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Abstract 

Studying of human consciousness poses many challenges. Numerous approaches seek to define 

consciousness and how it may be scientifically studied. This dissertation advocates a theory-

driven approach to the empirical study of consciousness. Specifically, it considers the Global 

Workspace Theory, the Higher-Order Thought Theory, and the Integrated Information Theory. 

It aims to identify the boundaries of unconscious processing proposed by these theories to clar-

ify the functional role of consciousness. To this end, I developed a novel variant of the contex-

tual cueing paradigm to examine implicit contingency learning as a proxy for unconscious pro-

cessing in three studies. Study 1 tested the role of attention, specifically, whether implicit learn-

ing of contingencies between features depended on their task relevance, and whether cue com-

petition effects occurred without awareness. Learning occurred independently of task relevance, 

with no evidence of cue competition. Study 2 examined the hypothesis of modularized uncon-

scious processing by examining transfer effects of contingency knowledge from one feature to 

another without explicit instructions. Such transfer effects were observed, suggesting that con-

tingency information can be exchanged between processing modules without being consciously 

accessible. Study 3 tested whether semantic information can be used in implicit learning. We 

found evidence of semantic category learning without awareness, but observed a reversed ef-

fect: not a learning benefit, but potential inhibitory effects based on the learned contingencies. 

Across all three studies, we implemented a refined test and analysis procedure for detecting 

explicit knowledge. This approach aimed to improve both the sensitivity and reliability of the 

awareness test assessment compared to conventional recognition-based measures. The findings 

are discussed in light of the three aforementioned theories of consciousness and their respective 

predictions. This dissertation contributes to refining theoretical models of consciousness, and 

opens new pathways for their empirical evaluation. It underscores the value of implicit learning 

paradigms alongside other methodological tools. 
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 1 Introduction 

Consciousness might be the only remaining mystery to humankind, according to philos-

opher Daniel Dennett (1993). Thereby, he did not imply that we do not know anything about 

consciousness, or that we know less about consciousness than we know about, say, deep-see 

creatures or the universe. Rather, he implied that we do not know how to approach the concept 

of consciousness. We have not agreed on a way to think about it, and about parameters that 

should be included in a theory of consciousness. And since Dennett wrote this statement in 

1993, it has rather become more accurate than outdated. Over the past two decades in particular, 

research on consciousness has gained significant momentum, as reflected in the increasing 

number of respective publications (see Figure 1). As depicted in Figure 1, this growth outpaces 

the general increase in publications within the same journals, highlighting the rising scientific 

interest in the topic. Despite this intensified effort, spanning psychology, neuroscience, philos-

ophy, and physics, there remains little agreement on a common conceptual ground, neither 

within disciplines nor in interdisciplinary work. This is signified by the myriads of theories on 

consciousness, and their vast differences. There have been tremendous endeavors to test hy-

potheses deducted from those theories, and again, there is a vast heterogeneity in doing so – a 

myriad of research questions, approaches, paradigms, mechanisms on quantum, molecular, neu-

ral, cognitive, and behavioral levels are investigated. In this work, I will argue for one approach 

that is promising for testing hypotheses derived from prominent (neuro-)psychological theories 

of consciousness, that is methodologically sound, and has relevant real-life implications. 

In the following chapters, I will develop an argument for studying consciousness on the 

grounds of empirically testable theories, and for examining parameters that constitute their ex-

planation of what consciousness is. I will also argue for an approach to develop experimental 

designs that allow for flexible manipulations of such parameters, and then to carefully measure 
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for conscious awareness1. I will further assert that this is especially viable by implementing 

implicit learning paradigms. 

 

Figure 1. 

Trends in Consciousness-Related vs. Other Publications Within the Same Journals   

(Logarithmic Scale) 

Note. The graph was generated based on an advanced search in PubMed. Search keywords 

specified publications in the following journals: Consciousness and Cognition, Neuroscience 

of Consciousness, Psychological Science, Psychological Review, Psychological Bulletin, Jour-

nal of Experimental Psychology: General, Journal of Experimental Psychology: Human Per-

ception and Performance, Journal of Experimental Psychology: Learning, Memory, and Cog-

nition, Cognitive Psychology, Cognition, Cognitive Science, Memory & Cognition, Journal of 

Memory and Language, Psychonomic Bulletin & Review, Attention, Perception, & Psychophys-

ics, Behavior Research Methods, Trends in Cognitive Sciences, Wiley Interdisciplinary Re-

views: Cognitive Science, Frontiers in Psychology, Philosophical Psychology, Journal of Cog-

nitive Neuroscience, Neuropsychologia, Brain and Cognition, Brain Research, Nature Neuro-

science, Frontiers in Human Neuroscience, Nature, Science, Nature Human Behaviour, Nature 

Communications, Scientific Reports, Cereb Cortex, J Neurosci, Behav Brain Sci, Proc Natl 

 
1 Note that I use the terms consciousness, awareness, and conscious awareness interchangeably here. 
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Acad Sci U S A. Note that some of the keywords refer to PubMed-specific abbreviations rather 

than the full official journal names. The keywords consciousness, conscious, unconscious, and 

awareness were added to determine the consciousness-related publications. 
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2 Approaches to Consciousness Research 

Different theories of consciousness set distinct foci with respect to the to-be-explained 

phenomena, and hence, the empirical work they inspire. They also differ in their level of expla-

nation and approach to thinking about consciousness to begin with. There are different possi-

bilities of approaching the goal to explain and test consciousness. One of the distinctions in 

approach lies in the question of what has to be explained: On the one hand, we need to answer 

the functional question of consciousness, which is why consciousness developed in the course 

of evolution, and what functions does it entail in our cognitive system (Dennett, 2014). This 

may be understood in the third-person perspective (Chalmers, 1997), such that we study con-

sciousness in our fellow human beings. On the other hand, we should address the aspect of 

phenomenology of consciousness, which is also called “qualia” or “what-it-is-likeness” (Nagel, 

1980). That is the first-person perspective (Chalmers, 1997), the subjective feeling of what it is 

like to be a conscious person.  

Another central distinction between approaches to study consciousness is the explana-

tory basis or level of explanation: When formulating functions, mechanisms, and phenomena 

around consciousness, one can connect those to neurobiological mechanisms, hypothesizing 

localizable activation in the brain that is associated with conscious processing, and one can then 

test them empirically. Other frameworks are more abstract and philosophical, like the idea of a 

mind-body dualism (Descartes, 1901) that was soon widely viewed as reductionist and outdated 

or even unscientific (Fodor, 1981). Other theories are then even concerned with integrating the 

concept of consciousness into the cosmos (Hameroff & Penrose, 2014) or explaining it on the 

grounds of quantum mechanics, not on neurobiological grounds, aiming for a most fundamental 

theory of consciousness (Atmanspacher, 2004; Chalmers & McQueen, 2022; T. Li et al., 2019). 

Thus, different theories choose different aspects of consciousness they aim to explain, and dif-

ferent levels of explanation. In this dissertation, the focus will be frameworks that revolve 
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around functions and mechanisms of consciousness that are empirically testable in the scope of 

psychological methodology. 

Within this, it is important to note that when taking a functionalist perspective on con-

sciousness, there are still two approaches do distinguish. On the one hand, consciousness can 

mean a more global state of an organism, such as being awake versus being asleep or uncon-

scious, or something in between which might be dreaming, mind-expending drugs, or vegeta-

tive states (i.e., intransitive consciousness; Seth & Bayne, 2022; Weitzel & Bavishi, 2024). But 

consciousness can also refer to conscious awareness being directed at a specific object, asking 

whether a generally conscious person is consciously aware of a certain object or stimulus in 

their environment (i.e., transitive consciousness), which would then be considered content-

based consciousness (Hohwy, 2009; Overgaard & Overgaard, 2010). In this dissertation, I will 

examine the latter, presupposing intransitive consciousness as a given. This means that I will 

investigate cases in which globally conscious individuals lack conscious awareness of specific 

stimuli or information.  

2.1 Atheoretical Approaches 

Before describing and discussing theories of consciousness, it is important to establish 

why we should formulate theories or models of consciousness to begin with. Could there be a 

simpler or more direct way to gain insight into the nature of consciousness?  

Such an approach could be the investigation of neural correlates of consciousness 

(NCCs), which is the minimum neural activity sufficient for consciousness to occur (Baars, 

1994; C. Koch et al., 2016). In empirical practice, that means to try and contrast one and the 

same cognitive process, once conscious, once unconscious, and propose that the difference seen 

in neural activation patterns is what constitutes consciousness (Klein et al., 2020). To give an 

example, Pins and Ffytche (2003) presented participants a hardly visible soft light-dark grating 

pattern with low contrast, and asked them in each trial to indicate whether they saw something 
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or not. They contrasted functional brain imaging in trials in which participants reported having 

seen or not seen the stimulus. Results suggested that activity in the occipital lobe (100ms after 

stimulus presentation) was a primary correlate of consciousness. While this seems a straight-

forward method to locate consciousness in the brain, there are several methodological problems 

with that approach. First, neural activity that is found to be exclusive to conscious trials could 

be contaminated by activity linked to response processes, thus overestimating the NCC (Marois 

& Ivanoff, 2005). This can be circumvented with no-report paradigms though (Tsuchiya et al., 

2015). A second central problem remains, however, as, when looking for information that is 

perceived consciously versus not consciously (content-based consciousness), the organism as 

such is conscious in both conditions which makes it difficult to distinguish neural patterns of 

conscious contents from global state consciousness (Chalmers, 2000; Hohwy, 2009). And not 

only is this approach methodologically much more complex than it might appear at first glance, 

but it also inherently has limitations that are unlikely to be overcome by even an ideal method. 

Because the logic of looking for neural activation patterns that are exclusively linked to con-

sciousness does not make the essential distinction between prerequisites and consequences of 

consciousness (Q. Li et al., 2014; Seth & Bayne, 2022; but see Sandberg et al., 2014, for a 

potential solution). Also, searching for NCCs is not “metaphysically neutral”, as often assumed, 

but it comes with theoretical presuppositions that might be viewed as reductionist (Klein et al., 

2020). Because given the vast number of interactions between neuronal states and the possibil-

ities of causal influence within them are no easy conditions for an experimental investigation 

(C. Koch et al., 2016). Thus, it is not trivial to gain any insight from mere brain activity patterns 

without specified hypotheses and the potential to falsify them empirically. 

Within the debate around NCC research, one debate that has been specifically intriguing 

is the debate around the “unfolding argument” (Doerig et al., 2019; Usher et al., 2023). The 

unfolding argument revolves around the notion that consciousness does not only need to be 
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understood as a state, but as a process. That includes predicting not only one state of neuronal 

activity that produces consciousness, but observing neuronal activity over the course of time, 

during which consciousness “unfolds”. This is especially relevant for the integrative function 

of consciousness put forward by most theories of consciousness (Cleeremans & Frith, 2003). 

Information integration includes integration over time, and thus, consciousness has to be un-

derstood as integrating neuronal activity over time. Integration also entails a causal determina-

tion of neuronal activity. Because patterns of neuronal activity influence each other and create 

a causal chain of events that then characterizes consciousness. The current debate regarding the 

unfolding argument concerns the specific architecture of such causal processes (Doerig et al., 

2019; Usher et al., 2023). There are models of consciousness that rely on recurrent feedback 

structures, such as recurrent processing or global workspace theories (Baars, 2005; Lamme & 

Roelfsema, 2000). Doerig et al. (2019) proposed that any recurrent neural network can in prin-

ciple be replicated by a feed-forward network. They thus claim that theories that hypothesize 

recurrent feedback are overly complex and incompatible with the unfolding argument. Usher et 

al. (2023) on the other hand rejects this notion and claims that recurrent networks are, also 

functionally, much more complex, given their interactions, and so is consciousness itself. They 

further argue that the unfolding argument puts forward claims that are oversimplified, and 

draws conclusions that are broadly discarding many theories of consciousness and methodology 

that is used to study consciousness. This makes it a problematic starting point for any further 

research on the subject. This debate is not settled, but it remains an interesting question for NCC 

research and theories of consciousness, whether a feed-forward or recurrent feedback architec-

ture should be adopted. 

Similarly, it would be conceivable to approach consciousness research solely via com-

puter simulations. This can be done with feed-forward or recurrent networks or large language 

models (LLMs). However unattainable that may sound, the goal would be to produce an 
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artificial conscious system by reaching the complexity of neuronal activation patterns and in-

teractions. Yet, there has been a critique of this idea, stating that whichever systems built to 

mimic our neural networks lack decisive parts that are hypothesized to enable or contribute to 

human consciousness (Aru et al., 2023). The authors basically argue that there is a lack of 

“hardware” in current artificial systems. For example, that an algorithm does not have a tha-

lamic structure, which many theories include in the mechanisms of consciousness (Dehaene & 

Naccache, 2001; Gennaro, 2004; Lamme, 2010; Tononi, 2004), nor dual-compartment pyram-

idal neurons, as put forward by the dendritic integration theory (Bachmann et al., 2020), or a 

global workspace structure (Baars, 2005), or an ascending arousal system (Solms, 2018; Solms 

& Friston, 2018). They claim that, ”[t]opologically, present-day AI systems are extremely sim-

ple in comparison, which is among the reasons we are cautious in ascribing phenomenal con-

sciousness to them.” (Aru et al., 2023). This argument is problematic on multiple levels. First, 

all theories on consciousness could be wrong, and thus, their reference to, or reliance on specific 

biological structures would become irrelevant. If the theories were right about, for example, the 

involvement or necessity of a thalamic structure for consciousness, why should an artificial 

system or other biological organisms not be capable of mimicking the functions of such a struc-

ture? The lack of “hardware” does not negate a potential functional equivalence (see also Rou-

leau & Levin, 2025). And even the mere lack of (functional) complexity of artificial systems as 

they are now, seems no valid argument against the possibility to create sufficiently complex 

systems in principle. What is most striking about that argument though, is the nonchalance with 

which the authors are claiming to be cautious to ascribe phenomenal consciousness to artificial 

systems, as if there was any basis on which one could do so. It is certainly a valid point to 

emphasize that current theories of consciousness aim to explain specifically human conscious-

ness, and might explain other forms of consciousness, not attached to a human body, as a by-

product. But to claim that because of the object of research (i.e., humans) that aims to explain 

a phenomenon such as consciousness, the phenomenon can in principle not occur in other 
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objects of research (other organisms or artificial systems), is circular reasoning. Even more so, 

as we would not even know what to look for as evidence of phenomenal consciousness (artifi-

cial or not) of a system to begin with (although, for recent attempts to adapt the Turing test see 

Gams & Kramar, 2024; C. Koch & Tononi, 2008). What this argument shows is how distant a 

functional computer model of human brain complexity still is. This is problematic, given that 

this would be the bare minimum to attempt to model consciousness. The challenges of the next 

steps would be to first determine sine qua non conditions for consciousness, and then being 

able to test a model or artificial system for consciousness.  

An interesting argument that may put an atheoretical approach to consciousness in doubt 

is the thought experiment illustrated in Gidon et al. (2022). Assuming that one could account 

for the vast number of interactions and feedback circuits and complex connectivity in the brain 

– would that make a purely neuroscientific exploration of consciousness reasonable? Because 

hypothetically, it could be possible to model consciousness like that in the future. Specifically, 

by recording all action potentials in every individual neuron in a human brain during conscious 

processing (e.g., of a simplistic stimulus) and a response, and replaying them to the same brain, 

neuron by neuron with voltage clamps, overriding any other activation. The question that Gidon 

et al. (2022) then asks is: Does that human experience the stimulus consciously, and make the 

response consciously? As the neuronal activity is exactly the same in the replay as in the original 

situation, it is hard to argue that would not be, as one would have to find a factor beyond neu-

ronal activity that produces or alters conscious experience – which bears the risk of Cartesian 

dualism (Dennett, 1993). And then, going one step further, Gidon et al. (2022) hypothesize to 

disconnect all synapses (e.g., chemically), and then replaying the neuronal activity. Lastly, in a 

third step, a region of the brain (e.g., in the case of a visual perception, the visual cortex) would 

be surgically removed from the rest of the brain. The question remains the same with these two 

further steps: Will there be conscious perception of the stimulus and response? Even if, 
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ultimately, the brain is no longer part of the body? This thought experiment is certainly intri-

guing, and is relevant for any neurological research approach to studying consciousness. It is 

crucial from an epistemological perspective to determine what neurological insights mean for 

consciousness research. There are certainly perspectives that criticize any purely neurological 

investigation of psychological phenomena as reductionist (Mausfeld, 2012), but Gidon et al. 

(2022) certainly raises an  interesting point, challenging the stance to epistemologically reject 

neurological activity as a source of insight. But it also highlights the issues with an opposite 

position. If one were to reject the notion of consciousness being based on neuronal activity, one 

is at risk of explaining consciousness through parameters that go beyond empirically measura-

ble phenomena, and scientific methodology. Should we be tempted to do that, we would not 

have come much further from the mind-body dualism of Descartes, and a homunculus-type 

pineal gland explanation of consciousness (but see Shapiro, 2011 for a critical appraisal). Inter-

estingly, this dualism is something that researchers especially in the neurosciences seem to fall 

for too often, as illustrated by their designation of the brain and the entire person as two inde-

pendent subjects (Mudrik & Maoz, 2015). 

Taken together, the atheoretical approaches to consciousness are not reconcilable or vi-

able with psychological methodology, but with computational, simulation or neurological meth-

odology. In addition, they raise a myriad of issues concerning epistemology, including issues 

that apply more generally to the cognitive neurosciences. Further, although they might be inde-

pendent from any specific theory or model of consciousness, they are not neutral in terms of a 

priori assumptions and epistemological convictions. Therefore, it does not seem expedient to 

solely aim for an atheoretical approach to study consciousness. In contrast, developing empiri-

cally testable theories of consciousness that are (relatively) transparent in terms of their a priori 

and theoretical assumptions, seems a viable way to move forward in consciousness research.   
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2.2 Theoretical Approaches 

There are many theories of consciousness that take a functional, (neuro-)psychological 

approach to explaining consciousness. In a recent review, Seth and Bayne (2022) summarized 

and categorized prominent consciousness theories. Of those, I will go into more detail with the 

global workspace theory (GWT; Baars, 2005; Dehaene & Naccache, 2001), higher-order theo-

ries (HOT; Rosenthal, 2005), and integrated information theories (IIT; Tononi, 2004). For the 

sake of completeness, I will note that other prominent approaches are re-entry and predictive 

processing theories (RPT; Lamme & Roelfsema, 2000), and a theory that conceptualizes con-

sciousness as a memory system (Budson et al., 2022).  

For the research questions of the work at hand, GWT, HOT, and IIT accounts are most 

relevant. Therefore, there will be a short introduction into their key concepts, and a comparison 

of the three in terms of three key components that have been put forward to model conscious-

ness – attention, modular processing, and semantic processing (see also Table 1). Those key 

components will be central for the empirical work of this dissertation. 

GWT (Baars, 2005) has since its formation been transformed into a neurocognitive the-

ory (Dehaene & Naccache, 2001), but had conceptually similar predecessors like the working 

memory model of Baddeley and Hitch (1974) or Dennett’s multiple draft theory of conscious-

ness (Dennett, 1993). GWT can be categorized as a functionalist theory of consciousness. It 

does not centrally aim at explaining qualia, but instead, focuses on the question of when and 

how information processing becomes conscious. The theory’s approach is an architecture of 

modular processing circuits in which information remains unconscious, and it then assigns the 

role of the filter to conscious processing to attentional mechanisms. Those are not thought of as 

homunculi determining which information is processed consciously. They are rather conceptu-

alized as neuronal activity, modulated by behavioral context, goals, and rewards, that deter-

mines the processing mode in a form of race, or, as Dehaene and Naccache (2001) put it, 
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‘neuronal Darwinism’. Once a stream of information processes wins this race, under certain 

circumstances, consciousness then emerges because information is widely spread across the 

brain, especially in cortical areas and the prefrontal cortex. 

This framework can explain a myriad of empirical findings and also subjective phenom-

ena (see e.g., Baars, 2017). First, it can explain why certain information can never be conscious 

– such as our neuronal or vegetative nervous system activity. Those processing networks are 

not long-distance connected via long-range axon neurons (Dehaene, Kerszberg, & Changeux, 

1998) and thus have no access to the global workspace to begin with. Other information can, in 

principle, become conscious, due to the connectivity of its processing modules to the global 

workspace. But there are certain constraints for information to actually become conscious. First, 

the theory postulates that attention is a prerequisite for consciousness. This means, top-down 

attention that “mobilizes” or “broadcasts” information to the global workspace. There is cer-

tainly evidence for this claim (Alef Ophir et al., 2020; Hommel et al., 2006), but also doubts 

about its generalization (Tallon-Baudry et al., 2018; Tsuchiya & Koch, 2009). Secondly, pro-

cessing of that information needs to be maintained over a certain amount of time to reach ac-

tivity that is sufficient for conscious processing. This is an interesting point for research that 

aims to experimentally manipulate consciousness by strongly limiting presentation and pro-

cessing time for stimuli (Kiesel et al., 2008). But not only are there prerequisites for conscious 

awareness to occur, but also consequences from conscious awareness that the theory predicts. 

The central claim here is that high-level, novel, and semantic information processing that is 

sustained over a longer time period can only occur with conscious awareness. High-level se-

mantic integration of novel information across modalities, space, and time thus is the main 

function of consciousness, according to GWT (Mudrik et al., 2014). And although there is evi-

dence that, for instance, semantic priming effects can occur in the absence of awareness, these 

effects only last a few hundred milliseconds (e.g., Naccache & Dehaene, 2001). In contrast, 
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highly integrated or semantic information that needs information retrieval from memory, and is 

sustained over a longer period of time, seems to require processing in the global workspace.  

Secondly, there is the class of HOT (Rosenthal, 2005). One could say that they take the 

Descartian cogito ergo sum, “I am, I exist, is necessarily true whenever it is put forward by me 

or conceived in my mind” (Descartes, 1641/1985), that is a self-assurance requiring conscious-

ness, and turn it around to essentially explain consciousness through such metacognitive repre-

sentations. That is, consciousness is the representation of the world’s representation of an or-

ganism. First-order states can be understood analogously to the encapsulated processing mod-

ules in GWT (Esser et al., 2022). There are some variants of HOT (for an overview, see Rosen-

thal, 2004), but all are based on the principle of postulating conscious awareness of a represen-

tation or mental state (a perception, a thought) as a consequence of a higher-order representa-

tion. That differentiates HOT from other theories of consciousness that propose a first-order 

perspective on consciousness (H. Lau & Rosenthal, 2011), suggesting that unconscious and 

conscious experience alike are based on first-order representations. But what determines 

whether a mental state is represented in a higher-order thought and whether it becomes con-

scious? Importantly, not all higher-order thoughts are necessarily conscious, but become in-

creasingly conscious with increasing strength of representation, so with increasing metacogni-

tive knowledge. Other than in GWT, attention does not play a central role in HOT. In HOT, 

attentional mechanisms can enhance first-order processing, and introspection is thought of as 

inner attention shifting between higher-order thoughts (van Gulick, 2004). However, attention 

is neither a prerequisite nor a sufficient factor to produce conscious awareness of a mental state. 

One could even claim that attentional mechanisms are just not well-defined in the scope of HOT 

(Hardcastle, 2004). What also differentiates HOT from GWT and other theories of conscious-

ness is that HOT do not necessarily assign a function to consciousness. Conscious processes in 

HOT are not thought to be inherently different from unconscious processes, other than being 
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represented in a higher-order thought (Rosenthal, 2008, but see Hardcastle, 2004). That way, 

they do not predict influences of conscious awareness on performance (e.g., H. Lau & Passing-

ham, 2006), and, in contrast to GWT and other theories, do not predict that high-level cognition 

and integration requires consciousness. 

The third theory that will be roughly sketched here, is the IIT (Tononi, 2004). The theory 

is constantly under development (the latest update is IIT 4.0; Albantakis et al., 2023), but all 

versions of the theory share core principles. The theory provides a mathematical approach to 

consciousness, formalizing the approach that consciousness emerges from high levels of infor-

mation integration. The aspect of information integration is certainly something that it shares 

with other theories of consciousness, but it is the only theory equating integration and con-

sciousness. The level of integration can even be quantified by, broadly speaking, the difference 

between information processing in the individual parts of a system, and the processing in the 

system as a whole (the φ parameter). The idea is, somewhat similar to Gestalt theory (Miyahara 

& Witkowski, 2019), through information integration, the whole is more than the sum of its 

parts. And that the system cannot be reduced to (the sum of) its parts, because of the causal 

relations between them. In the case of consciousness, that means that the interplay of neurons 

produces consciousness. This also means that the system cannot be reduced to its independently 

working modules. IIT can thus explain why certain processes can never be conscious in princi-

ple. One example are processes in the cerebellum, a structure that is characterized by independ-

ent, modular, and mostly feedforward neuronal networks (Tononi, 2008). For such a modular-

ized structure, IIT computes a low φ parameter, thus, no consciousness. Critically, such reason-

ing also means that any system with a high φ can potentially be conscious, and that the structure 

does not necessarily have to be based on neurons (Sheldrake, 2021). This aspect has recently 

been harshly criticized for its tendency to embrace a form of panpsychism (Merker et al., 2021). 

Many parameters thus distinguish IIT from GWT and HOT. For example, attention has a central 
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role in GWT, but not in IIT. Attention is independent from the level of integration, and is thus 

independent from consciousness. Also, IIT does not postulate modularized processing in un-

conscious states, on the contrary, as it equates the level of information integration through pro-

cessing with consciousness, it is not compatible with a modularized processing view. In contrast 

to HOT, IIT does not include a metacognitive level. Instead, consciousness emerges from highly 

integrated information processing itself, not from a higher-level representation of it. 

There are also attempts to unify or integrate theories along their shared features, claim-

ing that current theories do not necessarily contradict each other (Storm et al., 2024). There is 

however a consensus that more empirical work, and a variety of methods and measurements of 

consciousness are vital to enrich the theoretical perspectives on consciousness (Melloni et al., 

2023; Storm et al., 2024).  
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Despite having discussed the reasons to work theory-driven above, there certainly are 

pitfalls to working within the framework of few prominent theories, like it is the case in the 

field of consciousness. The risk of dominant theories in a field is the confirmation bias (Schnepf 

& Groeben, 2024). This means that research efforts are mainly directed at confirming hypoth-

eses deducted from theories, instead of challenging and potentially falsifying them. And then 

to stick to the same empirical methods that keep confirming those hypotheses, instead of diver-

sifying methods, and thus, empirical evidence. For the research on consciousness, this is illus-

trated by a recent review and the extensive ConTraSt database (https://contrastdb.tau.ac.il/; 

Yaron et al., 2022) of 412 empirical studies addressing four prominent theories of consciousness 

(GNW, HOT, IIT, and RPT). In the database and with its interactive tools, studies on conscious-

ness can be searched and summarized according to categories like underlying theory, paradigm, 

task, stimulus modality, or measure of consciousness. In their review, the authors show that 

when hypotheses deducted from consciousness theories are tested empirically, the results are 

predictable merely on the basis of the methodological choices. For instance, it could be pre-

dicted from an experiment examining global state consciousness or content-based conscious-

ness whether it supported GNW or IIT (Yaron et al., 2022). Further, the authors found that rather 

than rigorously testing predictions, many studies interpret the results with regards to implica-

tions on consciousness theories only post-hoc, instead of practicing a priori hypothesis testing. 

Only 15% of the studies challenged a theory instead of just confirming its predictions. One 

implication for the field is then, that a theory is hardly ever challenged or even discarded. As 

an example, one can see that only 27 studies challenge GWT by finding posterior NCC, whereas 

77 studies find frontal and 83 studies find parietal activity and thus support GWT. This way, 

evidence on all theories are just piling up (Yaron et al., 2022). The same tendency can be seen 

in the developments of the NCC research. GWT and HOT, which both predict neural activity 

associated with the global workspace and higher-order thinking in frontal regions, have not lost 

popularity even as the search for NCC has narrowed to posterior cortical and sensory regions 
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rather than fronto-parietal regions (Koch et al., 2016) and studies using active stimulation were 

not able to manipulate consciousness via the prefrontal cortex (Raccah et al., 2021). This state 

of research field has triggered different solution approaches, such as a vast adversarial collabo-

rations project that aims to test GWT and IIT against each other (Melloni et al., 2023). 

To conclude, there are viable candidates for a broad theory of consciousness that view 

consciousness from a functional perspective, and are empirically testable. However, as though 

there are crucial advantages for studying consciousness on the basis of theories, to let those 

advantages count, experimental psychology as a discipline needs to be vigorous in challenging 

those theories. 
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3 Unconscious Processing 

The review of different theoretical frameworks of consciousness has shown approaches 

to describing conscious processing, the emergence, and functions of consciousness. How can 

these approaches be evaluated empirically? I will argue that it is a fruitful approach to examine 

the scope and characteristics of unconscious processing to gain insight into the concept of con-

sciousness. First, we can empirically identify functions that can occur without conscious aware-

ness. We would thus posit constraints on theories that attribute such functions exclusively to 

consciousness. For example, high-level cognition is a function that GWT and IIT would ascribe 

to consciousness. When there is empirical evidence of some high-level processing in the ab-

sence of awareness (e.g., Mudrik et al., 2014; Naccache & Dehaene, 2001), this challenges 

those theories, or at least expands the scope of unconscious processing and thus confines the 

function of consciousness. The objective of examining unconscious processes is then to deter-

mine its scope and limits, which potentially, by exclusion, leaves the function and raison d’être 

of consciousness. This approach stems from a functional, but also evolutionary perspective on 

the issue – as we have conscious awareness, we need to explain why it is useful, and why it had 

an evolutionary advantage and developed the way it did (Velmans, 2014). Complementary to 

that, we can find functions that require awareness to delineate the role of consciousness in cog-

nitive function. As an example, evidence supports the notion that conscious processing is 

needed for highly integrated, long-term sustained, and novel semantic information processing 

(e.g., Biderman & Mudrik, 2018; Moors et al., 2016; Treisman, 2003). This would then support 

theories of consciousness that claim such processing only in the scope of conscious processing, 

for example in the GWT, or defining it as integrated information processing that produces con-

sciousness, as in IIT. In contrast, HOT would not require conscious processing for complex, 

high-level cognition, because processes can remain unconscious as long as there is no higher-
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order thought representing it. This way, the investigation of unconscious processes can provide 

a valuable contribution to an evaluation of consciousness theories. 

There is a vigorous debate about how to investigate unconscious processing, and espe-

cially, the differentiation of conscious and unconscious processes. There are some psycholo-

gists, neuroscientists, and philosophers that reject virtually any current evidence for uncon-

scious processing or unconscious perception (Newell & Shanks, 2023; Peters et al., 2017; but 

see responses, e.g., Dijksterhuis et al., 2014). Aside from the question whether unconscious 

processing has been demonstrated convincingly in empirical work, there is also a debate con-

cerning the quality of differentiation between conscious and unconscious processing. There are 

multiple-system views that differentiate the two qualitatively and claim two separate processing 

systems, as is suggested in GWT (Baars, 1997; Dehaene & Naccache, 2001). This view was 

also adopted by models that aim to differentiate conscious and unconscious learning processes 

(e.g., Keele et al., 2003; Sun et al., 2005). On the other hand, there are views that reject a mul-

tiple-system architecture and argue for a single-system approach  in which conscious and un-

conscious processing only differs in characteristics of its representation, like in HOT (H. Lau 

& Rosenthal, 2011) or IIT (Tononi, 2004). This was also adopted for models of learning, con-

cerning the question of characteristics of conscious and unconscious learning (Cleeremans & 

Jiménez, 2002).  

In line with that, many theoretical frameworks would not subscribe to a dichotomous 

notion of unconscious versus conscious processing. Nonetheless, in empirical testing, methods 

regularly contrast conscious and unconscious processes, mostly in a dichotomous fashion 

(Ramsøy & Overgaard, 2004). Yet, to illustrate the alternatives to a strict dichotomy, one can 

shortly summarize the following approaches. Based on the GWT, a tripartite structure has been 

proposed, namely conscious, preconscious, and subliminal processes (Dehaene & Changeux, 

2011; Dehaene et al., 2006). Other frameworks proposed a continuous scale for consciousness, 
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for example a continuum of information integration in the IIT that is scaled with the parameter 

Φ (Tononi, 2004), or a continuum along strength and duration of recurrent processing that is 

indicative of the level of awareness (Lamme, 2006). Finally, there are approaches that differen-

tiate between the physical-neuronal and phenomenological aspect, and, concerning the latter 

aspect, emphasize the importance of qualitative assessment of awareness, instead of quantita-

tive (dual-aspect approach; Chalmers, 1997). In the work at hand, the dichotomy will be ac-

cepted as a working definition for an empirical approach to contrast two different modes of 

processing, but it is not subscribed to it in a strictly theoretical sense.  

 Independent from the precise differentiation between conscious and unconscious pro-

cessing, there are several functional arguments for a differentiation. First, there is the argument 

of efficiency. Conscious processing is capacity-limited (Marois & Ivanoff, 2005) and poten-

tially needs more energy than unconscious processing  (Schölvinck et al., 2008). In contrast, in 

unconscious processing, a myriad of processes operate in parallel across distributed networks 

(Kihlstrom, 2014). Also, building on the capacity argument, conscious processing is handling 

already filtered information, a fraction of what is processed in the unconscious system, often 

described as selected by attentional processes (e.g., Baars, 1997; J. Prinz, 2011; Tsuchiya & 

Koch, 2009). That is functionally crucial to avoid an overburdening of the system, given that 

visual information alone entails about 108 bits per second  (Itti & Koch, 2000), and that it is 

essential for the organism to be capable of acting quickly and appropriately to its environment 

or according to its goals. Unconscious processes ensure quick processing, filtering action-rele-

vant information enables action control, especially in situations that are novel or conflicted (D. 

A. Norman & Shallice, 1986). Taken together, these considerations demonstrate that uncon-

scious processing is not negligible but a fundamental counterpart or complement to conscious 

processes.  
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However one views the differentiation between conscious and unconscious processes, 

there are methodological challenges to empirically test them. These lie specifically in the at-

tempt to disentangle conscious and unconscious processing, so, to study the latter without con-

tamination of the former. That is essential when aiming to determine the scope and limits of 

unconscious processing. In the last decades, methods to measure unconscious processes have 

been newly introduced, proven themselves useful, or been criticized and discarded. The follow-

ing section illustrates the challenges the field is facing with current methods to study uncon-

scious processing. From this, I will derive the argument for using implicit learning instead of 

other paradigms within this goal. It is worth noting that recently, a team of researchers has been 

working on a best practice manual for studying unconscious processing (Stockart et al., 2024). 

However, in their work, the authors do not weigh different arguments for different methods, but 

instead present the results of two surveys, having asked researchers in the field for their opin-

ions. The recommendations that are deducted from these two surveys are thus not taken as a 

gold standard for this current work, as they are not deducted from empirical data, logical argu-

ment, or theoretical deliberations, but from alleged authority.  

This is why, in the following, I will depict some of the most common methods examin-

ing unconscious information processing, and will discuss their issues. I will show that methods 

of implicit learning are less commonly considered for testing consciousness theories, and are, 

to a certain extent, a separated field from classical approaches. Thus, I aim to form an argument 

for the present work’s approach to studying consciousness with implicit learning methodology.  

