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1. Introduction

1.1. Motivation

The transition to climate neutrality fundamentally reshapes the structure of the
energy system. In the power sector, a shift toward intermittent energy sources,
most notably wind and photovoltaics (PV), introduces inherent volatility due to
their weather dependence. This volatility leads to temporal mismatches between
electricity supply and demand. On the demand side, decarbonization through
the electrification of transport, heating, and industry results in a growing share of
heterogeneous and partially flexible electrical loads, particularly electric vehicles
(EVs), heat pumps, and electrolyzers. Their techno-economic flexibility potential
is shaped by user behavior and process constraints (Gillingham et al., 2009,
Palensky and Dietrich, 2011). Most of these loads are located in distribution
grids.

In short-term electricity markets, where supply and demand must be balanced
continually under fixed infrastructure and generation capacity, demand elasticity
affects dispatch outcomes. It shapes the residual load curve and thus influences
price formation, while being constrained by grid capacity. If activated and co-
ordinated appropriately, flexibility can increase the static efficiency in terms
of reducing total system costs, grid congestion, and curtailment of renewables
(Hirth et al., 2016). However, the potential benefits of flexibility are not auto-
matically realized. Without effective coordination, flexible demand may respond
to static incentives, exogenous schedules, or behavioral routines. Such uncoordi-
nated behavior can result in synchronized peaks, local congestion, and increased
balancing requirements, ultimately leading to inefficient dispatch outcomes and
welfare losses (Borenstein and Holland, 2005).

In theory, efficient coordination means that flexible resources are allocated dy-
namically and selectively, considering wholesale market balancing requirements
and grid capacity. Coordination mechanisms can include price-based signals,
such as dynamic tariffs reflecting marginal system costs, or volume-based signals,
such as interventions from distribution system operators. Each of these mech-
anisms has several design options, which involve trade-offs between efficiency,
granularity, transparency, and feasibility (Laffont and Tirole, 1993). Their inter-
action raises additional questions regarding overlapping incentives when multiple
signals coexist.

Importantly, utilizing flexibility not only affects aggregate welfare, but also re-
distributes surplus among market participants, across technologies, user groups,
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and sectors. These effects are particularly important as they shape the incen-
tives and outcomes of flexibility deployment. Moreover, the welfare effects of
flexibility integration are highly context-specific. The value of allocating differ-
ent sources of flexibility is influenced by timing, location, system conditions, and
interactions with other flexible resources (Goutte and Vassilopoulos, 2019).

Notable interaction effects are introduced by electrolyzers, which link electric-
ity consumption with hydrogen production and thereby introduce cross-market
dependencies in price formation. These dependencies shape short-term equilib-
rium outcomes in both sectors. Understanding the dynamics of this coupling is
critical for both policymakers and market participants to ensure efficient market
operation and prevent new inefficiencies from emerging as sectors become more
integrated.

Against this backdrop, this dissertation examines the economic implications of
the described structural changes by analyzing and quantifying short-term equi-
librium outcomes under varying system configurations and coordination schemes.
It explores how flexible demand reshapes price formation, quantity allocation,
and welfare distribution in electricity markets with fixed infrastructure and gen-
eration capacity. The dissertation spans multiple segments of the energy system,
from distribution grids to national and European markets, and explores cross-
sectoral interactions. Each chapter reflects an individual research paper to which
all authors contributed equally:

• Integrating EVs into distribution grids – Examining the effects of various
DSO intervention strategies on optimized charging. Joint work with Arne
Lilienkamp. Published in Applied Energy Vol. 378, 2025 (Lilienkamp and
Namockel, 2025).

• Diffusion of electric vehicles and their flexibility potential for smoothing
residual demand - A spatio-temporal analysis for Germany. Joint work
with Fabian Arnold and Arne Lilienkamp. Published in Energy Vol. 308,
2024 (Arnold et al., 2024).

• Welfare redistribution through flexibility – Who pays?. Joint work with
Polina Emelianova. Published in Energy Policy Vol. 205, 2025 (Emelianova
and Namockel, 2025).

• Understanding the fundamentals of hydrogen price formation and its re-
lationship with electricity prices - Insights for the future energy system.
EWI Working Paper 25/06 (Namockel, 2025).

The following provides an outline of the individual Chapters (Section 1.2), and
discusses the methodological approaches as well as limitations (Section 1.3).
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1.2. Outline

Integrating EVs into distribution grids – Examining the effects
of various DSO intervention strategies on optimized charging

Adopting EVs and implementing variable electricity tariffs increases the risk of
congestion in distribution grids due to herding behavior. To avert critical grid
situations and avoid expensive grid expansions, Distribution System Operators
(DSOs) have intervention rights, allowing them to curtail charging processes.
Chapter 2 investigates how various DSO intervention schemes, in combination
with different electricity tariffs, affect the optimal charging strategy of EV users
in terms of charging costs as well as the required flexibility to avoid grid con-
gestion. Various curtailment strategies are possible, varying in spatio-temporal
differentiation and possible discrimination. However, evaluating different strate-
gies is complex due to the interplay of economic factors, technical requirements,
and regulatory constraints — a complexity not fully addressed in the current
literature. The chapter introduces a model to optimize electric vehicle charg-
ing strategies to address this gap. The model considers different tariff schemes
(Fixed, Time-of-Use, and Real-Time) and incorporates DSO interventions (ba-
sic, variable, and smart) within its optimization framework. Based on the model,
the chapter analyzes the flexibility demand needed to resolve grid congestion and
total electricity costs from the users’ perspective.

The results show that time-variable tariffs yield only modest cost savings for
consumers — while potentially increasing peak loads due to synchronized charg-
ing. All curtailment strategies are effective in mitigating congestion, but their
efficiency varies with granularity: more differentiated interventions approach the
benchmark of system-optimal outcomes. Importantly, from the user perspective,
curtailment has only a limited effect on charging costs, particularly under low
penetration and Time-of-Use pricing. At higher EV uptake, curtailment becomes
more relevant, but financial impacts remain moderate.

Diffusion of electric vehicles and their flexibility potential for
smoothing residual demand - A spatio-temporal analysis for
Germany

Incentivizing EVs to reduce stress on distribution grids affects regional peaks in
load and feed-in, but also alters the national residual load curve. To understand
the potential of EV charging flexibility for reducing peaks on regional and na-
tional levels, Chapter 3 first constructs regional residual load profiles for 2019,
2030, and 2045 using a scenario aligned with Germany’s 2045 climate neutrality
target. It models region-specific EV diffusion via sigmoid functions and derives
user- and location-specific load and flexibility profiles from empirical mobility
data. Based on these inputs, a spatio-temporal optimization model is developed
to assess the impacts of EV charging flexibility under two contrasting deploy-

3
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ment strategies: (1) all vehicles contribute to flattening the national residual
load curve; (2) vehicles contribute to flattening regional residual load curves.

The results show that the national and regional residual load curves change
structurally as positive and negative peaks in residual demand increase over
the years. While the absolute potential of EV flexibility grows over time with
increasing EV penetration, its marginal effectiveness in reducing system-wide
peaks declines. In load-dominated regions, the national deployment of flexibil-
ity can result in higher regional demand peaks compared to a scenario without
charging flexibility. The two approaches of flexibility activation can be contra-
dictory in their effects: While regional incentivization is less efficient in reaching
the smoothing in the national residual demand curve, national incentivization
can even lead to increased strain on the local level.

Welfare redistribution through flexibility - Who pays?

Flexible operation of EVs and heat pumps influence electricity price formation
and trigger a redistribution of welfare from producers to consumers. The mag-
nitude and direction of this redistribution are likely to vary across technologies
and end-user groups, depending on their flexibility potential and usage behav-
ior. To explore these dynamics, Chapter 4 quantifies redistributional effects
by integrating diverse flexibility options and user groups into a high-resolution
European dispatch model, simulating multiple flexibility use cases across the
transport and heating sectors in Germany. This approach allows to simulate the
interaction between decentralized flexible assets - such as EVs and heat pumps
- and the energy system. The analysis is based on a case study for Germany,
reflecting the country’s technology-specific targets for 2030.

The results show that while decentralized flexibility has a limited impact on
average wholesale price levels, it significantly reduces price volatility by smooth-
ing demand peaks and aligning load with renewable energy generation. While
total system welfare increases slightly, flexibility leads to a redistribution of wel-
fare from producers to consumers. On aggregate, consumers benefit regardless
of whether they actively provide flexibility. However, the extent of these benefits
varies considerably across user groups, shaped by their consumption profiles and
the temporal availability of flexibility. Among the assessed flexibility options,
electric vehicles - particularly through bidirectional charging - offer greater wel-
fare gains compared to heat pumps. EVs flexibility leads to notable variations
in electricity costs depending on charging behaviors. In the heating sector, com-
mercial buildings with flatter load profiles benefit most from flexibility, while
residential buildings see moderate cost changes. The competition introduced
by decentralized flexibility impacts commercial users especially, raising off-peak
prices and indicating cannibalization effects.
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Understanding the fundamentals of hydrogen price formation
and its relationship with electricity prices - Insights for the
future energy system

The increasing role of hydrogen in decarbonization strategies introduces new
interactions between energy sectors that affect market outcomes. In particular,
the coupling between electricity and hydrogen markets through electrolysis estab-
lishes interdependencies in short-term price formation. Chapter 5 investigates
fundamental price formation mechanisms for hydrogen and electricity, emphasiz-
ing their mutual dependencies, volatility, and the impact of short-term system
conditions such as weather and demand variability. Additionally, it explores
how these dynamics respond to variations in system configurations. Using the
European energy system model DIMENSION, enhanced to incorporate detailed
hydrogen supply and demand options including storage, cross-border trade, and
import, this study derives shadow prices as the basis for the subsequent statistical
analysis.

Results show that hydrogen and electricity prices are governed by short-term
interactions. While electricity price formation can be well explained by renewable
generation and demand, hydrogen prices emerge to be more structurally driven.
Storage dynamics and cross-border trade significantly influence hydrogen price
formation next to electrolysis. Strong price coupling between the hydrogen and
electricity markets likely occurs under low residual load conditions dominated
by electrolysis, whereas decoupling arises during high residual load situations
dominated by storage discharge. The electricity-to-hydrogen price ratio aver-
ages 0.56, lower than previous estimates, primarily due to the consideration of
inflexible hydrogen imports and infrastructure constraints. Furthermore, the
analysis indicates that short-term price signals alone may be insufficient for in-
vestment recovery, highlighting the need for complementary market mechanisms
to develop a liquid hydrogen market.

1.3. Methodological approaches

Each chapter of this thesis analyzes specific aspects of the economics of flexibility
integration in energy systems using quantitative modeling. These models are
formulated as partial-equilibrium representations of selected system segments.
They are calibrated to scenario-specific assumptions and designed to capture key
technical and economic dynamics relevant to their respective research questions.

Chapter 2 develops a modeling framework to evaluate the impact of electric-
ity tariffs and grid operator interventions on optimized EV charging strategies
in distribution grids. A synthetic SimBench grid for the German context, based
on Meinecke et al. (2020), comprises twelve low-voltage networks that reflect
varying topologies, transformer capacities, and settlement types ranging from
rural to urban. Within this system, EV users optimize charging behavior under
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different time-variable electricity tariffs (Fixed, ToU, Real-Time). Three inter-
vention strategies are considered: a uniform, basic intervention with no temporal
and spatial differentiation; a variable intervention that adjusts control based on
temporal and spatial grid load conditions; and an idealized benchmark with
full system information and individual signals. The model simulates charging
cost savings, grid utilization, and flexibility requirements across multiple EV
penetration levels. By comparing intervention strategies under identical system
conditions, the paper isolates the effectiveness of volume signals in mitigating
herding behavior and preventing transformer overloads, while preserving user
benefits from dynamic tariffs.

While the use of synthetic grids ensures controlled comparability across sce-
narios, the results are inherently shaped by the grid configurations and assump-
tions used. The behavior of EV users is modeled as fully responsive to tariffs
and intervention signals, abstracting from potential behavioral heterogeneity and
real-world frictions. Interactions with other flexible assets, such as heat pumps
or batteries, are not captured in this analysis, nor is vehicle-to-grid functional-
ity. Furthermore, the model adopts a price-taker assumption, focusing on sys-
tem impacts without capturing potential feedback effects on wholesale electricity
markets.

Chapter 3 develops a spatio-temporal modeling framework to quantify the
potential of flexible electric vehicle (EV) charging to mitigate residual load peaks
in Germany. The analysis contrasts two deployment strategies: one aiming to
smooth the national residual load curve, and another targeting the reduction of
regional peaks. A linear optimization model minimizes the squared deviation of
residual load from its mean. EV diffusion is modeled regionally using sigmoid
functions, while charging profiles are derived from user- and location-specific
mobility data (KIT - Institut für Verkehrswesen, 2021). Based on a scenario
consistent with Germany’s national climate and technology targets (dena, 2021),
regional residual load profiles are generated for 2019, 2030, and 2045 at the NUTS
3 level, covering all German districts.

As the analysis is based on a single scenario for demand and generation devel-
opment, alternative weather years or policy pathways may yield different abso-
lute results, while the qualitative trends and regional trade-offs are expected to
hold. The analysis focuses solely on unidirectional home charging with perfect
foresight and information, and does not consider interactions with other flexible
assets (e.g., batteries or heat pumps). User behavior is modeled deterministically
under the assumption of full participation, potentially overstating the flexibility
achievable in practice. Consequently, the results serve as an upper bound, quan-
tifying the effects of flexible charging under perfect execution. Furthermore, grid
constraints are reflected using residual load peaks as a proxy, without modeling
voltage or reactive power constraints. Thus, further research may be necessary.

Both Chapter 4 and Chapter 5 employ the large-scale energy system op-
timization model DIMENSION, which is designed to simulate the integrated

6



1.3. Methodological approaches

operation of the European energy system. DIMENSION is partially equilib-
rium model that minimizes total system costs subject to technical and economic
constraints. The model assumes competitive and efficient markets, and rational
behavior of market participants with perfect foresight. Shadow prices of the equi-
librium constraints for electricity (and hydrogen) are interpreted as market prices
by abstracting from other components of prices, mark-ups or policy instruments.
In both chapters, the model is extended to incorporate detailed representations
of sector coupling technologies and decentralized flexibility options, including
electric vehicles, heat pumps, electrolysers, and hydrogen storage. These en-
hancements enable a consistent analysis of short-term dispatch dynamics and
system interactions — with Chapter 4 focusing on welfare redistribution in the
electricity market, and Chapter 5 analyzing hydrogen price formation and its
coupling with electricity prices.

In Chapter 4 heterogeneous user groups and flexibility technologies in the
road transport and building sectors are integrated in DIMENSION. Flexible
assets are modeled with technology- and user-specific constraints and usage pat-
terns. The simulation is performed for Germany in 2030, assuming the achieve-
ment of national technology targets. Different flexibility use cases are compared
to assess their impacts on electricity price formation, CO2 emissions, system
welfare, and consumer and producer surplus.

While the modeling captures detailed interactions in the day-ahead electricity
market, the analysis abstracts from balancing and intraday markets, where addi-
tional value from flexibility could emerge. Moreover, distribution grid constraints
are not considered, which may overstate the realizable welfare gains. Finally, the
cost of enabling flexibility — such as smart meters or bi-directional charging —
is excluded, implying that user-level benefits reflect gross rather than net gains.

Chapter 5 expands DIMENSION to model the integrated dispatch of the elec-
tricity and hydrogen systems under a future climate-neutral scenario for 2050.
The analysis incorporates hourly dispatch with daily resolution for hydrogen,
modeling hydrogen production via electrolysis, hydrogen storage, long-term con-
tracts (LTCs), and cross-border pipeline trade. The resulting shadow prices
serve as the basis for co-integration tests, regression and correlation analysis,
price ratio distributions, and statistical comparisons between electricity and hy-
drogen markets. This approach enables an in-depth examination of short-term
price dynamics and their dependence on system configurations, such as hydrogen
demand levels and trade capacity expansions.

The analysis focuses on Germany and assumes a liquid market for hydrogen in
2050 with daily resolution. Different system configurations help to evaluate the
robustness of the results. Limitations arise from the separation of investment
and dispatch stages in the model: shadow prices do not reflect full-cost recovery
and may underestimate actual hydrogen prices. Additionally, the model assumes
price-inelastic hydrogen demand, and excludes explicit risk premiums or market
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mark-ups. As such, price levels represent conservative estimates and do not
capture long-term investment incentives or real-world market volatility.

In addition to this discussion, each of the following four chapters provides
a comprehensive description of the methodology, its limitations, and emerging
questions for future research.
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2. Integrating EVs into distribution grids –

Examining the effects of various DSO

intervention strategies on optimized

charging

2.1. Introduction

As part of the global energy transition, there is a concerted effort to expand
renewable energies (RES) and electrify various end-use sectors. Contributing to
the ongoing electrification of the transportation sector, the increasing adoption
of electric vehicles (EVs) plays a pivotal role in this transition. 14% of all new
cars sold globally were electric in 2022, up from around 9% in 2021 and less
than 5% in 2020. An even stronger increase is projected throughout 2023 (IEA,
2023b). Simultaneously, integrating digital technologies such as Smart Meters is
a crucial component of the energy transition. Whereas some countries already
experience a high penetration of smart meters, such as Italy, Sweden, Finland,
or Spain, other countries plan to force the roll-out in the next years (Schnaars
et al., 2022).

The digitization and the electrification of transportation not only underpin
the shift towards cleaner energy sources but also results in sector coupling. Elec-
tric vehicles, with their increasing demand and through their interaction with
the electricity system, will thus become an important actor within the future
electricity system (IEA, 2023c). In this context, the ongoing digitization of-
fers the prospect of employing electric vehicles in a way that actively supports
and enhances the overall functionality of the electricity system. But, also, EV
users can potentially benefit from exploiting the inherent flexibility of EVs (En-
glberger et al., 2021). By offering variable electricity tariffs to EV users, elec-
tricity providers can forward price signals from the electricity market, mirroring
the state of the energy system. This has two implications. First, EV users can
optimize their charging to minimize electricity costs, and second, the shifting of
load implicitly contributes to balancing supply and demand in the energy sys-
tem. For example, Schittekatte et al. (2022) show how Time-of-Use (ToU) tariffs
incentivize load-shifting while simultaneously addressing consumer preferences.

Dynamic tariffs, however, abstract from the grid, as neither the retailers nor
the consumers consider the grid infrastructure in their calculus. Given the diver-
gent objectives of retailers, consumers, and grid operators, this poses a challenge
and may lead to conflicts. Electric vehicle users prioritize low charging costs and
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meeting their mobility or electricity demand, while retailers align their tariffs
with wholesale prices. In contrast, grid operators strive for stable grid opera-
tion. The pursuit of cost savings, often driven by a desire to benefit from low
prices, can result in a high simultaneity of charging processes among electric ve-
hicle users, leading to load peaks that strain the grid infrastructure. This herding
behavior poses a significant threat to distribution grids, where most electric ve-
hicle demand is concentrated and becomes more pronounced with higher electric
vehicle penetration rates. As highlighted by Birk Jones et al. (2022), ToU tariffs
can increase peak demand by up to 20% when many users charge simultaneously
after peak times, causing grid stress. This is further supported by Reibsch et al.
(2024), who show that market-based charging strategies tied to wholesale power
prices can exacerbate grid overloads, particularly in areas with high photovoltaic
(PV) penetration.

To avoid grid congestion, three options exist in general. First, distribution
system operators (DSOs) could restrict the access of EVs to the grid by limiting
the installation of charging stations and wall boxes. This, however, is detri-
mental to the desired large-scale EV adoption and interferes with EV users’
objectives. Second, DSOs could expand the grid so that even herding behavior
does not cause congestion. However, designing a grid based on uncoordinated
load peaks is considered a highly inefficient and overly expensive approach, es-
pecially as load peaks will increase in amplitude more than in frequency in the
future (Arnold et al., 2024). Moreover, grid expansion faces delays in numerous
countries and struggles to keep pace with the rising demand (IEA, 2023a). The
third option involves granting DSOs the authority to intervene and limit EV
charging during critical hours to prevent grid congestion, as proposed by von
Bonin et al. (2022). This can be achieved through methods such as volume sig-
nals. Actively restricting charging processes allows the grid operator to ensure
stable grid operation, whereas passive solutions like time-varying grid fees may
encourage herding behavior. While volume signals still impact EV users’ goals,
they represent a more cost-effective approach than extensive grid expansion, as
demonstrated by Spiliotis et al. (2016) and Heilmann and Wozabal (2021). The
inconvenience of adjusting the charging strategy could be compensated, as pro-
posed by Schittekatte et al. (2023). Consequently, the third option emerges as
the most promising strategy for integrating more electric vehicles into distri-
bution grids in the short and medium term, forming the central focus of this
paper.

With an intervention, the actual charging strategy would need to be adjusted
whenever bottlenecks in the distribution grid are imminent. The grid operator
would thus have to influence the charging process by sending out signals. In
electricity markets, where DSOs have to be unbundled, such as in Europe1,
grid operation and the optimization of EVs charging strategies have to take
place separately due to regulatory provisions. However, the current discussions
revolve around granting the grid operator access to a certain extent, thereby

1Exceptions exist for DSOs with more than 100,000 customers European Commission (2010)
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considering constraints from grid operation in optimizing charging processes.
Uncertainty surrounds how the grid operator gains influence over the charging
process and how the characteristics of the grid can be taken into account in
optimizing charging processes. In Germany, this discussion is taking place within
the framework of the design of §14a EnWG (BNetzA, 2023). Here, the DSO
could limit charging power with high grid utilization in certain hours. In general,
intervention options vary in terms of the information involved, from details about
grid utilization to individual load profiles and the potential for discrimination.
These interventions can treat all households equally, or the grid operator could
have the authority to exert individualized control.

Although various academic papers address optimized charging based on price
signals and DSO interventions to avoid grid congestions, comparative studies
on the effectiveness of different curtailment strategies under various tariff de-
signs are limited. Research by Schittekatte et al. (2022) and Valogianni et al.
(2020) has highlighted the importance of dynamic pricing and ToU tariffs in in-
centivizing load shifting and addressing consumer preferences. However, these
studies often do not fully account for the grid infrastructure’s constraints, poten-
tially leading to increased peak loads and grid congestion as seen in Daneshzand
et al. (2023). In contrast, research by Spiliotis et al. (2016) and Heilmann and
Wozabal (2021) discusses the potential of volume signals and other intervention
mechanisms to prevent grid overloads. Yet, comparative analyses of different cur-
tailment strategies alongside diverse tariff designs remain sparse. For example,
while von Bonin et al. (2022) explores the feasibility of curtailing EV charging
during critical hours, the interactions between these interventions and various
dynamic pricing models have not been thoroughly examined. Similarly, as Stute
and Klobasa (2024) investigates the interaction between electricity tariffs and
grid charges, further research is needed to explore the interplay between electric-
ity tariffs and curtailment strategies. This includes understanding how different
tariff designs impact the effectiveness and financial implications of curtailment
measures, ensuring a balanced approach that considers both grid stability and
user cost efficiency.

Our paper contributes to the ongoing discussion by examining the effects of
different intervention designs on optimal charging strategies within a case study
centered on a synthetic German grid. The synthetic grid consists of 12 different
distribution grids, accounting for heterogeneous configurations. We aim to un-
derstand how various intervention options impact the optimal charging strategy.
Initially, we identify optimal charging strategies based on different tariff designs,
excluding considerations related to the grid. If grid congestion becomes a con-
cern, we then introduce grid interventions through various curtailment strategies.
We differentiate between generalized curtailment (treating all electric vehicle
users equally behind the bottleneck) and differentiated curtailment (adjusting
curtailment based on each user’s impact on the bottleneck). Additionally, we
explore fixed curtailment rates, independent of factors like current transformer
overloads and variable curtailment rates, which depend on the real-time load.
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We address the following research questions: How do different tariff designs
influence the optimal charging strategy of EV users and the resulting grid uti-
lization? How do various DSO intervention rights affect the optimal charging
strategy of EV users in terms of charging costs and required flexibility under
different tariffs? Besides answering these questions, our research contributes to
the existing literature as follows:

• Analysis of mutual influences of charging strategies and interventions of
grid operators.

• Development of a model framework to analyze the interdependencies of
users, retailers, and grid operators in distribution grids.

• Application of the model framework to a case study for Germany based on
a synthetic distribution grid.

• Sensitivity analyses on the effect of different EV penetration rates.

Consistent with prior research, such as von Bonin et al. (2022), our findings
indicate that implementing time-variable tariffs brings financial advantages for
consumers, but they are relatively minor. The weighted average cost savings
reach 47.2 EUR per year in the case of Real-time tariffs and 16.9 EUR per year
with ToU tariff, reflecting only 1 to 3% of total electricity costs. However, we
find that time-variable tariffs, especially at high EV penetration rates, can lead
to herding behavior and increase the peak load. To address this issue, DSOs
need intervention rights to avoid grid congestion effectively. We show that all
proposed intervention strategies are suitable to prevent congestion, although dif-
ferences can be observed regarding their efficiency. The extent to which the DSO
can convey differentiated signals, incorporating spatial and temporal differences,
correlates closely with the optimal benchmark’s accuracy, assuming perfect in-
formation and user discrimination. The choice of the curtailment strategy has a
greater influence on the need for flexibility than the design of time-variable tar-
iffs. From the end user’s perspective, curtailment does not affect charging costs
significantly, especially concerning ToU tariffs or low EV penetration rates. With
RT tariffs and higher penetration rates, the choice of the curtailment strategy is
more relevant. Then, basic curtailment increases charging costs by 4.7 EUR per
year, while more sophisticated curtailment results in a slightly lower increase
of 2.6 EUR per year. But still, from the end user’s perspective, the financial
benefits of smart tariffs outweigh the cost increase due to curtailment.

The paper is structured as follows. Section 2.2 introduces the electricity tariff
designs and possibilities for DSO interventions. Section 2.3 details a method for
modeling different grid intervention strategies in optimizing charging processes
based on tariff designs. Section 2.4 applies this method to a synthetic distribution
grid, while Section 2.5 discusses our findings. Section 2.6 concludes this paper.
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2.2. Electricity tariff designs and possibilities for
DSO interventions

The charging processes of electric vehicles can be controlled both passively and
actively. With passive control, users are incentivized to shift their load, e.g., in
response to price signals. Thus, users’ charging decisions are influenced only indi-
rectly. With active control, users’ charging decisions can be overruled remotely,
e.g., by volume signals to modulate the charging power of charging processes
(IEA, 2022b). In this study, we analyze the interdependencies of time-varying
electricity prices provided by retailers and volume signals from the DSO to cur-
tail charging processes to avoid grid congestion. In this section, we introduce
the different considered design options for these signals. Section 2.2.1 introduces
the different retailer tariffs and Section 2.2.2 presents possibilities for interven-
tions by the DSO. The combination of different retailer tariffs and intervention
strategies is presented in Section 2.2.3.

2.2.1. Electricity tariff designs

In terms of (retail) price signals, there are various tariff models with different
structures, ranging from flat rates to piece-wise flat rates to fully dynamic pricing.
The latter two belong to the group of (time-)variable price signals, which can
help address the growing price volatility in wholesale markets while consumers
can benefit economically. By shifting charging processes to periods of lower
prices, charging processes are implicitly shifted according to the availability of
intermittent resources (Schittekatte et al., 2022). In this paper, we distinguish
three specific tariff designs: a Fixed (Fix) tariff and two time-dependent tariffs
known as Time-of-Use (ToU) and Real-Time (RT) tariffs.

Fixed (Fix) tariff

Consumers pay the same electricity price regardless of when they consume elec-
tricity. Thus, Fixed tariffs do not incentivize a shift in charging processes. The
retailer bears the price risk of the wholesale market but adds a risk premium to
the tariff.

Time-of-Use (ToU) tariff

Time-of-Use tariffs provide time-variable electricity prices in certain predefined
time windows. The tariffs segment the day into sections with equal price levels
corresponding to the overall load (i.e., low, mid, and high). The differentiated
prices incentivize a shift of charging processes into lower price windows.
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Real-Time (RT) tariff

Real-Time tariffs are fully time-variable, with the retailer forwarding volatile
wholesale prices and price risk to the customers. However, if all EVs in a distri-
bution grid receive the same high-resolution variable electricity price signal, it
can lead to herding behavior and a high simultaneity of charging processes.

2.2.2. DSO interventions

Responding to electricity price signals could result in herding behavior of charg-
ing processes, which may cause congestion issues in the distribution grid by
concentrating charging power within specific time intervals. Consequently, the
DSO may need to intervene actively and provide signals to electric vehicles, in-
cluding curtailing their charging processes. To determine effective signals, the
DSO requires access to information on grid utilization and user behavior, as well
as the ability to interact with the charging stations of electric vehicles. In future
energy systems, the level of digitization and the corresponding availability of
information remains uncertain. Additionally, the treatment of charging stations,
whether equal or individually controlled with possible discrimination, depends on
the regulation of DSO. Consequently, various design options for DSO interven-
tions are possible, differing regarding information availability and discrimination.
We consider three different curtailment strategies to reflect different intervention
options: basic curtailment, variable curtailment, and smart curtailment.

Basic Curtailment

Basic curtailment involves limiting charging processes based on anticipated con-
gestion. DSOs use standard load profiles and probabilistic methods in non-
digitized distribution grids to predict grid congestion. Once a DSO anticipates
congestion in the distribution grid for a specified time interval, it can reduce
the charging power of all charging stations downstream of the bottleneck. In
this approach, the DSO applies the same fixed curtailment factor for the en-
tire distribution grid. Charging processes are implicitly shifted to less critical
time intervals by curtailing peak loads. However, this approach can be overly
restrictive and may result in inefficiencies.

Variable Curtailment

Variable curtailment builds upon the Basic Curtailment approach but introduces
time-dependent curtailment signals. Instead of applying a fixed curtailment fac-
tor for the entire distribution grid, the DSO selectively curtails only the electric
vehicles behind the anticipated bottleneck as necessary. Consequently, all users
behind the bottleneck are treated similarly but more efficiently than under Basic
Curtailment.
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Smart Curtailment

Smart curtailment, as defined in this paper, represents the optimal intervention of
the DSO assuming perfect information and individual treatment of each charging
process. With perfect information, the DSO is aware of EV users’ economically
optimal charging schedules and can calculate each household’s time-dependent
impact on grid elements. Based on this information, the DSO can forward in-
dividual and time-dependent curtailment factors to each household, effectively
managing and optimizing charging processes within the grid.

2.2.3. Combining tariff designs and DSO intervention strategies

By combining different tariff designs with various DSO intervention strategies,
nine different use cases are formulated, as represented by the boxes in Figure 2.1.
Additionally, a hypothetical case with no curtailment is considered a reference
to illustrate potential bottlenecks that may occur before curtailment.

Figure 2.1.: Combinations of electricity tariff designs and possibilities for interventions
by the DSO

The figure illustrates how we label our different use cases. Each combination of DSO interven-
tion and tariff design is labeled with an individual name.

Combining a specific tariff design with one possible intervention strategy re-
flects one setting for optimizing households and the related charging processes.
Our model approach will be described in the following section.
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2.3. Grid interventions in the context of optimizing
charging processes

This section introduces a new model to analyze the effects of different electricity
tariff designs combined with DSO intervention concepts on grid utilization and
electricity costs. The model comprises two key components: an asset optimiza-
tion model and a grid model. The asset optimization model enables households
to optimize their charging strategies based on price signals. It incorporates grid
information through load and generation distribution factors, calculated by the
grid model. These factors are integrated into the optimization model using new
equations that account for physical constraints. The linkage between the two
components is implemented in three distinct ways, each corresponding to dif-
ferent intervention strategies. By integrating grid signals into the central asset
optimization, our comprehensive model captures the interplay between grid char-
acteristics and the economic optimization of charging processes. This approach
maintains the computational efficiency of both the market and grid models while
providing a holistic perspective on their mutual dependencies. The modular na-
ture of the model linkage, distinguishing controllable from non-controllable as-
sets, ensures applicability to various distribution grid topologies and scenarios.

We assume rational behavior for households and do not consider individual
utility functions. Additionally, all electric vehicles in the distribution grid are
subject to the same tariff, without exploring tariff differentiation between users.
The model is based on exogenous electricity prices, meaning that feedback from
EV charging behavior on the electricity wholesale market is not considered. Fur-
thermore, while the model focuses on congestion in distribution lines and trans-
formers, it does not account for potential voltage band violations. Another
important assumption is that only electric vehicles are controllable within the
model to separate the impact, whereas other distributed energy resources, such
as photovoltaic systems and heat pumps, are assumed to operate independently
of the optimization process.

The structure of this section begins with Section 2.3.1 providing an overview
of the general modeling process. Subsequently, the asset optimization model,
aimed at minimizing household electricity costs, and the grid model are detailed
in Sections 2.3.2 and 2.3.3, respectively. Finally, the three different approaches
for linking the models are discussed in Section 2.3.4.

2.3.1. General model approach and structure

Figure 2.2 shows how the asset optimization model and grid model interact in an
iterative process to quantify the effects of different tariff structures and interven-
tion options of the DSO. The process slightly differs between basic, variable, and
smart curtailment. The columns relate to different simulation or optimization
steps.
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Figure 2.2.: Process diagram illustrating the various optimization and computation steps

In the first step, the simulation and optimization of all decentralized assets and
households are done by running the optimization model without considering the
grid. Fixed, ToU or Real-Time prices are used depending on the selected tariff
design. One of the results is the optimal charging strategy for each household.

In the second step, an AC power flow is performed to check the validity of
the optimization results. The analysis leverages the outputs from the asset op-
timization model EASE, including the generation and load time series for all
assets within the distribution grid, along with their locations and the associated
grid components. If there is no congestion, the model will stop here, which is
indicated by a dotted line.

In the case of line or transformer overloading, the third step follows. Here,
the necessary parameters are calculated to consider the grid situation within the
optimization model. The method of calculation varies according to the curtail-
ment strategy. Regarding basic and variable curtailment, the generation and
load distribution factors are calculated only for the respective time intervals and
congested elements. In the case of smart curtailment, the generation and load
distribution factors are calculated for all time intervals and grid elements together
with the line and transformer capacity limits, representing perfect information.
Generation and load distribution factors as well as the capacity limits are passed
to EASE. Depending on the curtailment strategy, the respective constraints are
parameterized and used in the optimization model to reflect the signals from the
grid, as described later in Section 2.3.4.

Then, the optimization model is rerun in the fourth step, considering the addi-
tional constraints depending on the curtailment strategy. These new constraints
are constructed with the generation and load distribution factors as well as the
line and transformer limits and reflect the signals from the grid.

The validity of the asset operations concerning potential grid constraints is
rechecked by repeating the second step. If there is no congestion remaining, the
process stops now. But, in the case of basic and variable curtailment, new con-
gestion can occur by shifting the load to time intervals when charging power is
not limited. Consequently, these additional time intervals must then be consid-
ered additionally. This is done by rerunning step 3 and updating the matrices
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with generation and load distribution factors. In the case of variable curtailment,
the curtailment factor ec,q is increased marginally when necessary. In the case
of smart curtailment, the process ends here, except that the nodal balance of
individual nodes within the distribution system after step four changes the sign
from the result after step one.2

The two main components of the model, the asset optimization model EASE
and the grid model, are explained in greater detail in the following sections, be-
fore presenting the formulation of the new constraints for the asset optimization
model to account for grid limitations.

2.3.2. Optimization of decentralized energy systems

In this study, we develop a model for the economic analysis of decentralized en-
ergy systems. It is designed as a linear optimization program that maximizes
individual entities’ profits following a price-taking assumption and the assump-
tion of perfect foresight.3 The operation of decentralized, controllable assets is
optimized based on technical and economic parameters. The model also allows
for analyzing the effects of fixed and variable retail tariffs.

The model can simultaneously optimize the electricity and heat turnover for
multiple households in a distribution grid. The model comprises electricity-
related consumption and production technologies with all relevant parameters,
such as heat pumps, electric vehicles, storage units, and entities with heat and
electricity demand. Although our primary focus is on EVs, we include all rel-
evant technologies in our model to provide a more comprehensive and realistic
representation of the grid. This holistic perspective allows us to understand the
broader implications of EV charging strategies and DSO interventions within the
distribution system. The model maximizes each household’s profit while cover-
ing the heat and electricity demand. Depending on the setting, the required
electricity for direct consumption or heat production is either produced by the
households’ technologies, such as PV systems, or obtained from an electricity
supplier. Maximizing the profits, thus, is equivalent to minimizing the cost of
energy supply. The objective function is expressed in Equation (2.1).

max
∑
q∈Q

[
∑
c∈Gel

P gel,f
c,q ∗mf

c −
∑
c∈Lel

P lel,p
c,q ∗ (pwq + t)] (2.1)

The model optimizes the asset deployment for each time interval q. The first
term of the objective function, for each generation unit c, represents the gener-

2Nodal balance could switch from positive to negative or the other way round after one iter-
ation. For example, a load node could become a generation node if PV generation remains
high and the load is curtailed and shifted to other time intervals. Then, the generation and
load distribution factors are calculated again in step three for all time intervals and nodes.
The highest values from the first and second iterations determine the new matrices.

3We have formulated the model in GAMS version 45.0.
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ated electricity in the interval q, which is fed into the grid and reimbursed by
the feed-in tariff mf

c . The second term represents electricity procurement for
each electricity-consuming asset. The parameter pwq represents the provisioning
component of the consumer price, while t comprises the taxes and levies. The
optimization process is subject to several constraints.

The Equations (2.2) to (2.5) are demand and supply equations for electricity
(2.2, 2.3) and heat (2.4, 2.5). The equations break down energy generation
and consumption to their purposes. The electricity generation P gel

c,q splits into

electricity fed into the grid (P gel,f
c,q ) and provided for electricity consumers c′ ∈

C on-site (P gel
c,c′,q). The electricity consumption (P lel

c,q) in Equation (2.3) splits

correspondingly into electricity procured (P lel,p
c,q ) from an electricity provider,

and the consumption covered by on-site generation units.

P gel
c,q = P gel,f

c,q +
∑

c′∈Lel

P gel
c,c′,q ∀q ∈ Q ∧ c ∈ Gel (2.2)

P lel
c,q = P lel,p

c,q +
∑

c′∈Gel

P lel
c,c′,q ∀q ∈ Q ∧ c ∈ Lel (2.3)

P gth
c,q =

∑
c′∈Lth

P gth
c,c′,q ∀q ∈ Q ∧ c ∈ Gth (2.4)

P lth
c,q =

∑
c′∈Gth

P lth
c,c′,q ∀q ∈ Q ∧ c ∈ Lth (2.5)

The Equations (2.6) to (2.16) set the technical constraints for the considered
technologies. Equation (2.6) limits the variable quarter-hourly generation of
electricity generators (P gel

c,q ) by their installed capacity ic and the time-dependent
availability profile sq. For intermittent resources like PV systems, sq varies during
the day based on the considered weather year.

P gel
c,q ≤ 1

4
ic ∗ sq ∀q ∈ Q ∧ c ∈ Gel (2.6)

Power-to-heat technologies, such as heat pumps and heating rods, are defined
by Equations (2.7) and (2.8) based on Frings and Helgeson (2022). The first
equation determines the conversion of electricity into thermal energy (P gth

c,q ). The
conversion is based on the time- and asset-dependent efficiency ηelc,q, including
the coefficient of performance (COP). The latter equation restricts the electricity
consumption P lel

c,q based on the installed electric power.

P lel
c,q ∗ ηelc,q = P gth

c,q ∀q ∈ Q ∧ c ∈ (Lel ∪Gth) (2.7)

P lel
c,q ≤ 1

4
ielc ∀q ∈ Q ∧ c ∈ (Lel ∪Gth) (2.8)
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Finally, electric and thermal storage equations are defined in constraints (2.9)
to (2.12). Equations (2.9) and (2.10) restrict the maximum state of charge (SOC)
for thermal and electric storage units, including electric vehicles. Equations
(2.11) and (2.12) limit the charging and discharging of storage units alike. The
factor dc,q represents a storage’s grid connection. For regular storage units, the
grid connection is constantly given (dc,q = 1). Electric vehicles, however, are
disconnected from the grid during their trips (dc,q = 0).

SOCel
c,q ≤ isoc,elc ∀q ∈ Q ∧ c ∈ (Lel ∪Gel) (2.9)

SOCth
c,q ≤ isoc,thc ∀q ∈ Q ∧ c ∈ (Lth ∪Gth) (2.10)

P gel
c,q , P

lel
c,q ≤ 1

4
ielc ∗ dc,q ∀q ∈ Q ∧ c ∈ (Lel ∪Gel) (2.11)

P gth
c,q , P

lth
c,q ≤ 1

4
ithc ∗ dc,q ∀q ∈ Q ∧ c ∈ (Lth ∪Gth) (2.12)

For storage units, the continuity and the balancing constraints are shown in
Equations (2.13) to (2.16). In the first equation, the SOC is determined by the
SOC of the previous interval, the charged and discharged energy. Electric vehi-
cles’ electricity consumed in trips is removed once at departure. It is included
in addend rc,q. η represents the charging and discharging efficiency. The bal-
ancing equation (2.15) ensures that, at large, demand and supply are balanced,
including the consumption by trips for electric vehicles.

SOCel
c,q = SOCel

c,q−1
+ P lel

c,q ∗ ηelc,q −
P gel
c,q

ηelc,q
− rc,q ∀q ∈ Q ∧ c ∈ (Lel ∪Gel) (2.13)

SOCth
c,q = SOCth

c,q−1
+ P lth

c,q ∗ ηthc,q −
P gth
c,q

ηthc,q
∀q ∈ Q ∧ c ∈ (Lth ∪Gth) (2.14)

∑
q∈Q

P gel
c,q

ηelc,q
+ rc,q =

∑
q∈Q

(P lel
c,q ∗ ηelc,q) ∀c ∈ (Lel ∪Gel) (2.15)

∑
q∈Q

P gth
c,q

ηthc,q
=

∑
q∈Q

(P lth
c,q ∗ ηthc,q) ∀c ∈ (Lth ∪Gth) (2.16)

Given the explained model, various operating schemes are deployed and used
to analyze the different combinations of tariffs and DSO interventions explained
in Section 2.2. The different electricity tariffs are modeled by parameterizing pwq .
For the fixed tariff, the parameter is constant for all time intervals, while for the
ToU tariff, it is piece-wise constant in different time windows. For modeling the
RT tariff, the parameter is fully flexible in each time interval.
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2.3.3. Grid model

The optimization model initially determines the operational strategy for the as-
sets without considering potential grid constraints. Therefore, we perform an
AC power flow to check whether the computed solution is physically feasible.4

If bottleneck situations occur, assets affecting congestion have to change their
load or supply. Given the various DSO intervention strategies, ranging from
simple curtailment to more sophisticated approaches, it is essential to deter-
mine the impact of individual assets on the power flow through specific lines
and transformers. This involves curtailing all EVs behind a bottleneck or se-
lectively controlling the charging processes. Generation and load distribution
factors provide information about the contribution of single assets to the total
flow on a line. With the help of those distribution factors and the information
on maximum line utilization, new constraints in the optimization model prevent
bottlenecks in the distribution grid during asset optimization. While the appli-
cation of distribution factors varies depending on the curtailment strategy, the
calculation of these factors remains consistent across strategies. This consistency
eliminates the need for multiple models, enhancing the model’s simplicity and
efficiency.

To calculate the contribution of single assets on line and transformer loading,
we follow the approach according to Schneider et al. (2018) and K los et al.
(2015). The approach distinguishes between generation distribution factors (gdf)
and load distribution factors (ldf), allowing for the capture of both load-driven
and generation-driven congestions. The most important steps to obtain the
distribution factors are described in the following paragraphs.

