
ESSAYS ON THE INTEGRATION OF
RENEWABLES

IN ELECTRICITY MARKETS

Inauguraldissertation

zur

Erlangung des Doktorgrades

der

Wirtschafts- und Sozialwissenschaftlichen Fakultät

der

Universität zu Köln

2017

vorgelegt

von

Dipl.-Ing. Dipl.-Wirt.Ing. Andreas Knaut

aus

Bad Neuenahr-Ahrweiler





Referent Prof. Dr. Felix Höffler

Korreferent Prof. Dr. Marc-Oliver Bettzüge

Tag der Promotion 06.07.2017





Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Felix Höffler for his support

and for providing helpful and constructive comments that helped me to improve

my research. I would also like to thank Prof. Dr. Marc-Oliver Bettzüge for offering

helpful advice and suggestions on the papers that are part of this thesis.

I am grateful for the productive and inspiring collaboration with Frank Obermüller,

Florian Weiser, Martin Paschmann and Simon Paulus on the joint research papers.

Furthermore, I am thankful to my colleagues at ewi Energy Research & Scenarios

for the many fruitful discussions, ideas, feedback and nice working atmosphere. In

particular, my thanks go to Joachim Bertsch, Simeon Hagspiel, Jürgen Kruse, Amelie

Sitzmann and Christian Tode.

An institutionally and financially stable framework has been provided by ewi En-

ergy Research & Scenarios and the University of Cologne. Some of the research

was carried out within the UoC Emerging Group on Energy Transition and Climate

Change (ET-CC) funded by the DFG Zukunftskonzept (ZUK 81/1) and the Energy

Storage Initiative funded through grant 03ESP239 by the German Federal Ministry

for Economic Affairs and Energy (BMWi) and the German Federal Ministry of Edu-

cation and Research (BMBF).

Finally, I would like to thank Lisa and my family for their support and encourage-

ment over the past years.

Andreas Knaut Cologne, March 2017

v



Contents

1 Introduction 1

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Discussion of Methodological Approaches . . . . . . . . . . . . . . . . . 6

2 How to Sell Renewable Electricity - Strategic Interaction in Se-

quential Markets 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Cournot Competition of Renewable Producers . . . . . . . . . . . . . . 17

2.3.1 Renewable Producer Monopoly . . . . . . . . . . . . . . . . . . . 17

2.3.2 Renewable Producer Monopoly in the Context of a Strict Con-

vex Marginal Cost Function . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Renewable Producer Oligopoly . . . . . . . . . . . . . . . . . . . 22

2.4 Flexibility and its Role in Short-term Markets . . . . . . . . . . . . . . . 23

2.5 Incentives of Renewable Producers to Withhold Production . . . . . . 26

2.6 Prices, Welfare, Producer Surplus and Consumer Surplus . . . . . . . . 28

2.6.1 Prices and the Role of Arbitrageurs . . . . . . . . . . . . . . . . . 28

2.6.2 Producer Surplus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.3 Consumer Surplus . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.4 Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.1 Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.2 Proof of Proposition 2.4 . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8.3 Proof of Proposition 2.6 . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Price Volatility in Commodity Markets with Restricted Participation 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Price Formation in the Day-Ahead and Intraday Auction . . . . . . . . 44

3.2.1 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



3.2.2 Application to Intraday Auction Prices . . . . . . . . . . . . . . . 50

3.2.3 Illustrative Insights Derived From the Theoretical Model . . . 52

3.3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Empirical Estimations . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 Proof of Proposition 3.4 on Distributional Effects . . . . . . . . 64

3.5.2 Supplementary Information on the Econometric Approach . . 67

4 When Are Consumers Responding to Electricity Prices? An Hourly

Pattern of Demand Elasticity 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Measuring Market Demand Reactions Based on Wholesale Prices . . . 74

4.2.1 The Retail Market for Electricity . . . . . . . . . . . . . . . . . . 74

4.2.2 The Wholesale Market for Electricity . . . . . . . . . . . . . . . . 75

4.2.3 The Interaction of Wholesale and Retail Markets . . . . . . . . 77

4.3 Empirical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Econometric Approach . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Retail Tari� Design in Electricity Markets with Variable Renewable

Production 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 The Welfare Optimal Time-Invariant Price . . . . . . . . . . . . 93

5.3.2 The Impact of Variable Renewable Electricity Generation . . . 97

5.4 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.1 The German Electricity System . . . . . . . . . . . . . . . . . . . 104

5.4.2 Consumption and Welfare with TIP . . . . . . . . . . . . . . . . 107

5.4.3 On the Way to the First-best: Introducing Time-of-use Tariffs . 109

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6.1 Properties of the distributional function f (dt , rt) . . . . . . . . 113

vii



5.6.2 Extensive Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . 114

5.6.3 Extensive Proof of Proposition 5.2 . . . . . . . . . . . . . . . . . 114

5.6.4 Proof of Proposition 5.3 . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6.5 Supply Curve Regression . . . . . . . . . . . . . . . . . . . . . . . 118

5.6.6 Sensitivity on the Share of Consumers on RTP . . . . . . . . . . 118

6 Tender Frequency and Market Concentration in Balancing Power

Markets 119

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 On the Functioning of the Balancing Power Market . . . . . . . 122

6.2.2 Market Concentration . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.1 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.2 Input Data and Assumptions . . . . . . . . . . . . . . . . . . . . . 130

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.1 System Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.2 Provision of Balancing Power . . . . . . . . . . . . . . . . . . . . 136

6.4.3 Market Concentration . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.6.1 Input Data for Modeling . . . . . . . . . . . . . . . . . . . . . . . 146

6.6.2 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.6.3 RSI Concentration Index for Secondary Balancing Power . . . 148

Bibliography 149

Curriculum Vitae 158

viii



1 Introduction

Energy consumption is an essential part of every day life and a foundation for the

functioning of economies worldwide. The conversion of energy makes it possible

to satisfy the demand for heating, cooling, transportation, lighting and information,

which puts energy consumption at the center of societies in the 21st century. In

the past, this demand has primarily been satisfied by the combustion of fossil fuels,

such as oil, gas or coal. This has lead to large carbon dioxide emissions, which are

regarded as one of the main drivers that are causing global climate change (IPCC,

2013). In order to circumvent these negative externalities of fossil fuel combus-

tion new ways of energy provision are being developed and deployed. In the Paris

agreement countries agreed to limit the worldwide temperature increase to well be-

low 2◦C (UNFCC, 2015). This essentially means that the energy supply needs to be

restructured in order to limit the implications of global climate change for future

generations.

One possibility to reduce carbon dioxide emissions is to improve energy efficiency

in the conversion process. For fossil fuel technologies, however, reduction potentials

are limited and new ways need to be found to satisfy the demand for energy (IEA,

2016a). A possible pathway, that is currently seen as very promising, is the substi-

tution of fossil fuel based technologies with technologies that are able to satisfy the

demand based on electricity generated from renewable energy technologies, such as

wind or solar power. This means for example that transportation in the future will

be provided by electric vehicles which are charged with electricity generated from

renewable energies. The heat demand furthermore may be satisfied by heat pumps

or electric stoves which are also powered by electricity. This would mean that a

large part of the energy demand in the future will be provided based on electricity.

The efficient organization of electricity markets is therefore of high importance for

future societies.

The electricity sector, as such, has already experienced tremendous changes in the

last three decades. The liberalization has lead to a restructuring of the whole sector.

Formerly vertically-integrated monopolies were transformed into unbundled firms

focusing each on generation, transmission, distribution and retailing. This restruc-

turing was undertaken with the aim to increase competition and emphasized the
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1 Introduction

importance of markets for the efficient allocation of resources to meet demand in

electricity systems. Different markets, that will be described in more detail within

this thesis, have historically evolved in Europe and contribute to the operation of

the whole electricity system. Wholesale markets enable the efficient allocation of

resources for electricity generation in order to satisfy demand just before real-time.

Retail markets enable consumers to choose among different suppliers to take charge

of their electricity supply. Balancing power markets enable transmission system op-

erators to procure balancing power for the secure operation of the electricity grid in

real-time.

After the liberalization, the electricity sector has seen a second transformation

which is aiming at the decarbonization of electricity systems. Besides the introduc-

tion of new additional markets such as the market for CO2 emission allowances,

governments are setting ambitious targets to increase the share of renewable gen-

eration in the electricity system. Because of these efforts and due to technological

developments, renewable capacities surpassed the cumulative installed capacities of

coal in 2015. This was mainly driven by newly build onshore wind (63 GW) and solar

photovoltaic (49 GW) capacities being deployed worldwide in 2015 (IEA, 2016b).

Obama (2017) expects that this trend is going to continue because renewable capac-

ities are already cost-competitive compared to fossil fuel based power generation in

many parts of the world. Furthermore, Obama expects that renewable energies and

efficiency technologies will make it possible to decouple emissions from economic

growth.

The increasing share of renewables in electricity systems is transforming electricity

markets worldwide. Wind and solar generation technologies differ in essential eco-

nomic terms from conventional power generation technologies. Besides high initial

fixed costs, the electricity is generated at short-term marginal costs of almost zero

and generation highly depends on weather conditions at the location (wind speed

and solar radiation). Especially, the dependence on weather conditions introduces

two important characteristics into electricity markets. First, the generation of renew-

ables is highly fluctuating in time. In order to reliably balance supply and demand in

electricity markets with renewables, demand needs to be able to quickly respond to

these changes or conventional capacities need to be able to adjust their production

in shorter time intervals. This increases the need for markets with higher product

granularity in terms of time resolution, where fluctuating supply and demand can

be matched efficiently. Second, the generation of renewables can only be predicted

to a certain degree ahead of time. The uncertainty about the final production level
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resolves over time until electricity is finally generated. This creates a need for mar-

kets in which the arrival of new information can be traded in order to allow for the

efficient allocation of renewable generation and conventional generation to meet

demand.

The Winter Package (COM(2016) 860) by the European Commission acknowl-

edges these profound impacts of renewable generation on electricity markets and

calls for an improved design of wholesale and retail electricity markets (EU Com-

mission, 2016). For wholesale markets, the Commission suggests that short-term

markets should be made overall more flexible and responsive for being able to inte-

grate the increasing share of renewable generation. Furthermore, consumers should

be given the possibility to actively participate in electricity markets by equipping

them with smart-meters and offering dynamic retail tariffs that reflect the changing

wholesale prices.

The dissertation at hand sheds light onto some of these important aspects for the

integration of renewable generation in electricity markets. Chapters 2 and 3 investi-

gate the impact of renewables on short-term wholesale markets, whereas Chapters 4

and 5 focus on the role of the demand side in wholesale and retail markets. Chap-

ter 6 analyses the role of balancing power markets in electricity systems, which may

become more important with an increasing share of renewables. Each chapter is

based on a single article to which the authors contributed equally:

• Chapter 2: How to Sell Renewable Electricity - Strategic Interaction in Sequen-

tial Markets (based on Knaut and Obermüller (2016))

• Chapter 3: Price Volatility in Commodity Markets with Restricted Participation

(based on Knaut and Paschmann (2017))

• Chapter 4: When Are Consumers Responding to Electricity Prices? An Hourly

Pattern of Demand Elasticity (based on Knaut and Paulus (2016))

• Chapter 5: Retail Tariff Design in Electricity Markets with Variable Renewable

Production (based on Knaut (2017))

• Chapter 6: Tender Frequency and Market Concentration in Balancing Power

Markets (based on Knaut et al. (2017)).

The content of each chapter will be outlined in the following before the method-

ological approaches are discussed.
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1 Introduction

1.1 Outline

The uncertainty of renewable production and the optimal trading strategies of re-

newable generators in sequential markets are investigated in Chapter 2. We formu-

late a model in which renewable generators trade their production in two sequential

markets, which can be regarded as the day-ahead and intraday markets. Trading in

the first market takes place under uncertainty about the final production level of

renewable generation. Renewable producers choose quantities to sell into the day-

ahead market under uncertainty and can adjust their position after learning about

the final production level in the intraday market. Based on the model, we find that it

is optimal for renewable producers to sell less than the expected quantity in the day-

ahead market. A renewable monopolist, for example, would maximize her profit if

she sells half of the expected quantity in the day-ahead market. However, if addi-

tional renewable producers are competing in the market, the optimal quantity tends

towards the overall expected quantity. In addition, we investigate the impact of

short-term flexibility that can be provided by conventional power plants on the mar-

ket outcome. If the conventional power plant fleet is less flexible, which means costs

for short-term adjustments increase, renewable producers will have an incentive to

increase the quantity traded in the first stage. Regarding the uncertainty of renew-

able production, we show that improved forecast quality of renewable production

increases social welfare.

Chapter 3 focuses on the high variability in production from renewable electric-

ity and its effect on prices. It is motivated by the highly fluctuating prices in the

German market for quarter-hourly products. We first develop a model for the allo-

cation of hourly and quarter-hourly electricity generation, assuming that the partic-

ipation in the market for quarter-hourly products is restricted. The assumption of

restricted participation is primarily motivated by the missing possibilities for cross-

border trade in the market for quarter-hourly products in Germany. Based on the

model we can explain the highly volatile quarter-hourly prices, which are caused

by restricted participation in combination with sub-hourly variations in demand and

renewable supply. The model is verified based on empirical observations for the

German day-ahead and intraday auction in 2015. By estimating the supply curves

for the hourly and quarter-hourly market, we are able to quantify the efficiency loss

that is caused by restricted participation. We find that restricted participation in the

market for quarter-hourly products caused welfare losses of EUR 96 million in 2015.

While the demand side in electricity markets is commonly assumed as being com-
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1.1 Outline

pletely price inelastic, this assumption is questioned in Chapter 4. We empirically

estimate the hourly price elasticity of demand for electricity in the German day-

ahead market. In a first step, we focus on the main drivers of both the demand and

supply sides in order to obtain a general understanding of the causal relationships

that alter demand or supply in the day-ahead market. In a second step, we construct

an econometric model that accounts for endogeneity in the form of simultaneity of

price and quantity. Here we make use of the stochastic character of renewable gen-

eration that primarily affects the supply side but not the demand side. Based on a

two-stage least squares regression with hourly data on the feed-in from renewable

energies as the instrumental variable, we are able to estimate the level of demand

elasticity as well as the hourly variation. The empirical results indicate a high level

of variation of price elasticity of demand throughout the day ranging from -0.02 to

-0.13 depending on the time of the day in the German day-ahead market in 2015.

Whereas the previous chapters focus on price formation in wholesale markets,

Chapter 5 investigates the effects of different tariff designs in retail markets. The

predominant tariff scheme that is currently offered to end consumers in Germany is

time-invariant pricing. Within this tariff scheme consumers pay the same price for

electricity regardless of when it is consumed. This leads to inefficiencies compared to

the efficient case of real-time pricing. In order to analyze the inefficiency, we quan-

tify the resulting deadweight losses in a theoretical model. The model accounts for

the variability in generation from renewables and is thus able to draw a connec-

tion between the deadweight losses from time-invariant pricing and characteristics

of renewable generation. We find that deadweight losses from time-invariant pric-

ing increase with an increase of the variability in demand and renewable genera-

tion. A positive correlation between demand and renewable generation leads to a

reduction of deadweight losses. Motivated by the recent announcement of the Ger-

man government to increase the demand responsiveness of the demand side, we

conduct an illustrative case study on the implications of real-time, time-of-use and

time-invariant pricing at the example of Germany. We find that the deadweight loss

amounts to about EUR 97.1 million, depending on the price responsiveness of con-

sumers. Furthermore, we find that time-of-use pricing can just achieve a fraction of

the efficiency gains that could be achieved under real-time pricing.

Chapter 6 takes a look at an additional market that is crucial for the efficient

functioning of the electricity system, namely the balancing power market. Balanc-

ing power is procured by Transmission System Operators (TSOs) in order for being

able to balance short-term deviations of demand and supply that occur after the
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1 Introduction

gate-closure of the wholesale market. Due to unbundling restrictions TSOs are not

allowed to own generation assets and need to procure balancing power from genera-

tors that are also active in the wholesale market. Because balancing power currently

can only be provided by few large operators, an efficient market design that limits the

possibility of market power abuse is essential. We develop a numerical model of the

German wholesale and balancing power market which is able to represent the oper-

ator structure of power plants as well as different tender frequencies for balancing

power. With the model, we are able to analyze the implications of different market

designs for balancing power markets on efficiency and market concentration. Based

on the model results, we find that shorter tender frequencies could lower the costs of

balancing power procurement by up to 15%. While market concentration decreases

in many markets with shorter provision duration, we – surprisingly – identify cases

in our model where shorter time spans lead to higher concentration.

1.2 Discussion of Methodological Approaches

The chapters within this thesis address different aspects of electricity markets. De-

pending on the research question that is posed different methods and assumptions

are applied. The choice of each methodology and set of assumptions has been made

in order to keep the analysis tractable without loosing the essential aspects that are

relevant for answering the research question at hand. Nevertheless each choice of

methodology or assumption implicates a loss in generality. In the following, the

assumptions that were chosen as well as possible implications are being discussed.

Assumptions about the model setup and the level of competition are an essential

part of theoretical analyses in economics. A common assumption which reduces the

effort of the analysis, is the assumption of perfectly competitive markets. We rely

on this assumption especially in Chapters 3 and 6. In both chapters, we analyze

the German electricity market for which the German regulator states that there is

currently no issue for potential market power abuse. In Chapter 6 we, however,

find based on concentration measures that there could be periods with high market

concentration in the balancing power market, which may facilitate the possibility of

market power abuse. Within this work we cannot draw a final conclusion on the

severity of market power abuse and leave it open for further research. In Chapter 2

we deviate from the assumption of perfect competition and investigate the possibility

of strategic behavior in a Cournot game, where we observe a renewable monopolists

to withhold quantities in order to increase profits.

6



1.2 Discussion of Methodological Approaches

While competitive markets in absence of market failures will lead in many cases

to the welfare maximizing outcome, this is not clear in every industry setting. Com-

petitive markets may not always lead to the same outcome that would be chosen by

a social planner. In Chapter 5, we analyze the optimal tariff design for electricity

consumers from a welfare perspective. Nevertheless, we can only conjecture that

this welfare optimal tariff would be offered in a competitive market depending on

the vertical industry structure. We therefore discuss the implications of different

vertical structures ranging from regulated retailers to integrated firms.

Within Chapter 2, 3 and 5, the research question is primarily addressed within

a theoretical model framework. In order to keep the model tractable, linear supply

functions are assumed in all three chapters, representing the conventional electricity

supply curve. In reality the supply curve in electricity markets may be much more

diverse depending on the marginal costs of technologies that are being used for

electricity generation (e.g. nuclear, coal, gas, oil, pumped storage etc.). This may

lead to a shape that differs from the linear assumption and may alter the results in

some aspects. Within the empirical parts of Chapter 3 and 5, however, the linear

assumption seems to be valid for the supply curve in Germany for the year 2015.

In future scenarios or in analyses conducted for different countries the result may

be different. The linear setup nevertheless helps in gaining valuable insights in all

three chapters.

Besides the supply side, also assumptions about the demand side are a crucial

part in all models. A common assumption in electricity markets is that the demand

side can be regarded as perfectly price inelastic. This assumption is also part of the

analysis in Chapters 2, 3 and 5. We also question the applicability of this assumption

by empirically estimating the level of price elasticity in Chapter 4 and find that it

depends on the respective time of the day. In general, however, we observe that the

price elasticity is low with values ranging from -0.02 to -0.13. Chapter 5 additionally

investigates the implications of different tariff designs and demand elasticities on

price formation and the resulting welfare implications.

All these assumptions are an important part of the analyses and need to be kept

in mind for the proper interpretation of the results.
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2 How to Sell Renewable Electricity - Strategic
Interaction in Sequential Markets

Uncertainty about renewable production increases the importance of sequential short-

term trading in electricity markets. We consider a two-stage market where con-

ventional and renewable producers compete in order to satisfy the demand of con-

sumers. The trading in the first stage takes place under uncertainty about production

levels of renewable producers, which can be associated with trading in the day-ahead

market. In the second stage, which we consider as the intraday market, uncertainty

about the production levels is resolved. Our model is able to capture different lev-

els of flexibility for conventional producers as well as different levels of competi-

tion for renewable producers. We find that it is optimal for renewable producers to

sell less than the expected production in the day-ahead market. In situations with

high renewable production it is even profitable for renewable producers to withhold

quantities in the intraday market. However, for an increasing number of renewable

producers, the optimal quantity tends towards the expected production level. More

competition as well as a more flexible power plant fleet lead to an increase in over-

all welfare, which can even be further increased by delaying the gate-closure of the

day-ahead market or by improving the quality of renewable production forecasts.

2.1 Introduction

The electricity sector is currently experiencing rapid changes, especially due to the

deployment of large capacities for electricity generation from renewables with the

aim of decarbonizing economies. This leads to a transformation of the producer side,

away from conventional generation technologies (such as coal, gas, and nuclear)

towards an increasing share of variable renewable electricity generation(especially

wind and solar). Whereas these technologies were highly subsidized in the past

and therefore not well integrated into the market, it is now high on the European

Union’s policy agenda to integrate renewable generation into the market (EU Comis-

sion (2009), EU Comission (2013)). This means in the future, renewable producers

are expected to sell their entire production at the existing sequential wholesale elec-
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2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

tricity markets, e.g. the day-ahead and the intraday market.1

In electricity markets, demand and supply need to be balanced at all times. There-

fore it is essential for all market participants to announce their foreseeable produc-

tion and consumption in advance. The largest share of electricity is currently traded

in the day-ahead market, which can be considered as a kind of forward market.

Trading commonly takes place at noon one day before physical delivery. This is

necessary to signal the regional supply and demand situations to the transmission

system operators in advance, such that they can guarantee grid stability. In contrast,

the intraday market provides the opportunity to trade electricity down to 30 minutes

before physical delivery. Hence, adjustments to the day-ahead market clearing result

can be traded which may occur due to (uncertain) short term deviations in electric-

ity systems (e.g. demand forecast errors, renewable forecast errors, and unforeseen

power plant shortages).

The characteristics of renewable electricity generation have increased the impor-

tance of sequential short-term trading and are affecting the competition in electric-

ity markets. Renewable energy technologies differ in two important aspects from

classic conventional technologies. First, renewables produce electricity at short run

marginal costs of zero whereas conventional technologies have short run marginal

costs greater than zero. Second, renewable electricity production depends on weather

conditions that can only be predicted to a certain level. The uncertainty diminishes

with a shorter time duration to the physical delivery. Thus, volatile renewable pro-

ducers have a higher uncertainty if they trade in the day-ahead market. Therefore,

the optimal bidding strategy for renewable energy producers in the intraday and

day-ahead market under uncertainty is not clear and focus of the following investi-

gations.

Electricity markets are known to be especially vulnerable to the potential abuse of

market power (Borenstein et al., 2002, Green and Newbery, 1992). The demand can

be regarded as very price inelastic in the short-run and therefore participants may

be able to increase prices above the competitive level. While this has been an issue

of large conventional generators in the past, we also can expect large renewable

producers as being able to act strategically in sequential electricity markets. The

size of renewable aggregators who aggregate renewable genration plants and sell

the production in the market is steadily increasing especially because they are able

to lift significant scale effects by increasing their renewable portfolio (e.g. reduction

1The forward market is not a relevant market for volatile renewables due to the uncertain production
in the long run.
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in costs of trading and reduction of forecast uncertainty).

In this paper, we analyze the competition between conventional and renewable

producers that interact in two sequential stages by using an analytic model. The

first stage is considered as the day-ahead and the second as the intraday market.

The electricity production of the renewable producer is uncertain in the first stage

and is realized in the second stage. In particular, this affects renewable producers in

choosing the optimal quantity to trade in both stages. Furthermore, we account for

flexibility constraints of conventional power producing technologies, because not all

conventional technologies are flexible enough to change their production schedules

in short time intervals (e.g. 30 minutes before physical delivery). These flexibility

constraints are included in our model to measure effects on profit maximizing quan-

tities and prices. We analyze the results based on different levels of competition for

the renewable producers, ranging from a monopoly to oligopolies under a flexible

and less flexible power plant fleet.

Our investigation is strongly related to the branch of two-stage Cournot games as

well as the literature of optimal bidding strategies for renewable producers. Con-

cerning two-stage Cournot games, a fundamental work is given by Allaz (1992) and

Allaz and Vila (1993) who investigate Cournot competition of a duopoly in sequen-

tial markets. Their subject of investigation is the forward market which, however,

can be transferred to our idea of a day-ahead auction before the market is finally

cleared in an intraday auction. The setting differs to our model with respect to the

type of players. In Allaz and Vila (1993) both players have increasing marginal costs

of production and no uncertainty associated with their level of production. In Allaz

(1992), uncertainty is incorporated in the two-stage model such that risk hedging

influences the optimal production. However, Allaz (1992) and Allaz and Vila (1993)

assume implicitly infinite production capacity, which is not true for our renewable

producer. Similar to Allaz and Vila (1993), Saloner (1987) developed an extension

of the classical Cournot one-shot duopoly to a model with two production stages in

which the market clears only once after the second stage. In this framework Saloner

showed the existence of a unique Nash-Cournot equilibrium under the possibility of

a second stage response action. Nevertheless, the model does not account for differ-

ent player types or uncertainty of production. Twomey and Neuhoff (2010) consider

the case of renewable and conventional producers that are competing in electricity

markets. They analyze the case when conventional players use market power to in-

crease prices. With their model they are able to show that renewable producers are

worse off in settings with market power. However, they do not consider the strategic

11



2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

behavior of renewable producers and abstract from uncertainty.

The other branch of relevant literature covers optimal bidding strategies under

uncertain production of one single player. Many papers in this field analyze numer-

ical models from a price taker perspective and focus on wind power producers. For

instance, Botterud et al. (2010) numerically analyze the optimal bidding for a wind

power producer in a two-stage market (day-ahead and real-time market) under cer-

tain risk assumptions.2 They find that the optimal bid on the day-ahead market

depends on risk behavior and the respective market prices. Furthermore, it tends

towards the expected production as a deviation penalty between the day-ahead and

the real-time market is introduced. Botterud et al. (2010) focus on one specific wind

power producer without considering the implications of adjusted bidding strategies

on the market equilibrium. Those effects can influence the optimal bidding strat-

egy as we will show in the investigated oligopoly cases. Further literature similar to

Botterud et al. (2010) can be found in Bathurst et al. (2002), Usaola and Angarita

(2007), Pinson et al. (2007), and Morales et al. (2010).

In parallel but independent work, which was just published while our paper was

about to be finalized, Ito and Reguant (2016) deal with a similar problem and come

to very similar conclusions. Our basic model setup is essentially identical to Ito and

Reguant (2016) and therefore also many of the theoretical insights coincide. Their

case of "no arbitrage" is similar to our monopolist case and the case of strategic arbi-

trage is similar to the introduction of additional renewable players. Our work nev-

ertheless, adds some important insights to the topic that can not be found in Ito and

Reguant (2016). We explicitly consider the role of uncertainty in our model. While

this has no effect (at least for linear marginal costs) on the optimal strategies, we

are able to quantify the effect of uncertainty on overall welfare. We find that welfare

is decreased if uncertainty about final production levels is large. This signifies the

importance of forecast uncertainty and market design for the efficient functioning

of electricity markets. In addition, we also consider the effect of a convex marginal

cost function and show that this increases the incentive for strategic withholding of

quantities. Furthermore, our analysis sheds light on the role of strategic behavior

in oligopolistic markets instead of focusing solely on the monopolist case (as in Ito

and Reguant (2016)). We are therefore able to illustrate distributional and welfare

effects for different numbers of strategic players, which can not be found in Ito and

Reguant (2016). Besides providing additional intuitions for the results of Ito and

Reguant (2016), the paper is therefore also able to shed light on some important

2Here, real-time market means the ancillary grid services for balancing supply and demand.
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additional aspects.

The latter of the paper is organized as followed: In Section 2.2 we develop the

basic model framework. Section 2.3 analyzes the Cournot competition and the ba-

sic model is applied to the monopolistic as well as the oligpolistic case. Section

2.4 focuses on the impact of flexibility constraints for conventional power technolo-

gies. Section 2.5 sheds light onto the incentives of renewable producers to withhold

capacity in the intraday market. In Section 2.6 we show the effects on welfare, pro-

ducer and consumer surplus by numerical examples. In Section 2.7 we conclude our

results and discuss possible policy implications.

2.2 The Model

We consider two players that interact at two stages in the wholesale market for

electricity, namely, conventional producers (c) and renewable producers (r). The

consumers are assumed to behave completely price-inelastic in the short-run and

demand a quantity D. The demand of consumers is satisfied already in the first

stage, since we assume consumers as being myopic and risk-averse. On the supply

side, we distinguish between conventional producers and renewable producers.

Conventional producers in the model are represented as competitive fringe. They

are able to produce electricity at total costs of C(qc) where qc is the quantity pro-

duced. These quantities are sold into the market at a uniform price of the marginal

production costs. The conventional producers also act as market makers which

means they always satisfy the residual demand in both stages3.

Renewable producers produce electricity at zero marginal costs. Their final pro-

duction level Q is uncertain in the first stage with the probability density function

f (Q). The uncertainty about the production level resolves over time (from stage 1

to 2; cf. Figure 2.1).

Throughout our analysis we assume the probability function f (Q) as symmetric.

In our view this assumption is reasonable, since well behaved forecasting models

should be able to produce a symmetric distribution.4

3Conventional producers have a strong incentive to sell their production in a market as long as the
price is above their marginal production costs. This makes it seem to be a reasonable assumption
that conventional producers always satisfy the residual demand when prices are above or equal to
their marginal generation costs.

4Of course the distribution would not be symmetric in cases where production is expected to be ex-
treme in the sense of a very low (close to zero) or very high (close to the capacity limit) production.
Further information on wind forecasts and uncertainty can be found in Zhang et al. (2014).
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Stage 1 Stage 2

• Uncertainty of stage 2 parameters: 

Price p2 and produced renewable

quantitiy Q

• Trading q1 for price p1(q1)

• Perfect knowledge

• Trading q2 for price p2(q2)

Resolving of second stage

production uncertainty

Figure 2.1: Basic two-stage model

Conventional and renewable producers can trade electricity in the two stages (t =

1 and t = 2). For the conventional producers quantities are denoted by qc t and for

the renewable producer by qr t . Here, we allow for qc t and qr t to be positive or

negative. This allows producers, e.g. to sell too much production in the first stage

and buy back quantities in the second stage. As already mentioned, we assume the

demand of consumers (D) to get satisfied in the first stage. In the second stage,

conventional and renewable producers can adjust their positions, e.g. conventional

producers buy quantities from the renewable producer in order to replace their more

expensive conventional production with renewable electricity. In this setting it is

unclear what quantity (q∗r1 and q∗r2) is optimal to trade in the first and second stage

for the renewable producer.

The market clearing conditions at both stages can be written as

Stage 1: D = qc1 + qr1 (2.1)

Stage 2: D = qc1 + qc2 + qr1 + qr2. (2.2)

The conventional producers produce electricity based on linear increasing marginal

cost functions in both stages. A linear marginal cost function abstracts from real

cost functions in electricity markets in two important assumptions. The first model

assumption is the linearity. In reality, the cost function is usually a monotonic in-

creasing function (with a mainly stepwise convex-similar shape). Therefore, in the-

ory, a usual simplifying assumption is a convex cost function. In contrast to this, we

assume linearity since it simplifies the theoretical analysis. Similar results can be ob-

tained with a convex cost function (e.g. arbitrary second order quadratic functions

monotonic increasing in R+). We will exemplarily discuss possible implications for

the case of renewable monopolist facing a convex marginal cost function.
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Second, in reality, marginal costs of production may change with time, which can

have multiple reasons. In electricity markets this may be due to technical constraints

of power plants (start-up costs, minimum load restrictions or partload-efficiency

losses) or due to transaction costs of participants that do not engage in short-term

trading in short intervals before production. In the end, this may lead to a reduction

of electricity supply that is available on short notice.

We account for a change of the supply side by considering two different marginal

cost functions MC1(q) and MC2(q) with different inclinations a1 and a2. Since the

number of flexible power plants is lowered the closer we get to physical delivery (or

less power plant operators participate in the second market), a2 has to be greater

than a1. As explained before, the supply curve may change due to two reasons. First,

technical constraints of power plants which are not able to adjust their power output

in short intervals before production can lead to reduced supply. Second, there may

be transaction costs for power plant operators to participate in the intraday market

which is why supply is also reduced. This approach is similar to Henriot (2014)

and has been empirically verified for the German intraday market by Knaut and

Paschmann (2017).

