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0. Abstract 

Since our brain can only process a small amount of sensory information at a time, 

attention systems select specific aspects for prioritized processing – such as features or 

locations – that are expected to be most relevant in a given context. The present thesis 

investigated responses of visual attention systems to expected and unexpected sensory 

events during uncertainty, when the probability of sensory events needs to be inferred from 

environmental observations. In the spatial attention domain these processes have already 

been described with the help of computational models and the underlying neural 

mechanisms have been explored with functional neuroimaging. However, it is not known 

whether other attentional subsystems such as feature-based attention behave similarly 

during uncertainty.  

The core aim of this thesis was to characterize the modulation of attentional deployment 

by inferred probabilities during feature-based as compared to spatial attention. This was 

realized using a Posner-cueing paradigm in which feature and spatial cues were presented. 

Classically these cues predict the color or the location of an upcoming target with a fixed high 

probability, so that participants expect the cues to be valid and respond slower and less 

accurate when attention needs to be reoriented to invalidly cued targets. In the present 

paradigm, this probability was varied by changing the percentage cue validity (%CV) 

unpredictably over time.  

In a behavioral experiment (Experiment 1) three different color cues were used to identify 

cue-related factors which influence the effects of probabilistic inference on feature-based 

attention and to establish an experimental paradigm for the comparison of feature-based and 

spatial attention systems. It was observed that all color cues affected attentional deployment. 

However, probability-dependent effects differed depending on the level of cue abstraction: 

More automatically processed cues required more observations of cue-target outcomes to 

establish probabilistic learning than abstract cues.  
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Experiment 2 employed functional magnetic resonance imaging (fMRI) to investigate the 

computational and neural mechanisms that modulate probabilistic inference using the 

experimental paradigm from Experiment 1 with abstract feature and spatial cues. The results 

indicated that probabilistic inference follows similar principles for both attention systems. 

However, their neural implementations seemed to be confined to domain-specific 

subsystems: The right temporoparietal junction (TPJ) was particularly involved in spatial 

attention, while the left intraparietal sulcus (IPS) was most crucial for feature-based attention. 

However, the left anterior IPS showed an effect of probability-dependent attention in both 

attention systems. These findings provide novel insights into the generality and specificity of 

the functional basis of visual attention, suggesting that probabilistic inference can distinctively 

affect each attentional subsystem, but that the left anterior IPS may establish probabilistic 

inference in a domain general manner.  

Taken together our findings speak against a unitary visual attention network. Rather, we 

propose that depending on the nature of the selected aspects different attentional 

subsystems are activated following expectancy violations and these processes can even 

differ within one single domain such as feature-based attention. 
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1. Theoretical section  

1.1 Attentional control in human visual perception 

Attention is a core faculty of cognition that has concerned psychologists, philosophers 

and neuroscientists from history to the present. Despite divergence in theories about the 

causes and effects of attention, they all agree upon the assumption that our percept not only 

depends on the information we receive through our senses, but also on the state of our 

minds at any moment in time. William James emphasized this by stating that “my experience 

is what I agree to attend to” (James, 1890, p.402). In cognitive psychology, the term attention 

describes both the preparedness for and the selection of sensory events that our 

environment provides us with (Raz & Buhle, 2006). The preparatory aspect of attention 

comprises alertness, sustained attention and vigilance and describes activation states that 

unselectively modulate (enhance) the processing of incoming stimuli (Sturm, 2005). 

However, at any given moment, our environment presents far more sensory information than 

our brain is able to process simultaneously. Therefore, another function of attention is to 

select certain aspects from sensory inputs for prioritized processing, while ignoring others. 

This process of information selection is accomplished by focused attention and allows us to 

quickly adapt to environmental changes and modulate behavior accordingly (Sturm, 2005). In 

a visual scene, for example, we can attend to a particular region in space to enhance the 

processing of stimuli that are presented at this selected location. Alternatively, we can attend 

to a specific stimulus feature such as shape, color, or direction of motion to enhance the 

processing of stimuli which express the selected feature, independent from their spatial 

location. Or, we can attend to an entire object that is defined by many different features and 

prioritize it at the cost of processing of other objects (Carrasco, 2011).  

The control of attentional selection can be guided voluntarily by internal, or 

endogenous, top-down processes on the basis of behavioral relevance, prior knowledge and 
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expectations, or it can be guided automatically by external, or exogenous, bottom-up 

processes that are related to stimulus factors such as sensory salience or unexpectedness 

(Corbetta & Shulman, 2002; Itti & Koch, 2001; Jonides & Irwin, 1981). While these opponent 

processes have been described as separate systems with distinct anatomical substrates in 

the brain, they must flexibly interact to produce dynamic attentional control in a constantly 

changing environment. Psychological models have been put forward that aim at explaining 

how the interaction between bottom-up and top-down signals operates during attentional 

deployment. Amongst different approaches, a dominant idea of current theories of visual 

attention suggests that both factors are jointly reflected in a “priority map” that governs the 

distribution of attentional deployment and determines which features, objects or locations are 

selected in a visual scene (or "saliency map"; Ptak, 2012; Treue, 2003). However, there is 

little evidence for a unitary neural correlate for such a “priority map”. Rather, distributed 

frontoparietal and visual regions display enhanced responses to both bottom-up as well as 

top-down factors during attentional deployment (Ptak, 2012). Therefore, the question of how 

these brain regions functionally interact during attentional deployment remains a central 

question in cognitive neuroscience. 

  An influential framework has been proposed by Corbetta and Shulman (2002) 

suggesting that visual attention is controlled by two distinct neural networks (see Fig. 1): a 

dorsal frontoparietal network comprising the intraparietal sulcus (IPS) and the frontal eye 

fields (FEF) that controls the voluntary orienting of attention, and a right lateralized ventral 

frontoparietal network including the temporoparietal junction (rTPJ) and inferior frontal gyrus 

(IFG), which activates when reorienting of attention to unexpected or unattended stimuli is 

required. Nevertheless, the strict dichotomy between dorsal and ventral neural networks has 

been challenged in the recent past. There is growing evidence suggesting that dorsal and 

ventral systems work in collaboration to establish adaptive control of orienting and reorienting 

of attention and this interplay has been shown to crucially depend on current task demands 

(Macaluso & Doricchi, 2013;  see Vossel, Geng, & Fink, 2014b for a review).  
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Figure 1 Dorsal and ventral attention networks as proposed by Corbetta and Shulman 

(2002). 

 

The experimental paradigm which is most commonly applied to investigate these 

orienting and reorienting processes was introduced by Posner in 1980. In this paradigm, 

subjects are asked to respond to the occurrence of a target (detection task) or a specific 

target characteristic (discrimination task). Prior to target presentation, they are provided with 

a cue that informs them about the most likely location of the target (spatial cue; e.g. an arrow 

pointing to the left or right hemifield).  

In a small proportion of trials (e.g. 20%) the cue is invalid and incorrectly predicts the 

location of the target. Since the subjects expect the cue to be correct in most of the trials they 

respond faster and more accurate on valid trials as compared to invalid and neutral trials 

during which uninformative cues are provided (Posner, 1980; see Fig. 2). The difference in 

response times (RT) between valid and invalid trials is referred to as “validity effect” and is 

used to quantify the attentional costs that occur when attention needs to be reoriented to 

invalidly cued targets.  
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Since the classical Posner paradigm employs spatial cues to study directed spatial 

attention, space-based orienting, reorienting and their neural correlates have been 

extensively investigated. One can, however, also present cues that inform subjects about the 

most likely feature of a target – such as its color – to study directed feature-based attention 

(feature-based cue; e.g. a color display specifying the target’s color). Feature-based versions 

of the Posner paradigm have already been applied to examine the neural mechanisms of 

orienting of attention to a target feature following a valid cue (Egner et al., 2008). However, 

the neural mechanisms of feature-based reorienting to invalid cues have not been explored 

so far.  

For spatial as well as feature-based attention the validity effect scales with the 

proportion of valid trials, so that reaction time differences between valid and invalid trials 

increase when valid trials occur more frequently (see Fig. 2B; Egner et al., 2008; Eriksen & 

Yeh, 1985; Madden, 1992). A theoretical approach that conceptualizes how cue validity 

potentially modulates attentional deployment assumes that it is gradually aligned with the 

relevance for attentional allocation ("gradient model"; Madden, 1992). In other words, with a 

higher benefit of attentional deployment, more resources are employed following the cue and 

hence stronger reorienting is required during invalid trials.  

Recently, it has been shown for the spatial attention system that explicitly signaled as 

well as unsignalled changes in the percentage of cue validity (%CV) induce increases or 

decreases in the validity effect and this modulation is accompanied by increased or 

decreased activation of space-based reorienting networks (Vossel, Mathys, Stephan, & 

Friston, 2015; Vossel, Thiel, & Fink, 2006). These effects have not been investigated for 

feature-based reorienting as yet.  
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Figure 2 Illustration of the Posner-cueing paradigm with feature-based and spatial 

cues. 

 

A Posner-cueing paradigm with feature-based and spatial cues and the corresponding 

reaction time pattern illustrating the validity effect.  

B Prototypical illustration of validity effects that scale with the proportion of valid 

trials.  
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1.2 Spatial attention  

We can covertly orient attention in space without directing eye gazes to a specific 

location. Covert orienting of spatial attention increases responses in extrastriate cortex 

neurons whose receptive fields overlap with the attended location and therefore facilitates 

the processing of stimuli that are presented at this location (Luck, Hillyard, Mouloua, & 

Hawkins, 1996; Moran & Desimone, 1985). These facilitatory effects of attentional 

deployment can be measured behaviorally with RTs (see section 1.1).  

Models of spatial attention systems in the human brain have been informed by 

observations of stroke patients with attentional deficits. For instance, patients suffering from 

unilateral brain lesions show impaired spatial orienting to the visual field opposite to the 

damage, referred to as the contralesional hemifield. These impairments are strongest when 

attention needs to be reoriented from the intact ipsilesional hemifield to the contralesional 

hemifield (Mesulam, 1999). Since these patients tend to ignore one side in visual space, their 

neurological syndrome is called spatial neglect (Stone, Halligan, & Greenwood, 1993). Most 

spatial neglect patients have lesions in the right parietal lobe such as the angular gyrus and 

inferior parietal cortex (Mort et al., 2003). Based on these observations it has traditionally 

been assumed that spatial attention is controlled by the parietal cortex of the right 

hemisphere. Although less frequently, spatial neglect symptoms can however also be 

induced by damage to the left hemisphere and lesions to frontal and subcortical regions (see 

Husain & Rorden, 2003 for a review). Therefore, it was proposed that spatial neglect 

underlies dysfunctional interactions between both dorsal and ventral frontoparietal networks 

(see Bartolomeo, Thiebaut de Schotten, & Chica, 2012 for a review).  

Consistently, neuroimaging studies in healthy subjects have shown that the IPS and 

FEF of the dorsal network contain representations of spatial coordinates in a visual scene 

that compose topographic maps (see Silver & Kastner, 2009 for a review). Thus, these 

regions comprise spatial information that could potentially be used for biasing responses in 

visual areas. The extent to which this spatial information is lateralized during spatial 
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attentional orienting is still a matter of debate. Some studies have reported that responses in 

IPS and FEF are stronger during spatial attention shifts to the contralateral hemifield 

(Szczepanski & Kastner, 2013; Szczepanski, Konen, & Kastner, 2010), while others have 

observed bilateral activity during spatial attention shifts to either hemifield (Hopfinger, 

Buonocore, & Mangun, 2000; Shomstein & Yantis, 2006). The ventral network displays a well 

described right hemisphere lateralization. However, it does not contain topographic maps of 

space (Corbetta & Shulman, 2011). In particular, the rTPJ is thought to induce attentional 

reorienting to unexpected or infrequent stimuli occurring in either hemifield (Corbetta & 

Shulman, 2011). It has originally been proposed that the rTPJ acts as a “circuit breaker” to 

the dorsal network that signals the required reorienting of attention following expectancy 

violations (see section 1.1). However, some studies have shown that dorsal network 

responses precede rTPJ activity during sensory processing (see Geng & Vossel, 2013 for a 

review). This indicates that rTPJ activity occurs later during the evaluation of sensory 

information rather than solely during early stages of attentional reorienting. Based on these 

findings, other theories on the role of the rTPJ in spatial attention have emerged. Amongst 

these, the “contextual updating hypothesis” has been proposed, suggesting that the rTPJ 

integrates incoming sensory information with internal models of contextual information and 

updates these models when violations occur (Geng & Vossel, 2013).  

While it is well recognized that dynamic interactions between dorsal and ventral 

networks provide flexible control of spatial attention, it remains to be clarified whether these 

networks similarly respond to other domains of visual attention, such as feature-based 

attention, or whether they are selective to the spatial system.  
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1.3 Feature- based attention 

Since to this point most research on attentional control systems in the human brain 

has been focused on spatial attention, much less is known about feature-based attention. 

Some of the few neuroimaging studies investigating feature-based mechanisms with cueing 

paradigms have indicated that the dorsal network associated with spatial attention also 

maintains feature-based information (Egner et al., 2008; Giesbrecht, Woldorff, Song, & 

Mangun, 2003; Wojciulik & Kanwisher, 1999; also see Corbetta & Shulman, 2002). For 

instance, similar brain regions including superior parietal lobe (SPL), IPS and FEF have been 

shown to engage when attention is directed to a specific motion direction or a stimulus color 

(Liu, Hospadaruk, Zhu, & Gardner, 2011; Liu & Hou, 2013). Although, based on these 

findings, it has been proposed that feature-based and spatial attention embody different 

forms of the same attentional control system, there still is some evidence pointing to 

differences between them. For example, transcranial magnetic stimulation (TMS) over the 

right supramarginal gyrus decreases spatial orienting, while leaving feature-based orienting 

unaffected (Schenkluhn, Ruff, Heinen, & Chambers, 2008). Likewise, the behavioral effects 

of feature and spatial cueing did not interact in a combined cueing task, indicating that they 

adhere to independent mechanisms (Egner et al., 2008). As distinguished from spatial 

attention, feature-based attention occurs independently from the spatial location of the 

attended stimuli since it globally enhances sensory processing throughout the visual field 

without topographic distribution (Maunsell & Treue, 2006; Saenz, Buracas, & Boynton, 2002). 

These modulatory effects are thought to increase neural responses in cortical sites that are 

sensitive to the attended feature, such as MT/V5 for motion processing and V4 for color 

processing (Beauchamp, Cox, & DeYoe, 1997; Corbetta, Miezin, Dobmeyer, Shulman, & 

Petersen, 1991; Saenz, Buracas, & Boynton, 2003). Interestingly, signals in IPS and FEF 

also carry dimension-specific information differentiating between attending to motion and 

attending to color (Liu et al., 2011), suggesting that distinct neural populations within the 

dorsal network represent different stimulus features during attentional orienting.  
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The neural signatures of feature-based shifts of attention as required during 

attentional reorienting have so far only been investigated using task-switching paradigms 

with changing feature dimensions. In particular, it has been shown that a left rather than a 

right lateralized network including the left precentral gyrus, precuneus and left IPS transiently 

activates when task-relevant feature dimensions change, for instance, from motion to color 

and vice versa (Liu, Slotnick, Serences, & Yantis, 2003; Shulman, d'Avossa, Tansy, & 

Corbetta, 2002; Weidner, Krummenacher, Reimann, Muller, & Fink, 2009). While this 

indicates that distinct networks are involved in feature-based reorienting as compared to 

spatial reorienting, the two mechanisms have so far not been systematically compared. 

Moreover, evidence from cueing paradigms with invalid feature cues is missing.  

 

1.4 Expectations, predictions and probabilistic inference 

Since in everyday life sensory inputs carry a high level of uncertainty, the brain needs 

to implicitly predict which sensory inputs to expect from the environment. On account of this, 

computational approaches claim that the brain acts as a prediction machine (Clark, 2013; 

Friston, 2005). More precisely, predictive coding frameworks suggest that the brain maps the 

sensory inputs it receives from the environment with predictions that it has formed based on 

prior knowledge. Following this approach, it is assumed that predictions are obtained by 

generative models, which represent internal models of environmental states based on 

evidence from observations. The brain continuously keeps track of the mismatch between 

these predicted states and the actual observed states and in return updates its internal 

model based on this mismatch or prediction error signal (Daunizeau et al., 2010b; Friston & 

Kiebel, 2009).  

Principles of probability theory can describe this inference process. These principles 

rest upon Bayesian statistics, which suggest that beliefs about uncertain sensory inputs are 

represented in terms of probability distributions (Pouget, Beck, Ma, & Latham, 2013). The 
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aim is to obtain probability distributions over a variable of interest (s) given sensory 

measurements (I) and prior knowledge p(s) according to Bayes’ rule: 

 

�(�|
) = �(
|�)�(�)�(
)  

 

Here, the posterior distribution p(s|I) is computed by multiplying the prior distribution 

p(s) with the likelihood function p(I|s), and dividing it by the term p(I) which ensures that the 

posterior integrates to 1. Table 1 lists examples of these terms for the inference of the 

direction of a moving stimulus on the basis of the activity of neurons in the motion-sensitive 

area MT. 

Table 1. Definitions of the terms used in the formula of Bayes’ rule (Pouget et al., 2013)   

 
 

Form 

 

Term 

 

Example 

   

�(�|
) posterior Inferring the direction of a moving stimulus s given 

patterns of neural activity of neuron in area MT. 

�(
|�) likelihood Probability of an observed pattern of neural activity of 

MT neurons given a moving stimulus s. 

�(�) prior Prior probability over the direction of motion before 

observing neural activity in MT. 

�(
) denominator How probable is our data given all possible models? 

 

The goal of this Bayesian inference process is to decrease prediction errors about 

sensory inputs and to increase the posterior probability by updating predictions whenever 

new sensory inputs are observed (Friston & Kiebel, 2009).  

One account proposes that the reduction of future prediction errors minimizes the 

“free-energy” in the exchange between the observer and the environment (Friston, Kilner, & 

Harrison, 2006; see Box 1) and thereby reduces the “surprise” about sensory inputs.  



THEORETICAL SECTION 

24 

 

Indeed, computational models that rely on Bayesian principles have been applied to 

different domains of cognition and there is increasing evidence that these models explain 

human behavior better than normative theories (Behrens, Woolrich, Walton, & Rushworth, 

2007; den Ouden, Daunizeau, Roiser, Friston, & Stephan, 2010; Kording & Wolpert, 2004). 

 
Box 1. The free-energy principle  
 

 

 

For instance, in the domain of attention, it has been shown that the behavioral effects 

of valid and invalid spatial cues in the Posner cueing paradigm can be explained by Bayesian 

principles (Feldman & Friston, 2010). More precisely, it has been proposed that spatial 

attention increases the precision of the sensory inputs so that reactions to attended stimuli 

(valid trials) are faster than to unattended stimuli (invalid trials). In this context, precision 

refers to the confidence or inverse uncertainty. 

