entangled. We are apriori free how we choose this bipartition, but we expect the
amount of entanglement to depend on this choice such that we seek to understand
its influence.

A

B

Figure 2.2.: Cartoon picture of a bipartition
of a many-body system.

Having performed this bipartition, e.g.
like in Fig. 2.2, we have to find separate
descriptions of the degrees of freedom in
either part. In the most simple case, it is
possible to write |ψ 〉〈ψ| = |ψA 〉〈ψA| ⊗
|ψB 〉〈ψB|, i.e. a direct product of two pure
states for A and B. It follows from the
definition of entanglement that in this case,
no entanglement is present between parts A
and B and any quantity measuring entan-

glement would have to be zero. Moreover, the knowledge of the state of the total
system is sufficient to fully know the state of its parts. This is different if such a
factorization is not possible: Entanglement between the subsystems entails that the
full information of the state of the total system does not allow inference on the state
of the subsystems — in the most extreme case (such as the Bell states) the state of
the subsystem is completely unknown. SubsystemA will be described by a reduced
density matrix ρA which contains the available information of A. In case there is no
entanglement it is pure, otherwise it is mixed because it encodes the probabilistic
element in the knowledge of A.

The amount of (classical) mixedness in ρA is the key to quantifying the entan-
glement between A and B as pointed out in Ref. [17]. To access it, we first need
to find a decomposition of the total |ψ〉 into states of the form |i〉A ⊗ |i〉B, i.e. in
respectively orthonormal bases of subsystem A and B. Such a form is obtained by
the Schmidt decomposition

|ψ〉 =
∑

i

λi |i〉A |i〉B (2.3)

with positive coefficients λi satisfying
∑

i λ
2
i = 1. These so-called Schmidt coeffi-

cients pave the way to a quantification of the mixedness of ρA: If we only look at
subsystem A, λ2

i is the probability to find the subsystem in state |i〉A. In terms of
density matrices it follows from Eq. (2.3) that for pure states ρ = |ψ 〉〈ψ| we have

ρA ≡ TrBρ =
∑

i

λ2
i |i〉A 〈i|A and ρB ≡ TrAρ

∑

i

λ2
i |i〉A 〈i|B , (2.4)

where TrA/B corresponds to the partial trace, i.e. the trace over the degrees of
freedom of subsystem A or B only. A very important observation is, that ρA and
ρB have identical eigenvalues, such that any function of the λi would be symmetric
under a swap of the subsystems A↔ B.

We expect a measure of entanglement to quantify the lack of information about
the state of A given that we know ρ. Therefore it is justified to impose the following
conditions on any entanglement measure E [3]:

18



2.2. Entanglement entropy

1. Unitary transformation do not change the value of E, which implies that E is
a function of the eigenvalues λ2

i of ρA only.

2. E is a continuous function of the λ2
i .

3. As demanded generically by a measure, E is additive if we have several in-
dependent copies of the system: E(|ψ〉 ⊗ |ψ〉) = 2E(|ψ〉).

If translated to probability distributions, these requirements are identical to those of
entropy in information theory — a quantity measuring the lack of information about
the outcome of a random event. Hence, it is obvious to use the quantum mechan-
ical analogues of entropies, applied to the density matrix ρA or ρB to quantify the
bipartite entanglement of the pure state ρ. In the following, we present two forms
of such entropies — the von Neumann entropy and the generalized Rényi entropies
— which differ only in the imposed general additivity.

2.2.1. Von Neumann entropy

The von Neumann entropy [18] is a straightforward adaption of the Shannon en-
tropy [19] for a discrete probability distribution {p1, p2, . . . , pn} to density matrices
in quantum statistics. Entropy can be regarded as a measure for the amount of infor-
mation we gain on average about a system by triggering and observing one random
event of the distribution. The definition of the Shannon entropy H(p1, p2, . . . , pn)
follows uniquely from imposing the conditions

1. H is continuous in the probabilities pi,

2. For an equiprobable distribution pi = 1
n
, i ∈ {1 . . . n} the entropy is maxi-

mal, i.e. H(p1, p2, . . . , pn) ≤ H( 1
n
, 1
n
, . . . 1

n
) and strictly increasing with n,

H( 1
n
, . . . , 1

n
) < H( 1

n+1
, . . . , 1

n+1
),

3. If we group the underlying random process into subprocesses, the total en-
tropy is the entropy assigned to the belonging to a group plus the weighted
sum of the entropies of the random process within the groups, e.g.

H(q1, q2, . . . , qn = rpn, qn+1 = (1− r)pn) =

H(p1 = q1, p2 = q2, . . . , pn) + pnH(r, 1− r).

The last condition ensures the additivity postulated above as a requirement for an
entanglement measure, since the direct product of two copies of a random distribu-
tion has the entropy

H(p1p1, p1p2, . . . , p1pn, p2p1, . . . , pnpn)

=H(p1, p2, . . . , pn) +
n∑

i=1

piH(p1, p2, . . . , pn)

=2H(p1, p2, . . . , pn).
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2. Entanglement measures

We therefore have H(p1, p2, . . . , pn) = −∑n
i=1 p(xi) log2 p(xi) for the Shannon

entropy, such that the translation to the quantum case, the von Neumann entropy,
reads

S(ρ) = −Tr [ρ ln ρ] , (2.5)

where we take the natural logarithm instead of log2 — the latter being commonly
used in information theory in order to quantify information in binary digits. We use
this definition to define our bipartite von Neumann entanglement entropy for pure
states of a many-body system bipartitioned into parts A and B as

S1(A) = −Tr [ρA ln ρA] . (2.6)

Note that if ρA is pure, we have S(ρA) = 0 which satisfies that a separable state
ρ = ρA ⊗ ρB contains no entanglement. The subscript ‘1’ refers to the fact that
Eq. (2.6) is a special case of the more general Rényi entropies defined in the next
paragraph.

2.2.2. Rényi entropies

The third condition that led to the definition of the Shannon entropy can be weak-
ened without giving up additivity. We replace it by:

3’. For two independent probability distributions P and Q the entropy of their
direct product is given by H(P ∗ Q) = H(P) +H(Q).

The so-called Rényi entanglement entropies [20] resulting from this modification
are defined by

Sα(A) =
1

1− α ln [TrραA] . (2.7)

Satisfying (3’.) but not (3.) allows more freedom in the definition of the entropy
function, which is expressed in an additional parameter α 6= 1 also called the order
of the Rényi entropy. As indicated above, the limit of α → 1 recovers the von
Neumann entropy, which can be proven by the use of l’Hôpital’s rule.

Interestingly, the special case of α = 2 reveals a relation to the purity condition
of density matrices, Trρ2 = 1. We have seen above that for entangled subsys-
tems A and B, ρA is not pure (Trρ2

A < 1) and hence the second Rényi entropy
−1

2
ln Trρ2

A can be used as a measure of the purity of ρA after canceling the log-
arithm. The family of Rényi entropies has also gained interest in the study of the
entanglement spectrum [21], — the spectrum of the “entanglement Hamiltonian”
HE defined via ρA = exp(−HE). Low-energy excitations of HE are believed to
carry universal information about the phase of matter. Due to ραA = exp(−αHE)
the Rényi entropy for a large α corresponds to the low-temperature regime of HE

with temperature T = 1/α. Large-α Rényi entropies hence provide a tool to access
the low-energy section of the entanglement spectrum. A major motivation for the
use of Rényi entropies instead of the von Neumann entropy is the availability of
a numerical procedure to compute Sα(A) for integer α without having to directly
compute and diagonalize ρA — the replica trick. Our physical observations are not
qualitatively affected by this preference since the Rényi entropies are expected to

20



2.2. Entanglement entropy

exhibit same entropic behavior as the von Neumann entropy due to their common
defining conditions.

However, a few shortcomings of the Rényi entropies have to be mentioned.
While the von Neumann entropy obeys subadditivity for a system composed of
interdependent subsytems, i.e. S1(FG) ≤ S1(F ) + S1(G), the Rényi entropies in
general do not [22]. For fixed ρA the mapping α → Sα(A) is a continuous func-
tion of α which monotonically decreases upon increasing α, see Fig. 2.3. Hence,
compared to Eq. (2.6) it estimates the amount of mixedness of ρA to be smaller for
α > 1. In addition, if we consider the limit α → ∞ it becomes apparent from the
definition in Eq. (2.7) that the largest eigenvalue λ(max) of ρA dominates the trace of
ραA, such that S∞(A) = − lnλ(max). In the context of the study of the low-energy
part of entanglement spectra this issue has been pointed out by A. Chandran et
al. [23] to be problematic as much less eigenvalues of ρA contribute to Sα→∞(A)
than to S1(A). As a consequence, the physical importance of the largest eigen-
values of ρA is possibly overestimated by relying on Sα→∞(A). Since statistical
averages of physical observables are computed using the full spectrum of ρA, e.g.
〈OA〉 = Tr (OAρA), the physical conclusions from Sα→∞(A) could be biased and
even exhibit artifactual behavior.
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Figure 2.3.: Comparison of entanglement entropies for a simple state |ψ〉 = sinϕ |0A0B〉 +
cosϕ |1A1B〉. As expected, the entropies vanish for ϕ = nπ/2, where either sinϕ = 0
or cosϕ = 0. Hence, they reflect that there is no entanglement for product states
|ψ〉 = ± |00〉 and |ψ〉 = ± |11〉. On the other hand, we have sinϕ = ±1/

√
2 and

cosϕ = ±1/
√

2 for ϕ = π/4, 3π/4, . . .. The resulting state is maximally entangled
and therefore the entanglement entropies become maximal at these angles.

2.2.2.1. Replica trick

The explicit computation of the reduced density matrix ρA in general requires the
knowledge and numerical accessibility of the density matrix ρ of the entire system.
For ground states, we have ρ = |ψ 〉〈ψ| but unless the system is exactly solvable,
an explicit form of |ψ〉 in a single-site composite basis is often unknown. We there-
fore have to consider the limit β → ∞ from finite-temperature results. Accord-
ing to the Gibbs distribution we have in this case ρ = Z(β)−1 exp(−βH), where
Z(β) = Tr exp(−βH) is the partition function. The exact diagonalization (ED) of
the Hamiltonian H provides ρ, but for a large Hilbert space the Hamiltonian of a
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2. Entanglement measures

many-body system becomes a huge matrix such that an ED is computationally im-
possible. However, this problem can be circumvented for Rényi entropies, Eq. (2.7),
by the so-called replica trick which directly4 computes TrραA numerically for integer
values of α ≥ 2 at finite inverse temperature β.

Originally, the replica trick has been established [24] in field theory, by express-
ing density matrices as Euclidean path integrals. It has been used to compute the
von Neumann entropy as the limit α → 1 from the Rényi entropies [25, 26] before
the interest in the Rényi entropies itself came up, together with an embedding of the
replica trick in a quantum Monte Carlo approach [27].

Figure 2.4.: Sketch of the Riemann surface for
α = 3 on which the path integral
has to be computed. Periodic bound-
ary conditions are assumed for one
dimension of the white sheets repre-
senting the copies of partB. The pink
sheets constitute the surface on which
the path integral of part A is evalu-
ated. c©P. Calabrese.

In its field theory variant the idea of
the replica trick is to translate the nec-
essary tracings and exponentiation in
Eq. (2.7) to an appropriate manifold on
which the path integral in d+ 1 dimen-
sions has to be computed. The partition
function Z(β) is simply expressed as a
path integral which is cyclic in imag-
inary time τ , i.e. by identifying (or
“sewing together”) the edges at τ = 0
and τ = β. For ρA we first have to per-
form the trace over part B, which cor-
responds to the same operation but for
the degrees of freedom in part B only.
Hence, the manifold on which the path
integral is carried out is a cylinder of

circumference β where part A is cut out at τ = 0. The remaining trace over part
A of ρA raised to the power α is realized by taking α copies of these cylinders and
cyclically sewing together the cut parts A, as illustrated in Fig. 2.4. The periodicity
in imaginary time direction of the parts of the manifold belonging to region A is
hence α · β. We thereby obtain an α-sheeted Riemann surface on which the path
integral is computed — resulting in a modified partition function Z[A,α, β] such
that the Rényi entropies are expressed as a function of a ratio between partition
functions

Sα(A) =
1

1− α ln
Z[A,α, β]

Z(β)α
. (2.8)

For our purpose of computing Rényi entropies for lattice Hamiltonians, which
have a discrete Hilbert space, the replica trick can be derived without resorting to
quantum field theory. This is done in the following for α = 2. We denote the basis
of the Schmidt decomposition for the bipartite system, Eq. (2.3), from now on by

4without explicitly computing ρ
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2.2. Entanglement entropy

{|ak〉 |bk〉}. We have

Tr
(
ρ2
A

)
=
∑

k

〈
ak
∣∣ρ2
A

∣∣ ak
〉

=
∑

k,l

〈ak |ρA| al〉 〈al |ρA| ak〉

=
∑

k,l,m,n

〈akbm |ρ| albm〉 〈albn |ρ| akbn〉

=
1

Z2

∑

k,m,n

〈
akbm

∣∣e−βH
[
1A⊗

∣∣ bm
〉 〈
bn
∣∣]e−βH

∣∣ akbn
〉
. (2.9)

1 |bm⟩

|bm⟩

|bn⟩

|bn⟩

|ak⟩

|ak⟩

β

β

A B

Figure 2.5.: Schematic picture of the replica trick for
α = 2. Dashed lines indicate that the
copies of part A in both replicas are sewed
together. Thick lines represent world lines
in the path integral picture.

A numerical procedure to ap-
proximately compute Trρ2

A would
have to perform the three sum-
mations in the last expression of
Eq. (2.9). In a quantum Monte
Carlo scheme, the propagators
exp(−βH) are decomposed into
transfer matrices in imaginary time
steps ∆τ running twice from 0 to β.
We see, that basis states of B need
to be summed over in each replica
(bm and bn), respectively satisfying
the periodic boundary condition at
τ = β. Hence, the two copies of
part B have to be considered fully
independently. On the other hand,
the inner summation over all ba-
sis states of part A translates to an
identity operation 1A which implies
that the configuration of A after the
propagation from 0 to β is not con-
strained to the state at τ = 0. Only
the outer summation of basis states
of A is performed (ak), i.e. the
propagation has a periodicity of 2β.
Fig. 2.5 represents the last expres-
sion of Eq. (2.9).

2.2.2.2. Experimental measurement

For a long time the study of entanglement entropies was susceptible to criticism due
to its pure conceptual approach as opposed to experimentally observable quantities
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2. Entanglement measures

in many-body systems like, for example, structure factors. However, this shortcom-
ing could be strikingly eliminated by the seminal work of Islam et al. [28] in which
the entanglement entropy could be experimentally measured by a scheme related
to the replica trick. We briefly outline the scheme of this experiment and show the
measurement result for the Rényi entropy with α = 2.

A very successful experimental set-up to explore quantum physics relies on op-
tical lattices [29], i.e. periodic potentials created by interfering laser beams. In the
local minima of such a potential single atoms can be trapped and cooled to nearly
zero temperature, thereby representing a many-body state governed by quantum
physics. In order to probe the bipartite entanglement entropy, at first an entangled
many-body state needs to be prepared. For two or three entangled particles this
was successfully accomplished already in the experiments that proved a violation
of Bell’s inequality, see above.

Figure 2.6.: Protocol for the measurement of the Rényi entanglement entropy with α = 2 for a sys-
tem of four atoms. The system is prepared in a product state (top panel) or an entangled
state (bottom panel). An interference with a beam splitter produces an output state in
which a readout of the parity of the sites in subsystem A translates to the presence or
absence of entanglement. Figure taken from Ref. [28].

A genuine many-body entangled state can be obtained in an optical lattice from
applying controlled laser pulses on a Mott insulating state of neutral 87Rb atoms [30].
To measure entanglement, two copies (for α = 2) of entangled states are prepared,
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2.2. Entanglement entropy

like in the replica trick, and the pairs of particle counterparts in each copy are cou-
pled via a beam splitter [31], see also the bottom panel of Fig. 2.6. It was pointed
out in Ref. [32] that the parity of the number of atoms on every lattice site in both
copies gives access to the entanglement entropy: The average total parity 〈P 〉 of a
subsystem is one for pure states, which means that there is an even number of atoms

Figure 2.7.: Measurement results of the Rényi
entropy for three different biparti-
tions (marked in blue, green and
red). Across the transition from
the Mott insulating phase to the
superfluid phase the entanglement
entropy clearly indicates the cre-
ation of entanglement. Note,
that the x axis denotes decreas-
ing U/Jx from left to right. The
red data points are expected to
show no entanglement as they cor-
respond to the total system. Figure
taken from Ref. [28].

in each copy of the subsystem. On the
other hand a mixed state has 〈P 〉 = 0,
i.e. there can be an even or odd num-
ber of atoms in the subsystem. Due to
Trρ2 = 〈P 〉 we have a direct measure of
the second Rényi entropy up to the log-
arithm. Putting these ideas together, the
authors of Ref. [28] used two copies of
four interacting 87Rb atoms described by
a Bose-Hubbard Hamiltonian

H = −J
∑

〈i,j〉
a†iaj +

U

2

∑

i

a†iai(a
†
iai−1),

with tunneling rate J and onsite repulsion
energy U . This system undergoes a phase
transition from an entangled superfluid to
a separable Mott insulating phase upon in-
creasing U . For true bipartite states no
entanglement should be detected in the
large-U Mott insulating phase. The other
limit of a superfluid phase exhibits entan-
glement. In the top left corner of Fig. 2.7
the bipartitions of the four-site system are
depicted. The measurement result of the
second Rényi entropy for this transition
using these bipartitions convincingly reflects the expected entanglement.

2.2.3. Boundary law of many-body ground states
In the beginning of this Section we have started our analysis of entanglement via
entropies by introducing a bipartition. This bipartition is owed to technical reasons
and somewhat arbitrary in the first instance. It is therefore essential to understand
the influence of the choice of the subsystem in order to extract actual universal prop-
erties of the quantum many-body system. The seminal work of Bombelli et al. [33]
investigated this dependence in field theories of coupled harmonic oscillators and
obtained as a by-product that the leading term of the entropy of the reduced density
matrix is in general linear in the size of the boundary between the subsystems. This
was, however, not a coincidence as the goal of this work was to explain the so-called
area law of black hole entropy — also known as Bekenstein-Hawking entropy —
by a quantum mechanical approach. From semi-classical arguments the black hole
entropy has been found [34, 35] to depend on the surface area A of the black hole,
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2. Entanglement measures

i.e. SBH = Ac3/4G~ with the speed of light c and the gravity constant G. About
two decades later the quantum information theoretic interest [36] in entanglement
entropies arose. The term ‘area law’ is actually inappropriate for systems in other
than three spatial dimensions and we therefore denote a behavior

Sα(A) = ALd−1
A (2.10)

with linear size LA of the d-dimensional subsystem A by a boundary law in this
thesis. Here, A refers to the boundary coefficient. Subleading terms in Eq. (2.10)
are called corrections to the boundary law and systems in which the leading order
exceeds the Ld−1

A dependence are said to violate the boundary law.

A

B

Figure 2.8.: Taking away the degrees of free-
dom near the boundary of the
subsystem leaves a bulk of part
A which has no significant en-
tanglement with part B.

After the pioneering work in very spe-
cific systems the assumption that ground
states of sensible quantum systems (i.e.
having a local Hamiltonian) generically sat-
isfy the boundary law of entanglement en-
tropies became increasingly accepted, see
for example the review articles Refs. [3,
5, 37]. Heuristically, it can be understood
from arguing that entanglement is created
via the local interactions of the Hamilto-
nian. For pairs of particles which have no
direct interaction in the Hamiltonian this

implies that entanglement between them can only be established in a sequential
way by forming a connecting chain of interacting neighbors. We have seen above
that the mechanism of entanglement measurement works via turning entanglement
into (classical) mixedness by tracing out one of the entangled partners. As a conse-
quence of the locality, the particles of subsystem A which have an interaction with
a particle in part B are mainly affected by the tracing out. Hence, the entanglement
entropy should scale with the number of these cut interactions which is precisely
the length of the boundary. Taking away the degrees of freedom in the proximity of
the boundary we expect the bulk of subsystem A to behave like a pure state as it is
part of such one. The bulk of part A does thus not contribute to the entanglement
entropy, see Fig. 2.8.

We note in passing that the existence of a boundary law is crucial for the simu-
latability of the system via several numerical techniques. The density matrix renor-
malization group (DMRG) approach [38, 39] is based on representing the system
by so-called matrix product states (MPS). These states satisfy the boundary law by
construction and thereby implicitly assume it to be valid in the physical system in
order to be a good representation thereof. In dimensions d ≥ 2, projected entangled
pair states (PEPS) [40, 41] or the multiscale entanglement renormalization ansatz
(MERA) [42] provide such boundary-law inherent representations which are used
in appropriate tensor network methods to simulate the system.

The term ‘entropy’ evokes the context of statistical physics and thermodynamics
where we know that termal entropy as a function of state is extensive in the volume
of the considered system. At first sight one might be surprised that entanglement
entropies do not obey such a volume law. However, the two kinds of entropy have
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little in common such that a quantitative comparison is almost misplaced. First of
all, entanglement entropies live in the realm of quantum ground states, i.e. where the
statistical entropy is zero5 anyway (due to Trρ2 = 1). Also in a classical statistical
mechanics ensemble at zero temperature the entropy is zero6. From this perspective
neither a volume law nor a boundary law is satisfied. But we consider the entropy
of the reduced density matrix which exhibits a different structure than a statistical
mechanics system. In the latter, the degrees of freedom take random values. They
follow some known distribution but the number of possible configurations grows
exponentially in the system size. Due to the logarithm in its definition it implies
an extensivity of the entropy. A quantum system of random states, e.g. maximally
entangled qubits, would likewise have a volume law [37]. However, the ground
state of a reasonable quantum system defined by a local Hamiltonian is not random.
Instead, it is an eigenstate of this Hamiltonian whose constituting basis states are
only a small subset of the Hilbert space, specifically those which feature entangle-
ment between locally interacting sites. A mixture on a subsystem is hence drawn
from this small subset of the Hilbert space such that the corresponding entropy is
subextensive.

We now present a brief survey of available rigorous results for the scope of va-
lidity of the boundary law. In one-dimensional systems a boundary law means that
the entanglement entropy is constant for all subsystem sizes. Here, the situation is
quite clear [5]: A boundary law always holds for local and gapped Hamiltonians.
It has first been shown for bosonic systems [43] and XY spin chains [44] which
can be mapped to a model of free fermions via a Jordan-Wigner transformation.
Hastings [45] provided a general proof of the boundary law for non-critical one-
dimensional systems. At criticality quantum many-body system are described by
conformal field theories (CFT). Earlier works rooted in the context of black-hole
physics found a divergence for the entanglement entropy of conformal field theo-
ries [46, 47] scaling with the logarithm of the system size with a coefficient related
to the central charge C of the CFT, S(A) = C/3 logLA. We will come back to
this prominent result in Sec. 4.1. This contrast between the boundary law in the
non-critical regime and its violation for critical (gapless) system reveals a general
one-to-one correspondence of the satisfaction of the boundary law and the (non-)
criticality of the system [48].

In higher dimensions rigorous statements about the boundary law are few and far
between. For quasifree bosonic models (harmonic lattices) a boundary law holds re-
gardless of the dimension [49]. From a field theory perspective, the same result was
found for massive free scalar fields [24] with logarithmic corrections if the theory is
critical. The situation is considerably different for critical fermionic models. It has
been shown that the boundary law is violated if the system exhibits a finite Fermi
surface [50, 51]. In this case, the leading term scales as Ld−1

A logLA which is still
subextensive but exceeding a boundary size scaling.

There is one special two-dimensional class of critical systems which allow for a

5For a degenerate ground state we could assume a statistical mixture of the ground states which
would result in a constant entropy originating from this mixture.

6Consider for example the Ising model at T = 0, i.e. a symmetry broken configuration with all
spins pointing either up or done with probability 1.
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proof of the boundary law, namely the quantum Lifshitz universality class. With-
out going into details of its field theoretical description we present this very elegant
argument, following Ref. [52]. The particularity of systems belonging to this class
(among them the quantum dimer model and the eight-vertex model) is that their dy-
namical critical exponent is z = 2 instead of the usual z = 1. As a consequence [53]
the ground state wavefunction itself is conformally invariant at the critical point, in-
stead of the usual criticality of the action of the field theory. Those critical points
are also called conformal quantum critical points (CQCP). Their decisive property
for the derivation of the boundary law is that the basis of the Hilbert space of the
wavefunction is the configuration space of a two-dimensional classical model [53].

Figure 2.9.: Book-geometry of the manifold
on which the modified parti-
tion function is defined. Picture
taken from Ref [54].

Hence, we can map the system to a classi-
cal statistical-mechanics system whose par-
tition function is conformally invariant in a
2 + 0 dimensional equivalence. Using the
replica trick, introduced above, to compute
the entanglement entropy we have to de-
termine [54] a modified classical partition
function Zα on α ∈ N copies of the sys-
tem where the degrees of freedom are iden-
tified on the common boundary Γ as shown
in Fig. 2.9. This partition function is com-
pared to α independent copies of the system
such that Eq. (2.8) becomes

Sα(A) =
1

1− α ln
Zα
Zα

.

Since Z and Zα are classical partition functions, we can express the entanglement
entropies via the free energy Fα = − lnZα, i.e.

Sα(A) =
Fα − αF1

1− α . (2.11)

It is known [55] that the free energy of a conformally invariant classical system has
a leading extensive term and subleading linear and constant corrections and possible
a term in lnL, yielding F = L2f + aL+ c lnL+ e+O(L−1). Since the boundary
Γ is of measure zero with respect to a two-dimensional plane it can be regarded
as a defect such that its existence does not significantly affect the volume of the
modified partition function Zα. Hence, the volume of Zα is simply α times the
volume of a single copy, such that the extensive terms of the free energies cancel
out in Eq. (2.11). The entanglement entropies thus scale at most linear in L which
is a boundary law.

We comment on why this argument is not generally applicable, even though the
replica trick likewise leads to a classical representation of the quantum system, see
Fig. 2.5. For the replica trick, we use a quantum-to-classical mapping by discretiz-
ing the imaginary time representing the inverse temperature. Hence, by construction
we are at a non-zero temperature which we try to keep as low as possible. In the
limit of T → 0 the classical systems become infinitely large such that Eq. (2.11)
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represents a subtraction of infinities and therefore does not allow for a conclusion
about Sα(A).

In the above discussion about the validity of a boundary law it was already being
indicated that emergent subleading corrections can reveal a deep physical signif-
icance. Since they constitute the core elements of this thesis we provide a short
overview thereof. Gapless systems can exhibit corrections which are logarithmic
in the linear subsystem size LA. They can appear in the non-critical regime with
gapless excitations [56] as well as at critical points [7]. The latter case is the subject
of part II of this thesis where we will see that they can be induced by designing
subsystem A as to have sharp corners. In contrast to the boundary coefficient (A
in Eq. (2.10)) the coefficient of the logarithmic term is universal — rendering it
a useful quantity for the characterization of criticality. Another class of systems
features a universal constant correction to the boundary law. It appears in systems
exhibiting topological order [57] — a type of order in a quantum phase which can
in general not be characterized by an order parameter. The constant correction is
used to construct a quantity called topological entanglement entropy from carefully
chosen bipartitions of the quantum systems [58, 59]. It provides a witness of the
presence of topological order and thereby replaces the unavailable order parameter.
Part three of this thesis deals with this topic area using variants of the prototypical
toric code model [10] as objects of study.

2.3. Mutual information

For pure ground states the entanglement entropies discussed in Sec. 2.2 exhaus-
tively quantify bipartite entanglement. However, they forfeit a significant part of
this capability if applied directly to bipartitions of a mixed state ρ as, for example,
thermal states (at temperature T > 0) of quantum systems. The reason is an in-
tertwining of the statistical mixedness of ρ with the mixedness due to tracing out
subsystem B which cannot be resolved by Sα(A). In this case, it is instructive to
consider the total (quantum and classical) correlations between the subsystems A
and B, measured by the mutual information [60]

Iα(A : B) = Sα(A) + Sα(B)− Sα(AB), (2.12)

based on the Rényi entanglement entropies. It is motivated by gathering the amount
of information of both subsystems, measured by their entropies. Simply adding
them would doubly count the information that is common toA andB which is there-
fore subtracted. The mutual information can hence be interpreted as quantifying the
information about B we have if we know A. To illustrate this, we consider the two
extreme cases: IfA andB are independent, we acquire no information aboutB if we
get to know information about A, which implies Iα(A : B) = 0. On the other hand,
if A and B are completely correlated, every outcome of A is mapped to an outcome
of B and we have Sα(A) = Sα(B) = Sα(AB). The information about A provides
the same information about B which is expressed through Iα(A : B) = Sα(A).
Since Sα(AB) = 0 for pure states it is obvious that Iα(A : B) = 2Sα(A), i.e. it
carries the same information as the entanglement entropies in this case.
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2. Entanglement measures

2.4. General entanglement measures

The mutual information is not a measure of entanglement for mixed states as it does
not strip off the classical correlations. Unlike for pure states, where the entangle-
ment entropies represent a unique measure derived from the LOCC paradigm, the
situation is more axiomatic and ambiguous for mixed states. Following Ref. [4] we
present a list of possible postulates for entanglement measures and subsequently
introduce three examples — the relative entropy of entanglement, the entanglement
of formation and the entanglement cost.

In Sec. 2.1 we have postulated that entanglement cannot increase under LOCC
operations. To illustrate this, we make use the operator-sum representation of quan-
tum operations via Kraus operators [60]. Quantum operations — among them
LOCC operations — on a state ρ can be expressed with a set of matrices Ak, satis-
fying

∑
k A
†
kAk = 1, as

ρ′ =
∑

k

AkρA
†
k ≡

∑

k

pkρk, (2.13)

i.e. as a superposition of the states ρk of outcome k with corresponding probability
pk = Tr

(
AkρA

†
k

)
. The effect of the quantum operation can hence be interpreted

by replacing ρ by ρk with probability pk. In the case that we have knowledge about
the state after the operation, the new (normalized) density matrix is given by

ρk =
AkρA

†
k

Tr
(
AkρA

†
k

) . (2.14)

The crucial point is now, that for the (von Neumann) entropy we can have S(ρk) >
S(ρ), see for example Ref. [61]. For a true entanglement measure this case is cured
by considering averages over many repetitions of this operation. Possible postulates
for an appropriate bipartite entanglement measure E(ρ) for mixed states are:

1. E(ρ) is a mapping from density matrices into R+, where ρ is bipartite. Since
the notion of maximally entangled states

∣∣Φ+
d

〉
=
|0, 0〉+ |1, 1〉+ . . .+ |d− 1, d− 1〉√

d
(2.15)

is retained, it makes sense to normalize the measure as to haveE(
∣∣Φ+

d 〉〈Φ+
d

∣∣) =
log d.

2. For a separable state ρ we have E(ρ) = 0.

3. Under LOCC operations, E(ρ) does not increase on average. This statement
can be written as

E(ρ) ≥
∑

k

pkE

(
AkρA

†
k

TrAkρA
†
k

)
. (2.16)
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4. In the special of a pure state ρ = |ψ 〉〈ψ|, the entanglement measure is iden-
tical to the entanglement entropy, E(|ψ 〉〈ψ|) = S(ρA).

The first three conditions constitute the requirements for a so-called entanglement
monotone, proposed in Ref. [61]. In (4.) We have intentionally left unspecified the
concrete form (von Neumann or Rényi ) of the entanglement entropy. This thesis is
based on the assumption that Rényi entropies carry the same physical information
as the von Neumann entropy [22] but in the context of quantum information, mostly
the von Neumann entropy is considered as the unique entanglement entropy. Hence,
we note that Eq. (2.16) leads to the von Neumann entropy in (4.) and would have to
be adapted if Rényi entropies are desired.

Relative entropy of entanglement
As suggested above, a measure for entanglement in mixed quantum states based
on entropies needs to eliminate their inherent part of classical correlations. The
introduction of the mutual information (Sec. 2.3) poses a preliminary work for a
possible realization of this endeavor. In particular, it can be expressed as a Kullback-
Leibler divergence — a quantity assigning the notion of a distance to a pair of
probability distributions p(x) and q(x) on a configuration space X , more precisely

D(p||q) =
∑

x∈X
p(x) ln

p(x)

q(x)

=
∑

x∈X
p(x) ln p(x)− p(x) ln q(x), (2.17)

also referred to as relative entropy. It can be adapted immediately to density matri-
ces ρ and σ, yielding

D(ρ||σ) = Tr (ρ ln ρ)− Tr (ρ lnσ) . (2.18)

Further, for the (von Neumann) mutual information we have

I1(A : B) =Tr (ρAB ln ρAB)− Tr (ρA ln ρA)− Tr (ρB ln ρB)

=Tr (ρAB ln ρAB)− Tr (ρAB ln(ρA ⊗ ρB))

=D(ρAB||ρA ⊗ ρB). (2.19)

Hence, we see that the mutual information measures the distance between the state
of the total system and the non-entangled but possibly classically correlated direct
product of ρA and ρB, i.e. of the density matrices carrying the available information
from ρAB about the subsystems. Apriori it is not clear whether ρA⊗ ρB contains all
classical correlations within ρ. But this insight inspires the definition of the relative
entropy of entanglement [4] by searching the nearest separable state and taking the
divergence as the as a measure of entanglement:

EX
R (ρ) = inf

σ∈X
D(ρ||σ). (2.20)

This definition includes a dependence on the space of states X which we generally
choose to comprise all two-party product states in the Hilbert space of ρ.
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2. Entanglement measures

Entanglement of formation
Another approach to quantify entanglement that is also based on the entanglement
entropies is the entanglement of formation [4]. It considers all possible pure state
decompositions of the form ρ =

∑
k pk |ψk 〉〈ψk| of a mixed state ρ. We can mea-

sure the bipartite entanglement for all |ψk 〉〈ψk| of a particular decomposition by
means of the the von Neumann entanglement entropy and compute an average en-
tropy by weighting every S(TrB |ψk 〉〈ψk|) with pk. The entanglement of formation
is defined as the minimal average entropy of all pure state decompositions, i.e.

EF (ρ) = inf

{∑

k

pkS(TrB |ψk 〉〈ψk|) : ρ =
∑

k

pk |ψk 〉〈ψk|
}
. (2.21)

Entanglement cost
A more operational motivation for an entanglement measure leads to the definition
of the entanglement cost [4]. We want to obtain the state of interest ρ by apply-
ing LOCC operations on maximally entangled two-qubit states |Φ〉 = 1√

2
(|0, 0〉 +

|1, 1〉). To this end, we combine many of such two-qubit states, sayK, into a state of
dimension D = 2K . The (pure) state corresponding to this combination is denoted
as
∣∣Φ+

D 〉〈Φ+
D

∣∣. We could now try to find the smallest K such that an appropriate
LOCC operation Ψ on

∣∣Φ+
D 〉〈Φ+

D

∣∣ approximately yields ρ. However, we put this
quest into the so-called asymptotic regime, i.e. we try to obtain n copies of ρ simul-
taneously for some large integer n. This is a more general setting that avoids the
hard problem of deciding whether one particular mixed state can be transformed in
another state with certainty via LOCC. Moreover, it opens up the notion of a rate r
at which many copies of the initial state can be transformed into many copies of the
target state. The entanglement cost is precisely such a rate, namely the best possible
rate for the transformation described above:

EC(ρ) = inf
{
r : lim

n→∞

[
inf
Ψ

Tr
∣∣(ρ⊗n −Ψ(

∣∣Φ+
2rn 〉〈Φ+

2rn

∣∣)
∣∣)
]

= 0
}
. (2.22)

The inner infimum aims at minimizing the deviation between the n copies of the
target state and the transformed state by looking for the best LOCC operation Ψ.
In other words, r blocks of n two-qubit maximally entangled states are needed to
approximately obtain n copies of ρ via LOCC operations in the asymptotic limit.
This quantity is very hard to compute in general. It is assumed [4], but not proven
to be equal to the entanglement of formation, Eq. (2.21).
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Part I.

Quantum phase transitions
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3. Singular behavior at critical
points

In quantum many-body systems with local interactions we generically expect the
entanglement entropy to exhibit a boundary law, i.e. its leading term scales linear
with the boundary length LA of subsystem A of the bipartition. As pointed out
in Sec. 2.2.3, the underlying mechanism can be understood from the notion that
entanglement is established between neighboring particles via their interaction in
the Hamiltonian. Inverting this picture we can conclude that the existence of a
boundary law in a particular model indicates that the quantum correlations between
two subsystems are primarily contained in the correlations between the cut pairs
of constituents along the boundary [5]. We therefore have reason to assume that
the boundary coefficient a of the entanglement entropy is related to the correlation
length ξ of the system. Such a relation evokes a special interest in the entanglement
entropy at quantum phase transitions which typically exhibit a diverging correlation
length.

A heuristic argument which goes back to Matt Hastings [62] predicts the exis-
tence of a boundary law even if the correlation length is infinite. This argument,
which is explained in the following for a d-dimensional system, is based on the
assumption that the contributions of the correlations to the entanglement entropy
S are identical at every length scale and of order O(1), denoted by A. We now
add up these contributions from all length scales by repeatedly rescaling the con-
sidered correlation length ξ(i) by a factor λ, i.e. ξ(i+1) = λξ(i). For ξ(1) = 1 we
obtain S(1) = ALA because there are LA positions of pairs along the boundary,
all contributing one unit A. After the first iteration, we have ξ(2) = λ and there
are only LA/λd−1 positions of groups of λd particles whose common correlations
with another such group across the boundary contribute at this length scale. This
step is repeated until λ reaches the linear size of the total system. Counting all the
contributions we obtain

S =
∑

S(i) = A
(
LA + LA

1

λd−1
+ LA

1

λ2(d−1)
+ . . .

)
= ALAλd−1 ∼ LA,

(3.1)
using the geometric series and λ > 1.

For clarity, this argument is pictured for a particular example in Fig. 3.1. Note,
that the rescaling procedure must start at an initial correlation length ξ = 1. Hence,
we can also learn from this argument that the boundary coefficient a depends on
the short-distance cutoff (lattice spacing) which implies that it is non-universal —
as opposed to its subleading corrections. Therefore, it is often not considered in
the context of criticial behavior because it cannot be used to classify the transition.
However, a recent study [6] points out that — under certain conditions — it can
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Figure 3.1.: Sketch of the heuristic argument [62] for the existence of a boundary law in the entan-
glement entropy for infinite correlation length. We set λ = 2 and rescale the considered
correlation length from left to right. The boundary length is LA = 8 such that the con-
tributions from left to right add up to S = A(8+4+2+1). In the thermodynamic limit
LA → ∞ the entanglement entropy yields S = ALA(1 + 1/2 + 1/4 + 1/8 + 1/16 +
. . . ) = 2ALA ∼ LA.

provide a footprint of a quantum phase transition by showing a cusp at the critical
point.

In this Chapter we expand this investigation by contributing further numerical
evidence on antiferromagnetic quantum critical points. We will first introduce in
Sec. 3.1 three spin-half bilayer models that have such quantum phase transitions.

Subsequently, in Sec. 3.2, we discuss the low energy physics on both sides of
the critical point that enable the existence of a cusp. Finally, we show results for the
boundary coefficient of these models obtained from Monte Carlo simulations in a
stochastic series expansion of the Hamiltonians in Sec. 3.3.

3.1. Quantum critical bilayers

We consider antiferromagnetic quantum spin bilayer models in d = 2 spatial di-
mensions that undergo a phase transition induced by the spontaneous breaking of a
continuous O(N) symmetry. These models have in common that their phase tran-
sition is driven by a coupling parameter g such that the system becomes critical at
g = gc. For our cases the system is divided into an ordered low-g phase with an
infinite correlation length and a magnetically disordered large-g phase where the
correlation length decreases to zero upon moving away from the critical point.
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Figure 3.2.: Geometry of the bilayer and necklace spin mod-
els and location of the couplings J and J⊥.
Dashed interactions are absent in the necklace
model. An example for a typical dimer in the
large-g phase is depicted in blue.