3.1 Experimental Paradigms of Subliminal Stimulus Presentation 

First, and maybe most prominent, is the notion to study unconscious processes by sub-

liminal perception paradigms. Subliminal perception means that a stimulus is presented but 

rendered invisible. Its perception is demonstrated through any kind of influence imaginable on 

behavioral (e.g., Strahan et al., 2002), but also in neuroimaging measures (e.g., Eimer & 
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Schlaghecken, 1998, 2003). Typically, this is achieved by presenting the stimulus for a very 

brief time, often combined with visual masking techniques, or through manipulation of atten-

tional resources or selection (for an overview, see Kouider & Dehaene, 2007). For instance, 

presentation times of 8, 16, or 33ms are commonly used in combination with visual masking. 

It could be questioned whether stimuli presented so briefly are even processed at all. But there 

is evidence that even sub-millisecond stimuli evoke brain responses, at least when they are not 

masked (Sperdin et al., 2015). There are several problems that have been raised over the last 

decades. First, there are technical issues. The hardware that was used in such experiments until 

the 2000s, cathode ray tube monitors, were criticized to produce artifacts depending on lumi-

nance and contrast of presented stimuli (García-Pérez & Peli, 2001). More so, the modern liquid 

crystal display monitors are not able to accurately time stimulus presentation especially if short 

presentation times are required (Ghodrati et al., 2015). There are modern technology solutions, 

but still, for much of the hitherto existing evidence it is questionable whether stimuli were in 

fact presented as shortly as claimed, if that was not checked by an external photodiode or other 

advanced technical checks (García-Pérez & Peli, 2001). Secondly, there is also a conceptual 

issue with presenting stimuli for a very brief time. Presentation time first and foremost manip-

ulates representational strength. That is not the same as, and does not necessarily determine, 

consciousness. Being unaware of a visual stimulus could be different in terms of representation 

and processing than having poor representational strength (Kouider & Dupoux, 2004). 

Methods that potentially do not conflate consciousness with representational strength, 

are manipulations of attention. For example, a more recently developed method is the continu-

ous flash suppression technique (CFS; Tsuchiya & Koch, 2005). It is a combination of binocular 

rivalry and flash suppression. To one eye, a low-contrast target image is presented, while the 

dominant eye is presented with Mondrian patterns that are altered, thus “flashed” every 100ms. 

The result is, as has been repeatedly demonstrated, that the target image remains not consciously 
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perceived for several seconds. The popularity of this method since its introduction can be seen 

in increasingly more publications per year using it (Stein, 2019). Yet, it has extensively been 

under critique for several issues, first and foremost that it remains unclear what level of pro-

cessing is happening during CFS (Pournaghdali & Schwartz, 2020).  

The methods described in this chapter face challenges, both concerning validity and 

methodological details. Even though there have certainly been technological advances in ren-

dering stimuli (allegedly) invisible, the epistemological gain is not compelling. Still, as can be 

seen from reviews and meta-level work on consciousness research (Melloni et al., 2023; 

Stockart et al., 2024; Yaron et al., 2022), these methods are the most prominent ones, especially 

when testing prominent theories of consciousness. Yet, there is a whole other perspective to 

approach the study of unconscious processing. The idea is to not render the stimulus invisible 

or not perceptible, and thus the stimulus potentially remains unconscious. Instead, the stimuli 

involved are perfectly visible or perceptible, but that knowledge about their statistical occur-

rence is not explicitly instructed and remains unconscious. 

3.2 Implicit Learning Paradigms 

For the acquisition of such knowledge, Reber (1967) coined the term implicit learning. 

Implicit learning is commonly defined as learning that occurs without any intention to learn and 

without conscious awareness of the learning process or its contents (Perruchet & Pacton, 2006; 

Reber, 1967). For example, Reber (1967) found that an artificially created grammar was learned 

by participants just by observing examples of grammatically correct letter strings. Participants 

were never told the rules of the grammar explicitly. That they learned them nevertheless was 

demonstrated by above chance performance when participants were asked to discriminate 

grammatical and non-grammatical letter strings. In an earlier experiment, Braine (1963) found 

that children (with literacy skills) could even produce grammatically correct material after a 

perceptual learning phase, but without ever having been told the rules. In these so-called 
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artificial grammar learning (AGL) paradigms, the grammar complexity and number of stimuli 

within the grammar is variable (Perruchet & Vinter, 1998; Schiff & Katan, 2014). AGL is a 

widely used paradigm to study implicit rule learning (for an overview, see Pothos, 2007). Yet, 

there is a lively debate about the question of the form of AGL knowledge representation of 

knowledge, and doubts about its implicit nature (Perruchet & Pacton, 2006; Pothos, 2007).  

A second, closely related paradigm examining implicit learning, is the serial reaction 

time task (SRTT; Nissen & Bullemer, 1987). In its classical set-up, participants observe stimuli 

appearing at a fix number of positions on the screen, and are asked to respond to their appear-

ance with response keys that are spatially mapped to the screen locations. What participants are 

not explicitly told is that the stimulus appearances follow a (deterministic or probabilistic) se-

quence. Nevertheless, when comparing blocks of sequentially presented stimuli, and randomly 

presented stimuli, response times are shorter in the former than in the latter blocks (for an over-

view, see Schwarb & Schumacher, 2012). This makes it an interesting extension of AGL be-

cause there is an online measure of learning in SRTT, which has proven to be a reliable measure 

of learning effects, at least on the group level (Oliveira et al., 2023). In the SRTT literature, 

there have also been extensive efforts to test for explicit sequence knowledge (e.g., Curran, 

2001; for an overview see Schwarb & Schumacher, 2012). There are also further extensions of 

the SRTT, beyond its scope of examining spatial learning: It could be shown that not only motor 

sequences (key responses) could be learned, but also perceptual sequences (Eberhardt et al., 

2017; Haider et al., 2014; Wilts & Haider, 2023). 

Thirdly, there is the contextual cueing (CC) paradigm (Chun & Jiang, 1998). It is a vis-

ual search paradigm in which participants see displays with multiple distractor letters “L” and 

a target letter “T”. Unbeknownst to the participants, some letter displays are repeatedly pre-

sented throughout the experiment, so that a distractor configuration repeatedly appears with the 

same target location in multiple trials. This way, in such repeated trials, the target location would 
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be predictable on the basis of the spatial distractor configuration. What classical CC experi-

ments have shown is that participants indeed learn these contingencies between distractor con-

figuration and target location, as they show reduced response times for repeated, in contrast to 

novel displays. However, typically, this acquired knowledge remains implicit (Chun & Jiang, 

1998; but see Vadillo et al., 2019). 

It is worth noting that the term implicit is widely used in psychological research. For 

this work, it should not be confounded with the term as it is used in social cognition research, 

where it has extensively been shown that so-called implicit attitudes are not inaccessible to 

consciousness (Gawronski et al., 2006; Goedderz et al., 2024). In our use of the term implicit 

learning, it is implied that neither an explicit instruction regarding the learning content or pro-

cess is given, nor that the learning contents are accessible to conscious awareness, and enable 

verbal report (Nissen & Bullemer, 1987). There are also several related terms that might seem 

synonymous to implicit learning, but need demarcation.  

First, the term incidental learning is sometimes used in the context of implicit learning 

(J. R. Schmidt & De Houwer, 2019). Importantly, it does not signify the occurrence of implicit 

learning, but instead describes the task set-up as lacking explicit instruction to learn. Any learn-

ing that occurs incidentally, rather than intentionally, can be implicit, but it can also become 

explicit as the task progresses. Second, the notion of statistical learning is related to but differ-

ent from implicit learning (Turk-Browne et al., 2005). Statistical learning will often be inci-

dental and implicit, meaning that no instruction to learn the statistical regularities is provided, 

and regularities cannot be explicitly verbalized, but it is not necessarily so. Statistical learning 

can also occur intentionally and explicitly (Ren et al., 2024). Also, it is confined to the learning 

of statistical regularities, rather than, for example, implicit learning of social cues. The third 

term that might seem related is that of procedural learning. This is a common example of eve-

ryday relevance of implicit learning, like learning how to ride a bike or play the piano. But it is 
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confined to motor and sensory learning, while implicit learning also covers rule, sequence, and 

contingency learning. Lastly, automatized processes might seem to resemble the results of im-

plicit learning in terms of effortless, fast task performance in the absence of conscious aware-

ness (regardless of the criticism that this dichotomic conceptualization received; W. Schneider 

& Shiffrin, 1977; Shiffrin & Schneider, 1977; Willingham, 1998). Yet, the essential difference 

is that automatization most commonly develops from explicitly learned performance, that then 

becomes more automatized. Yet, it is not implicit in the sense that it does not involve or pre-

suppose conscious knowledge (Shiffrin & Schneider, 1977).  

Taken together, implicit learning is one approach to studying unconscious processing 

and then potentially deriving implications for theories of consciousness. One can deduce hy-

potheses about the conditions or limits of implicit learning from theories of consciousness. 

However, these deductions can be somewhat vague, given that the theories are rather broad and 

delineate the big picture of consciousness, not necessarily explicitly incorporating many of the 

parameters that determine and influence implicit learning as a phenomenon. Besides the more 

commonly used paradigms of subliminal stimulus presentation, paradigms of implicit learning 

constitute a fruitful approach to examine unconscious processes, and contrast them with con-

scious processes. 
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4 Measures of Conscious Awareness 

Whichever paradigm we choose to study unconscious processing, we need a test for 

conscious awareness of stimuli or contents regardless. No paradigm so far can guarantee un-

conscious processing without the contamination by conscious processing. Now, it may be intu-

itive to just directly ask participants whether they have consciously perceived a stimulus, 

whether they noticed statistical regularities, or whether they otherwise consciously perceived 

what was supposed to be kept from conscious processing. However, already in the early re-

search on consciousness, it was argued that introspection, that is, asking participants to verbally 

report their perceptions, may not be a valid measure of consciousness (C. W. Eriksen, 1960). 

The argument is that the verbalization of perceptual experience, its transfer into language, that 

is, abstract symbols, is probably going to be inadequate (C. W. Eriksen, 1960). The shortcom-

ings of equating conscious awareness with verbal reportability can be illustrated in paradigms 

in which recall and recognition tests come to different results. For example, if asked what they 

perceived when presented with a masked stimulus, participants might be unable to freely report 

what they saw (recall), but might be able to choose from options and be above chance level 

(recognition; Micher et al., 2024). In such cases, it is difficult to conclude whether the stimulus 

has been processed consciously or not. However, one could also argue that in such cases, the 

recognition task performance is (partly) driven by implicit knowledge (Rünger & Frensch, 

2010). For example, that participants were not explicitly aware of the stimulus, but its pro-

cessing in the recognition task feels more fluent or there is a vague feeling of familiarity. These 

sentiments would then be driven by implicit processing, not by explicit. 

Thus, obtaining a measure of conscious awareness is challenging, and it requires meth-

odological rigor and effort. Many authors have concluded that obtaining multiple measures and 

combine or compare them might be advantageous, such as obtaining direct and indirect 
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measures of consciousness (Erdelyi, 1986; Holender, 1986; Reingold & Merikle, 1988). I will 

depict what those are in the following chapter. 

4.1 Direct and Indirect, Objective and Subjective Measures 

Thus, beyond simply asking for verbal reports, there are measures that have been pro-

posed to test for conscious awareness. They are usually categorized into direct and indirect 

measures, and into objective and subjective measures. Table 2 provides an overview with ex-

amples of different measures in the scope of this categorization. 

Direct, subjective measures are, as depicted above, reports requiring introspection. This 

can be done adopting a dichotomous view on consciousness, and subsequently, the response 

options would then be “seen” or “not seen” (with subliminal presentation paradigms), or 

“known” or “not known” (with implicit learning paradigms). For example, there is the percep-

tual awareness scale (PAS; Ramsøy & Overgaard, 2004). Such scales add labels that quantify 

perceptual awareness, but also qualitatively assess the experience in terms of “clearness” of the 

perception (e.g., the original PAS the labels are: 1=no experience, 2=brief glimpse, 3=almost 

clear experience, and 4=clear experience; Ramsøy & Overgaard, 2004). However, the issue 

with such measures is that participants could respond to any aspect of the stimulus (Michel, 

2023a). For example, if they perceived the color, but not the shape of a briefly presented stim-

ulus, they would respond that they perceived a ‘brief glimpse’ or ‘almost clear experience’. This 

will be independent from the task-relevance of that aspect of the stimulus. If the objective task 

is concerning shape, PAS scale responses ‘brief glimpse’ do not allow the conclusion that par-

ticipants briefly perceived the shape, as it could also be that they briefly perceived the color of 

the stimulus. Thus, the measure would not necessarily inform the issue of whether the task-

relevant aspect of the stimulus was consciously perceived or not, but only, if anything about the 

stimulus was perceived. This is why it is advised to adapt the PAS labels to the stimulus or 

feature of interest (Sandberg & Overgaard, 2015).  
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Direct, objective measures on the other hand are what C. W. Eriksen (1960) proposed 

alternatively, given his critique of introspection as exclusive measure of awareness. Objective 

measures are commonly used in consciousness research still. Usually, they are two-alternative 

forced choice questions that concern the stimulus as a whole or specific features of the stimulus. 

For example, when square and diamond stimuli are used as masked primes in a classical priming 

task, the objective, direct measure would be participants’ choice between squares and diamonds. 

This response can then be correct or incorrect, and one can compute whether a participant per-

formed at chance level or above chance level. Or, following Signal Detection Theory (Green & 

Swets, 1966), participants demonstrate sensitivity or null sensitivity regarding the shown stim-

ulus. In implicit learning paradigms, direct, objective measures would be recognition (e.g., 

Chun & Jiang, 1998) or generation tasks (e.g., Chun & Jiang, 2003). In recognition tasks, par-

ticipants are asked whether they recognize a stimulus, sequence, or predictability. In generation 

tasks, they are asked to reproduce a sequence or regularity. For example, in CC, participants 

learn a contingency between contextual cues and the location of a target. Originally, and still in 

recent studies, participants are later only asked about recognition of the contextual cue (Berg-

mann & Schubö, 2021; Chun & Jiang, 1998). However, they are not asked about the learned 

contingencies. This is problematic because the recognition measure does not directly assess the 

specific knowledge of interest. Namely, awareness of the learned contingencies. This is why, 

for the studies included in this dissertation, we opted for the generation task instead of the 

recognition task. With a generation task, the reproduction of the regularity, in this case, the 

contingency between cue and target location, depends on the knowledge about this contingency. 

And not, like the cue recognition task, simply on a memory representation of the cue. 

Then, there are indirect measures of conscious awareness. In current empirical research, 

those entail mostly objective measures, such as measures on the behavioral or neural level. For 

example, this could be a classical priming task. The measure would be a behavioral response to 
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a target stimulus response that was preceded by a masked prime stimulus. This way, the influ-

ence of the masked prime on the processing of the target stimulus can be determined. Such 

behavioral measures are commonly accuracy and response times, comparing trials in which 

prime and target are congruent and incongruent. Accordingly, in implicit learning, an indirect, 

objective measure would be response time or accuracy to stimuli that follow the learned rule 

(e.g., a sequence or grammar), contrasted with responses to stimuli that deviate from the rule. 

 

Table 2. 

Measures of Conscious Awareness Categorized by Direct/Indirect and Objective/Subjective 

Measures. 

 
Direct Indirect 

Objective 
Two-alternative forced choice question 

on stimulus or on features of a stimu-

lus; Recognition and generation tasks 

Behavioral measures (response accu-

racy, response times); Neural measures 

(e.g., event-related potentials) 

Subjective 

Verbal report of perception of a stimu-

lus; Visibility ratings (e.g., the Percep-

tual Awareness Scale, Ramsøy & 

Overgaard, 2004) 

Indirect memory tests (e.g., familiar-

ity, fluency, preference, liking) 

 

 

There are several advantages and disadvantage of each type of measure of conscious 

awareness (Stockart et al., 2024). Notable limitations of direct measures are the following. First, 

it has been noted that it is essential that the objective task concerning the target stimulus should 

concern the feature of interest, and not another, potentially harder or easier aspect of the stim-

ulus (T. Schmidt & Biafora, 2024). For example, if the congruity between prime and target lies 
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in the shape of the stimulus, the objective task should ask about that, and not about other fea-

tures like color, identity or semantic meaning. 

One issue with direct, objective measures is that it is unclear whether above chance level 

performance should be considered a result of unconscious processes (H. Lau & Passingham, 

2006), or if above chance level performance is indicative of the involvement of conscious pro-

cesses (Michel, 2023). In an attempt to settle this debate, Micher et al. (2024) found that the 

direct, objective task (forced-choice discrimination) was contaminated by unconscious pro-

cesses, resulting in better performance. So, although participants reported not to have seen the 

stimulus in the PAS scale, they performed better than chance level in the forced-choice task. 

Although they felt like they were guessing, their responses were influenced by unconscious 

processing of the stimulus. This is why a direct, objective task should not be taken as a measure 

of conscious awareness on its own. Another limitation for direct, objective measures might arise 

from experimenters piloting their studies, and weakening stimulus presentation (e.g., reducing 

presentation time or contrast) until participants show below chance performance, but no pro-

cessing of the stimulus is possible anymore, consciously or unconsciously (Michel, 2023b). 

This would result in an underestimation of unconscious processing, applying a criterion that is 

too strict and conservative to find unconscious processing. Lastly, when direct, objective tasks 

are interleaved with the actual task, this might lead to overspilling effects (Lin & Murray, 2014). 

So, for example, if participants are asked about features of the masked prime in each trial with 

response alternatives presented to them, they could potentially shift their attention to the in-

quired feature of the prime stimulus. This could then increase their ability to discriminate that 

feature in the masked prime. 

Concerning indirect measures, it is noteworthy that the results of those often diverge 

from the results from the direct measure. That means, on an indirect measure, there are differ-

ences in response times or accuracy measures between, for example, congruent and incongruent 
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trials in a priming paradigm. But on the direct measure, for example, a two-forced choice task, 

participants do not perform above chance level. This has been commonly explained with a 

higher sensitivity of the indirect measure. However, Zerweck et al. (2021) found that direct and 

indirect measures are equally influenced by unconscious processing, and do not differ in sensi-

tivity in a number priming paradigm. The divergent results from those two measures might thus 

stem from different factors. For example, there are two central caveats that need to be consid-

ered in obtaining indirect and direct measures.  

First, Shanks and St. John (1994a) argue that the design of the awareness test should be 

constructed such that the retrieval context is kept similar to the former tasks’ context. This is 

especially relevant for tasks in which participants learn contingencies without being instructed 

to do so. This learning is demonstrated through indirect measures such as response times and 

accuracy during the learning phase. Then, an awareness test determines whether the contingen-

cies are explicitly learned or remain implicit. Keeping the task during the response time measure 

as similar to the task with the awareness measure would increase sensitivity of the awareness 

test. Because participants would be able to retrieve their contingency knowledge, should they 

have any, from the retrieval cues that the task context provides. The direct awareness test should 

thus be maximally similar in trial structure, and only differ in task instructions. In contrast, 

constructing a direct, rather abstract, verbal report task asking about any conscious knowledge, 

might decrease sensitivity of the awareness test, as participants are less likely to be able to 

retrieve the knowledge they might have by the lack of retrieval cues. Following this line of 

argument, in the experiments of this dissertation, the awareness tests are constructed such that 

they are more similar to the performance task. 

The second caveat concerning awareness measures following performance measures is 

also relevant for sensitivity, but especially also for reliability of the awareness test. The issue 

with hitherto findings is that many studies were designed such that there was a large number of 
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trials for the indirect measure (hundreds of trials measuring response times), but only a small 

number for the direct measure. This might lead to an issue of sensitivity and reliability of the 

direct measure (Meyen et al., 2024; Vadillo et al., 2016). Especially in tasks with subliminal 

stimulus presentation, such a design can result in considerable noise in direct tests, given ran-

dom attentional and cognitive parameters influencing to what extent a stimulus was perceived 

consciously. In other paradigms, this might be less of a problem, for example, when the direct 

test is a recognition task that is administered with optimal stimulus presentation, no time con-

straints and limited response options. Still, also in such cases, the number of trials remains an 

important factor for increased sensitivity and reliability (Meyen et al., 2024), and this is also 

considered in the experimental set-ups presented in this dissertation.  

4.2 Confidence Measures 

An additional measure on top of direct and indirect measures that can be taken into 

consideration when measuring conscious awareness, are confidence measures. This is an ap-

proach that relates to metacognitive aspects of consciousness, as depicted especially in HOT. 

After a direct, objective awareness test (e.g., recognition test), participants can be asked what 

their subjective conscious perception was (e.g., with the PAS; Ramsøy & Overgaard, 2004), or 

how confident they are regarding their response to the direct, objective awareness test (Michel, 

2023a). 

As we have seen from recent evidence, direct, objective awareness tests can also be 

informed by unconscious processing (Micher et al., 2024). Therefore, we should not conclude 

conscious perception or knowledge from above chance performance in such tasks. This is why 

a combined measure of a direct, objective task (i.e., correct or incorrect response) and a confi-

dence measure (i.e., low or high confidence) has been proposed (Michel, 2023a). An additional 

advantage in applying confidence measures to inform a conscious awareness measure, is that 

they can be compared between studies, tasks, even modalities, and that they hold the potential 
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to learn more about metacognitive aspects in conscious and unconscious experience (Michel, 

2023a).  

There are variants of obtaining a confidence measure. There are approaches implement-

ing a post-decision wagering task (Haider et al., 2011; Persaud et al., 2007). Typically, after 

participants have responded to the objective, direct task (e.g., two alternative forced-choice, 

recognition, or generation tasks), they are then asked to wager either a small or larger amount 

of money or points on their response, depending on the confidence they have in their response. 

When the high wager is placed with a correct response, they win the amount of money or points, 

but when they place it with an incorrect response, they lose this amount. The rationale of the 

wagering task is that participants would potentially be motivated to report their confidence cor-

rectly and even with little confidence wager the high amount. However, personality traits such 

as risk or loss aversion can influence the measure (Dienes & Seth, 2010; Fleming & Dolan, 

2010). For example, participants with higher loss aversion might rarely wager higher amounts 

of money or points, not because they are less confident, but because they want to avoid losing 

higher amounts of money or points, should their response have been incorrect. Thus, Dienes 

and Seth (2010) empirically tested verbal confidence reports (binary judgement, ‘guess’ and 

‘sure’) against wagering tasks, and found that the latter are not more sensitive to conscious 

knowledge, and are furthermore correlated with measures of risk aversion. Verbal confidence 

reports in contrast did not correlate with risk aversion measures. Thus, obtaining confidence in 

the form of wagering task could potentially underestimate confidence and thus, conscious 

knowledge (see also Konstantinidis & Shanks, 2014).  

Following the debates on measures of consciousness, in the experiments of this thesis, 

multiple measures are used. Participants are asked to respond to a direct, objective task (gener-

ation task), which is, as discussed, preferable to a recognition task. Because the influence of 

implicit knowledge on this measure cannot be excluded (Micher et al., 2024), it is followed up 
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by a confidence measure. To avoid potential influences of inter-individual differences on the 

confidence measure, as has been discussed with wagering tasks, I opted for a relatively simple 

four-point Likert scale for confidence report (Konstantinidis & Shanks, 2014). With regard to 

research on the PAS, labelling the scale proved to be helpful to reduce ambiguity (Ramsøy & 

Overgaard, 2004; Sandberg & Overgaard, 2015). Therefore, we also labeled the Likert scale, 

with 1 = “complete guess” and 4 = “absolutely certain”. Concerning the analysis, we chose to 

analyze the objective and confidence measures following the rationale of wagering task anal-

yses, combining the two measures (Persaud & McLeod, 2008; Persaud et al., 2007). Specifi-

cally, we compared the relative frequency of participants reporting high confidence, given their 

response was correct, with the relative frequency of participants reporting high confidence, 

given their response was incorrect (cf. Dienes & Seth, 2010). We also always conducted the 

analysis with the reverse base rates, so comparing correct responses given high confidence 

judgements with correct responses given low confidence judgements.  
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5 The Contextual Cueing Paradigm 

As noted above, CC is a widely used and much studied paradigm to investigate implicit 

learning of contingencies that influence spatial attention (for an overview, see Jiang & Sisk, 

2019). As a reminder, the typical CC paradigm is a visual search task, in which participants 

have to find a target letter among distractors (see Figure 2a). In this respect, it is similar to other 

visual search tasks (Wolfe, 2020). However, in classical visual search experiments, search dis-

plays are intentionally randomly generated to prevent any potential learning effects that would 

guide the search (e.g., Treisman & Gelade, 1980). In contrast, in the CC paradigm, visual search 

is used as a framework to investigate learning and its effect on attentional guidance. Therefore, 

some search displays are repeated throughout the learning phase.  

The common finding is that there is a steeper response time decrease for repeated dis-

plays, in contrast to novel ones (see Figure 1b). This means that the contextual cues (spatial 

configurations of distractors) can be learned to predict target location and guide attention. As 

an effect, response times decrease in trials in which the target location is predictable. After 

learning, in a test phase, participants perform a recognition task in which they are asked to 

detect the repeated displays among novel ones (e.g., Bergmann & Schubö, 2021; Chun & Jiang, 

1998). When participants are performing at chance level in the test phase, that has commonly 

been interpreted as evidence for implicit learning (Jiang & Sisk, 2019). As noted in the chapter 

above, the recognition task has been criticized for not targeting the contingency knowledge but 

only cue memory. Thus, alternatively, participants can be asked to do a generation task in which 

they are asked to indicate the target location, given a repeated or novel display (e.g., Chun & 

Jiang, 2003). Also in the generation task, it has commonly been found that performance is not 

significantly better than chance (e.g., Chua et al., 2003; Chun & Jiang, 2003). 
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Figure 2 

Search Task and Performance in the Original Contextual Cueing Paradigm  

(Adapted from Jiang & Sisk, 2019) 

  

Note. (a) A typical contextual cueing search display with “L” distractor letters and a “T” target 

letter. (b) A typical results graph from a contextual cueing experiment that shows decreasing 

response times over epochs for novel and repeated displays separately. 

 

In the work at hand, I use the CC paradigm, but extend it to a variant in which it is more 

flexible with regard to stimuli, testable hypotheses, and condition comparisons. To explain the 

alterations that I undertook, I will first summarize what we know about mechanisms in CC 

learning, take up aspects that have been criticized about traditional CC, and then explain the 

new variant and highlight its advantages. 

5.1 Learning Mechanisms 

Although decades of research on the CC effect have passed, there is still no final answer 

to the question of what exactly produces the effect. The debate includes the question of whether 

CC is indeed an effect of attentional guidance. And if so, how exactly this guidance in the search 
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process is learned and executed. Further, the question is whether response-related processes 

play a role, and if so, how big this role is. 

First, a central question is at which stage of processing the CC effect emerges  (Sisk et 

al., 2019). The attentional guidance account posits that the effect arises at an early stage. In this 

account, a learned contingency between distractor configuration (context) and target location 

causes attentional guidance, thereby enhancing the efficiency of visual search. This would con-

stitute an early locus of the effect, implying that CC directly modulates the search process. 

Empirical support for this view comes from studies demonstrating influence on early perceptual 

processing, indicated by event-related potentials (ERP) measures (Johnson et al., 2007), as well 

as influence on early eye-movements in eye-tracking procedures (Harris & Remington, 2017; 

Peterson & Kramer, 2001). 

An alternative or complementary hypothesis, the response facilitation account, suggests 

that CC may instead, or additionally, be driven by response-related processes (Kunar et al., 

2007). Here, the repeated contexts foster familiarity, which in turn facilitates response selection 

and motor execution, independent of the preceding search process. This would indicate a late 

locus, suggesting that the effect emerges after the target has already been found. 

While some evidence supports a combined influence on both early and late processes 

(Schankin & Schubö, 2009a; Sewell et al., 2018), other findings point to a potential additional 

mechanism between post-attentional and pre-response stages (Schankin & Schubö, 2010). Also, 

more recently, interest in potential perceptual effects in CC have been debated (Sewell et al., 

2018; Zhao & Ren, 2020).  

The now prevailing perspective on the mechanism is an attentional guidance effect that 

is based on a rough attention allocation. This is supported by evidence from lateralized ERPs 

(e.g., the N2pc; Eimer, 1996) that indicated covert attentional shifts that were more efficient in 
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repeated search displays (Schankin & Schubö, 2009a). Also, using eye-movement measures, 

fewer saccades and fixations were observed in repeated configurations (Beesley et al., 2018; 

Goujon et al., 2015; Tseng & Li, 2004), suggesting a more efficiently guided search. At the 

same time, it seems that this guidance does not result in precise predictions and subsequently, 

precise eye movements to the target, but rather that the location of targets are only roughly 

estimated from the predictive context, but precise enough to benefit search and response times 

(Peterson & Kramer, 2001; Schankin & Schubö, 2009b). This raises the question whether these 

mechanisms are automatic or controlled. Beesley et al. (2018) argued that in CC, participants 

do not strategically search through the distractors, or process predictive distractors more than 

unpredictive ones. In that way, it is not a strategical and voluntary process. In line with that, it 

has been shown that an attentional focus on the predictive material (e.g., the predictive distrac-

tors) is not a necessary condition for the CC effect to occur (Conci & Mühlenen, 2011; Harris 

& Remington, 2017). Still, the process seems somewhat controllable as participants could sup-

press a once learned contingency when it was no longer advantageous (Luque et al., 2017; 

Manginelli & Pollmann, 2009).  

 5.2 Limitations 

As much as the CC paradigm has contributed to the understanding of processes of at-

tentional guidance and implicit learning, there are several limitations that I want to address, and 

draw conclusion for the methodology applied in the work at hand. 

First, I would argue that the CC paradigm is limited in its scope of generalization. This 

limitation does not lie in an inherent lack of flexibility of the paradigm, but in the persistent use 

of a specific task set-up. There have been slight variations, for example, that the configuration 

of distractor stimuli in some studies follows a concentric circle set-up instead of a configuration 

in a grid structure. But over the first decades of CC research (Jiang & Sisk, 2019), and in recent 

research (Meyen et al., 2024), the set-up has always been roughly the same: The search displays 
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are comprised of letters on gray backgrounds, the contingencies are between distractor config-

uration and target location. The target is almost always the same, which is, randomly rotated 

“T”-shaped target letters, and participants’ task is then to report the orientation of the target 

letter. As we argue in Study 1 (Tavera & Haider, 2025), this set-up inherently emphasizes the 

spatial dimension above other dimensions (e.g., visual dimensions such as color and shape). 

The spatial configuration predicts a location in space where the target is to be found, and then 

the target is judged in terms of its orientation to the left or right, which again corresponds to the 

spatial dimension. The findings on the grounds of this paradigm are of course highly relevant 

for different processes factoring into the CC effect. However, they might be, given the ever-

same task set-up, limited. And the limitation could be that findings from CC are only applicable 

to learning and attentional effects within one dimension (i.e., the spatial dimension), but not 

across dimensions (e.g., between color, shape, and space). Or, it could be even more limited in 

that the conclusions on cognitive processes drawn from the paradigm only apply to the spatial 

dimension in the first place. Whether the use of other, non-spatial visual cues, across-dimension 

contingencies, or variations in the response in the paradigm would still result in CC effects, 

remains unclear. Also, the spatial dimension cannot be viewed as just any visual feature in the 

cognitive system. We have argued (Tavera & Haider, 2025) that the spatial feature might have 

a special position and special processing pipelines in the cognitive system due to its inherent 

ties with the motor system (Paillard, 1991), but also, because its dominant role in learning has 

been shown empirically (I. Koch & Hoffmann, 2000; Kunar et al., 2013).   

The second limitation of the CC paradigm is the debate over the implicit nature of the 

learning effect. In the chapter on awareness measures, I have already discussed the issue of their 

sensitivity and reliability. This issue does not remain a theoretical one, but is, given the hitherto 

studies of CC, an empirical one (Luque et al., 2017; Meyen et al., 2024). Because typically in 

CC studies, conscious awareness of the contingency between spatial configuration and target 
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location is tested with a recognition task. In such a task, participants are shown old and novel 

search displays, and asked to categorize them into old and novel (Bergmann & Schubö, 2021; 

Chun & Jiang, 1998). The important point here is, that it is different from awareness tests with 

subliminally presented stimuli, where one can, in principle, conduct many test trials as is deter-

mined necessary for sufficient sensitivity and reliability. In the case of recognition trials after 

CC, it is only possible to use a one-trial test for each search display, because repeating an old 

display in the test would make participants categorize it as old just by the familiarity from the 

test phase. Also, the validity of the measure is questionable. The recognition measure requires 

recognition of the configuration alone, but what really is learned in the learning phase is a con-

tingency between configuration and target location. This violates the principle of having to test 

for what is actually learned in the task (Shanks & St. John, 1994). There have been attempts to 

tackle this problem by implementing not a recognition, but a generation task, modelled after 

procedures in SRTT experiments (Willingham et al., 1989). Here, participants are not asked 

whether the display is old or new, but where in this display they would predict the target to be 

(Chun & Jiang, 2003). But many studies using the CC paradigm, also recent ones, have not 

adopted this approach (e.g., Bergmann & Schubö, 2021; Bergmann et al., 2020). Also, many 

recent studies, have not administered any kind of recognition or knowledge test when the type 

of learning or knowledge is not their main research interest (Kobayashi & Ogawa, 2020; Kunar 

et al., 2006). Regardless of that, the generation task has been criticized, claiming that the way 

it is implemented lacks statistical power to find evidence of explicit knowledge (Smyth & 

Shanks, 2008). As discussed in the chapter on confidence measures, in the experimental proce-

dures of the work at hand, we combine generation tasks with confidence measures to increase 

information density and implement a larger number of trials of the generation task to reach a 

certain statistical power and reliability. 
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Given the methodological problem that the classical recognition tests with very few tri-

als posit with regard to within-subject reliability and sensitivity, a further empirical issue with 

studies on CC are the rather small sample sizes (Vadillo et al., 2016). This again posits a power, 

sensitivity, and reliability problem regarding the overall CC effect and recognition measures 

that are computed across participants. Therefore, the argument of Vadillo et al. (2016) is that 

CC effects are contingent on explicit knowledge, despite of what the literature suggests. The 

authors argue that because of the flawed methodology of the recognition tests and underpow-

ered samples, studies have just not detected the explicit nature of the acquired knowledge. How-

ever, there have been attempts to empirically investigate whether these empirical limitations in 

the CC literature are necessarily indicating an inevitable constraint of the paradigm, or are in 

fact just an empirical flaw. Colagiuri and Livesey (2016) argue that if the CC effect was de-

pendent on explicit knowledge, one should find a positive correlation of explicit knowledge 

with the CC effect. However, in three experiments with samples of up to 600 participants, they 

did not find such a positive relationship. First, they tested the relationship on participant level, 

meaning that participants who recognized more repeated displays showed an increased CC ef-

fect. Second, they tested on the level of individual search displays, in the sense that the learning 

of only some configurations could drive the CC effect. This should reveal if a potential positive 

correlation could be concealed by the aggregation across all configurations. There was no com-

pelling evidence for a positive correlation of knowledge and CC effect in either analysis. Some 

data rather suggested a negative relationship, such that more conscious knowledge might even 

attenuate a CC effect. Colagiuri and Livesey (2016) agree with Vadillo et al. (2016) that statis-

tical power is considerably lacking in CC literature, and that participants demonstrate above 

chance level performance in the two-forced-choice recognition task (old-new) that is commonly 

used in the literature. Acknowledging these two conclusions from empirical data and simula-

tions is however not equal to rejecting the notion of implicit learning in CC. 
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5.3 A New Variant of the Contextual Cueing Paradigm 

To address the shortcomings of the original CC paradigm, as outlined above, we con-

structed a new variant. Our goal was to create a more versatile paradigm that can be used for 

more research questions, going beyond learning in the spatial dimension only, and increasing 

power and reliability to test for explicit knowledge of the learned contingencies.  