As a first step, the AC power flow is performed with each asset’s active and
reactive power time series input. Based on the optimization results, the AC
power flow uses the time series of each asset located in the distribution grid as
input. Market results only contain information on active power dispatch, so the
reactive power is calculated afterward. Based on Dynge et al. (2021), we assume
a fixed power factor of cos(φ) equal to 0.98 for all loads. Reactive power is
calculated as given in Equation (2.17). Batteries and generators do not provide
or consume reactive power.

Q =

√
P 2

cos(φ)2
− P 2 =

√
1

cos(φ)2
− 1 ∗ P = k ∗ P (2.17)

The results of the AC power flow, such as line loading and line flows, are then
used as necessary inputs for the following matrix operations.

In a next step, the total flow P (Nx1) is calculated using either an upstream
or a downstream approach based on power flow results. The upstream approach

4The grid model is implemented in Python 3.7. The optimal power flow is calculated using
pandapower version 2.2.2.
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considers all feeding flows, while the downstream approach accounts for all drain-
ing flows of a given node. Following the upstream approach, an element F in

nm of
F in contains the power injected at the node m if a line between n and m exists.
Otherwise, the entry is zero. Additionally, the nodal generation pgn is added. On
the other hand, the downstream approach accumulates all flows draining node n
and the nodal load plm.

P =


Pn

...

PN

 with Pn =
∑
n∈N

F in
n,m + P g

n =
∑
m∈N

F out
n,m + P l

m (2.18)

Virtual nodes with generation or supply equal to the line loss are added at the
middle of each line. The line is then split into two parts. Both are then without
losses.

Next, the matrices of flow contribution C (NxN) and flow distribution A
(NxN) are computed as shown in Equations (2.19) to (2.22), I describing the
identity matrix.

Cu = diag−1(P ) ∗ F in (2.19)

Au = I − CT
u (2.20)

Cd = F out ∗ diag−1(P ) (2.21)

Ad = I − Cd (2.22)

The matrices C and A can be used to obtain generation distribution factors
GDF (MxN) and load distribution factors LDF (MxN).

GDF = diag(Λ(GfCuC
T
t ))GfA

−1
u (2.23)

LDF = diag(Λ(GfCdC
T
t ))GfA

−1
d (2.24)

The Λ operator returns the diagonal elements of a square matrix. Gf (NxM)
represents the incidence matrix with ’from’-nodes and Gt (NxM) is the incidence
matrix with ’to’-nodes. The element gdfk,m indicates the share of injected power
at node m flowing on line k. Likewise, ldfk,m indicates the share of withdrawn
power at node m flowing on line k. With the distribution factors, new equations
in the market model are formulated, as described in the next section.

2.3.4. Coupling of the asset optimization model and grid model

The way distribution factors are used to formulate new constraints in the asset
optimization model reflecting line and transformer capacity limits depends on
the type of grid signal associated with the curtailment approach. As presented
in Section 2.2, three types of grid signals are considered. In the case of basic
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curtailment, the maximum load of each electric vehicle behind a bottleneck is
limited during a specific time interval. Variable curtailment reflects curtailing all
electric vehicles behind a bottleneck with the same time-dependent curtailment
factor. In the case of smart curtailment, single EVs are individually controlled
optimally to resolve congestion, assuming perfect information.

Basic Curtailment

Equation (2.25) is used for the basic curtailment concept, where the DSO applies
the same fixed and time-constant curtailment factor for the entire distribution
grid. In situations with bottlenecks, all EVs behind that bottleneck are cur-
tailed with the same factor. Here, only information about congested lines and
transformers is considered in the LDF matrix. Consequently, values larger than
0 reflect a contribution of node n to the power flow on a congested line or trans-
former k. Transferred into reality, LDF is a model-based approximation of the
information regarding congestions and affected nodes behind that bottleneck. If
a node with an EV contributes to congestion, the maximum charging power ielc
is multiplied by 0 < e < 1. αc is a set of nodes connected to a component c.
The value of e depends on the penetration rate for EVs and represents a cur-
tailment factor determined a priori. All EVs behind a bottleneck face the same
curtailment.

4

h
∗ P lel

c,q ≤

{
ielc ∗ e ,if

∑
k∈K

∑
n∈αc

ldfk,n,q > 0

ielc ∗ 1.0 ,if
∑

k∈K
∑

n∈αc
ldfk,n,q = 0

∀q ∈ Q ∧ c ∈ Lel (2.25)

Variable Curtailment

Variable curtailment builds upon the principles of Basic Curtailment but incor-
porates additional information concerning the actual load and congestion levels.
Instead of applying a fixed curtailment factor to all EVs located behind a bottle-
neck, time-dependent signals on a quarter-hourly basis are transmitted to them.
Although all EVs behind the bottleneck experience the same level of curtailment,
the intensity varies over time, aligning with the real-time utilization patterns.
Equation (2.26) can be formulated based on these assumptions.

4

h
∗ P lel

c,q ≤

{
ielc ∗ ec,q ,if

∑
k∈K

∑
n∈αc

ldfk,n,q > 0

ielc ∗ 1.0 ,if
∑

k∈K
∑

n∈αc
ldfk,n,q = 0

∀q ∈ Q ∧ c ∈ Lel (2.26)

Smart Curtailment

For modeling smart curtailment, two more advanced equations are used instead
of Equation (2.25) or (2.26) to consider optimally determined grid signals within
the optimization model to prevent grid congestions. With these equations, the
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selective and time-variable control of single EVs in possible. To achieve this,
we assume perfect information regarding grid utilization, the impact of single
nodes on power flow, and the possibility of controlling each electric vehicle in-
dividually. Assuming that only a fraction of the assets in the distribution grid
is controllable, GDF and LDF only include the contribution values of the re-
spective nodes. Consequently, for all transformers and loads, we differentiate
between the total maximum capacity limit Pmax

k,q and the maximum capacity

limit Pmax,controllable
k,q related to the nodes with controllable assets. Figure 2.3

visualizes this relationship. For simplicity, S, P , and Q reflect power values with
no temporal and spatial component.

Figure 2.3.: PQ-Diagram to determine the maximum, controllable active power on grid
elements

The capacity limit of each line or transformer k is defined by the maximum
apparent power Smax

k . The apparent power consists of an active and reactive
part. Each part can be further decomposed into three parts. The first part
(P act,noControllable

k,q and Qact,noControllable
k,q ) respectively includes the contribution

of all nodes in a specific time interval q on line and transformer flow that have
no controllable assets. A second part (P act,Controllable

k,q and Qact,Controllable
k,q ) in-

cludes the actual contribution of all nodes on line and transformer flow which
have controllable assets such as electric vehicles. The last part (Qgap,Controllable

k,q

and Qgap,Controllable
k,q ) defines a gap that reflects the maximum additional active

and reactive power on a line or transformer until the maximum apparent power is
reached. In case the maximum apparent power is already reached by the actual
active (P act

k,q ) and reactive power (Qact
k,q), this gap has to be negative. Dispatch

of the different controllable assets has to be readjusted to stay within the maxi-
mum apparent power. In the market model, only Pmax,Controllable

k,q is used, which
corresponds to imax

k,q there. Appendix A.2 describes its calculation in detail.

With the values for LDF and GDF, calculated in Section 2.3.3, and imax
k,q , Equa-

tions (2.27) and (2.28) can be formulated in the optimization model. Equation
(2.27) considers all controllable nodes with generation larger than load (genera-
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tion nodes), and Equation (2.28) does the same for all controllable load nodes.

4

h
∗
∑
n∈N

[max(0n,q,
∑
c∈αn

P gel
c,q −

∑
c∈αn

P lel
c,q) ∗ gdfk,n,q] ≤ imax

k,q ∀k ∈ K ∧ q ∈ Q

(2.27)

4

h
∗
∑
n∈N

[max(0n,q,
∑
c∈αn

P lel
c,q −

∑
c∈αn

P gel
c,q ) ∗ ldfk,n,q] ≤ imax

k,q ∀k ∈ K ∧ q ∈ Q

(2.28)

Components are mapped to the respective node with the matching set αn, and
the balance is calculated. From the generation perspective, by multiplying the
nodal generation (

∑
c∈αn

P gel
c,q −

∑
c∈αn

P lel
c,q) with the GDF matrix, the power

flow on each line caused by the respective node is computed. After summing
over all nodes, the total power flow on each line or transformer k is the result.
For all lines and transformers in the system, the total power flow has to be lower
than the maximum capacity limit imax

k,q . The same can be formulated for nodes
treated as load nodes, as done in Equation (2.28).

2.4. Case study - Technical and economic effects of
different intervention concepts

We employ the formulated model alongside the proposed combinations of tariff
schemes and diverse intervention methods by the DSO to a synthetic distribu-
tion grid represented as a case study. Within this section, we focus on optimal
EV charging strategies in combination with various electricity tariff schemes and
examine the implications of distinct DSO intervention methods. The computed
outcomes cater to a range of EV penetration rates. Section 2.4.1 details the case
study’s context and base data. Section 2.4.2 explores the first research ques-
tion addressing the impact of disparate tariff structures on optimal EV charging
strategies and, subsequently, grid utilization under various EV penetration rates.
Section 2.4.3 is devoted to the second research question, focusing on the implica-
tions of the DSO’s varied intervention concepts on optimal charging strategies,
accounting for differing penetration rates. We analyze the impacts considering
factors such as flexibility demand and charging costs.

2.4.1. Analysis environment

We parameterize the optimization model and a synthetic distribution grid to
analyze the interdependencies of various tariff designs and DSO interventions.
In the following section, we provide details regarding the grid configuration, the
profiles used (including renewables, electricity prices, and charging profiles), the

25



Integrating EVs into distribution grids

factors for curtailment (see Section 2.3.3), and the considered period in the form
of type days.

The analysis is based on the grid configuration ”1-MVLV-semiurb-all-0-sw”
made available by the SimBench project (Meinecke et al., 2020). The grid com-
prises 115 medium-voltage nodes with downstream low-voltage grids, as illus-
trated in Figure 2.4. However, only 12 connected low-voltage grids with six
different topologies, consisting of 1015 low-voltage nodes in three different set-
tlement types (rural, semi-urban, urban), are explicitly modeled. In contrast,
the remaining 103 low-voltage grids are aggregated with a predefined load pat-
tern at their respective medium-voltage node. The Simbench project provides a
comprehensive open-source benchmark data set for the simulation of distribution
grids to enable research in the field of grid analysis. The data is compared to
real grid data to ensure applicability and relevance.5

Figure 2.4.: Configuration of the distribution grid based on Meinecke et al. (2020)

Note: The distribution grid consists of 103 medium-voltage nodes with aggregated low-voltage
grids and 12 medium-voltage nodes with explicitly modeled low-voltage grids. In total, 1015
downstream low-voltage nodes are considered.

The analysis encompasses various distributed energy resources, including power-
to-heat, photovoltaic (PV) systems, energy storage systems, and electric vehicles
(EVs). For the year 2030, the penetration rates of the individual technologies
are derived from the energy system study dena (2018) for Germany and are allo-
cated randomly. The installed capacity of the PV systems ranges from 1.7 kW to

5The data is accessible via a Python API (simbench 1.5.3) and can be processed using pan-
dapower.
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around 10 kW, with a mean value of 6 kW. The batteries are 1C batteries, with
capacities between 3.7 kWh and 8.8 kWh, averaging around 6 kWh. The heat
pumps have an evenly distributed installed capacity of either 3 kW or 4 kW.

We model 940 households at individual nodes within the 12 low-voltage grids
of different sizes. These low-voltage grids are assumed to represent relatively
homogenous settlements with single-family houses. The base demand of house-
holds, excluding EVs and electric heating, is generated using a publicly available
load profile generator (Pflugradt et al., 2022). In line with Birk et al. (2021), the
profiles differ regarding the number of persons per household (two or four), effi-
ciency levels, the number of gainfully employed persons, and vacation behavior,
resulting in sixteen different types of households. Only households with an EV
are considered controllable, as detailed in Section 2.3.

The baseline configuration assumes an EV penetration rate of 30%, represent-
ing the proportion of households within the grid area possessing both an EV
and a charging station. Scaling this proportion would lead to approximately
14 million EVs in Germany (Kraftfahrt-Bundesamt, 2023), close to the target of
15 million EVs set by the German government (German Federal Government,
2022). In addition to the baseline rate, the analysis considers increased EV
penetration rates of 50% and 70% to account for varying diffusion rates across
individual neighborhoods and the anticipated higher overall EV penetration in
the future. Within individual low-voltage grids, the EV penetration rates fluc-
tuate between 23% and 68% for the baseline rate of 30%, reflecting variations
in neighborhood affluence. Corresponding rates for EV penetration rates of 50%
and 70% range from 41% to 79% and 65% to 100%, respectively. For the 12 low-
voltage grids included in this study, the total energy consumption, inclusive of
EVs, equals 7.3 GWh/a for the baseline EV penetration rate of 30%, 8.7 GWh/a
for 40%, and 10.7 GWh/a for 50%. Additional details regarding the properties
of the modeled 12 low-voltage grids, including their topologies, can be found in
Tables A.4 and A.5 in the Appendix.

Renewable generation profiles are determined based on the weather year 2015
and a representative weather station in North Rhine-Westphalia, Germany. For
modeling the retail prices, we adjust the procurement component of the consumer
prices for the different tariffs based on expected day-ahead wholesale prices. The
prices are calculated using the energy system model DIMENSION6 (Helgeson
and Peter, 2020). Consistent with the penetration of individual technologies, the
model is parameterized according to the future energy system scenario ”EL80”
from dena (2018). All components of the consumer price, such as the grid usage
fees, levies, and electricity tax, are taken from the selected scenario and con-
sistently applied across all tariffs. The value-added tax of 19% is subsequently
calculated based on the consumer price components. We disregard the retailer’s
added margin and distribution components to streamline the model. The dis-
tribution component includes a risk premium depending on the respective tariff.

6The energy system model is implemented in GAMS.
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As the dynamics of the tariffs increase, the risk premium reduces due to price
risks being transferred to consumers. The risk premium is virtually zero for fully
dynamic tariffs. The distribution of the resulting wholesale prices and the de-
rived average consumer prices for both the Fixed tariff and the ToU tariff can be
seen in Figure 2.5. The 2030 quarter-hourly wholesale prices on the left fluctuate
around 59.6 EUR/MWh with an average peak price of about 62.3 EUR/MWh.

Figure 2.5.: Electricity prices - Cumulated distribution of assumed electricity wholesale
prices for 2030 (left) and final composition of the electricity prices for the
Fix and ToU tariff for 2030 (right)

Note: The ToU tariff consists of three eight-hour time windows with distinct prices. The first
ToU period (0-8) covers the first eight hours of the day. For the RT tariff, the grid usage fee,
levies, and taxes are added to the wholesale price, resulting in different prices for each interval.

For each type day, consisting of three consecutive days, we define the Fixed
and the ToU tariff based on the respective wholesale prices individually to ensure
comparability of prices. On average, the procurement component for the Fixed
tariff corresponds to the average wholesale price of 59.6 EUR/MWh, culminat-
ing in an average total fixed consumer price of 251.3 EUR/MWh. The ToU
tariff features three price levels that apply regardless of the type of day (week-
ends or weekdays). The procurement components mirror the average annual
prices within three time windows. On average, the tariff structure encourages
charging in the first third of the day (246.3 EUR/MWh) over the last third
(249.2 EUR/MWh), with charging in the second third of the day being the least
favored (253.1 EUR/MWh). For the RT tariff, the procurement component of
the consumer prices equals the quarter-hourly wholesale price. For the year un-
der consideration, the prices vary between -33.2 and 475.7 EUR/MWh, with the
average price aligning with the fixed consumer price. The characteristics of the
EVs are summarized in Figure 2.6. The left side shows the cumulative distri-
bution of daily energy consumption, with a mean value of about 11 kWh daily.
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The EV users, thus, represent frequent commuters. The right side shows the
share of EVs connected to the grid during three representative days. It shows
a typical commuting pattern. At noon, EVs are not at home and, thus, not
connected to the grid, while they are at night. The electric vehicles are charged
up to a maximum capacity of 11 kW. EVs can be charged anything between
sufficiently charged for the next trip and until the batteries are fully charged.
EVs are connected to the charging station when they arrive home, even though
the charging processes do not necessarily start immediately. Additionally, max-
imizing the self-consumption, i.e., if a PV system is available, is a fundamental
consumption strategy that also affects the charging behavior. The EV data is
derived from the German Mobility Panel (MOP) (KIT - Institut für Verkehr-
swesen, 2021), a survey-based longitudinal study of the mobility behavior in
Germany, which has been published annually in several data sets since 1994.
Besides household-specific information, it includes data on the households’ trips,
including timestamps, destinations, distances, and modes of travel. The relevant
information are derived using Python.

Figure 2.6.: Cumulated distribution of EVs’ daily energy consumption (left) and share
of EVs with grid connection over time (right)

Depending on the penetration rate and the tariff design, the curtailment factor
for basic curtailment (e) (see Equation (2.25)) is varied according to Table 2.1.
Each factor is used for the whole distribution grid. The variation is necessary
because the need for curtailment increases with higher penetration rates and
more dynamic electricity tariffs.
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Table 2.1.: EV curtailment in use cases with basic curtailment

Concept EV penetration EV penetration EV penetration
30 % 50 % 70 %

Basic-Fix 0 % 0 % 20 %
Basic-ToU 35 % 60 % 75 %
Basic-RT 35 % 60 % 75 %

For performance reasons, the year under consideration is divided into 16 typical
days to reduce the computation time. The 16 days correspond to eight winter
and eight summer days, as well as eight working days and eight weekend days.
The days are weighted individually and add up to 365 days. To analyze storage
operation for more than one day, the preceding and following days for each
typical day are included in the calculations. A detailed description is given in
Birk et al. (2021) regarding the production and consumption profiles for the
considered assets.

2.4.2. Impact of different tariff structures on optimal charging
strategies and grid utilization

This section investigates how tariff structures alter EV charging strategies and
consequently impact grid utilization. Initially, we scrutinize load pattern varia-
tions specific to an individual transformer and a three-day time interval across
different tariff schemes. This analysis is conducted for the three EV penetra-
tion rates, denoted as ’dRates’. Additionally, we calculate changes in absolute
electricity costs for each tariff design and penetration rate. We use the costs
associated with the fixed-tariff scheme as a benchmark, enabling a standardized
comparison of tariff cost-effectiveness and highlighting the economic implications
of different tariff structures for EV charging. The results of this analysis are illus-
trated in Figure 2.7, divided into two parts. The left-hand side demonstrates the
demand profile, visualizing how EV charging demands fluctuate under various
tariff structures and penetration rates. Conversely, the right-hand side represents
absolute electricity costs.
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Figure 2.7.: Impact of tariff structures on optimal charging strategies and related charg-
ing costs without curtailment

Note: The left segment of the figure concretely portrays the demand patterns tied to a singular
transformer for three days. The distribution of charging costs depicted on the right is calculated
annually, encompassing all vehicles distributed across the twelve grids. Each row reflects the
results for a given penetration rate.

Examining variations in total electricity costs for individual electric vehicles
reveals interesting trends. Notably, the implementation of dynamic tariffs results
in a reduction in total costs for almost all households when compared to the
Fixed tariff. Among the dynamic tariff structures, Real-Time Pricing emerges
as particularly influential, outweighing the impact of ToU tariffs. With the ToU
tariff, households experience weighted average savings of 16.9 EUR across all
penetration rates. At the same time, a stronger trend is observed with the
RT tariff, where households save an average of 47.2 EUR across all penetration
rates. Only a few households experience increasing electricity costs, driven by
individual charging patterns correlated with high-price windows. However, when
compared to the total electricity expenses of each household, the changes in costs
are relatively small. Specifically, the ToU tariff decreases relative electricity costs
by about 1%, whereas the RT tariff yields slightly higher savings of about 3%.

The observed fluctuations in charging costs can be attributed to the shifting
demand in response to price signals. In the case of the ToU tariff, we observe
demand being diverted primarily towards the early hours of the day, between
00:00 and 09:00. This shift is driven by the lower electricity prices prevalent

31



Integrating EVs into distribution grids

during this time window. Conversely, under the RT tariff scheme, the charging
mechanisms are more reactive to granular, 15-minute price signals, with the
demand being lowest during the night.

When considering all tariff schemes, it’s important to understand that adjust-
ing optimal charging strategies and increasing the penetration rate of EVs could
potentially lead to congestion in the distribution feeders. The provided Table 2.2
analyses potential transformer overloads in the twelve Low Voltage grids, given
different EV penetration rates and under various electricity tariff schemes.

Table 2.2.: Number of events of potential transformer overloadings

dRate 30 dRate 50 dRate 70
Grid Fix ToU RT Fix ToU RT Fix ToU RT
LV1 0 0 0 0 0 0 0 0 0
LV2 0 378 220 0 1014 982 41 1272 1387
LV3 0 303 180 0 920 1000 59 1218 1437
LV4 0 0 0 0 933 859 0 1077 1098
LV5 0 278 106 0 664 618 0 957 951
LV6 0 319 185 0 603 625 0 898 960
LV7 0 79 48 0 647 632 0 937 1005
LV8 0 0 0 0 23 0 0 27 19
LV9 0 0 0 0 0 0 0 0 0
LV10 0 0 0 0 0 0 0 47 17
LV11 0 0 0 0 26 20 0 497 383
LV12 0 0 6 0 0 0 0 96 43
Total 0 1357 739 0 4830 4736 100 7026 7300
Note: The number of events in each distribution grid refers to a whole year with a maximum
of 35040 time steps. The total value is the sum over all events in one column.

The absence of overload events in grids LV1 and LV9, across all scenarios,
indicates the resilience of these grids to increased EV penetration and tariff
variations. On the other hand, for grids like LV2, LV4, LV6, and LV7, the
number of overload events tends to increase with the EV penetration rate and
varies significantly between tariff schemes. The RT tariff scheme shows increased
susceptibility to overloads as the EV penetration rate rises. This suggests that
while RT tariff schemes may offer real-time pricing benefits, they could lead to
potential grid congestion when not adequately managed, particularly in scenarios
of high EV penetration. The ToU tariff scheme exhibits a moderate number
of overload events in the scenario with a low penetration rate, suggesting a
balanced approach, but records a significant rise in potential overloads as EV
penetration rates increase. The results stress the vital role that DSOs must play
in ensuring the stability of the power grid. Interventions by DSOs become crucial
to prevent potential transformer overloads and maintain the grid’s reliability and
resilience in the case penetration rates increase and dynamic electricity tariffs
are introduced. The effects of different DSO intervention strategies are evaluated
in the following section.
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2.4.3. Impact of different intervention options of the grid
operator on optimal charging strategies

In this section, we address the second research question of quantifying the im-
pact of different intervention options of the grid operator on optimal charging
strategies. We do so by focusing on flexibility demand to avoid grid congestion
and the change of charging costs.

Flexibility provision in the whole grid area

The congestion on transformers and lines in the distribution grid is mitigated by
flexible EV charging, as charging is shifted to other time intervals. The amount of
shifted energy can be interpreted as a flexibility provision. Its value is calculated
as the positive delta between the charging power of each electric vehicle before
and after the grid signals as described in Equation (2.29).

Flex =
∑
EV

∑
t

[max(ibeforeEV,t − iafterEV,t , 0)] (2.29)

The amount of provided flexibility by electric vehicles to avoid congestion is
visualized in Figure 2.8.

Figure 2.8.: Flexibility provision by electric vehicles

The figure above shows a significant trend: introducing time-varying tariffs,
such as ToU and RT tariffs, directly correlates with increased flexibility demand
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to avoid congestion. When considering a 30% or even a 50% EV penetration rate,
curtailment is not required under Fixed tariffs but becomes necessary as dynamic
tariffs are introduced. The magnitude of the increase in flexibility demand due
to the implementation of dynamic tariffs is not constant but depends on the
electric vehicle penetration rate. Specifically, it is observed that with increasing
EV penetration rates, the necessity for flexibility increases across all electricity
pricing schemes and both curtailment strategies. For example, in the case of
the ToU tariff combined with basic curtailment, the flexibility demand increases
eightfold when comparing the results for a penetration rate of 30% with those
for a rate of 50%. The demand reaches even more than 1000 MWh with basic
curtailment if a penetration rate of 70% is assumed. Upon reaching the maxi-
mum analyzed penetration rate of 70%, the demand for flexibility experiences a
substantial surge across all electricity pricing schemes and curtailment strategies.
With increasing EV penetration rates, curtailment becomes indispensable even
for Fixed tariffs. Regarding the effectiveness of curtailment strategies, smart cur-
tailment, the optimal benchmark, requires uniformly less flexibility than basic
and variable curtailment across all pricing schemes, regardless of the EV penetra-
tion rate. Furthermore, variable curtailment always outweighs basic curtailment.
This steady advantage highlights how a spatial and temporal differentiation of
curtailment reduces the amount of flexibility and thus can help integrate more
EVs into the electricity grid more easily. However, even in challenging scenarios,
smart curtailment maintains its superiority over basic and variable curtailment,
exemplifying its robustness and efficiency.

Electricity Costs

Figure 2.9 illustrates a comparative analysis of the annual variations in electricity
costs, considering the ToU and RT tariffs, EV penetration, and the three different
curtailment strategies. The comparison is made to the scenario featuring a fixed
tariff without curtailment. Notably, the cost differentials for the fixed tariff are
not visualized, as this tariff structure entails consistent costs irrespective of the
employed curtailment approach.

The boxplots depict that both ToU and RT tariffs exhibit reduced overall elec-
tricity costs for most households with flexible charging, both before and after the
application of curtailment. However, a minor increase in costs is observed for
some households under variable tariffs. This is attributed to the limited flexi-
bility of charging demand coincidentally aligning with higher electricity prices.
Furthermore, on average, the RT tariff demonstrates an approximately threefold
higher cost reduction than the ToU tariff. However, it is essential to note that
the weighted average cost reductions compared to the fixed tariff are modest —
around 1% for the ToU tariff and approximately 3% for the RT tariff. This is due
to the variable component constituting only a minor fraction of the retail price.
The cost delta for the ToU tariff appears almost independent of the curtailment
strategy, as the deltas remain unchanged compared to the scenario before cur-
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tailment. This can be attributed to the length of the chosen ToU tariff intervals,
which allows for sufficient load shifting to meet the grid limitations at the same
price level.

Figure 2.9.: Comparison of cost deltas

Note: ’before’ refers to the hypothetical case of charging exclusively based on price signals
before curtailment strategies are deployed.

In contrast, for the RT tariff, the curtailment strategy impacts the cost delta,
which depends on the EV penetration rate. While curtailment has a marginal
impact on cost deltas at an EV penetration rate of 30%, its effects become
more pronounced at rates of 50% and 70%. Comparing these scenarios to cases
without curtailment, basic curtailment, the least efficient concept, diminishes
cost savings more significantly than variable and smart curtailment. This effect
intensifies with an increasing EV penetration rate, necessitating more substantial
load shifting to comply with grid constraints.

At an EV penetration rate of 50%, the weighted average cost delta under ba-
sic curtailment decreases by approximately 4.7 EUR compared to the scenario
without curtailment. Variable and smart curtailment exhibit a milder reduction
by 2.2 EUR and 1.4 EUR, respectively. Consequently, the cost savings under
variable curtailment closely align with those achieved through smart curtail-
ment. For an EV penetration of 70%, the weighted average cost delta under
basic curtailment further decreases by 6.4 EUR. In contrast, variable and smart
curtailment experience a more modest reduction of 2.6 EUR and 2.5 EUR, re-
spectively. Despite this, the cost savings remain above those realized by the ToU
tariff.
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All in all, the shift from the Fixed tariff to a time-variable tariff has a stronger
economic impact than the choice of the curtailment strategy, even at higher
EV penetration rates. This implies that introducing the RT tariff, even under
basic curtailment, is more efficient than a Fixed tariff or a ToU tariff. With an
increasing EV penetration, however, a change from basic curtailment to smarter
curtailment strategies becomes beneficial.

2.5. Discussion

This study uses a synthetically constructed distribution grid consisting of several
low-voltage grids to represent a future scenario concerning household generation
and consumption patterns. Nevertheless, we consider our results to be generaliz-
able for several reasons. Firstly, the synthetic grids are based on real distribution
grids (see Meinecke et al. (2020)) and cover three different settlement types (ru-
ral, semi-urban, urban). Second, we distinguish a total of twelve distribution
grids with six different grid topologies, which differ, among other things, in the
capacity of the transformers and the number of buses. Thirdly, we distinguish
ten different system combinations for households and finally, we model three
different penetration levels of EVs, resulting in an EV penetration of 23% to
100% depending on the various distribution grids. In this way, we cover a wide
range of load cases and different ratios of inflexible and flexible load (EVs only),
implicitly considering various EV adoption rates. We cover a wide range of the
inherent heterogeneity of distribution grids in terms of load, size and topology,
but not completely. In this sense, the transferability of the findings from this
study to other contexts may be limited. However, certain trends and findings
have emerged regardless of the specific grid infrastructure.

The findings indicate that significant electric vehicle penetration does not nec-
essarily cause grid congestion under the current market conditions, characterized
by an absence of market and grid signals. For the analyzed use case, grid con-
gestion occurs at EV penetration rates beyond 50% with a fixed tariff. This,
however, is highly dependent on the respective grid topology and the current
state of the expansion. IEA (2022a) find that, in German distribution grids,
an EV penetration rate beyond 20% can cause significant grid adaption needs,
affecting rural grids considerably stronger than urban grids. Transformers are
by far the most affected grid element in this regard. An EV impact assessment
study for Australia shows that depending on the grid, critical penetration rates
vary significantly between 20% in rural and 80% in large urban distribution grids
(Nacmanson et al., 2021). A similar study for California indicates that even EV
penetration rates of 7% can cause significant overloading (Jenn and Highleyman,
2022). Rather than the EV penetration, the balance of regional demand and
supply and the degree of correlation between EV load and the power generated
by wind or PV systems determine how prone a distribution grid is to conges-
tion. However, the probability of grid congestion rises due to the simultaneity of

36



2.5. Discussion

charging processes as the number of EVs increases (compare with Arnold et al.
(2024))

Situations of abundant renewable feed-in are correlated with lower electricity
prices. Flexible tariffs, which are driven by the electricity market prices, can thus
help to integrate electricity from renewable resources, as they provide consumers
with economic incentives to shift their demand to cheaper charging times with a
high share of feed-in by renewables (compare with Powell et al. (2022)). This is
called market-oriented charging. The results of this passive coordination in the
form of a price signal depend on the consumers’ willingness to participate and
pay.

Like Daneshzand et al. (2023), we find that depending on the tariff design,
purely market-oriented charging with a fully flexible electricity market retail
price component could trigger herding behavior. It occurs when multiple users
exploit the same low prices, resulting in a higher simultaneity of charging pro-
cesses and, thus, higher peak loads in the respective time intervals. This would
be exacerbated by additional flexible consumers, such as heat pumps. ToU tar-
iffs represent a trade-off between non-existing (Fixed tariff) and fully dynamic
market signals (RT tariff). They alleviate herding effects by incentivizing a shift
of charging processes to certain time windows rather than specific points in time,
as is the case with RT tariffs. This finding is consistent with Schittekatte et al.
(2022), who see in ToU tariffs a reasonable intermediate step toward fully flexible
time-dependent tariffs. Nevertheless, our study shows that, at high EV penetra-
tion rates, also ToU tariffs, and even Fixed tariffs, can lead to grid congestion.
Price-signals, which do not take grid information into account, are not sufficient
to manage grid congestion fully on their own when there is a high share of flexible
demand. To enable this, prices either need a grid component (e.g., in the form
of varying grid usage fees) to indirectly manage congestion based on the variable
willingness-to-pay of consumers. Or they need to be complemented by volume
signals which directly manage congestion as analyzed in this study.

We find that while variable tariffs cause significant load shifting, the con-
sumers’ resulting economic benefits are limited. For the chosen ToU tariff, house-
holds’ cost savings are at about 1% compared to a flat tariff, while those for the
RT tariff are at about 3%. This is due to the structure of retail prices, in which
the electricity market component only has a small share, as electricity is taxed
on a per-unit basis, and due to limited price fluctuations in the chosen use case.
This is similar to Blaschke (2022), who makes the same observation for the cur-
rent German electricity market. He finds that the average savings of flexible EV
charging based on dynamic prices are about 22 EUR per year. In the presented
future scenario, with a higher share of RES and resulting price volatility, the
weighted average cost savings of EV charging with a fully dynamic tariff are
47.2 EUR per year.

Herding effects highlight the limitations of variable market signals, as they
can potentially exacerbate critical load situations. But, when market signals are
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paired with grid signals, grid constraints can be accounted for. However, cur-
tailment dimensioning and planning become more complex due to the potential
of passive control mechanisms to stimulate herding behavior. This complexity
makes it challenging to curtail efficiently and system-oriented.

The proposed smart curtailment approach yields an optimal asset deploy-
ment considering both the electricity market and the grid. It intervenes only
marginally with the purely market-oriented load duration curve and maximizes
the load while complying with grid limitations. It, thus, predominantly affects
higher load levels nearing full load. It marks an optimal system-oriented bench-
mark that indicates the minimum flexibility requirements to fulfill the charging
demand under consideration of the grid, regardless of the underlying tariff. It
corresponds to volume signals with the highest possible degree of spatial and
temporal differentiation on a node level. However, it remains a theoretical op-
timum, which is challenging to implement due to the lack of transparency in
distribution grids.

In distribution grids with low digitization and a lack of real-time load in-
formation, grid-oriented charging based on uniform volume signals to prevent
congestion, e.g., ripple control signals is a common active control approach (ba-
sic curtailment). Fixed volume signals, with neither a spatial nor a temporal
differentiation, are prone to inefficiencies since the curtailment rate might not be
optimal, potentially leading to curtailment that exceeds peak load requirements.
Furthermore, excessive curtailment could cause load loss if the grid signals are
coordinated poorly with the market signals (Basic-RT). Although we do not
observe a loss of load in the presented use case, we do see that, dependent on
the EV penetration rate, close to three times more load is shifted than ulti-
mately necessary to comply with the grid limits under consideration of an RT
tariff. With a more targeted curtailment approach (variable curtailment) with
a high-level spatio-temporal differentiation on a subgrid level, we observe that
the flexibility demand can be reduced considerably to an offset of about 37-38%
above the minimum requirements.

At the same time, we observe that the interventions of DSO only marginally
affect the potential cost savings of time-variable tariffs. For the ToU tariff, we see
hardly any difference in the cost savings, as the defined intervals of the ToU tariff
are long enough to shift the load in a grid-oriented fashion. We observe more
nuanced differences between the curtailment strategies regarding cost savings
for the RT tariff, which become more pronounced with increasing EV penetra-
tion. At a 70% EV penetration, the weighted average cost savings with basic
curtailment compared to purely market-oriented charging reduce by 24%, while,
with a reduction of about 11%, variable curtailment is considerably closer to
smart curtailment (-9%). Given the limited potential of demand flexibility to
achieve electricity cost savings but a considerable potential to avoid grid expan-
sion (Resch et al., 2021, Spiliotis et al., 2016), the real value of flexibility for
households lies in avoiding grid expansion and, thus, higher grid usage fees.
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Our results show that active control with volume signals can achieve feasi-
ble system states while complying with grid restrictions and avoiding loss of
load, even if these are not necessarily optimal, depending on the curtailment
strategy. However, without financial incentives, the acceptance of active control
mechanisms is limited, as they restrict end use, impair consumer convenience,
and potentially lead to, even if limited, a loss of profits, and as the necessary
smart metering comes at a cost. A remuneration in case of curtailment, e.g., re-
duced grid usage fees, could overcome this. Nevertheless, effective coordination
mechanisms between the market (electricity prices) and the grid (potential bot-
tlenecks) cannot be overstated in ensuring the successful integration of EVs and
other flexible assets. By integrating market incentives with grid constraints and
capacity, we can foster user behaviors that uphold grid stability, contribute to
integrating feed-in by renewable electricity resources, and provide economic ben-
efits. It, thus, facilitates charging in a system-oriented manner. In this study, we
explicitly analyze the combination of market-based price signals and grid-based
volume signals. Another option would be to consider price-signals from the grid,
i.e., via tariffs with varying grid usage fees. This would be equivalent to an in-
direct or incentive-based congestion management dependent on the consumers’
willingness-to-pay and their individual utility functions. While this study adds
to the design of such tariffs by deriving the opportunity costs of grid congestion
by determining an optimal benchmark through the smart curtailment approach,
the study of EV users’ utility functions is subject to further research.

In the context of implementing curtailment strategies with spatio-temporal
discrimination, it is imperative that, firstly, the state of the grid is measured,
that, secondly, this information is disseminated to all relevant stakeholders, and
that, thirdly, it is metered at the lowest possible cost. In this regard, digitizing
distribution grids by implementing smart meters and digital control devices to
deliver real-time data on load, grid capacity, and constraints is inevitable. To
achieve this, questions about data sovereignty and access must be answered.
Additionally, the costs of smart metering are an important factor in the business
case of demand response. The calculated weighted average yearly cost savings
of 47.2 EUR or lower, if the grid is considered, mark an upper acceptable bound
for households with a flexible EV only.

Our study reveals the opportunity costs of grid curtailment by comparing dif-
ferent curtailment strategies with an optimal benchmark (smart curtailment).
Our research can support policymakers and DSOs in implementing curtailment
strategies, which will be indispensable with the large-scale adoption of flexible
technologies. Our findings indicate that even simplified methods can approach
optimal performance at lower penetration levels of flexible consumers. Moreover,
our results can aid in the development of incentive-based curtailment mecha-
nisms, such as variable grid usage fees, which manage grid congestion indirectly
based on consumers’ willingness to pay. Additionally, it supports EV users in
understanding the implications of potential tariff choices.
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Policymakers should foster an environment conducive to this transformation.
First and foremost, policymakers need to speed up the digitization of German
distribution grids and the smart meter roll-out, as smart meters are imperative
for sophisticated charging concepts. Additionally, policymakers must work to-
wards open regulation where grid and market information can be used jointly in
future energy systems. This would involve rethinking the unbundling principle,
which currently limits the potential for fully integrated systems.

2.6. Conclusion

As electrification of the transport sector progresses in the context of the global
energy transition, fast and optimal integration of EVs into the existing energy
system becomes crucial. While ensuring a market-oriented integration, the avoid-
ance of grid congestion is imperative. For market-oriented EV charging, retailers
use dynamic tariffs, incentivizing consumers to lower electricity costs by optimiz-
ing charging strategies based on those tariffs. However, due to herding behavior,
this approach puts extra pressure on distribution grids, requiring DSOs to step
in and curtail to prevent congestion. Design options for the intervention rights
differ in the required information and the degree of spatio-temporal differentia-
tion of the curtailment signals. The concrete design of DSO intervention rights is
subject to political debate. We contribute to this by analyzing the implications
of various active control approaches.

We have developed a model capable of assessing optimal charging strategies
based on different tariff schemes, including fixed, Time-of-Use, and Real-Time
tariffs. In the event of grid congestion concerns, we further explore various
curtailment options by the DSO in optimizing charging strategies. The smart
curtailment approach establishes an efficiency benchmark under the assumption
of full information. Basic curtailment involves predefined curtailment factors in
anticipation of congestion, while variable curtailment employs individual curtail-
ment rates based on regional and temporal variations. By applying the model
to a synthetic distribution grid configured with a future inventory of distributed
assets, we show how different charging designs result in different grid loads, flex-
ibility demands, and electricity costs.

Our research reveals that adopting time-variable tariffs yields marginal fi-
nancial benefits for consumers. The weighted average cost savings amount to
47.2 EUR for the RT tariff and 16.9 EUR for the ToU tariff, representing only
1 to 3% of total electricity costs. However, we observe that time-variable tar-
iffs, particularly at higher EV penetration rates, can induce herding behavior
and increase peak load if they do not include information from the grid. To
mitigate this issue, DSOs require intervention rights to prevent grid congestion
effectively. Our findings indicate that all proposed intervention strategies effec-
tively prevent congestion, although notable differences exist in efficiency. The
DSO’s ability to convey differentiated signals, incorporating spatial and tem-
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poral nuances, closely correlates with the accuracy of the optimal benchmark.
We show, that in the case of time-variable tariffs, the choice of the curtailment
strategy is a stronger driver for flexibility requirements than the design of time-
variable tariffs. From the end user’s standpoint, curtailment has a negligible
impact on charging costs, particularly with ToU tariffs. In the case of RT tariffs,
cost savings diminish marginally after curtailment. Basic curtailment increases
charging costs by 4.7 EUR per year, while variable curtailment only leads to a
slightly lower increase by 2.6 EUR per year. While RT tariffs reduce charging
costs the most, they require less flexibility to avoid grid congestion compared to
ToU tariffs, although the differences are minimal. The choice of the curtailment
strategy becomes relevant at higher EV penetration rates, while time-variable
tariffs benefit consumers regardless of the EV penetration rate.

Based on our research, we identify several relevant areas for further investiga-
tion. While this work focuses on the flexibility of EV charging within a distri-
bution grid, future research should explore the interactions with other flexible
consumers, such as heat pumps and batteries or could even include Vehicle-
to-Grid. Understanding these interdependencies is crucial for a comprehensive
assessment of grid flexibility. Additionally, the current approach is not limited to
electrical loads. It can also be applied to generation units by utilizing both load
distribution factors (LDF ) and generation distribution factors (GDF ). By ex-
tending the analysis to other distribution grids, potential grid bottlenecks caused
by PV feed-in can also be addressed. Also, future research should analyze the
impact of curtailed flexible demand on spot market outcomes, moving beyond
the price-taker assumption. Additionally, examining the imbalances in power
procurement by retailers and how these influence market dynamics is impor-
tant for a holistic understanding of the market effects. Further investigation is
needed into combining market- and grid-based price signals to evaluate the po-
tential of incentive-based congestion management. In this context, understand-
ing consumers’ willingness-to-pay and individual utility functions, supported by
empirical data, is essential to design effective incentives and policies. More so-
phisticated modeling techniques could be used to better model households’ be-
havior. Finally, the economic value of using flexibility to avoid grid expansion
should be a focus of future research. This analysis should be conducted from a
system perspective to derive generalizable results, complementing the ongoing
discussion on the value of flexibility in grid expansion.
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3. Diffusion of electric vehicles and their

flexibility potential for smoothing

residual demand - A spatio-temporal

analysis for Germany

3.1. Introduction

The energy transition towards a decarbonized future brings about fundamental
changes in the established power system, including increasing strain on distri-
bution grid components. First, the widespread implementation of decentralized
renewable energy systems, such as wind and photovoltaic (PV) systems, which
are mostly connected to the low and medium-voltage grid, increases the feed-in
of electricity into the distribution grid. Second, new demand applications emerge
in the distribution grid, e.g., charging electric vehicles (EV), increasing the load.
Both developments increase load and feed-in peaks on the national level as well
as place an additional burden on the technical components of local grids, such as
low and medium-voltage transformers, which were designed under different con-
ditions and may need to be replaced or expanded to accommodate the changes.
The charging of EVs can increase peak load and put a strain on existing distri-
bution grid equipment. However, the flexibility in EV charging offers a solution
to mitigate this impact. By charging during periods of high renewable energy
generation, load and feed-in peaks can be reduced, thus reducing the strain on
the grid.

The availability and necessity of EV charging flexibility depend on various
regionally distinct factors, such as the share of the EV load in the total load,
the level and structure of the residual load7, the correlation between flexibility
potential and regional load or generation peaks, and the distribution of charging
to the different locations (at home, at work, or other places). Thus, to fully
comprehend the potential of EV charging flexibility in reducing peaks, a com-
prehensive regional analysis and quantification of the flexibility potential and its
effects are crucial.