Q

p

D− qr1

MC1

MC2

p1

Figure 2.2: Marginal cost function in the first and second stage

For the analysis we have to define the properties of the marginal cost function in

the second stage. Besides the increase of the slope to a2, the whole curve needs to

cross the market clearing point from the first stage. Because if there are no adjust-

ments in quantities the price of the first and second stage are identical. Thus the

marginal cost function for the second stage can be obtained by a rotation around

the market clearing point from stage 1 (cf. Figure 2.2). This means an increase in

production comes at additional costs and a decrease in production at less savings of

production costs. In combination with the market clearing conditions, this leads to
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the following two equations for price formation in the two stages:

p1(qr1) = a1 (D− qr1) + b1 (2.3)

E[p2(qr1, qr2)] = a2(D− qr1 − qr2) + b1 + (D− qr1) (a1 − a2) , (2.4)

where b1 is the offset, a1 the gradient in the first stage and a2 the gradient in the

second stage of the marginal cost function.

In a next step, we will derive the respective profit functions for the conventional

and renewable producer. The conventional producer’s profit function is defined as

Πc(qc1, qc2) = p1(qr1)qc1+ p2(qr1, qr2)qc2−C1(qc1)−C2(qc1+qc2)+C2(qc1). (2.5)

Revenues in both stages are the products of the respective prices and quantities.

Production costs depend on the power plants utilized for production. Since the

marginal costs of production may change with time, the costs consist of the sum of

quantities planned for production in each stage.

The profit function of the renewable producer

Πr(qr1, qr2) = p1(qr1)qr1 + p2(qr1, qr2)qr2 (2.6)

consists of the quantities traded at the respective prices in the first and second stage

without associated production costs.

We are able to show how competition between renewable producers and conven-

tional producers can be modeled by applying this framework to different settings.

In this paper, we will consider three cases:

• Competition in the first stage with identical cost functions: qr =Q, a1 = a2 = a

• Competition in the first stage with changing cost functions: qr =Q, a2 > a1

• Competition in the first and second stage with changing cost functions: qr ≤Q,

a2 > a1.
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2.3 Cournot Competition of Renewable Producers

Throughout this paper we focus on a linear marginal cost function which can be

regarded as the simplest case.5 In this section, we will first give an intuition for

the results of the model based on the simple case of identical cost functions and

a renewable monopolist who acts strategically in the first stage. For this part of

the analysis, we assume that the renewable producer sells the complete remaining

production in the second stage, meaning qr =Q.6 In a next step, we will extend the

analysis from the renewable monopoly to an oligopoly.

We can parametrize the linear marginal cost function MC(qc) = aqc+b by the gra-

dient a ∈ R>0 and an offset b ∈ R≥0 with variable qc ∈ R≥0 as the produced quantity

from conventional producers. Because demand is assumed to be price inelastic, we

can write the prices in both stages as a function of renewable quantities:

p1(qr1) = a(D− qr1) + b (2.7)

and

p2(Q) = a(D−Q) + b. (2.8)

2.3.1 Renewable Producer Monopoly

First, we focus on the simple case in which all renewable production is traded by

one firm. From economic literature it is well known that under the assumptions of

Cournot competition, the monopolist has incentives to deviate from welfare optimal

behavior in order to maximize its own profits. In our sequential market setting,

this can be observed as well. By Proposition 2.1 we show that the optimal bidding

strategy for a renewable producer under a monopoly is to bid half the expected

production in the first stage.

Proposition 2.1. The profit maximizing quantity for a renewable monopolist is

q∗r1 =
µq
2 with µq the expected renewable production.

5The main results also hold for convex second-order cost functions. However, the exact results may
slightly deviate (i.e. it has a slightly shifting influence to the profit maximizing bidding strategy,
but comparable small impact on the main results).

6Note that we assume additionally Q ≤ D. If Q > D and renewable producers have to sell their whole
production in stage 2, we would force producers to bid negative prices. In such cases, we would
expect that renewable producers reduce their production to avoid too low prices, e.g. below 0. This
will be discussed in Section 2.5 in which we extend the model and allow for qr ≤Q.
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Proof. The basic profit function of a renewable producer in our theoretical model

framework is described in (2.6). For identical marginal cost functions, we derive

the following expected profit function

E[Πr(qr1)] = qr1 (a(D− qr1) + b) +

∫

(Q− qr1) f (Q) (a (D−Q) + b) dQ. (2.9)

Where the first derivative results in

d
dqr1
E[Πr(qr1)] = a(D−qr1)+b−aqr1−Da

∫

f (Q) dQ+a

∫

Q f (Q) dQ−b

∫

f (Q) dQ.

(2.10)

Since f (Q) is symmetric and the marginal cost function is linear, we can further

simplify the expected profit function by the following substitutes:

Expected value for Q:

∫

Q f (Q) dQ = µq (2.11)

Distribution function has a total probability of 1:

∫

f (Q) dQ = 1. (2.12)

This leads to the simplified necessary condition for the profit maximizing quantity

q∗r1 as
d

dqr1
E[Πr(qr1)] = −Da+ aµq − aqr1 + a(D− qr1)

!
= 0. (2.13)

Now we can solve this equation for qr1 which results in the profit maximizing quan-

tity

q∗r1 =
µq

2
. (2.14)

In order for this being a maximum the second derivative has to be negative. This

can easily be checked by calculating

d2

dq2
r1

E[Πr(qr1)] = −2a. (2.15)

Since a is defined as the slope of the marginal cost function and is positive by defi-

nition, q∗r1 =
µq
2 indeed describes the profit maximizing quantity for the renewable

producer.

The motivation of the renewable producer to bid half her expected quantity in the

first stage becomes clear by analyzing Figure 2.3. Since we consider a linear marginal

cost function, we can abstract from the uncertainty in renewable production f (Q)
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Q

p

dC
dq

DD−µq

[p2]

(i) Lower bound for the profit of the renewable
producer

Q

p

dC
dq

DD−µq D−
µq
2

p1

[p2]

(ii) Profit of the renewable producer from the
first and second stage

Figure 2.3: Optimal quantity of the renewable monopolist

and only consider the expected production µq. The profit of the renewable producer

can be split into two parts. One part stems from selling the expected production

into the market, as can be seen in Figure 2.3i (single hatched area). This part can

be considered as a lower bound to the profit of the renewable producer and does

not depend on the strategy of the renewable producer because she has to sell all

production to the market in the final stage. The resulting price in the second stage

is thus given by E[p2]. The second part of the renewable producer profit can be

obtained by selling a quantity forward in the first stage at a price p1. In order to

increase her profit, the quantity in the first stage needs to be between D − µq and

D to obtain a higher price compared to E[p2]. Since the marginal cost function is

linear and we have a monopolist selling forward, it is optimal to sell half her expected

production because it maximizes the additional profit in Figure 2.3ii (cross hatched

area).

Proposition 2.2. The optimal strategy of a renewable monopolist selling its renewable

production in sequential markets with multiple stages is to sell it in small quantities at

decreasing prices.

Proof. The triangle in Figure 2.3i can be considered as the maximum profit which

can be gained by selling the expected production of the renewable producer. When

the renewable producer is able to sell this production in multiple stages, it is optimal

to sell it little by little in order to maximize her profit. This means prices in multiple

sequential market stages would be declining until the price of E[p2] is reached in the

final stage. In this case, the renewable producer would be able to increase its profit

by the triangle in Figure 2.3i compared to selling the expected quantity already in

the first stage.
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For the case of multiple market stages also conventional producers would be able

to increase their profit. In this case, they would be able to obtain a higher profit in

the first stage, where they can sell a larger quantity at a higher price. On the other

hand, consumer surplus would be lowered due to higher prices.

This leads us to the conclusion that with a renewable monopolist, different market

designs can have a large impact on distributional effects between producers and

consumers. Consumers loose if producers trade electricity in multiple stages. Thus,

continuous trading in short-term markets lowers consumer surplus. From the view

of consumers, a few separate auctions should be preferred to a continuous auction

since this limits strategic behavior of a renewable monopolist.

Strategic production withholding is commonly observed by market participants

at the margin (see, for instance, Fabra et al. (2006), Ausubel et al. (2014)). The

reason is that it is most profitable to reduce the production at the margin if the

corresponding price increase overcompensates the production withholding.7 The

production close to the margin has generally the lowest profits and thus the profit

for the whole production fleet can be increased. In contrast to this, our results show

that strategic production withholding may also occur for infra-marginal production

with our underlying model assumptions (two-stage trading possibility, zero marginal

costs for the renewable producers, positive marginal costs for the perfect competitive

conventional producers). Unlike usual, it is not dependent on a higher steepness of

the cost function for extra-marginal production but also holds for the basic case of

a linear cost function. This spans a new dimension of strategic behavior and could

also be investigated in further research.

2.3.2 Renewable Producer Monopoly in the Context of a Strict Convex
Marginal Cost Function

The results, so far, stem from an analysis with a linear marginal cost function for

conventional producers. This has been mainly due to practical reasons, in order to

show first effects. In reality, however, the assumption of a linear marginal cost curve

may not be valid in every situation. The marginal cost curve in electricity markets

is generally assumed to be strict convex and monotonic increasing.8 Whereas the

7Additional to pure production withholding, strategic behavior at the margin can also be excerted
with bids above marginal costs to increase the market clearing price.

8This is due to the different cost structures of power plants. For example in high demand situations
gas turbines are needed to satisfy the demand with high variable costs. This leads to a steep increase
of the marginal cost function.
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parametrization of a linear function is straight forward, a strict convex and mono-

tonic increasing function can be parametrized in various ways. One way, for exam-

ple, can be using a quadratic second order function.

In this section we will analyze the general effects of a strict convex marginal cost

function on our results for the case of a renewable monopolist. There are basically

two important differences which stem from the different shape of the marginal cost

function. One difference is that the expected price in the second stage is greater

than the price for the realization of the expected production (E[p2(Q)] > p2(µq)).

Whereas in the case of a linear marginal cost function both were equal and we could

abstract from the uncertainty in renewable production, this is not the case for a dif-

ferent marginal cost shape. Realizations below the expected production (µq) lead to

a higher increase in the second stage price (p2), compared to higher realization than

the expected production. Therefore, the expected price (E[p2]) in the strict convex

case will be greater than the price for a realization of the expected production. The

second difference is that the shape has also an impact on the optimal quantity (q∗r1).

The optimal quantity will always be below the result from the linear case (q∗r1 <
µq
2 ).

We will try to give the intuition for the second difference based on Figure 2.4.

In Figure 2.4i we plot the profit when the renewable producer bids the optimal

quantity from the linear case (
µq
2 ). This is compared to the case of optimal trading

in Figure 2.4ii in the first stage under a strict convex marginal cost function. The

Q

p dC
dq

DD− µq
2

p1

[p2]

(i) Trading half the expected production

Q

p dC
dq

DD− q ∗r1

p1

[p2]

(ii) Optimal trading decision (dotted line is former
result of trading qr1 = µ/2)

Figure 2.4: Difference in trading for the renewable producer under a convex merit order

single hatched area represents the lower bound for the expected profit, as explained

in Section 2.3.1. This area is equal in both settings, regardless of the traded quantity

in the first stage.

The double hatched areas represent the additional profit that can be obtained from
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trading a quantity in the first stage. In Figure 2.4i, µ2 is traded in the first stage which

is the result of the former optimal amount under a linear merit order.

Now, in the case of a convex merit order, the profit can further be increased by

trading even less than half the expected production µq/2 (as it can be seen in Figure

2.4ii). The double hatched area is greater than in Figure 2.4i). The magnitude of

the impact depends on the shape of the merit order, the demand, and the expected

renewable production as well as the uncertainty (standard deviation) of the renew-

able production. This reasoning can also be proofed for a strict convex polynomial

of second order and results in Proposition 2.3.

Proposition 2.3. For a quadratic merit order, the optimal first stage offer qr1 of a

renewable monopolist is strictly below µq/2.

Proof. See Appendix 2.8.1.

We show that a strict convex merit order leads to a stronger withholding of quan-

tities in the first stage compared to the linear case. Therefore, the optimal quantities

of the renewable producers, which we derive for the linear marginal cost curve can

be considered as an upper bound. For the sake of simplicity we will stick to the

analysis of a linear marginal cost curve in the following sections. But based on the

results from Figure 2.4 we have to keep in mind, that the results from this special

case should be considered as an upper bound to the optimal quantities of renewable

producers.

2.3.3 Renewable Producer Oligopoly

In this section, we extend the monopoly case to the case of multiple symmetric re-

newable producers that form an oligopoly. The symmetry implies that the renewable

producers have perfectly correlated generation as well as forecast errors. The re-

maining approach and notation are similar to previous sections. As we learned from

before, the conventional producer reacts to the decision of the renewable producers

and can be considered as a price taker. So we can focus on the optimal quanti-

ties of the renewable producers. We still consider a linear marginal cost function

MC(q) = aq+ b and define the players i = 1, ..., N with their corresponding quanti-

ties in stage 1 as qir1. Furthermore, we define the sum of the quantities of all players

but i as q−ir1 =
∑

j 6=i q jr1. We find that the optimal bid of a renewable producer in

the first stage is still driven by strategic behavior but tends towards the expected

production level as the number of producers increases.
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Proposition 2.4. The optimal quantity traded in the first stage for each player is

q∗ir1 =
1

N+1µq with µq the total expected renewable production of all players.

Proof. See Appendix 2.8.2.

As a direct implication from the optimal first stage bid we see that for the linear

marginal cost function, the optimal strategy is still independent of the gradient or

the uncertainty of production.

Corollary 2.1. The profit maximizing traded quantity in stage 1 of the above setting is

identical for all players. Furthermore, q∗ir1 is independent of the steepness a ∈ [0,∞)
of the marginal cost function, the offset b ∈ [0,∞) of the marginal cost function, and

the probability distribution function f (Q i).

According to Proposition 2.4 it is optimal for renewable producers to always trade

less than the expected production in the first stage since this maximizes their profits.

The overall quantity tends towards the overall expected quantity as the number of

players increases.9

In stage 1, this leads to an overall traded quantity of renewable production of

qr1 =
N
∑

j=1

q jr1 =
N

N + 1
µq (2.16)

with µq :=
∑N

j=1µ jq. In two sequential markets, renewable producers have an in-

centive to trade less than the total expected renewables production in the first stage.

The more players enter the market the stronger the competition and thus the traded

amount in the first stage tends towards the expected production. Our results of the

first stage show that, under the described setting, a renewable producer acts exactly

as predicted in a standard one-shot oligopolistic Cournot game.

2.4 Flexibility and its Role in Short-term Markets

In this section we shed light on the implications of changing cost functions in short-

term markets. As mentioned before, this can happen for essentially two reasons.

One reason is that not all conventional power plants are flexible enough to adjust

9Note that, for the moment, we assumed a linear marginal cost function which does not change
between the first and the second stage.
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2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

their production capacity in stage 2 in the short run. The second reason is that there

can be transaction costs for power plant operators associated with the trading in the

intraday market.

The difference between the cost function of the first and second stage has implica-

tions for the optimal quantity of the renewable producers in the first stage, which we

analyze here in more detail. The nomenclature corresponds to the previous sections.

Proposition 2.5. The optimal quantity traded in the first stage for each renewable

player is q∗ir1 =
1

N+1µiq(N + 1− a1
a2
), with the ratio a1

a2
representing the degree of flexi-

bility of the supply side in both stages.10

Proof. In a first step we will derive the optimal quantity of a player i who competes

against N − 1 identical players11. According to the setup, the prices in the first and

second stage can be defined as:

p1(qir1, q−ir1) = a1(D− qir1)− q−ir1 + b1 (2.17)

p2(qir1, q−ir1) = a2 (D−Q iN) + b1 + (a1 − a2) (D− qir1 − q−ir1) . (2.18)

Again, we can define the expected profit function for player i, take the first derivative

and integrate over fi (which is assumed as being identical for all players). Setting

the first derivative equal to zero leads us to the necessary condition for an optimal

quantity:

− a1µiq + a2µiqN + a2µiq − a2q−ir1 − 2a2qir1
!
= 0. (2.19)

Under the assumption that all players are identical we can set q−ir1 = (N −1)qir1

and solve for qir1 which leads to:

q∗ir1 =
�

1−
1

N + 1
a1

a2

�

µiq. (2.20)

The second derivative of the expected profit function is negative, which proves

q∗ir1 being a maximum for the expected profit function.

This means that all renewable producers together submit a quantity of

q∗r1 = µq −
1

N + 1
a1

a2
µq (2.21)

10Small values of a1
a2

represent a very inflexible supply side in the second stage.
11The sum over all other players is still denoted by the quantity q−ir1 =

∑

j 6=i q jr1
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2.4 Flexibility and its Role in Short-term Markets

in the first stage (with a2 > a1).

From Equation (2.21) we can conclude the following: (1) q∗r1 increases if con-

ventional producers are less flexible (a2 � a1); (2) q∗r1 increases with an increas-

ing number of renewable producers N . For a perfectly competitive market (with

N −→∞) it is optimal for each player to trade its share of the total expected quan-

tity in the first stage.

Q

p

MC1

MC2

DD−µq

D− q ∗r1

p1

[p2]

Figure 2.5: Profit of a renewable monopolist facing a inflexible conventional producers

By looking at the example of a renewable monopolist in Figure 2.5, we can get a

deeper understanding of the motives for a renewable producer who faces a market

with inflexible conventional producers. As explained before, the marginal cost curve

for the second stage rotates around the market clearing point of the first stage. The

total production of the renewable producer that needs to be sold after both stages

however does not change. Thus, the renewable producer has to decide what quantity

to sell at a respective price in the first stage and sell the remaining quantity at a

lower price in the second stage. The price is lower in the second stage due to the

additional renewable quantities that are sold by the renewable producer. Basically,

in Figure 2.5, the sum of the cross hatched area and the single hatched area needs to

be maximized. The renewable producer is able to maximize both areas by a parallel

shift of the marginal cost function for stage 2 (green dotted line). This means, the

renewable producer has to optimize the quantity in the first stage in such a way that

the profit from both stages is maximized. Summarizing, a less flexible power plant

fleet shifts the total optimal first stage bidding quantity of a renewable producer

towards the expected production.

The described effects on the optimal quantity hold true for different numbers of

renewable producers and different degrees of flexibility. This is shown exemplarily
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2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

in Figure 2.6. Here, the optimal quantity converges more slowly to the expected

production in the perfectly flexible case ( a2
a1
= 1) compared to a highly inflexible

conventional power plant mix ( a2
a1
= 4). An increase in the number of renewable

producers leads to a similar effect of a higher overall renewable quantity in the first

stage.
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Figure 2.6: Optimal renewable quantity qr1 dependent on the number of players N and the
ratio a2/a1

2.5 Incentives of Renewable Producers to Withhold

Production

In this section we extend the analysis of strategic competition in the first stage by

investigating the case in which renewable producers are allowed to withhold pro-

duction in the second stage. Therefore, we relax the assumption that the renewable

producer needs to sell all her realized production in the second stage. This means

qr1 + qr2 ≤ Q instead of qr1 + qr2 = Q. We still assume that renewable producers

strictly avoid being short after stage 2, i.e. selling more production than they pro-

duce. The rational is that high financial penalties need to be payed in case of an

imbalance. All other model assumptions stay the same.

The motivation for the relaxation of the second stage restriction to sell the whole

production is threefold. First, we note that, in general, it is technically possible

to reduce production for renewable producers. This happens for photovoltaic in

critical grid situation if the voltage level extends a critical value (automatic shut

down around 50.2 Hertz) or for wind turbines during storms. Second, a reduced

production could be economically profitable in specific situation. Especially if prices

26



2.5 Incentives of Renewable Producers to Withhold Production

are negative or, like in the investigated case, if market prices could be increased

profitably by withholding production. Third, market manipulation by a withhold

of renewable production is not easy to prove by the regulator. It is hard to detect

whether a wind turbine does not produce due to maintenance, local wind conditions

or strategic production withholding.

We extend the model with cost functions by replacing the constraint qr1+qr2 =Q

with qr1 + qr2 ≤Q. Based on this model we obtain the following results.

Proposition 2.6. If renewable producers are allowed to withhold production, they only

withhold production after the second stage if the expected production of all producers

is high compared to the demand D, i.e. if µq >
a2N(N+1)

a2(N+1)2−a1N
D + a2N(N+1)

a1(a2(N+1)2−a1N) b.

This means the expected renewable production needs to be at least D
2 . Otherwise, re-

newable producers sell the total realized production into the market (same result as of

Proposition 2.5).

Proof. We use the same model as in Section 2.4 (and corresponding Proposition 2.5).

The only difference is the relaxed constraint qr1 + qr2 = Q by qr1 + qr2 ≤ Q. This

allows the renewable producer to withhold production and to increase prices in

the second stage. Since we adjusted an equality constraint by an inequality con-

straint, we face now a convex optimization problem with inequalities and can use

the Karush-Kuhn-Tucker (KKT) conditions to solve it. The full proof can be found in

the Appendix 2.8.3.

The main finding is that renewable producers have an incentive to withhold pro-

duction after the second stage only if the (expected) production exceeds a threshold

value which is at least D
2 (but dependent on a1, a2, b and N).12 The exact threshold

value is

Q threshold :=
a2N (N + 1)

a2 (N + 1)2 − a1N
D+

a2N (N + 1)

a1

�

a2 (N + 1)2 − a1N
� b. (2.22)

As long as the (expected) production is below this threshold, the renewable produc-

ers will sell their total realized production in the second stage. Nevertheless, the

production is split between first and second stage to increase profits. By analyzing

this threshold we find the following

12In stage 1, the expected production is the relevant quantity while in stage 2 the realized production
is the relevant quantity. If both, expected and realized production, deviate from each other, it is
possible that the renewable producers pursue a different strategy in each stage.

27
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• Q threshold is increasing in N : The more producers exist, the higher the thresh-

old. Therefore, more competition between renewable producers limits the

incentive for renewable producers to withhold quantities in the second stage.

• Q threshold is decreasing in a2 (with a1 fixed): The more inflexible the power

plant fleet, the lower is the threshold. Therefore, renewable producers start

to withhold production at a lower level of expected renewable production.

• Q threshold converges to N
N+1

�

D+ b
a1

�

for a2→∞ but is strictly above D
2 .

To sum up, renewable producers only have an incentive to withhold quantities in

situations with very high renewable generation compared to the demand. Additional

renewable producers as well as more flexible conventional producers increase the

threshold (Q threshold) to withhold production quantities.

2.6 Prices, Welfare, Producer Surplus and Consumer

Surplus

Trading in the day-ahead and intraday market has implications for overall welfare,

producer surplus and consumer surplus. So far, we focused on the quantities of

the renewable producers that maximize their respective profits. They determine the

quantities that are traded by the conventional producers and thereby the prices in

both stages. In order to disentangle the effects on overall welfare, producer and

consumer surplus, we will first analyze the effects on prices in the two stages.

Since we found in Section 2.5 that renewable players only withhold production at

very high production levels compared to demand D, we focus on the case in which

renewable producers sell all their production after stage 2 (the case qr1+qr2 =Q).13

2.6.1 Prices and the Role of Arbitrageurs

By plugging in the optimal quantity from Equation (2.20) into the price equations

for the case with flexibility constraints (Equation (2.3) and (2.4)) we obtain the

13For a realistic number of renewable players N > 5 and an arbitrary ratio of a2 to a1, the threshold
Q threshold is at least 0.85D.
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following prices:

p1 = Da1 + b1 −
a1

a2

µq

N + 1
(a2(N + 1)− a1) (2.23)

E[p2] = Da1 + b1 −
a1

a2

µq

N + 1
(a2(N + 2)− a1). (2.24)

From these two equations we can already see that the price in the first stage is

higher than in the second stage. This becomes obvious by taking the difference

between the two prices:

p1 −E[p2] =
a1µq

N + 1
. (2.25)

We can observe the following implications: First, the price difference between stage

1 and 2 is independent of the change in the slope of the marginal cost function

(a2). The renewable producers choose their quantity dependent on the slope (a2).

This has an effect on the absolute prices in the two stages but the price delta stays

constant. Second, with a higher overall expected production from renewables (µq)

also the price difference increases. The quantity that is withheld from trading in the

first stage increases with the expected production and, thereby, the price difference

increases. Third, the price difference decreases with an increasing number of re-

newable producers (N). In a perfectly competitive market (with N −→∞), prices

in both stages are equal. As we can observe in Figure 2.6, the quantity in the first

stage tends towards the overall expected quantity and hereby prices in both stages

converge.

Based on the price difference in both stages one could suspect arbitrageurs to be

entering the market. By obtaining a short position in the day-ahead market and

adjusting their position in the intraday market, they would be able to make a profit.

The optimal strategy of an arbitrageur is therefore identical with the strategy of

the renewable players. The only difference is that arbitrageurs do not necessarily

own production assets. Each additional arbitrageur that would enter the market

can nevertheless be regarded as an additional renewable player. This would in turn

decrease the price difference between the day-ahead and intraday market (cf. Figure

2.7).

Still, electricity markets have some unique features that may prevent arbitrageurs

from engaging in short-term electricity markets. First, the assets that are traded are

not only financial but physical obligations to produce and deliver electricity. There-

fore, some short-term market platforms restrict the participation to firms with phys-

ical production assets. This prevents for example banks from entering these mar-
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Figure 2.7: Prices in the two stages for an example with D = 70, µq = 20, σq = 5, b1 = 20
and a1 = 0.5

kets. Second, there may be information asymmetries between renewable producers

and arbitrageurs that may be hard to overcome. For example renewable producers

can be assumed as having better knowledge about the expected production level

of their assets. For the following discussions we will thus not focus on the case of

additional arbitrageurs entering the market. Nevertheless, the implications of arbi-

trageurs entering the market can be observed implicitly by considering an increase

in the number of renewable players (N).

In order to gain a deeper understanding of the effects from changing cost functions

and increased competition on prices, we plot this relationship in Figure 2.7 for an

exemplary case. The direction of the effects will stay the same for arbitrary a1, a2

with a2 ≥ a1 and arbitrary D, Q and b with (D−Q)a1 + b ≥ 0 (Q ∼N (µq,σq)).

In Figure 2.7, we chose the values such that one can easily find similarities to the

German electricity market. A demand D of 70 GW can be observed during peak

times, where also an expected renewable production µq of 20 GW is quite common.

Furthermore the parameters of the marginal cost function were chosen such that

they represent common price levels.14

We can see that the prices in stage 1 and 2 converge to the same value with an

increasing number of players. This benchmark is set by the perfectly flexible case

( a2
a1
= 1), where the price in the second stage stays constant. In the next sections we

will analyze the effects on producer surplus, consumer surplus and overall welfare.

14Of course a linear marginal cost function is a crude assumption in this case, but it allows us to show
the overall effects.
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2.6.2 Producer Surplus

The producer surplus is defined as the sum of the renewable producer surplus and the

conventional producer surplus. For the case with a changing marginal cost function,

the conventional producer surplus can be defined as

E[Πc(qr1)] = p1(D− qr1) + p2

∫

(qr1 −Q) f (Q)dQ− C1(qr1)−
∫

C2(qr1) f (Q)dQ.

(2.26)

It is the difference between the income from sold quantities in stage 1 and 2 and the

associated costs with the production of electricity.

The first stage costs C1 in our model depend on the quantities offered by the

renewable producers qr1. We can thus obtain the costs in the first stage by integrating

over the marginal cost function MC1

C1(qr1) =
1
2

a1(D− qr1)
2 + b1(D− qr1). (2.27)

The formulation is more complex for the costs that are associated with the second

stage of production. First, it depends on the quantity that is traded in the first stage

by the renewable producer qr1. Second, it depends on the realization of the final

renewable production Q. In the first stage, the conventional producers plan to pro-

duce a certain quantity D−qr1. In the second stage, this quantity has to be adjusted

to meet the total residual demand of D−Q. This means if the renewable production

turns out to be higher than the traded quantity in the first stage, the conventional

producers need to reduce their planned production and can buy back quantities at

a lower price. Meanwhile the slope of the cost function has changed from a1 to a2.

This leads us to the following expected cost function for the second stage:

E[C2(qr1)] =

∫ ∫ D−Q

qr1

(a2qc2 + (a1 − a2)(D− qr1) + b1)dqc2 f (Q)dQ (2.28)

= (Da1 − a1qr1 + b1)(µq − qr1) + a2qr1(µq −
qr1

2
)−

a2n2

2

�

µ2
iq +σ

2
iq

�

.

(2.29)

What is especially noticeable in this equation, is that for the first time in our analysis

also the standard deviation (σiq) of the expected renewable production plays a role.

The reason for this lies in the non-linear cost function of the conventional producers.

Here, deviations from the expected value are not multiplied by a linear curve and

31



2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

weighted equally but weighted by the non-linear function. This is why the standard

deviation plays an important role. By inserting Equation (2.27) and (2.29) in (2.26),

we obtain the total conventional producer surplus.

In the same way, we can also derive the producer surplus for the renewable pro-

ducers.

E[Πr(qr1)] = p1qr1 +

∫

p2(Q− qr1) f (Q)dQ (2.30)

By plugging in the results from Equation (2.20) it is possible to quantify the re-

newable and conventional producer surplus. We plot this for an exemplary cases in

Figure 2.8.
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Figure 2.8: Expected producer surplus for an example with D = 70, µq = 20,σq = 5, b1 = 20
and a1 = 0.5.

As we could already see from Figure 2.7, prices in the first stage decrease with

an increase in competition or a less flexible supply curve. At the same time prices

in the second stage increase. This results in both, a dampening and an increasing

effect on producer surplus. From Figure 2.8 we can observe that the decreasing

effect of the first stage outweighs the increasing effect in the second stage. Overall,

we see that the producer surplus decreases with the number of renewable producers

N and with a less flexible power plant mix. Especially the decrease in conventional

producer surplus is noticeable. For renewable producers the decrease in surplus is

not as prominent, since they are able to reduce the effects by adjusting their optimal

quantity qr1. For example the overall quantity traded by renewable producers (q∗r1)

is increased when more renewable producers compete in the first stage. Also a less

flexible power plant mix leads to a higher optimal quantity for renewable producers

in the first stage (cf. Figure 2.6).
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2.6.3 Consumer Surplus

In our model, consumers are represented as being completely inelastic in their de-

mand behavior. In electricity markets it is common practice to assume consumers as

completely price inelastic and consuming electricity up to the point when the price

exceeds the value of lost load (VOLL). We therefore slightly adjust our assumptions

by introducing the price pVOLL which can be regarded as the upper limit for the

willingness-to-pay for electricity consumption.

As consumers are assumed to be risk-averse, demand is already satisfied in the

first stage at price p1, as long as p1 < pVOLL . The consumer surplus can therefore be

expressed as (pVOLL − p1)D. By plugging in the price formulation for the first stage

from Equation (2.3), we get

CS = D
�

pVOLL − Da1 − b1 +
a1

a2

µq

N + 1
(a2(N + 1)− a1)

�

. (2.31)

We can now compare the consumer surplus for the different combinations of N and

a2/a1. In order to circumvent an assumption for the upper price limit pVOLL , we

focus our analysis on changes in consumer surplus compared to a reference point.

We therefore choose the reference point where consumer surplus is the lowest. This

is the case for a renewable monopolist and perfectly flexible conventional producers

(a1 = a2).
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Figure 2.9: Delta in consumer surplus and expected overall welfare for an example with
D = 70, µq = 20, σq = 5, b1 = 20 and a1 = 0.5

As one could already expect from the decrease in prices with an increasing number

of players in Figure 2.7, the consumer surplus increases with the number of play-

ers. What may be counter intuitive is that consumers can profit from a less flexible

power plant mix. The lower flexibility of conventional producers leads renewable

33
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producers to adjust their quantity, which has a price dampening effect for the first

stage. Consumers can therefore profit from the lower prices in the first stage as it is

shown exemplarily in Figure 2.9i.

2.6.4 Welfare

Combining the effects on producer and consumer surplus leads to changes in overall

welfare. As we can only analyze differences in consumer surplus this also holds for

the case of overall welfare. Again, we define the perfectly flexible case with a monop-

olistic renewable producer as a reference point for the analysis (cf. Section 2.6.3).

The difference in overall expected welfare to the monopolistic case can be defined

as

∆E[W(qr1)] = −∆E[C E(qr1)] +∆E[Πp(qr1)]. (2.32)

In Figure 2.9ii we can observe these effects on overall welfare. The overall welfare

stays constant for the case of a perfectly flexible power plant mix. In this case,

the demand is always satisfied at the same costs which does not lead to a change in

overall welfare. Negative effects on overall welfare occur only if the total production

costs for electricity increase, i.e. if conventional power producers are less flexible.

Especially if the power plant mix is highly inflexible, as in the case with a2
a1
= 4,

it will lead to a substantial decrease in overall welfare. Generally we can observe

two effects. First, the effect on welfare has a smaller magnitude than the isolated

effects on producer surplus or consumer surplus. The increase in consumer surplus

and decrease in producer surplus counteract each other and lead only to a slightly

reduced effect on overall welfare. Second, the welfare is generally decreased in a

setting with less flexible power plants.