 

Figure 3 

Exemplary Search Displays in the Novel Variant of the Contextual Cueing Paradigm   

(Adapted from Tavera & Haider, 2025) 

 

Note. In the novel variant of the contextual cueing paradigm, search displays are comprised of 

stylized letter distractors in varying colors, and a target letter. This way, shape and color of the 

distractors can be manipulated, and used as predictors for target location respectively. Partici-

pants’ task is to report whether the target letter has a short or long middle bar. Note that the 

circle around the target letter is for illustration only and was not shown in the experiment. 
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There are marginal differences in the design of stimulus material for CC, for instance, 

concerning display sizes, number of distractors and their distribution, as well as regarding num-

ber of possible target locations (Jiang & Sisk, 2019). For our material, we designed search dis-

plays on the basis of the material of Bergmann et al. (2019). As described in Tavera and Haider 

(2025), the search displays were built with letter arrays, as in the original variant of CC (see 

Figure 3). However, in our variant, not the spatial configuration of distractors was the predictive 

cue for target location. Instead, we rendered visual features of the distractors predictive. There-

fore, the distractor and target shapes were varied (for similar material variations in CC, see 

Beesley & Shanks, 2012). Instead of always searching for a “T” shaped target letter in “L” 

shaped distractors, the distractors were now presented as stylized letters A, E, K, P, S, and W. 

The distractors could also be differently colored. The target was a stylized letter “F”, with a 

short or long second horizontal bar (see Figure 3). With these alterations, we attained two goals: 

First, the variation of distractor letters introduces the possibility to use letter shape and color as 

predictive cues for target location. Secondly, the target letter was designed such that partici-

pants’ task was no longer a spatial orientation task, but a judgement of target shape. Both these 

alterations reduced the emphasis on the spatial dimension of the task design. 

In the new variant, contingencies can thus be manipulated more flexibly than in the 

original CC paradigm. One distractor shape, or multiple shapes, can predict the target location, 

either deterministically or probabilistically. Importantly, the shapes are not restricted to stylized 

letters, but could be geometrical shapes or even objects. The same way, colors can be predictive 

of target location, or color categories, or specific combinations of colors, or a combination of 

target shape and color serves as predictive cue. In principle, the spatial configuration could also 

be predictive, either additionally or independently from distractor shapes and colors. Also, un-

like the original paradigm, the cues can all be predictive (e.g., every color predicts a different 

target location with some probability). But also, like in the original paradigm, only some cues 
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can be predictive (e.g., some colors predict a target location, while other colors are unpredic-

tive). As illustrated by these adaptations that can be implemented within the novel variant of 

the CC paradigm, it makes a myriad of hypotheses testable, and allows for broader generaliza-

tion than the original CC paradigm. 
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6 Attention and Consciousness 

In our first study, we aimed to examine the role of attention in implicit learning, using 

our new variant of the CC paradigm. As discussed in the chapter on theories of consciousness, 

there are different perspectives on the relationship between attention and consciousness. Thus, 

one can deduct different predictions for the possibility of implicit learning in the absence of 

attention. 

The distinction between attention and consciousness is rather complex, and still topic of 

debate (for an overview, see Tsuchiya & Koch, 2009). In implicit learning literature, the role of 

attention is not well-defined. Generally, the question is whether implicit learning is dependent 

on attention, in that only content that is selectively attended, can be learned. The alternative 

view is that implicit learning is independent from attentional processes, thus a non-selective 

process that includes all contents in potential associative learning (for an overview, see Jiménez, 

2003). 

First of all, the definition of attention is crucial to the question of its role in implicit 

learning. As discussed in the first article (Tavera & Haider, 2025), attention is an often under-

defined concept. This is potentially dangerous because it can lead to regressive reasoning, as-

signing all kinds of functions to a homunculus that one names attention, without having ex-

plained the mechanisms that make such functions possible or which parameters might influence 

them. Anderson (2011) even went as far as saying that there “is no such thing as attention”. 

Researchers should, in a way, try to explain attention away, instead of installing it as a homun-

culus. And they could do that best by not assigning the concept of attention a causal role in 

cognitive processing, but posit it as an effect of cognitive processes (Anderson, 2011).  

Not only is it important to define attention conceptually, and its empirical operationali-

zation, but also, to establish the distinction between consciousness and attention. In our case, in 



   6 Attention and Consciousness 

53 

 

the visual domain. Intuitively, one could picture both consciousness and visual attention as a 

kind of spotlight (Posner, 1980) or zoom lens (C. W. Eriksen & St. James, 1986): Whichever 

object, location or dimension is attended is also conscious. Or, the reverse, whichever is con-

scious, is attended. The causal relationship is equivocal. To test for dissociation or a kind of 

causal relationship between the two is challenging, given that research questions, proposed 

mechanisms, and methodology are overlapping in the literature on both concepts. It remains 

unclear whether they are comprised of independent or interdependent mechanisms (e.g., 

Lamme, 2003; Marchetti, 2012). Tsuchiya and Koch (2009) review cases in which something 

is attended, yet does not become conscious (e.g., priming with invisible stimuli, blindsight pa-

tients) and cases in which there is conscious awareness without attention (e.g., understanding 

the gist of a briefly presented visual scene, conscious awareness of objects in peripheral vision 

and secondary tasks). Still, there are arguments for the idea that attention is a necessary prereq-

uisite for consciousness (Marchetti, 2012; J. Prinz, 2011). It is also difficult to distinguish the 

two concepts by means of neuropsychological empirical work, as hitherto research on the NCC 

might have been confounded with neural correlates of attention (Tsuchiya & Koch, 2009). Al-

ternatively, there is the hypothesis that the two concepts can be dissociated by their neural 

mechanisms, but in the end feed the same process that then shapes experience and behavior 

(Tallon-Baudry, 2011), which then again makes it difficult to not conflate the two. 

In our case, the differentiation between consciousness and awareness is fairly straight-

forward: We actively manipulate attention by rendering stimulus features task-relevant or task-

irrelevant. Additionally, participants are not explicitly instructed about the contingencies in the 

learning paradigm, meaning that they can acquire them implicitly or explicitly during the learn-

ing phase. In a test phase, we will test for conscious awareness of the contingencies. In case we 

can establish that learning remains implicit, we can determine the role of attention in implicit 
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learning. More specifically, we test the hypothesis that contingencies involving task-irrelevant 

stimulus features are not learned.   

6.1 Attention in Implicit Learning 

In the work at hand, we define attention as the effect of the manipulation of task-rele-

vance of a stimulus or stimulus feature (Tavera & Haider, 2025). That means, that when a fea-

ture, such as stimulus color, is task-irrelevant, it will not be attended, and, when another feature, 

such as stimulus shape, is task-relevant, it is consequentially attended. The consequence of the 

feature being task-relevant would then be an enhanced processing of the attended stimulus or 

feature (O'Craven et al., 1997), and its inclusion into a memory episode (Zivony & Eimer, 

2022), which makes it available for learning, for example, of contingencies with other features 

(Logan & Etherton, 1994). This approach, operationalizing attention as task-relevance, has been 

applied before. In terms of different, and enhanced processing, it was found that ERP markers 

for early visual processing of stimuli differ significantly between task-relevant and task-irrele-

vant stimuli (Biehl et al., 2013). In behavioral studies, it could be shown that learning is con-

tingent on task-relevance (e.g., Brosowsky & Crump, 2021), but there is also some evidence 

that learning is independent from task-relevance (e.g., Seitz & Watanabe, 2009). Lastly, in at-

tempts to model human behavior, task-relevance is a central factor, for example in models of 

visual search (Navalpakkam & Itti, 2005). However, our approach is to specifically look at task-

relevance in implicit learning, not just in behavior and learning generally. 

In our paper (Tavera & Haider, 2025), we reviewed empirical work concerned with the 

role of task-relevance in implicit learning. There are studies that suggest that implicit learning 

processes can only include stimuli or stimulus features that are task-relevant. This was demon-

strated in visual statistical learning of temporal sequences (Turk-Browne et al., 2005), in se-

quence learning tasks (Jiménez & Méndez, 1999, 2001), AGL tasks (Eitam et al., 2013; Eitam 

et al., 2009), and CC tasks (Jiang & Chun, 2001; Jiang & Leung, 2005; Vadillo, Giménez-
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Fernández, et al., 2020). However, not all studies did unequivocally support the requirement of 

task-relevance for to-be-learned stimuli. There might have been power issues (Jiang & Chun, 

2001) and issues of sensitivity of the chosen measure of learning, because there were effects of 

learning of task-irrelevant stimuli on other measures (Jiang & Leung, 2005). In three high-

powered experiments, Vadillo, Giménez-Fernández, et al. (2020) replicated Jiang and Leung 

(2005), showing that when participants were instructed to ignore distractors of one color while 

attending only to distractors of another color, they only learned contingencies of the distractor 

configuration of the attended color, but not of the ignored color. Not only was there no learning 

effect visible in the response times for the ignored color, but also no evidence for a latent learn-

ing effect or a facilitative effect when the ignored color was then rendered the attended color. 

Evidence for the opposite hypothesis, claiming that also task-irrelevant features can be inte-

grated in implicit learning processes, is sparse. There is compelling evidence from the CC par-

adigm (Endo & Takeda, 2004; Kunar et al., 2006; Kunar et al., 2013), and the flanker task 

(Miller, 1987) demonstrating learning effects also for ignored or task-irrelevant stimuli and fea-

tures. However, those studies using the CC paradigm manipulated attention cross-dimension-

ally, comparing spatial configuration cues and identity cues (Endo & Takeda, 2004) or spatial 

configuration and color cues (Kunar et al., 2006; Kunar et al., 2013). It seems that only manip-

ulating attention within a feature, for instance comparing a task-relevant color with a task-irrel-

evant color, leads to selective mechanisms that hinder learning of the irrelevant feature.  

Another opportunity to potentially observe attentional mechanisms in implicit learning 

is the case of cue competition. Cue competition arises when there is not only one contingency 

between a cue and an outcome, but other cues are contingent as well. The most well-known cue 

competition effects include overshadowing and blocking (Mackintosh, 1971), as well as com-

pound learning (Thein et al., 2008). Overshadowing occurs when two cues predict an outcome, 

but only one cue contingency is then learned. To be more exact, later research has found that 
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the other contingency is in fact learned and can be shown once the overshadowing contingency 

is extinguished, but is not initially reflected in behavior (Kaufman & Bolles, 1981; Matzel et 

al., 1985). Blocking is described as the observation that given one cue-outcome contingency 

has been learned, a second cue that is predicting the same outcome with the same contingency 

is not learned additionally. Compound learning occurs when two cues are presented together 

and both are learned as predictors of the outcome (Kehoe & Gormezano, 1980). This learning 

effect can be additive, meaning that the combined effect of the cues corresponds to the sum of 

their individual learning effects (Thein et al., 2008). Alternatively, it can be overadditive, mean-

ing that the learning effect of the compound cue exceeds what would be expected from simply 

adding the effects of the individual cues, suggesting a potentiation of the effect by the compound 

(Durlach & Rescorla, 1980).  

There has not been much research conducted to examine the effects of providing multi-

ple cues in implicit learning (J. R. Schmidt & De Houwer, 2019). In the few studies that have 

been conducted, cue competition such as overshadowing or blocking effects have not been 

found (Beesley & Shanks, 2012; J. R. Schmidt & De Houwer, 2019). Only when one cue was 

more relevant to the task than the other, overshadowing effects were observed (Endo & Takeda, 

2004). But to investigate these cue competition effects is an interesting approach to test two 

proposed learning mechanisms against each other for the case of implicit learning (Beesley & 

Shanks, 2012): Accounts of associative learning (Rescorla & Wagner, 1972), and propositional 

learning accounts (e.g., Mitchell et al., 2009). Propositional accounts posit that cue competition 

arises from forming conscious inferences about contingencies. And in the case of learning that 

remains implicit, cue competition would not be expected (Beesley & Shanks, 2012). In contrast, 

associative accounts would predict that cue competition arises from attentional mechanisms 

during learning. For example, in the case of overshadowing, there would be mechanisms that 

emphasize one cue, and its contingency would then be more strongly associated with the 
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outcome than the contingency of the other cue. This mechanism would apply to implicit and 

explicit learning alike. Accordingly, if cue competition is found in implicit learning, this would 

support an associative account, and the hypothesis that attentional mechanisms that solve the 

cue competition operate both in implicit and explicit learning. However, if there is no evidence 

for cue competition and selective mechanisms, this would support propositional accounts and 

the idea that for mechanisms of selective attention, conscious propositions are a prerequisite. 

6.2 Summary Study 1  

In Study 1 (see Appendix A), we tested both the effect of task-relevance, as a manipu-

lation of attention, on implicit learning, as well as the case of cue competition in implicit learn-

ing. We did so, using our new variant of the CC paradigm. In this variant, the shape or the color 

of the distractors can be predictive of target location. 

We conducted three experiments for Study 1. In a first experiment, we established the 

new variant of the paradigm, testing whether a task-relevant cue could be learned to predict the 

target location. In a second experiment, we tested whether also a task-irrelevant cue could be 

learned, and if so, to a lesser extent, or equally well. And in a third experiment, we examined 

the case of multiple redundant cues that predicted target location. In all three experiments, we 

tested for explicit knowledge by implementing a generation task (Chun & Jiang, 2003) coupled 

with a confidence measure. 

In more detail, in the first experiment, we implemented a contingency between the shape 

of distractors and the target location. There were four possible target locations, and six different 

distractor shapes. Three of them were 100% contingent with one target location. The other three 

distractor shapes were equally often paired with all four possible target locations. This way, we 

had three 100% predictive and three unpredictive distractor shapes. Learning was defined as an 

effect of predictability (predictive vs. unpredictive distractor shapes), in interaction with our 

timing variable block (à 48 trials) on response times.  
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We analyzed the learning phase fitting mixed-effects models to the response time data. 

We found contingency learning, indicated by a significant interaction between predictability 

and block. In the analysis of the generation task, we did not find evidence for explicit knowledge 

of the contingencies between predictability and target location. Participants did not predict the 

target location associated with the respective predictive shapes above chance level, and were 

not more correct given a high confidence response, than given a low confidence response. This 

means that even when participants gave a correct response in the generation task, they randomly 

indicated high and low confidence, and thus, were not aware of their accuracy. Bayesian anal-

yses revealed substantial evidence for a null difference. Also with the reverse base probabilities, 

their confidence was not higher given a correct response, than given an incorrect response. 

Additionally, we found a significant positive correlation between accuracy in the generation 

task and the CC effect in the learning phase. This could mean that implicit knowledge, that is 

shown in the learning phase, feeds into generation task performance. But we did not find any 

correlation between accuracy and confidence in the generation task. A positive correlation could 

potentially indicate explicit knowledge. Taken together, we have found no evidence of explicit 

knowledge of the contingencies. 

In the second experiment, we kept the material and experimental procedure constant, 

while only changing the distractors in the search displays. This way, it was not the shapes but 

the colors of the distractors that were contingent with target location. Again, three distractor 

colors were predictive for target location, three other colors were unpredictive. The distractor 

shape was held constant. We obtained similar results as in Experiment 1. The interaction be-

tween predictability (predictive vs. unpredictive color) and block was significant in a mixed-

effects model with the same fixed effects as in Experiment 1. The fixed effect estimate for the 

interaction was similar in size in Experiment 1 and 2. As in Experiment 1, we did not find 

evidence for explicit knowledge of the contingencies, indicated by strong evidence for the null 
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hypothesis when comparing relative frequencies of correct responses given high confidence, 

and correct responses given low confidence. The same result was found for the other base rate 

comparison.  

In the third experiment, we investigated potential cue competition. We combined the 

material from Experiments 1 and 2, so that the shape and color both, and redundantly, predicted 

target location. Thus, were able to observe the interplay of multiple sources of predictive infor-

mation, implemented here by two visual cues. The learning phase was structured like the ones 

in Experiments 1 and 2, but with compound cues (shape and color). In an additional test phase 

in Experiment 3, we implemented single cue blocks after the learning phase. In the color cue 

block, we introduced a novel distractor shape that had not been associated with any target loca-

tion, but kept the distractor colors 100% contingent, as in the learning phase. And, vice versa, 

in the shape cue block, all distractors were presented in a novel color, but the distractor shapes 

still predicted target locations. Again, fitting mixed-effect models to the learning phase data 

with both cues predicting target location, we found a significant interaction of block and pre-

dictability, indicating learning of the cue – target location contingency. From that result alone, 

it remained ambiguous what was in fact learned.  

There are three possible learning processes that can explain the data: First, it could be 

that one single visual feature cue was learned, either color or shape of the distractors, while the 

respective other one was overshadowed. Secondly, participants could have learned the com-

pound cue, representing both visual cues in an integrated fashion. Thirdly, it is possible that 

participants learned both cues independently. In the first case, we should observe a predictabil-

ity effect in only one of the single cue blocks. Following the second hypothesis, we should 

assume that there would be no predictability effect in the single cue blocks that would be com-

parable to the effect in the learning phase. From the third hypothesis, we should expect an effect 

of predictability, indicating learning in both single cue blocks. 
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What we found is in fact an overall significant predictability effect in the single cue 

blocks, in line with the third hypothesis. But from Bayesian analyses of the individual single 

cue blocks, there was no convincing evidence for a predictability effect. This may be due to a 

lack of statistical power that is due to the rather small number of 48 trials per single cue block. 

However, the number of trials is justified by the assumption that with more trials, participants 

would likely learn any single cue contingency anew. Thus, we conducted several explorative 

analyses. When comparing the single cue block response times with the learning phase that 

provided both cues, we do not find an increase in response times in predictive contexts. Such 

an increase could have been indicative of costs produced by the lack of one predictive cue. Also, 

the fixed effect estimates for predictability are roughly the same with shape as the predictive 

cue, as learned in Experiment 1 and the shape block in Experiment 3, and with color as the 

predictive cue, as learned in Experiment 2 and the color block in Experiment 3. This suggests 

that the effect of learning on response times is comparable for single cues or multiple redundant 

cues. And it suggests that learning might have occurred independently for both cues. As to the 

nature of this independent learning, we also compared the size of the CC effect (defined as 

subtracting response times in predictive trials from response times in unpredictive trials) in the 

learning and single cue blocks of Experiment 3, and found that it is almost double in size in the 

compound cue learning, when compared to the single cue blocks. This may indicate that the 

learning of the individual cues is additive in its effect on response times, an effect that has been 

shown before for animal (Thein et al., 2008) and human learning (Endo & Takeda, 2004). All 

our findings are compatible with the notion of independent, and even additive learning of both 

individual cues. However, there was still the possibility that our data looks compatible with 

that, but is really explained by the first hypothesis and individual differences. It could be that 

individual participants differ in their preference of one cue, and that, by individual learning 

effects of only one cue respectively, the overall result would look like both cues were learned. 

This is why we conducted a final explorative analysis, comparing the CC effect of each 
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individual participant for the color and shape single cue blocks separately. If individual learning 

effects of only one cue would explain our finding of learning of both cues on the group level, 

we should see a pattern that roughly half of the participants should show a learning effect in 

only one cue block, and the other half in the other cue block. However, this is not what we 

found. Instead, we found that the difference scores between the color and shape block CC ef-

fects revolved around zero. This indicated that both cues were learned to a similar extend. From 

the generation task and confidence measures, we again concluded that knowledge of the con-

tingencies – involving color or shape – remained implicit.        

6.3 Implications 

Experiments 1 and 2 from Study 1 showed that contingencies with visual features that 

are relevant or irrelevant to the task are learned without explicit instruction, and that the 

knowledge of the contingencies cannot be reported explicitly.  

This has implications for theories that propose attentional mechanisms as key compo-

nents of their models of consciousness. First, the GWT assigns a central role to attention, claim-

ing that once an information is attended, it is broadcasted into the global workspace and thus 

becomes conscious. In HOT, attention is thought to amplify processing, and making it more 

likely for information to become conscious. Lastly, in IIT, attention and consciousness are 

viewed more distinctly. Still, it is suggested that when attention contributes to integrative pro-

cesses, it can contribute to the emergence of conscious processing.   

In our studies, manipulating attention in terms of task-relevance, we do not find essential 

differences between task-relevant (attended), and task-irrelevant (not attended) features. Nei-

ther in the extent of learning a contingency between the feature and a goal-relevant target loca-

tion, nor in the extent of conscious knowledge of those contingencies. Of course, one could 

argue that our definition and manipulation of attention is rather specific, and that given a dif-

ferent approach to attention, one could possibly find differences in attended and not attended 
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features. Also, one could suggest that our finding is limited to conclude the role of attention 

with regard to stimulus features but not stimuli as a whole, and argue that manipulating attention 

to whole sets of stimuli could yield different results (as in Jiang & Leung, 2005; Vadillo, Gimé-

nez-Fernández, et al., 2020). However, we can retain the following: When defining attention as 

a selection mechanism, not a finite resource (as in, e.g., Frensch et al., 1998), and as a mecha-

nism resulting from task-relevance manipulation, not as a causal factor in cognitive processes 

(as in, e.g. J. H. Reynolds et al., 2000), we do not find evidence for a central role of attention 

in unconscious processing. This is generally broadly consistent with GWT, HOT and IIT. How-

ever, in GWT, attention has a central role, and one could deduct the hypothesis that contingen-

cies between attended features should have a higher probability to become conscious, than con-

tingencies between not attended features. This hypothesis could also hold for HOT and IIT, 

given that attention should play a role in the likelihood of information being processed con-

sciously. And given the IIT account, the sheer process of visual search, scanning the distractors 

one by one while searching for the target, should increase feature integration (Treisman & Ge-

lade, 1980), thus leading to more integrated information, which is then again more likely to 

become conscious according to IIT. However, one issue that remains with those implications is 

that the hypotheses deducted from the broad theories of consciousness remain vague with re-

gard to their predictions in implicit learning processes.  

Experiment 3 additionally provides insights into the mechanisms of cue competition in 

implicit learning. Our findings are compatible with other studies that did not find overshadow-

ing and blocking effects in implicit learning (Beesley & Shanks, 2012; J. R. Schmidt & De 

Houwer, 2019). But our study goes beyond this by showing that overshadowing does not even 

occur when one of the provided cues is task-irrelevant and would thus be more likely to be 

overshadowed by a task-relevant cue, as it was demonstrated by Endo and Takeda (2004).  
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There are several conceivable practical implications of this study. Implicit learning in 

everyday life means that we learn statistical occurrences, rules, and contingencies without in-

struction or explicit awareness about them. But further, our results suggest that implicit learning 

is a rather automatic process that is not dependent on attention allocation. This means that po-

tentially, we can learn a myriad of associations every day without being aware of it, and, im-

portantly, without the stimuli being relevant to our task or goal. There has been a debate over 

the magnitude of the unconscious influence on behavior, such as consumer behavior or social 

judgement. In their review, Newell and Shanks (2014) criticize studies that claim a broad scope 

of unconscious processes influencing behavior for their poor methodology. Still, there are meth-

odologically sound studies that show effects of implicit learning in the realm of learning body 

cues in social interactions (Heerey & Velani, 2010; E. Norman & Price, 2012). And some argue 

for a pronounced role of implicit learning in behavioral economics (Zizzo, 2000). Here, it would 

be interesting to consider the role of attention in those implicit learning situations, because it is 

a relevant factor in our overloaded everyday environments. 

Further, there are efforts to investigate inter-individual differences in implicit learning 

to learn more about psychological and neurological conditions. For instance, there is the idea 

that schizophrenia could be associated with altered implicit learning processes. There is evi-

dence of impaired (Horan et al., 2008), but also of intact (Danion et al., 2001) implicit learning 

in participants with schizophrenia. In addition, some research suggests that the ability to distin-

guish relevant from irrelevant stimuli plays a role in schizophrenia (Gray & Snowden, 2005). 

Because our novel variant of the CC paradigm provides the opportunity to test implicit learning 

and the role of task-relevance, testing participants with schizophrenia in this paradigm could 

contribute to this debate. This could also be true for other inter-individual differences, for ex-

ample, when investigating potentially altered cognitive processing in individuals on the autism 

spectrum. There has been a line of research hypothesizing that there could be a lack of implicit 
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social learning in those individuals. However, evidence mostly shows no differences in implicit 

learning (for a meta-analysis, see Foti et al., 2015), also in children (Barnes et al., 2008). This 

evidence may be enriched and refined by further looking into implicit learning while manipu-

lating attention. 
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7 Modular Processing of Unconscious Information 

The holistic perception that we have of the world may be what most characterizes our 

conscious experience. We do not perceive visual features of a stimulus, like color and shape, or 

whole stimuli separately. In our conscious visual perception, we experience the world as inte-

grated picture, almost like a movie played in front of our eyes (Damasio, 2000). But when we 

look at the neurophysiological basis of visual perception, information processing in our visual 

cortices is highly specialized and modular with regard to visual features (Ghose & Maunsell, 

1999).  

A central claim of many theories of consciousness is that processing of integrated infor-

mation that produces such a holistic experience, requires consciousness, either in the form of a 

global workspace (Dehaene & Naccache, 2001), of a high level of integration (Tononi, 2004), 

or integration by higher-order thoughts (Rosenthal, 2005). In contrast, unconscious processing 

is thought to be modular. That means that visual, auditory, and other information are processed 

separately in independent and specialized modules (Abrahamse et al., 2010; Frost et al., 2015; 

Keele et al., 2003). Yet, it is still a matter of debate how these modules are defined, whether by 

modality, such as vision, hearing, tactility and olfaction (henceforth labelled modalities; e.g., 

Abrahamse et al., 2010; Keele et al., 2003), or even more refined, features within the modalities, 

such as color, shape, and location in vision (henceforth labelled features; Eberhardt et al., 2017; 

Moeller & Pfister, 2022; Wilts & Haider, 2023).  

There are several ways to test whether modules are specialized with respect to modali-

ties or features. A common approach is to test for concurrent learning of uncorrelated sequences. 

Modularized models of unconscious processing suggest that multiple sequences can be learned 

concurrently, as long as they are processed in encapsulated modules (Keele et al., 2003). Thus, 

the modality-based account predicts that sequences can be learned concurrently when they be-

long to distinct modalities, whereas the feature-based account predicts concurrent learning for 
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sequences that comprise of distinct features. It has been repeatedly demonstrated that independ-

ent sequences in different features (color, shape, location) can be learned concurrently, while 

two sequences instantiated within a feature cannot be learned (Eberhardt et al., 2017; Goschke 

& Bolte, 2012; U. Mayr, 1996; Wilts & Haider, 2023), which challenges a modality-based ac-

count, and supports a feature-based account. In Study 2, we investigated the hypothesis of in-

dependence of feature modules in our variant of CC paradigm. 

7.1 Transfer in Implicit Learning 

Another deduction from the hypothesis that the architecture of unconscious processing 

is comprised of encapsulated modules, is that these modules do not exchange information. This 

subsequently prevents information transfer across modules.  

The modality-based account would thus predict that transfer can only occur for infor-

mation within the same modality. For instance, that color information can be integrated with 

shape information, as both features are processed within the visual module. In contrast, visually 

perceived spatial information could not be transferred into motor, spatial information, because 

there is a distinction between the visual and the motor modules.  

In contrast, the feature-based account predicts that, within the visual modality, the mod-

ule processing color does not have access to information represented in the shape module, and 

a spatial module could not enrich its information processing of stimuli with their color and 

shape in the absence of awareness. In the context of implicit learning, this would mean that 

learned contingencies within one feature, such as color, remain encapsulated information in the 

color module. Implicit knowledge of these contingencies should therefore not be accessible to 

the shape module. It is however important to note that in the feature-based account, the modules 

do not distinguish between perception and action (Hommel et al., 2001; W. Prinz, 1990). Thus, 

location information can be used for the guidance of visual attention (perception) and move-

ments (action). This would apply to cue-target contingencies like in CC, but also sequential 
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contingencies like in the SRTT. However, Haider et al. (2020) found that a visually perceived 

stimulus location sequence could be transferred to a motor response location sequence, while 

knowledge of both remained implicit. However, location may play a special and pronounced 

role in our cognitive system and in learning (I. Koch & Hoffmann, 2000), Haider et al.’s finding 

concerning information transfer is not readily generalizable to other features. It remains ambig-

uous whether this is generalizable to visual modules, such as those for color and shape. In our 

study, we attempted to test whether such knowledge transfer is possible between two visual 

features, transferring color cue contingencies to shape contingencies, while knowledge of these 

contingencies remains implicit. 

While the feature-based account is inconsistent with transfer between color and shape 

modules, would such a knowledge transfer be possible when certain prerequisites are met? In 

our paper (Tavera, Wilts, & Haider, unpublished), we proposed two theoretical candidates for 

mechanisms that would enable such information exchange or transfer between modules, and 

that do not necessarily require rejecting such an architecture. First, one could deduct such a 

mechanism from the theory of event coding and the concept of event files (Hommel, 1998; 

Hommel et al., 2001). This framework suggests that perception and action control occur via the 

construction of event files. These entities encode information from an experience, across all 

stimulus features and across perception and action (W. Prinz, 1997). This information can be 

used for a future encounter with the same or similar stimuli, by, for example binding together a 

stimulus and an appropriate response. This mechanism is not limited to task-relevant infor-

mation, but is thought to be an automatic integration of all information available (Rothermund 

et al., 2005). This way, there would be a mechanism that binds together features from the pro-

cessing of different modules into a structure, that is here called an event file. However, in this 

framework, it is often proposed that these bindings are transient, and there is hardly any empir-

ical or theoretical connection to the research of learning, meaning a longer-lasting change in 
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behavior potential. Because there are recent advances to extend the framework in this direction 

(Arunkumar et al., 2024; Frings et al., 2020; J. R. Schmidt et al., 2020), we suggest that one 

deducted mechanism from the framework could be applied to explain knowledge transfer be-

tween feature-based modules. In the original work on event files (Hommel, 1998, 2004), the 

role of conscious awareness is not specified. But there is empirical work that suggests that the 

integration of information into an event file does not depend on top-down or attentional pro-

cesses, but occurs automatically (Rothermund et al., 2005; Schmalbrock et al., 2023). This 

makes it a viable candidate for a mechanism in implicit learning, and an explanation for 

knowledge transfer in the absence of awareness. Therefore, in our study, we let participants 

form associations between shapes and colors, to enable a transfer from a learned contingency 

between shapes and target locations, to a contingency between colors and target locations. 

A second framework that enables the deduction of a potential mechanism for knowledge 

transfer is learning in pre-conditioning situations (Holmes et al., 2022). In a typical precondi-

tioning procedure, two stimuli (S) are associated with each other (S1-S2). Then, a response (R) 

is associated with one of the stimuli (S1-R). In a transfer phase, it is then shown that the second 

stimulus is also associated with the response (S2-R), although it has never been paired with it 

(e.g., Arunkumar et al., 2024). This is explained with an online integration account, suggesting 

that the S1-R association is bound into the S1-S2 association (Holmes et al., 2022). The role of 

conscious awareness in this mechanism has been examined recently, suggesting that the S1-S2 

and S2-R associations need to be explicit for learning to occur (Arunkumar et al., 2024). The 

measure of awareness in this work is however questionable in terms of reliability, as it relies on 

one-trial assessments for each association. It is further noteworthy that the stimuli used in this 

experiment were visual (S1) and auditory (S2), thus testing a transfer of knowledge across mo-

dalities, not across features within modalities. Again, similarly to the event file framework, a 
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pre-conditioning account would also predict the transfer of a learned contingency from a shape 

cue to a color cue, given that shapes and colors were associated with each other. 

The two frameworks differ in their prediction concerning the order of association for-

mation. In the event file framework, the mechanism of knowledge transfer would be, that in 

every trial of the learning that retrieves event files with a shape and the respectively learned 

target location, the before matched color would be activated as well, being part of the event file. 

Then, in the transfer trials, when only color is activating the event file that was encoded before, 

the target location is activated along with it. One could argue whether this mechanism requires 

a S1-S2 matching before the S1-R learning, or whether the matching could be added after the 

learning. In the former order, it seems more probable that, once the one-to-one shape-color 

matching has been learned, shapes and colors are then over the course of the learning associated 

with target locations with increasing strength. In the latter order, the associative strength ac-

quired over the course of the learning between shape and target location would have to be trans-

ferred to an association with color as well. This is not impossible against the backdrop of the 

event file framework, but there is also no mechanism in place to explain such a transfer of 

association. However, it remains an empirical question whether the mechanism does function 

in this way.  The preconditioning account on the other hand is not confined to a fix order of 

association acquisition.  

Additionally, since we cannot distinguish between the two proposed mechanisms of 

forming associations as in event files or as in pre-conditioning, we use the term matching to 

describe the learned relationship between shapes and colors. 

There are several reasons to switch from the SRTT paradigm as used by Haider et al. 

(2020) to our adapted CC paradigm. In the SRTT, participants learn a visual sequence, whereas 

in our CC variant, they learn contingencies between features cues and target locations. This is 

potentially interesting to additionally test cross-dimensional learning. Commonly, in the 
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learning phase of the SRTT, the sequence is 100% predictable to ensure stable learning effects 

(e.g., Wilts & Haider, 2023). As a consequence, the learning effect cannot be assessed during 

the learning process. Only in a test phase, one can compare response times in sequential and 

random material to assess learning. In contrast, in our CC variant, there is an online measure 

for the learning effect during the learning process, as participants respond in every trial, and 

one can then compare between trials that are either predictive or unpredictive. However, it is 

yet uncertain whether these two paradigms test the same learning mechanism. Sequence learn-

ing is a kind of chaining across trials (Schuck et al., 2012), where one event is linked to a 

subsequent and/or a preceding one. In contrast, in CC, the contingency between the cue and the 

target location is within a trial. However, precisely for this reason, testing transfer between 

visual features within CC not only tests the generalizability to other features, but also to other 

learning paradigms. 

7.2 Summary Study 2  

In this study (see Appendix B), we tested whether transfer of contingency knowledge 

between two visual features, color and shape, is possible. We examined this in our novel variant 

of the CC paradigm. We designed the experiment such that we tested learning and transfer in 

three groups, a pre-matching group, a post-matching group, and a control group. All groups 

completed four experimental phases, the matching phase, learning phase, transfer phase, and 

generation task, but in different forms and orders.  

The matching phase was the main experimental manipulation. The pre-matching group 

learned to associate shapes and colors prior to the learning phase. The post-matching group 

learned the shape-color associations only after the learning phase, but before the transfer phase. 

The control group did not learn any associations between shape and color, but did a filler task 

with the same set-up as in the other groups. The learning, transfer, and generation phases were 

the same for all three groups. In the learning phase, the distractor shapes predicted target 
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locations with a 70% contingency, but note that it did not predict correct responses. In the trans-

fer phase, the distractors in the search displays were not characterized by shapes but by colors. 

The 70% contingencies were now transferred from the shapes to the colors, according to the 

shape-color matching from the matching phase. Lastly, in the generation phase, participants 

were asked to generate target positions from search displays, both with the distractor shapes 

from the learning phase, and the distractor colors from the transfer phase, and to indicate the 

confidence in their responses. 

Fitting mixed-effects models to the data of the three groups, we found comparable learn-

ing effects in all three groups, indicated by significantly decreased response times for predicted 

trials (70%) when compared to unpredicted trials (30%). The learning effects did not differ 

significantly between groups. In the transfer phase, we observed a significant transfer effect 

only in the pre-matching group. But in an overall analysis, the transfer effects did also not differ 

significantly between groups. It thus remains unclear whether the observed effect in the pre-

matching group can unequivocally be interpreted as evidence for knowledge transfer. For the 

shape and the color contingencies, we did not find above chance level accuracy in the generation 

task or evidence for explicit knowledge in the combined measures of accuracy and confidence 

judgement.  