Two basic deployment strategies for deploying local EV charging flexibility can
be distinguished. On the one hand, flexibility can be used to flatten the national
residual load by reducing positive and negative peaks. That is, EV charging flex-
ibility is used to reduce load during peak load situations and to absorb excess

7The residual load is the difference between total load and generation by intermittent resources.
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renewable generation during times of high generation. Such a deployment strat-
egy aims to reduce system costs by not employing (or even investing in) expensive
generation technologies and fully utilizing generated renewable electricity. An
incentive scheme for such a deployment strategy would be the incentivization of
flexibility deployment based on the uniform pricing signals of the national elec-
tricity market. Alternatively, flexibility can be dispatched to smooth the regional
residual demand. Such a deployment strategy aims to reduce the load on regional
distribution grid components. This approach would reduce costs for the expan-
sion of these grids.8 Incentive schemes for such a deployment strategy would be,
for example, quantity or price signals from distribution system operators accord-
ing to the expected grid status. The goals of the deployment strategies may be
partially opposed, and the question arises of how the two strategies affect the
respective objectives.

This research paper therefore first examines the regional development of resid-
ual load, load peaks and feed-in peaks in Germany up to 2045. The analysis fo-
cuses on the spatial and temporal diffusion of EV charging, considering regional
sigmoid transition pathways of EV adoption and regional and user-specific driv-
ing and load profiles. The analysis is based on NUTS 3 regional resolution level
data (see Figure 3.1).9

Figure 3.1.: Methodological steps

Germany is considered a suitable subject for this research as it is in an ex-
posed position driven by its climate targets, i.e., emission reduction targets, and
its geographical characteristics. Germany has pledged to reach net-zero emis-

8Agora Verkehrswende et al. (2019) quantifies the investment costs in the low and medium
voltage grid under the assumption of uncontrolled charging of EVs depending on the charg-
ing capacity and the number of electric cars for Germany to be 23 to 72 billion € between
2020-2030.

9The Nomenclature of Territorial Units for Statistics (NUTS) is a hierarchical system for
dividing European territory into territorial units. While, for example, NUTS 0 stands for
states, NUTS 3 corresponds to smaller units within states, such as districts.
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sions by 2045, while most other major economies are aiming for 2050 or later
(United Nations, 2023). Since Germany, unlike other major economies, phased
out nuclear energy and lacks significant additional hydro-power potentials, the
target implies an earlier increase in decentralized renewable energy capacity than
in other economies. The potential for decentralized renewable energy generation
as well as (future) load is unevenly distributed within Germany. This initial
situation and expected development put a strain on the grid infrastructure. The
challenges that Germany faces apply to countries striving for climate neutrality
in general, albeit potentially at a later stage and to a milder extent. There-
fore, the findings from the study of Germany are generalizable, depending on
country-specific situations and transformation paths.

Based on the analysis, a spatio-temporal optimization model for EV load flex-
ibility is developed and implemented. The model aims to quantify the potential
of EV load flexibility of home charging in smoothing residual load time series and
reducing load and feed-in peaks. The focus is on the use of flexibility through
the shifting of charging processes by EVs in isolation. The application of bi-
directional charging or the interaction with other sources of flexibility, e.g. sta-
tionary storage, is not considered. This study compares two different deployment
scenarios: (1) using flexibility to flatten the national residual load time series,
which corresponds to the use of flexibility based on price signals from the na-
tional electricity market, and (2) using flexibility on regional residual load and,
thus, reduce the strain on regional distribution grid components.

EV charging is considered a major source of demand flexibility, as shifting
charging operations can reduce peak loads and thus reduce the need for grid ex-
pansion. Some sources note this at the transmission grid level, like Gunkel et al.
(2020), who compare flexible charging and transmission grid expansion and find
synergies between both, or Amann et al. (2022), who evaluate flexible charging
from both, the transmission system and distributions system perspective. How-
ever, the impact of smart charging is predominantly analyzed at the level of the
local distribution grid, as in Flataker et al. (2022). Powell et al. (2022) demon-
strate that the flexibility of EV charging possesses not just a significant temporal
component but also a geographical one, reflecting the propensity of EVs to move
between locations over the course of a day. They underscore the necessity for
a comprehensive area-wide charging infrastructure to facilitate daytime charg-
ing, which could utilize surplus PV generation and avert the late afternoon peak
load, as exemplified by workplace charging. Such conditions have direct impli-
cations for power system requirements in terms of storage and ramping needs
or emissions. Meiers and Frey (2024) find a limited peak reduction potential
of EV flexibility when only unidirectional charging technologies are considered,
analyzing a local microgrid. However, they find the added value of vehicle-to-
grid charging to be significantly higher. Analyzing the differences in national
and regional impacts of EV flexibility on peak load as an important technical
indicator for grid planning as well as analyzing heterogeneous regions are ma-
jor contributions of this study. Given the residual load-smoothing potential of

45



Diffusion of electric vehicles and their flexibility potential for smoothing residual demand

flexible end-uses, such as electric vehicle charging, there seems to be a general
recognition in the European Union that local flexibility mechanisms are of signif-
icant interest for the operation of future distribution networks (CEER, Council
of European Energy Regulators, 2020). Regulators have begun to put in place
the regulatory framework to incentivize the provision of flexibility and its call-off
by distribution system operators, which they are required to do by Article 32 of
Directive (2019/944) as part of the clean energy package (Council of European
Union and European Parliament, 2019).

There is an elaborated stream of research analyzing the provision of regional
flexibility from a market design perspective. Radecke et al. (2019) analyze various
proposed local flexibility market designs pointing out that there is no silver
bullet as each design comes with deficiencies, especially regarding inc-dec gaming.
Rebenaque et al. (2023) discuss flexibility market design regarding governing
models, coordination problems, inc-dec gaming, and competition. However, to
the best of current knowledge, there is no research addressing the concrete added
value of local flexibility use in contrast to centralized electricity markets, neither
for demand-side flexibility in general nor for EV charging in particular. This
study attempts to fill this gap with a focus on the German power system at the
national and regional levels.

From a system perspective, there are several studies that shed light on the
transformation of the German energy and consumption sector until 2045 and
beyond. Notably, the ”Big 5 Energy System Studies”, compared by dena (2022),
develop various scenarios to reduce greenhouse gas emissions and implement
technologies such as wind turbines, PV systems, and EVs on both the demand
and supply sides. While the specific numbers on installed capacity and electric
vehicles differ, the emerging trends, a significant increase compared to today, are
the same. However, the studies only marginally touch on the regional perspective
of the transition and the regional balance of supply and demand.

The regional matching of supply and demand for the German energy sys-
tem is addressed by Kockel et al. (2022) and Kühnbach et al. (2021). Kockel
et al. (2022) analyze the development of regional residual loads in Germany on a
spatio-temporal basis, related to an emission reduction of 95% by 2050 based on
dena (2018). They note significant potential for demand-side flexibility, but do
not specifically model or quantify it. Because the study only considers 2019, with
very low EV penetration, and 2050, with penetration near 100%, the EV load
is determined by a uniform distribution of regional demand based on regional
vehicle counts. However, this approach is not appropriate for modeling EV pen-
etration for the years in between, as it neglects regionally varying penetration
rates. For EV charging, the same profiles are used for each region, abstract-
ing from regional characteristics such as longer driving distances in rural areas
compared to urban areas.

Kühnbach et al. (2021) focuses primarily on regionalized demand and the
potential of demand response. In addition to analyzing regional supply and de-
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mand balancing, they examine the residual load-smoothing potential of flexible
demand on a regional basis. They compare 2015 and 2030 and define indicators
to measure supply-demand balance. They conclude that demand management is
most effective in regions that frequently alternate between demand and supply
deficits. However, the study lacks a comparison of regional results with a cen-
tralized energy system, and as in Kockel et al. (2022), the chosen scenario does
not fit with Germany’s recent climate protection goals of climate neutrality by
2045 (Deutscher Bundestag, 2021).

To be compatible with current German climate targets, a scenario based on
KN100 from dena (2021) is developed. The analysis focuses on the years 2019,
2030 and 2045, with 2019 serving as the reference year due to a negligible pene-
tration of electric vehicles. The year 2030 is a significant milestone in Germany’s
energy transition toward achieving net-zero emissions by 2045, as it is marked
by numerous technology-specific and emission targets. In contrast to existing
literature, this study focuses on the consistent regional and temporal modeling
of EV charging demand and flexibility potentials. To this end, the EV diffusion
for 2019, 2030, and 2045 is modelled by utilizing the Bass model (Bass, 1969),
which has been applied to EV diffusion in various countries, such as the US
(Becker et al., 2009), Korea (Won et al., 2009), China (Song, 2013), and Japan
(Zhu et al., 2017). The load and flexibility profiles of EVs are derived from
the mobility patterns of the German Mobility Panel (MOP) (KIT - Institut für
Verkehrswesen, 2021).

This study addresses two key questions: To what extent can electric vehicle
home charging flexibility reduce load and feed-in peaks at the national and re-
gional levels? What are the impacts of the two different deployment strategies on
national and regional residual demand curves, as well as load and feed-in peaks?
Besides answering these questions, this paper adds to the existing literature in
multiple ways:

• Analysis of the spatio-temporal evolution of residual demand under a cur-
rent scenario for Germany’s energy transition pathway until 2045 with a
focus on EV diffusion and load.

• Introduction and application of a method for modeling target-consistent
regional and temporal diffusion of electric vehicles using sigmoid functions.

• Derivation of user- and region-specific driving, load and flexibility profiles
for electric vehicles in Germany until 2045.

• Development and implementation of a model for spatio-temporal deploy-
ment of electric vehicle load flexibility under different objectives.

• A comprehensive analysis of the regional and national effects of charging
flexibility deployment on residual load for the case of Germany.
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Concerning the development of future residual load, the analysis shows that
positive and negative peaks in residual load increase over the years on the regional
level and aggregated over Germany. The correlation between residual load and
EV charging profiles is high in 2019 but decreases until 2045. This implies
that the marginal utility of charging flexibility to reduce load peaks decreases
over time, although the flexibility potential in absolute terms is increasing with
growing EV adoption.

Especially in load- and PV-dominated regions, the nationally incentivized ac-
tivation of flexibility can result in drastically higher regional demand peaks com-
pared to a scenario without the use of charging flexibility. This study shows
that the two scenarios of flexibility activation can be contradictory in their ef-
fects: While the regional incentivization is less efficient in reducing peaks on
the national level, the national incentivization leads to increased strain on local
level. The findings provide valuable insights into the challenges faced by regional
grids and the development of strategies to harness EV flexibility to address these
challenges.

The paper is structured as follows: In a first step (Section 3.2), regionalized
diffusion curves for EV expansion from 2019 to 2045 and regionalized charging
profiles for different user types are developed. Then a scenario of electricity de-
mand development and renewable capacity expansion until 2045 is regionalized,
and corresponding demand and renewable generation time series are presented
(Section 3.3). In Section 3.4, a model for the regionalized optimization of EV
charging flexibility is developed. The results (Section 3.5) address the estimation
of residual demand time series for the years 2019, 2030, and 2045 on a regional
and national level as well as the potential and effects of EV charging flexibility
under two different deployment strategies. The paper concludes with a summary
of the findings and their implications for the transformation of the power system
and usage of EV charging flexibility.

3.2. Spatio-temporal expansion of private electric
vehicles

This section focuses on the projection of regional expansion paths of electric
vehicles and the development of a method to derive individual load and flex-
ibility profiles for each region. Section 3.2.1 describes the applied method to
derive regionalized transition pathways for electric vehicles. Each region reflects
a NUTS 3 district of Germany. In Section 3.2.2, load profiles for each region are
developed, distinguishing between different user types based on their charging
locations and times.
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3.2.1. Regional diffusion of electric vehicles

Recently, several studies, summarized and compared in (dena, 2022), presented
development pathways for the future energy system and the transition to e-
mobility in Germany. The ”dena study - towards climate neutrality” projects
14 mil. electric vehicles in 2030 and 36 mil. in 2045 in its climate neutral-
ity scenario ”KN100” (dena, 2021). Also, in the summer of 2022, the German
Federal Ministry for Economic Affairs and Climate Action announced that 15
mil. electric vehicles should be achieved by 2030 (German Government, 2022).
Despite these national projections and targets, there is a lack of scenarios at
the regional level. Regions in Germany are very heterogeneous, and it can be
assumed that the penetration rates of electric cars vary. Therefore, this study
aims at decomposing the national transition scenarios to the local level based on
a NUTS 3 resolution, which is, for Germany, equivalent to individual districts.

Forecasting methods for the regional diffusion of technologies can be primar-
ily categorized into agent-based, consumer choice, and diffusion rate and time-
series methods (Ayyadi and Maaroufi, 2018). While methods of the first kind
are simulation-based, simulating the interactions of agents and how these affect
the market, consumer choice models depend on assumptions of consumer deci-
sions about new technology according to certain characteristics (Kumar et al.,
2022). Methods of the third kind rely on time series and diffusion rates to study
technology diffusion. Existing research utilizing the latter methods primarily
focuses on four diffusion models: Gompertz, as described in Gompertz (1825)
and applied to hybrid vehicles in the UK by Muraleedharakurup et al. (2010),
Logistic, as discussed by Kumar et al. (2022) for electric vehicles and applied
to plant disease progress by Berger (1981), Bass, and Generalized Bass (Bass,
1969). The Bass diffusion model fits the described problem well because it can
account for different speeds in the early and late stages of the diffusion, which is
not the case for other models (Pavlidou, 2010). The choice of the Bass diffusion
model is based on its ability to capture the inherent dynamics of technology
adoption, particularly the distinction between early adopters and the majority
who follow later. This distinction is crucial for accurately modeling the diffu-
sion of electric vehicles, as the initial phase of adoption often involves different
factors compared to the later stages. The sigmoid function form of the Bass
model allows us to model these varying rates of adoption over time, providing a
realistic projection of EV uptake. It has also been widely applied in the analysis
of EV diffusion in other countries and for earlier years. For example, Becker
et al. (2009) uses the Bass model to forecast the number of electric vehicles in
the US until 2030 and Won et al. (2009) propose electricity demand by electric
vehicles future prediction for Korea by using Bass’ diffusion. Song (2013) and
(Zhu et al., 2017) conduct similar forecasts for China and Japan respectively.
The Bass diffusion model and its transformation are written in Equations (3.1)
and (3.2) as a sigmoid function (Bass, 1969).
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f(t)

1 − F (t)
= p + q

A(t)

m
= p + qF (t) (3.1)

F (t) =
A(t)

m
=

∫ T

0
f(t)dt withF (0) = 0 (3.2)

The function f(t) describes the likelihood of a purchase at time t with p being
the probability of initial purchases at the start of the innovation (t = 0). p is
referred to as the coefficient for innovators, while q is the coefficient for imitators.
The two coefficients define the slope of the sigmoid function at the beginning and
at the end. The cumulative diffusion level at time t F (t) equals the cumulative
number of adopters A(t), which in this case reflects the number of EV owners
divided by the total market size m, the total number of cars.

The diffusion level F (t) in this study’s approach is described as shown in Equa-
tion (3.3).10 The parameter t0 is included in the function to take the beginning
of the diffusion into account and to move the diffusion curve in time. Further,
the scaling factor s is introduced, which ensures that the diffusion curve reaches
the maximum penetration rate in 2045. While improving the fit of the sigmoid
function to the data points between 2019 and 2045, the scaling factor increases
the maximum relative market potential in 2050 above 100%. Since this analysis
focuses on the years until 2045, this is not an issue.

F (t) = s ∗ 1 − e−(p+q)(t−t0)

1 + q
pe

−(p+q)(t−t0)
(3.3)

Fitting the curve

The regional scenarios of electric vehicle diffusion are derived by regional de-
composition of the national scenario ”KN100” of dena (2021), adjusted by the
target of 15 million electric vehicles until 2030 defined by the German govern-
ment (German Government, 2022). The development of regional scenarios using
the Bass model is done in a two-step process, visualized in Figure 3.2.

10The transformation steps are depicted in Appendix B.1.
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Figure 3.2.: Development of regional diffusion curves

In the first step, the Bass function is fitted to the national scenario using
the non-linear least squares (NLLS) method according to Newville et al. (2016).
The left part of Figure 3.2 shows the rate of electric vehicles over time. The
blue dots represent the penetration rate in the different years based on historic
developments (until 2020) and the national scenario. The penetration rate of
42% in 2030 matches the number of 15 mil. electric vehicles, and a penetration
rate of 100% corresponds to 36 mil. electric vehicles. The parameter s, the
maximum relative market potential of electric vehicles, is also computed by the
fitting method. The computed values for the estimates are: ŝ = 1.096, p̂ = 0.203
and q̂ = 0.010.

While the derived national diffusion curve is fitted to the historic national
electric vehicle penetration, historic developments in the specific German regions
can drastically differ. In the start year t0=2020 (the last year regional data is
available), every region has its individual position on the curve. Some regions are
above the national average and some are below. Therefore, in a second step, the
national diffusion curve is shifted individually along the time axis for each NUTS
3 region to achieve the specific penetration level, as it is visualized in the right
part of Figure 3.2. The regional EV diffusion levels in 2020 is calculated based
on historical data of the EV fleet from 2017 to 2020 on postcode level, provided
by the Kraftfahrt-Bundesamt (KBA) in two data sets on car registration district
(Kraftfahrt-Bundesamt, 2024b) and municipality basis (Kraftfahrt-Bundesamt,
2024a). The EV diffusion levels reached in t0=2020 for each NUTS 3 region
Fnuts3(t = t0) are calculated by dividing a region’s total EV fleet EV nuts3

t0 by
the ratio of the total region fleet Carsnuts3t0 to the total national fleet CarsDE

t0
times the total German market size for EVs EV DE

2045.

Fnuts3(t = t0) =
EV nuts3

t0

EV nuts3
2045

(3.4)

with EV nuts3
2045 =

Carsnuts3t0

CarsDE
t0

∗ EV DE
2045 (3.5)
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To create diffusion curves for each NUTS 3 region, the derived national dif-
fusion curve is moved along the time axis according to the time difference ∆t
between t0 and the time t when the EV diffusion level for t0 of the respective
NUTS 3 region is reached on the national diffusion curves. Equation (3.6) de-
scribes the approach. Here, the parameters ŝ, p̂ and q̂ reflect the estimates of
the national diffusion curve. The derivation of the formula, including ∆t, can be
found in Appendix B.2.

Fnuts3(t) = ŝ ∗ 1 − e−(p̂+q̂)(t−t0+∆t)

1 + q̂
p̂e

−(p̂+q̂)(t−t0+∆t)
(3.6)

To get the total number of electric vehicles in each NUTS 3 region, the diffusion
rates are multiplied by the total estimated market size of EVs for each NUTS
3 region. The latter is derived by multiplying the maximum estimated scenario
value for EVs (EV DE

2045) with the ratio of the total vehicle fleet of each NUTS 3
region in t0 to the total national fleet according to Equation (3.7). To ensure that
the national target of EVs in a specific year is equal to the sum of all regional
numbers of EVs, a correction factor σt is used for scaling. The scaling factor
adjusts the diffusion curves in a single point.

EV nuts3
t = Fnuts3(t) ∗ Carsnuts3t

CarsDE
t

∗ EV DE
2045 ∗ σt (3.7)

The result of the modeled diffusion of EVs is presented in Figure 3.3 for the
years 2030 and 2045. In terms of consistency with the following sections, the
historic distribution is visualized for the year 2019 instead of 2020. In the figure,
the total number of EVs in every NUTS 3 region is normalized by the size of
each region.
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Figure 3.3.: Number of electric vehicles in each NUTS 3 region for the years 2030 and
2045

In 2019, around 239 thous. electric vehicles do not lead to high penetration
rates per square kilometer. In 2030 mainly bigger cities such as Hamburg, Berlin
and Munich, as well as some areas in North-Rhine Westphalia, such as Dussel-
dorf, do have a significant amount of electric vehicles per square kilometer. Later
in 2045, the western part of Germany and the Rhine-Main region are highlighted
in red. Also, smaller regions, in terms of area but with a high population per
square kilometer, have a high relative amount of electric vehicles.11

3.2.2. User-specific load and flexibility profiles

The electricity demand of electric passenger vehicles is determined by their un-
derlying driving patterns. For Germany, there are two major panels surveying
the mobility behavior of households, Mobility in Germany (MiD) (infas et al.,
2018) and the German Mobility Panel (MOP) (KIT - Institut für Verkehrswesen,
2021). While the MiD is updated every six years, the MOP has been updated
annually since 1994. It is a survey-based longitudinal study of the mobility
behavior of the German population published yearly in several datasets. Be-
sides household-specific information (datasets ”HH<year>.csv”), it holds data
on the households’ individual trips (datasets ”W<year>.csv”), including times-
tamps, destinations, distances, and modes of travel. The panel categorizes about
14 thousand surveyed households according to ten settlement types, from small
villages to metropolises. The dataset and information on the regional settlement
structure enable the assignment of households and their respective mobility pat-

11The regional diffusion curves are available in the supplementary material.
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terns to different regions. The mobility behavior of EVs is assumed to not sub-
stantially differ from that of conventional passenger cars. The mobility patterns
of vehicles considered constant until 2045. The detailed analysis of 500 thou-
sand individual trips and car-based mobility patterns allows for deriving electric
vehicles’ energy demand and load profiles and the resulting inherent flexibility
of their charging processes by user type, region, charging scenario, and day type
for the years 2019, 2030, and 2045.12

Computation of regional differentiated load profiles

By projecting the historical mobility data on the years 2019, 2030, and 2045,
average load profiles per vehicle are calculated, which are later scaled by the
individual region’s total counts of EVs.13 The load profiles are calculated for
different settlement types, charging scenarios, and day types (weekend and week-
day) for each year considered. A total of six settlement types are distinguished,
ranging from rural communities to large cities. The charging scenarios represent
combinations of three potential charging locations (at home, at work, at other
locations). The combinatorial approach results in seven scenarios, e.g., charging
at home and at work, but not at other locations. In this way, a total of 252
profiles are distinguished.

Starting from single trips, consecutive trips within a day are stacked into trip
chains to derive the mobility patterns of individual cars in the form of binary
time series indicating the standing and driving intervals of the vehicles, including
their location. For the trips, the electricity demand is determined based on the
distance traveled and the assumed EV fleet’s average specific consumption of
0.21 kWh/km in 2019, 0.18 kWh/km in 2030, and 0.15 kWh/km in 2045 (dena,
2021). Assuming a charging power of 11 kW and an immediate start of charging
upon arrival at a charging location, the energy demand is translated into profiles.
Vehicles charge until the energy consumed during previous trips is recharged or
a new trip begins. The approach therefore abstracts from modeling individual
vehicle batteries and implicitly assumes that the vehicles only make trips that are
covered by their batteries.14 The average load profiles per vehicle are generated
by aggregating all profiles and dividing them by the number of vehicles in the
respective settlement type, charging scenario, and day type. As an example, the
resulting profiles for medium-sized cities for the charging scenarios ”charging at
home” and ”charging at home and work” for the year 2030 are shown in Figure
3.4. When vehicles can only be charged at home, a load peak is observed in the
afternoon, while the load is more evenly distributed throughout the day when
charging at home and work is possible.

12A brief descriptive analysis of the mobility data is given in Appendix B.3.
13All data processing, including profile computation and scaling, was conducted using Python

version 3.8. In subsequent sections, region clustering is performed with the scikit-learn

package, while the preparation of results predominantly utilizes pandas and numpy.
14The distribution of the daily energy consumption per EV is shown in Appendix B.4 based

on the EV fleet’s average specific consumption in 2019, 2030, and 2045.
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Figure 3.4.: Selected load profiles for a medium-sized city in 2045

The final hourly load time series are composed of the standardized profiles
and scaled by the respective vehicle counts determined in Section 3.2.1 for each
NUTS 3 region. To this end, the regional settlement types are given by BBSR
(2022). The proportions of the seven charging scenarios are derived from data
on vehicle parking situations at home, distinguished by settlement type based on
dena and Prognos (2020).15 The scaled load profiles are then used in combination
with the results from Section 3.3 to calculate the regional residual load curves
in Section 3.5.

Computation of regional differentiated flexibility profiles

To model the home charging flexibility, the flexibility potentials of the charging
processes are derived from the mobility patterns and the generated load profiles.
The time series of flexibility potential become an input for the flexibility model
(Section 3.4), which optimizes the load shifts for charging processes relative to
the determined load profiles. Generally, positive and negative charging flexibil-
ity is distinguished, with a focus on uni-directional home charging only. Positive
flexibility can reduce the load of charging compared to the load profile generated
in the previous section. Thus, the positive flexibility potential in each hour is
equivalent to the determined load profile. Negative flexibility, in turn, means
load can potentially be increased in certain intervals. Therefore, the negative
flexibility potential is limited upwards by the maximum available capacity. It is
calculated as the difference between the generated load profile and the maximum
available capacity in each hour if the vehicle is home. Regarding the actual flex-
ibility deployment, the use of negative flexibility is limited by the provision of
positive flexibility. At any time, the cumulated negative flexibility deployment
has to be smaller than or equal to the cumulated provision of positive flexibility.
For computational reasons, the flexibility model does not model EVs individually
(bottom-up), although this would ensure consistency in terms of EV flexibility
provision: Car A reduces the load in hour X and increases the load in hour

15The shares of the different charging scenarios are depicted in Appendix B.6. Within the two
subgroups of charging scenarios, which include either at least partial charging at home or
no charging at home, equal proportions are assumed.
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Y. Aggregating all flexibility profiles (top-down) and centrally optimizing the
deployment without restrictions would again lead to inconsistencies and, thus,
overestimate the potential for smoothing the residual load: Car A reduces the
load in hour X and car B increases the load in hour Y. To address this, this study
suggests a trade-off between an aggregated centralized, top-down approach and
a fully decentralized bottom-up approach using clusters. The mobility patterns
are divided into multiple clusters by clustering the profiles’ binary mobility pat-
terns (at home, not at home) using k-medoids.16 Bundling profiles with similar
”at home” time windows ensures consistency within smaller segments of the ob-
served trip chains. EVs are assumed to be connected to the grid while parked at
home. Then, only the part of each trip chain’s flexibility profile, both negative
and positive, that is determined by each cluster centroid’s mobility pattern, is
considered, as conceptually shown in Figure 3.5 for a stylized flexibility profile.

Figure 3.5.: Concept for generating flexibility clusters (stylized example)

Note: For each trip chain, the positive and negative flexibility profile is determined. However,
only the part of the flexibility defined by the grid connection (at home) of the centroid of the
associated cluster is considered. This ensures consistency regarding the flexibility deployment.
In the left figure, the blue area illustrates the full flexibility potential of a trip chain. The right
figure shows the same trip chain’s flexibility potential curtailed by its cluster centroids grid
connection profile.

The analysis finds eight clusters as a suitable segmentation for the observed
mobility patterns for weekdays and weekends. Figure 3.6 shows the resulting
eight clusters for weekdays. The respective figure for weekends and a cluster
analysis is given in Appendix B.5.

16In the clustering, the grid connection profiles (at home, not at home) are compared for
similarity using the Python library scikit-learn.
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Figure 3.6.: Flexibility clusters for weekdays

Note: The figure shows the cluster centroids’ binary grid connection time series (at home, not at
home) for weekdays. Cars are assumed to be connected to the grid and provide flexibility while
at home. The cluster centroids determine the time window for potential flexibility provision for
all profiles assigned to a respective cluster.

The resulting flexibility profiles for a medium-sized city and the year 2030
are shown in Figure 3.7. Since this study only considers flexible charging at
home, the positive flexibility is higher when vehicles can only charge at home.
In general, the negative flexibility potential is much higher than the positive
flexibility potential, as charging is generally only carried out over short periods
in relation to the idle times of the vehicles.
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Figure 3.7.: Selected flexibility profiles for a medium-sized city in 2045

Note: Positive flexibility corresponds to a reduction, while negative flexibility corresponds to an
increase of charging power. The positive flexibility potentials are determined by the charging
demand at home. It is generally smaller if vehicles are partially charged at other locations as
this study only considers charging flexibility at home. Also, the positive flexibility potential is
smaller than the negative flexibility potential which is limited by the maximum charging power.

The final flexibility time series for each NUTS 3 region are composed the same
way as the load profiles. First the average positive and negative flexibility profiles
per settlement type, charging scenario, and day are determined and then scaled
according to vehicle counts determined in Section 3.2.1 for each NUTS 3 region.
All households charging at home are assumed to be willing to provide flexibility.

3.3. Regionalization of demand and supply

In order to examine the potential of using EV home charging flexibility for
smoothing national and regional residual demand, regional time series for elec-
tricity demand from other consumption sectors and electricity generation from
renewable energy sources are derived. Regarding electricity demand, first the
spatial distribution is calculated in Section 3.3.1 before regional profiles are de-
rived in Section 3.3.2. Similarly, for electricity generation, Section 3.3.3 first
describes the distribution of capacities, and Section 3.3.4 provides information
on the associated profiles.
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3.3.1. Spatial distribution of annual electricity demand

Consistent with the EV market development, the electricity demand development
of the remaining consumption sectors until 2045 is adopted from the ”KN100”
scenario from dena (2021). Table 3.1 shows the assumed annual evolution of
demand by consumption sector and application.

Table 3.1.: Annual electricity demand by sector and application in TWh

Sector Application 2019 2030 2045

Households SLP1 residential 121 119 116
Heat residential 6 20 29
Light trucks 0 0 2

Small-scale Industries, SLP commercial 133 129 118
Trade and Services Heat commercial 9 21 28

Base load 4 5 6
Heavy trucks 0 1 2
Light trucks 0 2 11

Industry Heat commercial 4 9 12
SLP commercial 17 16 19
Base load 206 241 285
Heavy trucks 0 5 10
Light trucks 0 1 3

Rail transport 12 20 24
Conversion sector 8 8 8
Passenger cars2 1 34 58

Total 522 625 732
1standard load profile; 2The allocation of the demand from EVs is discussed in Section 3.2.
Values deviate from dena (2021) due to updated government targets (15 mil. EVs in 2030).

The spatial allocation of the demand is done in two steps. In the first step,
distribution keys, matching the sector-specific electricity demand to the fed-
eral states, are derived based on data from Länderarbeitskreis Energiebilanzen
(2022).17 In the second step, sector-specific demand distribution keys to the
regions within the federal states are derived. These are based on regional char-
acteristics, such as residents, employees in the tertiary industry, income, and
gross value added, taken from VWG (2022b) and VWG (2022a). Table 3.2
shows the weighting factors of these characteristics to allocate the demand of
the individual sectors from the federal states to regions. The weighting factors
are chosen similarly to BNetzA (2020).

17A detailed discussion of the approach and the derived distribution keys are presented in
Appendix B.7.
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Table 3.2.: Annual electricity demand by sector and application in TWh

Sector Allocated by Weighting factor

Households, rail transport Residents 90%
Income 10%

Small-scale Industries, Employed in sector 20%
Trade and Services Gross value added in sector 80%
Industry, conversion Gross value added in sector 100%

3.3.2. Temporal distribution of regional electricity demand

To derive the temporal distribution of demand, time series are determined for
the individual applications, which are used to distribute the spatially distributed
annual demand over the year. Four categories can be distinguished when cre-
ating the regional demand time series: Standard load profiles, time series for
mobility applications, time series for heat generation, and applications for which
a constant power consumption is assumed. The standard load profiles (SLP) for
household consumption (”H0”) and commercial consumption (”G0”) are taken
from VDEW (1999). The daily profiles are available separately by day of the week
(Monday-Friday, Saturday, Sunday/holidays) and by season (Summer, Winter,
Transition) and are matched to the calendar year 2015. The profiles for light and
heavy electric trucks are taken from ENTSO-E (2022c). The daily profiles are
available, separated by Monday-Friday and Saturday-Sunday, and are matched
based on this distinction to the calendar year 2015. Due to the temperature
dependency of the heat generation profiles, they are calculated for each region
separately. To calculate the profiles for households, the standardized profiles
for heat pump electricity consumption as a function of time of day and outdoor
temperature from SWM (2022) are used as well as regional temperature data for
2015 from Copernicus Climate Change Service (2020). For electricity demand
from commercial consumers for heat generation, the profile data from Ruhnau
and Muessel (2022) is used and matched with temperature data for 2015. Last, a
uniform consumption over the year for the base load, rail transport and conver-
sion applications is assumed. Figure B.4 in Appendix B.8 illustrates the different
profiles.

3.3.3. Spatial distribution of annual renewable electricity
capacities

As a starting point, existing capacities in 2022 of onshore wind, rooftop PV,
large-scale PV and hydropower are spatially distributed according to the Mark-
tstammdatenregister (BNetzA, 2022). Offshore wind capacities are located in a
separate offshore region and are not spatially distributed. For the future devel-
opment of each technology, the methods described in the network development
plan 2023 (German TSOs, 2022) are reproduced using regional capacity poten-
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tials from Ebner et al. (2019).18 For 2045, the announced capacity targets within
the so-called ”Easter package” (Bundesrat, 2022) were assumed: 160 GW on-
shore wind, 200 GW large-scale and rooftop PV each.

For onshore wind, the distribution to regions is done according to the rela-
tive capacity potentials in the federal states compared to the total potential of
Germany. As soon as the 2% target for each federal state is reached, the rela-
tive distribution factor in this federal state is devalued by 50%. The 2% area
target thus represents a threshold value above which less area may be available
for wind energy use in a federal state, thus slowing down the expansion. The
remaining net expansion is then further distributed to the federal states in an
iterative procedure based on the relative distribution of the respective potential.
Based on the capacity assigned to each state, the capacity is further distributed
to the NUTS 3 regions according to the relative potentials.

For the regional expansion of large-scale PV capacities until 2045, the regional
potential areas for each federal state and the NUTS 3 regions are used as well.
The target capacities for each federal state according to German TSOs (2022) are
distributed by the weighted regional potentials. This is done by using a modifi-
cation of the potentials. The potential area in the federal state with the highest
average yield (Baden-Württemberg) is valued twice as high as the potential area
in the federal state with the lowest average yield (Lower Saxony). For rooftop PV
installations, the approach is postcode-specific. A constrained growth function
is derived for each postcode using the change in existing installations to date
and the maximum potential. This function is linear until 50% of potential is
reached, and then approaches the potential limit asymptotically. This approach
follows the observation that past additions have been largely linear. However,
after a certain point, it decreases due to adding less suitable areas and slowly
approaching the potential limit.

For hydropower, only existing capacities are regional distributed. No addi-
tional expansion is assumed.

3.3.4. Temporal distribution of regionally renewable electricity
generation

Generation profiles for the spatially distributed renewable capacities are based
on the COSMO-REA6 weather data of the year 2015 provided by HErZ, Hans-
Ertel Centre for Weather Research (University of Bonn - Germany) and DWD,
Deutscher Wetterdienst (2022). This dataset includes hourly measurements of
wind speed, temperature, and solar irradiation across a geo-referenced weather
grid spaced at 0.1-degree intervals. The weather time series nearest to the center
of each region are selected to calculate feed-in profiles. For rooftop and large-scale
photovoltaic systems, feed-in profiles are computed using the model for energy

18The method and results are described in this publication and the corresponding data are
published at: opendata.ffe.de/eem2019.
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performance of PV modules described in Huld et al. (2010), incorporating the
recommended coefficients. For onshore and offshore wind, power curves for stan-
dard wind turbines are utilized in combination with wind speed data. Feed-in
time series for hydropower equal the historic time series from ENTSO-E (2022a).

3.4. Modelling electric vehicle charging flexibility

By aggregating the results of the previous sections, regionalized residual load
time-series are computed and visualized in Figure B.5 in the Appendix. On the
national level, positive peaks imply the utilization and steep ramping of (and the
necessity of investment in) expensive dispatchable generation units. In contrast,
negative peaks imply an excess of renewable energy generation. On the regional
level, both positive and negative peaks put strain on distribution grid compo-
nents such as transformers. Consequently, residual load curves should be smooth
and close to zero. Electric vehicle charging represents one source of flexibility
potential. An optimization model19 for the deployment of regional flexibility of
electric vehicles is developed. In the model, two deployment strategies are dis-
tinguished. Under the first strategy, the regional flexibility potential is used to
flatten the corresponding regional residual load curves by reducing positive and
negative peaks. This is the basic model, described in Section 3.4.1. Under the
second strategy, the model is adjusted according to Section 3.4.2. Here, the flex-
ibility potential of home charging processes is aggregated to flatten the national
residual load curve instead.

3.4.1. Flexibility on regional level

The smoothing of the residual load has two objectives. First, to minimize the
absolute distance to zero in every time step, and second, to minimize peaks. The
objective functions in Equation (3.8) combines these by minimizing the square
absolute value of the residual load. On a regional level, this optimization logic
represents the minimization of grid expansion costs, which becomes necessary,
especially when large positive or negative peaks occur. On the national level,
the generation costs are to be minimized, which become disproportionately more
expensive during positive peaks, which serves as a justification for the quadratic
optimization approach. The objective function contains the adjusted residual
load RL as a variable, which has two dimensions. One temporal t ∈ T and
spatial n ∈ N . The set T contains the 8760 hours of a year, and the set N

19Based on GAMS Version 42.
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contains all NUTS 3 regions of Germany.

min z =

T∑
t

N∑
n

|RLt,n|2 (3.8)

The adjusted residual load curve RLt,n equals the residual load curve before
load shift rlt,n plus the usage of load shift (LS), as it is shown in Equations (3.9)
and (3.10).

RLt,n = rlt,n +
T∑
t1

User∑
u

(LSt,t1,n,u ∗ tsmax
t,t1,u) ∀t ∈ T ∧ n ∈ N (3.9)

with LSt,t1,n,u = LSneg
t,t1,n,u

− LSpos
t,t1,n,u

(3.10)

The variable LS has two time-dimensions and is defined for every region n
and every user type u ∈ User. Furthermore, the variable can be decomposed
into a positive part LSpos and a negative part LSneg. Negative flexibility here
means that the load increases so that the residual load moves upwards. Positive
flexibility reflects load reduction. For every user type u, the binary parameter
tsmax

t,t1,u defines whether load shifting is possible from time step t1 to time step t.

With the following two Equations (3.11) and (3.12), it is ensured that the
maximum LS potential is not exceeded in every time step t, in every region n
and for every user type u. Two equations are necessary to distinguish between
a positive and a negative flexibility potential (see Section 3.2.2).

T∑
t

(LSpos
t,t1,n,u

∗ tsmax
t,t1,u) ≤ Pmax,pos

t1,n,u
∀t1 ∈ T ∧ n ∈ N ∧ u ∈ User (3.11)

T∑
t

(LSneg
t,t1,n,u

∗ tsmax
t,t1,u) ≤ Pmax,neg

t1,n,u
∀t1 ∈ T ∧ n ∈ N ∧ u ∈ User (3.12)

The last Equation (3.13) ensures that shifted energy is balanced for every user
type and region within a fixed period of 24 hours. For every from-to relationship
(amount of energy shifted from t1 to t), the sum has to equal zero.

T∑
t1

(LSt,t1,n,u ∗ tsmax
t,t1,u) = 0 ∀t ∈ T ∧ n ∈ N ∧ u ∈ User (3.13)

After the optimization of the use of flexibility, new residual loads are computed.
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3.4.2. Flexibility on national level

To use the flexibility potential of home charging processes to flatten the national
residual load curve, two equations of the basic model are adjusted. First, the
residual load curve in the objective function (Equation (3.8)) has no regional
dimension anymore (Equation 3.14).

min z =

T∑
t

|RLt|2 (3.14)

Second, flexibility from all NUTS 3 regions and all user types is aggregated to
smooth the national residual load curve. Instead of Equation (3.9), the following
equation is formulated to compute the new national residual load curve.

RLt = rlt +

T∑
t1

User∑
u

N∑
n

(LSt,t1,n,u ∗ tsmax
t,t1,u) ∀t ∈ T (3.15)

All other model equations stay the same as described in the previous section.

3.5. Analysis and results

Based on the methodologies and data presented in previous sections, a thorough
analysis of the characteristics of regional and national residual load curves is
conducted, and the impact of two deployment strategies for home charging flexi-
bility is evaluated. This section is divided into two parts. The first part, Section
3.5.1, focuses on analyzing residual load curves, aiming to answer two primary
questions. How do regional residual loads develop over time? And what is the
relationship between the load profiles of electric vehicles and regional residual
load curves?

In Section 3.5.2, the two deployment strategies for the flexibility provided
by electric vehicles are analyzed. The analysis differentiates between national-
oriented and regional-oriented activation of flexibility. The presented optimiza-
tion approach is used to answer the following question: What is the effect of
different strategies for activating the flexibility offered by electric vehicles on
regional and national residual load curves?

3.5.1. Residual load analysis

The regions are categorized into three distinct clusters: Photovoltaic (PV)-
dominated, wind-dominated, and load-dominated regions. The clustering is
based on two dimensions: the normalized ratios of total PV feed-in to total
load, and total wind feed-in to total load, calculated annually. The total values
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equal the yearly sum. The ratios of feed-in and load are normalized by the high-
est ratio observed across all regions in 2045. The clustering results are presented
in Figure 3.8. A region is deemed load-dominated if both dimensions have a
normalized value smaller than 0.20. A region is considered wind-dominated if
it has a normalized wind-to-load ratio greater than 0.20 and greater than the
PV-to-load ratio. The definition for PV-dominated regions follows the same
logic.

Figure 3.8.: Clustering and mapping of the 401 NUTS 3 regions

Note: The NUTS3 regions are clustered based on the normalized ratios of PV and wind feed-in
compared to the total load. The clustering results in three different clusters, which are wind-,
PV, or load-dominated.

The wind-dominated regions are primarily situated in the northern part of
Germany and consist of 98 NUTS 3 regions, covering an area of 157,753 square
kilometers, equivalent to 44% of the total land area of Germany (357,588 square
kilometers). The PV-dominated regions are located predominantly in the south-
ern region of Germany, particularly in Bavaria. These 166 NUTS 3 regions have
a total area of 140,332 square kilometers, accounting for 39% of Germany’s land
area. Load-dominated regions are primarily located in Germany’s western and
southwestern regions and include major urban areas such as Berlin, Hamburg,
and Munich. This cluster consists of 137 NUTS 3 regions and has a total area
of 59,666 square kilometers, accounting for 17% of Germany’s land area. The
clusters differ not only in terms of load, wind and PV generation ratios but also,
for example, in terms of population density and number of EVs. Both are high
in load regions and low in wind regions. A detailed account of the distribution
of regional properties for and within each cluster is provided in Appendix B.10.
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Boxplots are computed for the three clusters and Germany to compare the
properties of the residual load curves for the years 2019, 2030, and 2045 without
considering flexibility. The results are presented in Figure 3.9.

Figure 3.9.: Comparison of regional residual load curves prior to the activation of flexi-
bility

Note: The minimum and maximum values are represented by crosses. The median is depicted
by the orange line, while the colored box between the lower and upper quantiles represents 50%
of all values. The maximum whiskers are equal or lower to 1.5 times the Inter-Quartile Range
(range of the colored box)

Regarding the Cluster Wind, the majority of residual load curve values
show a decrease from 2019 to 2045. The median of the residual load curve
decreases from 0.7 GW in 2019 to -12.4 GW in 2030 and further to -22.2 GW in
2045. The increased dependence on the weather for electricity generation leads
to an increase in the variance of the residual load curve. The distance between
the minimum and maximum values of the boxplot, a measure of dispersion,
increases by 178% from 2019 to 2030 and by 338% from 2019 to 2045. This
increase is attributed to the significant expansion of wind capacities relative to
electrical load growth. The minimum values of the residual load curve increase
from −25.0 GW in 2019 to −148.6 GW in 2045, while the maximum value
increases by 41% from 13.1 GW in 2019 to 18.5 GW in 2045. The Cluster
PV displays relatively stable properties for the residual load curve, with a slight
decrease in the median from 10.1 GW in 2019 to 8.2 GW in 2045. Similar to the
wind-dominated cluster, the variance of the residual load curve increases, albeit
to a lesser extent, due to the weather-dependent electricity generation and the
limited impact of load. The properties of the residual load curve in Cluster
Load display a different trend. The median increases from 30.9 GW in 2019 to
a value of 35.2 GW in 2045, an increase of 14%. The maximum value of the
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residual load increases by around 36%, and the minimum value reduces from
18.5 GW in 2019 to -23.2 GW in 2045. The addition of new electric loads from
electric vehicles and heat pumps in these regions is offset by the effect of rooftop
PV expansion. As the peak demand occurs in the evening while the maximum
feed-in from rooftop PV occurs at noon, the minimum and maximum values of
the residual load curve diverge.