Square lattice bilayers of
spin-half degrees of freedom
are simple models related to bi-
layer cuprates [63] that can be
tuned through a quantum phase
transition in the O(2) or O(3)
universality class in d = 2.
They are accessible to quantum
Monte Carlo simulations, e.g.
via a stochastic series expan-
sion [64] and are therefore ex-
cellent candidates for the inves-
tigation of the phase transition
from an entanglement entropy

perspective. We consider three bilayer models which feature slightly different se-
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3.2. Off-critical behavior of the boundary coefficient

tups in the coupling strengths of the intralayer couplings J and interlayer coupling
J⊥. The coupling ratio g = J⊥/J is our tuning parameter and separates the antifer-
romagnetically ordered phase (g � gc) from the disordered phase in which singlet
dimers with one spin in each layer are formed (g � gc). We consider periodic
boundary conditions in both lattice directions and finite lattice sizes of linear extent
L for our simulations. Fig. 3.2 depicts the common geometry of the bilayer models.

The first model is the antiferromagnetic spin-half bilayer Heisenberg model

H1 = J
∑

〈i,j〉

2∑

l=1

Si,lSj,l + J⊥
∑

i

Si,1Si,2 , (3.2)

where i labels a unit cell consisting of two spins (one in each layer) in the (two
dimensional) lattice. The index l denotes the layer (1 or 2). This model is well
understood and its phase transition in the O(3) universality class is known to occur
at gc = 2.5220(1), see Ref. [65].

Using the same notation, the Hamiltonian for the second model — the bilayer
XY model — reads

H2 = J
∑

〈i,j〉

2∑

l=1

(Sxi,lS
x
j,l + Syi,lS

y
j,l) + J⊥

∑

i

(Sxi,1S
x
i,1 + Syi,2S

y
i,2). (3.3)

Its phase transition between a transverse antiferromagnetically ordered and a dimer-
ized singlet phase belongs to the O(2) universality class and has been estimated to
occur at a value of gc = 5.460(1) in Ref. [66].

Very similar is the third model, a necklacelike bilayer model with XY interac-
tions. In this model the intralayer couplings have been removed from (3.3) in one
of the layers, yielding

H3 = J
∑

〈i,j〉
(Sxi,1S

x
j,1 + Syi,1S

y
j,1) + J⊥

∑

i

(Sxi,1S
x
i,1 + Syi,2S

y
i,2). (3.4)

This model can also be regarded as a square lattice spin system with a local impurity
attached to each lattice site. We will therefore refer to it as the Kondo necklace
model. The critical point (again in the O(2) universality class) of this model is also
estimated in Ref. [66] to be at gc = 2.7755(5).

Due to the spontaneous breaking of a continuous symmetry in the ordered phase
all these models exhibit Goldstone modes for g < gc. They give rise to a logarith-
mic correction to the boundary law of the entanglement entropy [56] which will be
adressed briefly in Chapter 4.

3.2. Off-critical behavior of the boundary
coefficient

In this Section we review the nature of the transition and its consequences for
the boundary coefficient. The large-g limit has been worked out in the work of
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Ref. [26]. In d = 2 dimensions near the critical point we generally assume a scaling
form [7, 67]

S = a
LA
δ

+ c ln
LA
δ

+D + S0

(
L

ξ

)
(3.5)

where δ is the short distance cutoff and L is the characteristic length scale of the
total system. The constant contributionD depends on the aspect ratio of the subsys-
tems [68] and S0 contains the corrections due to the correlation length ξ. Since we
consider two-dimensional models we can choose a bipartition where the logarith-
mic and the constant contribution vanish (c = 0, D = 0), e.g. an infinite cylinder
cut into two semi-infinite regions separated by a flat boundary [26]. Hence, we can
then focus on the simplified scaling forms of the entanglement entropy

S = a
LA
δ

+ γ, γ = S0

(
L

ξ

)
(3.6)

for the critical system with L/ξ → 0, where S0 becomes the so-called geometric
correction γ, as well as

S = a(g)
LA
δ

+ r
L

ξ
(3.7)

away from the critical point at g = gc. The second scaling assumes a non-universal,
analytic function a(g) for the boundary coefficient perturbed away from the critical
point. In addition, the non-analytic scaling with g−gc is accounted for in the second
term of the right hand side of (3.7) with a universal coefficient r. More specifically
rL/ξ scales as (g−gc)ν , where ν is the correlation length exponent [26]. For O(N)
models we have ν < 1 for d = 2, which implies that the non-analytic contribution
dominates. The coefficient r has been computed analytically1 in Ref. [26] for the
O(N) model to be r = −N/(144π) for the von Neumann entropy. Since γ = 0 to
leading order [26] we have an unambiguous and precise prediction of an exponential
decay of the boundary coefficient on the disordered large-g side. This argument is
not applicable to the unordered phase g < gc because ξ =∞ in this case. In order to
have a cusp singularity in a(g) at gc we need a reduction of a(g) as g decreases away
from the critical point. The key to this is the softening of additional modes close to
the phase transition, namely so-called amplitude modes [69]. In the following we
will elucidate the low energy excitations of our class of antiferromagnetic models
in the symmetry broken phase and establish the connection to the entanglement
entropy.

It is well understood from Goldstone’s theorem [70] that the spontaneous break-
ing of a continuous symmetry leads to gapless excitations — also called Goldstone
modes. In the case of a spin model these modulations are spin waves with an infi-
nite wavelength . Let us further associate a field ψ(r, t) = |ψ(r, t)|eiφ(r,t) with the
corresponding order parameter that describes the phase transition in the Landau the-
ory. The Goldstone modes then correspond exactly to the fluctuations of the phase
φ of the field ψ(r, t). But more important in this context is the fact, that also the
amplitude |ψ(r, t)| may exhibit fluctuations that evoke amplitude modes provided

1To be precise, r depends on the choice of ξ. For this computation the authors in Ref. [26] have
selected ξ = m−1, where m is the gap to the first excitation.
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3.3. Quantum Monte Carlo results

the system exhibits particle-hole symmetry [69]. Unlike the Goldstone modes they
are gapped in general. Amplitude modes were derived theoretically in condensed-
matter [71] and particle physics [72, 73] — in the latter context also denoted as
Higgs modes. They could be observed experimentally using ultracold atoms [74,
75] but also in superconductors [76]. Ref. [69] provides a comprehensive review of
their appearance in quantum many-body systems.

For spin models amplitude modes are fluctuations in the magnitude of the mag-
netization. An experiment using TlCuCl3, modeled in a most simple way by a
Heisenberg-likeO(3) Hamiltonian (d = 3), identified the emergence of gapped am-
plitude modes in the antiferromagnetically ordered phase [77]. Moreover, it showed
that upon approaching the critical point the gap of the amplitude mode closes. A
recent numerical study [6] examines whether this closing of the gap is reflected by
the boundary coefficient a of the entanglement entropy in the Bose-Hubbard model
undergoing an O(2) transition. The increase of a is identified with this closing on
the ordered side of the transition. The authors argue that an increase in the number
of massless excitations leads to a richer entanglement spectrum in the groundstate.

In the remainder of this Chapter we will add further numerical evidence to the
existence of such a cusp in the boundary coefficient a at the critical point of O(2)
and O(3) spin models in d = 2 dimensions.

3.3. Quantum Monte Carlo results
The three models introduced in the previous section allow for a sign-problem free
quantum Monte Carlo (QMC) simulation. Via the replica trick (see Sec. 2.2.2.1)
the Rényi entanglement entropy of a chosen bipartition can be obtained either by
a thermodynamic integration [27] or by an ensemble switching sampling [78]. We
employ the latter technique embedded in a stochastic series expansion (SSE) [64] of
the Hamiltonian, an efficient finite temperature QMC approach which is explained
in Appendix A. In order to simulate the groundstate physics of the quantum system
we choose a sufficiently large inverse temperature, fixed to the linear system size
β = L in our simulations.
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Figure 3.3.: Results for the entanglement entropy S2 (left panel) and its leading boundary coefficient
a for the bilayer Heisenberg model as a function of the coupling ratio g.

For the bilayer Heisenberg model we show our results for the second Rényi en-
tropy (α = 2) in Fig. 3.3. In the left panel the full entropy S2 is plotted for some
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3. Singular behavior at critical points

linear system sizes L over a range of coupling ratios g varying from 0 to 3.5, hence
covering the critical value gc = 2.5220. From the full S2 we can beautifully appre-
hend how the entanglement entropy reflects the macroscopic state of the many-body
system. The value of S2 is maximal at g = 0 and undergoes a sharp decrease when
g is increased to ∼ 0.25. At g = 0 the system decouples into two independent
layers and hence has twice the symmetry (O(3) × O(3)) than at finite g. The drop
of the entanglement entropy marks the reduction of the symmetry. Upon further
increasing g the value of S2 decreases monotonuously and develops a shoulder at gc
— thereby providing a weak signature of the phase transition. In the large-g phase
the entanglement entropy vanishes which can be very well understood by the fact
that the state of the system is dominated by singlet dimers between neighboring
spins of different layers. In other words, no boundary segment of the bipartition
cuts through a dimer and S2 cannot capture the dimer correlations.

The right panel of Fig. 3.3 shows the leading boundary coefficient a of S2(A). It
has been extracted by a least-squares fit to the boundary law (3.1) for the available
system sizes L = 8, . . . , 20. We observe that a clearly exhibits a cusp near the
critical point, suggesting that gapless amplitude modes emerge for g . gc in the
bilayer Heisenberg model. Moreover, on the disordered site, we test our numerical
data against the scaling ansatz in Ref. [26] for d = 2, i.e. a− a(gc) ∝ |g − gc|ν for
g & gc. The correlation length exponent for this model has a value of ν = 0.710(2),
computed in Ref. [79]. Our fit of this ansatz to a in the vicinity of the critical point
shows that our data are consistent with this scaling behavior.

It would be desirable to obtain the exponent ν from an unbiased fit to our data.
But since these QMC simulation become computationally very expensive upon in-
creasing L = β, we are restricted in the system size and too few data points are
available for the fit. On the other hand, it is indeed remarkable that we can identify
the cusp and confirm the scaling within statistical uncertainty using relatively small
system sizes only.
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Figure 3.4.: Boundary coefficient a for the bilayer (left panel) and necklace (right panel) XY model.
Data have been obtained by linear regression fits to the entanglement entropy of system
with linear sizes L = 8, . . . , 16.

The entanglement entropy of two the XY models (3.3) and (3.4) with a quan-
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3.3. Quantum Monte Carlo results

tum phase transition in the O(2) universality class has been computed at the critical
points using QMC simulations in Ref. [66] with a focus on the logarithmic contri-
bution to the boundary law. Here, we complement this study by an investigation of
the boundary coefficient a in the environment of gc. Unlike in the bilayer Heisen-
berg model, we have to use a non-deterministic Monte Carlo update which further
decreases the computational efficiency of the sampling. We therefore only achieve
linear system sizes of L = 8, . . . , 16 for these models. For every coupling ratio g
we perform a fit of the entanglement entropy S2(LA) against the boundary length
LA supposing a linear dependence S2(LA) = aLA + D. The results are plotted in
Fig. 3.4 and show a cusp at the critical points for the bilayer XY (left panel) as well
as for the necklace XY model (right panel). Our data allow for the qualitative con-
clusion that the conjectures of Ref. [6] are supported by our QMC results concerning
the ordered side g < gc since the boundary coefficient increases as g → gc. Also a
decay on the disordered side is observed, in accordance with Ref. [26]. However,
the maximum of a is slightly below gc for both models (solid curves). The reason
for this offset is that our linear fit neglects the expected logarithmic contribution
from Goldstone modes in the ordered phase. We further perform a fit including
such a term, aware of the fact that it has to be interpreted very carefully as only five
datapoints are available. The results are shown as grey dotted lines in Fig. 3.4 and
provide evidence for our hypothesis: The maximum clearly moves towards the crit-
ical coupling ratio where — at the same time — the logarithmic contribution should
vanish such that the gray and the blue/green curves would collapse for g ≥ gc.

In summary, we can conclude that the boundary coefficient of the boundary law
of entanglement entropy provides a signature of quantum phase transitions with
gapless amplitude modes by showing a cusp singularity. Conversely, the role of
amplitude modes in phase transitions of many-body system can be further investi-
gated using entanglement entropies. From the numerical point of view the bound-
ary coefficient a is a much better accessible quantity than its subleading corrections.
Albeit being non-universal it may still help to identify the breaking of a continuous
symmetry and capture its accompanying features.
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4. Corner entanglement
In order to have a many-body system undergo an entanglement entropy analysis
the bipartitioning is inevitable. From the physical point of view the size and shape
of the subsystems are somewhat arbitrarily chosen parameters that introduce ad-
ditional ambiguity in the analysis. The role of the boundary law discussed in the
previous chapter is a good example how we can understand and eliminate this ambi-
guity by focussing on the boundary coefficient — carrying the physical information.
In critical systems, corners in the subsystem shape can similarly be used as a tool
that induces a universal subleading contribution to the entanglement entropy which
is logarithmic in the linear system size L. In the discussion of the critical phenom-
ena we frequently use the language of three different perspectives simultaneously
and therefore briefly contrast them: From a condensed-matter perspective (i) we
hence investigate critical points of scale invariant quantum phase transitions which
is equivalent to studying fixed points (e.g. of Wilson-Fisher or Gaussian type) in a
renormalization group (RG) point of view (ii). The field theoretic perspective (iii)
associates a conformal field theory (CFT) with the critical point and thereby in-
volves the central charge C as a characterizing quantity of the critical system. CFTs
corresponding to critical two-dimensional lattice systems are referred to as 2 + 1
dimensional theories, meaning two spatial and one imaginary time dimension.

This Chapter is organized as follows. We first establish the link between corners
and universal logarithmic contributions in Sec. 4.1. Next, in Sec. 4.2, we discuss
some general properties of the corner coefficient. We also introduce a field theoretic
ansatz for its computation in Sec. 4.3. It will be pointed out that the corner coeffi-
cient is related to the central charge of the CFT corresponding to the critical system.
In Sec. 4.4 we will motivate the importance of the central charge in quantifying
degrees of freedom.

4.1. Logarithmic contribution
The existence of corner induced logarithmic corrections to the entanglement en-
tropy has been derived in Ref. [7]. For a general bipartition with a subsystem A of
linear dimension `A exhibiting a single corner with an opening angle θ, the entan-
glement entropy hence reads

Sα = aα
`A
δ

+ cα(θ) ln

(
`A
δ

)
+O(1), (4.1)

where δ denotes the short-distance cutoff. We will refer to the coefficient cα(θ) of
this contribution as corner entanglement. In a one-dimensional system we would
naively not have a notion of a corner and therefore usually consider d ≥ 2 di-
mensions for this study. Nevertheless we will now do a brief excursus to critical
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4. Corner entanglement

one-dimensional systems which were among the first systems studied from an en-
tanglement entropy perspective [47] and yield for a subsystem of length `A a relation

S =
C

3
ln
`A
δ

+O(1). (4.2)

The coefficient C is the central charge of the underlying CFT, a universal quantity
of the theory that characterizes the low-energy excitations in the gapless spectrum.
This famous result is sometimes interpreted as a violation in a boundary law be-
cause in one dimension a constant would have to be the leading contribution instead
of a logarithmic term. The reason that we mention it here is because we want to
reinterpret the logarithm in Eq. (4.2) as the corner entanglement of the 1d chain —
considering the point-like boundary of a one-dimensional bipartition as an odd type
of a corner. In other words, it is precisely the same mechanism that induces the log-
arithmic correction in this one dimensional system as corners in the subsystem do
in higher dimensions. Below we will see a heuristic derivation of this mechanism.
Moreover, the coefficient cα of the logarithm is likewise universal in in critical sys-
tems with d ≥ 2 and similarly characterizes the low-lying degrees of freedom of
the CFT.

Before we turn to the subject of this part of the thesis — gapless critical systems
in d = 2 — we note that there is another situation that gives rise to a subleading
logarithmic contribution even in corner-free bipartitions, namely, the existence of
Goldstone modes. In the (continuous-) symmetry broken phase the number NG

of Goldstone modes, briefly explained in Sec. 3.2, is related to the coefficient of
the logarithmic correction by c = NG(d − 1)/2 for a d-dimensional system [56].
This analytical result was qualitatively supported numerically on a spin-half square
lattice Heisenberg model [80] and later confirmed quantitatively in Refs. [81, 82].

We now focus back on the logarithmic contribution at criticality only appearing
for bipartitions with corners. Its existence can be understood from another heuristic
argument in two-dimensional systems [62]. It is very similar to the argument for the
boundary law in Chapter 3. Due to the infinite correlation length we assume that the
contribution of the corner to the entanglement entropy is equal on all length scales
and of O(1) so that we denote it by C. We further add up the corner contributions
of all length scales by iteratively rescaling the considered length scale by a factor
λ > 1. As can be seen from Fig. 4.1, the number of corners does not change after
rescaling. Necessarily starting with ξ(1) = 1 we have n = logλ(L) rescalings to do
for a linear system size L until ξ(n) ≈ L. Hence, we obtain

Scorner = C · (1 + 1 + 1 + 1 + . . .︸ ︷︷ ︸
logλ(L)

) ∼ C lnL. (4.3)

Fig. 4.1 visualizes this argument for λ = 2 starting from a 8×8 subsystem with one
corner. We can conclude that a corner in a bipartition of a gapless system implies a
logarithmic term. It should be emphasized that C is not identical to cα in Eq. (4.1)
as C contains information of short-ranged physics in the system (see left example
of Fig. 4.1).

One might wonder whether this argument suggests that there should be a depen-
dence of the corner coefficient cα on the short-distance cutoff δ, similarly as argued
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4.2. General properties
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Figure 4.1.: Sketch of the heuristic argument for the existence of a subleading logarithmic contri-
bution to the boundary law in the entanglement entropy induced by a corner of the
subsystem provided the correlation length is infinite.

for the boundary coefficient, since we start our rescaling at ξ(1) = 1, which is the
lattice spacing. Such a dependence would be contradictory to the claim that cα is
universal. The key is the logarithm: In general, we assume c ln(L/δ) as our corner
induced contribution. But by rewriting it as c lnL − c ln δ we see that the second
term is simply a constant and thereby the pure lnL term is independent of δ.

In Fig. 4.1 we observe that the nature of correlations (green curves in the Fig-
ure) entering the counting argument is the same as in Fig. 3.1 for the boundary
term. The only difference is that a corner (with θ = π/2) has two such correla-
tions in two dimensions. Indeed, the effect of corners can be seen as a correction of
the overcounting that the boundary term does for the correlations in which corner
sites are involved. In other words, the boundary term considers the two correla-
tion pairs between the corner site and its two adjacent sites in the other subsystem
as independent. However, since one site is involved in both pairs there must be
some common information in these two correlations which reduces the sum of the
individual correlations. This argument can be interpreted as a variant of the entan-
glement monogamy principle [83]. It is exactly this overcounting that induces the
corner contribution and also explains why it is negative in d = 2. (In fact in d = 3
the entanglement entropy has a subleading edge contribution which is negative but
then a positive corner contribution because the edges have oversubtracted the corner
correlations.)

4.2. General properties

The coefficient of the corner-induced logarithmic contribution to the Rényi entan-
glement entropy very naturally exhibits a dependence on the opening angle θ of the
corner and will hence be denoted by cα(θ). In the smooth angle limit θ → π the cor-
ner disappears and hence cα(θ)→ 0. The fact that the entanglement entropy fulfills
S(A) = S(Ā) for a subsystem A and its complement Ā immediately translates to
a reflection symmetry cα(2π − θ) = cα(θ) about π for the corner term. Combining
these two observations together with the expectation that cα(θ) be analytical near π
we conclude that it behaves as [84]

cα(θ → π) = σα · (π − θ)2 (4.4)
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4. Corner entanglement

with a constant σα independent of the ultraviolet cutoff (system size) and the open-
ing angle. Higher even orders in (π− θ) are expected to dominate as θ is decreased.
In the limit of sharp angles the corner entanglement obeys [84]

cα(θ → 0) =
κα
θ

(4.5)

with another independent constant κα.
Many results in free [84] and interacting [85, 86] theories as well as holographic

models [87] suggested that the corner entanglement, specifically the independent
coefficient σα is a measure of degrees of freedom in the field theory. This notion
was made viable by the establishment [88, 89] of a relation between σ1 of the von
Neumann entanglement entropy and the central charge CT

σ1

CT
=
π2

24
(4.6)

valid in any 2+1 dimensional conformal field theory. As we will elucidate in
Sec. 4.4, the central charge CT does provide a measure of degrees of freedom and
the universal ratio, Eq. 4.6 translates this property to the corner coefficient. For
Rényi entropies with a different index α 6= 1 this relation does not hold. On the
contrary, σα has been computed for different integer α for two theories — the com-
plex boson (cb) and the free Dirac fermion (f) in Ref. [90]. Since σ(cb)

α 6= σ
(f)
α but

both theories have CT = 3/(16π2) their ratio cannot be universal.
However, for the case of these two free theories another surprising relation was

found in the same reference: For reciprocal Rényi indices α and 1/α, a duality

α2σ(cb)
α = σ

(f)
1/α (4.7)

between the complex boson and the free Dirac fermion CFT holds in 2+1 dimen-
sions.

The angular dependence (4.4) and this duality (4.7) will be the subject of numer-
ical studies on lattice field theories of the free boson and the free fermion, presented
in Sec. 6.3.

4.3. Field theory
We briefly review how the corner entanglement can be calculated using field theory.
Based on the reflection symmetry of the corner entanglement about π, specifically
cα(2π − θ) = cα(θ), an expansion around π in even powers of the form

cα(θ) =
∑

p=1

σp−1
α · (θ − π)2p (4.8)

can be made, where the σ(p)
α are the smooth limit expansion coefficients. We further

use the notation σ
(0)
α ≡ σα. These coefficients are evaluated partly analytically

and otherwise numerically through an integral expression of cα(θ) using the replica
trick for a sphere with a cut of opening angle θ, see Refs. [7, 84, 91]. Since the
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4.4. Low-lying degrees of freedom

approximation of the corner entanglement using this expansion results involuntarily
from a cutoff in this series, we refer to it as the truncated series. The smooth limit
coefficients are available from the literature up to order p = 6 (p = 7) for the
Dirac fermion (free boson) respectively [92]. A shortcoming of the truncated series
approximation is that it fails as θ → 0 due to the asymptotic behavior in Eq. 4.5.

Another idea is to make an ansatz for cα(θ) that superimposes the behavior at
θ → 0 and at θ → π. In Ref. [90] such an ansatz was made involving κα and
the first smooth limit expansion σα, dubbed ‘BMW ansatz’ after the initials of the
others. Since it neglects higher smooth limit expansions it is not as accurate as the
truncated series for intermediate angles with θ ≈ π/4. However, a combined ansatz
refines the idea of such an ansatz by including the truncated series

cα(θ) =
M∑

p=1

σp−1
α · (θ − π)2p +

2κα
π2M+1

(θ − π)2(M+1)

θ(2π − θ) . (4.9)

It is motivated by performing the infinite sum of the unavailable smooth limit coef-
ficients

∑∞
p=M+1 σ

(p−1)
α (θ−π)2p by a replacement σ(p−1) → 2κα/π

2p+1. For further
details we refer to Ref. [92].

4.4. Low-lying degrees of freedom

The physics of most critical points features scale invariance and can hence be de-
scribed by a conformal field theory (CFT) provided the system exhibits Lorentz
invariance1. Extending the characterization by universal critical exponents in a sta-
tistical mechanics approach, the CFT perspective opens up another set of properties
that are able to classify a critical phenomenon. A fundamental quantity of a certain
CFT is the stress tensor central charge, denoted byCT . In order to defineCT we first
need the energy-momentum tensor Tµν of the CFT which is defined by the variation
of the action that an infinitesimal coordinate transformation xµ → xµ + εµ induces,

δS = − 1

2π

∫
ddxTµν∂

µεν . (4.10)

For a 2+1 dimensional CFT — the relevant case in this thesis — the central charge
is then given by the two-point correlation function of Tµν

〈Tµν(x)Tλρ(0)〉 = CT
Iµν,λρ(x)

|x|6 , (4.11)

with some tensor structure Iµν,λρ. In the 1+1 dimensional case the exponent in the
denominator is four instead of six.

One of the most important properties of the central charge is its additivity for
two independent CFTs, i.e. for two theories with actions S1 and S2, their sum
S1 + S2 will have a central charge CT,1 + CT,2. This statement is true in general in

1An example of non-Lorentz invariant critical points are so-called Lifshitz points as mentioned in
Sec. 2.2.3.
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4. Corner entanglement

any dimension and provides a simple reason for why we say that CT measures the
number of degrees of freedom of a CFT.

We emphasize that the scale invariance of the field theory implies a gapless
spectrum of excitations and hence we call the field theory massless. The central
charge of a massive field theory is always zero, therefore its consideration is only
appropriate for massless excitations. This remark helps us understanding the sec-
ond important reason for the ability of CT to measure degrees of freedom, namely
Zamolodchikov’s c-theorem [93]. This theorem states that for any Lorentz invari-
ant renormalizable 1+1 dimensional field theories there exists a function c(g) of the
coupling constant g that decreases monotonically under the RG flow applied to this
theory. The RG flow starts at the ultraviolet (UV) end, where the theory is a CFT
exhibiting a CT,UV Flowing to the infrared fixed point the theory becomes another
CFT and c(gc) is the corresponding central charge CT,IR. The interpretation of this
theorem is that massive degrees of freedom are eliminated under the RG flow be-
cause from the ultraviolet end (short-distance cutoff) to the infrared end the length
scale λ increases to the limit λ → ∞ and the corresponding mass of the excitation
is m = λ−1. Hence, only the massless part remains in CT . This elimination is
reflected by the c-theorem because CT,UV > CT,IR.

Unfortunately, the c-theorem is not valid in general for 2+1 dimensional CFTs,
but in many cases [94]2. We adopt the general notion that the central charge quan-
tifies degrees of freedom of the CFT and via the direct relation in Eq. (4.6) we have
the ability to apply the toolset of entanglement entropy computation for the charac-
terization of CFTs. For free theories we will not consider RG flows but only focus
on the central charge at the scale invariant Gaussian fixed point. Upon adding an
interaction term φ4 this fixed point can be thought of as the ultraviolet end of an RG
flow to a Wilson-Fisher fixed point.

2Analogues to the c-theorem have been proposed for higher dimensions [95], for example the F -
theorem for 2+1 dimensions [96] and the a-theorem in 3+1 dimensions [97].
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5. Free theories

The two insights that criticality can be described by a conformal field theory and
that corner entanglement is universal at critical points opens up the path to study
CFTs themselves via corner entanglement. To some extent, we leave the realm of
condensed matter physics by focussing on a critical theory as we no longer consider
phases of matter and their transitions. Among the broad range of CFTs we pick
two very simple theories, namely the massless free boson (or free scalar) and the
massless free Dirac fermion theory. These theories are well understood and can
be treated analytically and numerically using various approaches. For example,
their central charges in 2+1 dimensions are known to be Cboson

T = 3/(32π2) and
C fermion
T = 3/(16π2) [98]. Their corner entanglement for a specific corner opening

angle θ can be computed using series expansion techniques [90, 91]. This makes
these free field theories excellent candidates for a study of the corner entanglement
complementary to a CFT treatment. To this end, we use our condensed-matter
technique of direct calculations of the entanglement entropy on lattices. We obtain
discretized versions of the field theories by introducing a finite short-distance cutoff
δ (lattice spacing) in the fields. Once we have a lattice Hamiltonian for our CFT we
can compute the entanglement entropy by bipartitioning the system and extract its
corner contribution.

The purpose of this Chapter is the introduction of the two free field theories, the
free boson (Sec. 5.1) and the free Dirac fermion (Sec. 5.2). In these sections we
will discuss the procedure to derive the lattice field theories and present a derivation
of exact formulae for the entanglement entropies based on groundstate correlators.
This means that we can in principle compute the entanglement entropies without
any approximation by a diagonalization of the Hamiltonian.

5.1. Free boson

One of the most simple theories for a real scalar quantum field φ is given by an
action only involving quadratic terms

S[φ] =

∫
ddxdt

[
1

2
(∂tφ)2 − 1

2
(∇φ)2 − 1

2
m2φ2

]
, (5.1)

with a mass m which can be finite and if so, it induces a mass gap in the spectrum.
Later, in our entropy calculations we only consider the gapless case m = 0 since
we are interested in conformal theories but we keep the mass for now.

The equation of motion derived from this action is the Klein-Gordon equa-
tion, the relativistic version of the Schrödinger equation. Hence, the corresponding
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5. Free theories

single-particle Hamiltonian for this action reads

H =

∫
ddx

[
1

2
π2(x) +

1

2
(∇φ(x))2 +

m2

2
φ2(x)

]
, (5.2)

where π(x) is the canonical momentum of the field φ(x). Performing a Fourier
transformation of the fields we get φ̃k and π̃k which yields a Hamiltonian

H =
1

2

∑

k

πkπ
†
k + ω2

kφkφ
†
k, (5.3)

with ωk =
√
m2 + k2. We see that this is a sum of oscillators involving a coupling

only between the +k and −k modes due to π†k = π−k and φ†k = φ−k. The intro-
duction of bosonic creation and annihilation operators ak = 1/

√
2~ωk(ωkφk + iπk)

and a†k = 1/
√

2~ωk(ωkφ†k− iπ†k) decouples these modes, such that we can write the
Hamiltonian in terms of normal modes

H =
∑

k

~ωk
(
a†kak +

1

2

)
. (5.4)

Since the a†k, ak obey bosonic commutation relations [ak, a
†
k′ ] = δk,k′ we observe

that the excitations of the single-particle quantum system are bosons which giving
the theory (5.1) its name. The Hamiltonian (5.2) can alternatively be obtained by
considering coupled harmonic oscillators on a lattice and taking the limit of an
infinitesimal lattice spacing since their creation and annihilation operators are also
bosonic. In fact, such a system of coupled harmonic oscillators was among the first
to be subjected to an entanglement entropy analysis [33]. We here now follow the
inverse path and discretize (5.2) on a finite two-dimensional lattice of N = L2 sites,
simply by taking finite differences for the derivatives and setting the lattice spacing
to unity which yields

H =
1

2

L∑

x,y=1

[
π2
x,y +m2φ2

x,y + (φx,y+1 − φx,y)2 + (φx+1,y − φx,y)2
]
, (5.5)

where the two discrete coordinates x and y denote a single site. We employ peri-
odic boundary conditions in both lattice dimensions. Rewriting this Hamiltonian by
using a matrix M of dimension N ×N we get

H =
1

2

N∑

i=1

π2
i +

N∑

i,j=1

φiMijφj, (5.6)

with indices i = (xi, yi) denoting the sites. Only the matrix M — containing the
potentials of the harmonic oscillators — is needed for the groundstate correlations
and the entropy computation, as explained in the next paragraph.
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5.1. Free boson

5.1.1. Correlator-based entropy computation
For the derivation of the formula for the entanglement entropies we follow the re-
view article by Peschel and Eisler, Ref. [99], as well as a more concrete explanation
in the appendix of Ref. [100].

The Boltzmann distribution generated by the (Gaussian) Hamiltonian (5.6) is a
multivariate normal distribution. Hence, Wick’s theorem is satisfied for expectation
values 〈O〉 = Tr (exp(−βH)O) based on this distribution such that correlation
functions of positions (and also momenta) factorize [101] as required like

〈xmxnxkxl〉 = 〈xmxn〉〈xkxl〉+ 〈xmxk〉〈xnxl〉+ 〈xmxl〉〈xnxk〉. (5.7)

A computation of correlations inside subsystem A using the reduced density matrix
ρA must reproduce Wick’s theorem. Therefore we make an ansatz

ρA =
1

Z
e−

∑
q εqb

†
qbq , (5.8)

with bosonic operators b†q, bq and Z ensuring Tr (ρA) = 1. This ansatz indeed incor-
porates Wick’s theorem because it is the exponential of a quadratic “Hamiltonian”1.
The energies εq need to be determined such that ρA represents the one-particle
groundstate correlations of the Hamiltonian (5.6). The latter have been found [102]
to be given in terms of the potential matrix M

Xij =〈φiφj〉 =
1

2

(
M−1/2

)
ij

Pij =〈πiπj〉 =
1

2

(
M1/2

)
ij

(5.9)

for both the position and momentum degrees of freedom in (5.6). All mutual cor-
relations of the form 〈φiπj〉 vanish. Restricting X and P to subsystem A, i.e. tak-
ing only the corresponding rows and columns of these matrices, it is finally de-
rived [102] that the positive eigenvalues νq of the matrix CA =

√
XAPA define the

single-particle eigenvalues εq as

1

2
coth

(εq
2

)
= νq. (5.10)

By combining this relation and the ansatz (5.8) with the definitions of the von Neu-
mann entropy, Eq. (2.6), and Rényi entropy, Eq. (2.7), we obtain

Sα(A) =
1

α− 1
Tr ln

[(
CA +

1

2

)α
−
(
CA −

1

2

)α]
, (5.11)

and

S1(A) = Tr

(
CA +

1

2

)
ln

(
CA +

1

2

)
−
(
CA −

1

2

)
ln

(
CA −

1

2

)
(5.12)

for the entropies in terms of CA. The details of this calculation are carried out in
App. B.1. Compared to diagonalizing the full Hamiltonian this formula is a signif-
icant computational advantage because only the matrix CA whose size depends on
the size of subsystem A needs to be diagonalized.

1It should be emphasized that this Hamiltonian is artificial, in particular it is not the Hamiltonian
of the total system reduced to the degrees of freedom in subsystem A.
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5.2. Free Dirac fermion

A single free fermion with mass m is described by a wavefunction ψ obeying the
Dirac equation i~∂ψ

∂t
= HDψ with a Hamiltonian

HD = −i~cαi∂i + βmc2 . (5.13)

In contrast to the Klein-Gordon equation it is linear in the momenta and in ∂t and
takes into account the spin of the particle. We will set ~ = c = 1 in the follow-
ing. The objects β and αi are Hermitian matrices that have to satisfy the algebra
{αi, αj} = 2δij, {β, αi} = 0 and β2 = 1. Hence, a wavefunction that solves the
equation must have several components ψ = (ψ1, ψ2, . . . ψn)T — called a spinor.
In 3+1 space-time dimensions at least four matrices β, α1, α2, α3 are necessary to
solve (5.13) and their dimensionality must be greater or equal to four. An ansatz
using so-called γ−matrices which obey {γµ, γν} = 2gµν — g being the Minkowski
metric — provides the needed matrices β and αi. However, in the present case we
work in 2+1 dimensions which simplifies the quest for the matrices: Simply the
Pauli matrices can be used as α1 = σx, α2 = σy and β = σz. In momentum space
(−i∂j → kj) the Dirac Hamiltonian then reads

HD = kxσx + kyσy +mσz. (5.14)

This Hamiltonian describes a fermion with spin 1/2 and momentum k = (kx, ky).
It has an energy dispersion

ε = ±
√
k2 +m2, (5.15)

i.e., for m = 0 we have a linear spectrum near the Dirac cone at k = 0, for both
positive and negative energies. The negative energy solutions are interpreted as the
antiparticle solutions, e.g. positrons if the original particle is an electron. In the
vacuum, all negative energy eigenstates are occupied while the positive eigenstates
are empty — a state known as the Dirac sea.

Although we are interested in the massless Dirac fermion in its vacuum state,
we keep a finite mass m in the Hamiltonian (5.14). This is to deal with a problem
arising when we discretize the Hamiltonian on a lattice — the fermion doubling
problem. It is due to the fact that the linear dispersion relation (5.15) becomes
sinusoidal for discrete fields with a finite lattice spacing, i.e. ε ∼ sin |k|. Near
k = 0 this discrepancy is negligible but at ki = π additional local Dirac points
emerge inside the first Brillouin zone, an effect dubbed fermion doubling2. In order
to cure this unwanted effect we will manipulate the mass to become k-dependent
in a way that it vanishes at k = 0 but is finite at the additional Dirac points. By
this means we induce a gap at all other zeros of the energy dispersion and thereby
leave only the point k = 0 critical. Hence, the groundstate physics to be explored
unambigously refers to one Dirac cone which is consequently described by one
Dirac CFT.

2In a one-dimensional system we double the number of Dirac points whereas in the present two-
dimensional case we have four Dirac points, namely at k ∈ {(0, 0), (0, π), (π, 0), (π, π)}.
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5.2.1. Lattice field theory
In an anticipating manner we modify the Hamiltonian (5.14) by setting ki → sin ki
such that it reproduces the discrete energy dispersion. At the same time we set the
mass m to a dimensionless quantity m(k) = 2 − cos kx − cos ky so that the single
particle momentum space Dirac Hamiltonian becomes

HD(k) = sin(kx)σx + sin(ky)σy + (2− cos(kx)− cos(ky))σz. (5.16)

In the limit k → 0 we recover the Dirac Hamiltonian corresponding to a massless
Dirac fermion HD = kxσx + kyσy. It is not our purpose to seek for a physical
interpretation of this Hamiltonian (5.16) in full k−space, e.g. in terms of a material
or a toy model. We restrict ourselves to the vicinity of the Dirac point for the
application and interpretation of this Hamiltonian.

Now, we derive a lattice Hamiltonian in terms of fermionic creation and annihi-
lation operators acting in position space which collectively represents the massless
Dirac fermion. In order to to this, we start from the Hamiltonian in the reciprocal
lattice, constructed by creation and annihilation in momentum space ψ†k, ψk which
are fermionic two-spinors. A finite-size lattice will have a finite number of k values
such that the discrete lattice Hamiltonian is given by

H =
∑

k

ψ†kHD(k)ψk. (5.17)

A reverse Fourier transformation of the momentum space operators yields our final
fermionic operators c†i , ci, d

†
i , di which come in two flavours due to the two-spinor

property of the ψk. Therefore, every lattice sites at ri labeled by i = (m,n) carries
two fermions. For a two-dimensional lattice of size N = L × L with a spacing set
to unity we have

ψ†k =
1

V

∑

i

eirik
(
c†i
d†i

)T
and ψk =

1

V

∑

i

e−irik
(
ci
di

)
, (5.18)

which we insert into (5.17) and obtain

H =

∑

k

L∑

i,j=1

eirik

V 2

(
c†i
d†i

)T (
2− cos kx − cos ky sin kx − i sin ky

sin kx + i sin ky −2 + cos kx + cos ky

)(
cj
dj

)
e−irjk.

(5.19)

By using the identities sinϕ = (eiϕ − e−iϕ)/2i and cosϕ = (eiϕ + e−iϕ)/2 we
see that the sine and cosine translate to hopping terms in the corresponding lattice
direction after the sum over k is expressed as a delta function. The final Hamiltonian
can be expressed explicitly as

H =
L∑

i,j=1

(
c†i
d†i

)T
Hij

(
cj
dj

)
(5.20)
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with

Hij ≡ H(m,n),(m′,n′) =− i

2
δm+1,m′δn,n′σx

− i

2
δm,m′δn+1,n′σy

+

[
δm,m′δn,n′ −

1

2
δm+1,m′δn,n′ −

1

2
δm,m′δn+1,n′

]
σz + h.c.

In principle, it is possible to set open, periodic or antiperiodic boundary conditions
on the lattice Hamiltonian (5.20). If we want to use the numerical linked-cluster
expansion for the entropy computation, we must employ open boundary conditions.

5.2.2. Correlator-based entropy computation

The approach for the direct computation of the entanglement entropies for fermionic
systems is — like in the bosonic case — based on Wick’s theorem. It was first
derived in Ref. [101] and reviewed also in Refs. [99, 100].

We are interested in the groundstate of the fermionic Hamiltonian (5.20). To
obtain the corrsponding entanglement entropy, we want to use the one-particle cor-
relations 〈c†mcn〉 of the groundstate. For these correlations we have factorizations
like

〈c†mc†nckcl〉 = 〈c†mcl〉〈c†nck〉 − 〈c†mck〉〈c†ncl〉, (5.21)

because the eigenstates of the Hamiltonian are Slater determinants. Inside a sub-
system A of size ` the reduced density matrix must reproduce all the correlations
including its factorization property. Due to Wick’s theorem this can be guaranteed
by an ansatz

ρA =
1

Z
e−HA (5.22)

with another fermionic Hamiltonian HA acting on subsystem A — dubbed the en-
tanglement Hamiltonian [100]. We emphasize that HA is not obtained by reducing
the full Hamiltonian to the degrees of freedom belonging to A.