Bayesian models can also be employed to explain the effects of variable %CV (see 

section 1.1) when the predictive value of the cue varies over the course of the experiment 

(see Fig. 2B). In these volatile situations the belief about the %CV at a given trial must be 

inferred based on observations of previous cue-target outcomes. Following new 

observations, the belief about the %CV requires to be updated to decrease prediction errors 

in subsequent trials. Thus, in this particular context probabilistic inference can be understood 

as trial-by-trial learning of cue-target outcomes.  

The free-energy principle  
 
The concept of free-energy is derived from thermodynamics and suggests that free 

energy represents the amount of energy within a physical system that can be 

transformed into work. It has been used to explain how biological systems – such as the 

brain – maintain their functioning (Clark, 2013; Friston, 2010a). It states that “any self-

organizing system that is at equilibrium with its environment must minimize its free 

energy. The principle is essentially a mathematical formulation of how adaptive systems 

(that is, biological agents, like animals or brains) resist a natural tendency to disorder.” 

(Friston, 2010a, p.127). 



THEORETICAL SECTION 

25 

 

Most Bayesian learning models assume that human behavior can be described as 

“Bayes-optimal”, yet there are clearly differences between individuals in the capacity for 

learning (Daunizeau et al., 2010a). Recently, Mathys et al. (2011) developed a hierarchical 

Bayesian learning model, which allows quantifying the influence of volatile situations on 

behavior of individual subjects (see Fig. 3). Hence, this model contains fixed parameters, 

which can vary between individuals to account for individualized (Bayes-optimal) learning. 

The model incorporates analytical update equations describing updating of beliefs about the 

environmental state that are used to form sensory predictions. It comprises hierarchical 

states with superordinate levels governing subordinate levels. Applying this hierarchical 

Bayesian learning scheme to empirical data provides trial-by-trial estimates of prediction 

errors and their precision for the different levels in the hierarchy.  

The model of Mathys et al. (2011) has been applied to response speed (RS) data in 

an adapted version of the Posner paradigm with spatial cues and block-wise changing cue 

validities (Vossel et al., 2014a; Vossel et al., 2014c; Vossel et al., 2015). In this specific case, 

the hierarchical model consisted of three hierarchical levels: The lowest level represented the 

presence of a valid or an invalid trial at a given observation, whereas the next higher level 

represented changes in cue validity over time. The highest level represented the estimation 

of the volatility of these changes appreciating that there were periods with faster and slower 

changing cue validity. Here, the individual learning parameters could be interpreted as the 

individuals’ susceptibility to updating trial-by-trial estimates about cue validity and estimates 

about their volatility (see Fig. 3). 

By inverting the model on the basis of RS data, precision-based attentional weights 

were derived for each trial, which were interpreted as the proportion of attentional allocation 

to the cued location (Vossel et al., 2014c). This framework offers an elegant way to identify 

how attentional systems behave during uncertainty. The following section will describe how 

these computational modelling approaches can be incorporated in the analysis of fMRI data. 
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Figure 3 Illustration of the hierarchical generative model by Mathys et al. (2011). 

 

The posterior distribution at each level is determined by the quantities and parameters 

at the next highest level. These levels relate to each other by determining the step size 

(volatility or variance) of the change (Gaussian random walk). This model has been 

applied to empirical data in a spatial cueing paradigm, as illustrated in the right 

column (Vossel et al., 2014c; This figure is adapted from Mathys et al. (2011)).  
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1.5 Functional neuroimaging and computational modeling 

Functional magnetic resonance imaging (fMRI) is a technique that is often used to 

characterize how cognitive processes may be represented in the human brain. It relies on the 

assumption that active neurons increase metabolic activity, causing a change of regional 

blood flow and blood oxygenation in the brain. This change in the ratio between oxygenated 

and deoxygenated blood can be measured on the basis of their differential magnetic 

properties. More specifically, the carrier of deoxygenated blood (deoxygenated hemoglobin) 

is paramagnetic and induces inhomogeneities in the MR signal, while oxygenated 

hemoglobin is diamagnetic and increases the MR signal. Hence, fMRI measures changes in 

blood oxygenation level dependent signals (or BOLD signals), providing an indirect measure 

of neuronal activation (Logothetis & Pfeuffer, 2004; Logothetis & Wandell, 2004). The change 

in BOLD contrast in response to a stimulus is termed hemodynamic response function (HRF; 

Ogawa, Lee, Kay, & Tank, 1990). 

Consequently, the neural correlates of cognitive processes can be inferred using 

statistical analysis of the BOLD signal. This is done by isolating specific events of interest 

that are defined based on experimental manipulations. Variations of the BOLD signal over 

time are modelled time locked to the occurrence of particular events. Such events could for 

instance be valid as compared to invalid cues or spatial as compared to feature cues (see 

Fig. 4). Subsequently, a general linear model (GLM) is used to explain voxel-wise variation in 

BOLD signal, assuming that it represents a linear combination of the explanatory variables 

(experimental conditions, nuisance regressors) and an error term. As standard in linear 

regression models, the variation in BOLD signal that is explained by a particular experimental 

condition is expressed in beta weights (Holmes & Friston, 1997). These beta weights can be 

contrasted directly between experimental conditions (e.g., invalid > valid) or between 

experimental conditions and an implicit baseline (e.g., invalid ∩ valid > baseline). Importantly, 

factorial designs also allow for the investigation of interactions between experimental 
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conditions in different contexts (e.g., spatial invalid > spatial valid vs. feature invalid > feature 

valid).  

Furthermore, parametric modulation can be included in the fMRI design to additionally 

model variations in HRF amplitudes of a certain experimental condition with a parameter 

value of interest. These values are continuous variables and can, for instance, denote 

parameters derived from computational models. By applying this method, brain regions can 

be identified where the influence of experimental conditions on BOLD signal responses 

varies with increasing or decreasing parametric values (see Fig. 4). These fMRI designs are 

particularly interesting for investigating the neural mechanisms of adaptive behavior in 

uncertain situations when responses within an experimental condition vary across time, so 

that averaging all trials would abolish subtle trial-by-trial effects. An example for parametric 

values that can be incorporated in the analysis of fMRI data could be trial-by-trial estimates 

of cue validity. 

 

Figure 4 Illustration of the relation between stimulus onset and BOLD responses. The 

lower graph depicts how BOLD responses are modelled by parametric modulation.   
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2. Empirical section  

2.1. Objectives of the thesis  

The present thesis aimed at investigating the influence of inferred trial-by-trial 

expectancies on feature-based as compared to spatial attentional deployment and at 

elucidating the neural mechanisms of these processes. The empirical section will describe 

two experiments which have been conducted to address the following research questions:   

 

1. Does the effect of probabilistic inference on feature-based attentional deployment 

depend on the level of feature cue abstraction (Experiment 1)?  

2. Which brain areas are involved in feature-based reorienting of attention (Experiment 

2)?  

3. Are the physiological implementations of probabilistic inference universal across 

feature-based and spatial attention systems, or are they domain-specific with 

differential neural correlates for the two systems (Experiment 2)?  

 
 

Declaration of Authorship 

Both experiments were conducted in collaboration with co-authors. The author of the 

present thesis essentially contributed to the operationalization of the experiments, to the 

collection and analysis of the data, as well as writing of the papers.  
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2.2. Experiment 1: Psychophysical experiment  

Dombert, PL., Fink, G.R., Vossel, S. (2016). The impact of probabilistic feature cueing 

depends on the level of cue abstraction. Exp Brain Res, 234, 685-694. 

(Reprinted from Experimental Brain Research, 234, The impact of probabilistic feature 

cueing depends on the level of cue abstraction, 685-694, Copyright 2016, with permission of 

Springer.) 
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Abstract 

Allocation of attentional resources rests on predictions about the likelihood of events. 

While this effect has been extensively studied in the spatial attention domain where the 

location of a target stimulus is pre-cued, less is known about the cueing of stimulus features 

such as the color of a behaviorally relevant target. Moreover, there is disagreement about 

which types of color cues are effective for biasing attention. Here we investigated the effects 

of probabilistic context (percentage of cue validity, %CV) for different levels of cue 

abstraction to elucidate how feature-based search information is processed and used to 

direct attention. The color of a target was cued by presenting the perceptual color, the color 

word, or two-letter abbreviations. %CV, i.e., the probability that the cue indicated the color 

correctly, changed unpredictably between 50, 70 and 90%. Response times (RTs) for valid 

and invalid trials in each %CV condition were recorded in 60 datasets and analyzed with 

analyses of variance. The results showed that all cues were associated with comparable RT 

costs after invalid cueing. The modulation of RT costs by probabilities, however, depended 

upon level of cue abstraction and time on task: while a strong, immediate impact of %CV was 

found for two-letter cueing, the effect was solely observed in the second half of the 

experiment for perceptual and word cues. These results demonstrate that probabilistic 

feature-based information is processed differently for different levels of cue abstraction. 

Moreover, the modulatory effect of the environmental statistics differentially depends on the 

time-on-task for different feature cues.   

 

Keywords: cue validity; color cueing; probabilistic context; time-on-task; visual attention. 
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Introduction 

Probabilistic expectancies about upcoming sensory events guide attentional 

deployment and affect the speed with which we process behaviorally relevant stimuli. 

Attentional resources can be allocated to spatial locations (Posner, 1980), but also to 

stimulus features such as color or orientation. Experimentally, these processes can be 

studied with cueing paradigms, in which a cue indicates either the location or a feature of a 

behaviorally relevant target stimulus with a specific probability (percentage of cue validity, 

%CV) (e.g., Egner et al., 2008). For the allocation of spatial attention, it has already been 

shown that changes in probabilistic context affect the response time costs associated with 

invalid cueing, even when the subjects are not explicitly instructed about the underlying 

environmental statistics (Vossel et al., 2014a; Vossel et al., 2014c). Higher levels of %CV 

lead to higher validity effects (i.e., higher response time differences between trials with 

invalid and valid cues), since invalid trials are less expected. For the cueing of stimulus 

features (e.g., color), it has been shown that similar effects can be observed when the 

subjects are explicitly informed about the different levels of %CV (Egner et al., 2008). 

However, these effects have not been investigated in situations in which no explicit 

information about cue validity is provided.  

Furthermore, no study has systematically compared the effect of different levels of 

abstraction of color cues. The color of a stimulus can, for example, be cued perceptually by 

presenting the most likely physical color of an upcoming target. Moreover, the target color 

can be cued by the presentation of the color word or by more abstract letters. Whether these 

different kinds of cues are equally effective for directing attention remains a matter of debate. 

While some studies have shown that verbal guidance, or knowledge of the feature 

dimension, can bias visual selection (Ansorge & Becker, 2012; Muller & Geyer, 2009; Muller 

et al., 2010; Soto, Rotshtein, Hodsoll, Mevorach, & Humphreys, 2012), others claim that 

perceptual priming by the physical color is needed (Theeuwes, 2013; Theeuwes & Van der 

Burg, 2007). 
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The present study investigates the contribution - and putative interaction - of different 

levels of feature cue abstraction and probabilistic context on attentional deployment.  More 

specifically, we cued the color of a behaviorally relevant target stimulus perceptually (by 

presenting a colored disk) or verbally (by presenting either the whole color word or by 

presenting a two-letter abbreviation of the color word). Classical Stroop paradigms have 

illustrated the automatic nature of visual word recognition (Brown, Gore, & Carr, 2002; 

Ferrand & Augustinova, 2014; MacLeod, 1991; Neely, VerWys, & Kahan, 1998). 

Interestingly, however, the Stroop effect diminishes when a single target letter in a word is 

deviant from expected, e.g., presented in a unique color (Labuschagne & Besner, 2015). 

Hence, we employed the two-letter abbreviation to create a more abstract cueing condition 

with less automaticity of the retrieval of cue meaning than whole color words or the 

perceptual color, respectively. Additionally to the three different levels of cue abstraction, we 

varied %CV over the time of the experiment. This allowed us to test for main effects and 

interactions of different levels of cue abstraction and %CV on the cueing effects in response 

times (i.e., the validity effect as the difference in response time between invalid and valid 

trials). We aimed at disambiguating between the following competing hypotheses: If sensory 

priming is a prerequisite for attentional deployment in response to color cues, we should 

observe a main effect of the different feature cue conditions, such that significant response 

time costs in invalid trials (i.e., the validity effect) can only be found for the perceptual cues. If 

these perceptual priming processes are not purely automatic but susceptible to probabilistic 

information, these effects should furthermore be modulated by %CV, with higher cueing 

effects with higher %CV. Alternatively, if more abstract cues such as the color word or two-

letter abbreviations are equally effective in biasing attentional deployment, the main effect of 

feature cue abstraction on the validity effect should not be significant. Equal or differential 

susceptibilities of the different feature cue types to probabilistic context would be reflected in 

the presence or absence of feature cue by %CV interaction effects, respectively. In addition, 

the effects of unsignalled changes of %CV may depend on the number of observations, i.e., 

the time-on-task. In other words, the number of observed cue-target outcomes or the 
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exposure to volatile contingencies may affect the impact of the environmental statistics and 

the adaptation of behavior (Behrens et al., 2007). For this reason, we analyzed the first and 

second half of the trials separately to also test for a differential evolvement of the effects of 

probabilistic context and feature cues over the time of the experiment.      

 

Materials and Methods 

Subjects 

Sixty datasets were acquired from 49 healthy subjects (30 females; mean age 24.3 

years, ranging from 18 to 34 years) who gave written informed consent to participate in the 

current study. Eleven subjects participated in two experimental versions (intersession interval 

> one week; order randomized). Subjects were randomly allocated to three experimental 

versions, (i.e., perceptual cueing task: n=20, 10 female; mean age 23.9 years, range 18-31 

years; word cueing task: n=20, 12 female; mean age 23.9 years, range 20-31 years; two-

letter cueing task: n=20, 14 female; mean age 24.6 years, range 18-31 years). All subjects 

were right-handed, had normal or corrected to normal vision, and did not suffer from any 

neurological or psychiatric conditions. The ethics committee of the German Psychological 

Society had approved the study. The study was performed in accordance with the Code of 

Ethics of the World Medical Association (Declaration of Helsinki). 
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Stimuli and Experimental Paradigm 

We used a feature-cueing paradigm with central cues (adapted from Egner et al., 

2008). Stimuli were presented on a 19-inch monitor (spatial resolution 1024 × 768 pixels, 

refresh rate 60 Hz) with a viewing distance of 70 cm. A central diamond (0.8° eccentric in 

each visual field) served as a fixation point. On each trial, subjects were shown a cue 

stimulus followed by a search array consisting of four peripherally located diamond stimuli 

(6.7° eccentric in each visual field, see Fig. 1a). The diamond stimuli could be either blue or 

red and were placed in the corners of a virtual rectangle centered around the fixation 

diamond on a gray background. Each hemifield always contained a blue and a red diamond. 

The color and position of the red and blue stimuli was counterbalanced, resulting in an equal 

number of diagonal and horizontal arrangements of red and blue stimuli in the different %CV 

blocks and across valid and invalid trials (see Fig. 1a, diagonal arrangement). One of the 

diamonds was missing either its upper or lower corner. Subjects were asked to detect this 

target diamond and indicate via button press with the right index or middle finger whether the 

upper or lower corner of the diamond was missing. The search array was preceded by a 

feature cue appearing in the central fragment of the fixation diamond for 400 milliseconds 

(ms). After a 1000-ms stimulus onset asynchrony the target display was shown for 500 ms. 

Trials were separated by a response period of 1000 ms (see Fig. 1a). 
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Figure 1 Illustration of the experimental task 

 

a The example shows a valid trial of the two-letter cueing condition. Subjects were 

asked to detect the diamond with a missing corner and to indicate by button press 

whether the upper or lower corner was missing. Subjects were requested to maintain 

central fixation throughout the experiment.  

b Illustration of the different cue stimuli for the three versions of the task as a function 

of level of feature processing.  

c Manipulation of the percentage of cue validity (%CV) over the 284 trials. 
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Three different variants of the feature cues were used, realizing three different levels 

of cue abstraction. In the perceptual-cueing version, the most likely physical color of the 

target was presented. Word cues comprised the written word of the color (‘rot’ or ‘blau’; [i.e., 

‘red’, ‘blue’ in German, respectively]). The abstract cueing consisted of a two-letter cue 

indicating the color (‘RO’ or ‘BL’; [i.e., ‘RE’, ‘BL’ in German, respectively] (see Fig. 1b). It is 

important to note, that the three tasks differed only in the cue stimuli that conveyed the 

feature-based information; target stimuli and trial sequences were identical between the 

different feature cue versions. The experiment consisted of 284 trials with blockwise changes 

in the percentage of cue validity (%CV) between ~50, ~70, and ~90%. Moreover, 84 “null 

trials”, during which only the baseline display (i.e., a fixation diamond) was shown, were 

included to jitter trial onsets. %CV could change after either 32 or 22 trials (see Fig. 1c). The 

overall rate of %CV amounted to 75% (78% in the first, and 72% in the second half, 

respectively), which is within the range that is commonly used in endogenous cueing 

paradigms (~75-80%) (Macaluso & Doricchi, 2013; Posner, 1980; Theeuwes & Van der 

Burg, 2007). A one-minute rest period was included after half of the trials, separating the 

experiment in two parts. Subjects were informed that there would be changes in %CV over 

the course of the experiment, but were not aware of the levels of those probabilities or the 

time when they would change.  Importantly, subjects were instructed to use the cue 

according to how much they “trust” it in order to speed up reaction times. In accordance with 

standard procedures of studies investigating learning processes that require inferring 

conditional probabilities, the order of trials was identical for all subjects (Behrens et al., 2007; 

Daunizeau et al., 2010a; Daunizeau et al., 2010b; Vossel et al., 2014ca,b). Hence target 

inputs were identical between cue versions. Within each block of constant %CV, the color of 

the four diamonds, the location of the target diamond, and the position of the missing 

fragment were presented with equal probability and counterbalanced across valid and invalid 

trials. Each session started with a short practice version (four min) of the task with 98 trials (+ 

28 “null trials”) and a constant %CV of 80%. In this training block, the subjects were explicitly 

informed about the percentage of cue validity. The training was used to familiarize the 
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subjects with the task and to practice fixation and the manual responses to the targets. Data 

from the training session were not analyzed.  