The residual load curve in Germany (DE) displays characteristics similar to
those of the renewable-dominated clusters, as they represent a larger share of
residual load. Additionally, the German residual load curve includes Offshore
Wind feed-in, which is roughly correlated with the wind-dominated cluster.

Correlation between residual load and electric vehicle load curves

Besides the ratios of renewable feed-in and load, the three clusters differ re-
garding the correlation between residual load and the electric vehicle load curves.
Table 3.3 shows the coefficients of correlation for the three clusters and the years
2019, 2030 and 2045.

Table 3.3.: Correlation between residual load and electric vehicle load curves

Cluster 2019 2030 2045
Cluster Wind 0.08 -0.19 -0.25
Cluster PV 0.29 -0.21 -0.27
Cluster Load 0.74 0.46 0.11

The coefficients of correlation highlight that the residual load in the load-
dominated cluster correlates most with the electric vehicles load profile. However,
the correlation almost vanishes until 2045, caused by the penetration of rooftop
PV applications and the electrification of further applications like heating or
industrial processes. The residual load becomes less dominated by residential
applications in the evening. The increasing weather dependency of electricity
generation and a low share of load compared to renewable feed-in is the reason
for the lower correlation in 2019 and even negative correlation in 2045 in the
other two clusters.

This development is relevant for the use of EV charging flexibility to reduce
the residual demand. Today, especially in Cluster PV and Cluster Load, there
would be a strong incentive to shift the load of EV charging to counter the high
correlation with the residual load peaks. In 2045, however, especially in Cluster
Wind and Cluster PV, EVs tend to be charged when the residual load is low
(or negative). This development implies that the marginal utility of charging
flexibility to reduce load peaks is decreasing over time, although the flexibility
potential is increasing in absolute terms with growing EV adoption.
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3.5.2. Flexibility of electric vehicles

This section provides a detailed analysis of two deployment strategies for utiliz-
ing the flexibility provided by electric vehicles. The objective of the analysis is
to understand the impact of these strategies on the residual load curves at both
national and regional levels. Two deployment strategies are distinguished: First,
flexibility is used to flatten the regional and, second, the national residual load
curve. In the following, the formulations of ”nationally incentivized” and ”re-
gionally incentivized” flexibility deployment for the use of the two deployment
strategies are used. The optimization model outlined in Section 3.4 is used for
the analysis. The properties of the resulting regional and national residual load
curves for the years 2030 and 2045 are evaluated and compared.

Characteristics of the activation of flexibility

Figure 3.10 illustrates the model results for a single region over a 48-hour period
with hourly resolution. The figure highlights the differences in the shape of
the residual load and load shifting between the two optimization schemes. For
example, the charging process for user type C is shifted to hour 27 in the regional
scheme but to hour 10 in the national scheme. The use of flexibility is mainly
limited by the positive flexibility potential, as depicted by the dotted lines.
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Figure 3.10.: Optimal activation of flexibility in region DE111 (Stuttgart)

Note: The left column of the figure shows the results of the regional optimization and the right
column shows the results of the national optimization. The residual load before the activation
of flexibility (regional on the left and national on the right) is depicted using a black line, and
the change of charging processes for user types A to H are shown in blue.

Additionally, Figure 3.11 depicts the temporal patterns of flexibility activation.
It compares the outcomes of regional and national optimization approaches.
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Figure 3.11.: Activation of flexibility of EVs in 2045 after national and regional opti-
mization

Note: The x-axis represents the days of 2045, while the y-axis shows the hours of each day. The
flexibility activation is shown in GW per hour. Green areas show positive flexibility activation
(load reduction), purple areas show negative flexibility activation (load increase).

Generally, the power deltas are more significant under the national optimiza-
tion approach. Conversely, the regional optimization approach results in less
pronounced total power fluctuations due to the heterogeneity across regions.

Model results on national level

The mechanisms for activating flexible charging processes impact the properties
of the national residual load curve. In Figure 3.12, the residual load curves after
regional and national incentivized activation of flexibility are compared to the
residual load curve before the use of flexibility. This is done for the years 2030
and 2045.

70



3.5. Analysis and results

Figure 3.12.: Properties of the national residual load curve before and after the use of
flexibility

Note: The minimum and maximum values are represented by crosses. The median is depicted
by the orange line, while the colored box between the lower and upper quantiles represents 50%
of all values. The maximum whiskers are equal or lower to 1.5 times the Inter-Quartile Range
(range of the gray box).

For both years, the range between the minimum and maximum values, as well
as the absolute value of the peak change to a small extent through both national
and regional incentivization of flexibility. However, national incentivization has
a greater impact compared to the regional approach. In 2030, regional incen-
tivization decreases the range between the minimum and maximum values by
1.9%, while national incentivization decreases this range by 4.8%. Before the
use of flexibility, the negative peak surpasses the positive one in absolute terms.
Regional incentivization reduces the peak by 2.6%, and national incentivization
reduces it by 7.5%. These characteristics observed in 2030 can also be seen in
2045, but with higher values and a greater variance of the residual load. The
use of flexibility reduces the absolute value of negative peak demand. The min-
imum changes from -303 GW to -288 GW (-5.0%) with the regional approach
and to -285 GW (-5.9%) with the national approach, while the maximum is only
reduced by 4 GW (-3.6%) in both cases.

Model results on regional level

Imbalance ratios are calculated to analyze the effects of the two flexibility de-
ployment strategies on the regional feed-in and load peaks. These are defined
as the positive or negative peaks in each region’s residual demand divided by
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the respective regional total load and generation over a year.20 The imbalance
ratio can be formulated in a positive (PIRr), negative (NIRr) and an absolute
(AIRr) way (see Equations (3.16) to (3.18)). Dividing the maximum amount
of power needed in both the positive (RE deficit) and negative (RE surplus)
direction in each region by total load and generation allows us to analyze and
compare the development of peaks for the heterogeneous regions. Comparing
the imbalance ratios before and after flexibility activation allows us to quantify
how flexibility changes the magnitude of the maximum load and feed-in peaks.

PIRr =
max
h∈H

(residualloadh,r)∑8760
h=1 (totalloadh,r + generationh,r)

∗ 1000 ∀r ∈ R (3.16)

NIRr =
min
h∈H

(residualloadh,r)∑8760
h=1 (totalloadh,r + generationh,r)

∗ 1000 ∀r ∈ R (3.17)

AIRr = max (|PIRr|, |NIRr|) ∗ 1000 ∀r ∈ R (3.18)

Figure 3.13 visualizes the change of the imbalance ratios after the national and
regional incentivized activation of flexibility in each region for the year 2030.
Figure 3.14 shows the results for the year 2045. As reference values in both
figures, highlighted in gray, the peaks in 2019 are normalized to the load and
generation of 2030 and 2045, respectively.

20The use of this evaluation variable follows Kühnbach et al. (2021).
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Figure 3.13.: Imbalance ratios before and after the use of flexibility in 2030

Note: The x-axis represents the regions in each cluster. In each of the nine sub-figures, the
imbalances before flexibility are sorted in ascending order. The imbalance ratios after the
activation of flexibility are then matched to the corresponding region.
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Figure 3.14.: Imbalance ratios before and after the use of flexibility in 2045

Note: The x-axis represents the regions in each cluster. In each of the nine sub-figures, the
imbalances before flexibility are sorted in ascending order. The imbalance ratios after the
activation of flexibility are then matched to the corresponding region.

In renewable-dominated regions in 2045, before the activation of flexibility, the
negative imbalance ratio is always greater, in absolute terms, than the positive
imbalance ratio. It thus defines the absolute imbalance ratio and the maximum
strain on local grid components. In the load-dominated cluster, it is the other
way around in about 66% of the regions.
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In the Cluster Wind, the positive imbalance ratio decreases only slightly
when applying both activation mechanisms for flexibility. On average, positive
imbalance declines by 1.2% with national incentives and by 2.7% with regional
ones. The positive peaks of the residual loads decrease by 0.002 MW/km2 on
average with national incentives and by 0.004 MW/km2 with the regional ap-
proach. The decreasing effect is limited by low positive flexibility potentials and
the fact that the charging processes and the situation of the highest residual
load do not fall into the same periods, as discussed in Section 3.5.1. The cor-
relation between residual load and charging profile decreases over time, which
limits the potential for flexibility in peak load situations. This limitation applies
to all three clusters. The negative imbalance ratio in the wind-dominated clus-
ter remains largely unchanged under the national deployment strategy (-1.2%
on average in absolute terms21, corresponding to -0.013 MW/km2). However,
it decreases more when applying the regional strategy (-3.5% in absolute terms,
corresponding to -0.037 MW/km2). As the negative imbalance ratio is greater
than the positive one for the regions in this cluster, the absolute imbalance ratio
reproduces the negative one in absolute terms.

In the Cluster PV, the positive imbalance ratios display a different pattern
than the ones in the wind-dominated cluster, with an increase in response to
national incentives. The national deployment strategy results in an increase of
5.1% of the positive imbalance ratio on average, which corresponds to an in-
crease of the positive residual peak demand of 0.008 MW/km2 across all regions
within this cluster. But, there are also regions which face distinct greater effects
with up to 0.071 MW/km2. In these cases, peaks can increase by up to 35%
following national incentives. This outcome is attributed to more electric ve-
hicles in PV-dominated regions compared to wind-dominated regions, resulting
in a greater potential for positive flexibility.22 In contrast, positive imbalance
ratios are lowered by 2.1% with regional incentives on average, corresponding
to a reduction of 0.008 MW/km2. The negative imbalance ratio is consistently
reduced by regional incentives in absolute terms (-6.3% on average, correspond-
ing to -0.068 MW/km2). National incentives reduce the absolute value of the
negative imbalance ratio, too, but to a less extent (-1.2%; -0.023 MW/km2).
Just as in the wind-dominated cluster, as the negative imbalance ratio is greater
than the positive one, the absolute imbalance ratio reproduces the negative one
in absolute terms.

Last, in the load-dominated cluster, it can be observed that following na-
tional incentivized activation of flexibility, positive imbalance ratios are the high-
est compared to their occurrence in renewable-dominated clusters. On average,

21For the positive and absolute imbalance ratio, a reduction corresponds to an improvement:
the (positive or negative) residual load peak becomes smaller. For the negative imbalance
ratio, a reduction corresponds to a worsening: the negative residual load peaks (the absolute
value) become larger. In order to be consistent in terms of the positive/negative impact, all
described changes in the negative imbalance ratio refer to the absolute change.

22Appendix B.10 gives details on cluster properties and the distribution of electric vehicles
within each cluster.

75



Diffusion of electric vehicles and their flexibility potential for smoothing residual demand

the positive imbalance increases by 3.1% (0.043 MW/km2) with national incen-
tives. But, just like in the PV-dominated cluster, there are also regions with
high penetration rates of electric vehicles, which face a distinct greater effect
with up to 0.349 MW/km2. In this case, the peak increases by around 27%
following national incentives. Regional incentives instead lower the positive im-
balance ratio by 1.4% (-0.018 MW/km2) on average. The negative imbalance
ratio is consistently reduced both by regional and national incentives, but re-
gional incentives have a greater effect (-2.1% compared to -6.3%, corresponding
to -0.079 MW/km2 and -0.208 MW/km2). In contrast to the separated effects
on positive and negative imbalances, the effect of national incentives on the ab-
solute imbalance ratio is region-specific, indicating the regions’ heterogeneity in
the load-dominated cluster. In some regions, the positive imbalance ratio ex-
ceeds the negative imbalance ratio (regions 0 to 90), while the opposite is true
in others (regions 91 to 137). In regions with a greater positive imbalance than
a negative, the absolute imbalance ratio increases by 3.2% on average with na-
tional incentives, corresponding to an increase of absolute residual peak demand
by 0.056 MW/km2 on average. Instead, local incentives lower the absolute imbal-
ance ratio by 1.1% on average, corresponding to a decrease of the absolute peak
by 0.019 MW/km2 on average. In regions with a smaller positive imbalance than
a negative, national incentives reduce the absolute imbalance ration by 1.9% on
average (-0.036 MW/km2), whereas local incentives would lower the absolute im-
balance ratio even more by 5.9% (-0.104 MW/km2) on average. Consequently,
there are regions in the load-dominated cluster where national incentives are
slightly beneficial in lowering the absolute imbalance ratio or do not significantly
change it. However, there are also regions where national incentives result in an
increase in the absolute imbalance ratio, stemming from the increase in positive
peaks. Or, formulated differently, national incentives can significantly increase
or slightly reduce the absolute peaks. Regional incentives may either lower the
imbalance ratio or have an insignificant impact on the absolute value, depend-
ing on the flexibility potential and the correlation between charging profiles and
residual load peaks.

Summarizing, national incentives tend to increase the positive imbalance ratio
in PV- and load-dominated regions, whereas regional incentives decrease it, al-
beit to a small extent. However, regional incentives can significantly reduce the
negative imbalance ratio.

In the context of the three clusters under consideration, it can be inferred that
in regions dominated by wind energy, the national deployment strategy does not
exert additional pressure on the distribution grid, but regional incentives can
reduce imbalances. In PV-dominated regions, both the national and the regional
incentives do lower the absolute imbalance ratio. However, regional incentives
have a greater effect. For the regions of both clusters, it can be observed that the
flexibility potential is used in particular to absorb excess renewable electricity
and has less effect in smoothing load peaks. This is also manifested in the
temporal shift patterns in the two clusters: For both the national and the regional

76



3.6. Conclusion

incentivization, load shifting takes place primarily from the evening to the times
of surplus generation at noon.

In contrast, load-dominated regions are characterized by heterogeneity in terms
of positive or negative peak dominance, so the impact of national incentives on
imbalances can be either positive (worsen the situation) or negligible. That is
because the national incentivization corresponds to the temporal scheme of the
renewable-dominated regions: Load is shifted from the evening into the times
of national renewable surplus, only that there is no renewable energy surplus in
many load-dominated regions, leaving them worse off. Regional incentives, on
the other hand, can reduce absolute imbalances in these regions, as the load is
shifted into the night, to address load peaks during the day.

3.6. Conclusion

The expansion of decentralized renewable energy systems and electric vehicles is
putting stress on the distribution grids. However, flexible EV charging can help
alleviate this impact by reducing peak loads and feed-in by better matching load
and supply. The paper conducted a comprehensive regional analysis of Germany
to estimate the regional potential of EV charging flexibility for reducing peaks
on regional and national levels. This was achieved by modeling regional EV
diffusion with sigmoid functions and deriving individual charging and flexibility
profiles for each NUTS 3 region in Germany. For both, a detailed method is
presented. Further, a model to optimize the use of EV charging flexibility to
either flatten the regional residual loads or the national one is developed.

3.6.1. Main results

In the first part of the analysis, this study examines the future development of
residual load curves and their correlation with EV charging profiles. Three differ-
ent clusters were formed: load-dominated, wind-dominated and PV-dominated.
The analysis shows that the increased dependency on weather-based electricity
generation leads to a significant increase in the variance of the residual load curve
until 2045. The results reveal that the regional structure of electricity demand
and supply is highly heterogeneous. Moreover, the correlation between residual
load and EV charging profiles decreases over time, implying that the marginal
utility of charging flexibility to reduce load peaks declines, even if the positive
flexibility potential increases in absolute terms.

In the second part, the impact of two incentive mechanisms for activating the
flexibility of electric vehicles is evaluated. One aims to flatten the regional resid-
ual load curves with local flexibility. The other uses the aggregated flexibility
potentials to flatten the national residual load. Results show that both strategies
reduce the variance of the residual load and peak demand and feed-in from a na-
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tional perspective. In 2045, both strategies reduce the positive residual peak load
by about 4 GW (3.6%), correspondingly less reserve capacity, storage or imports
need to be kept available. The negative residual peak load, i.e. the maximum
surplus of renewable capacity, is reduced by 15 GW (5.0%) in case of regional
incentivization and even by 18 GW (5.9%) in case of national incentivization.
I.e., the use of EV charging flexibility has a significantly greater potential in
absorbing excess renewable generation than in lowering positive peak load. Re-
gional incentivization generally leads to a decline in absolute values of peaks
on regional level. Here, as well, the flexibility is particularly useful in absorb-
ing excess renewable generation and thus reducing negative residual load peaks.
The local impact of the national incentivized activation varies depending on the
region’s characteristics. In load- and some PV-dominated regions, national in-
centivization can result in drastically higher regional demand peaks compared
to a scenario without charging flexibility (up to 35%). In wind-dominated re-
gions, this effect is less pronounced. Furthermore, regions with higher shares of
EV load than total load and regions with a higher correlation of EV charging
profiles with the residual load have higher potential to flatten the residual load
and reduce the peak demand.

The results contribute to existing literature by demonstrating the potential
of EVs in smoothing residual loads. The developed model serves as a robust
framework for potential transferability to other regions and countries, particu-
larly where similar studies are scarce. For example, Schill and Gerbaulet (2015)
examined the impact of various EV charging strategies on the load curve in
Germany, reporting a reduction in peak load of 2.1 GW. However, this study in-
volved fewer EVs and lacked regional differentiation, potentially overestimating
the flexibility potential. The findings are consistent with Kühnbach et al. (2021),
who emphasized the effectiveness of demand management in regions experienc-
ing frequent fluctuations between demand and supply deficits. This analysis
validates that load-dominated regions derive greater benefits from regional in-
centivization, cautioning that national approaches may inadvertently increase
peak demand.

3.6.2. Policy implications

The developed method can support grid operators in their grid planning, both,
on regional and national levels. It provides an extensive collection of data sources
as well as insights into the development of regional and national residual load
peaks. The two application scenarios of charging flexibility discussed aim at two
very different targets: while national incentivization aims at reducing demand
in times of low national renewable generation feed-in and thus times of high
prices, the regional incentivization aims at reducing the regional strain on grid
components. This study shows that these two targets can be contradictory in
their effects: While the regional incentivization is less effective in reaching the
smoothing in the national residual demand curve, the national incentivization
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can even lead to increased strain on local level, especially in load-dominated re-
gions. As the results of this study do not identify a dominant incentive scheme,
but rather show the different effects, policymakers must be aware of their objec-
tives when deciding on one incentive scheme or the other. Policymakers must be
aware of the shown dynamics when designing incentive schemes for flexible EV
charging. Uniform pricing at the national level may result in undesirable effects
at the regional level, suggesting a need for regionally differentiated price signals
(e.g., zonal or nodal pricing). Policymakers should consider the regional effects
shown when implementing incentives to achieve maximum effectiveness in re-
ducing peaks on regional and/or national levels and avoid unwanted additional
strain on grid components. Overall, the effectiveness of EV charging flexibil-
ity is heavily influenced by the regulatory and market context. Policymakers
should tailor their strategies to the specific regulatory and market conditions to
maximize the benefits of EV flexibility for grid stability and efficiency.

3.6.3. Limitations and further research

The results of this study must be interpreted within the context of several lim-
itations and assumptions. Firstly, by design, this analysis assumes one specific
scenario concerning the numbers of EVs, their charging behavior, the develop-
ment of the load, the renewable generation capacities, and the analyzed weather
year. For example, other weather years would yield other results. However, this
would only change the absolute numbers, rather than the identified trends and
broader interrelations, especially as this study finds the flexibility potential to
be the limiting factor in the results, not the renewable electricity feed-in. On a
more fundamental level, the assumption of a specific scenario means, naturally,
that the exact quantitative results only apply to this exact scenario. A lower
expansion of EVs reduces the flexibility potential, and a different development in
the expansion of other electrical loads and renewable electricity sources changes
the charging behavior. Nevertheless, the structural relationships that arise in
the defined scenario offer overarching insights, and the methods developed can
be used for other scenario assumptions and expectations in the future. Secondly,
the analysis abstracts from other flexibility options and their interdependencies
with the flexible home charging of EVs. Particularly in view of the increasing
expansion of home and large-scale battery storage systems, the question arises as
to how the value of EV flexibility will change as a result. In general, additional
flexibility from other sources is expected to reduce the value of EV flexibility.
The deployment of bidirectional charging would increase the EV flexibility po-
tential, as the battery capacity and the maximum charging power would limit the
flexibility rather than the energy demand for driving. Extending the provision
of EV flexibility from home charging to other charging locations, such as work-
places, would also increase the flexibility potential, as it enables charging during
the day. Especially for regions with strong PV feed-in, this would be of high
value. Furthermore, this study is based on the assumption that access to a home
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charger varies depending on the settlement type, while EVs parked at a home
charger are always connected to the grid and provide flexibility. This neglects a
potentially limited willingness or option to provide flexibility. Considering this,
the flexibility potential would decrease. Finally, it is implicitly assumed that the
residual peak load is the only factor that affects power grids. However, there
are further aspects, such as voltage stability, which have to be considered in grid
operation. It can be expected that the value of EV flexibility increases with the
complexity of a grid operator’s supply task.

While the developed method can be used to estimate regional effects of flex-
ibility deployment at the level of NUTS 3 regions, there is a need for further
research on its impact on actual distribution grids and grid components. In
the course of this, the concrete grid expansion costs and electricity generation
costs under different deployment strategies could be quantified and compared.
One could also compare potential environmental benefits and drawbacks under
different deployment strategies. Under national incentivization, renewable elec-
tricity capacities can be better utilized, so it is conceivable that fewer plants will
needed to be installed and resources will be conserved. At the same time, there
is less conventional power generation, which can potentially reduce emissions de-
pending on the market design. Regional incentivization, on the other hand, may
reduce the amount of resources required and, thus, the environmental impact
of expanding distribution grids. Additionally, there remains a need for further
research, including into the interdependencies with other flexibility technologies
and the flexibility of workplace charging or charging in public spaces. This be-
comes particularly relevant in view of the current trends in the expansion of
flexibility, e.g. increasing investment in home storage and stand-alone battery
systems. It may be worth extending the present model to include these addi-
tional sources of flexibility and analyzing the change in the value of the flexibility
provided by the various sources. The same applies to the question of how tech-
nological developments in EV influence the results. This includes the effects of
the implementation of bidirectional charging. Finally, further research could in-
vestigate on the effects of different policy schemes aiming at the implementation
of the discussed deployment strategies.
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4. Welfare redistribution through flexibility

- Who pays?

4.1. Introduction

Achieving climate neutrality necessitates a deep transformation of energy sys-
tems, particularly through the decarbonization of end-use sectors like transporta-
tion, heating, and industry. Electrification has emerged as the primary strategy
for this transition, with Germany setting ambitious goals to deploy 15 million
electric vehicles (EVs) and 6 million heat pumps by 2030 (BMWK, 2022a,b).
While these targets demonstrate ambition towards a low-carbon economy, they
also introduce significant challenges due to the increasing integration of decen-
tralized, flexible actors into the electricity market. Their flexible consumption
patterns - such as the ability to shift EV charging or heat pump operation to
times of lower electricity prices - can alter demand profiles, influencing electric-
ity price formation. Flexibility can potentially reduce the need for costly backup
power plants and increase the integration of renewable energy sources (RES)
by aligning consumption with periods of high RES generation (Kiviluoma and
Meibom, 2010). However, shifting demand can also lead to increased electricity
prices due to heightened consumption during periods of negative or low electric-
ity prices.

The deployment of flexibility not only affects the electricity price formation but
also leads to significant redistributional consequences in the electricity market.
For example, Liski and Vehviläinen (2023) illustrate how increased demand-side
flexibility, while reducing overall price volatility, leads to a redistribution of eco-
nomic surplus from producers to consumers. Producers, especially those relying
on price peaks, may see their profits diminish as flexible demand flattens price
peaks, reducing their revenues. Furthermore, the interaction of decentralized
flexible technologies can create cross-sectoral imbalances. For instance, while
EV owners may benefit from lower electricity costs by charging during off-peak
hours, this increased demand could raise prices for other groups, such as heat
pump owners, who may be operating their systems at the same time. These
dynamics complicate the electricity market by creating interactions where one
group’s flexibility influences the costs borne by others. As such, the introduc-
tion of flexibility could exacerbate inequalities, where certain user groups benefit
disproportionately while others, including producers or less flexible consumers,
face reduced revenues or higher costs.
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This paper addresses these redistributional consequences by providing a de-
tailed analysis of the economic implications of deploying flexibility from end-use
sectors in the wholesale electricity market.

Extensive research has been conducted on the effects of flexibility provision,
primarily focusing on two main objectives: analyzing system-wide impacts, such
as market clearing and electricity price formation, and evaluating welfare effects,
including technology-specific market values and the redistribution of economic
gains among market participants.

The first body of literature focusing on system-wide effects of flexibility tends
to adopt a top-down perspective, often analyzing the impact of flexibility on total
system costs. For example, the Big-5 Energy System Studies (dena, 2022) ex-
plore the system-wide implications of decentralized flexibility deployment in cost-
efficient pathways to achieve climate goals. Other works, such as those by Härtel
and Korp̊as (2021) and Böttger and Härtel (2022), emphasize the importance of
capturing cross-sectoral interactions in energy system models to better under-
stand market dynamics. They show that technologies like EVs and heat pumps,
which act as flexible, price-setting actors, can significantly influence electricity
price formation and market clearing in low-carbon energy systems. Similarly,
Nagel et al. (2022) examine the competition between different flexibility options
in systems with high RES shares, focusing on how these technologies interact
under varying climate targets. Felling and Fortenbacher (2022) further highlight
the importance of sector coupling - integrating electricity, heating, and transport
sectors - when analyzing price formation. Their research stresses the need for
flexibility to be studied in an integrated way, considering multiple energy sectors
simultaneously. Despite these advancements, the current literature on market
clearing and price formation tends to focus on the overall system, neglecting the
heterogeneous impacts of flexibility on different end-user groups, which is crucial
for understanding the redistributional effects of flexibility deployment.

The second body of literature shifts the focus towards the welfare effects of
flexibility deployment and the impact of specific technologies on market values.
Studies like Hirth (2013) have analyzed how the variability of solar and wind
power affects the market values of renewables, while others, such as Bernath et al.
(2021), have examined sector coupling’s impact on these market values. Ruhnau
(2022) expands this discussion by exploring the role of electrolyzers in influencing
wind and solar market values. Böttger and Härtel (2022) and Nagel et al. (2022)
have studied the welfare effects of flexibility deployment, specifically focusing on
the economic benefits for flexibility providers. While the existing studies provide
valuable insights into the broader economic impact of flexibility deployment,
they tend to aggregate flexibility providers, thus overlooking the impacts on
various end-user groups. Neglecting heterogeneous flexibility potentials creates
a critical gap in understanding how decentralized flexibility affects not only total
system welfare but also the redistribution of economic gains and losses across
different actors in the energy market. This study aims to fill this gap by providing
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a granular analysis of decentralized flexibility deployment and exploring how
flexibility affects the economic outcomes at the system, sector, and user levels.

Motivated by the growing relevance of end-user flexibility, this study explores
to what extent the deployment of decentralized flexibility leads to a redistribution
of welfare from electricity producers to consumers. Such redistribution effects
are likely to depend on the characteristics of the flexibility provided, including
the technologies used and the behavioral patterns of different user groups. To
investigate these dynamics and quantify the effects, we enhance the existing
European energy system model DIMENSION by incorporating a high-resolution
dispatch for a range of end-consumer groups and flexibility technologies. This
approach allows us to simulate the interaction between decentralized flexible
assets - such as EVs and heat pumps - and the energy system. Our analysis is
based on a case study for Germany, reflecting the country’s technology-specific
targets for 2030. By assuming the achievement of these targets, we model varying
degrees of flexibility in the road transport and decentralized heating sectors
through a range of use cases. This enables us to assess the economic consequences
of decentralized flexibility provision across different market actors. Besides this,
the paper adds to the existing literature by providing an in-depth analysis of the
impacts of various decentralized flexibility use cases across three distinct levels:

• System level: We assess the system-wide impacts of flexibility deployment,
including effects on electricity price formation and CO2 emissions.

• Sector and technology level: We quantify the redistribution of consumer
and producer surplus across different sectors and technology groups and
estimate the changes in total system welfare.

• User level: We examine the economic impact of flexibility provision for
decentralized user groups, accounting for their diverse characteristics and
behaviors.

By focusing specifically on the wholesale electricity market, we isolate and quan-
tify the effects of market-oriented provision of decentralized flexibility, while
excluding potential gains from balancing and intraday markets and abstract-
ing from distribution grid constraints. Moreover, we limit our analysis to the
changes in marginal electricity generation costs, interpreted as wholesale elec-
tricity prices, without considering other components of the end-user electricity
price such as taxes, levies, and network charges.

The paper is structured as follows: Section 4.2 describes the modeling ap-
proach. Section 4.3 presents the case study. Section 4.4 analyzes the impacts of
decentralized flexibility on electricity prices, CO2 emissions, and the redistribu-
tion of welfare between producers and consumers, with particular attention to
differences across technology groups and user types. Section 4.5 discusses the re-
sults. Finally, Section 4.6 summarizes the main findings and suggests directions
for future research.
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4.2. Enhanced modeling of decentralized flexibility

To address the research questions posed in this study, we extend the existing
DIMENSION modeling framework (Helgeson, 2024, Helgeson and Peter, 2020,
Richter, 2011) to incorporate a more detailed representation of flexibility in the
decentralized heating and road transport sectors. These enhancements focus
specifically on Germany. By capturing the behavior of heterogeneous end-user
groups in these sectors, the enhanced model allows us to study how varying
degrees of flexibility influence electricity price formation and the redistribution
of economic gains between producers and consumers. The model approach for the
heating sector is described in Section 4.2.1 and for the transport sector in Section
4.2.2. The visualization of the model structure as well as the mathematical
formulation of end-user flexibility is provided in Appendix C.2.

4.2.1. Decentralized heating

This section outlines our approach to modeling decentralized heating technolo-
gies, specifically focusing on heat pumps in both residential and commercial
buildings.23 The development of the building stock is modeled using the EWI
building stock simulation tool (EWI, 2023a), which generates development path-
ways based on key indicators such as historical building stock data, renovation
rates, demolition rates, and technological advancements. The tool categorizes
buildings by type, renovation level, and installed heating systems. Simulations
are carried out based on annual assumptions for heating system installations,
replacements, and construction as well as demolition rates. The output includes
metrics such as the projected number of heating systems and final energy demand
for each building type.

In this model, five building types are defined, each reflecting different levels of
passive building mass storage - a key factor influencing flexibility potential. In
the residential sector, buildings are categorized into three groups: unrefurbished,
refurbished, and new buildings, based on energy efficiency standards defined by
KfW (2024). ”Unrefurbished” refers to buildings without any energy efficiency
classification, while ”new” buildings comply with KfW efficiency classes 40 and
40+. Refurbished buildings represent those with intermediate energy efficiency
levels. By 2030, the simulation estimates that approximately 20.5 million residen-
tial buildings will exist in Germany, with 33% unrefurbished, 62% refurbished,
and 5% newly constructed.24 For the commercial sector, buildings are catego-
rized by insulation levels into two groups: non-insulated and insulated. By 2030,

23Note that our enhancements in this study are limited to space heating and hot water. For
a detailed description of the modeling approach for cooling and cooking, please refer to
Helgeson (2024).

24The simulation of the residential building stock is based on data from Heitkoetter et al. (2020)
and aligned with the WP+|WN scenario from EWI (2023c).
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71% of the 2.1 million commercial buildings are projected to be non-insulated,
while 29% are expected to be insulated.25

We further differentiate between two types of heat pumps: air-source heat
pumps (ASHPs) and ground-source heat pumps (GSHPs). These distinctions
are based on differences in their coefficients of performance (COPs), which af-
fect the relationship between electricity input and heat output and thus their
flexibility potential (Rinaldi et al., 2021). By combining the five building stock
categories with the two heat pump types, we define ten building types. Based
on the simulation outcomes, the total demand for space heating and hot water
is projected to reach 471 TWh for residential buildings and 124 TWh for com-
mercial buildings by 2030.26 The annual heat demand for each building type is
distributed hourly using weather- and country-specific demand profiles from the
when2heat dataset (Ruhnau and Muessel, 2022). The share of heat demand, in-
cluding space heating and warm water, to be met by heat pumps in each building
type is calculated based on the number of installed units, as shown in Table 4.1.
In line with the German government’s target, we assume approximately 6 mil-
lion heat pumps to be installed in Germany by 2030 (BMWK, 2022b). Across
all building types, ASHPs make up 80% of the total installed capacity, while
GSHPs account for the remaining 20%. These assumptions are based on a linear
interpolation of the observed technology distribution trends in Germany between
2012 and 2022 (BWP, 2023).

25The commercial building stock simulation is based on the ENOB database
and covers only heated or cooled buildings. More details can be found at
https://www.datanwg.de/home/aktuelles/.

26Building sector simulation is conducted in line with the current refurbishment targets (EWI,
2023a) and follows the current literature (Holm et al., 2021, Prognos et al., 2021, Repenning
et al., 2023).
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Table 4.1.: Number of heat pumps and share of total heat demand by building type

Building
type

Building
group

Heat
pump
type

Building
condition

Number of
heat pumps

Share of
heat de-
mand

Res1 ASHP Residential ASHP Unrefurbished 1364062 4%
Res2 ASHP Residential ASHP Refurbished 2740057 8%
Res3 ASHP Residential ASHP New 550977 2%
Res1 GSHP Residential GSHP Unrefurbished 341016 1%
Res2 GSHP Residential GSHP Refurbished 685014 2%
Res3 GSHP Residential GSHP New 137744 0%

Total 5818870 16%

Com1 ASHP Commercial ASHP Non-insulated 470434 5%
Com2 ASHP Commercial ASHP Insulated 188530 14%
Com1 GSHP Commercial GSHP Non-insulated 117609 1%
Com2 GSHP Commercial GSHP Insulated 47133 4%

Total 823706 24%

Note: The shares of heat demand shown in this table include the total demand for both space
heating and warm water across all building types.

In addition to the passive storage potential, insulation levels affect the COPs
of installed heat pumps. Heat pumps serve both space and water heating needs,
with water heating accounting for around 20% of the total heat output in older
buildings and 40% in newer buildings due to better insulation. Depending on the
refurbishment status, heat pumps are paired with either floor/surface heating or
radiators. As a result, the COPs vary across building types, as shown in Table
4.2, which outlines the annual average COPs for each heat pump and building
type combination.

Table 4.2.: Annual average COP by heat pump technology and building type

Building Space heating Warm water Annual average COP
type Floor/surface Radiator - ASHP GSHP

Res1 0% 80% 20% 3.3 4.5
Res2 40% 40% 20% 3.4 4.7
Res3 45% 5% 50% 3.5 4.9
Com1 15% 70% 15% 3.4 4.7
Com2 15% 70% 15% 3.4 4.7

Note: The hourly, weather-dependent COPs of the heat pumps are based on the when2heat
dataset (Ruhnau and Muessel, 2022). The average annual COPs are derived for the weather
year 2015, based on the assumptions regarding the heat sinks.
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4.2.2. Road transport

This section outlines our modeling approach to account for the charging behavior
of EVs within the dispatch model. We focus exclusively on passenger EVs, while
light-duty and heavy-duty EVs are modeled using simplified, aggregated demand
profiles. The central objective of this modeling approach is to account for het-
erogeneous charging patterns. Rather than applying average charging costs to
all vehicles, we propose that unique cost structures should be applied exclusively
to vehicles capable of responding to price signals, enabled by smart meters and
user participation in demand-side flexibility. Flexibility in this context refers to
the ability of vehicles to adjust their charging in response to wholesale electricity
price fluctuations, offering potential cost-saving opportunities. A critical factor
influencing this flexibility potential is the variation in driving and parking pat-
terns among EV users. These patterns create varying opportunities for vehicles
to shift their charging times, directly affecting their capacity to provide system-
oriented flexibility. For instance, EVs with longer parking durations can offer
more flexibility than those with shorter or more sporadic parking periods. Thus,
our model enhancement aims at incorporating this heterogeneity to accurately
capture the diverse flexibility contributions of different EVs. A fundamental
challenge arises between the bottom-up approach, which models each vehicle in-
dividually, and the top-down approach, which uses aggregated demand profiles.
To bridge this gap, we introduce ten distinct mobility clusters that capture dif-
ferent charging behaviors and flexibility patterns. These clusters vary based on
the proportion of home, public, and workplace charging, as well as the flexibility
to shift demand according to parking durations. This clustering approach en-
ables us to capture diverse mobility behaviors while maintaining computational
efficiency.

Electricity demand and potential flexibility of electric vehicles are driven by
their driving patterns. For Germany, two primary surveys capture mobility
behavior of households: Mobility in Germany (MiD) (infas et al., 2018) and
the German Mobility Panel (MOP) (KIT - Institut für Verkehrswesen, 2021).
Leveraging this data, we build upon the methodologies presented by Arnold
et al. (2024) and Kröger et al. (2023).

First, we employ data from around 300,000 daily trip chains, incorporating
information about the arrival time, duration of stays, specific parking locations,
settlement type, and electricity consumption during the driving time. Based on
this data, individual charging profiles are computed for different combinations of
workplace, home or public charging of each daily trip chain. We assume that the
charging process begins upon parking and ends either when a new trip begins
or the battery is fully charged. Depending on seven different settlement types
(urban, rural, semi-urban etc.), different possible charging profiles are weighted
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and combined to one single profile.27 As a result, each trip chain is transformed
into charging profiles considering the different possibilities to start a charging
process at different locations.

To capture the heterogeneity of home charging, we perform a k-medoids clus-
tering based on home parking profiles. Thus, each charging profile is assigned
to one mobility cluster. A total of ten mobility clusters are defined, with all
individual charging profiles aggregated for each cluster. The charging profiles
are then scaled to match the electricity demand of the number of EVs in the use
cases presented in Section 4.3.2.

We further compute both positive and negative flexibility potentials for each
cluster. Positive flexibility refers to the ability to reduce charging power (i.e.,
shifting or delaying charging). This potential is defined as the portion of home
charging within the scaled charging profile of each cluster. In contrast, negative
flexibility refers to the possibility of shifting charging to another time compared
to the initial charging profile, allowing an increase in charging power at specific
times. The potential is computed by aggregating the potential charging power
of all cars parked at home and subtracting the initial charging profile. Both
positive and negative flexibility profiles are intersected with the home parking
time series of the cluster center following Arnold et al. (2024).

The results, illustrated in Figure 4.1, show that the ten distinct mobility clus-
ters exhibit significant heterogeneity in their charging times, charging intensity,
and flexibility potentials.28

27Based on infas et al. (2018), we assume that profiles containing home charging are weighted
with 90% and 42% in urban cities and rural areas respectively. Other settlement types are
assigned intermediate weighting factors.

28The source code and the profiles are published alongside this study:
https://data.mendeley.com/datasets/bpwmxzhjx2/1.
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4.2. Enhanced modeling of decentralized flexibility

Figure 4.1.: Charging and flexibility profiles for different mobility cluster

Note: Each mobility cluster is characterized by distinct driving and charging patterns, as well
as flexibility potentials. One weekend day and one weekday are shown at an hourly resolution,
separated by a gray line, with the y-axis representing the total electricity demand.

For instance, mobility cluster 6 shows a dispersed charging pattern through-
out the weekend, while mobility cluster 4 has concentrated midday charging.
Conversely, mobility clusters 5 and 10 predominantly charge during the evening
hours. Table 4.3 shows the distribution of the total number of EVs across the
defined mobility clusters.
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For 2030, we assume that the total number of passenger EVs reaches 15 million
according to BMWK (2022b), with a total annual electricity demand of approxi-
mately 34 TWh.29 This electricity demand remains constant across all use cases.
EVs are assigned to the different clusters in proportion to their annual charging
demand.

Table 4.3.: Distribution of EVs across mobility clusters MC1 to MC10

MC1 MC2 MC3 MC4 MC5
Absolute [million] 1.97 0.87 2.31 0.86 0.83
Relative [%] 13.2 5.8 15.4 5.7 5.5

MC6 MC7 MC8 MC9 MC10
Absolute [million] 1.93 2.24 1.14 1.71 1.10
Relative [%] 12.9 15.0 7.6 11.4 7.4

When addressing the future flexibility potential, Muessel et al. (2022) em-
phasizes the risk of overestimating the flexibility potential of EVs if one relies
solely on overall charging profiles and aggregated flexibility potentials. We also
recognize that only a fraction of home chargers may be equipped with smart
meter technology, and only a limited number of users may be willing to provide
flexibility. Considering these factors, we apply a conservative reduction to both
the positive and negative flexibility potentials, using the same factor of 0.56 as
in Agora and FfE (2023). Furthermore, we assume that only 25% of all EVs in
2030 will be equipped for bidirectional charging, consistent with the assumptions
in Agora and FfE (2023).

4.3. Case study - Energy system dispatch under
different flexibility use cases

This section describes the general model scope (Section 4.3.1) as well as the use
cases defined to assess the impact of varying degrees of decentralized flexibility on
electricity prices, producer and consumer rents and total system welfare (Section
4.3.2).

4.3.1. General model scope

Our analysis focuses on the year 2030 and is based on a comprehensive model
of the European energy system that captures cross-sectoral interdependencies.
The analysis relies on a broad range of data sources to accurately model the Eu-
ropean energy system. Appendix C.3 provides information regarding capacity

29Based on Helgeson and Peter (2020), we assume an annual driving distance of 11,200 km per
EV and an average energy consumption of 0.2 kWh/km.
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and profile assumptions and also includes input parameters, such as fuel prices,
installed capacities and electricity demand. While the model covers the entire
European electricity system, our primary focus is on Germany, where we intro-
duce a high level of granularity in end-use sectors such as heating and transport
as described in Section 4.2.

4.3.2. Different use cases for end-use sectors

We introduce different flexibility use cases for the heating and transport sectors.
These use cases cover a range of potential flexibility degrees for EVs and heat
pumps. We define three levels of flexibility for transport and two for the heating
sector, resulting in six distinct flexibility use cases, as illustrated in Figure 4.2.
By examining these combinations, we aim to gain insights into the impacts of
flexibility on the overall energy system, various sectors, technologies, and the
end-user groups involved.

Figure 4.2.: Definition of flexibility use cases

Note: The figure illustrates the defined flexibility use cases for both transport and heating
sectors. The rows represent flexibility levels for EVs, while the columns represent different
flexibility assumptions for decentralized heating. The names for the use cases are displayed in
the gray cells.

The following sections describe the flexibility use cases for the heating and
transport sectors in more detail.

Heating sector

In the passive use case (H0), the only flexibility considered is the thermal stor-
age capacity of the building mass. A simplified approach is applied, in which
the duration that buildings can passively maintain indoor temperatures within
comfort limits - without active heating - is estimated based on the specific trans-
mission heat loss of each building type.30 The resulting volume factors indicate

30A detailed description of the applied method is provided in Appendix C.2.
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the number of hours the building can passively meet its heating demand from
stored thermal energy. These are set to one hour for unrefurbished buildings,
two hours for retrofitted buildings, and three hours for new constructions. In the
flexible use case (H1), an additional thermal storage is introduced to enable more
flexible heat pump operation. This is represented by increasing the respective
volume factors by one hour, reflecting the availability of both passive and active
(tank-based) storage. For example, in newly constructed buildings, the volume
factor increases from three to four hours, representing the combined flexibility
of building mass and dedicated heat storage.