The operation of restricting the full system to subsystem A must be carried out
on the correlation matrix

Cij = Tr
(
ρc†icj

)
, (5.23)

where we have, for the sake of readability, omitted correlations of the types d†icj, c
†
idj

and d†idj . The total correlation matrix C is hence of size 2N × 2N . Taking only
the corresponding rows and columns of C we obtain the correlation matrix CA for
subsystem A. The crucial point is now, that (i) CA and HA are diagonalized by the
same unitary transformation U and (ii) the eigenvalues ζq of CA and εq of HA are
related by

ζq =
1

eεq + 1
. (5.24)

This can be understood from writing HA =
∑

q εqf
†
q fq with new fermion operators

ci =
∑

q Uqifq. Since U is unitary, inserting this basis transformation into (5.23)
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yields

CA,ij = Tr

(
ρA
∑

q

U∗iqUqjf
†
q fq

)
. (5.25)

Only the elements with 〈n̂q〉 = 〈f †q fq〉 = 1 contribute in the sum. The correspond-
ing entry of ρA is e−εq , see (5.22). The condition on the density matrix TrρA = 1
leads to the normalization 1 + e−εq on the single-fermion subspaces of the Hamil-
tonian, yielding e−εq/(1 + e−εq) for the eigenvalue of CA which proves (5.24).

By diagonalizing CA we thus obtain the eigenenergies εq of HA which only need
to be inserted in the definitions of entanglement entropies (2.6) and (2.7) so that we
can write down the formulae for the Rényi entropy

Sα(A) =
1

1− α
2∑̀

q=1

ln(ζαq + (1− ζq)α), (5.26)

and for the von Neumann entropy

S1(A) =
2∑̀

q=1

−ζq ln ζq − (1− ζq) ln(1− ζq). (5.27)

A detailed derivation of these formulae using Eq. (5.22) is provided in App. B.2.
In the explanation of the steps to arrive at the final formulae we have so far

skipped an important part, namely how we obtain the correlation matrix C of the
total system, and thereby input the particular state we are computing the entangle-
ment entropy of. To this end we exploit again the fact that H and C are diago-
nalized by the same unitary transformation. Moreover, since we are interested in
the vacuum of the fermionic system, the correlation matrix in energy space is very
simple. Assuming that the eigenstates are sorted in ascending order according to
their eigenenergies we have C̃ = diag(1, 1, . . . , 1, 0, 0, . . . 0), since all the nega-
tive energy eigenstates are occupied, while the positive ones are empty. The total
Hamiltonian is diagonalized by a unitary transformation V †HV which we apply to
C = V C̃V †. We can then continue with the rest of the procedure by reducing C to
CA. A sketch of the workflow summarizes the discussed method

H
diagonalize−−−−−→ C

restrict to A−−−−−−→ CA
diagonalize−−−−−→ HA

insert in ρA−−−−−→ S(A).

Computationally the diagonalization of the total HamiltonianH is the most time-
consuming operation in the procedure, because the other diagonalization (of CA)
is performed on a usually significantly smaller matrix. It is possible to circum-
vent [103] the big diagonalization if we impose periodic boundary conditions on
our system. In this case, all allowed values of k in Eq. (5.17) can be trivially pre-
computed by Bloch moments kx/y = 2πn/L, n ∈ (0, . . . , N − 1). Further, we
diagonalize the 2 × 2 Dirac Hamiltonians HD(k) for all possible k. On this level
we pick only the eigenvectors3 corresponding to the negative eigenvalues in order to

3Unitary matrices that diagonalize a matrixA can be constructed from the eigenvectors ofA, which
is what we are doing here.
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5. Free theories

perform the unitary transformation onHD yielding many 2×2 the correlation matri-
ces. After that we have to (numerically) perform the inverse Fourier transformation
to obtain C in terms of the position space fermions c†i , d

†
i , ci, di. The remainder of

the procedure is identical to the one above, but its bottleneck is now merely the
diagonalization of CA instead of H .
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6. Lattice results in 2+1
dimensions

We have outlined above how the von Neumann and the Rényi entanglement en-
tropies can be computed exactly for many-body Hamiltonians of free massless the-
ories. In this chapter, we first enhance our numerical toolset in Sec. 6.1 by approx-
imative methods that enable us to extract the subleading corner contribution. The
last part of this methodological section is specialized to quantum spin models, de-
scribed by interacting theories and tractable via quantum Monte Carlo simulations.
The major purpose of the present Chapter is to apply these methods to critical theo-
ries and obtain results for the corner entanglement cα(θ). In Sec. 6.2, lattice models
of various O(N) universality classes are studied, mainly at their critical point. We
compare the values of the corner entanglement for an opening angle of θ = π

2

between complementary numerical methods for identical models. In addition, we
motivate a comparison between different O(N) models by relating the results to the
number of field components N . Finally, in Sec. 6.3 we amply present results for the
free boson and the free Dirac fermion lattice theories derived above. Here we com-
pute cα(θ) for a range of different opening angles θ. Our findings on the lattice are
compared to field theoretic computations of the corner entanglement entropy. Fi-
nally, there exists an astonishing duality between the Rényi entanglement entropies
of the free boson and the free Dirac fermion which will be introduced in Sec. 6.3.3.

6.1. Numerical extraction of corner
entanglement

Having a numerical tool for the computation of the bare entanglement entropy, ad-
ditional efforts must be taken to access its subleading logarithmic contribution. This
means, that from the functional form of the entanglement entropy in terms of the
linear subsystem size1 LA

Sα(LA) = aαLA − Cα lnLA +D, (6.1)

the coefficient Cα has to be extracted. It contains the contributions from all corners,
so that we have to further separate the individual corner contribution in Cα, e.g. by
a division, if all corners are equal in nature.

In this Section we present three different strategies for this endeavor. First, we
discuss a direct approach which basically attempts to fit the entanglement entropy

1We assume a linear dependence of LA and the boundary length `A, such that the boundary law
can be represented using LA.
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6. Lattice results in 2+1 dimensions

to the behavior in Eq. (6.1). Another possibility is to find a way to remove the
boundary contribution aα`A and perform a linear fit of the remaining part against
ln `A. We introduce two methods based on this idea, (i) a numerical linked-cluster
expansion and (ii) a quantum Monte Carlo sampling scheme that directly accesses
Cα lnLA.

6.1.1. Direct fit

A straightforward procedure to obtain the corner coefficient cα(θ) from the entan-
glement entropy (6.1) is to compute Sα(LA) for a range of linear sizes LA of the
subsystem and perform a least-squares fit to the function (6.1). If we are interested
in the contribution of one right-angled corner we choose the subsystem A to be a
square, see Fig. 6.1, and obtain cα(θ = π

2
) = Cα/4 due to the four corners of the

square. The total system is considered in periodic boundary conditions (PBC) in
order to eliminate effects coming from the boundaries.
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Figure 6.1.: Example for a bipartition
which can be used to ob-
tain the corner contribution
from corners with an open-
ing angle of θ = π

2 .

A few aspects have to be considered that are
essential for the success of this procedure. First,
a sufficiently large subsystem size LA must be
accessible2 in the entanglement entropy com-
putation in order to have a wide range of data
points to be included in the fitting. This is par-
ticularly important as the fitting includes the
non-polynomial contribution lnLA which be-
comes harder to distinguish from a constant
contribution the larger LA is. For example,
ln 32 − ln 20 < 0.5. Furthermore, the entan-
glement entropy in general exhibits a so-called
geometric contribution, i.e. a term depending
on ratio LA/L [56, 68, 104]. We therefore keep
LA/L constant when varying the system size
which effectively absorbs the geometric contri-
bution in the constant D. Another obstacle for
this approach could be that Eq. (6.1) neglects

further contributions, e.g. of O(L−1
A ) and O(L−1) although they might be signifi-

cant in a particular system. Including them would introduce further parameters in
the fit which increases the need for a larger data basis.

In addition, corner entanglement arising from corners with opening angles θ 6= π
2

can be computed, namely by a pixelation of one side of the angle. Angles which
obey tan θ = q ∈ Q pixelate most naturally on the square lattice in a stair-like
pattern, depicted in Fig. 6.2. The subsystem needs to be a closed polyhedron, there-
fore we combine different angles for a particular bipartition and extract the desired
contribution from Cα. More precisely, for angles θ > π

2
we exploit the symmetry

cα(2π − θ) = cα(θ) of the corner contribution and design bipartitions as bands
winding around the periodic lattice (left panel of Fig. 6.3). The contribution from

2Beyond the fact that we want to obtain the corresponding value in a reasonable computing time,
we also mean by ‘accessible’ that its statistical error is moderate.
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6.1. Numerical extraction of corner entanglement

θ = π/4

tan θ = −2

Figure 6.2.: Examples for the pixelation of corners in the entangling boundary, superimposed on an
underlying square lattice, with opening angles of θ = π/4 (left panel) and tan θ = −2
(right panel).

a single corner in this case is cα(θ) = Cα/8. In the right panel of Fig. 6.3 we show
how the knowledge of the contribution of an angle θ = π

2
+ θ̂ is used to compute

its counterpart reflected about π
2
, i.e. θ̃ = π

2
− θ̂: We compute the total logarithmic

contribution of an appropriate parallelogram and subtract the known corner contri-
butions, cα(θ̃) = (Cα − 2cα(θ))/2.

tan θ = −2
θ

2π − θ
ℓ

tan θ = −2

tan θ̃ = 2

θ

θ̃

ℓ

Figure 6.3.: Closed polygons in periodic boundary conditions in order to obtain the corner contri-
bution from fitting the boundary law to the full entanglement entropy. Examples are
shown for tan θ = −2 (left panel) and for tan θ̃ = 2 (right panel) which requires the
subtraction the θ-contribution.

6.1.2. Numerical linked-cluster expansion
The removal of the leading boundary term aαLA in Eq. (6.1) can be regarded as
the major challenge in extracting the corner entanglement. If we find a way to sim-
ply subtract it, we can perform a linear regression fitting of the remaining quantity
against lnLA which returns the corner coefficient as its slope. The constant part D
will translate to another constant exp(D) returned by this fit and can be discarded.
In this paragraph we describe an approach which precisely does this removal of

61



6. Lattice results in 2+1 dimensions

c1

r
+

c2

+

c3

− c4−

Figure 6.4.: Bipartitions c1, c2, c3 and c4 used to determine the corner entanglement for θ = π/2
according to Eq. (6.2).

aαLA by the design of suitable bipartitions whose entanglement entropies are com-
puted and subsequently added according to the scheme in Fig. 6.4, i.e.

Pr(c) =
1

2
[Sα(c1) + Sα(c2)− Sα(c3)− Sα(c4)] (6.2)

for a location r of the corner. We see that all boundary contributions are cancelled
in the sum of the entropies and the contribution originating from a corner remains
doubly — from c1 and c2. It is important to note that open boundary conditions
are imposed on the systems here, such that no boundary contributions arise from
the outer boundaries of the subsystems ci. Without any restriction we can adapt the
design to corners θ 6= π

2
, Fig. 6.2 corresponds to bipartition c1 in this case. This

scheme on a lattice is interpreted as a finite-size cluster of order L in which the
property P of interest — in our case the corner entanglement — is embedded. A
numerical linked-cluster expansion (NLCE) [86, 105], explained below, then allows
to obtain estimates of P (L). Subsequently, we have to perform the linear fit of P (L)
against lnL for a range of cluster orders L to get cα.

The NLCE method works as described in the following. Linked clusters are finite
connected sections of the (infinite) system on which the property is computable. In
our example, a 2 × 2 cluster is the smallest that can embed the scheme (6.2) with
the corner at its center. A standard cluster expansion approach would consider
clusters of arbitrary shape — involving the NP-complete problem of identifying
all possible clusters of a given size. Following Ref. [105] we exploit the fact that
in our specific models the expansion converges even if only rectangular clusters
are included. First, we actually compute our property for a particular cluster c by
the application of the numerical method of our choice, namely the exact formulae
Eqs. (5.11) and (5.26)3. This involves individual computations of Sα(ci) for the four
bipartitions in Fig. 6.4 for every possible location r of the corner. The value of the
property for a cluster c follows as the sum over all corner locations

P (c) =
∑

r

Pr(c). (6.3)

We note, that the number of necessary individual calculations is in general not four
times the number of possible corner locations. The two smooth bipartitions c3 and
c4 are identical for several corner locations but need only be computed once. In

3This computation could be done by a quantum Monte Carlo simulation or a density matrix renor-
malization group approach as well.
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6.1. Numerical extraction of corner entanglement

addition, the value of the property is symmetric under a rotation of the cluster by
180◦ as c1 ↔ c2 — reducing the number of computations by a factor of two. For a
model which is isotropic in the spatial dimensions as the free boson, it is sufficient to
only consider upright rectangular clusters, i.e. clusters with linear length Ly ≥ Lx.
The other orientation can later be taken care of by an embedding factor

e(x) =

{
1, Lx = Ly

2, Lx > Ly.
(6.4)

The explicit values of the property are used to recursively define weights W (c)
for a cluster c according to

W (c) = P (c)−
∑

s∈c
W (s), (6.5)

where the sum on the right-hand-side runs over all rectangular subcluster s in c.

m = 9 m = 6 m = 4

m = 3 m = 2 m = 1

Figure 6.5.: All possible upright rectan-
gular clusters up to a clus-
ter order L = 4. Possible
corner locations are marked
in blue. The multiplicity
refers to an embedding of
the corresponding cluster in
the 4 × 4 cluster (bottom
right).

A particular subcluster s of dimensions lx × ly
multiply appears in this sum, since it can be em-
bedded in more than one way in a bigger cluster
c of dimensions Lx×Ly. The multiplicity of the
embeddings is ms|c = (Lx − lx)(Ly − ly). An
example of all distinct subclusters s of a 4 × 4
cluster is shown in Fig. 6.5.

We have to associate an order O(c), i.e. a
typical length scale, to a cluster c. Possible op-
tions are the arithmetic mean (Lx+Ly)/2 or the
geometric mean

√
LxLy but we simply choose

the longer side O(c) = max(Lx, Ly). This al-
lows us to assign a value of the property per site
to a given cluster order L. It is given by the sum
of all clusters up to the maximal cluster (which
is a square of N = L× L) of order L

P (L)

N
=
∑

c

e(c)×W (c), (6.6)

where e(c) is the embedding factor defined above. In the end it is this property per
site P (L)/N — evaluated for a range of orders [2, Lmax] — that is fitted against
lnL in order to obtain the corner coefficient cα(θ). Doing so, we have effectively
replaced the length of the subsystem LA as the linear scale for the boundary law
and its subleading logarithmic correction by the cluster order L. However, this is
reasonable as the boundary lengths in the bipartitions of the scheme in Fig. 6.4 are
precisely L for c3 and c4 and on average for c1 and c2.

The computational complexity of the NLCE approach in combination with the
exact diagonalization is of orderO(L5) due to the complexity of the diagonalization
itself, O(L3), multiplied with the number of possible corner locations Nr ∼ L2 in
the cluster. We are therefore strongly restricted by the maximal cluster order acces-
sible in this method, but we can estimate the value for cα(θ) in the thermodynamic
limit by a second extrapolation, see Sec. 6.3.
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6. Lattice results in 2+1 dimensions

6.1.3. Incremental regions
Another strategy for the removal of the leading boundary contribution aαLA is
rooted in a Quantum Monte Carlo (QMC) setup applicable to spin models. The
QMC simulations are carried out in a stochastic series expansion (SSE) [64, 106] of
the modified partition function Z[A, 2, β] that implements the replica trick for the
computation of the second Rényi entropy. In order to obtain the Rényi entropy as
a statistical observable, we use the ensemble switching approach [78] embedded in
the so-called increment trick [107]. The details of the QMC algorithm are briefly
explained in App. A. Such a QMC simulation computes the entanglement entropy
of a subregion A as the logarithm of the ratio of two partition functions

S2(A) = − ln

(
Z[A, 2, β]

Z2

)
, (6.7)

where Z is the partition function of the total system. Z[A, 2, β] is the modified
partition function at inverse temperature β where the subregion A is connected over
the replicas (α = 2 in this case). This ratio is sampled by generating a Markov chain
of configurations in the joined ensemble of both partition functions and allowing to
switch between them [78]. Such a switch is performed if all degrees of freedom
in subsystem A agree over the replicas. As our measurement, we simply count
how many times we have been in Z and how many times in Z[A, 2, β]. A problem
arises in the simulation of this ratio if region A is not small: A switch between
the ensembles Z2 and Z[A, 2, β] becomes a rare event and hence the QMC results
potentially suffers from huge statistical errors.

The increment trick [107] follows from using a series of subregions of A =
AN ( AN−1 ( . . . A2 ( A1 which enables us to rewrite (6.7)

S2(A) =− ln

(
Z[A1, 2, β]

Z2
· Z[A2, 2, β]

Z[A1, 2, β]
· . . . · Z[A, 2, β]

Z[AN−1, 2, β]

)

=S2(A1) + S2(A1 → A2) + . . .+ S2(AN−1 → AN), (6.8)

where the intermediate entropies S(Ai → Ai+1) result from individual simulations
with a connected region Ai (in the replica trick sense) and a region Ai+1 \ Ai tog-
gling between connected and disconnected in the ensemble switching. By apply-
ing the increment trick we obtain S2(A) from N independent simulations in (6.8)
which produce results that have smaller statistical errors than a single simulation
for Eq. (6.7) and hence also their sum yields a more accurate estimation of S2(A).

In order to extract the corner term of our spin-half models, we compute the en-
tanglement entropy for two different bipartitions — a square shaped subregion Asq

which has a corner term and a strip shaped subregionAst, i.e. a region with a corner-
free boundary winding around the lattice in periodic boundary conditions. Both
bipartitions have the same boundary length ` and we hence expect the difference
between the two corresponding entanglement entropies ∆S = S2(Asq) − S2(Ast)
to have −c ln ` as its leading order. The remaining fit of ∆S against lnLA can be
done as a linear regression and therefore yields significantly more reliable results
than a full fit against Eq. (6.1). Combining this bipartitioning with the increment
trick, we see that the set of single simulations of incremental regions necessary to
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Figure 6.6.: Illustration of the increment
trick. The regions A1, . . . A4

constitute a sequence that suc-
cessively builds up the square
subsystem A4. This proce-
dure can be continued straight-
forwardly to the whole strip
(shaded region). It is obvious
that the square A4 is “on the
way” to the strip.

build up S2(Ast) already includes all incremental regions to compute S2(Asq), see
Fig. 6.6. Even better, the increment trick allows us to directly obtain the difference
∆S2, i.e. without computing S2(Asq) and S2(Ast) explicitly. To do so, we start the
incrementation at S2(Asq ≡ AN/2):

S2(Asquare → AN/2+1) + S2(AN/2+1 → AN/2+2) + . . .+ S2(AN−1 → Astrip)

=− ln

(
Z[Astrip, 2, β]

Z[Asquare, 2, β]

)

=− ln

(
Z[Astrip, 2, β]

Z2

)
+ ln

(
Z[Asquare, 2, β]

Z2

)

=S(strip)
2 − S(square)

2 . (6.9)

This reduces the computation time by a factor of 2 because the square region does
not need to be successively built up by incrementations. We have used this shortcut
in order to obtain better estimates for ∆S2 entering the fit. Nevertheless, we will
also show the explicit values for S2(Ast) and S2(Asq) computed in less accuracy
than ∆S2.

6.2. Interacting theories
Spin-half lattice models have become excellent candidates for the investigation of
corner entanglement after a numerical setup for the computation of the entangle-
ment entropy on lattices [27] was established. At their critical points these models
are described by interacting theories. Hence, the corresponding ultraviolet fixed
point of a renormalization group flow belongs to the Wilson-Fisher universality
class. One of the goals of the numerical studies on the lattice was the comparison
of the result for the corner entanglement c from free field theories (Gaussian fixed
points) [7] with these O(N) models on the lattice. A priori, there is no reason to
assume that they are equal.

Many numerical studies have been carried out in this field [80, 86, 108], in par-
ticular, in Ref. [85] a proportionality between the corner entanglement c and the
number N characterizing the microscopic degrees of freedom in an O(N) model
has been established. This insight raised the question whether corner entanglement
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6. Lattice results in 2+1 dimensions

generically quantifies the low-lying energy excitations in a wide range of CFTs. It
constitutes actually the point of entry to the discussion in Sec. 4.4 and was subse-
quently addressed in a series of field theoretic studies [88, 90]. Here, we present
results for the second Rényi entropy S2 for the three bilayer models, introduced in
Sec. 3.1 which undergo a phase transition in the two-dimensional O(2) and O(3)
universality classes. The strategy to extract their corner entanglement using incre-
mental regions as described above is employed.
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Figure 6.7.: Left panel: Second Rényi entanglement entropy of the XY bilayer and necklace mod-
els at their respective critical points. The discrepancy between the strip and the square
shaped bipartition indicates the significance of corners in the subsystem. Right panel:
Difference between the two entropies plotted against lnLA. A linear regression is per-
formed in order to extract the logarithmic contribution.

Our results for the two O(2) models, the XY bilayer and XY necklace model,
at their critical points are plotted in Fig. 6.7. The left panel shows that the pure
entanglement entropy of the square shaped bipartition is shifted by a finite negative
amount from the strip shaped value for both models. This observation allows for
the conclusion that a negative contribution arises from the four corners appearing
in S2(Asq) but not in S2(Ast). For the lowest few system sizes L = 8, 10, 12, 14
we plot the difference ∆S2 against ln ` in the right panel and perform the proposed
linear fit to this data. Larger system sizes were excluded from this analysis due to
their larger statistical errors on the corresponding results which are not compatible
with the order of magnitude of c ∼ 0.1. From the fit we obtain a total critical corner
entanglement of C2 = −0.0397(7) (C2 = −0.037(7) ) for the bilayer (necklace) XY
model, respectively. Since the square subregion has four corners, we have a critical
contribution per corner with θ = π

2
of cc = −0.010(2) ( cc = 0.009(2)) which

compare well to each other within statistical uncertainty. For the XY bilayer model
cc has also been computed in Ref. [85] using a numerical linked-cluster expansion
(NLCE) of density matrix renormalization group results on finite clusters. A value
of cc = −0.0111(1) was obtained in this work which is in agreement with our
QMC result. Since the critical points of both models belong to the same universality
class (O(2) in two dimensions) the agreement of their corner entanglement provides
evidence for the universal behavior of this quantity — further supported by the
agreement between the results of two complementary numerical methods.
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Figure 6.8.: Difference between second Rényi en-
tropies of bipartitions with strip and
square shaped subregions A plotted
against lnLA. The slope of the curves
is the corner entanglement and is
clearly non-zero for g ≥ gc, where
the system is gapless. Both the slope
and the difference itself vanish in the
limit g � gc.

The same conclusion can be drawn
for the bilayer Heisenberg model — be-
ing a representative of the O(3) univer-
sality class. Fig. 6.8 shows the data
for different values of the coupling ra-
tio g. We obtain a contribution of
c = −0.062(3), i.e. a corner entan-
glement of cc = −0.016(1) at criti-
cality using the same QMC approach.
Also for this model O(3), our QMC re-
sult compares well to an estimate for
cc = −0.0165 obtained from an NLCE
calculation [86].

Furthermore, also a system with a
phase transition in the two-dimensional
O(1) symmetry class has been studied
numerically, namely the transverse field
Ising model. The reported result from
QMC simulations is cc = −0.006(2)
[108] whereas from an NLCE a value of cc = −0.0053 has been obtained [105].
They agree within statistical uncertainties.

O(N) model QMC NLCE N× Gaussian value
TFIM (N = 1) -0.006(2) -0.0053 -0.0064

Bilayer XY (N = 2) -0.010(2) -0.0111(1) -0.0128
Bilayer Heisenberg (N = 3) -0.016(2) -0.0165 -0.0192

Table 6.1.: Comparison of corner entanglement results of the second Rényi entanglement entropy
from a single π

2 -corner for threeO(N) models. The numerical values for these interacting
theories from QMC simulations and an NLCE are shown and contrasted to the value for
the free theory multiplied by the number of field components.

This collection of available corner entanglement results for a number of Wilson-
Fisher fixed points in O(N) model leads to the quest to relate these findings among
each other and to the value for a Gaussian fixed point [7] which has been derived
from series expansion to be cc = −0.0064. First, we note that such a comparison
would have to be done by interpreting an O(N) fixed point as an N -component φ4

theory so that the Gaussian value must be multiplied by N . The comparison to the
Gaussian fixed points reveals significant discrepancies within the statistical uncer-
tainties as can be seen from Tab. 6.1. This observation is interpreted in Ref. [86]
in the following way. Firstly, the field theories at Wilson-Fisher fixed points are
non-free and therefore not the same as the free theory. Secondly, the properties of
a Wilson-Fisher fixed point can be obtained by an expansion in ε = 3 − d around
a free theory, where d is the dimensionality. This explains why the values of cc for
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6. Lattice results in 2+1 dimensions

Figure 6.9.: Comparison of the corner entangle-
ment cα(π/2) multiplied by the num-
ber of field components N between
the transverse field Ising model (N =
1) and the XY Bilayer (top panel) as
well as a Heisenberg model with a
single-ion anisotropy (bottom panel).
The curves collapse for a continous
range of Rényi indices α. Figure
taken from Ref. [85].

interacting and free theories are close to
each other, if the number of field com-
ponents (N ) is factored in. However,
both the DMRG and QMC calcula-
tions have large finite-size effects such
that the actual discrepancy between the
Gaussian and the Wilson-Fisher fixed
point is not exactly known. More im-
portantly, the authors conclude that if
one compares the Wilson-Fisher fixed
points among each other, it seems that
the corner entanglement of O(N) crit-
ical points is approximately N times
the value for the O(1) critical point.
This notion was further scrutinized in
Ref. [85] for two O(2) models, namely
the spin-half bilayer XY model and
a square lattice spin-one Heisenberg
model with a single-ion anisotropy for
a range of Rényi orders. The results
for the corner entanglement are shown
in Fig. 6.9 and show a striking evidence
that they are twice the corner entangle-
ment of the TFIM, as expected.

We can conclude that the investiga-
tions of spin models exhibiting a crit-
ical point hint at the connection be-
tween microscopic degrees of freedom
(N ) and corner entanglement. The
similar dependency for central charges

C
O(N)
T ≈ NC

O(1)
T [109] up to 1% suggests to examine if the ratio of critical corner

entanglement and the central charge is universal for arbitrary CFTs.

6.3. Free theories

We investigate the corner entanglement for both free lattice theories — the massless
free boson and the massless free Dirac fermion. Both theories can in principle be
treated by the direct approach and by the NLCE, discussed above. However, it
turns out that precise results are not guaranteed to be achievable in a reasonable
amount of computing time due to the restriction to finite system sizes in lattice
computations. We found the free Dirac fermion to be more efficiently tractable
by the direct approach whereas the NLCE outperforms the direct approach for the
free boson. We will make this statement precise in Sec. 6.3.1 by considering the
infra-red scaling of the entanglement entropy in both theories. Following this best
practice we compute the angle dependence of the corner entanglement cα(θ) in both
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6.3. Free theories

theories in Sec. 6.3.2 and interpret our findings in light of the predicted properties
introduced in Sec. 4.2. Furthermore, we compare our lattice results to field theoretic
series expansions as well as to values for other theories available from the literature.
Finally, we consider the emergent duality in Eq. (4.7) between the free boson and
the free Dirac fermion which has been derived in the limit of smooth angles θ ∼ π.
We will check whether it holds far below this limit, namely for θ = π/2.

6.3.1. Infra-red scaling

This preliminary study is solely intended to identify the infra-red (IR) contribution
for both the free boson and the free Dirac fermion theories. On a finite-size lattice,
the IR end corresponds to the total linear system size L. We hence aim at finding
the largest contribution to the boundary law in Eq. (4.1) which does not depend on
the subsystem dimension LA/δ but on L. This is done by keeping the subsystem
fixed (and thereby LA/δ) and calculating the entanglement entropies for a range of
total system sizes. For simplicity, the region A is chosen to be a single site and we
restrict our investigation to the von Neumann entropy S1. We compute the entan-
glement using the correlators Eqs. (5.9) and (5.23) for the free boson and fermion,
respectively. If A is a single site, only the correlations 〈φiφi〉 and 〈πiπi〉 on this one
site need to be evaluated for the free boson. For the free Dirac fermion, where we
have two fermionic degrees of freedom per site, we have a 2× 2 correlation matrix
for the single-site subsystem A. In both cases, we use a direct integral expression in
the non-discretized field theory derived in Ref. [91] instead of applying a numerical
finite-size scaling method.

For the massless boson the expressions are integrals over momentum space 〈φiφi〉
∼
∫

d2k 1
k

and 〈πiπi〉 ∼
∫

d2k k. On the discretized lattice the integrations have to
be performed from 2π/L to 2π/δ, i.e. from the ultra-violet to the infra-red cut-
off in reciprocal space. By substituting the integrand k → 2π/x we get d2k →
(1/x4)d2x. It follows that the correlators depend on L as 〈φiφi〉 ∼ O(1/L) and
〈πiπi〉 ∼ O(1/L3). Keeping in mind that the correlators still have a leading order
O(1) contribution from the constant LA/δ, we conclude for the combined correlator
Cii =

√
〈φiφi〉〈πiπi〉 ∼

√
Z +O(1/L) ≈ Z +O(1/L) with some constant Z. In-

serting this into the formula for the von Neumann entanglement entropy, Eq. (5.12),
we observe that their IR contribution is of order O(1/L).

Similar calculations [103] reveal that the entanglement entropy of the massless
free Dirac fermion exhibits a leading IR contribution ofO(1/L3). This implies that
finite-size effects are significantly less dominant for the free fermion compared to
the free boson.

We numerically test our expectations for the IR correction to the entanglement
entropy by computing the integral expressions for the correlators for both massless
theories. Plotting the von Neumann entanglement entropy over the predicted IR
scaling should yield a linear law as L → ∞. This is clearly confirmed by our re-
sults shown in Fig. 6.10. For the free boson we impose open boundary conditions
in our computation in agreement with the prerequisite of the NLCE method. Fully
anti-periodic boundary conditions or a combination of anti-periodic and periodic
boundary conditions in one dimension are expected to exhibit the same behavior.
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6. Lattice results in 2+1 dimensions

Only if the boundary conditions are fully periodic, the entanglement entropy di-
verges due to its logarithm in the definition and the existence of the zero mode
kx = ky = 0 in Eq. (5.16). We have added the von Neumann entanglement en-
tropies for the massive free boson with masses 0 < m ≤ 0.5 which demonstrates
how the IR correction of O(1/L) arises as m → 0. For a finite mass the entan-
glement entropy approaches a constant once the system size L exceeds the finite
correlation length ξ ∼ m−1. The inset of Fig. 6.10 shows that the entanglement
entropy of the free Dirac fermion on a fully anti-periodic lattice becomes linear in
1/L3 as L→∞.
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Figure 6.10.: The entropy S1 for free bosons as a func-
tion of 1/L for the case where region A is a
single site and the lattice has open boundary
conditions (the same as the boundary condi-
tions used in the NLCE). Similarly, the inset
shows the single-site entropy for the massless
fermion and illustrates that the leading IR con-
tribution is O(1/L3).

We conclude from this ex-
amination how we match the
two numerical approaches in-
troduced in Sec. 6.1 with the
two free theories: The direct
approach is hampered for the
free boson due to the non-
negligible O(1/L) correction,
thus necessitating its inclusion
in the fit. An additional param-
eter in the least-squares fit sig-
nificantly increases the needed
number of data points. There-
fore we do not apply the di-
rect approach to the free bo-
son but only to the free Dirac
fermion, where the O(1/L3)
correction is negligible. On the
other hand, the NLCE proves
to cancel the O(1/L) correc-
tion by its design. We use it to

compute the corner entanglement of the free boson. In principle, the NLCE works
just as well for the free Dirac fermion but in practice the direct approach is much
more efficient for this theory.

6.3.2. Angle dependence

In order to elucidate the angle dependence of corner entanglement in the free the-
ories we choose seven angles that pixelate most naturally on a square lattice and
compute their contribution. As illustrated in Fig. 6.2 these angles feature a slope of
±1

2
,±1,±2 or zero of one of their sides. The actual angle is then obtained by tak-

ing the arctangent of the slope (except for a slope of zero, where the corresponding
angle is θ = π/2) and transposing it into the range [0, π]. We compute the corner
entanglement cα(θ) for Rényi entropies of order α = 1, 2, 3, 4 using the methods
described in Sec. 6.1 combined with the formulae for the groundstate correlators
given in Chapter 5. Our data from lattice models are compared to the results of the
two field theory methods (Sec. 4.3), the truncated series and the combined ansatz.
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6.3. Free theories

As discussed, we employ the direct approach for Dirac fermion and the NLCE
for the free boson lattice theory. At first we demonstrate that the raw output of the
methods behaves well and is suitable for the fitting and extrapolation that yields
cα(θ) using the example of the von Neumann entropy (α = 1) and a right-angled
corner (θ = π/2). For the free boson (Fig. 6.11a) we observe that the property P of
the NLCE behaves nearly perfectly logarithmic in the cluster order. This provides
evidence that the scheme in Fig. 6.4 indeed extracts the corner contribution although
the cluster expansion is restricted to rectangular clusters, as discussed above. If we
perform a linear fit of P to lnL the slope is the corner entanglement. Since we are
limited to finite cluster sizes, we carry out a second extrapolation of our so-obtained
estimates of cα(θ) in fixed-size fitting intervals [Lmin

c , Lmin
c + ∆L]. We take Lmin

c as
the label of the corresponding fitted cα(θ) and extrapolate these value pairs to the
thermodynamic limit by fitting the cα(θ)’s linearly to 1/Lmin

c . It is shown in the
inset of Fig. 6.11a that this second extrapolation is well-justified as the data points
indeed lie on a straight line. For the free fermion theory, our raw data are the full
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Figure 6.11.: Illustration of the extrapolations from finite-size lattice results. Left Panel: Output of
the NLCE for the free boson plotted against lnL. The inset shows the well-behaved
second extrapolation. Right Panel: Total Rényi entropy of the free Dirac fermion.
The top left inset shows the this data reduced by the fitted boundary term and the
constant and plotted against lnLA — yielding a straight line. The behavior of the
second extrapolation is shown in the bottom right inset.

entanglement entropies, shown in Fig. 6.11b. We first verify that our least-squares fit
of the data to Eq. (6.1) yields a significant logarithmic contribution. To do this, we
subtract the fitted linear and constant terms from the entanglement entropy and plot
the result against lnLA, see the top left inset of Fig. 6.11b which clearly identifies
a logarithmic dependence. Furthermore, we also perform a second extrapolation of
fitted corner entanglement estimates for fitting ranges [Lmin

A , Lmin
A +∆L]. Analogous

to the boson case, we can convince ourselves by considering the bottom right inset
of Fig. 6.11b that this step is justified.

Having gauged the numerical methods we now turn to their application on our
corner entanglement analysis. We first consider the corner entanglement c1(θ) of the
von Neumann entropy for our selection of angles, plotted in Fig. 6.12. In Eq. (4.6)
we have seen that in the smooth limit c1(θ) is proportional to the central charge
CT of the stress-tensor of the CFT. Therefore, we normalize c1(θ) by this constant
and hence plot the presumed universal ratio. The agreement between the lattice
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6. Lattice results in 2+1 dimensions

results and the truncated series is satisfying at large angles θ ≥ π/2 but a deviation
emerges as decreasing θ towards arctan 1/2 ≈ 0.46, where it achieves 6% (9%)
for the boson (fermion), respectively. In contrast, this deviation amounts to only
1% for both theories between the lattice results and the combined ansatz results at
this angle. We also confirm that the universality of c1(θ)/CT holds between the
free boson and the Dirac fermion theories even below the smooth limit for θ & π/2
because the data collapse. The exact numbers can be found in Tables 6.2 and 6.3
for all angles.
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Figure 6.12.: Angle dependence for the von Neu-
mann (α = 1) entropy. The numeri-
cal lattice data points are represented
by the blue and green circles. Se-
ries expansion results from the trun-
cated series, Eq. (4.8), are shown by
the dashed lines and from the com-
bined ansatz, Eq. (4.9), by the solid
lines. In both cases series expan-
sions the highest order in (θ−π) in-
cluded is 16 for the boson and 14 for
the fermion.

Extending our examination to ad-
ditional Rényi indices α = 2, 3, 4
we first compare our findings to avail-
able numerical results from the liter-
ature. For the free boson, Refs. [7,
104] find cb1(π/2)=0.02366, cb2(π/2)=
0.0128(2), cb3(π/2) = 0.0100(2), in
excellent agreement with our results,
see Tab. 6.2. Further, Ref. [104] also
reports cb4(π/2) = 0.0086(2), which
significantly deviates from both our
lattice (0.0092) and combined ansatz
(0.00946) results. Due to their con-
sistency we believe that our results are
more accurate. One additional compar-
ison can be made for α = 1/2, for
which Ref. [110] obtains cb1/2(π/2) =

0.058(2), in agreement with our lattice
results 0.058. For the Dirac fermion we
have only cf1(π/2)=0.02329 [84] in the
literature, which agrees very well with
our value (Tab. 6.3). We have summa-

rized our results for α = 1, 2, 3, 4 for both theories in Fig. 6.13.
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Figure 6.13.: Corner entanglement for Rényi entropies for the free boson (left panel) and the Dirac
fermion (right panel). The numerical data is compared to the combined ansatz,
Eq. (4.9), at M= 8 (7) for the boson (fermion).

Since the first smooth limit coefficients σα as well as the sharp limit coefficients
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6.3. Free theories

κα have been computed for α = 1, 2, 3, 4 in Ref. [90] we can try to obtain a uni-
fied picture of the functional dependence of cα(θ) on the angle θ. In particular,
we divide the corner entanglement by σα in a first approach and plot the result for
different α, see the left panel of Fig. 6.14. Surprisingly, we observe an almost com-
plete collapse of the data for different Rényi entropies in both the lattice numerics
and the combined ansatz. It is particularly convincing for angles θ ≥ π/2 which
implies the unexpected insight that the first smooth limit coefficient σα alone, i.e.
the first-order expansion of cα(θ) = σα · (θ − π)2, essentially determines the cor-
ner entanglement far beyond the smooth limit. For θ < π/2 a small deviation of
the curves becomes apparent. Another normalization, namely a division by κα (see
Eq. (4.5)), is more appropriate in this limit and yields a striking collapse of the
different Rényi entropies, plotted in the right panel of Fig. 6.14.
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strongly-interacting CFT.[87] The solid lines show the combined ansatz. Another way
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The lattice columns of Tabs. 6.2 and 6.3 contain all the numerical data points
plotted in this discussion. It is difficult to rigorously estimate their confidence in-
terval as they are output by fitting procedure that allow for various options. The
general limitation of the accuracy is due to the restricted sizes of the lattices for
computational reasons. Hence, we expect our data to exhibit systematic uncertain-
ties. We show the digits that we found to be robust against variations in the fitting
and extrapolation ranges and estimate that the last digit contains the uncertainty.
For smooth angles at α = 3, 4 the accuracy is only two digits whereas for θ = π/2
we have up to four digits.

6.3.3. Duality

The duality between the free boson4 and the Dirac fermion in Eq. (4.7) was derived
for the smooth limit of θ → π. In this section, we study in how far this duality holds

4To be precise, we mean the complex boson, corresponding to two real scalar bosons.
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6.3. Free theories

for general angles θ, i.e.

α2cfα(θ)
?
= cb1/α(θ). (6.10)

We first consider the special situation of α = 1, i.e. the von Neumann entangle-
ment entropy. If the duality was satisfied for all angles θ, Eq. (6.10) would demand
that the corner entanglement of the complex boson and the Dirac fermion are equal
for α = 1. Fig. 6.12 can be regarded as a plot of this duality and reveals that it
holds for angles θ ∈ [π/2, π]. This is in accordance with the equality of the smooth
limit coefficient σb1 = σf1 = 1/128 as computed in Ref. [88]. On the other hand,
the emergent discrepancy between the complex boson and the fermion curve in this
plot indicates a breakdown of the duality in the limit θ → 0. Also the sharp limit
coefficients κb1 = 0.0794 and κf1 = 0.0722 clearly differ [91] which confirms this
observation.