 

Data analysis 

The main dependent variable of interest in the present study was the validity effect in 

the different experimental conditions, i.e., the difference in response times (RT) between 

invalid and valid trials. However, we also analyzed the accuracy (percentage of correct 

responses) in the different experimental conditions. Individual median RTs from correct trials 

in each condition were included in the RT analyses and trials with missing, incorrect or 

anticipated responses (RT<100 ms) were excluded from the RT analyses. The two halves of 

the experiment were analyzed separately. Since the number of trials in the different %CV 

levels differed between the first and second half, we did not test for interactions between 

%CV and time. However, since the trial sequence was identical for all subjects, we still tested 

for interaction effects of the experimental factors including time with the between-subject 

factor feature cue. Validity effects (RT costs) were calculated by subtracting median RTs of 

valid trials from median RTs of invalid trials in each %CV condition (50, 70, and 90%). These 

validity effects entered the group analyses with ANOVAs. In particular, validity effects were 

analyzed with a 3 (%CV: 50, 70, 90%) × 2 (time: 1st half, 2nd half) repeated measures 

ANOVA with the additional between-subject factor for the feature cue (perceptual cue, word 

cue, two-letter cue). The same analysis was performed on accuracy. A main effect of feature 

cue would reflect differential effectiveness of the different levels of cue abstraction for 

attentional deployment. An effect of probabilistic context would be reflected in a significant 

%CV main effect, with higher validity effects with higher %CV. A significant interaction effect 

of %CV × feature cue would reflect a differential susceptibility of the different feature cues to 

probabilistic context during the deployment of attention. In addition, we tested if these effects 

were modulated by the time-on-task.  

To test for general effects of valid versus invalid cueing, we also included an analysis 

on median RTs in invalid and valid trials, where the factor cueing (valid, invalid) was added to 
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the ANOVA described above. However, for reasons of simplicity, we report the effects of 

%CV, feature cue, and time from the ANOVA on the RT differences (validity effects) (note, 

that the p-values are identical for both analysis). 

Previous research has investigated the influence of different cue-target contingencies 

in the spatial attention domain and has shown that the validity effect varies linearly with %CV  

(e.g., Giessing, Thiel, Rosler, & Fink, 2006; Riggio & Kirsner, 1997; Vossel et al., 2014a; 

Vossel et al., 2014c). Based on this, we predicted a linear effect of %CV on the deployment 

of attention in the feature domain. Such an effect has already been demonstrated for explicit 

probability manipulations with single letter color cues (Egner et al., 2008). In the present 

study, we tested if this probability modulation was likewise observed for an implicit 

manipulation of probabilistic context, and for different levels of cue abstraction. For this 

reason, we report within-subjects linear contrasts for the effects of %CV.  

We additionally applied a distributional analysis fitting ex-Gauss distributions to RT 

data on the single-subject level using the DISTRIB toolbox (Lacouture & Cousineau, 2008). 

This procedure allows for a more comprehensive analysis of RTs and the central tendency 

measure. However, it requires many data points per participant and condition (Whelan, 

2008). We were therefore only able to fit ex-Gauss functions to the data from the whole 

experiment, thereby ignoring time effects. Results from this analysis are reported in the 

Online Resource 1. Data Analyses were performed using MATLAB® (2012b, The 

MathWorks, Inc., Natick, Massachusetts, United States) and SPSS (IBM SPSS Statistics for 

Windows, Version 21.0. Armonk, NY: IBM Corp). Since we used a between-subject design in 

the current study, we repeated the 3 (%CV: 50, 70, 90%) × 2 (time: 1st half, 2nd half) × 3 

(feature cue: perceptual, word, two-letter) ANOVA with inclusion of age and gender as 

covariates. Moreover, since it has been shown that the size of the validity effect can be 

related to trait impulsivity (Landau, Elwan, Holtz, & Prinzmetal, 2012), we added the subject-

specific scores from the subscales of the Barratt Impulsiveness Scale 11 (BIS-11; Patton, 

Stanford, & Barratt, 1995) as a further covariate. 
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Eye Movement Recording and Analysis 

We monitored movements of the right eye with an EyeLink® 1000 (SR Research) 

eye-tracking system with a sampling rate of 1000 Hz. At the start of the experiment, a 9-point 

eye-tracker calibration and validation was performed (validation error <1° of visual angle). 

Analysis of the data was performed using MATLAB (2012b, The MathWorks, Inc., Natick, 

Massachusetts, United States). The critical period analyzed for gaze deviations from the 

center was the time window between presentation of the cue and the target display (cue-

target period). Saccades were identified when the eye velocity exceeded 30°/s. Gaze 

deviations from fixation >1.5° visual angle in the cue-target period were determined and 

expressed as a percentage score. Group differences in percentage fixation scores were 

analyzed by entering the percentage scores for each subject into an ANOVA with the within-

subject factor time (first half, second half) and the between-subject factor feature cue 

(perceptual cue, word cue, two-letter cue). 

 

Results 

Behavioral results 

Table 1. depicts median RTs based on which validity effects were calculated. The 3 

(%CV: 50, 70, 90%) × 2 (time: 1st half, 2nd half) × 3 (feature cue: perceptual, word, two-letter) 

ANOVA on the validity effects revealed no significant main effect of feature cue (F2,57= 0.47, 

p =.63), reflecting that the three different cues did not differ significantly in biasing attention. 

When median RTs for valid and invalid trials per subject entered the ANOVA instead of the 

RT difference (validity effect), the main effect of cueing was significant (F1,57= 75.24, p<0.01), 

such that RTs for invalid trials were consistently slower than for valid trials. In the ANOVA on 

the validity effect, the main effect of %CV was significant (linear contrast: F1,57= 6.08, p<0.05) 

indicating stronger cueing effects (i.e., higher RT costs after invalid cueing) with higher %CV. 

Moreover, we observed a significant interaction effect between %CV × feature cue (linear 

contrast: F2,57= 3.85, p<0.05, See Fig.2). This effect was also observed when using a 

distributional analysis of RTs with ex-Gauss functions (See Online Resource 1). 
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Table 1 RT data 

Average (± SEM) individual median RTs for valid and invalid trials in the three %CV 

conditions, calculated separately for first and second half of the experiment and feature cue. 

 

Adding the additional factor time, showed that this effect was additionally modulated 

by time (linear contrast: %CV × feature cue × time interaction effect: F2,57= 3.19, p<0.05), 

suggesting a differential impact of probabilistic context on the validity effect in the three 

feature cueing versions in the first and the second half of the experiment. Figure 3 illustrates 

this 3-way interaction effect graphically by plotting the validity effects separately for the 

different feature cue versions and experimental conditions. Following up this 3-way 

interaction effect, the validity effects of the first and second half of the experiment were 

further analyzed by calculating separate ANOVAs with the factor %CV and feature cue. For 

the first half of the experiment the ANOVA revealed a significant interaction effect of %CV 

and feature cue, but no main effect of %CV (main effect of %CV: F1,57= 0.66, p=.42; 

interaction effect %CV × feature cue: F2,57= 5.46, p<.01). This significant interaction was 

further analyzed by performing separate ANOVAs for the three feature cues with the factor 

  50 %CV  70 %CV  90 %CV 

Valid Invalid Valid Invalid Valid Invalid 

Two-letter 

cue 

1
st

 half 

617.8 

(23.2) 

681.9 

(30.3) 

601.8 

(19.0) 

693.5 

(37.6) 

608.4 

(15.0) 

756.4 

(30.6) 

2
nd

 half 

587.5 

(13.5) 

649.8 

(21.9) 

597.3 

(13.6) 

661.2 

(37.6) 

593.4 

(14.4) 

689.1 

(35.8) 

Word cue 

1
st

 half 

534.1 

(29.9) 

703.6 

(46.4) 

649.1 

(32.4) 

724.5 

(39.9) 

638.5 

(31.1) 

710.1 

(36.0) 

2
nd

 half 

596.3 

(27.5) 

632.9 

(22.9) 

614.2 

(30.4) 

661.9 

(31.1) 

609.7 

(28.6) 

701.6 

(34.7) 

Perceptual 

cue 

1
st

 half 

624.1 

(30.6) 

742.7 

(44.6) 

628.5 

(30.4) 

705.5 

(32.9) 

619.4 

(24.9) 

691.5 

(29.1) 

2
nd

 half 

625.6 

(23.3) 

688.5 

(22.3) 

623.0 

(23.5) 

704.6 

(33.9) 

596.8 

(19.2) 

683.9 

(28.1) 
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%CV. The analyses revealed a significant effect of %CV for the two-letter cueing only (main 

effect of %CV: two-letter cueing: F1,19= 21.44, p<.001; word cueing: F1,19= 0.004, p=.95; 

perceptual cueing: F1,19= 2.22, p=.16). Analysis of the second half of the experiment revealed 

a significant main effect of %CV, and no interaction between %CV and feature cue (main 

effect of %CV: F1,57= 8.26, p<.01; interaction effect %CV × feature cue: F2,57= 0.49, p=.61). 

 

 

Figure 2. Response time results across the whole experiment 

 

Illustration of the average validity effects (response time (RT) invalid minus RT valid) 

for the three %CV levels (across the whole experiment) separately for each feature 

cue. Darker bars represent more abstract and lighter bars less abstract processing. 

Mean validity effects and standard errors of the mean are reported in milliseconds 

(ms). 
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Figure 3. Response time results in the two halves of the experiment 

 

Illustration of the average validity effects (response time (RT) invalid minus RT valid) 

for the three %CV levels as a function of time (first vs. second half of the experiment) 

and feature cue. Blue (left) bars depict validity effect data for the first half of the 

experiment; red (right) bars show validity effect data for the second half of the 

experiment; darker bars represent more abstract- and lighter bars less abstract 

processing. Mean validity effects and standard errors of the validity effects are 

reported in milliseconds (ms).  

 

 
These additional analyses show that a modulation of the validity effect by %CV 

(higher validity effects with higher %CV) was in the first half only present in the two-letter 

cueing condition (%CV × feature cue interaction), while it was observed for all three cueing 

versions in the second half of the experiment (main effect of %CV, no interaction with feature 
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cue). There was a marginal trend of the factor time (F1,57= 3.12, p=.08), so that (irrespective 

of %CV) validity effects tended to be slightly lower in the second half of the experiment. 

However, there was no interaction of time and feature cue (F2,57= .19, p=.83), and no other 

terms of the ANOVA reached significance. The present results showed that all three feature 

cues produced similar response time costs after invalid cueing and that the subjects were 

able to infer the probabilistic context from the observations (main effect of %CV). However, 

there was an interaction between the effect of probabilistic context and the level of 

abstraction of the feature cues, which was additionally modulated by time. We observed that 

in the first half of the experiment the expected impact of %CV on the validity effect (i.e., 

higher validity effects with higher %CV) was only present in the two-letter-cueing condition. In 

the other two conditions, probabilistic context affected validity effects with increasing time on 

task and the linear effect of %CV was only obvious in the second half of the experiment (see 

Fig. 3). The critical three-way interaction of feature cue, %CV, and time remained significant 

when age, gender, and scores from the BIS-11 impulsivity subscales entered the above 

ANOVA as covariates, while there was no significant effect of this interaction on any of the 

covariates. 

Overall accuracy amounted to 91.5 ± 1.1%, 88.3 ± 1.7%, and 93.2 ± 1.2% (mean ± 

SEM) in the perceptual, word, and two-letter feature cue version, respectively. Figure 4 

depicts differences in accuracy between invalid and valid trials in the different experimental 

conditions. The 3 (%CV: 50, 70, 90%) × 2 (time: 1st half, 2nd half) × 3 (feature cue: 

perceptual, word, two-letter) ANOVA on accuracies revealed a significant main effect of 

%CV, reflecting higher accuracy costs for invalid cueing with higher %CV (linear contrast: 

F1,57= 6.01, p<0.05). Moreover, there was a significant main effect of time indicating that 

accuracy differences between valid and invalid cueing were higher in the first part of the 

experiment (F1,57= 11.04, p<0.05). There was no significant interaction of feature cue with 

any other factor.   
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Eye-movement data 

Eye-movements were recorded to control for central fixation during the cue-target 

period. Valid eye-movement recordings could be obtained in 14 subjects in the perceptual-

cueing task, 20 subjects in the word-cueing task, and 16 subjects in the two-letter-cueing 

task. In the remaining subjects, eye-movements were monitored on-line by the experimenter. 

During the cue-target period, subjects maintained fixation in 99.1 ± 0.3% of the perceptual-

cueing trials, 99.3 ± 0.2% of the word-cueing trials, and in 98.8 ± 0.4% of the two-letter-

cueing trials (mean ± SEM). The percentage of fixation trials did not differ significantly 

between the three groups (F2,47= 0.99, p=.38). Furthermore, there was no difference in 

fixation performance between the first and second half of the experiment (main effect time: 

F2,47= 0.6, p=0.44), nor an interaction effect of time and feature cue (interaction effect time × 

feature cue: F2,47= 1.88, p=0.16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  EMPIRICAL SECTION 
Dombert, Kuhns, Mengotti, Fink & Vossel (2016). Experimental Brain Research, 234, 685-694.  

50 

 

 

Figure 4. Accuracy results  

 

Average accuracy costs (accuracy invalid minus accuracy valid) are depicted for the 

three %CV levels as a function of time (first vs. second half of the experiment) and 

feature cue. Blue (left) bars depict accuracy cost data for the first half of the 

experiment; red (right) bars show accuracy cost data for the second half of the 

experiment; darker bars represent more abstract- and lighter bars less abstract 

processing. Mean accuracy costs and standard errors of the accuracy costs are 

reported in percentages. 
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Discussion 

The present study investigated attentional modulation by color cues as a function of 

different levels of cue abstraction and probabilistic context (cue validity). The color of a 

behaviorally relevant target stimulus was cued by presenting the perceptual color, the color 

word, or two-letter abbreviation and %CV was varied over the time of the experiment. The 

results showed that all three feature cues elicited validity effects (i.e., response time costs 

after invalid as compared to valid cueing) to a similar extent. Moreover, probabilistic context 

significantly affected attentional deployment, with higher validity effects associated with 

higher %CV. This modulation, however, depended on the type of feature cue and on the time 

on task: the type of feature cue determined the effects of probabilistic context, i.e., the 

adaptation of attentional deployment to statistical regularities in the course of the experiment.  

All three feature cues elicited cueing effects in our experimental task, such that 

response times were slower after invalid as compared to valid cues. There were no general 

differences in the magnitude of these cueing effects between the different levels of cue 

abstraction. These results support the notion that priming by the physical presentation of the 

color is not a necessary prerequisite for biasing attentional selection, i.e., that perceptual 

priming of color-sensitive neurons cannot be the only mechanism causing attentional effects 

in the feature-based domain (Ansorge & Becker, 2012; Muller et al., 2010; Rangelov, Muller, 

& Zehetleitner, 2011a; Soto et al., 2012). Still, we observed differences in the effects of the 

different feature cues in our paradigm with unsignalled changes in the percentage of cue 

validity over time. The modulation of these cueing effects by probabilistic context (%CV) was 

initially (i.e., in the first half of the experiment) only present in the two-letter cueing condition. 

Only in this condition did we observe the predicted linear increase of the validity effect with 

higher %CV as reported in visuospatial cueing paradigms (Geng & Behrmann, 2005; 

Macaluso & Doricchi, 2013; Stankevich & Geng, 2014; Vossel et al., 2014aa,b). Which 

mechanism could underlie this differential modulation by percentage of cue validity in the 

three feature cue conditions? Our data suggest that when cue processing is more automatic 

(i.e., in the case of the perceptual cues and word cues) and hence evokes less explicit 



  EMPIRICAL SECTION 
Dombert, Kuhns, Mengotti, Fink & Vossel (2016). Experimental Brain Research, 234, 685-694.  

52 

 

cognitive effort to encode the meaning of the cues (as in the case of the two-letter cues), it 

may take more time to add a top-down guided attentional modulation by probabilistic 

information. However, with an increasing amount of observations and exposure to volatile 

contingencies, these probability-dependent effects can still be initiated, as suggested by the 

observation that the modulation by %CV depended on the time on task. This type of behavior 

(initial resistance to probabilistic context with evolvement of the effect over time) was 

observed for both the perceptual color and the word cues. For the latter, classical Stroop 

paradigms have illustrated the automatic nature of visual word recognition (Brown et al., 

2002; Ferrand & Augustinova, 2014; MacLeod, 1991; Neely et al., 1998). Consistently, the 

data suggest that with the word cue – similar to the perceptual color cue – processing was 

automatic and the modulatory influence by inferred probabilities could only evolve with 

increasing time on task. In contrast, new observations changed probability estimates more 

rapidly in the case of the more abstract two-letter cues which required more active 

processing to encode the meaning of the cues.  

It should be noted that we used identical cue-target intervals for all three cueing 

versions in the present study. In the spatial domain, exogenous, automatic orienting triggered 

by briefly presented peripheral cues shows a different time course than endogenous, 

voluntary orienting of attention after centrally presented symbolic cues such as arrows 

(Muller & Rabbitt, 1989). We cannot rule out that the time course of feature-based orienting 

differs between the feature cues (requiring different levels of processing or automaticity to 

retrieve cue meaning). In other words, different cue-target intervals may have increased or 

decreased the reported effects. Nonetheless, our finding has important implications for the 

study of feature-based attention effects and particularly for the comparison with space-based 

mechanisms.  

Neuroimaging studies on the neural mechanisms underlying cueing effects in the 

spatial and feature-based domain differ in the types of feature cues they employed. While 

some studies used the direct physical color as cues (Vandenberghe, Gitelman, Parrish, & 

Mesulam, 2001b), others used color word abbreviations (Giesbrecht et al., 2003). Our results 
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suggest that the attentional mechanisms triggered by the different color cues may not be 

identical and this may affect the comparison with spatial cues. Support for this assumption 

can be derived from a TMS study which showed that TMS of the right supramarginal gyrus 

impaired spatial attention (manipulated by central arrows) but not feature-based attention 

(manipulated by perceptual color cueing) (Schenkluhn et al., 2008). This finding suggests 

that more automatic perceptual cueing of the target color does not rely on the supramarginal 

gyrus. A novel hypothesis from our present findings would be that this differential TMS effect 

may disappear, when the symbolic spatial cues are compared with more abstract color cues.  

The present study employed a between-subject design for comparing the effect of 

different feature cues. This was done to avoid carry-over effects caused by the repeated 

exposure to the identical %CV sequence or interaction effects of the cueing versions with the 

order of administration (so-called asymmetrical transfer, Millar, 1983). However, the use of a 

between-subjects design has also disadvantages: individual participant characteristics can 

differ from one group to another and these differences may potentially confound the group 

comparison. Our additional analysis with age, gender, and BIS-11 impulsivity subscale 

scores suggested that these variables did not affect the observed pattern of results, but we 

cannot rule out that the three groups differed in other unknown variables which may have 

contributed to the observed differences. 