Transport sector

In the transport sector, we define three distinct use cases based on varying de-
grees of flexibility in charging behavior: passive charging, flexible charging, and
bidirectional charging. In the passive use case (M0), EVs follow a predetermined
charging profile with no flexibility in the timing of charging. In the flexible use
case (M1), EVs are allowed to shift their charging within the limits of their pos-
itive and negative flexibility potentials, as described in Section 4.2.2. The final
use case (M2) incorporates bidirectional charging, allowing vehicles not only to
draw electricity from the grid but also to supply it back, thereby providing addi-
tional flexibility to the system. Across all flexible use cases, the energy balance
must be maintained within each day.

4.4. Results

To evaluate the impact of varying degrees of flexibility provided by EVs and
heat pumps on consumer and producer surplus, we apply the enhanced model
to the defined use cases. By analyzing the changes in both surpluses, we aim
to assess the overall impact on total system welfare, reflecting the economic
benefits of market-driven flexibility provision at the wholesale level. This section
is structured as follows: first, in Section 4.4.1, we present the results for the
reference use case, which assumes no flexibility from heat pumps and EVs. In
Section 4.4.2, we explore the changes in market outcomes resulting from different
levels of flexibility provision.

4.4.1. Results without decentralized flexibility

In the absence of flexibility from EVs and heat pumps, the average electricity
price, defined as the marginal cost of electricity, equals 51.39 EUR/MWh, as de-
picted in the cyan-colored box plot in Figure 4.3.31 The electricity price for each

31Refer to Appendix C.3 for the assumptions regarding fuel prices and EU carbon permits. The
model’s results remain structurally robust against variations in fuel and emission allowance
prices.
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hour serves as a key metric for determining the market values and surpluses for
different producer groups, as well as the average electricity costs for consumers,
all visualized in Figure 4.3. The distribution of market values, producer sur-
pluses, and electricity costs is illustrated using box plots for each respective pro-
ducer and consumer group. Market values for electricity producers - visualized
by the blue dots in Figure 4.3 (top) - are calculated as the average revenue per
unit of electricity sold, following the approach of Brown and Reichenberg (2021).
Within the dispatch modeling framework, which assumes perfect competition,
perfect foresight, and perfect information, short-term producer surplus can be
achieved due to sunk investment costs. We define short-term producer surplus
as the difference between the total market value (i.e., total revenue from electric-
ity sold) and the sum of variable electricity generation costs over the analyzed
period. The average producer surplus - represented by red dots - is calculated
by dividing the absolute surplus (in EUR) by the respective production volumes.
On the consumer side, we estimate average electricity costs, represented by the
blue dots in Figure 4.3 (bottom).

Figure 4.3.: Electricity price, average market values and producer surplus for producer
groups as well as average electricity costs for consumer groups in the use
case M0/H0

Note: Blue dots reflect the volume weighted market values for producer (top) and average
electricity costs for consumer (bottom). Red dots denote the volume weighted short-term
producer surplus (top). The box plots visualize the distribution of data points without volume
weights. The minimum and maximum values are represented by crosses. The median is depicted
by the gray line, while the colored box between the lower and upper quantiles represents 50%
of all values. The maximum whiskers are equal or lower to 1.5 times the Inter-Quartile Range.

On the producer side, average market values (blue dots) indicate the merit or-
der function. We observe that PV technologies exhibit the lowest market values,

93



Welfare redistribution through flexibility

followed by onshore and offshore wind. This is primarily due to the influence of
high renewable energy supply or low demand, which can push electricity prices
downward. PV technologies tend to have lower market values as peak electricity
demand often occurs in the afternoon or after sundown, especially in winter,
when solar energy is unavailable. During periods of scarce renewable energy
generation, NTCs and energy storage are used to meet electricity demand. In
contrast, when renewable generation is low and demand is high, conventional
power plants are deployed. Due to high fuel costs and comparably low efficiency,
open-cycle gas turbines (OCGTs) have the highest average market values. We
observe a wide range of producer surpluses (red dots) across the different tech-
nologies used for electricity production. Negative producer surplus values are
particularly evident for CHP technologies, which are constrained by heat provi-
sion requirements. Biomass facilities also experience negative surplus values due
to their assumed baseload generation, although in reality, subsidies prevent neg-
ative rents for these plants. Conventional power producers, such as coal, lignite,
and gas plants, show comparatively low surplus values, reflecting their marginal
position in the merit order and the impact of variable electricity generation costs.

On the consumer side, the order of average electricity prices paid by end-
consumers reflects their load flexibility. Consumers with greater flexibility, such
as electrolysis plants and batteries, tend to face lower electricity costs. Elec-
trolysis plants can adjust their operations to take advantage of hours with high
renewable energy supply or low demand, thereby reducing their costs. Com-
pared to electrolysis plants, batteries exhibit higher average electricity costs due
to technical constraints. In contrast, inflexible consumers, such as industrial
users and households, face higher electricity costs. In the reference use case
without decentralized flexibility, their electricity consumption remains relatively
rigid, meaning less ability to avoid periods of high prices.32 As a result, simi-
lar electricity costs are observed across various electricity-based applications for
these end-consumers.

4.4.2. Results with decentralized flexibility

The introduction of decentralized flexibility affects electricity prices, leading to
cascading effects on the economic outcomes of various producer and consumer
groups. In this section, we first examine the effects of the defined flexibility use
cases on electricity prices and CO2 emissions. Next, we present welfare analysis
results, focusing on the changes in producer and consumer surplus. Lastly, we
assess welfare shifts within the heating and road transport sectors. This section,
therefore, provides a comprehensive view of decentralized flexibility’s impact on
system-wide performance, sector- and technology group-specific dynamics, and
user group-specific outcomes in the heating and road transport sectors.

32For certain industrial processes, demand-side management (DSM Ind.) is enabled, following
Virtuelles Institut (2022).
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Impact of decentralized flexibility on electricity prices and CO2

emissions

Decentralized flexibility has only a limited impact on wholesale electricity price
levels, as shown by the blue dots representing the average level and by the
box plots illustrating the distribution in Figure 4.4. However, while price levels
remain relatively stable, decentralized flexibility helps reduce electricity price
volatility. The mean 1-hour electricity price volatility, represented by the red
dots in Figure 4.4, is defined as the average absolute price change from one hour
to the next (Martinez-Anido et al., 2016).

Figure 4.4.: Variation of electricity prices across different flexibility use cases

Note: The blue dots reflect the volume weighted marginal electricity generation costs, while the
box plots visualize the distribution of data points without volume weights. The minimum and
maximum values are represented by crosses. The median is depicted by the gray line, while the
colored box between the lower and upper quantiles represents 50% of all values. The maximum
whiskers are equal or lower to 1.5 times the Inter-Quartile Range (range of the colored box).

The system-oriented deployment of decentralized flexibility helps smooth de-
mand fluctuations, flattening the hourly price curve and reducing price volatility.
One way flexibility achieves this is through peak load reduction, which decreases
the reliance on dispatchable generation. As a result, peak prices are lower across
flexibility use cases compared to M0/H0. Although the number and magnitude
of peak load hours decline with increased flexibility33, the maximum prices shown
in Figure 4.4 exhibit only slight changes between the use cases. Another mecha-
nism for reducing price volatility is demand shifting, where increased electricity
consumption during hours with zero or negative prices helps smooth price curves
further by reducing the frequency of such low-price hours. The overall small de-
cline in average electricity prices suggests that the effects of peak shaving and
demand shifting are nearly balanced. Together, these two effects contribute to
a smoother residual load function, as illustrated in Figure C.8 in the Appendix.
When comparing flexible assets, the results show that EVs, with their higher

33This can be observed in Figure C.8 in the Appendix, which shows deviation in the residual
load curve for each analyzed use case.
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flexibility potential and longer flexibility windows, have a more substantial effect
on price formation than heat pumps. The additional positive flexibility provided
by EVs significantly reduces electricity price volatility and lowers the need for
dispatchable generation.

Beyond mitigating electricity price volatility, decentralized flexibility also con-
tributes to reducing CO2 emissions in the energy sector, as shown in Table 4.4.

Table 4.4.: Changes in national CO2 emissions under different flexibility use cases, in
million tons of CO2eq

Sector
M1/H0

(Transport)
M2/H0

(Transport)
M0/H1
(Heating)

M1/H1
(Interact.)

M2/H1
(Interact.)

Energy -0.22 -0.37 -0.06 -0.27 -0.40
Note: Only changes in the CO2 emission in the energy sector are included, while CO2 emissions
in sectors other than the energy sector remain constant across the flexibility use cases.

By lowering peak load hours and shifting demand, flexibility reduces the need
for backup power plants and decreases RES curtailment, leading to lower overall
CO2 emissions. As evident from the deviations in the residual load curve from
the reference use case (Figure C.8), the most significant impact on CO2 emis-
sions comes from flexible, and particularly bidirectional charging of EVs. EVs
help reduce reliance on fossil-fuel-based backup generation and enable better
utilization of renewable energy. In contrast, heat pumps - due to their lower
flexibility potential and their tendency to operate during cold afternoon hours
where RES availability is lower - show comparatively smaller potential to re-
duce RES curtailment. Consequently, their impact on CO2 emission reductions
is less pronounced than that of EVs. However, both technologies contribute to
improving RES integration.

Welfare analysis for different sectors and technology groups

The introduction of decentralized flexibility through EVs and heat pumps re-
sults in a significant redistribution of economic welfare across various producer
and consumer groups. The impact of the analyzed flexibility use cases varies
greatly depending on the technology and end-use sector. While increased flexi-
bility smooths the electricity price curve, it also leads to substantial reductions
in producer surplus for dispatchable power plants, along with corresponding in-
creases in consumer surplus, especially for EV owners. This consumer surplus
is defined as the reduction in average electricity costs compared to the reference
use case without decentralized flexibility (M0/H0). Figure 4.5 highlights these
shifts across producer and consumer groups for the defined flexibility use cases
compared to the reference use case (M0/H0), visually demonstrating how welfare
redistribution varies with different levels of flexibility using a detailed heat map.
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Figure 4.5.: Changes in average producer and consumer surplus under different flexibility
use cases, measured in EUR/MWh

Note: The columns represent the absolute changes in average producer and consumer surplus
across different technology and end-user groups for the defined flexibility use cases compared
to the reference use case (M0/H0). The estimated deviations in relative terms are visualized
via heatmap.

The road transport sector, with the introduction of flexible (M1/H0) and bidi-
rectional (M2/H0) charging, has the most significant impact on short-term pro-
ducer surplus. Gas-fired power plants are particularly affected, with producer
surplus changes reaching -2.72 EUR/MWh for gas CCGT (Combined Cycle Gas
Turbine) plants and -2.35 EUR/MWh for gas CHP plants. In some cases, this
represents a 70% reduction, highlighting the detrimental effect of EV flexibil-
ity on dispatchable assets. As EVs shift demand away from high-priced peak
hours, gas power plants lose out on their ability to generate revenue during
these times. This is visually illustrated in Figure 4.5, where the darkest shades
correspond to the largest declines in producer surplus. Increasing flexibility fur-
ther leads to cannibalization effects on other flexible assets, such as batteries,
NTCs, and DSM, which face decreasing surplus. The flattening of the resid-
ual load curve due to flexible charging reduces price volatility, thereby limiting
the profitability of technologies that store and/or shift electricity. Specifically,
battery discharge experiences a significant decrease in producer surplus, declin-
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ing by 4.28 EUR/MWh with increasing EV flexibility (M2/H1). The reduction
in price peaks limits arbitrage opportunities for batteries. Similarly, power im-
ports decrease by 1.54 EUR/MWh as domestic flexibility reduces the need for
external electricity during peak demand hours. DSM in industrial processes also
suffers a reduction in producer surplus, with decreases of 1.99 EUR/MWh in
the M1/H0 use case. This is primarily due to the flattening of electricity prices,
which reduces the effectiveness of DSM strategies. On the consumer side, the
flexibility provided by EVs results in notable increases in consumer surplus. EV
users see surplus gains of up to 13.68 EUR/MWh, reflecting a 30% increase
in surplus when bidirectional charging is introduced. In contrast, other (non-
flexible) end-use sectors such as non-road transport, industry, and buildings,
show more modest increases in consumer surplus, ranging from 0.82 EUR/MWh
and 0.59 EUR/MWh. These increases are driven by slightly lower electricity
prices due to the additional system-oriented flexibility.

In comparison, the impact of heating sector flexibility (M0/H1) on welfare
redistribution is less pronounced. For instance, gas CCGT plants experience a
reduction in producer surplus of solely 0.10 EUR/MWh, which is significantly
smaller than the impact of transport sector flexibility. Similarly, gas CHP plants
see smaller but still notable reductions, with a 0.12 EUR/MWh decline in pro-
ducer surplus, as shown in Figure 4.5. Decentralized flexibility from heat pumps
also affects other flexible assets. However, due to the seasonal nature of heating
demand, the overall impact is less severe compared to the transport sector. For
example, PHS and battery discharge reduction only reaches -0.19 EUR/MWh
and -0.16 EUR/MWh, respectively. Imports decrease by 0.09 EUR/MWh as do-
mestic flexibility slightly reduces reliance on imported electricity during colder
periods. DSM in industrial processes experiences a producer surplus reduction
of 0.13 EUR/MWh compared to 1.99 EUR/MWh observed in the bidirectional
charging use case (M2/H0). Heat pumps, which mainly provide flexibility during
colder periods, have a limited ability to shift demand away from peak hours, re-
sulting in smaller overall welfare gains for consumers. However, the highest gains,
reaching 0.76 EUR/MWh, are observed in the heating sector with more flexible
heating demand. Gains in other end-user sectors amount to 0.04 EUR/MWh,
underscoring the limited potential of heating sector flexibility to substantially
reduce electricity price volatility.

When flexibility from both sectors is combined (M1/H1 and M2/H1), the ef-
fects on welfare redistribution become more significant. Producer surplus for
gas power plants continues to decrease, reaching up to 2.80 EUR/MWh for gas
CCGT plants, further reducing profitability as both flexible EVs and heat pumps
contribute to a stronger flattening of the residual load curve. Combined flexi-
bility also affects batteries, imports, and DSM. Battery discharge experiences a
reduction of 4.38 EUR/MWh, indicating that opportunities for batteries to cap-
italize on price fluctuations are further diminished in a highly flexible system.
Gains from imports decrease by 1.64 EUR/MWh, reflecting the reduced need
for external power as domestic flexibility improves the balancing of demand and
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supply. DSM in industrial processes sees a drop of 1.90 EUR/MWh in producer
surplus, underscoring the diminishing returns from DSM strategies in a market
with decreasing price volatility. In contrast, consumer surplus increases signif-
icantly. The heating sector sees its largest welfare gains when flexibility from
both heating and transport is combined, with consumer surplus increasing by up
to 1.01 EUR/MWh for buildings heating. However, these gains remain modest
compared to the road transport sector, which faces up to 13.64 EUR/MWh in
consumer surplus.

Redistribution of total system welfare
Decentralized flexibility significantly reshapes total system welfare, redistribut-
ing economic benefits between producers and consumers. Table 4.5 summarizes
the changes in total producer surplus and consumer surplus, categorized by three
different technology groups. The last row shows the changes in the total system
welfare.

Table 4.5.: Absolute welfare changes for specific producer and consumer groups, in mil-
lion EUR

Welfare changes
M1/H0

(Transport)
M2/H0

(Transport)
M0/H1
(Heating)

M1/H1
(Interact.)

M2/H1
(Interact.)

Total producer surplus -259.5 -968.5 -43.3 -298.2 -993.9
- Renewable generation -22.9 159.8 2.7 -13.9 180.0
- Conventional generation -46.3 -226.9 -10.8 -55.3 -234.3
- Flexible assets -190.3 -901.4 -35.4 -229.0 -939.6
Total consumer surplus 304.4 1031.0 57.4 353.9 1062.6
- End-use sectors 289.9 1057.0 56.7 340.5 1088.3
- Flexible assets 14.5 -26.0 0.7 13.3 -25.8

Total system welfare 44.9 62.5 14.0 55.7 68.7

Note: The estimated changes in total producer and consumer surplus are derived as the sum of
technology and user-specific changes in total producer and consumer surplus for each analyzed
flexibility use case compared to the reference use case without decentralized flexibility (M0/H0).
Biomass and biomass CHP, hydro, PV, wind onshore, and wind offshore are included in the cat-
egory renewable generation. Flexible assets encompass technologies used to shift, store, and/or
provide electricity, such as DSM through industrial processes, batteries, PHS, and electricity
imports/exports via NTCs from neighboring countries. Positive flexibility of these technolo-
gies (such as electricity provision or demand reduction) is denoted within the producer group,
while negative flexibility (such as electricity infeed, export, or demand increase) is accounted
for within the consumer group.

On the producer side, renewable generators benefit from increased flexibility
with the introduction of V2G technology, which raises their surplus by up to 180
million EUR. In contrast, conventional power plants face substantial losses, with
reductions in producer surplus reaching up to 234 million EUR. These losses are
primarily due to fewer price peaks and the reduced need for dispatchable gener-
ation during high-demand periods. Flexible assets, such as batteries and DSM,
experience mixed results. While these assets provide crucial flexibility, they suf-
fer significant cannibalization as decentralized technologies like V2G erode their
profitability. As a result, producer surplus for flexible assets decreases by up to
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939.6 million EUR, reflecting the competition between centralized and decen-
tralized flexible technologies for price arbitrage opportunities. On the consumer
side, the introduction of decentralized flexibility leads to notable welfare gains,
particularly in the transport and heating sectors. The most significant increases
occur when both flexible EV charging and heating flexibility are combined, with
consumer surplus rising by up to 1,088.3 million EUR. These gains are driven
by consumers’ ability to shift their electricity consumption to lower-cost hours,
benefiting from reduced price volatility. However, as more flexibility is added to
the system, it becomes increasingly difficult for flexible assets to capture value,
as their ability to profit from price arbitrage diminishes.

When comparing the impacts across different use cases, decentralized flexibility
in the transport sector - through flexible charging and V2G - has a far greater
influence on system welfare than decentralized heating. While flexible charging
(M2/H0) increases total system welfare by up to 62.5 million EUR, the impact
of decentralized heating alone (M0/H1) is modest, with a welfare increase of
just 14 million EUR. Even in combined use case (M2/H1), transport flexibility
remains the dominant factor, contributing significantly to consumer surplus and
system-wide efficiency improvements, while decentralized heating shows a much
smaller incremental effect. This highlights the greater potential of transport
sector flexibility to drive welfare gains compared to heating, which has a limited
ability to shift demand.

Impact of decentralized flexibility on electricity costs for distinct
end-user groups

We further analyze the effects of the flexibility use cases on average electricity
costs for decentralized heating in various building types, as well as on the average
electricity costs for different mobility clusters.

Road transport
Average electricity costs differ significantly across mobility clusters, as shown in
Figure 4.6.34

34Refer to Figure C.4 for supplementary data on the total electricity costs, and Figures C.6
and C.7 for calculated hourly deviations in EV charging compared to the reference use case
(M0/H0) for each mobility cluster.
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Figure 4.6.: Changes in average electricity costs across mobility cluster under different
flexibility use cases, in EUR/MWh

Note: ’All’ denotes the weighted average electricity costs across analyzed mobility clusters.

In the reference use case without decentralized flexibility (M0/H0), average
electricity costs range from 44.45 EUR/MWh in MC4 to 62.75 EUR/MWh
in MC5, reflecting variations in consumption and charging behavior patterns.
When flexible charging is introduced (M1/H0), average electricity costs de-
crease across all clusters. On average, costs fall to 49.85 EUR/MWh, with
the largest reduction seen in MC10, where costs drop from 59.1 EUR/MWh
to 48.34 EUR/MWh. By contrast, MC4 shows a smaller reduction, declining
from 44.45 EUR/MWh to 37.49 EUR/MWh. The introduction of demand flex-
ibility leads to significant cost reductions, with an average decrease of around
8.7%. When bidirectional charging is employed (M2/H0), the impact on costs
varies significantly among clusters. On average, electricity costs drop further
to 39.19 EUR/MWh. MC8 shows a substantial deviation, with negative elec-
tricity costs of -25.64 EUR/MWh due to the cluster’s ability to shift nearly all
charging demand across the day. Conversely, MC4, with less flexibility, experi-
ences a much smaller reduction, with costs declining only to 10.5 EUR/MWh.
The addition of heat pump flexibility in the M0/H1 use case leads to a slight
increase in electricity costs, with average costs increasing to 54.6 EUR/MWh.
Similarly, in the M1/H1 and M2/H1 use cases - where both electric vehicle and
heat pump flexibility are incorporated - results are mixed. Average costs stabi-
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lize around 49.83 EUR/MWh in M1/H1 and 39.28 EUR/MWh in M2/H1. These
findings underscore the substantial savings associated with charging flexibility,
particularly when V2G is implemented, although the benefits vary greatly across
different mobility clusters.

Decentralized heating
In the heating sector, average electricity costs for heat pump operation vary
significantly across building types, as shown in Figure 4.7.35

Figure 4.7.: Changes in average electricity costs across buildings types under different
flexibility use cases, in EUR/MWh

Note: ’All’ denotes the weighted average electricity costs across analyzed building types.

While the direction of the effects of additional flexibility from both heat pumps
and electric vehicles is consistent across building types, the magnitude of these
effects differs. The introduction of thermal storage (M0/H1) results in a gen-
eral reduction in electricity costs across all building types, with the average cost
decreasing from 56.44 EUR/MWh to 54.22 EUR/MWh. Commercial buildings
experience a sharper decline, reflecting their high degree of flexibility with addi-
tional thermal storage, whereas residential buildings see a more moderate impact.

35Refer to Figure C.3 for supplementary data on the total electricity costs, and Figure C.5 for
hourly deviations in heat pump operation compared to the reference use case (M0/H0) for
each building type.
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Notably, unrefurbished buildings benefit the most from thermal storage, while
more efficient buildings see smaller reductions in costs. When road transport
flexibility is introduced (M1/H0), it puts upward pressure on electricity costs,
raising the average to 56.58 EUR/MWh. However, this increase is not uniform
across building types. Residential buildings show moderate cost increases, while
commercial buildings are more strongly affected. The difference in magnitude
suggests that commercial entities are more sensitive to the increased competition
for low-cost electricity. The impact of added load becomes even more pronounced
with the integration of V2G technology (M2/H0), further driving up costs to an
average of 57.64 EUR/MWh. Commercial buildings face steeper increases com-
pared to residential buildings, indicating a stronger sensitivity to the added load
and potential cannibalization effects between electric vehicles with V2G and
heat pump operation. Commercial buildings, which typically benefit from lower
electricity costs due to higher daytime consumption, are more heavily impacted
by the competition for low-cost electricity, while residential buildings see a more
moderate cost increase. Finally, when both V2G and thermal storage are utilized
(M2/H1), electricity costs stabilize somewhat, with the average cost reducing to
55.77 EUR/MWh.

This use case shows a greater convergence in prices across building types. For
instance, residential buildings using GSHPs (Res1 GSHP) see a cost reduction
from 62.31 EUR/MWh in M2/H0 to 60.41 EUR/MWh in M2/H1, illustrating
how the additional flexibility from thermal storage offsets the upward pressure
from V2G. Commercial buildings, although still affected by V2G, also experience
some relief from the cost increases, though to a lesser extent than residential
buildings.

4.5. Discussion

The discussion of the findings spans multiple perspectives, encompassing system-
level impacts, sectoral and technological dimensions, and user-specific implica-
tions. On the system level, the results indicate that decentralized flexibility has
a minimal effect on average wholesale electricity prices but significantly reduces
price volatility by smoothing the residual load curve. This aligns with findings by
Härtel and Korp̊as (2021) and Böttger and Härtel (2022), which emphasize flex-
ibility’s stabilizing effects on wholesale prices. Flexibility from EVs, especially
those with V2G capabilities, reduces both the frequency and intensity of peak
demand hours and helps smooth demand fluctuations, with negligible stabilizing
effects observed for heat pumps. Although this study focuses on 2030, a year
in which electricity price volatility is still moderate, the expected rise in RES
penetration could amplify volatility, making decentralized flexibility increasingly
valuable.

Our findings also suggest that flexibility contributes to reducing national CO2

emissions by aligning demand with variable renewable generation and mitigating
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market-driven RES curtailment. This effect is particularly pronounced in Ger-
many, where fossil fuels are expected to remain a substantial part of the energy
mix in 2030. However, as RES shares continue to increase, the potential for
flexibility to reduce emissions may lessen, as e.g. seen in the study by Kirkerud
et al. (2021) on Norway’s RES-dominant energy system.

Although decentralized flexibility improves total system welfare, the welfare
gains are relatively modest and vary significantly across the analyzed flexibility
use cases. Under high-flexibility assumptions for both EVs and heat pumps,
welfare improvements reach up to 68.7 million EUR, suggesting only a moderate
system-wide impact. Modeling results further indicate that higher flexibility
potential due to longer flexibility windows, such as those of flexible and especially
bidirectional EV charging, play a critical role, with the resulting welfare benefits
being over three times greater than those achievable with flexible heat pumps
only. The observed price stickiness in electricity costs for heat production via
heat pumps arises due to low or absent RES generation during cold, dark winter
hours, when heat demand is high.

Nevertheless, the quantified impact of flexibility on total welfare may be over-
estimated, as this study assumes sufficient distribution grid capacity to support
market-oriented flexibility provision. In cases where distribution grid conges-
tion occurs, the ability to provide flexibility, and thus achieve related welfare
gains, may be restricted. This constraint could vary for EVs and heat pumps
depending on regional load profiles and grid infrastructure. Given the findings
in Lilienkamp and Namockel (2025), our results may still approximate welfare
gains accurately, particularly for a moderate penetration of RES, EVs, and heat
pumps in 2030, where distribution grid constraints are less pronounced, even
with herding behavior. Nonetheless, such constraints could become increasingly
critical with higher penetration rates.

Moreover, by focusing exclusively on the wholesale (day-ahead) market, this
analysis omits the welfare gains that decentralized flexibility might yield in
balancing and intraday markets. These markets typically exhibit higher price
volatility than the day-ahead market due to real-time supply-demand imbalances
and the need to compensate for unpredicted RES generation changes. Address-
ing different markets with decentralized flexibility would introduce opportunity
costs, potentially reducing the effects on the day-ahead market.

The introduction of decentralized flexibility redistributes welfare across market
participants, shifting surplus from conventional producers to consumers. This
shift primarily affects gas-fired power plants, which see reduced surplus due to
lower frequency and intensity of peak demand hours. The observed decrease in
peak load suggests that flexibility could lower the need for investments in costly
backup generation. However, as this analysis relies on a dispatch model that
assumes sunk investment costs, it does not capture the potential influence of
decentralized flexibility on optimal investment decisions.
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Furthermore, our results suggest a potential cannibalization effect among flex-
ible assets, with decentralized flexibility significantly reducing the surplus for
centralized assets like batteries. This occurs as decentralized flexibility reduces
the demand for off-peak electricity, limiting centralized assets’ profitability. Al-
though our analysis highlights potential cannibalization effects, it does not ad-
dress trade-offs between centralized and decentralized flexibility investments.
Here, co-optimization of investment and dispatch decisions would provide a long-
term equilibrium, ensuring optimal capacity configuration with profitability of
all assets.

For RES generators, the impact on producer surplus is minor, consistent with
findings by Bernath et al. (2021), who identified limited impacts on the market
values of renewable power plants. Notably, PV producers experience increased
surplus across all flexible use cases, particularly with V2G-enabled EVs, which
shift demand to better align with daytime solar generation. However, potential
network congestion, particularly at the distribution level, could constrain the
observed increasing PV integration.

Our modeling results highlight that all user groups benefit from lower elec-
tricity costs due to decentralized flexibility, regardless of their participation in
flexibility provision. However, this analysis only addresses the procurement com-
ponent of the end-user electricity price, approximated by marginal electricity
generation costs, and excludes taxes, levies, and network fees, which together
constitute a significant portion of end-user electricity price (EWI, 2023b). This
omission limits the analysis, as these additional price components may alter the
economic gains of flexibility for various end-user groups.

The benefits from decentralized flexibility provision vary significantly by user
group, with flexibility potential largely determining cost savings. In the road
transport sector, the range of the observed average electricity costs across mo-
bility clusters increases with increasing flexibility. Charging flexibility - especially
with V2G capabilities - yields more substantial savings for EV owners with more
frequent and longer parking periods. Within the building sector, we observe that
introduction of additional flexibility through thermal storage leads to a conver-
gence of electricity costs across building types. Commercial buildings, due to
their load profiles with less pronounced evening peaks, benefit more from addi-
tional thermal storage. However, they are also more affected by the introduction
of V2G, as the additional flexibility from EVs increases competition for low-cost
electricity during off-peak hours. This analysis, however, does not account for
the costs of providing flexibility, such as e.g. investments in smart meters or
bidirectional charging. Some consumers may benefit from flexibility investments
without bearing associated costs, while others can bear costs but realize minimal
benefits. For user groups with minor cost savings, the net gains from flexibility
may be negligible after factoring in these expenses. The profitability of flexibil-
ity provision is therefore highly dependent on specific consumption patterns and
the flexibility windows. For certain user groups, flexibility may be unprofitable
once these costs are considered. Our findings highlight the advantage of broader
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flexibility windows, particularly for EVs, and underline the limitations that heat
restrictions and price stickiness in electricity costs for heat production impose
on the flexibility potential of heat pumps.

4.6. Conclusion

EVs and heat pumps can play a pivotal role in the future energy system, sig-
nificantly influencing electricity price formation. The deployment of end-user
flexibility not only shapes price dynamics but also brings about considerable
redistributional effects within the electricity market. This paper assesses the
distributional effects of decentralized flexibility by enhancing the established
European energy system model DIMENSION to better represent user-specific
behavior and flexibility potential in the road transport and heating sectors.
Methodologically, we extended the model’s resolution by incorporating diverse
end-consumer groups and flexibility options, enabling a more granular analysis
of welfare effects at the end-user level. This approach allows us to capture the
effects of shifting electricity demand, using technologies such as EVs and heat
pumps, on market outcomes not only at the system level, but also across sectors
and among different user groups. By simulating multiple flexibility use cases
for Germany, we quantify how welfare gains and losses are distributed between
electricity producers and consumers, and how these outcomes vary depending
on the flexibility potential and usage behavior of different technologies and user
groups. This user- and technology-specific quantification of redistributional ef-
fects adds to the existing literature by offering a more differentiated perspective
on the economic implications of end-user flexibility.

4.6.1. Main results

At the system level, our results show that while decentralized flexibility has a
limited impact on average wholesale price levels, it significantly reduces price
volatility by smoothing demand peaks and aligning load with renewable en-
ergy generation. EVs, due to their larger flexibility windows, contribute more
prominently to volatility reduction than heat pumps. This flexibility also facil-
itates CO2 emissions reductions by decreasing RES curtailment, underscoring
its potential to support a low-carbon energy system as renewable energy shares
increase.

At the sectoral and technology-specific levels, decentralized flexibility enhances
overall system welfare, generating gains of up to 68.7 million EUR. However,
these benefits are unevenly distributed. Conventional generation technologies,
particularly natural gas plants, experience reduced revenues due to lower peak
prices. RES, particularly solar PV, see modest gains from better demand align-
ment, while battery storage faces competitive pressure from EV flexibility, lead-
ing to a cannibalization effect in the market. The transport sector, with its higher
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flexibility potential, delivers greater welfare gains than the heating sector, high-
lighting EVs’ significant role in system cost savings. Overall, by lowering peak
prices through increased flexibility, the average electricity costs for consumers
decrease. However, the magnitude of this effect varies depending on the specific
flexibility use case.

At the user level, while consumers as a whole benefit from lower electricity pro-
curement costs, the extent of these benefits differs significantly across user groups
and the flexibility use case. These variations are highly dependent on the con-
sumption characteristics and flexibility time windows. In the transport sector,
EV owners with greater flexibility potential, such as those who park for extended
periods, experience the largest cost savings, especially with V2G capabilities. In
the heating sector, commercial buildings with flatter load profiles benefit most
from flexibility, while residential buildings see moderate cost changes. The com-
petition introduced by EV flexibility impacts commercial users especially, raising
off-peak prices and indicating the potential cannibalization across decentralized
flexible assets.

4.6.2. Future research

Based on our findings, we identify several relevant areas for further investiga-
tion. While this work focuses on the market-oriented provision of flexibility,
future research should incorporate network constraints - particularly at the dis-
tribution level - to capture interactions between decentralized flexibility and grid
congestion. The interplay between market-driven flexibility provision and price
or volume signals from distribution system operators could create significant
challenges in the future, underscoring the need for further investigation. Ex-
panding the scope to include balancing and intraday markets would provide a
more comprehensive view of flexibility’s overall system benefits, as these markets
play a key role in managing renewable variability and maintaining grid reliabil-
ity. From the end-user perspective, the introduction of multiple markets, along
with the associated opportunity costs, would add complexity but also unlocks
greater opportunities for profit making. Additionally, exploring the evolution
of components in end-user electricity prices - such as taxes, levies, and network
charges - would clarify how these factors influence flexibility’s financial viability
and the savings potential for different user groups. Similarly, while our analysis
sheds light on redistribution between end-user sectors and heterogeneous user
groups, further research can examine how decentralized flexibility affects differ-
ent social or income groups, as redistributional impacts could vary significantly
across socioeconomic demographics.
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5. Understanding the fundamentals of

hydrogen price formation and its

relationship with electricity prices -

Insights for the future energy system

5.1. Introduction

The global energy transition toward climate neutrality has positioned hydro-
gen (H2) as a promising pillar in the decarbonization of multiple sectors. As
an energy carrier, hydrogen demand could span across industries, potentially
exhibiting relatively rigid demand patterns, and could extend into sectors like
(central) heating and electricity, where demand might be more dynamic. The
heating sector might experience temperature-dependent variations, leading to
both seasonal and intraday fluctuations, while the electricity sector could ex-
hibit significant volatility, driven by the use of hydrogen in power generation.
Furthermore, the sourcing of hydrogen can be diverse, with imports from non-
European regions, domestic production, or imports from neighboring countries,
each contributing to diverse prices for hydrogen.

Much like for electricity (EL), heterogeneity and volatility in hydrogen supply
and demand could lead to a dynamic price structure when hydrogen is traded
in the market. The European Energy Exchange intends to development market
mechanisms for hydrogen (EEX, 2025). Additionally, recent infrastructure plans
propose hydrogen pipelines to connect different market regions (ENTSO-E and
ENTSOG, 2024). In such a setting, the diverse supply and demand structures
for hydrogen would shape market equilibrium, influencing hydrogen prices ac-
cordingly. Those effects can also be diverse because of the interdependencies
with the electricity sector. Additionally, the presence of hydrogen storage, act-
ing both as suppliers and consumers, would introduce further complexity into
the pricing dynamics.

Despite the increasing focus on hydrogen within the energy transition, sig-
nificant uncertainties remain around the level and volatility of future hydrogen
prices. These uncertainties hinder investments in hydrogen infrastructure, par-
ticularly in storage and electrolyzers, due to unclear profitability (Odenweller
and Ueckerdt, 2025). Major concerns are the unpredictability of price devel-
opments and competition with alternative technologies, such as electricity and
pumped hydro storage, which offer comparable energy storage solutions. This
uncertainty, coupled with a fundamental lack of understanding of how region-
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specific and daily hydrogen prices emerge, limits investor confidence and reduces
planning security.

This study seeks to address these challenges by investigating the fundamentals
of hydrogen price formation and their interdependencies with electricity prices.
The analysis includes a comparison of price structures, followed by more gran-
ular assessments depending on different market situations. Co-integration and
correlation analysis asses the interdependencies between hydrogen and electric-
ity prices. Regression analysis determines key drivers on price formation. In
addition, price ratios and the statistical properties of prices in both markets
are investigated. The robustness of these findings is further evaluated through
sensitivity analysis across different system configurations. To compute the rel-
evant data for the analysis, the European energy system model DIMENSION
is expanded to enable high-resolution, integrated dispatch calculations for both
electricity and hydrogen systems, incorporating up-to-date cost data for hydro-
gen imports and updated infrastructure parameters.

Different literature streams already address the effects of cross-sector integra-
tion of hydrogen. Its importance as a sector-coupling technology necessitates
integrated modeling approaches that consider both electricity and hydrogen sys-
tems. Several studies have explored such integrated models, often focusing on
robust investment decisions under varying scenarios. For instance, Caglayan
et al. (2020) developed a robust energy system design that considers hydrogen
infrastructure, quantifying the necessary storage capacities. Their focus on ro-
bustness against different weather years highlights the significance of external
factors in hydrogen system planning. Similarly, Kondziella et al. (2023) used
192 scenarios to assess uncertainty regarding hydrogen storage demand, while
Frischmuth et al. (2024) also examined the role of uncertainty in storage needs.
In addition, Gawlick and Hamacher (2023) investigated optimal energy systems
that integrate both electricity and hydrogen, and Lüth et al. (2023) analyzed
the trade-offs between electricity and hydrogen infrastructure, emphasizing the
sensitivity of investment decisions to hydrogen prices. The role of hydrogen in
cost minimization and infrastructure planning has also been addressed by Gils
et al. (2021), who identified hydrogen transport infrastructure as essential for re-
ducing supply costs. Additionally, Durakovic et al. (2023) studied the impact of
hydrogen production on electricity prices across different European regions, while
Bellocchi et al. (2023) focused on hydrogen’s role in decarbonization pathways
for Italy’s energy system, showing that while CO2 emissions could be reduced by
49%, the associated annual costs would increase by 8%. Neumann et al. (2023)
compared system costs across different levels of hydrogen network expansion,
and Frischmuth and Härtel (2022) examined how varying hydrogen procurement
strategies influence investment decisions. Last, Keutz and Kopp (2025) inves-
tigate how different Take-or-pay rates influence the need for hydrogen storage.
They find that a higher amount of inflexible long-term contracts for hydrogen
increase the need for hydrogen storage.
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The interactions between hydrogen and electricity have been the subject of
increasing attention, especially in terms of how sector coupling technologies in-
fluence electricity prices. Mathematical models, often calculated over 8760 hours
to simulate a full year, have provided insights into these dynamics. For example,
Liski and Vehviläinen (2023) demonstrated how marginal changes in electricity
demand can alter equilibrium prices, resulting in distributional effects between
producers and consumers. Ruhnau (2022) explored how electrolysers’ electric-
ity consumption increases electricity prices during peak hours and stabilizes the
market value of renewable technologies. Frischmuth and Härtel (2022) analyzed
how hydrogen procurement strategies affect electricity prices and price duration
curves.

Research examining the influence of electricity prices and energy assets on
hydrogen prices remains relatively limited. Early studies, such as Hesel et al.
(2022), explored the bidirectional relationship between electricity and hydro-
gen, demonstrating that renewable energy sources and electrolysers are comple-
mentary technologies that enhance each other’s profitability. Schönfisch (2022)
investigated the development of a global hydrogen market and concluded that
cross-border trade in pure hydrogen becomes economically viable in scenarios
with high shares of renewable energy-based low-carbon hydrogen production.
This viability is driven by the uneven global distribution of low-cost renewable
energy resources, creating significant hydrogen price differentials between coun-
tries with high demand but limited renewable potential and those with abundant,
cost-effective resources. Koirala et al. (2021) introduced a framework integrat-
ing electricity, hydrogen, and methane markets, with a focus on the Netherlands,
highlighting hourly price interactions but leaving daily dynamics for other coun-
tries such as Germany unexplored. Finally, Frischmuth et al. (2024) conducted
a high-resolution dispatch analysis of hydrogen storage but did not address the
daily variability in hydrogen prices. In summary, while existing research has pro-
vided valuable insights into integrated energy systems featuring hydrogen and
electricity, the more granular interactions between these two markets on a daily
basis with a focus on Germany, as well as the underlying market dynamics that
govern their price relationships, remain insufficiently explored. Examining the
price relationship between these two markets would provide valuable knowledge
to policymakers, investors, and researchers, enabling them to evaluate different
decarbonization options without necessarily running energy system models.

This paper seeks to address the existing research gap by answering two key
questions: How do short-term effects, such as weather and demand variability,
shape hydrogen and electricity price dynamics? How do short-term price inter-
actions change under different energy system configurations? To answer these
questions, the paper presents enhancements to the existing European energy sys-
tem model DIMENSION by a daily resolution of Power-to-X (PtX) fuels36. In

36Power-to-X fuels, as defined in this study, refer to synthetic fuels such as diesel, gasoline,
hydrogen, kerosene, natural gas, or oil. The model incorporates all production technologies
for these fuels that are considered climate-neutral.
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addition, enhancements cover the integration of hydrogen storage, cross-border
trade capacities, and up-to-date data for oversea imports via long-term contracts
(LTCs).

To address the uncertainty around the future system developments, sensitiv-
ities reflect varying levels of hydrogen demand and degrees of interconnection
between countries through Net transfer capacities (NTCs) for hydrogen. Doing
so, this research paper makes the following contributions to the existing litera-
ture:

• Development of an enhanced energy system model for the integrated opti-
mization of the European electricity and hydrogen market.

• Analysis of hydrogen and electricity price structures, volatility, and inter-
dependencies.

• Examination of short-term effects and system configurations that influence
hydrogen and electricity price dynamics.

The analysis focuses on Germany and assumes a liquid market for hydrogen in
2050 with daily resolution to isolate and quantify the effects of market-oriented
provision of hydrogen next to electricity. Moreover, the analysis is limited to
changes in shadow prices derived from the equilibrium constraints for electricity
and hydrogen, interpreted as market prices, without considering other compo-
nents of prices, mark-ups or policy instruments. Thus, an important part of this
study is the reflection on the model’s limitations and assumptions that influence
price formation, as well as a discussion of their implications for the future energy
system.

The results indicate that dynamics between hydrogen and electricity are gov-
erned by short-term interactions. Electricity prices respond closely to renewable
generation and demand, while hydrogen prices are less responsive to these fac-
tors. Instead, hydrogen price formation is more structurally determined, partic-
ularly by storage dynamics and cross-border trade. The strength of the relation-
ship between the two markets is found to depend heavily on market situations:
strong coupling occurs in situations with low residual load, when electrolysis is
price-setting, while decoupling emerges under high residual load, when hydrogen
storage discharge dominates price formation. Furthermore, driven by the consid-
eration of LTCs and cross-border trade limitations, the electricity-to-hydrogen
price ratio averages 0.56, which is lower than in prior sudies (0.7–1.2), which
abstract from these characteristics. Scenario analysis shows that expansion of
NTCs for hydrogen slightly weakens price coupling, with an exception in situa-
tions with high residual load where correlation of hydrogen and electricity prices
increases. Demand reduction exerts only minor effects. Overall, the relationship
between hydrogen and electricity prices remains consistent across configurations
but sensitive to short-term system dynamics. Finally, the results suggest that
relying solely on short-term price formation may not ensure cost recovery for
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hydrogen storage and electrolysis. In particular, LTC prices for hydrogen re-
flect both capital and operational costs, whereas the modeled short-term price
formation is based on shadow prices. To address this price discrepancy, capac-
ity remuneration, cost mark-ups, or risk premiums may be needed to ensure
investment viability and the development of a liquid market for hydrogen.

The paper is structured as follows: Section 5.2 describes the modeling ap-
proach and the system configurations investigated within this research. In Sec-
tion 5.3, the price formation for hydrogen and the relationship with electricity
prices is investigated in the reference scenario, providing a baseline understand-
ing of the underlying interdependence and dynamics. Then, in Section 5.4, the
robustness of these findings is tested by considering different system configura-
tions. Section 5.5 addresses the broader implications of the findings regarding
the future energy system, as well as their limitations. Finally, Section 5.6 sum-
marizes and suggests directions for future research.