For general Rényi index α we test how far the duality holds at the natural lattice
angle θ = π/2 — being on the verge of the breakdown for α = 1. We plot both
sides of Eq. (6.10) for α ∈ [1

5
. . . 5] in the left panel of Fig. 6.15. Since in the region

of α < 1 this plot is not very informative we make a second plot where α → 1/α
— showing the same data differently resolved (right panel of Fig. 6.15). We find
that the duality does approximately hold even at θ = π/2. Also, the data are in
agreement with the corner entanglement for α → ∞ computed in Ref. [90] to be
a∞(π/2) = 0.0093(0.00715) for the fermion (boson), respectively.
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Figure 6.15.: Testing the boson-fermion duality at θ=π/2. The data for fermions has been obtained
by a fit to the boundary law using an exact diagonalization of the subsystem correla-
tion matrix. For bosons, the NLCE was used. Both plots display the same data with
different α prefactors, in order to resolve clearly the duality for both sides of α = 1.

The computation of the values of the Rényi entropies involves a sum over many
eigenvalues raised to the power of α. This causes a reduction of the accuracy of
the result for α < 1 due to the limited floating point precision. As an example, let
us consider the computation of the 1

4
-Rényi entropy. In standard floating point nu-

merics, the eigenvalues entering the entropy formulae have a precision of 16 digits.
After taking the 1

4
th power this precision is reduced to four digits. The accuracy

of the Rényi entropy is possibly further diminished by the many elements in the
sum (5.11). Further, these values of Sα are relied upon in the subsequent proce-
dure of the NLCE or the finite-size fit of the direct approach. As a consequence, it
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6. Lattice results in 2+1 dimensions

is difficult to obtain an asymptotic behavior for the corner entanglement from the
numerical procedures if α < 0.5.

Therefore we apply arbitrary precision numerics for Rényi entropies with α < 1.
This involves that the algebraic routines needed in the computation, e.g. the diago-
nalization, are significantly slower than their standard precision counterparts. The
finite system sizes or cluster orders achievable within a comparable computing time
are hence considerably smaller. Since this problem does not occur for α ≥ 1 we
apply standard floating point operations here, such that the data in Fig. 6.15 origi-
nate from two different calculations: high precision but lower order for α < 1 and
standard precision but higher order else. A slight deviation becoming apparent near
α = 5 in the right panel of Fig. 6.15 is probably due to this issue. Generally, we can-
not rigorously quantify the discrepancy of the duality because our data are afflicted
with potential systematic errors from the finite size systems, the finite precision, and
the various options in the fitting procedure. Nevertheless, we can conclude that the
duality is robust beyond the smooth limit, in particular for θ = π/2.
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7. Summary

The essence of this Part of the thesis is that logarithmic contributions to the bipar-
tite entanglement entropy constitute universal signatures of criticality in a quantum
many-body system. This perspective is compatible and intertwined with the classi-
fication of critical phenomena via universal critical exponents in statistical physics.
Moreover, since a complementary description of critical points is generically pro-
vided by conformal field theories, a connection between the logarithmic contribu-
tion and the corresponding CFT is suggestive.

We first established the technical operation to induce logarithmic contributions
in the entanglement entropies, namely choosing the subsystem A of the bipartition
to have corners. Consequently, we denoted the coefficient of the logarithmic con-
tribution as corner entanglement. After heuristically motivating the reason for this
effect of corners we discussed properties of corner entanglement, in particular its
dependence on the opening angle of the corner. Series expansions of the corner en-
tanglement in the opening angle open up field theoretic approaches to approximate
the corner entanglement. We elucidated the analogy between the corner coefficient
of a critical many-body Hamiltonian and the central charge CT of its underlying
CFT. To clarify the role of the central charge we outlined why it counts degrees of
freedom of low-lying excitations — seemingly a feature of the corner entanglement
as well.

The main focus of the investigations carried out in this Part has been put on the
computation of corner entanglement directly in free field theories. We first intro-
duced the free boson and the free Dirac fermion theories in 2 + 1 dimensions. Since
our numerical technique is based on discrete Hamiltonians we carefully explained
how these theories are transferred from the continuum to the lattice. The free boson
is basically a theory of a grid of harmonic oscillators; its lattice variant is obtained
by introducing a finite lattice spacing. In contrast, a more elaborate route has to be
followed for the lattice discretization of the free Dirac fermion.

The von Neumann and Rényi entanglement entropies can subsequently be com-
puted exactly in an elegant way from groundstate correlators of the lattice Hamilto-
nians. We derived these formulae explicitly and related the computational effort to
the size of subsystem A of the bipartition.

Before we could obtain results for the free field theories but also for interacting
spin models we had to apply a strategy for the extraction of the logarithmic coeffi-
cient from the total entanglement entropies. We presented three such computation
schemes — a direct fit approach, the numerical linked-cluster expansion and the
increment trick of quantum Monte Carlo simulations. All of them are naturally
based on finite-size scalings of entanglement entropy results for a range of system
sizes. These strategies are adaptable to corners with opening angles θ other than
π/2. We showed how pixelation of one side of the angle enables the computation
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7. Summary

of corner entanglement for angles θ that naturally pixelate on the square lattice, that
is, tan θ ∈ Q.

We presented our results for interacting theories, specifically, for the Heisenberg
bilayer, the XY bilayer and the XY necklace model at their respective critical point.
Quantum Monte Carlo simulations were applied in order to compute the corner
entanglement for the right-angled corner. Comparing and combining our results
with the findings of other works using complementary methods we can conclude
that corner entanglement at Wilson-Fisher fixed points in O(N) universality classes
scale with N . As expected, they do not agree with the corner entanglement of
Gaussian fixed points for theories with the same number N of field components.
These findings provide evidence for the notion that corner entanglement measures
degrees of freedom (N ) just like the central charge CT of CFTs.

Since the central charge is known exactly for the free boson and free Dirac
fermion in 2 + 1 dimensions it is appropriate to compute the corner entanglement
for these free theories on the lattice and relate them to the central charge. We first
established our numerical setup by examining the infrared scaling of the entangle-
ment entropy which determined our matching of method and theory, in particular,
we used the direct approach for the free Dirac fermion and the NLCE for the free
boson. Further, we computed the von Neumann entropy for both theories for a
selection of opening angles and verified the universal ratio between corner entan-
glement c1(θ) and the central charge up to an opening angle of θ = π/2. This is
surprising as the analytical prediction of the universality of this ratio holds only up
to the leading order (θ−π)2 of c1(θ). Subsequently, we computed the corner entan-
glement for Rényi entropies α = 2, 3, 4 and compared them to field theoretic series
expansions — yielding very good agreement. These data for both theories and dif-
ferent Rényi orders could be collapsed on to nearly a single curve by dividing them
by the smooth (sharp) limit coefficient σα (κα) which remarkably underlines the
quality of our data and the equivalence of the angle dependence for all considered
cα(θ).

Finally, we shed light on a duality between the free boson and the free Dirac
fermion for reciprocal Rényi indices by testing this relation for θ = π/2. It indeed
holds within numerical uncertainty up to this angle — far away from the smooth
limit θ → π — for which the duality has been derived.

As a general conclusion, we can state the robustness of corner entanglement for
various critical theories, Rényi indices and corner opening angles with regard to
its ability to universally characterize criticality and quantify degrees of freedom of
low-lying excitations.
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Part III.

Topological order
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8. Topological entanglement
entropy

The macroscopic observation that matter can appear in qualitatively different states
or phases called for a theory that explains and categorizes phases and transitions
between them. For a long time, the Landau theory [1] of symmetry breaking in the
quantum state was assumed to describe all possible quantum phase transitions. In
this Landau paradigm a local order parameter is the essential concept which char-
acterizes the transition by acquiring a non-zero value only in the symmetry-broken
phase. However, new phases of matter were discovered, for example the fractional
quantum Hall effect (FQH) [9, 111], in which different phases can have identical
symmetry. Hence, these phases cannot be distinguished by symmetry breaking —
making it impossible to find a suitable local order parameter. A new kind of order
beyond the Landau paradigm was proposed [8] where, instead of an order param-
eter, new quantum numbers such as the ground state degeneracy characterize the
phase of matter. This concept is named topological order [112] — inspired by its
astonishing consequence that the topology of the space on which the quantum sys-
tem resides determines the degeneracy of the ground state. Also the states of the
FQH effect can be identified by their differing topological order [113].

In this Chapter we elucidate the relation of topological order and entanglement
entropy. We first point out in Sec. 8.1 that long-ranged entanglement is the feature
that induces topological order in a quantum many-body system. Moreover, we will
see that entanglement entropies are able to detect one aspect of topological order
via a constant correction in their boundary law. In Sec. 8.2, we present sets of bi-
partitions that allow for the computation of this topological part in the entanglement
entropy and thereby motivate the definition of a topological entanglement entropy.
At the beginning of this thesis we have amply discussed that the detection of en-
tanglement via entropies is made possible by mapping entanglement to classical
mixedness. This insight reveals that for a particular class of systems the combina-
torial constraints leading to the constant correction in the entanglement entropy can
be reproduced in a purely classical statistical-mechanics context. In Sec. 8.3, we
take this perspective by introducing a classical analogue of the entanglement en-
tropy. Despite the fact that the boundary law becomes a volume law for a classical
system, it has a very similar constant topological part which will be the object of
study in the subsequent Chapters.
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8. Topological entanglement entropy

8.1. Long-ranged entanglement

g = 0 g = 1

g = 2

Figure 8.1.: Examples for spaces of different
topology, characterized by the genus
g. The ground state degeneracy
of topologically ordered systems de-
pends on g, e.g. it is 4g for the toric
code model (Chapter 9).

This discussion of (intrinsic) topologi-
cal order is inspired by the review ar-
ticles in Refs. [57, 114]. Topological
order is a property of the ground state
and the nature of excitations of a quan-
tum phase. It is manifested in a de-
pendency of the ground state degener-
acy on the topology, more specifically,
on the genus g of the surface on which
the associated Hamiltonian is defined,
see Fig. 8.1 for some examples. This
degeneracy cannot be lifted by local
perturbations. The presence of ground
state degeneracy is a macroscopic de-
scription1 but not the origin of topolog-
ical order [115]. The low-energy ex-
citations of such ground states are de-
scribed by the afore elaborated concept
of topological quantum field theories
(TQFT) [116]. A local order parame-

ter characterization is not available which implies that in general no long-ranged
correlations of any physical observable are present in the state. However, the rela-
tion between topology and degeneracy as a property of the ground state indicates
that there must be some kind of a global structure. This structure is established via
long-ranged entanglement [117]. An entanglement entropy analysis of topologi-
cally ordered states is hence an obvious endeavor.

Characterizing topological order as a property of the ground state is to some ex-
tent unsatisfactory because it depends on the specific details of the interactions and
is hence not universal. We therefore consider instead how entanglement entropies
of an arbitrary bipartition provide signatures of topological order. In Sec. 2.2.3
we have presented the intuitive picture for why a boundary law is expected by as-
suming that entanglement is created between neighboring sites via interactions of
the (local) Hamiltonian. This insight needs to be refined here because we expect
a local Hamiltonian to create non-local entanglement. An illustrative picture of
‘dancing patterns’ [114] helps understanding the wanted mechanism: In the ground
state all local interactions seek for minimizing the energy and thereby impose local
‘dancing rules’ on the degrees of freedom. These rules lead to global patterns which
are interpreted as quantum fluctuations corresponding to long-ranged entanglement.
Nevertheless, we consider the establishment of long-ranged entanglement between
distant particles to happen in a sequential way via chains of direct neighbors. Hence,
the procedure of cutting the system into two parts and tracing out one part still pro-
duces an amount of mixedness found to be proportional to the boundary size. But

1A second consequence of topological order is the existence of non-Abelian geometric
phases [112].
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8.1. Long-ranged entanglement

the enforced existence of global patterns suggests that bipartite entanglement en-
tropies perceive an additional piece of information about subsystem A from tracing
out part B. To put it differently, the individual contributions to the entropy of all cut
interactions along the boundary are not independent. This manifests itself through
a reduction of the boundary term by a constant amount γ [58, 59], originating from
the macroscopic entanglement. For a d-dimensional system with a subsystem A of
linear size LA the generalization of this statement to Rényi entropies reads

Sα(A) = ALdA − γ + . . . , (8.1)

with further subleading terms vanishing in the thermodynamic limit, i.e. scaling
at most as L−1

A . In general, γ could depend on the Rényi order α. We will, how-
ever, ignore this subtlety because in our context the amount of information gained
by the additional knowledge about the boundary is quantified to the same value by
all Rényi entropies. The existence of such a constant correction γ has an immense
value: It identifies the presence of topological order in the ground state of a Hamil-
tonian and is often the only available quantity which does this. This seminal result
has been established for the toric code model (Chapter 9) in Ref. [118]. More-
over, γ is a universal quantity which also detects the type of topological order by
the so-called total quantum dimension D of its elementary excitations, γ = lnD.
Motivated by its inducing phenomenon, γ is refered to as topological entanglement
entropy [58, 59].

B

Figure 8.2.: String-nets are a representation of models with
degrees of freedom located on the edges of the
lattice. In this example we have Z2 particles
(with orientation ◦ and •) on a honeycomb lat-
tice. Strings are formed by the edges which
have an •-particle via rules imposed on the ver-
tices. An entanglement entropy reduction for a
bipartition intoA andB can be understood from
constraints on the number of strings which cross
the boundary of A and thereby provide addi-
tional information. This picture is adapted from
Ref. [119].

We comment on a potential
pitfall — the false conclusion
that long-ranged entanglement
is less or weaker in a physi-
cal sense than local entangle-
ment: The reduction refers not
to absolute values of the en-
tropy but only to the bound-
ary term which is intimately re-
lated to the technical definition
of entanglement entropies.

So far, the presentation of
the phenomenon of topologi-
cal order has been rather ab-
stract and general. We want to
take the perspective of string-
net condensates [120] in or-
der to gain a more concrete
and graphic perception of topo-
logical order. The formal-
ism of string-net condensates is
suitable for a particular class
of topological order, among
them discrete gauge theories to
which the toric code model belongs. String-nets can be understood as lattice mod-
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8. Topological entanglement entropy

els where the edges carry degrees of freedom, see Fig. 8.2. A particular set of
rules (Fig. 8.3) at the vertices of the lattice constrains possible values of the ad-
jacent degrees of freedom. These rules are imposed by the Hamiltonian at zero
temperature and correspond to the ‘dancing rules’ of the vertices above. A global
pattern of strings of edges with identical orientation is one aspect of the result-
ing long-ranged order. The second aspect is that the ground state is a super-
position of all possible string states — therefore called a string-net condensate.

Figure 8.3.: Set of rules on the vertices in-
ducing the string-net in Fig. 8.2.

In the specific example of the string-net
condensate depicted in Figs. 8.2 and 8.3,
spin-half degrees of freedom are located on
the edges. Only closed loops are allowed by
the rules which corresponds to the models
we examine in this thesis. We will restrict
our discussion to such loopgases2. They

provide a very nice understanding of the origin of the entropy reduction by γ in
Eq. (8.1). We observe that the number of loops crossing the boundary between part
A and B must be even, since no open strings are allowed. Considering the degrees
of freedom at the cut edges along the boundary we see that each of them can take
two values, up or down. The number of possible combinations thereof is precisely
what the bipartite entanglement entropy measures. However, given that we have
measured all edges except for the last one, we already know the state of the last one
with certainty due to the constraint of an even number of loop passages across the
boundary. The entropy is therefore ln 2`−1 = ` ln 2 − ln 2 for a boundary length
` and Z2 degrees of freedom. Hence we have γ = ln 2 in this case due to the
knowledge that only closed loops are allowed in the ground state.

8.2. Addition schemes
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Figure 8.4.: Compact representation
of a scheme inspired by
Kitaev and Preskill.

The notion of topological entanglement entropy
opens up a way to detect topological order in a
given Hamiltonian of a many-body system. But
provided we have numerical tools to compute the
entanglement entropy of the ground state it is still
not a trivial task to extract the topological part
γ from it. One approach would be to determine
the entanglement entropy for a range of subsys-
tem sizes LA and perform a linear regression to
these data. We would obtain γ as the constant co-
efficient from this regression. Such a method re-
quires many entanglement entropy computations
of sufficiently large boundary sizes in order to get
one value for γ.

A better technique is proposed in the two pub-

2More generally, string-nets are configurations for non-Abelian topological quantum field theories
(TQFT) while loopgases represent Abelian TQFTs [119].
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8.2. Addition schemes

lications in which the concept of topological entanglement entropy has been in-
troduced [58, 59]. The authors design schemes consisting of several bipartitions
of the same total system and summation formulae which enable a direct extrac-
tion of γ. We present the two alternative schemes, the Kitaev-Preskill [58] and the
Levin-Wen [59] construction. Both schemes have in common that they eliminate all
contributions of the entanglement entropy which are induced by geometric elements
of the bipartition, such as volume, boundaries and corners.

The approach followed by Kitaev and Preskill is to define three parts A, B and
C similar to the ones shown in Fig. 8.4 which are combined in all possible ways
to form one subsystem of a bipartition. For each of the seven combinations the en-
tanglement entropy is computed and the results are added and subtracted according
to3

−Sα,top =Sα(A) + Sα(B) + Sα(C)

− Sα(AB)− Sα(AC)− Sα(BC)

+ Sα(ABC). (8.2)

Since all subsystems created that way are topologically equivalent in the sense
that they are simply connected, we expected all corresponding entanglement en-
tropies to exhibit the same constant contribution, such that Sα,topo = γ. We note,
that in the specific example given in Fig. 8.4, some combinations are equivalent,
specifically A and B, AC and BC, AB and C. Hence only four instead of seven
computations have to be made. However, this construction holds a potential defi-
ciency: The bipartitions AC and BC are concave with a corner of opening angle
3π/2 which only appears with a minus sign in Eq. (8.2). This conflicts with the gen-
eral idea of this scheme to eliminate all contributions from corners and boundaries.
Due to the symmetry of corner contributions about π (Sec. 4.2) we can assume
them to be annihilated by the right-angled corners of A and B at the same location,
appearing with plus signs in the scheme4.

In the second proposal, Levin and Wen exploit that the constant correction to
the boundary law depends also on the topology of the subsystem. To wit, the addi-
tional information provided by the global structure concerns every closed boundary
of the bipartition. If one subsystem is disconnected, more than one closed bound-
ary is present. In terms of the string-net perspective, the number of loops across
each closed boundary must be even. Hence, the boundary law undergoes a constant
reduction per closed boundary. The Levin-Wen scheme consists of the four bipar-
titions shown in Fig. 8.5. Subsystems A1 and A4 have two closed boundaries and
therefore both have a topological term of two units in the boundary law as opposed
to one unit γ forA2 andA3. The extraction of the one-boundary γ is hence achieved
by

Sα,top =
1

2
(−Sα(A1) + Sα(A2) + Sα(A3)− Sα(A4)) . (8.3)

3We deviate from the original work [58] in the sign in the definition of Stop and hence define the
topological entanglement entropy to be a positive quantity, in accordance with Levin and Wen.

4There are situations [121] in which this annihilation does not work and thereby singularities due
to the concave corners appear in Sα,top.
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8. Topological entanglement entropy

In the example of a Z2 string-net condensate, we have γ = 2 ln 2 for A1/4 and
γ = ln 2 for A2/3. We note that A2 and A3 are equivalent and therefore only three
different entanglement entropy computations have to be carried out in order to ob-
tain γ. In the original work [59], an additional interpretation of the scheme is given:
The respective geometric differences of the bipartitions in (Sα(A2) − Sα(A1)) as
well as in (Sα(A3) − Sα(A4)) are identical, namely the connecting bar at the bot-
tom. Thus, Sα,top measures the entropic difference between the two connections
at the bottom which should have the same effect if only local entanglement was
present. On the other hand, a non-zero value of Sα,top indicates that the completion
of an annular region (A3 → A4) provides additional entropy compared to linking
two disconnected parts of the subsystem (A1 → A2). This is caused by the long-
ranged nature of the entanglement in a topologically ordered state.
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Figure 8.5.: Levin-Wen construction scheme for the extraction of a topological entropy γ.
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8.3. Classical analogue of entanglement entropy

We have argued above that in string-net condensates the emergence of a topologi-
cally induced reduction of the entanglement entropy results from the constraint that
the number of strings crossing the boundary must even. The nature of this argument
is combinatorial and hence rooted in a classical statistical mechanics perspective.
This insight raises the question whether such topological [entanglement] entropies
can be studied in a purely classical context. Of course, there is no entanglement
in classical physics so that we will avoid this word whenever we refer to a classi-
cal study in this thesis. Such an approach has indeed been successfully carried out
on toric code models [122] and on general string-net models [119]. The numeri-
cal computation of such classical entropies using Monte Carlo methods has been
worked out in Ref. [123].

In statistical mechanics, entropy refers to an ensemble of possible configurations
of our system. Therefore, we first specify such an ensemble for (classical) loop-
gases. The ground state of the quantum system is a superposition of all possible
loops obeying the rules on the vertices, as discussed above. A classical analogue
thereof is obtained by putting classical degrees of freedom such as Ising spins on the
edges and defining the configuration spaceL to be constituted exactly by all allowed
closed-loop states o. In order to interpret the configuration space as an ensemble,
we have to assign a weight wo to every configuration which we set to wo = 1. All
closed-loop configuration hence occur with equal probability in the ensemble. We
note, that from the perspective of a microcanonical ensemble obeying a Boltzmann
distribution, i.e. wo = exp[−βE(o)] with an associated energy E(o), we have a
assumed the limit of β = 0 for the inverse temperature. The probability for a partic-
ular configuration of the total system is given by po = wo/Z, where Z =

∑
o∈Lwo

is the partition function. The well-known Shannon entropy of such a probability
distribution is given by

S = −
∑

o∈L
po ln po. (8.4)

We want to draw up an entropy analysis on our classical ensembles of many-body
systems which is completely analogue to the bipartite entanglement entropies. Thus,
we keep the concept of bipartitioning the many-body configuration. Instead of the
reduced density matrices in quantum mechanics we can define the probability to
find subsystem A in a state oA by “tracing out” part B [119], that is,

poA =
1

Z

∑

oB∈LB
woA∪B , (8.5)

where the sum runs over all possible remaining configurations of the degrees of
freedom in part B while fixing those in part A. Finally, we can define classical
bipartite entropies analogously to Eqs. (2.6) and (2.7) as

S1(A) = −
∑

oA∈LA
poA ln poA (8.6)
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8. Topological entanglement entropy

for the Shannon entropy and

Sα(A) =
1

1− α ln

( ∑

oA∈LA
pαoA

)
(8.7)

for the Rényi entropies of order α which recover the Shannon entropy in the limit
α → 1. So far, we have assumed equal probabilities for all allowed closed-loop
states. The resulting entropy computation is hence a combinatorial problem. In
order to go further, we can introduce a finite temperature in the Boltzmann weights
determining the probabilities and thereby investigate thermal transitions of the clas-
sical system.

8.3.1. Volume law
The crucial difference between the classical and the quantum bipartite entropies is
the fact that we generically expect a scaling of the classical entropies to leading or-
der with the volume of subsystem A [122]. This dependence can be understood by
remarking that the degrees of freedom in the bulk of part A can fluctuate individu-
ally which leads to a number of possible configurations exponential in the volume.
However, the fluctuations are not free but have to take place within the limits of the
required global patterns, i.e. closed loops. The bipartite entropy of part A measures
this number of configurations of the bulk logarithmically which yields the volume
law. In the quantum case this picture fails because after tracing out part B we are
left with a mixture of configurations of part A where each of them has fixed values
at the boundary. The bulk of part A of every single element in this mixture is (al-
most) unchanged compared to the ground state of the total system and does hence
not contribute to the entropy5. Thus, only the mixture of boundary configurations is
measured by the entanglement entropies.

In the classical case, a further correction scaling with the size of the boundary
between parts A and B is generally expected below the leading scaling with the
volume. Furthermore, a reduction by a constant amount for a classical loopgas can
be presumed due to the well-known reason — an even number of string passages
of the boundary. Summing up, the classical bipartite entropies for a d-dimensional
system A of linear size LA follow the general form [119]

Sα(A) = VLdA +ALd−1
A − γcl, (8.8)

with non-universal coefficients V ,A and the classical topological entropy γcl.

8.3.2. Classical topological order
The emergence of a topological correction in the boundary law, Eq. (8.8), due to
the constraint on the boundary, provides the notion of classical topological order
for statistical mechanics ensembles. A partitioning of the ensemble into disjoint
sectors replaces the quantum mechanical concept of ground state degeneracy. The

5This is different at finite temperatures: The quantum state has thermal fluctuations such that the
entanglement entropy likewise follows a volume law in this case.
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sectors are segregated from each other in that local changes to a configuration can-
not result in a configuration from another sector. This classical phenomenon is
called topological ergodicity breaking [122]. Conversely, all configurations within
a sector are linked ergodically, i.e. by subsequent local manipulations. The number
of such sectors depends on the topology of the configuration space of the ensemble.
For example, one sector of a loopgas defined on a torus (with genus g = 1) is given
by the global property that it has an odd number of loops winding around one of the
periodic lattice directions. It is impossible to obtain a configuration with an even
number of windings only by local deformations of loops.

In order to extract the topological entropy γcl from the entropy, we are naturally
inclined to apply the addition schemes from Sec. 8.2 used for the quantum case.
However, the situation is slightly different: Consider all combinations of the values
of the degrees of freedom on the edges in the bulk. The number of these combina-
tions — exponential in the number of edges — is reduced by the constraints on the
vertices which likewise scale with the volume. The very last constraint, however, is
redundant and already ensured by all other vertex constraints. Hence, the reduction
by the vertex constraints is itself diminished by one, thereby leaving one more de-
gree of freedom for the bulk than expected from the number of vertices. The local
possible states of all degrees of freedom in the bulk are responsible for the volume
term. Indeed, as proven in Ref. [119], for the bipartite entropy of a simply connected
subsystemA (such as all bipartition in the Kitaev-Preskill construction orA2 andA3

of the Levin-Wen construction) the constant correction vanishes because the reduc-
tion from the boundary constraint and the increment by the bulk compensate each
other. Hence, the Kitaev-Preskill construction is blind for classical topological cor-
rections. Only if the number of closed boundaries nb is different from the number of
bulks nv of the respective subsystem we have a finite classical topological entropy
scaling as γ ∼ (nb − nv). In contrast to the quantum case, the entropies are hence
in general not symmetric under exchange of the subsystems, Sα(A) 6= Sα(B). We
observe that A1 from the Levin-Wen construction has a non-vanishing γ(B)

cl and A4

has a non-vanishing γ(A)
cl . The very important conclusion from this discussion is,

that we have to use the addition scheme of Levin and Wen6, i.e. generate different
subsystem topologies in order to detect a topological entropy.

6In fact, Kitaev and Prekill provide a second construction, which is very similar to the one of Levin
and Wen.
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9. Quantum error-correcting
codes

In a stroke of genius Alexei Kitaev laid out [10] that topological order in quantum
many-body states can be exploited to help overcome an important issue in the rising
field of quantum computation: The establishment of a quantum memory in which
computational errors can be efficiently detected and corrected. This idea lead to
the conception of a number of so-called codes which in principle implement such a
quantum memory, among them the central object of study in this part of the thesis
— the toric code model.

In order to thoroughly introduce the toric code and related other models we
prepend their presentation by a brief outline of the concept of error correcting codes
in Sec. 9.1. As a part of it, we discuss fault-tolerant quantum computation and
the idea of self-correcting quantum codes. Further, the toric code is extensively
presented in Sec. 9.2 and highlighted from the perspective of quantum computa-
tion as a model on which fault-tolerant computation is possible as well as from
a condensed-matter perspective as a model embodying dual aspects of the well-
known Ising model. Two three-dimensional adaptions are subsequently introduced
in Secs. 9.3 and 9.4. It is known that a four-dimensional variant of the toric code
would be necessary to constitute a self-correcting code at finite temperature [124].
The cubic code (Sec. 9.5), also known as Haah’s Code, is an attempt to provide this
feature in three dimensions. By the time of writing of this thesis, it seems how-
ever, that any proposals for a self-correcting in less than four spatial dimensions fall
short [125].

9.1. Error correction in quantum computation
Any procedure involving the processing of information is susceptible to errors which
can occur in the communication or at operations on the information. In order to set
up a stable procedure, the ability to detect and correct such errors is necessary. This
can be established by augmenting the amount of information by redundant elements.

The resulting total information must have a well-defined structure denoted as
the code space. If a message violates the code space, an error detection procedure
should be able to spot the corrupted piece of information. Considering the real-
world example of communication between humans by spoken or written language,
errors in the transmittal of the information may occur due to (actual) noise or dirt.
However, human languages are structures that encode information in a very redun-
dant way, that is, the receiver of the text can mostly infer missing words or parts of
words. This redundancy can be further enhanced by the sender of the information,
e.g. by repeating essential parts of the message.
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In abstract terms of information given in (qu)bits, we can add redundant (qu)bits
and possibly perform a mapping of the obtained (qu)bit string to one or several
others in which the original information is not directly recognizable. Such a way
of mapping the information is called a code. The following introduction to error-
correcting codes is adapted from Chapter 10 of Ref. [60]. A comprehensive review
article has been written by B. Terhal [126].

Classical error correction

An extremely simple example of a classical code is the repetition code and accounts
for the prototypical error in classical systems, namely the erroneous flip of a bit. It
is constructed by replacing every bit by three copies of itself

0→ 000 and 1→ 111.

Obviously, the decoding works by a majority voting, i.e. the two or three bits of
the encoded string which have the same value are assumed to carry the correct
value. This protocol fails if two or more bits are flipped. But for a sufficiently low
single-bit-flip probability p this code increases the reliability of the transmission. It
also reveals the important distinction between physical bits and logical bits. In this
example, a logical bit with value 0 is given by the code words 000, 001, 010, 100.

Simple quantum codes

When trying to adapt such a classical code to quantum information stored in qubits,
we are confronted with three problems. Specifically, (i) a simple copying of a quan-
tum state is forbidden by the no-cloning theorem [60]. Further, (ii) errors occuring
on a qubit α |0〉 + β |1〉 are not discrete like classical bit flips but continuous. The
identification of such an error would require infinite resources. Finally, (iii) the
decoding involves a quantum-mechanical measurement which destroys the infor-
mation. But these issues can be overcome as demonstrated in the next paragraphs.

Bit flip errors can also happen to qubits and correspond to the result of applying
the σx Pauli operator, often denoted by X in the context of quantum computation.
A straightforward adaption of the repetition code to qubits is given by an encoding
α |0〉 + β |1〉 → α |000〉 + β |111〉. This operation does not violate the no-cloning
theorem and can be performed using the fundamental CNOT gate [60] — resolving
issue (i). The kinds of errors that can be recovered using this code are zero or one
bit flip on one of the qubits. For example, if a bit flip on the second qubit occurs, the
state is α |010〉+ β |101〉. A measurement of the projection operator |010 〉〈 010|+
|101 〉〈 101| would return 1 with certainty and leave the state untouched. Hence,
a so-called syndrome measurement can be performed using a measurement {Pm}
with projection operators

P0 = |000 〉〈 000|+ |111 〉〈 111|
P1 = |100 〉〈 100|+ |011 〉〈 011|
P2 = |010 〉〈 010|+ |101 〉〈 101|
P3 = |001 〉〈 001|+ |110 〉〈 110|
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so that issue (iii) is resolved. Since a potential single-bit flip is unambiguously
identified using this measurement, it can be cured by applying an X operation on
the affected qubit. In order to approach problem (ii), we first note that another
elementary type of errors unique to the quantum case are phase flips — induced by
σz (denoted by Z), i.e. α |0〉 + β |1〉 → α |0〉 − β |1〉. A code similar to the three
qubit flip code can be constructed for the detection of phase flips. All we have to
do is to go from the σz to the σx eigenbasis {|+〉 , |−〉}. This basis change can be
performed by the use of the Hadamard gate [60].

A combination of the quantum three qubit bit flip and phase flip codes is the
Shor code [127], a nine qubit code. The important feature of the Shor code is that
it detects arbitrary errors, not only pure bit and phase flips — provided the error
occurs on one qubit only [60]. Thus, also issue (ii) is resolved. We conclude, that
specifically designed quantum codes enable error-correction by a standard proce-
dure consisting of two steps, syndrome measurement and recovery.

Stabilizer formalism

The elegant formalism of stabilizers, developed by D. Gottesman [128] engenders
the class of stabilizer codes to which all codes discussed in this thesis belong. A
quantum state |ψ〉 is stabilized by a set of quantum operators {S1, S2, . . .} if |ψ〉 is
invariant under the action of any of these operators, i.e. Sk |ψ〉 = |ψ〉 ∀k. We note
that a quantum code resides in a code space, that is, a vector space that spans all
possible code words, e.g. {|000〉 , |111〉} for the three qubit flip code. The essential
idea of the stabilizer formalism is to describe this vector space by stabilizing op-
erators instead of quantum states. Moreover, the structure of the set of stabilizing
operators {S1, S2, . . .} suggests a treatment with group theory since, for example,
the identity operator 1 is trivially part of it and compositions of the Sk also stabilize
a particular state. Specifically, a stabilizer is defined as a subgroup S of the Pauli
group Gn for n qubits. For one qubit, the Pauli group is given by

G1 ≡ {±1,±i1,±iσx,±σx,±iσy,±σy,±iσz,±σz}. (9.1)

Further, S defines the vector space VS by its constituing property that it contains
all states that are stabilized by (all elements of) S. Hence, VS is a subspace of the
n qubit state space. It is obvious, that the element −1 cannot not be part of any
non-trivial stabilizer. Without proof, we mention another very important condition
of a stabilizer S, namely that all its elements commute [60]. These two conditions
carry an immense benefit for a local Hamiltonian-based description of such quantum
codes and its simulatability: The ground state of a corresponding Hamiltonian is (i)
frustration free and (ii) exactly solvable via a decomposition of the eigenspace into
local subspaces [129].

We add an additional level of compactification in the description of stabilizer
codes by noting that groups can be described by generators. A groupG is generated
by a subset g1, . . . , gl of its elements if all elements of G can be written as a product
of the gk. Another advantage of this description — denoted by G = 〈g1, . . . , gl〉—
is that in order to verify whether a certain state is stabilized by S, it is sufficient to
check if the generators stabilize that state. We are now in a position to determine
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which errors can be detected in a stabilizer code. A measurement of a generator gk
in a correct code state would yield +1 with certainty and would hence not disturb
the state. If we perform a measurement of all generators and obtain −1 as a mea-
surement result for one gk we can infer that an error Ek has occurred and that Ek
anti-commutes with gk. This is precisely how error-correction in a stabilizer code
works. However, only errors which anti-commute1 with one of the generators can
be detected and form the so-called correctable set of errors E = {E1, E2, . . .}.

We close this explanation by illustrating the stabilizer formalism for the three
qubit flip code. Its stabilizer is S = {1, Z1Z2, Z2Z3, Z1Z3} ∈ G3 as it fixes
the subspace of 3 qubit states to the one spanned by |000〉 and |111〉. Due to
Z1Z3 = (Z1Z2)(Z2Z3) and 1 = (Z1Z2)2 we can write S using generators as
S = 〈Z1Z2, Z2Z3〉. This code is able to correct bit flips, represented by the op-
erators X1, X2, X3. Indeed, if error X1 occurs, a syndrome measurement of the
generators yields −1 (+1) for Z1Z2 (Z2Z3) respectively. The set of correctable
errors includes the ‘no error’ event, i.e. E = {1, X1, X2, X3}.

In anticipation of the specific codes discussed below, we remark that stabilizers
involving only Z operators identify bit flips. Conversely, phase flips are identified
by X stabilizers. In the Shor code, we have seen that a combination thereof leads to
a code that can correct arbitrary errors on qubits. Hence, it appears natural that our
more sophisticated codes consists of separate multiple X and Z stabilizer elements.

Fault-tolerant quantum computation

The procedure of syndrome measurement with subsequent error correction eluci-
dated above might suggest that the actual quantum computational operations us-
ing quantum gates are performed on decoded single physical qubits. However, the
encoding and decoding itself is generally afflicted with errors due to noise which
hampers the set-up of a reliable quantum circuit. The crucial idea to circumvent this
Sisyphean labor is to perform the quantum computation on the encoded state, i.e.
on the code words. In other words, the gates have to be designed in order to work
on the logical qubits of the specific code which yields an encoded quantum gate.
Repeated error-correction between components of the quantum circuit prevents the
accumulation of errors but does not suppress error propagation. As a remedy, we
have to enhance the concept of error correction by fault-tolerant quantum compu-
tation [130] adopted from considerations on classical fault-tolerance [131]. Fault-
tolerance means that a sufficiently accurate result of the quantum computation can
be obtained even though the used gates and the quantum wires have a finite error
probability p. Specifically, we require that if one failure in an encoded quantum gate
occurs, at most one qubit of its output is faulty. For measurement processes we de-
mand that a failure of a component yields an error probability for the measurement
result scaling with O(p2). We will not elaborate this concept beyond these require-
ments but solely point out the existence of the important threshold theorem [132].
Its essence is that the scaling of the number of gates needed in a fault-tolerant quan-
tum circuit with the ‘size’ n of some problem is well behaved. The crucial condition

1To be more accurate, any combination E†kEj must anti-commute with at least one of the genera-
tors, cf. Theorem 10.8 in Ref [60].
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for this theorem to hold is that the failure probability of all hardware components is
below a certain threshold, i.e. p < pth. For a desired finite accuracy ε the scaling of
the size of the circuit is only polylogarithmically in the size s(n) of a corresponding
(theoretic) error-free circuit which in turn is polynomial in the problem size n, see
Ref. [60].

This result provides a huge step towards the practical implementation of quantum
computation. The success of the concept of fault-tolerant quantum computation
proves that no physical limitation prevents the construction of quantum computers.
Without this concept the framework of error-correcting quantum codes would be of
a rather academic interest as it cannot ensure error-free computation.

Self-correcting codes

So far, we have considered an active error correction approach, i.e. errors have
to be detected and corrected by specifically designed quantum operations. Also,
we have ignored the role of time in our considerations about failures of gates and
wires. Especially when it comes to quantum memories, the stability of the infor-
mation against decoherence due to the unevitable coupling with the environment
is focussed on. Active error correction would have to be performed on the stored
information repeatedly within the memory time, i.e. the time within which the state
of the memory is assumed to be stable. A more promising ansatz is to design the
quantum code in a way that it is self-correcting [133].

The idea to use the phenomenon of topological order for quantum computing is
based on ground states of appropriate local gapped Hamiltonians. The eigenspace
of a ground state represent the code space. Since topologically ordered states have
a topology-dependent degeneracy, distinct orthogonal subspaces of the eigenspace
can be used to represent one logical qubit state each. A local perturbation does
not cause a transition to another subspace as these subspaces are locally indistin-
guishable [134]. An occuring error on a physical qubit in the code corresponds
to a gapped excitation of the ground state. This relation paves the way for a self-
correcting mechanism of the quantum code: Coupling the system to a thermal bath
at a very low temperature results in the effort to annihilate emergent excitations
and thereby correct the error. However, a sufficiently large number of excitations
could yield a self-correction onto the ‘wrong’ subspace, that is, a different subspace
than the one on which the excitations occured. In this case, topological order is de-
stroyed by thermal fluctuations. Thus, the information is not expected to be stored
longer than the average time until such an event happens. Obviously, the memory
time depends on the temperature of the bath and the size of the system. In order
to achieve macroscopic memory times, it must hence be ensured that the system
exhibits remnants of topological order even at finite temperature. We will see in
Sec. 11.1.1 out that if excitations are deconfined, topological order does not survive
at finite temperature in the thermodynamic limit. Hence, self-correcting quantum
codes must be designed in a way that their excitations are confined [124, 134].
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9.2. Toric code

In the domain of theoretical many-body physics the intense study of colloquially
dubbed toy models is very popular. Such systems are not designed to accurately
model a real material with respect to all details but to incorporate rather abstract and
idealized assumptions which allow for a thorough and undisturbed investigation of
a special phenomenon. From the point of view of the phenomenon a particularly
suitable toy model may be said to be its “drosophila” — a naming borrowed from
genetics which emphasizes the simplicity and generality of the model. A famous
example is the Ising model describing phase transitions of magnetism and conven-
tional order in classical statistical mechanics.