7.3 Implications 

Our findings suggest that knowledge transfer is possible in the absence of awareness 

under certain conditions. In the pre-matching group, that first learned the shape-color matching, 

and then the contingencies between shapes and target locations, participants were able to 

demonstrate contingency knowledge in the transfer phase with the before matched colors. In 

the post-matching and control groups, we did not find evidence of knowledge transfer. How-

ever, we are careful with the interpretation of our findings. First, it is conceivable that what we 

observe with the response time difference between predictive and unpredictive trials is not in 
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fact knowledge transfer, but a facilitation effect for novel learning of the contingencies between 

colors and target locations. Explorative analyses show however that the response time differ-

ence between predictive and unpredictive distractor colors is present from the first trials in the 

transfer phase, and do not, as would be expected from novel learning, increase with trial num-

ber. The second caveat concerning our results is the lack of group differences in the transfer 

phase. From the models that we fitted, it can be seen that the groups do not significantly differ. 

Descriptively, it is still interesting to see that the transfer effect is largest in the pre-matching 

group, followed by the control group and then the post-matching group. It would be interesting 

to test other experimental conditions that manipulate potential covariate candidates. For exam-

ple, the post-matching group could have had a disadvantage by having a task in between the 

learning and transfer phase. We do hypothesize that the kind of learning we are examining here 

is long-term learning, as studies show that CC effects prevail for multiple days (Bergmann et 

al., 2019; Chun & Jiang, 2003). But when taking into account the emphasis that the event file 

framework puts on the transience of bindings in event files, there might be mechanisms that 

dissolve such bindings or associations, for example whenever the task context drastically shifts 

(Gozli, 2019). It would be interesting for further research to look into such parameters and their 

influence on a transfer effect. 

What do our results indicate for the scope of unconscious processing and theories of 

consciousness? The lack of knowledge transfer of contingencies that remain implicit in the con-

trol and post-matching groups is consistent with GWT, because more complex, integrative pro-

cesses should require consciousness. Additionally, the information exchange that is required for 

transfer processes would not be in the scope of modularized processing as hypothesized by 

GWT (Baars, 1997). 

Reconciling the findings with IIT accounts requires additional mechanism specifica-

tions. According to IIT, when information is highly integrated, and therefore highly flexible, it 
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should become conscious (Merker et al., 2021). Our finding, the acquisition of flexible, trans-

ferrable knowledge that remains unconscious, does not correspond to mechanisms proposed in 

IIT. But as there is no possibility of quantifying integration processes in our study by computing 

φ, it is also not contradicting the theory clearly.  

HOT entail that unconscious information processing can be highly complex, flexible 

and integrative, and does not become conscious as a consequence of its complexity, but as a 

consequence of forming a higher-order representation of the information (H. Lau & Rosenthal, 

2011). In our study, we specifically ask participants not only for their contingency knowledge, 

but also for a metacognitive judgement, their confidence in their responses. We do not find that 

participants have metacognitive knowledge – they do not know that they (implicitly) know 

something about the contingencies. According to HOT, this means they are not conscious about 

it. But also for HOT, conscious awareness is not necessary for complex information processing 

such as transfer to occur. 

In sum, our study provides valuable insight into unconscious processing and the char-

acteristics of the modular processing architecture, while raising interesting questions for future 

research. 



   8 Semantic Processing Without Awareness 

74 

 

8 Semantic Processing Without Awareness 

Semantic processing is commonly viewed as a main functional aspect of human con-

sciousness. It is thought to be a consequence of integration processes (Ludwig, 2023). Accord-

ingly, it is a central prediction of some theories of consciousness that consciousness emerges or 

is required whenever semantic information is processed (e.g., Dehaene & Naccache, 2001; To-

noni, 2008). Given the centrality of high-level, semantic processing as a function of conscious-

ness, it has been studied extensively. Empirically, one of the most used paradigms in psycho-

logical consciousness research is testing the influence of subliminally presented primes on the 

processing of semantically congruent or incongruent targets (Ludwig, 2023; Mudrik et al., 

2014).  

With this approach, a series of empirical studies has attempted to carve out the limits of 

unconscious processing with respect to semantics. There is evidence from ERP studies suggest-

ing that semantic processing of words takes place even when they are not consciously perceived 

(Kiefer & Spitzer, 2000; Luck et al., 1996; Stenberg et al., 2000). This was shown by the finding 

that masked words produced the N400 ERP which is linked to semantic, integrative processing 

(E. F. Lau et al., 2008). Further, it has been shown that the amygdala specifically responds to 

masked images of fearful faces (Whalen et al., 1998). These studies are important, as they 

demonstrate that there is neurological evidence for semantic processing of invisible stimuli, and 

that this processing is done in the same neural pathways as conscious semantic processing. Yet, 

they do not allow conclusions from a phenomenological or behavioral standpoint. The question 

that remains is, how the activation of semantic processing networks, or the amygdala, translates 

into perception and behavior. There is evidence from behavioral studies that address this issue. 

For example, using subliminal priming paradigms, semantic processing of number words could 

be demonstrated (Dehaene, Naccache, et al., 1998; Naccache & Dehaene, 2001). The number 

words were used as masked primes, not consciously perceived by participants. Then, 
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participants had to respond to a two forced-choice response, indicating whether a target stimulus 

was a number above or below 5. They had to respond with the right or left hand. Dehaene, 

Naccache, et al. (1998) measured the lateralized readiness potential (LRP) that is associated 

with left or right hand response preparation. They could show covert motor priming, finding 

the LRP in accordance with the response primed by the masked number word. In a later study, 

they further showed the same priming effect of masked number words, but here, in response 

times for congruent or incongruent target stimuli (Naccache & Dehaene, 2001). Similar findings 

have been obtained with different stimuli and set-ups, finding response facilitation or inhibition 

by subliminal priming (for a review, see Eimer & Schlaghecken, 2003). There are even studies 

suggesting that there could be unconscious priming when prime and target are not of the same 

modality (Lamy, Mudrik, & Deouell, 2008). These findings were mostly interpreted as evidence 

for unconscious semantic processing. However, this implication was challenged by an alterna-

tive explanation of semantic priming effects. Kiesel et al. (2008) reviewed such findings and 

explain them on the basis of solely perceptual processing that can trigger actions. That means, 

for instance, that there is a learning of key responses triggered by the visual characteristics of 

numbers on the screen, not by their semantic meaning. With this action trigger account, sublim-

inal priming effects would thus not require semantic processing. Therefore, it is still a matter of 

debate whether semantic processing is possible in the absence of awareness. Assuming that it 

is possible, it is still unclear what the limits of such processing are. For example, semantic 

priming effects might last a few milliseconds, but might not enable temporally stable represen-

tations without conscious awareness, and further, novel semantic integration might not be pos-

sible (for an overview, see Dehaene & Changeux, 2011; Dehaene & Naccache, 2001).   

In addition to studies using priming paradigms, a substantial body of research has used 

visual scene processing to investigate semantic processing without awareness. To evaluate such 

studies, it is important to understand visual scene processing generally, involving conscious 
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processing. Visual scene processing is a highly complex process that requires processing of 

various features, integrating them into objects, and process the relationship between those ob-

jects on a semantic level (Biederman, 2017). There is, for example, a vast amount of research 

on eye movements in scene viewing, examining what is fixated and processed first and most 

when looking at a scene (Henderson, 2007; Itti et al., 1998), and the interaction of scene and 

object processing (Brandman & Peelen, 2017; Demiral et al., 2012). Meanwhile, it has often 

been investigated in combination with visual search tasks (for a review, see Wolfe, 2020). This 

allowed for conclusions about scene processing and its consequences for attentional guidance 

to a target (Eimer, 2014). For example, in a real-world scene, certain objects are generally more 

likely, and expected to be located in certain areas – in a kitchen, a knife is a likely object, and 

expected on the counter or table, not so much on top of a lamp or on the floor. It has therefore 

been shown that search processes in real-world scenes were based on such semantic guidance, 

but also on guidance by low-level target features (e.g., Bahle et al., 2018; Hayes & Henderson, 

2019b). 

Visual scene processing in the absence of awareness is one framework in which one can 

study unconscious semantic processing. Because of its complexity, visual scene processing is 

well suited to test the scope of complex, integrative, semantic unconscious processing. For in-

stance, it can be tested by means of visual masking of scenes, and investigating consequential 

behavioral or neurological measures.  

There are numerous studies that presented masked visual scenes with congruent or in-

congruent objects, for instance a man taking a baking sheet or a chess board out of the oven 

(e.g., Biderman & Mudrik, 2018; Faivre et al., 2019; Mudrik, Deouell, & Lamy, 2011; Mudrik 

& Koch, 2013; Mudrik et al., 2010). Many of them suggest that semantic scene processing, and, 

subsequently, detection of incongruity of an object within the scene, is possible in the absence 

of awareness. However, these findings have partly not been replicable, and thus called into 
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question (Biderman & Mudrik, 2018; Glanemann et al., 2016; Moors et al., 2016). Hence, the 

role of consciousness in semantic scene processing and integrative processes for the detection 

of incongruities remains unclear. 

However, what we further know about semantic processing of visual scene is based on 

research on gist perception. The gist of a scene is a quick understanding of the meaning of the 

scene, possibly a semantic label or category, that is based on low-level feature, as well as on 

high-level semantic information (Oliva, 2005). Gist perception, operationalized as scene cate-

gorization has been found to occur within extremely short time frames. It was shown that 

presentation times as short as 26ms were enough to enable participants to categorize scenes into 

natural and human-made with more than 90% accuracy (Joubert et al., 2007; Rousselet et al., 

2005). Importantly, rapid categorization of scenes was equally fast for novel and highly familiar 

scenes (Fabre-Thorpe et al., 2001). Also, participants observing flashing scenes for only 32ms 

performed at above 90% accuracy in the detection of a food item or an animal in a scene (De-

lorme et al., 2000). It is therefore to be expected that participants upon presentation of a real-

world scene, are able to extract its gist within a few milliseconds.  

So, to recapitulate, several main findings of the hitherto reviewed research on semantic 

and scene processing are relevant to Study 3. First, from unconscious semantic processing re-

search I deduct that there is the potential that unconscious semantic information influences be-

havior, as demonstrated in subliminal priming studies. Secondly, from general scene processing 

literature, we know that scene categorization can be performed in very short time frames and 

with high accuracy. From this literature, we also know that semantic guidance plays a role in 

visual search within scenes. From these main findings, we developed our design for the exper-

iments of Study 3. It is important to note that Study 3 is not an examination of scene processing 

mechanisms themselves. Rather, I will make use of scene processing as a means to investigate 

implicit learning that involves semantic processing. In Study 1 of this dissertation, we showed 
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that low-level features such as color and shape could be learned as predictive cues in CC. In 

Study 3, we now extend this finding by first testing whether such visual cues can be implicitly 

learned with highly complex stimulus material, such as real-world scenes. Further, we investi-

gate whether also semantic cues could be learned in the absence of awareness. Therefore, we 

take advantage of the ability of the cognitive system to quickly and accurately categorize visual 

scenes semantically. We will thus use scene categories as semantic cues in our variant of the 

CC paradigm. Additionally, we are taking into account that in our visual search task, semantic 

guidance would play a role if we instantiated real objects as targets. Because this guidance 

would potentially obscure any CC learning effect, we are using letters, such as in the original 

CC paradigm, that are meaningless in any visual scene. 

8.1 Semantic Processing in Implicit Learning 

Aside from general findings in the unconscious semantic and scene processing litera-

ture, there is also relevant evidence specifically from semantic scene processing in the frame-

work of implicit learning. In our paper (Tavera, Abderahaman, & Haider, unpublished), we have 

reviewed the evidence for semantic processing in implicit learning. The idea in such studies is 

that not only stimulus-stimulus or stimulus-response associations between specific stimuli are 

learned, but rather between a category of stimuli and another category of stimuli or a response. 

This would then mean that the categorization of stimuli could take place in the absence of 

awareness. Or, if the categorization is performed consciously, that the learned contingencies 

remain implicit. 

For instance, there is some evidence suggesting that visual sequences of objects of se-

mantic categories can be learned implicitly (Brady & Oliva, 2008; Goschke & Bolte, 2007). 

Also within the CC paradigm, studies could demonstrate implicit learning of semantic word 

categories (Goujon et al., 2009) and semantic scene categories (Goujon, 2011). By having re-

viewed these studies in detail (Tavera, Abderahaman, & Haider, unpublished), we identified 
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some methodological issues that call into question whether the evidence is convincing. Specif-

ically, one challenge in such studies is the isolation of semantic categorization from potential 

low-level categorization. The categories that served as predictive cues could potentially be built 

based on low-level similarities, thus not provide convincing evidence for semantic processing. 

Secondly, in all of the four studies reviewed, the awareness tests did not convincingly show that 

learning remained implicit, according to the some of the standards set out in Chapter 4. There-

fore, with Study 3, we aim to enhance the validity of an experimental approach to find implicit 

learning that involves semantic processing. 

8.2 Summary Study 3  

In Study 3 (see Appendix C), we first tested whether participants learn the contingency 

between the color of a complex, real-world scene, and target location within the CC paradigm. 

This is an extension of the finding of low-level visual feature learning in Study 1 to more 

complex stimulus material.  Further, we tested whether a semantic scene category can be used 

as a cue when there is a contingency between the cue and target location. As in the studies be-

fore, we tested whether this contingency knowledge remained implicit when participants are 

not informed or instructed about any contingencies explicitly. It is important to note that this 

is a different approach from, for instance, unconscious priming literature. What those experi-

mental approaches aim to show is semantic integration in the absence of awareness. In our 

Study 3, given that we find learning of semantic cues in our CC variant, it would not mean 

that semantic processing, in the sense of, for example, abstract reasoning, can take place in the 

absence of awareness. Because the semantic processing could involve conscious processing. 

Still, demonstrating learning would show that semantic cues can be bound into implicit learn-

ing. So, that semantic, integrated information can be used in unconscious processing to learn 

about contingencies, without the contingencies necessarily becoming conscious. 
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For Study 3, we conducted three experiments. For all three experiments, we used the 

same stimulus material, that was real-world, colored visual scenes. The scenes were comprised 

of four categories of functional rooms (bathroom, bedroom, kitchen, and living room) which 

constituted our abstract semantic categories. Additionally, the scenes were characterized by a 

color scheme (white, green, blue, and brown). As in Study 2, we implemented 70% contingen-

cies between the cues and target locations. 

In Experiment 1, we aimed to test whether our novel variant of the CC paradigm was 

suitable for examining visual search in complex, real-world scenes. We first tested whether a 

low-level feature such as color, operationalized as the general color scheme in a scene, can be 

learned as a cue to predict target location. In Experiment 2, we tested whether the contingencies 

between scene category and target location could be learned when participants were not in-

structed about them. In Experiment 3, we then tested whether performance would be similar or 

different when participants were explicitly instructed about the contingency between scene cat-

egory and target location.  

Interestingly, in Experiment 1, we found that participants did not learn to use the general 

color scheme of a scene as a cue for target location. Fitting a mixed-effects model to the data, 

we did not find a response time effect of predictability of the target location. Also, our aware-

ness test, combining responses to the generation task and confidence, showed no evidence of 

explicit knowledge of the contingency between category and target location. In Experiment 2, 

we found an effect of predictability. However, the effect was not as hypothesized. In predictive 

trials, participants responded significantly slower than in unpredictive trials. In the generation 

task, they also showed above chance level performance, but no explicit knowledge as indicated 

by the combined accuracy and confidence measure, and no significant correlation between ac-

curacy and confidence. In Experiment 3, given explicit instructions on cue contingencies, we 

found the same effect of predictability, even of roughly the same effect size, as in Experiment 
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2. Further, as expected from the explicit instructions, we found above chance level performance 

in the generation task and evidence for explicit awareness in combination with the confidence 

measure. We also found a moderate to large correlation between accuracy in the generation task, 

and confidence, as we would expect in the presence of explicit and metacognitive knowledge. 

In an additional, explorative analysis, we included only participants that performed above 

chance level in the generation task. Including only those participants, we found virtually the 

same effect of predictability as in the analysis with all participants, and, consequently, the same 

as in Experiment 2. 

8.3 Implications 

In Study 3, we aimed to show generalizability of an implicit learning effect in our variant 

of the CC paradigm, beyond low-level visual cues to semantic cues. Our results remain some-

what ambiguous.  

In Experiment 1, we showed that color schemes in complex real-world scenes could not 

be learned as cues for target location. In contrast, we have shown in Study 1, that low-level 

cues, such as color, can be learned as a cue to predict target location, regardless of its response-

relevance. We know that semantic scene processing is an automatic process (Joubert et al., 

2007) that guides attention, also involuntarily (Hayes & Henderson, 2019b). Therefore, it could 

be claimed that color is always encoded as part of this process. But the role of color processing 

in complex real-world scene processing is highly complex and not well understood (Shevell & 

Kingdom, 2008). As summarized by Oliva and Schyns (2000, p. 179): “Existing data with real 

pictures […] suggest that the color is never, always, and sometimes used to recognize a scene”. 

In the case of our study material, color cannot be used as diagnostic feature to recognize scene 

category, as is the case with natural scenes (Goffaux et al., 2005). Instead, here, color is a feature 

that is predictive of target location. However, it is not associated with scene category, as all four 
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scene categories were presented in all four colors. Therefore, it is unlikely that color processing 

supports understanding the scene category. 

Nevertheless, in Study 1, we have shown that color could be learned as a cue, although 

it was not a task-relevant feature. Thus, we hypothesized that color cues could also be learned 

in real-world scenes, independent of their relevance to the task. That we did still not find learn-

ing could point to the complexity of the material in Study 3. Here, the cues were not defined as 

a consistent color, but as a broad color scheme including different hues and luminance, while 

there were other colors present within the scene. Thus, learning the color cue within complex, 

real-world scenes needed a certain amount of abstraction (van de Sande et al., 2010), general-

izing over a spectrum of hues, defined as, for instance, “green” or “red”. Meanwhile, other 

colors that were marginally present in the scene had to be disregarded. This might be an inte-

grative and statistical process that cannot be integrated into implicit learning episodes. In line 

with that, Delorme et al. (2000) have shown that in ultra-rapid scene processing with 32ms 

presentation times, the presence or absence of color in a scene did not affect scene categoriza-

tion. They argue that in early stages of visual processing of a complex scene, color might not 

play a role in semantic categorization. Thus, in Experiment 1 of Study 3, color processing might 

not have played a prominent role because only very limited scene processing was necessary to 

do the visual search task. 

The second main finding of Study 3 is the learning of scene category contingencies with 

target location in Experiments 2 and 3. Although this learning was reflected in significantly 

different response times for predictable versus unpredictable target locations, the direction of 

the effect was reversed. Similar reversed predictability effects have previously been observed, 

for instance, in SRTT experiments (I. Koch et al., 2020). However, the explanation they pro-

vided in that context is specific to their experimental setup and does not readily apply to our 

paradigm. As we discussed in our article (Tavera, Abderahaman, & Haider, unpublished), there 
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are some approaches to explaining this reverse CC effect, including effects of attentional inhi-

bition (Tipper, 2001) or episodic retrieval (S. Mayr & Buchner, 2007). But in additional explor-

atory analyses, we did not find empirical support for such effects in our data. Since the under-

lying mechanisms proposed in these accounts remain underspecified, it is difficult to determine 

whether they can account for the effects observed in our data. Additionally, that we find this 

reverse CC effect in both implicit and explicit learning conditions is a central finding. It shows 

that the mechanism producing the effect may not be a top-down strategy, such as intentionally 

ignoring the predicted target location. Rather, it seems to be a process that stems from implicit 

processing, and is not overridden by explicit processes, such that the prediction is used inten-

tionally to guide search.   

To make these assumptions about the reverse CC effect in implicit and explicit learning 

requires a valid and reliable measure of explicit knowledge. Thus, the results from the genera-

tion task and confidence measure in Study 3 are another core finding. We found substantial 

evidence for explicit knowledge across participants when they were explicitly instructed with 

the contingencies, but not when they were not explicitly instructed. This is an important meth-

odological validation of our explicit knowledge test. On the one hand, it served as a manipula-

tion check regarding our instruction manipulation. On the other hand, it shows that our measure 

is, in principle, able and sensitive to detect explicit knowledge when it is prevalent. In Experi-

ment 2, participants also indicated contingency knowledge by performing above chance level 

in the generation task, but there was no evidence for explicit knowledge. As discussed in the 

Introduction, we do not posit above chance level performance as evidence for explicit 

knowledge, as this performance might also be based on implicit knowledge (Jiménez et al., 

1996; Reingold & Merikle, 1988). Therefore, we used the combined measure that reveals met-

acognitive knowledge about the knowledge (Michel, 2023a). 



   8 Semantic Processing Without Awareness 

84 

 

What we thus conclude from Study 3, is that our novel CC paradigm can only be partly 

generalized to other stimulus material. Implicit learning of low-level features seems disrupted 

when it requires a certain amount of abstraction of specific low-level features into broader fea-

ture categories. But we have shown that semantic cues can be learned both implicitly or explic-

itly. The reversal of the effect of learning is an interesting finding that remains to be studied 

further in future research. 

Our finding of implicit learning of semantic category cues can be attributed back to the 

theories of consciousness that I have discussed in the beginning. However, that requires some 

rather speculative hypothesis deductions for implicit learning of semantic content, given the 

broadness of the theories. The question is whether semantic processing, specifically, semanti-

cally categorizing a real-world scene, and associating this category with a target location, is 

within the scope of unconscious processing. To examine this question against the backdrop of 

the theories, it might be important to note that this question is different from asking whether 

unconscious semantic processing, in the sense of learning something new, is within the scope 

of unconscious processing. Because other than in paradigms with subliminal stimulus presen-

tation, in implicit learning, we generally consider participants aware of the presented stimuli. 

In the case of Study 3, we assume that participants consciously perceive the scenes, and are 

aware of the scene categories. Neither the semantic categorization itself nor the target locations 

are implicit, but the learned contingencies between the two are. This finding is difficult to rec-

oncile with mechanisms put forward by theories of consciousness.  

GWT posits that semantic processing requires information integration in the global 

workspace, but not, whether associations between semantic and low-level features can be 

learned without involving the global workspace. The semantic scene categories and the target 

locations are accessible in the global workspace. Assuming that the contingencies between them 

were accessible in the global workspace, it is unclear why the association between the two is 
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learned, but not accessible to verbal report. Thus, it is conceivable that top-down influence of 

conscious processes on unconscious processes, as proposed by GWT (Dehaene & Naccache, 

2001), play a role here. In the case of Study 3, that could mean that the conscious perception of 

the scene and the recognition of its category feeds back into unconscious modules that guide 

attention, and possibly eye movements. However, this would also entail that this is a different 

mechanism from the top-down attentional amplification or mobilization (Dehaene & Naccache, 

2001) of modularized information, because this would render that information accessible in the 

global workspace, and thus, conscious. Consequently, it seems that this mechanism is under-

specified, and we need a clear set of conditions determining what information becomes con-

scious when involved in recurrent feedback loops between the unconscious module structure 

and the global workspace.   

On the other hand, this finding seems more easily reconcilable with HOT. Although both 

scene and target location are consciously perceived, and there is a higher-order representation 

of the knowledge of the scene categories and the target locations, there is no higher-order rep-

resentation of their contingency. Participants remain guessing when asked about the contingen-

cies, indicating that it is merely a first-order representation that remains unconscious (Dienes 

& Scott, 2005). HOT postulates a dissociation between performance and higher-order represen-

tation which are conscious (e.g., H. Lau & Passingham, 2006). In our study, we also find a 

dissociation between response time differences in the learning phase (performance), and lack 

of metacognitive judgement in the confidence measure (higher-order representation). This dis-

sociation can be explained by the lack of a higher-order representation of the association that 

was learned as a first-order representation, which influences performance but not metacognitive 

judgement. 

Also, mechanisms from IIT can potentially be applied to understand our findings. As in 

GWT and HOT, IIT would posit that the semantic categories are processed consciously, as 
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determined by the high integration of information that they require. That the association be-

tween the categories and target locations remains implicit, could potentially be explained by 

hypothesizing that it is processed in specialized, lower-level networks involved in spatial atten-

tion and associative learning. These networks might not be accessible to conscious awareness, 

like aforementioned, whole areas like the cerebellum (Tononi, 2008). However, as it is still 

debated which brain structures are primarily involved in implicit learning, the validity of this 

line of argument remains unclear. A recent review has identified the basal ganglia, left inferior 

frontal gyrus, and hippocampus as associated with implicit learning outcomes, but has also em-

phasized the central role of the interconnectedness of brain regions for implicit learning (Wil-

liams, 2020). This would contradict the idea that implicit learning remains isolated in lower-

level neural networks. However, one could propose that the representation of the learned asso-

ciation is just a change in neuronal activation pattern that bias attentional mechanisms. This 

alone lacks high levels of informational integration, and thus, remains unconscious. At the same 

time, it influences behavior. To hypothesize precise predictions here, more research would be 

needed examining the neurocognitive basis of implicit learning (Turk-Browne et al., 2009; Wil-

liams, 2020). 

To summarize, there are approaches from the three theories of consciousness to explain 

our findings. Yet, they remain vague, and lack sufficient empirical evidence to refine the pro-

posed mechanisms. Additionally, none of the theories, and no theories of attentional or episodic 

retrieval processes can, to my understanding, account for the effect that contingency learning 

can impair performance, both implicitly and explicitly. Future research should aim to specify 

the implicit mechanisms involved, especially given that similar performance patterns emerged 

under explicit learning conditions. 
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9 Conclusion 

The main value of this work is to refine our understanding of human consciousness by 

examining the scope and limits of unconscious processes using an implicit learning paradigm. 

So far in the literature, there are different approaches to doing so. On the one hand, there is a 

strong atheoretical approach to search for NCC by examining conscious and unconscious per-

ception (C. Koch et al., 2016). On the other hand, one of the most common empirical approach 

is to present stimuli subliminally to prevent them from being consciously perceived and pro-

cessed (for a review, see Kouider & Dehaene, 2007). I argue that a promising way to obtain 

insight, and to test aspects of leading theories of consciousness lies within implicit learning 

paradigms. Thus, in this work, I have examined the scope and limits of unconscious processing 

by testing three major differential aspects of three leading theories of consciousness. I have 

examined the role of attention (Study 1), the potential for knowledge transfer (Study 2), and the 

potential of semantic processing (Study 3) in implicit learning. To do so, I developed a novel 

variant of the CC paradigm, and implemented advanced awareness measures as well as analysis 

approaches. I have discussed the findings in light of leading theories of consciousness. 

A first question regarding the scope of unconscious processing is the role of attentional 

mechanisms within it. Attention is a key aspect of GWT, and there has been extensive research 

on the role of attention in implicit learning (e.g., Jiang & Leung, 2005; Jiménez & Méndez, 

1999; Miller, 1987). However, attention is often under-defined, conflated with other mecha-

nisms, or used as a homunculus explanation. Therefore, research and findings in this area have 

been quite heterogeneous. We thus have precisely defined attention as a consequence of task-

relevance, and used it as a result of an experimental manipulation, not as causal factor. Thus, 

we can carefully interpret the conditions under which attention modulates implicit learning. We 

show that when attention is manipulated by means of task-relevance, it does not modulate im-

plicit, cross-dimensional, within-trial learning. Instead, under these conditions, we find that the 



   9 Conclusion 

88 

 

implicit learning process seems to be indiscriminate, and automatically integrates features in-

dependent of their relevance. This finding is not in line with previous work proposing that im-

plicit learning depends on selective attention (Abrahamse et al., 2010; Jiménez & Méndez, 

1999), and thus raises the question of whether specific task conditions determine the role of 

attention. Such conditions may include how attention is defined and manipulated, the level at 

which selection occurs (e.g., object, stimulus, modality, or feature), the temporal structure of 

the contingencies (whether they occur within or across trials), the basis on which the contin-

gencies are formed (object-, stimulus-, or feature-based), and the learning modality (whether 

the contingencies are cross-modal or confined to a specific modality). Irrespective of the poten-

tial influence of these parameters, we have shown that it can be, in principle, within the scope 

of unconscious processing to implicitly learn contingencies of task-irrelevant features. This 

broadens the potential influence of implicit learning on behavior. 

But our finding on cue competition within the same study is consistent with hitherto 

evidence. We have not found cue competition, such as overshadowing or compound learning 

effects, which also fits our interpretation of Study 1 – that implicit learning processes are auto-

matic and all-encompassing. That also entails that multiple feature contingencies, even if they 

are redundant with regard to their predictions, are learned independently from each other. There 

seems to be no attentional mechanism selecting one feature contingency or suppressing another. 

Just as we did not find attentional mechanisms (de-)selecting a feature based on its task-rele-

vance when only one feature was provided. 

While the findings of Study 1 point to a quite parsimonious model of automatic, non-

selective implicit learning, the results from Study 2 rather add explanandum to a model of im-

plicit learning – and unconscious processing more generally. At the same time, it is an important 

finding that expands supposed limits of unconscious processing. GWT and IIT suggest that 

unconscious processing occurs in a modularized architecture with little integration and 
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exchange of information in the absence of consciousness. From those theories, but also not 

specifically within HOT, we found no suitable mechanism that could explain our finding of 

implicit knowledge transfer. We thus proposed to take into account mechanisms from the frame-

works of the event file (Hommel, 1998) and preconditioning (Holmes et al., 2022) literature. 

We thereby show that the three theories of consciousness reviewed here might fall short of 

explanations regarding transfer in implicit learning. Their focus lays more on unconscious per-

ception and to some extent, unconscious information processing (such as information integra-

tion processes), but less so, on implicit learning processes and mechanisms. We have shown a 

lack of mechanisms explaining knowledge transfer in Study 2, and advocate for a specification 

of mechanisms within the unconscious processing system, that can explain our findings, but 

also findings of information integration in the absence of awareness more generally (for an 

overview, see Mudrik et al., 2014). 

This is a point that is also made by our findings in Study 3. While our findings are 

compatible with HOT in principle, GWT and IIT can only insufficiently account for our find-

ings that explicit semantic categories and target locations can be associated, but that this learn-

ing remains implicit. I have discussed potential future directions to reconcile the findings with 

the theories. For future research in GWT, the recurrent feedback into the independent modules 

could be better defined to explain implicit contingency learning of explicitly perceived content. 

In IIT, we should specify the neurological basis of implicit learning. This way, we would aim 

to distinguish implicit from explicit learning by comparing the interconnectedness of neuronal 

structures associated with them. 

The three studies presented in this work show a rather broad scope of implicit learning. 

This calls into question the functional definition of consciousness as information integration 

process. Instead of a clear distinction of unconscious processing as highly modularized, inflex-

ible system, and conscious processing as the integrative function, we have seen a flexible 
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unconscious processing system that is able to learn semantic cue contingencies, and that ex-

changed and integrated information across modules. With GWT and IIT assign functionally 

complex and temporally extended processes more exclusively to conscious processing 

(Dehaene & Naccache, 2001), it becomes complex to explain these findings. Conversely, it is 

easier to reconcile our findings with HOT. They claim that conscious processes are not, in prin-

ciple, different from unconscious ones, just metacognitively represented (Rosenthal, 2008). 

This work contributes also methodologically to the field of consciousness research. 

First, it shows that the common CC paradigm can be used more flexibly, and potentially to test 

more diverse research questions than traditionally done. This is especially interesting, because 

in the novel variant, we can test both the case of cross-dimensional and also cross-modal learn-

ing flexibly. As a new methodological tool, our CC variant could impact this separate, but cur-

rently strongly debated research question in the implicit learning literature (e.g., I. Koch et al., 

2020), and also has interesting implications for theories of consciousness. Secondly, I have 

refined analysis pipelines for testing for implicit and explicit knowledge. For the learning 

phases, I have followed the approach of analyzing within-subject effects with mixed-effects 

models which increase statistical power and account for inter-individual differences in learning 

and performance (Weinfurt, 2000). This way of analysis should be considered for future re-

search in implicit learning, given that effect sizes in response times are often rather small (e.g., 

Bergmann et al., 2019; Haider et al., 2012), and statistical power has been identified as an issue 

(Vadillo et al., 2016). For the awareness tests, I proposed an analysis of direct, objective task 

performance in combination with confidence measures (following Haider et al., 2011). This 

accounts for the metacognitive aspect of consciousness (H. Lau & Rosenthal, 2011), and pro-

vides a measure of awareness that is richer in information than a simple verbal report. Study 3 

provided validation for this measure, as it successfully detected explicit knowledge in the ex-

plicitly instructed condition. 
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9.1 Limitations and Future Directions 

Alongside the strengths and methodological advancements of this work, there are limi-

tations to discuss. In all three studies, we applied the same procedure to measure awareness. 

Compared to prior work in implicit learning, and the CC paradigm in particular, the combina-

tion of a direct, objective awareness measure and a confidence measure, was a potentially more 

refined approach. Nevertheless, it is susceptible to critique. We ensured to keep the awareness 

test as similar in retrieval context as possible to the learning context (Shanks & St. John, 1994), 

we increased the number of trials to increase reliability (Vadillo, Linssen, et al., 2020), and 

provided Bayesian statistics to support our null findings in the explicit awareness tests (Vadillo 

et al., 2016). Still, one could argue that we did not implement enough trials in the generation 

task to obtain a reliable measure (Vadillo et al., 2016). However, our generation task trial num-

bers are comparable to the number of trials with which an independence of CC effect and ex-

plicit knowledge was reliably tested (Colagiuri & Livesey, 2016), which increases our confi-

dence in the measure. Further, one could question why we did not exclude potentially con-

sciously aware participants from our analyses. However, this procedure has been under critique, 

as it has been shown that participants cannot easily be classified as “aware” and “unaware” by 

a recognition test, due to measurement error (Vadillo et al., 2022), and one would potentially 

include participants with explicit knowledge, while also excluding participants without explicit 

knowledge. We thus opted for a group analysis, where performance per participant is linked to 

their confidence, therefore again accounting for the individual.  

Further, each study in this work raises potential future directions. In Study 1, we recog-

nize that our task-relevance manipulation is confounded with the low-level feature itself. That 

means, in our variant of the CC paradigm, shape is inherently task-relevant, and color task-

irrelevant. It is not feasible to permutate feature identity and task-relevance by rendering color 

task-relevant, because that would require a color discriminability of the target. That would then 
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lead to a color pop-out effect (e.g., Theeuwes & Lucassen, 1993) which would potentially con-

ceal any other effects on response or search times. Nevertheless, it is conceivable that the novel 

CC paradigm can be extended to other designs and features. Basically, search difficulty can 

easily be varied (see also Jiang & Sisk, 2019), for example by set size (i.e., number of distrac-

tors), complexity of the cue (e.g., not one color, but color combination cues), and complexity 

of targets (e.g., easy or difficult to distinguish from distractors), or target responses (e.g., num-

ber of targets). Moreover, it could be varied as far as presenting cues that allow cross-modal 

learning, for instance, providing auditory cues that predict target location. Thus, there is poten-

tial for numerous research questions and experimental set-ups within our novel variant of the 

CC paradigm. 

Regarding Study 2, we demonstrated one such research question that could be tested 

within the paradigm. To further support our finding, it could be shown that the knowledge trans-

fer is not only possible from shape to color cues, but also vice versa, from color to shape cues. 

Further, one could extend the study by testing whether transfer between other cues is also pos-

sible. Again, these could be different visual cues, but one could also advance to the question of 

cross-modal learning by testing transfer between visual and auditory or motor cues. 