5.2. Methodology, input data and scenario design

This study investigates the fundamentals of hydrogen price formation and its
relationship with electricity prices based on shadow prices. To this end, the
European energy system model DIMENSION (Emelianova and Namockel, 2025,
Helgeson, 2024, Helgeson and Peter, 2020, Richter, 2011) is employed and ex-
tended to derive daily prices for hydrogen from the respective equilibrium con-
straint, analogous to electricity. The shadow prices reflect the cost of supplying
one additional unit of the corresponding energy carrier at a given point in time.
Throughout the paper, the shadow prices are interpreted as prices under the
condition of complete markets, perfect information, and perfect competition. In
this context, strong duality, given linearity and a convex objective function, is
assumed between the electricity and hydrogen markets in the integrated energy
system model. Daily values for a full year serve as the basis for the empiri-
cal analysis, with a particular focus on short-term influences, such as weather
variability and demand fluctuations, that shape the dynamics of hydrogen and
electricity prices. Price formation mechanisms and the interrelationship between
the two markets are assessed through co-integration, and correlation and re-
gression analyses, complemented by a comparison of statistical properties. To
capture heterogeneous market conditions, the data are segmented into subsets
using a k-Means clustering algorithm, enabling a more granular examination of
price interactions across different market situations. Next to a reference scenario,
different system configurations are introduced to evaluate the robustness of the
findings.

The following sections outline the model extensions and assumptions related
to PtX fuels, with a particular focus on hydrogen (Section 5.2.1), and describe
the system configurations investigated in this study (Section 5.2.2).
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5.2.1. Modeling the equilibrium for hydrogen

The equilibrium constraint represents the central element of the model exten-
sion, as it determines the marginal generation costs for each fuel modeled. The
constraint is formulated not only for hydrogen but also for other PtX-fuels such
as diesel, gas, gasoline, kerosene, and oil, denoted as f ∈ F . This constraint
applies across all countries within the model’s scope, b, b1 ∈ B, and consid-
ers external regions r ∈ R as potential suppliers. Various technologies a ∈ A,
including electrolysis and hydrogen storage, are considered alongside different
sectors s ∈ S, each with distinct characteristics. The equilibrium ensures that,
for each day d ∈ D, supply equals demand across all fuels, as described in Equa-
tion (5.1). Throughout the study, the notations presented in Tables D.1 to D.3
in the Appendix are consistently used, with optimization variables distinguished
from exogenous parameters by uppercase letters for the former. The formulation
reflects an investment decision framework with reduced temporal granularity.37

In dispatch simulations, selected variables (denoted by ’∗’) are fixed to represent
a given capital stock and long-term import decisions.

PIPE∗(b, f)/365 +
∑
r∈R

SHIP ∗(r, b, f)/365

+
∑
b1∈B

TRADE(d, b1, b, f) +
∑
h∈H

∑
a∈A

24

H
∗ PROD(d, h, a, b, f)

≥
∑
s∈S

USE(d, b, s, f) +
∑
a∈A

INSTOR(d, b, a, f)

+
∑
b1∈B

TRADE(d, b, b1, f) ∀d ∈ D ∧ b ∈ B ∧ f ∈ F.

(5.1)

On the supply side, imports are available via pipeline (PIPE∗) or ship (SHIP ∗)
from regions outside the model scope. Additionally, trade is possible with neigh-
boring countries within the model scope, given that infrastructure exists between
two countries. Domestic PtX production, such as electrolysis, is captured by
PROD with hourly resolution. On the demand side, consumption of PtX-fuels
across various sectors is represented by USE.38 For hydrogen, storage injection
is separately represented as INSTOR. Similarly, trade is modeled on the de-
mand side as well. In the subsequent sections, the fundamental characteristics
of these supply and demand options are described in greater detail.

37Reduced temporal granularity refers to a representative subset of days (D) and hours (H)
rather than a full year with hourly resolution.

38The term USE covers the exogenously defined hydrogen demand in end-use sectors such as
industry, transport or buildings and also includes the endogenous fuel consumption in the
energy sector.
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PROD - Domestic production of hydrogen

Domestic hydrogen production is performed using alkaline water electrolysis,
with efficiencies ranging from 72% to 77%. The operation of electrolysis is fully
market-oriented, with production quantities determined by market conditions.
Additionally, the variable PROD also covers the hydrogen supply by different
types of hydrogen storage.

SHIP - Hydrogen import via ship from non-EU regions

Imports via ship are modeled as long-term contracts (LTCs). The contract vol-
ume is a fixed parameter in the dispatch simulation, determined by an investment
model run. The total amount of fuel imported from a specific exporting region
r ∈ R across all European countries is constrained by the export potential of
that region, denoted as ptxPotShip in MWhth/year, as formulated in Equation
(5.2). Additionally, only countries with access to the ocean are eligible to import
PtX-fuels via ships. These imports are restricted by the capacity of the import
terminals, ptxTerminal, as described in Equation (5.3). The associated import
costs, represented by the variable COSTSSHIP in Equation (5.4), are considered
in the overall objective function of the energy system model.∑

b

SHIP ∗(r, b, f) ≤ ptxPotShip(r, f) ∀r ∈ R ∧ f ∈ F (5.2)

∑
r

SHIP ∗(r, b, f)/365 ≤ ptxTerminal(b, f) ∀b ∈ B ∧ f ∈ F (5.3)

COSTSShip =
∑
b∈B

∑
r∈R

∑
f∈F

SHIP ∗(r, b, f) ∗ ptxCostsShip(r, f) (5.4)

The data for PtX imports via ship are sourced from the EWI Global PtX
Cost Tool 2.0, which provides the potential and costs for various PtX fuels from
multiple exporting regions (Klaas et al., 2024). The cost data represent the
levelized cost of hydrogen, including both variable and investment costs. This
encompasses the costs of hydrogen production as well as the infrastructure re-
quired for importation, such as terminals and conversion facilities. The supply
cost function for hydrogen imports is illustrated in Appendix D.2. The supply
curve relies on several key assumptions. The analysis assumes that exporting
countries maintain a baseload supply profile throughout the year. Accordingly,
the utilization of import terminals is assumed to remain constant across the en-
tire modeling period. From each exporting region, only the cost of the cheapest
production and transportation method is considered. The utilized potential for
hydrogen production is assumed to be 20% of the technical potential. Only re-
gions with a minimum production potential of 50 TWhth per year are included
in the analysis. North Africa and Ukraine are excluded from the supply cost
function, as these import options are modeled as bilateral imports via pipelines.
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For hydrogen imports, the parameter ptxTerminal is fixed at 10,000 MWhth

per day for countries with access to the global hydrogen market, defined as those
having a coastal border.

PIPE - Hydrogen import via pipeline from non-EU regions

Pipeline imports are modeled via four distinct import routes as LTCs. Two of
these routes originate in North Africa, connecting Spain and Italy via pipelines to
this region. The other three routes originate in Ukraine, with Hungary, Romania,
and Slovakia acting as the importing countries through pipeline connections. Ac-
cording to Equation (5.5), the selected import volume is endogenous but must not
exceed the available potential. As indicated by the equilibrium constraint, the
imports are evenly distributed throughout the year, assuming sufficient pipeline
capacity. The import costs are computed by multiplying the imported volume by
the associated cost, as defined in Equation (5.6). Like imports via ship, pipeline
imports in dispatch simulations are held constant according to the determined
amount in the invest decision.

PIPE∗(b, f) ≤ ptxPotP ipe(b, f) ∀b ∈ B ∧ f ∈ F (5.5)

COSTSPipe =
∑
b∈B

∑
f∈F

PIPE∗(b, f) ∗ ptxCostsP ipe(b, f) (5.6)

Data from TYNDP 2024 (ENTSO-E and ENTSOG, 2024) are utilized to deter-
mine the import potential for both Ukraine and North Africa. Spain and Italy
have an import potential of 331 TWhth per year each. Ukraine’s potential is
distributed as follows: 55 TWhth annually for Hungary, 63 TWhth for Romania,
and 114 TWhth for Slovakia. Cost data are derived from the Global PtX Cost
Tool 2.0 (Klaas et al., 2024), with an import price of 501.57 €/MWhth from
Ukraine and 202.26 €/MWhth from North Africa.

TRADE - Hydrogen trade with neighboring countries

Cross-border hydrogen trade follows a NTC approach, analogous to electric-
ity markets. The total traded volume (TRADE) cannot exceed NTC limits
(tradeCap), as defined in Equation (5.7).

TRADE(d, b1, b, f) ≤ tradeCap(b1, b, f) ∀d ∈ D ∧ b, b1 ∈ B ∧ f ∈ F (5.7)

Based on the TYNDP 2024 data (ENTSO-E and ENTSOG, 2024), an initial
grid setup is established in the Reference Scenario, while a sensitivity explores a
higher degree of interconnection (see Section 5.2.2). The interconnections involv-
ing Great Britain, Norway, and Switzerland are defined by custom assumptions.
All NTC values are detailed in Appendix D.3.
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Hydrogen storage

In comparison to all other PtX-fuels, storage is explicitly modeled only for hydro-
gen. The model incorporates four distinct types of hydrogen storage: reallocation
of existing pore and cavern gas storage, as well as the construction of new pore
and cavern storage facilities. Hydrogen storage technologies are formally defined
as a ∈ AH2Stor, a subset of A.

The modeling of hydrogen storage follows principles similar to those used
for electricity storage, but with additional detail to capture the diverse sources
of hydrogen allocation. In addition to satisfying national hydrogen demand,
hydrogen from domestic production, and imports via ships, pipelines, or trade
can also be directed to storage. This allocation is reflected by the following
Equations (5.8) to (5.11).

INSTORProd(d, h, a, b, f) ≤ PROD(d, h, a, b, f)

∀h ∈ H ∧ d ∈ D ∧ a ∈ A ∧ b ∈ B ∧ f ∈ F
(5.8)

INSTORPipe(d, b, f) ≤ PIPE(b, f)/365

∀d ∈ D ∧ b ∈ B ∧ f ∈ F
(5.9)

INSTORShip(d, r, b, f) ≤ SHIP (r, b, f)/365

∀d ∈ D ∧ r ∈ R ∧ b ∈ B ∧ f ∈ F
(5.10)

INSTORTrade(d, b1, b, f) ≤ TRADE(d, b1, b, f)

∀d ∈ D ∧ b, b1 ∈ B ∧ f ∈ F
(5.11)

The daily stored quantity of hydrogen (in MWhth) is computed using Equation
(5.12) as the sum of contributions from all four sources.∑

a∈A
INSTOR(d, b, a, f) =

∑
h∈H

∑
a∈A

24

H
∗ INSTORProd(d, h, a, b, f)

+INSTORPipe(d, b, f)

+
∑
r∈R

INSTORShip(d, r, b, f)

+
∑
b1∈B

INSTORTrade(d, b1, b, f)

∀d ∈ D ∧ b, b1 ∈ B ∧ a ∈ AH2Stor ∧ f ∈ F

(5.12)

The maximum storage withdrawal per day is constrained by the withdrawal
speed in MWhth/day. The speed depends on the installed storage capacity (in
MWhth), multiplied with an volume factor (in h), as expressed in Equation
(5.13). For all different hydrogen storage technologies, the ratio of capacity to
volume is assumed to be 1:340 based on EWI (2024a). Also, based on insights
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from EWI (2024a), the ratio for the injection speed is set to 1:9. This reflects
the observed characteristics of hydrogen storage systems, which exhibit more
constant injection during surplus periods and faster withdrawal during peak
load hours in the power sector.∑

h∈H

24

H
∗ PROD(d, h, b, a, f) ≤ INSTCAP ∗(a, b) ∗ vol(a)

∀d ∈ D ∧ b ∈ B ∧ a ∈ AH2Stor ∧ f ∈ F

(5.13)

INSTOR(d, b, a, f) ≤ INSTCAP ∗(a, b) ∗ vol(a) ∗ inject(a)

∀d ∈ D ∧ b ∈ B ∧ a ∈ AH2Stor ∧ f ∈ F
(5.14)

At the beginning of the model period, Equation (5.15) sets the initial storage
level. The initial level equals half the capacity plus storage injection, adjusted
for the storage efficiency (η), minus hydrogen supply to the grid. The efficiency
is assumed to be 93%, which is the average value for hydrogen storage given in
Tsiklios et al. (2023).

LEV EL(d, a, b, f) = INSTCAP ∗(a, b) ∗ vol(a) ∗ 0.5

+INSTOR(d, b, a, f) ∗ η(a) −
∑
h∈H

24

H
PROD(d, h, a, b, f)

∀d = d1 ∧ a ∈ AH2Stor ∧ b ∈ B ∧ f ∈ F

(5.15)

Throughout the model period, the storage level must remain below the maxi-
mum storage volume, as shown in Equation (5.16).

LEV EL(d, a, b, f) ≤ INSTCAP ∗(a, b) ∗ vol(a)

∀d ∈ D ∧ a ∈ AH2Stor ∧ b ∈ B ∧ f ∈ F
(5.16)

The model ensures day-to-day continuity in storage levels through Equation
(5.17).

LEV EL(d + 1, a, b, f) = LEV EL(d, a, b, f)

+η(a) ∗ INSTOR(d + 1, b, a, f) +
∑
h∈H

24

H
∗ PROD(d, h, a, b, f)

∀d ∈ D ∧ a ∈ AH2Stor ∧ b ∈ B ∧ f ∈ F

(5.17)

Finally, the annual storage balance is enforced to ensure no net gain or loss of
hydrogen storage over the year, as described in Equation (5.18).∑

d∈D
[η(a) ∗ INSTOR(d, b, a, f) −

∑
h∈H

24

H
∗ PROD(d, h, a, b, f)] = 0

∀a ∈ AH2Stor ∧ b ∈ B ∧ f ∈ F

(5.18)
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USE - Sectoral hydrogen demand

Hydrogen demand varies across sectors such as energy, transport, buildings, and
industry. In the transport, buildings, and industry sectors, hydrogen demand fol-
lows an exogenous profile: for transport and industry, the demand is flat, whereas
for buildings, it is both seasonal and volatile due to heating and cooling needs.
In the energy sector, hydrogen can be used in two main ways, with consumption
patterns typically influenced by market conditions: for electricity generation and
district heating through combined heat and power (CHP) systems. In the case of
CHP, the heat supply must align with a fixed demand profile. Additionally, the
production of other synthetic fuels is modeled using closed-system processes. In
these processes, electricity is used to produce hydrogen, which is directly further
transformed using CO2.

5.2.2. Scenario design and related assumptions

With the presented model improvements, this study applies a two-step modeling
approach to investigate short-term hydrogen and electricity price dynamics in
a climate-neutral energy system in 2050. In the first step, a long-term invest-
ment optimization is used to generate feasible and policy-aligned energy system
configurations. Alongside exogenous scenario specifications — such as minimum
renewable capacities and trade infrastructure capacities — endogenous decisions,
including LTCs for hydrogen, are optimized. Alternative system configurations
are derived by varying key assumptions, namely the extent of cross-border hy-
drogen trade infrastructure, hydrogen demand, and their combination. In the
second step, high-resolution dispatch simulations are carried out under the fixed
system configurations from step one. This enables a detailed examination of
short-term price formation, volatility, and market interactions. Shadow prices
for electricity and hydrogen, derived from equilibrium constraints, serve as the
basis for the subsequent analysis. Figure 5.1 illustrates the stepwise modeling
approach. Discrepancies between Step I and Step II in terms of system outcomes
and related shadow prices are discussed in Section 5.5.
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Figure 5.1.: Overall model approach covering a reference scenario and three system sen-
sitivities

The left side of the figure illustrates the different defined system configurations with variations
in terms of infrastructure and demand. The names for the different sensitivities are displayed
in the cells. The right side of the figure outlines the analysis conducted in the result sections,
for both the base case and the system sensitivities, based on independent dispatch decision.

All scenarios incorporate capacity trajectories and minimum renewable energy
targets in line with TYNDP 2024 (ENTSO-E and ENTSOG, 2024). Fuel prices
are based on the ”Stated Policies” scenario from IEA (2024), while hydrogen
import prices via ship follow a supply cost curve provided in Appendix D.2.
The CO2 price is endogenously derived via a cap-and-trade mechanism, assum-
ing net-zero emissions by 2050. Electricity NTC values are sourced from the
Global Ambition scenario of TYNDP 2024 (Appendix D.3). The sector- and
fuel-specific energy demand for the reference scenario is likewise based on this
scenario. Weather conditions are represented using a synthetic year with average
full-load hours, following the ”Trend Scenario” from the German EEG forecast
(Netztransparenz, 2024).

Assumptions on hydrogen NTC values and industrial hydrogen demand vary
across the four scenarios, leading to different invest decisions and thus different
system configurations. In the reference scenario (Ref ), NTC capacities for hy-
drogen reflect the reference grid of the TYNDP 2024. In the sensitivities HI and
HI/LD, a more connected energy system is modeled by increasing the NTC val-
ues for hydrogen. The NTC values for the reference scenario and all sensitivities
are detailed in Appendix D.3. In the sensitivities LD and HI/LD, the hydrogen
demand in the industry sector is lowered by 30%, based on own assumption.
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5.3. The relationship between electricity and
hydrogen prices

The analysis of short-term effects on the structure of hydrogen and electricity
prices, as well as their interrelationship, is conducted in several steps to ensure
a comprehensive understanding of these dynamics. Following a description of
the underlying system configuration (Section 5.3.1), the price duration curves
and statistical properties for both energy carriers are first analyzed separately
to identify their fundamental structures (Section 5.3.2). Then, the result of
data segmentation into subsets reflecting distinct market situations is presented
(Section 5.3.3). For each subset, the existence of co-integration is assessed (Sec-
tion 5.3.4). Subsequently, the statistical properties of hydrogen and electricity
prices are examined, by additionally considering electricity-to-hydrogen price ra-
tios (Section 5.3.5). Finally, regression and correlation analyses are conducted
within each subset to identify key drivers of price formation and to evaluate
coupling and decoupling dynamics between the two markets (Section 5.3.6).

5.3.1. System configuration

The system configuration, based on the investment decision in Step I, forms the
basis for the dispatch modeling and the further analysis. All installed capaci-
ties for Germany, determined in this step, are detailed in Appendix D.4. In the
reference scenario, 55 TWh of hydrogen storage capacity and 76.5 GW of elec-
trolysis capacity is built in Germany. Additionally, LTCs for hydrogen imports
via ship and pipeline are endogenously selected in the investment run, resulting
in 190.8 TWh of oversea hydrogen imports for Germany.

Based on these installed capacities and selected LTC imports, the dispatch de-
cision (Step II) provides the detailed energy balances and corresponding shadow
prices. The resulting sector-specific electricity and hydrogen demand is provided
in Appendix D.5. Appendix D.6 illustrates the daily hydrogen balance, while
Appendix D.7 presents the daily storage levels across Europe.

5.3.2. Price formation and price duration curves

To get an initial understanding of price formation and price structures, hydrogen
and electricity prices are first analyzed separately. Figure 5.2 presents daily prices
in both unsorted and sorted order, where the descending sorted order represents
the price duration curve. In addition, Table 5.1 summarizes the corresponding
statistical properties.
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Figure 5.2.: Price data and duration curves for hydrogen and electricity

The price data are shown for Germany. Hourly electricity prices are weighted by the corre-
sponding demand to calculate daily prices. Both electricity and hydrogen prices represent the
shadow prices of their respective equilibrium constraints.

Table 5.1.: Statistical summary of hydrogen and electricity prices for the full year

Statistic H2 EL
Mean1 89.19 51.95
Median1 93.89 51.91
Std. dev.1 18.27 21.90
CV2 0.20 0.41
Minimum1 16.83 0.50
Maximum1 100.09 109.27

1 in €/MWh; 2 no unit; CV is the coefficient of variation, which normalizes the standard
deviation to the mean.

Price formation in both the hydrogen and electricity market is associated with
a wide range of prices, each with distinct statistical characteristics.

One key factor driving the emergence of differntiated prices both for hydrogen
and electricity lies in the hourly variability of electricity prices. In line with
Böttger and Härtel (2022) and Antweiler and Muesgens (2025), diverse gener-
ation technologies — such as biogas, nuclear, gas, and biomass — and various
flexibility options on both the supply and demand sides result in a broad spec-
trum of electricity price levels. Given that the hydrogen system interacts with
the electricity system on a daily basis (analogous to the current methane system),
hourly electricity prices are aggregated to volume-weighted daily values. In this
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process, factors such as the frequency of high and low prices throughout the day,
along with the level of demand, significantly influence the resulting electricity
price structure. As a result, a continuous price duration curve without distinct
plateaus emerges for electricity. Prices experience high volatility with a coeffi-
cient of variation (CV) of 0.41 around a mean value of 51.95 €/MWhel. The low
mean is driven by 1122 hours of close-to-zero prices, and only a few hours with
peak prices of around 145 €/MWhel. Additionally, transmission constraints con-
tribute to volatility, as evidenced by variations in mean electricity prices across
countries.39

The hydrogen price duration curve, with a mean value of 89.19 €/MWhth, lies
substantially above that of electricity, primarily due to electrolysis and storage
inefficiencies. The quantities and high prices for hydrogen imports from non-
European countries are not part of the hydrogen price duration curve, as they
are modeled as LTCs with quantities selected in the investment decision stage.40

The structure of the price duration curve is defined by several distinct segments,
shaped by the availability and operation of hydrogen storage next to the behav-
ior of electrolysis. Hydrogen price convergence across countries indicates that
the system does not face significant transmission grid limitations of cross-zonal
trade.41 Nevertheless, cross-border trade congestion can occur on single days.

The first segment in the hydrogen price duration curve exhibits a range of
prices between 16.83 and 91.91 €/MWhth, reflecting periods when storage charg-
ing capacity in Germany or exporting options are insufficient to align prices. In
these situations, electrolyzers are price-setting, with hydrogen prices determined
by electricity prices adjusted by the efficiency of the electrolyzer. Importantly,
price-setting is not necessarily driven by local electricity prices. For example,
if electricity prices diverge across countries due to transmission congestion, but
hydrogen trade remains unconstrained, electrolyzers in different regions may still
determine local hydrogen prices based on diverging electricity price levels. The
second segment is marked by a price plateau at 93.08 €/MWhth, during which
storage charges at partial capacity. Here, the availability of storage and trade
enables temporal and regional balancing, making storage the price-setting tech-

39Average electricity prices across European countries range from 9.88 €/MWhel in Den-
mark to 69.03 €/MWhel in Slovakia. Price differentials between single countries, such
as 4.15 €/MWhel between Germany and France and 7.11 €/MWhel between Germany and
Poland, indicate the presence of specific transmission congestion.

40The dispatch model minimizes variable costs, excluding sunk and investment costs. In con-
trast, LTC quantities and prices are endogenously selected in the investment stage based on
LCOH, which includes both capital and operational costs. This results in price discrepancies
between the two optimization steps. Since short-term prices may not fully reflect invest-
ment costs, risk premiums and mark-ups may be necessary from investors’ perspective (see
Section 5.5 for further discussion on cost recovery).

41Mean values for hydrogen in other countries next to Germany are in the same magnitude,
with a median value of 91.10 €/MWhth. Denmark is the country with the lowest mean
price of 53.79 €/MWhth. Ireland, Great Britain, Spain and Portugal instead face prices
above 100 €/MWhth, mainly driven by limited trade capacities with other countries (see
Appendix D.3).
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nology. In the third segment, hydrogen storage in Germany is neither charging
nor discharging and demand is met through domestic electrolysis or imports from
neighboring countries. As in the first segment, electrolyzers determine the hydro-
gen price. Despite the market-oriented operation of electrolyzers with moderate
annual average full load hours (3,215 h/a), domestic hydrogen production is even
maintained in situations of elevated electricity prices. This results in relatively
high hydrogen prices within the price duration curve. The final segment reveals
a second price plateau, corresponding to periods of storage discharge. The dif-
ference between the two pronounced plateaus reflects the storage efficiency of
93%.

Overall, price formation in the hydrogen market is linked to those in the
electricity market by electrolysis, with hydrogen storage occurring as the price-
setting technology in certain situations. Cross-border trade results in prices
linkages between both markets across countries. Additionally, hydrogen prices
exhibit lower volatility than electricity prices, as reflected in both the standard
deviation and CV, indicating limited technological heterogeneity and the pro-
nounced stabilizing effect of storage and trade.

Electricity price formation, in turn, is further influenced by its bidirectional
dependence on the hydrogen market. Hydrogen shadow prices affect the costs
of hydrogen-based electricity generation and heat production via CHP, which,
in turn, influence electricity market outcomes. This mutual dependency creates
a dynamic pricing environment where the situation in both markets directly
impacts price-setting in the other.

To explore these interdependencies in greater detail, the following sections
systematically examine the relationship between hydrogen and electricity prices
by considering different market situations.

5.3.3. Data separation

The dataset of daily price pairs is segmented into four distinct subsets, each
representing a specific combination of electricity and hydrogen market condi-
tions. This classification enables a more granular analysis of price dependencies
and variations in statistical properties. A k-Means clustering algorithm is ap-
plied using two key dimensions. The first dimension captures electricity market
conditions, represented by electrical residual load (RL). The second dimension
characterizes the hydrogen market using hydrogen residual load as a proxy. Hy-
drogen residual load is derived by subtracting the constant hydrogen import via
ship from the exogenous demand profile across the transport, buildings, and in-
dustry sectors. The clustering algorithm systematically assigns price pairs to
one of four distinct market conditions, categorized by combinations of high or
low electrical residual load and high or low hydrogen residual load:
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• High electrical residual load / High hydrogen residual load
(El. high RL / H2 high RL)

• High electrical residual load / Low hydrogen residual load
(El. high RL / H2 low RL)

• Low electrical residual load / High hydrogen residual load
(El. low RL / H2 high RL)

• Low electrical residual load / Low hydrogen residual load
(El. low RL / H2 low RL)

Figure 5.3 visualizes this separation of price data. The appendix D.8 provides
additional visualization of the hydrogen supply and demand mix in each subset
together with the corresponding electrical residual load.

Figure 5.3.: Daily pairs of electricity and hydrogen prices split in four subsets

Gray dots represent the entire year (365 data points). Colored dots indicate data points be-
longing to one of the four market condition clusters. Hourly electricity prices are weighted by
demand to calculate daily averages. Both electricity and hydrogen prices represent the shadow
prices of their respective equilibrium constraints.

5.3.4. Analysis of co-integration

The segmentation of price data into distinct market conditions raises the question
of whether hydrogen and electricity prices exhibit co-integration within specific
subsets. Co-integration would suggest that the two price series share a long-
term equilibrium relationship despite short-term fluctuations. To assess this,
an Augmented Dickey-Fuller (ADF) test is conducted on both the hydrogen
and electricity price time series (see Appendix D.9 for the details). The results
reject the presence of a unit root for both series, indicating that hydrogen and
electricity prices are stationary. Since stationarity is a necessary condition for co-
integration, this confirms that hydrogen and electricity prices do not share a long-
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term equilibrium relationship. Instead, their relationship is primarily governed
by short-term interactions, influenced by fluctuations in residual loads, storage
dynamics, and market conditions. This result supports the use of correlation
analysis and regression models to examine price dependencies, rather than co-
integration models, which are typically suited for non-stationary series.

To explore these short-term dependencies in greater detail, the next section
presents the statistical properties for the full dataset and for each subsets, fol-
lowed by a regression analysis with the same distinction.

5.3.5. Analysis of statistical properties

This section analyzes and compares the statistical properties of hydrogen and
electricity prices over the full year and across the four subsets. To establish an
initial understanding of the differences between subsets and the price character-
istics within each, Table 5.2 presents a summary of key statistical indicators,
including mean, median, standard deviation, coefficient of variation, and the
minimum and maximum values.

Table 5.2.: Statistical summary of hydrogen and electricity prices for each subset

Statistic Full year El. high RL El. high RL El. low RL El. low RL
H2 high RL H2 low RL H2 high RL H2 low RL

H2 EL H2 EL H2 EL H2 EL H2 EL
Mean1 89.19 51.95 100.07 77.32 97.13 59.64 89.71 46.68 71.23 28.77
Median1 93.89 51.91 100.09 75.51 99.46 62.44 93.08 46.16 75.14 31.20
Std. dev.1 18.27 21.90 0.14 9.22 4.30 12.22 13.62 18.05 24.69 13.58
CV2 0.20 0.42 0.00 0.12 0.04 0.20 0.15 0.39 0.35 0.47
Minimum1 16.83 0.50 98.88 52.49 70.62 33.35 29.47 0.50 16.83 0.50
Maximum1 100.09 109.27 100.09 109.27 100.09 79.30 100.09 72.73 100.09 64.75

1 in €/MWh; 2 no unit; CV is the coefficient of variation, which normalizes the standard
deviation to the mean.

The subset analysis reveals distinct price formation behaviors under different
residual load conditions. Electrical residual load, which varies widely between
negative and positive values (standard deviation: 0.39), exerts a stronger influ-
ence on price variation across subsets than hydrogen residual load, which remains
strictly positive with limited variability (standard deviation: 0.06). Nonethe-
less, differences between high and low hydrogen residual load subsets are also
pronounced. This is due to the characteristic that high residual load condi-
tions typically correlate with situations with additional hydrogen demand in the
power and heating sectors, while low residual load coincides with increased hy-
drogen production during periods of surplus renewable electricity feed-in. These
dynamics reinforce intra-annual price differentiation.

Across subsets, high hydrogen residual load results in elevated and stable hy-
drogen prices, reflecting limited flexibility and the reliance on storage discharge
or imports. In contrast, low hydrogen residual load is associated with greater
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price dispersion and volatility, as electrolysis becomes the dominant price-setting
technology. Similarly, high electrical residual load is associated with higher and
more stable prices for both energy carriers, whereas low electrical residual load
coincides with lower and more volatile prices, particularly pronounced for hydro-
gen.

Price levels and volatility are predominantly governed by the ability of the
system to respond dynamically to short-term supply and demand fluctuations.
Storage operation emerges as a key determinant of hydrogen price formation,
with its charging and discharging behavior moderating or amplifying price move-
ments depending on residual load conditions within the different subsets.

Looking at specific market situations in detail reveals that market conditions
with high electrical residual load and high hydrogen residual load exhibit the
highest mean prices for both energy carriers. Hydrogen prices in this subset are
highly stable (CV = 0.00), reflecting minor sensitivity to residual load fluctua-
tions and storage discharging behavior as the dominant price-setting mechanism.
While electricity prices in this subset are also on a high level, their higher, but
moderate CV of 0.12 indicates greater short-term variability, influenced by de-
mand fluctuations and renewable generation variations.

When electrical residual load is high, but hydrogen residual load is low, price
variability for both carriers is also low, though prices and the underlying price
formation characteristics in this subset are more heterogeneous. Storage dis-
charging, associated with hydrogen price alignment, can be observed in 13% of
the days within the subset. This subset also covers days when storage is charging
(15%) or when storage is in a neutral position (72%) in Germany. Notably, de-
spite storage is neither charging nor discharging domestically, storage behavior
in neighboring countries can affect domestic price formation, provided sufficient
trade capacity is available. Thus, in this cluster, all price-setting mechanisms —
electrolyzers, storage charging, and storage discharging — are present, but most
of the price prices reflect price-setting by electrolyzers at the upper end of the
residual load duration curve. These dynamics support the finding that elevated
electrical residual load drives hydrogen demand, particularly in the power sector,
despite hydrogen residual load is low.

In contrast, low electrical residual load combined with high hydrogen residual
load leads to decreasing price of both hydrogen and electricity. In this subset,
hydrogen storage is predominantly charging or inactive, with full charging ob-
served on approximately 26 out of 91 days. These 26 days face demand-side
flexibility constraints, driven by increased renewable feed-in and corresponding
domestic hydrogen production, which lowers prices. However, elevated hydrogen
residual load in this subset limits further price reductions.

Finally, when both residual loads are low, price levels for both hydrogen and
electricity are the lowest across subsets. Hydrogen storage is actively charging,
often at full capacity, contributing to downward price movements. Electroly-
sis determines price-formation of hydrogen prices, with price levels linked to
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those for electricity. Additionally, due to constrained storage charging capacity,
this subset exhibits the highest price volatility for hydrogen (CV = 0.35) and
comparably high volatility for electricity, indicating price movements driven by
fluctuating residual load.

Electricity-to-hydrogen price ratios
Beyond the statistical properties of hydrogen and electricity prices, the distribu-
tion of daily electricity-to-hydrogen price ratios across the year and within the
different subsets are examined in greater detail. The ratios serve as a valuable
indicator for policymakers, investors and researchers when evaluating the energy
system and different decarbonization options, or calculating the profitability of
assets such as electrolyzers, without necessarily running energy system models.
Table 5.3 illustrates the properties of the distribution of price ratios.

Table 5.3.: Statistic on the distribution of daily electricity-to-hydrogen price ratios

Statistic Full year El. high RL El. high RL El. low RL El. low RL
H2 high RL H2 low RL H2 high RL H2 low RL

Maximum 1.09 1.09 0.79 0.73 0.70
3rd quartile 0.72 0.79 0.71 0.65 0.43
Median 0.56 0.75 0.66 0.49 0.39
1st quartile 0.41 0.73 0.52 0.41 0.35
Minimum 0.02 0.52 0.39 0.02 0.02

The statistics in price ratios reflect the distribution of daily values from the perspective of
the hydrogen market in daily resolution. 50% of the data are located between the first and
third quartiles. Due to the aggregation from hourly electricity prices, values may differ when
analyzed from the electricity market perspective using higher temporal resolution.

Over the full year, the median electricity-to-hydrogen price ratio is 0.56, re-
flecting inherent electrolysis conversion losses and the structural cost differential
between electricity and hydrogen, especially under conditions where hydrogen
storage is price-setting or cross-border trade is constrained. Daily price ratios
range from 0.02 to 1.09, with a moderate interquartile range42 (IQR) of 0.31,
indicating that there are only a few situations across the year, where hydrogen
and electricity prices either diverge or are closely aligned.

A comparison of the subset-specific results reveals that electricity market con-
ditions significantly influence the electricity-to-hydrogen price ratio. In particu-
lar, high electrical residual load conditions tend to correspond with higher price
ratios. Price ratios are highest in situations with high residual load in both
markets, and lowest when hydrogen production benefits from surplus renewable
feed-in while demand remains moderate.

In situations with both high electrical residual load and high hydrogen residual
load (El. high RL / H2 high RL), the electricity-to-hydrogen price ratio is high

42The interquartile range reflects the difference between the third and the first quartile of the
data set.
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(0.75) with low variability, as the IQR is only 0.06. This pattern reinforces
the observation that both prices tend to be high and stable when residual load
increases for both electricity and hydrogen.

When hydrogen residual load is low but electrical residual load remains high
(El. high RL / H2 low RL) improved supply-side flexibility allows electrolyzers
to more frequently set hydrogen prices, while persistently high electricity prices
lead to an elevated ratio. Variability of the price ratio within this subset is
comparatively low, again indicating relatively stable price relationships.

Conversely, under low electrical residual load with high hydrogen residual load,
the price ratio is smaller, exhibiting the largest variability (IQR = 0.24) due to
heterogeneous storage behaviors and volatile prices.

Finally, the lowest ratio of 0.39 occurs when both residual loads are low. This
low ratio is partly explained by pronounced cross-border transmission congestion
in electricity markets relative to hydrogen markets. As detailed in Section 5.3.2,
electricity prices vary across countries, whereas hydrogen prices remain more
aligned. Electrolyzers operating in regions with higher electricity prices and un-
constrained hydrogen trade tend to elevate local hydrogen prices above German
levels. The inverse applies when neighboring countries exhibit lower electricity
prices and unrestricted hydrogen flows. Nevertheless, the observed price ratios
suggest the former situation dominates in this subset.

5.3.6. Analysis of coupling and decoupling dynamics

To analyze the relationship between hydrogen and electricity prices in greater
detail, correlation and regression analyses are applied to the full dataset and
four distinct market subsets. This enables a more granular understanding of
price dependencies under varying system conditions.

Table 5.4 presents the correlation coefficients alongside the results of two re-
gression models. These models explain electricity and hydrogen price formation
as functions of renewable generation, inflexible electricity demand, and hydro-
gen residual load. The regression results reveal structural characteristics in price
formation across the year, and distinct coupling and decoupling dynamics when
analyzing the different subsets.
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Table 5.4.: Regression and correlation results
Full year El. high RL El. high RL El. low RL El. low RL

H2 high RL H2 low RL H2 high RL H2 low RL

Direct interaction between electricity and hydrogen price

Coefficient of correlation 0.77 0.08 0.45 0.70 0.90

Explanation of electricity prices

Regression model 1: Priceel = α + β ∗RES + γ ∗ Loadel + δ ∗ResidualloadH2 + ϵ

intercept (α) 0.25 23.83 18.13 -52.00 7.35
renewable generation coefficient (β) -21.12 ** -14.95 ** -22.11 ** -25.96 ** -26.93 **
electrical load coefficient (γ) 31.23 ** 15.34 ** 31.96 ** 38.78 ** 35.79 **
hydrogen residual load coefficient (δ) 0.04 ** 0.04 * 0.02 0.09 * 0.04 *
R2 0.85 0.65 0.57 0.71 0.78

Explanation of hydrogen prices

Regression model 2: PriceH2 = α + β ∗RES + γ ∗ Loadel + δ ∗ResidualloadH2 + ϵ

intercept (α) 69.86 ** 99.89 ** 74.79 ** 70.94 * 84.85 *
renewable generation coefficient (β) -13.29 ** -0.05 -5.59 ** -16.11 ** -46.55 **
electrical load coefficient (γ) 25.54 ** 0.13 6.81 ** 26.30 ** 71.05 **
hydrogen residual load coefficient (δ) 0.00 0.00 0.02 * 0.01 -0.01
R2 0.49 0.05 0.32 0.46 0.75

Significance levels: ** p-value<0.01; * p-value<0.1.
The hydrogen residual load is calculated by subtracting the constant hydrogen import via ship
from the exogenous demand profile in the end-use sectors. Electrical load equals the sum of
the exogenous demand profiles in the end-use sectors.

Full-year relationships
The full-year regression and correlation results indicate a moderate degree of
coupling between hydrogen and electricity markets. The correlation coefficient
of 0.77 suggests that, on average, price movements in one market are partly
reflected in the other. However, the underlying price drivers differ.

Electricity prices (Regression model 1) are primarily driven by supply and
demand dynamics in the power sector. The strong negative impact of renewable
generation (β = −21.12) reflects the well-documented merit-order effect, where
higher renewable availability reduces electricity prices. Conversely, the coefficient
for electrical load (γ = 31.23) highlights demand-driven price fluctuations. The
hydrogen residual load also contributes significantly, although the effect is small
in magnitude (δ = 0.04). The high explanatory power (R2 = 0.85) indicates that
all three factors explain nearly all variation in electricity prices.

Hydrogen prices (Regression model 2) are less reflected by system dynamics,
as indicated by the significance of the intercept. Additionally, the coefficient for
hydrogen residual load is not statistically significant in the full-year model or in
most of the subsets, again reflecting limited responsiveness. Renewable genera-
tion (β = −13.29) and electrical load (γ = 25.54) are significant, indicating that
electricity market conditions influence hydrogen price formation through their ef-
fect on electrolysis costs. Nevertheless, the lower explanatory power (R2 = 0.49)
suggests that hydrogen price dynamics are only partially captured by these vari-
ables, reflecting additional, uncovered structural effects.
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Coupling and decoupling dynamics
The subset analysis reveals that the strength of price coupling between hydro-
gen and electricity varies substantially depending on residual load conditions.
Electricity prices are highly responsive to short-term fluctuations in supply and
demand, while hydrogen prices exhibit more structural characteristics driven by
the interplay between storage, electrolysis, and imports/exports. Strong price
coupling of hydrogen and electricity prices occurs only in flexible, electrolysis-
dominated regimes with low residual loads. In contrast, high residual load con-
ditions lead to decoupling of prices, as structural constraints outweigh linkage of
prices.

Looking at the subsets in more detail reveals that in the subset with low
residual load for both hydrogen and electricity (El. low RL / H2 low RL),
coupling is strongest. The coefficient of correlation reaches 0.90, the highest
among all subsets. The high value confirms that price formation in this subset
is largely governed by shared cost drivers, particularly renewable availability
and electrical load. Regression model 1 even indicates that next to these two
drivers, electricity prices are explained by hydrogen residual load, with a slightly
significant coefficient. In general, strong coupling in this subset can be attributed
to hydrogen production via electrolysis, which directly links its cost to electricity
prices.

In subsets with asymmetric residual load conditions — either high hydrogen
or high electricity residual load (El. low RL / H2 high RL and El. high RL /
H2 low RL) - the strength of coupling declines to moderate levels. Correlation
coefficients are 0.70 and 0.45, respectively, and the explanatory power of regres-
sion model 2 declines (R2 = 0.46 and 0.32). These lower values reflect the role
of hydrogen storage and cross-border trade, which partially decouple hydrogen
price formation from short-term electricity price movements. Notably, coupling
remains stronger in the subset with low electrical residual load, underscoring the
dominate role of electrical residual load in influencing price coupling. As cou-
pling declines, the intercept in the hydrogen price regression becomes significant
— especially in the El. high RL / H2 low RL subset — indicating a shift from
market-based to fixed determinants of price formation.

When both residual loads are high (El. high RL / H2 high RL), the rela-
tionship between hydrogen and electricity prices weakens significantly, leading
to decoupling of price dynamics. The correlation coefficient drops to 0.08, and
model 2 explains only 5% of the variation in hydrogen prices. While electricity
prices remain sensitive to system dynamics (R2 = 0.65), hydrogen prices are
increasingly governed by storage discharge. The lack of statistically significant
coefficients beyond the intercept in the hydrogen model confirms the structural
decoupling of price dynamics between the two markets in this subset.
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5.4. Impact of the system configurations on the
relationship between electricity and hydrogen
prices

This section investigates how different energy system configurations affect price
formation and the relationship between electricity and hydrogen prices. Three
sensitivities are analyzed to test the robustness of the results: a scenario with
expanded cross-border hydrogen trade infrastructure (HI ), one with reduced
industrial hydrogen demand (LD), and a combined scenario incorporating both
assumptions (HI/LD).

Section 5.4.1 outlines the key structural changes in energy system configuration
resulting from the altered assumptions. Section 5.4.2 examines the correspond-
ing shifts in statistical properties, including changes in electricity-to-hydrogen
price ratios. Section 5.4.3 then evaluates how the system sensitivities affect the
price formation characteristics, as well as the coupling and decoupling dynamics
between hydrogen and electricity prices.

5.4.1. Changes in system configurations and derived price data

The expansion of hydrogen trade capacities reduces constraints in cross-border
hydrogen flows. Similarly, lower hydrogen demand relaxes supply requirements.
These changes result in deviating energy system configurations, determined en-
dogenously in the investment stage, which subsequently affects the dispatch de-
cision outcomes (see Appendix D.4 to D.7). The most pronounced effects are
observed in the volume of hydrogen imports and installed storage capacities.
While the HI scenario leads to a reduction in hydrogen storage capacity in
Germany and across Europe, the LD scenario increases storage capacity domes-
tically, with European capacity remaining close to the reference scenario. The
combination of both changes (HI/LD) results in the lowest import volumes and
storage capacities across the four scenarios.

Each sensitivity provides a new set of hydrogen and electricity price data.
These form the basis of the respective price duration curves (Appendix D.10).
While the four structural segments observed in the reference scenario remain
present, their size and level shift slightly.

Price pairs in each sensitivity are again assigned to four clusters based on
residual load characteristics, using the same k-Means algorithm as before. Figure
5.4 shows the resulting classification.
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Figure 5.4.: Electricity and hydrogen price pairs split in four subsets for the three system
sensitivities

Each column represents one system sensitivity. Daily prices are assigned to one of the four clus-
ters, representing different residual loads conditions. The daily electricity prices are weighted
by hourly demand. Both electricity and hydrogen prices represent the shadow prices of their
respective equilibrium constraints.