The celebrated toric code model can veritably be called the drosophila of topo-
logical order. It has been invented by A. Kitaev [10] as an error-correcting quantum
code that enables fault-tolerant quantum computation. This Section is intended to
introduce this model and is organized as follows. First, we define this model in a
condensed matter fashion, i.e. via its Hamiltonian. As this Hamiltonian is a so-
called commuting Pauli Hamiltonian it is equivalent to a stabilizer code defined by
generators. Further, we focus on the ground state of the toric code and discuss its
properties. If we apply an external longitudinal magnetic field to the model, we can
map the resulting Hamiltonian in the ground state to an Ising model in a transverse
field. This mapping is discussed hereafter. Finally, it is possible to formulate a clas-
sical variant of the quantum model and study classical topological order therein.
This approach is covered in the last Subsection.

9.2.1. Definition

The toric code model is defined on a two-dimensional square lattice with spin-half
degrees of freedom located on the edges of the lattice, see Fig. 9.1. Periodic bound-
ary conditions are employed on the lattice leading to a toroidal structure — hence
the name toric code. Vertices (stars) and plaquettes (squares) of the lattice each have
four adjacent spins. We define four-body operators on the vertices and plaquettes
by multiplying one spin component over the four adjacent spins. In our convention,
the plaquette operators are given by Ap = σxp1σ

x
p2
σxp3σ

x
p4

and the vertex operators by
Bv = σzv1σ

z
v2
σzv3σ

z
v4

. The Hamiltonian is then given by the sum of all plaquette and
vertex operators

H = −Jp
∑

p∈P
Ap − Jv

∑

v∈V
Bv, (9.2)

with coupling constants Jp, Jv ≥ 0. The set of all plaquettes (vertices) is denoted by
P (V ), respectively. A pair of two plaquette or two vertex operators in this Hamil-
tonian share either zero or one spin. For mixed pairs of two four-body interactions
either zero or two spins are common to them. For zero overlap, the commutator
between the operator trivially vanishes. Also for a common identical spin compo-
nent, we have [σxi , σ

x
i ] = [σzi , σ

z
i ] = 0. Otherwise, due to the anti-commutation of
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fermionic operators {σzi , σxj } = 0, we have

[σzi σ
z
jσ

z
kσ

z
l , σ

x
kσ

x
l σ

x
mσ

x
n]

= σzi σ
z
j [σ

z
kσ

z
l , σ

x
kσ

x
l ]σxmσ

x
n

= σzi σ
z
j (σzkσ

x
kσ

z
l σ

x
l − σxkσzkσxl σzl )σxmσxn

= σzi σ
z
j (σxkσ

z
kσ

x
l σ

z
l − σxkσzkσxl σzl )σxmσxn

= 0. (9.3)

As all interactions in the Hamiltonian (9.2) consist of Pauli matrices and mutually
commute, it is called a commuting Pauli Hamiltonian. Basic quantum mechanics
tells us that it is possible to construct a basis of the total Hilbert space from the
eigenspaces of local commuting plaquette and vertex operators. Since the Pauli
matrices σx and σz have eigenvalues ±1, it follows for the vertex operators Bv that
they likewise have these two eigenvalues, in particular it is +1 if an even number
of the four associated spins point downwards (in the z-direction) and−1 otherwise.
The same is true for plaquette operators, up to the fact that spin orientations are con-
sidered with respect to the x-direction2. The eigenvalues are eight-fold degenerate
as a result of the number of possibilities to orient the individual spins at a specific
vertex or plaquette in order to have an even or odd total number of equally oriented
spins. We can write down the eigenvectors for the four-body terms in the σz basis.
Denoting a spin up by a lightgray edge and a spin down by a black edge we have
for the eigenspaces of the vertex operator with eigenvalue bv

bv = +1 :
{∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉}

bv = −1 :
{∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉

,
∣∣ 〉}

. (9.4)

The basis of the eigenspaces for an eigenvalue ap of the plaquette operators reads in
superposed notation

ap = ±1 :

{∣∣ 〉
±
∣∣ 〉

√
2

,

∣∣ 〉
±
∣∣ 〉

√
2

,

∣∣ 〉
±
∣∣ 〉

√
2

,

∣∣ 〉
±
∣∣ 〉

√
2

,

∣∣ 〉
±
∣∣ 〉

√
2

,

∣∣ 〉
±
∣∣ 〉

√
2

,

∣∣ 〉
±
∣∣ 〉

√
2

,

∣∣ 〉
±
∣∣ 〉

√
2

}
. (9.5)

A very important consequence of the decomposition of the eigenvalue problem
onto the local interaction is that the eigenvalues the Hamiltonian (9.2) are simply
the sums of the eigenvalues ap and bv for all plaquettes and vertices. It is hence
easy to see, that the Hamiltonian is gapped since the energy levels are separated by
multiples of ∆E = 2 min(Jp, Jv) which corresponds to replacements +1 → −1
for local eigenvalues ap or bv in the sum. Moreover, as no continuous symmetry of
an order parameter can be broken in this system, no gapless Goldstone modes can

2Strictly speaking, this derivation of the eigenvalues for the Bv and Ap uses the statement about
commuting observables again on the local level. Both four-body interactions consist of four mu-
tually commuting single-spin operators which enables the factorization of the eigenvalue prob-
lem.
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Bv

Ap

C

Γ

a) b)

c)

d)

e)

f)

g)

Figure 9.1.: Illustration of the toric code model. Spin degrees of freedom are located on the edges
of a square lattice and can point upwards (empty circles) or downwards (solid circles)
with respect to the σz basis. The interactions of the Hamiltonian (a) act on the four
sites of vertices (red) and plaquettes (blue). In the ground state, only closed loops (b)
of spins down are allowed. At finite temperature, single-spin flips result in pairs of
excited vertices (c) or plaquettes (d) — depending on the basis in which the flip is
considered. Pairs of such defects can be moved apart from each other without exciting
further operators, a procedure represented by non-local string operators Γ (e). So-called
non-contractible winding loops (f) cannot be created or removed by local operations
and identify the ground state manifold. They can be detected by string-like Wilson loop
operators (g). If one changes to the σx basis, the figure objects (f) and (g) switch roles.

emerge. The eigenvectors in Eqs. (9.4) and (9.5) reveal the structure of eigenvectors
of the total system, written in the single-spin σz-basis. To elucidate this we adopt
the string-net concept [120], that is, we refer to an uninterrupted string of edges
carrying a down spin as a loop. A positive local eigenvalue (bv = +1) on a vertex
imposes that a loop does not end at that vertex, whereas the energetically costly
bv = −1 implies the end of a loop at v. The plaquette terms enforce a superposition
between global loop configurations in the σz basis in order for the state to be an
eigenstate of Eq. (9.2). The sign of a plaquette eigenvalues ap, has an effect on the
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9.2. Toric code

relative phase of the superposed configurations, where the phase likewise can be +1
or −1. This insight is of great use for the following two Subsections, in which the
ground state and excitations are discussed respectively.

We note, that the underlying idea of the design which led to Kitaev’s clever
combination of vertex and plaquette terms predates the era of quantum informa-
tion theory and topological order. The degrees of freedom on the edges emerge
from formulating a dual description of a conventional square lattice which has been
used in classical statistical mechanics in order to solve the two-dimensional Ising
model [135]. More generally, this dual description gives rise to a Z2 lattice gauge
theory [136, 137] defined by the existence of a gauge symmetry. By defining clas-
sical variant of the toric code model further below, we reobtain precisely this gauge
theory in a roundabout way.

Finally, we remark that the (quantum) toric code is self-dual under exchange of
σxi ↔ σzi . The dual description can alternatively be obtained by switching plaque-
ttes and vertices, i.e. through shifting the lattice diagonally by half the size of a
plaquette.

9.2.2. Ground state

It is straightforward to derive the ground state of the toric code model from the
above introduction. The Hamiltonian (9.2) takes the lowest possible value, if and
only if all plaquette and vertex operators have eigenvalues ap = bv = 1, ∀p ∈
P, v ∈ V . Its energy is hence Egs = −NpJp − NvJv, where Np (Nv) denotes the
total number of plaquettes (vertices). For the eigenstate, it follows from Eq. (9.4)
that all loops in the configuration must be closed. In addition, Eq. (9.5) forces all
closed-loop configurations which are related to each other by an arbitrary number
of plaquette flips into a superposition with relative phase 1. Note, that plaquette
flips do not violate the closed loops condition. We can write such an eigenstate as

|Ψ〉 =
∑

o∈Li
|o〉 , (9.6)

where Li denotes a set of closed loop configurations linked by plaquette flips. The
subscript anticipates that on a torus, there are pairs of closed-loop configurations
which are not linked in such a way. These have to be associated o two differentLi 6=
Lj . Consider, for example, a single closed loop winding around the periodic lattice
as in Fig. 9.2b. Such a loop cannot be eliminated by applying plaquette flips and the
configuration must hence belong to another set Lj . This argument can be repeated
for single closed loops winding around the other lattice dimension or around both of
them. We hence obtain four different sets which implies a degeneracy of four for the
ground state of the toric code, see Fig. 9.2. Noting that pairs of winding loops can be
annihilated by local plaquette flips, we formulate the distinction between different
ground states in more general terms by their winding number parity. Two closed-
loop configurations belong to the same ground state, if their respective number of
winding loops has the same parity for both lattice dimensions. In order to determine
the winding number parity, so-called Wilson loop operators can be used as shown in
Fig. 9.1. The ground state degeneracy depends on the genus g of the space on which
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the Hamiltonian (9.2) is defined, specifically it is 4g. This value of the degeneracy
can also be obtained by counting the degrees of freedom. A toric code on an L× L
square lattice as N = L2 vertices, N plaquettes and 2N spins. Without constraints
there would be 22N possible spin configurations. However, each of the N vertices
imposes a constraint on the configuration and effectively divides the number of
possible configurations by two, see Eq. (9.4). However, the constraint of the last
vertex considered is already implemented by the surrounding vertices. The same
argument holds for the plaquettes, such that the remaining number of configurations
is 22N−(N−1)−(N−1) = 4.

Another notation of the ground state is based on representatives of the super-
position which forms the ground state. Any configuration can be taken is such a
representative |repi〉 and all other configurations are included by applying all com-
binations of plaquette flips through the σx-operations in Ap, i.e.

|Ψi〉 =

(∏

p∈P

1+ Ap√
2

)
|repi〉 i = 1, . . . , 4. (9.7)

This notation emphasizes that graphic illustrations of configurations of the toric
code solely show one representative but not an eigenstate of the system. Fig. 9.2
depicts four representatives for the distinct degenerate eigenstates.

a) b) c) d)

Figure 9.2.: Graphic illustration of the four-fold degeneracy of the toric code in the string-net picture.
Black edges correspond to spins pointing down. Dashed lines of the lattice indicate
the repetition due to the periodic boundary conditions. Each loop configuration shows
one representative of the corresponding ground state, separated by a different winding
number parity for both lattice dimensions.

The understanding of the ground state of the toric code allows for revisiting the
stabilizer formalism from the previous section. Since the ground state is also an
eigenstate of the local four-body operators and compositions thereof, they can be
said to stabilize the state. We can consider the ground state as a stabilizer code STC

generated by all local plaquette and vertex operators,

STC = 〈Ap1 , Ap2 , . . . , Bv1 , Bv2 , . . .〉. (9.8)

The number of physical qubits of this code is 2L2 for a square lattice of linear di-
mension L. They encode two logical qubits by the four degenerate ground states.
As we will see in the the next Subsection, correctable errors correspond to excita-
tions of the ground state. Such errors can be bit flips which are represented by σx

or phase flips — represented by σz. This approach hints at the equivalence between
commuting Pauli Hamiltonians and the stabilizer formalism.

100



9.2. Toric code

9.2.3. Excitations

An excitation of the ground state of the toric code is characterized by a finite num-
ber of vertex or plaquette operators in Eq. (9.2) having an eigenvalue of −1. The
simplest example of such an excitation is a flip of a single spin in its σz basis, see
Fig. 9.1e. It results in a violation of the closed loop condition of the ground state
at the two vertices that share the pertaining spin. Hence, the two corresponding
vertex operators measure a value of−1 which is why we dub them a pair of electric
charges. We conclude that these excitations always emerge pairwise and the energy
gap is ∆E = 4Jv. A single flip of one vertex eigenvalue bv would not yield an
eigenstate of the Hamiltonian (9.2). Albeit being less figurative in the σz basis for
the total configurations, a flip of a single spin in its σx basis is completely equivalent
and causes the two adjacent plaquettes to flip their eigenvalue. The resulting total
state can be understood in the representation (9.7) where it corresponds to a minus
sign in the two factors (1−Ap) of the relevant plaquette operators. Such excitations
are refered to as magnetic vortices.

A very important observation about the relative position of a pair of excitations
is that they can be moved away from each other without applying energy. To see
this, consider flipping a spin shared by an already excited and a non-excited vertex.
The energy difference to the state after this flip is 2Jp − 2Jp = 0 and the excitation
has effectively been moved. Hence, the excitations are deconfined. Together with
the notion that such spin flips are obtained by applying the σx operator to the spin
we can find an alternative creation of excitations, namely by string operators either
for electric charges (e) or for magnetic vortices (m)

S
(e)
Γ =

∏

i∈Γ

σxi and S
(m)
Γ =

∏

i∈Γ

σzi , (9.9)

where Γ describes some path in the lattice, see Fig. 9.1. The excitations are located
at the end points of the path. An annihilation of such a pair of excitations is achieved
by a string operator on an arbitrary path Γ′ that links the same endpoints. We note,
that such string operators are non-local objects and can also be used to engender a
transition between different ground states if their path winds around the lattice.

From the perspective of quantum stabilizer codes, excitations are errors of the
code which can occur in a quantum circuit. In the toric code, self-correction is
not possible at finite temperatures but we can apply an active error correction pro-
tocol [129]. The syndrome measurement can safely by performed by measuring
all plaquette Ap and vertex operators Bv since they commute with the Hamilto-
nian (9.2). Errors will be detected since those four-body terms which yield a −1
in this measurement are defective. An appropriate string operator as in Eq. (9.9)
can be calculated by the decoding software and annihilates the pair of errors. Ob-
viously, there are many possible paths to connect the excitations. The application
of two equivalent string operators could differ in the resulting winding number par-
ity. If the decoder takes the shortest possible path for the error-correction, any pair
of excitations which has split over a distance larger than half the lattice size will
be corrected to the ‘wrong’ logical qubit state, e.g. to another ground state. We
conclude that the ability to logically correct emergent errors in the two-dimensional
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toric code by such a protocol is limited, since the defects are deconfined, i.e. they
can have an arbitrary distance.

Regarding the statistics of the excitations of both types e and m we can con-
vince ourselves that they both represent hard-core bosons if separately considered.
This can be understood from the fact that two string operators of the same type
commute with each other, [S

(e)
Γ , S

(e)
Γ′ ] = [S

(m)
Γ , S

(m)
Γ′ ] = 0. Hence, an exchange of

two excitations of the same kind does not induce a change in the phase of the total
state qualifying them as bosonic3. The situation is different if we want to swap an

a)

σz

σx

b)

σz

σx

Figure 9.3.: Example of braiding between a charge excitation (red shaded vertices) and a flux exci-
tation (blue shaded plaquettes). Initially (a) two pairs of either excitation are created via
string operators of the corresponding Pauli matrices. Braiding (b) is effected by moving
one charge around a flux and back to its original position. The spin configuration is the
same before and after the braiding but due to the combined action exerted on one spin
(green ellipse) it acquires a phase of −1.

e with an m excitation. This operation cannot be carried out exactly as plaquettes
and vertices are not located at the same places. However, we can consider a dou-
ble exchange thereof which is topologically equivalent to moving an electric charge
around a magnetic vortex (or vice versa) — also refered to as braiding. As depicted
in Fig. 9.3 this movement corresponds to applying a closed-string operator enclos-
ing one magnetic vortex. The procedure results in a phase of −1 acquired by the
total state. To see this, we note that precisely one spin is affected by two string
operators — the open string creating the pair of magnetic vortices and the closed
string performing the double exchange. The first action on the ground state is a σz

operator, yielding the initial state before the braiding |init〉 = σzi |ΨGS〉. Using the
anti-commutation relation {σxi , σzi } = 0 we obtain after applying the closed string
operator for the closed string C which contains σxi

S
(e)
C |init〉 = S

(e)
C σzi |ΨGS〉 = −σzi S(e)

C |ΨGS〉 = − |init〉 , (9.10)

because the closed string operator commutes with the Hamiltonian and therefore
stabilizes the ground state. Thus, we get the total phase of −1 for the double

3Since no two excitations can be located at the same four-body operator they can be described as
hard-core bosons.
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exchange. The relative phase Rem of a single exchange e ←→ m must satisfy
R2

em = −1 which implies Rem = ±i — being neither bosonic nor fermionic. We
conclude that the quasiparticles corresponding to the electric and magnetic excita-
tions are so-called mutual anyons4, i.e., they can have any statistics with |R| = 1.
The fact that braiding of anyonic quasiparticles can produce non-trivial phases is
a characteristic feature of anyons and opens up an approach to not only store but
also perform quantum computations on the encoded qubit [10, 138]. However, this
feature immediately disqualifies the two-dimensional toric code model as a quan-
tum memory: Suppose, we have a pair of electric defects in our configuration. Two
different Wilson-loop operators in the same spatial diraction with one of the de-
fects between them read off different winding number parities which means that
the stored information is inconsistent, i.e. lost [139]. This braiding phenomenon
is unique to two-dimensional systems as in higher dimensions, the paths of quasi-
particles winding around each other can smoothly be transformed into non-braiding
paths.

9.2.4. Loop tension

Energetic excitations cause the system to leave the ground state representing the
code space. Another such violation of the code can be induced by external pertur-
bations of the Hamiltonian (9.2). We discuss a longitudinal magnetic field in the σz

direction leading to a modified Hamiltonian

H = −Jp
∑

p∈P
Ap − Jv

∑

v∈V
Bv − hz

∑

i

σzi , (9.11)

for a field strength h ≥ 0. Due to the duality of plaquettes and vertices in the
Hamiltonian, a field hx in the σx direction would represent an equivalent perturba-
tion. This problem has been considered in Ref. [140]. The effect of such an external
field at low temperatures is that loops of spins pointing down with respect to the σz

direction are energetically hindered. Upon increasing the field strengths, such loops
will hence be further and further contracted which is why we can also dub h as the
loop tension.

The ground state of the Hamiltonian (9.11) can be mapped onto a two-dimensional
Ising model in a transverse field on a square lattice if we consider a large charge
gap, i.e. Jv � Jp. Charge excitations are hence ‘frozen out’ such that only closed
loops of σz spins up are possible. These loops are mapped to domain walls in the
corresponding Ising model. To this end, we place Ising degrees of freedom — la-
beled by µx/zi — in the centers of the plaquettes and choose their value according
to µziµ

z
j = σzk, where k is the edge in the toric code model separating the Ising

sites i and j. Every plaquette term in Hamiltonian (9.11) is represented by the σx

component µxp of the Ising spins since flipping a whole plaquette in the toric code
corresponds to flipping a single spin in the Ising model. The Hamiltonian for the

4In the special case, where a double exchange yields an ‘ordinary’ statistics of ±1 this kind of
quasiparticles are dubbed mutual semions.
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Ising model in a transverse field reads

HTFIM = −J (Is)
∑

〈i,j〉
µziµ

z
j − h(Is)

x

∑

i

µxi , (9.12)

Figure 9.4.: Mapping between the toric code
model (edges) with a longitudinal
loop tension and the two-dimensional
Ising model (green spins) in a trans-
verse field. Loops in the toric code
(thick black edges) are translated to
domain walls in the Ising model. Two
neighboring Ising spins µi, µj have
opposite orientation, if the spin on
the toric code edge separating them
points down.

which reveals that loop tension and
interaction terms have switched roles,
J (Is) = hz and h(Is)

x = Jp. The map-
ping is depicted in Fig. 9.4. It is clear
that one specific toric code configura-
tion is represented by two Ising con-
figurations related by a global flip of
all Ising spins. Hence, the Z2 symme-
try of the Ising model is not present in
the toric code. We note that only the
ground state without odd winding num-
bers is captured by this mapping. Sepa-
rate mappings would have to be defined
for the other three ground states of the
toric code model by introducing anti-
periodic boundary conditions in the ap-
propriate lattice dimension(s). Hence,
as expected, the mapped Ising model
does not contain topological order5.

Upon increasing h(Is)
x , the Ising

model in a transverse field undergoes
a quantum phase transition from a fer-
romagnetically ordered phase of the σz

spins to a paramagnetic phase which is
polarized with respect to the σx basis. This transition occurs at a critical ratio
(J (Is)/h(Is)

x )c = 0.65695(2) determined in Ref. [141]. Ferromagnetic order in the
Ising model corresponds to the absence of spin down loops in the toric code model.
This phase is hence trivial in the toric code, that is, polarized to spin up. Its ground
state is not degenerate as a state with a single winding loop would have an energy
difference of at least ∆E = 2Lhz to the ground state, L being the linear size of the
system. The disordered phase of the Ising model, however, translates to a loopgas
of the toric code — which is the topologically ordered phase. Setting h(Is)

x = Jp = 1
for simplicity, we can sketch the phase transition in the one-dimensional phase dia-
gram shown in Fig. 9.5. The two-dimensional Ising model with a transverse field is
equivalent to a 3D classical Ising model with anisotropic interaction in one dimen-
sion [142]. Thus, a full characterization of the discussed phase transition is known
in terms of a local order parameter and critical exponents. Using topological en-
tanglement entropies, this phase transition6 can be complementary studied from the
perspective of topological order.

5One can argue that topological order is hidden in the domain walls of the Ising configuration.
6To avoid confusion, we note that this phase transition is not what is meant by topological phase

transitions. The latter are transitions between different topologically ordered phases but not to
topologically trivial phases like in our case.
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We note that more general forms for the external field have been considered.
For the toric code in a two-component parallel field (hx, hz) a phase diagram in
the hx-hz-plane has been obtained in Ref. [143]. Beyond a topologically ordered

J (Is)

ferromagnetic orderparamagnet

h
(TC)
z

spin polarized phasetopological order

Figure 9.5.: One-dimensional phase diagram for the trans-
verse field Ising model (top arrow) upon in-
creasing the coupling J (Is) at fixed transverse
field. The same transition occurs in the mapped
toric code (bottom arrow) upon increasing the
external field h(TC)

z .

phase for low-hx and low-hz
there are two other phases —
one for low-hx and large-hz
and vice versa. These phases
are characterized by spin-flip
excitations either in the σx or
the σz direction. They are sep-
arated by a first-order transition
line at hx = hz ending in a crit-
ical point. A transverse exter-
nal field (σy) has been consid-
ered in Ref. [144]. Its presence
deprives the Hamiltonian of its solvability via local eigenspaces of the four-body
operators since they no longer commute with the Hamiltonian.

9.2.5. Classical variant

The fact that the ground state is exactly solvable and can be represented in the prod-
uct basis of σz eigenstates of single degrees of freedom opens up the possibility to
define a classical analogue of the toric code model [122]. Moreover, the topological
nature of the ground state can be perceived in the entirety of allowed closed-loop
states in the σz representation. It is hence obvious that a classical perspective like-
wise reflects some sort of topological order.

We obtain the classical toric code model by taking Ising spins σi = ±1 as our
classical degrees of freedom instead of quantum spins. The ground state condition
of closed loops is translated to a hard constraint on the allowed spin configurations
of the classical spins. Additionally, the superposition of the ground state, Eq. (9.6),
induced by the σx plaquette terms in the Hamiltonian (9.2) is accounted for by
defining a statistical mechanics ensemble of all allowed loop states — all equally
weighted. In this ensemble, we do not distinguish between loop states with different
winding number parities such that the classical partition function is simply given by

Z =
∑

o∈L
1, (9.13)

where L denotes the set of all closed-loop configurations of Ising spins. Neverthe-
less, this ensemble is partitioned into the same four sectors as the ground state of
the quantum toric code. The sectors are separated by the impossibility of a transi-
tion between them by local changes of the configuration — topological ergodicity
breaking [122]. In this classical adaptation we have directly translated the vertex
operators σzv1σ

z
v2
σzv3σ

z
v4
→ σv1σv2σv3σv4 at T = 0. Alternatively, we could have

done this procedure with the plaquette operators which yields a completely equiv-
alent classical model due to the self-duality of the quantum toric code. Sticking
with our choice, we further find that charge excitations of the quantum system are
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representable by extending the ensemble to configurations s ∈ S with open strings.
We assign variable weights to these configurations according to

w(s) = exp(−βJvNe), (9.14)

where Ne is the (even) number of charges in the configuration s. The other type of
excitations — magnetic vortices — is not captured by our classical variant. Remem-
bering that these excitations are represented in the quantum case by minus signs in
Eq. (9.6), i.e. by relative phases of the configurations written in the σz represen-
tation, we understand that we cannot keep them when going to the classical toric
code: We cannot assign negative weights to configurations in a statistical mechan-
ics ensemble. Hence, in a certain way, the classical variant reflects ‘half’ of the
quantum case (the other half exhibiting the same physics). Together with the real-
ization [11] that each of the two types of excitations is responsible for half of the
topological entanglement entropy S(quantum)

topo in the ground state, we conclude for the
classical variant S(classical)

topo = S
(quantum)
topo /2. We can use the classical variant to study

the finite-temperature behaviour of Stopo.
Applying a finite loop tension h to the classical toric code model at zero temper-

ature, leads to a Hamiltonian

H(cl) = −Jv
∑

v

σv1σv2σv3σv4 − h
∑

i

σi. (9.15)

As any finite temperature T > 0 would immediately polarize the resulting model
we exclude the temperature from the weights in our ensemble. In this scenario,
again only closed loops are allowed but this time with variable weights

w(o) = exp(−hmo), (9.16)

where mo is the total loop length of all loops consisting of spins down. This
choice implicitely assumes a non-zero temperature T with Jv � T � h such
that the constraint to closed loops is implemented but the loop tension does not
freeze the state in a polarized configuration. This model can be mapped in the
same manner as shown in Fig. 9.4 to a two-dimensional classical Ising model
at finite (inverse) temperature β without perturbations. We have the analogies
h(TC) ↔ J (Ising) and m(TC)

o ↔ E(Ising). Again, the mapping is restricted to the sector
of the ensemble which has an even parity for the winding number in both lattice
dimensions. The mapped Ising model is known [135] to have a phase transition at
βc = ln

(
1 +
√

2
)
/2 ≈ 0.44069 which maps directly to the critical loop tension hc

for the classical toric code model. This mapping allows us to investigate this known
phase transition in terms of topological entanglement entropies of its dual system.

9.3. Three-dimensional ‘toric’ code
When defining a three-dimensional variant of the toric code model we can straight-
forwardly adapt an appropriate lattice structure — a simple cubic lattice with de-
grees of freedom located on the edges. A suitable Hamiltonian on an lattice of size
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N = L× L× L has been defined by Castelnovo and Chamon [139] and — written
in terms of vertices and plaquettes — is identical to the two-dimensional Hamilto-
nian (9.2). However, theN vertices have six spins in this case and the 3N plaquettes
exist in three different orientations according to the three planes 〈xy〉, 〈xz〉, 〈yz〉,
see Fig. 9.6. The Hamiltonian hence reads

H = −Jp
∑

e∈{〈xy〉,
〈xz〉,〈yz〉}

∑

p∈P
A(e)
p − Jv

∑

v∈V
Bv, (9.17)

with A(e)
p = σxp1σ

x
p2
σxp3σ

x
p4

and Bv = σzv1σ
z
v2
σzv3σ

z
v4
σzv5σ

z
v6
.

We employ periodic boundary conditions in all dimensions. Just like in the two-
dimensional case all vertex and plaquette operators commute and their quantum
numbers are ±1. The states of the total system can be constructed using the local
eigenstates of these operators and represented in a superposition of configurations
in the σz eigenbasis. In terms of constraints on the possible states established by the
multi-body operators A(e)

p and Bv once their quantum numbers are fixed, we count
N − 1 independent vertex operators since the quanum number of the last one is
already determined by all others. The interdependency of the plaquette operators is
higher: The product of the six plaquette operators around every cube must be unity
which introduces one constraint per cube except for the last cube which is satisfied
through the others. In addition, the remaining 3N−(N−1) plaquette operators must
be further reduced by three due to the global constraints that all plaquette operators
belonging to one plane (d = x, y, z) likewise multiply to unity. Hence, there are
2N − 2 independent plaquette operators in the three-dimensional toric code.

The ground state is given by setting all vertex and plaquette operator eigenvalues
to 1. This results in closed σz loops enforced by the vertex terms in possible spin
configurations. Superpositions thereof are required to satisfy the plaquette terms
of the Hamiltonian (9.17). The ground state degeneracy is 23 which can be under-
stood from the presence or absence of non-contractible loops winding around one
of the three lattice directions. Alternatively, counting the remaining possible states
of the 3N degrees of freedom also yields 23N−(N−1)−(2N−2) = 8. The detection
of the winding number parity determining the ground state is enabled by non-local
winding plane operators, see Fig. 9.6. In the σx basis, the characterization of the de-
generate ground states is ‘dual’ to the picture in the σz basis. To see this, note that a
common flip of all (equally oriented) edges in a plane of the lattice does not change
the quantum number of any plaquette operator. This operation, however, cannot be
obtained by a series of local operations leaving the Hamiltonian invariant — vertex
flips. Thus, the presence or absence of winding planes of σx spins separates the
eight degenerate ground states and they are identified by winding loops.

We have already seen that in the ground state the global structures (or ‘patterns’
in the sense of Sec. 8.1) of the spin configurations represented in the σz basis are
closed loops along edges of the lattice. These loops can be created and annihi-
lated by applying the plaquette terms A(e)

p to a spin configuration. In the σx basis,
energy-preserving modifications of the spin configuration are obtained by applying
the vertex operators Bv. This results in flipping all six spins at the corresponding
vertex. Hence, the underlying structure in this basis are membranes of spins having
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Bv

A
(x

z)

p

A (xy)p

A(yz)
p

Figure 9.6.: Illustration of the three-dimensional toric code model. Vertex operators (red) are prod-
ucts over the σz component of six edges. Plaquettes (blue) appear in three different
orientations and each are products over four σx components. The vertex constraints
gives rise to closed loops, among them winding loops (yellow). The green edges repre-
sent Wilson planes for the identification of the topological sector from winding loops. At
the same time, if interpreted in the σx basis, they depict the winding membranes of the
plaquette constraints. Excitations of the plaquettes (blue shaded squares) result in loop-
like objects if they are connected by a line which orthogonally crosses the plaquettes.
Point-like excitations of the vertex operators Bp are not shown.

the same (x-)orientation.

Beyond the ground state, energetic excitations of the Hamiltonian (9.17) come
in two forms: Pairs of vertices can have a quantum number−1 which are connected
by an open string of equally-oriented spins in the σz basis. These excitations are
point-like and can be created by single-spin flips and moved apart from each other
without the investment of additional energy. As a consequence, such a pair of ex-
citations can move around the lattice at any finite temperature, mutually annihilate
and thereby leave the state in another ground state. Hence, the point-like excitations
are deconfined. This is different for the excitation of plaquette operators. A single-
spin flip of a σx-spin (effected by the application of a σz spin operator) switches
the quantum numbers of the four plaquettes that this spin is part of. Moreover,
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9.3. Three-dimensional ‘toric’ code

the excited plaquettes can only be moved apart at the cost of additional plaquette
flips, such that flipped plaquettes fringe the trajectory of the separation. As seen
in Fig. 9.6, the structure of these excitations is hence loop-like and the excitations
are confined, i.e. the loops tend to contract at lowering the energy. In contrast
to the point-like excitations, the emergence of a single winding plane as a result
of increasing the loop-like excitation is energetically suppressed at sufficiently low
but finite temperature. This gives rise to a survival of topological order above zero
temperature [139].

9.3.1. Classical variants
Two different classical variants can be formulated from Eq. (9.17). Either the pla-
quette or the vertex terms are written in terms of Ising spins σi = ±1, yielding

H (cl)
(plaq) =− Jp

∑

p∈P
σp1σp2σp3σp4 , (9.18)

H (cl)
(vert) =− Jv

∑

v∈V
σv1σv2σv3σv4σv5σv6 . (9.19)

Figure 9.7.: Mapping of the three-dimensional
toric code model to a three-
dimensional Ising model with spins
(green) located at the vertices. The
energetic cost of a toric code spin
oriented against the external field
(black edges) corresponds to a
domain wall (blue surfaces) in the
Ising model.

The respective abandoned interaction
term is translated into the statistical en-
semble where all allowed spin configu-
rations have the same weight, in com-
plete analogy with the two-dimensional
case, see above. A finite temperature
T > 0 in the classical systems intro-
duces point-like (loop-like) excitations
in the spin configurations for the vertex
(plaquette) variant, respectively. Using
the classical topological entropy (8.3),
we can investigate whether topological
order is present above zero tempera-
ture. The classical plaquette variant is
a known 3d gauge Ising model [145] at
finite temperature, which has a phase
transition at βc ≈ 0.76141. We hence
expect the classical topological entropy
to leave a signature at this critical in-
verse temperature.

Further, we have discussed above
that the plaquette terms impose a membrane structure on the spin configurations.
This insight suggest to identify such a toric code configuration with a three-
dimensional Ising model configuration via a mapping from membrane surfaces to
domain walls of Ising spins. The Ising spins are located at the vertices of the three-
dimensional lattice, see Fig. 9.7. The equivalence of all possible membranes in the
ground state of the toric code corresponds to the Ising model at infinite temperature,
that is, β(Is) = 0. Hence, it is worthwhile to consider a modified classical plaquette
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variant of the toric code which exhibits an external magnetic field, appropriately
dubbed membrane tension h,

H (cl)
(plaq) = −Jp

∑

p∈P
σp1σp2σp3σp4 − h

∑

i

σi. (9.20)

Assuming Jp � h, we construct the statistical mechanics ensemble for Eq. (9.20)
with Boltzmann weights w(m) = exp(−hmm), where m represents a closed-
membrane configuration and mm is the associated total magnetization. In the map-
ping to the three-dimensional Ising model we can identify a finite temperature with
the membrane tension, β(Is) ↔ h. The three-dimensional Ising model has a phase
transition at β(Is)

c ≈ 0.221656(3), determined in Ref. [146]. Accordingly, the Hamil-
tonian (9.20) undergoes a phase transition for hc = β(Is)

c from the topologically
ordered low-h phase to a trivial polarized phase.

We can easily add one more level of complexity in the Hamiltonian (9.20) by
making the membrane tension h anisotropic, i.e. dependent on the orientation of
the edge in the toric code model. In particular, we apply a different membrane
tension hz on the spins on the vertical edges in the three-dimensional toric code than
on those spins in the x-y-plane. The motivation for this is that the corresponding
mapped Ising model has anisotropic interactions and represents at the same time
the quantum-to-classical mapping of a two-dimensional (quantum) Ising model in
a transverse field. As we have seen above in Eq. (9.12), this model then again is
equivalent to the two-dimensional toric code model at the ground state with a finite
loop tension, Eq. (9.11). To sum up the series of mappings we have:

2D toric code
with loop tension ←→

2D Ising model
with transverse field

←→ 3D Ising model
with anisotropic interaction ←→

3D classical toric code
with anisotropic membrane tension

Since the toric code models in these mappings both exhibit topological order, we can
investigate the quantum phase transition of the two-dimensional toric code model
with a finite loop tension using the topological entropy analysis in a classical three-
dimensional toric code. To do so, we adapt the quantum-to-classical mapping of the
Ising model [142] to our needs. The lattice spacing in the additional (imaginary-
time) dimension of size Lτ of the classical system is ∆τ = Lτ/β. We obtain for a
loop tension h2D-TC in the two-dimensional toric code

h3D-TC
xy =

1

2
∆τh2D-TC and h3D-TC

z = −1

2
ln tanh(∆τ) (9.21)

for the classical three-dimensional toric code with anisotropic membrane tension.
We further use the simplification employed in Ref. [140], namely fixing ∆τ ≈
0.76141 which satisfies h3D-TC

xy = h3D-TC
z = β(Is)

c ≈ 0.221656, such that the critical
behavior is represented by the isotropic case. The resulting critical loop tension is
slightly below the exact value of the transverse field Ising model, h2D-TC ≈ 0.5822 <
0.65695 but the long-distance physics is the same [140]. We can hence tune h2D-TC

through the quantum phase transition by means of the correspondence in Eq. (9.21)
using a classical system and effectively tune h3D-TC

xy .
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9.4. X-cube code

We present another commuting Pauli Hamiltonian defined on the same three-dimen-
sional lattice as before — a simple cubic lattice with degrees of freedom located on
the edges. The X-cube code has been proposed by Vijay et al. [147] and involves
four-body vertex terms B(e)

v of σz operators coming in three different orientations
as well as twelve-body cube terms Ac of σx operators, see Fig. 9.8. Its Hamiltonian
is hence given by

H = −Jc
∑

c∈C
Ac − Jv

∑

e∈{〈xy〉,
〈xz〉,〈yz〉}

∑

v∈V
B(e)
v , (9.22)

with Ac =
∏

i∈∂c
σxi and B(e)

v = σzv1σ
z
v2
σzv3σ

z
v4
,

b

b

b

bb
b

b

b

b

b
b

b

b

b
b

Figure 9.8.: The X-cube model is defined on a cu-
bic lattice with spin-half degrees of
freedom located on the edges. It ex-
hibits a cube interaction term (yel-
low) multiplying the twelve σx com-
ponents of the spins and three differ-
ently oriented vertex terms (blue, red,
green) of four σz components. Flip-
ping single spin excites four cubes
(vertices), if the flip is considered in
the σx (σz) basis, respectively.

where C is the set of all cubes in the lat-
tice and ∂c denotes the twelve spins be-
longing to cube c. We observe that any
pair of vertex and cube operators share
either zero or two spins and hence com-
mute. Exactly as in the previously dis-
cussed models it is possible to solve the
X-cube in terms of eigenvalues ±1 and
eigenstates of the local multi-body op-
erators. A classical variant using Ising
spins can be derived from either type of
operators and considered separately —
yielding a cube and a vertex variant.

In the following consideration of the
excitations of the X-cube model we
adopt the bisected classical perspective.
For simplicity, let us start from the
ground state, i.e. all cubes or vertices
are in their +1 state. At first, we see that
flipping a single spin in the cube variant
induces an excitation of the four cubes
that the spin is part of. The four excited
cubes can be moved apart by flipping
additional spins that belong to at least one of them. Here, we can distinguish be-
tween energetically neutral movements (exciting two and relaxing two cubes) and
those accompanied by a net change of the energy (exciting three and relaxing one
cube or vice versa). It is possible to move pairs of excited cubes around the periodic
lattice and annihilate them — thereby creating a winding loop of spins down. In ad-
dition, the cube variant also allows for winding planes which have exactly the same
form as the green edges in Fig. 9.6. This occurrence of both non-contractible loops
and planes for the cube term is a remarkable feature of the X-cube model. In the
vertex variant, a single spin flip likewise switches the four corresponding vertices.

111



9. Quantum error-correcting codes

Moving them pairwise apart without additional energy is possible but only along
one axis of the lattice. ‘Turnings’ of such strings leave behind a pair of excited
vertices at the resulting corner of the string, which implies a change in the energy
of the string.

We conclude that the structure of the excitations of the X-cube model is richer
than in the three-dimensional toric code discussed above. However, the fact that the
topological sectors of the σx basis have to be read out by string operators disqualifies
the X-cube model to be a self-correcting quantum memory according to the no-go
theorem [148].

9.5. Cubic code

i j

k l

m n

o p

m n

o p
i j

k l

Figure 9.9.: Representation of the cubic code by Haah. Each cube dis-
plays on of the eight-body interactions. The two upper-
case letters at every corner of the cube denote the Pauli
matrix for the σi (left letter) and the ρi (right letter) spin
type. I is the identity matrix, i.e. the respective spin does
not show up in the interaction. The blue letters label the
indices with respect to the shown cube c used in the ex-
plicit Hamiltonian formulation (9.23).