Lastly, in Study 3, we have successfully extended our novel CC variant to more complex 

stimulus material. But we did not find learning of low-level cues within complex scenes, and 

have discussed potential reasons for that. In any case, it would be worthwhile to test the para-

digm with different sets of stimulus material, to ensure that the lack of learning is not an artifact 

of the stimulus material, but generalizable. The noise that complex, real-world scenes bring to 

the data is a known challenge in scene processing literature, and this is why an increasing num-

ber of normed and validated scene data bases is  published (Andrade et al., 2024; Greene, 2013; 

Mohr et al., 2016; Shir et al., 2021). We did not opt for one of them for our stimulus material, 

because they are, consistent with the most common research question in scene processing, 
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specifically curated to test the relationship between the processing of scenes and diagnostic 

objects. The material that we created was statistically analyzed in terms of hue variances across 

their semantic and color categorization. This is a good starting point to improve this scene ma-

terial for future research. This would then be the first data-base, to my knowledge, that entails 

complex, real-world scenes in which low-level features and semantic meaning are not con-

founded. This way, one can investigate the influence of low-level and semantic characteristics 

separately. 

Taken together, there are still challenges, especially regarding the methodological issue 

of testing for explicit knowledge, the generalizability of learning to other features and modali-

ties, and the noise in data with complex stimulus material. More than anything, these challenges 

point to new research opportunities and endeavors to further explore consciousness by means 

of implicit learning research. 
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Abstract 

With attentional mechanisms, humans select and de-select information from the envi-

ronment. But does selective attention modulate implicit learning? We tested whether the im-

plicit acquisition of contingencies between features are modulated by the task-relevance of 

those features. We implemented the contingencies in a novel variant of the contextual cueing 

paradigm. In such a visual search task, participants could use non-spatial cues to predict target 

location, and then had to discriminate target shapes. In Experiment 1, the predictive feature for 

target location was the shape of the distractors (task-relevant). In Experiment 2, the color feature 

of distractors (task-irrelevant) cued target location. Results showed that participants learned to 

predict the target location from both the task-relevant and the task-irrelevant feature. Subse-

quent testing did not suggest explicit knowledge of the contingencies. For the purpose of further 

testing the significance of task-relevance in a cue competition situation, in Experiment 3, we 

provided two redundantly predictive cues, shape (task-relevant) and color (task-irrelevant) sim-

ultaneously, and subsequently tested them separately. There were no observed costs of single 

predictive cues when compared to compound cues. The results were not indicative of overshad-

owing effects, on the group and individual level, or of reciprocal overshadowing. We conclude 

that the acquisition of contingencies occurs independently of task-relevance and discuss this 

finding in the framework of the event coding literature. 

 

217 words 

Keywords: Implicit learning, contextual cueing, cue competition, visual search, attention 
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In our daily environment, we process information about objects, their shapes, colors, 

locations, and so on. Thereby, we also register co-occurrences between such features. For in-

stance, imagine your trips to the supermarket: If your favorite pasta comes in a blue package 

and is always in the same aisle at the supermarket, you will pick it up based on the location and 

color, without registering more details - you can act routinely in such environments. This kind 

of learning can occur without any intention to learn and usually, we are also not consciously 

aware about such learning processes or its contents. Therefore, it is termed implicit learning. It 

is an important feature of our cognitive system since it helps us to predict future events and 

thereby to act without effort (Clark, 2013). Another important characteristic of our system is 

that we learn to discriminate relevant from irrelevant information according to our action goals 

(Dreisbach & Haider, 2008, 2009; Haider & Frensch, 1996). If we want to buy our supermarket 

item, we will look for only blue packages, de-selecting other colors. This is a core ability of our 

attentional system and potentially shapes what we learn from our environment in such everyday 

actions. The goal of the current study is to ask for the role of selective attention of cues, here 

manipulated through their task-relevance, in implicit learning processes.  

In the field of implicit learning, there has been a long-standing debate about the condi-

tions that are required for such learning processes. When do we notice that certain features of 

stimuli are co-occurring in a systematic fashion? Do they need to be part of the current action 

goal or, more broadly, the task-set? Given a confined task context, do features need to be task- 

or response-relevant to be associatively learned? Or do we encode all the information about all 

the stimuli of the task at hand in a rather unselective manner and learning occurs automatically 

whenever the prediction error minimizes due to contingencies inherent in the environment?  

Implicit Learning 

In the lab, we can study implicit learning processes in several different paradigms, like 

the serial reaction time task (Nissen & Bullemer, 1987), statistical learning paradigms (Fiser & 



   Appendix A 

144 

 

Aslin, 2001; Reber, 1967), or in contextual cueing paradigms (Chun & Jiang, 1998), to only 

name a few. The research questions studied with these paradigms are rather similar, yet, research 

within the different paradigms is usually only loosely connected. Here, we focus mostly on the 

contextual cueing literature, but integrate also some findings from the other paradigms.  

In the original contextual cueing paradigm, participants are instructed to do a visual 

search task and are asked to find a target letter “T” among a display of distractor letters “L”. 

For each block throughout an experiment, half of the displays are repeated distractor configu-

rations that consistently predict a target location while the other half of displays are novel con-

figurations. In each trial, participants are asked to report the orientation of the target letter. The 

contextual cueing effect (CC effect) is defined as a stronger decrease (steeper slope) in response 

time (RT) for the repeated configurations than for the novel configurations over the course of 

trials. Note that the configurations are not associated with the orientation of the target, and thus 

only the contingency between the distractor configuration and the target location can be learned, 

while the response remains unpredictable. The effect can be traced back to an enhanced effi-

ciency in search, attentional guidance and selection, and, to a lesser extent, to response-related 

processes (Kobayashi & Ogawa, 2020; Kunar et al., 2007; Schankin & Schubö, 2009a, 2010; 

Sisk et al., 2019). It results in long-term implicit learning effects (Chun & Jiang, 2003). When 

asked to explicitly discriminate repeated spatial configurations from novel ones, participants 

are typically not able to do so, and they do not report having learned anything. Therefore, this 

learning process is assumed to be implicit (Colagiuri & Livesey, 2016; but see Vadillo, Linssen, 

et al., 2020).  

The classical buildup of the contextual cueing task does not seem ideal to study our 

research question. Because originally, it emphasizes the spatial dimension above all else. When 

studying the question of the role of task-relevance in implicit learning, we want to compare 

different cues when they are task-relevant or irrelevant. In the classical contextual cueing, the 
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comparison between different cues would be inherently disbalanced: The predictive feature is 

the spatial configuration of the distractors, the visual search task is a spatial task, and the re-

quested response is based on the spatial orientation judgement of the target.  

Meanwhile, the contextual cueing paradigm has been used in different ways that suggest 

the possibility of reducing the dominance of the spatial dimension in the task. The empirical 

evidence supports that, within the paradigm, cues or contexts besides the spatial configuration 

of distractors are learned, and can guide attention. In the visual domain, multiple studies have 

shown a CC effect when repeating natural scenes or complex geometric patterns that predict 

target location, though, involving explicit learning (Brockmole et al., 2006; Brockmole & 

Henderson, 2006b; Ehinger & Brockmole, 2008; Goujon et al., 2012). With more simplistic 

stimulus material, it has been shown that background color and distractor identity can be im-

plicitly learned to predict the target position. However, when color or shape cues in such form 

are predictive for target location on top of spatial cues (distractor configuration) being predic-

tive, only spatial cue contingencies are learned, color and shape contingencies are overshad-

owed (Endo & Takeda, 2004; Kunar et al., 2006; Kunar et al., 2013). It has further been shown 

that spatiotemporal sequences can guide attention (Olson & Chun, 2001), illustrating the wide 

scope of environmental cues that the cognitive system uses for predictions. So, it seems that a 

number of features can be used as cues, and probably entirely task-irrelevant features like back-

ground color can be learned to predict the target position. Yet, the role of selective attention that 

might discriminate task-relevant from task-irrelevant stimuli or features, remains unclear in the 

field of implicit learning.  

Attentional prerequisites for implicit learning 

As a cautionary disclaimer: Attention is a widely used and too often under-defined term 

(Anderson, 2011). Here, we refer to attention as selective attention, not attention as a resource 

(as in, e.g., Frensch et al., 1998; Nissen & Bullemer, 1987). In the studies we will review here, 
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attention is also mostly operationalized as task-relevance. So, when a stimulus feature is task-

relevant, it is considered to be attended, and is consequently integrated into the learning process. 

This is to be seen separately from the question if the feature is processed consciously or not. In 

many ways, consciousness and attention are closely related notions (Jiang & Chun, 2003; Mack 

& Rock, 1998; Tsuchiya & Koch, 2009). It is crucial in the definition of attention to avoid 

regressive reasoning in the form of invoking a homunculus that fulfils all assumed functions of 

attention, and is a causal, but unexplained factor in the cognitive system. Therefore, attention 

in our context is to be understood as the resulting effect when manipulating task-relevance, not 

as a causal factor on its own. A test for conscious knowledge of the learned contents must be an 

additional step and is not assumed to perfectly correlate with attending to the to-be-learned 

features (Tsuchiya & Koch, 2009).  

There are two lines of argument with opposing predictions when it comes to attentional 

prerequisites of implicit learning. The first suggests that task-irrelevant features are not pro-

cessed in a way that allows for integration into the learning process, either arguing that the 

features are not processed sufficiently, or that their representational strength is too weak to 

translate into behavior (Turk-Browne et al., 2005). The second argument suggests that task-

irrelevant features are indeed processed to a degree that they can become part of contingencies 

which then form predictions (Kunar et al., 2013; Miller, 1987).  

As to the first line of argument, there are studies that could demonstrate a learning effect 

only for relevant features. In visual search and also in statistical learning paradigms, participants 

were instructed to only pay attention to stimuli of one color, and to ignore stimuli of another 

color (Jiang & Chun, 2001; Jiang & Leung, 2005; Turk-Browne et al., 2005). Because learning 

of contingencies occurred for the attended color stimuli only, it was concluded that selective 

attention is a prerequisite for (implicit) learning. Similarly, participants were able to learn a 

spatial sequence of stimuli, but only additionally learned the contingencies with the identity of 
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these stimuli when they were instructed to count them (Jiménez & Méndez, 1999; Jiménez et 

al., 1993). Thus, only when the identity of the stimuli were made task- or response-relevant, 

they were learned (see also Dreisbach & Haider, 2008, 2009). Yet, Jiang and Leung (2005b) 

observed that contingencies in stimuli of an unattended color could be learned in some way, 

because even though learning did not manifest in behavior at first, it facilitated learning in a 

subsequent task. In a similar vein, the above mentioned results from Jiang and Chun (2001) 

cannot be interpreted unambiguously. In their third, higher-powered experiment, they found 

potential evidence for learning of contingencies also in a task-irrelevant color. 

The second group of findings indicate that irrelevant information is also processed and 

respective learning contents used in future instances. For example, Miller (1987) used a variant 

of the Eriksen flanker task (B. A. Eriksen & Eriksen, 1974). In his experiments, the flankers 

were not, like originally done in this paradigm, of the same identity as the targets or were oth-

erwise associated with a response. He observed that when these task-irrelevant flankers were 

associated consistently with a specific response, participants responded faster in these trials 

compared to when the flanker-response relation was changed. Hence, the irrelevant flankers 

were associated with the particular response. Similarly, Kunar et al. (2006, 2013) showed that 

in contextual cueing, task-irrelevant context features such as background color or texture were 

learned when they were predictive for target location. 

 An additional finding, however, is that context features like color, texture, or distractor 

identity are not learned when a spatial configuration is given as an additional cue (Endo & 

Takeda, 2004; Kunar et al., 2013). This suggests that the spatial configuration could overshadow 

the learning of other predictive features. This may not be surprising, because, as mentioned 

above, the task in contextual cueing paradigms inherently emphasizes the spatial dimension. In 

addition, in the literature on implicit sequence learning, for example, Koch and Hoffmann 

(2000) suggested that spatial relations of stimuli contributed significantly more to learning 
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effects than other stimulus features. But also generally, the spatial dimension might be distinctly 

represented in our cognitive system (U. Mayr, 1996; Paillard, 1991; Schintu et al., 2014). In 

fact, the spatial dimension might not even be a perceptual feature as such, as it is so tightly 

bound to the motor system (Gaschler et al., 2012; Goschke & Bolte, 2012; I. Koch & Hoffmann, 

2000; Paillard, 1991).  

With respect to findings on attentional mechanisms and learning specifically in the con-

textual cueing paradigm, these results suggest that their generalizability is strongly limited. The 

paradigm has, with very few exceptions (Endo & Takeda, 2004; Kunar et al., 2013), not been 

extended to test other, non-spatial stimulus features. This is particularly a problem when trying 

to draw conclusions about the learning of task-relevant and task-irrelevant features. Because 

either spatial features are overshadowing all other visual features (Kunar et al., 2013) because 

they are weighted more strongly according to the task requirements, or the spatial dimension is 

represented entirely differently, and thus shows different learning mechanisms than other visual 

features. Therefore, to conduct a more generalizable test on attentional mechanisms in implicit 

learning, we designed a novel variant of the task that de-emphasizes the spatial dimension. With 

this variant, we can contrast the learning of different visual features (color, shape) that are not 

problematic in terms of the task requirements, or, potentially, their general representation in the 

cognitive system. 

A second point noteworthy in the studies reviewed so far, is that the participants were 

not able to recognize predictive distractor configurations (Jiang & Chun, 2001; Kunar et al., 

2006; Kunar et al., 2013) or recall the identity of flankers (Miller, 1987). This was respectively 

taken as evidence for incidental or implicit learning. However, Vadillo et al (2019) recently 

questioned the implicit nature of the CC effect, given non-sensitive awareness measures and 

issues with limited statistical power of many studies in the literature. We will address this with 
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a carefully designed test for conscious awareness, and discuss the issue in light of our results 

further in the General Discussion. 

Overview of the study 

The main goal of the current study was to examine whether selective attending, in terms 

of task-relevance, is needed to learn the contingencies between distractor features and target 

location within a contextual cueing paradigm. Importantly, whereas in the original contextual 

cueing paradigm, the spatial configuration of distractors is the cue for the target location, we 

implemented nonspatial features of the distractors as cues. We manipulated task-relevance of 

the predictive cue as following: The shape dimension is task-relevant because the task is to 

assess the target’s shape (i.e., identity), and thus, the distractor shapes, which are the predictive 

cues, would be relevant and needed to be processed for the processing of the task. The color 

dimension, on the other hand, does not appear in any of the task’s processes, neither the search 

process discriminating distractor from target shapes, nor for the response, that is referred to the 

distractor shape. The color dimension is thus considered task-irrelevant. A second question con-

cerned cue competition. If more than one feature predicts the target location, will that lead to 

overshadowing of the task-irrelevant feature, as Kunar et al. (2013) have shown for spatial fea-

tures? Or are such cue competition effects as overshadowing or blocking the result of explicit 

or deliberate processes, and thus do not occur in incidental learning paradigms such as our 

variant of contextual cueing (De Houwer et al., 2005; J. R. Schmidt & De Houwer, 2019)? A 

third question concerned the implicit nature of the acquired contingencies.  

In all three experiments, the participants saw spatial configurations of distractors and 

had to find the target to answer whether a certain characteristic of the target was present. The 

spatial configurations of the distractors were novel in every trial and did not predict target lo-

cation. Instead, either the shape (Experiment 1), the color (Experiment 2), or the color and shape 

(Experiment 3) of the distractors were predictive for the target location.  
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Figure 1 

Search Displays in the Training Phase of the Experiments 

  

Note. Exemplary search displays for Experiments 1-3. The target letter “F” is shown in one of 

four potential target locations. It is circled only for illustration purposes, and was not high-

lighted in that way in the experiments. a. An exemplary search display with the E-shaped dis-

tractors for Experiment 1 with shape cues. The target letter F has a shorter second horizontal 

bar. b. A search display, exemplary green, for color as cue in Experiment 2. c. A search display 

with orange E-shapes with the compound cue of color and shape, exemplary for Experiment 3. 

The target letter F has equally long horizontal bars.   

 

In Experiment 1, three of six distractor shapes each cued one of four potential target 

locations whereas for the other three shapes, targets were randomly assigned to the four poten-

tial target locations. Note that in this context, shape is a task-relevant cue in so far that it needs 

to be processed to discriminate the target from the distractor. In Experiment 2, we used the 

distractor color as a feature to cue the target location. Again, three colors each cued one partic-

ular target location, and the other three colors were randomly paired with the target locations. 
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The question here was if the predictive color would be learned as a cue for target location, even 

though it is neither task- nor response-relevant. To be more precise, color is neither relevant to 

the search task, as it does not distinguish target and distractors, nor relevant to the response as 

each color is equally likely to appear with each target identity and there is no color judgement 

required. In Experiment 3, we tested whether two distinct features of the distractors, shape 

(task-relevant) and color (task-irrelevant) would be learned to be associated with a target loca-

tion as a compound, whether both features would be learned independently from one another, 

or if only one feature would be learned (overshadowing). 

General Method 

Stimuli. The search displays were 15x10cm in size, irrespective of the screen size of 

participant’s computer monitors (see Procedure). The displays were constructed following the 

method of Bergmann et al. (2019), with minor variations, as described in the following. The 

displays consisted of 15 distractor letters on a dark grey background (RGB 60, 60, 60) rotated 

randomly by 0°, 90°, 180°, or 270°. They were organized in a 7x10 (invisible) grid, ensuring 

equal distance between adjacent stimuli, and distributed equally between the two horizontal 

halves of the display (see Figure 1). In Experiment 1, all 15 distractor letters of one search 

display were white (RGB 255, 255, 255) and shaped as one of the six stylized letters A, E, K, 

P, S, and W. In Experiment 2, all 15 distractor letters of one search display were R-shaped and 

were colored in the six colors green (RGB 1, 204, 0), orange (RGB 254, 153, 0), blue (RGB 0, 

0, 254), red (RGB 254, 0, 0), pink (RGB 255, 0, 254), and cyan (RGB 1, 255, 255). In Experi-

ment 3, the 15 distractor letters were distinctly shaped and colored, with each color matched to 

one shape (for example, S shaped distractors were always colored in pink, and so on). Colors 

were those of Experiment 2 and shapes those of Experiment 1. The color-shape matching was 

permuted across participants.  
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In one of four possible target locations (see Figure 2b), there was either an F with equally long 

horizontal bars, or an F with a shorter second horizontal bar as target letter (see Figure 1). All 

targets were randomly rotated to the right (90°) or the left (270°).  

For half of the cues, contingencies between distractor characteristic and target location 

were fix. That is, three of the distractors’ colors or shapes or shape/color combinations were 

always paired with one respective target locations: For example, for Experiment 1, three shapes 

were each 100% contingent with a target location. The shape-target location matching was per-

muted across participants. For the other three letters, the four target locations were equally 

likely. In Experiment 2, the same applies for color-target location matchings. 

Procedure. All three experiments were conducted in accordance with the Declaration of 

Helsinki. Participants were recruited online via Prolific and were reimbursed according to Pro-

lific’s “ethical reward” standards. They were redirected to Pavlovia, where the experiments 

were uploaded from PsychoPy2 (version 2020.2.4; Peirce et al., 2019) and adapted to the Ja-

vaScript environment. Participants were informed about the procedure of the experiment and 

asked to give their informed consent.  

Participants were first asked to follow a screen scaling procedure (Wakefield Morys-

Carter, 2021). With the arrow keys on their keyboard, they were asked to adjust an image of a 

credit card on the screen to the size of an actual bank or credit card. This procedure ensured 

equal size of the search displays for every participant irrespective of the monitor size or aspect 

ratio. 

All three experiments consisted of three main parts: A short practicing phase, a training 

phase, and lastly, a generation task. In the first 12 practice trials, they were shown displays with 

white, L-shaped distractor letters to get used to the task for the training. In each trial of the 

training (see Figure 2a), a fixation cross was presented for 500ms. Then, the search display 
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appeared for a maximum of 3,000ms or until the response. The response window started with 

the appearance of the search display and lasted 4,000ms. Participants were instructed to search 

for the target letter “F” among distractor letters, and to identify if the second bar was short or 

long, respectively pressing the “S” or “L” key on their keyboard with their index fingers as 

quickly and accurately as possible. The trial ended with a feedback text (“correct” or “incor-

rect”) that appeared on the screen for 600ms and was followed by a blank inter-trial-interval of 

500ms. The training consisted of 15 blocks of 48 trials each. Participants were given the oppor-

tunity to take a short self-paced break after every block.  

After training, a so-called generation task (Chun & Jiang, 2003) started to assess partic-

ipants’ awareness about the cue-target location contingency. The generation task contained one 

block of 48 trials. It was designed such that participants were provided with a similar retrieval 

context as in the learning environment, as participants were shown the search displays of the 

training phase. This similarity of the environment and task during training and test phases pro-

vide similar sensitivities of both tests, thus increasing the chance to detect potential conscious 

knowledge (Shanks & St. John, 1994). In the test phase, participants were presented with search 

displays of the training phase, just that there was no target letter, but instead, the four potential 

target locations were marked with the numbers 1-4 (see Figure 2b). Participants were instructed 

to indicate in which target location they think the target letter was presented using the number 

keys on their keyboard. Afterwards, a visual scale from 1 (labeled “complete guess”) to 4 (la-

beled “absolutely certain”) appeared on the screen (see Figure 2c), and participants were asked 

to indicate their confidence with their generation response, again using the number keys on their 

keyboard. 

To finish the study, participants lastly were redirected to Qualtrics (Qualtrics, 2020) or 

SoSci Survey (Leiner, 2024) to respond to some questions about the experiment. They were 

asked to report technical issues, their ideas on the purpose of the study or if they noticed 
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anything, if and why the task became more difficult or easier, and if they had noticed any reg-

ularities or contingencies.  

 

Figure 2.  

Procedure for Experiments 1-3 

 

Note. a. The structure of a training trial. b. An example of a display in the generation task in 

which the four possible target locations are marked with the numbers 1–4. c. The 4-level con-

fidence scale. 

 

General data analysis. The statistical analysis was conducted in R Statistical Software 

(version 4.1.0; R Core Team, 2021). We used the dplyr package for most data manipulation 

(Wickham et al., 2023), the lme4 package for fitting models (REML; Bates et al., 2014) with 

restricted maximum likelihood (REML) model fit, and the lmerTest package (Kuznetsova et 

al., 2017) with the Satterthwaite's method for t-tests. Note that for the χ² tests for model 
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comparisons, the models are refitted using maximum likelihood (ML). Graphs were created 

with the ggplot2 package (Wickham, 2016). The study’s design and analysis were not pre-reg-

istered. Data and analysis scripts are available on OSF. 

For the training, we excluded incorrect trials, and trials with the one target location out 

of the four that appeared less frequently. Because there were three cues, that is, three colors, 

shapes, or color/shape compounds, matched to one target location, and the other three colors or 

shapes were equally often paired with all four target locations, one target location is consequen-

tially never predicted by a cue, and is also less frequent than the other three target locations2. In 

trials with the less frequent target location, we would obtain significantly longer RTs, because 

of the common probability cueing effect (Golan & Lamy, 2024). This is why, for the RT analy-

sis, we excluded trials with the less frequent target location, and only compared predictive and 

unpredictive trials for the three equally frequent target locations. Further, to account for the 

intertrial priming effect (Golan & Lamy, 2024; Kabata & Matsumoto, 2012), that is, shorter 

RTs for trials in which the target location is repeated from trial 𝑛 − 1, we excluded such target 

location repetition trials as well. Because of those necessities to exclude trials based on the 

design, we decided not to exclude any more trials based on outlier analysis. This is also in line 

with recent analyses that outlier exclusion procedures for RT analyses might add biases and 

power issues, and thus do more harm than good (Miller, 2023).    

 For the RT analyses, we fitted a mixed-effects model for two reasons. First, the method 

does not require aggregating data from multiple blocks into epochs, and thus less data is sum-

marized (for a similar analysis, see e.g., Bergmann et al., 2019). Second, with a mixed-effects 

model, we are able to account for the repeated-measures design more efficiently by including 

 
2 We worked with four target locations following the task set-up and materials of Bergmann et al. (2019; 2020), 

and worked with three predictive and three unpredictive colors/shapes, as we speculated that only two predictive 

colors/shapes would be too easy to learn and potentially result in explicit knowledge, and four predictive col-

ors/shapes might have been too difficult to learn, as we would have had to present eight colors/shapes in total. The 

scope of learning with respect to the number of predictive cues in this paradigm is something for future research 

to determine. 



   Appendix A 

156 

 

subject as random effect (Huta, 2014; Weinfurt, 2000). It should be noted that conducting power 

analyses with mixed-effects models is a challenge due to the complexity of parameter and var-

iance estimation, particularly with unknown random effect structures and their interactions 

(West et al., 2022). Because we had no prior data from our paradigm to obtain such estimates, 

we chose to refrain from conducting a power analysis. Yet, the sample sizes and number of 

observations in all three experiments are larger than the recommended minimum for mixed-

effects model analyses (Hox et al., 2017).  

We selected a model with two fixed effects: context (predictive or unpredictive 

color/shape/color-shape compound) and block (as time variable) as factors. Context as a dichot-

omous factor was coded with contrasts -0.5 and 0.5, and the block factor was coded with block-

1 for better interpretability. Our fixed effects were deduced from theoretical considerations, and 

on top of that, tested in model fits, but we decided on random effects solely based on the data. 

The argument here is that, on the one hand, it has been argued that maximal models are best for 

keeping the Type I error low while at the same time not significantly decreasing statistical power 

(Barr et al., 2018). On the other hand, however, simulations have shown that the statistical 

power to detect significant fixed effects can in fact be increased when opting for a random effect 

structure that fits the data better, as compared to implementing the full model (and more so for 

complex models; Matuschek et al., 2017; for a similar assessment of model selection in re-

peated-measures designs see also Stroup, 2013). To balance the Type I error rates and statistical 

power, Matuschek et al. (2017) suggest to select a model based on a selection criterion such as 

the Akaike information criterion (AIC; Akaike, 1998) or the Bayes information criterion (BIC; 

Schwarz, 1978) that assess goodness-of-fit. We decided to follow this line of argument to iden-

tify the most parsimonious model while balancing the Type I error and power. Thus, we com-

pared various potential random effect structures based on the AIC, and additionally provide χ2 

significance tests of log-likelihood (-2LL) changes from nested models. The results from all 
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potential random effect structure models and model comparisons are accessible via the analysis 

script uploaded to OSF. 

Following up on results from frequentist t-tests, we report Bayes factors that additionally 

indicate the strength of evidence for the null or alternative hypothesis. We computed Bayes 

factors (BF) using JASP (JASP Team, 2022) with the JASP default priors for t-tests (following 

Morey & Rouder, 2022; Cauchy distribution with a width of r = .707). The semantic labels for 

BF interpretation are taken from Jarosz and Wiley (2014). 

For the generation trials, we tested the objective performance (target placement) against 

chance level (25% because of four response alternatives). Because one of the four target loca-

tions is far less frequent than the other three, one could even postulate, that chance level is rather 

33%, as if it was choosing between the three more frequent target locations. Still, we opted for 

the more conservative approach to test against 25%. For the analysis, we selected only the pre-

dictive shapes and colors, because (implicit) knowledge about cue and target location associa-

tions could only be acquired for those. To assess conscious awareness of the learning contents, 

we followed the “consciousness-selectivity” argument of Michel (2023a), proposing that dif-

ferences in consciousness lead to differences in metacognitive efficiency, distinguishing correct 

from incorrect responses (for a similar method see Persaud & McLeod, 2008). To assess the 

relationship between the objective performance measure and the subjective confidence meas-

ure, we computed variables for relative frequencies of correct response under the condition of 

high confidence (correct|high) and low confidence (correct|low). The logic here is that partici-

pants with explicit knowledge of a pairing of cue and target location should be able to make a 

metacognitive assessment of their knowledge (Haider et al., 2011). Thus, when knowing a pair-

ing explicitly, their response should be correct, and their confidence should be high. Note that 

we summarized confidence ratings of 1 and 2 as low, and ratings of 3 and 4 as high confidence, 
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taking a more conservative approach that considers individual response biases and regression 

to the mean (both would potentially result in an avoidance of the extreme scale values). 

Experiment 1 

In the first experiment, as a way to introduce our variant of the contextual cueing para-

digm, we were using distractor identity features (i.e., shape) as cues, instead of the original 

spatial configuration context cue. We tested whether different shapes can be learned to predict 

target location, and thus facilitate and speed visual search processes. First, we constructed the 

task so that three of the six possible shapes of distractors were 100% predictive of target loca-

tion. 

Method 

Participants. 30 participants were recruited via Prolific (15 female, 1 diverse; 

Mage=41.37; SDage= 13.50). Participants were prescreened for living in the UK (participation 

took place during daytime for all participants), being fluent in English, have normal or cor-

rected-to-normal vision, and had not taken part in a previous contextual cueing experiment of 

our lab. 

Results  

Training. The removal of incorrect responses, repeated target location trials, and trials 

with the less frequent target location resulted in a 21.59% trimming. Mean accuracy was 

95.51% (SD=0.21), mean RT for the cleaned data set was 1193.73ms (SD=436.37). RTs over 

the course of the blocks, separated by predictive and unpredictive context, are shown in Figure 

3.  

For RT as dependent variable, we first tested whether the fixed effect structure hypoth-

esizing an interaction of context and block was the best fit for the data. A comparison of AICs 

of models with no random effect structure and no fixed effect (AIC=254040.9), only block as 
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fixed effect (AIC=253372.1), an additive (AIC=253359.2), and an interaction effect 

(AIC=253354.7), confirmed that the interaction term model indeed yielded the best fit. In a 

next step, we compared random effect structures. Allowing for random slopes for context across 

participants (AIC=250835) yielded a better fit than only random intercept for participants 

(AIC=250864; χ²(2)=32.287, p<.001). Other and more complex random effect structure 

models did not converge or produced a singular fit. In the random slopes and random intercept 

model, the fixed effects context and block, as well as their interaction, were significant (see 

Table 1 and Figure 4).  

 

Figure 3.  

Response Times in Milliseconds by Block and Context (Predictive/Unpredictive) 

 

Note. Error bars indicate standard errors. 
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Figure 4.  

Predicted Response Times in Milliseconds per Participant, Block and Context (Predictive/Un-

predictive) as Predicted by Mixed Effects Models for Experiments 1-3  

 

Note. The light grey points indicate the individual intercepts/slopes for participants, the 

dot and triangle indicate the difference between predictive and unpredictive contexts. The thick 

lines indicate the overall effect of context.  

 

Generation Task. Overall accuracy in the generation task for the predictive contexts was 

27.22% (SD=0.45) which was not significantly above chance level, t(29)=1.138, p =.132. 

Mean confidence rating (1 – 4 scale) was 1.64 (SD=0.50) for the predictive shapes, and 1.59 

(SD=0.51) for unpredictive shapes, which was not significantly different in a paired, one-tailed 

t-test, t(29)=-1.244, p = .112 (BF01=1.452; interpreted as anecdotal evidence for the null 

hypothesis). We pooled confidence ratings for predictive shapes of 1 (n=364) and 2 (n=267) 

as low, and ratings of 3 (n=70) and 4 (n=19) as high confidence. The difference between 
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relative frequency of correct|high (23.66%) and correct|low (25.62%) responses was not sig-

nificant in a paired, one-tailed t-test, t(29)=-.317, p = .623 (BF01=6.439; interpreted as sub-

stantial evidence for the null hypothesis)3. A Pearson’s product-moment correlation test showed 

a significant correlation within participants, between accuracy in the generation task and the 

CC effect, in the following simply defined as predictive – unpredictive RT, r(28)=.367, 

p=.047, but no correlation between accuracy and confidence in the generation task, 

r(28)=.238, p=.206. 

Discussion 

In Experiment 1, we could show that participants learn to predict the target location from 

the shapes of distractors. The interaction of context and block was significant, due to steeper 

RT slopes for predictive shapes than for unpredictive shapes. This search speed advantage for 

predictive shapes develops over the course of blocks, indicating learning to use the cues to find 

the target. The regression coefficient of the interaction of context and block indicates an RT 

difference increase between predictive and unpredictive contexts by -4.07ms with every block. 

The significant main effect for block indicates that there is also a general training effect. Exper-

iment 1 thus showed that a task-relevant visual feature that characterizes distractor identity can 

be learned to cue the target location. We do not find a main effect of context, which is to be 

explained by the slowly emerging learning such that the RT difference between contexts is not 

consistent but only present in roughly the second half of the training phase. 

As indicated by a lack of relation between objective measure (the generation task) and 

the confidence measure, we would argue that the knowledge of contingencies between cue and 

target location remained implicit.  

 
3 As a sanity check, in all three Experiments, we also compared the relative values for correct|high and 

incorrect|high which are computed on the basis of all high certainty judgements instead of all correct responses. 

In all three experiments, the results resemble the results from the correct|high and correct|low comparison. 
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Table 1.  

Response Time Analysis Results for Experiments 1-3 

 Estimate SE b 95% CI b df t p 

   LL UL    

Experiment 1 (shape)       

Intercept 1345.15 30.98 1284.42 1405.88 43 43.415 <.001*** 

Context (pred) 3.01 15.11 -26.60 32.63 94 0.199 .842 

Block -19.81 0.72 -21.21 -18.41 16878 -27.703 <.001*** 

Context x Block -4.07 1.43 -6.87 -1.26 16886 -2.845 .004** 

Experiment 2 (color)       

Intercept 1351.26 51.20 1250.92 1451.61 28 26.40 <.001*** 

Context (pred) 25.60 11.91 2.26 48.95 16436 2.150 .032* 

Block -19.91 2.56 -24.93 -14.88 28 -7.766 <.001*** 

Context x Block -6.65 1.44 -9.47 -3.83 16436 -4.621 <.001*** 

Experiment 3 (compound)       

Intercept 1347.36 27.09 1294.27 1400.46 59 49.740 <.001*** 

Context (pred) -26.87 12.52 -51.41 -2.34 141 -2.147 .032* 

Block -18.47 0.54 -19.52 -17.41 32194 -34.45 <.001*** 

Context x Block -2.68 1.07 -4.78 -0.57 32196 -2.496 .013* 

Experiment 3 (single cue blocks)      

Intercept 1118.51 26.82 1065.94 1171.08 57 41.710 <.001*** 

Context (pred) -32.51 11.42 -54.90 -10.11 4491 -2.846 .004* 

 

Note. SE = standard error; CI = confidence interval; LL = lower limit; UL = upper limit. Mixed-

effects model computed coefficient, standard error and confidence interval for the coefficient, 

degrees of freedom, t-value, and p-value are displayed for each predictor and experiment. De-

grees of freedom are rounded.   

***𝑝 ≤ .001, ** 𝑝 ≤ .01, * 𝑝 ≤ .05 
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Experiment 2 

In Experiment 1, we established a novel variant of the contextual cueing task with a 

non-spatial but task-relevant feature. Participants had to process the respective shape in order 

to find the target letter F. In the second experiment, we tested if participants even learned that 

different colors of the distractors predicted different target locations. As argued above, color is 

an entirely task-irrelevant feature.  

Method 

Participants. 30 participants were recruited via Prolific (19 female; Mage=40.13; 

SDage=12.20). One participant was excluded from analysis due to poor performance in the 

training (48.88% accuracy). Participants were prescreened for living in the UK (to ensure that 

it was daytime), being fluent in English, having normal or corrected-to-normal vision, and not 

having taken part in a previous contextual cueing experiment of our lab.  

Results  

Training. Incorrect responses, trials with the less frequent target location or target loca-

tion repetition were excluded from analysis (23.63% trimming). Mean accuracy was 94.49% 

(SD=.23), mean RT in the cleaned data set was 1205.86ms (SD=470.25). Mean RTs over the 

course of the blocks, separated by predictive and unpredictive context are displayed in Figure 

3.  