In sum, our findings show that the role of the level of cue abstraction for attentional 

control in color cueing paradigms is highly complex and depends on contextual factors. The 

findings contribute to the debate on the relative influence of stimulus-related and goal-

directed factors in attentional control in two ways: First, we show that all three feature cues 

lead to a similar biasing of attentional settings, but that attentional allocation by expectancies 

depends on the level of cue abstraction. Second, we demonstrate the dynamic nature of this 

interaction: depending on the time on task (first versus second half of the experiment), the 

susceptibility to probabilistic context could be observed for all feature cue types. 
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2.3. Experiment 2: Computational modelling and fMRI experiment 

Dombert, PL., Kuhns, A., Mengotti, P., Fink, G.R., Vossel, S. (2016). Functional 

mechanisms of probabilistic inference in feature-and space-based attentional 

systems. Neuroimage, 142, 553-564. 

(Reprinted from Neuroimage, 142, Functional mechanisms of probabilistic inference 

in feature-and space-based attentional systems, 553-564, Copyright 2016, with 

permission of Elsevier.) 
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Abstract  

 Humans flexibly attend to features or locations and these processes are influenced by 

the probability of sensory events. We combined computational modelling of response times 

with fMRI to compare the functional correlates of (re-)orienting, and the modulation by 

probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers 

performed two task versions with spatial or color cues. Percentage of cue validity changed 

unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of 

probability-dependent attention, entering the fMRI analysis as parametric regressors. 

Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant 

parametric modulation. Spatially invalid trials activated a bilateral fronto-parietal network and 

the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). 

Probability-dependent attention modulated activity in the precuneus, left posterior IPS, 

middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left 

anterior IPS for feature-based and spatial attention. These findings provide novel insights 

into the generality and specificity of the functional basis of attentional control. They suggest 

that probabilistic inference can distinctively affect each attentional subsystem, but that there 

is an overlap in the left IPS which responds to both spatial and feature-based expectancy 

violations. 

 

Key words: visual attention networks; Bayesian inference; belief updating; cue validity; fMRI. 
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Introduction 

Prior information about the location or features of a stimulus facilitates its detection 

and speeds up response times (RTs). Conversely, violations of spatial or feature-based 

expectancies result in RT costs. These effects, as well as their neural underpinnings, can be 

investigated with probabilistic cueing paradigms in which a spatial or feature cue is presented 

prior to a behaviorally relevant target (Posner, 1980).  

Orienting of attention in response to spatial or feature cues engages a shared 

frontoparietal network including the bilateral frontal eye fields (FEF), intraparietal sulcus 

(IPS), and inferior frontal cortex (IFC) (Egner et al., 2008; Giesbrecht et al., 2003; Liu et al., 

2003; Schenkluhn et al., 2008; Slagter et al., 2007; Vandenberghe et al., 2001b; Wojciulik & 

Kanwisher, 1999). However, only spatial cues lead to a lateralized biasing of activity of visual 

areas (Egner et al., 2008). 

Reorienting of attention to unexpected events in cueing paradigms is investigated by 

contrasting invalidly with validly cued targets. Spatially invalidly cued targets increase activity 

in ventral frontoparietal regions such as the temporoparietal junction (TPJ) and IFC, but also 

in dorsal frontoparietal regions such as the FEF and IPS (Corbetta, Patel, & Shulman, 2008; 

Corbetta & Shulman, 2011). Reorienting of attention to invalidity cued targets in the feature-

based domain has rarely been investigated as yet, but one study has reported that activation 

in the left supramarginal gyrus (SMG), bilateral inferior frontal gyrus (IFG), medial frontal 

areas, and the cerebellum is enhanced during dimensional reorienting, i.e., when the target-

defining dimension (orientation or color) in a visual search task is invalidly cued (Weidner et 

al., 2009). Additionally, it has been shown that shifts from color to motion, or vice versa, 

activate the left IPS, left precentral gyrus, the precuneus, and visual areas (Liu et al., 2003). 

A left hemispheric dominance has also been reported for object-based as compared to 

location-based spatial attention orienting (Arrington, Carr, Mayer, & Rao, 2000). However, 

the functional correlates of spatial and feature-based reorienting have so far not been directly 

compared within the same paradigm.  
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Importantly, the behavioral effects of orienting and reorienting in both attentional 

systems scale with the percentage of cue validity (%CV), i.e., the probability that the 

information provided by the cue is correct (Dombert, Fink, & Vossel, 2015; Egner et al., 2008; 

Vossel et al., 2006; Vossel, Weidner, Driver, Friston, & Fink, 2012). More specifically, 

response time differences between invalidly and validly cued targets increase with higher 

%CV. Most studies explicitly informed the subjects about the %CV, however, more recent 

work has shown that even without this explicit information, RTs are highly sensitive to 

unsignalled changes in %CV, suggesting that the subjects continuously infer the probability 

of the cue-target outcome in a given trial on the basis of observations in prior trials.  This 

inference process can plausibly be described by approximate Bayes-optimal learning rules 

(Mathys, Daunizeau, Friston, & Stephan, 2011; Vossel et al., 2014c). Though the update 

equations of this Bayesian model bear structural similarity to reinforcement learning models 

such as the Rescorla-Wagner rule (Rescorla & Wagner, 1972) in that the update of the 

probability estimate is the product of a learning rate and a prediction error, the learning rate 

in the Bayesian model is not fixed but governed by higher hierarchical levels. In our specific 

case, the update of the probability that the cue will be valid in a given trial depends on the 

trialwise belief about the stability/volatility of the environment (highest hierarchical level) and 

on a subject-specific parameter. In other words, updating will be faster if the subject has 

learned that the environment is not stable. Such flexible models have been shown to provide 

a more plausible account of behavior than the Rescorla-Wagner rule, particularly in volatile 

environments where a fixed learning rate is suboptimal (Behrens et al., 2007; den Ouden et 

al., 2010; Vossel et al., 2014c). Another advantage of the current modelling approach is that 

it represents an individualized Bayes-optimality, allowing for a quantification and comparison 

of updating behavior in the two attentional systems. These parameters can be estimated on 

the basis of trial-wise RTs. This computational modelling of behavioral responses has been 

combined with functional magnetic resonance imaging (fMRI) (Vossel et al., 2015). It was 

observed that activity in the right FEF, TPJ, and the putamen during reorienting responses in 

a spatial cueing paradigm with saccadic responses to the targets was modulated by the trial-
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wise belief about cue validity. No significant effect of the belief about cue validity was found 

for orienting of attention. 

Taken together, the functional mechanisms of orienting and reorienting of attention 

and the modulation of attentional deployment by inferred percentage of cue validity are well-

characterized in the spatial attention system, but have so far not been studied for the cueing 

of target features such as color.  Hence, it remains to be established whether reorienting, 

probabilistic inference, and their physiological implementations are universal across the two 

visual attentional systems - or whether they are domain-specific with differential functional 

correlates for spatial and feature-based attention. First behavioral observations from patients 

with right-hemispheric brain damage may point to differential functional mechanisms of the 

processing of statistical regularities (repetition priming) for locations and features: Shaqiri 

and Anderson (2012) reported that the speeding of RTs to the repeated presentation of a 

stimulus at the same location is disrupted after right-hemispheric stroke, while the RT benefit 

is still present for the repetition of stimulus color in these patients.  

To address these outstanding issues, we applied the combined computational 

modelling - fMRI approach outlined above to two different versions of a probabilistic cueing 

task with spatial or color cues. While we also aimed at replicating the effects of attentional 

orienting in both domains with our modified paradigm, our specific emphasis was the 

characterization of reorienting after invalid cues, as well as its modulation by probability-

dependent attention in the two systems. Based on Weidner et al. (2009) and Liu et al. (2003), 

we expected a stronger involvement of left parietal areas in feature-based reorienting. Due to 

the differential effects of spatial and non-spatial statistical regularities in stroke patients 

(Shaqiri & Anderson, 2012) and the results by Vossel et al. (2015), we hypothesized that 

attentional deployment by probabilistic inference involves right-hemispheric frontoparietal 

structures in the spatial attentional domain.  
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Materials and methods 

Participants 

Twenty-eight healthy participants gave written informed consent to take part in the 

study. Four subjects were excluded from the analyses due to extensive head movement in 

the scanner (>3 mm, n=1), lack of central fixation in all trials (n=1), physical discomfort during 

MR scanning (n=1), and discontinuation of the task because of fatigue (n=1). Therefore, data 

from twenty-four subjects were analyzed (14 females; mean age 27 years, ranging from 18 to 

36 years). All subjects were right-handed as measured with the Edinburgh Handedness 

Inventory (Oldfield, 1971), had normal or corrected to normal vision, and did not suffer from 

any neurological or psychiatric conditions. The study had been approved by the ethics 

committee of the German Psychological Society and was performed in accordance with the 

Code of Ethics of the World Medical Association (Declaration of Helsinki).  

 

Stimuli and experimental paradigm 

Main experiment 

Two versions of a central cueing paradigm with either spatial or feature cues (adapted 

from Egner et al., 2008) were presented on a TFT screen at the back of the magnet bore. 

The screen was presented to the subjects via a mirror system attached to the head coil. A 

central diamond was displayed on a grey background, serving as fixation point. At the 

beginning of each trial a spatial or feature cue stimulus was shown for 400 ms (milliseconds). 

After a 1000 ms stimulus onset asynchrony (SOA), the target search array appeared for 500 

ms, consisting of four peripherally located diamond stimuli that were arranged in the corners 

of an imaginary rectangle centered on the fixation diamond (4.8° eccentric in each visual 

field, see Fig. 1A). Each hemifield always contained one red and one blue diamond with 

counterbalanced positions across %CV blocks and valid and invalid trials, resulting in an 

equal number of diagonally and horizontally arranged trials (see Fig. 1A, diagonal 

arrangement).  
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Figure 1 Illustration of the experimental paradigm 

 

A) The example shows the experimental paradigm consisting of two runs during 

which either feature or spatial cues were presented. Subjects were asked to detect the 

diamond with a missing corner and to indicate by button press whether the upper or 

lower corner was missing. Central fixation needed to be maintained throughout the 

experiment.  

B) Illustration of the cue stimuli for the spatial and feature task version of the 

experimental paradigm. 

C) Trial-by-trial changes in probability-dependent attention �
�(�) reflecting the subject’s 

belief that the cue is valid in relation to the experimentally manipulated percentage of 

cue validity (%CV) over the 284 trials, for spatial- and feature cueing, respectively. For 

this graph, �
�(�)was calculated on the basis of the average parameter estimates over all 

subjects. Note that individual values were used as parametric regressors in the fMRI 

analyses. 
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The target diamond was missing its upper or lower corner. Subjects were asked to 

press a button with the right index or middle finger to indicate whether the upper or lower 

corner of the target diamond was missing. The response mapping was counterbalanced 

across subjects. They needed to respond to the target within a period of 1500 ms from target 

onset (see Fig. 1A). The task versions with feature or spatial cues were presented in two 

different runs, with counterbalanced order between subjects. Feature cues indicated the 

target’s color by presenting a two-letter abbreviation of the color word (‘RO’ or ‘BL’; [i.e., ‘RE’, 

‘BL’, in German, respectively]) in the central part of the fixation diamond (see Fig. 1B). This 

type of color cue has been shown to elicit highest effects of probabilistic context (Dombert et 

al., 2015). For spatial cueing, a triangle appeared behind the fixation diamond creating an 

arrowhead pointing to the left or right side to indicate the hemifield in which the target would 

appear (see Fig. 1B). The experiment consisted of 284 trials that were presented in blocks of 

~50, ~70, and ~90% cue validity. %CV changed after blocks of 32 or 22 trials, respectively 

(see Fig. 1C). This block length was chosen to enable learning of the statistical context by 

the participants and it should be noted that these hidden blocks were not modelled as blocks 

in the fMRI analysis. Instead, the trial-wise probability estimate of cue validity (which changes 

with a higher frequency and was expected to have differential effects in valid and invalid 

trials) was entered as a parametric regressor in an event-related analysis (please see 

below). In accordance with standard procedures in computational studies of trial-wise 

inference, target displays and trial sequence were identical between all participants and task 

versions. Participants were unaware of the different levels of %CV or when they would 

change, they were only informed that variations in %CV would occur over the course of the 

experiment. Subjects were instructed to use the cues according to how much they “trust” 

them to speed up response times to the target. Additionally, 84 “nulltrials” (i.e., baseline 

fixation) were randomly intermixed with the experimental trials to jitter trial onsets. 

Furthermore, a one-minute rest period during which the word ”pause” was shown on the 

display was implemented after half of the trials in each run. The total duration of the fMRI 

experiment (both runs) amounted to 34 minutes. 
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In order to familiarize the subjects with the task, fixation, and the manual responses, 

we included a practice session in the experiment. This practice took place at the same or the 

previous day of the fMRI session and consisted of a block with a constant %CV of 80% and a 

block with changes in %CV. We aimed at a direct comparison between feature and space-

based cueing effects using the same search task, stimuli, and methods in a within-subjects 

design. It should be noted, however, that the visual search task always contained a spatial 

component, also in the feature-based task. The cue-induced spatial shift was crucial and of 

interest for the spatial task (one spatial shift in validly cued trials versus two spatial shifts in 

invalidly cued trials). In the feature task, spatial shifts should occur in invalid as well as valid 

trials, since in each trial two stimuli in the cued color (one in each hemifield) were presented. 

Hence, this effect should presumably cancel out in the contrast of invalid and valid trials in 

the feature task. If this was not the case (i.e., if there still was a stronger spatial component in 

invalid trials in the feature task), this should lead to similar activation patterns for the invalid 

versus valid contrast for both tasks. In contrast, our test for interaction effects between cue 

type and validity (see below) cannot be explained by a common spatial component and 

should hence reflect differential functional mechanisms of spatial versus feature-based 

reorienting. Moreover, the parametric effects of probability-dependent processing should not 

be affected by this.  

 

Functional localizer experiment 

We included a functional localizer to identify regions-of-interest (ROIs) in visual cortex 

that were activated in response to visual stimulation at the four stimulus locations of the 

target display. Participants were asked to passively view checkerboard stimuli presented at 

the same eccentricity and in the same size as the targets, while maintaining gaze on the 

central fixation cross. All stimuli were presented on a black background (see Supplementary 

Fig. S2). Checkerboard stimuli induced a flickering sensation by alternating color between 

white and the uniform black background at a frequency of 4 Hz. The experiment consisted of 
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8 stimulus blocks (2 for each display position) of 16 secs length, which were presented in 

pseudorandom order and separated by intervals of 16 secs of fixation-only blocks. The 

functional localizer took about 5 minutes and was presented to the participants after the main 

fMRI experiment.  

 

Eye movement recording and analysis 

Eye movements were recorded during the main experiment from the right eye with an 

EyeLink® 1000 MR-compatible eye-tracker (SR Research Ltd.) with a sampling rate of 500 

Hz. A 9 or 5-point eye-tracker calibration and validation were performed at the start of the 

experiment. Data analysis was performed using MATLAB (2012b, The MathWorks, Inc., 

Natick, Massachusetts, United States) and ILAB (Gitelman, 2002). Gaze deviations that 

exceeded 1.5° visual angle from the center were analyzed. The amount of time spent within 

the central fixation zone was determined and expressed as percentage score. Gaze 

deviations in the time interval between cue and target presentation were compared between 

spatial and feature cues with a paired t-test. The amount of time spent within the central 

fixation zone was determined and expressed as percentage score. Gaze deviations in the 

time interval between target presentation and response were analyzed with a 2 (validity: 

valid, invalid) × 2 (cue type: spatial, feature) within-subject ANOVA. 

 

MRI data acquisition 

Using a 3T MRI System (Trio; Siemens), T2* weighted EPI images with BOLD 

contrast were acquired with a repetition time of 2.2 secs and an echo time of 30 ms. A total 

of three functional runs was acquired: 458 EPI volumes for each run of the main experiment 

(i.e., for each task version), and 128 EPI volumes for the functional localizer task. Each 

volume consisted of 36 axial slices with interleaved slice acquisition. The field of view was 

200 mm, using a 64 × 64 image matrix, which resulted in a voxel size of 3.1 × 3.1 × 3.3 mm3. 

The first five volumes were discarded from the analysis to allow for T1 equilibration effects. 
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 The remaining volumes (main experiment: 2 × 453; functional localizer: 123) were 

analyzed using the Statistical Parametric Mapping software SPM12 (Wellcome Department 

of Imaging Neuroscience, London; Friston et al., 1995; http://www.fil.ion.ucl.ac.uk/spm). 

Images were bias-corrected. Slice acquisition time differences were corrected using sinc 

interpolation to the middle slice. During spatial realignment, a mean EPI image was 

computed for each subject and spatially normalized to the MNI template using the 

segmentation function. Subsequently, the obtained transformation was applied to the 

individual EPI volumes to translate the images into standard MNI space and resample them 

into 2 x 2 x 2 mm3 voxels. Finally, the normalized images were spatially smoothed using an 8 

mm full-width half-maximum Gaussian kernel. 

 

Data analysis 

Behavioral data analysis 

Classical inference was first performed to investigate whether probabilistic context 

significantly affected response times. Incorrect trials, misses, anticipations, and responses 

deviating more than 2 standard deviations from the individual subject’s mean RT were 

excluded from the analysis. Mean RTs from valid and invalid trials for each subject, %CV 

condition, and cue type entered a 2 (validity: valid, invalid) × 3 (%CV: 50%, 70%, 90%) × 2 

(cue type: feature, spatial) within-subject ANOVA. RT differences between valid and invalid 

trials would be reflected in a significant main effect of validity. An impact of probabilistic 

context onto the deployment of attention would result in a significant interaction effect of 

validity × %CV, with enhanced differences between invalid and valid trials (i.e., validity 

effects) with higher %CV. Based on increasing evidence for a linear relationship between 

validity effects and %CV (Dombert et al., 2015), we report within-subject linear contrasts for 

the effects of %CV. To test for an effect of administration order of the spatial and feature task 

versions, we performed an additional analysis with order of task administration as between-

subject factor. Equivalent analyses were performed on accuracy data (% correct responses), 
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although, based on previous results, we expected most pronounced effects of probabilistic 

context on RTs. All results are reported at a significance level of p<0.05 after Greenhouse–

Geisser correction.  

In a second step, the effects of changes in %CV were modelled in terms of trial-wise 

Bayesian belief updating. Single-trial RTs were used to estimate parameters from a 

hierarchical, approximately Bayes-optimal learning scheme (Mathys et al., 2011). This model 

allows for a formal characterization of individual learning processes on the basis of recent 

cue-target outcomes in volatile environments. Hierarchically coupled Gaussian random walks 

enable a flexible control of updating of the beliefs about cue validity in each trial, in relation to 

beliefs about volatility and subject-specific parameters. As explained in previous work 

(Mathys et al., 2011; Vossel et al., 2014a; Vossel et al., 2014c), this computational model 

consists of a perceptual model that explains updating of beliefs based on (hidden) causes of 

experimental inputs (here: cue-target outcomes) and a response model that derives 

responses (i.e., RTs) based on these beliefs (see Fig. 2). Details about the derivation of the 

equations of the perceptual model are provided in Mathys et al. (2011). In what follows, we 

will describe the model parameters as relevant for the present study. The perceptual model 

comprises three states denoted by x (see Fig. 2).  
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Figure 2. Illustration of the perceptual model and response model of the hierarchical 

Bayesian learning scheme 
 

The perceptual model comprises a hierarchy of states x1, x2, and x3. The model 

parameters ω and � express how fast subjects update their beliefs about state x and 

are estimated from the individual subject’s RTs. Circles represent constants, 

diamonds represent quantities that change in time, while hexagons represent 

quantities that change in time but additionally depend on their previous states in a 

Markovian fashion.  