An attempt to design
a self-correcting quan-
tum memory in three
dimension has been
made by Haah [149]
who defined a stabi-
lizer code which does
not exhibit string logi-
cal operators such that
a no-go theorem [148]
is not applicable. We
introduce this cubic
code model very briefly
and refer to Refs. [125,
134, 147] for a more
detailed discussion re-
garding its (un)ability

to be a self-correcting quantum memory.
The cubic code is defined on a regular cubic lattice with two spin-half degrees

of freedom (σi, ρi) located at every vertex. Its Hamiltonian consists of one eight-
body operator of σx and one of σz matrices and can be sketched as in Fig. 9.9. This
representation translates to

H = −J1

∑

c∈C
σzi σ

z
jσ

z
l σ

z
nρ

z
jρ
z
kρ

z
mρ

z
p − J2

∑

c∈C
σxi σ

x
l σ

x
nσ

x
oρ

x
kρ

x
mρ

x
oρ

x
p , (9.23)

where the indices of the Pauli operators follow from setting each cube c to the one
shown in Fig. 9.9.

In contrast to the previously discussed models, the ground state degeneracy g(L)
of the cubic code strongly depends on the linear system size L of the lattice. We
have g(L) = 2k(L) for the number of encoded qubits k(L) in the model

k(L) = 2
[
1− 2q2 + 2r+1(q2 + 12q15 + 60q63)

]
,

where r is the largest integer such that 2r divides L and qn(L) is the divisibility
function (1 if n divides L and zero otherwise) [149]. Obviously, any odd L has the
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lowest possible degeneracy of 22, whereas if L is a power of two, the degeneracy is
large (compared to L), see Tab. 9.1.

L 2 3 4 5 6 7 8 9 10 11 12
g(L) 64 4 16,384 4 64 4 1,073,741,824 4 64 4 16,384

Table 9.1.: Degeneracies of the ground state of the cubic code for the system sizes L ≤ 12.
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10. Monte Carlo approach
The determination of expectation values of observables in a statistical mechanics
ensemble in general implies the computation of a thermal average and the corre-
sponding partition function. For discrete lattice systems, such an average is simply
a sum over the usually very large configuration space. Often, the exact calcula-
tion of the sum is computationally inaccessible within an acceptable time due to the
sheer multitude of summands. Monte Carlo simulations constitute an approximative
method to this endeavor which estimates the thermal average from a significantly
smaller subset of configurations carefully selected such that they adequately repre-
sent the total configuration space. The selection of configurations is carried out in
a sequential way via a Markov chain of configurations — a random process gen-
erated on a computer by (pseudo)random numbers. For every visited configuration
in the Markov chain the observable of interest is measured. Finally, the statistical
average of these measurements is computed and represents the simulation result of
the physical observable.

In this Chapter, we present the Monte Carlo approach that we employ in order to
compute the specific heat and the topological Rényi entropies of the classical code
models introduced in the previous Chapter. We first discuss in Sec. 10.1 how the
two quantities can be measured and how the inevitable replica trick is implemented.
After having chosen an appropriate representation of the configuration on the com-
puter, a major challenge in the conception of a Monte Carlo algorithm is to design
an update scheme, that is, a recipe for the proposal of a new configuration to be
adopted next in the Markov chain. In Sec. 10.2 we briefly introduce conditions on
this update before turning to the discussion of various forms — of both local and
global nature — specifically adapted to the codes and to the replicated system.

10.1. Representation and measurement
We first explain how the specific heat can be obtained using local energy mea-
surements on the original lattice of the code models. Subsequently, we turn to the
topological entropies, which are non-local concepts. Their measurement is more
complex and requires resorting to partition functions incorporating the replica trick
(see Section 2.2.2.1). Having modified the lattice appropriately we clarify how the
resulting partition function is measured. Finally, we discuss addition schemes to
extract the constant correction γ of the Rényi entropies.

10.1.1. Specific heat
Continuous phase transitions in the Landau paradigm are manifested in a universal
divergence of the specific heat, defined as Cv = ∂〈E〉/∂T . Therefore, we are
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interested in measuring this quantity in the finite-temperature investigations of our
models. A brute force approach to this endeavor would be to measure the energy
E for a dense range of temperatures in a simple1 representation of the model and
numerically perform the above derivative. A more direct measurement is enabled
by using 〈E〉 = −∂ lnZ/∂β and observing

Cv =− β2∂〈E〉
∂β

=β2∂
2 lnZ

∂β2

=β2

[
1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2
]

=β2
(
〈E2〉 − 〈E〉2

)
. (10.1)

Hence, it is sufficient to measure E and E2 in the Monte Carlo simulation to ob-
tain the specific heat. In practice, we compute the expectation value of Cv and its
statistical error from the Monte Carlo data using bootstrapping2.

10.1.2. Topological entropy

The approximative computation of the classical Rényi entropies with α = 2, defined
in Eq. (8.7), is possible without explicitly determining all subsystem probabilities
pA of the states. To this end, two obstacles have to be overcome. First, the entropies
are not thermally weighted averages of an observable but sums of the probabilities
(weights) alone. As we will see below these sums can be turned into the partition
function of a modified system, via a classical variant of the replica trick. This resort
entails the second obstacle, namely that Monte Carlo simulations cannot access
partition functions directly. However, a thermodynamic integration from energy
measurements can recover the partition function. Finally, we have to extract the
constant contribution from the Rényi entropy. The general strategy how this is done
has been discussed in Sec. 8.2. In this Section, we will upgrade the procedure to the
three-dimensional cases.

10.1.2.1. Replica trick

For classical Rényi entropies of integer order α, the replica trick (Sec. 2.2.2.1) is
conceptually simpler than for the quantum case. Its adaptation has been worked out
in Ref. [123]. Taking α = 2, it is implemented by considering two copies of the
system and identifying all degrees of freedom in subsystem A, see Fig. 10.1. As
a consequence, a local change of the configuration in subsystem A induces twice
the energetic or magnetic difference than the same change in subsystem B. To put

1By ‘simple’ we mean the absence of any replica trick related modifications of the model.
2The resampling technique of bootstrapping [150] simply generates N normal distributed samples

ofE andE2 based on the mean and variance returned by the Monte Carlo simulation. N samples
of the specific heat are then computed using Eq. (10.1) and all energy samples. The mean and
variance of this set of specific heat samples is taken as our measurement result.
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it differently, subsystem A is effectively held at twice the inverse temperature β
or loop tension h considered. The partition function associated with this system is
denoted byZ[A,α, β] orZ[A,α, h] and together with the ordinary partition function
Z of the unaltered system, we obtain the Rényi entropy as in Eq. (2.8). The imposed
synchronization of the spins in subsystem A entails possible complications for all
Monte Carlo updates in closed-loop states since they may affect spins in both parts.

Figure 10.1.: Representation of the replicated systems on which the modified partition function is
defined. In the depicted case of α = 2, we have two copies of the system. The degrees
of freedom in part B are independent over the replicas, while those in part A have to
be the same.

10.1.2.2. Thermodynamic integration

The replica trick transfers the problem of computing the Rényi entropies to the
computation of partition functions. As pointed out, they are not directly accessible
in a Monte Carlo measurement. However, thanks to the previously used identity
〈E〉 = −∂ lnZ/∂β, we can perform a thermodynamic integration [27] over β to
obtain lnZ for finite temperature studies. We write the Rényi entropies as

Sα(A) =
1

1− α [− lnZ[A,α, β] + α lnZ(β)]

=
1

1− α


lnZ[A,α, 0] +

β∫

0

〈E〉A,β′dβ′ − α lnZ(0)− α
β∫

0

〈E〉0,β′dβ′

 .

(10.2)

Hence, we can measure the energy in our Monte Carlo simulations for a suffi-
ciently dense range of inverse temperatures β and numerically perform the inte-
gration. Additionally, the knowledge of the Rényi entropy at infinite temperature,
Sα(A)

∣∣
β=0

= (− lnZ[A,α, 0] + α lnZ(0))/(1− α) is necessary in order to obtain
our finite temperature values of Sα(A). This is in general not a serious issue since
the entropy mostly vanishes either for β = 0 or for β = ∞. In the latter case
Sα(A)

∣∣
β=0

can be reverse engineered by performing the integration with an initial
guess and subsequently adapting it such that the data for large β approach zero.

The thermodynamic integration for the cases where we consider the behavior for
finite isotropic loop tension is completely analogue. We have 〈m〉 = −∂ lnZ/∂h
such that we simply have to replace the energy E by the magnetization m and
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perform the integration over a range of loop tensions h. A special situation arises
for anisotropic loop tensions, i.e. hx = hy 6= hz, as considered in Eq. (9.21). The
derivative of lnZ with respective to the parameter hx, which we want to manipulate,
only affects one part of the Boltzmann weights exp(−hm) = exp[−hx(mx+my)−
hzmz]. However, the unaffected part exp[−hzmz] is not necessarily a constant over
the range of values for hx and hence needs to be considered for a computation of
Z. We therefore have to carry out simulations for a range of hz values as well, such
that we can use

∂2 lnZ

∂hz∂hx
= − ∂

∂hz

(
1

Z

∑

o∈L
mxy(o)e−hm(o)

)

=
1

Z

(
∂Z

∂hz

)
〈mxy〉+

1

Z

∑

o∈L
mxy(o)mz(o)e−hm(o)

= 〈mxymz〉 − 〈mxy〉〈mz〉, (10.3)

where mxy denotes the magnetization of all edges in the xy-planes of the model.
The thermodynamic integration consequently has to be performed for a dense grid
of longitudinal and transverse loop tensions over the averages of the individual mag-
netizations and their product, i.e.

Sα(A) = Sα(A)
∣∣
h=0

+
1

1− α


−

hz∫

0

dh′z

hx∫

0

dh′x (〈mxymz〉A,h′ − 〈mxy〉A,h′〈mz〉A,h′)

+ α

hz∫

0

dh′z

hx∫

0

dh′x (〈mxymz〉0,h′ − 〈mxy〉0,h′〈mz〉0,h′)


 . (10.4)

The method of thermodynamic integration is a convenient way to compute Rényi
entropies since the energy or magnetization is efficiently measured in classical
Monte Carlo simulations. Care needs to be taken in the selection of the resolu-
tion of the range of temperatures or loop tensions simulated as it has to be adapted
to the variation of the final entropy function. For example, sharp peaks require a
fine grid of parameter values (β or h). Otherwise, errors due to the numerical in-
tegration accumulate and cause a systematic error in the highest parameter values
considered. As for the specific heat, we use bootstrapping for the computation of a
well-defined mean and statistical error on the Rényi entropies.

10.1.2.3. Addition schemes

In Sec. 8.2 we have already discussed schemes for the extraction of a constant topo-
logical term γ from Eq. (8.1) for two-dimensional systems. We emphasize that
in the classical variants, it is not only the purpose of the bipartitions to extract γ
but also to exhibit a finite γ at all in at least one of them. Only the construction
by Levin and Wen [59] fulfils this requirement. Naively, one might think that five
independent simulations have to be performed in order to compute the sum (8.3)
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10.1. Representation and measurement

for α = 2: Using typographic representations for the bipartitions (Fig. 8.5), we
need Z[| |, 2, β], Z[u, 2, β], Z[t, 2, β], Z[�, 2, β] and their common partition func-
tion Z(β) of the unmodified system. However, it turns out that the latter cancels in
the addition,

S2,top = ln
Z[| |, 2, β]

Z(β)2
− ln

Z[u, 2, β]

Z(β)2
− ln

Z[t, 2, β]

Z(β)2
+ ln

Z[�, 2, β]

Z(β)2

= ln
Z[| |, 2, β]

Z[u, 2, β]
− ln

Z[t, 2, β]

Z[�, 2, β]
, (10.5)

and therefore needs not be simulated. The form of the last line in Eq. (10.5) reflects
Levin and Wen’s interpretation of the topological entropy, namely that it is the ad-
ditional entropy associated with closing an annular region at the top, compared to
the same closing for disconnected parts.

In three dimensions, two suitable schemes implementing Levin’s and Wen’s idea
have been proposed in Ref. [139]. One of them, depicted in Fig. 10.2a, is appropri-
ate for our classical toric code model in three dimensions since inA4, partB has two
disconnected regions. These bipartitions are embedded in a cubic lattice of linear
extent L with periodic boundary conditions in all dimensions. We see that all con-
tributions from the volume, surfaces, edges and corners vanish in the addition (8.3).
This scheme is able to detect the topological contribution from the degeneracy in
the groundstate induced by winding string operators. To see this, we can recycle the
argument used earlier in the two-dimensional case, namely that every surface of part
A has an even number of piercing strings due to the closed-loop constraint. This
constraint reduces the entropy of the states on the boundary. Taking into account the
particularity of classical topological order that the number of disconnected parts of
subsystem B also influences the value of γ, we can conclude again that bipartition
A4 provides a finite value for γ. However, only the classical vertex variant of the
three-dimensional toric code model, Eq. (9.19), has winding strings.

It turns out that topological order from winding planes is not identified by the
scheme in Fig. 10.2a, as will be revealed in Chapter 11. The problem is that the
intersection of a closed membrane with a three-dimensional subsystem is not a sin-
gle point but a loop on the boundary of part A. Hence, the parity constraint of
the number of string piercings does not apply. As a consequence, for the study of
the plaquette variant (9.18) and its alterations with a finite loop tension (9.20) we
have to design a modified scheme. An idea to detect closed membranes — being
three-dimensional objects — is to take two-dimensional subsystems A, i.e. by an
embedding of the original two-dimensional Levin-Wen construction in a cube. The
intersection of a membrane with such a sheet is a loop segment. This loop segment
has two crossings with the one-dimensional boundary of the sheet — reenabling
the counting argument. In order to increase the statistical data basis, we embed the
sheets in L layers of a cube with size L×L×L as shown in Fig. 10.2b. We note that
no sites on edges oriented in the z-direction are part of subsystem A. Every single
layer measures a topological contribution so that we compute γ/L for this scheme
for consistency.

Interestingly, the volume continuation of these layers, yielding the scheme in
Fig. 10.2c, also exhibits a topological entropy. Just like the layers this scheme
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a) A1 A2 A3 A4

L

L
4

b)

c)

Figure 10.2.: Addition schemes for the three-dimensional toric code model. The authors of
Ref. [139] propose scheme a) for the detection of topological order in the quantum
model. In the classical variants, it only detects string-like structures. Schemes b) and
c) provide a detection of membrane-like structures induced by the plaquette constraints
in the three-dimensional toric code.

is translationally invariant in the z-direction which qualifies it to be used for the
anisotropic loop tension variant. The z-direction represents the imaginary time di-
mension of the underlying two-dimensional quantum system and we do not intend
to capture topological effects in this dimension which would possibly happen if we
used scheme a).

We have uniformly chosen the distances between two boundaries separating the
subsystems to be L/4 in the xy-plane along the main axes in all our bipartitions.
The reason for this choice is that we expect a reduction of finite-size effects from
asymmetries and avoid the mixing of geometric dependencies in the boundary law.
It should be noted that the truly three-dimensional addition schemes (Fig. 10.2a
and c) lack a property of the two-dimensional Levin Wen scheme unmentionend so
far: Beyond the fact that the boundary contributions vanish in the addition, all four
boundaries in the bipartitions of Fig. 8.5 have the same size. This is not true for the
surface-like boundaries in the present three-dimensional cases. We emphasize this
detail because it is possibly responsible for increased finite-size effects in the three-
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dimensional results for γ if we assume further non-linear subleading dependencies
of Sα(A) on the boundary size in Eq. (8.1). Such terms could still cancel in the
addition if they are identical in all Ai like in the two-dimensional case.

10.2. Update algorithms

The Markov chain of configurations produced by the Monte Carlo algorithm starts
with an arbitrary configuration C0. In our code models we choose this initial config-
uration to be the state where all spins point up. Subsequently, based on the respec-
tive current configurationC(n), a new configurationC(n+1) is proposed and possibly
accepted according to an appropriate probabilistic decision. It is the purpose of this
procedure that a configuration C is visited in the Markov chain with a frequency
fC corresponding to the (known) weight w(C) of that configuration in the thermal
average of an observable O,

〈O〉 =
1

Z

∑

C

OCw(C), (10.6)

with the partition function Z =
∑

C w(C). For a Markov chain of lengthM we thus
aim at achieving fC/M −→ w(C)/Z as M → ∞. In our Monte Carlo simulation
we hence obtain the expectation value of O as

〈O〉 = lim
M→∞

1

M

∑

C

fCOC . (10.7)

The frequency trivially has to satisfy
∑

C fC = M . This strategy is called impor-
tance sampling3 since configurations with a high weight are visited more often than
those with a low weight.

The probabilistic decision for the selection of the next configuration is based on
a transition matrix containing the probabilities W (Ci → Cj) for choosing configu-
ration Cj given that we are in configuration Ci. These probabilities have to satisfy
the following three conditions

1. Normalization: For all configurations Ci, the probability to choose any of the
available configuration as the next one must be unity, i.e.

∑
jW (Ci → Cj) =

1.

2. Ergodicity: From any configuration Ci it must be possible to reach any other
configuration Cj in a finite number of transitions, ∃N ∈ N : W (Ci →
Cn0)

[∏N−1
k=0 W (Cnk → Cnk+1

)
]
W (CnkN → Cj) > 0.

3More specifically, importance sampling is a Monte Carlo sampling technique applicable to sums
or integrals of the form (10.6), i.e. a product of the quantity of interest and a known normalized
weight function. The weight function is handled through the selection probability of the state
and can hence be ignored in the measurement. Opposed to importance sampling is the concept
of simple sampling for sums not exhibiting such a product form. In this case, configurations have
to be selected uniformly.
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3. Balance: The probability P (Ci) to visit a configuration Ci is predetermined
by the weights w(Ci)/Z of the physical problem. In order for the transition
probabilities to establish this distribution, the ‘incoming’ and ‘outgoing’ tran-
sitions to and from Ci must be in equilibrium, i.e.

∑
j P (Cj)W (Cj → Ci) =∑

j P (Ci)W (Ci → Cj).

One of the most simple strategies to satisfy the third condition is to require so-called
detailed balance between any two configurations which means

P (Cj)W (Cj → Ci) = P (Ci)W (Ci → Cj)

⇔ P (Cj)

P (Ci)
=
W (Ci → Cj)

W (Cj → Ci)
, (10.8)

that is, to individually equalize the corresponding summands in the equilibrium
equation. We employ this detailed balance condition in all our update algorithms.
The left-hand-side of Eq. (10.8) corresponds to the ratio of the weightsw(Cj)/w(Ci)
in the statistical mechanics ensemble. In the case of a thermal canonical ensemble
it is exp[−β(E(Cj)− E(Ci))]

The transition probability comprises the probability to select and the probability
to accept Cj , i.e. W (Ci → Cj) = Psel(Ci → Cj)Pacc(Ci → Cj). Most approaches
for update algorithms decide to make one of the two types of probabilities symmet-
ric under exchange of Cj and Ci, such that this type vanishes in the ratio on the
right-hand-side of Eq. (10.8). The respective other type of probabilities alone im-
plements the required ratio. Local updates, discussed in the following, typically set
Psel(Ci → Cj) = Psel(Cj → Ci) such that the equilibrium distribution is produced
by the acceptance probabilities. In the subsequent Subsection introducing global
updates we present two options on this issue. First, the same allocation of respon-
sibilities between selection and acceptance as for local updates can be applied. A
second approach has the generation of the correct probabilities P (Ci) built in the
selection probabilities such that the acceptance probability can be set to unity.

10.2.1. Local updates

An intuitive attempt to simulate a physical system at equilibrium is to approximately
mimic its physical behavior. The latter can be thought of as small steady local fluc-
tuations over the observation time due to thermal energy present in a system above
zero temperature. Here, we describe Monte Carlo algorithms consisting of propos-
ing local changes to the configuration such as single-spin flips or collective flips of a
small number of spins belonging to a local operator. The (artificial) evolution of the
configurations in the course of the simulation is hence similar to the microscopic
physical evolution.

States of our classical models are represented by spin configurations. For the
investigation of the finite-temperature behavior, flipping a single spin in a configu-
ration leads to another allowed configuration. This is not true if we consider ground-
states of our code models perturbed by external fields. In this case, excitations of
the local interaction operators (plaquettes, vertices or cubes) are suppressed such
that our local update must preserve the groundstate constraints induced on the spins
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by the operators. It is straightforward to see for each model, how this local update
must be constructed: The classical variants of the underlying quantum models were
defined by translating the superposition induced by the flip operators to the classi-
cal ensemble. Hence, a transition between configuration in the classical ensemble is
performed by such a flip of one of the corresponding operators. These operators are
dual to the actual operators appearing in the Hamiltonian which impose the classi-
cal constraints. For example, local updates for the two-dimensional vertex classical
toric code model are simultaneous flips of the four spins of a plaquette and vice
versa. The same is true for the other pairs of classical variants of the commuting
Pauli Hamiltonians.

Having identified the appropriate local update, we are in a position to define the
algorithm which we choose to be the Metropolis [151] algorithm:

1. Selection: Pick a single object considered for flipping at random (uniformly).

2. Acceptance: Compute the weights of the current configuration w(Ci) and of
the configuration resulting from the proposed flip w(Cj). The probability
to accept the flip is then given by Pacc(Ci → Cj) = min (1, w(Cj)/w(Ci))
which satisfies Eq. (10.8). This decision is realized by producing a uniformly
distributed random number in the range [0, 1) and performing the flip if it is
smaller than Pacc(Ci → Cj).

For a system of N spins, N repetitions of this procedure are performed for a com-
plete Monte Carlo sweep, i.e. a transition to the next configuration in the Markov
chain, C(n) N flip attempts−−−−−−−→ C(n+1). Measurements are performed only after complete
sweeps. The repetition has two advantages: If ergodicity is satisfied by the update
in general, it is already ensured between two sweeps since it is possible to obtain
any other reachable configuration immediately. Moreover, the so-called autocorre-
lation time4 is significantly lower on the full sweeps compared to defining a single
flip as a full sweep.

The single-spin flips for finite-temperature simulations lead to toggling the quan-
tum number ±1 → ∓1 of the local operators that the spin is part of. This event
would possibly induce a change in the energy such that according to Eq. (9.14), we
have Pacc(Ci → Cj) = min [1, exp(−β∆ijE)]. We note, that these updates provide
ergodicity of the Markov chain. Furthermore, as spins unambiguously belong to
either part A or part B of the system, no particularities need to be considered at the
boundary for the replica trick. A factor of α appears in the energy change ∆ijE if
the spin is in part A.

Single-plaquette or single-vertex flips are used for simulations of classical toric
codes with a finite loop tension h. We have Pacc(Ci → Cj) = min [1, exp(−h∆ijm)],
in this case, following Eq. (9.16), such that the magnetization possibly changes. If

4In general, consecutive configurations produced by Monte Carlo updates are correlated and so are
the measurements in these configurations. When computing the statistical error on the average
of the measurement results one must consider these correlations. A measure for the correlations
between consecutive configurations is given by the autocorrelation time of the simulation. It is
defined as the average minimal length l of a series of configurations C(n), C(n+1), . . . , C(n+l)

such that correlations between the first and the last element vanish, 〈C(n)C(n+l)〉 ≈ 0.
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10. Monte Carlo approach

the plaquette or vertex to be flipped is located on the boundary between the subsys-
tems A and B, we have to flip it in all replicas in order to maintain the equality of
all spins in subsystem A. These kinds of updates, however, are not ergodic as they
cannot induce changes between the different sectors of the ensemble that are sepa-
rated by differing winding number parities. The reason for this shortcoming is, that
a single winding loop cannot be created by consecutive plaquette flips. In order to
simulate the full configuration space, these local updates have to be complemented
by global winding loop flips.

a) b)

c) d)

e) f)

Figure 10.3.: Local updates by flips of single ob-
jects (black edges) performed on an
‘empty’ configuration. The left col-
umn corresponds to the vertex vari-
ants of the toric code and the right
column to plaquette variants. Single
spin updates a)-d) are used for finite-
temperature simulations and create
excited operators (shaded objects).
The operator updates e) and f) pre-
serve the groundstate constraint but
have an effect on the magnetization.

Fig. 10.3 illustrates a collection of
the local updates used in our Monte
Carlo simulations for the two- and
three-dimensional toric code models.

We finally remark that for finite-
temperature simulations of deconfined
(point-like) excitations, the states of the
single spins are entirely irrelevant as we
are only interested in the energy of a
configuration and hence in the excited
vertices. In more physical terms, it is
superfluous to simulate more than one
representative of gauge invariant states.
It is hence not necessary to actually per-
form the spin flip but only the flips of
the corresponding pair of vertices. Ex-
panding this idea, we have constructed
and used an algorithm which picks two
independent vertices at random instead
of a single spin. Their quantum num-
bers are flipped if accepted according to
the Metropolis probability, but the spin
values are not changed. Embedding this
algorithm in the replicated system is
non-trivial: Two random vertices may
perhaps not be linkable5 by strings if
they are in different subsystems or in
disconnected parts of one subsystem. It
is hence necessary to consider picking
more than two vertices and to check if

they constitute a set which is connectable by strings. Since the positions of the
chosen vertices are not correlated and can be anywhere in the system, we thereby
shorten the autocorrelation time because a sequence of single-spin flips would be
necessary to obtain the same update.

5The problem is, that a string which traverses partAmust be copied to all other replicas — causing
additional open ends there.
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10.2.2. Global pattern updates
For the toric code models subjected to a finite loop tension we have realized that
local operator updates are not ergodic as they cannot establish a transition to another
sector of the groundstate ensemble. Moreover, since the phase transitions occurring
at a critical loop tension hc have been shown to correspond to those of an Ising
ferromagnet, they may be affected by critical slowing down, i.e. a low efficiency
near hc in simulations based on local updates. We present global updates as a
remedy for these two issues. The particular difficulty in the design of such update
algorithms is to take into account the replica states with independent parts B and a
common part A.

10.2.2.1. Winding operator updates

The different sectors of the groundstate ensemble are distinguished by winding
loops (or planes) which can only be created or removed at once if we exclude en-
ergetic excitations. In order to enable a transition between them we can in a most
simple approach propose such winding loops to be flipped as a whole and accept
this modification with Metropolis probability as above. To select such a loop for
a vertex groundstate we pick a single edge of the toric code lattice at random and
follow the straight grid line of this edge around the periodic lattice. As we do not
consider corners in our winding loop, the initial edge completely determines the
loop. For a plaquette groundstate we have to follow the edges which are parallel to
the initial one, yielding a ‘dual’ loop in two dimensions and a plane in three dimen-
sions (see the green edges in Fig. 9.6). If any of the spins along the winding object
belong to partA, we have to consider this object in all replicas, i.e. either all of them
are flipped or none. To avoid confusion, we emphasize that the proposed winding
loop or plane is a geometric object in the lattice which is independent and ignorant
of the actual spin configuration of its elements. We therefore denote it as a template
loop in order to distinguish it from the loops of down-pointing spins in a particular
configuration. The winding operator update is an extension of the local plaquette or
vertex flip algorithm — it is not meant to be used as a standalone algorithm because
its updates generate highly patterned changes (straight lines or planes).

10.2.2.2. Cluster-like updates

A well-known Monte Carlo algorithm for the remedy of critical slowing down in the
Ising model is the so-called Wolff algorithm [152]. Its idea is to identify stochastic
clusters of Ising spins which point all in the same direction and flip them collec-
tively. As we have seen in the mapping from the toric code model in a finite loop
tension to the Ising model, Ising cluster domain walls correspond to closed loops
or membranes in the toric code. Hence, the algorithm can straightforwardly be
adapted to the toric code models. For its explanation we restrict ourselves to the
groundstate of the two-dimensional vertex variant (9.15) which is left invariant by
plaquette flips. Initially, we pick a plaquette at random. The algorithm reads:

1. Flip the spins of the plaquette. If some of them belong to subsystem A, flip
all of them in all other replicas.
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2. For all edges limiting the plaquette(s) whose spin points down we traverse
this edge to the neighboring plaquette and include this plaquette with proba-
bility

p =

{
1− e−2αh, if the edge is in subsystem A,

1− e−2h, else,

in the cluster.

3. Check if we have not flipped this plaquette already. If not, we continue at (1.)
with this plaquette.

One might wonder why the check (3.) is performed. It is unnecessary in the Wolff
algorithm for the Ising model because the information on which plaquettes to follow
is contained in their orientation already. This is different in the dual description of
closed loops instead of domain walls: The presence of a single winding loop may
lead to trying to cross it from both sides during the cluster creation. This scenario
is illustrated in Fig. 10.4 and necessitates the check. At the same time, we note that
also these cluster updates are unable to switch between the groundstate sectors. We
must hence add the winding operators updates introduced above to our simulation.

Figure 10.4.: Cluster update in the classical toric code model. In the left picture, the initial plaquette
is chosen and the cluster growth begins. It stops at existing loops, thereby annexing
them. A winding loop may cause the cluster to try to overlap itself which needs to
be interrupted by an additional check for such an event. The final configuration in the
right picture has the same winding number parities as the initial configuration.

It is important to respect the replica-trick structure of the modified partition func-
tions, see Fig. 10.1. A single cluster may spread over a part of subsystem A and
independently over parts in all replicas of subsystem B. Thus, if the cluster grows
within subsystem A and reaches the boundary to subsystem B it is important to
check for all neighboring plaquettes in all replicas. Also, if a plaquette touching
the boundary between A and B (that is, having A-spin edges) is initially selected, it
must be flipped in all replicas.

10.2.2.3. Lattice walk updates6

The resulting update from the cluster generation in the previous paragraph is the
collective flip of a template loop. To arrive at this loop, its entire bulk has been

6This subsection about lattice walk updates is largely identical to the Appendix of our publication
in Physical Review B [153].
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considered. A more elegant way of generating the loop can be designed for the two-
dimensional classical toric code model in a loop tension with vertex constraints. It
is based on performing a one-dimensional walk from vertex to vertex along edges
in the lattice and wait for the walk to run into itself. The trace of this walk is (a
candidate for) the template loop. During the algorithmic creation of the walk it has
a head which is the last appended vertex. This head “decides” which vertex (and
thereby which edge) to append next. If accepted according to the detailed balance
condition, the template loop will be applied to the spins along this loop by flipping
them. This procedure is shown in Fig. 10.5. Sampling a template loop is particularly
challenging if it crosses part A since its degrees of freedom are identified with those
in the other replica. Thus, two additional open loop ends are generated in the other
replica at the boundary between A and B. These two ends need to be linked in
part B of the other replica as well. Trying this, it is possible to cross part A again.
Obviously this procedure can easily result in a seesaw of linking two open loop legs
in part B of either replica.

Figure 10.5.: A loop update is performed by creating a template loop (green) in the lattice and apply-
ing it to the spin configuration with its spin loops (black) if the resulting energy change
is accepted.

For the actual procedure of choosing the template loop a first approach is to
perform a random walk through the lattice. Once a valid loop is found, we apply a
Metropolis probability between the current and the potential next state to decide on
its acceptance. Later we will present a more advanced algorithm which unifies the
selection and acceptance step in a so-called directed walk.

Random walk The random walk is started at an arbitrary vertex of the toric
code lattice and proceeds with equal probability of 1

4
to one of the four neighboring

vertices7. Once a vertex is visited a second time, we can stop the walk and discard
the first segment of the loop up to the first visit of this vertex. Possibly, the random
walk has entered one or more times the connected subregion A so that its segments
inA in the other replica also have to be included in the template loop. Thus, an even
number of open template loop ends is created in the other replica at the boundary
to part B. To match these ends, it is efficient to start individual random walks at
every open end simultaneously. If the head of one of the walks hits a vertex already

7 For completeness, it should be mentioned that this mapping is strictly defined for the even parity
sector of the toric code model. Other parity sectors of the toric code would necessitate the
definition of antiperiodic boundary conditions in the Ising model for every odd winding number
in the toric code model.
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visited by a different walk we have created a linking loop between the two open
ends so that these two are healed. Most likely, the two loops do not meet precisely
at their heads so that a superfluous part between the meeting point and one of the
heads arises. This part of the template loop is discarded, see Fig. 10.6. It may also
happen, that a specific random walk head hits a vertex twice. In this case, we can
discard the resulting internal loop of this walk since it does not help in linking open
ends. Moreover, the general strategy is to keep the total length of the template loop
as short as possible.

AB

Figure 10.6.: Visualization of the healing process. On top, a template loop (green) is sampled within
the first replica. It leaves behind two open loop ends (red circles) at the boundary be-
tweenA andB in the other replica. The right sketch depicts the healing processes: Two
random walks (blue and red) simultaneously try to meet each other. The dashed seg-
ments indicate parts of the template loops which are discarded. Internal loops (dashed
red) would be allowed but are contracted in order to shorten the total template loop.

In Monte Carlo parlance, this procedure is responsible for ensuring ergodicity in
our simulation. What remains is to fulfill also detailed balance. Since we have only
generated a template loop so far, we can compare the total weight of the configu-
ration prior to the application of this template loop and after it. In our special case
we need to determine the magnetizations mbefore and mafter. The acceptance is then
decided on by the Metropolis probability

p(σ → σ ◦ template loop) = min(1, e−h(mafter−mbefore)), (10.9)

where the function composition symbol ◦ is used to denote the application of the
template loop on the current configuration.

Since this implementation of the Markov chain separates the selection and accep-
tance of new configuration we can almost freely design the random walk procedure
as long as we guarantee ergodicity. A shortcoming of it appears at higher loop
tension h where the acceptance of an energetically less favourable configuration is
low. In addition, for relatively large sizes of the subsystem A, the healing of all
open loop ends can entail many random walks back and forth between the replicas.
This makes the algorithm less efficient, especially for parameter settings (h ≈ 0.44,
L large) we want to investigate to track the phase transitions.

Directed walk A substantially different and more efficient approach for the Monte
Carlo update scheme is implemented by unifying selection and acceptance. The
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idea is to ensure detailed balance on-the-fly while choosing the template loop.
Strictly speaking it is no longer a template loop since all spins along this loop are
flipped with probability 1, i.e. they can (and have to) be flipped directly. The walk
that the head of the loop performs is not at random but obeys probability rules
depending on the value of the potential next spins to be visited. In general, the
rule is to select the next spin (which unambiguously selects the next vertex) with
so-called heat bath probability. This means, the microscopic weights wi of all can-
didates for the next head of the loop are added up to a normalization constant n.
In the toric code model the head has four possibilities to choose the next spin be-
cause bouncing must now be included. The only possible values for the weights are
wi ∈ {exp(h), exp(−h), exp(2h), exp(−2h)}, where the factor of two in the expo-
nent applies in the connected part A which is simulated at an effective loop tension
of 2h as discussed above. With the constant n =

∑4
i=1wi the heat bath probabilities

for the four directions are defined as
w1

n
,
w2

n
,
w3

n
,
w4

n
. (10.10)

It is not obvious to see whether this rule generates an update which obeys the
detailed balance condition. To check it we need to identify a reverse update to any
(completed) update and compare the probabilities of their occurence. If we now try
to fractionize this update into its individual moves according to the heat bath rule
and compare it to its reverse move, cf. Fig. 10.8, we see that the normalization
constants thwart the analysis: A specific spin at position j in the loop was chosen
to be visited (and flipped) with probability wj/nj in the original update. Doing its
reverse, we would have the probability w−1

j /n′j+1 to reflip it. The ratio of the two
probabilities is in general notwj/w−1

j as they should be from the ratio of the weights
of the configurations that differ by flipping spin j. Two facts about the involved
normalization constants annoy: (i) they originate from different configurations and
(ii) they are shifted by a lattice position.

We see that that issue (i) is not a problem by realizing that the value of normal-
ization constant at a specific vertex at the moment when it is the head is the same
for both — the original and its reverse — update is the same, i.e. nj = n′j . This can
be understood from Fig. 10.7 where we see that the coming-from and the going-to
spin switch roles (and weights) in both situations.

n′
j

nj =

Figure 10.7.: Passing of the directed walk (green)
at vertex j. The normalization con-
stants for inverse loop update walks
agree. In this example they both
have the value of nj = 3 exp(−h)+
exp(h).

The other issue (ii) can be resolved
by leaving the local perspective from
the loop head and regarding the entire
loop update. If we consider a chain
of moves and its reversion, we have to
multiply all probabilities to obtain the
total probability for the walk. In the ra-
tio of the total probabilities for the walk
and its revers, we realize that all nor-
malization constants vanish. Since their
respective numerator-denominator pair-
ing is shifted by one in the product, we
dub this feature of the microscopic rule
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staggered detailed balance. The staggering can be seen in Fig. 10.8 and the ratio
between a loop update and its reverse is given later in Eq. (10.12).

nj+3

wj wj+3

nj+4

w′
j+3 w′

j+7

Figure 10.8.: Formation of the probabilities of two revers-
ing update loops at a specific intermediate po-
sition j + 3 of the walk using heat bath proba-
bilities. We compare the probabilities of se-
lecting the encircled spin in the right mov-
ing loop and in its reversal left moving coun-
terpart. The probability in the right moving
case is wj+3/nj+3 = exp(h)/(exp(−h) +
3 exp(h)). Note that spins at j . . . j + 2 are al-
ready flipped when the loop does this selection
at nj+3 since we perform the update in-place.
For the reverse move the selection probabil-
ity is w′j+3/nj+4 = exp(−h)/(3 exp(−h) +
exp(h)). In particular, the ratio of these to
probabilities is not exp(2h) as it should be if
we wanted a microscopic detailed balance for
the spin flip at j + 3.

We have seen that detailed
balance can be satisfied in prin-
ciple by the design of the walk
but crucial aspects have not
been discussed yet: How is a
loop initiated and finished and
what are the decision rules for
choosing the next spin at the
boundary between A and B? It
is clear that a loop must bifur-
cate when leaving part A but
how is a reunification at an-
other site at the boundary ac-
cepted? The latter may fail
such that the update is dis-
carded for technical reasons (as
opposed to probabilistic rea-
sons).

For the start of a loop up-
date, a random spin in a ran-
dom replica is chosen and
one of its adjacent vertices
is selected with probability of
1
2
. This spin is immediately

flipped and the walk continues
at the selected vertices following the heat bath rule. It is instructive to note at this
point that we have not “paid” the flipping of this first spin in terms of acceptance
probabilities. This will be caught up at the decision to end the loop. The probability
to start the loop at a particular pair of a spin and a vertex is thus simply

pinit =
1

4N
, (10.11)

where N is the total number of spins in the lattice.
In order to finish the walk it is first of all necessary that the loop is closed, i.e. that

the head reaches precisely the other vertex at the initial spin — the vertex that was
not chosen to start with. This is not sufficient, since just like anywhere the head is
free at this vertex to chose any of the adjacent spins — among them the initial spin.
Before we determine the heat bath probabilities and normalization constant we have
to flip the initial spin once again. The loop head thus “sees” the original orientation
of this spin before the whole loop update was started. Afterwards the heat bath
selection is performed and in the case, the inital spin is chosen, it is flipped a third
time and the loop update is successfully finished. Only now, the flipping of the
initial spin is justified (“paid”) by a probabilistic selection according to its weight.
If another but the initial is chosen, the loop continues and we must not forget to flip
the initial spin again.

130



10.2. Update algorithms

We have now explained the algorithm for non-boundary-crossing loops. Fig.
10.9 and the following equation prove that the detailed balance condition is fulfilled.

p(σ → σ′)

p(σ′ → σ)
=
pinit,s0 ·

ws1
n1

ws2
n2

. . .
wsl−1

nl−1

ws0
nl

w−1
s0

n1

w−1
s1

n2
. . .

w−1
sl−2

nl−1

w−1
sl−1

nl
· pinit,s0

=
w(σ′)

w(σ)
. (10.12)

The relative shift of the numerators again demonstrates what we mean by staggered
detailed balance for the loop steps. The chronological order of the appearance of
the probabilities is from left to right in the main numerator but from right to left in
the main denominator. We chose write the equation in this way to emphasize the
reversing effect of factors that are written one below the other.

. . .

Figure 10.9.: Completing a loop by catching up the probabilistic choice of the initial spin as part
of the loop. The initial spin is drawn red in order to emphasize that it was not paid
in terms of probabilistic weight selection until the last step. In the middle sketch it is
temporarily flipped back since the loop head must choose it as if it was never flipped.

It remains to define rules how to deal with boundary crossings and its resulting
bifurcations of the loop. In order to justify the probabilities for the direction of the
walk we need to ensure reversibility of any moves we allow. This is the reason
why we only allow a single bifurcation of the loop and hope for its reunification.
In case the reunification fails, the update is aborted and the original configuration
is restored. We will elucidate this point further at the end of this section. The
vertices of interest for the treatment of boundary crossings are those which have
adjacent spins in either of the bipartitions — subsequently called boundary vertices.
In general we will never set a heat bath normalization constant at a vertex using
weights from both parts, i.e. both exp(±h) and exp(±2h). In other words, a drift
to or away from the connected part A is avoided.