For RT as dependent variable, we first tested, whether the fixed effects structure hypoth-

esizing an interaction of context and block, was the best fit for the data. Comparing AICs of 

models with no random effect structure and no fixed effect (AIC=249809.7), only block as 

fixed effect (AIC=249243.1), an additive (AIC=249237.2), and an interaction effect 

(AIC=249223.6), revealed that the interaction term model yielded the best fit. In a next step, 

we compared random effect structures. Allowing for random slopes for the factor context 



   Appendix A 

164 

 

(AIC=244395) was not a better fit than the random intercept model (AIC=244394; 

χ²(2)=3.642, p=.162), but random slopes for the factor block fit significantly better in com-

parison to the random intercept model (AIC=244144; χ²(2)=243.1, p<.001). More complex 

models did not converge or produced a singular fit. In the random slopes and random intercept 

model, the fixed effects context and block, as well as their interaction, were significant (see 

Table 1 and Figure 4).  

Generation Task. Overall accuracy for the predictive colors was 30.03% (SD=.46) 

which was significantly above chance level, t(28)=1.83, p=.039, d=-0.34, BF10=1.639 (in-

terpreted as anecdotal evidence for the alternative hypothesis). Mean confidence rating (1 – 4 

scale) was 1.52 (SD=0.72) for the predictive colors and 1.52 (SD=0.71) for unpredictive col-

ors, which was not significantly different in a paired, one-tailed t-test, t(28)=.041, p=.516 

(BF01=5.225; interpreted as substantial evidence for the null hypothesis). We summarized con-

fidence ratings of predictive colors of 1 (n=414) and 2 (n=216) as low, and ratings of 3 (n=52) 

and 4 (n=14) as high confidence. The difference between relative frequency of correct|high 

(19.78%) and correct|low (29.49%) responses was not significant in a paired, one-tailed t-test, 

t(28)=-1.66, p=.946 (BF01=12.268; interpreted as strong evidence for the null hypothesis). 

A Pearson’s product-moment correlation test showed no significant correlation between accu-

racy in the generation task and CC effect, r(27)=-0.17, p=.385, and no correlation between 

accuracy and confidence in the generation task, r(27)=.22, p=.245. 

Discussion 

As in Experiment 1, the significant interaction between context and block indicates 

learning of the cue and target location association. Also here, the RT slope for predictive colors 

is steeper than for unpredictive colors across training blocks. Other than in Experiment 1, we 

also obtain a significant main effect of context in the opposite direction as hypothesized 
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(predictive contexts are slower than unpredictive contexts overall). As can be seen from Figure 

4, this finding is based on the reverse effect in the first block of the training phase. This can be 

demonstrated when, in a post-hoc analysis, we exclude the first block and compute the model 

(however, with only random intercepts as the random slope model did not converge). Then, the 

main effect of context is no longer significant, b=17.60, p=.181, but block, b=-14.56, 

p<.001, and the interaction effect is still significant, b=-5.84, p<.001. Testing the same 

model, but with context and block as additive factors, both main effects are significantly nega-

tive, context, b=-26.47, p<.001, and block, b=-15.03, p<.001. Both models fitted to the data 

with the first block removed, with additive and interaction effect respectively, are in line with 

a context learning effect. When not accounting for the interaction, both main effects are nega-

tive, which means that with block number, RTs decrease significantly, and for context, that RTs 

in predictive contexts are significantly shorter than in unpredictive contexts. In our original 

models, the main effect for context is overlaid by an interaction effect that stems from the first 

block. This interaction is however still significant when removing the first block. This signifi-

cant interaction effect of context and block is consistent with the pattern of a context learning 

effect across blocks. 

Building on previous research that has assigned task-relevance a major role in implicit 

learning (Jiang & Chun, 2001; Jiang & Leung, 2005; Jiménez & Méndez, 1999; Turk-Browne 

et al., 2005), color contingencies with target location should not have been learned. Neverthe-

less, we observe an RT advantage for predictive versus unpredictive colors over the course of 

the blocks that indicate learning. The model predicts a learning effect, which manifests in the 

RT difference between predictive and unpredictive contexts that increases by -6.65ms with 

every block.  

In the generation task, we find a performance that is significantly above chance level. 

First of all, according to the Bayes Factor, there is no strong evidence for the hypothesis that 
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participants are indeed better than chance level. Secondly, we do not exclude the possibility of 

a higher-than-chance performance even under the premise of implicit learning. There is the 

chance that, given the training and the test phase are so similar, implicit knowledge spills over 

to the test phase, and causes higher performance (Michel, 2023a, but see Shanks & St. John, 

1994). However, the awareness test lies in the association with a contingency measure, as this 

provides a metacognitive judgement. Here, we find no evidence of higher confidence in correct 

responses, which would be expected if participants had a metacognitive awareness of their 

knowledge of the contingencies, making it explicit knowledge (Dienes & Seth, 2010).  

Experiment 3 

In this experiment, we aimed to test the effects of cue competition. The task and set-up 

are the same as in Experiments 1 and 2, but here, we provided distractors that were characterized 

by a one-to-one mapped shape and color. Shape and color redundantly predicted target location. 

So, both, independently or integrated (as a compound or one overshadowing the other), could 

be learned to be used as a cue for target location. To test this question, additionally to the 15 

training blocks, two blocks with 48 trials each were implemented. The distractors here con-

tained either only color but not shape information (colored “R” distractors), or only shape but 

not color information (white distractors in six shapes) respectively. It was counterbalanced be-

tween participants if the first of the two blocks was the color or the shape block. With these 

blocks, we were able to test whether the learning effects for each individual cue would be ad-

ditive, indicating independent learning effects, or underadditive, indicating compound learning 

or overshadowing effects. 

Method 

Participants. For Experiment 3, the number of participants was doubled relative to Ex-

periments 1 and 2. This aimed to increase statistical power when testing effects in the single 
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cue blocks, as there were only 48 trials per participant and cue. An increase in the number of 

participants was preferred to an increase in the number of trials in the single cue blocks, because 

of the risk of participants learning the contingencies anew. Thus, 60 participants were recruited 

via Prolific (40 female; Mage=39.29; SDage= 11.98). They were prescreened for living in the 

UK, being fluent in English, have normal or corrected-to-normal vision, and had not taken part 

in a previous contextual cueing experiment of our lab. Two participants were excluded due to 

poor performance in the training phase (49.02% and 51.84% accuracy respectively). 

Results  

Training. Incorrect responses, target location repetitions and the infrequent target posi-

tion trials were excluded (22.62% trimming). Mean accuracy was 95.06% (SD=0.22), mean 

RT in the cleaned data 1196.71ms (SD=463.97). Figure 3 displays mean RTs over the course 

of the blocks, separated by predictive and unpredictive context. For the fixed effect structure, 

comparing AICs of models with no random effect structure and no fixed effect 

(AIC=488753.4), only block as fixed effect (AIC=487808.3), an additive (AIC=487731.8), 

and an interaction effect (AIC=487729.5), revealed that, again, the interaction term model 

yielded the best fit. Adding random slopes for context yielded a better fit (AIC=480843) than 

only random intercepts (AIC=480963; χ²(2)=124.09, p<.001). More complex random effect 

structures did not converge or produced a singular fit. In the random intercept and random 

slopes model, the fixed effects of block and context as well as their interaction were significant 

(see Table 1 and Figure 4).  

Single Cue Blocks. Mean RT in these blocks was 1113.89ms (SD=432.23), mean ac-

curacy was 96.17% (SD=0.19). The trimming was conducted with the same procedure as in 

the training phase and affected 18.80% of the data. In the color block, mean RT was 

1117.03ms (SD=423.84), mean accuracy was 96.30% (SD=0.19). In the shape block, mean 

RT was 1110.68ms (SD=440.73), mean accuracy was 96.05% (SD=0.19). 
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In a mixed model with no random effects, only context as fixed effect (AIC=68558.07) 

proved the best fit, contrasted with the null model (AIC=68562.11), only cue as factor 

(AIC=68563.86), both factors additive (AIC=68559.96), or in an interaction term of both fac-

tors (AIC=68561.57). A model with random intercepts and random slopes for the two cues 

(color and shape) per participant provided a better fit for the data (AIC=67671.53) than a model 

with only random intercepts for participants (AIC=67693.61; χ²(2)=26.083, p<.001). Post-

hoc Bayesian t-tests revealed that the difference between predictive and unpredictive contexts 

in the shape block was not significant, t(57)=-1.419, p=.081, BF01=1.477 (interpreted as an-

ecdotal evidence for the null hypothesis), but in the color block, it was significant, t(57)=2.22, 

p=.015, d=-0.17, BF10=2.727 (interpreted as anecdotal evidence for the alternative hypothe-

sis). 

Generation Task. For the compound stimuli, overall accuracy in the predictive contexts 

was 27.73% (SD=.45) which is not significantly above chance level, t(57)=1.58, p=.060. 

Mean confidence rating (1 – 4 scale) was 1.69 (SD=0.82) for predictive contexts and 1.69 

(SD=0.83), which was not significantly different in a paired, one-tailed t-test, t(57)=-0.159, 

p=.437 (BF01=6.129; interpreted as substantial evidence for the null hypothesis). We summa-

rized confidence ratings for predictive contexts of 1 (n=720) and 2 (n=410) as low, and ratings 

of 3 (n=234) and 4 (n=28) as high confidence. The difference between relative frequency of 

correct|high (21.56%) and correct|low (25.54%) responses was not significant in a paired, one-

tailed t-test, t(57)=-1.10, p=.862 (BF01=13.700; interpreted as strong evidence for the null 

hypothesis). A Pearson’s product-moment correlation test showed no significant correlation be-

tween accuracy in the generation task and the CC effect, r(56)=0.04, p=.796, and no correla-

tion between accuracy and confidence in the generation task, r(56)=.06, p=.630. 
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Discussion 

In Experiment 3, as a form of replication and extension of Experiments 1 and 2, the 

main effect of context and its interaction with block were significant, indicating learning of the 

predictivity of the compound cues in the search task (Table 1). In contrast to the results of 

Experiments 1 and 2, the difference between predictive and unpredictive contexts in RT 

emerges much faster, within the first block. This is also why the main effect of context is 

strongly negative, with an estimate of -26.87. The estimate for block is roughly the same as in 

Experiments 1 and 2, indicating that the general training effect is similar in all experiments. As 

a consequence, the interaction effect of context and block is less strong, estimating an increase 

in the RT difference between contexts of -2.68ms per block, given that the RT difference in 

contexts emerges faster across blocks as in Experiments 1 and 2.  

In the single cue blocks, results remain somewhat more ambiguous. By presenting only 

one feature of the shape-color cue, either only shape or only color, we aimed to test the learning 

of single feature contingencies with target location. However, our analyses do not provide 

strong evidence for learning of either single feature contingency. Although the frequentist test 

for a difference between predictive and unpredictive colors is significant, Bayesian analysis 

suggests that the evidence for such an effect is only anecdotal. This might be a design-inherent 

limited power because we have only 48 trials per single feature cue per subject to be able to test 

the difference between predictive and unpredictive contexts. However, if we had presented 

more blocks for the single feature cue, there probably would have been a new learning of the 

single cue contingencies, which is not what we were aiming to test.  

As can be seen in Figure 5, it is noteworthy that the RTs with predictive colors and shape 

contexts in the single cue blocks are similarly short as in the last block with compound cues, 

indicating that there are no costs of switching from compound to single cues. Still, the context 

difference becomes smaller, and that is because of shorter RTs in the unpredictive contexts. This 
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is not to be expected from the change of a compound cue to a single feature cue. One possible 

explanation would be that the single cues make it easier to detect the target in the unpredictive 

context. However, when comparing the RTs in unpredictive contexts in the single cue blocks 

with RTs in Experiments 1 and 2, where the same single feature cue displays are presented, 

mean RTs are virtually the same. Therefore, we suspect that the accelerated RTs in unpredictive 

contexts might rather be the result of unsystematic variation of the RTs in the unpredictive con-

texts that we similarly observed in Experiments 1 and 2. When looking at those RTs across 

blocks in Figure 3, there is some variation and overlapping standard error bars, however, still 

with RTs consistently larger in unpredictive than in predictive contexts. Given this variation in 

the unpredictive context RTs, and the argument of no observable costs from compound cue to 

single cues for predictive context RTs, one might argue that predictions from single cues could 

be used as well as from the compound cue.  

To further explore the relationship between compound and single cue learning, we con-

ducted an explorative analysis comparing all three experiments. We fitted a mixed-effects 

model for each training phase of each experiment and the single cue blocks in Experiment 3, 

including only context (predictive/unpredictive) as fixed effect and random intercepts for sub-

jects. Then, we compared the fixed effect estimates for context over the three experiments (Fig-

ure 6). For Experiment 3, the estimate was roughly double (b=-69.98, 95% CI [-102.80, -37.17]) 

compared to the estimates in Experiment 1 (b=-20.44, 95% CI [-33.02, -7.87]) and Experiment 

2 (b=-23.88, 95% CI [-36.47, -11.29]). The estimates for the single cue blocks (color: b=-32.01, 

95% CI [-63.42, -0.59]; shape: b=-23.56; 95% CI [-56.56, 9.44] in Experiment 3 are comparable 

to those of Experiments 1 and 2, except for their variance estimation, given that the estimation 

is based on a small number of trials in the single cue blocks of Experiment 3. And also descrip-

tively, the CC effect in the compound blocks of Experiment 3 is almost double the size 

(MCC=71.41, 95% CI [53.08, 90.74]) relative to the color (MCC= 31.36, 95% CI [14.49, 48.22]) 
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and shape (MCC =35.56, 95% CI [17.24, 53.88]) single cue blocks respectively. Taken together, 

the learning effects of the individual cues seem to be additive with respect to their compound 

presentation. 

 

Figure 5.  

Single Cue Block Response Times in Experiment 3 

 

Note. Response times in the last training block of Experiment 3 with compound cues, color and 

shape, and in single cue blocks (only color cue vs. only shape cue) per context (unpredictive 

vs. predictive). Error bars indicate standard error. 
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So, we obtain similar results from the two different approaches, a within-experiment 

and an across-experiment analysis. Results from both analyses are compatible with the notion 

of an additive learning effect. When looking at CC effects in the compound and single cue 

blocks of Experiment 3, we have a considerably larger effect of the compound cue. When com-

paring across experiments, we observe the same pattern, descriptively in the RT differences, 

and also in the fixed effects estimates for context in the three experiments. Only when taking 

into account the data pattern in Experiment 3, where we observe no RT costs in the predictive 

contexts, switching from a compound to a single cue, one might lean toward a different inter-

pretation. It could mean that the cues are learnt independently, resulting in an underadditive 

effect. However, in terms of the CC literature, it is unconventional to interpret performance in 

the predictive contexts only, instead of the comparison between unpredictive and predictive 

contexts in the sense of the CC effect. We therefore interpret the results as supporting an addi-

tive CC effect. 

The interpretation of the results at the group level remains somewhat ambiguous. On 

the one hand, it is conceivable that participants learned to predict the target location from both 

single cues, but benefited even more from a compound cue, producing additive learning effects. 

On the other hand, the smaller single cue learning effects at the group level could also be the 

result overshadowing effects at the individual level, meaning that one group of participants 

learned only the color cue, and the other group only learned the shape cue. This would poten-

tially also result in the observed pattern of seemingly additive learning effects. From the planned 

analysis, we can see already that the model that fit the data best, was one that allowed random 

slopes for the two cues across participants. This might point to the possibility that participants 

differed in their color and shape CC effects. Therefore, we would argue that analyzing the cue 

competition effects on the group level is not sufficient for a nuanced interpretation. There could 

be overshadowing effects on an individual level, resulting in ambiguous group effects (and 
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weak evidence in terms of the Bayesian analysis; G. S. Reynolds, 1961). To explore these ef-

fects, we conducted post-hoc explorative analyses on the individual level.  

 

Figure 6.  

Comparison of the Fixed Effect Estimates for Context in the Training of Experiments 1-3 and 

the Single Cue Blocks of Experiment 3 

 

Note. The fixed effect estimates refer to a mixed-effects model with context as fixed effect, and 

random intercepts for subject. Error bars indicate 95% confidence intervals. 
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Figure 7.  

Comparison of the contextual cueing effects for color and shape cues in Experiment 3 by subject 

(ranked) 

 

Note. The CC effect is computed by subject, deducting RTs in predictive contexts from RTs in 

unpredictive contexts, per single cue block, color (ColorCC; displayed as green “C”) and shape 

(ShapeCC; displayed as orange “S”). These two difference measures are then summarized into 

a difference measure contrasting the CC effect in the color versus in the shape block. Subjects 

are ranked based on the contrast measure, and it is then plotted as diamonds in the graph. The 

grey, dashed line indicates no difference between the color and shape block. Points below the 

zero-line indicate a stronger CC effect in the shape block, and points above the line indicate a 

stronger effect in the color block. Error bars indicate confidence intervals (95%), but are only 

shown one-sided towards zero for better visualization. 

 

We computed estimates for CC effects per subject separately for the shape and the color 

cues. For each individual participant, we computed trial-wise RT differences for predictive and 

unpredictive contexts. Trial-wise in such a fashion that the trial pair from which the RT differ-

ence was computed had the same cue feature, the same target position, and the same target 
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identity, that is, the same response (long, short). From these differences between comparable 

trials, we then computed means and confidence intervals (95%) for a CC effect (unpredictive – 

predictive RT) per participant and per cue. For the final difference measure, we then deducted 

the CC effect of shape from the CC effect of color, reasoning that if participants learned both 

feature contingencies roughly equally well, it should result in equal CC effects, and thus in an 

around zero difference measure. If this difference measure is substantially above zero, it would 

indicate a more pronounced learning of the color contingencies (suggesting overshadowing of 

shape). If it is below zero, it suggests a stronger CC effect of the shape contingencies (suggest-

ing overshadowing of color). To illustrate these effects on the individual level, Figure 7 displays 

the CC effects separately for color and shape cues as well as the difference measure for each 

participant rank-ordered according to the size of the difference between the CC effect for color 

minus the CC effect for shape. We observe that most participants have CC effect differences of 

around zero. Therefore, we would not argue that individual overshadowing effects are driving 

the weak CC effects on the group level in the single cue blocks. 

General Discussion 

The main goal of the current study was to investigate the role of selective attention in 

the implicit acquisition of contingencies between features. We implemented these contingencies 

in a novel variant of the contextual cueing paradigm using identity cueing instead of the classi-

cal spatial configuration cueing. For the purpose of testing the role of selective attention, we 

manipulated the task-relevance of distractor features that predicted the target location. In Ex-

periment 1, the predictive feature was the task-relevant shape of the distractors. In Experiment 

2, it was the task-irrelevant feature color. In Experiment 3, we aimed to test cue competition 

effects and therefore presented compound cues of color and shape.  

The results of the first two experiments showed that participants learned to predict the 

target location from the shape (Experiment 1) and from the color as well (Experiment 2). The 
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RT differences between predictive and unpredictive search contexts emerged over the course of 

the training blocks in both experiments. 

A generation task which also contained a confidence measure indicated that these 

learned associations were not explicitly represented. Participants were not able to report the 

correct target location according to a predictive feature above chance (only in Experiment 2, 

but Bayesian analysis provided no substantial evidence), and were not more confident in their 

respective response when they had responded with the correct target location. This indicated 

that participants did not have metacognitive access to the acquired information, enabling them 

to distinguish between their correct and incorrect responses (Michel, 2023a). 

What do these findings offer in terms of understanding the role of selective attention in 

implicit learning? Attentional or selective mechanisms are essential to our cognitive system, in 

the visual system alone, we are bombarded with information of about 108 bits per second (Itti 

& Koch, 2000; Marois & Ivanoff, 2005). This requires mechanisms of selection, chunking, and 

binding (Fiser & Aslin, 2005; Wheeler & Treisman, 2002). As reviewed above, a number of 

studies suggested that task-relevance of a predictive feature, manipulated by instruction or by 

the nature of the task, is necessary for it to be learned implicitly (Jiang & Chun, 2001; Jiang & 

Leung, 2005; Jiménez & Méndez, 1999; Turk-Browne et al., 2005). What is implicitly assumed 

when arguing for a central role of selective attention in implicit learning is that implicit learning 

is subject to capacity limits. However, this seems to contradict the widely confirmed finding 

that people can learn more than one contingency in parallel (Conway & Christiansen, 2006; U. 

Mayr, 1996; Wilts & Haider, 2023). In addition, our current finding suggests that also contin-

gencies involving task-irrelevant cues can be learned. Thus, there might not be such a compel-

ling argument for a functionally imperative role of selective attention in implicit learning.  

To solve this contradiction, it might be useful to refer to research in action control, be-

cause here, research has been going in a similar direction. In the framework of the Theory of 
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Event Coding (TEC; Hommel et al., 2001), an event file is thought to be formed when we 

integrate stimulus features and responses into an episode that can then be activated by the re-

spective stimulus or response features it entails (Hommel, 1998). In multiple series of experi-

ments, it has been tested what the attentional prerequisites for a stimulus or context feature are 

to be integrated into an event file. Conclusions from such experiments were that features are 

integrated into an event file when they are task-relevant (Chao et al., 2022; Hommel, 2005; 

Huffman et al., 2018), specifically, also if they can be used to discriminate targets from distrac-

tors (Hommel & Colzato, 2004). More recently, the modeling of the mechanism has been re-

fined, as it has been proposed that the selectivity of integrating features does not lie in the en-

coding and building of an event file, which is now thought to be automatic, but rather at the 

retrieval stage of the event file (Hommel et al., 2014; Schmalbrock et al., 2023). Thus, it is not 

the question whether a feature is integrated a priori, but whether the weighting of a feature 

(Hommel et al., 2014; Memelink & Hommel, 2013) enables the retrieval of the episode (event 

file) in a future occurrence. The paradigms that are used in the context of action control, often 

rely on trial-by-trial observations, examining the effect of a trial n feature and response on a 

trial n+1. We believe that, with our longer-term learning context, we can extend the scope of 

studying the processing of features beyond this trial-by-trial frame (Moeller & Pfister, 2022). 

In our view, one can integrate our findings into the TEC framework, in a way that features are 

learned to predict events or actions when they activate respective event files that contain such 

information, irrespective of the features’ task or response relevance. Applied to our current find-

ings, a possible assumption concerning the underlying mechanism is that all features of a trial 

are integrated into an event file. Given that one feature is contingently paired with the target 

location (e.g. color), the retrieval of that episode containing the correct target location is 

strengthened over time (Hommel, 1998; Rescorla & Wagner, 1972). Consequently, it would not 

be task-relevance (or selective attention) that modulates implicit learning but rather the retrieval 

of episodes (event file), and the question of implicit learning is whether a particular feature is 
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capable of triggering the retrieval of a certain episode. If so, it leads to performance benefits, 

or, as we coined it here, implicit learning. This mechanism seems to be effective with task-

relevant cues (distractor shape) and with task-irrelevant cues (distractor color). 

We acknowledge that our manipulation of task-relevance differs from the studies pre-

sented in the introduction. We provided a context in which all distractors needed to be evaluated 

with respect to their shape matching the target shape or not. This way, color was not task- or 

response-relevant. However, it may have been processed stronger than in the case of irrelevant 

stimuli in previous studies, in which, for example, stimuli of a certain color did not have to be 

searched at all (Jiang & Chun, 2001; Jiang & Leung, 2005; Turk-Browne et al., 2005). Yet, what 

is unique to our design, is the distinction between features on the higher level, marking shape 

as task-relevant, and color as task-irrelevant, instead of marking one specific shape or one spe-

cific color as task-relevant or not. We argue that this is the more relevant question when it comes 

to specifying the building blocks of implicit learning. In that question, we test theoretical ac-

counts that postulate processing in feature-specific modules that may not be able to integrate 

information from different features that are not attended (Baars, 2005; Eberhardt et al., 2017; 

Keele et al., 2003). In our experiments, we find such learning effects across features, not just 

within one feature. Although not compatible with feature-wise processing in independent mod-

ules, this finding is in line with the underlying learning mechanism we proposed above. Because 

when information in a trial is encoded into an event file, contingencies within or across features 

can, in principle, learned to be associated.  

A notable limitation of our experiments is that task-relevance in our contextual cueing 

variant is confounded with the respective feature of the cue. That is, shape is task-relevant, and 

color is task-irrelevant. We cannot balance these two factors, because when target color were to 

be the relevant feature, we would have a pop-out effect that would hardly be affected by pre-

dictability of the distractors’ shapes or colors. We had no reason to believe that the two visual 
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features (ceteris paribus) would differ in their potential to be associated with target position. 

Other researchers have found CC effects for (background) color (Kunar et al., 2006; Kunar et 

al., 2013), but also learning effects for irrelevant but predictive shapes (Levin & Tzelgov, 2016), 

and even letters (Miller, 1987). From visual recognition and visual scene processing literature, 

we would even hypothesize that there is a primacy of shape information over color information 

(e.g., Biederman & Ju, 1988; Del Viva et al., 2016). Extrapolating this to our experiments, the 

likelihood of color contingency learning would be further reduced. But note that this is an effect 

found with more complex stimuli, and might be traced back to complexity reduction, therefore 

not being transferrable to our simple stimulus set-up. Thus, although a limitation of our design 

is that these two conditions, task-relevance and feature dimension, cannot be disentangled, there 

is no compelling argument as to why the feature dimension should be the main contributor of 

the effect. More so, there would be an argument to hypothesize the opposite effect of task-

relevance and feature dimension. Thus, from our experiments, we would deduce that, in prin-

ciple, task-relevant and task-irrelevant features can be integrated and used for predictions (Ex-

periments 1 and 2).  

In Experiment 3, we used colors and shapes as compound cues and, after training, tested 

learning of both features in isolation. In the interpretation of the results from the single cue 

blocks, the picture is more nuanced. First, overall, we observe no costs in the RTs in predictive 

contexts from compound cue to single cues, that is, from training to the single cue blocks. Ad-

ditionally, the descriptive differences between predictive and unpredictive contexts in the com-

pound blocks (CC effects) are almost double the size than the differences in the shape and color 

single cue blocks. The same relationship is found when comparing the fixed effects estimates 

for context in the compound training of Experiment 3, which are almost double the estimates 

of the trainings in Experiment 1 (shape) and Experiment 2 (color). Thus, the learning effects in 

single cue experiments (Experiments 1 and 2) and the single cue block effects seem additive 
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with respect to the learning effect in the compound cue blocks of Experiment 3. Such summa-

tion effects have been shown in operant conditioning, when comparing compound cue and sin-

gle cue learning in animals (Mackintosh, 1976; Miles & Jenkins, 1973; Thein et al., 2008).  

Yet, our results from the single cue blocks remain somewhat ambiguous. It remains un-

clear if there are reliable context effects in the single cue blocks whatsoever. That the mixed 

model with random slopes for cue feature per participant fit the data best, is a first indicator for 

individual variance in the learning effects of the two cues. However, in an exploratory individ-

ual participant analysis, we do not see convincing evidence for overshadowing effects of any 

of the two features within participants. This is in itself interesting though, because an overshad-

owing effect would have been probable not only due to feature saliency (Mackintosh, 1976) or 

individual preferences (G. S. Reynolds, 1961), but also because the shape feature was task-

relevant and was thus more probably going to overshadow the task-irrelevant color cue. We 

manipulated task-relevance to alter attentional processes, and overshadowing effects are also 

believed to build on attentional mechanisms (Mackintosh, 1971), in the sense that although 

more than one contingency can be learned, not all learned contingencies are translated into 

behavior (Kaufman & Bolles, 1981; Matzel et al., 1985). Thus, attentional processes would 

have been influenced by task-relevance and cue competition effects, and it is conceivable that 

cue competition effects would be influenced by the task-relevance of such cues. However, we 

observe no advantages for the task-relevant cue. This might point to a reciprocal overshadowing 

that has been observed in animals (Mackintosh, 1976; Miles & Jenkins, 1973), meaning that 

both features overshadow each other, resulting in a result pattern of a summation effect, as 

described above. 

In a recent article, J. R. Schmidt and De Houwer (2019) noted that there is surprisingly 

little research on the issue of cue competition, especially in implicit learning (but see Beesley 

& Shanks, 2012; Endo & Takeda, 2004 for evidence from contextual cueing; Cleeremans, 1997; 
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Jiménez & Méndez, 2001, for evidence from implicit sequence learning). In multiple large stud-

ies, J. R. Schmidt and De Houwer (2019) found no evidence for blocking or overshadowing in 

an implicit learning paradigm. They also labeled the predictive features (shapes and words) in 

their experiments as task-irrelevant, because the response itself was only based on color. In that 

respect, their findings are consistent with ours: Task-irrelevant features that are predictive (alt-

hough, in their case, for response), are still learned. In their case, they are even learned equally 

strongly, without overshadowing or blocking each other. That fits our take on interpretations of 

Experiments 1 and 2 – independently from task-relevance, cue contingencies can be learned. 

Our addition from Experiment 3 is that cue competition in our variant of an incidental learning 

paradigm does not result in overshadowing effects, even though one cue is task-relevant and 

the other is task-irrelevant. Rather, our results are compatible with the notion of independent 

learning of cues, resulting in additive learning effects in compound presentation. 

One last issue concerning our findings might be doubts about the implicit nature of the 

knowledge in the contextual cueing paradigm. We claim that while participants' performance in 

the training phase reflected learning of the contingency between the respective feature and the 

target location, they were unable to express this knowledge explicitly. There is a long-lasting 

debate whether the common variant of contextual cueing is in fact based on non-conscious 

learning. It has been argued that studies have failed to correctly test for conscious knowledge 

(Luque et al., 2017; Vadillo et al., 2016; Vadillo, Linssen, et al., 2020), especially because they 

are underpowered, and measurement error leads to wrong conclusions regarding the implicit 

nature of the CC effect. In an attempt to empirically add to the debate, Colagiuri and Livesey 

(2016) tested samples of over 600 participants, and found no positive relationship between ex-

plicit knowledge and the cueing effect. Nevertheless, we take the criticism on the conventional 

testing for explicit knowledge seriously. Contextual cueing studies originally implement a 

recognition task: They show participants old and novel spatial configurations, and ask them to 



   Appendix A 

182 

 

categorize them into old and novel (Chun & Jiang, 1998). This means that they use a one-trial 

test for each configuration with often small sample sizes, and it does not seem surprising that 

there is a reliability and power issue here (Smyth & Shanks, 2008). This is why we did not 

implement a recognition task, as in the common variant, but a task that mirrors exactly the task 

that was provided in the training to enhance sensitivity of our test (Shanks & St. John, 1994). 

Participants thus had every chance to express any knowledge or intuition from the training in 

the generation task. Additionally, we were not restricted to a one-trial test, as one is in the recog-

nition tasks. Rather, we presented participants with the same cue (color or shape, with random 

spatial configurations) multiple times, making the measure more reliable (Smyth & Shanks, 

2008). Note that we can also expect that, given conscious awareness, the task to reproduce the 

contingencies between color or shape and target location is considerably easier than to recog-

nize spatial configurations of distractors, and recall target location from that. So, we would 

expect less false-negatives (i.e., participants have explicit knowledge but cannot demonstrate 

that in the task) a priori. With our method of testing both an objective performance measure and 

a subjective confidence measure, and in addition testing for their interdependence (Michel, 

2023a), we propose that what we observed here is indeed implicit knowledge. 

Conclusion 

Concluding, in our variant of the contextual cueing paradigm that utilizes identity cueing 

instead of the original, spatial cueing, we find compelling evidence for the learning of contin-

gencies involving task-relevant and task-irrelevant cues. Further, when implementing com-

pound cues in the learning phase, and testing the individual features of the cues in a subsequent 

test phase, we do not find evidence of overshadowing, neither on the group, nor on the individ-

ual level. There seem to be no costs of switching from the compound cues to the single cues 

with regard to RTs for predictive cues. Transferring current debates from the literature on event 

files and binding to our broader learning paradigm, we suggest that similar mechanisms can 
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account for our results. That would mean that in learning tasks, designed to observe binding, 

or, like ours, observe implicit learning, all available features of a trial are bound into an episode, 

and such features can be used to retrieve said episode, providing performance benefits such as 

shorter RTs. The retrieval of an episode from a given cue does not seem to depend on the task-

relevance of said cue, but on the predictive value it provides. This would ultimately mean that 

attention, operationalized as a consequence of task-relevance, does not play a major role in the 

modulation of implicit learning. Taking into account previous empirical findings and theoretical 

accounts, our conclusion might be limited to situations in which task-relevance is manipulated 

across and not within features, and when contingencies occur within, but not across trials. 
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The following manuscript refers to Study 2. It is included as part of the cumulative dis-

sertation. 
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Abstract 

The question whether learned contingencies can be transferred from one feature to an-

other is essential for various theoretical frameworks concerning implicit learning. We tested 

contingency knowledge transfer in an adapted contextual cueing paradigm. In the training 

phase, distractor shapes predicted the location of a target, whereas, in the transfer phase, dis-

tractor colors predicted the target location. We tested transfer from the training phase in three 

groups: In a pre-matching group, shapes were associated with colors in a phase preceding train-

ing. In a post-matching group, they were associated after training. In a control group, partici-

pants did not learn to associate shapes and colors. Participants in all groups learned the contin-

gencies. However, transfer was observed only in the pre-matching group. In all groups, the 

associations of shapes or colors with target locations remained implicit. We discuss implications 

for proposed mechanisms of implicit learning and preconditioning. 

143 words 

Keywords: Implicit learning, contextual cueing, visual search, attention 
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Introduction 

In many models attempting to describe information processing and associative learning, 

especially implicit learning, information input is thought to be processed in more or less encap-

sulated modules, depending on their dimension (Baars, 2005; Dehaene & Naccache, 2001; 

Fodor, 1985; Keele et al., 2003; Magen & Cohen, 2007). Given such modular processing archi-

tectures, implicitly learned associations are thought to be represented in independent modules 

without any information exchange between them. This has specific empirical implications. For 

example, following Keele et al. (2003), in their “unidimensional” system, co-occurrences or 

sequences of events within one dimension would be processed and learned independently from 

co-occurrences or sequences within another dimension. Integrative, and then potentially ex-

plicit representations, only occur when this information is processed within the “multidimen-

sional” system (Keele et al., 2003).  

In support of this assumption, empirical evidence shows that two uncorrelated se-

quences instantiated by two distinct dimensions (modalities such as  perceptual, motoric), can 

be learned concurrently (stimulus color and response location: Haider et al., 2014; U. Mayr, 

1996; Remillard, 2017). Thus, implicit learning in one dimension does not interfere with im-

plicit learning in a different dimension. As it has been shown that two uncorrelated sequences 

within one modality but instantiated by distinct features can be learned concurrently (color and 

shape within the visual modality: Conway & Christiansen, 2006; Wilts & Haider, 2023), an 

open question concerning these encapsulated modules is whether they are specialized on a di-

mension in the sense of modalities (e.g., perceptual, motoric) or of features within one modality 

(e.g., color, shape, location within the visual modality). 

Irrespectively of this, the assumption of encapsulated modules implies that implicitly 

acquired contingencies instantiated by one specific dimension should not be transferrable to 

contingencies instantiated by another dimension. Yet, Haider et al. (2020) showed that a visually 
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perceived stimulus location sequence could be expressed as a motor response key location se-

quence. However, both the to-be-learned and the to-be-transferred sequences relied on a spatial 

dimension. To better understand the building blocks of encapsulated modules, it is critical to 

test whether such knowledge transfer can be found outside the spatial dimension. 