 

The state ��(�) represents the environmental state of each trial, which, in the present 

paradigm, consisted of either a validly or invalidly cued target (with ��(�)= 1 for valid and ��(�) = 

0 for invalid trials). The probability distribution of ��(�) = 1 is a Bernoulli distribution governed 

by a sigmoidal transformation of the next higher state ��(�), which in turn changes over time 

as a Gaussian random walk. The volatility of ��(�)  (i.e., how fast ��(�)  changes after new 

observations) is determined by two quantities: ��(�) (the state of the next upper level of the 



EMPIRICAL SECTION 
Dombert, Kuhns, Mengotti, Fink & Vossel (2016). Neuroimage, 142, 553-564. 

 

73 

 

hierarchy) and a subject-specific updating parameter ω. The third state ��(�) also changes as 

a Gaussian random walk, with the dispersion of the random walk being determined by a 

second subject-specific parameter �. The values of the subject-specific parameters ω and � 

were estimated from the individual RT data (see below).  

To infer the probabilistic representations of the subject from environmental states, the 

perceptual model needs to be inverted; this yields the posterior densities of the three hidden 

states �(�). In the following, the sufficient statistics of the subject’s posterior belief will be 

denoted by �(�) (mean) and �(�) (variance) or �(�) = �
�(�)  (precision). We use the hat symbol 

(^) to denote predictions before the observation of ��(�) on a given trial t. As described in 

detail in Mathys et al. (2011), variational model inversion under a mean field approximation 

yields simple analytical update equations – where belief updating rests on precision-weighted 

prediction errors. These update equations provide approximately Bayes-optimal rules for the 

trial-by-trial updating of the beliefs. In this experiment, they provide us with the subject’s 

estimate of the probability that the target appears at the cued location or in the cued color on 

a particular trial (note that this is an individualized approximate Bayes-optimality, in reference 

to the subject-specific values for the updating parameters ω and �). 

A response model was used to map the derived posterior beliefs to the observed 

RTs. In previous work using a saccadic response task with spatial cueing, RTs could most 

plausibly be explained by the trial-wise precision of the prediction at the first level of the 

perceptual model (Vossel et al., 2014a; Vossel et al., 2014c). However, since we employed a 

novel paradigm with manual responses in this study, we again compared the three 

alternative response models considered in the previous work. All models describe trial-wise 

RTs as a linear function of the attentional factor �(�), which represents the proportion of total 

attentional resources that is allocated following the cue, as follows:  
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��(�) = �			ζ
1v

- ζ
2v

�(�)		for ��(�)=1 (i.e., valid trial)

 ζ
1i

+ ζ
2i
�(�)		for ��(�)=0 (i.e., invalid trial)

 

Variational Bayesian estimation was used to derive the model parameters based on 

RTs, as implemented in the HGF toolbox (http://www.translationalneuromodeling.org/tapas/) 

running on MATLAB® (2012b, The MathWorks, Inc., Natick, Massachusetts, United States). 

The relative plausibility of the three models was compared using a random effects Bayesian 

model selection (Penny et al., 2010; Stephan, Penny, Daunizeau, Moran, & Friston, 2009). 

This analysis revealed that the model in which RTs were governed by the trial-wise 

probability estimate that the cue will be valid �(�) = �̂�(�) described the data most plausibly. In 

the following, this quantity will be termed probability-dependent attention. 

 

FMRI data analysis 

Main experiment 

At the single-subject level, the spatial and feature task versions were included as 

separate sessions in a general linear model (GLM) of the BOLD responses. For each 

session, regressors of interest for left and right valid and invalid trials were defined at the 

individual subject level. Orienting and reorienting effects were investigated using two 

separate GLMs with event time locked to cue onset for orienting, and to target onset for 

reorienting, respectively. For each task regressor, probability-dependent attention �̂�(�)  as 

derived from the single-subject computational modelling was included as parametric 

modulator. The volatility estimate from the third level of the model ��(�) was additionally added 

to the design matrices. Error trials (anticipations, misses, and incorrect responses) and 

outliers (RTs above or below 2 standard deviations from the subject’s mean) were discarded 

from the effects of interest and modelled separately (on average 13.5% of the feature trials 

and 12.5% of the spatial trials). Events were modelled using the canonical hemodynamic 

response function and its time derivative. Additionally, the rest period and twelve movement 

parameters of the (rigid body) realignment (6 motion parameters and their power of two, 
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(Friston, Williams, Howard, Frackowiak, & Turner, 1996)) were included in the design 

matrices as nuisance regressors. The data were high-pass filtered at 1/128 Hz.  

For the analysis of orienting and reorienting effects at the group level, and their 

modulation by probability-dependent attention �̂�(�), we combined a whole-brain with a region 

of interest (ROI)-based approach. In particular, we identified brain areas involved in orienting 

or reorienting in each task version by whole-brain contrasts in a second-level within-subject 

ANOVA (thresholded at p<0.05 family-wise error corrected at the cluster-level with a voxel-

level cut-off of p<0.001).  Subsequently, the parameter estimates from the peak voxels of 

these contrasts were extracted for each subject and tested for interaction effects with task 

version, as well as for condition-specific effects of the parametric modulator for probability-

dependent attention �̂�(�). Note that the interaction and parametric effects are orthogonal to 

the contrast with which the regions were identified. 

 

Orienting. We first identified brain regions related to attentional orienting in response 

to feature and spatial cues by contrasting both left and right valid trials against the implicit 

baseline by means of planned t-contrasts in a second-level within-subject ANOVA. Note that 

this contrast also captures the activity related to target detection and the motor response, 

since the present paradigm was not designed to separately investigate the cue and target 

phase. Still, this contrast allows for the identification of ROIs to compare spatial and feature-

based orienting, and contralateral versus ipsilateral processing. To investigate topographical 

(i.e., lateralized) effects of attentional orienting, we extracted beta estimates for valid feature 

and valid spatial trials from the respective peaks of bilateral ROIs, and contrasted the locus 

of activation (hemisphere) with the locus of target presentation (ipsilateral vs. contralateral 

hemifield, cf.  Egner et al., 2008) using 2 (target hemifield: ipsilateral, contralateral) × 2 (cue 

type: spatial, feature) within-subject ANOVAs. The same analysis was repeated for the 

parameter estimates of the parametric regressor for probability-dependent attention �̂�(�) to 
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test whether the orienting response or its lateralisation is modulated by trial-wise beliefs 

about cue validity. Moreover, these analyses were performed for early visual areas identified 

by the functional localizer task. 

Reorienting. In a second-level within-subject ANOVA, planned t-contrasts were used 

to test for enhanced activity for invalid as compared to valid trials in both attentional systems. 

Subsequently, we extracted the parameter estimates from the peak voxels of these contrasts 

and tested for interaction effects of validity (valid, invalid) and cue type (feature, spatial). 

To test for a modulation of the activity in areas of the reorienting network by the trial-wise 

probability-dependent attention �̂�(�) , beta estimates were extracted for this parametric 

regressor for valid and invalid trials for both task versions and tested with a 2 (validity: valid, 

invalid) × 2 (cue type: feature, spatial) within-subject second-level ANOVA. Note that here 

negative parametric effects of probability-dependent attention would be expected for valid 

trials (reflecting a decrease in activity with higher anticipated cue validity in a given trial), 

while positive parametric effects would be expected for invalid trials (reflecting an increased 

response to an invalid target when estimated cue validity in a given trial was high). To 

compare the present results with those reported by Vossel et al. (2015) from a location-

cueing paradigm with saccadic responses, we additionally tested beta estimates from the 

peak activation foci from this previous study in the right FEF, putamen, and the right TPJ. 

Brain regions were defined anatomically by using the SPM Anatomy Toolbox (Eickhoff et al., 

2005) for those regions that have been cytoarchitectonically mapped, and the Automated 

Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) for the remaining regions. 
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Functional localizer experiment 

BOLD responses from the functional localizer task were analyzed using a GLM with 

separate regressors for each of the four checkerboard positions at the individual subject 

level. Blocks were defined time locked to visual stimulation onset and modelled with a 

duration of 16 secs using the canonical hemodynamic response function and its time 

derivative. Parameters of the (rigid body) realignment were included in the design matrix as 

nuisance regressors. High-pass band filtering at 1/128 Hz was applied to the images. 

Contrast images corresponding to the position of visual stimulation were created for each 

subject and analyzed using a within-subject second-level ANOVA with the factor position. 

Differential contrasts were calculated by testing one particular position against the remaining 

three positions. All contrasts were thresholded at p<0.001 at the voxel-level (uncorrected). 

 

Results 

Behavioral results 

The 2 (validity: valid, invalid) × 3 (%CV: 50%, 70%, 90%) × 2 (cue type: feature, 

spatial) within-subject ANOVA on mean RTs revealed a significant main effect of validity 

(F1,23= 13.59, p<0.001), reflecting faster RTs to validly than to invalidly cued targets (see 

Table 1). Moreover, we observed a significant validity × %CV interaction effect (linear 

contrast: F1,23= 20.94, p<0.0001), indicating higher differences between valid and invalid 

trials with higher %CV (see Fig. 3A). There was no significant main effect of cue type (F1,23= 

0.59, p=0.45), i.e., the overall level of response times was similar for the spatial and feature 

task versions. Moreover, the interaction between validity, %CV, and cue type was not 

significant (F1,23= 0.66, p=0.43), suggesting that in both attention systems RTs were equally 

susceptible to contextual variations of probability (experimentally manipulated changes in 

%CV). To additionally test for the effect of the order of task administration, the factor order 

entered the above ANOVA as a between-subject factor. There was neither a significant main 

effect of order nor an interaction of order with any of the experimental factors. Importantly, 
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the interaction between validity and %CV remained significant.  

Table 1. RT data. Average (± SEM) individual mean RTs for valid and invalid trials in 

the three %CV conditions for feature and spatial cueing. 

 

The equivalent ANOVA on accuracy, not considering outlier responses, revealed a 

significant main effect of cue type (F1,23= 5.03, p<0.05), indicating overall higher accuracy in 

the spatial version than in the feature version (91.5+/-1.27% versus 89.8+/-1.48%). However, 

accuracy was not significantly affected by validity or %CV and there were no significant 

interaction effects among the factors and no interaction effects with order.  

In a next step, trial-wise estimates of probability-dependent attention �̂�(�)  were 

derived from our Bayesian model. These estimates are influenced by the subject-specific 

parameters governing the step size of the random walks at the second (ω) and third level (�). 

Comparing these parameters between both task versions revealed no significant differences 

in any of the parameters. Also, the response model parameters ζ�� , ζ� , and ζ�� , ζ� , 

quantifying the absolute level of RTs and the strength of the dependency on �̂�(�) , 

respectively, did not significantly differ between the two task versions. The subject-specific 

values for the updating parameter ω were significantly correlated between the two task 

versions (r= 0.44, p<0.05; see Fig. 3B). This indicates that updating behavior was similar for 

spatial and feature-based attention for a given subject. In other words, subjects who rapidly 

or slowly updated their belief about cue validity in one task also showed rapid or slow 

updating in the other task. 

Cue type Validity 

%CV 

50% 70% 90% 

Spatial  Valid 599.5 (±18.6) 600.5 (±18.1) 592.7 (±15.9) 

 Invalid 612.6 (±18.4) 614.6 (±19.9) 621.5 (±17.2) 

Feature  Valid 591.6 (±18.9) 595.9 (±19.7) 587.7 (±18.9) 

 Invalid 605.7 (±19.1) 611.7 (±20.4) 628.2 (±17.4) 
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Figure 3 Behavioral results  

A) RT costs after invalid cueing (validity effects) as a function of true (unknown) 

percentage of cue validity %CV, for spatial- and feature cueing, respectively. Mean RT 

costs and standard error of the mean are reported in milliseconds (ms).  

B) Scatterplot of the subject-specific volatility estimates ω as derived from the 

Bayesian model in the spatial and feature-based task version.  

C) Validity effects as a function of trial-wise probability-dependent attention �
�(�), for 

spatial- and feature cueing, respectively. Mean RT costs and standard error of the 

mean (SEM) are reported in milliseconds (ms).  

 

To illustrate the modulation of RTs by probability-dependent attention, �̂�(�)  was 

calculated on the basis of the average parameter estimates over all subjects and RTs were 

binned in relation to �̂�(�) (bin1: 0.55-0.65; bin2: 0.66-0.75; bin3: 0.76-0.85; bin4: 0.86-0.95) for 

each version of the task (see Fig. 3C). A 2 × 4 × 2 repeated-measures ANOVA with the 
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factors validity (valid, invalid), probability-dependent attention (0.55-0.65; 0.66-0.75; 0.76-

0.85; 0.86-0.95), and cue type (feature, spatial) revealed a significant main effect of validity 

(F1,23= 20.17, p <0.01), again indicating faster responses to validly than invalidly cued 

targets. There was a significant interaction of validity with probability-dependent attention 

(linear contrast: F1,23= 4.68, p <0.05), indicating an increase in cueing effects with higher 

estimated probability that the cue will be valid. We did not observe any interaction of the 

factor cue type with validity or trial-wise probability-dependent attention, suggesting that 

Bayesian belief updating and its impact on RTs were comparable between both task 

versions.  

 

Eye-movement data 

Valid eye-movement recordings could be obtained in 10 subjects. In the remaining 

subjects, no reliable eye position data could be recorded due to technical problems within the 

MR environment. In these subjects, eye-movements were still monitored on-line on the 

camera image displayed on a video screen by the experimenter. Analysis of the eye 

movement data revealed that subjects maintained fixation in (mean +/- SEM) 87.5 ± 2.9% 

and 89.5 ± 2.4% of the time during the cue-target period and in 90.8 ± 2.4% and 92.6 ± 2.1% 

of the time during the target-response period of feature and spatial task trials, respectively. 

Mean fixation time did not differ between spatial and feature trials in the cue-target period 

(t9=-0.9, p=0.39).  The 2 (validity: valid, invalid) × 2 (cue type: spatial, feature) ANOVA of the 

eye movement data in the target-response period revealed neither a significant effect of 

validity, nor an interaction of validity with cue type (main effect cue type: F1,10= 0.87, p=0.37; 

main effect validity: F1,10= 0.001, p=0.98; interaction effect validity × cue type: F1,10= 0.57, 

p=0.47). 
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fMRI results 

Orienting. To identify brain areas involved in orienting of attention, valid trials were 

contrasted against the implicit baseline, separately for the two task versions (see Fig. 4A and 

Supplementary Table S1 for MNI-coordinates and cluster sizes). Spatial orienting was 

associated with enhanced activation in bilateral frontoparietal areas comprising the superior 

parietal lobe (SPL), intraparietal sulcus (IPS), superior frontal lobes, including an area 

located at the junction of superior frontal and precentral sulci that has been previously 

defined as the human equivalent of the frontal eye fields (FEF; Vernet, Quentin, Chanes, 

Mitsumasu, & Valero-Cabre, 2014), as well as the putamen, cerebellum, and occipital 

regions. Attentional orienting after feature cues enhanced activation in a similar network, 

comprising the SPL and IPS, superior frontal lobes, the FEF, the putamen, cerebellum, 

occipital cortex, and additionally the left frontal operculum. 

To test for interaction effects between feature and spatial orienting, we contrasted 

valid feature with valid spatial trials. In line with Egner et al. (2008), this analysis identified no 

differential activations at the whole-brain level, suggesting a close overlap between both 

attentional orienting networks.  

To further investigate potentially differential functional mechanisms of attentional 

orienting, topographical effects were compared between the two task versions by means of 

an ROI approach. Beta estimates were extracted from the peak voxels of bilateral SPL, IPS, 

and FEF and averaged with respect to locus of activation (hemisphere) and target hemifield 

(ipsilateral versus contralateral presentation of the target, cf. Egner et al. (2008)). Results 

from these analyses are depicted in Table 2 and Figure 4B.  
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Figure 4 Attentional orienting  

A) Results from the GLM analysis of valid trials for spatial cueing and feature cueing.  

B) Topography of attentional orienting. Bar graphs depict mean beta estimates (and 

SEM) in the SPL and IPS, and occipital ROIs from the functional localizer (please see 

C). In all areas the lateralization of activity was more pronounced in the spatial task 

version.  

C) Illustration of the peak activation foci (depicted with 8mm spheres) in occipital 

cortex as derived from the visual localizer task. 
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Table 2. fMRI data. Topography of orienting. Results of the cue type (spatial, feature) x 

target hemifield (ipsilateral, contralateral) ANOVA on the parameter estimates from the 

contrast of valid trials against the implicit baseline. 

 

Brain regions were defined anatomically using the Automated Anatomical Labeling (AAL) atlas 
(Tzourio-Mazoyer et al., 2002) and the SPM Anatomy Toolbox (Eickhoff et al., 2005). Where available, 
labels of the cytoarchitectonic subregions from the Anatomy toolbox are provided in parentheses. 
FEF: frontal eye fields, SFG: superior frontal gyrus, SPL: superior parietal lobe, IPL: inferior parietal 
lobe, IPS: intraparietal sulcus. 

 

BOLD activity in the SPL and IPS was enhanced for targets in the contralateral 

hemifield, with this lateralization effect being more pronounced in the spatial than in the 

feature task version. The same significant hemifield × cue type interaction effects were 

observed for the early visual areas as identified by the functional localizer for the 4 target 

locations (see Fig. 4B (lower panel) and C; MNI-coordinates [16, -92, 14], [-10, -94, 4], [14, -

82, -10], [-6, -84, -8]). No significant hemifield effects were observed in the FEF. 

In a second step, we analyzed the effect of trial-wise probability-dependent attention 

on attentional orienting. Beta estimates from the parametric regressors for valid spatial and 

valid feature trials were not significantly different from zero and there was no effect of 

probability-dependent attention on the lateralization of activity within the orienting networks. 