We first describe the update for the case of an initial spin somewhere in part
B. If a boundary vertex is visited coming from the disconnected part B we treat
all four spins as if they were in part B (although at least one is in part A) for
the calculation of the heat bath weights. In other words, the head does not see the
boundary. If the head selects a spin in partA, also its counterpart in the other replica
is flipped. However, the flipping of this counterpart is at that state not paid in terms
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10. Monte Carlo approach

of acceptance probability just as we used this wording above. The loop continues in
part A where it uses the weights exp(±2h) until it reaches again a boundary vertex.
At such an occurrence we have to perform the mentioned bifurcation: First, a loop
is continued in the initially chosen replica only. This loop should now rejoin the
initial spin in the same way we described above for the simpler case devoid of a
connected part A. Trying this, the loop must not enter part A again. If it does, we
have to abort the entire update. Second, another loop is continued in the respective
other replica. In the same manner, this loop is expected to rejoin the by then unpaid
spin in part A at the entering boundary spin. To successfully finish the total loop
update, this unification must happen without a prior visit of partA again. Fig. 10.10
illustrates the described procedure.

AB

Figure 10.10.: In the presence of a connected subsystem A loops need to bifurcate. After entering
part A, all weights have to be taken using the effective loop tension of 2h and flipped
in both replicas. The first spin in part A in the other at the entrance is unpaid (drawn
red), just like the initial spin in part B. The bifurcation happens when the loop leaves
part A again and must be finished individually in both replicas by joining the red
spins.

A slight difference needs to be made if the initial spin of the update is part A.
In this case, the first visit of a boundary vertex leads to bifurcation and the first
bifurcated loop in one of the replicas in part B is free to reenter part A at any
boundary vertex. Not before the second bifurcated loop in part A is performed and
rejoins the unpaid boundary spin that its counterpart has been selected for reentering
part A, the subsequent loop in part A is continued and hopefully rejoins the initial
spin.

Our implementation of the Monte Carlo algorithm resigns to allow multiple tem-
porary open loops in partB in one of the replicas alone. In principle one could allow
more than one open loop and perform the loop update in the initial replica until it
rejoins the initial spin. Subsequently one could start to connect all 2no open ends in
part B of the other replica. Doing so it would be important to start the connecting
walks only at those no ends that arose from leaving part A in the initial replica.
Special care must be taken in this approach to not mix the order of the start spins
of the healing walks in part B of the other replica. They must be started in the
same order the arose from the initial loop. This is due to the ambiguity of possible
paths that lead to the same loop update. Mixing the order of starting spins would
violate the detailed balance condition because the reversal loop of a loop could then
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n0

n1

n2

n3 n1

n2

n3

n4
⇄

Figure 10.11.: Two mutually reversing open loop updates including the normalization constants used
for the respective choice of the next direction of the walk. The last normalization n4
(resp. n0) is missing and therefore will be included artificially in the decision to stop
the loop.

be achieved through more than one move.
We decided to allow only a single pair of bifurcations of the loop and avoid long

seesaw healing processes for a single update step.

Finite-temperature simulations So far, we have considered the classical toric
code at zero temperature, i.e. the system subjected to the loopgas constraint. By
releasing this constraint and activating the vertex terms in the Hamiltonian (9.11)
we investigate the toric code at finite temperature. In this situation pairs of open
loop ends are permitted at the energetical cost of two times the vertex coefficient
Jv. In practice we we set Jv = 1 since only the ratio between Jv and h is important.
A loop update in our Monte Carlo simulation must therefore be able to introduce
open loops. Once again we propose two strategies.

Our first approach consists of separating the operations of the loop update and
the introduction of loop excitations. We pick two vertices of the total system at
random and have the algorithm perform a random walk between them. At h = 0 we
only need to determine an acceptance probability for the open ends, which we set to
Boltzmann weights exp(±Jv) or exp(±2Jv) depending on the subsystem where the
open end is introduced. In case one of the vertices is in part A and the other in part
B we need a third vertex in part B of the respective other replica and thus create a
“double-tongued” open loop. Also at finite loop tension we can apply Metropolis
probabilities to the acceptance of a sampled open loop by balancing both the change
in energy and in magnetization between the current and the proposed configuration.

Going beyond the simple sampling technique we also present an algorithm that
again includes the acceptance probability in the selection of the subsequent configu-
ration. We therefore extend our zero energy algorithm based on heat bath selections
for the random walk at every vertex in the lattice. The head of the loop may take
four different directions at a specific vertex. We add a fifth event to these four,
namely stopping the loop and thereby creating (or annihilating) an open loop end
in the spin configuration. However, we will not include the decision of stopping the
loop in the heat bath sum but perform it separately using the Boltzmann weight of
an open loop end. This decision is made prior to the selection of the next bond to
walk on. There is one issue concerning the detailed balance between an open loop
update and its reversal update: Due to the staggered detailed balance philosophy the
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10. Monte Carlo approach

last heat bath normalization constant of the walk does not enter any of the proba-
bilities for the loop continuation but the first one does, see Fig. 10.11. Roles are
switched in the reversal update, which implies that the two normalization constants
at the edges do not vanish in the ratio between the opposite loop updates.

Our workaround is to artificially include every heat bath normalization constant
(and thus also the lastone) into the decision of stopping the loop. The probability to
stop at the jths vertex of the loop is thus exp(±Jv)

nj
. Since in our model nj > 1 in any

case it cannot happen that this alteration of the pure Boltzmann constant leads to
trivial probabilities (> 1) for stopping the loop. In formulas the ratio between two
opposing loop updates is given by

p(σ → σ′)

p(σ′ → σ)

=
pinit,v0 · wv0

ws0
n0

(1− wv1)
ws1
n1

(1− wv2) . . . (1− wvl−1
)
wsl−1

nl−1

wvl
nl

w−1
v0

n0

w−1
s0

n1
(1− wv1)

w−1
s1

n2
(1− wv2) . . . (1− wvl−1

)
w−1
sl−1

nl
· w−1

vl
· pinit,vl

=
w(σ′)

w(σ)
. (10.13)

Until now we have neglected again the bipartition and replication of the lattice.
But surprisingly the situation becomes easier if open loops are allowed. We can
simply forbid boundary crossings of open loops i.e. abort a loop update which tries
it. The algorithm is nevertheless ergodic since an arbitrary loop update (including a
boundary crossing) can by generated by two non-crossing open loops which share
one of their ends at the boundary. Moreover, also closed loops can be created that
way by creating an open loop whose starting and ending vertex coincide. This does
not make the closed loop algorithm superfluous since it is indispensable at the hard
loopgas constraint and more efficient for very low temperature in combination with
the open loop algorithm.
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11. Results for stabilizer codes
We employ the Monte Carlo simulations developed in the previous Chapter in or-
der to numerically study the topological entropy in the multiple classical variants
of the quantum error-correcting codes introduced in Chapter 9. First, we provide a
thorough study of the two-dimensional toric code in Sec. 11.1, where we focus on
the finite-temperature behavior of the topological entropy as well as the effect of a
finite loop tension. One of the main interests in the extension to three spatial dimen-
sions is the quest for a thermally stable self-correcting code, i.e. a code in which
topological order survives up to a finite temperature. For this reason, we begin the
investigation of a series of three-dimensional codes in Sec. 11.2 with an analysis
of the specific heat — a common approach in conventionally ordered systems. The
perspective of topological entropy is then adopted again for the classical variants of
the three-dimensional toric code.

11.1. Two-dimensional classical toric code
We present results from Monte Carlo simulations of the classical toric code in two
dimensions with vertex terms. Our first numerical study confirms the expected fate
of groundstate topological order upon cranking up temperature. Further, we inves-
tigate the well-known Ising phase transition induced by an external loop tension in
Hamiltonian (9.15) from the perspective of topological Rényi entropies.

11.1.1. Finite temperature crossover
In Ref. [11] it has been pointed out that exceeding a certain finite temperature in the
toric code leads to a size-dependent vanishing of the topological entropy γ. Excita-
tions of the closed-loop constrained groundstate are thermally activated and cause
the emergence of open strings, i.e. pairs of defects. Hence, a transition between the
degenerate sectors of the ensemble with different winding parities becomes possible
for sufficiently large temperatures. This lifting of the topological ergodocity break-
ing takes away the topological order. The crossover temperature is predicted [139]
to scale as Tco(L) ∼ (lnL)−1, i.e. it approaches zero in the thermodynamic limit,
which implies that no topological survives above the groundstate.

Our Monte Carlo simulations using single-spin flips and directed walk global
updates allow us to determine the topological entropy γ from the second (α = 2)
Rényi entropy. We employ the addition scheme of Levin and Wen for the extraction
of the topological term. The results are shown in the top panel of Fig. 11.1 and con-
firm that γ smoothly vanishes as soon as some crossover temperature is surpassed.
At very low temperatures we have γ = ln 2, in agreement with the expected entropy
reduction due to the even number of boundary crossings by closed loops [119].
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Figure 11.1.: Top panel: finite-temperature behavior of topological
entropy for the classical toric code model indicating
the thermal transition from the low-temperature topo-
logically ordered phase to the high-temperature para-
magnet for various system sizes. Bottom panel: identi-
fication of the transition temperature into the topolog-
ically trivial phase by determining the peak position
of the derivative ∂γ/∂T for various system sizes. The
scaling of the so- determined temperatures shows the
expected logarithmic scaling with system size.

We observe, that this
crossover temperature de-
creases upon increasing
the system size L. In
order to provide a quan-
titative analysis of this
decrease we have cho-
sen the inflection point
of the curve as the indi-
cator for a precise value
of Tco(L). It can be de-
termined by numerically
computing the deriva-
tive ∂γ/∂T and iden-
tifying its local maxi-
mum, see the bottom
panel of Fig. 11.1. A
scaling plot of these
maxima with an ansatz
of the predicted loga-
rithmic behavior clearly
verifies that (i) the above
scaling holds and that
(ii) the crossover tem-
perature in the thermo-
dynamic limit is zero.

Additionally, we have
simulated the third Rényi
entropy for the small-
est system sizes con-
sidered. The purpose
of this computationally
more laborious study is
to test the topological
entropy for an α-depen-
dence or artifactual be-

havior. However, we see that the low-temperature and high-temperature values for
γ are invariant, solely a slightly different curve is obtained in the crossover regime.
The discrepancy is sufficiently explained by the ‘natural’ α-dependence of Rényi
entropies, see Fig. 2.3 and provides reason to believe that also the canonical von
Neumann entropy would show a very similar behavior to that of Fig. 11.1.

11.1.2. Connectivity contribution

Applying a finite loop tension h to the groundstate of the classical toric code with
Hamiltonian (9.15), we implicitly have to assume a finite temperature T with h �
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11.1. Two-dimensional classical toric code

T � Jv. If the temperature was too low, no loop of down-pointing spins would
be possible. We ignore the temperature in the ensemble weights exp(−hmo) of a
closed-loop configuration o. The implicit finite temperature is not a contradiction
to the groundstate phase since we do not consider thermal effects in our ensemble
weights and freeze out thermal excitations by setting Jv →∞.

Mutual information We have pointed out in Section 9.2 that the classical toric
code with external is dual to a two-dimensional Ising model at finite temperature
without external field. Hence, we expect a phase transition [135] to occur in our
toric code model at hc ≈ 0.44069. A first examination of the h-dependent behavior
of the model can be done using the mutual information I2(A : B) based on the sec-
ond Rényi entropy, see Sec. 2.3. This quantity has already been used successfully
as an indicator for phase transitions [123] since it tracks long-ranged correlations.
In a conventional order context, we expect the mutual information to be finite in
ordered phases and to vanish in the disordered regime. It is interesting to inves-
tigate whether this behavior also holds for topological order where no local order
parameter is available.

In order to determine the mutual information we have to bipartition the system
into parts A and B. For a quadratic lattice of L×L plaquettes with periodic bound-
ary conditions we choose part A to be exactly one half of the torus. Hence, its
boundary has two straight lines of total length ` = LA = 2L separated by a distance
of L/2. It follows that part B has exactly the same form and S2(A) = S2(B).

Fig. 11.2 shows our results for the mutual information plotted over a range of
values h for the loop tension. It turns out that a division by (` − 1) leads to a
collapse of the curves for different system sizes in the topologically ordered low-h
regime. The obvious conclusion that the mutual information scales as

I2(A : B) = a` · (`− 1) +D, (11.1)

can be understood from a familiar counting argument for closed-loop constrained
configurations: Due to the defining addition of the mutual information, Eq. (2.12),
bulk contributions vanish — unlike the boundary contributions. The reason for
the reduced scaling in (` − 1) instead of ` follows from the imposed even number
of boundary crossings of the closed loops. Knowing the state of ` − 1 boundary
segments we can deduce the remaining boundary segment state which reduces the
lack of information by one unit. Since the information is binary for every boundary
segment (spin up or down) we can also determine a` = ln 2 which is confirmed
by our numerical data, see also Ref. [119]. Continuing our analysis of Fig. 11.2 we
observe that I2(A : B) vanishes in the topologically trivial phase where h > hc. The
mutual information hence is apt to capture a phase transition from a topologically
ordered phase to a paramagnet. An interesting behavior of I2(A : B)/(` − 1)
appears in the intermediate regime of hc/2 ≤ h ≤ hc. The curves for the different
system sizes undergo a splitting at h ≈ hc/2 and overshoot the value of ln 2 before
sharply decreasing and exhibiting crossing points near the phase transition at hc.
The crossing points of subsequent system sizes L convincingly approach the known
value of the phase transition with a scaling of 1/L, as shown in the bottom panel of
Fig. 11.2.
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Figure 11.2.: Top panel: mutual information I2 of the classical toric
code model with a loop tension h for varying system
sizes. The gray shaded area indicates the intermedi-
ate regime hc/2 ≤ h ≤ hc. Bottom panel: Zoom of
the data near hc illustrating the crossing points for dif-
ferent system sizes. The inset shows a scaling of the
crossing points with inverse system size 1/L extrapo-
lating well to the expected value of hc = 0.44069 in
the thermodynamic limit

An explanation for
the behavior in the inter-
mediate regime is found
by observing that order
in subsystem A is es-
tablished at a different
critical loop tension than
in subsystem B. To
wit, remembering that
subsystem A is effec-
tively simulated at 2h,
its critical loop tension
is hc/2. Subsystem A
is hence in a polarized
state in the intermediate
region such that its bulk
entropy vanishes. As
a consequence, also a
simple bipartition such
as the presently consid-
ered half-torus (or bi-
partitions A2 and A3 of
the Levin Wen scheme,
see Fig. 8.5) exhibits
a reduction of the en-
tropy S2(A) by a con-
stant of ln 2 from the
closed loop crossing the
boundary since its com-
pensation by the bulk
lapses. The division by
(` − 1) of an emerging
negative constant leads
to the splitting because
lower-` curves undergo
a stronger reduction, see

Fig. 11.2. This insight about the subleading constant contribution D of the mutual
information in Eq. (11.1) also provides access to understanding the crossing points
near hc. As partly pointed out, we expect a behavior

D =





0, h < hc/2

− ln 2, hc/2 < h < hc

0, h > hc

(11.2)

where the parameter regions in which D vanishes are either fully topologically
ordered (h < hc/2) but do not exhibit a topological term due to the simple-
connectedness, or fully polarized such that the mutual information entirely vanishes
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(h > hc).
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Figure 11.3.: Contributions to the finite-size scaling of the mutual
information for the classical toric code model with
loop tension h. The top panel shows the boundary co-
efficient a` and the bottom panel the constant contribu-
tion D of this fit. Data is obtained from fitting system
sizes Lmin = 12 to Lmax = 24 and Lmin = 16 to
Lmax = 24, respectively.

Fitting our numerical
results for the mutual in-
formation to the scaling
behavior (11.1) we ob-
tain data for the bound-
ary coefficient a` as well
as the constantD, which
are shown in Fig. 11.3.
As expected, we see that
the boundary coefficient
represents the limiting
behavior of the mutual
information in the ther-
modynamic limit. The
overshooting of a` be-
tween hc/2 and hc can
be interpreted as an over-
estimation of the knowl-
edge about subsystem A
from the perspective of
subsystem B. In the
more interesting behav-
ior of the fitted constant
D we can find the reason
for the crossing points
near hc. We first observe
that our predicted values
for D from Eq. (11.2)
are approximately taken
by the numerical data
but transitions between
the different regimes are
accompanied by strong
finite-size effects. The
latter are responsible for
the sign change of D slightly below hc whose location approaches hc upon ex-
cluding the smaller system sizes. Such a sign change precisely causes the crossing
points of I2(A : B). Further, its absence close to hc/2 where D jumps from zero
to a negative value, explains why we obtain a splitting instead of a crossing point in
Fig. 11.2.

Topological entropy In order to obtain a clear signature of the topologically
ordered phase, we compute our main quantity of interest — the topological Rényi
entropy. We use the Levin-Wen scheme to induce and extract this quantity. The
insight about the particularity of an intermediate region for Rényi entropies that we
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gained from the mutual information applies to this case as well. Let us expose in
detail the consequences for the quantity

∆S = −S2(A1) + S2(A2) + S2(A3)− S2(A4), (11.3)

coming from the separated critical points of the loop tension of the subsystems —
hc/2 for A versus hc for B — in the replica representation. ∆S precisely represents
the O(1) contribution to the entanglement entropy S2(A) as all volume, boundary
and corner contributions are cancelled.

We first remind that only bipartition A4 induces a non-vanishing subleading
topological term γ = ln 2 as pointed out in Section 8.3.2 and Ref. [119]. For
h < hc/2 the situation is hence clear for the second Rényi entropy: In our numerical
analysis, we expect the O(1) contribution ∆S to be exactly this topological entropy
as both subsystems A and B are topologically ordered. Likewise, for h > hc there
are no subtleties since most spins trivially point down in both subsystems. From
the limiting case h → ∞ we can conclude that all four contributions in Eq. (11.3)
become identical such that ∆S vanishes. The interesting regime is hc/2 < h < hc
where part A is in the trivially ordered phase while both replicas of part B exhibit
topological order. Bipartitions in which the subsystems are separated by a single
boundary have a contribution of ln 2 in this case due to the constraint of closed
loops which is never broken in the finite-h study1. Consequently, we have an O(1)
contribution of 2 ln 2 for the bipartitions A1 and A2 which feature two boundaries.
Since these contributions in the intermediate regime are rather a signature of the
connectedness of the bipartition than of topological order we name it connectiv-
ity contribution. We summarize the various contributions for each geometry of the

1This is fundamentally different to the fully topologically ordered phase where such bipartitions
do not induce an O(1) contribution because the (in that case non-trivially ordered) bulk of A
compensates the even-crossings entropy.

A1 A2 A3 A4

topological (h < hc/2)

γA 0 0 0 ln 2

γB ln 2 0 0 0

connectivity (hc/2 < h < hc)

γA 2 ln 2 ln 2 ln 2 2 ln 2

γB 2 ln 2 ln 2 ln 2 2 ln 2

Table 11.1.: Constant contributions to the second Rényi entropy in the topologically ordered phase of
the classical toric code model in a loop tension of strength h for the different bipartitions
in the Levin-Wen scheme.
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Figure 11.4.: Top panel: The O(1) contribution to the Rényi entropy S2(A) of the classical toric
code model versus loop tension h determined via the Levin-Wen summation scheme.
The O(1) contribution contains the expected universal topological contribution of
γ = ln(2) in the regime h ≤ hc as well as an additional connectivity contribution
γ = ln(2) in the intermediate regime hc/2 ≤ h ≤ hc, in which for sufficiently large
system sizes subsystem A already transitions into the paramagnetic phase. Bottom
panel: Near the critical loop tension, crossing points between data curves of different
linear system sizes L can be identified. While keeping the difference between crossing
L’s constant (∆L = 8) a clear tendency towards the critical point can be observed
upon increasing L. However, an extrapolation of the location of the crossing points is
non-trivial because a subleading logarithmic contribution coming from corners of the
subsystem is expected at criticality unlike in off-critical regions.

Levin-Wen scheme in Tab. 11.1. For the O(1) contribution ∆S we hence obtain

∆S =





ln 2, h < hc/2

2 ln 2, hc/2 < h < hc

0, h > hc

(11.4)
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which we will check numerically in the following. We employ Monte Carlo sim-
ulations using lattice walk updates in order to efficiently sample the groundstate
ensemble and to enable transitions between the degenerate sectors easily. It turns
out that the random walk strategy is the better option for relatively low values of
the loop tension h . 0.3, i.e. where loops are large. The acceptance probability
of a large template loop decreases as we increase the loop tension such that the
directed walk update algorithm outperforms the random walk at larger h. Our re-
sults for different system sizes L of the toric code are plotted in Fig. 11.4. The
data convincingly confirm the expected behavior of the limiting cases h � hc and
h > hc, i.e. they show a constant contribution of ln 2 in the topologically ordered
phase which vanishes in the paramagnetic phase. An overshooting emerges upon
increasing the system size in the intermediate regime, approaching a plateau at 2 ln 2
for large L. This behavior is perfectly consistent with Eq. (11.4). We emphasize
that the overshooting is an artifact of the definition of the Rényi entropies which
is most evidently understood in the replica-trick picture. A closer look on the data
in the region close to the phase transition h ≈ hc reveals that crossing points of
consecutive subsystem size curves approach the known value of hc ≈ 0.44069. The
bottom panel of Fig. 11.4 provides a zoom to this region and demonstrates that an
extrapolation of the crossing points to hc can be done.

While in the quantum case the topological entropy is found even if one restricts
the computation to one of the groundstate sectors, this is not true for the classical
analogue. Here, it is very important to simulate within the full ensemble of all
degenerate sectors in order to find a non-vanishing topological entropy since the
degeneracy is the only manifestation of classical topological order. We have verified
this statement by simulating ∆S with a local update algorithm which we found to
be zero for any value of the loop tension h.

Ising model The finding that the Rényi entropies exhibit non-topological con-
stant subleading contributions leads to the questions whether such contributions can
be detected in systems in which topological order is entirely absent. To shed light on
this issue we apply our simulation of ∆S to the two-dimensional Ising model. For
this model we use the Wolff cluster-flip algorithm which can be straightforwardly
adapted to the replica representation since there are no winding objects in the Ising
model.

The results of our computations of the O(1) contribution using the Levin-Wen
scheme are shown in Fig. 11.5 for tuning β through the thermal phase transition
at βc ≈ 0.44069. Indeed, we observe the manifestation of a plateau at ln 2 in the
intermediate regime βc/2 < β < βc upon increasing the system size. This fea-
ture is satisfyingly understood from considering the state of magnetic order in the
two subsystems. In the intermediate temperature regime, subsystem A is magneti-
cally ordered but part B is not. The two possible global orientations resulting from
spontaneous symmetry breaking induce a constant entropy of ln 2 per disconnected
part of A since we allow for transitions between the global spin-up and spin-down
phase in our simulation. Specifically, in bipartitionA1 of the Levin-Wen scheme, ei-
ther of the two rectangles can collectively point up or down independently, yielding
a total O(1) contribution of 2 ln 2 while all other bipatitions only contribute ln 2.
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Figure 11.5.: The O(1) contribution to the Rényi entropy S2(A) of
the 2D Ising model versus inverse temperature β deter-
mined via the Levin-Wen summation scheme. While
no topological contribution is expected, a finite O(1)
connectivity contribution of c = ln(2) is observed in
the intermediate regime βc/2 ≤ β ≤ βc (indicated by
the grey shaded area), in which for sufficiently large
system sizes subsystem A already transitions into the
low-temperature ordered phase.

Hence, we obtain ∆S =
ln 2 in this regime and
zero elsewhere as the
system is either fully
disordered or polarized
— leading to equalO(1)
contributions for all bi-
partitions. We note,
that disconnected parts
of subsystem A can only
take their global orien-
tation independently if
they are separated from
each other by a distance
exceeding the correla-
tion length ξ. This ex-
plains why the plateau
only emerges for large
system sizes. We con-
firm our statement that
such connectivity con-
tributions are not of
topological origin but an
artifact of the Rényi en-
tropies.

Finite temperature We finally combine our study of a finite loop tension with
the preceding investigation of the effect of a finite temperature. Therefore, we have
to introduce an explicit inverse temperature β in the statistical weights of (open and
closed) string configurations s, i.e.

w(s) = exp(−βJvDs − βhms), (11.5)

where Ds denotes the number of defects (open loop ends) on vertices of the con-
figurations and ms is the total magnetization. The fact that we overlay the weights
of the loop tension with a finite temperature implies that we cannot assess a finite
topological entropy at very low temperatures since even at a small loop tension any
loops with spins pointing down are immediately frozen out, i.e. the system is in a
trivial state.
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Figure 11.6.: Finite-temperature behavior of O(1) contribution to
the Rényi entropy S2 of the classical toric code model
in the presence of a finite loop tension h = 0.05.
The O(1) contribution exhibits the expected universal
topological contribution γ = ln(2), which contributes
for sufficiently large temperatures and vanishes at high
temperatures. An additional connectivity contribution
of γ = ln(2) is observed in an intermediate regime. It
can be understood from noting that the effective field
is heff = βh as we introduced β in the Hamiltonian.
Hence this field increases for T → 0 and we observe
the same behavior as in Fig. 11.4 – read from right
to left. At very low temperature even a small field
h = 0.05 leads to the frozen trivial phase so that no
topological order is present and thus γ = 0.

Our numerical data
for this combined study
(Fig. 11.6) at a fixed
loop tension h = 0.05
reflect this behavior at
T . 0.1. As pointed out
for the implicit temper-
ature study above, only
if h � β−1 � Jv we
can observe topological
order. Thus, it is useful
to introduce the notion
of an effective loop ten-
sion heff = βh to explain
the behavior of γ from
our simulations. The left
half of Fig. 11.6 — seen
from right to left, i.e. in
the direction of increas-
ing β — exhibits the
same behavior as the top
panel of Fig. 11.4, in-
cluding the connectivity
contribution in the inter-
mediate regime hc/2 <
heff < hc. Only if the
temperature is increased
to sufficiently high val-

ues where the topological order breaks down (right half) we see the same vanishing
of γ → 0 as in Fig. 11.1.

11.2. Three-dimensional classical codes
We extend our numerical analysis of topological order to both classical variants of
the three-dimensional toric code model. One of them, the plaquette variant (9.18),
exhibits a finite-temperature phase transition, i.e. a finite value for the topological
entropy γ below a critical temperature Tc independent of the system size. In the
context of conventional order such transitions would be accompanied by a diver-
gence in the specific heat Cv. This raises the questions whether the breakdown of
topological order is likewise manifested in a singular behavior of Cv. We numeri-
cally investigate this issue not only for the toric code but — in the quest for truly
self-correcting stabilizer codes — also for the X-cube and the cubic code model.
Subsequently, we carry out a similar analysis to that of the two-dimensional case
for the toric code in three dimensions. We first determine γ for a range of inverse
temperatures before we place the plaquette Hamiltonian in an external membrane
tension, Eq. (9.20), which we tune through a phase transition equivalent to the one
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11.2. Three-dimensional classical codes

in the three-dimensional Ising model.

11.2.1. Specific heat

We solely employ single-spin flip updates for the simulations meant to measure the
specific heat.

0 1 2 3 4 5

inverse temperature β

0.00 0.00

0.02 0.02

0.04 0.04

0.06 0.06

0.08 0.08

0.10 0.10

0.12 0.12

0.14 0.14

sp
ec

ifi
c

he
at

pe
rs

pi
n

c V

L=8
L=12
L=16
L=20

Figure 11.7.: Specific heat of the classical vertex variant of the three-
dimensional toric code model as a function of the in-
verse temperature. The data for different system sizes
mainly collapse and do not reveal a diverging behav-
ior. Transient features at β ≈ 3.0 correspond to the
breakdown of topological order.

Toric code model
Our numerical results
for the specific heat are
shown in Fig. 11.7 for
the classical vertex vari-
ant of the toric code
model. As expected,
it reveals no diverging
behavior or movement
of the peak position
upon increasing the sys-
tem size. The common
broad maximum at β ≈
1.2 indicates a crossover
behavior of the energy
in the system but not a
phase transition. In the
regime of β & 2.5 tran-
sient discrepancies be-
tween the different sys-
tem sizes become appar-
ent. As will be seen in the next Subsection, these features correspond to the size-
dependent breakdown of the topological entropy which occurs at crossover temper-
atures Tco(L) precisely in this regime.

The specific heat of the plaquette variant of the three-dimensional toric code has
a richer significance. It shows the typical behavior of a phase transition by exhibit-
ing a peak which becomes sharper upon increasing the system size, see Fig. 11.8.
We can understand this transition from considering the nature of the thermally in-
duced excitations. An excitation consists of at least four excited plaquettes which
form a loop (see Fig 9.6). Such a loop can be enlarged only at the cost of additional
plaquette excitations. Hence, at low temperature, these loop-like excitations are
energetically hindered and occur mainly as isolated single-spin flips. Surpassing a
critical temperature Tc, longer loops become possible and constitute typical config-
urations. This so-called deconfinement transition is dual to the order-disorder tran-
sition of the three-dimensional Ising model [154]. Moreover, the classical plaquette
variant of the three-dimensional toric code is precisely the mapping of the three-
dimensional Ising model from the Kramers-Wannier duality. The phase transitions
are linked via β(TC)

c = −1
2

ln tanh β(Is)
c ≈ 0.76141 [137, 145]. The low-temperature

ferromagnetic phase in the Ising model corresponds to the high-temperature phase
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Figure 11.8.: Specific heat of the classical vertex variant of the three-
dimensional toric code model as a function of the in-
verse temperature. A divergent peak close to the phase
transition at βc ≈ 0.76141 emerges in the curves upon
increasing the system size. The inset provides a close-
up of the peaks slightly below βc.

of the toric code. Con-
versely, the paramag-
netic phase of the Ising
model maps to the low-
temperature phase of the
toric code which reveals
traces of topological or-
der.

We further process
our numerical data of
the specific heat by con-
sidering the scaling be-
havior of the peak po-
sition and of its magni-
tude. As can be seen
in Fig. 11.9 we recover
very accurately the crit-
ical temperature Tc ≈
1.31335. Further, we
obtain estimates for the
critical exponents ν and

α of the three-dimensional Ising universality class which are — in light of the small
number of data points entering the fit — surprisingly close to those in the litera-
ture. Specifically, we find for the exponent associated with the correlation length
ν = 0.639(1) instead of ν(Is 3d) = 0.62997 and for the exponent of the specific heat
α = 0.15(1) instead of α(Is 3d) = 0.11008. The quality of our numerical estima-
tion of the critical temperature and the exponents is underlined by the fact that the
data points in the scaling plots do not exhibit considerable deviations from the fitted
curves.
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Figure 11.9.: Left panel: Fit of a power law of the inverse system size to the peak position of the
specific heat of the plaquette variant, Fig. 11.8. The resulting exponent associated
with the correlation length ν is close to the value in the literature (0.62997). Also the
extrapolated value of the peak position in the thermodynamic limit is approximately
the known critical temperature Tc. Right panel: Fit of the peak height of the same
data. We obtain a value for the critical exponent α — describing the divergence of the
specific heat — which is again in agreement with the value in the literature (0.11008).
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Figure 11.10.: Specific heat of the classical vertex variant of the X-
cube model as a function of the inverse temperature.
A shrinking peak moving towards lower temperatures
can be identified upon increasing the system size.
The curves for different system sizes have a common
base which reveals a crossover behavior at β ≈ 0.6.
Inset: Scaling of the peak position as a function of
the inverse logarithmic system size. The data points
fall onto a straight line which extrapolates to zero in
the thermodynamic limit — as expected.

X-cube model With
regard to the finite-tem-
perature behavior, the
roles of the threesome2-
type and the single-
type classical variants
are switched between
the toric code and the
X-cube model: There
is no finite-temperature
stability of topological
order to be expected
in the threesome ver-
tex variant of the X-
cube model as its exci-
tations are open strings.
However, in contrast to
its non-stable toric code
counterpart — the ver-
tex variant (Fig. 11.7)
— the specific heat of
the X-cube does exhibit
moving local maxima
upon increasing the system size, see Fig. 11.10. It becomes only apparent in a
finite-size scaling ansatz of the peak location that the behavior vanishes in the ther-
modynamic limit and hence does not represent a phase transition. The form of
the scaling is 1/ lnL, just like in the toric code vertex variant and consistent with
Ref. [139]. In addition, a crossover behavior at β ≈ 0.7 is revealed by all curves —
a common feature with the corresponding toric code.

The cube variant of the X-cube model, i.e. the classical system made from the
twelve-body interactions Ac in Eq. (9.22) exhibits loop-like excitations. Similar
to the arguments in the discussion of the plaquette terms in the three-dimensional
toric code, enlargening an existing elementary excitation (four excited cubes) costs
energy and appears only at sufficiently large temperatures. This observation con-
stitutes our expectation for a finite-temperature phase transition in this model. Our
simulation results are depicted in Fig. 11.11 and show narrow peaks which are con-
siderably displaced between consecutive even system sizes. Indeed, a fit to a power
law of the peak position yields a function which extrapolates to a finite value of
Tc = 0.294(1) for β → 0. The corresponding fitted critical exponent ν−1 = 1.23(1)
establishes a very strong alignment of the data points in the scaling plot.

Furthermore, we observe another interesting feature of the specific heat for the
classical cube variant: Apart from the peaks, the data for different system sizes
seem to have a common baseline for high temperatures — being precisely the curve
of the three-dimensional toric code vertex variant in the thermodynamic limit, i.e.

2We mean by ‘threesome’ that the type of this interaction exists in three different orientations in
the Hamiltonian.
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Figure 11.11.: Top panel: Specific heat of the cube variant of the
X-cube model as a function of the inverse temper-
ature. The data show a peak which moves towards
lower temperature upon increasing the system size.
All curves share a common baseline which is iden-
tical to the specific heat of the vertex variant of the
three-dimensional toric code. Performing a fit of a
power law to the peak position (inset) yields an expo-
nent ν−1 = 1.23(1) and a finite temperature for the
transition in the thermodynamic limit. Bottom panel:
In order to fit a power law to the peak height we first
subtract the common baseline from the data. The fit
returns an exponent associated with the divergence of
the specific heat α = 2.437(1).

Fig. 11.7. The reason for
this behavior can be un-
derstood from a micro-
scopic perspective, that
is, to consider what en-
ergetic changes are in-
duced by single spin-
flips. If the temperature
is sufficiently high such
that the X-cube system
is densely covered with
excited cubes, it is very
likely that a randomly
picked spin is adjacent
to one, two or three ex-
cited cubes (but rarely to
zero or four). Hence, the
energy change resulting
from flipping this spin is
∆E ∈ {−4Jc, 0, 4Jc}
just like in the vertex
toric code model. The
total energy can be as-
sumed to be the same
for these two models
and therefore also the
specific heat. We de-
cide to subtract the com-
mon baseline in order
to obtain adjusted peak
heights which we sub-
ject to a scaling ansatz.
As shown in the bot-
tom panel of Fig. 11.11,
we obtain a critical ex-
ponent α = 2.437(1).
However, the numeri-
cal data points reveal a
slight scattering around
the fitted curve.

Cubic code Both classical variants of the cubic code, Eq. (9.23) are structurally
identical. Since it is claimed that this code exhibits a thermal stability of the ground-
state topological order, we expect the specific heat of its classical variant to reflect
traces of a phase transition. However, the situation is more complex compared to
the previously studied codes: First, the groundstate degeneracy which is broken at
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11.2. Three-dimensional classical codes

the breakdown of topological order is not universal but depends non-trivially on the
system size L, except for all odd L which have a common degeneracy of 4. Second,
the underlying structure of groundstate configurations is fractal instead of loops or
membranes, see Refs. [125, 147].
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Figure 11.12.: Specific heat of the classical variant of cubic code model for even (left panel) and
odd (right panel) system sizes. A movement of the peak position is only recognizable
for the very small system sizes. The peak seems not to move further above β & 2.3.
Already for relatively small sizes of L ≥ 12 (L ≥ 5) in the even (odd) case, the data
are affected by significant noise. All curves have a common baseline — the specific
heat of the plaquette variant of the three-dimensional toric code.

We plot our numerical data for the specific of the cubic code separately for even
and for odd system sizes in Fig. 11.12. The even system sizes exhibit broad peaks
which initially show a tendency to move towards lower temperatures. For L = 12
and L = 16, however, the peak seems be approximately at the same temperature.
Again, all data have a common baseline for sufficiently low β which coincides with
the specific heat of toric code vertex variant. The reason for this agreement in the
behavior can again be understood heuristically from noting (cf. Fig. 9.9) that a sin-
gle spin flip in the cubic code causes the switch of the quantum number of four
cubes, just like in the X-cube code. For large enough temperatures, most spins
belong to at least one cube which is already excited. Hence the energetic change
induced by flipping such a spin is mostly the same as for the vertex variant of the
three-dimensional toric code model, namely ∆E ∈ {−4J1, 0, 4J1}. A fit to the
peak positions in order to investigate the finite-size scaling behavior of the cubic
code model is not reasonably possible since the peak does not reveal a clear shift
upon increasing system size. For odd system sizes, the location of the peak seems
to saturate at β ≈ 2.3. We conclude that the perspective of a specific heat analysis
seems not compatible with the fractal structures of the cubic code at low tempera-
tures and thereby does not a provide a clear signature of the expected transition from
a topologically ordered to a trivial phase. Moreover, the power of the single-spin
flip algorithm applied for this study is very limited for these fractal structure as can
be seen in the large statistical errors on the data points.
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11.2.2. Finite temperature
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Figure 11.13.: Topological entropy of the vertex variant of the toric
code model as a function of the inverse temperature.
The topological entropy has a finite value of ln 2 at
low temperatures and vanishes upon increasing the
temperature. The position of the vanishing depends
on the system sizeL and approaches zero temperature
upon increasing L. In the inset, we show the scaling
of the temperature of the breakdown. We define the
inflection points of the data as the precise locations of
the breakdown and fit these locations to 1/ lnL. As
expected, the breakdown temperature vanishes in the
thermodynamic limit.

We turn to the per-
spective of the classical
topological entropy γ in
which we analyze the
three-dimensional toric
code model. For the
simulation of the clas-
sical vertex variant we
employ our advanced
variant of a local up-
date algorithm which
randomly picks two or
three vertices in the
replica representation of
the system. These
vertices are flipped ac-
cording to the Metropo-
lis probabilities and the
spins states are com-
pletely ignored in the
simulation. In order
to create and extract a
topological term, we use
the scheme in Fig. 10.2a,
dubbed cube-in-a-cube.
Our numerical results

from this simulation are shown in Fig. 11.13. As expected, the larger the system
size, the lower is the temperature at which γ vanishes. A quantitative analysis of
this relation is performed by identifying the inflection point of the curves to mark
the breakdown. The inset of Fig. 11.13 demonstrates that the breakdown scales
as 1/ lnL and extrapolates to zero in the thermodynamic limit, in agreement with
Ref. [139].

For the plaquette variant of the toric code model, subjected to a finite temper-
ature, single spin flips are the Monte Carlo method of our choice. In a first at-
tempt, we use the same Levin-Wen type scheme as above, i.e. the cube-in-a-cube in
Fig. 10.2a. Since this model has a phase transition we naively expect a finite value
of γ for β > βc ≈ 0.76141. As seen in Fig. 11.14, this is not the case. In the other
limit (β → 0) the vanishing of γ reflects the expected behavior of thermal destruc-
tion of topological order. Hence, we learn that bipartition A4 is not apt to produce
a reduction in the entropy for systems which exhibit a closed-membrane structure.
Nevertheless, the data feature a divergent peak approaching the phase transition
from below (with regard to β). A simple linear fit of the locations of these peaks
versus the inverse system size 1/L yields a curve which extrapolates to β ≈ 0.764,
that is, to a critical temperature close to the value from the literature. Moreover, we
observe an interim behavior of γ between βc/2 < β < βc which suggests that a
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11.2. Three-dimensional classical codes

value of γ = ln 2 could be taken in the thermodynamic limit. As pointed out earlier,
such a behavior is an artifact of the second Rényi entropy.
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Figure 11.14.: Topological entropy of the plaquette variant of the
three-dimensional toric code as a function of the in-
verse temperature using the cube-in-a-cube extrac-
tion. No finite value of γ is revealed in the topolog-
ically ordered phase for β > βc. However, a diver-
gent peak approaches the critical inverse temperature
from above upon increasing the system size. A scal-
ing of the peak position with the inverse system size
is demonstrated in the inset. In the thermodynamic
limit, this scaling extrapolates very accurately to the
known critical βc.