In a last step, we analyze the effects of uncertainty on overall welfare. So far, we

assumed the production of the renewable producer in the final stage to be forecasted

with a standard deviation of σq = 5 in the numerical examples. Now, we assume

that if forecasts are improved or trading time is delayed, the standard deviation

decreases, as to Foley et al. (2012). A decrease in standard deviation could also be

accomplished by delaying trading of the first stage (e.g. by trading in the evening

of the day before physical delivery instead of at noon). We quantify the welfare

effects by comparing them to the case with no uncertainty (σq = 0) and a perfectly

competitive market (qr1 = µq). From Figure 2.10 we can observe that a larger

standard deviation results in welfare losses. From this we can conclude that it is

34



2.7 Concluding Remarks

desirable to increase the quality of forecasts or to change the timing of trading in

order to increase overall welfare.
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Figure 2.10: Delta in expected overall welfare for varying standard deviation of the forecast
σq (D = 70, µq = 20, b1 = 20, a1 = 0.5 and a2 = 1)

2.7 Concluding Remarks

We derive the optimal quantities for renewable producers that are strategically sell-

ing their production in a two-stage game with uncertainty about production in stage

1 and knowledge about the realization of their production in stage 2. It is profit

maximizing for renewable producers to bid less than their expected total quantity in

the first stage, which we consider as the day-ahead market. Renewable producers

are able to increase their profits by selling only part of their expected production in

the first stage and thus raising the price in the first stage. The optimal quantity in the

first stage tends towards the overall expected quantity with an increasing number

of renewable producers. Conventional producers are considered as a competitive

fringe that satisfies the residual demand in both markets. If conventional power

producers are less flexible in their operation, renewable producers have a larger in-

centive to increase the traded quantity in the first stage. In general, prices in the first

stage (day-ahead) are higher compared to the second stage (intraday), but with an

increasing number of renewable producers or with arbitrageurs entering the market

this difference decreases. In situations with very high production levels, that are

at least able to serve half of the demand, renewable producers have an incentive

to withhold production in the second stage. This effect is decreased by an increas-

ing number of players but increases in a setting with low flexibility of conventional

producers.
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A reduced forecast uncertainty leads to an increase in overall welfare. This leads

us to two conclusions. First, overall welfare can be increased by delaying the trade in

the day-ahead market closer to the time of physical delivery. For example by shifting

the auction from noon to the evening. Second, an increase in forecast quality has a

positive effect on overall welfare.

Based on the results it becomes obvious that in a future electricity system with

high shares of renewables, regulators need to pay attention to the possible abuse of

market power by large renewable producers. In situations with low liquidity and the

absence of arbitrageurs this could lead to significant distributional effects and even

welfare losses.

In our whole analysis, we assumed the generation of all renewable producers to be

perfectly correlated, as well as their forecast errors. This is not the case in reality and

could be further investigated. Additionally, it would be possible to quantify welfare

implications of improved forecast quality and alternative market designs at concrete

examples.

The role of uncertainty only plays a minor role in our analysis since we mainly

focus on the case of linear marginal cost functions and risk-neutrality. In reality,

however, participants may be acting more risk-averse which would increase the im-

portance of accounting for uncertainty. This could be especially interesting when the

analysis is extended to players with mixed portfolios of renewable and conventional

power production. The optimization within a generation portfolio (maybe in combi-

nation with risk-averse behavior) could lead to interesting insights on the potential

use of market power in electricity markets in a more general setting.

2.8 Appendix

2.8.1 Proof of Proposition 2.3

Proof. Let MC(q) = aq2 + bq + c with a > 0 and b, c ≥ 0 be a strictly monotonic

increasing convex (quadratic) marginal cost function. The optimal first stage trading

amount for a monopolistic renewable producer is

q∗r1 =
2
3 D+ 1

3
b
a−

2
3

r

�

D− 3
4µq +

1
2

b
a

�2
+ 3

16µ
2
q +

3
4σq (this can be derived analogously

to the optimal amount of the linear case in Proposition 2.1). Then the following
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holds:

q∗r1 =
2
3

D+
1
3

b
a
−

2
3

√

√

√

�

D−
3
4
µq +

1
2

b
a

�2

+
3
16
µ2

q +
3
4
σq

<
2
3

D+
1
3

b
a
−

2
3

√

√

√

�

D−
3
4
µq +

1
2

b
a

�2

=
1
2
µq.

(2.33)

The inequality is strict since the square root is a strict monotonic function on positive

numbers. Therefore, under a convex merit order, it holds that q∗r1 <
1
2µq. Note that

we assumed µq < D in the model setup.

2.8.2 Proof of Proposition 2.4

Proof. Because all players are symmetric we can denote the total traded renewable

production of all players in stage 1 by qr1 = qir1 + q−ir1 (where q−ir1 aggregates all

players but not player i), the realized production in stage 2 by Q = NQ i , and the

expected quantity by µq = Nµiq. With these definitions, Equation (2.7) and (2.8)

still hold for the oligopoly case.

The profit function of renewable producer i can be derived by plugging in those

values into

Πir(qir1) = p1(qr1)qir1 + p2(D−Q)qir2 (2.34)

so that the profit function results in

Πir(qir1) = (a(D− qir1 − q−ir1) + b)qir1 + (a(D− NQ i) + b)(Q ir − qir1). (2.35)

Remember that qir2 =Q i−qir1 and that we assume Q i to be uncertain. In order to

derive the expected profit function we have to integrate for Q i over the distribution

f (Q i), where f (Q i) is the probability density function for Q i . After taking the first

derivative, setting it equal to zero and replacing the expected values (analogous to

Equations (2.11) and (2.12)), we get the necessary conditions

d
dqir1
E[Πir(qir1)] = a(µq − qir1 − q−ir1)

!
= 0 (2.36)
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and the corresponding solution is

q∗ir1 =
1
2

Nµ jq −
1
2

q−ir1 (2.37)

for i = 1, ..., N .

In an equilibrium of identical players we have identical solutions which results in

q−ir1 = (N − 1)qir1. With this, we derive

q∗ir1 =
1
2

Nµiq −
1
2
(N − 1)q∗ir1 (2.38)

⇔ q∗ir1 =
1

N + 1
µq. (2.39)

Because the second derivative of Equation (2.35) is negative, we found the profit

maximizing quantity q∗ir1

2.8.3 Proof of Proposition 2.6

Proof. As before, we assume N identical (symmetric) renewable producers. Let us

define our inequality constraint for producer i by

g(qir1, qir2) := qir1 + qir2 −Q i ≤ 0 (2.40)

Then the Lagrange function is

L(qir1, qir2,λ) := qir1

�

a1

�

D− qir1 − q jr1 (N − 1)
�

+ b
�

+ (2.41)

qir2

�

a2

�

D− qir1 − qir2 − q jr1 (N − 1)− q jr2 (N − 1)
��

+

qir2

�

b+ (a1 − a2)
�

D− qir1 − q jr1 (N − 1)
��

∫

fi (Q i) dQ i+

λ (Q i − qir1 − qir2) ,

which is the corresponding profit function of the first and second stage minus the

function g.
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The conditions of the KKT which need to be fulfilled are

Stationarity:
∂ L
∂ qirk

= 0 , k = {1,2} (2.42)

Primal feasibility: qir1 + qir2 ≤Q i (2.43)

Dual feasibility: λ≥ 0 (2.44)

Complementary slackness: λ(qir1 + qir2 −Q i) = 0. (2.45)

We need to consider two cases: λ = 0 or qir1 + qir2 = Q i (binding capacity con-

straint).

To case 1 (λ= 0):

From (2.42) we derive two equations which we can solve for qir1 and qir2. Since

we focus on symmetric probability distribution functions fi for the renewable pro-

duction, we can substitute
∫

fi (Q i) dQ i = 1. Furthermore, due to symmetric renew-

able producers, we can plug in qir1 = q jr1 and qir2 = q jr2 for all renewable producers

i and j. Therefore, the equilibrium solution aggregated for all identical renewable

producers are

q∗r1 =
a2N (N + 1)− a1N

a2 (N + 1)2 − a1N
D+

1
a1

a2N (N + 1)− a1N

a2 (N + 1)2 − a1N
b (2.46)

q∗r2 =
a1N

a2 (N + 1)2 − a1N
D+

N

a2 (N + 1)2 − a1N
b. (2.47)

Note that the individual quantities are qirk = qrk/N for k = {1, 2}.

Now, we can plug the optimal quantities into the equation of the investigated case,

i.e. into qr1+ qr1 <Q. This gives us the threshold value above which the renewable

producers start to withhold production to increase prices. The threshold is

Q threshold :=
a2N (N + 1)

a2 (N + 1)2 − a1N
D+

a2N (N + 1)

a1

�

a2 (N + 1)2 − a1N
� b. (2.48)

If the overall expected renewable production µq exceeds this threshold, the renew-

able producers withhold production. Otherwise, the sold quantities are constraint

and we are in case 2.

Note that the expected production has to reach a high level relative to the demand

such that renewable producers withhold production. µq has to be at least D
2 (for the

monopoly situation with a infinite inflexible power plant fleet) but increases with

increasing number of players or more flexible power plant fleet (for a duopoly it is
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at least 2D
3 ).

To case 2 (qir1 + qir2 = Q i): This is the same case as shown in Proposition 2.5.

Therefore the optimal quantities for each individual renewable producer is

q∗ir1 =
1

N + 1

�

N + 1−
a1

a2

�

µiq (2.49)

q∗ir2 =
1

N + 1
a1

a2
µiq. (2.50)

and for all renewable producers together are

q∗r1 = µq −
a1

a2(N + 1)
µq (2.51)

q∗r2 =
a1

a2(N + 1)
µq (2.52)

if µq ≤
a2N(N+1)

a2(N+1)2−a1N
D + a2(N+1)

a1(a2(N+1)2)−a1N
b. Remember that Nµqi = µq. This closes

the proof.
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3 Price Volatility in Commodity Markets with
Restricted Participation

In commodity markets price volatility tends to increase with shorter contract du-

ration. We derive a theoretical model that reproduces the price formation in two

markets with altering product granularity and restricted participation. The model is

empirically validated based on evidence from German electricity markets for hourly

and quarter-hourly products. We find that the high price volatility is triggered by

restricted participation in the market for quarter-hourly products as well as by sub-

hourly variations of renewable supply and demand. Welfare implications reveal effi-

ciency losses of EUR 96 million in 2015 that may be reduced if markets are coupled.

3.1 Introduction

Prices in commodity markets mostly reveal high price volatility, especially when con-

tracts are settled close to physical delivery. This is particularly applicable to energy

commodities such as oil, gas or electricity (Regnier, 2006). Moreover, electricity

markets have additional characteristics that favor high price volatility. First, demand

and supply have to be balanced at each point in time. Second, there is only limited

potential to store large quantities of energy, especially in the short run. The increas-

ing intermittent electricity generation from renewable energies, which are prone to

forecast uncertainty and highly fluctuating feed-in profiles, has increased the need

of short-term trading opportunities. This has lead to an establishment of new trad-

ing opportunities on the exchange where market participants are granted the option

to trade products with shorter contract duration close to the point of physical de-

livery. In these markets, electricity is traded first with hourly and afterwards with

quarter-hourly contract duration. Price variations between the respective products

can be huge. Figure 3.1 illustrates the price volatility observed in first, the German

day-ahead auction for hourly products and second, the intraday auction for quarter-

hourly contracts on an exemplary day1. As both auctions are cleared in rapid suc-

cession, 12:00 day-ahead and 15:00 intraday, one day before physical delivery, the

1This is the 13th of March 2015.
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information of participants is almost identical. Nevertheless, Figure 3.1 seems puz-

zling as we observe an apparently systematic price pattern. Prices for quarter-hourly

products fluctuate around the previously settled prices in the day-ahead auction and

are much more volatile. In this article, we derive a fundamental explanatory ap-

proach in order to model the price relations observed.

Because price signals in short-term electricity markets may reflect an additional

need for electricity market flexibility or indicate an inefficient market design, it is

important to gain a deeper understanding of the underlying drivers. We therefore

develop a theoretical framework to model the price formation in the day-ahead and

intraday auction and empirically validate it for the German market.
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Figure 3.1: Exemplary price time series of German short-term electricity markets (2015-03-
15)

Research into sequential market design and price volatility has a long history. In

general, the article at hand builds on the literature in the field of sequence economies.

More precisely, the literature has emphasized the importance of sequential market

organization in order to allocate commodities efficiently. A large and growing body

of literature has investigated the interaction of sequential markets such as Green

(1973) and Veit et al. (2006). Pindyck (2001) analyzes the short-term dynamics

of commodity markets as well as prices and Pindyck (2004) depicts the impact of

volatility on commodity prices. Closely related, Kawai (1983) derives a model in

order to explain the impact of future trading on spot market dynamics. Electricity

markets represent a special subset of commodity markets and previous research into

sequential electricity markets has focused on short-term trading opportunities on the

exchange. Against this backdrop, von Roon and Wagner (2009) as well as Borggrefe

and Neuhoff (2011) outline the importance of functioning short-term markets in or-
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der to deal with the increasing share of renewable energies in the German power

supply system and the corresponding forecast uncertainty. Ito and Reguant (2016)

and Knaut and Obermüller (2016) focus on strategic behavior in sequential short-

term electricity markets. Their main findings are that, under restricted market entry

and imperfect competition, a systematic price premium analogous to Bernhardt and

Scoones (1994) may occur in the first market stage. Additionally, there is a vast

body of literature investigating the price formation in short-term electricity markets

based on forecasting techniques such as time series analysis or artificial neural net-

works (Karakatsani and Bunn (2008),Hagemann (2013),Weron (2014), Kiesel and

Paraschiv (2015)).

We analyze the price formation in sequential short-term electricity markets based

on a fundamental approach. To the best of our knowledge there is no prior litera-

ture with focus on the fundamental interaction of sequential markets with differing

product granularities. It has to be stressed that we neglect the influence of uncer-

tainty due to rapid succession of both investigated markets. Rather to the contrary,

we derive a theoretical model illustrating that the high volatility of quarter-hourly

intraday prices is mainly driven by two aspects. First, the main purpose of trading in

the intraday auction is to balance sub-hourly variations of demand and renewable

generation. Second, we find an average increase of the quarter-hourly gradient of

the supply curve compared to the day-ahead auction due to restricted participation

in the intraday auction. We apply an empirical analysis of historical price data and

validate our theoretical considerations. Furthermore, we quantify the increase of the

supply curve gradients. Based on the respective estimates, we relate restricted par-

ticipation in the intraday auction to welfare losses of about EUR 96 million in 2015.

We expect these inefficiencies to increase with an augmented share of renewable

energies, as they increase the need for trading of sub-hourly contracts. These losses

could be reduced by the introduction of market coupling for sub-hourly products or

by increased short-term power market flexibility, such as storage technologies.

The article is structured as follows. First, we briefly depict the price formation in

the markets of interest (Section 3.2). We then address our main research questions

by conducting empirical analyses that are outlined in Section 3.3. We use historical

price data for the intraday auction in Germany. Finally, conclusions are drawn in

Section 3.4.
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3.2 Price Formation in the Day-Ahead and Intraday Auction

Electricity is traded sequentially at various points in time. Trading opportunities

increase closer to the time of physical delivery and the contract duration for differ-

ent products decreases. Figure 3.2 depicts the time line of trading for the German

wholesale electricity market. Trading on the exchange starts with futures that are

traded for yearly, quarterly, monthly or weekly time intervals. These markets are

mainly used for risk hedging purposes and financial trading. In contrast, in the day-

ahead auction physical electricity is traded at hourly time intervals. The respective

auction is held at noon (12:00), one day before physical delivery. Historically, the

day-ahead price has been the most important reference price for all electricity mar-

ket participants. At the end of 2014, the intraday auction has been implemented

which is settled at 3pm and first allows for trading 15-minute contracts. As a conse-

quence, market participants are now able to balance sub-hourly variations of supply

and demand. Subsequently, trading is organized in a continuous intraday market,

where trade takes place on a first-come-first-serve basis via an open order book. Gate

closure is 30 minutes before physical delivery and the respective products include

hourly as well as 15-minute contracts. The continuous intraday market is mainly

used to balance forecast errors based on updated information until delivery. The

end of the intraday trading period marks the end of electricity trading in the whole-

sale market.

Futures
Products: Base, 

peak, off-peak

t – 6 years

12:00

t – 30 min

Continuous

intraday
Products:

Hourly, quarterly

Day-ahead

auction
Products: 

Hourly

Physical delivery

tt – 1 day

15:00

Intraday

auction
Products: 

Quarterly

Figure 3.2: Sequence of trading in wholesale markets

In this article, we focus on the interaction of the day-ahead and intraday auction.

Both markets are settled in rapid succession and differ in terms of product granu-

larity (hourly/quarter-hourly). As the intraday auction is settled three hours after

the day-ahead auction, we consider new information to be negligible between both

market stages. Based on additional empirical evidence, we abstract from the impact

of forecast errors that are expected to rather influence continuous intraday trade. In

contrast, we find that the relation of prices in both markets under consideration is
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mainly driven by restricted participation in the intraday auction. This may especially

be the case because participation in the intraday auction is restricted to a national

level and cross-border trade is not possible. Markets with quarter-hourly contracts

are not coupled within the internal European electricity market in contrast to the

hourly day-ahead auction. Additional reasons for restricted participation in the in-

traday auction may also be a lack of short-term flexibility regarding different types of

conventional power plants, additional costs of market entry, and a slow adjustment

of market participants to newly emerging trading opportunities. Our explanatory

approach that aims at modeling the price formation in the intraday auction is con-

sequently based on restricted participation as the main driver of the price relations

under consideration.

3.2.1 Theoretical Model

We use a stylized theoretical model in order to depict the market interaction as well

as the price formation in the day-ahead and intraday auction. In general, we consider

two types of suppliers (restricted and unrestricted) which interact in two markets

(day-ahead and intraday auction) that differ in terms of product granularity and

participation. Both types of suppliers participate in the market for hourly products,

which can be regarded as the day-ahead auction. In the second market (intraday

auction) products are traded with shorter contract duration and only unrestricted

suppliers are able to participate. More precisely, the common product that can be

supplied by both types of suppliers is further split into n different sub-products in

the intraday auction which are identified by τ ∈ 1,2, ...n.

Consumers may demand a different quantity Dτ in each time interval τ. The

demand is satisfied under perfect competition by both restricted and unrestricted

suppliers. Both suppliers operate generation plants with increasing marginal costs of

generation. The unrestricted suppliers offer the quantity qu
τ reflecting the production

level in τ that results from supply in both markets. The respective total costs are

Cu(qu
τ). In contrast, the restricted players are not able to participate in the sub-

hourly market and do not vary their production level along the time intervals τ.

Thus, the respective supply is kept constant at a level of qr over n time intervals.

The total costs for the restricted players in time interval τ amount to Cr(qr). Due to

rapid succession of both market settlements, we assume information in both markets

to be identical. As the quantities of both types of suppliers are chosen under perfect

competition, we formulate the following optimization problem minimizing the total
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costs of electricity generation such that supply meets demand:

min z =
∑

τ

�

Cu(q
u
τ) + Cr(q

r)
�

(3.1)

s.t. Dτ =qu
τ + qr ∀t. (3.2)

In order to derive an optimal solution, we transform the problem into its La-

grangian representation by introducing the shadow prices pτ:

L=
∑

t

�

Cu(q
u
τ) + Cr(q

r) + pτ(Dτ − qu
τ − qr)

�

. (3.3)

Applying the Karush-Kuhn-Tucker conditions, we derive the necessary conditions

that characterize the cost minimal solution. We get the optimal quantities qu
τ and qr

as well as the respective shadow prices pτ.

∂L
∂ qr

=
∑

τ

�

C ′r(q
r)− p∗τ

�

= 0 →C ′r(q
r) =

∑

τ p∗τ
n

(3.4)

∂L
∂ qu
τ

=C ′u(q
u
τ)− p∗τ = 0 →p∗τ = C ′u(q

u
τ). (3.5)

Due to illustration purposes, we apply the general model to a framework assuming

linear marginal cost functions of both restricted and unrestricted suppliers. How-

ever, the following considerations could analogically be applied to different types

of supply functions. Exemplary linear marginal cost functions are displayed in Fig-

ure 3.3. We formulate the respective marginal cost functions for both suppliers as

Restricted suppliers: C ′r(q
r) = a0 + ar

1qr (3.6)

Unrestricted suppliers: C ′u(q
u
τ) = a0 + au

1qu
τ, (3.7)

where a0 is the offset, ar
1 is the gradient of the restricted supply curve and au

1 is the

gradient of the unrestricted supply curve.2 Adding both functions horizontally we

attain the aggregate supply function as

C ′(q) = a0 +
ar

1au
1

ar
1 + au

1

q = a0 + a1q, (3.8)

with a1 =
ar

1au
1

ar
1+au

1
being the gradient of the aggregate supply function. We now

2We assume the offset (a0) of both marginal cost functions to be identical.
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solve the linear model with respect to optimal quantities and prices.

Q

p

p

qr

restricted

Q

p

qu0

p0

qu1

p1

unrestricted

Q

p

DD0 D1

aggregate

Figure 3.3: Marginal cost functions of restricted and unrestricted suppliers and the resulting
aggregate marginal cost function

Proposition 3.1. The average price over all periods (p) is determined by the inter-

section of the aggregate supply function (including restricted as well as unrestricted

suppliers) and the average demand (D)

p = a0 + a1D. (3.9)

Proof. Making use of the linear marginal cost functions, we can plug in (3.5) and

(3.2) into (3.4). As a result, we get

a0 + ar
1qr∗ =

1
n

∑

τ

a0 + au
1(Dτ − qr∗). (3.10)

Defining the average demand over n periods as D =
∑

τ Dτ
n and solving for qr∗, we

obtain the quantity that is produced by the restricted suppliers as

qr∗ =
Dau

1

ar
1 + au

1

. (3.11)

Furthermore, based on (3.4), the average price p =
∑

τ pτ
n is determined by the

marginal generation costs of the restricted suppliers. By plugging in the result for

qr∗, we obtain the average price as the previously calculated aggregate marginal cost

function for the average demand (D) in (3.9).

The average price p may be regarded as the settlement price in the first market

where both types of suppliers are able to participate. In a next step, we derive

the prices for each time period τ that are settled in the second market where only

unrestricted suppliers are participating.
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Proposition 3.2. The price in each time period τ depends on the difference between

the average demand and the demand in each time period τ (Dτ) as well as the gradient

of the unrestricted supply curve.

p∗τ = a0 + a1D+ (Dτ − D)au
1 = p+ (Dτ − D)au

1 (3.12)

Proof. Based on the previously derived quantity qr from (3.11) and (3.2) in (3.5),

we obtain

p∗τ = a0 −
(au

1)
2

ar
1 + au

1

D+ au
1 Dτ. (3.13)

Here the first term is the offset of the aggregate supply function (a0). Furthermore,

we make use of the following equation

(au
1)

2

ar
1 + au

1

= au
1 −

au
1ar

1

ar
1 + au

1

= au
1 − a1 (3.14)

and introduce the gradient of the aggregate supply function (a1). By inserting the

term into (3.13) and reformulating, we obtain (3.12).

The optimal prices and quantities relate to the second-best outcome, given that

restricted suppliers are not able to change their production level at a temporal resolu-

tion τ. If the restricted suppliers were able to adjust their production level, efficiency

would be increased.

Proposition 3.3. The welfare loss due to restricted participation is given by

∆Wτ =W ef f
τ −W inef f

τ =
1
2
(au

1 − a1)(D− Dτ)
2 ≥ 0. (3.15)

Proof. Because we assume a perfectly inelastic demand, we derive welfare implica-

tions based on cost considerations. Assuming restricted participation of some sup-

pliers, the total costs to satisfy demand in period τ amount to

C inef f (Dτ) = Cu(q
u
τ) + Cr(q

r)

= a0(Dτ − qr∗) +
(au

1)
2

2
(Dτ − qr∗)2 + a0qr∗ +

(ar
1)

2

2
(qr∗)2.

(3.16)

The efficient outcome could be achieved if both suppliers were able to adjust their

production level in each time period τ without restrictions. As a result, this would
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lead to costs that are determined by plugging in Dτ into the aggregate supply func-

tion (3.8).

C ef f (Dτ) = a0 +
ar

1au
1

ar
1 + au

1

Dτ. (3.17)

Analyzing the difference between costs in the efficient and inefficient cases and

inserting the result from (3.11), we get the total deadweight loss defined as

∆Wτ = C inef f (Dτ)− C ef f (Dτ)

=
1

2ar
1 + 2au

1

�

D
2
(au

1)
2 − 2D(au

1)
2Dτ + (a

u
1)

2D2
τ

�

.
(3.18)

By rewriting and simplifying we finally obtain (3.15).

Welfare losses from restricted participation essentially depend on (1) the differ-

ence between the gradient of the supply curve of unrestricted suppliers and the ag-

gregate supply function(au
1−a1), and (2) the volatility of demand (D−Dτ). We thus

identify two major drivers of welfare losses and derive the following relations. First,

if fewer suppliers are participating in both markets, this will increase the gradient

au
1 and lead to an increase in welfare losses. Second, the higher the volatility of

demand in time periods τ, the higher the overall welfare losses.

The consumers that determine the inelastic demand and suppliers are affected in

different ways.

Proposition 3.4. Compared to the case of unrestricted participation, restricted partic-

ipation leads to losses in consumer surplus and producer surplus of restricted suppliers.

Producer surplus of unrestricted suppliers increases.

Proof. See Appendix 3.5.1.

In Appendix 3.5.1 we derive that consumer surplus is significantly reduced com-

pared to the efficient outcome. The respective consumer losses are twice as high

as the total welfare losses (2∆W = 2
∑n
τ=1∆Wτ). On the opposite side, suppliers

altogether profit from the inefficiency. Taking a closer look at the distributional ef-

fects between restricted and unrestricted suppliers, we find that only unrestricted

suppliers face a higher surplus if market participation is restricted. The surplus of

restricted suppliers is lower compared to the efficient case.

49



3 Price Volatility in Commodity Markets with Restricted Participation

3.2.2 Application to Intraday Auction Prices

Applying the previous model to real-world electricity market dynamics, we are able

to depict the fundamental causal relations that drive the price relations between the

German day-ahead and intraday auction. Therefore, it is first necessary to comment

on some basic assumptions made in the stylized theoretical framework.

In the context of electricity market analyses, the demand side is most commonly

modeled using the term residual demand. We follow this approach and define the

residual demand as total demand minus the electricity generation from wind and

solar power Dres
t = Dt −Windt − Solart . The generation from renewable energies

is subtracted because they are characterized by short-term marginal costs close to

zero and the respective electricity generation corresponds to the availability of wind

and solar power at each point in time. Trade in electricity markets is performed by

balancing responsible parties which are responsible to balance supply and demand

within their balancing group. Because balancing group operators have the incentive

to be balanced in each time interval to avoid penalties, the residual demand is ex-

pected to drive the level of trade volumes in electricity spot markets. Furthermore,

in the existing literature evidence is given that demand in electricity markets can be

assumed to be rather price inelastic, especially in the short-run (Knaut and Paulus,

2016, Lijesen, 2007). Within our model, we thus do not consider any price elasticity

of demand.

The residual demand is supplied by conventional generation units with increas-

ing marginal costs depending on the underlying energy carrier. In our model we

assume the marginal cost functions to be linear. As far as the day-ahead auction

is concerned, we clearly observe a rather linear relation of residual demand and

the respective prices in historical data (for more details see Section 3.5.2). In con-

trast, the structure of the intraday auction supply curve may vary in individual hours

as the underlying market dynamics are crucially depending on the day-ahead mar-

ket clearing point. However, within the scope of this article, we use an aggregate

explanatory approach that focuses on general price relations. We find empirical ev-

idence that these relations can be adequately mapped based on the assumption of

linear relations. Further details are given in the empirical part of this article.

In general, the assumption of perfect competition seems approximately appropri-

ate for the German day-ahead and intraday markets 3.

We additionally assume a simultaneous decision of restricted and unrestricted sup-

3 See the findings of the Monitoring Report by the German regulator (Bundesnetzagentur, 2016).
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pliers regarding their production quantities. In reality, however, the settlement of

the day-ahead and intraday auction is determined in sequential order and the unre-

stricted suppliers reflect the subset of all suppliers that are able to participate in both

markets. Based on a continuous interaction of all market participants, we assume

an absence of unexploited arbitrage opportunities between both markets following

general economic theory (see, e.g., Harrison and Kreps (1979) and Delbaen and

Schachermayer (1994)). More precisely, sequential markets should exhibit identical

average price levels under the following conditions (Mercadal, 2015):

• First, prices should be transparent, unambiguous and accessible to each mar-

ket participant.

• Second, prices should refer to identical products and the respective products

should be perfect substitutes. More precisely, they should be valid for electric-

ity supply at the same point in time.

• Third, prices should be based on the same and latest available information.

The three conditions are crucial in order to expect mean price equivalence between

the day-ahead and intraday auction. Going into detail, trade in both auctions is

processed on the exchange and information transparency is given at each point in

time. Sequential settlement goes hand in hand with day-ahead prices being refer-

ence prices for bids in the subsequent intraday auction. Furthermore, there is no

discrimination of individual players. As a consequence, we claim that the first con-

dition is met. Second, intraday auction products combined represent perfect substi-

tutes for day-ahead contracts. Additionally, contracts in both auctions refer to the

physical delivery of electricity. As a consequence, the second condition is valid as

well. Finally, the day-ahead and intraday auction are settled in rapid succession.

Forecast errors that appear until delivery are rather balanced within continuous in-

traday trade that starts after the intraday auction gate closure. We have tested and

validated these assumptions empirically. To sum up, we suggest that the three con-

ditions as listed above are valid regarding day-ahead and intraday auction market

dynamics. In fact, a descriptive analysis of historical price data reveals that the aver-

age day-ahead and intraday auction prices equal within our period of observations

(see Section 3.3.1). Based on the previous considerations, we equate the hourly

average price in Equation (3.12) and the hourly day-ahead auction price.
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3.2.3 Illustrative Insights Derived From the Theoretical Model

Based on our theoretical model, we gain insights into the price relations in markets

with low and high product granularity under restricted participation. For the case

of the day-ahead and intraday auction this means that hourly products are further

divided into quarter-hourly products (τ ∈ 1,2, 3,4). We illustrate the respective

implications for an exemplary hour in Figure 3.4 and describe the price formation

in more detail. The day-ahead supply curve reflects the aggregate marginal cost

function (C ′(q)) because market participation is considered to be unrestricted. In

contrast, the gradient of the intraday auction supply curve equals the gradient of the

supply curve of unrestricted producers (au
1). As we model intraday auction prices

as deviations from the respective day-ahead prices, we can project this gradient into

the day-ahead market clearing point according to Equation (3.12). Differences be-

tween the quarter-hourly and hourly mean of the residual demand (Dτ−D) are now

transferred into movements along the 15-minute supply curve and result in quarter-

hourly intraday auction prices.

Q

p

D res

D res
1 D res

2 D res
3 D res

4

p

Quarter-hourly prices

Hourly price

Figure 3.4: Supply and demand in the hourly and quarter-hourly market

When we transfer these relations to subsequent hours as depicted in Figure 3.5,

one can observe a distinct pattern of prices. Prices for quarter-hourly products fluc-

tuate around the respective prices for hourly contracts as illustrated by the green

price time series. If the participation in the intraday auction would not be restricted,

the gradients of the supply curves would be equal in both markets and prices would

follow the curve of the fictitious quarter-hourly residual demand level as marked in

blue.
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3.3 Empirical Analysis

Based on Figure 3.5, we observe three typical price movements. First, for an

increasing residual demand, prices in the first quarter-hour are significantly lower

compared to the respective ones in the last quarter-hourly time interval of the hour.

Second, with a decreasing demand, the opposite is the case. Third, a flat demand

profile leads to a low price variation.
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Figure 3.5: Exemplary profile of a residual demand and the resulting pattern for quarter-
hourly product prices

So far, the model suggests that the high price volatility in sequential electricity

markets is mainly driven by two aspects. First, quarter-hourly prices are driven by

quarter-hourly deviations of the residual demand from the respective hourly means.

Second, the high volatility of prices stems from restricted participation of some sup-

pliers which results in an inclination of the supply curve from the first (hourly) to

the second market stage (quarter-hourly) (au
1 > a1).

3.3 Empirical Analysis

By analyzing the time period from January 2015 to the end of February 2016, we are

able to test the applicability of our theoretical model to historical data. Furthermore,

we intend to quantify the inclination of the supply curve between the day-ahead

and intraday auction and gain insights on welfare implications. We first give a short

53
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overview on the historical data used. We then describe our estimation approach and,

finally, we depict and evaluate the empirical results.