Region 
Main effect 

cue type 
Main effect 

target hemifield 

Interaction effect 
cue type × target 

hemifield 

Spatial orienting 

FEF/SFG p=0.361 p=0.685 p=0.462 

IPL/IPS (hIP3) p=0.265 p<0.001 p=0.001 

SPL (7A) p=0.153 p<0.001 p=0.025 

Feature orienting 

FEF/SFG  p=0.383 p=0.083 p=0.922 

IPL/IPS (hIP3) p=0.271 p<0.001 p<0.001 

SPL (7A) p=0.212 p<0.001 p=0.029 

Visual localizer 

Lingual gyrus 
(hOc3v/hOc1)  

p=0.321 p<0.001 p=0.002 
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Reorienting. To characterize brain areas involved in attentional reorienting, we looked 

for brain regions showing enhanced activity during invalid as compared to valid trials in the 

two task versions (see Table 3 and Fig. 5).  

Reorienting of spatial attention activated a bilateral frontoparietal network including 

the precuneus/SPL, bilateral inferior parietal lobe (IPL) as well as the right inferior frontal 

gyrus (IFG) and the FEF/SFG (see Fig. 5A). Reorienting after an invalid feature cue activated 

a cluster along the left IPS extending into the middle occipital gyrus (MOG) and IPL (see Fig. 

5A). At the whole brain level, target hemifield modulated spatial reorienting activity in the IFG 

and occipital cortex of the right hemisphere, with higher activity in left compared to right 

spatial trials. No other significant effects of target hemifield were observed. Analysis of the 

beta estimates in the peak voxels of these contrasts (see Table 3 and Supplementary Fig. 

S3) revealed that all areas exhibiting reorienting-related activity in the spatial task version 

showed validity × cue type interaction effects with higher differences between invalid and 

valid trials for spatial than for feature-based reorienting. The cluster along the left parietal 

cortex activated by feature-based reorienting showed a main effect of validity across both 

tasks in the MOG and in the posterior subpeak of the IPS (cytoarchitectonic area hIP3 

according to the Juelich atlas). In the anterior subpeak of the IPS (cytoarchitectonic area 

hIP1/hIP2 of the Juelich atlas) there was a significant validity × cue type interaction effect 

with higher reorienting-related activity for feature-based than for spatial reorienting. 

Modulation of attentional reorienting by trial-wise probability-dependent attention �̂�(�) 
was investigated by means of validity × cue type within-subject ANOVAs on the beta 

estimates from the parametric regressors (see Table 3). This analysis revealed that the 

bilateral precuneus expressed a modulation of reorienting-related activity by probability-

dependent attention only for spatial cueing (see Fig. 5B). We found no significant parametric 

effects in the remaining nodes in the IFG, SMG, and FEF, neither for spatial nor feature 

reorienting. In the left parietal cluster related to feature-based reorienting, there was a 

significant main effect of validity in the anterior subpeak of the IPS. There was no significant 
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interaction with the factor cue type, suggesting an involvement in probability-dependent 

attention for both feature and spatial reorienting. Conversely, the more posterior subpeak of 

the cluster as well as the MOG expressed a significant interaction of validity and cue type, in 

that a differential modulation by probability-dependent attention in valid and invalid trials was 

only observed for spatial reorienting (see Fig. 5B). Previously, modulation of spatial 

reorienting by inferred probability has been observed in the right FEF [42, 4, 42], TPJ [46, -

46, 6], and the putamen [22, 16, 4] when subjects responded with saccades to left and right 

targets (Vossel et al. 2015). We found a probability-dependent modulation of BOLD 

responses specifically for spatial reorienting in our paradigm in the right TPJ (interaction 

effect validity × cue type: F1,23= 5.45, p<0.05). There were no probability-dependent effects 

for feature-based reorienting in any of these regions. For the multiple regions showing 

probability-dependent effects in the spatial version, a 2 (validity: valid/invalid) × 6 (region: 

left/right precuneus, left anterior/posterior IPS, left MOC, right TPJ) ANOVA revealed no 

significant interaction between the two factors, indicating that the effects of probability-

dependent attention were not significantly different in the different regions (F1,3.5= 0.27, 

p=0.93). 
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Table 3. fMRI data. Reorienting and its modulation by probability-dependent attention. Results of the cue type (spatial, feature) x 

validity (valid, invalid) ANOVA on the parameter estimates from the contrast of invalid versus valid trials for the main HRF regressor 

and the parametric regressor for probability-dependent attention �
�(�).  

 
s.c.: same contiguous cluster. Brain regions were defined anatomically using the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) 
and the SPM Anatomy Toolbox (Eickhoff et al., 2005). Where available, labels of the cytoarchitectonic subregions from the Anatomy toolbox are provided in 
parentheses. FEF: frontal eye fields, SFG: superior frontal gyrus, SPL: superior parietal lobe, IPL: inferior parietal lobe, IPS: intraparietal sulcus. 

Region Side 

MNI Coordinates 

Voxels z-score 

HRF regressor Parametric regressor �̂�(�) 

x y z validity effect 
validity × cue 

type validity effect 
validity × cue 

type 

Spatial reorienting: invalid > valid 

FEF/SFG R 24 6 56 294 4.19 p=0.002 p=0.031 p=0.418  p=0.340 

IFG R 38 18 20 219 4.10 p<0.001 p=0.038 p=0.132 p=0.170 

IPL (PFt) L -58 -20 34 251 4.29 p=0.003 p=0.003 p=0.633 p=0.754 

Precuneus/ SPL 
(5L/5M) 

R 10 -52 58 3260 4.80 p<0.001 p=0.012 p=0.390 p=0.010 

Precuneus L -10 -60 58 s.c. 4.62 p<0.001 p=0.033 p=0.425 p=0.014 

IPL (PFt) R 60 -20 34 s.c. 4.52 p=0.003 p=0.006 p=0.538 p=0.430 

Feature reorienting: invalid > valid 

IPS (hIP3) L -26 -62 36 439 4.10 p<0.001 p=0.161 p=0.218 p=0.050 

IPS (hIP1/hIP2) L -32 -42 34 s.c. 3.59 p=0.001 p=0.028 p=0.049 p=0.304 

MOG L -28 -72 26 s.c. 3.92 p<0.001 p=0.244 p=0.951 p=0.028 
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Figure 5 Attentional reorienting 

 

A) Results from the GLM analysis of reorienting networks as revealed by a t-contrast 

for invalid>valid trials for spatial cueing and feature cueing and illustration of the ROIs 

for the analysis of probability-dependent effects. Brain regions in which the ROI 

analysis did not reveal any significant effects are shown with grey spheres. Green 

spheres denote brain regions with a significant probability-dependent modulation by 

�
�(�)of spatial- and feature reorienting. Light blue colour refers to brain regions that 

displayed a probability-dependent modulation of spatial reorienting only.  

B) Bar graphs depict mean beta estimates (and SEM) for the parametric regressors of 

probability-dependent estimates for valid and invalid trials in regions with significant 

effects. The illustration in the right box shows the effect of positive and negative beta 

estimates of the parametric modulation with �
�(�)	on BOLD amplitudes. While positive 

beta estimates reflect higher BOLD amplitudes with higher estimated cue validity, 

negative beta estimates indicate smaller BOLD amplitudes with higher values of �
�(�)	.
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Discussion  

The present study combined computational modelling of response times with fMRI to 

characterize the functional correlates of attentional orienting, reorienting, and their 

modulation by probabilistic inference in spatial and feature-based attention systems in the 

human brain. The novel aspect of the present study with regard to previous work was to 

consider not only average condition-specific effects, but to investigate trial-by-trial effects of 

Bayesian probabilistic inference about the most likely cue-target outcome as a critical factor 

influencing performance and BOLD activity in the brain regions underlying the processes 

involved. Manual response times in two probabilistic cueing task versions were affected by 

unsignalled changes in the validity of a cue that indicated either the location or the color of a 

target stimulus. The analysis of the functional correlates of attentional orienting replicated 

previous results. Reorienting attention in invalid trials activated the precuneus, bilateral IPL, 

as well as right inferior and superior frontal gyri in the spatial attention task, while feature-

based reorienting enhanced activity along the left IPS. While orienting-related activity was 

not modulated by probability-dependent attention as derived from our computational model, a 

probability-dependent modulation of reorienting-related activity was observed in the bilateral 

precuneus, the left IPS, MOG, and the right TPJ in the spatial domain. A modulation of 

feature-based and spatial reorienting by probability-dependent attention was observed in the 

anterior part of the left IPS.  

 

Behaviour 

Our modified paradigm was designed to directly compare the processing of valid and 

invalid a priori spatial and feature-based information. Behaviorally, there were no RT 

differences between the two task versions, neither in the absolute level of RTs, nor in their 

modulation by valid/invalid cues and true or inferred probabilistic context. Most interestingly, 

the subject-specific parameter ω of the Bayesian model - which quantifies the magnitude of 

trial-by-trial changes in the belief that the cue will be valid - was significantly correlated 
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between both task versions. This finding points to overlaps of the mechanisms for the trial-

wise inference about cue validity in both systems. While the characterization of inter-

individual differences merits further investigation, the present study focused on the within-

subject comparison of spatial and feature-based attentional mechanisms and their 

modulation by inferred cue validity. The identification of a region exhibiting probability-

dependent effects in both domains in the left IPS (please see discussion below) fits well with 

the correlation of the updating parameters at the behavioral level. 

 

Probability-independent BOLD effects in spatial and feature-based systems  

For the orienting systems, our fMRI results of the average (probability-independent) 

activity are in line with previous research that has identified a common network for 

preparatory spatial and feature-based attention (Egner et al., 2008; Giesbrecht et al., 2003; 

Liu et al., 2003; Slagter et al., 2007; Vandenberghe et al., 2001b). We also replicated existing 

work by Egner et al. (2008) showing a directional modulation of BOLD activity in contralateral 

SPL, IPS, and visual areas (but not FEF) during spatial- but not feature orienting.  

While dorsal frontoparietal regions were recruited regardless of whether attention was 

biased to location or color, the re-calibration of these attentional weights (i.e., reorienting) 

involved differential activation patterns (despite no significant differences in RT costs at the 

behavioral level). For spatial reorienting, activity was enhanced in dorsal areas such as the 

SPL and FEF, as well as in more ventral regions in the bilateral IPL and the right IFG 

(Corbetta et al., 2008; Corbetta & Shulman, 2011). Such co-activation of dorsal and ventral 

frontoparietal regions after spatial reorienting has been described before and potentially 

reflects interaction of both systems to establish flexible attentional control (for a review see, 

e.g., Vossel et al., 2014b). Interestingly, however, these regions exhibited validity × cue type 

interaction effects, i.e., they responded more strongly to spatially invalid targets. In contrast, 

a region in the anterior part of the left IPS showed the reverse effect, with stronger 

reorienting effects when color was invalidly cued. These findings - together with the results 
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for probability-dependent attention described below - argue against the idea of a universal 

right-hemispheric ventral ‘circuit-breaking’ system (Corbetta & Shulman, 2002). They rather 

suggest that depending on the type of expectancy violation or type of task, different 

subsystems may be engaged with the same behavioral outcome. 

The involvement of left rather than right-hemispheric brain regions for feature 

reorienting resonates with previous studies that reported enhanced left parietal and frontal 

activations during non-spatial attention shifts of the relevant feature dimension (Weidner et 

al., 2009; Weidner, Pollmann, Muller, & von Cramon, 2002). Also, the left IPS has been 

shown to transiently activate when attention needs to be shifted between color and motion 

(Liu et al., 2003), and more so, distinct patterns of BOLD activity in the left and right IPS 

could differentiate between attending to one of these two feature dimensions (Liu et al., 

2011).  

 

Modulations of BOLD-activity by probability-dependent attention in spatial and feature-based 

systems  

Orienting 

The main focus of this study was to investigate how BOLD amplitudes in valid and 

invalid trials are modulated by trial-wise probability estimates of cue validity for the two cue 

types as derived from our Bayesian model. As in a previous study on saccadic responses 

(Vossel et al., 2015), we did not observe a significant modulation of orienting-related activity 

(or its lateralization) by trial-wise probability-dependent attention. From a conceptual point of 

view, one could have expected a stronger modulation of cortical responses by high 

expectations that the cue will be valid, and Egner et al. (2008) demonstrated parametric 

effects of different %CV-levels in the orienting networks. However, important differences in 

the task design between this and our study may explain this discrepancy. First, the subjects 

in Egner et al. (2008) were explicitly informed about the cue-target contingencies. They were 
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hence not required to infer cue validity on a trial-wise basis and were less uncertain about 

the probabilistic context than the subjects who participated in our study. Second, the task 

design aimed at characterizing cue-related activity and accordingly used longer and variable 

cue-target SOAs (jittered between 4-8 secs, as opposed to 1 sec in the present study). In 

contrast, with short and constant SOAs as in the present study, the signal may be 

predominantly driven by target-related responses so that the paradigm may be more suited 

to detect differences between invalidly and validly cued targets, which was also of main 

interest here. Our finding of a stronger probability-dependent modulation of BOLD responses 

in invalid than valid trials is consistent with previous data, which suggest that variation of cue 

probability has higher effects on attentional reorienting costs than on attentional orienting 

benefits in a spatial attention task (Lasaponara, Chica, Lecce, Lupianez, & Doricchi, 2011). 

 

Reorienting 

A modulation of reorienting-related activity by probability-dependent attention �̂�(�) in 

the spatial task version was observed in the bilateral precuneus, left IPS and MOG, as well 

as the right TPJ. Beta estimates of the parametric regressor were positive for invalid trials, 

reflecting increased BOLD responses with higher expected probability that the cue will be 

valid. In valid trials, the beta estimates were around zero or negative, reflecting either no 

modulation, or decreased activity with higher values of probability-dependent attention �̂�(�) . 
This pattern is in line with the predictive coding perspective, since it reflects higher 

reorienting-related activity with increased unexpectedness of the target location or an 

attention shift, respectively. 

Activation in the bilateral precuneus extended into the medial part of the SPL, a 

region that has often been implicated in spatial attention shifts (Brignani, Lepsien, 

Rushworth, & Nobre, 2009; Molenberghs, Mesulam, Peeters, & Vandenberghe, 2007; 

Vandenberghe et al., 2001b; Vandenberghe, Molenberghs, & Gillebert, 2012; Yantis et al., 
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2002). Activity in these regions has been shown to scale with the spatial extent of the 

attentional shift (Vandenberghe, Gitelman, Parrish, & Mesulam, 2001a), irrespective of 

shifting direction and visual hemifield (Brignani et al., 2009; Capotosto, Corbetta, Romani, & 

Babiloni, 2012). Our data suggest that BOLD activity in these regions does not only scale 

with the spatial extent, but also with the unexpectedness of the attentional shift. 

Unexpectedness also modulated reorienting-related activity in the right TPJ. These 

parametric effects may weaken the average differences between invalid and valid trials; so 

that TPJ activity was not significant at the whole-brain level in the global reorienting contrast. 

Our finding is consistent with previous studies that have reported a modulation of the right 

TPJ response by explicit and also by inferred cue-target contingencies (Vossel et al., 2015; 

Vossel et al., 2006; Vossel et al., 2012). The present study extends these previous results 

and suggests the right TPJ may be particularly sensitive to violations of spatial expectancies, 

as probability-dependent effects were confined to the spatial attention system in the 

employed paradigm. This interpretation may help to explain observations from patients with 

right-hemispheric brain damage who show disrupted repetition priming for spatial locations, 

but not for features (Shaqiri & Anderson, 2012, 2013): It could be speculated that the left-

hemispheric regions in the present study receive their input from right TPJ in the spatial task, 

while feature-based reorienting and its probability-dependent modulation is predominantly 

mediated by left parietal structures.  

The left IPS exhibited significant probability-dependent effects in the current study. 

Interestingly, neurophysiological studies linked neurons in the lateral intraparietal area to 

evidence accumulation during perceptual decision making (for a review see, e.g., Gold & 

Shadlen, 2007) since the neuronal firing rates followed predictions from diffusion/race 

models. In other words, these neurons show a steeper increase in firing rates with less 

uncertainty (i.e., faster perceptual convergence) and a more prolonged response with higher 

uncertainty. With regard to our paradigm, one could therefore assume faster and more 

transient responses to more expected stimuli (less uncertainty) and slower and prolonged 
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responses to unexpected stimuli (higher uncertainty), which may lead to the observed 

probability-dependent effects on BOLD-amplitudes.  

Depending on the subregion along the intraparietal sulcus, the probability dependent 

effects were observed for the spatial or both task versions. A common effect was observed in 

the hIP1/hIP2 subdivision (see Choi et al., 2006; Scheperjans et al., 2008 for the definition of 

the parietal subdivisons). The three cytoarchitectonically distinct subdivisions hIP1 to hIP3 

are characterized by distinct functional and structural connectivity profiles (Bray, Arnold, 

Iaria, & MacQueen, 2013; Szczepanski, Pinsk, Douglas, Kastner, & Saalmann, 2013; Uddin 

et al., 2010). The more anterior (hIP1/2) subdivisions are structurally and functionally 

connected with frontal regions comprising prefrontal cortex, inferior frontal and middle frontal 

gyri, while the posterior IPS (hIP3) seems to preferentially connect with visual cortices (Bray 

et al., 2013; Lauritzen, D'Esposito, Heeger, & Silver, 2009; Uddin et al., 2010). This 

divergence between the roles of the anterior and posterior IPS is consistent with our 

observation. Due to its connectivity with topographically organized visual cortices, the 

posterior parietal cortex might be especially relevant when probabilistic information about the 

location of a visual stimulus is processed. On the contrary, the anterior IPS plays a central 

role in the integration of multisensory information (Grefkes & Fink, 2005; Grefkes, Weiss, 

Zilles, & Fink, 2002) and as it displayed probability-dependent effects in the spatial and the 

feature-based task, one could speculate that this role is not confined to different sensory 

modalities, but extends to distinct visual domains.  

In conclusion, our findings provide novel insights into the generality and specificity of 

the functional and computational mechanisms underlying the flexible control in different 

attention subsystems. The present results can be interpreted in the context of contemporary 

theories proposing that the brain maintains probabilistic models of the world to minimize 

surprise about sensory inputs (see e.g., Friston, 2009, 2010b) and shed light on the 

physiological implementation of these processes by showing links - but also peculiarities - of 

two different attentional systems. Our data, together with the findings from Vossel et al. 
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(2015), suggest that probabilistic inference can distinctively affect different attentional 

subsystems, but that there is a potential link between the spatial and feature-based 

attentional system in the left anterior IPS. As such, this region may contribute to the 

significant correlation of the parameters governing probabilistic inference in the two 

attentional domains.   

 

Acknowledgements: 

This work was supported by funding from the Federal Ministry of Education and Research to 

SV (BMBF, 01GQ1401). We are grateful to our colleagues from the INM-3 and INM-4 for 

valuable support and discussions. 

 
  



EMPIRICAL SECTION 
Dombert, Kuhns, Mengotti, Fink & Vossel (2016). Neuroimage, 142, 553-564. 