The present study aims to show knowledge transfer, specifically transfer of response 

contingency knowledge between two visual-perceptual features (color and shape), in an adapted 

contextual cueing paradigm (Tavera & Haider, 2025). Here, in the training phase, the target 

location is predictable from only the shape of the distractors. In the transfer phase, the distrac-

tors are presented in a novel shape, but in colors that now predict the target location. Im-

portantly, participants learn the connection between shapes and colors in a matching phase ei-

ther before (pre-matching group) or after (post-matching group) the training phase, while a third 

group (control group) does not learn this association. Our hypothesis is that, only when we 

induce such a shape-color matching, any learned contingency from shapes can be transferred to 

the respective colors.  

Method 

Participants. Via Prolific (www.prolific.com), we recruited 64 participants for the pre-

matching group, 60 participants for the post-matching group, and 60 participants for the control 

group. In the pre-matching group, seven participants were excluded due to <60% accuracy in 

the training phase. Following the same criterion, one participant in the post-matching group and 

three participants in the control group were excluded. This way, 57 participants remained in the 

pre-matching group (36 women, 1 diverse; Mage=34.51; SDage=10.90), 58 in the post-matching 

group (35 women, Mage=36.40; SDage=12.94), and 57 in the control group (35 women; 

Mage=32.84; SDage=9.82). Participants were prescreened for living in the UK, being fluent in 

English, having normal or corrected-to-normal vision, not being color-blind, and having not 

taken part in a previous contextual cueing experiment of our lab. 
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Stimuli. Search displays were constructed following the method Tavera and Haider 

(2025) with minor variations. The search displays were 15x10cm in size. The displays consisted 

of 16 letters on a dark grey background (RGB 60, 60, 60) rotated randomly by 0°, 90°, 180°, or 

270°. They were organized in an 8x10 (invisible) grid, and distributed equally between the two 

horizontal halves of the display (Figure 1b).  

In the training phase, all 15 distractor letters of one search display were white (RGB 

255, 255, 255) and shaped as one of the four stylized letters A, E, P, S. In the transfer phase, all 

15 distractor letters of one search display were R-shaped and were colored in one of the four 

colors green (RGB 1, 204, 0), orange (RGB 254, 153, 0), pink (RGB 255, 0, 254), and cyan 

(RGB 1, 255, 255). In one of four possible locations (Figure 1c), the target letter F appeared 

with either equally long horizontal bars or a shorter second horizontal bar. All targets were 

randomly rotated to the right (90°) or the left (270°) and were always the same color as the 

distractors. 

Contingencies between distractor features and target locations were probabilistic. In 

70% of the trials, the distractor shapes (training phase) or colors (transfer phase) were matched 

to one target location. The match between shape/color and target location was counterbalanced 

across participants. In 30% of the trials, the remaining three target locations were equally likely 

and randomly alternated for each shape or color. We refer to the 70% trials with predictable 

target locations as "regular trials" and the 30% trials with random target locations as "deviant 

trials". 

Procedure. The experiment was conducted in accordance to the Declaration of Helsinki. 

Participants were recruited online via Prolific and were reimbursed according to Prolific’s eth-

ical reward standards. They were redirected to Pavlovia, where the experiments were uploaded 

from PsychoPy2 (version 2020.2.4; Peirce et al., 2019) and adapted to the Javascript environ-

ment. For a short questionnaire, they were then redirected to Soscisurvey (Leiner, 2024). 
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Participants were informed about the procedure of the experiment and asked to give their in-

formed consent. To ensure equal size of the search displays for every participant irrespective of 

the monitor size or aspect ratio, all participants were first asked to follow a screen scaling pro-

cedure (Wakefield Morys-Carter, 2021). 

As described in Figure 1, the experiments consisted of four main parts: A matching task, 

a training phase, a transfer phase, and a generation task. The matching phase (Figure 1a) was 

identical in the pre- and the post-matching group, but preceded the training phase in the pre-

matching group and followed it in the post-matching group. Participants learned a one-to-one 

mapping between letters (A, E, P, S) and colors (blue, red, green, orange). In the control group, 

the matching task preceded the training phase but contained no one-to-one mapping between 

letters and colors. Yet, in all groups, participants observed that the letter was consequently col-

ored in the respective color. The matching phase consisted of two blocks with 48 trials each.  

The subsequent training phase was identical for all participants (Figure 1b). Before the 

training, they were given 16 practice trials in which the distractor letters were white L-shaped 

letters. The training consisted of 20 blocks of 40 trials each. In each block, each distractor shape 

was presented ten times, and the target letter was equally often the short or long F, and equally 

often rotated 90° or 270°. Participants were given the opportunity to take a short self-paced 

break between blocks.   

In the transfer phase (Figure 1b), participants were informed that the distractors were no 

longer letters but the same letter in distinct colors. Apart from that, the transfer phase followed 

the same procedure as the training phase and consisted of 4 blocks of 40 trials each. 

In the generation task (Figure 1c), participants were presented with search displays sim-

ilar to the ones of the training and transfer phases. It contained two blocks of 48 trials each, so 

that participants saw twelve search displays of each of the four shapes and colors from the 
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training and transfer phases. Shape and color displays were presented block-wise and the block 

sequence was alternated between participants. After each generation task trial, a visual scale 

from 1 (labeled “complete guess”) to 4 (labeled “absolutely certain”) appeared on the screen, 

and participants were asked to indicate their confidence concerning their target placement, again 

using the number keys on their keyboard. 

 

Figure 1 

Procedure of the Matching, Training, and Transfer Phase and Exemplary Displays of the 

Generation Task 

 

Note. a. In the pre- and the post matching group, participants’ task was to figure out which letter 

goes with which color by clicking the paint pots. The letter appeared in the respective color 

when they selected the correct one. Otherwise, nothing happened. In the control group, each 

letter appeared lightly tinted in one of the four colors. Participants had to click on the respective 

paint pot with the more saturated version of the same color. b. In the training/transfer phases, 

each trial started with the presentation of a fixation cross for 500ms, followed by the presenta-

tion of the search display for max. 4,000ms or until participants’ response. The response win-

dow started with the appearance of the search display and lasted 5,000ms or until the response. 
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The trial ended with a feedback text (“correct” or “incorrect”) for 600ms. A blank inter-trial-

interval of 500ms followed. Participants were instructed to search for the target letter “F” among 

distractor letters and to decide if the second bar of the F was short (S-key) or long (L-key). They 

were instructed do this with their index fingers and as quickly and accurately as possible. c. In 

the Generation Task no target letter was presented. Instead, the four potential target locations 

were marked with the numbers 1-4. Participants were instructed to indicate the target location 

they think the target letter was presented before using the number keys on their keyboard. 

 

Data analysis. The statistical analysis was conducted in R Statistical Software (version 

4.1.0; R Core Team, 2021). We used the dplyr package for most data manipulation (Wickham 

et al., 2023), the lme4 package for fitting models (REML; Bates et al., 2015) with restricted 

maximum likelihood (REML) model fit, and the lmerTest package (Kuznetsova et al., 2017) 

with the Satterthwaite's method for t-tests. Note that for the χ² tests for model comparisons, the 

models were refitted using maximum likelihood (ML). Graphs were created with the ggplot2 

package (Wickham, 2016). The study’s design and analysis were not pre-registered. Data and 

analysis scripts are available on OSF. 

For the training and transfer phases, we excluded incorrect trials from analysis. Addi-

tionally, in the training, we excluded trials with a target location repetition, as we expected 

shorter RTs for trials in which the target location is repeated from trial 𝑛 − 1 according to the 

intertrial priming effect (Golan & Lamy, 2024; Kabata & Matsumoto, 2012). In the transfer 

phase, there were no target location repetitions. We did not conduct any outlier analyses exclud-

ing additional trials to avoid biases or power issues (Miller, 2023).  

For the RT analyses, we fitted mixed-effects models with pre-defined fixed effects, and 

random effects selected based on the data (Huta, 2014; Weinfurt, 2000) to keep the Type I error 

probability minimal (Matuschek et al., 2017; Stroup, 2013). The two fixed effects were trial 

type (regular or deviant target location) and block (as time variable). We compared various 
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potential random effect structures based on the AIC (Akaike, 1998). The results from all poten-

tial random effect structure models and model comparisons are accessible via the analysis script 

uploaded to OSF. 

Results 

Matching phase. Descriptive statistics per group and block are shown in Table 1. For 

the pre-matching group, a paired, one-tailed t-test showed that RTs in block 2 of the task were 

significantly faster than in block 1, t(56)=4.61, p <.001, d=.61, as was the case in the post-

matching group, t(57)=4.99, p <.001, d=.66. The same effect was shown in the control group, 

t(56)=3.10, p =.001, d=.41. Due to the nature of the task, the control group was overall faster 

in their responses than the post-matching and the pre-matching groups (p<.001 in a post-hoc, 

Bonferroni corrected t-test). The latter groups did not differ significantly (p=1 in a post-hoc, 

Bonferroni corrected t-test).  

Training. Descriptive statistics per group are displayed in Table 1. The learning curves 

over blocks, separately displayed for regular and deviant trials, are displayed in Figure 2. Due 

to incorrect and target location repetition trial exclusion, we trimmed 7.48% of the data. 

First, analyzing data across all groups, a model with group as factor was not a better fit 

(AIC=1907509) than the null model (AIC=1907505), χ²(2)=0.227, p=.893, but models with 

block (AIC=1904433) or with trial type (AIC=1907486) were (p<.001). Adding both factors to 

the model, the interaction of trial type and block yielded a significantly better fit 

(AIC=1904400) than the additive model (AIC=1904415), χ²(1)=16.613, p<.001. With the inter-

action model for the fixed effects, we tested random effect structures against each other, but a 

random slope (per trial type) and intercept (per subject) model produced a singular fit. The 

random intercept model showed a non-significant effect of trial type (b=4.98, SE=4.84, 95% CI 

[-4.52, 14.47], p=.304), but a significant effect of block (b=-22.51, SE=0.45, 95% CI [-23.40, -
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21.62], p<.001), as well as a significant interaction between trial type and block  

(b=-3.71, SE=0.91, 95% CI [-5.49, -1.92], p<.001). The random intercept for subject was sig-

nificant as well (𝜏00 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 = 36864.32).  

 

Table 1 

Descriptive Statistics per Group and Phase 

 All 

groups 

Pre-Matching  

group 

Post-Matching 

group 

Control  

group 

Sample size 172 57 58 57 

Matching Phase     

Block 1 response time (ms) 1791.23 (710.80) 1976.66 (700.35) 1912.66 (648.35) 1482.23 (690.62) 

Block 2 response time (ms) 1496.22 (531.06) 1661.69 (537.93) 1581.44 (566.39) 1244.04 (381.01) 

Training Phase     

Response time (ms) 1147.41 (480.71) 1145.85 (482.22) 1156.46 (489.52) 1145.98 (479.89) 

Accuracy (%) 97.10 (16.77) 97.02 (17.00) 96.90 (17.32) 97.39 (15.96) 

Transfer Phase     

Response time (ms) 1134.01 (498.83) 1155.51 (527.65) 1114.78 (483.27) 1132.09 (483.76) 

Accuracy (%) 96.48 (18.42) 96.03 (19.52) 96.67 (17.94) 96.74 (17.75) 

Note. Mean response times and accuracies per group. Numbers in brackets indicate standard 

deviations. 

 

Second, we fitted models to the data of the individual groups. For the pre-matching 

group, an additive model of block and trial type with random intercepts for participants yielded 

the best fit. In the post-matching and control groups however, an interaction model with block 

and trial type and random intercepts yielded the best fit. Models with a more complex random 

effects structure yielded a singular fit. The parameters for the models for each of the three 

groups are reported in Table 2. The full breakdown of model comparisons is available in the 
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supplementary material on OSF. Concluding from this analysis, we observe learning effects in 

all three groups in the form of a significant effect of trial type. In the pre-matching group, the 

main effect of trial type is significant, in the post-matching and control group, trial type is sig-

nificant in interaction with block. As can be seen from the response time trajectories, in the 

latter groups, the trial type effect in the first two blocks is almost reverse, resulting in the sig-

nificant interaction effect. 

 

Figure 2 

Response times of the Training Phase per Block and Trial Type 

Note. The graph depicts the response times for deviant and regular trials for the ten blocks of 

the training phase. Note that the block is coded as block -1 for better interpretation. Error bars 

indicate standard errors. 
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Table 2 

Response Time Analysis Results for the Training Phase per Group 

 Estimate SE b 95% CI b df t p 

   LL UL    

Overall 

N=172 
      

Intercept 121257.86 14.84 1228.78 1286.95 178 84.77 <.001 

Trial Type 4.98 4.84 -4.52 14.47 127138 1.03 .304 

Block -22.51 0.45 -23.40 -21.62 127138 -49.51 <.001 

Trial Type * Block -3.71 0.91 -5.49 -1.92 127138 -4.08 <.001 

ICC=0.15        

Pre-matching Group 

N=57 
      

Intercept 1255.56 25.54 1205.50 1305.62 58 49.16 <.001 

Trial Type -18.19 4.54 -27.09 -9.28 42099 -4.00 <.001 

Block -22.19 0.72 -23.61 -20.77 42099 -30.61 <.001 

ICC=0.17        

Post-matching Group 

N=58 
      

Intercept 1262.91 28.49 1207.07 1318.76 59 44.33 <.001 

Trial Type 6.69 8.37 -9.71 23.10 42791 0.80 .424 

Block -21.56 0.78 -23.10 -20.02 42791 -27.45 <.001 

Trial Type*Block -4.06 1.57 -7.14 -0.98 42791 -2.58 .010 

ICC=0.20        

Control Group 

N=57 
      

Intercept 1256.77 23.04 1211.62 1301.92 59 54.56 <.001 

Trial Type 17.45 8.37 1.04 33.86 42243 2.08 .037 

Block -24.19 0.79 -25.73 -22.65 42243 -30.78 <.001 

Trial Type*Block -5.06 1.57 -8.14 -1.98 42243 -3.22 .001 

ICC=0.14        

Note. SE = standard error; CI = confidence interval; LL = lower limit; UL = upper limit. Mixed-

effects model computed coefficients, standard errors and confidence intervals for the coeffi-

cients, degrees of freedom, t-values, and p-values are displayed.  
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Transfer phase. The exclusion of incorrect responses and the first 15 trials of the transfer 

phase yielded a 12.58% trimming of the data.  

First, analyzing data across all three groups, a model with group as factor was not a 

better fit (AIC=359859) than the null model (AIC=359856), χ²(2)=0.846, p=.656, but a model 

including trial type as factor (AIC= 359851) was, χ²(1)=6.48, p=.011. The interaction of trial 

type and block did not yield a better model fit, χ²(1)=1.80, p=.179. 

 

Figure 3 

Transfer Response Times per Group, Block, and Trial Type 

Note. Error bars indicate standard errors. 

 

The response times per group, block, and trial type are displayed in Figure 3. We ana-

lyzed the factors block and trial type in mixed effects models per group. For the pre-matching 

group, a random intercept model with only trial type yielded the best fit, revealing trial type as 

significant factor (b=-25.04, SE=10.59, 95% CI [-45.80, -4.28], p=.018, 𝜏00 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 =
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70714.19). For the post-matching group, neither the factor block, nor the factor trial type im-

proved the model fit. To compare with the pre-matching group, in a random intercept model 

with only trial type, trial type was not a significant factor (b=-1.43, SE=9.93, 95% CI [-20.88, 

18.03], p=.0886, 𝜏00 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 = 54412.89). Lastly, in the control group, a random intercept 

model with block yielded the best fit, with block as significant factor (b=-26.86, SE=9.34, 95% 

CI [-45.17, -8.54], p=.004, 𝜏00 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 = 45087.63). To compare with the other two groups, in 

a random intercept model, trial type was not a significant factor (b=-18.79, SE=10.05, 95% CI 

[-38.48, -0.90], p=.061, 𝜏00 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 = 45080.06). For a more direct comparison, we also com-

puted the full, additive model with random intercepts for all three groups (Table 3). 

Generation Task Analysis. For the generation trials, we tested mean accuracy against 

chance level (25% because of four response alternatives), computed mean confidence, and the 

relative frequencies of correct responses under the condition of high confidence (correct|high) 

and low confidence (correct|low). We summarized confidence ratings of 1 and 2 as low, and 

ratings of 3 and 4 as high confidence. Participants with explicit knowledge of a pairing between 

cue and target location should be able to make a metacognitive assessment of their knowledge 

(Haider et al., 2011; for a discussion of this method see Tavera & Haider, 2024). Therefore, we 

tested the relative frequencies of correct|high and correct|low against each other in a paired, 

one-tailed t-test. 

We conducted the same analysis for each group, and we computed correlations between 

mean accuracy and mean confidence per participant, and observed no significant correlations, 

neither for the shape cue, nor for the color cue. The results are summarized in Table 4. 
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Table 3 

Response Time Analysis Results for the Transfer Phase per Group  

 Estimate SE b 95% CI b df t p 

   LL UL    

Pre-matching Group 

N=57 
      

Intercept 1104.96 119.22 871.25 1338.67 4047 9.27 <.001 

Trial Type -25.15 10.60 -45.92 -4.38 7878 -2.374 <.018 

Block 3.96 9.86 -15.36 23.28 7878 0.40 .688 

ICC=0.27        

Post-matching Group 

N=58 
      

Intercept 1136.90 111.31 918.71 1355.10 4745 10.21 <.001 

Trial Type -1.35 9.93 -20.81 18.11 8065 -0.136 .892 

Block -2.66 9.26 -20.81 15.49 8065 -0.29 .774 

ICC=0.24        

Control Group 

N=57 
      

Intercept 1426.38 111.60 1207.62 1645.14 5371 12.78 <.001 

Trial Type -18.05 10.05 -37.74 1.64 7938 -1.80 .072 

Block -26.42 9.35 -44.73 -8.10 7938 -2.83 .005 

ICC=0.21        

Note. Additive Models with random intercepts for subjects. SE = standard error; CI = confi-

dence interval; LL = lower limit; UL = upper limit. Mixed-effects model computed coefficients, 

standard errors, and confidence intervals for the coefficients, degrees of freedom, t-value, and 

p-value are displayed.  
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Table 4 

Results for the Three Groups in the Generation Task 

 

Accuracy 

Mean % (SD) 

t-test against 

chance (25%) 

Confidence 

Mean (SD) 

Correlation ac-

curacy and con-

fidence 

Relative frequencies 

correct | high vs. correct 

| low 

t-test  

correct | high > 

correct | low 

Pre-matching Group      

Shape 25.44 (0.06) p = .300 1.63 (0.83) 0.13 (p=.330) 14.03 vs. 25.57 p = 1 

Color 25.58 (0.08) p = .281 1.62 (0.82) -0.02 (p=.908) 12.62 vs. 26.27 p = 1 

Post-matching Group      

Shape 24.35 (0.07) p = .765 1.61 (0.91) -0.18 (p=.165) 12.55 vs. 23.70  p = 1 

Color 23.71 (0.07) p = .553 1.59 (0.88) -0.06 (p=.677) 17.52 vs. 23.21 p = .950 

Control Group      

Shape 25.26 (0.08) p = .404 1.60 (0.88) 0.17 (p=.200) 12.18 vs. 24.48 p = 1 

Color 24.89 (0.06) p = .553 1.58 (0.84) -0.13 (p=.342) 14.84 vs. 25.18 p = 1 

 

Note. Per group and visual cue, the table shows mean accuracy in percent, and the p-value when 

it is tested against chance performance (25%). Then, it shows mean confidence, and the corre-

lation coefficient between accuracy and confidence, as well as the p-value from a Pearson cor-

relation test. Lastly, it contrasts relative frequencies of correct responses given high confidence, 

and the relative frequencies of correct responses given low confidence, and the p-value of test-

ing the values against each other in a paired, one-tailed t-test. 

 

General Discussion 

This study aimed to test the constraints of transfer of implicitly learned contingencies. 

In line with the assumption of modules processing information of one dimension (Keele et al., 

2003), transfer should not be observed if the dimension changes from training to transfer. Here, 

we tested whether implicitly learned contingencies between a visual feature (shape) and a target 

location can be transferred to another visual feature (color) only when participants learn the 

association between these features. Accordingly, participants learned either a shape-color 
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association beforehand, after the training, or not at all. We implemented this in an adapted con-

textual cueing paradigm (Tavera & Haider, 2025), in which participants could learn to predict 

the location of a target by the distractor shapes with a 70% probability.  

We showed that participants in all groups learned the contingencies between shapes and 

target locations in the training phase. In the transfer phase, participants in the pre-matching 

group showed contingency knowledge between colors and target locations whereas the post-

matching group and the control group did not. In all groups, the awareness tests indicate that 

participants did not have explicit knowledge of either contingency between one of the visual 

features and target location. 

These results have interesting implications for frameworks that formulate mechanisms 

of implicit learning. One concept that is found in the global workspace theory (Baars, 2005), 

the dual-system model (Keele et al., 2003), and other theories on learning and consciousness, 

is that implicit learning operates through encapsulated modules that are defined by processing 

one particular dimension (Eberhardt et al., 2017; Hommel, 2009). Accordingly, more integrated 

and distributed processing of information would, at some point, require conscious processing. 

Our findings, however, represent a case in which implicitly learned response contingencies are 

transferred from one cue to another under the condition that the processing of the two cues is 

linked before learning. 

Similarly, Haider et al. (2020) showed transfer from a visual screen location sequence 

to a motor response key sequence if the screen locations were matched to the keys. However, 

the spatial dimension might be distinctly represented in our cognitive system (U. Mayr, 1996; 

Paillard, 1991) and might even be considered a non-perceptual dimension as it is so closely 

bound to our motor system (Gaschler et al., 2012; Goschke & Bolte, 2012; I. Koch & Hoffmann, 

2000). Hence, participants in Haider et al. (2020) might have learned a sequence of eye move-

ments from the visual sequence on the screen, and transferred it to a sequence of finger 
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movements. This learning might thus not have been a transfer between features, but a learning 

process that remains coded in the spatial dimension. What is new in our findings is that we 

show transfer between two perceptual features. In the training phase, participants learn a con-

tingency between shape and target location, and then transfer this knowledge to a contingency 

between color and target location. So, the transfer is between two perceptual features, shape 

and color. 

We used the contextual cueing paradigm as an interesting alternative candidate to se-

quence learning. There are some essential differences between the two paradigms, and although 

both paradigms are commonly used to study implicit learning, the literature seems to be quite 

separated. Contextual cueing is cross-dimensional learning to begin with, as participants learn 

contingencies between a visual feature and a spatial target location. It is then an interesting 

question whether such cross-dimensional contingencies can be transferred to other features. 

Sequence learning is a kind of chaining across trials (Schuck et al., 2012), where one event has 

to be linked to a subsequent (and preceding) one. For example, in a location sequence, locations 

are interlinked (U. Mayr, 1996). In the contextual cueing paradigm, the contingency across two 

features (e.g., spatial configuration and location) are learned within a trial. So, unlike in se-

quence learning, where for example one color should activate the subsequent color, in contex-

tual cueing, one color activates a target location, and not another color. We do not have a reason 

to assume that these two paradigms test different learning mechanisms. But in terms of the 

description of features as the building blocks of implicit learning (Eberhardt et al., 2017), it is 

an important step that we cannot only show transfer between perceptual and motor information 

(Haider et al., 2020), but also transfer across perceptual features.  

Our findings are compatible with two not mutually exclusive frameworks: the theory of 

event coding (Hommel et al., 2001), and sensory preconditioning (Holmes et al., 2022). Note 

that both frameworks are not tailored to modelling specifically implicit knowledge, and for 
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preconditioning effects in particular, it has been suggested that it requires conscious represen-

tation of all associations involved in the process (Arunkumar et al., 2024). Also, the methodol-

ogy around both frameworks deviates from the paradigm used in this study, as it typically ex-

amines effects from trial n to trial n+1 (Hommel, 2004; but see J. R. Schmidt et al., 2020) or 

short time frames (Holmes et al., 2022). In contrast, in our paradigm, learning effects are ob-

served over a rather lengthy period of time. Applying mechanisms of the event file framework 

to our findings, we could assume that event files are built in the matching phase. Only in the 

pre-matching group, these contain an association between the two features shape and color. In 

the training phase, when a shape predicts a target location, participants not only learn these 

shape-location associations, but the respective shape would also co-activate the associated 

color. In the transfer phase, the target-location would then be cued by color just as well as by 

shape. Note that this mechanism requires a preceding feature (shape-color) matching. This is in 

line with our findings regarding the post-matching group. Because there is no shape-color as-

sociation, no associative strength between color and the target location can be developed 

through the course of the training phase. This refines the mechanism, showing that a post-train-

ing stimulus-stimulus association is not integrated into an event file in a way that the second 

feature is then also associated with the target location. This would explain why the post-match-

ing group does not transfer the response association to the second feature. 

The second framework that might apply here, especially because of the similarity in its 

methods and research questions, is preconditioning. In a typical preconditioning procedure, two 

stimuli, S1 and S2, are associated with each other (S1-S2). Then, one of them is associated with 

a response (S1-R). In a transfer phase, it is then shown that the second stimulus is also associated 

with the response (S2-R), although it has never been paired with it (e.g., Arunkumar et al., 

2024). In our study, we would term the shape feature S1, and the color feature S2, and the target 

location would be R, in the sense of an eye-movement toward the target location. The 
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preconditioning phenomenon can be explained through an online integration account, suggest-

ing that the S1-R association is bound into the S1-S2 association (Holmes et al., 2022). This 

mechanism however does not predict an effect of the order of association learning, in that it 

requires an S1-S2 association specifically before the training phase. It would thus not explain 

the difference between our pre-matching and the post-matching group.  

One last important issue that is relevant for the interpretation of our results is the as-

sumption that we test implicit learning effects here. Many studies using the contextual cueing 

paradigm have been criticized for not reliably testing for conscious knowledge (Luque et al., 

2017; Vadillo et al., 2016; Vadillo et al., 2019). Therefore, we changed the common contextual 

cueing protocol (Chun & Jiang, 1998), having few trials of a recognition task, into a task that 

is maximally similar to the training. This should improve sensitivity of our knowledge test, and 

the increase in trials should improve its reliability (Smyth & Shanks, 2008). Also, we combine 

this objective measure with a subjective confidence measure, and test their interdependence 

(Michel, 2023). As we find no evidence for metacognitive sensitivity, that is, confidence in 

correct responses as indication for explicit knowledge, we propose that what we observed here 

is indeed implicit knowledge. 

Conclusion 

In this study, we have shown that implicitly learned contingencies are transferrable from 

one visual cue to another. This transfer seems to be dependent on an association between the 

two visual cues formed before training, as a control group and the post-matching group that did 

not acquire this association in advance to the training phase did not show the transfer effect. 

These are relevant findings for the study of the cognitive architecture that enables implicit learn-

ing. As discussed, it has implications for models proposing implicit learning mechanisms and 

also for models of consciousness. Not all models predict the amount of information integration 

in the absence of conscious awareness that we demonstrate with the here reported knowledge 
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transfer effect. Frameworks like the theory of event coding might entail such processes. In ad-

dition, the findings extend such frameworks of action control by showing that learned associa-

tions between features had comparably long-lasting effects on performance. 
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When we search for something in our everyday environment, our attention is often 

guided by previously learned contingencies between objects and their typical locations. Such 

learning processes help us navigate complex scenes more efficiently. In this study, we investi-

gated implicit and explicit learning of low-level (color) and semantic (scene category) cues in 

an adapted contextual cueing paradigm using complex real-world scenes. In Experiment 1, we 

found that contingencies between dominant colors of a real-world scene and target locations 

were not learned. In Experiment 2, we found that semantic scene categories were implicitly 

learned as predictive cues, however, the contextual cueing effect was reversed. Response times 

were longer for predictable than for unpredictable target locations. Interestingly, this reversed 

effect also emerged in Experiment 3, where participants were explicitly informed about the 

contingencies between scene category and target location. To assess explicit knowledge in all 

experiments, we implemented an objective generation task combined with a confidence meas-

ure. Our results support the validity of our test, as we found indicators of explicit knowledge 

only in the explicit learning condition (Experiment 3). These findings demonstrate the potential 

of the adapted contextual paradigm to investigate both low-level and semantic cue learning 

under implicit and explicit learning conditions. To account for the reversed contextual cueing 

effects, potential mechanisms such as attentional inhibition or episodic retrieval are discussed.  

231 words 

Keywords: Implicit learning, contextual cueing, visual search, attention 
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When we are looking for our favorite coffee mug in the morning, there are different 

strategies that we can use. We can broadly look around for anything of the mug’s color. At the 

same time, we will most likely look for it in the kitchen counter, not so much in the bathroom. 

This simple example shows that our attention in visual search is guided by different mechanisms 

(Itti & Koch, 2000). In the lab, there has been extensive research on complex real-world scene 

processing (for a review, see Malcolm et al., 2016) and visual search within them (for a review, 

see Wolfe, 2020) to investigate such mechanisms of attentional guidance in complex environ-

ments. On the one hand, attentional guidance by saliency maps (Itti & Koch, 2000; Itti et al., 

1998) have been the most prominent approach to explain shifts of attention on the basis of low-

level features (e.g., color, intensity, contrast). Yet, there is evidence that attention is immediately 

guided to the most informative locations within a scene, regardless of low-level saliency (e.g., 

Mackworth & Morandi, 1967). Meaning maps represent such semantic guidance by mapping 

out the most semantically diagnostic locations within a scene (Henderson & Hayes, 2017). They 

have been found to explain variance in eye movement during scene viewing beyond saliency 

maps, as attention allocation to salient image features can be suppressed in favor of semantically 

relevant locations (Hayes & Henderson, 2019b). Still, it is difficult to distinguish the influence 

of low-level features (saliency) from the influence of semantic content. Because semantically 

relevant objects in a scene tend to be different with respect to low-level features as well, findings 

that suggest an influence of saliency could also be interpreted in favor of semantic guidance 

(Henderson, 2007; Henderson et al., 2007). However, meaning maps are based on human rat-

ings of the “meaningfulness” of scene parts for the whole scene (e.g., Henderson & Hayes, 

2017), and do not specify underlying cognitive processes. Thus, the mechanisms of how mean-

ing maps are internally constructed and activated when confronted with a novel scene remains 

unclear. In the present study, we aim to investigate whether and how semantic knowledge about 

our visual environment is learned to guide attention in visual search. 
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What we know is that semantic scene processing is possible in very short time frames 

(Oliva, 2005). For example, with presentation times as short as 26ms, participants were able to 

categorize scenes into natural and human-made with more than 90% accuracy (Joubert et al., 

2007; Rousselet et al., 2005).  

Such findings however are ambiguous to whether such categorizations are driven solely 

by basic low-level feature analyses, or whether they require the integration of these features 

into a higher-level semantic understanding (Kotabe et al., 2016). If such integration and high-

level processing are indeed necessary, this raises an important question: Can such processes 

occur in the absence of conscious awareness? Some theories of consciousness suggest that in-

tegrating information is a core function of consciousness (e.g., Dehaene & Naccache, 2001; 

Tononi, 2004). To test this hypothesis, there has been extensive research on whether semantic 

scene processing can occur without awareness. For instance, this has been tested rendering 

scenes invisible by only briefly presenting and masking them, or implementing continuous flash 

suppression techniques (e.g., Mudrik, Breska, et al., 2011; Mudrik & Koch, 2013). However, 

evidence for semantic processing of scenes in the absence of awareness has been called into 

question and was partly not replicable (e.g., Biderman & Mudrik, 2018; Moors et al., 2016). As 

a result, the issue is still debated. In the present study, we aim to determine whether low-level 

feature cues or semantic information can be learned implicitly to guide attention in visual 

search.  

To address this question, we adapted the contextual cueing (CC) paradigm (Chun & 

Jiang, 1998), which combines visual search with contingency learning. In the CC paradigm, 

participants perform a visual search task. Commonly, they are asked to find a target letter among 

distractor letters on a display, and respond to a feature of the target. In some trials, unbeknownst 

to participants, a configuration of distractor letters is repeated, and therefore, the target position 

can be predicted from the configuration. In the same way, contingencies between the color or 
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shape of the distractors, and the target position, can also be learned (Tavera & Haider, 2025). 

Going beyond simplistic stimulus material, it has also been shown that real-world scenes can 

been learned to cue the target location (Brockmole & Henderson, 2006b). Thus, this approach 

allowed us to examine the effect of contingency learning on visual search performance with 

complex, real-world scenes. In the present study, the contingencies were implemented between 

either a low-level (color) or a semantic feature (scene category) of a real-world scene, and target 

location. Importantly, we also manipulated the type of learning, distinguishing explicit and im-

plicit learning conditions. This allows us to test whether semantic processing can be involved 

in implicit learning processes. That would not be expected if awareness is required when learn-

ing processes include higher-level integrated information such as semantic scene categories. 

There are already attempts to investigate semantic processing within implicit learning. 

As noted, the CC paradigm has been used with real-world scenes. Instead of repeating distractor 

configurations, scenes were repeated and thus predictive of target locations (Brockmole et al., 

2006; Brockmole et al., 2008; Brockmole & Henderson, 2006a, 2006b; Henderson et al., 2007). 

Interestingly, these studies found that participants acquired explicit contingency knowledge 

right from the first repetition of a scene. So, although these findings were a proof of concept 

that the CC paradigm also produces reliable effects with real-world scenes, it did not contribute 

to the question of semantic processing in the absence of awareness. But with a slightly different 

approach, other literature has offered evidence for that.  

For instance, there is a line of research with implicit visual sequence learning (Nissen 

& Bullemer, 1987). It has been shown that a visual sequence of abstract semantic categories 

(e.g., furniture, clothing, and animals) can be learned (Goschke & Bolte, 2007; Brady & Oliva, 

2008). Although these are important findings, both studies may not have unequivocally demon-

strate semantic and implicit processing. First, there are low-level features that are categorically 

different between the categories of the sequences. To give a few examples, furniture has more 
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straight lines and right angles than animals, which in turn almost all have four legs, whereas 

many clothing items have two sleeves. Goschke and Bolte (2007) did not address this issue, but 

Brady and Oliva (2008) implemented an additional test. To exclude the possibility that partici-

pants learned the sequence according to the predictability of low-level features, they conducted 

a test phase in which they transferred the visual sequence to a sequence of words naming the 

categories. Again, participants recognized sequential material with above-chance level accu-

racy, however, the learning effect on performance was no longer significant (p=.05, no effect 

size reported; Brady & Oliva, 2008).  

In addition, there is an additional methodological issue. To assess explicit knowledge, 

participants were asked two questions: Whether they could identify “any patterns” (Brady & 

Oliva, 2008, p. 680), and whether they would be able to report what image category would 

follow the image of a mountain. In all four experiments, all participants were classified as un-

aware. This awareness test is problematic, because the first question is vague and ambiguous in 

terms of interpretations of “patterns”, and the second question asks for only one out of twelve 

contingencies. The probability to find explicit learning that might have occurred, is thus low 

(Shanks & St. John, 1994). In Goschke and Bolte (2007), for an awareness test, participants 

were asked to freely reproduce the category sequence, and to then categorize four sequences 

into old and new sequences. Participants were then excluded when they had higher hit rates 

than false alarm rates. Goschke and Bolte (2007) still found sequence learning for participants 

that did not show conscious awareness. This measure of awareness is certainly elaborate in 

terms of design and analysis. However, its reliability is questionable due to the small number 

of trials per participant (Vadillo et al., 2016). 