3.3.1 Data

This section gives an overview on relevant data included in the empirical estimation

and the respective references. Due to the recent implementation of the intraday

auction on 9 December 2014, the analysis includes data from January 2015 until

the end of February 2016.

A detailed list of all variables that are used in the empirical analyses in the follow-

ing sections is presented in Table 3.1. The table includes a brief explanation for each

variable and the symbols that we use in order to depict our empirical models and

the respective estimation equations. Additionally, Table 3.2 provides information on

the most relevant descriptive statistics.

Price data for German electricity markets can be obtained from the European

Power Exchange (EPEX, 2016). Trades in the day-ahead and intraday auction take

place one day before physical delivery and are based on expectations for the level of

demand and generation from wind and solar power. Forecasts for renewable gener-

ation are provided by the four German transmission system operators (TSOs) who

are in charge of the reliable operation of the power system. We make use of the

day-ahead forecasts for wind and solar power based electricity generation published

on the transparency platform of the European Energy Exchange (EEX, 2016).

In addition to forecasts on the renewable energy feed-in, the four TSOs generate

and publish load forecasts. Load is commonly considered as the best proxy for elec-

tricity demand and is therefore used within the framework of our empirical analysis.5

We use load data that is published on the transparency platform of the European

Network of Transmission System Operators for Electricity (ENTSO-E, 2016).

3.3.2 Empirical Estimations

We apply a multistage approach in order to analyze the validity of our underlying

theoretical model empirically. In more detail, we are first interested in the applica-

bility of the model with respect to historical prices observed in the intraday auction.

Several robustness checks are made. Second, we set up an empirical approach that

5More information on load can be found in Schumacher and Hirth (2015)
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Table 3.1: List of variables and references

Symbol Label Variable Measure Reference

pida
t id auction price Uniform settlement price for a

15-minute product in the
German intraday auction

EUR/MWh EPEX (2016)

pda
t day-ahead price Hourly German day-ahead

auction price
EUR/MWh EPEX (2016)

Dres
t ; Dres

t residual demand
15 residual
demand 60

Day-ahead forecast for the
residual demand in a
15-minute period and the
respective hourly mean
(ex-ante value)

GW EEX (2016) ,
ENTSO-E (2016)

∆Dres
t residual demand

deviation
Difference of the 15-minute
residual demand and the
respective hourly mean

GW EEX (2016) ,
ENTSO-E (2016)

Solart ;
Solar t

solar power 15
solar power 60

Day-ahead forecast for the
15-minute solar power and the
respective hourly mean
(ex-ante value)

GW EEX (2016)

∆Solart solar power
deviation

Difference of the 15-minute
solar power and the respective
hourly mean

GW EEX (2016)

Windt ;
Wind t

wind power 15
wind power 60

Day-ahead forecast for the
15-minute wind power and the
respective hourly mean
(ex-ante value)

GW EEX (2016)

∆Windt wind power
deviation

Difference of the 15-minute
wind power and the respective
hourly mean

GW EEX (2016)

Dt ; Dt load 15; load 60 Day-ahead forecast for the
15-minute load and the
respective hourly mean
(ex-ante value)

GW ENTSO-E (2016)

∆Dt load deviation Difference of the 15-minute
load and the respective hourly
mean

GW ENTSO-E (2016)

Table 3.2: Descriptive statistics

Variable N4 Mean Std.Dev. Min 25% Median 75% Max

id auction price 38,640 30.9 14.8 -164.5 21.7 30.5 40.1 464.4
day-ahead price 38,640 30.9 12.8 -80.0 23.9 29.9 38.8 99.8
residual demand 15 38,640 41.7 11.0 6.3 34.2 41.6 49.6 70.6
residual demand 60 38,640 41.7 11.0 6.3 34.2 41.6 49.6 70.6
residual demand deviation 38,640 0.0 0.9 -9.1 -0.4 0.0 0.4 9.5
solar power 15 38,640 3.6 5.8 0.0 0.0 0.1 5.4 25.8
solar power deviation 38,640 0.0 0.5 -6.0 0.0 0.0 0.0 4.5
wind power 15 38,640 9.6 7.6 0.2 3.7 7.4 13.9 33.6
wind power deviation 38,640 0.0 0.2 -1.6 -0.1 0.0 0.0 4.5
load 15 38,640 55.0 9.9 31.7 46.7 54.5 64.1 76.2
load deviation 38,640 0.0 0.8 -8.3 -0.4 0.0 0.4 9.5
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allows us to derive conclusions on the fundamental relation of the gradient of the

aggregate supply curve in the day-ahead market and the supply curve of unrestricted

suppliers in the subsequent intraday auction with quarter-hourly contract duration.

Empirical Framework

As outlined above, the econometric approach adopted within this article aims at

depicting the price formation for quarter-hourly products in the intraday auction.

The general estimation procedure is formulated in Equation (3.19):

pt = X ′i,t βi + ν+ εt

with εt ∼ N (0,σ2),
(3.19)

where pt denotes the quarter-hourly price in period t = 1,2, ..., T . X ′i,t includes

the exogenous variables of the model, namely the hourly day-ahead price as well as

the quarter-hourly deviation of the residual demand from its respective hourly mean

value. We consider the intercept ν being the estimated constant assuming that the

underlying supply function is time-invariant. εt denotes the error term. In order to

choose a suitable estimation methodology, we first test for basic assumptions that

would be required if applying Ordinary Least Squares Regression techniques. These

are standard assumptions such as predetermination or exogeneity of regressors and

pt , X i,t being ergodic and jointly stationary.

Beginning with stationarity, we apply two different statistical tests for unit roots.

The respective results of an Augmented Dickey Fuller test and a Phillips-Perron test

are depicted in detail in Appendix 3.5.2. The statistics clearly reject the assumption

of non-stationary processes. This is especially plausible because we only include data

for a limited period of observations. During these 14 months the underlying drivers

of demand and supply as well as prices in the markets of interest only changed

slightly. These are, e.g., fuel prices and the share of renewable power plants. A

significant time trend is not identified.

By using forecasted data, we guarantee exogeneity of the residual demand by con-

struction. We furthermore conduct a Durbin-Wu-Hausman test in order to control

for the exogeneity of the day-ahead auction price. The test results reject the assump-

tion of exogeneity 6 and we thus use a Two-Stage Least Squares (2SLS) Regression

Analysis including the hourly average of the residual demand as an instrument for

6In more detail, the test suggests that Cov(X ′i,t ,εt) 6= 0
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the day-ahead price. The hourly residual demand is the main driver of demand

in the day-ahead auction and thus is highly correlated with the respective prices

(Cov(X i,t , Zi,t) 6= 0, where Zi,t is the instrument). This assumption is supported

by the first stage regression results giving clear empirical evidence for a strong in-

strument. Additionally, we argue that our underlying estimation approach directly

accounts for the exclusion restriction (Cov(Zi,t ,εt) = 0). All information from the

first market that can be expected to influence quarter-hourly product prices in the

second market is incorporated by the inclusion of the day-ahead price. Finally, we

use robust standard errors in order to account for heteroscedasticity.

Empirical Validation

In a first step, the aim of our empirical analysis is to validate the theoretical model

as depicted in Section 3.2.1. Based on the model Equation (3.12) and according to

Section 3.3.2, we apply Equation (3.20) using a Two-Stage Least Squares Regression:

pida
t = β1 · pda

t + β2 · (Dres
t − Dres

t) + ν+ εt

= β1 · pda
t + au

1 ·∆Dres
t + ν+ εt .

(3.20)

The difference between the residual demand on a quarter-hourly and hourly level

(residual demand deviation (∆Dres
t )) is included as the main explanatory variable.

Besides, the day-ahead auction price for hourly products (day-ahead price (pda
t )) is

used. We use forecast values for the residual demand as trading decisions in the

day-ahead and intraday auction are made under uncertainty. The coefficient β2 can

be interpreted as the gradient of the unrestricted supply curve (au
1).

The resulting estimates are depicted in column (1) of Table 3.3. Additional robust-

ness checks have been conducted and we show the respective results in columns (2)

- (3). The latter tests will be explained in more detail below.

The estimates in column (1) of Table 3.3 indicate that our theoretical model is

applicable to actual price relations observed in the intraday and day-ahead auction.

We observe an adjusted R2 that is close to 85% and thus a large part of the variance

of intraday auction prices can be explained by the model. Additionally, the t-values

of the coefficients validate that the difference in prices is influenced significantly by

the deviation of the residual demand on a quarter-hourly level from its hourly mean.

Furthermore, the estimated coefficient with respect to the day-ahead auction price

is close to one, as suggested by the model. Thus, the regression results confirm the
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Table 3.3: Regression estimates for intraday auction price data

Dependent variable: id auction price (pida
q,t )

Explanatory variable IV (1) IV (2) IV (3)

day-ahead price (pda
t ) 0.94∗∗∗ 0.94∗∗∗ 0.94∗∗∗

(0.003) (0.003) (0.003)

residual demand deviation (∆Dres
t ) 7.80∗∗∗

(0.11)

positive residual demand deviation 7.96∗∗∗

(0.26)

negative residual demand deviation 7.65∗∗∗

(0.18)

wind power deviation (∆Windt) -9.38∗∗∗

(0.21)

solar power deviation (∆Solart) -10.08∗∗∗

(0.08)

load deviation (∆Dt) 6.0∗∗∗

(0.12)

intercept (ν) 1.99∗∗∗ 1.91∗∗∗ 2.10∗∗∗

(0.10) (0.14) (0.10)
observations 38,640 38,640 38,640
adj. R2 0.84 0.84 0.85
F 46,650 33,840 30,390

Notes to Table 3.3: Robust standard errors in parentheses. ∗ / ∗∗ / ∗∗∗ : significant at the 0.05 /0.02 / 0.01
error level respectively. The term positive residual demand deviation in column (2) is constructed using a
dummy variable that equals one if the residual demand deviation is positive. The term negative residual
demand deviation is constructed using a dummy variable that equals one if the residual demand deviation
is negative. Due to indication of endogeneity of day-ahead price we use residual demand deviation 60 as
instrumental variable and apply a 2SLS Regression. In general, we use data from January 2015 until the
end of February 2016.

validity of day-ahead auction prices as reference prices for intraday auction prices.

If we estimate the model without an intercept, the coefficient of the day-ahead price

even equals one.7

The estimated coefficient for residual demand deviation reveals a positive sign and

can be interpreted as the gradient of the supply curve in the intraday auction. The

positive coefficient means that a positive deviation of the residual demand leads to

7In more detail, the respective estimation results show a coefficient for day-ahead price that is 0.998
and a robust standard error of 0.0001
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an increase of quarter-hourly prices compared to the respective hourly day-ahead

price. This causal relation is in line with our theoretical model assumptions. The

average absolute value for residual demand deviation amounts to 0.590 GW and can

be transferred into an absolute price difference of 4.6 EUR/MWh. To sum up, we find

evidence that restricted participation in combination with highly variable demand

indeed triggers the high volatility of intraday auction prices observed.

In a next step, we are interested in the robustness of the results. One underly-

ing assumption of our model considers identical gradients of the supply curve for a

positive as well as a negative deviation of the residual demand. More precisely, we

assume a linear relation of prices and quantities in the intraday auction reflecting

the underlying supply curves. We test this assumptions by distinguishing between

positive and negative differences of the residual demand in the regression (positive

residual demand deviation and negative residual demand deviation). The respective

results are shown in column (2) of Table 3.3. The coefficients for the positive and

negative residual demand deviation only exhibit slight differences. However, the

overall picture strongly supports the hypothesis of a continuous linear relation be-

tween supply and prices in the intraday auction.8

In order to gain additional insights with respect to the different drivers of the

residual demand, we conduct an additional regression. The results are displayed

in column (3). Here, we decompose the residual demand deviation into its three

elements wind power deviation, solar power deviation and load deviation. The re-

spective estimates reveal variations as has to be expected because high variations

of wind and solar power as well as load do not fully coincide. For illustration pur-

poses, electricity generation from solar power is only present in distinct hours when

the sun is shining. As a consequence, when disentangling the individual drivers, we

measure the average coefficient of the quarter-hourly supply curve only in a subset

of hours. Based on these considerations, different coefficients for solar power, wind

power and load are not surprising. On the contrary, it is rather important to eval-

uate whether the signs of the coefficients match the underlying causal relations. A

positive deviation of the renewable energy generation implies oversupply which in

turn causes lower prices in the intraday auction. In line, the respective coefficients

are negative whereas the coefficient for load is positive. Looking at the value dis-

tribution of solar and wind power as well as load, it is revealed that the volatility

of intraday auction prices is mainly driven by the quarter-hourly variation of load.

However, very high differences in prices can also result from a high gradient of so-

8We also tested for deviant types of relations such as quadratic ones but found no empirical evidence
for applicability.
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lar power generation. Besides these explicitly outlined robustness tests, additional

insights into seasonality, alternative hypotheses, and the methodological approach

are given in Appendix 3.5.2. To sum up, we find model validity and robustness of

our findings.

Econometric Analysis of the Supply Curve Gradients

As a further part of the empirical analysis, we conduct a comparative analysis for

the gradients of the supply curve in the day-ahead and intraday auction. The theo-

retical model as formulated in Section 3.2.1 suggests that the high price volatility is

triggered by restricted participation which leads to differing supply curve gradients.

This section aims at giving empirical evidence supporting this hypothesis. In order

to do so, the day-ahead spot market price in Equation (3.20) is substituted by the

hourly residual demand according to Equation (3.9). The purpose is to estimate a1

as a proxy for the gradient of the aggregate supply curve. We thus obtain Equation

(3.21):

pida
t = a1 · Dres

t + au
1 ·∆Dres

t + ξ+ εt , (3.21)

where the constant intercept of the hourly supply curve is shifted into the con-

stant ξ and the error-term of the estimation equation. Again, we use forecast values

for the construction of the hourly and quarter-hourly residual demand in order to

circumvent endogeneity. Based on these considerations, we apply an Ordinary Least

Squares Regression using robust standard errors. The empirical results indicate ex-

planatory power and a significant impact of the respective explanatory variables.

We observe a slight decrease of the adjusted R2 due to a loss of information by us-

ing a less informative variable (Dres
t instead of pda

t ). Furthermore, we are now

able to comment on the average difference of the aggregate and unrestricted supply

curve by comparing the coefficients a1 and au
1. The estimation results are depicted

in Table 3.4. The estimated coefficient for the impact of the quarter-hourly residual

demand deviation (residual demand deviation) on intraday auction prices is more

than eight times higher than the influence of the hourly residual demand (residual

demand 60) on the proxy for day-ahead spot prices.

Based on the estimates for the gradients of the aggregate and unrestricted supply

curve (a1 and au
1), we are now able to estimate the welfare losses as derived in Equa-

tion (3.15). In 2015 the total welfare losses from restricted participation amounted
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Table 3.4: Regression estimates for intraday auction price data (2)

Dependent variable: id auction price (pida
q,t )

Explanatory variable OLS

hourly residual demand (Dres
h,t ) 0.94∗∗∗

(0.004)
residual demand deviation (∆Dres

q−h,t) 7.8∗∗∗

(0.12)
intercept (ξ) -8.2∗∗∗

(0.18)
observations 38,640
adj. R2 0.70
F 24,440

Notes to Table 3.3: Robust standard errors in
parentheses. ∗ / ∗∗ / ∗∗∗ : significant at the
0.05 /0.02 / 0.01 error level respectively. We
use data from July 2013 until the end of July
2015.

to EUR 96 million. When taking a closer look at the distributional effects, as derived

in Appendix 3.5.1, consumer surplus is reduced by EUR 192 million. On the supply

side, the surplus of unrestricted producers is increased by EUR 107 million and sur-

plus of restricted suppliers is reduced by EUR 11 million compared to the efficient

case of unrestricted participation.

We note that these calculations do not include actual costs of market entry and

thus have to be regarded as an upper bound for the welfare and distributional effects

from restricted participation. As a lack of market coupling is one driver of restricted

participation, we may regard German power plant operators as the unrestricted sup-

pliers. In this case, the German suppliers profit from non-coupled markets. In con-

trast, power plant operators in neighboring countries and German consumers suffer

from the lack of market coupling. As the implementation of cross-border trade of

15-minute and even shorter contracts is planned for 2017 (Cross-Border Intraday

Market Project XBID), welfare losses may decrease in the future. However, ensuring

sufficient cross-border intraday capacities as well as an efficient coupling mechanism

are crucial pillars that should be urged by policy makers.
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3.4 Conclusion

After identifying a concurrence of strongly increasing price volatility and shortened

contract duration in German short-term electricity markets, we derive a theoretical

model to illustrate the respective price formation based on a fundamental approach.

We consider two markets that are characterized by altering product granularity and

a change in the set of suppliers along the sequential market settlement. We apply our

model to the German day-ahead and intraday auction that allow for trading hourly

and quarter-hourly products respectively. Our empirical results clearly indicate va-

lidity of our theoretical considerations. More precisely, we find that the high price

volatility that is observed in historical price data basically is triggered by two factors.

First, the variability of demand and renewable electricity generation causes a need

to trade sub-hourly contracts. Second, we find that the supply curve in the intraday

auction inclines compared to the day-ahead auction due to restricted market partic-

ipation. Based on our estimates, we relate restricted intraday auction participation

to welfare losses that amounted to EUR 96 million in 2015.

The main findings presented within the scope of this article provide a better under-

standing of markets with restricted participation and differing product granularity.

The identification and classifications of reasons why the current spot market design

reveals inefficiencies are indispensable to derive appropriate strategies of how to re-

duce such welfare losses. This is extremely important because the increasing share of

renewable energies will lead to additional needs for sub-hourly short-term trade and

thus may increase efficiency losses if the short-term flexibility potential provided in

the electricity markets of interest is not increasing accordingly. Policy makers should

tackle issues related to intraday market participation. Above all, a market opening

may be a first step towards a more efficient market outcome. Against this backdrop,

the Cross-Border Intraday Market Project planning to implement cross-border in-

traday trade with 15-minute and potentially even lower contract duration by 2017,

is expected to make trading needs stemming from renewable electricity generation

and flexibility offered in electricity markets more compatible. Our results show that

this is expected to clearly reduce welfare losses. However, the provision of sufficient

cross-border intraday capacity as well as the implementation of an efficient coupling

mechanism should be urged.

On a more micro-economic level, a fundamental understanding of the price rela-

tions in the markets of interest can be transferred into price forecasts and may be

used in order to evaluate the future market developments. Market participants need
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to understand long-term drivers of price spreads in short-term electricity markets in

order to assess investment decisions with respect to more flexible generation units.

As of today, an exemplary profitability calculation for a battery storage unit revealed

that the price volatility observed does not allow for profitable operation.

Finally, as we observe the respective price patterns not only in electricity markets,

it would be worthwhile to analyze the applicability of the model to further market

settings e.g. for commodities such as gas, coal or oil. However, due to the market

structures being fundamentally different we leave this open for future research.
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3.5 Appendix

3.5.1 Proof of Proposition 3.4 on Distributional Effects

Proof. Before taking a closer look into the distributional effects that result from re-

stricted participation, we first derive the respective surplus of consumers and produc-

ers. We therefore consider consumers being price inelastic up to a certain threshold

where the electricity price exceeds the value of lost load (VOLL). We link the VOLL

to the price pVOLL which marks the upper limit of the willingness-to-pay regard-

ing electricity consumption (this definition is analogous to Knaut and Obermüller

(2016)). On the supply side, the producer surplus is determined by the difference

of the unique market price and the marginal costs of electricity generation of each

producer.

In the case of restricted participation (inef f ) the consumer (CS) and producer

surplus (PS) in each period τ are calculated as

CS inef f
τ =pVOLL Dτ − pD− pτ(Dτ − D) (3.22)

PS inef f
τ =Dp+ (Dτ − D)pτ − C inef f (Dτ). (3.23)

If all suppliers were able to supply at resolution τ, the efficient outcome (ef f )

would lead to the following consumer and producer surplus

CSef f
τ =(pVOLL − pef f

τ )Dτ (3.24)

PSef f
τ =pef f

t Dt − C(Dτ). (3.25)

The price in the efficient case (pef f
τ = a0 + a1Dτ) directly depends on the aggre-

gate marginal cost function. The difference in consumer and producer surplus can

therefore be derived as

∆CSt =CSef f
τ − CS inef f

τ

=(au
1 − a1)(D− Dτ)

2 + a1D(D− Dτ)

=2∆Wτ + a1D(D− Dτ)

(3.26)
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∆PSτ =PSef f
τ − PS inef f

τ

=−
1
2
(au

1 − a1)(D− Dτ)
2 − a1D(D− Dτ)

=−∆Wτ − a1D(D− Dτ).

(3.27)

We insert the previously derived welfare losses ∆Wτ for both the change in con-

sumer and producer surplus. Summing up over the n time periods, this results in

∆CS =
n
∑

t=1

∆CSτ = 2
n
∑

τ=1

∆Wτ + a1D
n
∑

τ=1

(D− Dτ)

︸ ︷︷ ︸

=0

= 2
n
∑

τ=1

∆Wτ ≥ 0 (3.28)

∆PS =
n
∑

τ=1

∆PSτ = −
n
∑

τ=1

∆Wτ − a1D
n
∑

τ=1

(D− Dτ)

︸ ︷︷ ︸

=0

= −
n
∑

τ=1

∆Wτ ≤ 0. (3.29)

The consumer surplus decreases due to restricted participation in the second mar-

ket. It is twice as high as the overall welfare losses. In contrast, the producers face

an increasing surplus. The respective increase amounts to the total sum of welfare

losses along all time periods. As these considerations differ across restricted and

unrestricted suppliers, we now analyze the respective surplus in more detail. In the

inefficient case we get the following relations

PSr,inef f
τ =pqr − C r(qr) (3.30)

PSu,inef f
τ =p(qu

τ) + pτ(Dτ − D)− Cu(qu
τ). (3.31)

In the efficient case the respective surplus would be as follows

PSr,ef f
τ =pef f

τ qr,ef f
τ − C r(qr,ef f

τ ) (3.32)

PSu,ef f
τ =pef f

τ qu,ef f
τ − Cu(qu,ef f

τ ). (3.33)

We derive the optimal quantities supplied by restricted and unrestricted suppliers
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in the efficient case based on the aggregate supply function

qr,ef f
τ =

au
1

ar
1 + au

1

Dτ (3.34)

qu,ef f
τ =

ar
1

ar
1 + au

1

Dτ. (3.35)

For restricted suppliers we now derive the difference in surplus

∆PSr
τ =PSr,ef f

τ − PSr,inef f
τ (3.36)

=
1
2

a1(1−
a1

au
1

)(D2
τ − D

2
). (3.37)

Summing up over all time periods, we can further simplify the expression

∆PSr =
n
∑

τ=1

∆PSr
τ =

1
2

a1 (1−
a1

au
1

)
︸ ︷︷ ︸

≥0

n
∑

τ=1

(D2
τ − D

2
)

︸ ︷︷ ︸

Var(Dτ)≥0

≥ 0. (3.38)

Because the variance of demand is always positive, we conclude that restricted

suppliers have a lower surplus in the inefficient case. In a next step, we derive

the difference in surplus for unrestricted suppliers. As we have already derived the

difference in surplus for all suppliers and the respective one for restricted suppliers,

we just derive the following expression.

∆PSu =∆PS
︸︷︷︸

≤0

−∆PSr
︸ ︷︷ ︸

≥0

≤ 0. (3.39)

To sum up, we prove that restricted participation leads to a reduction in consumer

surplus. On the other hand, unrestricted suppliers face a higher surplus in the inef-

ficient case whereas restricted suppliers suffer from restricted participation.
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3.5.2 Supplementary Information on the Econometric Approach

The Relation of Quantities and Prices in the Day-Ahead Auction

0 10 20 30 40 50 60 70 80

Residual demand [GWh]

100

50

0

50

100

150

D
a
y
-a

h
e
a
d
 p

ri
ce

 [
E
U

R
/M

W
h
]

Figure 3.6: Relation of day-ahead quantities and prices in 2015

Unit Root Tests

We apply both, an Augmented Dickey Fuller test and a Phillips-Perron test for unit

roots which are displayed in Table 3.5 (Dickey and Fuller, 1979, Phillips and Perron,

1979). The latter test uses Newey-West standard errors in order to account for serial

correlation. The null hypothesis of both is that there is a unit root in the respective

period of observation. We use the Akaike Information Criterion (AIC) in order to de-

termine the optimal lag lengths. However, the AIC results are ambiguous for some

variables and tend do indicate using as many lags as tested for. In these cases we

use the Schwert rule of thumb and consider a leg length of 55 (Schwert, 1989). We

prefer making a slight error due to including too many lags since Monte Carlo exper-

iments suggest that this procedure is preferable to including too few lags. In order

to give evidence for the robustness of our results, we repeat the tests for different

lag lengths. Within the scope of the Augmented Dickey Fuller test, we extend the

basic test of a random walk against a stationary autoregressive process by including

a drift and trend term. As far as the listed results are concerned, we decide whether

to include a trend or constant by checking the significance of the trend/constant
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parameters at a 5% significance threshold. The parameter residuals refers to the

estimation results for Equation (3.20) using a 2SLS regression.

Table 3.5: Unit root tests

Augmented Dickey Fuller (Levels) Philipps-Perron Test (Levels)
Variable statistic p-value lags statistic p-value lags

id auction price -17.50 0.00 55 -152.25 0.00 55
day ahead price -17.30 0.00 55 -18.65 0.00 55
residual demand 60 -13.15 0.00 53 -15.18 0.00 53
residual demand deviation 15 -40.19 0.00 55 -492.70 0.00 55
residuals (ε) -17.42 0.00 54 -204.50 0.00 54

Additional Information with Respect to Robustness, Alternative Hypotheses,

and Methodological Variation

Besides explicitly outlined robustness checks, further variations of the basic estima-

tion procedure were evaluated in order to get further insights into the underlying

causal relations of short-term price formation in electricity markets. First, the four

specific 15-minute intervals of each hour are addressed via a dummy variable in or-

der to analyze whether the estimated coefficients for the quarter-hourly deviation of

the residual demand from its hourly mean differ significantly across the 15-minute

time intervals of each hour. The estimation results depict that the respective coeffi-

cients only differ slightly at a level of approximately ten percent. However, due to a

small absolute difference we value the sub-hourly variation of coefficients as negli-

gible. Second, the intra-day variation of the coefficients for the 15-minute residual

demand deviation is analyzed by referring to each specific hour of a day via a dummy

variable. The results only give slight evidence for significant intra-day deviation in

hour two. Thus,we conclude that the causal relations are robust against intra-day

variation. Third, the causal relations in winter and summer basically are the same.

In a next step, we want to comment on additional impact factors that may in-

fluence quarter-hourly intraday auction prices and thus should be listed in order to

complete our explanatory approach. First, we analyze the impact of forecast errors.

In more detail, forecast errors reveal after day-ahead gate closure and are balanced

within subsequent intraday trade. However, continuous intraday trade is assumed

to be more favourable to balance these forecast errors. This is due to both, market

design and gate closure closer to physical delivery. In line with these considerations,

we find empirical evidence that the impact of forecast errors on intraday auction
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prices is insignificant. Additionally, strategic behavior could have impact on the

price formation of interest but based on Bundesnetzagentur (2016) we reject this

hypothesis.

Finally, our empirical approach is based on crucial assumptions with regard to ex-

ogeneity and stationarity of data. However, a simple Ordinary Least Squares Regres-

sion and the 2SLS Regression basically provide identical estimates. Furthermore, an

application of a Vector Error Correction Model after an initial test for cointegration

of the respective variables gives additional evidence for significance of the included

parameters.
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4 When Are Consumers Responding to Electricity
Prices? An Hourly Pattern of Demand Elasticity

System security in electricity markets relies crucially on the interaction between de-

mand and supply over time. However, research on electricity markets has been

mainly focusing on the supply side arguing that demand is rather inelastic. As-

suming perfectly inelastic demand might lead to delusive statements regarding the

price formation in electricity markets. In this article, we quantify the short-run price

elasticity of electricity demand in the German day-ahead market and show that de-

mand is adjusting to price movements in the short-run. We are able to solve the

simultaneity problem of demand and supply for the German market by incorporat-

ing variable renewable electricity generation for the estimation of electricity prices

in our econometric approach. We find a daily pattern for demand elasticity on the

German day-ahead market where price-induced demand response occurs in early

morning and late afternoon hours. Consequently, price elasticity is lowest at night

times and during the day. Our measured price elasticity peaks at a value of approxi-

mately -0.13 implying that a one percent increase in price reduces demand by 0.13

percent.

4.1 Introduction

Understanding the price elasticity of demand is important since demand adjustments

based on price movements contribute to the functioning of electricity markets. In

electricity markets it is worth stressing that balancing demand and supply occurs on a

high temporal frequency which, not only in Germany, results in debates on whether

or not it is possible to match demand and supply at all times. An inelastic price

elasticity of demand assumption, as often argued for the short-run, would imply

that the burden of balancing electricity consumption and generation at all times

rests with the supply side.

The empirical literature estimating long-run and short-run price elastictiy of de-

mand in electricity markets is extensive. For the short-run, peer-reviewed studies

have estimated the elasticity for different sectors and time intervals. Table 4.1 shows
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that estimates of price elasticity vary from -0.02 to -0.3 depending on the chosen ap-

proach, the country-specific data and the sector. Taylor et al. (2005), for instance,

find that short-run elasticity ranges from -0.05 to -0.26 for the industrial sector in

North Carolina by using annual data. He et al. (2011) confirm this finding whereas

Bardazzi et al. (2014) measure a slightly higher elasticity in terms of magnitude for

the Italian industry sector. For the residential sector, numerous studies have been

performed as well (i.e. Ziramba (2008), Dergiades and Tsoulfidis (2008) and Hosoe

and Akiyama (2009)). However, little attention has been devoted to the price re-

sponse of the whole market with respect to wholesale prices. So far, this market has

only been investigated by Genc (2014) and Lijesen (2007). Whereas Genc (2014)

applies a bottom-up Cournot modeling framework, Lijesen (2007) uses a regression

approach in order to quantify the price elasticity during peak hours. Genc and Lije-

sen conclude from their chosen approaches that the hourly price elasticity is rather

small. They furthermore argue that in peak hours demand switching behavior of

consumers barely occurs in practice.

In this article we extend the existing literature on short-run elasticity with respect

to the wholesale price in two ways. First, we use wind generation as an instru-

ment variable to solve the simultaneity problem of demand and supply.1 Second,

we account for the variation in utility from electricity consumption during the day.

Using hourly data on load, temperature, prices and wind generation for the German

day-ahead market in 2015, we quantify the level of price elasticity and its variation

throughout the day.

Our results show that the short-run price elasticity of demand in the German elec-

tricity market is not perfectly inelastic. Even though our obtained short-run price

elasticity of demand is generally low, consumers still react to price movements. Mea-

suring the price elasticity of demand can give a more meaningful understanding of

the contribution of demand reactions to system security. However, we stress that a

price elasticity of demand with respect to the day-ahead price is not explicitly show-

ing the contribution of each consumer group. The daily pattern of our estimate of

price elasticity reveals some prominent peaks in the morning and evening, where

the price elasticity of demand is highest. As expected, these hours show overall high

price levels providing incentives to consumers for a reduction of their consumption.

In the morning and evening hours, price elasticity varies between -0.08 and -0.13.