 

96 

 

References  

Arrington, C. M., Carr, T. H., Mayer, A. R., & Rao, S. M. 2000. Neural mechanisms of visual 
attention: object-based selection of a region in space. J Cogn Neurosci. 12 Suppl 2, 
106-117. 

Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. 2007. Learning the value 
of information in an uncertain world. Nat Neurosci. 10(9), 1214-1221. 

Bray, S., Arnold, A. E., Iaria, G., & MacQueen, G. 2013. Structural connectivity of visuotopic 
intraparietal sulcus. Neuroimage. 82, 137-145. 

Brignani, D., Lepsien, J., Rushworth, M. F., & Nobre, A. C. 2009. The timing of neural activity 
during shifts of spatial attention. J Cogn Neurosci. 21(12), 2369-2383. 

Capotosto, P., Corbetta, M., Romani, G. L., & Babiloni, C. 2012. Electrophysiological 
correlates of stimulus-driven reorienting deficits after interference with right parietal 
cortex during a spatial attention task: a TMS-EEG study. J Cogn Neurosci. 24(12), 
2363-2371. 

Choi, H. J., Zilles, K., Mohlberg, H., Schleicher, A., Fink, G. R., Armstrong, E., & Amunts, K. 
2006. Cytoarchitectonic identification and probabilistic mapping of two distinct areas 
within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol. 
495(1), 53-69. 

Corbetta, M., Patel, G., & Shulman, G. L. 2008. The reorienting system of the human brain: 
from environment to theory of mind. Neuron. 58(3), 306-324. 

Corbetta, M., & Shulman, G. L. 2002. Control of goal-directed and stimulus-driven attention 
in the brain. Nat Rev Neurosci. 3(3), 201-215. 

Corbetta, M., & Shulman, G. L. 2011. Spatial neglect and attention networks. Annu Rev 
Neurosci. 34, 569-599. 

den Ouden, H. E., Daunizeau, J., Roiser, J., Friston, K. J., & Stephan, K. E. 2010. Striatal 
prediction error modulates cortical coupling. J Neurosci. 30(9), 3210-3219. 

Dombert, P. L., Fink, G. R., & Vossel, S. 2016. The impact of probabilistic feature cueing 
depends on the level of cue abstraction. Exp Brain Res, 234(3), 685-694.. 

Egner, T., Monti, J. M., Trittschuh, E. H., Wieneke, C. A., Hirsch, J., & Mesulam, M. M. 2008. 
Neural integration of top-down spatial and feature-based information in visual search. 
J Neurosci. 28(24), 6141-6151. 

Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, 
K. 2005. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and 
functional imaging data. Neuroimage. 25(4), 1325-1335. 

Friston, K. J. 2009. The free-energy principle: a rough guide to the brain? Trends Cogn Sci. 
13(7), 293-301. 

Friston, K. J. 2010. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 
11(2), 127-138. 

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. 1996. Movement-
related effects in fMRI time-series. Magn Reson Med. 35(3), 346-355. 

Giesbrecht, B., Woldorff, M. G., Song, A. W., & Mangun, G. R. 2003. Neural mechanisms of 
top-down control during spatial and feature attention. Neuroimage. 19(3), 496-512. 

Gitelman, D. R. 2002. ILAB: a program for postexperimental eye movement analysis. Behav 
Res Methods Instrum Comput. 34(4), 605-612. 

Gold, J. I., & Shadlen, M. N. 2007. The neural basis of decision making. Annu Rev Neurosci. 
30, 535-574. 

Grefkes, C., & Fink, G. R. 2005. The functional organization of the intraparietal sulcus in 
humans and monkeys. J Anat. 207(1), 3-17. 

Grefkes, C., Weiss, P. H., Zilles, K., & Fink, G. R. 2002. Crossmodal processing of object 
features in human anterior intraparietal cortex: an fMRI study implies equivalencies 
between humans and monkeys. Neuron. 35(1), 173-184. 

Lasaponara, S., Chica, A. B., Lecce, F., Lupianez, J., & Doricchi, F. 2011. ERP evidence for 
selective drop in attentional costs in uncertain environments: challenging a purely 



EMPIRICAL SECTION 
Dombert, Kuhns, Mengotti, Fink & Vossel (2016). Neuroimage, 142, 553-564. 

 

97 

 

premotor account of covert orienting of attention. Neuropsychologia. 49(9), 2648-
2657. 

Lauritzen, T. Z., D'Esposito, M., Heeger, D. J., & Silver, M. A. 2009. Top-down flow of visual 
spatial attention signals from parietal to occipital cortex. J Vis. 9(13), 18 11-14. 

Liu, Hospadaruk, L., Zhu, D. C., & Gardner, J. L. 2011. Feature-specific attentional priority 
signals in human cortex. J Neurosci. 31(12), 4484-4495. 

Liu, Slotnick, S. D., Serences, J. T., & Yantis, S. 2003. Cortical mechanisms of feature-based 
attentional control. Cereb Cortex. 13(12), 1334-1343. 

Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K. E. 2011. A bayesian foundation for 
individual learning under uncertainty. Front Hum Neurosci. 5, 39. 

Molenberghs, P., Mesulam, M. M., Peeters, R., & Vandenberghe, R. R. 2007. Remapping 
attentional priorities: differential contribution of superior parietal lobule and 
intraparietal sulcus. Cereb Cortex. 17(11), 2703-2712. 

Oldfield, R. C. 1971. The assessment and analysis of handedness: the Edinburgh inventory. 
Neuropsychologia. 9(1), 97-113. 

Penny, W. D., Stephan, K. E., Daunizeau, J., Rosa, M. J., Friston, K. J., Schofield, T. M., & 
Leff, A. P. 2010. Comparing families of dynamic causal models. PLoS Comput Biol. 
6(3), e1000709. 

Posner, M. I. 1980. Orienting of attention. Q J Exp Psychol. 32(1), 3-25. 
Rescorla, R. A., & Wagner, A. R. (1972). A theroy of Pavlovian conditioning: variations in the 

effectiveness of reinforcement (Vol. 2). New York: Appleton-Century-Crofts. 
Schenkluhn, B., Ruff, C. C., Heinen, K., & Chambers, C. D. 2008. Parietal stimulation 

decouples spatial and feature-based attention. J Neurosci. 28(44), 11106-11110. 
Scheperjans, F., Eickhoff, S. B., Homke, L., Mohlberg, H., Hermann, K., Amunts, K., & Zilles, 

K. 2008. Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in 
the human superior parietal cortex. Cereb Cortex. 18(9), 2141-2157. 

Shaqiri, A., & Anderson, B. 2012. Spatial probability cuing and right hemisphere damage. 
Brain Cogn. 80(3), 352-360. 

Shaqiri, A., & Anderson, B. 2013. Priming and statistical learning in right brain damaged 
patients. Neuropsychologia. 51(13), 2526-2533. 

Slagter, H. A., Giesbrecht, B., Kok, A., Weissman, D. H., Kenemans, J. L., Woldorff, M. G., & 
Mangun, G. R. 2007. fMRI evidence for both generalized and specialized 
components of attentional control. Brain Res. 1177, 90-102. 

Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. 2009. Bayesian 
model selection for group studies. Neuroimage. 46(4), 1004-1017. 

Szczepanski, S. M., Pinsk, M. A., Douglas, M. M., Kastner, S., & Saalmann, Y. B. 2013. 
Functional and structural architecture of the human dorsal frontoparietal attention 
network. Proc Natl Acad Sci U S A. 110(39), 15806-15811. 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., . 
. . Joliot, M. 2002. Automated anatomical labeling of activations in SPM using a 
macroscopic anatomical parcellation of the MNI MRI single-subject brain. 
Neuroimage. 15(1), 273-289. 

Uddin, L. Q., Supekar, K., Amin, H., Rykhlevskaia, E., Nguyen, D. A., Greicius, M. D., & 
Menon, V. 2010. Dissociable connectivity within human angular gyrus and 
intraparietal sulcus: evidence from functional and structural connectivity. Cereb 
Cortex. 20(11), 2636-2646. 

Vandenberghe, R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. 2001a. Functional 
specificity of superior parietal mediation of spatial shifting. Neuroimage. 14(3), 661-
673. 

Vandenberghe, R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. 2001b. Location- or 
feature-based targeting of peripheral attention. Neuroimage. 14(1 Pt 1), 37-47. 

Vandenberghe, R., Molenberghs, P., & Gillebert, C. R. 2012. Spatial attention deficits in 
humans: the critical role of superior compared to inferior parietal lesions. 
Neuropsychologia. 50(6), 1092-1103. 



EMPIRICAL SECTION 
Dombert, Kuhns, Mengotti, Fink & Vossel (2016). Neuroimage, 142, 553-564. 

 

98 

 

Vernet, M., Quentin, R., Chanes, L., Mitsumasu, A., & Valero-Cabre, A. 2014. Frontal eye 
field, where art thou? Anatomy, function, and non-invasive manipulation of frontal 
regions involved in eye movements and associated cognitive operations. Front Integr 
Neurosci. 8, 66. 

Vossel, S., Bauer, M., Mathys, C., Adams, R. A., Dolan, R. J., Stephan, K. E., & Friston, K. J. 
2014. Cholinergic stimulation enhances Bayesian belief updating in the deployment of 
spatial attention. J Neurosci. 34(47), 15735-15742. 

Vossel, S., Geng, J. J., & Fink, G. R. 2014. Dorsal and ventral attention systems: distinct 
neural circuits but collaborative roles. Neuroscientist. 20(2), 150-159. 

Vossel, S., Mathys, C., Daunizeau, J., Bauer, M., Driver, J., Friston, K. J., & Stephan, K. E. 
2014. Spatial attention, precision, and Bayesian inference: a study of saccadic 
response speed. Cereb Cortex. 24(6), 1436-1450. 

Vossel, S., Mathys, C., Stephan, K. E., & Friston, K. J. 2015. Cortical Coupling Reflects 
Bayesian Belief Updating in the Deployment of Spatial Attention. J Neurosci. 35(33), 
11532-11542. 

Vossel, S., Thiel, C. M., & Fink, G. R. 2006. Cue validity modulates the neural correlates of 
covert endogenous orienting of attention in parietal and frontal cortex. Neuroimage. 
32(3), 1257-1264. 

Vossel, S., Weidner, R., Driver, J., Friston, K. J., & Fink, G. R. 2012. Deconstructing the 
architecture of dorsal and ventral attention systems with dynamic causal modeling. J 
Neurosci. 32(31), 10637-10648. 

Weidner, R., Krummenacher, J., Reimann, B., Muller, H. J., & Fink, G. R. 2009. Sources of 
top-down control in visual search. J Cogn Neurosci. 21(11), 2100-2113. 

Weidner, R., Pollmann, S., Muller, H. J., & von Cramon, D. Y. 2002. Top-down controlled 
visual dimension weighting: an event-related fMRI study. Cereb Cortex. 12(3), 318-
328. 

Wojciulik, E., & Kanwisher, N. 1999. The generality of parietal involvement in visual attention. 
Neuron. 23(4), 747-764. 

Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & 
Courtney, S. M. 2002. Transient neural activity in human parietal cortex during spatial 
attention shifts. Nat Neurosci. 5(10), 995-1002. 

 

 

 



 

99 

 



GENERAL DISCUSSION SECTION 
 

100 

 

3. General discussion section 

Attention influences visual perception substantially by enhancing the processing of 

specific environmental aspects that are expected to be most relevant in a given context. 

While most research investigated spatial attention as a prototype for attentional systems, 

little is known about other types of attention such as feature-based attention. Yet, it is 

important to understand whether visual attention relies on a unitary neural system that directs 

attention irrespective of the selected aspect (e.g. space or features) or whether there are 

different subsystems that are specialized for specific aspects.  

It is well known that expectancies about statistical regularities in the environment 

influence attentional selection processes. In everyday life these expectancies need to be 

formed based on probabilistic inference and this process most likely follows Bayesian 

principles. It remains to be established whether probabilistic inference is performed in distinct 

brain regions for different types of visual attention, or whether there is a common and domain 

general system for visual attention that computes predictions based on experiences. The 

present thesis investigated these questions by means of a psychophysical and a functional 

neuroimaging experiment. The following section will discuss the obtained results in light of 

the current literature and in relation to a third experiment that was conducted as a coauthor 

(Mengotti, Dombert, Fink, & Vossel, 2017). 
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3.1 Experiment 1 

The influence of cue-related factors on feature-based attention and the effect of 

probabilistic inference  

Two questions were addressed in Experiment 1. First, it aimed at investigating cue-

related factors that influence how prior information about a target feature is used to direct 

attention. Second, it was performed to investigate whether feature cues can elicit probability-

dependent effects on attention to establish an experimental paradigm for Experiment 2, in 

which feature and spatial cues were to be compared. For this purpose, three different color 

cues were used in an adapted version of the Posner cueing task with blockwise changes in 

probabilistic context, i.e. the percentage of cue validity (%CV). The color cues differed in their 

perceptual properties allowing for different levels of cue abstraction with color being 

presented either perceptually, as a written word or as a two-letter abbreviation of the color 

word. It was observed that all color cues produced similar validity effects. However, the effect 

of probabilistic context on validity effects differed between the three color cues and this 

differential effect depended on the time on task: The type of color cue affected how much 

time was required to adapt attentional deployment to changes in the percentage of cue 

validity. The probability-dependent effects on attention were initially present in the two-letter 

cue condition, and only emerged over the course of the experiment in the perceptual and 

word cue condition. This indicates that experience-based learning of statistical regularities in 

the environment greatly depends on the properties of the provided feature cues.  

Regarding the first research question, our findings contribute to the ongoing 

discussion about how different types of feature cues are effective in biasing attention. It has 

been claimed that feature-based attention requires perceptual priming of color-sensitive 

neurons, meaning that bottom-up priming is needed to engage attention (Theeuwes, 2013; 

Theeuwes & Van der Burg, 2007). Nevertheless, others have proposed that, similar to spatial 

cues, mere feature-based information can also be used to direct attention (Ansorge & 

Becker, 2012; Muller et al., 2010; Rangelov, Muller, & Zehetleitner, 2011b; Soto et al., 2012). 
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Since we could demonstrate that perceptual as well as word and abstract (i.e., two-letter 

abbreviation) cue information can affect attentional deployment per se, perceptual priming 

cannot be the only mechanism causing feature-based attention effects.  

We assume that processing of perceptual cues and word cues was automatic and 

evoked less cognitive effort to be encoded than abstract cues. This is suggested by findings 

from Stroop paradigms that have shown that word cues require fewer processing demands 

than abstract cues whose meaning is less intuitive (Brown et al., 2002; Ferrand & 

Augustinova, 2014; MacLeod, 1991; Neely et al., 1998). By comparing cueing effects 

between word and abstract cues, we could also elucidate the effect of cognitive effort on 

feature-based attention. Since there was no difference in (probability-independent) validity 

effects averaged over all trials, feature-based attention appears to be engaged via 

mechanisms that encode feature-based information independent from the level of cue 

abstraction. As we employed purely behavioral methods in Experiment 1, we cannot draw 

any conclusions on the neural mechanisms underlying these common effects. Moreover, 

despite similar behavioral effects, perceptual color cues might have engaged visual neurons 

mostly via (perceptual) mechanisms that are different from the neural mechanisms of word 

and abstract cues. This could indeed be the case because, although all cues engaged 

feature-based attention, we identified differences in probability-dependent effects on 

attentional deployment between cue types. 

We observed that probability-dependent effects on attention in response to perceptual 

and word cues required more time-on-task as compared to abstract cues. In terms of the 

predictive coding framework, this reflects that with intuitive cue types trial-by-trial probabilistic 

inference required more observations of cue-target outcomes to establish changes in 

probabilistic estimates. A potential explanation is that the brain has acquired stronger (prior) 

probability estimates for well-recognized cues that need more time to adapt, while 

representations of newly learned cues can be updated faster and more flexibly. Since 

probability-dependent effects were observed with constant sensory inputs, they are assumed 

to reflect top-down attentional processes. Some authors differentiate between goal-directed 
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factors and trial history effects (e.g., Awh, Belopolsky, & Theeuwes, 2012). However, in our 

present paradigm, goal-direction and trial history are two sides of the same coin: Trial history 

effects are related to the current goals as well as to probabilistic inference and the 

probability-dependent effects are essential for the current task. The finding that top-down 

attentional mechanisms depend on the perceptual qualities of the cues that are used to 

convey feature-based information has crucial implication for the study of feature-based 

attention and in particular for the comparison with spatial attention. Typically, spatial cueing 

paradigms involve symbolic cues consisting of central arrows that point to the left or right 

side in space. For feature-based paradigms there is less consistency in the cues used. While 

some studies provided perceptual color cues (Vandenberghe et al., 2001b), others used 

color word abbreviations (Giesbrecht et al., 2003). Our results suggest that heterogeneous 

findings from neuroimaging studies comparing attentional mechanisms between feature-

based and spatial systems might be triggered by dissimilar color cues that were used to 

manipulate feature-based attention. Therefore, these findings from Experiment 1 were 

essential for the preparation of Experiment 2 that directly compared the neural correlates of 

spatial and feature-based cueing and their probability-dependent modulation.  

3.1.1 Limitations 

There are some limitations to Experiment 1 that will be discussed in the following section. 

First, we employed a between-subject design for the comparison of the different feature 

cues. Differences associated with the different individuals in the three groups might have 

confounded group comparisons. While an additional analysis including age, gender, and BIS-

11 impulsivity subscale scores as covariates revealed that these known variables did not 

explain the reported results, we cannot rule out that there were other unknown variables, 

which might have contributed to the observed effects. Second, although only feature-based 

information was relevant in Experiment 1, we employed a search task that also contained a 

spatial component. This is because it was designed to establish the task paradigm for 

Experiment 2 that aimed at comparing feature and spatial cueing effects. However, this 
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spatial component was present in invalid as well as valid trials, since in each trial two stimuli 

in the cued color (one in each hemifield) were provided. Therefore, any effects of spatial 

search should cancel out in the differential comparison of RT between invalid and valid trials. 