Our hypothesis for
the above failure of the
detection of a finite γ
in the topologically or-
dered phase is, that we
have tried to detect a
membrane with another
membrane (the biparti-
tion). To cure this prob-
lem, we try to detect the
membranes with two-
dimensional slices via
the ‘layers’ bipartition
in Fig. 10.2b. Since
we expect every set of
equally positioned lay-
ers to detect the same
topological contribution,
we divide the obtained
constant by the number
of layers L. Fig. 11.15
shows the results from
our Monte Carlo simu-
lations. Indeed, we ob-
serve a contribution per
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Figure 11.15.: Topological entropy per layer for the plaquette variant of the three-dimensional toric
code using the extraction scheme consisting of layers. We obtain a finite value for the
topological entropy in the topologically ordered phase β > βc. A broadening peak
emerges slightly below the inverse transition temperature for larger system sizes.
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11. Results for stabilizer codes

layer of γ/L = ln 2 at inverse temperatures β > βc. Upon increasing the system
size, there seems to emerge a broad peak slightly below the phase transition whose
right leg approaches βc. It is worthwile to note that no interim behavior appears
in this simulation. Its absence can be understood from the fact that the collection
of layers — as opposed to a true bulk — does not allow for bulk order effects in
subsystem A. The latter would separate the critical behavior of the subsystems A
and B due to the effective inverse temperature of 2β in subsystem A.

11.2.3. Membrane tension
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Figure 11.16.: Mutual information per boundary element of the
three-dimensional toric code model placed in an ex-
ternal membrane tension. The bipartition employed
for this computation cuts the cube into two halfs. We
observe a finite value of ln 2 in the topologically or-
dered low-h phase which vanishes for large h. In an
intermediate region between hc/2 < h < hc, a light
overshooting of the mutual information appears. At
the critical membrane tension hc ≈ 0.221656 the mu-
tual information strongly breaks down.

We place the plaque-
tte variant of the three-
dimensional toric code
in a finite magnetic field
h — denoted as mem-
brane tension — and
consider the correspond-
ing Hamiltonian (9.20)
at its groundstate where
only closed membranes
are allowed. As in the
two-dimensional case, we
implicitly assume a fi-
nite temperature which
satisfies h � T �
Jp such that the exter-
nal field does not sup-
press any configurations
which have spins point-
ing down. The result-
ing ensemble is invari-
ant under flips of all six
spins of a vertex. It
is hence natural to em-
ploy single-vertex flip or

vertex-cluster flip updates for the simulation of this system. However, both types
must be extended by global updates of single winding membranes in order to
seize the entire degenerate ensemble. This system can be mapped to the three-
dimensional Ising model at varying temperature by transforming membranes to
domain walls of the Ising spins. We thus know that there is a phase transition at
hc = β(Is)

c ≈ 0.221656 in the three-dimensional toric code from the topologically
ordered low-tension phase to the paramagnet for h > hc.

We first consider the mutual information I2(A : B) for regions A and B which
are each exactly one half of the cube (in periodic boundary conditions). Since con-
tributions from the boundary between A and B are not cancelled in the definition
of the mutual information, we divide the data by (2L2 − 1) which corresponds to
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11.2. Three-dimensional classical codes

the boundary size lowered by one. The explanation for the reduction is similar to
the two-dimensional toric code, the crucial difference being that we do not con-
sider piercings of loop segments through the boundary of A — yielding points —
but rather the intersecting object of a closed membrane with a plane — a closed
loop. Closed loops on a square lattice always have an even number of edges, i.e.
spins. Therefore, we can reuse the same combinatorial argument that the number
of spins pointing down on the plane boundaries must be even which leads to the
entropy reduction of one bit of information. Our results for the mutual information
are plotted in Fig. 11.16. We observe, that the topologically ordered phase in the
limit h→ 0 is reflected by a finite contribution of ln 2 per free boundary element to
the mutual information. The mutual information vanishes in the other limit where
the configuration of the system is polarized and the Rényi entropies of A and B
are zero. We note that only the curve for the very small system size L = 4 can be
distinguished from the otherwise collapsing curves. This is explained by the strong
suppression of h-dependent constant contributions to the mutual information from
the division by (2L2 − 1). The downside of this collapse is that crossing points can
hardly be determined. Hence, not much can be gained about the behavior at the
expected phase transition hc apart from a rough proximity to the inflection point of
the decreasing curves. At the second Rényi artifactual transition at hc/2, however
we note a common local minimum in the data. Finally, also an interim behavior
between hc/2 and hc where the curves undergo a transient increase can be spotted
in the mutual information.
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Figure 11.17.: Topological entropy of the plaquette variant of the
three-dimensional toric code placed in an external
membrane tension h. The topological term is ex-
tracted using the scheme in Fig. 10.2c. As expected,
we have a finite topological term of γ = ln 2 at low
h. In the intermediate regime hc/2 < h < hc, we see
first signatures of a connectivity contribution upon
increasing the system size. The topological entropy
vanishes for h > hc.

For the generation
and extraction of a topo-
logical entropy in the
membrane tension vari-
ant we use the scheme
10.2c. In principle,
the setup is the three-
dimensional variant of
the previously discussed
connectivity contribution
in two dimensions, see
Fig. 11.4. In sim-
ulations of three di-
mensional systems we
are obviously more re-
stricted in computation-
ally accessible linear sys-
tem sizes L. We ob-
tain the topological en-
tropy γ for systems up to
L = 20 which are shown
in Fig. 11.17. The data
confirm the presence of
a topologically ordered phase by exhibiting a finite γ = ln 2 in the low mem-
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11. Results for stabilizer codes

brane tension limit. This topological entropy vanishes for h & 0.25, i.e. close
to the known phase transition at hc ≈ 0.221656. A sharp increase of γ is revealed
slightly above hc/2, but this feature does not seem to be divergent upon increasing
the system size as the peak of L = 20 is below the one of L = 16. It appears
rather plausible that a plateau at γ = 2 ln 2 is developed in the intermediate region
hc/2 < h < hc which corresponds to the connectivity contribution. The curve of
L = 20 possibly moves towards such a saturation at h ≈ 0.13. Similar to the mutual
information, no clear footprint of the physical phase transition can be worked out in
the topological entropy near hc in the present data. Regarding this issue, it remains
to be investigated how the shoulder of the curves at h ≈ 0.2 behaves upon further
increasing the system size.

11.2.4. Quantum to classical mapping

We finally consider the anisotropic plaquette variant of the three-dimensional toric
code and tune the membrane tensions in the x-y-plane as to effectively represent
the two-dimensional quantum toric code in a transverse field. Here, we primar-
ily assess the numerical feasability of a simulation of the topological entropy. As
pointed out in Sec. 9.3, we fix the lattice spacing in imaginary time dimension (z)
to ∆ = 0.76141 such that the critical point of the three-dimensional classical model
is precisely the isotropic setup h(Is)

z = h(Is)
x/y ≈ 0.221656. The membrane tension in

the z-direction is consequently fixed to hz = 0.58224 and we vary hxy in order to
observe the phase transition in the topological entropy γ.

We perform simulations employing global Wolff updates of clusters of vertices
and measure the magnetizations of both the z-spins and of the spins in the x-y-plane.
In order to extract the topological entropy we use the Lewin-Wen addition scheme
in Fig. 10.2c since it has no boundaries between consecutive imaginary-time slices
and hence does not capture effects coming from the imaginary-time expansion. Al-
though we want to vary hxy but not hz we nevertheless expect that the collective
behavior of the spins in the x-y-plane also impinges on the z spins. This effect
necessitates the double thermodynamic integration as discussed in Sec. 10.1.2.2,
and thereby requires a large number of individual simulations of a dense two-
dimensional grid of tuples (hxy, hz) ∈ [0, hc] × [0, hc]. We present our data for the
smallest reasonable linear system size of L = 8. For the inevitable discretization
of the hz membrane tension, we have selected eight equidistant points, while a very
fine resolution is simulated for the hxy parameter. The top panel of Fig. 11.18 shows
the first integration in Eq. (10.3) of the measured quantity 〈mxymz〉 − 〈mxy〉〈mz〉,
namely the one over hxy. These ‘raw’ data reveal the difficulty in obtaining accu-
rate results for the topological entropy using the double integration: The moving
extrema for varying hz should cancel in the second integration — which is only
possible if we have a very fine resolution of hz data points in the grid. Upon in-
creasing hz the peaks vanish in proximity of the artifactual transition, i.e. the mem-
brane tension at which half of the Ising critical temperature is effectively tuned. In
the bottom panel of Fig. 11.18 we carry out the second part of the thermodynamic
integration by simply accumulating the curves of the first integration and multi-
plying them by ∆hz = hc/8. Obviously, the oscillating right half of the result is
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11.2. Three-dimensional classical codes

strongly inaccurate due to the mentioned effect of the peaks and demands a finer
resolution. Nevertheless, we have reason to believe that the method is in princi-
ple capable of yielding the topological entropy of the quantum-to-classical mapped
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Figure 11.18.: Top panel: Results of the first integration for
the computation of the topological entropy of an
anisotropic three-dimensional toric code model in
an external loop tension. The integration over hxy
is carried out for different fixed values of hz . Bot-
tom panel: Comparison of the computations of the
topological entropy using the double integration of
〈mxymz〉 − 〈mxy〉〈mz〉 versus a single integra-
tion following the concept of all previous thermody-
namic integrations. The data basis for the double in-
tegration is clearly insufficient which causes the os-
cillating behavior. The single integration reveals its
inaccuracy as it does not saturate at γ = 0 for large
hxy . Slightly above the artifactual critical membrane
tension which corresponds to h(Is) = 0.221656/2,
both curves show a similar behavior.

system. To support
this hypothesis, we com-
pare the double integra-
tion with a (conceptu-
ally inaccurate) applica-
tion of the simple ther-
modynamic integration,
Eq. (10.2). In this com-
putation, we have mea-
sured mxy for varying
hxy at fixed hz. This
simplification is only cor-
rect if we can ignore
the issue that mz de-
pends implicitly on hxy.
The corresponding curve
shows a similar behav-
ior as the isotropic case
(Fig. 11.17) and begins
developing a peak at
the artifactual transition.
However, it does not sat-
urate at γ = 0 in
the large-hxy limit —
demonstrating the inac-
curacy of the simplified
integration. The point we
want to make is, that for
hxy . 0.3 the two curves
compare rather well even
though the double inte-
gration has been done on
a too coarse discretiza-
tion. We emphasize that
the first peak at hxy ≈
0.25 is not simply the
leftmost peak of the top
panel of Fig. 11.18, but
a result of at least the
curves of hz/hc = 0.875
and 1.0. Hence, we con-
clude that — even though
numerically tedious — the double thermodynamic integration is the proper way to
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11. Results for stabilizer codes

compute the topological entropy of the classical three-dimensional toric code with
anisotropic membrane tension and thereby the two-dimensional quantum toric code
with transverse loop tension.
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12. Summary

In this Part of the thesis we have presented the use of entanglement entropies and
their classical counterparts for the realm of topological order. Specifically, we have
focussed on many-body systems in which topological order constitutes the exploited
feature that makes them candidates for quantum memories.

The groundstate phenomenon of topological order is manifested in the entan-
glement entropies by a negative constant correction to the leading boundary law. In
order to establish this connection, we have discussed the nature of this form of order
by regarding it as a result of long-ranged entanglement. Further, we have worked
out how its underlying structures can be seized by the bipartite entanglement mea-
sures used in this thesis. For this endeavor, it turned out that the perspective of
loopgases is sufficient for our considered models. The emergent entanglement re-
duction depends on the specific choice of the bipartition for the entropy computation
— a fact which is exploited when employing addition schemes in order to calculate
this reduction, the so-called topological entropy.

Understanding the combinatorial mechanism that leads to a finite topological
entropy suggested that such a feature should be revealed in classical settings as
well. To this end, we defined analogues of entanglement entropies for classical
statistical-mechanics ensembles which have been designed to replace the quantum
superposition of the groundstate condensates. These classical bipartite entropies
indeed turned out to indicate classical topological order — alternatively denoted as
topological ergodicity breaking.

Our objects of study in this Part of the thesis have been Hamiltonians which rep-
resent quantum error-correcting codes. To provide an understanding of the impor-
tant properties of such Hamiltonians we have introduced the context and strategy
of quantum error correction. These quantum Hamiltonians are designed in order
that their groundstates represent the code space of the underlying stabilizer code.
Thermal excitations or other perturbations map to errors in the code and can be
detected and corrected by appropriate protocols. We have focussed on the Hamil-
tonian perspective and chosen to work mainly on prototypical examples for topo-
logically protected quantum memories — namely toric code models and variants
thereof. The two-dimensional toric code has been discussed in great detail in the
light of its (exactly known) groundstate properties, excitations and perturbations by
an external longitudinal field. Most importantly, we have derived a classical variant
of this model which enabled us to carry out the investigation of classical topolog-
ical order from an entanglement entropy perspective. These considerations could
be straightforwardly transfered to similarly defined quantum Hamiltonians in three
dimensions. A major motivation for the interest in three-dimensional models is the
thermal instability of topological order in two-dimensional systems for any finite
temperature. If, on the other hand, a system turns out to reveal a robustness of
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topological order up to a finite temperature, we expect a phase transition to happen
at this temperature which is indicated by the vanishing of the topological entropy.
We have introduced the three-dimensional toric code and the X-cube code, which
are likewise defined on a lattice with degrees of freedom on the edges, as well as
Haah’s cubic code. Those models which are not self-dual (the toric code in three
dimensions and the X-cube code) allow for two different classical variants with
significantly different finite-temperature behavior.

Since we have mapped the problem of finding stable quantum memories to a
condensed-matter context of phases of matter, we need a numerical tool for the
computation of macroscopic observables in a statistical-mechanics ensemble. To
this end, we have chosen the approach of Monte Carlo simulations. We have am-
ply explained how we implement its two basic steps, namely the walk through the
configuration space and the measurement of appropriate observables in each visited
configuration. For the computation of the topological Rényi entropy, the quantity
to be measured is simply the energy (or magnetization) just like for the specific
heat. However, a modified system has to be designed in order to access the nec-
essary partial trace over one of the subsystem of the bipartitioning. Moreover, a
post-processing of the energy measurement is required for the Rényi entropy. The
usage of addition schemes finalizes the measurement routine.

The Markov chain engendering the walk through the configuration space is cre-
ated by well-designed updates of the respective current configuration. Local updates
are the simplest way of creating new configurations. But we have demonstrated that
in some circumstances these updates are not sufficient for the simulation of the full
ensemble. Therefore we have extended our set of updates by global modifications
to the configurations. Such updates also increase the efficiency of the simulation if
the system is close to a critical points.

The application of the introduced framework and methods led to a number of in-
sights on the basis of our numerical results. For the two-dimensional toric code we
were able to verify the expected transient finite-temperature behavior of the topo-
logical entropy, including the corresponding finite-size scaling. We further investi-
gated the effect of a finite loop tension to the groundstate ensemble. In principle,
a signature of a transition is expected from a known mapping of this setting to the
two-dimensional Ising model. We have found the mutual information and topolog-
ical entropy to indicate the topologically ordered phase and to vanish in the trivial
phase. However, already the probe of the perturbation via the mutual information
revealed the existence of an intermediate regime between the critical loop tension
and half its value — showing singular behavior for the second Rényi entropy. Even
more strikingly, the topological entropy itself saturates in the intermediate regime
at twice its ordinary value of γ = ln 2 for the indication of topological order in the
classical toric code. We were able to explain the origin of this behavior by consid-
ering the separated parameter regimes in which the subsystem A and B order in the
modified system. Our first conclusion is therefore that the usage of Rényi entropies
instead of the von Neumann entropy involves artifactual behavior of the quantities
of interest. Beyond this qualitative finding we also established a quantitative ex-
planation for the interim overshooting of the topological entropy. To this end, we
considered the effect of the seemingly pointless application of the addition scheme
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to the two-dimensional Ising model which is free of topological order. It turned out
that a similar saturation of the topological entropy at a non-zero value is found in
the intermediate regime. Hence, this feature constitutes an additional reduction of
the Rényi entropy which is due to the disconnectedness of one or more bipartitions
in the addition scheme. We therefore decided to name it connectivity contribution.

For the three-dimensional models considered we expected a finite-temperature
transition for at least one of their classical variants. We have succeeded in finding
this transition from computing the specific heat for a range of inverse tempera-
tures and observing whether divergent peaks show up. From an extrapolation of
the peak location and its height, we were able to obtain values for the critical ex-
ponents of the correlation length ν and of the specific heat α. In the case of the
three-dimensional toric code they agree remarkably well with those of the three-
dimensional Ising model and the extrapolated value of the peak position yields the
known phase transition of the Ising three-dimensional lattice gauge theory. Also for
the X-cube model we could verify our expectations about the presence/absence of
a finite-temperature transition for each of the two classical variants. Furthermore,
we turned to the topological entropy in the three-dimensional toric code. For the
finite-temperature behavior we have found it to indicate the breakdown of topologi-
cal order for the variant in which string operator induce excitations. More attention
needs to be paid to the choice of the addition scheme if we want to detect topological
order in the other classical variant which is characterized by membrane structures.
For the detection of a finite topological entropy in the topologically ordered phase,
it turned out useful to design the addition scheme based on (two-dimensional) lay-
ers instead of three-dimensional subsystemsA. We have found the vanishing of γ to
take place in proximity of the known phase transition in this case. Finally, we placed
the three-dimensional toric code in an external field — a membrane tension. For an
isotropic field, the resulting Hamiltonian can be mapped to the three-dimensional
Ising model such that we could find the corresponding phase transition and its Rényi
artifact in the topological entropy. Moreover, it does not imply substantially more
complexity to make the field anisotropic by allowing the edges in the z-direction to
take a different value of the magnetization. This modification allowed us to directly
simulate a two-dimensional quantum toric code in an external field via the 2 + 1
dimensional quantum-to-classical correspondence.
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13. Conclusion

In this thesis we have gained a thorough insight of various aspects of the powerful
concept of entanglement entropy in many-body systems. It has been elucidated why
and how this quantity measures quantum correlations in groundstates and thereby
enables an identification of different phases of quantum systems at zero temper-
ature. The methodological necessity to introduce a bipartition in the many-body
system provides a toolbox for the extraction of information associated with partic-
ular physical phenomena of interest. The key to using the bipartition as a resource
is the prevalent boundary law which extracts universal quantities from a scaling of
the entanglement entropies with the size of the boundary between the subsystems.
Specifically, these quantities are the coefficients of the subleading contributions.
Depending on the selected size and geometry of the subsystem, we were able to
induce different coefficients.

The boundary coefficient is non-universal but reflects the increase of the correla-
tion length at phase transitions accompanied by symmetry breaking. In the models
we have considered in Part one, this coefficient showed a local maximum at the
transition upon tuning the relevant parameter. While a decrease towards the dis-
ordered side is not surprising as the correlation length vanishes, such a decay is
not a priori expected on the ordered side. The reason for this decay is, that there
exist amplitude modes which are gapless at the transition but gapped further away
from it. The more gapless excitations are present in the spectrum the larger is the
boundary coefficient, hence the local maximum at the transition. A further study
of how the boundary coefficient behaves for a model devoid of amplitude modes,
e.g. suppressed by a magnetic field, would help to further examine the significance
of entanglement entropies for probing the interplay between phase transitions and
amplitude modes.

A universal quantity for phase transitions is the coefficient of the logarithmic
contribution to the boundary law. We have confirmed this statement for interacting
theories, where the critical point is of Wilson-Fisher type. Furthermore, we have
applied the entanglement entropy analysis to the two-dimensional free boson and
free Dirac fermion lattice field theories. To this end, we have selected a subsystem
with corners in our bipartitions and thereby induced the logarithmic contribution.
We were able to draw conclusions about this quantity, in particular, how it depends
on the opening angle of the corner and on the Rényi order. The logarithmic contri-
bution is related to the degrees of freedom of low-lying excitations of the conformal
field theories describing the free boson and the free Dirac fermion. Its calcula-
tion would hence be a useful numerical approach for the investigation of quantum
phase transition in which the low-energy behavior is unkown. As little is known
about three-dimensional free theories, an obvious and straightforward generaliza-
tion would be to apply this numerical analysis to these cases. Also other quantum
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critical systems — for example a fermion model with quadratic band touching —
represent interesting case studies for low-energy physics which is tractable by our
method.

The most important application of the entanglement entropy analysis refers to
the domain of topological order. Often, the only accessible approach to identify this
phenomenon in many-body systems is to check for a finite constant (‘topological’)
contribution to the boundary law of entanglement entropy. We have pointed out that
the effect of long-ranged correlations leading to a finite topological contribution
can be partly reproduced in pure classical systems. This perspective enabled us to
numerically investigate classical many-body systems exhibiting topological order
by Monte Carlo simulations. To this end, we picked the toric code model in two
and three dimensions as our object of study. We could assess the role of the topo-
logical contribution in tracking transition between topologically ordered and trivial
phases driven by a varying temperature or an external loop tension. In particular,
the finite-temperature transitions are of crucial significance for models designed to
be self-correcting quantum memories. In order that a model can be such a mem-
ory, both types of interactions in the quantum Hamiltonian, that is, the σx and the
σz interactions, have to exhibit a phase transition when mapped to corresponding
classical models. We have not seen such a behavior in any of the toric code models
considered in this thesis up to three dimensions.

A finite-temperature phase transition can alternatively be detected by determin-
ing the specific heat at varying temperatures for different lattice sizes. We have
followed this approach for the toric code models but also for the X-cube and the
cubic code in three dimensions. We were able to confirm our expected behavior for
the toric and the X-cube code. By improving the numerical setup, e.g., including
parallel tempering in the simulations, we might further pinpoint our found transition
temperature and exponents.

For Haah’s cubic code, the specific heat measurement were not successful due
to the immense and varying groundstate degeneracy and the fractal structure of the
excited states. Again, parallel tempering could help lower the statistical uncertain-
ties. The same goal could be achieved by the development of Monte Carlo updates
more specialized to the cubic code than the simple single-spin flips. Also, an en-
tanglement entropy analysis of the X-cube and the cubic code would be a follow-up
investigation to our work. These efforts could help answering the question whether
the cubic code is a suitable self-correcting quantum memory.

Regarding the toric code models, further aspects such as the inclusion of Ising-
like perturbations of neighboring spins [155] could be included in subsequent stud-
ies. It would also be desirable to perform a complementary Quantum Monte Carlo
simulation of the original quantum toric code Hamiltonian using a stochastic series
expansion. This finite-temperature method could provide a numerical verification
of the expected size-dependent breakdown of groundstate topological order when
cranking up temperature. However, the four-body interactions hamper this approach
if combined with the loop updates strategy [156]. We would hence have to com-
bine an insertion of mutually annihilating pairs of σx interactions with our classical
update techniques performed on equal-time slices of the imaginary time expansion.
Having such a simulational setup, a very interesting endeavor would be the investi-
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gation of a so-called conformal quantum critical point [53] in the two-dimensional
toric code model — obtained if the groundstate wavefunction itself (instead of the
Hamiltonian) is made critical. We could observe how the transitions with differ-
ent dynamic critical exponents z = 1 (z = 2) from a Hamiltonian (wavefunction)
deformation, respectively, are reflected in the topological entanglement entropy.

We finally remark that the toric code model is of practical relevance as there are
proposals how to physically implement it as so-called surface codes using super-
conducting circuits [157] and thereby actually build quantum computers. As for
the concept of entanglement entropies in general we close our considerations in
this thesis by emphasizing two future challenges: First, the limitations of Rényi en-
tropies compared with the von Neumann entropy have to be fully unveiled in order
to avoid unphysical conclusions from artifactual critical points — one such artifact
has been understood in this thesis. Second, the availability of an experimental setup
for the measurement of Rényi entropies in optical lattices may lead to further estab-
lishing entanglement entropies as a common tool for analyzing critical behavior and
identifying topological order in theoretical and experimental many-body physics.
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den Menschen danken, die mir während meiner Promotionszeit persönlich stets zur
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A. Quantum Monte Carlo
updates for bilayer models

In order to design a quantum Monte Carlo algorithm in a stochastic series expansion
(SSE) [106] of the partition function

Z =Tre−βH

=
∑

α

∞∑

n=0

〈
α

∣∣∣∣
(−βH)n

n!

∣∣∣∣α
〉
, (A.1)

we perform so-called diagonal and off-diagonal updates on a world-line represen-
tation of this series. To this endeavor, it is helpful to rewrite the Hamiltonian of the
respective bilayer as a sum over bonds, i.e.

H =−
Nb∑

b=1

(Hb,d −Hb,o)− C, (A.2)

with a constant C and diagonal (d) and off-diagonal (o) bond matrix elements

Hb,d = J


1

4
−SziSzj︸ ︷︷ ︸

only Heisenberg


 , & Hb,o =

1

2
J
(
S+
i S
−
j + S−i S

+
j

)
. (A.3)

Diagonal update The insertion or removal of diagonal bond operators Hb,d at a
randomly chosen bond b is performed with probability

Paccept(n→ n+ 1) = min

(
Nbβ 〈α |Hb,d|α〉

M − n , 1

)
, (A.4)

for a series of order M with n < M occupied imaginary time slices.
For the bilayer Heisenberg model, the only non-vanishing diagonal elements α

after adjusting the constantC to remove negative elements are 〈↑↓ |Hb,d| ↑↓〉 = J/2
and 〈↓↑ |Hb,d| ↓↑〉 = J/2. No diagonal bond elements vanish for the bilayer
and necklace XY model, such that we have additionally have 〈↑↑ |Hb,d| ↑↑〉 =
〈↓↓ |Hb,d| ↓↓〉 = J/2.

Off-diagonal update In order to include also the off-diagonal element
〈↑↓ |Hb,o| ↓↑〉 = 〈↓↑ |Hb,o| ↑↓〉 = J/2 in the sampling, we perform loop updates
in the world-line representation of the series [156]. For the Heisenberg bilayer, this
update can be done deterministically since the loop entering a bond operator has to
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A. Quantum Monte Carlo updates for bilayer models

leave it via the bond neighbor on the same side. This is different for the XY models,
as also the neighbor on the other side of the operator can be taken as the exit for
the loop. Hence, for these models, the loop algorithm is not deterministic since a
random decision has to be made at every operator while constructing the loop. For
details of this procedure, we refer to Ref. [64].
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B. Formulae for the
entanglement entropy from
groundstate correlations

In this Appendix we establish the connection between a diagonal form of the re-
duced density matrix ρA = exp(−HA)/Tr exp(−HA) and the explicit formulae for
the entanglement entropies, Eqs. (5.11),(5.12),(5.26),(5.27) for both the free boson
(see Sec. B.1) and the Dirac fermion (see Sec. B.2).

B.1. Free boson
First we briefly consider the case of the von Neumann entropy formula, Eq. (5.12).
The eigenenergies of the entanglement Hamiltonian HA =

∑
q εqb

†
qbq are known

via the eigenvalues νq of the correlation matrix due to Eq. (5.10) which we rewrite
as

νq =
1

2

eεq + 1

eεq − 1
=

1

2
+

1

eεq − 1
. (B.1)

The elements of ρA can be interpreted as Boltzmann weights for β = 1 so that we
can use the expression of the entropy for bosons in statistical physics [99]

S = −
∑

q

ln(1− e−εq) +
∑

q

εq
eεq − 1

(B.2)

and simply insert Eq. (B.1). This directly yields (5.12) by inserting the matrix
instead of the eigenvalues and performing the trace.

For the Rényi entropies, we first compute the normalization constant Tr exp(−HA)
using boson number operators n̂q = b†qbq

Tre−HA =

( ∞∑

n1=0

e−ε1n1

)( ∞∑

n2=0

e−ε2n2

)
· . . . ·

( ∞∑

nM=0

e−εMnM

)

=
∏

q

(
1

1− eεq
)
, (B.3)

where the sums were identified as geometric series. Since [n̂p, n̂q] = 0 we can
factorize

ραA =
∏

q

e−αεqn̂q (1− eεq)α (B.4)

We insert this in the definition of the Rényi entropies, Eq. 2.7, where we have to
perform the trace over all basis states of the Fock space |n1, n2, . . . , nM〉. For our
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B. Formulae for the entanglement entropy from groundstate correlations

factorization this total trace is also obtained by multipliying the one-particle traces,
such that we have

Sα =
1

1− α ln [TrραA]

=
1

1− α ln
∏

q

∞∑

n=0

〈
n
∣∣e−αεqn̂ (1− eεq)α

∣∣n
〉

=
1

1− α ln
∏

q

(1− eεq)α
1− eαεq

=
1

α− 1

∑

q

ln

[
eαεq

(eεq − 1)α
− 1

(eεq − 1)α

]
. (B.5)

From Eq. (B.1) we deduce νq + 1
2

= 1/(1− e−εq) and νq − 1
2

= 1/(eεq − 1) so that
we arrive at the formula for the Rényi entropy in terms of the νq

Sα =
1

α− 1

∑

q

ln

[(
νq +

1

2

)α
−
(
νq −

1

2

)α]
, (B.6)

where we only have to replace the eigenvalues by the matrix CA and the sum by the
trace to get Eq. 5.11.

B.2. Free Dirac fermion
Very similar to the boson, we can derive the formula for the von Neumann entropy
of a Dirac fermion by using the corresponding statistical physics entropy of many
independent fermions,

S =
∑

q

ln(1 + e−εq) +
∑

q

εq
eεq + 1

. (B.7)

Inserting the relation ζq = 1/ (eεq + 1) we obtain Eq. (5.27). We note, that ζq is
just the probability that there is one fermion at momentum q. Hence, 1 − ζq is
the probability of the opposite event. The formula for the von Neumann entropy
can therefore be regarded as the Shannon entropy of the random event of possible
occupations of momenta q with Boltzmann distributed probabilities ζq.

The derivation for the Rényi entropies is also similar to the boson case. We start
by noting that a factorization of ρA into the single-particle contributions in HA =∑

q εqf
†
q fq =

∑
q εqn̂q is possible, since also for fermionic number operators we

have [n̂q, n̂p] = 0. Therefore, we can compute Tr exp(−HA) similar as in Eq. B.3

Tre−HA =

(
1∑

n1=0

e−ε1n1

)(
1∑

n2=0

e−ε2n2

)
· . . . ·

(
1∑

nM=0

e−εMnM

)

=
∏

q

(
1 + e−εq

)
, (B.8)
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B.2. Free Dirac fermion

the main difference being the absence of the geometric series as fermions can have
at most a single occupancy. For the factorization of ρA we can distribute the factors
of the normalization constant accordingly so that we get

ραA =
∏

q

(
e−εqn̂q

1 + e−εq

)α
. (B.9)

Tracing over all basis states for the Rényi entropies can be carried out on the single-
particle factors and by multiplying the sums

Sα =
1

1− α ln [TrραA]

=
1

1− α ln
∏

q

1∑

n=0

〈
n

∣∣∣∣
(

e−εqn̂q

1 + e−εq

)α∣∣∣∣n
〉

=
1

1− α ln
∏

q

(
1

1 + e−εq

)α
+

(
e−εq

1 + e−εq

)α

=
1

1− α
∑

q

ln
[
ζαq + (1− ζq)α

]
. (B.10)

The last expression is already Eq. (5.26).

171





References

[1] L. D. Landau, Zur Theorie der Phasenumwandlungen II, Phys. Z. Sowjetu-
nion 11, 26 (1937).

[2] K. G. Wilson, Renormalization Group and Critical Phenomena. I. Renor-
malization Group and the Kadanoff Scaling Picture, Physical Review B 4,
3174 (1971).

[3] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body
systems, Reviews of Modern Physics 80, 517 (2008).

[4] M. B. Plenio and S. Virmani, An introduction to entanglement measures,
Quantum Information & Computation 7, 1 (2007).

[5] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the en-
tanglement entropy, Reviews of Modern Physics 82, 277 (2010).
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[64] O. F. Syljuåsen and A. W. Sandvik, Quantum Monte Carlo with directed
loops, Physical Review E 66, 046701 (2002).

[65] L. Wang, K. S. D. Beach, and A. W. Sandvik, High-precision finite-size
scaling analysis of the quantum-critical point of S = 1/2 Heisenberg anti-
ferromagnetic bilayers, Physical Review B 73, 014431 (2006).

[66] J. Helmes and S. Wessel, Correlations and entanglement in quantum critical
bilayer and necklace XY models, Physical Review B 92, 125120 (2015).

[67] S. Ryu and T. Takayanagi, Holographic Derivation of Entanglement Entropy
from the anti – de Sitter Space/Conformal Field Theory Correspondence,
Physical Review Letters 96, 181602 (2006).
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[107] M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko, Measuring
Renyi Entanglement Entropy in Quantum Monte Carlo Simulations, Physi-
cal Review Letters 104, 157201 (2010).

[108] S. Inglis and R. G. Melko, Entanglement at a two-dimensional quantum
critical point: a T = 0 projector quantum Monte Carlo study, New Journal
of Physics 15, 073048 (2013).

[109] F. Kos, D. Poland, and D. Simmons-Duffin, Bootstrapping the O(N) vector
models, Journal of High Energy Physics 2014, 1 (2014).

[110] C. D. Nobili, A. Coser, and E. Tonni, Entanglement negativity in a two di-
mensional harmonic lattice: area law and corner contributions, Journal of
Statistical Mechanics: Theory and Experiment 2016, 083102 (2016).

[111] R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quan-
tum Fluid with Fractionally Charged Excitations, Physical Review Letters
50, 1395 (1983).

[112] X. G. Wen, Topological orders in rigid states, International Journal of Mod-
ern Physics B 04, 239 (1990).

[113] X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum
Hall states in the presence of a random potential and on high-genus Rie-
mann surfaces, Physical Review B 41, 9377 (1990).

[114] X.-G. Wen, Topological Order: From Long-Range Entangled Quantum Mat-
ter to a Unified Origin of Light and Electrons, International Scholarly Re-
search Notices 2013, 1 (2013).

[115] T. Einarsson, Fractional statistics on a torus, Physical Review Letters 64,
1995 (1990).

179

http://dx.doi.org/10.1103/PhysRevB.93.085120
http://dx.doi.org/10.1103/PhysRevB.93.085120
http://dx.doi.org/10.1088/0305-4470/36/14/101
http://dx.doi.org/10.1103/PhysRevA.73.012309
http://dx.doi.org/10.1103/PhysRevA.73.012309
http://dx.doi.org/10.1103/PhysRevB.92.115126
http://dx.doi.org/10.1103/PhysRevLett.110.135702
http://dx.doi.org/10.1103/PhysRevB.43.5950
http://dx.doi.org/10.1103/PhysRevLett.104.157201
http://dx.doi.org/10.1103/PhysRevLett.104.157201
http://dx.doi.org/10.1088/1367-2630/15/7/073048
http://dx.doi.org/10.1088/1367-2630/15/7/073048
http://dx.doi.org/10.1007/JHEP06(2014)091
http://dx.doi.org/10.1088/1742-5468/2016/08/083102
http://dx.doi.org/10.1088/1742-5468/2016/08/083102
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1103/PhysRevB.41.9377
http://www.hindawi.com/journals/isrn/2013/198710/abs/,%20http://www.hindawi.com/journals/isrn/2013/198710/abs/
http://www.hindawi.com/journals/isrn/2013/198710/abs/,%20http://www.hindawi.com/journals/isrn/2013/198710/abs/
http://dx.doi.org/10.1103/PhysRevLett.64.1995
http://dx.doi.org/10.1103/PhysRevLett.64.1995


References

[116] E. Witten, Topological quantum field theory, Communications in Mathemat-
ical Physics 117, 353 (1988).

[117] X. Chen, Z.-C. Gu, and X.-G. Wen, Local unitary transformation, long-
range quantum entanglement, wave function renormalization, and topolog-
ical order, Physical Review B 82, 155138 (2010).

[118] A. Hamma, R. Ionicioiu, and P. Zanardi, Bipartite entanglement and en-
tropic boundary law in lattice spin systems, Physical Review A 71, 022315
(2005).

[119] M. Hermanns and S. Trebst, Renyi entropies for classical string-net models,
Physical Review B 89, 205107 (2014).

[120] M. A. Levin and X.-G. Wen, String-net condensation: A physical mechanism
for topological phases, Physical Review B 71, 045110 (2005).

[121] M. Hermanns, Private Communication.

[122] C. Castelnovo and C. Chamon, Topological order and topological entropy
in classical systems, Physical Review B 76, 174416 (2007).

[123] J. Iaconis, S. Inglis, A. B. Kallin, and R. G. Melko, Detecting classical phase
transitions with Renyi mutual information, Physical Review B 87, 195134
(2013).

[124] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological quantum mem-
ory, Journal of Mathematical Physics 43, 4452 (2002).

[125] K. Siva and B. Yoshida, Topological order and memory time in marginally-
self-correcting quantum memory, Physical Review A 95, 032324 (2017).

[126] B. M. Terhal, Quantum error correction for quantum memories, Reviews of
Modern Physics 87, 307 (2015).

[127] P. W. Shor, Scheme for reducing decoherence in quantum computer memory,
Physical Review A 52, R2493 (1995).

[128] D. Gottesman, Stabilizer Codes and Quantum Error Correction, PhD thesis
(California Institute of Technology, Pasadena, CA, 1997).

[129] B. J. Brown, D. Loss, J. K. Pachos, C. N. Self, and J. R. Wootton, Quan-
tum memories at finite temperature, Reviews of Modern Physics 88, 045005
(2016).

[130] P. W. Shor, Fault-tolerant quantum computation, in 37th Annual Sympo-
sium on Foundations of Computer Science (1996), pp. 56–65.

[131] J. v. Neumann, Probabilistic logics and synthesis of reliable organisms from
unreliable components, in Automata Studies, edited by C. Shannon and J.
McCarthy (1956), pp. 43–98.

[132] E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum computation:
error models and thresholds, Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences 454, 365 (1998).

[133] D. Bacon, Operator quantum error-correcting subsystems for self-correcting
quantum memories, Physical Review A 73, 012340 (2006).

180

http://dx.doi.org/10.1007/BF01223371
http://dx.doi.org/10.1007/BF01223371
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevA.71.022315
http://dx.doi.org/10.1103/PhysRevA.71.022315
http://dx.doi.org/10.1103/PhysRevB.89.205107
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1103/PhysRevB.76.174416
http://dx.doi.org/10.1103/PhysRevB.87.195134
http://dx.doi.org/10.1103/PhysRevB.87.195134
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1103/PhysRevA.95.032324
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/RevModPhys.88.045005
http://dx.doi.org/10.1103/RevModPhys.88.045005
http://dx.doi.org/10.1109/SFCS.1996.548464
http://dx.doi.org/10.1109/SFCS.1996.548464
http://dx.doi.org/10.1098/rspa.1998.0166
http://dx.doi.org/10.1098/rspa.1998.0166
http://dx.doi.org/10.1103/PhysRevA.73.012340


References

[134] S. Bravyi and J. Haah, Quantum Self-Correction in the 3D Cubic Code
Model, Physical Review Letters 111, 200501 (2013).

[135] H. A. Kramers and G. H. Wannier, Statistics of the Two-Dimensional Ferro-
magnet. Part I, Physical Review 60, 252 (1941).

[136] J. B. Kogut, An introduction to lattice gauge theory and spin systems, Re-
views of Modern Physics 51, 659 (1979).

[137] R. Savit, Duality in field theory and statistical systems, Reviews of Modern
Physics 52, 453 (1980).

[138] G. K. Brennen and J. K. Pachos, Why should anyone care about computing
with anyons?, Proceedings of the Royal Society of London A: Mathemati-
cal, Physical and Engineering Sciences 464, 1 (2008).

[139] C. Castelnovo and C. Chamon, Topological order in a three-dimensional
toric code at finite temperature, Physical Review B 78, 155120 (2008).

[140] S. Trebst, P. Werner, M. Troyer, K. Shtengel, and C. Nayak, Breakdown of
a Topological Phase: Quantum Phase Transition in a Loop Gas Model with
Tension, Physical Review Letters 98, 070602 (2007).
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