Thus, we infer that demand adjustments in these hours are to some extent beneficial

for consumers. On the contrary, we measure a lower price elasticity of demand at

1The approach is similar to Bönte et al. (2015).
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Table 4.1: Literature review of estimated short-run elasticity
Source Type of model Type of data Elasticity Sector Region

Garcia-Cerrutti (2000) Dynamic random vari-
ables model

Annual -0.79 to 0.01,
mean -0.17

Residential California

Al-Faris (2002) Dynamic cointegration
and Error Correction
Model

Annual,
1970-1997

-0.04 / -0.18 Oman

Bjørner and Jensen
(2002)

Log-linear fixed effects Panel, 1983-
1996

-0.44

Boisvert et al. (2004) Generalized Leontief Peak: -0.05 TOU
Holtedahl and Joutz
(2004)

Cointegration and Error
Correction Model

Annual,
1955-1996

-0.15 Residential Taiwan

Reiss and White (2005) Reduced form approach Annual ,
1993 and
1997

0 to -0.4 Residential California

Taylor et al. (2005) Generalized McFadden
with nonlinear OLS and
Seemingly Unrelated
Regression

1994-2001 -0.26 to -0.05 Industry Duke Energy,
North Carolina

Bushnell and Mansur
(2005)

lagged residential prices -0.1 Residential San Diego

Error Correction Model Annual,
1969-2000

-0.263 Residential Australia

Bernstein et al. (2006) dynamic demand model
with lagged variables
and fixed effects

Panel, 1977-
2004
1977-1999

-0.24 to -0.21 Residential,
Commercial

US

Rapanos and Polemis
(2006)

1965-1999 -0.31 Greece

Halicioglu (2007) Bounds testing approach
to cointegration within
ARDL model

1968-2005 -0.33 Turkey

Lijesen (2007) reduced form regression
linear, loglinear

-0.0014 -0.0043 Wholesale Netherlands

Dergiades and Tsoulfidis
(2008)

Bounds testing approach
to cointegration within
ARDL model

1965-2006 -1.06 Residential US

Ziramba (2008) Bounds testing approach
to cointegration within
ARDL model

1978-2005 -0.02 Residential South Africa

Hosoe and Akiyama
(2009)

OLS/Translog cost func-
tion

1976-2006 0.09 to 0.3 Residential Japan

He et al. (2011) General equilibrium
analysis

2007 -0.017 to -0.019,
-0.293 to -0.311,
-0.0624 to
-0.0634

Industry,
residential,
agriculture

China

Bardazzi et al. (2014) Two-stage translog
model

Panel,
2000-2005

–0.561 to -0.299 Industry Italy

Genc (2014) Cournot competition
model

Hourly
2007, 2008

-0.144 to -0.013
-0.019 to -0.083

Wholesale Ontario

night times and during the day. A lower elasticity indicates less willingness of con-

sumers to adjust the consumption due to high or low electricity prices. This can be

due to the fact that economic activity in general is higher during daytime.

The remainder of the paper is organized as follows. Section 4.2 deepens the un-

derstanding of supply and demand in electricity markets. Section 4.3 describes the

data and presents the applied econometric approach. Section 4.4 discusses the esti-

mation results. Section 4.5 concludes.
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4.2 Measuring Market Demand Reactions Based on

Wholesale Prices

In order to specify our econometric model capturing demand reactions due to elec-

tricity wholesale price movements, knowledge about the supply and demand func-

tions in electricity markets is pivotal. In this section, we therefore describe the func-

tioning of the retail and wholesale electricity market before arguing that demand

elasticity can be estimated based on market demand being defined as aggregated

demand of all end consumer groups and wholesale electricity prices. We further

specify the drivers of demand and supply by setting up the respective functions.

4.2.1 The Retail Market for Electricity

Consumers commonly sign contracts with retailers to take charge of their electric-

ity demand. These contracts are subject to different possible tariff schemes ranging

from time-invariant pricing to real-time pricing. Tariff structures vary depending on

the consumer group and metering facilities.2 Small end consumers (e.g. households,

businesses, or small industries) in Germany are mostly on time-invariant tariffs. This

means that the price of electricity for these consumer groups is at the same level for

every hour over the entire year. These consumers therefore have little incentive to

adjust their demand in the short-run. For larger consumers, such as big industrial

companies, contracts are differently designed allowing them to benefit from adjust-

ing consumption in the short run.3

In Germany, the retail price that consumers pay for electricity consists of several

components. The most important component is the price for electricity generation,

which is the price that generators charge for the generation of electricity. Besides

paying for the generation of electricity, end consumers also pay for the transmission

and distribution of electricity, as well as for additional taxes and levies. In Germany,

for instance the retail price consists of network charges, the renewable support levy,

and taxes which are added to the wholesale price. Some of these additional price

2The electricity consumption of many end consumers is not observable over time because the metering
facilities only display the amount of electricity consumed but not during which period measurement
is performed.

3According to Bundesnetzagentur (2016), consumers can be grouped by their metering profile into
customers with and without interval metering. Only consumers with interval metering have the
technical capability to be billed depending on the time of usage. For Germany in 2014, 268 TWh
were supplied to interval metered customers and 160 TWh to customers without interval metering.

74



4.2 Measuring Market Demand Reactions Based on Wholesale Prices

components vary substantially depending on the consumer group.4 The differing

retail prices for each consumer group lead to a total electricity demand of all con-

sumers that varies over the year. This aggregated demand of all end consumers is

equal to the observed load in the total electricity system.

4.2.2 The Wholesale Market for Electricity

The price for electricity generation is determined in the wholesale market. In prin-

cipal, the wholesale market allows different players to place bids that eventually

either result in produced quantities or demanded quantities for a specific point in

time. Participants in these markets are for example utilities, retailers, power plant

operators and large industrial consumers.

Figure 4.1i gives an exemplary overview of the five different players and their cor-

responding electricity demand and supply on the wholesale market. The first two

players are two different utilities, A and B. As such, utility A and B illustrate cases

for players with different generation assets while at the same time each of them pos-

sesses different customer bases. However, for both utilities, we would expect that

generation for their own customer base depends on the marginal cost of genera-

tion. In other words, if the wholesale price is above the marginal cost of the utility’s

marginal cost of generation, the utility chooses to supply their customer base instead

of demanding quantities from the wholesale market.

The next player in the market we refer to is the retailer. As a retailer, supplying

electricity is by default not an option and therefore we expect them to demand elec-

tricity quantities only. The opposite is true for renewable and conventional genera-

tion players. With marginal costs of zero, renewable generation players offer their

production at very low cost compared to conventional generation players where

marginal costs are greater than zero and vary depending on the generation technol-

ogy.

Figure 4.1ii horizontally aggregates all demand and supply curves from each player

we identified. It thus shows the aggregated demand and supply, as well as the real-

ized equilibrium electricity price of 20 EUR/MWh.

Figure 4.1iii shows the resulting supply and demand bids by the individual play-

ers in the wholesale market. First, players that can only supply electricity, such as

renewable or conventional generators, appear in ascending order on the supply side

4In Germany, for example, electricity intensive industries are exempted from paying the renewable
support levy.
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(ii) Supply and demand aggregation
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(iii) Supply and demand in the wholesale market

Figure 4.1: Electricity price formation on the wholesale market

only. Second, retailers demand quantities and generally more, if prices are low.

Third, players that own generation assets and also have customers, net their supply

and demand positions internally before submitting bids. This is the case for utility

A and B. The bids for the demand and supply side depend on the internal netting of

supply and demand. In total this results in four possible outcomes for placing bids

which can be describes as follows

• sell bid on the supply side for generation units that have not been internally

matched and could satisfy the demand of other participants

• purchase bid on the demand side for demand that has not been internally

matched

• sell bid on the supply side, resulting from demand that has been matched

internally but would be able to reduce consumption if the price rises above a

given threshold (see e.g. demand of utility B with 90 EUR/MWh)

• purchase bid on the demand side for generation units that have internally be

matched but that would substitute their production if the price falls below

their marginal costs of generation.

Whereas the first two outcomes are intuitively straightforward, outcomes three

and four may seem counter intuitive at first. Due to the internal matching of sup-

ply and demand, parts of the demand and supply curve that have been internally
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matched result in bids on the opposite side. By placing these bids, utilities can

optimize their position and choose to substitute formally demanded quantities to

supplied quantities or vice versa, above or below a certain wholesale price.

The supply and demand curves in Figure 4.1ii and 4.1iii look very different from

a first glance, but both result in the same price for electricity and lead to the same

allocation of resources. Nevertheless, both provide a very different impression of

the price responsiveness of the demand side. Based on Figure 4.1ii the demand side

can be characterized as rather price inelastic. In the example, the level of demand

would not change if prices stay within a range of 5 to 80 EUR/MWh. Figure 4.1iii

may however lead to the misleading conclusion that the demand side in electricity

markets is rather price elastic. Within the submitted supply and demand bids at the

wholesale market it is not possible to identify separate bids that actually stem from

generators or actual consumers of electricity. It is therefore not possible to estimate

the demand elasticity of actual electricity consumers based on the curves observed

in the wholesale market. In order to estimate the demand elasticity of the actual

electricity consumers it is, however, possible to combine the wholesale equilibrium

price with the total load observed.

4.2.3 The Interaction of Wholesale and Retail Markets

Within this article we are interested in the reaction of electricity demand to electricity

prices. Because disaggregated load data for each consumer group with the respective

retail prices are not available, we focus our attention on the interaction of total

hourly demand and hourly wholesale electricity prices. Figure 4.2 shows the relation

we are interested in for an exemplary hour. The blue line depicts the supply curve for

electricity generation. The red line is the aggregated demand curve of all consumers

for electricity consumption. Consumers pay an average retail price of pr , which is

made up of the wholesale price for electricity (pw) and additional price components

(c).5 When we account for the effect of the additional price components, we obtain

the demand function that is observable in the wholesale market (wholesale demand,

red dashed line). The intersection of wholesale demand and wholesale supply leads

to point A and determines the wholesale price pw, as well as the quantity consumed

and produced qel . By inferring the relationship illustrated in Figure 4.2 and using

the wholesale price and total electricity demand, we are able to estimate the point

elasticity of the red dashed demand curve.

5In Germany, most additional price components are added to the wholesale price independent on the
price level or quantity consumed.
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Figure 4.2: Supply and demand curves for one exemplary hour

The relations of the demand and supply curve in electricity markets are only

vaguely sketched in Figure 4.2. In reality, demand is fluctuating over time due to

varying utility levels throughout the day. The demand for electricity can be regarded

as a function of various inputs and the relation can be written as

qel = f (pw, HDD, time-of-the-day), (4.1)

where qel is the quantity consumed, pw is the wholesale price for electricity, HDD

are heating degree days capturing the seasonality within the data. HDD measure the

temperature difference to a reference temperature. The variable therefore captures

the seasonal variation of electricity demand. For example, if outside temperature

is low, heating processes consume more electricity compared to warmer weather

conditions.6 In addition, electricity consumption depends on the time of usage. This

is mainly driven by the variation of the consumer’s utility function over the day.

Additional variables determining the level of demand, such as economic activity,

may also alter demand but are assumed to be time-invariant on an hourly basis and

within the considered time span. Therefore, we abstract from including additional

variables for the demand side in the short run.

Like the demand function, the supply of electricity can also be regarded as a func-

tion of multiple inputs with the wholesale price pw being one of them. We define

the supply function as:

6The data in Section 4.4 reveals that this relation is true for Germany, however it may not be applicable
to other countries. In warmer climates also cooling degree days (CDD) determine the demand for
electricity.
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qel = f (pw, p f uel , r), (4.2)

where qel is the quantity produced, p f uel is a vector of fuel prices and r is the

production of variable renewable energy.

In electricity markets, the structure of the supply side is commonly represented by

the merit order curve. It represents the marginal generation costs of all conventional

(fossil) power plants. The shape of the curve mainly depends on the technologies

being used for power generation and their respective fuel prices p f uel .7 However,

variable renewable electricity generation is becoming increasingly important within

the generation portfolio. This is particularly true for the German market region.

Since renewable technologies do not rely on fossil fuel inputs to generate electricity,

their fuel costs are close to zero. Additionally, its stochastic nature that is driven

by wind speeds and solar radiation makes generation vary throughout time. We

will later make use of the stochastic nature and by using wind generation as an

instrument variable within our econometric model.

4.3 Empirical Framework

4.3.1 Data

Our data set consists of hourly data for 2015. We include hourly data for load, day-

ahead-prices and the forecast of production from variable renewables for Germany.

In addition, HDD are calculated based on hourly temperatures that we obtain from

the NASA Goddard Institute for Space Studies (GISS). Summary statistics for all

variables are provided in Table 4.2.

Table 4.2: Descriptive statistics (for weekdays, without public holidays and Christmas time)

Variable Mean Std. Dev. Min. Max. Source

Load [GWh] 61.688 9.428 38.926 77.496 ENTSO-E
Wind Generation [GWh] 8.574 6.864 0.153 32.529 EEX Transparency
Day-ahead price [EUR/MWh] 35.6 11.5 -41.74 99.77 EPEX Spot
Temperature [◦C] 10.4 7.9 -6.3 34.6 NASA MERRA
Heating degree days [K] 10.1 6.9 0 26.3 NASA MERRA

The hourly load profile for Germany was taken from ENTSO-E. According to ENTSO-

E, load is the power consumed by the network including network losses but exclud-

7Common power plant types and fuels are hydro power, nuclear, lignite, coal, gas and oil.

79



4 When Are Consumers Responding to Electricity Prices? An Hourly Pattern of Demand Elasticity

ing consumption of pumped storage and generating auxiliaries.8 The load data in-

cludes all energy that is sold by German power plants to consumers.9 Load therefore

is the best indicator on the level of demand in the German market area since almost

all energy sold has to be transferred through the grid to consumers. Figure 4.3i

shows average hourly values for weekdays in the German market area in a box

plot. The plot shows significant differences in the level for night hours (00:00-6:00,

19:00-00:00) compared to daytime. Also load peaks in the morning (9:00-12:00)

and evening hours (16:00-18:00). Especially in the evening, variation in load levels

is higher than at other times. The average load level is 62 GW and the maximum

peak load is 77 GW in the early evening hours.
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(ii) Electricity price from EPEX
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(iii) Wind generation from EEX Transparency
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(iv) Solar generation from EEX Transparency

Figure 4.3: Hourly data for load, electricity price, wind and solar generation for 2015

We obtain the hourly day-ahead price for electricity from the European Power

Exchange (EPEX) which is the major trading platform for Germany. Historically the

day-ahead price has evolved as the most important reference price on an hourly level
8ENTSO-E collects the information from the four German transmission system operators (TSO) and

claims that the data covers at least 91% of the total supply. These quantities may also be reflected
in the day-ahead price which we can not account for.

9To a small amount load may also include energy that is sold from neighboring countries to the
German market. These trade flows impact the domestic electricity price and load. However, we
expect this impact to be rather small.
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in the wholesale electricity market. The day-ahead market run by EPEX Spot is by

far the most liquid trading possibility close to the point of physical delivery.10 The

price is determined in a uniform price auction at noon one day before electricity is

physically delivered. We follow this perspective and use the day-ahead price as our

reference price for electricity generation. Although not all electricity is sold through

the day-ahead-auction, the price reflects the value of electricity in the respective

hours and contains all available information on demand and supply at that specific

point in time. Figure 4.3ii shows a box plot for the hourly day-ahead electricity

price for each hour of the day. The average hourly day-ahead electricity price is

at 36 EUR/MWh over the 24 hours time interval and for weekdays (without public

holidays and Christmas time). The electricity price pattern is similar to the load

pattern emphasizing the fact that higher demand levels tend to increase prices in

the day-ahead market. Especially during peak times in the morning and evening

one can observe higher standard deviations and peaking prices. Standard deviation

over all hours is around 12 EUR/MWh.

Electricity generation from wind and solar power is taken from forecasts pub-

lished on the transparency platform by the European Energy Exchange (EEX). These

forecasts result from multiple TSO data submissions to the EEX. Since they are sub-

mitted one day before physical delivery, they contain all information that is relevant

for participants in the day-ahead market.11 Figure 4.3iii and 4.3iv show box plots

for electricity generation from wind and solar power. Due to weather dependent

generation volatility, we observe a larger amount of volatility in the hourly data.

Wind generation varies steadily throughout the day with a small increase during the

day. Solar generation shows its typical daily pattern with no generation at night and

peak generation values for midday.

The level of demand does not only depend on the electricity price which in return is

partially influenced by generation from wind. We add temperature as an additional

parameter to our investigation of electricity demand since the level of temperature

is a main driver for the seasonal variation of demand. We compute a Germany wide

average temperature based on the reanalysis MERRA data set provided by NASA

(NASA, 2016). The hourly values are based on different grid points within Germany

that are spatially averaged in order to obtain a consistent hourly value for Germany.

Based on the hourly temperature we derive HDD that are relevant for the seasonal

10In 2015 264 TWh have been traded in the day-ahead market, compared to 37 TWh traded in the
continuous intraday market (EPEX Spot, 2016).

11We also considered taking the actual generation from renewables but reckon that the ex-ante fore-
casts are reflecting the causal relationship in a better way since decisions made on the day-ahead
market are based on forecast values.
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variation of demand in electricity markets.12

4.3.2 Econometric Approach

Due to the fact that the electricity price is endogenously determined by the inter-

action of demand and supply, we choose a two-stage approach to solve the simul-

taneity problem.13 As we are interested in estimating the demand function (4.1),

possible instruments affecting the price but not the level of demand have to be de-

termined. Possible instruments can be found on the supply side in (4.2), where fuel

prices (p f uel) and the production of variable renewable energy (r) are considered.

Although fuel prices are one of the major drivers for generation decisions, a closer

look reveals that they show little variation over the year 2015 (cf. Figure 4.6 in the

Appendix). Therefore, we exclude them from a further analysis within our frame-

work.

The production of variable renewable energy (r) can further be split into wind (w)

and solar (s) generation. Figure 4.4 depicts the respective correlations of renewable

generation with prices and load for each hour interval of the day. In Figure 4.4i, we

observe that the correlation between solar generation and load is higher in absolute

values than the correlation between wind generation and load. However, wind and

solar generation are correlated opposite in sign with load being positively correlated

with wind generation and solar generation negatively correlated with load.

Figure 4.4ii shows the correlation between renewable generation and electricity

price. Both, wind and solar generation are negatively correlated with the electricity

price, however their patterns are different throughout the day. The correlation be-

tween wind generation and electricity price weakens over the day until 17:00 where

the correlation is lowest with an absolute value of -0.45. From 17:00 on the cor-

relation between wind generation and price increases again. The pattern for the

correlation between solar generation and electricity price is reversed whereas the

increasing correlation until 17:00 is mainly driven by an increasing solar radiation.

Based on the generally high correlation of wind and prices and at the same time low

correlation of wind and load, we choose wind generation as an instrument for the

price.14

12We calculate HDDs based on a reference temperature of 20 ◦C.
13Durbin and Wu–Hausman test statistics show highly significant p-values. The null hypothesis tests

for all variables in scope being exogenous. With p-values for both test of both equal to 0,000 we
reject the null of exogeneity implying that prices and demand are endogenous.

14Statistically speaking, weak instruments may cause estimation bias if the correlation with the en-
dogenous explanatory variable (in our case pw

h,t) is very low.
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Figure 4.4: Correlations with load and prices in 2015

More formally, wind generation as a variable fulfills the two conditions

(1) cov[w, pw] 6= 0 and (2) cov[w,µ] = 0, where w is wind generation, pw the

wholesale electricity price and µ the error term. The first condition is needed in

order to provide unbiased electricity price estimates. In our context the chosen in-

strument w correlates with the electricity price (c.f. Figure 4.4ii). From the second

condition it follows that w and µ are not correlated.15 Because wind can be regarded

as a stochastic variable especially throughout the day and load inhibits strong daily

patterns, both can be regarded as independent (c.f. Figure 4.4i). With these two con-

ditions fulfilled we are now able to postulate the first and second stage equations.

The first stage can be written as

pw
h,t = γ0,h + γ1,h ·wh,t + εh,t (4.3)

and the second stage as

qel
h,t = β0,h + β1,h · pw

h,t + β2 ·HDDt + β3 ·MONt + β4 · FRIt +µh,t . (4.4)

We estimate price coefficients β1,h and dummy coefficients β0,h on an hourly basis

h. We do this, because we expect the utility of electricity consumption to be different

in each hour of the day. Here, β0,h captures the price independent change of util-

ity from electricity consumption throughout the day. Since we observe a different

demand pattern for working days and week-ends, we eliminate week-ends and hol-

15Testing for validity expressed by cov[w,µ] = 0 within our framework is not feasible since our model
is exactly identified.
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idays from the data. Furthermore, we add dummies for Monday (MON) and Friday

(FRI)16 to capture differing demand levels at the beginning and end of the working

week. Based on our estimates, we can calculate the average hourly price elasticity

of electricity demand according to

εh =
pw

h

qh

∂ qh

∂ ph
=

pw
h

qh
β1,h, (4.5)

where εh is the hourly elasticity using the average price pw
h and average demand

qh in the respective hour of the day (h).

4.4 Empirical Application

By applying the econometric framework, we are able to estimate the level of price

elasticity of demand for the German day-ahead market on an hourly basis. The

regression is based on levels and elasticity is calculated with respect to the average

prices and quantities in each hour.17

The results of the estimation can be found in Table 4.3. When taking a look at

the price coefficients in Table 4.4a, we can see that all price coefficients are negative

in sign and are significant at least at the 1% level. We note that coefficients during

morning hours (9:00-12:00) are lower in absolute values. The highest value can be

found at 17:00. In this particular hour, a wholesale price increase of 1 EUR/MWh

leads to a demand reduction of 201.8 MWh. The hourly dummy coefficients in Table

4.4a capture the varying level of utility throughout the day. During the day, hourly

coefficients are higher than at other times. In the evening, we can observe a peak

in the level of utility, especially between 16:00 - 20:00 (c.f. Figure 4.5i). Beside the

hourly coefficients, we also account for the influence of temperature and weekdays

on electricity demand. All coefficients are significant at the 0.1% level and can be ex-

plained in their sign. HDD have a positive sign and thus increase electricity demand.

Mondays and Fridays are negative in sign, indicating that demand is generally lower

at the start of the week and at the end compared to other working days.

Since the focus of our work is on the hourly price elasticity of demand, we estimate
16For Mondays the dummy is positive for the time between 0:00 and 9:00. For Fridays the time frame

is from 17:00 to 23:00.
17In a previous version of the paper, we normalized our data to the median, which is why previous

estimates differ from this version. Furthermore, elasticity was calculated with respect to the average
price and quantity level including values of zero. As we are running a pooled regression many
observations of zero were included which resulted in low estimates of the elasticity.
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Table 4.3: Regression results

Hour Price Dummy

0 -0.0847∗∗∗ (-3.98) .
1 -0.0853∗∗∗ (-4.18) -2.135∗∗ (-2.91)
2 -0.0781∗∗∗ (-4.23) -3.429∗∗∗ (-4.94)
3 -0.0960∗∗∗ (-4.89) -2.816∗∗∗ (-4.01)
4 -0.1150∗∗∗ (-5.60) -0.8526 (-1.18)
5 -0.1298∗∗∗ (-6.01) 3.714∗∗∗ (4.70)
6 -0.1322∗∗∗ (-4.96) 13.410∗∗∗ (11.95)
7 -0.1192∗∗∗ (-4.37) 20.620∗∗∗ (15.14)
8 -0.0743∗∗∗ (-3.55) 21.960∗∗∗ (19.48)
9 -0.0452∗∗ (-2.95) 20.940∗∗∗ (24.20)

10 -0.0421∗∗ (-2.69) 22.230∗∗∗ (26.42)
11 -0.0496∗∗ (-2.92) 23.720∗∗∗ (27.34)
12 -0.0557∗∗ (-3.01) 23.080∗∗∗ (26.61)
13 -0.0688∗∗∗ (-3.30) 22.590∗∗∗ (24.57)
14 -0.0844∗∗∗ (-3.58) 21.660∗∗∗ (22.02)
15 -0.1069∗∗∗ (-4.02) 21.240∗∗∗ (19.26)
16 -0.1486∗∗∗ (-3.66) 21.630∗∗∗ (13.19)
17 -0.2018∗∗ (-2.90) 24.990∗∗∗ (8.15)
18 -0.1349∗∗ (-2.65) 22.970∗∗∗ (9.41)
19 -0.1175∗∗ (-3.19) 21.410∗∗∗ (11.81)
20 -0.1327∗∗∗ (-5.14) 18.490∗∗∗ (15.26)
21 -0.1034∗∗∗ (-5.68) 13.760∗∗∗ (15.81)
22 -0.0890∗∗∗ (-4.66) 9.565 (11.29)
23 -0.0836∗∗∗ (-4.05) 4.164 (5.25)

(a) Dummy and price coefficients

Coefficient

Heating degree days 0.4679∗∗∗ (81.99)

Monday dummy -3.340∗∗∗ (-28.08)

Friday dummy -1.997∗∗∗ (-12.07)
Constant 46.57∗∗∗ (84.62)

Observations 5760
R2 0.940
Adjusted R2 0.939

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(b) Regression coefficients

Hour Elasticity

0 -0.0456∗∗∗ (-3.96)
1 -0.0451∗∗∗ (-4.15)
2 -0.0394∗∗∗ (-4.20)
3 -0.0467∗∗∗ (-4.85)
4 -0.0561∗∗∗ (-5.57)
5 -0.0661∗∗∗ (-5.99)
6 -0.0792∗∗∗ (-4.95)
7 -0.0810∗∗∗ (-4.36)
8 -0.0501∗∗∗ (-3.54)
9 -0.0279∗∗ (-2.95)

10 -0.0240∗∗ (-2.68)
11 -0.0271∗∗ (-2.91)
12 -0.0283∗∗ (-3.00)
13 -0.0345∗∗∗ (-3.29)
14 -0.0425∗∗∗ (-3.57)
15 -0.0566∗∗∗ (-4.01)
16 -0.0828∗∗∗ (-3.64)
17 -0.1275∗∗ (-2.88)
18 -0.0912∗∗ (-2.64)
19 -0.0821∗∗ (-3.18)
20 -0.0875∗∗∗ (-5.12)
21 -0.0640∗∗∗ (-5.65)
22 -0.0543∗∗∗ (-4.63)
23 -0.0456∗∗∗ (-4.03)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(c) Elasticity
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(ii) Hourly price elasticity

Figure 4.5: Hourly dummies and price elasticity of electricity demand in 2015

the elasticity based on the results from the basic regression. The results are displayed

in Figure 4.5ii and the numerical values can be found in Table 4.4c.18

As observed before, all coefficients are negative in sign and significant at a strict

1% level. With the elasticity estimates at hand, we are able to plot a distinctive pat-

tern for the hourly price elasticity of demand for the German day-ahead market. The

unique shape of the hourly price elasticity of demand pattern is depicted above in

Figure 4.5ii. Our results show that demand reactions are rather small. However, a

perfect inelastic demand assumption can also be neglected. More precisely, the elas-

ticity is the lowest during night times (22:00 - 6:00). During these hours electricity

demand and utility from electricity consumption is generally lower (as we can also

observe from Table 4.4a). The graph shows two prominent peaks of price elasticity

of demand in the morning and in the evening. At these times working hours start

and end. Possible reasons for a high elasticity of demand at those times is the shifting

or delaying of consumption. When prices are low in the morning, some processes

may be able to start the operation earlier and thereby circumventing a time with

a higher electricity price level. The same might be true for the evening, when the

workday ends. Here working hours may be extended to lower price levels at other

times. Throughout the day, the price elasticity of demand remains relatively low

and is less significant. At those hours, economic activity is high and the option to

shift or delay electricity consumption might not be feasible for consumers. In other

18It is important to note that elasticity is calculated with respect to the wholesale price level and not
the retail price level, as represented by the dashed red demand curve in Figure 4.2. The elasticity
with respect to retail prices would be higher. For example if we consider the sum of additional
price components (c) to be 150 EUR/MWh, which is an average value based on Eurostat (2016)
for Germany, the highest elasticity measured would be -0.58 at hour 17:00-18:00. Without the sum
of additional price components, we obtain an elasticity of -0.13 as indicated in Table 4.4c.
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words, consumers are bound to consume electricity which results in high electricity

consumption regardless of the price level.

4.5 Conclusion

We estimate the hourly pattern of price elasticity of demand for the German day-

ahead market, using hourly data on load, price, generation of wind and temperature.

By doing this, we are able to determine the degree of short-run demand response

within this market. To the best of our knowledge, a market-wide hourly analysis of

the price elasticity of demand has not been conducted so far.

Based on our two-stage regression approach which uses wind generation as an in-

strument to proxy the electricity price, we find that hourly price elasticity of demand

is not completely price inelastic. Especially during the morning and evening demand

is responding to price signals. Values for price elasticity range from approximately

-0.02 to -0.13 depending on the investigated hour. The hourly price elasticity pattern

reveals that elasticity is lowest in the night hours and around mid day. Low values

for price elasticity during night time (22:00 - 06:00) indicate that consumers are less

likely to react. Around middle day economic activity is high which may explain the

low elasticity values. Price elasticity of demand is the highest in the early morning

(04:00 - 07:00) and late afternoon (16:00 - 20:00) hours, with levels between -0.08

and -0.13.

The empirical results indicate a high level of variation in the price elasticity of

demand throughout the day in the German day-ahead market. Although the hourly

elasticity is low from a first glance, load shifting accumulates over the year. The

found elasticity pattern helps to understand when demand shifting occurs and when

demand may be able to contribute to system security in situations of low supply. We

find that especially during critical situations, such as peak times in the morning and

evening, price elasticity of demand is high and may contribute to a secure electricity

system.

Our research sheds some light on how flexible the German electricity market has

already been in 2015, given the underlying renewable generation of the German

day-ahead market. It may also give policy makers a starting point for evaluating the

interaction of supply and demand in electricity markets. In addition to the analy-

sis of the day-ahead market, we reckon that further research on demand response

could focus on short-term markets, such as the intraday market. These markets are

87



4 When Are Consumers Responding to Electricity Prices? An Hourly Pattern of Demand Elasticity

essential to the integration of large amounts of renewable electricity because they

are able to balance forecast errors of wind and solar electricity. Whereas this addi-

tional research would gain further insights onto the short-term demand response,

we argue that currently the day-ahead market remains the most important market

where demand and supply are balanced.

4.6 Appendix
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Figure 4.6: Prices for coal, gas and co2 certificates from January to December 2015
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5 Retail Tariff Design in Electricity Markets with
Variable Renewable Production

Time-invariant pricing (TIP) is still widely applied for the billing of consumers in

electricity markets even though real-time pricing (RTP) is known to be superior in

terms of efficiency. In this paper, we investigate the inefficiency stemming from the

second-best TIP in electricity markets accounting for the impact of renewable elec-

tricity generation and its correlation with demand. Compared to existing literature

we do not restrict our analysis to a vertical structure with unbundled retailers and

allow vertical integration. We find that deadweight losses from TIP result primarily

from fluctuations of demand and renewable generation. Losses increase if (i) the

standard deviation of demand and renewable generation is high, and (ii) the corre-

lation of both variables is low. In an illustrative case study for Germany, we are able

to confirm these theoretical findings: low levels of solar capacities are able to reduce

the deadweight loss from TIP because of a positive correlation with demand; higher

levels of wind capacity lead to an increase of the deadweight loss. Furthermore, we

find that time-of-use pricing is able to reduce deadweight losses only by up to 58%

compared to RTP.

5.1 Introduction

Electricity markets are characterized by highly fluctuating demand and non-storability.

In spite of high demand volatility, in most markets time-invariant pricing (TIP) is

still very common, while it is straightforward to show that real-time pricing (RTP)

is needed to implement the first-best. Additionally, in many markets the share of

weather dependent and therefore stochastic production (wind, solar) is increasing.

At the same time, the market is subject to many regulations. One important field of

regulation are restrictions for the vertical industry structure. Borenstein and Holland

(2005) have demonstrated that, even with competitive retail markets, the second-

best TIP can not be obtained if there is retail unbundling, i.e., if producers and

retailers are required to be separate entities; a regulation which is in place in some

US markets (Meyer, 2012). Their methodology has since then also been applied
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to other markets (see e.g. Allcott (2012), Joskow and Tirole (2006), Pahle et al.

(2016)).

In this paper, we investigate the second-best TIP without retail unbundling and fo-

cus on the effect of increasing shares of stochastic renewable electricity production.

The case appears to be particularly relevant for European electricity markets: Like

in the US, TIP is still the predominant tariff scheme of end consumers; In Europe,

retail unbundling does usually not apply; and Europe experiences a large increase in

renewable energies, especially from wind and solar. In this context, looking at the

second-best TIP is interesting at least for two reasons. First, we are able to derive

results on the upper bound of the welfare losses due to a lack of RTP. Second, we

conjecture that the second-best TIP can be a (competitive) market outcome when

retailers are not obliged to unbundle. Even though technical complexities in the

representation of strategic interactions prohibit a formal proof that guarantees our

second-best TIP to be the (competitive) market outcome, we will argue that com-

pared to Borenstein and Holland (2005), prices are closer to the second-best TIP in

the absence of retail unbundling. Moreover, our model extends the one by Boren-

stein and Holland by representing simultaneous fluctuations of demand and variable

renewable energies, characterized by their joint probabilities.

Based on our theoretical model, we show that outcomes highly depend upon the

simultaneous interaction of demand and renewable generation when analyzing the

implications of tariff designs. Both variables are (at least partly) weather driven and

inhibit strong diurnal cycles (e.g. demand is high during the day, when also solar

generation is high). Regarding the deadweight loss stemming from the second-best

TIP we observe two effects: First, the deadweight loss increases for higher stan-

dard deviations of demand and renewable generation. Second, if both variables are

positively correlated this can lead to a decrease in deadweight losses.