Moreover, differential feature cue effects should not contain effects of spatial search because 

they were present in all types of feature cues. Still, to exclude any spatial component in 

feature-based paradigms, one could use target stimuli that are presented superimposed to 

each other at a single location. Third, we used identical cue-target intervals for the three cue 

versions even though abstract cues might have involved a different time courses of 

attentional deployment than the automatic cues. We did, however, not find any effect of 

feature cue type on RTs or accuracy. This speaks against systematic differences in the time 

needed to deploy attention. It is however possible, that different cue-target intervals might 

have increased or decreased the reported effects. Finally, it would have been of great 

interest to investigate trial-by-trial learning for the different cue types using the computational 

modeling approach that was applied in Experiment 2. More precisely, comparing trial-by-trial 

learning parameters derived from the hierarchical Bayesian learning scheme between the 

first and second half of the experiment would have provided valuable information about the 

effect of time-on-task on individual updating behavior. However, in order to reliably estimate 

these model parameters separately for the two halves of the experiment, one would need to 

include a higher number of trials than provided in the present task paradigm.  
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3.2 Experiment 2:  

A systematic comparison of the functional mechanisms of probabilistic inference of 

feature-based and spatial attentional deployment  

Three main issues were addressed in Experiment 2. First, the neural mechanisms of 

feature-based attentional deployment were investigated with special emphasis on the neural 

system that engages during reorienting of feature-based attention after invalid cues. Second, 

we investigated probabilistic inference as a critical factor that influences behavioral 

performance, and compared whether it similarly affects spatial and feature-based attentional 

deployment. Third, Experiment 2 aimed at defining how probability-dependent modulation of 

attention is implemented in the brain to elucidate whether these implementations are domain 

general or whether they are domain specific with differential neural correlates for the two 

systems.  

In order to investigate these questions, a combination of computational modeling of 

RTs and fMRI was applied to two different versions of the probabilistic cueing task that was 

introduced in Experiment 1. One version contained spatial cues and the other version 

contained feature cues. For the feature cues, abstract color cues consisting of two-letter 

abbreviations of the color word were presented. These have been found to produce 

immediate probability-dependent attention effects in Experiment 1.  

The results of Experiment 2 showed that unsignalled changes in the percentage of 

cue validity similarly affected RTs in the two task versions with higher validity effects when 

there was a higher probability of the cue to be correct. No behavioral differences between 

spatial and feature cues were found. The following section will first discuss the neural results 

for probability-independent attentional deployment for the two task versions. The subsequent 

section will then consider the results from the computational modeling of RTs and the 

functional correlates of probability-dependent attention.  
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3.2.1 Probability-independent attention in feature-based and spatial systems 

In line with previous findings, orienting of attention after valid cues engaged a 

common frontoparietal network for feature-based and spatial attention, indicating that similar 

neural systems are involved in both types of attention (Egner et al., 2008; Giesbrecht et al., 

2003). However, when further exploring the neural mechanisms for both orienting systems, 

we found directional modulation of BOLD responses in contralateral SPL, IPS and visual 

areas during spatial but not feature-based orienting. These results suggest that despite 

similar brain structures, there are differential neural mechanisms for orienting of attention to 

features and orienting of attention to locations. Still, the main focus of the present work was 

to identify the neural systems that engage during reorienting of feature-based attention in 

comparison to the well-known spatial reorienting system. Feature-based reorienting engaged 

a cluster in the left hemisphere located along the IPS. On the other hand, spatial reorienting 

activated bilateral IPS, the precuneus, as well as right inferior and superior frontal gyri. 

Subsequent ROI analyses revealed stronger responses to spatially invalid trials within these 

areas, whereas the reversed pattern was observed for the anterior part of the IPS with 

stronger responses when color was invalidly cued. This indicates that despite similar 

behavioral effects, i.e., similar RT costs, the neural systems involved in feature-based 

reorienting and spatial reorienting differ substantially. The involvement of left rather than right 

lateralized network for feature-based reorienting is consistent with previous work that 

reported enhanced activity during shifting between feature dimensions in left parietal regions 

including IPS (Liu et al., 2003; Weidner et al., 2009). Our novel findings reveal that the left 

IPS also responds during reorienting within a feature dimension (see Fig. 5). Moreover, the 

finding that the anterior part of the IPS responds more strongly to feature-based as 

compared to spatial reorienting indicates considerable domain specificity in the neural basis 

of feature-based attention. To accomplish a more comprehensive picture of feature-based 

mechanisms it would be interesting to investigate whether the different color cues from 

Experiment 1 activate the same neural system, or whether depending on their different levels 
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of processing, distinct reorienting systems respond to the different types of invalid color cues. 

Furthermore, future studies should explore whether the reported findings for the color 

dimension also extent to other feature dimensions such as motion.   

 

Figure 5 Feature-based reorienting network. 

3.2.2 Probability-dependent attention in feature-based and spatial systems 

Behaviorally there were no RT differences between feature and spatial systems 

neither in the absolute level of RTs nor in their modulation by probability-dependent attention. 

This indicates that probabilistic inference follows similar principles for both feature-based and 

space-based visual attention. Importantly, the subject-specific individual learning parameter 

ω, which quantifies the susceptibility to updating trial-by-trial estimates about cue validity, 

was significantly correlated between both task versions. This finding points to overlapping 

mechanisms for probabilistic inference between both attentional systems. Moreover, it shows 

that there are considerable inter-individual differences that persist across visual attention 

domains (i.e., higher ω in task version A predicts higher ω in task version B, and vice versa). 

This finding of consistent inter-individual differences is not trivial. Understanding which 
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characteristics determine behavior under uncertainty could be crucial to comprehend 

essential aspects of brain function and disease (see Fig.6). For example, individual 

differences in probabilistic learning may be explained by variability in basic physiological 

mechanisms (Thiel, Huston, & Schwarting, 1998), which may also affect behavioral traits that 

are comorbid with maladaptive behavior (e.g., compulsive behavior). For the spatial attention 

system, it has been shown that subject-specific updating profiles can be modulated by 

cholinergic pharmacological intervention (Vossel, Bauer, et al., 2014), so that it is possible 

that genetic variations affecting cholinergic neurotransmission are linked to individual 

differences in probabilistic learning.  

Moreover, computational modeling approaches offer a unique way to infer 

mechanisms that generate behavioral malfunctions in neurological or psychiatric patients. 

This is especially relevant for spectrum diseases that require differential diagnosis and 

individual treatment plans. Computational modelling has for instance been applied in patients 

suffering from schizophrenia (Moutoussis, Bentall, El-Deredy, & Dayan, 2011; Stephan, 

Baldeweg, & Friston, 2006). Here, it has been suggested that impaired probabilistic inference 

may prompt erroneous beliefs, which induce aberrant attribution of salience to irrelevant 

events ("aberrant salience"; Jardri & Deneve, 2013) and the formation of delusions (see 

Stephan & Mathys, 2014 for a review). Similarly, there is evidence that autism spectrum 

disorder patients display overly low precision of predictions about sensory inputs, which 

causes predominantly detail-driven perception and difficulties in extracting the global 

meaning of environmental information (see Haker, Schneebeli, & Stephan, 2016 for a 

review). The extent to which “computational profiles” deviate from the healthy population 

could be used as indicator of disease severity and diagnoses in individual patients (see 

Stephan, Iglesias, Heinzle, & Diaconescu, 2015 for a review).  

An example for the domain of attention would be potentially impaired expectancy 

formation in stroke-induced (spatial) neglect syndrome (Shaqiri & Anderson, 2012, 2013). 

Here, applying our computational model could provide a useful tool to formally describe 

impaired behavior of spatial neglect patients and to identify the selectivity of their impairment 
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with respect to other attention systems. Moreover, our method may be more sensitive to 

assess rehabilitation status following treatment.  

 

Figure 6 Illustration of individual differences in trial-by-trial changes in probability-

dependent attention �
�(�). 
 

The example shows trial-by-trial changes in probability-dependent attention	�
�(�)of two 

different subjects, reflecting their updating of beliefs that the cue is valid in relation to 

the experimentally manipulated percentage of cue validity (%CV). Subject B (blue) 

displays faster updating after new observations than subject A (red), as indicated by 

faster changes in probability-dependent attention	�
�(�).  
 

In a second step, the neural correlates of probabilistic inference were investigated. 

Trial-by-trial estimates about cue validity derived from the computational model were 

included as parametric regressors to the fMRI design. This approach allows examining the 

effects of probability-dependent attention on BOLD amplitudes in valid and invalid trials of the 

two task versions. We did not observe probability-dependent modulation of orienting 

responses. This (null)-finding could result from the employed task design: Short and constant 

SOAs were used, which does not allow differentiating between cue and target- related 

responses. The signal might have been mostly driven by target-related responses, which are 
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usually stronger than cue-related responses. Thus, this task design was well suited to detect 

differences between invalidly and validly cued targets, which were of main interest in 

Experiment 2. On the other hand, this finding may also be a true finding, rather than a 

limitation of the task design, since it is consistent with previous data that showed higher 

probability-dependent effects on reorienting costs than on orienting benefits in a spatial 

attention task (Lasaponara et al., 2011). Future studies should employ task designs with 

varying SOAs to investigate whether our finding concerning cue-related activity is true, or 

whether the present task paradigm was simply not well suited to investigate this question.  

With regard to attentional reorienting, we observed probability-dependent effects on 

feature-based as well as spatial attention. These effects were reflected in increased BOLD 

responses for invalid trials when the expected probability for valid cues was higher. On the 

other hand, BOLD responses for valid trials with higher expected probability for the 

occurrence of a valid trial were decreased. This different pattern of BOLD responses for valid 

and invalid trials mirrors the probability-dependent decrease or increase of validity effects 

that was reported in the analysis of RTs. For spatial attention these effects were present in 

the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction. In 

the left anterior IPS these effects were present for feature-based as well as spatial attention. 

No regions were selectively modulated by feature-based attention. The following section will 

discuss the results for spatial attention with a special emphasis on a TMS experiment that 

was conducted as a co-author. Next, the novelty of the findings of common effect for spatial 

and feature-based attention will be discussed. 

Consistent with previous work and in line with the contextual updating hypothesis 

(Geng & Vossel, 2013), we found probability-dependent effects on spatial attention in the 

rTPJ (Vossel et al., 2015; Vossel et al., 2006). This finding fits nicely with the results obtained 

from Vossel et al (2015) which investigated probability-dependent changes in cortical 

connectivity within the spatial reorienting system using dynamic causal modeling (DCM). In 

this study, functional data were acquired while participants performed a probabilistic cueing 

paradigm with saccadic responses to the targets. The analysis revealed that probability-



GENERAL DISCUSSION SECTION 
 

111 

 

dependent effects on spatial reorienting-activity were established via directional influences 

from rTPJ to other regions that were involved in the employed task paradigm (FEF, 

putamen). One can hypothesize that the finding of probability-dependent effects on spatial 

attention in the precuneus, left IPS and MOG in the present task paradigm may also be 

initiated by influences from the rTPJ.  

Based on these findings a TMS Experiment investigating the role of the rTPJ in belief 

updating that was conducted as a co-author (Mengotti et al., 2017). The research questions 

that were addressed in this study concerned the causal involvement of the rTPJ in belief 

updating and the characterization of the timing of this process. To investigate these 

questions, participants performed a modified spatial cueing task, during which false explicit 

information about the %CV was provided in half of the experimental blocks. When false prior 

information was provided, participants needed to update their prior belief about %CV over 

the course of the block. Online double-pulse TMS was applied in two different runs – 300 ms 

or 50 ms after target appearance – in order to disrupt rTPJ activity at these time points. The 

results revealed that disrupting rTPJ activity 300 ms after target appearance selectively 

decreased participants’ updating of false prior beliefs concerning %CV as indicated by a 

decreased learning rate (here: Rescorla-Wagner learning rate α) and by altered explicit 

beliefs concerning the validity of the cue. However, no such effects were found for disruption 

after 50 ms. These findings provide direct evidence for the causal involvement of rTPJ in the 

updating of prior beliefs. Our results from Experiment 2 extend the results from Mengotti et 

al. (2017) and Vossel et al. (2015) by showing that the involvement of rTPJ in probability-

dependent attention may be confined to the spatial system, since we did not observe any 

effects for feature-based reorienting within this region. 

Interestingly, activity in the left anterior IPS displayed probability-dependent effects on 

spatial as well as feature-based reorienting. The common effect within this region is a 

remarkable result because it indicates that even though probabilistic inference distinctively 

affects each of the two attentional subsystems, there may be domain general neural 

mechanisms. Moreover, the finding fits well with the correlation of the updating parameters at 
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the behavioral level and suggests a potential link between probabilistic inference in both 

attention systems.  

Interestingly, the involvement of the left anterior IPS resonates with its central role in 

the integration of multisensory information and one could speculate that this role is not 

confined to different sensory modalities but extends to distinct visual domains. Some 

evidence for the sensitivity of IPS to perceptual uncertainty can be derived from 

neurophysiological studies that link activity in lateral intraparietal area with evidence 

accumulation processes during (uncertain) decisions: Neurons in this area show increased 

firing rates with less uncertainty and prolonged responses with higher uncertainty (Gold & 

Shadlen, 2007). This provides a nice analogy with the parametric effects of probability-

dependent attention in the present paradigm, i.e., increased responses to unexpected stimuli 

(invalid trials) and decreased responses to more expected stimuli (valid trials). As opposed to 

the common effects in the left anterior IPS, the posterior IPS did only show probability-

dependent effects on spatial reorienting. The specific involvement of the posterior IPS in 

spatial processes can be explained by its dense connectivity with topographically organized 

visual cortex. As such, the posterior IPS may be especially involved when information about 

spatial locations is processed. On the contrary, we did not find regions that selectively 

displayed probability-dependent effects on feature-based attention. This finding does not 

imply that probabilistic inference is less relevant for the feature-based system. Rather, it 

suggests that probability-dependent effects were locally represented in the left anterior IPS. 

Together with the finding from the global reorienting contrast that revealed stronger 

responses within this region to feature-based as compared to spatial reorienting of attention, 

we suggest that the left anterior IPS plays a central role in feature-based attentional 

processes.  
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3.2.3 Limitations 

The following section will discuss limitations of Experiment 2 focusing on the design 

and the fMRI analysis. Since we aimed at a direct comparison between feature and spatial 

cueing effects, a within subject design with the same search task, stimuli, and methods was 

used. As outlined in the discussion of Experiment 1, the search task always contained a 

spatial component, in both, the spatial and the feature cueing task.  

In the spatial cueing task, the spatial cues induce an attention shift to the expected 

location. On invalid trails, an additional spatial shift to the uncued location occurs. This 

spatial shift was the aspect of interest for the spatial task version. In the feature-based 

cueing task, we expected the cues to cause preferential processing of the two stimuli in the 

cued color. On invalid trials, there was an additional shift in processing towards the stimuli in 

the uncued color. This attentional shift in preferential processing is the aspect of interest for 

the feature task version. Due to the nature of the search display, the feature task potentially 

also contained a spatial component. However, this effect presumably cancels out in the 

feature task when directly contrasting invalid and valid trials since this spatial component is 

present to the same degree in valid as well as invalid trials. If there had been a stronger 

spatial component in invalid trials in the feature task, we should have observed similar 

activation patterns for the invalid versus valid contrast for both tasks. In contrast, the reported 

interaction effects between cue type and validity revealed that (most) regions responded 

more in the spatial cueing than in the feature cueing task or vice versa. This speaks against 

a common (spatial) component to both task versions.   

A second limitation of Experiment 2 is that we did not investigate probability-

dependent effects on attention outside the attentional networks. It may be that there are 

other networks involved in probability dependent effects that have been overlooked in 

analyses focusing on attentional networks. It should be noted that the probabilistic effects are 

subtle and were only detectable using ROI analyses. Moreover, whole-brain analysis on the 

contrast images of the probability-dependent attention did not reveal any significant 
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parametric effects at corrected thresholds. However, even this null finding does not prove 

that there are no probability-dependent effects outside attentional networks and future 

studies are needed that provide higher numbers of participants to increase statistical power. 

Likewise, potentially connectivity analyses would be helpful to answer the question of shared 

versus distinct mechanisms concerning the observed common effect in the left IPS for spatial 

and feature-based probability-dependent attention.  

 

3.3 Conclusions and implications 

The core research question of the present thesis concerns how the human brain 

forms expectancies during sensory uncertainty when information about probabilities is not 

available but needs to be inferred from observations. It was investigated whether this 

probabilistic inference process governs the deployment of feature-based and spatial attention 

in a similar way. This was accomplished by identifying which factors influence probabilistic 

inference in feature-based attention (Experiment 1), and by comparing the computational and 

neural mechanisms that modulate probabilistic inference in feature-based and spatial 

attention (Experiment 2). Identifying commonalities or distinctions between these two 

attention systems has implications for the study of visual attention and helps to understand 

whether the neural computations of probabilistic inference are implemented within a domain-

general system that is responsible for predicting sensory inputs or whether there are several 

domain-specific systems that are localized in confined networks.  

Our results show that behaviorally probabilistic inference similarly modulates feature-

based and spatial attention systems. Hence, in the framework of predictive coding this 

supports the idea that the brain forms attentional predictions that influence the processing of 

sensory inputs. The speed with which new observations induce the updating of feature-

based attentional predictions depends on the level of abstraction of the cues that are 

provided prior to the sensory inputs (Experiment 1). When through experiences in everyday 

life prior predictions have already been formed –for instance for automatically processed or 

well-learned cues– the updating of these predictions requires more time than for newly 
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learned and more abstract cues. The susceptibility to updating trial-by-trial estimates about 

cue validity is correlated for abstract feature-based cues and spatial cues. This indicates that 

probabilistic inference represents a trait-dependent variable influencing domain general 

attentional deployment. However, the neural implementations for probabilistic inference 

seem to be dedicated to domain specific subsystems. The rTPJ seems to be particularly 

involved in probability-dependent spatial attention. For probability-dependent feature-based 

attention the anterior left IPS seems to be most crucial. However, the left anterior IPS also 

shows an effect of probability-dependent attention in the spatial system, which suggests that 

this region may establish probabilistic inference in a domain general manner.  

Combining the results from Experiment 2 and (Mengotti et al., 2017) indicates 

however that the probability-dependent attention effects in the spatial system causally 

depend on the processing of rTPJ and cannot be taken over by the left anterior IPS. This is 

especially relevant when considering findings from patients with right-hemispheric brain 

damage that reveal preserved feature-based learning of environmental statistics (here: 

priming) and selectively impaired spatial learning (Shaqiri & Anderson, 2013). We 

hypothesize that spatial neglect patients lack modulation of right parietal cortex –comprising 

the rTPJ– for the updating of spatial predictions, while the left anterior IPS still establishes 

these processes for the feature-based domain. A deficit in the processing of probabilities 

could result spatial neglect symptoms in stroke patients because they may lack the ability to 

learn from previous experiences and to adapt their spatial attentional systems accordingly. 

As such, this deficit could perpetuate the symptomatology. Likewise, it would be interesting 

to test whether patients with damage to the left anterior IPS also show impaired updating of 

probabilities for feature-based systems.  

With regard to visual attention our findings speak against a global unitary network which 

has been suggested by the influential framework from Corbetta and Shulman (2002). Rather, 

we propose that depending on to be selected aspects different attentional subsystems are 

activated controlling the reorienting of attention following expectancy violations. Depending 

on the task at hand, attentional processes can even differ within one single attentional 
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domain such as the selection of features. In conclusion, understanding the influence of 

probabilistic inference on attentional processes offers a unifying way to describe flexible 

attentional deployment as required in everyday life situations.  
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