While the cluster assignments provide an initial intuition, the following sec-
tions analyze statistical properties and coupling mechanisms in greater depth to
evaluate the robustness of the former findings.

5.4.2. Analysis of changes in statistical properties and price
ratios

The changes of statistical properties of hydrogen and electricity prices across the
full year and the four subsets under different system configurations are summa-
rized in Table 5.5. These properties include the mean, median, standard devia-
tion, coefficient of variation, and the range (minimum and maximum values) for
each system scenario.

Overall, the statistical properties remain robust. While changes in corss-
border hydrogen trade infrastructure and demand influence price levels and
volatility to some extent, the overall price patterns and segment structures re-
main the same. The largest deviations from the reference scenario occur in the
HI scenario, reflecting increased flexibility in terms of cross-border trade. By
contrast, the LD scenario induces only minor changes, as lower hydrogen demand
is largely offset by reduced hydrogen imports. The combined scenario (HI/LD)
mirrors the effects of the HI case but with slightly diminished intensity, suggest-
ing that variations in cross-border trade infrastructure have a greater impact on
price characteristics than demand-side adjustments.
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Table 5.5.: Statistical summary of hydrogen and electricity prices for the system sensi-
tivities

Statistic System Full year El. high RL El. high RL El. low RL El. low RL
H2 high RL H2 low RL H2 high RL H2 low RL

H2 EL H2 EL H2 EL H2 EL H2 EL

Mean1 Ref 89.19 51.95 100.07 77.32 97.13 59.64 89.71 46.68 71.23 28.77
HI 4.87 0.54 4.10 1.06 3.03 0.33 6.32 0.52 6.64 1.05
LD 0.02 0.35 0.68 0.93 0.34 0.26 -0.05 0.48 -0.77 -0.09
HI/LD 2.63 0.85 3.12 2.42 1.68 0.67 4.23 0.75 1.81 -0.02

Median1 Ref 93.89 51.91 100.09 75.51 99.46 62.44 93.08 46.16 75.14 31.20
HI 6.00 0.07 4.24 1.64 1.52 0.35 3.95 0.62 3.60 -0.27
LD 1.33 0.42 0.67 0.70 0.06 0.16 0.63 0.47 -4.47 -1.06
HI/LD 4.48 0.85 3.28 1.54 0.48 0.53 3.05 0.97 -2.96 -2.18

Std. dev.1 Ref 18.27 21.90 0.14 9.22 4.30 12.22 13.62 18.05 24.69 13.58
HI -2.80 0.20 0.33 0.06 0.87 0.61 -3.92 0.46 -4.52 -0.14
LD 0.83 0.36 0.02 0.35 0.65 0.23 1.68 0.16 0.42 0.15
HI/LD -1.16 0.88 0.38 1.80 1.49 0.60 -2.62 0.29 -3.03 -0.15

CV2 Ref 0.20 0.42 0.00 0.12 0.04 0.20 0.15 0.39 0.35 0.47
HI -0.04 0.00 0.00 0.00 0.01 0.01 -0.05 0.00 -0.09 -0.02
LD 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.00 0.01 0.01
HI/LD -0.01 0.01 0.00 0.02 0.02 0.01 -0.03 0.00 -0.05 0.00

Minimum1 Ref 16.83 0.50 98.88 52.49 70.62 33.35 29.47 0.50 16.83 0.50
HI 12.93 0.00 3.09 -0.55 -1.63 -3.71 19.80 0.00 12.93 0.00
LD 0.00 0.00 0.52 0.54 -0.71 -1.78 -1.01 0.00 0.00 0.00
HI/LD 9.89 0.00 2.05 1.09 -4.53 -4.85 17.10 0.00 9.89 0.00

Maximum1 Ref 100.09 109.27 100.09 109.27 100.09 79.30 100.09 72.73 100.09 64.75
HI 4.24 2.03 4.24 2.03 4.24 0.55 4.24 1.72 0.96 1.59
LD 0.68 2.09 0.67 2.09 0.68 0.54 0.68 0.56 0.67 0.57
HI/LD 3.28 8.11 3.28 8.11 3.28 2.42 3.28 1.06 0.84 1.14

Colorscheme to visualize deviations in percent from the reference scenario

-100% -80% -60% -40% -20% 0% +20% +40% +60% +80% >+100%
1 in €/MWh. 2 no unit. The values for the reference scenario are absolute numbers. The
numbers for the three sensitivities are the deviations from the reference. The color scheme
visualizes the deviation in percent with a dark red corresponding to deviations up to -100%
and a dark green with deviations above 100% and higher.

In more detail, expanded corss-border hydrogen trade infrastructure increases
mean hydrogen prices across the year and all subsets. This is primarily due to the
alignment of domestic prices with previously higher-price neighboring countries,
now connected through expanded trade capacity. The CV declines slightly for
the full year, but diverges across subsets: volatility decreases under low electrical
residual load and increases under high electrical residual load conditions. The
number of days when storage discharge sets hydrogen prices declines substan-
tially (from 78 to 45), while price-setting by electrolysis becomes more frequent,
increasing price diversity. In subsets with low electrical residual load, more trade
capacity mitigates storage and trade constraints, promoting price convergence.
The expansion of cross-border hydrogen trade infrastructure also results in higher
electricity prices throughout the year and across subsets, which correlates with
the characteristics observed in the hydrogen market.

Reducing industrial hydrogen demand by 83.8 TWhth does not significantly
affect mean hydrogen prices, but slightly increases volatility. As hydrogen im-
ports decline by 90.0 TWhth, the share of baseload supply decreases, leading to
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a rising relative influence of more volatile hydrogen residual load. This amplifies
price volatility, since European storage capacity remains largely unchanged.

The combined scenario reflects a mixture of the two individual sensitivities.
Overall, the effect of the HI outweighs the effect of the LD scenario, but effects
are weaker compared to the HI sensitivity alone regarding the full year charac-
teristics. An exception is observed in the subset El. low RL / H2 low RL, where
median hydrogen prices slightly decline. In subsets with high electrical residual
load, volatility increases more noticeably than in the HI scenario, although dif-
ferences remain minor.

Electricity-to-hydrogen price ratio
As in the reference scenario, the electricity-to-hydrogen price ratios serve as a
key indicator of the economic linkage between both markets, with its robustness
of particular interest. Figure 5.5 illustrates how the distribution of daily price
ratios emerges under different system configurations, driven by variations in
cross-border hydrogen trade infrastructure and demand.

Figure 5.5.: Distribution of the daily electricity-to-hydrogen price ratio for different sys-
tem sensitivities and subsets

The gray bars reflect the entire year with 365 data points. The colored bars refer to one of
the four subsets. The minimum and maximum values are represented by crosses. The median
is depicted by the black line, while the colored box between the lower and upper quantiles
represents 50% of all values. The maximum whiskers are equal or lower to 1.5 times the Inter-
Quartile Range (range of the colored box). The statistics in price ratios reflect the distribution
of daily values from the perspective of the hydrogen market. Due to the aggregation from
hourly electricity prices, maximum values may differ when analyzed from the electricity market
perspective using higher temporal resolution.

Overall, the distribution of electricity-to-hydrogen price ratios remains stable
across the different system sensitivities. This finding reinforces the conclusion
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that the fundamental price relationship between hydrogen and electricity remains
unaffected.

In the HI scenario, the electricity-to-hydrogen price ratio decreases slightly
both on an annual average and within all subsets. This decline is primarily
due to a stronger increase in hydrogen prices relative to electricity prices. As
discussed in Section 5.4.2, hydrogen price alignment with previously higher-price
neighboring regions drives this increase. As a consequence, enhanced cross-
border trade reduces the cost advantage that domestic electrolysis had during
periods of low electricity prices.

The LD and HI/LD scenarios both have a minimal impact on the electricity-
to-hydrogen price ratio. The mean hydrogen and electricity prices remain roughly
stable throughout the year, showing only minor deviations. Within the subsets,
mean hydrogen and electricity prices move in the same direction relative to the
reference scenario, resulting in a largely unchanged price ratio (see Table 5.5).

5.4.3. Analysis of changes in coupling and decoupling dynamics

Finally, to assess the robustness of the interdependencies between hydrogen and
electricity prices, a correlation and regression analysis is conducted again across
the various system sensitivities. Table 5.6 presents the correlation coefficients
alongside the results of two regression models.

Changes in cross-border hydrogen trade infrastructure affect the strength of
price coupling and the explanatory power of key variables. In the HI and HI/LD
scenarios, price coupling weakens in most subsets compared to the reference case,
as indicated by lower correlation coefficients under conditions of low or asym-
metric residual load. This suggests that increased corss-border trade availability
reduces the short-term responsiveness of hydrogen prices to electricity market dy-
namics in these situations. By contrast, in the subset with high residual load in
both markets (El. high RL / H2 high RL), price decoupling weakens significantly.
The coefficient of correlation increases from 0.08 in the reference scenario to 0.20
(HI ) and 0.25 (HI/LD), and the explanatory power of the regression model im-
proves (R2 increases from 0.05 to 0.30 and 0.34, respectively). This shift reflects
a greater role of electrolysis in setting hydrogen prices, even during periods of
elevated electricity prices, as storage discharge becomes less frequent. Neverthe-
less, correlation in this subset remains lower than in others, indicating persistent
decoupling. Electricity price formation is largely unaffected by changes in cross-
border hydrogen trade infrastructure, both over the full year and within subsets.
In contrast, hydrogen price formation shows some increased sensitivity to hydro-
gen residual load for the full-year, though this effect remains insignificant in most
subsets. In the El. high RL / H2 high RL subset, explanatory power increases
substantially, with renewable generation and electrical load becoming significant
drivers, highlighting a partial transition to more market-aligned hydrogen price
dynamics in situations with high residual load.

136



5.4. Impact of the system configurations on the relationship between electricity and hydrogen prices

Table 5.6.: Regression results and correlation for the system sensitivities
Full year El. high RL El. high RL El. low RL El. low RL

H2 high RL H2 low RL H2 high RL H2 low RL

Direct interaction between electricity and hydrogen price

coeficcient of correlation Ref 0.77 0.08 0.45 0.70 0.90
HI 0.75 0.20 0.44 0.61 0.86
LD 0.78 0.08 0.46 0.73 0.90
HI/LD 0.77 0.25 0.48 0.67 0.88

Explanation of electricity prices

Regression model 1: Priceel = α + β ∗RES + γ ∗ Loadel + δ ∗ResidualloadH2 + ϵ

intercept (α) Ref 0.25 23.83 18.13 -52.00 7.35
HI -24.15 * -1.11 3.31 -95.16 * -34.18
LD -2.69 22.33 16.30 -54.41 4.36
HI/LD -17.66 * 6.18 7.48 -81.19 * -32.26

renewable generation coefficient (β) Ref -21.12 ** -14.95 ** -22.11 ** -25.96 ** -26.93 **
HI -21.21 ** -14.64 ** -23.05 ** -26.72 ** -26.22 **
LD -21.36 ** -15.64 ** -22.51 ** -26.08 ** -26.90 **
HI/LD -21.85 ** -17.84 ** -23.31 ** -26.17 ** -25.93 **

electrical load coefficient (γ) Ref 31.23 ** 15.34 ** 31.96 ** 38.78 ** 35.79 **
HI 29.86 ** 13.99 ** 33.70 ** 37.68 ** 32.79 **
LD 31.92 ** 16.49 ** 33.33 ** 39.13 ** 36.13 **
HI/LD 32.55 ** 20.70 ** 35.35 ** 37.61 ** 34.29 **

hydrogen residual load coefficient (δ) Ref 0.04 ** 0.04 * 0.02 0.09 * 0.04 *
HI 0.05 ** 0.05 * 0.03 0.10 * 0.06 *
LD 0.04 ** 0.04 * 0.02 0.09 * 0.04 *
HI/LD 0.05 ** 0.04 * 0.02 0.10 ** 0.06 *

R2 Ref 0.85 0.65 0.57 0.71 0.78
HI 0.84 0.62 0.55 0.70 0.76
LD 0.85 0.67 0.58 0.70 0.77
HI/LD 0.85 0.67 0.59 0.69 0.73

Explanation of hydrogen prices

Regression model 2: PriceH2 = α + β ∗RES + γ ∗ Loadel + δ ∗ResidualloadH2 + ϵ

intercept (α) Ref 69.86 ** 99.89 ** 74.79 ** 70.94 * 84.85 *
HI 47.35 ** 103.33 ** 77.56 ** 73.61 * -31.75
LD 68.81 ** 100.54 ** 72.07 ** 69.83 * 79.53 *
HI/LD 44.84 ** 101.92 ** 74.41 ** 62.45 * -26.16

renewable generation coefficient (β) Ref -13.29 ** -0.05 -5.59 ** -16.11 ** -46.55 **
HI -10.54 ** -0.34 ** -6.34 ** -10.13 ** -34.54 **
LD -14.01 ** -0.06 -6.22 ** -18.29 ** -47.10 **
HI/LD -11.90 ** -0.41 ** -7.03 ** -12.24 ** -37.54 **

electrical load coefficient (γ) Ref 25.54 ** 0.13 6.81 ** 26.30 ** 71.05 **
HI 20.02 ** 1.23 ** 9.97 ** 19.02 ** 46.06 **
LD 27.02 ** 0.15 9.65 ** 29.99 ** 71.36 **
HI/LD 23.17 ** 1.45 ** 11.87 ** 22.04 ** 52.32 **

hydrogen residual load coefficient (δ) Ref 0.00 0.00 0.02 * 0.01 -0.01
HI 0.02 * 0.00 0.01 0.01 0.09 *
LD 0.00 0.00 0.02 0.01 0.00
HI/LD 0.02 * 0.00 0.01 0.02 0.10 *

R2 Ref 0.49 0.05 0.32 0.46 0.75
HI 0.48 0.30 0.28 0.38 0.59
LD 0.50 0.05 0.32 0.47 0.75
HI/LD 0.50 0.34 0.29 0.43 0.60

Significance levels: ** p-value<0.01; * p-value<0.1.
The hydrogen residual load is calculated by subtracting the constant hydrogen import via ship
from the exogenous demand profile in the transport, buildings, and industry sector. Electrical
load equals the sum of the exogenous demand profiles in the end-use sectors.

A reduction in hydrogen demand in the LD scenario has no substantial impact
on price formation for either hydrogen or electricity. However, the correlation
between the hydrogen and electricity prices increases slightly in most subsets,
indicating that lower hydrogen demand marginally strengthens price coupling.
The explanatory power of the regression models remains broadly consistent with
the reference case.
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Overall, the results indicate that structural changes in cross-border hydrogen
trade infrastructure and demand can influence both the strength of price cou-
pling and the explanatory power of key price drivers, while effects are structural
consistent across scenarios. NTC expansion generally weakens coupling, but
improves price dependencies in situations with high residual load in both the
hydrogen and electricity market. Demand reduction has limited effects on price
formation, but modestly enhances price alignment between markets. Across all
scenarios, electricity prices continue to be shaped primarily by short-term elec-
tricity market fundamentals, while hydrogen prices remain influenced by more
structural characteristics driven by the interplay between storage, electrolysis,
and imports and exports.

5.5. Discussion

This study analyzes shadow prices for electricity and hydrogen, providing fun-
damental insights into price formation mechanisms. However, to address the
findings’ real-world implications, it is crucial to discuss how these shadow prices
and identified characteristics might translate into actual market prices and how
they could align with the future energy system. In this context, the limitations
of the modeling approach are explored. Additionally, the discussion examines
how hydrogen import prices, storage dynamics, and cross-border trade may in-
fluence market outcomes. Finally, an outlook on challenges and opportunities in
developing a functional hydrogen market is given.

Price formation depends not only on fundamental market dynamics but also
on underlying model assumptions and limitations.

A key characteristic of the modeling framework is the separation of the invest-
ment and dispatch stages, which must be considered when interpreting shadow
prices. In Step I, long-term investment decisions—including hydrogen import
volumes via LTCs — are optimized based on full cost recovery. These LTC
prices reflect LCOH, which include both capital and operational expenditures,
as well as infrastructure components such as import terminals, reconversion fa-
cilities, and shipping. In contrast, Step II simulates short-term dispatch under
fixed capacities and imports, optimizing only variable costs. Shadow prices in
Step II are consistent with those for electricity, but exclude sunk and capital
costs. The prices for hydrogen imports from non-European countries do not
shape the hydrogen price duration curve. As a result, the daily shadow prices
derived in Step II often fall below the marginal prices for imported hydrogen in
Step I. This points to an oversizing of imports. However, Step I is not intended
to provide a complete cost-optimal system, but rather to construct feasible and
policy-aligned system configurations. These configurations serve as the basis
for the high-resolution dispatch analysis in Step II, which is central to this pa-
per. No iterative feedback loop exists between the two stages. Nevertheless,
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the fundamental differences between investment and dispatch market outcomes
have important implications for price interpretation. While investment decisions
ensure full cost recovery for infrastructure such as electrolyzers, storage, and re-
newables, the dispatch model does not guarantee financial viability for individual
assets. Relying solely on shadow prices for valuation may therefore underesti-
mate the revenue requirements for these assets. To bridge this gap, additional
price components — such as capacity payments, mark-ups, or risk premiums
— may be necessary to ensure cost recovery and incentivize investment. Fur-
thermore, risk premiums arising from market uncertainties could widen the gap
between modeled shadow prices and actual market prices. As such, the price
levels derived in this study should be viewed as lower bounds.

Daily hydrogen price fluctuations in the model revolve around the mean value.
Hydrogen storage shifts supply over time without altering overall market condi-
tions. Expanding hydrogen storage capacity would directly reduce price volatility
by mitigating both high and low residual load situations. During low residual
load periods, increased storage charging would absorb excess hydrogen, lead-
ing to higher prices in those situations. Conversely, during periods with high
residual load, larger storage reserves would provide additional supply, exerting
downward pressure on prices. In an extreme case of unlimited storage capacity,
daily hydrogen prices would correspond to one of two price levels. One price
level would reflect storage discharging and the other would emerge in charging
situations. The gap between the two price levels would reflect the storage ef-
ficiency. Weather variability and renewable electricity generation profiles also
appear to play a crucial role in shaping price fluctuations. More stable electric-
ity generation, achieved through a higher share of wind power relative to PV
or by integrating battery storage, could further contribute to reduced hydrogen
price volatility. In such cases, storage operation would likely exhibit fewer sea-
sonal fluctuations, leading to more balanced storage usage throughout the year,
as demonstrated in INES (2025).

The results indicate that the average hydrogen-to-electricity price ratio is ap-
proximately 0.56 on an annual basis, with substantial daily variations. This find-
ing contrasts with previous studies, such as dena (2021), Prognos et al. (2020),
Fraunhofer ISI et al. (2021), and Böttger and Härtel (2022), who estimate the
ratio to range between 0.7 and 1.2, with an average of 0.9. The discrepancy may
be driven by a key methodological difference regarding the treatment of hydro-
gen imports, the consideration of hydrogen storage, and trade restrictions. In
the dispatch decision of the presented model, import volumes are fixed ex ante
and do not respond to market signals. As a result, system flexibility is provided
solely by electrolysis and storage. By contrast, studies assuming flexible hydro-
gen imports allow the model to import at a fixed price whenever needed. This
assumption enables imports to act as a buffer, stabilizing hydrogen prices and
maintaining a tighter link between electricity and hydrogen prices. In the fixed
import setting of this study, rising hydrogen prices during high residual load
situations cannot be offset by additional imports. Consequently, the hydrogen
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price becomes less responsive to short-term electricity price fluctuations, reduc-
ing the average electricity-to-hydrogen price ratio. Nonetheless, hydrogen price
levels might decrease if LTC contracts are better aligned with seasonal demand
variations rather than maintaining constant import volumes throughout the year.
Additionally, reducing the share of LTC-based imports while increasing the share
of flexible imports, reflected by lower Take-or-pay rates, has been shown to lower
overall system costs (Keutz and Kopp, 2025), indicating lower hydrogen price
levels and thus higher price ratios. Additionally, infrastructure availability influ-
ences price ratios. The clustering analysis indicates that the lowest electricity-
to-hydrogen price ratios occur during periods when both hydrogen and electrical
residual loads are low. In these situations, electrolysis predominantly sets prices.
Indicated by overall price alignment of hydrogen prices across countries, cross-
border trade appears to be generally unconstrained, whereas electricity prices
in Germany experience stronger downward movements compared to neighboring
countries. Consequently, although hydrogen prices generally correlate with elec-
tricity prices, higher electricity prices in countries next to Germany exert upward
influence on hydrogen prices. Thus, compared to the former mentioned studies,
more cross-border trade congestions may occur.

Beyond short-term price formation characteristics, the high price for hydro-
gen LTCs in the investment decision stage may present significant challenges for
the long-term demand developments across various end-use sectors. The indus-
trial sector, in particular, could face economic pressure that incentivizes shifting
to cost-competitive alternative fuels or relocating to regions with lower energy
costs, potentially altering regional hydrogen demand. Recent studies support
this view: Weißenburger et al. (2024) show hydrogen demand has price elasticity
and declines at high prices, but still remains substantial across sectors. Simi-
larly, Fraunhofer ISI (2023) find that while transport and some industrial sectors
reduce demand at high prices, a significant share remains inelastic due to limited
alternatives or relocation challenges. EWI (2024b) further notes heterogeneous
willingness to pay across sectors — with transport and some industrial sectors
characterized by a high willingness to pay. In this study, hydrogen demand
is modeled as exogenous and price-inelastic, but literature suggests substantial
demand persistence despite price pressures, supporting this assumption. Nev-
ertheless, to account for potential long-term demand reductions in response to
sustained high price levels, the LD sensitivity provides insights into the possible
implications of reduced hydrogen consumption.

Finally, the analysis shows that the hydrogen equilibrium constraint faces
a limited degree of heterogeneity, with storage, electrolyzers, trade and power
plant consumption representing the primary flexibilities. Limited heterogene-
ity in flexibility may pose a challenge for the development of a functional and
liquid hydrogen market. Insufficient demand responsiveness can weaken price
signals and hinder efficient market interactions. Without mechanisms to en-

140



5.6. Conclusion

hance flexibility, the establishment of a hydrogen market could remain difficult.
Other studies, such as Schönfisch (2022), also pronounce that regional and het-
erogeneous hydrogen price structures could emerge across Europe, with trade
capacities as one flexibility option playing a key role in linking these markets.
Thus, the construction of sufficient cross-border hydrogen trade infrastructure
next to storage appears important for enabling market maturity and ensuring
that hydrogen price disparities between European countries do not result in eco-
nomic imbalances, where some regions face prohibitively high costs while others
benefit from significantly lower hydrogen prices.

5.6. Conclusion

In climate-neutral energy systems, hydrogen is expected to play a pivotal role
across diverse applications with distinct demand and supply patterns. However,
significant uncertainty remains regarding its price level, volatility and interde-
pendencies with electricity prices. While optimal system configurations of an
integrated energy system were in scope of previous studies, the granular inter-
play between hydrogen and electricity prices under varying short-term market
conditions has been insufficiently explored. This study fills this gap by investi-
gating the fundamental price formation of hydrogen and the relationship between
hydrogen and electricity prices across different system configurations with a focus
on Germany and for a climate-neutral Europe. This was achieved by expanding
the energy system model DIMENSON towards a more granular representation
of PtX fuels with different supply and demand options within the equilibrium
constraint. The resulting shadow prices were analyzed using co-integration tests,
regression and correlation metrics, price ratio distributions, and statistical prop-
erties.

5.6.1. Main results

The analysis suggests that the fundamental relationship between hydrogen and
electricity prices in a future, climate-neutral energy system is likely to be predom-
inantly influenced by short-term market conditions. Electricity prices appear to
respond closely to renewable generation and demand fluctuations, as shown by
significant regression results. By contrast, hydrogen prices are less responsive to
these factors and seem to be more structurally influenced. Factors such as stor-
age behavior and cross-border trade can moderate hydrogen price formation.
The results point to strong price coupling under low residual load conditions
dominated by electrolysis-driven pricing, promoting a general linkage with the
electricity market. In situations with high residual load, more pronounced de-
coupling may occur, with hydrogen price formation driven by storage discharge
and supply limitations, highlighting the potential impact of constrained system
flexibility. The electricity-to-hydrogen price ratio averages approximately 0.56,

141



Fundamentals of hydrogen price formation and its relationship with electricity prices

lower than previously reported values, largely due to assumptions on inflexible
hydrogen imports.

Scenario analyses indicate that variations in cross-border hydrogen trade in-
frastructure and demand modestly influence price formation and price coupling
strength: The expansion of NTCs fo hydrogen slightly weakens price coupling
independent on the underlying market situation driven by residual load, but
with an exception for high residual load situations, where previously identified
decoupling weakens. Reduced hydrogen demand has minimal impact. Despite
these variations, the fundamental price relationship remains stable yet sensitive
to short-term system dynamics.

While these findings offer insights based on shadow prices, real-world market
prices are likely to diverge. Shadow prices do not ensure investment cost recovery,
and do not include risk premia, or capacity mark-ups. In particular, hydrogen
imports are priced based on full cost recovery via long-term contracts, leading
to a structural price gap between imported and domestically produced hydro-
gen. As a result, short-term price signals alone may be insufficient to support
investment in hydrogen storage and electrolysis, underscoring the importance of
complementary mechanisms such as long-term contracts or regulatory support
to ensure the development of a liquid market for hydrogen.

5.6.2. Future research

Based on the findings, this work reveals several areas for further investigation.
Further analysis could assess how the development of regional and international
hydrogen trade networks affects price formation. This includes evaluating the
interplay between domestic production, imports, and exports for other regions
next to Germany. Although this study highlights short-term price dynamics, fu-
ture research could also explore the long-term development of coupling between
hydrogen and electricity markets by considering multiple years. Thus, changes in
price dynamics within a longer period of time can be analyzed. Future research
could also further investigate the competitiveness of specific assets and prove
robustness across different market situations. Especially the comparison of the
profitability of hydrogen storage next to electricity storage could be interesting.
Furthermore, the provided understanding of market situations within this study
could lay the basis to further investigate different design options for contracts
for difference or hydrogen purchase agreements, similar to power purchase agree-
ments. Last, future modeling efforts should address short- and long-term supply
and demand elasticities to capture their influence on market dynamics. Other
model improvements could also consider more diverse weather situations or more
flexible hydrogen supply profiles via ship.

142



A. Supplementary material for chapter 2

A.1. Sets, parameters and decision variables

Table A.1.: Sets

Set Unit Description
q ∈ Q - Time
c, c′ ∈ Gel - Component that generates electricity
c, c′ ∈ Lel - Component that consumes electricity
c, c′ ∈ Gth - Component that generates heat
c, c′ ∈ Lth - Component that consumes heat
n,m ∈ N - Node
n ∈ αc - Set of nodes that belong to a component. Mapping

nodes to components
c ∈ αn - Set of components that belong to a node. Mapping

components to nodes
k ∈ K - Line
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Table A.2.: Decision variables

Variable Unit Description
P gel
c,q kWhel Electrical energy generated by each generation unit

c in time interval q
P gel,s
c,q kWhel Electrical energy generated by each generation unit

c in time interval q and sold at the wholesale market
P gel,f
c,q kWhel Electrical energy generated by each generation unit

c in time interval q and feed in to the grid
P gel,p
c,c′,q kWhel Electrical energy generated by each generation unit

c in time interval q and provided to a load c′ on-site
P lel
c,q kWhel Electrical energy consumed by each consumption

unit c in time interval q
P lel,p
c,q kWhel Electrical energy procured from wholesale or an elec-

tricity provider and consumed by each consumption
unit c in time interval q

P lel
c,c′,q kWhel Electrical energy procured from a generation unit c′

on-site and consumed by each consumption unit c in
time interval q

P gth
c,q kWhth Thermal energy generated by each generation unit c

in time interval q
P gth
c,c′,q kWhth Thermal energy generated by each generation unit c

in time interval q and provided to consumption unit
c′

P lth
c,q kWhth Thermal energy consumed by each consumption unit

c in time interval q

P lth
c,c′,q kWhth Thermal energy generated by generation unit c′ and

consumed by each consumption unit c in time inter-
val q

SOCel
c,q kWhel Electrical energy inside a storage unit c in time in-

terval q
SOCth

c,q kWhth Thermal energy inside a storage unit c in time inter-
val q
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Table A.3.: Parameters

Parameter Unit Description
Ad, Au - Matrixes of flow distribution in the grid model
Cd, Cu - Matrixes of flow contribution in the grid model
dc,q - grid connection of storage unit [0; 1]
e - factor that curtails maximum charging power
F in
n,m kWel Power injected in a bus m from a connected bus n

in the grid model
F out
n,m kWel Power drained from bus n to a connected bus m in

the grid model
gdfk,n,q - Matrix with generation distribution factors
ielc kWel installed capacity of each electrical component c
ithc kWth installed capacity of each thermal component c
isoc,elc kWhel installed capacity of each electrical storage c
isoc,thc kWhth installed capacity of each thermal storage c
ldfk,n,q - Matrix with load distribution factors
mf

c e/kWhel feed-in tariff for each generation unit c
ml

c e/kWhel subsidy for the own consumption of electricity gen-
erated by a chp unit c

P act
k,q kWel actual active power on a grid element

P act,noControllable
k,q kWel actual active power on a grid element affected by

buses with non controllable assets

P act,Controllable
k,q kWel actual active power on a grid element affected by

buses with controllable assets

P gap,Controllable
k,q kWel remaining active power on a grid element before ca-

pacity limit is reached

Pmax,Controllable
k,q kWel maximum active power of a grid element affected by

buses with controllable assets
Pn kWel Total nodal flow in the grid model
P g
n kWel Nodal generation in the grid model

P l
n kWel Nodal load in the grid model

pwq e/kWhel wholesale price
Qact

k,q kWArel actual reactive power on a grid element

Qact,noControllable
k,q kWArel actual reactive power on a grid element affected by

buses with non controllable assets

Qact,Controllable
k,q kWArel actual reactive power on a grid element affected by

buses with controllable assets

Qgap,Controllable
k,q kWArel remaining reactive power on a grid element

rc,q kWhel Electrical energy that is consumed by electric vehi-
cles through driving

sq - time depended availability profile
Smax
k,q V A maximum apparent power of a grid element

t e/kWhel taxes and levies
ηelc,q - component-dependent and time-dependent electrical

efficiency
ηthc,q - component-dependent and time-dependent thermal

efficiency
fc e/kWhel component-dependent fuel costs
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A.2. Calculation of maximum active power on each
line and transformer

To formulate the equations (2.27) and (2.28) for the market model, the max-
imum active power for each line and transformer, only affected by nodes with
controllable assets, has to be known. Based on the knowledge of the values for
P act and Qact as a result of the AC power flow, the values of P gap,Controllable and
Qgap,Controllable have to be calculated. It is assumed that the gap can only be
controlled by readjusting the operation of assets which are part of the virtual
power plant. Consequently, Qgap,Controllable is only affected by electric vehicles.
As formulated in equation (2.17) the reactive power of loads is defined as a fixed
ratio of active power. The variable Qgap,Controllable can therefore be replaced by
the term k ∗ P gap,Controllable where P gap,Controllable is the variable and k is the
constant. The maximum apparent power can now be calculated as it is shown
in equation (A.1).

Smax =
√

(P act + P gap,Controllable)2 + (Qact + Qgap,Controllable)2 (A.1)

To calculate the maximum value of P gap,V PP the equation (A.1) had to be
transformed in order to apply the formula. The result is shown in equation
(A.2). To simply this equation, the parameters a, b and c are introduced which
represent the constant factors.

0 = (1 + k2) ∗ P gap,Controllable2

+(2P act + 2kQact) ∗ P gap,Controllable

+(P act2 + Qact2 + Smax2
)

= a ∗ P gap,Controllable2 + b ∗ P gap,Controllable + c

(A.2)

Finally, the maximum additional active power Pmax,Controllable can be cal-
culated by applying equation (A.3). The result pgap,Controllable can either be
positive in case the line is not overloaded or negative, if the transmitted power
has to be reduced.

P gap,Controllable = max[
1

2a
∗ (−b±

√
b2 − (4ac))] (A.3)

Pmax,Controllable = (P act,Controllable + P gap,Controllable) ∗ η (A.4)

As a last step, the maximum active power that can be injected by nodes with
controllable assets is calculated by adding pmax,Controllable and pgap,Controllable as
it is shown in equation (A.4). The factor η reflects a virtual buffer to additionally
ensure that line loading does not exceed 100%. Its value is assumed to be equal
0.90.
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A.3. Properties of the low voltage grids

Table A.4.: Properties of low voltage grids 1-6 depending on the penetration rate of
electric vehicles
Low voltage grid LV1 LV2 LV3 LV4 LV5 LV6

Simbench type rural3 rural2 rural2 rural1 rural1 rural1
Line length [m] 560 1467 1467 2352 2352 2352
Number buses 14 96 96 128 128 128

Transformer rated capacity [MVA] 0.16 0.25 0.25 0.40 0.40 0.40
Maximum load without EVs [MW] 0.04 0.12 0.12 0.18 0.18 0.19

dRate 30
Number EVs 4 21 24 28 38 48

EV penetration [%] 31 23 26 31 32 41
Number of Households (HH) 13 93 93 118 118 118

with no EV, no HP, no PV, no Storage 5 51 48 55 48 45
with EV, no HP, no PV, no Storage 0 0 0 0 1 0
with no EV, HP, no PV, no Storage 4 9 11 21 19 22
with EV, no HP, PV, no Storage 0 0 0 0 0 0
with no EV, HP, PV, no Storage 0 2 3 1 4 1
with no EV, no HP, PV, Storage 0 5 6 11 10 7
with EV, HP, no PV, Storage 1 9 12 11 15 23
with EV, no HP, PV, Storage 0 0 0 0 0 0
with no EV, HP, PV, Storage 0 5 2 2 1 4
with EV, HP, PV, Storage 3 12 11 17 20 16

dRate 50
Number EVs 7 38 44 63 57 58

EV penetration [%] 54 41 47 53 48 49
Number of Households (HH) 13 93 93 118 118 118

with no EV, no HP, no PV, no Storage 5 38 39 32 32 31
with EV, no HP, no PV, no Storage 0 13 9 23 17 14
with no EV, HP, no PV, no Storage 1 7 6 14 15 18
with EV, no HP, PV, no Storage 3 2 5 7 4 4
with no EV, HP, PV, no Storage 0 1 0 0 4 1
with no EV, no HP, PV, Storage 0 4 4 8 9 7
with EV, HP, no PV, Storage 1 10 15 12 15 23
with EV, no HP, PV, Storage 0 1 2 3 0 0
with no EV, HP, PV, Storage 0 5 1 1 1 3
with EV, HP, PV, Storage 3 12 12 18 20 17

dRate 70
Number EVs 9 60 64 85 81 81

EV penetration [%] 69 65 69 72 69 69
Number of Households (HH) 13 93 93 118 118 118

with no EV, no HP, no PV, no Storage 3 21 24 19 19 18
with EV, no HP, no PV, no Storage 2 30 24 36 30 27
with no EV, HP, no PV, no Storage 1 5 2 10 9 12
with EV, no HP, PV, no Storage 3 4 9 11 10 10
with no EV, HP, PV, no Storage 0 1 0 0 2 1
with no EV, no HP, PV, Storage 0 2 3 4 7 3
with EV, HP, no PV, Storage 1 10 15 12 17 23
with EV, no HP, PV, Storage 0 3 3 7 3 4
with no EV, HP, PV, Storage 0 4 1 0 0 3
with EV, HP, PV, Storage 3 13 12 19 21 17
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Table A.5.: Properties of low voltage grids 7-12 depending on the penetration rate of
electric vehicles
Low voltage grid LV7 LV8 LV9 LV10 LV11 LV12

Simbench type rural1
semi-

urban2
semi-

urban2
semi-

urban2
semi-

urban1
urban

Line length [m] 2352 746 746 746 1790 1078
Number buses 128 43 43 43 110 58

Transformer rated capacity [MVA] 0.40 0.40 0.40 0.40 0.63 0.63
Maximum load without EVs [MW] 0.18 0.11 0.11 0.09 0.20 0.22

dRate 30
Number EVs 34 14 16 10 35 36

EV penetration [%] 29 36 41 26 34 68
Number of Households (HH) 118 39 39 39 104 53

with no EV, no HP, no PV, no Storage 45 16 12 17 48 15
with EV, no HP, no PV, no Storage 0 1 1 1 0 0
with no EV, HP, no PV, no Storage 20 3 3 5 11 7
with EV, no HP, PV, no Storage 0 0 0 0 0 0
with no EV, HP, PV, no Storage 3 1 2 1 3 1
with no EV, no HP, PV, Storage 14 3 5 3 6 3
with EV, HP, no PV, Storage 21 8 7 5 18 7
with EV, no HP, PV, Storage 0 0 0 0 0 0
with no EV, HP, PV, Storage 2 2 1 3 1 2
with EV, HP, PV, Storage 13 5 8 4 17 18

dRate 50
Number EVs 59 28 20 21 49 42

EV penetration [%] 50 72 51 54 47 79
Number of Households (HH) 118 39 39 39 104 53

with no EV, no HP, no PV, no Storage 32 7 10 14 36 12
with EV, no HP, no PV, no Storage 13 10 3 4 12 3
with no EV, HP, no PV, no Storage 14 1 3 1 10 4
with EV, no HP, PV, no Storage 6 2 0 4 1 3
with no EV, HP, PV, no Storage 2 1 1 1 3 1
with no EV, no HP, PV, Storage 10 1 4 1 6 3
with EV, HP, no PV, Storage 22 8 8 5 18 7
with EV, no HP, PV, Storage 4 2 1 2 0 0
with no EV, HP, PV, Storage 1 1 1 1 0 2
with EV, HP, PV, Storage 14 6 8 6 18 18

dRate 70
Number EVs 87 30 26 31 68 53

EV penetration [%] 74 77 67 79 65 100
Number of Households (HH) 118 39 39 39 104 53

with no EV, no HP, no PV, no Storage 18 5 7 5 21 7
with EV, no HP, no PV, no Storage 27 12 6 13 27 8
with no EV, HP, no PV, no Storage 6 1 2 1 8 1
with EV, no HP, PV, no Storage 14 2 1 4 3 6
with no EV, HP, PV, no Storage 2 1 1 1 2 1
with no EV, no HP, PV, Storage 5 1 3 0 5 2
with EV, HP, no PV, Storage 22 8 8 5 19 7
with EV, no HP, PV, Storage 9 2 2 3 1 1
with no EV, HP, PV, Storage 0 1 0 1 0 0
with EV, HP, PV, Storage 15 6 9 6 18 20
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B.1. The full Bass model

For the computation of regional transition pathways of electric vehicles, the
Bass diffusion model is used. In this section, it is explained how the formula
in Equation (3.3) is derived. According to Rogers’ concept of the diffusion of
innovation (1962), P (t) is ”the probability that an initial purchase will be made
at time t given that no purchase has yet been made” (Bass, 1969).

P (t) =
f(t)

1 − F (t)
= p +

q

m
A(t) = p + qF (t) (B.1)

The parameter p is the coefficient of innovators meaning the probability of
initial purchases at the start of the innovation and q is the coefficient of imitators,
signalling the pressure they feel from the increasing number and m is the total
market size. f(t) is the likelihood of purchase at time t. F (t) is the cumulative
diffusion level at time t, further described in Equation (B.2). A(t) expresses the
cumulative number of adopters a(t) in the interval (0, t), presented in Equation
(B.3) based on Bass (1969) and Van der Kam et al. (2018).

F (t) =
A(t)

m
=

∫ t

0
f(t)dt (B.2)

A(t) =

∫ T

0
a(t)dt = m

∫ T

0
f(t)dt = mF (t) (B.3)

The number of adopters a(t) itself can be calculated according to Equation
(B.4)

a(t) = mf(t) = P (t)[m−A(t)] = [p +
q
∫ T
0 a(t)dt

m
][m−

∫ T

0
a(t)dt] (B.4)

Also, f(t) can be extended as:

f(t) = [p + qF (t)][1 − F (t)] = p + (q − p)F (t) − q[F (t)]2 (B.5)
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To find F (t), this non-linear differential Equation (B.6) needs to be solved:

dt =
dF

(p + (q − p)F − qF )
(B.6)

This equals to:

F =
q − pe(−t+C)(p+q)

q(1 + e(−t+C)(p+q))
(B.7)

Since F (0) = 0, the integration constant may be evaluated:

−C =
1

p + q
ln(

q

p
) (B.8)

Therefore:

F (t) =
1 − e−(p+q)t

1 + q
pe

−(p+q)t
(B.9)

or:

A(t) = m
1 − e−(p+q)t

1 + q
pe

−(p+q)t
(B.10)

To normalize the beginning of the diffusion t0 at 0, this function can be written
as:

A(t) = m
1 − e−(p+q)(t−t0)

1 + q
pe

−(p+q)(t−t0)
(B.11)

which is derived from Van der Kam et al. (2018).
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B.2. Function transformation to ∆t

This section displays the transformation of the diffusion curve function given in
Equation (3.3) to the diffusion curve function in Equation (3.6). The objective
is to calculate t given all other variables and parameters stay constant. Recall
Equation (3.3):

F (t, ŝ, p̂, q̂) = ŝ ∗ 1 − e−(p̂+q̂)(t−t0)

1 + q̂
p̂e

−(p̂+q̂)(t−t0)
| ∗ (1 +

q̂

p̂
e−(p̂+q̂)(t−t0)) (B.12)

For the sake of simplicity, F (t) will be written as F in this function transfor-
mation. The transformation steps are shown in Equations (B.13) to (B.20).

F (1 +
q̂

p̂
e−(p̂+q̂)(t−t0)) = ŝ ∗ (1 − e−(p̂+q̂)(t−t0)) |solving the brackets (B.13)

F + F
q̂

p̂
e−(p̂+q̂)(t−t0) = ŝ− ŝe−(p̂+q̂)(t−t0) | ∗ p̂ (B.14)

p̂F + q̂F e−(p̂+q̂)(t−t0) = ŝp̂− ŝp̂e−(p̂+q̂)(t−t0) | − p̂F + ŝp̂e−(p̂+q̂)(t−t0) (B.15)

ŝp̂e−(p̂+q̂)(t−t0) + q̂F e−(p̂+q̂)(t−t0) = ŝp̂− p̂F (B.16)

(ŝp̂ + q̂F )e−(p̂+q̂)(t−t0) = ŝp̂− p̂F | ∗ 1

ŝp̂ + q̂F
(B.17)

e−(p̂+q̂)(t−t0) =
ŝp̂− p̂F

ŝp̂ + q̂F
|ln (B.18)

−(p̂ + q̂)(t− t0) = ln(
ŝp̂− p̂F

ŝp̂ + q̂F
) | ∗ 1

−(p̂ + q̂)
(B.19)

t− t0 =
ln( ŝp̂−p̂F

ŝp̂+q̂F )

−(p̂ + q̂)
| + t0 (B.20)

t =
ln( ŝp̂−p̂F

ŝp̂+q̂F )

−(p̂ + q̂)
+ t0 (B.21)

To calculate the time difference ∆t between a given time tset when a NUTS
3 region reaches a certain diffusion level F (t)nuts3, and the time when the same
level is reached on the national diffusion curve, the following Equation (B.22) is
the result.