After gaining first insights from our theoretical model, we calibrate it with data

from Germany, a country which sees a strong increase in stochastic renewable pro-

duction. Our results indicate that – at least in this case – the second-best TIP may

indeed be the competitive market outcome. We show that deadweight losses from

TIP generally increase for large shares of renewable capacities. However, the effects

of wind and solar on overall welfare are very different due to their correlation with

demand. Low levels of installed solar capacities might even lead to a reduction of

deadweight losses because solar generation is positively correlated (0.322) with de-

mand. Wind on the opposite strictly increases deadweight losses as generation is

only marginally correlated with demand (0.035). When thinking about realistic ap-
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proximation for RTP for final customers, we find that even with quite sophisticated

tariffs (with up to 576 different prices over the whole year), the welfare loss reduces

only by 58% compared to perfect RTP.

The paper is structured as follows: Section 5.2 presents the model. In Section 5.3,

we derive the welfare maximizing TIP and the resulting deadweight losses in elec-

tricity systems with variable renewable generation and compare the results to Boren-

stein and Holland (2005). The results are applied to the German electricity market

in Section 5.4 before we conclude in Section 5.5.

5.2 The Model

Our model builds on the formulation by Borenstein and Holland (2005). However,

instead of modeling unbundled retailers and generators that compete in the whole-

sale and retail market, we do not impose any specific vertical industry structure and

focus on the welfare-optimal short-term equilibrium. Possible implications of dif-

ferent vertical industry structures will nevertheless be discussed. Furthermore, we

extend the model from Borenstein and Holland by incorporating the properties of

variable renewable electricity generation, i.e., we explicitly account for the stochas-

tic nature and zero short-term marginal costs of wind and solar power.

Consumers demand electricity according to the time-varying demand Dt(pt), with

t ∈ [0, T] being the number of time periods T per year and D′t < 0. Two different

tariffs, RTP and TIP, are offered to end consumers. The consumers on RTP make up a

fraction ofα of all consumers and demand electricity according to Dt(pt). Within this

share α could for example be large industrial costumers that are already on RTP. A

fraction of consumers (1−α) is on TIP at a price of p and accordingly demands Dt(p).

The total demand thus sums up to D̃t(p, p) = αDt(pt)+(1−α)Dt(p). The formulation

is identical to Borenstein and Holland (2005). We are aware that in reality there are

more than two consumer groups on different tariff schemes. However, two tariffs

are analytically tractable and still allow to derive the most important implications

for consumers on different tariff structures. Note that the formulation of demand

furthermore assumes that consumption in time period t only depends on price pt

but not on prices in other time periods. Hence, we do not account for the possibility

of load shifting by consumers from one period to another.1

1Load shifting is an additional driver for demand response in reality. The model could potentially
be extended by introducing cross-price elasticities that would account for load shifting behavior of
consumers.
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Electricity is generated in conventional and renewable power plants by genera-

tors. The generators are assumed to be identical in technology and size with each

one operating and owning a small fraction of the generation facilities. The costs of

electricity generation depend on q the total quantity produced, and rt the quantity

generated from variable renewable resources, such as wind or solar. The total costs

sum up to C(q, rt) with the following properties of the partial derivatives:

(i) C ′q > 0, with rt being constant, marginal generation costs increase with an

increase of production;

(ii) C ′′qq > 0, the short-run marginal costs are increasing in quantity for a given

renewable generation level rt ;
2

(iii) C ′r < 0, the costs of generation are decreasing with additional renewable gen-

eration;

(iv) C ′′qr < 0, the short-run marginal costs are decreasing in renewable generation.

Whereas (i) and (ii) are almost identical to the assumptions of Borenstein and

Holland (2005), (iii) and (iv) are added to the model and introduce the first prop-

erty of renewable electricity generation, namely zero short-term marginal costs of

generation. A second property of renewable generation is the weather dependency

of generation. We therefore assume, that rt is stochastic according to the distribu-

tion f (rt). The properties of this distribution will be introduced in Section 5.3.2,

where the focus is put on the role of renewables.

Let Pt (q) be the inverse demand function, D−1
t (p). Then the utility of consumers

on RTP and TIP can be defined as

Ũt(pt , p) = αUt(Dt(pt)) + (1−α)Ut(Dt(p))

= α

∫ Dt (pt )

0

Pt (q) dq+ (1−α)
∫ Dt (p)

0

Pt (q) dq.
(5.1)

The overall welfare from electricity consumption with consumers on TIP and RTP

can therefore be written as

W =
∑

t

�

Ũt(pt , p)− C
�

D̃t(pt , p), rt

��

. (5.2)

2Electricity generation costs from gas power plants are for example higher compared to coal or nuclear
power plants.

92



5.3 Theoretical Analysis

5.3 Theoretical Analysis

In our theoretical analysis, we will first focus on the welfare optimal TIP and dis-

cuss the implications of different industry structures on a competitive market out-

come (especially in comparison to the results of Borenstein and Holland). After this,

we will focus on the implications of renewable generation on the second-best TIP.

Furthermore we analyze the impact of a tax on the optimal TIP and the resulting

deadweight losses.

Before we begin with the analysis of the second-best TIP it is important to stress

that the first-best market outcome will only be achieved if all consumers are on RTP

for α = 1. In this case consumers demand electricity according to their marginal

utility of consumption and generators supply electricity at marginal costs of genera-

tion at every point in time pe
t = C

′

q(D(p
e
t ), rt). The total welfare in this case amounts

to:

W e =
∑

t

�

Ut(Dt(p
e
t ))− C

�

Dt(p
e
t ), rt

��

. (5.3)

The first-best electricity allocation will in the following enact as a reference point

for the comparison of alternative tariff designs, when not all consumers are on RTP.

5.3.1 The Welfare Optimal Time-Invariant Price

If not all consumers are on RTP (α < 1) deadweight losses occur, because not all con-

sumers respond to the marginal costs of generation. For simplicity we will first focus

on the case when all consumers are on TIP (α = 0) and no renewable generation

(rt = 0), which results in welfare as

W =
∑

t

[Ut(Dt(p))− C (Dt (p))] . (5.4)

Maximizing over p and assuming an interior solution, the optimal time invariant

tariff p satisfies3:

∂W
∂ p
=
∑

t

D′t (p) p− C ′q (Dt (p)) · D′t (p) = 0. (5.5)

3Note that we can rewrite U ′ (Dt(p)) = p.
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This implies that the optimal time invariant tariff is implicitly defined (note that

p appears on both sides of the following equation):

p =

∑

t C ′q (Dt (p)) · D′t (p)
∑

t D′t (p)
. (5.6)

Thus, it is characterized as a weighted average of marginal costs, where the weights

stem from the slope of the demand function in the different time periods. Why the

slope of the demand function plays a role becomes clear when looking at a simple

two period (peak/off-peak) example with constantly increasing marginal costs. In

this case, an interior optimal p satisfies:

�

p− C ′q
�

Dop (p)
�

�

D′op (p) =
�

C ′q
�

Dp (p)
�

− p
�

D′p (p) . (5.7)

In any case, p will be between the two time dependent optimal tariffs. Now start

by the special case where the slope of the demand functions is the same in both

periods. Then, clearly, p will be exactly in the middle between the (higher) marginal

cost of the peak quantity and the (lower) marginal cost of the off-peak quantity, as

displayed in Figure 5.1i. Now let the peak demand become less price sensitive, i.e.,

the inverse demand function of the peak period is steeper, as in Figure 5.1ii. Then

welfare can be increased by lowering p. Lowering p leads only to a small increase

of excess consumption in the peak period, while the welfare gain from reducing

underconsumption off-peak is much larger, due to the higher price sensitivity off-

peak. The deadweight losses stemming from TIP are depicted in the grey shaded

areas.

Q

p

C ′DpDop

p

pp

pop

(i) Identical slopes
Q

p

C ′DpDop

p

pp

pop

(ii) Peak demand less price sensitive

Figure 5.1: Welfare optimal time-invariant price for two exemplary demand situations
(peak/off-peak) and the resulting deadweight losses shaded in grey.

When the analysis is not restricted to two periods, different shares of consumers

on RTP and TIP (α > 0) are considered and a possible feed-in of renewables (rt ≥ 0),
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the optimal TIP generalizes to

p∗ =

∑

t p∗t D′t(p
∗)

∑

t D′t(p
∗)

, with p∗t = C ′q(D̃t(p
∗
t , p∗), rt). (5.8)

Let us reflect upon the meaning and implications of the price derived in Equa-

tion (5.8) in the context of different industry structures. To ensure maximized over-

all welfare, p̄∗ could be offered by a social planner. In reality, of course, most elec-

tric industries are organized by means of competitive generation and retail sectors.

Borenstein and Holland present a model assuming retailers which offer tariffs to

end consumers to be unbundled from generation. This reflects current regulatory

practice, e.g., in some states in the US (see,e.g, Meyer (2012)). In order to model

the competitive outcome for the case of retail unbundling, they consider two mar-

kets, namely the wholesale and retail market. In the wholesale market, generators

engage in Cournot competition by choosing quantities. This results in wholesale

prices (wt) equal to short-term marginal costs of generation wt = C ′q(D̃t(pt , p), rt).

In the retail market, retailers buy electricity from the wholesale market and sell it to

end consumers engaging in Bertrand competition. Based on a zero profit condition

for retailers Borenstein and Holland (2005) derive the following TIP for the case of

retail unbundling

pRU =

∑

t pt Dt(p
RU)

∑

t Dt(p
RU)

, with pRU
t = C ′q(D̃t(p

RU
t , pRU), rt). (5.9)

In this case the TIP is also a weighted average of marginal costs but in this case

weighting is based on absolute demand levels instead of the slope of the demand

function. The TIP offered by retailers is therefore different from the welfare optimal

price and Borenstein and Holland (2005) conclude that the second-best can not be

achieved in a competitive market setting. The result has nevertheless to be put into

perspective as it only holds under the assumption that retailers and generators need

to be unbundled. In many markets, such as in countries in the EU, this is not the

case and may lead to different vertical industry structures as displayed in Figure 5.2.

In the case of vertically integrated suppliers that own generation assets and offer

retail tariffs, we argue that the competitive outcome may be different from Boren-

stein and Holland (2005). Compared to the profit function of unbundled retailers,

the profit function of vertically integrated suppliers does not depend on the whole-

sale price. Integrated suppliers are able to generate electricity with their own assets
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Generators

„Retail Unbundling“

Retailers

Consumers

Wholesale Market

Retail Market

„no Retail Unbundling“

Consumers

Generators

Retailers

Wholesale Market

Suppliers
(Generation+

Retailing)

Retail Market

Figure 5.2: Vertical industry structure depending on the undbundling policy

and do not need to buy it from the wholesale market at the short-term marginal cost

of generation. Suppliers could possibly be able to offer lower tariffs and deadweight

losses may be reduced. Figure 5.3 shows the TIP in the two period case for the

second-best (as derived in Equation (5.8)), retail unbundling (based on Borenstein

and Holland (2005), see Equation (5.9)) and a possible TIP offered by integrated

suppliers. In addition shaded areas for the profit conditions of retailers and vertically

integrated suppliers are illustrated in green (profit) and red (loss).

(i) Welfare optimal (ii) Retail unbundling
(a la Borenstein-Holland)

(iii) Integrated suppliers

Figure 5.3: Time-invariant prices as well as profits and losses for different vertical industry
structures (shaded areas in green are profits and red losses of (ii) unbundled
retailers and (iii) integrated suppliers).

With retail unbundling, retailers make zero profits. In Figure 5.3ii this implies

that the losses in the peak period are equal to the profits in the off-peak period.

This defines pRU . At the same time, generators upstream make (short-term) profits.

For the case of integrated suppliers, pRU can no longer be the equilibrium price in

a competitive setting, since integrated suppliers make strictly positive (short-run)

profits while engaging in price competition. These profits are depicted in triangles

(a) and (b) in Figure 5.3ii. In price competition between integrated suppliers prices

will decrease, and therefore be lower (and closer to p∗), as shown in Figure 5.3iii.
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When taking a closer look at Figure 5.3iii, it is important to note that a part of area

(c) is the result of profits in the peak and off-peak period. The profits that occur in

both periods are shaded in darker green. It may still be the case that under p∗ the

integrated suppliers make (even short-term) losses. This occurs if area (d) is larger

than (c). However, the calibration for Germany in Section 5.4 shows that, at least

for this application, this is not the case for any realistic parameter assumption.

In this paper, we are interested in the deadweight losses that stem from the addi-

tional feed-in of stochastic renewables and will focus in the following on the welfare

optimal price, as derived in Equation (5.8) and graphically displayed in Figure 5.3i.

Regardless of the industry structure and competitive model setup, the inefficiencies

of TIP derived in this paper are a lower bound for the deadweight losses from TIP

for any vertical industry structure, as they are based on the welfare optimal price.

Any TIP that differs from the welfare optimal outcome will lead to an increase of

deadweight losses.

5.3.2 The Impact of Variable Renewable Electricity Generation

In order to handle the additional complexities introduced by the renewable produc-

tion, we will from now on restrict our analysis to the case of linear demand and

supply functions.

The short-run costs of electricity generation essentially depend on the quantity

generated by conventional technologies. Conventional technologies are defined as

dispatchable power plants whose generation does not primarily depend on weather

conditions. The short-run costs of electricity generation from weather dependent

technologies, such as wind and solar, can assumed to be zero. A commonly used

term in electricity markets is therefore the residual demand qres, defined as the total

demand subtracted by the quantity generated from renewables (qres = q− rt). This

is basically the quantity that needs to be generated by conventional technologies. In

the linear case, the marginal cost function therefore can be written as C ′qres
(qres) =

a0+a1qres for qres > 0. The total costs of electricity generation for the short-run can

thus be defined as

C(qres) = a0qres +
1
2

a1q2
res, ∀qres > 0. (5.10)

The demand of consumers is assumed to be linear according to
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Dt(p) = dt − εp, (5.11)

where dt represents the hourly reference demand for electricity and ε is the gra-

dient of the demand curve. The hourly reference demand is assumed to be varying

throughout time but we assume the gradient to be constant. When ε is not vary-

ing in time, there is a linear relation between the hourly reference demand and

the willingness-to-pay for electricity consumption (wtp = dt
ε ). Because the relation

is linear and the term willingness-to-pay may be more intuitive for the reader, we

will use it as a synonym at some points. The willingness-to-pay can assumed to be

higher during the day, when economic activity is high, and comparably low during

the night. This is also described in Knaut and Paulus (2016). Additionally, there may

also be seasonal components captured in dt depending on the climate conditions.

In Germany, for example, there is a higher willingness-to-pay for electricity in the

winter, as some of it is used for heating, compared to the summer. For warmer cli-

mates this may be different, because air conditioning is driving a lot of the electricity

consumption in the summer. Therefore dt in warmer climates would be higher in

the summer compared to the winter.

Since renewable production (rt) and the willingness-to-pay for electricity con-

sumption (dt) both depend on weather conditions and the time of the day, we as-

sume the probability space of the model to be characterized by the joint distribu-

tion f (dt , rt), the marginal distributions fd(dt), fr(rt) and the correlation of both

stochastic variables ρ(dt , rt). This accounts for the fact that the utility of electricity

consumption and renewable generation are correlated. For example, solar genera-

tion is highest during the day when also the willingness-to-pay of consumers is the

highest. Thus, we can infer that the variables dt and rt are not completely indepen-

dent of each other. We therefore assume the joint distribution to be characterized by

the expected values (µd ,µr), the standard deviations (σd ,σr) and the correlation of

both variables (ρd,r) (see also Appendix 5.6.1).

The Second-best Tariff and the Resulting Deadweight Losses

For the previously discussed properties of the joint probability distribution we can

solve the linear model and derive the second-best TIP offered to end consumers.

Proposition 5.1. The optimal tariff offered to end consumers under TIP depends on the

expected values of demand (µd) and renewable generation (µr) without being affected

by the share of consumers on TIP, the standard deviations or the correlation. The welfare
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optimal time-invariant tariff for any given distribution f (dt , rt) is

p∗ =
a0 + a1(µd −µr)

1− a1ε
, as long as D̃t(pt , p)> rt . (5.12)

Proof. The second-best tariff was previously derived as a weighted average of the

short-term marginal costs of electricity generation, with the weighting being based

on the gradient of the demand curve. For the linear case, as previously defined, the

gradients are identical (D′(p) = ε). The optimal price is therefore identical to the

expected marginal costs of generation and we can write the optimal price as

p =

∫

C ′q
�

D̃t(pt , p), rt

�

f (dt , rt)d(dt , rt)

=

∫

�

a0 + a1

�

D̃t(pt , p)− rt

��

f (dt , rt)d(dt , rt)
(5.13)

Besides depending on p, the overall quantity demanded D̃t(pt , p) depends on the

short-term equilibrium with consumers also being on RTP. The overall quantity con-

sumed can be derived by solving

C ′q
�

D̃t(pt , p), rt

�

= D̃t
−1(pt , p), (5.14)

which results in

D̃t(pt , p) =
αε(p+ a1rt − a0) + dt − εp

a1αε+ 1
. (5.15)

We can now use the result from (5.15) in (5.13) and solve this for the optimal price

by making use of the properties for the joint distribution from Appendix 5.6.1. By

plugging in these properties and solving for p, we obtain the optimal price as written

in Equation (5.12) (the extensive derivation can be found in the Appendix 5.6.2).

Interestingly, the optimal tariff only depends on the expected values of demand

(µd) and renewable generation (µr) without being affected by the share of con-

sumers on TIP, the standard deviations or the correlation. Furthermore, we can

observe the following intuitive results: (1) an increase of the supply curve gradient

(a1) leads to a higher tariff; (2) a higher willingness-to-pay (µd) increases the tar-

iff; (3) an increase of renewable generation (µr) lowers the tariff; and (4) a lower

gradient of the demand curve (ε) leads to a lower tariff.
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The derived tariff represents the second-best outcome, when not all consumers

are on RTP (α < 1). Because the first-best outcome can only be achieved with all

consumers being on RTP, it is of interest to quantify the deadweight losses resulting

from TIP.

Proposition 5.2. The deadweight loss induced by a time-invariant tariff is mainly

driven by the standard deviations of demand (σd), renewable generation (σr) and

their respective correlation (ρd,r). The welfare loss from TIP amounts to

∆W = T
a2

1ε(1−α)
2(αa1ε+ 1)(a1ε+ 1)

�

σ2
d +σ

2
r − 2ρd,rσrσd

�

, as long as D̃t(pt , p)> rt .

(5.16)

Proof. The welfare at time t can be written as

Wt = Ũt(pt , p)− C(D̃t(pt , p), rt). (5.17)

The price pt under RTP is equal to the intersection of the short-run marginal costs

of generation and the respective demand of consumers. For the linear case it depends

on the total quantity from (5.15) and can be derived as

p∗t = C ′q
�

D̃t(pt , p), rt

�

= a0 + a1
dt − a0αε− rt − (1−α)εp

a1αε+ 1
. (5.18)

The first-best outcome would be obtained with all consumers being on RTP for

α= 1, which results in a real-time price of

pe
t = a0 +

a1 (dt − a0ε− rt)
a1ε+ 1

. (5.19)

The welfare for all consumers being on RTP can be written as

W e
t =

∫ D(pe
t )

0

Pt(q)dq− C(Dt(p
e
t ), rt). (5.20)

Welfare under the second-best for only a share of consumers being on RTP sums

up to
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W ∗
t = α

∫ D(p∗t )

0

Pt(q)dq+ (1−α)
∫ D(p∗)

0

Pt(q)dq− C(D̃t(p
∗
t , p∗), rt). (5.21)

The deadweight loss from consumers being on TIP results in

∆Wt =W e
t −W ∗

t (5.22)

In order to assess the overall deadweight loss over all time periods t, we need to

integrate over the respective distributions for dt and rt . Because we assume f (dt , rt)

being normalized, we can multiply it with the number of all considered time periods

T to obtain the deadweight loss over the whole timespan

W = T

∫

∆Wt f (dt , rt)d(dt , rt). (5.23)

The linear formulations for the demand, supply and prices can be used to calculate

the deadweight loss. By making use of the additional properties of the distributional

function f (dt , rt) (see Appendix 5.6.1) we are able to obtain the deadweight loss

from Equation (5.16). The detailed calculations can be found in Appendix 5.6.3.

The deadweight loss induced by TIP in the linear case does not depend on the

expected level of demand (µd) or renewable generation (µr), but depends on the

variability of demand and renewable generation and their respective correlation over

time. Based on Proposition 5.2, we can say that the following drivers lead to an in-

crease of deadweight losses from TIP: (1) a lower share of consumers on RTP (α);

(2) a steeper supply curve (a1); (3) a higher demand responsiveness of consumers

(ε); (4) an increasing demand variation (σd); (5) an increasing variation of renew-

able generation (σr); (5) a lower correlation of demand and renewable generation

(ρd,r).

It is especially interesting how the variability of demand and renewable genera-

tion are interacting. When we consider the effect of each parameter individually,

we see that an increase in variance leads to a higher deadweight loss. Neverthe-

less, the deadweight loss could also be reduced if the correlation between the two

parameters is increased. In the extreme case where the standard deviation is equal
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(σd = σr) and the correlation is one (ρd,r = 1), the deadweight loss from TIP would

be zero. In this case, marginal generation costs would not fluctuate in time and stay

constant. The variation in demand would be perfectly compensated by the variation

of renewable generation on the supply side.

Besides grasping the drivers for a welfare optimal time-invariant tariff that is limit-

ing deadweight losses, we can also draw conclusions on welfare optimal TOU tariffs

based on Proposition 5.2.

Corollary 5.1. TOU tariffs should aim at the clustering of time periods with low vari-

ability in demand (σd) and renewable generation (σr), as well as a high correlation

between both variables (ρd,r) to reduce deadweight losses.

This conclusion is quite intuitive and TOU rates have historically followed this

attempt. A common design for TOU pricing are for example peak and off-peak tariffs,

as well as a distinction between working and non-working days. The variation in

demand is lower within these peak and off-peak periods and therefore leads to a

reduction of deadweight losses. Whereas TOU pricing was in the past primarily

focused on the variation of the demand side, renewable electricity generation is

going to also play a major role in future electricity systems. With an increasing

share of solar generation, this does for example not affect the peak/off-peak pricing,

since the variation of solar driven renewable generation also follows this pattern.

But it may for example increase the importance of seasonal tariffs, as solar and wind

generation inhibit strong seasonal variations. We will take a closer look at TOU rates

in a case study in Section 5.4.3.

The Taxing of Electricity

Consumers of electricity are often not only charged for the electricity they consume

but also additional taxes and levies are added to the price for electricity genera-

tion. These may for example be charges for the transmission of electricity through

the network or taxes and levies raised by the state. Commonly these additional

price components are added to the price that is charged by the utility company. We

will therefore analyze the implications of an additional price component ctax that is

added to the price for end consumers.

Proposition 5.3. The introduction of an additional tax on electricity leads to an ad-

justment of the welfare optimal TIP that depends on the demand and supply gradients.

When the price is adjusted in this way, deadweight losses that stem from TIP with taxing
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are the same as in the case with no taxing. The welfare optimal time-invariant price

charged on end consumers for a tax of (ctax) is

p∗tax =
1

a1ε+ 1
(a0 + a1µd − a1µr − a1εctax)+ctax , as long as D̃t(pt , p∗tax)> rt .

(5.24)

Proof. See Appendix 5.6.4.

As we can see from Equation (5.24), the additional price component ctax does

not only increase the TIP previously derived in Equation (5.12). Besides increasing

the price charged by ctax , it also leads to a reduction of the welfare optimal tariff

by a1ε
a1ε+1 ctax . This result is quite intuitive and by adjusting the TIP in this way,

deadweight losses resulting from the tax can be reduced.

In addition to the effect on the optimal price level, we show in the Appendix 5.6.4

the effects of a tax on deadweight losses. Whereas the introduction of a tax generally

leads to a higher deadweight loss, the deadweight loss that stems solely from TIP,

is not affected by an additional price component (ctax). Due to the linear model

setup, quantity adjustment by the demand are independent of the absolute price

level. Basically this means that the deadweight losses from TIP with a tax occur at

a higher (lower) price (demand) level, but the magnitude of the deadweight loss is

not changed.

5.4 Empirical Analysis

The implications of TIP compared to RTP were so far analyzed from a theoretical

perspective. Thereby we were already able to identify the main drivers for the opti-

mal level of TIP and the resulting inefficiencies. In a next step we can apply the new

findings to the German electricity system and gain insights on the magnitude of the

respective inefficiency. Based on the model we can furthermore get insights on the

short-term profits of integrated suppliers as discussed in Section 5.3.1.

Germany can hold as a good practical example for three reasons. First, only trans-

mission and distribution in Germany is being regulated. This means that retailers

and generators do not need to be modeled as separate entities and the second-best

may be offered by integrated suppliers. Second, the electricity system is currently

under transition with a large increase of renewable capacities that have an effect

on the efficiency of TIP. Third, a major share of household consumers in Germany
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is currently still on TIP. An aim of the German government and also of many other

countries in Europe is to increase the demand side participation in the electricity

system (BMWi, 2016, EU Commission, 2014). This could for example be achieved

by installing smart meters in many households and changing the tariff scheme from

TIP towards RTP. In a first step this could also mean offering consumers TOU pricing

in order to lift a fraction of the potential efficiency gains from RTP. We will therefore

apply the previous analysis to the German system in order to quantify the potential

benefits of RTP and the way towards RTP by implementing different TOU pricing

schemes.

It is important to stress that the analysis builds on a very stylized framework and

will not be able to address all peculiarities of the German electricity sector. Never-

theless, it helps to put the previously derived theoretical results into perspective.

5.4.1 The German Electricity System

The German electricity system has seen a tremendous increase of renewable capac-

ities in recent years. The share of renewable electricity generation from solar and

wind increased from 9.2% in 2010 to 18.3% in 2015 (A. G. Energiebilanzen eV,

2016). Besides generation from variable renewable sources, a large share of elec-

tricity is generated from lignite (24.0%), hard coal (18.3%), nuclear (14.2%) and

gas (9.4%) (A. G. Energiebilanzen eV, 2016). In order to grasp the properties of the

demand and supply side, we will make use of hourly data on the demand, prices,

as well as generation from wind and solar. Table 5.1 summarizes the data used for

2015 in the German electricity system.4

Table 5.1: Summary statistics for load, prices and renewable generation

Price Wind Solar Renewables Load
[EUR/MWh] [GWh] [GWh] [GWh] [GWh]

Mean 31.6 9.005 3.985 12.990 57.679
Std 12.7 7.227 6.044 8.609 10.247

Based on the provided data we are in a first step able to estimate the conven-

tional supply curve for the German electricity system. We do so by explaining the

day-ahead prices in Germany based on the residual demand of consumers that is sat-

isfied by mainly conventional electricity generation. The residual demand is defined

4Price data is taken from EPEX (2016), renewable data from EEX (2016) and load data from ENTSO-E
(2016).
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as ResDemandt = Loadt−Windt−Solart . The scatter plot in Figure 5.4 displays the

relation between prices and residual demand for Germany. In addition we added the

result of a linear estimation. The previously mentioned conventional power plants

can all be assumed at supplying electricity at increasing marginal costs of genera-

tion. For example nuclear power plants produce electricity at lower marginal costs

compared to hard coal power plants. The whole conventional supply (electricity

generation without solar and wind) adds up to the marginal cost function. The de-

tailed results of the OLS regression can be found in Appendix 5.6.5. It is important

to note that we are assuming a perfectly price inelastic demand for this estimation of

the marginal cost function. With all consumers being on TIP this assumption would

be true. In Germany this is not necessarily true as Knaut and Paulus (2016) show

that there is some price responsiveness of end consumers present with respect to

the day-ahead price. Nevertheless the price elasticity is comparably small. For this

illustrative case study we will therefore rely on the estimation assuming an inelas-

tic demand. The coefficients of the regression can be applied in our model as the

gradient of the marginal cost function a1 and the offset a0.
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Figure 5.4: Marginal generation costs of conventional power technologies in Germany.

The offset a0 is estimated as being negative. In Figure 5.4, we can see that neg-

ative prices can also be observed in the German day-ahead market. This is due to

the fact that some power plants may even accept generating electricity at negative

prices. These are for example combined heat and power plants that are not only

generating electricity but also supply heat to end consumers. Additional informa-

tion on generation capacities with a minimum level of output in Germany can be

found in Hirth (2015).
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With this approach we are already able to model the relationship between whole-

sale (day-head) prices and demand. For end consumers in Germany the wholesale

price is only one of many additional components on the electricity bill. In addition

consumers are charged taxes and levies, as well as costs for the network. In Germany,

network charges depend on the peak capacity and on the energy supplied. Here, we

will assume an average level of 68.6 EUR/MWh. Taxes and levies are also added to

the wholesale price and sum up to an average level of 151.9 EUR/MWh.5 A large

part of this sum is made up by the so called EEG levy that is raised for the support

of renewable electricity generation (61.7 EUR/MWh) (Netztransparenz, 2015).

The load in the electricity system can be regarded as the best indicator of the

overall consumption of end consumers. Based on the load we can calculate the

reference demand dt of end consumers dt = Load + ε(pda + ctax), where pda is the

average day-ahead price and ctax are the additional charges (network, taxes and

levies). The only parameter that we can not observe in the data is the hypothetical

demand responsiveness of end consumers (ε). Because most end consumers are on

TIP and we are not able to distinguish between consumers being on TIP, TOU or RTP

in our data, we can draw no conclusion on the level of demand responsiveness. We

will therefore rely on values that are in line with short-run demand elasticities from

the literature and vary the level in a sensitivity analysis.6 Besides the gradient of

the demand curve being constant, the elasticity is changing from time to time since

it also depends on the absolute level of demand. Throughout our analysis we will

make use of constant gradients but also give an indication for the average elasticity

throughout the year.

The joint probability distribution of demand and renewables plays a major role

in the analysis, as we have learned in Section 5.3.2. In Table 5.1 we can already

observe the expected values (µd ,µr) and the respective standard deviations (σd ,σr).

Because both variables are not independent of each other, we also need to consider

the correlation (ρd,r), that is 0.256 in 2015 for renewable generation from wind and

solar (just for wind the correlation are 0.035 and for solar 0.322).

With this model configuration, we can now take a closer look at the implications

of RTP and the inefficiency of TIP.

5Network costs and levies are taken from Eurostat (2016) based on consumers with a consumption
between 2500 kWh and 5000 kWh (Band DC) in 2015.

6For a review of demand elasticities see for example Knaut and Paulus (2016).
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5.4.2 Consumption and Welfare with TIP

RTP and TIP can be regarded as two extreme tariff schemes for end consumers.

Under TIP consumers pay an average price throughout the year. The variation in

electricity consumption is therefore mainly driven by their time-varying utility with

respect to one price. In contrast on RTP consumers also observe different prices in

each hour and may adjust their electricity consumption. The respective consumption

patterns for all consumers either being on RTP or TIP are displayed for an average

week in Figure 5.5.
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Figure 5.5: Comparison of average hourly electricity demand with RTP and TIP for ε = 0.2
(average elasticity of -0.088).

We can see the distinctive pattern of electricity consumption in Germany with

a peak in the early morning and another peak in the early evening. The pattern

evolves from the two extreme cases with all consumers either being on RTP or TIP.

When consumers are on TIP, electricity consumption at peak times is increased com-

pared to RTP because the price on TIP is much lower. Interestingly the peak at the

early evening almost disappears when all consumers are on RTP. At off-peak times,

the electricity consumption on TIP on the other hand is lower because the price of

consumers on TIP is relatively higher compared to RTP.

The changes in electricity consumption especially affect overall welfare. For a

demand gradient of 0.2 (average elasticity of -0.088), the deadweight loss over the

whole year in 2015 would have amounted to EUR 97.1 million. The total welfare

with all consumers on TIP is about EUR 198000 million. If all consumers would
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switch from TIP to RTP, this would result in an efficiency increase of 0.05%.7 In

order to gain additional insights, we conduct sensitivity analysis with respect to the

demand gradient and the level of renewable installed capacities. The results are

displayed in Figure 5.6.

As mentioned there is no clear empirical evidence on the level of demand re-

sponsiveness of end consumers to real-time prices. We therefore vary the demand

gradient (ε) in Figure 5.6i.8 The difference in welfare between RTP and TIP in-

creases with a higher demand gradient. This means that the deadweight loss of TIP

increases when consumers are more price responsive. The overall welfare loss in-

creases for a higher gradient and approaches a value of about EUR 400 million for a

demand gradient of 3.
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Figure 5.6: Sensitivities for different demand gradients and renewable generation

As the share of electricity generation from renewables is expected to increase in

the upcoming years, we also conduct a sensitivity analysis regarding the installed ca-

pacities of wind and solar power. The previous calculations were based on installed

capacities of wind and solar in 2015 which amounted to 44.67 GW and 39.79 GW

respectively. In order to shed light on the deadweight losses in combination with TIP,

we vary the installed capacity starting from zero to a doubling. This is done for each

technology separately and for the portfolio of both technologies. All variations pri-

7It is important to note that in our model demand is characterized by the same (linear) function.
This makes overall welfare extremely large and hence all changes to it relatively small. In reality
there may be price levels at which consumers become more elastic and the resulting overall welfare
would therefore probably be lower. This would result in a higher efficiency increase (in relative
terms) from RTP.