Two studies that were conducted shortly after, tested whether abstract semantic 

knowledge could be used in the CC paradigm (Goujon, 2011; Goujon et al., 2009). Goujon et 

al. (2009) showed CC effects for word displays, in which the word categories (e.g., mammals, 
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birds, fruits/vegetables) predicted target locations. They also claim that this knowledge re-

mained implicit, on the basis of their two-step awareness test. First, they asked whether partic-

ipants noticed an association between context and target location. In the second step, they then 

did not test for contingency knowledge but solely asked participants for “déjà-vu” experiences 

when showing them predictive and counter-predictive word displays. This second test is very 

far from the tasks’ demand in training, and from a valid measure of contingency knowledge, 

since they do not ask about the contingencies to begin with. Also, performance in the “déjà-vu” 

task is difficult to interpret, given that by then, all participants already had knowledge about the 

prevalence of contingencies because of the question in the first step. 

In her subsequent study, Goujon (2011) went one step further and did not test word 

categories, but scene categories as predictive cues in a CC task. There were eight categories of 

rooms that were either predictive or not predictive of the eight possible target locations. She did 

not find a CC effect unless participants either had done a scene categorization task beforehand, 

or the scene had first been presented for 1,500ms without the target first in each trial. She argues 

that this led to an enhancement of semantic processing of the scene, and thus to a semantic 

contextual cueing effect. Yet, this explanation is hardly consistent with the scene processing 

literature that shows how quick, automatic, and involuntary scene categorization occurs (Hayes 

& Henderson, 2019b; Joubert et al., 2007; Rousselet et al., 2005). Goujon (2011) then argues 

that the contingency knowledge remained implicit in her experiments, following tests similar 

to Goujon et al. (2009), which are problematic for the reasons discussed above. So, the results 

allow an alternative explanation: Participants who were simply made aware of the contingen-

cies by emphasizing the semantic categories, could then learn the contingencies explicitly. 

However, the awareness tests did not detect this explicit knowledge because of their methodo-

logical shortcomings. Another explanatory factor concerning the first experiment in which Gou-

jon (2011) did not find a CC effect might be the complexity of the design. Participants had to 
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learn that there were eight possible target locations paired with predictive and unpredictive 

scene categories. Especially problematic might be the second step, to differentiate predictive 

and unpredictive categories. Given the eight target locations, the probability for each target 

location is 1/8. The four predictive scenes were 100% contingent with one target location re-

spectively. In contrast, the unpredictive categories were not entirely unpredictive, because by 

design, they were shown with only four of the eight target locations. Thus, the probability of 

target locations was 1/4, instead of 1/8. So, there is some predictive value also to the allegedly 

unpredictive categories. This makes it a priori less likely to obtain a sufficiently large response 

time difference between these two conditions, given that in both, there should be a response 

time advantage.  

Building on the literature reviewed above, we used material of abstract semantic cate-

gories in the present study, but were careful to keep low-level features as similar as possible. 

We did so by instantiating the semantic scene categories as categories of rooms in a house. That 

enabled us to make the rooms similar in terms of low-level features across categories. Further, 

we meticulously measured contingency awareness using not only a well-established, objective 

task (Chun & Jiang, 2003) but also a confidence measure to additionally assess metacognitive 

knowledge (Michel, 2023a; Tavera & Haider, 2025). Also, we aimed to reduce complexity of 

the learning design to examine whether this might have been a relevant factor in not finding a 

CC effect in Goujon (2011).  

Overview over the experiments. In all experiments, we used the same complex, real-

world scenes of room categories. To control for the influence of low-level features, each partic-

ular scene predicted the target location with a probability of 70%. In the remaining 30% of the 

trials, the target could occur at the other target locations with the same probability. In Experi-

ment 1, color cues within the scenes predicted target location with a probability of 70%. Partic-

ipants were not instructed about the contingencies. In Experiment 2, the semantic scene 
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category predicted target location, also with a probability of 70%, and participants were also 

not instructed about the contingencies. Experiment 3 was a replication of Experiment 2, except 

for explicit instructions of the contingencies between scene categories and target locations. In 

all three experiments, we then tested whether participants learned the contingencies, and 

whether this was reflected in their response times to predicted versus unpredicted target loca-

tions. We then additionally tested whether this knowledge was explicit or implicit. 

Method 

Participants. In Experiment 1, we obtained data from 63 participants (Mage=42.14, 

SDage=12.79; 35 female). We excluded one participant due to chance-level performance in train-

ing, and excluded incorrect trials and response times >5 seconds. This resulted in a 15.21% 

trimming of the data. In Experiment 2, we collected data from 60 participants (Mage=42.7, 

SDage=11.52; 43 female, 1 diverse). We excluded incorrect trials and response times >5 seconds 

which resulted in a 10.02% trimming of the data. In Experiment 3, we had 40 participants 

(Mage=42.1, SDage=10.47; 22 female). We excluded incorrect trials and response times >5 sec-

onds, resulting in a 9.78% trimming of the data. 

Stimuli. The search displays were complex, real-world scene photographs. The scenes 

were presented in the size of 15 × 10cm search displays, irrespective of the screen size of par-

ticipant’s computer monitors (see Procedure). Aspect ratio was normalized to 3 x 4. The mate-

rial was comprised of four categories (bathroom, living room, bedroom, and kitchen). Addi-

tionally, the scenes were distinctively colored in one of four colors (blue, white, green, brown) 

in Experiment 1, and one of six colors (blue, white, green, pink, red, brown) in Experiments 2 

and 3. Importantly, all semantic categories were shown in all colors with equal frequency, so 

that there were no contingencies between a category and a color. Thus, a total of 240 unique 

scenes were selected for Experiments 2 and 3, and, excluding all pink and red images, 180 

scenes were selected for Experiment 1. 
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Search targets within the scenes consisted of the letters T or L overlaying the scene. 

They were placed on a 40 × 40 pixels area, in one of four predetermined locations on an invis-

ible 8 × 6 grid. To ensure consistent visibility across different scenes and positions, target color 

was adjusted to the luminance of the target location area. The 50 x 50 pix area marking the 

target position was analyzed for its average luminance and RGB composition. Luminance was 

calculated using a standard formula for perceived brightness that accounts for human photosen-

sitivity to different wavelengths: E′Y = 0.299 × E′R + 0.587 × E′G + 0.114 × E′B (where E′Y 

represents the weighted luminance, and E′R, E′G, and E′B denote the red, green, and blue chan-

nel values, respectively; Poynton, 2012). The resulting luminance was then compared to a 

threshold of 128, which is the midpoint of the 8-bit color range (0–255). Values above this 

threshold were classified as “bright”, and values below or equal to it as “dark”. Based on this 

classification, the target color was computed as the negative RGB contrast of the background 

(i.e., each RGB component was inverted), and then adjusted in brightness (i.e., brightened on 

dark backgrounds and darkened on bright backgrounds) to maximize contrast. This method 

ensured high and uniform visibility of the targets regardless of the background color and lumi-

nance. For a more detailed analysis of the scene statistics, see Appendix A. 

Procedure. All three Experiments were conducted in accordance with the Declaration 

of Helsinki, and approved by the Ethics Commission of the Faculty of Human Sciences at the 

University of Cologne. Participants were recruited online via Prolific and were reimbursed ac-

cording to Prolific’s “ethical reward” standards. The experiments were built in PsychoPy2 (ver-

sion 2022.5.2; Peirce et al., 2019) and run on Pavlovia (www.pavlovia.org) and SoSci survey 

(Leiner, 2024).  

Participants were first asked to follow a screen scaling procedure (Wakefield Morys-

Carter, 2021). With the arrow keys on their keyboard, they were asked to adjust an image of a 

credit card on the screen to the size of an actual bank or credit card. The size of all stimuli in 

http://www.pavlovia.org/
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the experiment was subsequently presented relative to the scaling provided by participants. This 

procedure ensured equal size of the search displays for every participant irrespective of the 

monitor size or aspect ratio. 

 

Figure 1 

Overview of the Learning Phase, Generation Task, and Confidence Measure with Example Dis-

plays from Experiments 1, 2, and 3 

 

Note. a. Schematic illustration of the trial structure during the learning phase with example 

search displays. For illustrative purposes, target letters are highlighted in red circles; they were 

not marked in the actual experiment. b. Example display from the generation task. Participants 

were asked to indicate the expected target location using the number keys on their keyboard. c. 

Confidence scale shown after each generation task trial. Participants rated their confidence in 

their response to the generation task using the number keys on their keyboard. 

All three experiments consisted of three parts: A short practice phase, a training phase, 

and the awareness test. In the end, they were redirected to a short questionnaire. 
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First, participants were instructed to search for target letters in scenes, and were shown 

exemplary search displays. In Experiments 1 and 2, instructions were confined to informing 

participants about the procedure of the experiment, their task, and that target letters would come 

in different colors, depending on the scene. In contrast, in Experiment 3, participants were also 

informed about the underlying contingency between scene category and matching target loca-

tion. It was made explicit which category was associated with which target location, and that 

the association applied to most scenes. 

In the first 4 practice trials, they were shown a scene from each color (Experiment 1) or 

each category (Experiment 2 and 3). The training phase consisted of four blocks of 40 trials 

each (Experiment 1), or 60 trials each (Experiments 2 and 3). Trial procedure is displayed in 

Figure 1a. In each trial, first, a fixation cross was presented for 500ms. Then, the search display 

appeared for a maximum of 6000ms or until the response. The response window started with 

the appearance of the search display and lasted 6000ms. Participants were instructed to search 

for the target letter, pressing the “T” or “L” key on their keyboard with their index fingers as 

quickly and accurately as possible. All four colors (Experiment 1) or four scene categories (Ex-

periments 2 and 3) respectively predicted one of four target locations with a probability of 70% 

(predicted trials). In the other 30% of trials (unpredicted trials), target locations were randomly 

distributed across the remaining three target positions. Importantly, in Experiment 1, scene cat-

egory had no predictive value, and in Experiments 2 and 3, color was not associated with any 

target location. The matching between color (Experiment 1) or category, and target location 

(Experiments 2 and 3) was permutated across participants. The trial ended with a feedback text 

(“correct”, “incorrect” or “no response”) that appeared on the screen for 400ms and was fol-

lowed by a blank inter-trial-interval of 300ms (see Figure 1a). Participants were given the op-

portunity to take a short self-paced break after every block. 
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After training, we implemented an awareness test using the so-called generation task 

(Chun & Jiang, 2003) and a confidence measure (Michel, 2023a). Specifically, the test aimed 

to assess participants’ metacognitive awareness about contingencies between color or category, 

and target location. In 16 trials, novel scenes with no target letter were presented. The four 

potential target locations were marked with squares with the numbers 1–4 (see Fig. 1b). Partic-

ipants were instructed to indicate in which location they think the target letter was presented 

using the number keys on their keyboard. Afterwards, a visual scale from 1 (labeled “complete 

guess”) to 4 (labeled “absolutely certain”) appeared on the screen (see Fig. 1c), and participants 

were asked to indicate their confidence in their generation response, again using the number 

keys on their keyboard. 

In the final, short questionnaire, participants were offered to report technical issues, their 

ideas on the purpose of the study, if and why the task became more difficult or easier, if they 

had noticed any regularities, and their estimate of the percentage of predicted trials. 

Data analysis. Statistical analyses were conducted using the R Statistical Software (R 

Core Team, 2021), the dplyr package for data manipulation (Wickham et al., 2023), the lme4 

(Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) packages for fitting mixed-effects 

models to the data. Graphs were designed with the ggplot2 package (Wickham, 2016). The data 

of all three experiments, and the respective R analysis scripts are accessible on OSF.  

We fit mixed-effect models to the data to account for the within-subjects design and the com-

plexity of the stimulus material. In all three experiments, we tested different fixed effects struc-

tures against each other by refitting the models as maximum likelihood models, and comparing 

their AIC (Akaike, 1998) with χ2 tests. In all three experiments, models with fixed, additive 

effects of prediction, block, scene category, scene color, and target location, and random inter-

cepts for participants, yielded the best fit. Models including interactions of the fixed effects did 
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not yield a better fit, and models including random slopes did not converge or produced a sin-

gular fit. 

Results 

Training. In all three experiments, we fitted mixed-effects models to the data, and de-

termined that the best fit was a model with predictability, block, scene category, scene color, 

and target location as factors, and a random intercept for participants. Any model including 

interactions, or models with random slopes for participants, did not yield a better fit than the 

model with additive factors. The model parameters for all three experiments are displayed in 

the Appendix B in Table A1. The descriptive data for RTs by block and predictability are shown 

in Figure 2. 

In Experiment 1, in which the scene color predicted target location, mean accuracy in 

the learning phase was 94.91% (SD=.22), and mean RT was 3178.78ms (SD=4552.14). The 

mixed-effects model revealed no significant effect of predictability of the target location on RT, 

but a significant decrease of RT over the course of the training blocks. It also showed that there 

are significant effects of the stimulus material characteristics, such as differences between RTs 

in the different scene categories and colors, and further, a significant effect of target position.  

In Experiment 2, in which participants were not explicitly instructed about the contin-

gencies between scene category and target location, mean accuracy in the learning phase was 

97.33% (SD=.16), and mean RT was 2383.09ms, (SD=4079.08). In the mixed-effects model, 

there was a small but significant effect of predictability. In trials with predictable target location, 

RT was significantly longer than in trials with unpredictable target locations. Further, RT de-

creased with the number of blocks, and there were significant differences in RT for the different 

scene categories and scene colors, as well as for different target positions.  
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Figure 2 

Mean Response Times in the Learning Phase by Block Number and Target Location  

Predictability for Experiments 1, 2, and 3 

Experiment 1    Experiment 2      Experiment 3 

 

 

 

 

 

Note. Error bars indicate standard errors. 

 

In Experiment 3, participants were explicitly instructed about the contingencies between 

scene category and target location. Mean accuracy was 96.60% (SD=.18), and mean RT was 

2238.90ms, (SD=3316.21). The results from the mixed-effects model were similar to those of 

Experiment 2: Predictability was also a significant factor, in that RTs were slower when the 

target locations were predictable, and faster when they were unpredictable. The effect of block 

was significant with the same magnitude as in Experiment 2, and characteristics of the scene, 

its category and color, as well as target location, also had significant effects on RT. In an ex-

ploratory analysis, we excluded participants who performed below chance performance in the 

generation task. The re-analysis with the 33 remaining participants revealed no significant dif-

ferences for the effects of predictability or block, in contrast to the analysis with all participants 

of Experiment 3 (for a detailed analysis, see analysis script on OSF). 
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As can be seen in the descriptive data from all three experiments, it is noteworthy that 

RTs are slower in Experiment 1, than in Experiment 2 and 3. However, a comparison between 

the experiments would not be meaningful because the stimulus material is different in Experi-

ment 1, including only scenes of four color categories, whereas Experiments 2 and 3 used six 

color categories. As participants’ task and the experimental set-up are exactly the same in all 

experiments, the increased RT in Experiment 1 can only be attributed to the stimulus material. 

This should not be confounded with the factor of predictability. Rather, longer RTs would po-

tentially increase the likelihood of a predictability effect emerging, as predictable target posi-

tions should have a more pronounced benefit. In contrast, generally faster RTs might increase 

the risk of masking a predictability effect due to a potential floor effect that limits the observable 

behavioral benefit of prediction. 

Generation Task Analysis. In Experiment 1, performance in the generation task was not 

significantly above chance-level (24.09%), t(61) =-.796, p=.786. Mean confidence rating was 

2.09 (SD=.86). The combined measure of generation task accuracy and confidence showed (see, 

e.g., Dienes & Seth, 2010, for a similar approach) no evidence of explicit knowledge, as the 

relative frequency of high confidence given correct responses (15.12%) was not significantly 

higher than low confidence given correct responses (25.00%), t(61) = -3.315, p = .999. Inter-

estingly, there was still a significant correlation between generation task accuracy and confi-

dence (r=.27), t(60) = 2.1327, p = 0.037. 

In Experiment 2, performance in the generation task was significantly above chance-

level (30.63%), t(59) = 3.52, p < .001. Mean confidence rating was 1.84 (SD=.93). The com-

bined measure of generation task accuracy and confidence showed no evidence of explicit 

knowledge, as the relative frequency of high confidence given correct responses (21.19%) was 

not significantly higher than low confidence given correct responses (29.69%), t(59) = -2.12, p 
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= .981. There was no significant correlation between generation task accuracy and confidence 

(r=.19), t(58) = 1.45, p = .152. 

In Experiment 3, performance in the generation task was significantly above chance-

level (57.37%), t(38) = 6.91, p < .001. Mean confidence rating was 2.79 (SD=1.11). The com-

bined measure of generation task accuracy and confidence showed evidence of explicit 

knowledge. The relative frequency of high confidence given correct responses (54.59%) was 

significantly higher than low confidence given correct responses (27.50%), t(38) = 3.47, p < 

.001. There also was a significant correlation between generation task accuracy and confidence 

(r=.53), t(37) = 3.77, p < .001.4  

As an exploratory analysis, we further examined whether performance in the learning 

phase correlated with performance in the generation and confidence task. Therefore, we com-

puted mean accuracy and confidence per participant, as well as their individual CC effect, de-

fined as RTunpredictable – RTpredictable. In Experiment 1, there was neither a significant correlation 

between accuracy and CC effect (r=.12), t(60) = -0.92, p = .364, nor between confidence and 

CC effect (r=.04), t(60) = .29, p = .772. In Experiment 2, there was neither a significant corre-

lation between accuracy and CC effect (r=-.01), t(58) = -0.09, p = .927, nor between confidence 

and CC effect (r=-.16), t(58) = -1.25, p = .216. In Experiment 3, there was a significant corre-

lation between accuracy and CC effect (r=-.33), t(37) = -2.16, p = .037, but not between confi-

dence and CC effect (r=-.31), t(37) = -2.01, p = .052. 

 

 
4 When excluding participants who were at or below chance-level performance from the data set, we find 

similar results. Performance in the generation task was significantly above chance-level (64.77%), t(32) = 9.00, p 

< .001. Mean confidence rating was 2.85 (SD=1.11). The combined measure of generation task accuracy and 

confidence showed evidence of explicit knowledge, as the relative frequency of high confidence given correct 

responses (62.83%) was significantly higher than low confidence given correct responses (30.41%), t(32) = 3.66, 

p < .001. There was a significant correlation between generation task accuracy and confidence (r=.60), t(31) = 

4.13, p < .001. 
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General Discussion 

In this study, we tested implicit and explicit learning of low-level and semantic cues in 

an adapted CC paradigm (Tavera & Haider, 2025) with complex real-world scenes. With this, 

we aimed to test the hypothesis that semantic processing is exclusively. Three important results 

were obtained. First, the results of Experiment 1 revealed that color was not learned to be a 

predictable cue. Second, Experiments 2 and 3 showed that the complex real-world scenes as 

predictive cues of target locations were learned without or with explicit instructions about the 

contingencies. However, in both cases the learning effect was reversed. Performance was worse 

in trials with predictable target location compared to trials with unpredictable target location. 

Third, the assessment of explicit knowledge revealed that only those participants who were 

informed about the contingency between scene category and target location had access to ex-

plicit knowledge. This validates our approach to test for implicit and explicit knowledge. Below, 

we will discuss these findings in further detail. 

The first finding, that color was not used as a predictive cue, was relatively unexpected, 

because recently, Tavera and Haider (2025) have shown that color cues can be learned implicitly 

in the same adapted CC paradigm. In our past study, the stimulus material was simplistic letter 

displays, and the colors were well-defined and one-to-one contingent with target location. In 

contrast, Experiment 1 of the present study deviates from that in two ways (see Figure 1). First, 

the stimulus material here was more complex, as the real-world scenes were characterized not 

only by colors and shapes, but additionally, by a myriad of features, such as texture, intensity, 

and edge orientation. Second, the color cue was not one clearly defined hue, but rather a mixture 

of hues from one color family, while also other colors were present in the scene. Thus, learning 

to use the color cue to predict target location required a certain amount of generalization or 

categorization into color schemes.  
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So, there are two potential explanations. On the one hand, the complexity of the stimulus 

material could have eliminated learning, potentially because color was just one of many low-

level features present in the scene. Multiple research groups have in fact investigated the role 

of color in scene processing but have come to diverse conclusions. For instance, Gegenfurtner, 

Wichmann, and Sharpe (1996) find that colored scenes are recognized better than black-and-

white scenes in a memory task (see also Gegenfurtner & Rieger, 2000), whereas Nijboer, Kanai, 

Haan, and van der Smagt (2008) come to the opposite conclusion. They suggest that an ad-

vantage for colored scenes is restricted to scenes that imply a nameable gist. Analogously, as-

sessing verbal labelling of scenes, Oliva and Schyns (2000) find that color information enhances 

categorization performance significantly. However, Delorme, Richard, and Fabre-Thorpe 

(2000) claim that monkey’s and human’s scene categorization performance does not strongly 

depend on color. Oliva and Schyns (2000) quite tellingly end their summary of the literature 

with the conclusion that “existing data with real pictures (…) suggest that the color is never, 

always, and sometimes used to recognize a scene!” (Oliva & Schyns, 2000, p. 179). It thus 

remains unclear whether color processing is a main or a negligible part of visual scene pro-

cessing. For our stimuli in particular, color is not a diagnostic feature of the scene semantics. 

The different rooms are human-made environments and can thus come in any color. It would 

be different for stimulus material with, for example, natural scenes, in which green would be 

diagnostic for plant-related, and blue for water-related scenes. We can thus only speculate that 

with our stimulus material, color was not processed in such a way to be associated with target 

location. 

On the other hand, the finding that color is not learned as a cue could also be interpreted 

as a generalization failure. As not one specific color was predictive for target location, identi-

fying a cue required a generalization across different hues, and categorization into color 

schemes. This process may not be possible without explicit instruction. 
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The second main result of the current study is that participants learned the relation be-

tween scene categories as predictive cues. However, it is a bit more complex to discuss because 

we found a reversed CC effect, both with implicit and with explicit instructions about the con-

tingencies between scene categories and target locations.  

According to the classical CC effect, RTs should decrease for trials with predictable 

target locations when compared to trials with unpredictable target locations. Consistently in 

Experiments 2 and 3, we instead see increased RTs for predictable trials. There are some ap-

proaches to explaining this unexpected finding. 

First, when conducting experiments with real-world scenes, an increased variance due 

to the stimulus material is to be expected. For example, the scenes are not perfectly balanced in 

terms of saliency, and objects within the scenes that might have produced pop-out effects, there-

fore slowing RTs to the actual task. This is why we included variance that can be explained by 

the category or color of the scene in the mixed-effects model. Therefore, we can, for instance, 

observe that RTs tended to be faster in scenes in white, and slower in kitchens (see Table A1 in 

Appendix B). Additionally, we constructed the experiment such that there were four target lo-

cations. In visual scene search, it is known that there is a general center bias (Hayes & Hender-

son, 2019a), which is insignificant in our experiments, because the four target locations are 

equally distant from the center of the scene. The center was additionally emphasized by a fixa-

tion cross to ensure equal first fixation across participants and trials. Additionally, research has 

shown a general leftward bias (Nuthmann & Matthias, 2014) in visual search in real-world 

scenes. This is also not relevant for our experiments, because all four target locations serve as 

both predictable and unpredictable target locations within the experiment. We do find signifi-

cant differences in RTs between the target locations, most strikingly, a consistent RT advantage 

for the upper left target location (see Table A1 in Appendix B). However, we also included the 
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factor of target location into the mixed-effects model to account for these differences. The effect 

of predictability remains significant beyond these stimulus material effects. 

Secondly, it is conceivable that the experimental design of 70% predictability between 

scene category and target location is not appropriate for our paradigm. However, if 70% was 

not a high enough cue validity, we should expect a null-effect for predictability. What we find 

instead is a predictability effect, only reverse. Additionally, this ratio of predictable to unpre-

dictable target location trials has been well-proven in previous CC studies in our lab (Tavera, 

Wilts, & Haider, unpublished), and a recent systematic test of different cue validities in CC has 

shown that 75% predictability produced a reliable CC effect (Su et al., 2024). 

Because the factors of stimulus material and experimental design cannot account for our 

reverse RT performance effect, we will discuss candidates for a theoretical explanation of this 

reverse predictability effect. An explanation of the effect would require a mechanism that pro-

duces slower RTs for an expected, frequent event, in contrast to an unexpected, infrequent event.  

One such explanation could potentially be a mechanism similar to the one producing 

negative priming effects (Frings et al., 2015; Tipper, 1985, 2001). The exact mechanisms that 

may underlie such effects are still debated (for an overview, see Frings et al., 2015; S. Mayr & 

Buchner, 2007). Generally, the effect arises when a stimulus in trial 𝑡𝑛−1 is irrelevant, and then 

hampers a second stimulus at trial 𝑡𝑛. A similar mechanism has been proposed specifically for 

visual search, suggesting that after trial 𝑡𝑛−1, features of distractors are inhibited, which influ-

ences visual search in trial 𝑡𝑛 (Lamy, Antebi, et al., 2008). One can potentially transfer these 

effects and mechanisms to the present experiments. This would mean that in a trial 𝑡𝑛−1, when 

a scene was presented with an unpredicted target location, the originally predicted target loca-

tion needed to be inhibited. As a consequence, it is conceivable that in trial 𝑡𝑛−1, when then the 

same scene category is presented with the predicted target location, attention allocation to this 

target location is still inhibited from trial 𝑡𝑛−1. However, in an exploratory analysis, we did not 
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find a more significant slowing of such trials, in comparison with trials with predicted target 

locations that were not preceded by a trial with the same scene category. Thus, we do not find 

evidence for a mechanism similar to a negative priming or distractor inhibition effect. 

Regardless of the mechanism that can explain our finding of a reverse CC effect, there 

is another essential result of our Experiments 2 and 3. The comparison between the two offers 

insight into the potential difference between conscious and unconscious processing. In Experi-

ment 2, we implemented the adapted CC paradigm in which participants could learn contingen-

cies between semantic scene category and target location. They were not explicitly instructed 

to do so. In Experiment 3, while holding all other factors constant, we explicitly informed par-

ticipants about the contingencies. Interestingly, we find no difference in behavioral patterns 

between the two experiments. In both experiments, there is a significant learning effect, but in 

a direction opposite from the hypothesized. This finding is essential because it demonstrates 

that the reverse CC effect is not a shortcoming of implicit processing, such that predictions for 

target locations are somehow inhibited. We find the same reverse CC effect also in participants 

who were explicitly instructed about the contingencies. This finding alone would have sug-

gested that there is a top-down mechanism that inhibits target location predictions. A potential 

explanation could then have been that the 70% predictability resulted in a top-down strategy of 

inhibiting the predictions because of the 30% error probability. Because we find the reverse CC 

effect in both implicit and explicit learning conditions, we would rather suggest that it is a fun-

damental effect of the learning process in this paradigm. The mechanism that remains unclear 

from our experiments seems not to be influenced by explicit knowledge and potential subse-

quential top-down processes. This is an important finding, and further requires empirical inves-

tigation. 

The argument that the CC effect is the same for explicit and implicit learning conditions 

it based on the premise that we were able to validly assess explicit knowledge in our 
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experiments. This is our third main finding: A validation of our explicit knowledge test which 

is a combination of an objective, direct task (generation task; Chun & Jiang, 2003) and a meta-

cognitive measure (confidence measure; Michel, 2023a). We could show that this combination 

of two measures has the capacity to indicate explicit knowledge in principle. One could, in this 

context, view our Experiment 3 as a manipulation check. By explicitly instructing participants, 

we expected to find explicit knowledge in our measure. As expected, we found a relationship 

between accuracy and confidence in the explicit learning condition. This indicated meta-cogni-

tive knowledge of participants, meaning that they had a conception of their own contingency 

knowledge or the lack thereof. In contrast, we found no such evidence for meta-cognitive, ex-

plicit contingency knowledge. Still, we found above chance level performance in the generation 

task in Experiment 2. This, however, is not indicative of explicit knowledge, as performance in 

the generation task might as well be driven by implicit processes (Jiménez et al., 1996; Michel, 

2023a; Reingold & Merikle, 1988) which could then potentially result in intuitions that produce 

above chance accuracy (Weinberger & Green, 2022). Furthermore, our exploratory analyses of 

the correlations between learning and test phase performance yielded interesting results. This 

analysis was done with the notion that participants with explicit knowledge should show a more 

pronounced CC effect. At the same time, those participants should be able to exhibit this 

knowledge with high accuracy and high confidence, and, most importantly, a positive correla-

tion between the two measures (Dienes & Seth, 2010). In Experiments 1 and 2, there were no 

significant correlations between accuracy or confidence in the generation task, and learning 

phase performance. In contrast, in Experiment 3, we found significant correlations between 

accuracy and learning phase performance, while simultaneously finding a positive correlation 

between accuracy and confidence. We would have expected a significant correlation between 

confidence and learning phase performance in Experiment 3, but this correlation did not reach 

significance. Yet, this might be due to relatively low confidence overall (M=2.79), which is 

surprising, given that participants were explicitly instructed about the contingencies. 
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Nevertheless, also with this exploratory analysis, we find indicators of explicit knowledge only 

in Experiment 3, in which participants were explicitly instructed about the contingencies. 

Concluding, with these three experiments, we have shown further potential for the 

adapted CC paradigm (Tavera & Haider, 2025) by extending it to investigate CC effects with 

more complex stimulus material, in this case, real-world scenes. By doing so, we were first able 

to show that color cues, as a dominant low-level feature within scenes, could not be implicitly 

learned to predict target locations. Secondly, we found that semantic scene category cues, could 

be learned both in implicit and explicit learning conditions. However, we found a reverse CC 

effect in both such conditions. The mechanism behind this finding remains unclear, but should 

be further investigated, potentially in the realm of attentional inhibition or episodic retrieval 

mechanisms. Thirdly, we have shown that our test for explicit knowledge is in fact able to detect 

explicit knowledge in conditions of explicitly instructed contingency learning. It did not indi-

cate explicit knowledge in our Experiments 1 and 2 where participants were not explicitly in-

structed about any contingencies. 
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Appendix A 

The following analyses were conducted to ensure that the scene material that we created fit the 

requirements of our experiments. Therefore, we analyzed the scene images (without the target 

letters) using the SHINE toolbox (Willenbockel et al., 2010) for MATLAB (The MathWorks 

Inc, 2024). We analyzed RGB channel intensities per semantic scene category, and per scene 

color category. Our hypothesis for the RGB analysis was that the channel intensities would not 

be significantly different across the semantic scene categories, but significantly different across 

the scene color categories. That would mean that the color categories are distinguishable on the 

basis of low-level features, but the semantic categories are not. The descriptive data are dis-

played in Figures A1 and A2. 

 

Figure A1 

RGB Intensity Values per Semantic Scene Category 
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Figure A2 

RGB Intensity Values per Scene Color Category 

 

 

We conducted ANOVAs to test whether RGB channel intensity values differed across semantic 

scene categories and across scene color categories. The analyses revealed that there were no 

significant differences across semantic scene categories in any RGB channel (red: F(3, 

236)=0.722, p=.54; green: F(3,236)=.345, p=.793; blue: F(3,236)=.25, p=.861). In contrast, all 

differences across scene color categories in all RGB channels were significant (red: F(5, 

234)=59.05, p=.001; green: F(5,234)=101.9, p=.001; blue: F(5,234)=151., p=.001). 
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Appendix B 

Table A1 

Fixed and Random Effects of the Linear Mixed-Effects Model Predicting Reaction Times for 

Experiments 1, 2, and 3 

Experiment Predictors Estimate 95% CI p 

   LL UL  

1      
 Intercept 2168.81 2081.93 2255.70 <.001 
 Predictability [predictable] -10.66 -45.41 24.09 .548 
 Block -62.43 -76.79 -48.07 <.001 
 Scene category [bedroom] -90.52 -134.67 -46.36 <.001 
  Scene category [kitchen] 122.06 76.79 167.33 <.001 
 Scene category [living room] -66.53 -110.97 -22.09 .003 
 Scene color [brown] 30.72 -14.06 75.51 .179 
 Scene color [green] 76.28 30.91 121.66 .001 
 Scene color [white] -316.23 360.11 -272.35 <.001 
 Target Location [2] 193.32 148.73 237.91 <.001 
 Target Location [3] 29.66 -14.41 73.74 .187 
 Target Location [4] 153.84 109.44 198.25 <.001 
      
 Random Effects     
 σ2  561002.24    
 τ00subject  74958.38    
 ICC  0.12    
 Nsubject  62    
 Observa-

tions 
 8683 

   

 Marginal R2 /  
Conditional R2 

0.064 / 0.175 
  

     
2     
 Intercept 1462.33 1379.58 1545.07 <.001 
 Predictability [predictable] 59.56 27.57 91.55 <.001 
 Block -50.31 -62.52 -38.10 <.001 
 Scene category [bedroom] -58.53 -96.40 -20.67 .002 
 Scene category [kitchen] 160.81 122.23 199.39 <.001 
 Scene category [living room] 2.15 -35.99 40.29 .912 
 Scene color [brown] -77.83 -125.95 -29.71 .002 
 Scene color [green] 53.61 4.12 103.11 .034 
 Scene color [pink] -149.08 -195.99 -102.17 <.001 
 Scene color [red] -131.23 -178.63 -83.83 <.001 
 Scene color [white] -324.03 -371.01 -277.05 <.001 
 Target Location [2] 196.66 158.32 235.00 <.001 
 Target Location [3] 43.72 5.48 81.96 .025 
 Target Location [4] 233.05 194.56 271.54 <.001 
      
 Random Effects     
 σ2  617926.32    
 τ00subject  67021.74    
 ICC  0.10    
 Nsubject  60    
 Observa-

tions 
 12957 

   

 Marginal R2 /  
Conditional R2 

0.048/0.141 
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Experiment Predictors Estimate 95% CI p 

  LL UL  

     
3 Intercept 1509.00 1408.97 1609.03 <.001 
 Predictability [predictable] 57.28 16.86 97.71 .005 
 Block -49.00 -64.40 -33.61 <.001 
 Scene category [bedroom] -51.60 -99.50 -3.70 .035 
 Scene category [kitchen] 181.55 132.97 230.12 <.001 
 Scene category [living room] 22.94 -25.17 28.81 .350 
 Scene color [brown] -31.83 -92.46 28.81 .304 
 Scene color [green] 68.01 5.99 130.03 .032 
 Scene color [pink] -174.53 -233.85 -115.21 <.001 
 Scene color [red] -110.97 -170.76 -51.18 <.001 
 Scene color [white] -390.47 -449.66 -331.27 <.001 
 Target Location [2] 242.16 193.87 290.45 <.001 
 Target Location [3] 99.17 50.98 147.36 <.001 
 Target Location [4] 269.40 221.00 317.81 <.001 
      
 Random Effects    
 σ2  654977.32    
 τ00subject  61523.60    
 ICC  0.09    
 Nsubject  40    
 Observa-

tions 
 8661 

   

 Marginal R2 /  
Conditional R2 

0.059/0.140 
   

     

Note. Results from a linear mixed-effects model: response times ~ predictability + block + scene 

category + scene color + target location + (1|subject). Response time is predicted by target lo-

cation predictability, block number, scene category (bathroom [reference], bedroom, kitchen, 

living room), scene color (blue [reference], brown, green, white), and target location (position 

1 [reference], 2, 3, 4). The model includes random intercepts for subjects. Fixed effects are 

presented with unstandardized estimates, 95% confidence intervals (LL = lower limit, UL = 

upper limit), and p-values. Random effects include the residual variance (σ²), the variance of 

the random intercept for subjects (τ₀₀), and the intraclass correlation coefficient (ICC). R² val-

ues represent marginal (fixed effects only) and conditional (fixed + random effects) model fit. 

p values < .05 are considered statistically significant and are shown in bold. 