∆t = t− tset =
ln( ŝp̂−p̂F

ŝp̂+q̂F )

−(p̂ + q̂)
+ t0 − tset (B.22)
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B.3. Descriptive analysis of mobility data

Figure B.1.: Key parameters of the used MOP dataset (KIT - Institut für Verkehrswesen,
2021)

B.4. Distribution of daily energy consumption per
EV

Figure B.2.: Distribution of daily energy consumption per EV based on average specific
fleet consumption by year
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B.5. Weekend flexibility clusters and in-depth
analysis of the flexibility clusters

Figure B.3.: Flexibility clusters for weekends

Note: The figure shows the cluster centroids’ binary grid connection time series (at home, not at
home) for weekends. Cars are assumed to be connected to the grid and provide flexibility while
at home. The cluster centroids determine the time window for potential flexibility provision for
all profiles assigned to a respective cluster.

The clusters are evaluated based on the Pearson correlation coefficient and the
Hamming similarity, a metric for binary time series. The latter indicates for
most weekday and weekend clusters similarities beyond 80%, which are consid-
ered reasonably high scores. Cluster 4 for weekends shows with 79% the lowest
similarity score. However, with only 6% of the observations for weekends, at the
same time, it is the smallest cluster. The Pearson correlation coefficient indicates
a high correlation for the majority of the clusters. Exceptions in this regard are
the Clusters 5 and 7 for weekdays and the Clusters 1 and 6 for weekends. Here,
the Pearson correlation coefficient is close to zero, although still positive. For the
weekday cluster 7 and the weekend cluster 1, this is attributed to their large size
and due to the fact that the clusters bundle the profiles with only short intervals
of not being connected to the grid scattered during the day. For the weekday
cluster 5 and the weekend cluster 6, the low correlation coefficient is also due to
the characteristics of the clusters. Both clusters bundle the observations with
hardly any grid connection at home, with the clusters’ medoids not showing a
grid connection at all. The small connection intervals of the different observa-
tions are scattered during the day, leading to a low correlation value. Given the
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clusters medoids and the high similarity score, these clusters appear nonetheless
meaningful.

Table B.1.: Characteristics of the weekday flexibility clusters

Metric Share of observations Pearson correlation Hamming similarity

Cluster 1 12% 0.69 84%
Cluster 2 12% 0.78 89%
Cluster 3 10% 0.50 87%
Cluster 4 12% 0.78 89%
Cluster 5 8% 0.14 93%
Cluster 6 8% 0.65 85%
Cluster 7 27% 0.04 86%
Cluster 8 9% 0.53 82%

Notes: The pearson coefficient is a value between -1 (no correlation) and 1 (perfect correlation).
The hamming similarity is a value between 0% (no similarity) and 100% (perfect similarity).
The metrics indicate the correlation and the similarity of the observations within a cluster.

Table B.2.: Characteristics of the weekend flexibility clusters

Metric Share of observations Pearson correlation Hamming similarity

Cluster 1 31% 0.03 91%
Cluster 2 10% 0.64 81%
Cluster 3 12% 0.56 89%
Cluster 4 6% 0.50 79%
Cluster 5 8% 0.64 84%
Cluster 6 12% 0.16 89%
Cluster 7 10% 0.60 85%
Cluster 8 11% 0.61 90%

Notes: The pearson coefficient is a value between -1 (no correlation) and 1 (perfect correlation).
The hamming similarity is a value between 0% (no similarity) and 100% (perfect similarity).
The metrics indicate the correlation and the similarity of the observations within a cluster.
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B.6. Shares of charging scenarios

Table B.3.: Shares of charging scenarios per settlement type

settlement type h h,w h,o h,w,o w o w,o Total

rural community 22% 22% 22% 22% 4% 4% 4% 100%
smaller provincial town 22% 22% 22% 22% 4% 4% 4% 100%
larger provincial town 21% 21% 21% 21% 6% 6% 6% 100%
smaller medium town 18% 18% 18% 18% 9% 9% 9% 100%
larger medium town 20% 20% 20% 20% 7% 7% 7% 100%
smaller metropolis 16% 16% 16% 16% 13% 13% 13% 100%
larger metropolis 10% 10% 10% 10% 19% 19% 19% 100%

Notes: The row total may differ from 100% due to rounding errors. Charging locations: at
home (h), at work (w), others (o)

B.7. Distribution of demand to federal states

To distribute the national demand of each sector among the federal states, data
from Länderarbeitskreis Energiebilanzen (2022) is used. The data includes the
demand of all federal states separately by sector for the years 1990-2019. The
demand in this model is allocated among the federal states based on the distri-
bution of sector-specific demand in 2019. An exception is the state of Saarland,
where the most recent data available is from 2016 (Table B.4). It is assumed
that this distribution does not change fundamentally over time.

Table B.4.: Distribution keys of sectoral electricity demand to federal states

Sector BW BY BE BB HB HH HE MV

Households 14% 16% 3% 3% 1% 3% 8% 2%
Small-scale industries, trade & services 15% 16% 5% 3% 1% 3% 9% 2%
Industry 12% 15% 1% 3% 1% 2% 5% 1%
Rail transport 11% 19% 8% 5% 1% 3% 11% 2%
Conversion sector 9% 9% 1% 10% 1% 3% 2% 1%

Sector NI NW RP SL SN ST SH TH

Households 9% 23% 5% 1% 4% 2% 4% 2%
Small-scale industries, trade & services 9% 20% 4% 1% 4% 3% 3% 3%
Industry 11% 28% 7% 2% 5% 4% 2% 3%
Rail transport 11% 15% 4% 1% 4% 4% 2% 2%
Conversion sector 10% 37% 1% 2% 6% 5% 3% 0%

Note: The row total may differ from 100% due to rounding errors.
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B.8. Demand profiles

Figure B.4.: Demand profiles per application. Heat profiles are exemplary: shown are
the profiles for the region DEA23 (Cologne) on 3 exemplary days of the
year.
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B.9. Residual load duration curves

Figure B.5.: Normalized residual load duration curves for all NUTS3 regions and Ger-
many for 2019, 2030 and 2045

Note: Each subplot visualizes the normalized residual load duration curves for each NUTS3
region (in orange) and Germany (in black) for a given year. Normalization was performed by
dividing each value of the residual load curve by its maximum value in 2019.
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B.10. Cluster properties

Table B.5.: Properties of the regions within the three cluster in 2045

Property Indicator Cluster Cluster Cluster
Wind PV Load

Population density Minimum 36 66 125
(people per km2) Maximum 437 1585 4761

Mean 117 264 1165
Number of EVs Minimum 14 31 56
(cars per km2) Maximum 167 606 1811

Mean 55 119 471
Wind Onshore capacity Minimum 0.22 0.00 0.00
(MW per km2) Maximum 1.94 1.26 0.95

Mean 0.75 0.29 0.15
total PV capacity Minimum 0.19 0.16 0.00
(MW per km2) Maximum 1.59 2.18 2.35

Mean 0.62 0.69 0.34
large-scale PV capacity Minimum 0.19 0.16 0.00
(MW per km2) Maximum 1.59 2.18 2.34

Mean 0.62 0.69 0.34
rooftop PV capacity Minimum 0.13 0.15 0.23
(MW per km2) Maximum 2.04 5.41 7.46

Mean 0.38 0.86 2.20

Figure B.6.: Distribution of the population density within each cluster in 2045
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Figure B.7.: Distribution of EVs per km2 within each cluster in 2045

Figure B.8.: Distribution of Wind Onshore capacities per km2 within each cluster in
2045

Figure B.9.: Distribution of PV capacities (large-scale PV and rooftop PV) per km2

within each cluster in 2045
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Figure B.10.: Distribution of large-scale PV capacities per km2 within each cluster in
2045

Figure B.11.: Distribution of rooftop PV capacities per km2 within each cluster in 2045
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C.1. Sets, parameters and decision variables

Table C.1.: Sets

Set Unit Description
a ∈ A - All technologies
a ∈ ACars - All electric vehicles
a ∈ AnoFlexCars - Electric vehicles that are not flexible
a ∈ AFlexCars - Electric vehicles that are flexible
a ∈ Av2gCars - Electric vehicles that flexible and capable of bidi-

rectional charging
a ∈ AHeating - All decentralized heating technologies
a ∈ AthStorage - Thermal storage technologies
a ∈ AHP - Heat pump technologies
a ∈ Ba - Mapping heating technologies to building types
a ∈ Ua - Mapping mobility clusters to electric vehicles
b ∈ B - Building types
d ∈ D - Days
h ∈ H - Hours
u ∈ U - Mobility clusters

Table C.2.: Decision variables

Variable Unit Description

Eel,daysaldo
d,a MWhel Net electrical energy consumed by each electric

vehicle a ∈ ACars on day d ∈ D

Eth,daysaldo
d,a MWhth Net thermal energy consumed by each thermal

storage technology a ∈ AthStorage on day d ∈ D

Eth,level
d,h,a MWhth Thermal energy stored in thermal storage a ∈

AthStorage in hour h ∈ H on day d ∈ D

P el,in
d,h,a MWel Electrical power consumed by each technology

a ∈ A in hour h ∈ H on day d ∈ D

P el,out
d,h,a MWel Electrical power generated by each technology

a ∈ A in hour h ∈ H on day d ∈ D

P th,in
d,h,a MWel Thermal power consumed by each technology a ∈

AHeatin in hour h ∈ H on day d ∈ D

P th,out
d,h,a MWel Thermal power generated by each technology a ∈

AHeating in hour h ∈ H on day d ∈ D
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Table C.3.: Parameters

Parameter Unit Description
αb % Share of heating demand for each building type

b ∈ B
Cth

a MW Installed thermal capacity for each technology
a ∈ AHeating

dpd,h,u - Normalized demand structure for each mobility
cluster u ∈ U , hour h ∈ H and day d ∈ D

dpthd,h,b - Normalized heat demand structure for each build-
ing type b ∈ B, hour h ∈ H and day d ∈ D

dsd,a % Relative electricity demand of each electric vehi-
cle A ∈ ACars on day d ∈ D

ηa % Time-independent efficiency of technology a ∈ A
ηd,h,a % Efficiency of technology a ∈ A on day d ∈ D in

hour h ∈ H
fca kWh/km Fuel consumption of each electric vehicle a ∈

ACars

flexneg
d,h,u - Normalized negative flexibility potential for each

mobility cluster u ∈ U in hour h ∈ H on day
d ∈ D

flexpos
d,h,u - Normalized positive flexibility potential for each

mobility cluster u ∈ U in hour h ∈ H on day
d ∈ D

flexv2g
d,h,u - Normalized bidirectional flexibility potential for

each mobility cluster u ∈ U in hour h ∈ H on
day d ∈ D

γ % Storage losses for thermal storage
Ia km Road transport demand of each electric vehicle

a ∈ ACars

Ith TWh Total heat demand
Ithb TWh Heat demand of each building type b ∈ B
vfa − Volume factor (ratio of power and energy) for

each thermal storage a ∈ AthStorage
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C.2. DIMENSION model description

Sector overview

Figure C.1.: DIMENSION sector overview

Note that the column ’CO2’ reflects weather CO2-emissions of the specific subsector are ac-
counted for total CO2 emissions of the corresponding sector, as defined in the Climate Protection
Act (KSG).

Decentralized heating equations

To model decentralized heating in the buildings sector, we assume that each
of the ten defined building types, b ∈ B, meets a fixed share of the overall
heating demand. This is represented by a constant parameter αb, which assigns a
specific share of the total demand to each building type.43 Decentralized heating
technologies, a ∈ AHeating, are matched to the appropriate building types using
the matching set a ∈ Ba, and, in each case, heat pumps are supplemented by an
electric heating rod as backup and thermal storage, which includes both active
water tanks and passive building mass storage.44 Depending on its size, thermal
storage can also accommodate additional water tanks, enabling more flexible
operation of the heat pumps.

The equilibrium constraint, as formulated in Equation (C.1), ensures that the

heating supply, P th,out
d,h,a , from heating technologies a, matches the exogenous heat

demand profile at all times. This also accounts for the endogenously optimized
storage input, P th,in

d,h,a . The heat demand profile is calculated by multiplying the

43The total heating demand is distributed across various installed heating technologies, in-
cluding gas, oil, biomass, and electricity, as detailed in Appendix C.3, with the electricity
demand further divided among the building types equipped with heat pumps, as shown in
Table 4.1.

44The heat pumps are sized to satisfy 80% of the peak heat demand, with the remaining 20%
handled by electric heating rods serving as auxiliary capacity.
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annual heat demand of each building type, Ithb , with the corresponding normal-
ized heat demand profile dpthd,h,b.∑

a∈Ba

(P th,out
d,h,a − P th,in

d,h,a ) = Ithb ∗ dpthd,h,b = Ith ∗ αb ∗ dpthd,h,b

∀d ∈ D ∧ h ∈ H ∧ b ∈ B

(C.1)

The electricity input required for heat generation via heat pumps, P el,in
d,h,a, is

calculated by factoring in the temperature-dependent COP, represented as ηd,h,a.
Each heat pump technology is linked to its own time series for the COP, as shown
in Equation (C.2).

P el,in
d,h,a =

P th,out
d,h,a

ηd,h,a
∀d ∈ D ∧ h ∈ H ∧ a ∈ AHP (C.2)

The thermal storage level is determined by summing the previous hour’s stor-
age level (adjusted for storage losses, γ = 0.03%) with the net thermal storage
feed-in, which is multiplied by the efficiency ηd,h,a of 84%, based on Sarbu and
Sebarchievici (2018), as shown in Equation (C.3). The storage levels between the
last hour of one day and the first hour of the next are connected as per Equation
(C.4). The storage capacity is limited by the installed capacity, Cth

a , adjusted
by the volume factor, vfa, as formulated in Equation (C.5). The daily balance
of thermal storage is calculated by summing the endogenous storage feed-in and
feed-out.

Eth,level
d,h+1,a = Eth,level

d,h,a ∗ (1 − γ) + P th,in
d,h+1,a ∗ ηd,h,a − P th,out

d,h+1,a

∀d ∈ D ∧ h ∈ H ∧ a ∈ AthStorage

(C.3)

Eth,level
d+1,h,a = Eth,level

d,h,a ∗ (1 − γ) + P th,in
d+1,h,a ∗ ηd,h,a − P th,out

d+1,h,a

∀d ∈ D ∧ h = H ∧ a ∈ AthStorage

(C.4)

Eth,level
d,h,a ≤ Cth

a ∗ vfa ∀d ∈ D ∧ h ∈ H ∧ a ∈ AthStorage (C.5)

To reflect the flexibility provided by both passive and active thermal storage,
the volume factor vfa incorporates two components: the thermal inertia of the
building mass and the installed water tank capacity. While active thermal stor-
age is represented by explicit storage capacity (e.g., water tanks), the passive
component captures the ability of the building mass to temporarily buffer heat
due to its thermal inertia.

This passive storage potential is estimated through a simplified approach that
quantifies how long a building can passively maintain indoor temperatures within
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comfort limits - without active heating - based on its specific transmission heat
loss. This approach is used as the model considers aggregated building mass
per building type rather than simulating individual buildings. We estimate the
thermal storage capacity as the amount of heat that can be stored in the building
mass when its temperature changes by a defined amount. The stored energy is
calculated as Q = c ·m ·∆T , where c is the specific heat capacity of the material,
m is the mass of the relevant structural components (e.g., walls, floors), and ∆T
is the allowable indoor temperature deviation (Sarbu and Sebarchievici, 2018).
For typical materials and room configurations, we assume a storage capacity of
60 Wh/m2K, which results in 120 Wh/m2 for an acceptable temperature change
of the comfort zone by 2 K as suggested by Le Dréau and Heiselberg (2016). To
estimate the passive storage duration, we divide this by the building’s specific
transmission heat loss (KfW, 2024). This yields the number of hours the stored
energy can offset the transmission losses.45

To evaluate the effects of varying degrees of flexibility, the volume factor for
thermal storage is adjusted across different use cases as described in Section
4.3.2.

Road transport equations

In the following, we present the key equations for the road transport module.
Depending on the use case (see Section 4.3), an EV, denoted by a, is classified
as either passive (a ∈ AnoF lexCars), flexible (a ∈ AFlexCars), or capable of bidi-
rectional charging (a ∈ Av2gCars). Furthermore, EVs are distributed across ten
different mobility clusters u, corresponding to the set Ua.

The fundamental constraint, expressed in Equation (C.6), necessitates that

the power consumption by EVs, P el,in
d,h,a, for each day d and hour h, equals the

product of exogenous road transport demand Ia (in km), fuel consumption fca
(in kWh/km), and the exogenous, normalized demand profile dpd,h,u for each
mobility cluster.

P el,in
d,h,a = Ia ∗ fca ∗

∑
u∈Ua

dpd,h,u ∀d ∈ D ∧ h ∈ H ∧ a ∈ AnoF lexCars (C.6)

To account for a system-oriented flexible charging, we formulate Equations
(C.7) to (C.10). These constraints ensure that while an EV can be charged
flexibly, the total daily amount of charging must remain constant, assuming
users are unlikely to alter their driving habits across multiple days. The first
two equations establish the balance of EV’s battery storage. First, the daily
storage balance is computed as the difference between the energy inflow and

45The method is a simplification suited for system-level modeling, as it does not account for
spatial heat distribution, dynamic heat transfer, or interactions with building control strate-
gies. More detailed modeling approaches - such as those described in Bloess et al. (2018) -
can capture these effects more accurately.
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outflow, with the outflow - associated with Vehicle-to-Grid (V2G) - adjusted by
the round-trip efficiency ηa of the battery. Second, the balance must equal the
product of the exogenous road transport demand, fuel consumption, and the
exogenously determined daily demand share, dsd,a (in %), ensuring that EV’s
storage is balanced within a day.

Eel,daysaldo
d,a =

∑
h

(P el,in
d,h,a − P el,out

d,h,a ∗ ηa)

∀d ∈ D ∧ a ∈ (AFlexCars ∨Av2gCars)

(C.7)

Eel,daysaldo
d,a = Ia ∗ fca ∗ dsd,a

∀d ∈ D ∧ a ∈ (AFlexCars ∨Av2gCars)
(C.8)

Flexible charging is constrained within positive and negative flexibility limits,
computed for each mobility cluster. Although flexible cars generally follow the
demand profile dpd,h,u, they are allowed to deviate within the upper and lower
bounds flexnegd,h,u and flexposd,h,u, respectively.

P el,in
d,h,a ≥ Ia ∗ fca ∗

∑
u∈Ua

(dpd,h,u − flexposd,h,u)

∀d ∈ D ∧ h ∈ H ∧ a ∈ (AFlexCars ∨Av2gCars)

(C.9)

P el,in
d,h,a ≤ Ia ∗ fca ∗

∑
u∈Ua

(dpd,h,u + flexnegd,h,u)

∀d ∈ D ∧ h ∈ H ∧ a ∈ (AFlexCars ∨Av2gCars)

(C.10)

For use cases involving bidirectional charging, bidirectional charging is only
allowed for cars assigned to the corresponding set Av2gCars. The V2G potential

flexv2gd,h,u in Equation (C.12) is defined for each mobility cluster as the sum of
the positive and negative flexibility potential.

P el,out
d,h,a = 0 ∀d ∈ D ∧ h ∈ H ∧ a ∈ (AFlexCars ∨Av2gCars) (C.11)

P el,out
d,h,a ≤ Ia ∗ fca ∗

∑
u∈Ua

flexv2gd,h,u ∀d ∈ D ∧ h ∈ H ∧ a ∈ Av2gCars (C.12)

Additional constraints link the road transport sector to the energy system, ac-
counting for factors such as CO2 emissions, total energy consumption or variable
costs, following Helgeson and Peter (2020).
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C.3. Data

Key input data

Table C.4.: Overview of key input data sources

Country Parameter Input data Source
EU28a Demand and

capacity
Sector- and fuel-specific energy
demand, nuclear capacity tra-
jectories, minimum RES targets,
cross-border net transfer capaci-
ties (NTCs)

(ENTSO-E and
ENTSOG, 2024)

Time series RES profiles (wind, solar) for the
weather year 2015

(ENTSO-E,
2022b)

Germany Demand Sector- and fuel-specific energy
demand

(dena, 2021)

Capacity Coal phase-out (BMJ, 2022)
Capacity District heating supply share (dena, 2021)
Capacity Heat pump capacity goal for

2030
(BMWK, 2022b)

Capacity Targeted number of EVs for 2030 (BMWK, 2022a)

a The modeled region includes EU28 excluding Cyprus and Malta and including Great Britain
and Norway.

Heating shares for individual heating

Table C.5.: Heating shares for decentralized heating in Germany in 2030

Gas Oil Biomass Hydrogen Electricity
53% 18% 7% 0% 22%

Note that each value reflects the share of heat that is covered by a certain fuel type. The
assumptions follow dena (2021).

Commodity and CO2 prices

Table C.6.: Commodity prices and EU Carbon Permits in 2030

Oil Coal Lignite Gas CO2

[EUR/MWh] [EUR/MWh] [EUR/MWh] [EUR/MWh] [EUR/t]
46.8 8.6 5.5 21.5 88

Note that prices for oil, coal and gas are based on the ”Stated Policies” scenario in IEA (2023c),
while the lignite price follows ENTSO-E and ENTSOG (2024). The assumed price of emission
allowances refers to the ICIS Modeling group, with its results visualized in Pahle et al. (2022).
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Installed capacities

Table C.7.: Installed capacities in Germany per generation group and corresponding
efficiencies

Technology group Capacity in GW Efficiency in %
Waste CHP 1.3 17
Lignite 8.7 -
- Lignite no CHP 8.0 32-35
- Lignite CHP 0.7 37-41
Coal 8.0 -
- Coal no CHP 6.0 37-46
- Coal CHP 2.0 39-45
Gas 40.2 -
- Gas OCGT 5.6 28-40
- Gas CCGT 5.0 40-60
- Gas CHP 19.6 42-56
- H2-ready OCGT 6.7 40
- H2-ready CHP 3.3 56
Wind Offshore 30.0 100
Wind Onshore 115.0 100
Photovoltaic 215.0 100
Biomass 8.0 -
- Biomass no CHP 3.5 39
- Biomass CHP 4.5 31-49
Hydropower 5.3 100
DSM (Industry) 1.8 100
Battery 13.1 90
PHS 9.9 76
Electrolysis 10.0 68

The capacities of lignite and coal are determined based on the coal phase-out trajectory outlined
in BMJ (2022). Targets for Wind Onshore, Wind Offshore, and PV capacities align with the
objectives defined in the Easter Package (Bundesrat, 2022). Initial capacities for gas-fired
power plants are sourced from the list of power stations as of April 15th, 2024, as published
by the BNetzA (BNetzA, 2024). Subsequently, an additional 10 GW of H2-ready power plants
are assumed by 2030, as per the guidelines outlined in The Federal Government (2024). We
assume that one third of these capacities is built as CHP.
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Electricity demand

Table C.8.: Electricity demand in TWh

KSG sector subsector 2030
Energy PtX* 19.8

District heating* 12.8
Others 4.6

Transport Road transport* 51.6
Non-road transport (domestic) 19.6

Buildings Heating, cooling, cooking* 54.2
Lightning, el. appliances 202.7

Industry Processes 263.1

Total net demand - 629.3
Note that endogenously determined electricity demand is labeled with *. The respective demand
is depicted based on the reference use case (M0/H0).

Heating shares for central heating (district heat)

Table C.9.: Heating shares for central heating (district heat)

Technology/Fuel 2030
Biosolid 6.9%
Biogas 1.6%
Waste 13.9%
Industrial heat 6.8%
Solar thermal 1.6%
Geothermal heat 2.4%
Hydrogen 1.0%
Gas 49.7%
Heat pump 4.2%
Coal 8.3%
Lignite 3.5%

Total 100.0%
Note that each value reflects the share of heat that is covered by a certain fuel type. The
assumptions follow dena (2021) but are slightly adjusted to account for current developments.
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C.4. Additional results

Welfare redistribution

Figure C.2.: Changes in total producer and consumer surplus under different use cases,
measured in billion EUR

Note: The columns represent the absolute changes in the total producer and consumer surplus
across different technology and end-user groups for the defined flexibility use cases, compared
to the reference use case (M0/H0). The estimated deviations in relative terms are visualized
via heatmap.
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Changes in total electricity costs

Figure C.3.: Changes in total electricity costs across building types under different flex-
ibility use cases, in million EUR

Note: The first column represents the total electricity costs for heat pump operation. The
subsequent columns represent the absolute changes in total electricity costs across different
building types for the defined flexibility use cases, compared to the reference use case (M0/H0).
The estimated deviations in relative terms are visualized via heatmap.

Figure C.4.: Changes in total electricity costs for different mobility clusters under dif-
ferent flexibility use cases, in million EUR

Note: The first column represents the total electricity costs for EV charging. The subsequent
columns represent the absolute changes in total electricity costs across different mobility clusters
for the defined flexibility use cases, compared to the reference use case (M0/H0). The deviations
in relative terms are visualized via heatmap.
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Flexibility decisions in the decentralized heating sector

Figure C.5.: Flexibility decisions across different building types for the use case M0/H1
compared to M0/H0
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Flexibility decisions in the road transport sector

Figure C.6.: Flexibility decisions across different mobility clusters for the use case
M1/H0 compared to M0/H0
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Figure C.7.: Flexibility decisions in the road transport sector for the use case M2/H0
compared to M0/H0
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Residual load duration curve

Figure C.8.: Residual load duration curve in the reference use case M0/H0 (above) and
its deviations in flexibility use cases (below)

Note that we define the residual load by subtracting the renewable electricity generation from
the inflexible as well as flexible demand within the heating and transport sectors. We calculate
the deviations by subtracting the load duration curve values of the reference use case (M0/H0)
from those of the other use cases.
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D.1. Sets, parameters and decision variables

Table D.1.: Sets

Set Unit Description
a ∈ A - All technologies
a ∈ AH2Stor - Hydrogen storage
b, b1 ∈ B - Country
d ∈ D - Day
f ∈ F - Fuel
h ∈ H - Hour
r ∈ R - Hydrogen exporting region outside

Europe
s ∈ S - Sector

Table D.2.: Parameters

Parameter Unit Description
η(a) - Round-trip efficiency of storage tech-

nology a.
instcap(a, b) MW Installed capacity of technology a in

country b.
inject(a) - Quotient of injection speed to with-

drawal speed for storage technology a.
ptxPotP ipe(b, f) MWhth Import potential of fuel f via pipeline

to country b.
ptxPotShip(r, f) MWhth Import potential of fuel f from export-

ing region r.
ptxTerminal(b, f) MWhth Terminal capacity for handling fuel f

in country b.
ptxCostsP ipe(b, f) EUR/MWhth Variable cost of importing fuel f via

pipeline to country b.
ptxCostsShip(r, f) EUR/MWhth Variable cost of importing fuel f via

ship from region r.
tradeCap(b1, b, f) MWhth/day Net transfer capacity (NTC) for trade

of fuel f between countries b1 and b.
vol(a) h Volume factor (storage capacity per

unit of installed power) for storage
technology a.
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Table D.3.: Decision variables

Variable Unit Description
COSTSPipe EUR Annual costs for fuel imports via

pipeline from outside the EU.
COSTSShip EUR Annual costs for fuel imports via ship

from outside the EU.
USE(b, d, s, f) MWhth Fuel f consumption in sector s of

country b on day d.
INSTOR(d, b, a, f) MWhth Fuel f stored in facility a in country b

on day d.
INSTORPipe(d, b, f) MWhth Pipeline-imported fuel f stored in

country b on day d.
INSTORProd(d, h, a, b, f) MWhth Domestically produced fuel f via tech-

nology a stored in country b on day d
and hour h.

INSTORShip(d, r, b, f) MWhth Ship-imported fuel f from region r
stored in country b on day d.

INSTORTrade(d, b1, b, f) MWhth Imported fuel f from neighboring
country b1 stored in country b on day
d.

LEV EL(d, a, b, f) MWhth Storage level of fuel f using technology
a in country b on day d.

PIPE(b, f) MWhth Pipeline imports of fuel f into country
b.

SHIP (r, b, f) MWhth Ship imports of fuel f from region r
to country b.

TRADE(d, b1, b, f) MWhth Export of fuel f from country b1 to
country b on day d.

TRADE(d, b, b1, f) MWhth Export of fuel f from country b to
country b1 on day d.

PROD(d, h, a, b, f) MWhth Domestic production of fuel f in coun-
try b on day d, hour h, using technol-
ogy a.
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D.2. H2 supply curve

Figure D.1.: Supply curve for H2 imports via ship

The hydrogen import price reflects the price for a long-term contract with baseload supply
throughout the year. The price also reflects the levelized costs of hydrogen (LCOH) of the
exporting region, covering both operational and capital expenditures.

D.3. Trade capacities

Table D.4.: Trade capacities for hydrogen and electricity
Hydrogen [MWth] Electricity [MWel]

Countries Scenarios Ref and LD Scenarios HI and HI/LD All scenarios
a b from a from b from a from b from a from b

to b to a to b to a to b to a
AT CH 0 0 0 0 1,200 1,200
AT CZ 0 0 0 0 900 900
AT DE 6,250 6,250 6,250 6,250 7,500 7,500
AT HU 6,250 0 6,250 0 800 800
AT IT 5,250 7,000 9,125 7,000 1,375 1,995
AT SI 0 0 1,375 667 1,450 1,450
BE DE 3,790 3,790 4,998 4,998 1,000 1,000
BE FR 4,500 4,500 8,333 8,333 5,800 7,300
BE GB 0 0 8,333 8,333 2,400* 2,400*
BE LU 580 580 1,413 1,413 1,100 1,000
BE NL 2,000 2,000 10,000 10,000 4,400 4,400
BE NO 0 8,333 8,333 8,333 0 0
BG GR 3,330 3,150 3,665 3,671 2,200 1,900
BG RO 740 740 5,811 5,811 2,550* 2,550*
CH DE 0 0 10,000 10,000 4,500* 5,000

Continued on next page
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Hydrogen [MWth] Electricity [MWel]
Countries Scenarios Ref and LD Scenarios HI and HI/LD All scenarios
a b from a from b from a from b from a from b

to b to a to b to a to b to a
CH FR 0 0 4,167 4,167 3,200 5,500
CH IT 5,630 3,670 5,630 3,670 5,800* 3,110*
CZ DE 6,000 6,000 13,300 13,300 3,000* 3,000*
CZ PL 0 0 1,250 1,250 1,600 1,000
CZ SK 0 6,000 6,500 6,500 2,300 2,160*
DE DK1 2,100 2,100 10,000 10,000 3,500 3,500
DE DK2 0 0 0 0 600 600
DE FR 8,000 8,500 10,125 10,125 4,800 4,800
DE GB 0 0 0 0 2,800 2,800
DE LU 0 0 0 0 3,700* 3,700*
DE NL 500 15,630 23,300 23,296 6,000 6,000
DE NO 17,250 17,250 17,250 17,250 1,444* 1,444*
DE PL 4,170 8,330 9,467 9,461 3,000* 3,000
DE SE 0 0 0 0 1,500* 1,491
DK1 DK2 0 0 0 0 600 600
DK1 GB 0 0 0 0 1,400 1,400
DK1 NL 0 0 0 0 700 700
DK1 NO 0 0 0 0 1,632 1,632
DK1 SE 0 0 0 0 1,415 1,415
DK2 PL 0 0 0 0 500 500*
DK2 SE 0 0 0 0 2,200 1,800
EE FI 4,170 8,330 8,337 8,330 1,176 1,176
EE LV 8,330 4,170 8,330 5,285 1,444* 1,259*
ES FR 9,000 9,000 9,000 9,000 8,000 8,000
ES PT 3,380 3,380 3,380 3,380 6,200 5,500
FI NO 0 0 0 0 150* 150*
FI SE 27,750 27,750 37,917 37,917 4,500 4,500
FR GB 0 0 0 0 6,800* 6,800*
FR IE 0 0 0 0 700 700
FR IT 0 0 0 0 4,485 2,160
FR LU 0 0 0 0 380* 0
GB IE 0 0 1,189 1,189 1,750 1,750
GB NL 0 0 0 0 2,800* 2,800*
GB NO 0 0 0 0 1,444* 1,444*
GR IT 0 0 0 0 1,500* 1,500*
HR HU 0 0 5,350 5,350 1,700* 1,700*
HR SI 0 0 667 1,375 3,200 3,200
HU RO 3,200 3,200 6,400 6,400 3,027 2,300*
HU SI 0 0 817 817 1,700 1,700
HU SK 4,170 4,170 8,337 8,337 1,900* 3,360*
IT SI 0 0 817 817 1,080 1,153
LT LV 4,170 8,330 7,903 8,330 1,300* 1,300*
LT PL 8,330 4,170 8,330 7,150 700 700
LT SE 0 0 0 0 1,300 1,300
NL NO 0 0 0 0 723* 723*
NO SE 0 0 0 0 3,695 3,995
PL SE 0 0 0 0 600 600
PL SK 0 0 0 0 894* 1,110

Hydrogen capacities in Scenario A are based on the reference grid from ENTSO-E and ENTSOG
(2024). Scenario B assumes full utilization of all investment candidates. Electricity NTC
values are derived from the ENTSO-E and ENTSOG (2024) ”Global Ambition” scenario for
the weather year 2009. Adjustments marked with * indicate that if the value was smaller than
the corresponding value from the ERAA 2024 (ENTSO-E, 2024) for 2035, the higher value was
used.
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D.4. Installed capacities

Table D.5.: Installed electrical capacities in Germany per generation group in GWel and
corresponding efficiencies for the different system configuration scenarios

Technology group Efficiency Ref HI LD HI/LD
Gas - - - - -
- Gas OCGT 28-40 Inf Inf Inf Inf
- Gas CCGT 40-60 16.5 15.9 14.6 11.4
- Gas CHP 42-56 2.7 2.9 2.7 2.9
- H2 OCGT 40 Inf Inf Inf Inf
- H2 CCGT 60 12.7 15.0 13.5 10.8
- H2 CHP 56 10.7 10.7 10.7 10.7
Wind Offshore 100 70.0 70.0 70.0 70.0
Wind Onshore 100 160.0 160.0 160.0 160.0
Photovoltaic 100 400.0 400.0 400.0 400.0
Biomass - - - - -
- Biomass no CHP 39 0.0 0.0 0.0 0.0
- Biomass CHP 31-49 8.0 8.0 8.0 8.0
Hydropower 100 5.3 5.3 5.3 5.3
DSM (Industry) 100 5.4 5.4 5.4 5.4
Battery 90 36.0 36.0 36.0 36.0
PHS 76 8.5 8.5 8.5 8.5
Electrolysis 72-77 76.5 74.4 76.5 76.5

Targets for Wind Onshore, Wind Offshore, and PV capacities align with the objectives defined
in the Easter Package (Bundesrat, 2022). For battery storage, a ratio between power and
capacity of 1:2 is assumed based on ENTSO-E and ENTSOG (2024). OCGT power plants for
H2 and Gas have sufficient capacities to keep the model feasible.

Table D.6.: Installed hydrogen storage capacities in Germany in TWhth and correspond-
ing efficiencies for the different system configuration scenarios

Technology group Efficiency Ref HI LD HI/LD
Cavern conversion 93 29.7 29.7 29.7 24.8
Cavern new 93 11.6 5.9 27.0 6.6
Pore conversion 93 0.0 0.0 0.0 0.0
Pore new 93 0.0 0.0 0.0 0.0

For hydrogen, the country-specific storage capacities align with the local potentials derived
from Caglayan et al. (2021).
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D.5. Electricity and hydrogen demand

Table D.7.: Electricity and hydrogen demand in TWh for different sectors and system
configuration scenarios

Ref HI LD HI/LD
Sector H2 El. H2 El. H2 El. H2 El.
Energy
Electricity* 67.8 43.3 67.8 42.7 67.8 43.7 67.9 43.3
PtX* 38.7 331.0 33.3 331.1 54.7 330.0 32.6 331.5
District heating* 0.0 26.1 0.0 26.1 0.0 26.1 0.0 26.1
Others 0.0 31.1 0.0 31.1 0.0 31.1 0.0 31.1
Transport
Road transport 90.0 104.2 90.0 104.2 90.0 104.2 90.0 104.2
Non-road transport (dom.) 4.4 17.0 4.4 17.0 4.4 17.0 4.4 17.0
Non-road transport (inter.) 4.4 0.0 4.4 0.0 4.4 0.0 4.4 0.0
Buildings
Heating, cooling, cooking 78.6 109.9 78.6 109.9 78.6 109.9 78.6 109.9
Lightning, el. appliances 0.0 176.7 0.0 176.7 0.0 176.7 0.0 176.7
Industry
Processes 279.2 256.0 279.2 256.0 195.4 256.0 195.4 256.0
Non-energy 127.6 0.0 127.6 0.0 127.6 0.0 127.6 0.0
Agriculture 18.9 5.5 18.9 5.5 18.9 5.5 18.9 5.5
Total 710 1133 704 1133 641 1133 620 1134

Note that endogenously determined demand is labeled with *.

D.6. Hydrogen balances

Table D.8.: H2 origin and export balance in TWhth

Ref HI LD HI/LD
Supply
Domestic production and storage supply 281.9 274.6 296.0 276.6
Import from EU 408.0 781.9 426.1 814.8
Import via ship* 241.3 87.6 151.3 69.7
Demand
Export to EU 221.6 439.9 231.5 541.2
Storage loading 38.7 33.3 54.7 32.6
Sectoral demand 670.9 670.9 587.2 587.3

* The import via ship is determined with the invest decision and fixed in the dispatch run.
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D.6. Hydrogen balances

Figure D.2.: Daily H2 balance for the different system sensitivities

183



D. Supplementary material for chapter 5

D.7. Storage level

Figure D.3.: H2 storage level in Europe in each sensitivity
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D.8. H2 balance and residual load in each subset for the reference scenario

D.8. H2 balance and residual load in each subset for
the reference scenario

The full dataset includes price data for hydrogen and electricity, along with the
corresponding demand and supply values across different technologies, sectors,
and assets. It is divided into four subsets, each capturing distinct market condi-
tions characterized by variations in electrical and hydrogen residual load. These
subsets are visualized in Figure D.4.

Figure D.4.: Daily H2 balance in each subset with the corresponding residual load in
sorted order

The electrical residual load is represented on the secondary y-axis and is displayed in descending
order. The H2 supply and demand mix is visualized for the corresponding days, aligned with
the sorted order of the residual load values.
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D.9. Check for co-integration

The separation of price data according to different market situations raises the
question of whether hydrogen and electricity prices may be co-integrated within
individual subsets. For co-integration analysis to be applicable, it is first nec-
essary to confirm that the price series are non-stationary. The stationarity of
electricity and hydrogen price time series was assessed using the ADF test. Ta-
ble D.9 presents the results, which demonstrate that none of the subsets exhibit
non-stationarity in both series. This conclusion is supported by p-values well
below the 0.05 significance threshold, indicating that the series are stationary.
A stationary time series is characterized by statistical properties, such as mean
and variance, that remain constant over time, implying the absence of long-term
trends or unit roots. In technical terms, stationary series are integrated of or-
der zero (I(0)). Co-integration analysis is typically used for non-stationary time
series (I(1)) that share a linear relationship, resulting in residuals that are sta-
tionary. Since all series in each subset are stationary, co-integration analysis
cannot be applied. The stationary nature of these time series implies that their
dynamics can be effectively analyzed using conventional statistical methods, such
as regression analysis and correlation metrics, without accounting for long-term
equilibrium relationships. Furthermore, the absence of non-stationarity suggests
that the relationship between hydrogen and electricity prices is predominantly
shaped by short-term interactions rather than shared long-term trends. This pro-
vides a foundation for focusing on dynamic interactions within specific market
conditions, enabling a more nuanced understanding of their dependencies.

Table D.9.: Results of the ADF-test for stationarity
Scenario El. high RL El. high RL El. low RL El. low RL

H2 high RL H2 low RL H2 high RL H2 low RL
H2 EL H2 EL H2 EL H2 EL

Ref ADF statistic -6.819 -6.846 -7.996 -6.315 -6.300 -8.298 -9.267 -9.230
p-value 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000
stationary Yes Yes Yes Yes Yes Yes Yes Yes

HI ADF statistic -4.907 -6.908 -8.453 -5.260 -7.816 -8.460 -7.841 -8.996
p-value 0.000 0.004 0.000 0.000 0.001 0.000 0.000 0.000
stationary Yes Yes Yes Yes Yes Yes Yes Yes

LD ADF statistic -6.819 -6.892 -8.355 -6.234 -8.016 -8.293 -9.181 -5.237
p-value 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000
stationary Yes Yes Yes Yes Yes Yes Yes Yes

HI/LD ADF statistic -6.819 -6.892 -8.355 -6.234 -8.016 -8.293 -9.181 -5.237
p-value 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000
stationary Yes Yes Yes Yes Yes Yes Yes Yes

The significance level for stationarity is p-value>0.05.
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D.10. Hydrogen and electricity price duration curves

D.10. Hydrogen and electricity price duration curves

Figure D.5.: Price duration curves for hydrogen and electricity

The price data are shown for Germany. Hourly electricity prices are weighted by the corre-
sponding demand to calculate daily prices. Both electricity and hydrogen prices represent the
shadow prices of their respective equilibrium constraints.
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Frischmuth, F. and Härtel, P. (2022). Hydrogen sourcing strategies and cross-
sectoral flexibility trade-offs in net-neutral energy scenarios for europe. Energy,
238:121598.

Gawlick, J. and Hamacher, T. (2023). Impact of coupling the electricity and
hydrogen sector in a zero-emission European energy system in 2050. Energy
Policy, 180:113646.

German Federal Government (2022). Transformation to a climate-neutral indus-
try. https://www.bundesregierung.de/breg-en/search/battery-cell-p

lant-vw-salzgitter-2060434.

194

https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2024/08/20240823_Selected-results-Hydrogen-storage-in-Germany-and-Europe-Model-based-analysis-up-to-2050.pdf
https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2024/08/20240823_Selected-results-Hydrogen-storage-in-Germany-and-Europe-Model-based-analysis-up-to-2050.pdf
https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2024/08/20240823_Selected-results-Hydrogen-storage-in-Germany-and-Europe-Model-based-analysis-up-to-2050.pdf
https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2024/08/20240823_Selected-results-Hydrogen-storage-in-Germany-and-Europe-Model-based-analysis-up-to-2050.pdf
https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2024/10/241004_Financing_Gap_Endbericht.pdf
https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2024/10/241004_Financing_Gap_Endbericht.pdf
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/4a8b916d-2af1-46bb-b790-55148cfe0a5e/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/4a8b916d-2af1-46bb-b790-55148cfe0a5e/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/4a8b916d-2af1-46bb-b790-55148cfe0a5e/content
https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cce/2021/LFS_Kurzbericht.pdf
https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cce/2021/LFS_Kurzbericht.pdf
https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cce/2021/LFS_Kurzbericht.pdf
https://www.bundesregierung.de/breg-en/search/battery-cell-plant-vw-salzgitter-2060434
https://www.bundesregierung.de/breg-en/search/battery-cell-plant-vw-salzgitter-2060434


Bibliography

German Government (2022). Nachhaltige Mobilität - Nicht weniger fortbewegen,
sondern anders. https://www.bundesregierung.de/breg-de/themen/kli

maschutz/nachhaltige-mobilitaet-2044132#:~:text=Nachhaltige%20M

obilit%C3%A4t%20Nicht%20weniger%20fortbewegen,um%20%C3%BCber%204

0%20Prozent%20sinken.

German TSOs (2022). Szenariorahmen zum Netzentwicklungsplan Strom 2037
mit Ausblick 2045, Version 2023, Entwurf der Übertragungsnetzbetreiber. ht
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VDEW (1999). Repräsentative VDEW-Lastprofile. https://www.bdew.de/en

ergie/standardlastprofile-strom/.

Virtuelles Institut (2022). Abschlussbericht Kompetenzzentrum Virtuelles Insti-
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e.V.· S. Birk, J. Fleer, G. Holtz, S. Jeddi, A. Lilienkamp, N. Namockel, M. Schönfisch, J. Wagner
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