8In terms of demand elasticity the value of ε = 3 corresponds to an average elasticity of -0.195 and
the previously used gradient of ε= 0.2 to an average elasticity of -0.088.
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marily affect the standard deviation of renewables (σr) and the correlation (ρd,r).

The results are displayed in Figure 5.6ii.

In the portfolio variation, the correlation of demand and renewables stays constant

because the structure of renewable generation over time is not changing. Therefore

the shape of the curve is primarily driven by the increase in standard deviation chang-

ing from zero to 17.2 GWh for a 200% renewable portfolio. Interestingly the increase

in renewables first leads to a reduction in deadweight losses up to a level of about

30%. When we compare this with the sensitivities for only solar and only wind, we

can conclude that the reduction in deadweight losses is mainly stemming from solar

generation. The higher correlation of demand and solar (0.322) compared to wind

(0.035) results in a reduction of deadweight losses. This effect, however, diminishes

for increasing shares of renewable generation when shares of wind and solar are

simultaneously increased. Based on the renewable sensitivity we can learn that the

value of both technologies, wind and solar, may be very different when combined

with TIP as they lead to very different effects on overall welfare.

The profits of integrated suppliers in all sensitivities are strictly positive which

underlines our previous conjecture that the second-best TIP may be offered by in-

tegrated suppliers in a competitive market. However, when we consider the profit

function of unbundled retailers, we find that they would incur losses when offering

the second-best TIP. This underlines the statement by Borenstein and Holland that

the second-best TIP will not be offered under retail unbundling. Nevertheless, this

result only holds for countries where regulation prohibits the vertical integration of

generators and retailers, which is not the case in Germany.

The results illustrate the effect when all consumers are either on RTP or TIP. The

difference in welfare thus reflects the most extreme case. Whenever already a share

of consumers is on RTP, the implications would be lower. This can also be observed

based on a sensitivity analysis for (α) (cf. Figure 5.8 in the Appendix). If for example

a share of 50% of consumers is already on RTP, the welfare loss from TIP reduces to

EUR 41.8 million.

5.4.3 On the Way to the First-best: Introducing Time-of-use Tariffs

Previously we found that the deadweight loss primarily depends on the standard de-

viations (σd ,σr) and the correlation (ρd,r). This finding can also be used to analyze

different TOU pricing schemes, by grouping time spans with low variability and high

correlation, as mentioned in Corollary 5.1.
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Table 5.2: Optimal prices and welfare implications for different time-of-use pricing schemes

Unit TIP Peak Off-Peak
Peak/
Week

Off-peak/
Week

Peak/
Weekend

Off-peak/
Weekend

p EUR/MWh 216.4 218.8 212.5 222.2 214.1 210.4 208.6
µd GWh 64.0 69.2 55.4 73.2 57.2 59.1 51.0
µr GWh 13.0 15.2 9.3 15.1 9.1 15.6 9.7
σd GWh 10.2 8.5 6.4 5.9 6.1 5.1 4.8
σr GWh 8.6 8.7 7.0 8.8 6.8 8.4 7.4
ρd,r - 0.256 0.05 0.059 0.112 0.055 0.079 0.172
N h 8760 5475 3285 3915 2349 1560 936
p EUR/MWh 216.4 218.8 212.5 222.2 214.1 210.4 208.6
∆Wt mEUR 91.7 60.2 21.8 30.9 14.5 11.0 4.8

∆W mEUR 91.7 82 61.2

Table 5.2 shows the optimal price level and the respective properties for demand

and renewable generation under different TOU schemes. Peak is here chosen to

be from 7:00 - 22:00 and Off-Peak from 22:00 - 7:00. The optimal prices (p) for

both time periods can be calculated based on the expected values (µd ,µr)(see Equa-

tion (5.12)). Furthermore we can directly calculate the deadweight loss induced

by TOU pricing compared to RTP using Equation (5.16). Here we can see that

a pricing scheme of peak and off-peak leads to a lower deadweight loss of about

EUR 10 million by defining a higher price in the peak and a lower price for the off-

peak period.

The deadweight loss can further be reduced by increasing the granularity of the

tariff design and distinguishing between week and weekend. In this case the dead-

weight loss can further be reduced by EUR 20 million to EUR 61.2 million.

Based on this simple approach different pricing schemes can be evaluated. The
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results for pricing schemes ranging from two prices (Peak/Off-peak) to 576 different

prices (Hourly;Week/Weekend;Monthly) are calculated and displayed in Figure 5.7.

We can see that TOU pricing is able to decrease the deadweight loss significantly

from EUR 91.7 million to EUR 38.5 million. Nevertheless the tariff with the highest

granularity still makes up for a deadweight loss of 42% compared to TIP. Only a tariff

with an even higher number of different prices for periods would be able to further

decrease deadweight losses.

5.5 Conclusion

This paper discusses different tariff designs for a good with highly fluctuating de-

mand. The analysis focuses on the electricity sector that is undergoing a major

transition due to the deployment of variable renewable generation with the aim

of decarbonization. In this context it becomes more important that price signals are

transmitted to end consumers by appropriate pricing schemes. We, therefore, an-

alyze the inefficiency introduced by time-invariant pricing (TIP) compared to real-

time pricing (RTP) and also extend the analysis to time-of-use (TOU) pricing.

TIP leads to deadweight losses since consumers do not respond to the marginal

costs of generation. The increased generation from renewable energies may lead to

an increase of the deadweight loss of TIP compared to RTP. Depending on the varia-

tion in demand and renewable generation we can observe two effects. First, higher

variations of demand and renewable generation lead to an increase of deadweight

losses. Second, a high correlation between both variables dampens their effect on

deadweight losses.

In an illustrative case study for Germany, we find that the deadweight loss in-

creases for high shares of renewable generation. Especially wind generation leads

to an increase of losses because the correlation with demand is low. Increasing shares

of solar capacity on the other hand may even be able to decrease deadweight losses

because correlation with demand is relatively high (0.322). Furthermore, we find

that TOU pricing is only able to lift a fraction of the efficiency gains that can be

achieved under RTP.

Our results have important implications for policy makers. Smart metering and

the introduction of real-time or TOU pricing is so far seen as an important instru-

ment for the decarbonization of the electricity sector (EU Commission, 2014, FERC,

2011). In this paper, however, we show that the expected efficiency increases may
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be relatively small. If all consumers would switch from TIP to RTP, welfare could

be increased by EUR 97.1 million which essentially translates to EUR 1.2 per Ger-

man inhabitant per year. The results, however, depend on the characteristics of the

demand function of consumers.

We assumed consumers as risk-neutral and consumption being based on a linear

demand function. In reality, consumers of electricity are probably rather risk-averse

and also have preferences regarding the granularity of their pricing scheme. Thus,

it may be the case that consumers prefer being on TIP instead of RTP, as they do not

need to worry about possible price spikes. Maybe there are also some similarities to

preferences in other sectors with fluctuating demand over time. In the telecommu-

nications sector, for example, flat rate tariffs are predominantly chosen by end con-

sumers. In flat rate tariffs consumers pay a price for an unlimited quantity. Recently,

also utility companies in the electricity sector start offering similar tariffs, whereas

the conditions are much more complex compared to the telecommunications sector

(Reid, 2016).9 Accounting for risk-averse behavior of consumers or considering dif-

ferent shapes of demand functions could therefore be an interesting extensions of

our model, which we leave open for further research.

9Flat rate tariffs for electricity are currently only being offered by utility companies when consumers
commit to an investment in generation equipment such as solar panels and electricity storage
(providers in Germany are for example Beegy, innogy and sonnen.)
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5.6 Appendix

5.6 Appendix

5.6.1 Properties of the distributional function f (dt , rt)

The probability distribution f (dt , rt) is defined with the following properties:

Zeroth moment:

∫

f (dt , rt)d(dt , rt) = 1 (5.25a)

First moment of dt :

∫

dt f (dt , rt)d(dt , rt) = µd (5.25b)

First moment of rt :

∫

rt f (dt , rt)d(dt , rt) = µr (5.25c)

First joint moment:

∫

rt dt f (dt , rt) d(dt , drt) = µrµd +σdσrρd,r

(5.25d)

Second central moment of dt :

∫

d2
t f (dt , rt) d(dt , drt) = µ

2
d +σ

2
d (5.25e)

Second central moment of rt :

∫

r2
t f (dt , rt) d(dt , drt) = µ

2
r +σ

2
r . (5.25f)
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5.6.2 Extensive Proof of Proposition 5.1

The inverse of the demand function is P̃t(q) =
1
αε (pαε− pε+ dt − q). Setting this

equal to the short-term marginal costs of generation we obtain the total quantity

demanded in (5.15).

Inserting the total demand into (5.13) and simplifying, we obtain

p =

∫

�

a0 + a1

�

D̃t(pt , p)− rt

��

f (dt , rt)d(dt , rt)

=

∫

�

a0 + a1

�

αε(p+ a1rt − a0) + dt − εp
a1αε+ 1

− rt

��

f (dt , rt)d(dt , rt)

= a0 + a1
αε(p− a0)− εp

a1αε+ 1
+

∫

�

a1
αεa1rt + dt

a1αε+ 1
− a1rt

�

f (dt , rt)d(dt , rt)

=
1

a1αε+ 1

�

a0 + a1αεp− a1εp+ a1

∫

[dt − rt] f (dt , rt)d(dt , rt)

�

=
1

a1αε+ 1
[a0 + a1αεp− a1εp+ a1µd − a1µr]

=
a0 + a1µd − a1µr

a1αε+ 1
+ p

a1αε− a1ε

a1αε+ 1
.

(5.26)

We can now rearrange this and solve for p

p
�

1−
a1αε− a1ε

a1αε+ 1

�

=
a0 + a1µd − a1µr

a1αε+ 1

p
a1ε+ 1

a1αε+ 1
=

a0 + a1µd − a1µr

a1αε+ 1

p =
a0 + a1µd − a1µr

a1ε+ 1
.

(5.27)

5.6.3 Extensive Proof of Proposition 5.2

The welfare in time period t can be derived as

Wt = Ũt(pt , p)− C(D̃t(pt , p), rt)

=
α

ε

�

Dt(pt)dt −
Dt(pt)2

2

�

+
1−α
ε

�

Dt(p)dt −
Dt(p)2

2

�

− a0

�

D̃t(pt , p)− rt

�

−
a1

2

�

D̃t(pt , p)− rt

�2
.

(5.28)
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The quantity demanded by consumers on TIP and RTP can be written as

D(pt) = dt −
ε

a1αε+ 1
(pa1αε− pa1ε+ a0 + a1dt − a1rt) (5.29)

D(p) = dt − εp. (5.30)

By inserting the demand of consumers and simplifying, we obtain the welfare in

time period t dependent on p and α

Wt =
1

ε (a1αε+ 1)

�

a2
0α

2
ε2 − a0ε (dt − rt) + a1dtεrt −

a1ε

2
r2

t +
d2

t

2

+ (α− 1)

�

p2a1

2
ε3 +

p2ε2

2
− pa0ε

2 − pa1ε
2 (dt − rt) +

a1ε

2
d2

t

��

.

(5.31)

For the first-best outcome with all consumers on RTP (α= 1), the welfare in time

period t is

W e
t =

1
ε (a1ε+ 1)

�

a2
0

2
ε2 − a0ε (dt − rt) + a1dtεrt −

a1ε

2
r2

t +
d2

t

2

�

. (5.32)

When consumers on TIP are offered the second-best TIP p∗, this results in

W ∗
t =

1
2ε (a1ε+ 1) (a1αε+ 1)

�

ε2 (a0 + a1µd − a1µr)
2 (α− 1)

+ 2ε2 (a0 + a1µd − a1µr) (−a0α+ a0 − a1αdt + a1αrt + a1dt − a1rt)

+ (a1ε+ 1)
�

a2
0αε

2 − 2a0dtε+ 2a0εrt + a1αd2
t ε− a1d2

t ε+ 2a1dtεrt − a1εr2
t + d2

t

�

�

(5.33)

The deadweight loss in time period t therefore can be written as

∆Wt =W e
t −W ∗

t

=
a2

1ε(1−α)
2 (a1ε+ 1) (a1αε+ 1)

�

d2
t − 2dtµd + 2dtµr − 2dt rt +µ

2
d − 2µdµr

+ 2µd rt +µ
2
r − 2µr rt + r2

t

�

(5.34)
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When we now integrate over the probability space for dt and rt , this results in

∆W = T

∫

∆Wt f (dt , rt)d(dt , rt)

= T
a2

1ε(1−α)
2 (a1ε+ 1) (a1αε+ 1)

�

µ2
d − 2µdµr +µ

2
r

+

∫

�

d2
t − 2dtµd + 2dtµr − 2dt rt + 2µd rt − 2µr rt + r2

t

�

f (dt , rt)d(dt , rt)
�

= T
a2

1ε(1−α)
2(αa1ε+ 1)(a1ε+ 1)

�

σ2
d +σ

2
r − 2ρd,rσrσd

�

.

(5.35)

5.6.4 Proof of Proposition 5.3

Proof. The introduction of a tax leads to a shift of the supply function that consumers

react to. The short-term marginal costs of generation including the tax therefore

increase to C ′q,tax

�

D̃t(pt , p), rt

�

= a0 + a1

�

D̃t(pt , p)− rt

�

+ ctax . This changes the

total quantity that is consumed to

D̃t,tax(pt , p) =
1

a1αε+ 1
(pαε− pε− a0αε+ a1αεrt −αctaxε+ dt) . (5.36)

Based on this, we can solve for welfare maximizing TIP by solving

p =

∫

�

a0 + ctax + a1

�

D̃t,tax(pt , p)− rt

��

f (dt , rt)d(dt , rt)

=
1

a1αε+ 1
(pa1αε− pa1ε+ a0 + a1µd − a1µr + ctax) .

(5.37)

By rearranging, we obtain the optimal price

p
�

1−
a1αε+ a1ε

a1αε+ 1

�

=
1

a1αε+ 1
(a0 + a1µd − a1µr + ctax)

p =
1

a1ε+ 1
(a0 + a1µd − a1µr + ctax)

=
1

a1ε+ 1
(a0 + a1µd − a1µr − a1εctax) + ctax .

(5.38)
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For the deadweight loss from TIP, we first need to derive the prices and quantities

analogous to Proposition 5.2. The price for consumers on RTP and the quantity

demanded by consumers on TIP and RTP can be written as

p∗t,tax =
1

a1αε+ 1
(pa1ε (α− 1) + a0 + a1dt − a1rt + ctax) (5.39)

D(p∗t,tax) =
1

a1αε+ 1
(dt (a1αε+ 1)− ε (pa1ε (α− 1) + a0 + a1dt − a1rt + ctax))

(5.40)

D(ptax) = dt − εptax . (5.41)

The welfare in time period t dependent on p and alpha can be derived as

Wt,tax =
1

2ε (a1αε+ 1)

�

(α− 1)
�

p2a1ε
3 + p2ε2 − 2pa0ε

2 − 2pa1dtε
2 + 2pa1ε

2rt

+ a1d2
t ε
�

+ a2
0αε

2 − 2a0dtε+ 2a0εrt + 2a1dtεrt − a1εr2
t −αc2

taxε
2 + d2

t

�

.

(5.42)

In the efficient case with all consumers on RTP, welfare with a tax is

W e
t,tax =

1
2ε (a1ε+ 1)

�

a2
0ε

2 − 2a0dtε+ 2a0εrt + 2a1dtεrt − a1εr2
t − c2

taxε
2 + d2

t

�

.

(5.43)

When we now make use of the previously derived TIP p∗tax , we can calculate the

deadweight loss to

∆Wtax = T

∫

W e
t,tax −Wt,tax f (dt , rt)d(dt , rt)

= T
a2

1ε(1−α)
2(αa1ε+ 1)(a1ε+ 1)

�

σ2
d +σ

2
r − 2ρd,rσrσd

�

,

(5.44)

which is identical to the deadweight loss from TIP in the case of no taxes in Propo-

sition 5.2.
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5.6.5 Supply Curve Regression

Table 5.3: Ordinary least squares regression

Dependent variable:
da_price

ResLoad 0.966∗∗∗

(0.005)

Constant −11.522∗∗∗

(0.254)

Observations 8,759
R2 0.779
Adjusted R2 0.779
Residual Std. Error 5.956 (df = 8757)
F Statistic 30,844.950∗∗∗ (df = 1; 8757)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.6.6 Sensitivity on the Share of Consumers on RTP
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Figure 5.8: RTP share sensitivity for ε= 0.2
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6 Tender Frequency and Market Concentration in
Balancing Power Markets

Balancing power markets ensure the short-term balance of supply and demand in

electricity markets and their importance may increase with a higher share of fluctu-

ating renewable electricity production. While it is clear that shorter tender frequen-

cies, e.g. daily or hourly, are able to increase the efficiency compared to a weekly

procurement, it remains unclear in which respect market concentration will be af-

fected. Against this background, we develop a numerical electricity market model

to quantify the possible effects of shorter tender frequencies on costs and market

concentration. We find that shorter time spans of procurement are able to lower the

costs by up to 15%. While market concentration decreases in many markets, we –

surprisingly – identify cases in which shorter time spans lead to higher concentration.

6.1 Introduction

In electricity markets supply and demand need to be equal at all times and com-

monly transmission system operators (TSOs) are in charge of balancing supply and

demand. Due to unbundling policies TSOs are not allowed to own generation assets

and need to procure short-term flexibility from operators of power plants. These

power plants need to be able to adjust their production on short notice to balance

supply and demand.

In Germany, balancing power is currently procured on a weekly basis for primary

and secondary balancing power. Operators that offer for example positive balancing

power therefore need to withhold production capacities over the time span of a

whole week and can not sell their full capacity into the spot market. The costs that

arise from balancing power provision are thus based on the opportunity costs with

respect to selling the capacity in the spot market, namely the foregone profits from

spot market operation.

In this paper, we take a closer look at the German balancing power markets with

a special focus on two problems that may arise from the current (weekly) market
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6 Tender Frequency and Market Concentration in Balancing Power Markets

design. First, the weekly procurement leads to inefficiencies as operators need to

withhold capacities for a whole week and can not fully participate in the hourly spot

market. There is a missing market for hourly balancing power products that could

be solved by an hourly procurement of balancing power. Secondly, we observe that

large players with a broad portfolio of power plants are able to provide balancing

power at lower costs, especially in a weekly auction. These economies of scale for

large players may lead to highly concentrated markets and the possible abuse of

market power.

Whereas in theory it is well understood that shorter time spans lower costs and

may increase market concentration, the magnitude of a change in market design to-

wards shorter time spans remains unclear. In order to assess the possible impact, we

develop a numerical model that accounts for the operator structure in the balancing

power market and considers different time spans for balancing power procurement.

Based on the model we are able to quantify the effects of different market designs

(weekly, daily, hourly) on system costs and market concentration.

The modeling of balancing power markets is complex, as it is driven by the oppor-

tunity costs of operators. Just and Weber (2008) started to write down this problem

analytically and solved the simplified model numerically. Later the methodology

was again applied by Just (2011) to analyze the implications of different tender fre-

quency on the procurement costs but without considering the operator structure.

Richter (2012) bases his analysis on the model developed by Just and Weber (2008)

and is able to show the existence of a competitive simultaneous equilibrium in spot

and balancing power markets that is unique and efficient. He finds out that the

bids of the capacity providers form a u-shaped bidding function around the spot de-

mand. This work shows that the integrated modeling of spot and balancing power

markets in a fundamental model as it is done in the analysis at hand yields mean-

ingful results. In addition, the equilibrium of the spot and balancing power market

was further analyzed by Müsgens et al. (2014) in the context of the German market

design.

The procurement of balancing power is commonly organized via auctions. A spe-

cial characteristic of the balancing power procurement process is that the cost struc-

ture of participants can be divided into two parts. One part is fixed for a period

and stems from withholding capacity for balancing purposes. The second part are

variable costs for the supply of energy in the case of being called during operation.

Bushnell and Oren (1994) were the first to analyze the auction design of balancing

power markets. Their work was later extended by Chao and Wilson (2002) in order
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to design incentive compatible scoring and settlement rules. They found that incen-

tive compatible auctions can be designed by considering only the capacity bid for

scoring in a uniform price auction. Nevertheless many of the implemented auction

designs in Europe differ from their proposals.

The auction design of balancing markets was also studied by Müsgens et al., who

analyzed the importance of timing and feedback (Müsgens and Ockenfels, 2011,

Müsgens et al., 2012). The development in the tertiary reserve market and the

change in rules was analyzed by Haucap et al. (2012). They find that the cooperation

of the four TSOs in Germany decreased costs for the procurement of tertiary reserve.

Whereas previous literature focuses on the efficient design, high market concen-

trations are an additional issue in balancing power markets with few big operators.

In 2010, Growitsch et al. (2010) analyzed the operator structure in the tertiary bal-

ancing power market. They find high market concentration in certain situations of

the tertiary balancing power market. Heim and Götz (2013) looked at the market

outcomes in the German secondary reserve market based on exclusive data provided

by the German regulator and find that the price increase in 2010 can be traced back

to the bidding behavior of the two largest firms.

While the general effects of a design change towards shorter spans is well under-

stood, the empirical importance is less clear. To contribute to filling this gap, we

simulate a design change for the German balancing market. We compare simulation

results for the current market design to simulation results for shorter time spans.

From the comparison of the results, we derive a difference of 15% balancing cost in

favor of shorter time spans. With respect to concentration, our model results indi-

cate that an hourly market design for balancing power leads to periods with higher

market concentration. This means that in some hours market concentration could

increase by a change of market design from weekly to hourly and policy makers

should be aware of this.

The paper is organized as follows: In Section 6.2 we focus on the background

informations which include, among others, the general electricity market structure,

bidding behavior for balancing power and the concepts of market concentration in-

dices. Section 6.3 introduces the methodology, namely a unit-commitment model for

electricity markets and the model specifications to account for the balancing power

markets. Section 6.4 presents the modeling results as to the system costs and the

market concentration indices. Section 6.5 concludes.
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6.2 Background

6.2.1 On the Functioning of the Balancing Power Market

The balancing power market is an additional market for electricity generators, be-

sides the classic spot markets like the day-ahead and intraday market and is divided

into products depending on the urgency and the direction of power provision. In Ger-

many, the markets are divided into primary, secondary and tertiary balancing power

provision which differ mainly in reaction time. In the primary balancing power mar-

ket, power plants need to be able to adjust their output in both directions (upward

and downward). Secondary and tertiary balancing power markets are divided into

products for positive and negative balancing power. The secondary balancing power

market is further divided into a peak and off-peak product. Additional information

on the current market design can also be found in Hirth and Ziegenhagen (2015).

Because the balancing of imbalances has to occur in very short time periods before

physical delivery, providers of balancing power have to reserve capacity for balancing

purposes. This means for example that an operator for positive balancing power

cannot sell all her production capacity into the spot market and needs to operate

power plants below the maximum capacity level. When being called for the supply

of balancing power, the power plant needs to increase its output. For the case of

negative balancing power provision, operators need to run their plants above their

minimum production capacity and when negative balancing power is called, these

plants have to be able to decrease their electricity production.

The cost structure of participants in the balancing power market is thus different

compared to the spot market. On the one side, participants must account for oppor-

tunity costs that arise from the opportunity of marketing the spare capacity in other

power markets (such as day-ahead and intraday) and on the other side participants

need to pay fuel costs in case that their plants are being called for balancing pur-

poses. The opportunity costs for capacity provision mainly depend on the type of

power plant and the prices that are being observed in the markets where the power

could also be sold. For example, a power plant that has marginal generation costs

a bit lower than the spot market price, has very low opportunity costs for positive

balancing power provision. If this power plant decreases its spot market production

in order to offer positive balancing power, the income from the spot market is only

slightly lowered. The opportunity costs for the provision of positive balancing power

122



6.2 Background

are thus close to zero.1 In contrast to this, if the power plant has very low marginal

costs of production compared to the spot price, the opportunity costs for positive

balancing power provision are very high, as the forgone spot market profits are very

high. Figure 6.1 shows the opportunity costs for different ranges of the merit order.
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Figure 6.1: Capacity bidding behavior for balancing power markets is theoretically based on
an opportunity cost strategy to the spot market (here: positive balancing power)

The demand of electricity depends mainly on the time of consumption and fluc-

tuates throughout the day. Therefore prices fluctuate as well. This means opportu-

nity costs of single power plants are constantly changing and providers of balancing

power need to take this into account. For the case of operators owning multiple

power plants with a well diversified portfolio this effect is not as severe because in

the best case they are always operating a power plant with marginal costs close to

the spot price that has very low opportunity costs. This makes it obvious that big-

ger power plant portfolios may have significant cost advantages compared to small

players.

In order to illustrate the effect of the portfolio on the opportunity costs, we con-

sider the following example which is visualized schematically in Figure 6.2: Let us

assume that there are three power plants A, B, and C with the same capacity but dif-

ferent marginal costs of 10, 20 and 30 EUR/MWh. With an ordering according to the

marginal costs, we derive the simplified spot market merit order. The spot market

clearing price is thus the intersection of the demand function with the merit order.

The opportunity costs for positive balancing power arise by the difference of the

power plants’ marginal costs to the spot market clearing price. Thus, the opportu-

1This holds only true if efficiency losses due to partial load operation are neglected.
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6 Tender Frequency and Market Concentration in Balancing Power Markets

nity costs are dependent on the spot market demand situation. Now, let us consider

two demand situations: A low and a high spot market demand situation. In the low

demand situation, the demand is lower than the total capacity of plant A. Hence,

the cheapest power plant A can satisfy the total spot market demand resulting in a

spot market clearing price of 10 EUR/MWh. This leads to opportunity costs of 0, 10

and 20 EUR/MWh for A, B and C respectively2 (shown in Figure 6.2 on the lower

y-axis part). In the high demand situation, the demand exceeds the joint capacity of

plant A and B. Therefore, plant C determines the spot price of 30 EUR/MWh, which

results in opportunity costs of 20, 10 and 0 EUR/MWh for A, B and C respectively.
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Figure 6.2: Schematic situation of the portfolio effect

If we assume that power plants need to provide the positive balancing power for

both situations, the opportunity costs in each situation sum up for each power plant:

TotalOppor tunit yCosts(p) =
∑

i=low,high

Oppor tunit yCostsi(p) , ∀p ∈ {A, B, C}

(6.1)

This results in total opportunity costs of 20 EUR/MWh for each power plant. A coali-

tion of two power plants could reduce the joint opportunity costs. Power plants A

and B could cooperate, e.g. belong to the same operator. Then, in each situation

the operator can provide balancing power by her power plant with the lowest op-

portunity costs. She would use plant A in the low demand situation, and plant B in

the high demand situation. The joint opportunity costs for power plant A and B for

both situations is 10 EUR/MWh, which is lower than the individuals’ 20 EUR/MWh.

For the negative balancing power, this portfolio effect does not hold in general. The

2We assume that power plants need to run in order to provide positive balancing power (e.g. due to
minimum load or ramping constraints). If plants B and C would not need to run, their opportunity
costs would be 0 EUR/MWh.
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opportunity costs are 0 for inframarginal power plants and usually monotonically

increasing for extramarginal power plants. This leads to monotonically increasing

opportunity costs in each demand situation. The sum of monotonically increasing

functions is still monotonically increasing. Thus, the cheapest power plants to pro-

vide negative balancing power are always in the left segment of the merit order and

there is no possibility to get better off with a coalition with another power plant.

Note that we assumed no part load efficiency and attrition costs in this example.

Furthermore, we assumed the balancing power demand to be small such that the

marginal power plant can fully provide the balancing power demand.

The portfolio effect only occurs if balancing power is procured over a long time

horizon that differs from the hourly spot market tender frequency. Here, large play-

ers may have significant cost advantages because they can provide balancing power

at lower costs from their portfolio. For shorter time periods of balancing power

procurement, the portfolio effect is reduced.

In Figure 6.3, an exemplary merit-order for Germany divided into the main oper-

ators is shown. Power plants that do not belong to the largest five companies are

considered as power plants of a fringe.3

Figure 6.3: Merit Order in Germany colored as to the operators

As previously explained, opportunity costs in the balancing power market do

strongly depend on the intersection of supply and demand in the spot market. There-

3Throughout the paper we use the following abbreviation for the operators: RWE (RWE), E.ON
(EON), Vattenfall (VAT), STEAG (STE), EnBW (ENB), fringe (FRI).
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fore, to investigate market concentration, we need to consider the power plant port-

folio of all operators in the merit order (cf. Figure 6.3). We can see that several

ranges are covered by only a few operators. Especially, in the left part of the merit

order, there are only two to three operators covering a range of up to several Gi-

gawatts. These are operators owning nuclear and lignite power plants with high

investment costs and low marginal costs.4 Those ranges with few operators tend to

favor market concentration. By incorporating the operators and their power plant

portfolio into our modeling, we are able to show the effect of different provision

duration on market concentration.

6.2.2 Market Concentration

In order to compare different levels of market concentration, we apply typical market

concentration indices from the economic literature. Those indices are the Herfindahl-

Hirschmann-Index (HHI, Hirschman (1964)) and the residual supplier index (RSI).5

The HHI uses the market shares of operators as an indicator for market concen-

tration. It is defined as

HHI :=
n
∑

i=1

MSi
2, (6.2)

where MSi is the market share of operator i in % and n the total number of op-

erators.6 Note, that we use the decimal representation of the market shares (50%

= 0.5). Therefore, our HHI index is in the range between 0 and 1. Comparable

high market shares have an higher impact to the HHI due to the squared functional

representation. If we would have only five operators in the electricity market, the

HHI could not be lower than 0.2 which would be the case of equally shared capacity.

Since we also consider a fringe in our numerical analysis, these lower bounds are

not necessarily holding. Based on the described indices we are able to compare the

effects of different market designs on market concentration.

4Note that the fringe at the right of the merit order does not cause higher market concentration,
because those plants do not belong to a single firm.

5We do not focus on the pivotal supplier index (PSI), since the non-binary RSI is a refinement of
the binary PSI. Furthermore, we do not investigate market concentration indices which involve
prices, e.g. Lerner-Index (Elzinga and Mills, 2011) Because we are applying a mixed-integer model,
prices cannot be easily derived from the results due to the convexity problem (cf. (Bjørndal and
Jörnsten, 2008, Ruiz et al., 2012)). Technical restrictions like minimum load or start-up costs in
mixed-integer problems lead to non-convexities. Therefore, the marginal of the supply-demand-
equilibrium cannot directly be interpreted as an estimator for electricity prices. Power plant specific
variable costs can be above the system marginal costs of mixed-integer problems.

6The HHI is broadly applied in energy economics, see for instance Hogan (1997) and Twomey et al.
(2006). A general discussion on concentration indices can be found in Green et al. (2006).
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The RSI for operator x measures the remaining capacity without supplier x ’s ca-

pacity to fulfill the demand. It is defined as

RSI(x) :=
TotalCapacity−Capacityx

Demand
, (6.3)

where Capacityx is the the capacity of operator x (cf. Twomey et al. (2006)). In our

analysis, we account only for active capacity which means capacity that is already

operating. Non-operating capacities cannot provide balancing power in time or have

additional start-up costs which make the opportunity costs non competitive. For

comparison reasons, we focus on the inverse value, i.e. RSI−1. Thus, similar to HHI,

a higher value indicates higher market concentration

The HHI represents a market concentration index based on the market share while

the RSI represents a market concentration index based on the residual supply (re-

maining capacity). Both measures therefore give different insights on the level of

market concentration.

6.3 Methodology

In this section, details of the basic modeling approach as well as data and assump-

tions are presented.

6.3.1 Modeling Approach

The analysis is performed with a unit-commitment model for the German power mar-

ket.7 The basic model formulation is based on the work by Ostrowski et al. (2012)

and Morales-España et al. (2013) and is extended for the modeling of balancing

power provision.

In this article, we explain the general modeling approach for unit-commitment

models but abstract from the detailed formulation that can be found in the literature

on unit-commitment models (e.g. Ostrowski et al. (2012) and Morales-España et al.

(2013)). The focus is set on the introduction of additional equations that account

for the characteristics of balancing power markets.

7The model builds on the modelling framework MORE (Market Optimization for Elec-
tricity with Redispatch in Europe) that was developed at ewi Energy Research and
Scenarios gGmbH and is written in GAMS (further information can be found at
http://www.ewi.research-scenarios.de/en/models/more/).

127



6 Tender Frequency and Market Concentration in Balancing Power Markets

The overall goal of the unit-commitment model is to derive the cost minimal pro-

duction schedule of power plants to satisfy the demand for electricity. Power plants

are modeled blockwise on an hourly time resolution. Power plant blocks are de-

noted by index p and hourly timesteps by index t. The objective function of the

unit-commitment model is to minimize the total costs of electricity production and

can be expressed as

min TotalCosts =
∑

t,p

(VarCosts(t, p) + Star tU pCosts(t, p)) . (6.4)

StartUpCosts arise if a power plant is not producing in time step t but produces elec-

tricity in time step t +1. The actual StartUpCosts are dependent on the power plant

p as well as on the non-production duration (time steps since last time operating).

Power plants produce electricty to satisfy the demand. This essential constraint is

represented as

∀sm :
∑

psm

product ion(psm)+ impor t(sm)−ex por t(sm) = demand(sm) (6.5)

and holds for every time step t and every spot market sm. Here, psm are the power

plants in spot market sm, import considers the electricity flow from other countries

(spot markets) to the respective one and vice versa for exports.8 The exogenous

demand is assumed to be perfectly inelastic.9

Technical characteristics of power plants are modeled via different constraints.

An important modeling aspect of unit-commitment models is that it accounts for

different states of power plants that can be incorporated by using binary variables.

This makes the model a mixed-integer model. For example, each power plant has a

range of feasible production which can be described by

product ion(p) = 0 or (6.6)

minload(p)≤ product ion(p)≤ capaci t y(p). (6.7)

Additional technical constraints of power plant blocks can also be incorporated,

such as part load efficiency losses, load change rates, combined heat and power

operation and start up times.

8In the analysis at hand, only the German spot market is considered. Imports and exports are given
exogenously as explained later.

9If this assumption would be relaxed, we expect a similar outcome with respect to balancing power
provision, since the intersection point of demand and supply curve at the spot market, and hence
the relevant opportunity costs would not change.
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The basic model is extended to account for the unique characteristics of balancing

power markets. These characteristics are essentially given by (i) different provision

intervals and (ii) operator structures. We therefore need to map the hourly timesteps

to the balancing provision intervals as well as the different power plant blocks to

operators.

Table 6.1 gives an overview of the sets, parameters and variables used for the

modeling of balancing power. In the following, the equations of the model will be

discussed.

Table 6.1: Overview of sets, parameters and variables

Set

BPi interval for balancing power provision, e.g. week, day or hour
op operator
t hour
p powerplant
t_BPi set of hours that are in the respective interval for balancing

power provision
p_OP set of plants that belong to respective operator
FRI Fringe operators

Parameters

D(BPi) balancing power demand in interval

Variables

BP_O(BPi, op) balancing power provision by operator in interval
BP(t, p) balancing power provision by plant and hour
BP_F(BPi, p) balancing power provided by fringe operators in the interval

The total demand for balancing power during a provision interval must be satisfied

by the sum of the provision of all operators:

∀ BPi :
∑

op

BP_O(BPi, op) = D(BPi). (6.8)

The balancing power provision of all operators during a provision interval is con-

stituted by the provision of the plants of the operators in each hour:

∀ BPi, t ∈ t_BPi, op :
∑

p∈p_OP

BP(t, p) = BP_O(BPi, op). (6.9)

The balancing power provision of the fringe during the provision interval is con-

129



6 Tender Frequency and Market Concentration in Balancing Power Markets

stituted by the fringe power plants without the option to pool:

∀ BPi :
∑

p∈p_OP(“FRI”)

BPF (BPi, p) = BP_O(BPi, “FRI”). (6.10)

The power plant specific balancing power provision of fringe power plants is fixed

in each hour of the provision interval:

∀ BPi, t ∈ t_BPi, p ∈ p_OP(“FRI”) : BPF (BPi, p) = BP(t, p). (6.11)

Thus, the model allows the fundamental modeling of power plants that provide

balancing power accounting for the operator structure. However, calls of balancing

power are not modeled. Model outputs are the hourly production per power plant,

as well as, balancing power provision by operator and power plant. In combination

with the operator structure, we can evaluate market concentration indices in an ex-

post analysis.

6.3.2 Input Data and Assumptions

We model two representative weeks in 2014, i.e. a winter week and a summer week.

Figure 6.4i shows the demand, residual demand, solar feed-in and wind feed-in

during the winter week. This winter week represents a typical situation of high

demand in the early evening hours combined with no or very few solar radiation

during the day. Especially at the beginning of the week, the wind production is low

as well. As a result, there are situations with a residual demand of up to 71.2 GW in

which the conventional power plant fleet (nuclear and fossil power plants, pumped

storage plants) is utilized up to 69.3%. In the last three days of the week, the residual

demand is low due to low demand during the weekend and high wind feed-in. In

such a situation of low residual demand, the base load power plants supply a large

share of the spot market demand. Since the base load plants are owned by the large

operators, situations with low demand may show a high market concentration in the

spot market. This has implications for the market concentration on the balancing

power markets as well.

Figure 6.4ii shows the demand, residual demand and renewable feed-in in the

summer week. It can be seen that there is a contrast to the conditions of the winter

week. The demand in summer is typically low and there is high solar radiation

during the day. This combination leads to a reduced utilization of the power plant

130



6.3 Methodology

fleet and therefore to lower prices. Here, even base load and mid load German power

plants (lignite and hard coal power plants) reduce their production. Wind feed-in

is on a relatively low level (below 10 GW in every hour), but increases during the

weekend when the demand is already especially low. This leads to a low residual

demand of only 24.3 GW on the Sunday.

Typical weeks during spring and autumn can be interpreted as a combination of

the situations in those weeks. The varying demand and renewable feed-in in every

single hour of those weeks cover a broad range of situations and therefore reflect

also average situation with medium demand and/or renewable feed-in.

(i) Winter Week (Monday-Sunday) (ii) Summer Week (Monday-Sunday)

Figure 6.4: Demand, Residual Demand, Solar Feed-In and Wind Feed-In

The assumptions on power plant capacities are based on Bundesnetzagentur (2014).

Only German power plants are modeled. Imports and exports are exogenously given

based on ENTSO-E data. Fuel costs and CO2 prices are based on historical data. In-

stalled capacities, fuel costs and techno-economic parameters of power plants can

be found in the Appendix 6.6.1.

Power plants are also constrained in their balancing power provision. We consider

primary and secondary balancing power in our model, but abstract from tertiary

balancing power provision.10

We assume that all running plants can provide a certain share of their capacity

as balancing power. For the fossil and nuclear power plants, this share is derived

by information about the ramping speeds multiplied by the time duration until the

power adjustment needs to be realized. The ramping speed deviates by the year of
10We do not consider tertiary balancing power since (i) technical restrictions are lower for the tertiary

market and it tends to be compensated by the intraday-market (30 min before physical delivery),
(ii) the current market design of tertiary balancing power has already a high tender frequency
(provision duration of four hours), and (iii) there are many competitors in the tertiary market
which reduces the risk of market power. Therefore, primary and secondary balancing power are in
the focus of our analysis.
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construction of the technology. Furthermore, we assume that the capacity (share)

for positive balancing power is the same as for negative balancing power. Table 6.2

shows the maximum allowed share of the capacity to provide balancing power for

different power plant technologies.11

We assume that power plants that are not running have high starting costs, e.g. due

to attrition and fuel consumption, and thus are not competitive in offering balancing

power.12 We do not consider balancing power provision by renewables and demand

side management, because those technologies were not important for the balancing

power market in 2014 (Dena, 2014).

Table 6.2: Share of total capacity that can be used for balancing power provision

primary balancing power secondary balancing power

CCGT 2.50 - 4.00% 25.00 - 40.00%
Coal 1.00 - 2.50% 5.00 - 12.5%

Lignite 1.00 - 2.50% 5.00 - 12.50%
Nuclear 2.00 - 2.50% 10.00%

OCGT 5.00 - 12.50% 50.00 - 60.00%
Oil 2.00% 20.00%

Pumped Storage 10.00% 15.00%

There is only one product that is procured for primary balancing power. How-

ever, in the case of secondary balancing power, we consider a positive and negative

product for peak and off-peak times, respectively. Additionally we investigate the

cases of shorter tendering times, namely daily and hourly. In the case of a weekly

provision, the peak time are working days between 8 am and 8 pm. All other hours

(night and weekends) are off-peak time. In the case of a daily provision, the peak

time is the time between 8 am and 8 pm on every day (including weekends). In an

hourly auction, the distinction between of peak and off-peak products disappears.

We map the information about the ownership to each power plant. We consider

the German power plant operators E.ON, RWE, EnBW, Vattenfall and STEAG in our

model. All other power plants are mapped to the fringe. We obtain information

11Pumped storage plants have a high ramping speed. Therefore, they have a high technical potential
to provide balancing power (up to 30 % of the capacity for the primary balancing power, and up
to 45% for the secondary balancing power for a single plant). However, due to multiple bidding
strategies and prequalification requirements, we assume that not all pumped storage plants are
bidding their total technical potential into the balancing power markets.

12Start-up costs for a cold start can be up to 60.000 Euro for e.g. a 500 MW CCGT or OCGT power
plant with 2010 cost data (Schill, 2016). These costs would have to be reimbursed by the revenue
in the balancing power markets. Additionally, a faster start-up than usually increases the attrition
and has a higher consumption of equivalent operating hours (EOH).
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about ownership of plants from a list of the German regulator Bundesnetzagentur.13

E.ON, RWE, EnBW, Vattenfall and STEAG can use pooling to provide balancing

power over a time period, e.g. they can offer a certain volume of balancing power

during the provision period and use different power plants within their pool to fulfill

their commitment. The fringe is not allowed to pool meaning that each power plant

of the fringe has to provide the balancing power of the whole provision period. This

is the most restrictive assumption for the pooling of the fringe. Indeed, there are sev-

eral pooling companies which aggregate smaller producers to a virtual power plant

and therefore allow for pooling for subsets of the fringe. However, if we allow that

the whole fringe may use pooling effects, the fringe would operate as an additional

big producer. Therefore, we expect that the general results for market concentration

hold and only the absolute level of market concentration deviates.14

6.4 Results

In this section, we present the model results for a weekly, daily and hourly provision

duration. The weekly provision duration represents the status quo which is cur-

rently in operation in Germany. Daily and hourly provision duration are currently

discussed as alternative market designs for the German balancing power market. We

analyze the balancing power provision in three dimensions. First, we focus on the

efficiency gains by a shortened provision duration which are captured in the total

system costs. Second, we analyze the balancing power provision by technology and

operator which enables us to shed light onto the level of market concentration for

the different provision duration using the indices HHI and RSI−1.15

6.4.1 System Costs

Power system costs of different model configurations are a benchmark for the effi-

ciency of the market design. In order to assess the costs of balancing power provi-

sion, we additionally model the electricity system without balancing power provi-

13Each power plant is mapped to only one owner. This corresponds to the assumption that even if
several owners have shares in one plant, only one owner is responsible for marketing balancing
power.

14Furthermore, fringe power plants are typically gas fired power plants. Therefore, the effect on
market concentration affects only situation with high residual demand as to the opportunity cost
bidding strategy and the merit order.

15Note that we use RSI−1 instead of RSI. Thus, a higher value of RSI−1 indicates higher market con-
centration, similar to the interpretation of HHI.

133



6 Tender Frequency and Market Concentration in Balancing Power Markets

sion. The difference between this baseline run and the model runs with balancing

power provision can thus be considered as the extra costs of balancing power provi-

sion.16

Table 6.3 gives an overview of the total system costs in the simulated summer and

winter week with different designs of the balancing power markets. Irrespective of

if and how balancing power is provided, it can be seen that the system costs in the

winter are more than EUR 50 million higher than in the summer.

Table 6.3: Total System Cost in Reference Scenario in Million Euros

in mio. Euro no provision hourly daily weekly weekly (no pooling)

Winter 175.6 176.7 176.8 177.0 178.0
Summer 124.6 125.1 125.2 125.2 125.6

As outlined above, the major power plant operators are allowed to pool their port-

folio in order to provide balancing power. In order to quantify the efficiency gain

resulting from pooling, a sensitivity with weekly balancing power provision in which

pooling is not allowed is simulated additionally to a weekly configuration with pool-

ing and hence included in Table 6.3.

The difference between the system costs without balancing power provision and

the system costs of a configuration with hourly / daily / weekly balancing power

provision can be understood as the respective costs of balancing power provision.

Figure 6.5 illustrates those costs. It can be seen that not only the total modeled

system costs are higher in winter, but also the costs of balancing power provision.

This is expected given the higher residual demand levels in the winter.

If pooling would not be allowed, the cost of balancing power provision would be

EUR 2.361 million in the winter week and EUR 0.995 million in the summer week.

The modeled costs of the current weekly market design (with pooling of major op-

erators) amount to EUR 1.328 million in the winter week, and EUR 0.677 million in

the summer week. The cost difference between the weekly configuration with pool-

ing and without pooling, that can be interpreted as the efficiency gain of pooling, is

EUR 1.033 million in the winter and EUR 0.319 million in the summer.17

The difference between the system costs of a configuration with weekly balancing

power provision and a configuration with hourly balancing power provision (from

16When referred to balancing power in this section, primary and secondary balancing power is meant.
17An additional sensitivity analysis not included in figure 6.5 in which pooling of all fringe operators

in one common fringe pool would be allowed shows no significant further efficiency gain.
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Figure 6.5: Costs of primary and secondary balancing power (compared to no provision)

now on we only consider configurations with pooling) can be interpreted as the

maximum efficiency gain from shortening the provision duration. This cost differ-

ence is EUR 222 k in the winter week, and EUR 96 k in the summer week.18 The

system costs of the daily balancing power provision are between the system costs for

the hourly and weekly balancing power provision. Compared to the efficiency gain

from pooling, this further efficiency gain by a shortened provision duration is small.

The level of renewable feed-in can influence those results. Therefore, we consider

a sensitivity in which we double the values of the historically observed renewable

feed-in in the simulated weeks. The detailed results are shown in Appendix 6.6.2.

A higher renewable feed-in leads to higher costs of balancing power provision espe-

cially in the summer week compared to the configuration with less renewables. For

instance, in the case of weekly provision in the summer, the balancing power costs

increase by EUR 559k if the renewable feed-in doubles. Due to the lower residual

demand, more power plants have to be operational only in order to provide balanc-

ing power. The order of magnitude of the efficiency gain from pooling, however,

remains unchanged by doubling the renewable feed-in.

The German expenses for the provision of primary and secondary balancing power

were EUR 331 million in 2014 (Bundesnetzagentur, 2016) corresponding to average

expenses of EUR 6.37 million per week.19 This means that the average real expenses

were higher than the simulated costs for the balancing power market with the weekly

market design (EUR 1.328 million in the winter and EUR 0.677m in the summer).

Our model calculates total costs for power plants to provide balancing power under

18Due to solver inaccuracies (difference between current best integer solution and optimal value of
LP relaxation), we cannot resolve the exact effect. However, we can be sure about the order of
magnitude of the effect.

19This figure is calculated based on capacity bids, not energy bids. This is consistent with our modeling
approach in which we consider only provision and not calling of balancing power.
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perfect competition and foresight. Those can be interpreted as a lower bound for

producers’ costs for the balancing power provision. The Bundesnetzagentur pub-

lishes the total expenditures for the balancing power provision. These expenditures

also include producers’ surplus. If every operator would bid their real costs in the

pay-as-bid auction (under perfect foresight and perfect information), both results

should be the same. However, since it is profit maximizing for the operators to es-

timate and bid the system marginal costs instead of own marginal costs (see for

instance Müsgens et al. (2014)), the real expenditures are higher than the modeled

costs for provision. Furthermore, the exercise of market power (e.g. withholding

of volumes) could even lead to higher system marginal costs and hence higher pro-

ducers’ surplus. Effects like strategic bidding between capacity and electricity bid

or sub-optimal behavior due to information asymmetries could further increase the

cost difference between real expenditures and the model results. Additionally, un-

certainty for e.g. residual demand, prices, and power plant shortages of the next

week are included in the bids which increase costs. These aspects are not consid-

ered by the cost minimizing model under perfect foresight. Therefore, we would

expect our results to be a lower bound for the possible cost reductions.

6.4.2 Provision of Balancing Power

Balancing power is provided by different types of power plants within the portfo-

lio of operators. Depending on the portfolio of operators and the pooling within

the portfolio, the balancing power provision by technology changes from hour to

hour. This effect can be observed in the graphs in Figure 6.6i for different provision

durations at the example of positive secondary balancing power in the winter week.

For the weekly provision, we see a strong hourly fluctuation within the technolo-

gies although operators are restricted to a weekly provision duration. This indicates

that the operators make significant use of the pooling option. The operators can

freely select the power plants that shall provide balancing power in certain hours

of the week. Therefore, the operators choose those power plants in their portfo-

lio which have the lowest opportunity costs with respect to the spot market. Here,

obviously, operators with a large portfolio have an advantage compared to small op-

erators. For primary balancing power as well as for the case of the summer week, the

fluctuation of balancing power providing technologies are similar to the Figure 6.6i.

If we take a look at the provision by technology for daily or hourly provision du-

ration, we find a surprisingly similar structure to the weekly provision duration.
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However, small differences in the diagrams can be identified. CCGT (in orange),

for instance, have a more important role in peak hours with the hourly provision

compared to the outcomes with longer provision duration. In the daily configura-

tion, coal power plants (in grey) provide more often balancing power compared to

the other configurations. The hourly provision duration can be expected to be the

efficient benchmark where the owner structure of power plants does not matter.

This means that the most cost efficient power plants in each hour provide balancing

power. Since the capacity provision by technology of the weekly and daily cases

are similar to the hourly benchmark, we conclude that the pooling possibilities al-

low a provision pattern that is close to the most efficient outcome. Even with a

weekly provision duration, almost the same cost efficient technologies provide bal-

ancing power as in the case with an hourly provision.20 This interpretation is in line

with the results presented in Section 6.4.1 where the efficiency gain from pooling

was quantified to be EUR 1.382 million in the winter week whereas the respective

efficiency gain from shortening the provision duration from a weekly to an hourly

market design was found to be EUR 0.222 million.

Figure 6.6ii shows the modeled capacity provision by operator for positive sec-

ondary balancing power for a weekly, daily and hourly provision duration. Com-

pared to the modeled provision by technology, the modeled provision by operators

differs more significantly for the three market designs. The fluctuation of market

shares becomes higher with a shorter provision duration.

The capacity provision by operator can be considered as a first indicator for the

market concentration indices. Therefore, we expect stronger fluctuation of the mar-

ket concentration indices for shorter provision duration. Drivers for this are:

• the absolute residual demand level at a given time point in the time frame,

• the volatility of the residual demand level in the provided time frame,

• the steepness of the marginal cost function of the power plants and therefore

the steepness of the opportunity cost function,

• the operator structure of the opportunity cost function, i.e. whether operators

capacities are in blocks or spread in the opportunity costs merit order.

Thus, the capacity provision by operator is typically dependent on the specific mar-

ket circumstances, e.g. the product definition, the annual season, and the provision

duration. Hence, we investigate the different market designs based on market con-

20This result does not only hold for the case of positive secondary balancing power, but also for the
other investigated products.

137



6 Tender Frequency and Market Concentration in Balancing Power Markets

(i) Provision by technology (ii) Provision by operator

Figure 6.6: Comparison of the technologies (left) and operators (right) providing positive
secondary balancing power for the weekly, daily and hourly provision duration
in the winter week (model results)

centration indices in detail to derive further insights.

6.4.3 Market Concentration

Based on the balancing power provision by operator observed in Figure 6.6ii we

compute market indices for the three balancing power products, primary, secondary

positive and secondary negative balancing power. The indices vary depending on

the market design and provision duration. In order to assess the different ranges

of market concentration indices, we analyze the model results in histograms for the

HHI (cf. Figures 6.7, 6.9 and 6.10). Those diagrams show the HHI values in the

weekly market design as a red line. In the case of secondary balancing power, two

red lines are present due to the two contract durations (HT and NT, as described in

Section 6.2). For the hourly provision duration, 168 different products are defined

and hence 168 HHI values. The histograms show the distribution of those hourly

HHI values. Similar histograms for the RSI−1 are evaluated (cf. Figures 6.8, 6.12
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and 6.13).21

For the interpretation of the results, we also add dotted lines into the histograms

which indicate threshold values for high market concentration. For the HHI, a strong

market concentration exists at a value of 25% according to US Department of Justice,

Federal Trade Commission (2010, §5.3) and at 20 % (with further restrictions) as

to EUR-lex (2004, 19. and 20.). In the case of the RSI−1 we consider a threshold

value of 1.11 (which corresponds to a threshold value of 0.9 for the original RSI

definition).

The indices are no absolute measures in which one index would be sufficient to

indicate market concentration. Nevertheless, high market concentration is more

likely if both discussed indices point to a critical level.

Market Concentration for Primary Balancing Power Provision

For the modeled provision of primary balancing power, the HHI values are displayed

in Figure 6.7. We observe that the summer seems to be slightly more concentrated

in balancing power provision than the winter. The reason for this lies in the dif-

ferent demand profiles and the increasing production of solar generation (cf. Fig-

ure 6.4i). In the summer, a lower electricity demand and higher solar generation

lead to less demand of generation from conventional power plants and therefore

there are less power plants available (i.e. running) that are able to provide primary

balancing power. This is also indicated by high values of the RSI−1 that can be seen

in Figure 6.8.

Based on the model results we can infer that the primary balancing power market

is prone to high market concentration. When the market design is changed from

weekly provision to hourly provision we observe that the indices take on a broader

range of values. This means there are hours in which market concentration is in-

creased and hours when market concentration is lowered. An increase in market

concentration may occur if the level of demand is at a level where only few operators

are close to the marginal production level. As previously explained in Section 6.2

and shown in Figure 6.3, there are intervals in the merit order where only some op-

erators own power plants. This is for example the case for lignite power plants that

are owned by Vattenfall and RWE. When demand is low and lignite power plants are

21Additionally, an analysis for the concentration indices CR1 and CR3 was conducted. The CR for m
firms is defined as CR(m) :=

∑m
i=1 MSi where MSi is the market share of operator i in % for the m

largest firms. The analysis for CR1 and CR2 did not lead to different conclusions compared to the
analysis based on HHI and RSI−1.
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Figure 6.7: Histogram of the hourly HHI values for primary balancing power in winter week
(left) and summer week (right)

marginal in their production, they can provide balancing power at lowest cost. Since

this effect only depends on one single demand period in the hourly provision case

instead of multiple demand periods in the weekly design, the modeled market con-

centration increases in some hours. In addition, market concentration is higher in

the summer because of lower demand levels and therefore less conventional power

plants that are operating. These baseload power plants which are still operating are

owned by fewer operators, which increases market concentration.

There is no clear trend observable to conclude whether shorter provision duration

structurally mitigates or favors market concentration. The RSI−1, however, that can

be seen in Figure 6.8, decreases in average with shorter provision duration especially

in the winter week. This means that the average market concentration is reduced

because there is more active capacity that could provide balancing power. Neverthe-

less, there are some hours when the RSI−1 indicates a slightly higher concentration

compared to the weekly provision. The number of hours with critically high values

can be significantly reduced if the market design is changed to an hourly balancing

power provision. In the winter this leads to RSI−1 values below the threshold. In

the summer, however, the RSI−1 can only be decreased below the threshold in some

hours. Based on the model results, the primary balancing power market seems to be

highly concentrated such that even in the case with an hourly balancing power pro-

vision the average market concentration in the summer is still modeled as critically

high.
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Figure 6.8: Histogram of the hourly concentration index RSI−1 for primary balancing power
in winter week (left) and summer week (right)

Market Concentration for Positive Secondary Balancing Power Provision

Whereas primary balancing power is mostly provided by baseload power plants that

are able to increase and decrease their generation, secondary balancing power is

divided into positive and negative balancing power. In the case of positive balanc-

ing power, power plants provide the ability to increase their generation when being

called. For the winter we see the respective technology and operator mix in Fig-

ure 6.6. The result for the summer week is similar which is the reason why it is

not shown additionally. The main difference is that more lignite power plants are

providing balancing power instead of CCGTs than in the winter week. Especially the

high provision of balancing power from lignite power plants leads to a high market

share by RWE and Vattenfall.

The market concentration indices in Figure 6.9 show a high market concentra-

tion based on the HHI. Here, again, concentration seems to be higher in the sum-

mer compared to the winter. Nevertheless, the story is a bit different compared to

the provision of primary balancing power because in the case of positive secondary

balancing power there is a larger proportion of active power plants that could po-

tentially provide balancing power. The respective RSI−1 indicates that the market is

not too concentrated because the providing power plants could be replaced by the

provision from power plants that are currently not delivering balancing power (the

histogram for the RSI−1 can be found in the Appendix). Therefore the market can be

considered as not as concentrated compared to the primary balancing power mar-

ket. When the provision duration is lowered to an hourly level, the average modeled
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market concentration based on the RSI−1 is further reduced. In the case of the HHI,

there is, however, no clear evidence for a reduction in average market concentration

by reducing provision durations. There are single hours with very high modeled

market concentrations in the hourly case.
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Figure 6.9: Histogram of the hourly HHI values for positive secondary balancing power in
winter week (left) and summer week (right)

Market Concentration for Secondary Negative Balancing Power Provision

The HHI values for secondary negative balancing power that can be seen in Fig-

ure 6.10 have similar characteristics as the values for the positive secondary bal-

ancing power. Nevertheless, in the negative secondary balancing power market, we

would expect no abuse of market power even with a high market concentration. The

rational for this is as follows: As to Section 6.2, the costs for capacity bids for bal-

ancing power are driven by opportunity cost compared to the spot market. Thus, for

one hour, all operating power plants have zero costs for offering negative balancing

power. For a longer provision duration, the costs would increase if the power plant

would not be inframarginal all the time. However, due to pooling effects, opera-

tors can choose power plants which are operating in a specific situation. Therefore,

the opportunity costs for each provider can be assumed to be (almost) zero. Many

fringe operators can potentially participate in the auction, since e.g. wind producers

could also provide negative balancing power. This means that the resulting supply

curve for negative balancing power is very flat. If operators would try to withhold

quantities in an attempt to increase prices, fringe operators with similar small costs

would provide the balancing power. Hence, prices of (almost) zero for negative bal-
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ancing power should be the consequence. Note that in reality, there is uncertainty

(e.g. power plant outages) which leads to slightly positive capacity bids. With our

model, we can find the cost minimal provision of balancing power but we would

expect fierce competition. Therefore, even high shares of market concentration that

can be observed in the model results should not lead to the abuse of market power

because all providers face the same low level of opportunity costs.
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Figure 6.10: Histogram of the hourly HHI values for negative secondary balancing power in
winter week (left) and summer week (right)
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6.5 Conclusion

Currently, the German primary and secondary balancing power markets have a weekly

tender frequency. In a weekly market design, large power plant operators make use

of pooling within their portfolio in order to provide balancing power. Fringe opera-

tors, however, do not have pooling options and need to withhold the capacity of their

plants from the spot market for a whole week to provide balancing power which can

lead to inefficiencies. Hence, fringe operators could potentially benefit from a short-

ened provision duration. The analysis at hand focuses on (1) efficiency gains from a

shorter provision duration in primary and secondary balancing power markets, and

(2) market concentration in market designs with different provision duration. Since

it is known from the literature that simultaneous equilibria in spot and balancing

power markets are efficient and unique (Richter, 2012), our methodology is based

on a cost minimizing unit-commitment model for the electricity market in which we

account for the ownership of power plants.

We quantify the efficiency gain from allowing pooling in a weekly market design

to be EUR 1.033 million in a winter week and EUR 0.139 million in a summer week.

Compared to this, the further efficiency gains that can be realized by shortening

the provision duration from a week to an hour are small. An hourly market design

would lower the costs of balancing power provision by EUR 222 k in a winter week

and EUR 96 k in a summer week. Relative to the total simulated cost of balancing

power provision in the weekly market design with pooling, the efficiency gain is 17%

in the winter week, and 14% in the summer week.

Besides the efficiency gains, we identify effects on the market concentration. Here,

we investigate the HHI and RSI−1 indices which are based on the market share and

the residual supply, respectively. According to the model results, we see the poten-

tial for high market concentration in the primary balancing power market due to

the technical requirements power plants need to fulfill in order to participate in this

market. In the market for positive secondary balancing power, the model results

indicate less concentration because there is more available capacity that could po-

tentially replace the providing power plants. For the negative secondary balancing

power, our results are quantitatively similar to the other products. However, we con-

sider concentration in the market for negative balancing power not to be an issue

due to the low opportunity costs for providing negative balancing power. Based on

the model results, we find a higher market concentration in the summer than in the

winter in all considered markets. The higher market concentration in the summer is
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driven by a lower level of demand, which reduces the number of active power plants

and also the number of operators that are providing balancing power.

Our results reveal a tendency towards decreasing average market concentration by

shortening the provision duration. However, the market concentration indices take

on a broader range of values in the case of a shorter provision duration depending

on the residual demand level and its volatility. There are single provision periods

with a very high market concentration in the hourly and daily market design that

could favor the potential for market power abuse.

Although market concentration can be an indicator for market power, it does not

necessarily identify market power. The characteristics of the supply curve for bal-

ancing power determine the potential for market power abuse. If high market con-

centration is found in a flat segment of the supply curve, prices cannot be raised

significantly. The goal of further research should be to comprehensively understand

market imperfections in balancing power markets. Besides market concentration,

aspects like e.g. strategic bidding between capacity and energy bid and uncertainty

about the renewable feed-in or demand should be considered.

As a policy implication, we recommend to monitor market concentration and price

levels carefully after a change of the market design in the balancing power market.

In specific situations, single operators may have a cost advantage compared to their

competitors.
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6.6 Appendix

6.6.1 Input Data for Modeling

Since we model the year 2014, we are able to use realistic data according to public

available sources. Assumptions that are made are inline with typical assumptions

for modeling the electricity generation sector. The installed power plant capacities

of different fuel types are shown in Table 6.4 and are based on Bundesnetzagentur

(2014).22

Table 6.4: Installed capacity in Germany for 2014

[GW]

Nuclear 12.1
Lignite 21.3

Coal 25.5
Gas 26.9
Oil 2.4

Pumped Storage 6.4

PV 32.7
Wind onshore 31.4
Wind offshore 0.4

Biomass 7.5
Hydro 4.4
Others 1.0

The assumptions on fuel costs are shown in table 6.5.

Table 6.5: Fuel costs for 2014

[EUR/MWh]

Nuclear 3.6
Lignite 1.5

Coal 13.2
Gas 22.8
Oil 49.4

Biomass 31.8
Others 22.8

22The actual input of installed capacities is further separated as to the year of construction: This gives
further technical characteristics and parameters like full load and part load efficiency. The newer
a power plant, the better are its technical parameters.
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The CO2 emission certificate costs are assumed to be 6.20 EUR/t CO2. We assume

those costs to be static over the whole year. Table 6.6 shows the assumed technical

power plant parameters (particularly dependent on the year of construction).

Table 6.6: Techno-economic parameters for conventional power plants

Net efficiency FOM-costs Availability
Start-up

time
Minimum
part-load

[%] [EUR/kW/a] [%] [h] [%]

Coal 37 - 46 36 - 54 84 4 - 7 27 -40
Lignite 32 - 47 43 - 65 86 7 - 11 30 - 60
CCGT 40 - 60 28 86 2 - 3 40 - 70
OCGT 28 - 40 17 86 0.25 40 - 50

Nuclear 33 97 92 24 45
Biomass 30 165 85 1 30

6.6.2 Robustness Checks

As a robustness check, a model run is considered in which the values of renewable

feed-in is doubled. Table 6.7 gives an overview of the total system costs, and Fig-

ure 6.11 illustrated the costs for providing primary and secondary balancing power

compared to a model run without balancing power provision.

Table 6.7: Total system cost in scenario with doubled renewable feed-in in million Euros

in mio. Euro no provision hourly daily weekly weekly (no pooling)

Winter 131.6 132.8 132.9 133.0 134.1
Summer 102.4 103.5 103.5 103.6 104.3

weekly (no 
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Figure 6.11: Costs of primary and secondary balancing power (compared to no provision)
in scenario with doubled renewable feed-in
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6.6.3 RSI Concentration Index for Secondary Balancing Power

Figure 6.12 and 6.13 show the RSI−1 market concentration indices for secondary

balancing power (positive and negative, respectively).
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Figure 6.12: Histogram of the hourly concentration index RSI−1 for positive secondary bal-
ancing power in winter week (left) and summer week (right)
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Figure 6.13: Histogram of the hourly concentration index RSI−1 for negative secondary bal-
ancing power in winter week (left) and summer week (right)
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